* readelf.c (get_machine_dlags): Add support for RX's PID mode.
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
200 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
201 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
202 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
203 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
204 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
205
206 static const arm_feature_set arm_arch_any = ARM_ANY;
207 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
210 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
211
212 static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
214 static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216 static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218 static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222 static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
226 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
227 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
228 static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
230 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
233 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
236
237 static int mfloat_abi_opt = -1;
238 /* Record user cpu selection for object attributes. */
239 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
240 /* Must be long enough to hold any of the names in arm_cpus. */
241 static char selected_cpu_name[16];
242
243 /* Return if no cpu was selected on command-line. */
244 static bfd_boolean
245 no_cpu_selected (void)
246 {
247 return selected_cpu.core == arm_arch_none.core
248 && selected_cpu.coproc == arm_arch_none.coproc;
249 }
250
251 #ifdef OBJ_ELF
252 # ifdef EABI_DEFAULT
253 static int meabi_flags = EABI_DEFAULT;
254 # else
255 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
256 # endif
257
258 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
259
260 bfd_boolean
261 arm_is_eabi (void)
262 {
263 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
264 }
265 #endif
266
267 #ifdef OBJ_ELF
268 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
269 symbolS * GOT_symbol;
270 #endif
271
272 /* 0: assemble for ARM,
273 1: assemble for Thumb,
274 2: assemble for Thumb even though target CPU does not support thumb
275 instructions. */
276 static int thumb_mode = 0;
277 /* A value distinct from the possible values for thumb_mode that we
278 can use to record whether thumb_mode has been copied into the
279 tc_frag_data field of a frag. */
280 #define MODE_RECORDED (1 << 4)
281
282 /* Specifies the intrinsic IT insn behavior mode. */
283 enum implicit_it_mode
284 {
285 IMPLICIT_IT_MODE_NEVER = 0x00,
286 IMPLICIT_IT_MODE_ARM = 0x01,
287 IMPLICIT_IT_MODE_THUMB = 0x02,
288 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
289 };
290 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
291
292 /* If unified_syntax is true, we are processing the new unified
293 ARM/Thumb syntax. Important differences from the old ARM mode:
294
295 - Immediate operands do not require a # prefix.
296 - Conditional affixes always appear at the end of the
297 instruction. (For backward compatibility, those instructions
298 that formerly had them in the middle, continue to accept them
299 there.)
300 - The IT instruction may appear, and if it does is validated
301 against subsequent conditional affixes. It does not generate
302 machine code.
303
304 Important differences from the old Thumb mode:
305
306 - Immediate operands do not require a # prefix.
307 - Most of the V6T2 instructions are only available in unified mode.
308 - The .N and .W suffixes are recognized and honored (it is an error
309 if they cannot be honored).
310 - All instructions set the flags if and only if they have an 's' affix.
311 - Conditional affixes may be used. They are validated against
312 preceding IT instructions. Unlike ARM mode, you cannot use a
313 conditional affix except in the scope of an IT instruction. */
314
315 static bfd_boolean unified_syntax = FALSE;
316
317 enum neon_el_type
318 {
319 NT_invtype,
320 NT_untyped,
321 NT_integer,
322 NT_float,
323 NT_poly,
324 NT_signed,
325 NT_unsigned
326 };
327
328 struct neon_type_el
329 {
330 enum neon_el_type type;
331 unsigned size;
332 };
333
334 #define NEON_MAX_TYPE_ELS 4
335
336 struct neon_type
337 {
338 struct neon_type_el el[NEON_MAX_TYPE_ELS];
339 unsigned elems;
340 };
341
342 enum it_instruction_type
343 {
344 OUTSIDE_IT_INSN,
345 INSIDE_IT_INSN,
346 INSIDE_IT_LAST_INSN,
347 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
348 if inside, should be the last one. */
349 NEUTRAL_IT_INSN, /* This could be either inside or outside,
350 i.e. BKPT and NOP. */
351 IT_INSN /* The IT insn has been parsed. */
352 };
353
354 struct arm_it
355 {
356 const char * error;
357 unsigned long instruction;
358 int size;
359 int size_req;
360 int cond;
361 /* "uncond_value" is set to the value in place of the conditional field in
362 unconditional versions of the instruction, or -1 if nothing is
363 appropriate. */
364 int uncond_value;
365 struct neon_type vectype;
366 /* This does not indicate an actual NEON instruction, only that
367 the mnemonic accepts neon-style type suffixes. */
368 int is_neon;
369 /* Set to the opcode if the instruction needs relaxation.
370 Zero if the instruction is not relaxed. */
371 unsigned long relax;
372 struct
373 {
374 bfd_reloc_code_real_type type;
375 expressionS exp;
376 int pc_rel;
377 } reloc;
378
379 enum it_instruction_type it_insn_type;
380
381 struct
382 {
383 unsigned reg;
384 signed int imm;
385 struct neon_type_el vectype;
386 unsigned present : 1; /* Operand present. */
387 unsigned isreg : 1; /* Operand was a register. */
388 unsigned immisreg : 1; /* .imm field is a second register. */
389 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
390 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
391 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
392 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
393 instructions. This allows us to disambiguate ARM <-> vector insns. */
394 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
395 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
396 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
397 unsigned issingle : 1; /* Operand is VFP single-precision register. */
398 unsigned hasreloc : 1; /* Operand has relocation suffix. */
399 unsigned writeback : 1; /* Operand has trailing ! */
400 unsigned preind : 1; /* Preindexed address. */
401 unsigned postind : 1; /* Postindexed address. */
402 unsigned negative : 1; /* Index register was negated. */
403 unsigned shifted : 1; /* Shift applied to operation. */
404 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
405 } operands[6];
406 };
407
408 static struct arm_it inst;
409
410 #define NUM_FLOAT_VALS 8
411
412 const char * fp_const[] =
413 {
414 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
415 };
416
417 /* Number of littlenums required to hold an extended precision number. */
418 #define MAX_LITTLENUMS 6
419
420 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
421
422 #define FAIL (-1)
423 #define SUCCESS (0)
424
425 #define SUFF_S 1
426 #define SUFF_D 2
427 #define SUFF_E 3
428 #define SUFF_P 4
429
430 #define CP_T_X 0x00008000
431 #define CP_T_Y 0x00400000
432
433 #define CONDS_BIT 0x00100000
434 #define LOAD_BIT 0x00100000
435
436 #define DOUBLE_LOAD_FLAG 0x00000001
437
438 struct asm_cond
439 {
440 const char * template_name;
441 unsigned long value;
442 };
443
444 #define COND_ALWAYS 0xE
445
446 struct asm_psr
447 {
448 const char * template_name;
449 unsigned long field;
450 };
451
452 struct asm_barrier_opt
453 {
454 const char * template_name;
455 unsigned long value;
456 };
457
458 /* The bit that distinguishes CPSR and SPSR. */
459 #define SPSR_BIT (1 << 22)
460
461 /* The individual PSR flag bits. */
462 #define PSR_c (1 << 16)
463 #define PSR_x (1 << 17)
464 #define PSR_s (1 << 18)
465 #define PSR_f (1 << 19)
466
467 struct reloc_entry
468 {
469 char * name;
470 bfd_reloc_code_real_type reloc;
471 };
472
473 enum vfp_reg_pos
474 {
475 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
476 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
477 };
478
479 enum vfp_ldstm_type
480 {
481 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
482 };
483
484 /* Bits for DEFINED field in neon_typed_alias. */
485 #define NTA_HASTYPE 1
486 #define NTA_HASINDEX 2
487
488 struct neon_typed_alias
489 {
490 unsigned char defined;
491 unsigned char index;
492 struct neon_type_el eltype;
493 };
494
495 /* ARM register categories. This includes coprocessor numbers and various
496 architecture extensions' registers. */
497 enum arm_reg_type
498 {
499 REG_TYPE_RN,
500 REG_TYPE_CP,
501 REG_TYPE_CN,
502 REG_TYPE_FN,
503 REG_TYPE_VFS,
504 REG_TYPE_VFD,
505 REG_TYPE_NQ,
506 REG_TYPE_VFSD,
507 REG_TYPE_NDQ,
508 REG_TYPE_NSDQ,
509 REG_TYPE_VFC,
510 REG_TYPE_MVF,
511 REG_TYPE_MVD,
512 REG_TYPE_MVFX,
513 REG_TYPE_MVDX,
514 REG_TYPE_MVAX,
515 REG_TYPE_DSPSC,
516 REG_TYPE_MMXWR,
517 REG_TYPE_MMXWC,
518 REG_TYPE_MMXWCG,
519 REG_TYPE_XSCALE,
520 REG_TYPE_RNB
521 };
522
523 /* Structure for a hash table entry for a register.
524 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
525 information which states whether a vector type or index is specified (for a
526 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
527 struct reg_entry
528 {
529 const char * name;
530 unsigned int number;
531 unsigned char type;
532 unsigned char builtin;
533 struct neon_typed_alias * neon;
534 };
535
536 /* Diagnostics used when we don't get a register of the expected type. */
537 const char * const reg_expected_msgs[] =
538 {
539 N_("ARM register expected"),
540 N_("bad or missing co-processor number"),
541 N_("co-processor register expected"),
542 N_("FPA register expected"),
543 N_("VFP single precision register expected"),
544 N_("VFP/Neon double precision register expected"),
545 N_("Neon quad precision register expected"),
546 N_("VFP single or double precision register expected"),
547 N_("Neon double or quad precision register expected"),
548 N_("VFP single, double or Neon quad precision register expected"),
549 N_("VFP system register expected"),
550 N_("Maverick MVF register expected"),
551 N_("Maverick MVD register expected"),
552 N_("Maverick MVFX register expected"),
553 N_("Maverick MVDX register expected"),
554 N_("Maverick MVAX register expected"),
555 N_("Maverick DSPSC register expected"),
556 N_("iWMMXt data register expected"),
557 N_("iWMMXt control register expected"),
558 N_("iWMMXt scalar register expected"),
559 N_("XScale accumulator register expected"),
560 };
561
562 /* Some well known registers that we refer to directly elsewhere. */
563 #define REG_SP 13
564 #define REG_LR 14
565 #define REG_PC 15
566
567 /* ARM instructions take 4bytes in the object file, Thumb instructions
568 take 2: */
569 #define INSN_SIZE 4
570
571 struct asm_opcode
572 {
573 /* Basic string to match. */
574 const char * template_name;
575
576 /* Parameters to instruction. */
577 unsigned int operands[8];
578
579 /* Conditional tag - see opcode_lookup. */
580 unsigned int tag : 4;
581
582 /* Basic instruction code. */
583 unsigned int avalue : 28;
584
585 /* Thumb-format instruction code. */
586 unsigned int tvalue;
587
588 /* Which architecture variant provides this instruction. */
589 const arm_feature_set * avariant;
590 const arm_feature_set * tvariant;
591
592 /* Function to call to encode instruction in ARM format. */
593 void (* aencode) (void);
594
595 /* Function to call to encode instruction in Thumb format. */
596 void (* tencode) (void);
597 };
598
599 /* Defines for various bits that we will want to toggle. */
600 #define INST_IMMEDIATE 0x02000000
601 #define OFFSET_REG 0x02000000
602 #define HWOFFSET_IMM 0x00400000
603 #define SHIFT_BY_REG 0x00000010
604 #define PRE_INDEX 0x01000000
605 #define INDEX_UP 0x00800000
606 #define WRITE_BACK 0x00200000
607 #define LDM_TYPE_2_OR_3 0x00400000
608 #define CPSI_MMOD 0x00020000
609
610 #define LITERAL_MASK 0xf000f000
611 #define OPCODE_MASK 0xfe1fffff
612 #define V4_STR_BIT 0x00000020
613
614 #define T2_SUBS_PC_LR 0xf3de8f00
615
616 #define DATA_OP_SHIFT 21
617
618 #define T2_OPCODE_MASK 0xfe1fffff
619 #define T2_DATA_OP_SHIFT 21
620
621 /* Codes to distinguish the arithmetic instructions. */
622 #define OPCODE_AND 0
623 #define OPCODE_EOR 1
624 #define OPCODE_SUB 2
625 #define OPCODE_RSB 3
626 #define OPCODE_ADD 4
627 #define OPCODE_ADC 5
628 #define OPCODE_SBC 6
629 #define OPCODE_RSC 7
630 #define OPCODE_TST 8
631 #define OPCODE_TEQ 9
632 #define OPCODE_CMP 10
633 #define OPCODE_CMN 11
634 #define OPCODE_ORR 12
635 #define OPCODE_MOV 13
636 #define OPCODE_BIC 14
637 #define OPCODE_MVN 15
638
639 #define T2_OPCODE_AND 0
640 #define T2_OPCODE_BIC 1
641 #define T2_OPCODE_ORR 2
642 #define T2_OPCODE_ORN 3
643 #define T2_OPCODE_EOR 4
644 #define T2_OPCODE_ADD 8
645 #define T2_OPCODE_ADC 10
646 #define T2_OPCODE_SBC 11
647 #define T2_OPCODE_SUB 13
648 #define T2_OPCODE_RSB 14
649
650 #define T_OPCODE_MUL 0x4340
651 #define T_OPCODE_TST 0x4200
652 #define T_OPCODE_CMN 0x42c0
653 #define T_OPCODE_NEG 0x4240
654 #define T_OPCODE_MVN 0x43c0
655
656 #define T_OPCODE_ADD_R3 0x1800
657 #define T_OPCODE_SUB_R3 0x1a00
658 #define T_OPCODE_ADD_HI 0x4400
659 #define T_OPCODE_ADD_ST 0xb000
660 #define T_OPCODE_SUB_ST 0xb080
661 #define T_OPCODE_ADD_SP 0xa800
662 #define T_OPCODE_ADD_PC 0xa000
663 #define T_OPCODE_ADD_I8 0x3000
664 #define T_OPCODE_SUB_I8 0x3800
665 #define T_OPCODE_ADD_I3 0x1c00
666 #define T_OPCODE_SUB_I3 0x1e00
667
668 #define T_OPCODE_ASR_R 0x4100
669 #define T_OPCODE_LSL_R 0x4080
670 #define T_OPCODE_LSR_R 0x40c0
671 #define T_OPCODE_ROR_R 0x41c0
672 #define T_OPCODE_ASR_I 0x1000
673 #define T_OPCODE_LSL_I 0x0000
674 #define T_OPCODE_LSR_I 0x0800
675
676 #define T_OPCODE_MOV_I8 0x2000
677 #define T_OPCODE_CMP_I8 0x2800
678 #define T_OPCODE_CMP_LR 0x4280
679 #define T_OPCODE_MOV_HR 0x4600
680 #define T_OPCODE_CMP_HR 0x4500
681
682 #define T_OPCODE_LDR_PC 0x4800
683 #define T_OPCODE_LDR_SP 0x9800
684 #define T_OPCODE_STR_SP 0x9000
685 #define T_OPCODE_LDR_IW 0x6800
686 #define T_OPCODE_STR_IW 0x6000
687 #define T_OPCODE_LDR_IH 0x8800
688 #define T_OPCODE_STR_IH 0x8000
689 #define T_OPCODE_LDR_IB 0x7800
690 #define T_OPCODE_STR_IB 0x7000
691 #define T_OPCODE_LDR_RW 0x5800
692 #define T_OPCODE_STR_RW 0x5000
693 #define T_OPCODE_LDR_RH 0x5a00
694 #define T_OPCODE_STR_RH 0x5200
695 #define T_OPCODE_LDR_RB 0x5c00
696 #define T_OPCODE_STR_RB 0x5400
697
698 #define T_OPCODE_PUSH 0xb400
699 #define T_OPCODE_POP 0xbc00
700
701 #define T_OPCODE_BRANCH 0xe000
702
703 #define THUMB_SIZE 2 /* Size of thumb instruction. */
704 #define THUMB_PP_PC_LR 0x0100
705 #define THUMB_LOAD_BIT 0x0800
706 #define THUMB2_LOAD_BIT 0x00100000
707
708 #define BAD_ARGS _("bad arguments to instruction")
709 #define BAD_SP _("r13 not allowed here")
710 #define BAD_PC _("r15 not allowed here")
711 #define BAD_COND _("instruction cannot be conditional")
712 #define BAD_OVERLAP _("registers may not be the same")
713 #define BAD_HIREG _("lo register required")
714 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
715 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
716 #define BAD_BRANCH _("branch must be last instruction in IT block")
717 #define BAD_NOT_IT _("instruction not allowed in IT block")
718 #define BAD_FPU _("selected FPU does not support instruction")
719 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
720 #define BAD_IT_COND _("incorrect condition in IT block")
721 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
722 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
723 #define BAD_PC_ADDRESSING \
724 _("cannot use register index with PC-relative addressing")
725 #define BAD_PC_WRITEBACK \
726 _("cannot use writeback with PC-relative addressing")
727 #define BAD_RANGE _("branch out of range")
728
729 static struct hash_control * arm_ops_hsh;
730 static struct hash_control * arm_cond_hsh;
731 static struct hash_control * arm_shift_hsh;
732 static struct hash_control * arm_psr_hsh;
733 static struct hash_control * arm_v7m_psr_hsh;
734 static struct hash_control * arm_reg_hsh;
735 static struct hash_control * arm_reloc_hsh;
736 static struct hash_control * arm_barrier_opt_hsh;
737
738 /* Stuff needed to resolve the label ambiguity
739 As:
740 ...
741 label: <insn>
742 may differ from:
743 ...
744 label:
745 <insn> */
746
747 symbolS * last_label_seen;
748 static int label_is_thumb_function_name = FALSE;
749
750 /* Literal pool structure. Held on a per-section
751 and per-sub-section basis. */
752
753 #define MAX_LITERAL_POOL_SIZE 1024
754 typedef struct literal_pool
755 {
756 expressionS literals [MAX_LITERAL_POOL_SIZE];
757 unsigned int next_free_entry;
758 unsigned int id;
759 symbolS * symbol;
760 segT section;
761 subsegT sub_section;
762 #ifdef OBJ_ELF
763 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
764 #endif
765 struct literal_pool * next;
766 } literal_pool;
767
768 /* Pointer to a linked list of literal pools. */
769 literal_pool * list_of_pools = NULL;
770
771 #ifdef OBJ_ELF
772 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
773 #else
774 static struct current_it now_it;
775 #endif
776
777 static inline int
778 now_it_compatible (int cond)
779 {
780 return (cond & ~1) == (now_it.cc & ~1);
781 }
782
783 static inline int
784 conditional_insn (void)
785 {
786 return inst.cond != COND_ALWAYS;
787 }
788
789 static int in_it_block (void);
790
791 static int handle_it_state (void);
792
793 static void force_automatic_it_block_close (void);
794
795 static void it_fsm_post_encode (void);
796
797 #define set_it_insn_type(type) \
798 do \
799 { \
800 inst.it_insn_type = type; \
801 if (handle_it_state () == FAIL) \
802 return; \
803 } \
804 while (0)
805
806 #define set_it_insn_type_nonvoid(type, failret) \
807 do \
808 { \
809 inst.it_insn_type = type; \
810 if (handle_it_state () == FAIL) \
811 return failret; \
812 } \
813 while(0)
814
815 #define set_it_insn_type_last() \
816 do \
817 { \
818 if (inst.cond == COND_ALWAYS) \
819 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
820 else \
821 set_it_insn_type (INSIDE_IT_LAST_INSN); \
822 } \
823 while (0)
824
825 /* Pure syntax. */
826
827 /* This array holds the chars that always start a comment. If the
828 pre-processor is disabled, these aren't very useful. */
829 const char comment_chars[] = "@";
830
831 /* This array holds the chars that only start a comment at the beginning of
832 a line. If the line seems to have the form '# 123 filename'
833 .line and .file directives will appear in the pre-processed output. */
834 /* Note that input_file.c hand checks for '#' at the beginning of the
835 first line of the input file. This is because the compiler outputs
836 #NO_APP at the beginning of its output. */
837 /* Also note that comments like this one will always work. */
838 const char line_comment_chars[] = "#";
839
840 const char line_separator_chars[] = ";";
841
842 /* Chars that can be used to separate mant
843 from exp in floating point numbers. */
844 const char EXP_CHARS[] = "eE";
845
846 /* Chars that mean this number is a floating point constant. */
847 /* As in 0f12.456 */
848 /* or 0d1.2345e12 */
849
850 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
851
852 /* Prefix characters that indicate the start of an immediate
853 value. */
854 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
855
856 /* Separator character handling. */
857
858 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
859
860 static inline int
861 skip_past_char (char ** str, char c)
862 {
863 if (**str == c)
864 {
865 (*str)++;
866 return SUCCESS;
867 }
868 else
869 return FAIL;
870 }
871
872 #define skip_past_comma(str) skip_past_char (str, ',')
873
874 /* Arithmetic expressions (possibly involving symbols). */
875
876 /* Return TRUE if anything in the expression is a bignum. */
877
878 static int
879 walk_no_bignums (symbolS * sp)
880 {
881 if (symbol_get_value_expression (sp)->X_op == O_big)
882 return 1;
883
884 if (symbol_get_value_expression (sp)->X_add_symbol)
885 {
886 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
887 || (symbol_get_value_expression (sp)->X_op_symbol
888 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
889 }
890
891 return 0;
892 }
893
894 static int in_my_get_expression = 0;
895
896 /* Third argument to my_get_expression. */
897 #define GE_NO_PREFIX 0
898 #define GE_IMM_PREFIX 1
899 #define GE_OPT_PREFIX 2
900 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
901 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
902 #define GE_OPT_PREFIX_BIG 3
903
904 static int
905 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
906 {
907 char * save_in;
908 segT seg;
909
910 /* In unified syntax, all prefixes are optional. */
911 if (unified_syntax)
912 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
913 : GE_OPT_PREFIX;
914
915 switch (prefix_mode)
916 {
917 case GE_NO_PREFIX: break;
918 case GE_IMM_PREFIX:
919 if (!is_immediate_prefix (**str))
920 {
921 inst.error = _("immediate expression requires a # prefix");
922 return FAIL;
923 }
924 (*str)++;
925 break;
926 case GE_OPT_PREFIX:
927 case GE_OPT_PREFIX_BIG:
928 if (is_immediate_prefix (**str))
929 (*str)++;
930 break;
931 default: abort ();
932 }
933
934 memset (ep, 0, sizeof (expressionS));
935
936 save_in = input_line_pointer;
937 input_line_pointer = *str;
938 in_my_get_expression = 1;
939 seg = expression (ep);
940 in_my_get_expression = 0;
941
942 if (ep->X_op == O_illegal || ep->X_op == O_absent)
943 {
944 /* We found a bad or missing expression in md_operand(). */
945 *str = input_line_pointer;
946 input_line_pointer = save_in;
947 if (inst.error == NULL)
948 inst.error = (ep->X_op == O_absent
949 ? _("missing expression") :_("bad expression"));
950 return 1;
951 }
952
953 #ifdef OBJ_AOUT
954 if (seg != absolute_section
955 && seg != text_section
956 && seg != data_section
957 && seg != bss_section
958 && seg != undefined_section)
959 {
960 inst.error = _("bad segment");
961 *str = input_line_pointer;
962 input_line_pointer = save_in;
963 return 1;
964 }
965 #else
966 (void) seg;
967 #endif
968
969 /* Get rid of any bignums now, so that we don't generate an error for which
970 we can't establish a line number later on. Big numbers are never valid
971 in instructions, which is where this routine is always called. */
972 if (prefix_mode != GE_OPT_PREFIX_BIG
973 && (ep->X_op == O_big
974 || (ep->X_add_symbol
975 && (walk_no_bignums (ep->X_add_symbol)
976 || (ep->X_op_symbol
977 && walk_no_bignums (ep->X_op_symbol))))))
978 {
979 inst.error = _("invalid constant");
980 *str = input_line_pointer;
981 input_line_pointer = save_in;
982 return 1;
983 }
984
985 *str = input_line_pointer;
986 input_line_pointer = save_in;
987 return 0;
988 }
989
990 /* Turn a string in input_line_pointer into a floating point constant
991 of type TYPE, and store the appropriate bytes in *LITP. The number
992 of LITTLENUMS emitted is stored in *SIZEP. An error message is
993 returned, or NULL on OK.
994
995 Note that fp constants aren't represent in the normal way on the ARM.
996 In big endian mode, things are as expected. However, in little endian
997 mode fp constants are big-endian word-wise, and little-endian byte-wise
998 within the words. For example, (double) 1.1 in big endian mode is
999 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1000 the byte sequence 99 99 f1 3f 9a 99 99 99.
1001
1002 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1003
1004 char *
1005 md_atof (int type, char * litP, int * sizeP)
1006 {
1007 int prec;
1008 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1009 char *t;
1010 int i;
1011
1012 switch (type)
1013 {
1014 case 'f':
1015 case 'F':
1016 case 's':
1017 case 'S':
1018 prec = 2;
1019 break;
1020
1021 case 'd':
1022 case 'D':
1023 case 'r':
1024 case 'R':
1025 prec = 4;
1026 break;
1027
1028 case 'x':
1029 case 'X':
1030 prec = 5;
1031 break;
1032
1033 case 'p':
1034 case 'P':
1035 prec = 5;
1036 break;
1037
1038 default:
1039 *sizeP = 0;
1040 return _("Unrecognized or unsupported floating point constant");
1041 }
1042
1043 t = atof_ieee (input_line_pointer, type, words);
1044 if (t)
1045 input_line_pointer = t;
1046 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1047
1048 if (target_big_endian)
1049 {
1050 for (i = 0; i < prec; i++)
1051 {
1052 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1053 litP += sizeof (LITTLENUM_TYPE);
1054 }
1055 }
1056 else
1057 {
1058 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1059 for (i = prec - 1; i >= 0; i--)
1060 {
1061 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1062 litP += sizeof (LITTLENUM_TYPE);
1063 }
1064 else
1065 /* For a 4 byte float the order of elements in `words' is 1 0.
1066 For an 8 byte float the order is 1 0 3 2. */
1067 for (i = 0; i < prec; i += 2)
1068 {
1069 md_number_to_chars (litP, (valueT) words[i + 1],
1070 sizeof (LITTLENUM_TYPE));
1071 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1072 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += 2 * sizeof (LITTLENUM_TYPE);
1074 }
1075 }
1076
1077 return NULL;
1078 }
1079
1080 /* We handle all bad expressions here, so that we can report the faulty
1081 instruction in the error message. */
1082 void
1083 md_operand (expressionS * exp)
1084 {
1085 if (in_my_get_expression)
1086 exp->X_op = O_illegal;
1087 }
1088
1089 /* Immediate values. */
1090
1091 /* Generic immediate-value read function for use in directives.
1092 Accepts anything that 'expression' can fold to a constant.
1093 *val receives the number. */
1094 #ifdef OBJ_ELF
1095 static int
1096 immediate_for_directive (int *val)
1097 {
1098 expressionS exp;
1099 exp.X_op = O_illegal;
1100
1101 if (is_immediate_prefix (*input_line_pointer))
1102 {
1103 input_line_pointer++;
1104 expression (&exp);
1105 }
1106
1107 if (exp.X_op != O_constant)
1108 {
1109 as_bad (_("expected #constant"));
1110 ignore_rest_of_line ();
1111 return FAIL;
1112 }
1113 *val = exp.X_add_number;
1114 return SUCCESS;
1115 }
1116 #endif
1117
1118 /* Register parsing. */
1119
1120 /* Generic register parser. CCP points to what should be the
1121 beginning of a register name. If it is indeed a valid register
1122 name, advance CCP over it and return the reg_entry structure;
1123 otherwise return NULL. Does not issue diagnostics. */
1124
1125 static struct reg_entry *
1126 arm_reg_parse_multi (char **ccp)
1127 {
1128 char *start = *ccp;
1129 char *p;
1130 struct reg_entry *reg;
1131
1132 #ifdef REGISTER_PREFIX
1133 if (*start != REGISTER_PREFIX)
1134 return NULL;
1135 start++;
1136 #endif
1137 #ifdef OPTIONAL_REGISTER_PREFIX
1138 if (*start == OPTIONAL_REGISTER_PREFIX)
1139 start++;
1140 #endif
1141
1142 p = start;
1143 if (!ISALPHA (*p) || !is_name_beginner (*p))
1144 return NULL;
1145
1146 do
1147 p++;
1148 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1149
1150 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1151
1152 if (!reg)
1153 return NULL;
1154
1155 *ccp = p;
1156 return reg;
1157 }
1158
1159 static int
1160 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1161 enum arm_reg_type type)
1162 {
1163 /* Alternative syntaxes are accepted for a few register classes. */
1164 switch (type)
1165 {
1166 case REG_TYPE_MVF:
1167 case REG_TYPE_MVD:
1168 case REG_TYPE_MVFX:
1169 case REG_TYPE_MVDX:
1170 /* Generic coprocessor register names are allowed for these. */
1171 if (reg && reg->type == REG_TYPE_CN)
1172 return reg->number;
1173 break;
1174
1175 case REG_TYPE_CP:
1176 /* For backward compatibility, a bare number is valid here. */
1177 {
1178 unsigned long processor = strtoul (start, ccp, 10);
1179 if (*ccp != start && processor <= 15)
1180 return processor;
1181 }
1182
1183 case REG_TYPE_MMXWC:
1184 /* WC includes WCG. ??? I'm not sure this is true for all
1185 instructions that take WC registers. */
1186 if (reg && reg->type == REG_TYPE_MMXWCG)
1187 return reg->number;
1188 break;
1189
1190 default:
1191 break;
1192 }
1193
1194 return FAIL;
1195 }
1196
1197 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1198 return value is the register number or FAIL. */
1199
1200 static int
1201 arm_reg_parse (char **ccp, enum arm_reg_type type)
1202 {
1203 char *start = *ccp;
1204 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1205 int ret;
1206
1207 /* Do not allow a scalar (reg+index) to parse as a register. */
1208 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1209 return FAIL;
1210
1211 if (reg && reg->type == type)
1212 return reg->number;
1213
1214 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1215 return ret;
1216
1217 *ccp = start;
1218 return FAIL;
1219 }
1220
1221 /* Parse a Neon type specifier. *STR should point at the leading '.'
1222 character. Does no verification at this stage that the type fits the opcode
1223 properly. E.g.,
1224
1225 .i32.i32.s16
1226 .s32.f32
1227 .u16
1228
1229 Can all be legally parsed by this function.
1230
1231 Fills in neon_type struct pointer with parsed information, and updates STR
1232 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1233 type, FAIL if not. */
1234
1235 static int
1236 parse_neon_type (struct neon_type *type, char **str)
1237 {
1238 char *ptr = *str;
1239
1240 if (type)
1241 type->elems = 0;
1242
1243 while (type->elems < NEON_MAX_TYPE_ELS)
1244 {
1245 enum neon_el_type thistype = NT_untyped;
1246 unsigned thissize = -1u;
1247
1248 if (*ptr != '.')
1249 break;
1250
1251 ptr++;
1252
1253 /* Just a size without an explicit type. */
1254 if (ISDIGIT (*ptr))
1255 goto parsesize;
1256
1257 switch (TOLOWER (*ptr))
1258 {
1259 case 'i': thistype = NT_integer; break;
1260 case 'f': thistype = NT_float; break;
1261 case 'p': thistype = NT_poly; break;
1262 case 's': thistype = NT_signed; break;
1263 case 'u': thistype = NT_unsigned; break;
1264 case 'd':
1265 thistype = NT_float;
1266 thissize = 64;
1267 ptr++;
1268 goto done;
1269 default:
1270 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1271 return FAIL;
1272 }
1273
1274 ptr++;
1275
1276 /* .f is an abbreviation for .f32. */
1277 if (thistype == NT_float && !ISDIGIT (*ptr))
1278 thissize = 32;
1279 else
1280 {
1281 parsesize:
1282 thissize = strtoul (ptr, &ptr, 10);
1283
1284 if (thissize != 8 && thissize != 16 && thissize != 32
1285 && thissize != 64)
1286 {
1287 as_bad (_("bad size %d in type specifier"), thissize);
1288 return FAIL;
1289 }
1290 }
1291
1292 done:
1293 if (type)
1294 {
1295 type->el[type->elems].type = thistype;
1296 type->el[type->elems].size = thissize;
1297 type->elems++;
1298 }
1299 }
1300
1301 /* Empty/missing type is not a successful parse. */
1302 if (type->elems == 0)
1303 return FAIL;
1304
1305 *str = ptr;
1306
1307 return SUCCESS;
1308 }
1309
1310 /* Errors may be set multiple times during parsing or bit encoding
1311 (particularly in the Neon bits), but usually the earliest error which is set
1312 will be the most meaningful. Avoid overwriting it with later (cascading)
1313 errors by calling this function. */
1314
1315 static void
1316 first_error (const char *err)
1317 {
1318 if (!inst.error)
1319 inst.error = err;
1320 }
1321
1322 /* Parse a single type, e.g. ".s32", leading period included. */
1323 static int
1324 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1325 {
1326 char *str = *ccp;
1327 struct neon_type optype;
1328
1329 if (*str == '.')
1330 {
1331 if (parse_neon_type (&optype, &str) == SUCCESS)
1332 {
1333 if (optype.elems == 1)
1334 *vectype = optype.el[0];
1335 else
1336 {
1337 first_error (_("only one type should be specified for operand"));
1338 return FAIL;
1339 }
1340 }
1341 else
1342 {
1343 first_error (_("vector type expected"));
1344 return FAIL;
1345 }
1346 }
1347 else
1348 return FAIL;
1349
1350 *ccp = str;
1351
1352 return SUCCESS;
1353 }
1354
1355 /* Special meanings for indices (which have a range of 0-7), which will fit into
1356 a 4-bit integer. */
1357
1358 #define NEON_ALL_LANES 15
1359 #define NEON_INTERLEAVE_LANES 14
1360
1361 /* Parse either a register or a scalar, with an optional type. Return the
1362 register number, and optionally fill in the actual type of the register
1363 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1364 type/index information in *TYPEINFO. */
1365
1366 static int
1367 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1368 enum arm_reg_type *rtype,
1369 struct neon_typed_alias *typeinfo)
1370 {
1371 char *str = *ccp;
1372 struct reg_entry *reg = arm_reg_parse_multi (&str);
1373 struct neon_typed_alias atype;
1374 struct neon_type_el parsetype;
1375
1376 atype.defined = 0;
1377 atype.index = -1;
1378 atype.eltype.type = NT_invtype;
1379 atype.eltype.size = -1;
1380
1381 /* Try alternate syntax for some types of register. Note these are mutually
1382 exclusive with the Neon syntax extensions. */
1383 if (reg == NULL)
1384 {
1385 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1386 if (altreg != FAIL)
1387 *ccp = str;
1388 if (typeinfo)
1389 *typeinfo = atype;
1390 return altreg;
1391 }
1392
1393 /* Undo polymorphism when a set of register types may be accepted. */
1394 if ((type == REG_TYPE_NDQ
1395 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1396 || (type == REG_TYPE_VFSD
1397 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1398 || (type == REG_TYPE_NSDQ
1399 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1400 || reg->type == REG_TYPE_NQ))
1401 || (type == REG_TYPE_MMXWC
1402 && (reg->type == REG_TYPE_MMXWCG)))
1403 type = (enum arm_reg_type) reg->type;
1404
1405 if (type != reg->type)
1406 return FAIL;
1407
1408 if (reg->neon)
1409 atype = *reg->neon;
1410
1411 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1412 {
1413 if ((atype.defined & NTA_HASTYPE) != 0)
1414 {
1415 first_error (_("can't redefine type for operand"));
1416 return FAIL;
1417 }
1418 atype.defined |= NTA_HASTYPE;
1419 atype.eltype = parsetype;
1420 }
1421
1422 if (skip_past_char (&str, '[') == SUCCESS)
1423 {
1424 if (type != REG_TYPE_VFD)
1425 {
1426 first_error (_("only D registers may be indexed"));
1427 return FAIL;
1428 }
1429
1430 if ((atype.defined & NTA_HASINDEX) != 0)
1431 {
1432 first_error (_("can't change index for operand"));
1433 return FAIL;
1434 }
1435
1436 atype.defined |= NTA_HASINDEX;
1437
1438 if (skip_past_char (&str, ']') == SUCCESS)
1439 atype.index = NEON_ALL_LANES;
1440 else
1441 {
1442 expressionS exp;
1443
1444 my_get_expression (&exp, &str, GE_NO_PREFIX);
1445
1446 if (exp.X_op != O_constant)
1447 {
1448 first_error (_("constant expression required"));
1449 return FAIL;
1450 }
1451
1452 if (skip_past_char (&str, ']') == FAIL)
1453 return FAIL;
1454
1455 atype.index = exp.X_add_number;
1456 }
1457 }
1458
1459 if (typeinfo)
1460 *typeinfo = atype;
1461
1462 if (rtype)
1463 *rtype = type;
1464
1465 *ccp = str;
1466
1467 return reg->number;
1468 }
1469
1470 /* Like arm_reg_parse, but allow allow the following extra features:
1471 - If RTYPE is non-zero, return the (possibly restricted) type of the
1472 register (e.g. Neon double or quad reg when either has been requested).
1473 - If this is a Neon vector type with additional type information, fill
1474 in the struct pointed to by VECTYPE (if non-NULL).
1475 This function will fault on encountering a scalar. */
1476
1477 static int
1478 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1479 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1480 {
1481 struct neon_typed_alias atype;
1482 char *str = *ccp;
1483 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1484
1485 if (reg == FAIL)
1486 return FAIL;
1487
1488 /* Do not allow regname(... to parse as a register. */
1489 if (*str == '(')
1490 return FAIL;
1491
1492 /* Do not allow a scalar (reg+index) to parse as a register. */
1493 if ((atype.defined & NTA_HASINDEX) != 0)
1494 {
1495 first_error (_("register operand expected, but got scalar"));
1496 return FAIL;
1497 }
1498
1499 if (vectype)
1500 *vectype = atype.eltype;
1501
1502 *ccp = str;
1503
1504 return reg;
1505 }
1506
1507 #define NEON_SCALAR_REG(X) ((X) >> 4)
1508 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1509
1510 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1511 have enough information to be able to do a good job bounds-checking. So, we
1512 just do easy checks here, and do further checks later. */
1513
1514 static int
1515 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1516 {
1517 int reg;
1518 char *str = *ccp;
1519 struct neon_typed_alias atype;
1520
1521 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1522
1523 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1524 return FAIL;
1525
1526 if (atype.index == NEON_ALL_LANES)
1527 {
1528 first_error (_("scalar must have an index"));
1529 return FAIL;
1530 }
1531 else if (atype.index >= 64 / elsize)
1532 {
1533 first_error (_("scalar index out of range"));
1534 return FAIL;
1535 }
1536
1537 if (type)
1538 *type = atype.eltype;
1539
1540 *ccp = str;
1541
1542 return reg * 16 + atype.index;
1543 }
1544
1545 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1546
1547 static long
1548 parse_reg_list (char ** strp)
1549 {
1550 char * str = * strp;
1551 long range = 0;
1552 int another_range;
1553
1554 /* We come back here if we get ranges concatenated by '+' or '|'. */
1555 do
1556 {
1557 another_range = 0;
1558
1559 if (*str == '{')
1560 {
1561 int in_range = 0;
1562 int cur_reg = -1;
1563
1564 str++;
1565 do
1566 {
1567 int reg;
1568
1569 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1570 {
1571 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1572 return FAIL;
1573 }
1574
1575 if (in_range)
1576 {
1577 int i;
1578
1579 if (reg <= cur_reg)
1580 {
1581 first_error (_("bad range in register list"));
1582 return FAIL;
1583 }
1584
1585 for (i = cur_reg + 1; i < reg; i++)
1586 {
1587 if (range & (1 << i))
1588 as_tsktsk
1589 (_("Warning: duplicated register (r%d) in register list"),
1590 i);
1591 else
1592 range |= 1 << i;
1593 }
1594 in_range = 0;
1595 }
1596
1597 if (range & (1 << reg))
1598 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1599 reg);
1600 else if (reg <= cur_reg)
1601 as_tsktsk (_("Warning: register range not in ascending order"));
1602
1603 range |= 1 << reg;
1604 cur_reg = reg;
1605 }
1606 while (skip_past_comma (&str) != FAIL
1607 || (in_range = 1, *str++ == '-'));
1608 str--;
1609
1610 if (*str++ != '}')
1611 {
1612 first_error (_("missing `}'"));
1613 return FAIL;
1614 }
1615 }
1616 else
1617 {
1618 expressionS exp;
1619
1620 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1621 return FAIL;
1622
1623 if (exp.X_op == O_constant)
1624 {
1625 if (exp.X_add_number
1626 != (exp.X_add_number & 0x0000ffff))
1627 {
1628 inst.error = _("invalid register mask");
1629 return FAIL;
1630 }
1631
1632 if ((range & exp.X_add_number) != 0)
1633 {
1634 int regno = range & exp.X_add_number;
1635
1636 regno &= -regno;
1637 regno = (1 << regno) - 1;
1638 as_tsktsk
1639 (_("Warning: duplicated register (r%d) in register list"),
1640 regno);
1641 }
1642
1643 range |= exp.X_add_number;
1644 }
1645 else
1646 {
1647 if (inst.reloc.type != 0)
1648 {
1649 inst.error = _("expression too complex");
1650 return FAIL;
1651 }
1652
1653 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1654 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1655 inst.reloc.pc_rel = 0;
1656 }
1657 }
1658
1659 if (*str == '|' || *str == '+')
1660 {
1661 str++;
1662 another_range = 1;
1663 }
1664 }
1665 while (another_range);
1666
1667 *strp = str;
1668 return range;
1669 }
1670
1671 /* Types of registers in a list. */
1672
1673 enum reg_list_els
1674 {
1675 REGLIST_VFP_S,
1676 REGLIST_VFP_D,
1677 REGLIST_NEON_D
1678 };
1679
1680 /* Parse a VFP register list. If the string is invalid return FAIL.
1681 Otherwise return the number of registers, and set PBASE to the first
1682 register. Parses registers of type ETYPE.
1683 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1684 - Q registers can be used to specify pairs of D registers
1685 - { } can be omitted from around a singleton register list
1686 FIXME: This is not implemented, as it would require backtracking in
1687 some cases, e.g.:
1688 vtbl.8 d3,d4,d5
1689 This could be done (the meaning isn't really ambiguous), but doesn't
1690 fit in well with the current parsing framework.
1691 - 32 D registers may be used (also true for VFPv3).
1692 FIXME: Types are ignored in these register lists, which is probably a
1693 bug. */
1694
1695 static int
1696 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1697 {
1698 char *str = *ccp;
1699 int base_reg;
1700 int new_base;
1701 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1702 int max_regs = 0;
1703 int count = 0;
1704 int warned = 0;
1705 unsigned long mask = 0;
1706 int i;
1707
1708 if (*str != '{')
1709 {
1710 inst.error = _("expecting {");
1711 return FAIL;
1712 }
1713
1714 str++;
1715
1716 switch (etype)
1717 {
1718 case REGLIST_VFP_S:
1719 regtype = REG_TYPE_VFS;
1720 max_regs = 32;
1721 break;
1722
1723 case REGLIST_VFP_D:
1724 regtype = REG_TYPE_VFD;
1725 break;
1726
1727 case REGLIST_NEON_D:
1728 regtype = REG_TYPE_NDQ;
1729 break;
1730 }
1731
1732 if (etype != REGLIST_VFP_S)
1733 {
1734 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1735 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1736 {
1737 max_regs = 32;
1738 if (thumb_mode)
1739 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1740 fpu_vfp_ext_d32);
1741 else
1742 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1743 fpu_vfp_ext_d32);
1744 }
1745 else
1746 max_regs = 16;
1747 }
1748
1749 base_reg = max_regs;
1750
1751 do
1752 {
1753 int setmask = 1, addregs = 1;
1754
1755 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1756
1757 if (new_base == FAIL)
1758 {
1759 first_error (_(reg_expected_msgs[regtype]));
1760 return FAIL;
1761 }
1762
1763 if (new_base >= max_regs)
1764 {
1765 first_error (_("register out of range in list"));
1766 return FAIL;
1767 }
1768
1769 /* Note: a value of 2 * n is returned for the register Q<n>. */
1770 if (regtype == REG_TYPE_NQ)
1771 {
1772 setmask = 3;
1773 addregs = 2;
1774 }
1775
1776 if (new_base < base_reg)
1777 base_reg = new_base;
1778
1779 if (mask & (setmask << new_base))
1780 {
1781 first_error (_("invalid register list"));
1782 return FAIL;
1783 }
1784
1785 if ((mask >> new_base) != 0 && ! warned)
1786 {
1787 as_tsktsk (_("register list not in ascending order"));
1788 warned = 1;
1789 }
1790
1791 mask |= setmask << new_base;
1792 count += addregs;
1793
1794 if (*str == '-') /* We have the start of a range expression */
1795 {
1796 int high_range;
1797
1798 str++;
1799
1800 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1801 == FAIL)
1802 {
1803 inst.error = gettext (reg_expected_msgs[regtype]);
1804 return FAIL;
1805 }
1806
1807 if (high_range >= max_regs)
1808 {
1809 first_error (_("register out of range in list"));
1810 return FAIL;
1811 }
1812
1813 if (regtype == REG_TYPE_NQ)
1814 high_range = high_range + 1;
1815
1816 if (high_range <= new_base)
1817 {
1818 inst.error = _("register range not in ascending order");
1819 return FAIL;
1820 }
1821
1822 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1823 {
1824 if (mask & (setmask << new_base))
1825 {
1826 inst.error = _("invalid register list");
1827 return FAIL;
1828 }
1829
1830 mask |= setmask << new_base;
1831 count += addregs;
1832 }
1833 }
1834 }
1835 while (skip_past_comma (&str) != FAIL);
1836
1837 str++;
1838
1839 /* Sanity check -- should have raised a parse error above. */
1840 if (count == 0 || count > max_regs)
1841 abort ();
1842
1843 *pbase = base_reg;
1844
1845 /* Final test -- the registers must be consecutive. */
1846 mask >>= base_reg;
1847 for (i = 0; i < count; i++)
1848 {
1849 if ((mask & (1u << i)) == 0)
1850 {
1851 inst.error = _("non-contiguous register range");
1852 return FAIL;
1853 }
1854 }
1855
1856 *ccp = str;
1857
1858 return count;
1859 }
1860
1861 /* True if two alias types are the same. */
1862
1863 static bfd_boolean
1864 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1865 {
1866 if (!a && !b)
1867 return TRUE;
1868
1869 if (!a || !b)
1870 return FALSE;
1871
1872 if (a->defined != b->defined)
1873 return FALSE;
1874
1875 if ((a->defined & NTA_HASTYPE) != 0
1876 && (a->eltype.type != b->eltype.type
1877 || a->eltype.size != b->eltype.size))
1878 return FALSE;
1879
1880 if ((a->defined & NTA_HASINDEX) != 0
1881 && (a->index != b->index))
1882 return FALSE;
1883
1884 return TRUE;
1885 }
1886
1887 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1888 The base register is put in *PBASE.
1889 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1890 the return value.
1891 The register stride (minus one) is put in bit 4 of the return value.
1892 Bits [6:5] encode the list length (minus one).
1893 The type of the list elements is put in *ELTYPE, if non-NULL. */
1894
1895 #define NEON_LANE(X) ((X) & 0xf)
1896 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1897 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1898
1899 static int
1900 parse_neon_el_struct_list (char **str, unsigned *pbase,
1901 struct neon_type_el *eltype)
1902 {
1903 char *ptr = *str;
1904 int base_reg = -1;
1905 int reg_incr = -1;
1906 int count = 0;
1907 int lane = -1;
1908 int leading_brace = 0;
1909 enum arm_reg_type rtype = REG_TYPE_NDQ;
1910 const char *const incr_error = _("register stride must be 1 or 2");
1911 const char *const type_error = _("mismatched element/structure types in list");
1912 struct neon_typed_alias firsttype;
1913
1914 if (skip_past_char (&ptr, '{') == SUCCESS)
1915 leading_brace = 1;
1916
1917 do
1918 {
1919 struct neon_typed_alias atype;
1920 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1921
1922 if (getreg == FAIL)
1923 {
1924 first_error (_(reg_expected_msgs[rtype]));
1925 return FAIL;
1926 }
1927
1928 if (base_reg == -1)
1929 {
1930 base_reg = getreg;
1931 if (rtype == REG_TYPE_NQ)
1932 {
1933 reg_incr = 1;
1934 }
1935 firsttype = atype;
1936 }
1937 else if (reg_incr == -1)
1938 {
1939 reg_incr = getreg - base_reg;
1940 if (reg_incr < 1 || reg_incr > 2)
1941 {
1942 first_error (_(incr_error));
1943 return FAIL;
1944 }
1945 }
1946 else if (getreg != base_reg + reg_incr * count)
1947 {
1948 first_error (_(incr_error));
1949 return FAIL;
1950 }
1951
1952 if (! neon_alias_types_same (&atype, &firsttype))
1953 {
1954 first_error (_(type_error));
1955 return FAIL;
1956 }
1957
1958 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1959 modes. */
1960 if (ptr[0] == '-')
1961 {
1962 struct neon_typed_alias htype;
1963 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1964 if (lane == -1)
1965 lane = NEON_INTERLEAVE_LANES;
1966 else if (lane != NEON_INTERLEAVE_LANES)
1967 {
1968 first_error (_(type_error));
1969 return FAIL;
1970 }
1971 if (reg_incr == -1)
1972 reg_incr = 1;
1973 else if (reg_incr != 1)
1974 {
1975 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1976 return FAIL;
1977 }
1978 ptr++;
1979 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1980 if (hireg == FAIL)
1981 {
1982 first_error (_(reg_expected_msgs[rtype]));
1983 return FAIL;
1984 }
1985 if (! neon_alias_types_same (&htype, &firsttype))
1986 {
1987 first_error (_(type_error));
1988 return FAIL;
1989 }
1990 count += hireg + dregs - getreg;
1991 continue;
1992 }
1993
1994 /* If we're using Q registers, we can't use [] or [n] syntax. */
1995 if (rtype == REG_TYPE_NQ)
1996 {
1997 count += 2;
1998 continue;
1999 }
2000
2001 if ((atype.defined & NTA_HASINDEX) != 0)
2002 {
2003 if (lane == -1)
2004 lane = atype.index;
2005 else if (lane != atype.index)
2006 {
2007 first_error (_(type_error));
2008 return FAIL;
2009 }
2010 }
2011 else if (lane == -1)
2012 lane = NEON_INTERLEAVE_LANES;
2013 else if (lane != NEON_INTERLEAVE_LANES)
2014 {
2015 first_error (_(type_error));
2016 return FAIL;
2017 }
2018 count++;
2019 }
2020 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2021
2022 /* No lane set by [x]. We must be interleaving structures. */
2023 if (lane == -1)
2024 lane = NEON_INTERLEAVE_LANES;
2025
2026 /* Sanity check. */
2027 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2028 || (count > 1 && reg_incr == -1))
2029 {
2030 first_error (_("error parsing element/structure list"));
2031 return FAIL;
2032 }
2033
2034 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2035 {
2036 first_error (_("expected }"));
2037 return FAIL;
2038 }
2039
2040 if (reg_incr == -1)
2041 reg_incr = 1;
2042
2043 if (eltype)
2044 *eltype = firsttype.eltype;
2045
2046 *pbase = base_reg;
2047 *str = ptr;
2048
2049 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2050 }
2051
2052 /* Parse an explicit relocation suffix on an expression. This is
2053 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2054 arm_reloc_hsh contains no entries, so this function can only
2055 succeed if there is no () after the word. Returns -1 on error,
2056 BFD_RELOC_UNUSED if there wasn't any suffix. */
2057 static int
2058 parse_reloc (char **str)
2059 {
2060 struct reloc_entry *r;
2061 char *p, *q;
2062
2063 if (**str != '(')
2064 return BFD_RELOC_UNUSED;
2065
2066 p = *str + 1;
2067 q = p;
2068
2069 while (*q && *q != ')' && *q != ',')
2070 q++;
2071 if (*q != ')')
2072 return -1;
2073
2074 if ((r = (struct reloc_entry *)
2075 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2076 return -1;
2077
2078 *str = q + 1;
2079 return r->reloc;
2080 }
2081
2082 /* Directives: register aliases. */
2083
2084 static struct reg_entry *
2085 insert_reg_alias (char *str, unsigned number, int type)
2086 {
2087 struct reg_entry *new_reg;
2088 const char *name;
2089
2090 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2091 {
2092 if (new_reg->builtin)
2093 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2094
2095 /* Only warn about a redefinition if it's not defined as the
2096 same register. */
2097 else if (new_reg->number != number || new_reg->type != type)
2098 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2099
2100 return NULL;
2101 }
2102
2103 name = xstrdup (str);
2104 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2105
2106 new_reg->name = name;
2107 new_reg->number = number;
2108 new_reg->type = type;
2109 new_reg->builtin = FALSE;
2110 new_reg->neon = NULL;
2111
2112 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2113 abort ();
2114
2115 return new_reg;
2116 }
2117
2118 static void
2119 insert_neon_reg_alias (char *str, int number, int type,
2120 struct neon_typed_alias *atype)
2121 {
2122 struct reg_entry *reg = insert_reg_alias (str, number, type);
2123
2124 if (!reg)
2125 {
2126 first_error (_("attempt to redefine typed alias"));
2127 return;
2128 }
2129
2130 if (atype)
2131 {
2132 reg->neon = (struct neon_typed_alias *)
2133 xmalloc (sizeof (struct neon_typed_alias));
2134 *reg->neon = *atype;
2135 }
2136 }
2137
2138 /* Look for the .req directive. This is of the form:
2139
2140 new_register_name .req existing_register_name
2141
2142 If we find one, or if it looks sufficiently like one that we want to
2143 handle any error here, return TRUE. Otherwise return FALSE. */
2144
2145 static bfd_boolean
2146 create_register_alias (char * newname, char *p)
2147 {
2148 struct reg_entry *old;
2149 char *oldname, *nbuf;
2150 size_t nlen;
2151
2152 /* The input scrubber ensures that whitespace after the mnemonic is
2153 collapsed to single spaces. */
2154 oldname = p;
2155 if (strncmp (oldname, " .req ", 6) != 0)
2156 return FALSE;
2157
2158 oldname += 6;
2159 if (*oldname == '\0')
2160 return FALSE;
2161
2162 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2163 if (!old)
2164 {
2165 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2166 return TRUE;
2167 }
2168
2169 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2170 the desired alias name, and p points to its end. If not, then
2171 the desired alias name is in the global original_case_string. */
2172 #ifdef TC_CASE_SENSITIVE
2173 nlen = p - newname;
2174 #else
2175 newname = original_case_string;
2176 nlen = strlen (newname);
2177 #endif
2178
2179 nbuf = (char *) alloca (nlen + 1);
2180 memcpy (nbuf, newname, nlen);
2181 nbuf[nlen] = '\0';
2182
2183 /* Create aliases under the new name as stated; an all-lowercase
2184 version of the new name; and an all-uppercase version of the new
2185 name. */
2186 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2187 {
2188 for (p = nbuf; *p; p++)
2189 *p = TOUPPER (*p);
2190
2191 if (strncmp (nbuf, newname, nlen))
2192 {
2193 /* If this attempt to create an additional alias fails, do not bother
2194 trying to create the all-lower case alias. We will fail and issue
2195 a second, duplicate error message. This situation arises when the
2196 programmer does something like:
2197 foo .req r0
2198 Foo .req r1
2199 The second .req creates the "Foo" alias but then fails to create
2200 the artificial FOO alias because it has already been created by the
2201 first .req. */
2202 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2203 return TRUE;
2204 }
2205
2206 for (p = nbuf; *p; p++)
2207 *p = TOLOWER (*p);
2208
2209 if (strncmp (nbuf, newname, nlen))
2210 insert_reg_alias (nbuf, old->number, old->type);
2211 }
2212
2213 return TRUE;
2214 }
2215
2216 /* Create a Neon typed/indexed register alias using directives, e.g.:
2217 X .dn d5.s32[1]
2218 Y .qn 6.s16
2219 Z .dn d7
2220 T .dn Z[0]
2221 These typed registers can be used instead of the types specified after the
2222 Neon mnemonic, so long as all operands given have types. Types can also be
2223 specified directly, e.g.:
2224 vadd d0.s32, d1.s32, d2.s32 */
2225
2226 static bfd_boolean
2227 create_neon_reg_alias (char *newname, char *p)
2228 {
2229 enum arm_reg_type basetype;
2230 struct reg_entry *basereg;
2231 struct reg_entry mybasereg;
2232 struct neon_type ntype;
2233 struct neon_typed_alias typeinfo;
2234 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2235 int namelen;
2236
2237 typeinfo.defined = 0;
2238 typeinfo.eltype.type = NT_invtype;
2239 typeinfo.eltype.size = -1;
2240 typeinfo.index = -1;
2241
2242 nameend = p;
2243
2244 if (strncmp (p, " .dn ", 5) == 0)
2245 basetype = REG_TYPE_VFD;
2246 else if (strncmp (p, " .qn ", 5) == 0)
2247 basetype = REG_TYPE_NQ;
2248 else
2249 return FALSE;
2250
2251 p += 5;
2252
2253 if (*p == '\0')
2254 return FALSE;
2255
2256 basereg = arm_reg_parse_multi (&p);
2257
2258 if (basereg && basereg->type != basetype)
2259 {
2260 as_bad (_("bad type for register"));
2261 return FALSE;
2262 }
2263
2264 if (basereg == NULL)
2265 {
2266 expressionS exp;
2267 /* Try parsing as an integer. */
2268 my_get_expression (&exp, &p, GE_NO_PREFIX);
2269 if (exp.X_op != O_constant)
2270 {
2271 as_bad (_("expression must be constant"));
2272 return FALSE;
2273 }
2274 basereg = &mybasereg;
2275 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2276 : exp.X_add_number;
2277 basereg->neon = 0;
2278 }
2279
2280 if (basereg->neon)
2281 typeinfo = *basereg->neon;
2282
2283 if (parse_neon_type (&ntype, &p) == SUCCESS)
2284 {
2285 /* We got a type. */
2286 if (typeinfo.defined & NTA_HASTYPE)
2287 {
2288 as_bad (_("can't redefine the type of a register alias"));
2289 return FALSE;
2290 }
2291
2292 typeinfo.defined |= NTA_HASTYPE;
2293 if (ntype.elems != 1)
2294 {
2295 as_bad (_("you must specify a single type only"));
2296 return FALSE;
2297 }
2298 typeinfo.eltype = ntype.el[0];
2299 }
2300
2301 if (skip_past_char (&p, '[') == SUCCESS)
2302 {
2303 expressionS exp;
2304 /* We got a scalar index. */
2305
2306 if (typeinfo.defined & NTA_HASINDEX)
2307 {
2308 as_bad (_("can't redefine the index of a scalar alias"));
2309 return FALSE;
2310 }
2311
2312 my_get_expression (&exp, &p, GE_NO_PREFIX);
2313
2314 if (exp.X_op != O_constant)
2315 {
2316 as_bad (_("scalar index must be constant"));
2317 return FALSE;
2318 }
2319
2320 typeinfo.defined |= NTA_HASINDEX;
2321 typeinfo.index = exp.X_add_number;
2322
2323 if (skip_past_char (&p, ']') == FAIL)
2324 {
2325 as_bad (_("expecting ]"));
2326 return FALSE;
2327 }
2328 }
2329
2330 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2331 the desired alias name, and p points to its end. If not, then
2332 the desired alias name is in the global original_case_string. */
2333 #ifdef TC_CASE_SENSITIVE
2334 namelen = nameend - newname;
2335 #else
2336 newname = original_case_string;
2337 namelen = strlen (newname);
2338 #endif
2339
2340 namebuf = (char *) alloca (namelen + 1);
2341 strncpy (namebuf, newname, namelen);
2342 namebuf[namelen] = '\0';
2343
2344 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2345 typeinfo.defined != 0 ? &typeinfo : NULL);
2346
2347 /* Insert name in all uppercase. */
2348 for (p = namebuf; *p; p++)
2349 *p = TOUPPER (*p);
2350
2351 if (strncmp (namebuf, newname, namelen))
2352 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2353 typeinfo.defined != 0 ? &typeinfo : NULL);
2354
2355 /* Insert name in all lowercase. */
2356 for (p = namebuf; *p; p++)
2357 *p = TOLOWER (*p);
2358
2359 if (strncmp (namebuf, newname, namelen))
2360 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2361 typeinfo.defined != 0 ? &typeinfo : NULL);
2362
2363 return TRUE;
2364 }
2365
2366 /* Should never be called, as .req goes between the alias and the
2367 register name, not at the beginning of the line. */
2368
2369 static void
2370 s_req (int a ATTRIBUTE_UNUSED)
2371 {
2372 as_bad (_("invalid syntax for .req directive"));
2373 }
2374
2375 static void
2376 s_dn (int a ATTRIBUTE_UNUSED)
2377 {
2378 as_bad (_("invalid syntax for .dn directive"));
2379 }
2380
2381 static void
2382 s_qn (int a ATTRIBUTE_UNUSED)
2383 {
2384 as_bad (_("invalid syntax for .qn directive"));
2385 }
2386
2387 /* The .unreq directive deletes an alias which was previously defined
2388 by .req. For example:
2389
2390 my_alias .req r11
2391 .unreq my_alias */
2392
2393 static void
2394 s_unreq (int a ATTRIBUTE_UNUSED)
2395 {
2396 char * name;
2397 char saved_char;
2398
2399 name = input_line_pointer;
2400
2401 while (*input_line_pointer != 0
2402 && *input_line_pointer != ' '
2403 && *input_line_pointer != '\n')
2404 ++input_line_pointer;
2405
2406 saved_char = *input_line_pointer;
2407 *input_line_pointer = 0;
2408
2409 if (!*name)
2410 as_bad (_("invalid syntax for .unreq directive"));
2411 else
2412 {
2413 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2414 name);
2415
2416 if (!reg)
2417 as_bad (_("unknown register alias '%s'"), name);
2418 else if (reg->builtin)
2419 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2420 name);
2421 else
2422 {
2423 char * p;
2424 char * nbuf;
2425
2426 hash_delete (arm_reg_hsh, name, FALSE);
2427 free ((char *) reg->name);
2428 if (reg->neon)
2429 free (reg->neon);
2430 free (reg);
2431
2432 /* Also locate the all upper case and all lower case versions.
2433 Do not complain if we cannot find one or the other as it
2434 was probably deleted above. */
2435
2436 nbuf = strdup (name);
2437 for (p = nbuf; *p; p++)
2438 *p = TOUPPER (*p);
2439 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2440 if (reg)
2441 {
2442 hash_delete (arm_reg_hsh, nbuf, FALSE);
2443 free ((char *) reg->name);
2444 if (reg->neon)
2445 free (reg->neon);
2446 free (reg);
2447 }
2448
2449 for (p = nbuf; *p; p++)
2450 *p = TOLOWER (*p);
2451 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2452 if (reg)
2453 {
2454 hash_delete (arm_reg_hsh, nbuf, FALSE);
2455 free ((char *) reg->name);
2456 if (reg->neon)
2457 free (reg->neon);
2458 free (reg);
2459 }
2460
2461 free (nbuf);
2462 }
2463 }
2464
2465 *input_line_pointer = saved_char;
2466 demand_empty_rest_of_line ();
2467 }
2468
2469 /* Directives: Instruction set selection. */
2470
2471 #ifdef OBJ_ELF
2472 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2473 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2474 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2475 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2476
2477 /* Create a new mapping symbol for the transition to STATE. */
2478
2479 static void
2480 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2481 {
2482 symbolS * symbolP;
2483 const char * symname;
2484 int type;
2485
2486 switch (state)
2487 {
2488 case MAP_DATA:
2489 symname = "$d";
2490 type = BSF_NO_FLAGS;
2491 break;
2492 case MAP_ARM:
2493 symname = "$a";
2494 type = BSF_NO_FLAGS;
2495 break;
2496 case MAP_THUMB:
2497 symname = "$t";
2498 type = BSF_NO_FLAGS;
2499 break;
2500 default:
2501 abort ();
2502 }
2503
2504 symbolP = symbol_new (symname, now_seg, value, frag);
2505 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2506
2507 switch (state)
2508 {
2509 case MAP_ARM:
2510 THUMB_SET_FUNC (symbolP, 0);
2511 ARM_SET_THUMB (symbolP, 0);
2512 ARM_SET_INTERWORK (symbolP, support_interwork);
2513 break;
2514
2515 case MAP_THUMB:
2516 THUMB_SET_FUNC (symbolP, 1);
2517 ARM_SET_THUMB (symbolP, 1);
2518 ARM_SET_INTERWORK (symbolP, support_interwork);
2519 break;
2520
2521 case MAP_DATA:
2522 default:
2523 break;
2524 }
2525
2526 /* Save the mapping symbols for future reference. Also check that
2527 we do not place two mapping symbols at the same offset within a
2528 frag. We'll handle overlap between frags in
2529 check_mapping_symbols.
2530
2531 If .fill or other data filling directive generates zero sized data,
2532 the mapping symbol for the following code will have the same value
2533 as the one generated for the data filling directive. In this case,
2534 we replace the old symbol with the new one at the same address. */
2535 if (value == 0)
2536 {
2537 if (frag->tc_frag_data.first_map != NULL)
2538 {
2539 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2540 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2541 }
2542 frag->tc_frag_data.first_map = symbolP;
2543 }
2544 if (frag->tc_frag_data.last_map != NULL)
2545 {
2546 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2547 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2548 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2549 }
2550 frag->tc_frag_data.last_map = symbolP;
2551 }
2552
2553 /* We must sometimes convert a region marked as code to data during
2554 code alignment, if an odd number of bytes have to be padded. The
2555 code mapping symbol is pushed to an aligned address. */
2556
2557 static void
2558 insert_data_mapping_symbol (enum mstate state,
2559 valueT value, fragS *frag, offsetT bytes)
2560 {
2561 /* If there was already a mapping symbol, remove it. */
2562 if (frag->tc_frag_data.last_map != NULL
2563 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2564 {
2565 symbolS *symp = frag->tc_frag_data.last_map;
2566
2567 if (value == 0)
2568 {
2569 know (frag->tc_frag_data.first_map == symp);
2570 frag->tc_frag_data.first_map = NULL;
2571 }
2572 frag->tc_frag_data.last_map = NULL;
2573 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2574 }
2575
2576 make_mapping_symbol (MAP_DATA, value, frag);
2577 make_mapping_symbol (state, value + bytes, frag);
2578 }
2579
2580 static void mapping_state_2 (enum mstate state, int max_chars);
2581
2582 /* Set the mapping state to STATE. Only call this when about to
2583 emit some STATE bytes to the file. */
2584
2585 void
2586 mapping_state (enum mstate state)
2587 {
2588 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2589
2590 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2591
2592 if (mapstate == state)
2593 /* The mapping symbol has already been emitted.
2594 There is nothing else to do. */
2595 return;
2596
2597 if (state == MAP_ARM || state == MAP_THUMB)
2598 /* PR gas/12931
2599 All ARM instructions require 4-byte alignment.
2600 (Almost) all Thumb instructions require 2-byte alignment.
2601
2602 When emitting instructions into any section, mark the section
2603 appropriately.
2604
2605 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2606 but themselves require 2-byte alignment; this applies to some
2607 PC- relative forms. However, these cases will invovle implicit
2608 literal pool generation or an explicit .align >=2, both of
2609 which will cause the section to me marked with sufficient
2610 alignment. Thus, we don't handle those cases here. */
2611 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2612
2613 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2614 /* This case will be evaluated later in the next else. */
2615 return;
2616 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2617 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2618 {
2619 /* Only add the symbol if the offset is > 0:
2620 if we're at the first frag, check it's size > 0;
2621 if we're not at the first frag, then for sure
2622 the offset is > 0. */
2623 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2624 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2625
2626 if (add_symbol)
2627 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2628 }
2629
2630 mapping_state_2 (state, 0);
2631 #undef TRANSITION
2632 }
2633
2634 /* Same as mapping_state, but MAX_CHARS bytes have already been
2635 allocated. Put the mapping symbol that far back. */
2636
2637 static void
2638 mapping_state_2 (enum mstate state, int max_chars)
2639 {
2640 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2641
2642 if (!SEG_NORMAL (now_seg))
2643 return;
2644
2645 if (mapstate == state)
2646 /* The mapping symbol has already been emitted.
2647 There is nothing else to do. */
2648 return;
2649
2650 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2651 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2652 }
2653 #else
2654 #define mapping_state(x) ((void)0)
2655 #define mapping_state_2(x, y) ((void)0)
2656 #endif
2657
2658 /* Find the real, Thumb encoded start of a Thumb function. */
2659
2660 #ifdef OBJ_COFF
2661 static symbolS *
2662 find_real_start (symbolS * symbolP)
2663 {
2664 char * real_start;
2665 const char * name = S_GET_NAME (symbolP);
2666 symbolS * new_target;
2667
2668 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2669 #define STUB_NAME ".real_start_of"
2670
2671 if (name == NULL)
2672 abort ();
2673
2674 /* The compiler may generate BL instructions to local labels because
2675 it needs to perform a branch to a far away location. These labels
2676 do not have a corresponding ".real_start_of" label. We check
2677 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2678 the ".real_start_of" convention for nonlocal branches. */
2679 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2680 return symbolP;
2681
2682 real_start = ACONCAT ((STUB_NAME, name, NULL));
2683 new_target = symbol_find (real_start);
2684
2685 if (new_target == NULL)
2686 {
2687 as_warn (_("Failed to find real start of function: %s\n"), name);
2688 new_target = symbolP;
2689 }
2690
2691 return new_target;
2692 }
2693 #endif
2694
2695 static void
2696 opcode_select (int width)
2697 {
2698 switch (width)
2699 {
2700 case 16:
2701 if (! thumb_mode)
2702 {
2703 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2704 as_bad (_("selected processor does not support THUMB opcodes"));
2705
2706 thumb_mode = 1;
2707 /* No need to force the alignment, since we will have been
2708 coming from ARM mode, which is word-aligned. */
2709 record_alignment (now_seg, 1);
2710 }
2711 break;
2712
2713 case 32:
2714 if (thumb_mode)
2715 {
2716 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2717 as_bad (_("selected processor does not support ARM opcodes"));
2718
2719 thumb_mode = 0;
2720
2721 if (!need_pass_2)
2722 frag_align (2, 0, 0);
2723
2724 record_alignment (now_seg, 1);
2725 }
2726 break;
2727
2728 default:
2729 as_bad (_("invalid instruction size selected (%d)"), width);
2730 }
2731 }
2732
2733 static void
2734 s_arm (int ignore ATTRIBUTE_UNUSED)
2735 {
2736 opcode_select (32);
2737 demand_empty_rest_of_line ();
2738 }
2739
2740 static void
2741 s_thumb (int ignore ATTRIBUTE_UNUSED)
2742 {
2743 opcode_select (16);
2744 demand_empty_rest_of_line ();
2745 }
2746
2747 static void
2748 s_code (int unused ATTRIBUTE_UNUSED)
2749 {
2750 int temp;
2751
2752 temp = get_absolute_expression ();
2753 switch (temp)
2754 {
2755 case 16:
2756 case 32:
2757 opcode_select (temp);
2758 break;
2759
2760 default:
2761 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2762 }
2763 }
2764
2765 static void
2766 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2767 {
2768 /* If we are not already in thumb mode go into it, EVEN if
2769 the target processor does not support thumb instructions.
2770 This is used by gcc/config/arm/lib1funcs.asm for example
2771 to compile interworking support functions even if the
2772 target processor should not support interworking. */
2773 if (! thumb_mode)
2774 {
2775 thumb_mode = 2;
2776 record_alignment (now_seg, 1);
2777 }
2778
2779 demand_empty_rest_of_line ();
2780 }
2781
2782 static void
2783 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2784 {
2785 s_thumb (0);
2786
2787 /* The following label is the name/address of the start of a Thumb function.
2788 We need to know this for the interworking support. */
2789 label_is_thumb_function_name = TRUE;
2790 }
2791
2792 /* Perform a .set directive, but also mark the alias as
2793 being a thumb function. */
2794
2795 static void
2796 s_thumb_set (int equiv)
2797 {
2798 /* XXX the following is a duplicate of the code for s_set() in read.c
2799 We cannot just call that code as we need to get at the symbol that
2800 is created. */
2801 char * name;
2802 char delim;
2803 char * end_name;
2804 symbolS * symbolP;
2805
2806 /* Especial apologies for the random logic:
2807 This just grew, and could be parsed much more simply!
2808 Dean - in haste. */
2809 name = input_line_pointer;
2810 delim = get_symbol_end ();
2811 end_name = input_line_pointer;
2812 *end_name = delim;
2813
2814 if (*input_line_pointer != ',')
2815 {
2816 *end_name = 0;
2817 as_bad (_("expected comma after name \"%s\""), name);
2818 *end_name = delim;
2819 ignore_rest_of_line ();
2820 return;
2821 }
2822
2823 input_line_pointer++;
2824 *end_name = 0;
2825
2826 if (name[0] == '.' && name[1] == '\0')
2827 {
2828 /* XXX - this should not happen to .thumb_set. */
2829 abort ();
2830 }
2831
2832 if ((symbolP = symbol_find (name)) == NULL
2833 && (symbolP = md_undefined_symbol (name)) == NULL)
2834 {
2835 #ifndef NO_LISTING
2836 /* When doing symbol listings, play games with dummy fragments living
2837 outside the normal fragment chain to record the file and line info
2838 for this symbol. */
2839 if (listing & LISTING_SYMBOLS)
2840 {
2841 extern struct list_info_struct * listing_tail;
2842 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2843
2844 memset (dummy_frag, 0, sizeof (fragS));
2845 dummy_frag->fr_type = rs_fill;
2846 dummy_frag->line = listing_tail;
2847 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2848 dummy_frag->fr_symbol = symbolP;
2849 }
2850 else
2851 #endif
2852 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2853
2854 #ifdef OBJ_COFF
2855 /* "set" symbols are local unless otherwise specified. */
2856 SF_SET_LOCAL (symbolP);
2857 #endif /* OBJ_COFF */
2858 } /* Make a new symbol. */
2859
2860 symbol_table_insert (symbolP);
2861
2862 * end_name = delim;
2863
2864 if (equiv
2865 && S_IS_DEFINED (symbolP)
2866 && S_GET_SEGMENT (symbolP) != reg_section)
2867 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2868
2869 pseudo_set (symbolP);
2870
2871 demand_empty_rest_of_line ();
2872
2873 /* XXX Now we come to the Thumb specific bit of code. */
2874
2875 THUMB_SET_FUNC (symbolP, 1);
2876 ARM_SET_THUMB (symbolP, 1);
2877 #if defined OBJ_ELF || defined OBJ_COFF
2878 ARM_SET_INTERWORK (symbolP, support_interwork);
2879 #endif
2880 }
2881
2882 /* Directives: Mode selection. */
2883
2884 /* .syntax [unified|divided] - choose the new unified syntax
2885 (same for Arm and Thumb encoding, modulo slight differences in what
2886 can be represented) or the old divergent syntax for each mode. */
2887 static void
2888 s_syntax (int unused ATTRIBUTE_UNUSED)
2889 {
2890 char *name, delim;
2891
2892 name = input_line_pointer;
2893 delim = get_symbol_end ();
2894
2895 if (!strcasecmp (name, "unified"))
2896 unified_syntax = TRUE;
2897 else if (!strcasecmp (name, "divided"))
2898 unified_syntax = FALSE;
2899 else
2900 {
2901 as_bad (_("unrecognized syntax mode \"%s\""), name);
2902 return;
2903 }
2904 *input_line_pointer = delim;
2905 demand_empty_rest_of_line ();
2906 }
2907
2908 /* Directives: sectioning and alignment. */
2909
2910 /* Same as s_align_ptwo but align 0 => align 2. */
2911
2912 static void
2913 s_align (int unused ATTRIBUTE_UNUSED)
2914 {
2915 int temp;
2916 bfd_boolean fill_p;
2917 long temp_fill;
2918 long max_alignment = 15;
2919
2920 temp = get_absolute_expression ();
2921 if (temp > max_alignment)
2922 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2923 else if (temp < 0)
2924 {
2925 as_bad (_("alignment negative. 0 assumed."));
2926 temp = 0;
2927 }
2928
2929 if (*input_line_pointer == ',')
2930 {
2931 input_line_pointer++;
2932 temp_fill = get_absolute_expression ();
2933 fill_p = TRUE;
2934 }
2935 else
2936 {
2937 fill_p = FALSE;
2938 temp_fill = 0;
2939 }
2940
2941 if (!temp)
2942 temp = 2;
2943
2944 /* Only make a frag if we HAVE to. */
2945 if (temp && !need_pass_2)
2946 {
2947 if (!fill_p && subseg_text_p (now_seg))
2948 frag_align_code (temp, 0);
2949 else
2950 frag_align (temp, (int) temp_fill, 0);
2951 }
2952 demand_empty_rest_of_line ();
2953
2954 record_alignment (now_seg, temp);
2955 }
2956
2957 static void
2958 s_bss (int ignore ATTRIBUTE_UNUSED)
2959 {
2960 /* We don't support putting frags in the BSS segment, we fake it by
2961 marking in_bss, then looking at s_skip for clues. */
2962 subseg_set (bss_section, 0);
2963 demand_empty_rest_of_line ();
2964
2965 #ifdef md_elf_section_change_hook
2966 md_elf_section_change_hook ();
2967 #endif
2968 }
2969
2970 static void
2971 s_even (int ignore ATTRIBUTE_UNUSED)
2972 {
2973 /* Never make frag if expect extra pass. */
2974 if (!need_pass_2)
2975 frag_align (1, 0, 0);
2976
2977 record_alignment (now_seg, 1);
2978
2979 demand_empty_rest_of_line ();
2980 }
2981
2982 /* Directives: Literal pools. */
2983
2984 static literal_pool *
2985 find_literal_pool (void)
2986 {
2987 literal_pool * pool;
2988
2989 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2990 {
2991 if (pool->section == now_seg
2992 && pool->sub_section == now_subseg)
2993 break;
2994 }
2995
2996 return pool;
2997 }
2998
2999 static literal_pool *
3000 find_or_make_literal_pool (void)
3001 {
3002 /* Next literal pool ID number. */
3003 static unsigned int latest_pool_num = 1;
3004 literal_pool * pool;
3005
3006 pool = find_literal_pool ();
3007
3008 if (pool == NULL)
3009 {
3010 /* Create a new pool. */
3011 pool = (literal_pool *) xmalloc (sizeof (* pool));
3012 if (! pool)
3013 return NULL;
3014
3015 pool->next_free_entry = 0;
3016 pool->section = now_seg;
3017 pool->sub_section = now_subseg;
3018 pool->next = list_of_pools;
3019 pool->symbol = NULL;
3020
3021 /* Add it to the list. */
3022 list_of_pools = pool;
3023 }
3024
3025 /* New pools, and emptied pools, will have a NULL symbol. */
3026 if (pool->symbol == NULL)
3027 {
3028 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3029 (valueT) 0, &zero_address_frag);
3030 pool->id = latest_pool_num ++;
3031 }
3032
3033 /* Done. */
3034 return pool;
3035 }
3036
3037 /* Add the literal in the global 'inst'
3038 structure to the relevant literal pool. */
3039
3040 static int
3041 add_to_lit_pool (void)
3042 {
3043 literal_pool * pool;
3044 unsigned int entry;
3045
3046 pool = find_or_make_literal_pool ();
3047
3048 /* Check if this literal value is already in the pool. */
3049 for (entry = 0; entry < pool->next_free_entry; entry ++)
3050 {
3051 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3052 && (inst.reloc.exp.X_op == O_constant)
3053 && (pool->literals[entry].X_add_number
3054 == inst.reloc.exp.X_add_number)
3055 && (pool->literals[entry].X_unsigned
3056 == inst.reloc.exp.X_unsigned))
3057 break;
3058
3059 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3060 && (inst.reloc.exp.X_op == O_symbol)
3061 && (pool->literals[entry].X_add_number
3062 == inst.reloc.exp.X_add_number)
3063 && (pool->literals[entry].X_add_symbol
3064 == inst.reloc.exp.X_add_symbol)
3065 && (pool->literals[entry].X_op_symbol
3066 == inst.reloc.exp.X_op_symbol))
3067 break;
3068 }
3069
3070 /* Do we need to create a new entry? */
3071 if (entry == pool->next_free_entry)
3072 {
3073 if (entry >= MAX_LITERAL_POOL_SIZE)
3074 {
3075 inst.error = _("literal pool overflow");
3076 return FAIL;
3077 }
3078
3079 pool->literals[entry] = inst.reloc.exp;
3080 #ifdef OBJ_ELF
3081 /* PR ld/12974: Record the location of the first source line to reference
3082 this entry in the literal pool. If it turns out during linking that the
3083 symbol does not exist we will be able to give an accurate line number for
3084 the (first use of the) missing reference. */
3085 if (debug_type == DEBUG_DWARF2)
3086 dwarf2_where (pool->locs + entry);
3087 #endif
3088 pool->next_free_entry += 1;
3089 }
3090
3091 inst.reloc.exp.X_op = O_symbol;
3092 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3093 inst.reloc.exp.X_add_symbol = pool->symbol;
3094
3095 return SUCCESS;
3096 }
3097
3098 /* Can't use symbol_new here, so have to create a symbol and then at
3099 a later date assign it a value. Thats what these functions do. */
3100
3101 static void
3102 symbol_locate (symbolS * symbolP,
3103 const char * name, /* It is copied, the caller can modify. */
3104 segT segment, /* Segment identifier (SEG_<something>). */
3105 valueT valu, /* Symbol value. */
3106 fragS * frag) /* Associated fragment. */
3107 {
3108 unsigned int name_length;
3109 char * preserved_copy_of_name;
3110
3111 name_length = strlen (name) + 1; /* +1 for \0. */
3112 obstack_grow (&notes, name, name_length);
3113 preserved_copy_of_name = (char *) obstack_finish (&notes);
3114
3115 #ifdef tc_canonicalize_symbol_name
3116 preserved_copy_of_name =
3117 tc_canonicalize_symbol_name (preserved_copy_of_name);
3118 #endif
3119
3120 S_SET_NAME (symbolP, preserved_copy_of_name);
3121
3122 S_SET_SEGMENT (symbolP, segment);
3123 S_SET_VALUE (symbolP, valu);
3124 symbol_clear_list_pointers (symbolP);
3125
3126 symbol_set_frag (symbolP, frag);
3127
3128 /* Link to end of symbol chain. */
3129 {
3130 extern int symbol_table_frozen;
3131
3132 if (symbol_table_frozen)
3133 abort ();
3134 }
3135
3136 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3137
3138 obj_symbol_new_hook (symbolP);
3139
3140 #ifdef tc_symbol_new_hook
3141 tc_symbol_new_hook (symbolP);
3142 #endif
3143
3144 #ifdef DEBUG_SYMS
3145 verify_symbol_chain (symbol_rootP, symbol_lastP);
3146 #endif /* DEBUG_SYMS */
3147 }
3148
3149
3150 static void
3151 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3152 {
3153 unsigned int entry;
3154 literal_pool * pool;
3155 char sym_name[20];
3156
3157 pool = find_literal_pool ();
3158 if (pool == NULL
3159 || pool->symbol == NULL
3160 || pool->next_free_entry == 0)
3161 return;
3162
3163 mapping_state (MAP_DATA);
3164
3165 /* Align pool as you have word accesses.
3166 Only make a frag if we have to. */
3167 if (!need_pass_2)
3168 frag_align (2, 0, 0);
3169
3170 record_alignment (now_seg, 2);
3171
3172 sprintf (sym_name, "$$lit_\002%x", pool->id);
3173
3174 symbol_locate (pool->symbol, sym_name, now_seg,
3175 (valueT) frag_now_fix (), frag_now);
3176 symbol_table_insert (pool->symbol);
3177
3178 ARM_SET_THUMB (pool->symbol, thumb_mode);
3179
3180 #if defined OBJ_COFF || defined OBJ_ELF
3181 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3182 #endif
3183
3184 for (entry = 0; entry < pool->next_free_entry; entry ++)
3185 {
3186 #ifdef OBJ_ELF
3187 if (debug_type == DEBUG_DWARF2)
3188 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3189 #endif
3190 /* First output the expression in the instruction to the pool. */
3191 emit_expr (&(pool->literals[entry]), 4); /* .word */
3192 }
3193
3194 /* Mark the pool as empty. */
3195 pool->next_free_entry = 0;
3196 pool->symbol = NULL;
3197 }
3198
3199 #ifdef OBJ_ELF
3200 /* Forward declarations for functions below, in the MD interface
3201 section. */
3202 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3203 static valueT create_unwind_entry (int);
3204 static void start_unwind_section (const segT, int);
3205 static void add_unwind_opcode (valueT, int);
3206 static void flush_pending_unwind (void);
3207
3208 /* Directives: Data. */
3209
3210 static void
3211 s_arm_elf_cons (int nbytes)
3212 {
3213 expressionS exp;
3214
3215 #ifdef md_flush_pending_output
3216 md_flush_pending_output ();
3217 #endif
3218
3219 if (is_it_end_of_statement ())
3220 {
3221 demand_empty_rest_of_line ();
3222 return;
3223 }
3224
3225 #ifdef md_cons_align
3226 md_cons_align (nbytes);
3227 #endif
3228
3229 mapping_state (MAP_DATA);
3230 do
3231 {
3232 int reloc;
3233 char *base = input_line_pointer;
3234
3235 expression (& exp);
3236
3237 if (exp.X_op != O_symbol)
3238 emit_expr (&exp, (unsigned int) nbytes);
3239 else
3240 {
3241 char *before_reloc = input_line_pointer;
3242 reloc = parse_reloc (&input_line_pointer);
3243 if (reloc == -1)
3244 {
3245 as_bad (_("unrecognized relocation suffix"));
3246 ignore_rest_of_line ();
3247 return;
3248 }
3249 else if (reloc == BFD_RELOC_UNUSED)
3250 emit_expr (&exp, (unsigned int) nbytes);
3251 else
3252 {
3253 reloc_howto_type *howto = (reloc_howto_type *)
3254 bfd_reloc_type_lookup (stdoutput,
3255 (bfd_reloc_code_real_type) reloc);
3256 int size = bfd_get_reloc_size (howto);
3257
3258 if (reloc == BFD_RELOC_ARM_PLT32)
3259 {
3260 as_bad (_("(plt) is only valid on branch targets"));
3261 reloc = BFD_RELOC_UNUSED;
3262 size = 0;
3263 }
3264
3265 if (size > nbytes)
3266 as_bad (_("%s relocations do not fit in %d bytes"),
3267 howto->name, nbytes);
3268 else
3269 {
3270 /* We've parsed an expression stopping at O_symbol.
3271 But there may be more expression left now that we
3272 have parsed the relocation marker. Parse it again.
3273 XXX Surely there is a cleaner way to do this. */
3274 char *p = input_line_pointer;
3275 int offset;
3276 char *save_buf = (char *) alloca (input_line_pointer - base);
3277 memcpy (save_buf, base, input_line_pointer - base);
3278 memmove (base + (input_line_pointer - before_reloc),
3279 base, before_reloc - base);
3280
3281 input_line_pointer = base + (input_line_pointer-before_reloc);
3282 expression (&exp);
3283 memcpy (base, save_buf, p - base);
3284
3285 offset = nbytes - size;
3286 p = frag_more ((int) nbytes);
3287 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3288 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3289 }
3290 }
3291 }
3292 }
3293 while (*input_line_pointer++ == ',');
3294
3295 /* Put terminator back into stream. */
3296 input_line_pointer --;
3297 demand_empty_rest_of_line ();
3298 }
3299
3300 /* Emit an expression containing a 32-bit thumb instruction.
3301 Implementation based on put_thumb32_insn. */
3302
3303 static void
3304 emit_thumb32_expr (expressionS * exp)
3305 {
3306 expressionS exp_high = *exp;
3307
3308 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3309 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3310 exp->X_add_number &= 0xffff;
3311 emit_expr (exp, (unsigned int) THUMB_SIZE);
3312 }
3313
3314 /* Guess the instruction size based on the opcode. */
3315
3316 static int
3317 thumb_insn_size (int opcode)
3318 {
3319 if ((unsigned int) opcode < 0xe800u)
3320 return 2;
3321 else if ((unsigned int) opcode >= 0xe8000000u)
3322 return 4;
3323 else
3324 return 0;
3325 }
3326
3327 static bfd_boolean
3328 emit_insn (expressionS *exp, int nbytes)
3329 {
3330 int size = 0;
3331
3332 if (exp->X_op == O_constant)
3333 {
3334 size = nbytes;
3335
3336 if (size == 0)
3337 size = thumb_insn_size (exp->X_add_number);
3338
3339 if (size != 0)
3340 {
3341 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3342 {
3343 as_bad (_(".inst.n operand too big. "\
3344 "Use .inst.w instead"));
3345 size = 0;
3346 }
3347 else
3348 {
3349 if (now_it.state == AUTOMATIC_IT_BLOCK)
3350 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3351 else
3352 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3353
3354 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3355 emit_thumb32_expr (exp);
3356 else
3357 emit_expr (exp, (unsigned int) size);
3358
3359 it_fsm_post_encode ();
3360 }
3361 }
3362 else
3363 as_bad (_("cannot determine Thumb instruction size. " \
3364 "Use .inst.n/.inst.w instead"));
3365 }
3366 else
3367 as_bad (_("constant expression required"));
3368
3369 return (size != 0);
3370 }
3371
3372 /* Like s_arm_elf_cons but do not use md_cons_align and
3373 set the mapping state to MAP_ARM/MAP_THUMB. */
3374
3375 static void
3376 s_arm_elf_inst (int nbytes)
3377 {
3378 if (is_it_end_of_statement ())
3379 {
3380 demand_empty_rest_of_line ();
3381 return;
3382 }
3383
3384 /* Calling mapping_state () here will not change ARM/THUMB,
3385 but will ensure not to be in DATA state. */
3386
3387 if (thumb_mode)
3388 mapping_state (MAP_THUMB);
3389 else
3390 {
3391 if (nbytes != 0)
3392 {
3393 as_bad (_("width suffixes are invalid in ARM mode"));
3394 ignore_rest_of_line ();
3395 return;
3396 }
3397
3398 nbytes = 4;
3399
3400 mapping_state (MAP_ARM);
3401 }
3402
3403 do
3404 {
3405 expressionS exp;
3406
3407 expression (& exp);
3408
3409 if (! emit_insn (& exp, nbytes))
3410 {
3411 ignore_rest_of_line ();
3412 return;
3413 }
3414 }
3415 while (*input_line_pointer++ == ',');
3416
3417 /* Put terminator back into stream. */
3418 input_line_pointer --;
3419 demand_empty_rest_of_line ();
3420 }
3421
3422 /* Parse a .rel31 directive. */
3423
3424 static void
3425 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3426 {
3427 expressionS exp;
3428 char *p;
3429 valueT highbit;
3430
3431 highbit = 0;
3432 if (*input_line_pointer == '1')
3433 highbit = 0x80000000;
3434 else if (*input_line_pointer != '0')
3435 as_bad (_("expected 0 or 1"));
3436
3437 input_line_pointer++;
3438 if (*input_line_pointer != ',')
3439 as_bad (_("missing comma"));
3440 input_line_pointer++;
3441
3442 #ifdef md_flush_pending_output
3443 md_flush_pending_output ();
3444 #endif
3445
3446 #ifdef md_cons_align
3447 md_cons_align (4);
3448 #endif
3449
3450 mapping_state (MAP_DATA);
3451
3452 expression (&exp);
3453
3454 p = frag_more (4);
3455 md_number_to_chars (p, highbit, 4);
3456 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3457 BFD_RELOC_ARM_PREL31);
3458
3459 demand_empty_rest_of_line ();
3460 }
3461
3462 /* Directives: AEABI stack-unwind tables. */
3463
3464 /* Parse an unwind_fnstart directive. Simply records the current location. */
3465
3466 static void
3467 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3468 {
3469 demand_empty_rest_of_line ();
3470 if (unwind.proc_start)
3471 {
3472 as_bad (_("duplicate .fnstart directive"));
3473 return;
3474 }
3475
3476 /* Mark the start of the function. */
3477 unwind.proc_start = expr_build_dot ();
3478
3479 /* Reset the rest of the unwind info. */
3480 unwind.opcode_count = 0;
3481 unwind.table_entry = NULL;
3482 unwind.personality_routine = NULL;
3483 unwind.personality_index = -1;
3484 unwind.frame_size = 0;
3485 unwind.fp_offset = 0;
3486 unwind.fp_reg = REG_SP;
3487 unwind.fp_used = 0;
3488 unwind.sp_restored = 0;
3489 }
3490
3491
3492 /* Parse a handlerdata directive. Creates the exception handling table entry
3493 for the function. */
3494
3495 static void
3496 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3497 {
3498 demand_empty_rest_of_line ();
3499 if (!unwind.proc_start)
3500 as_bad (MISSING_FNSTART);
3501
3502 if (unwind.table_entry)
3503 as_bad (_("duplicate .handlerdata directive"));
3504
3505 create_unwind_entry (1);
3506 }
3507
3508 /* Parse an unwind_fnend directive. Generates the index table entry. */
3509
3510 static void
3511 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3512 {
3513 long where;
3514 char *ptr;
3515 valueT val;
3516 unsigned int marked_pr_dependency;
3517
3518 demand_empty_rest_of_line ();
3519
3520 if (!unwind.proc_start)
3521 {
3522 as_bad (_(".fnend directive without .fnstart"));
3523 return;
3524 }
3525
3526 /* Add eh table entry. */
3527 if (unwind.table_entry == NULL)
3528 val = create_unwind_entry (0);
3529 else
3530 val = 0;
3531
3532 /* Add index table entry. This is two words. */
3533 start_unwind_section (unwind.saved_seg, 1);
3534 frag_align (2, 0, 0);
3535 record_alignment (now_seg, 2);
3536
3537 ptr = frag_more (8);
3538 where = frag_now_fix () - 8;
3539
3540 /* Self relative offset of the function start. */
3541 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3542 BFD_RELOC_ARM_PREL31);
3543
3544 /* Indicate dependency on EHABI-defined personality routines to the
3545 linker, if it hasn't been done already. */
3546 marked_pr_dependency
3547 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3548 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3549 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3550 {
3551 static const char *const name[] =
3552 {
3553 "__aeabi_unwind_cpp_pr0",
3554 "__aeabi_unwind_cpp_pr1",
3555 "__aeabi_unwind_cpp_pr2"
3556 };
3557 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3558 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3559 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3560 |= 1 << unwind.personality_index;
3561 }
3562
3563 if (val)
3564 /* Inline exception table entry. */
3565 md_number_to_chars (ptr + 4, val, 4);
3566 else
3567 /* Self relative offset of the table entry. */
3568 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3569 BFD_RELOC_ARM_PREL31);
3570
3571 /* Restore the original section. */
3572 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3573
3574 unwind.proc_start = NULL;
3575 }
3576
3577
3578 /* Parse an unwind_cantunwind directive. */
3579
3580 static void
3581 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3582 {
3583 demand_empty_rest_of_line ();
3584 if (!unwind.proc_start)
3585 as_bad (MISSING_FNSTART);
3586
3587 if (unwind.personality_routine || unwind.personality_index != -1)
3588 as_bad (_("personality routine specified for cantunwind frame"));
3589
3590 unwind.personality_index = -2;
3591 }
3592
3593
3594 /* Parse a personalityindex directive. */
3595
3596 static void
3597 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3598 {
3599 expressionS exp;
3600
3601 if (!unwind.proc_start)
3602 as_bad (MISSING_FNSTART);
3603
3604 if (unwind.personality_routine || unwind.personality_index != -1)
3605 as_bad (_("duplicate .personalityindex directive"));
3606
3607 expression (&exp);
3608
3609 if (exp.X_op != O_constant
3610 || exp.X_add_number < 0 || exp.X_add_number > 15)
3611 {
3612 as_bad (_("bad personality routine number"));
3613 ignore_rest_of_line ();
3614 return;
3615 }
3616
3617 unwind.personality_index = exp.X_add_number;
3618
3619 demand_empty_rest_of_line ();
3620 }
3621
3622
3623 /* Parse a personality directive. */
3624
3625 static void
3626 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3627 {
3628 char *name, *p, c;
3629
3630 if (!unwind.proc_start)
3631 as_bad (MISSING_FNSTART);
3632
3633 if (unwind.personality_routine || unwind.personality_index != -1)
3634 as_bad (_("duplicate .personality directive"));
3635
3636 name = input_line_pointer;
3637 c = get_symbol_end ();
3638 p = input_line_pointer;
3639 unwind.personality_routine = symbol_find_or_make (name);
3640 *p = c;
3641 demand_empty_rest_of_line ();
3642 }
3643
3644
3645 /* Parse a directive saving core registers. */
3646
3647 static void
3648 s_arm_unwind_save_core (void)
3649 {
3650 valueT op;
3651 long range;
3652 int n;
3653
3654 range = parse_reg_list (&input_line_pointer);
3655 if (range == FAIL)
3656 {
3657 as_bad (_("expected register list"));
3658 ignore_rest_of_line ();
3659 return;
3660 }
3661
3662 demand_empty_rest_of_line ();
3663
3664 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3665 into .unwind_save {..., sp...}. We aren't bothered about the value of
3666 ip because it is clobbered by calls. */
3667 if (unwind.sp_restored && unwind.fp_reg == 12
3668 && (range & 0x3000) == 0x1000)
3669 {
3670 unwind.opcode_count--;
3671 unwind.sp_restored = 0;
3672 range = (range | 0x2000) & ~0x1000;
3673 unwind.pending_offset = 0;
3674 }
3675
3676 /* Pop r4-r15. */
3677 if (range & 0xfff0)
3678 {
3679 /* See if we can use the short opcodes. These pop a block of up to 8
3680 registers starting with r4, plus maybe r14. */
3681 for (n = 0; n < 8; n++)
3682 {
3683 /* Break at the first non-saved register. */
3684 if ((range & (1 << (n + 4))) == 0)
3685 break;
3686 }
3687 /* See if there are any other bits set. */
3688 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3689 {
3690 /* Use the long form. */
3691 op = 0x8000 | ((range >> 4) & 0xfff);
3692 add_unwind_opcode (op, 2);
3693 }
3694 else
3695 {
3696 /* Use the short form. */
3697 if (range & 0x4000)
3698 op = 0xa8; /* Pop r14. */
3699 else
3700 op = 0xa0; /* Do not pop r14. */
3701 op |= (n - 1);
3702 add_unwind_opcode (op, 1);
3703 }
3704 }
3705
3706 /* Pop r0-r3. */
3707 if (range & 0xf)
3708 {
3709 op = 0xb100 | (range & 0xf);
3710 add_unwind_opcode (op, 2);
3711 }
3712
3713 /* Record the number of bytes pushed. */
3714 for (n = 0; n < 16; n++)
3715 {
3716 if (range & (1 << n))
3717 unwind.frame_size += 4;
3718 }
3719 }
3720
3721
3722 /* Parse a directive saving FPA registers. */
3723
3724 static void
3725 s_arm_unwind_save_fpa (int reg)
3726 {
3727 expressionS exp;
3728 int num_regs;
3729 valueT op;
3730
3731 /* Get Number of registers to transfer. */
3732 if (skip_past_comma (&input_line_pointer) != FAIL)
3733 expression (&exp);
3734 else
3735 exp.X_op = O_illegal;
3736
3737 if (exp.X_op != O_constant)
3738 {
3739 as_bad (_("expected , <constant>"));
3740 ignore_rest_of_line ();
3741 return;
3742 }
3743
3744 num_regs = exp.X_add_number;
3745
3746 if (num_regs < 1 || num_regs > 4)
3747 {
3748 as_bad (_("number of registers must be in the range [1:4]"));
3749 ignore_rest_of_line ();
3750 return;
3751 }
3752
3753 demand_empty_rest_of_line ();
3754
3755 if (reg == 4)
3756 {
3757 /* Short form. */
3758 op = 0xb4 | (num_regs - 1);
3759 add_unwind_opcode (op, 1);
3760 }
3761 else
3762 {
3763 /* Long form. */
3764 op = 0xc800 | (reg << 4) | (num_regs - 1);
3765 add_unwind_opcode (op, 2);
3766 }
3767 unwind.frame_size += num_regs * 12;
3768 }
3769
3770
3771 /* Parse a directive saving VFP registers for ARMv6 and above. */
3772
3773 static void
3774 s_arm_unwind_save_vfp_armv6 (void)
3775 {
3776 int count;
3777 unsigned int start;
3778 valueT op;
3779 int num_vfpv3_regs = 0;
3780 int num_regs_below_16;
3781
3782 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3783 if (count == FAIL)
3784 {
3785 as_bad (_("expected register list"));
3786 ignore_rest_of_line ();
3787 return;
3788 }
3789
3790 demand_empty_rest_of_line ();
3791
3792 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3793 than FSTMX/FLDMX-style ones). */
3794
3795 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3796 if (start >= 16)
3797 num_vfpv3_regs = count;
3798 else if (start + count > 16)
3799 num_vfpv3_regs = start + count - 16;
3800
3801 if (num_vfpv3_regs > 0)
3802 {
3803 int start_offset = start > 16 ? start - 16 : 0;
3804 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3805 add_unwind_opcode (op, 2);
3806 }
3807
3808 /* Generate opcode for registers numbered in the range 0 .. 15. */
3809 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3810 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3811 if (num_regs_below_16 > 0)
3812 {
3813 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3814 add_unwind_opcode (op, 2);
3815 }
3816
3817 unwind.frame_size += count * 8;
3818 }
3819
3820
3821 /* Parse a directive saving VFP registers for pre-ARMv6. */
3822
3823 static void
3824 s_arm_unwind_save_vfp (void)
3825 {
3826 int count;
3827 unsigned int reg;
3828 valueT op;
3829
3830 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3831 if (count == FAIL)
3832 {
3833 as_bad (_("expected register list"));
3834 ignore_rest_of_line ();
3835 return;
3836 }
3837
3838 demand_empty_rest_of_line ();
3839
3840 if (reg == 8)
3841 {
3842 /* Short form. */
3843 op = 0xb8 | (count - 1);
3844 add_unwind_opcode (op, 1);
3845 }
3846 else
3847 {
3848 /* Long form. */
3849 op = 0xb300 | (reg << 4) | (count - 1);
3850 add_unwind_opcode (op, 2);
3851 }
3852 unwind.frame_size += count * 8 + 4;
3853 }
3854
3855
3856 /* Parse a directive saving iWMMXt data registers. */
3857
3858 static void
3859 s_arm_unwind_save_mmxwr (void)
3860 {
3861 int reg;
3862 int hi_reg;
3863 int i;
3864 unsigned mask = 0;
3865 valueT op;
3866
3867 if (*input_line_pointer == '{')
3868 input_line_pointer++;
3869
3870 do
3871 {
3872 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3873
3874 if (reg == FAIL)
3875 {
3876 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3877 goto error;
3878 }
3879
3880 if (mask >> reg)
3881 as_tsktsk (_("register list not in ascending order"));
3882 mask |= 1 << reg;
3883
3884 if (*input_line_pointer == '-')
3885 {
3886 input_line_pointer++;
3887 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3888 if (hi_reg == FAIL)
3889 {
3890 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3891 goto error;
3892 }
3893 else if (reg >= hi_reg)
3894 {
3895 as_bad (_("bad register range"));
3896 goto error;
3897 }
3898 for (; reg < hi_reg; reg++)
3899 mask |= 1 << reg;
3900 }
3901 }
3902 while (skip_past_comma (&input_line_pointer) != FAIL);
3903
3904 if (*input_line_pointer == '}')
3905 input_line_pointer++;
3906
3907 demand_empty_rest_of_line ();
3908
3909 /* Generate any deferred opcodes because we're going to be looking at
3910 the list. */
3911 flush_pending_unwind ();
3912
3913 for (i = 0; i < 16; i++)
3914 {
3915 if (mask & (1 << i))
3916 unwind.frame_size += 8;
3917 }
3918
3919 /* Attempt to combine with a previous opcode. We do this because gcc
3920 likes to output separate unwind directives for a single block of
3921 registers. */
3922 if (unwind.opcode_count > 0)
3923 {
3924 i = unwind.opcodes[unwind.opcode_count - 1];
3925 if ((i & 0xf8) == 0xc0)
3926 {
3927 i &= 7;
3928 /* Only merge if the blocks are contiguous. */
3929 if (i < 6)
3930 {
3931 if ((mask & 0xfe00) == (1 << 9))
3932 {
3933 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3934 unwind.opcode_count--;
3935 }
3936 }
3937 else if (i == 6 && unwind.opcode_count >= 2)
3938 {
3939 i = unwind.opcodes[unwind.opcode_count - 2];
3940 reg = i >> 4;
3941 i &= 0xf;
3942
3943 op = 0xffff << (reg - 1);
3944 if (reg > 0
3945 && ((mask & op) == (1u << (reg - 1))))
3946 {
3947 op = (1 << (reg + i + 1)) - 1;
3948 op &= ~((1 << reg) - 1);
3949 mask |= op;
3950 unwind.opcode_count -= 2;
3951 }
3952 }
3953 }
3954 }
3955
3956 hi_reg = 15;
3957 /* We want to generate opcodes in the order the registers have been
3958 saved, ie. descending order. */
3959 for (reg = 15; reg >= -1; reg--)
3960 {
3961 /* Save registers in blocks. */
3962 if (reg < 0
3963 || !(mask & (1 << reg)))
3964 {
3965 /* We found an unsaved reg. Generate opcodes to save the
3966 preceding block. */
3967 if (reg != hi_reg)
3968 {
3969 if (reg == 9)
3970 {
3971 /* Short form. */
3972 op = 0xc0 | (hi_reg - 10);
3973 add_unwind_opcode (op, 1);
3974 }
3975 else
3976 {
3977 /* Long form. */
3978 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3979 add_unwind_opcode (op, 2);
3980 }
3981 }
3982 hi_reg = reg - 1;
3983 }
3984 }
3985
3986 return;
3987 error:
3988 ignore_rest_of_line ();
3989 }
3990
3991 static void
3992 s_arm_unwind_save_mmxwcg (void)
3993 {
3994 int reg;
3995 int hi_reg;
3996 unsigned mask = 0;
3997 valueT op;
3998
3999 if (*input_line_pointer == '{')
4000 input_line_pointer++;
4001
4002 do
4003 {
4004 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4005
4006 if (reg == FAIL)
4007 {
4008 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4009 goto error;
4010 }
4011
4012 reg -= 8;
4013 if (mask >> reg)
4014 as_tsktsk (_("register list not in ascending order"));
4015 mask |= 1 << reg;
4016
4017 if (*input_line_pointer == '-')
4018 {
4019 input_line_pointer++;
4020 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4021 if (hi_reg == FAIL)
4022 {
4023 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4024 goto error;
4025 }
4026 else if (reg >= hi_reg)
4027 {
4028 as_bad (_("bad register range"));
4029 goto error;
4030 }
4031 for (; reg < hi_reg; reg++)
4032 mask |= 1 << reg;
4033 }
4034 }
4035 while (skip_past_comma (&input_line_pointer) != FAIL);
4036
4037 if (*input_line_pointer == '}')
4038 input_line_pointer++;
4039
4040 demand_empty_rest_of_line ();
4041
4042 /* Generate any deferred opcodes because we're going to be looking at
4043 the list. */
4044 flush_pending_unwind ();
4045
4046 for (reg = 0; reg < 16; reg++)
4047 {
4048 if (mask & (1 << reg))
4049 unwind.frame_size += 4;
4050 }
4051 op = 0xc700 | mask;
4052 add_unwind_opcode (op, 2);
4053 return;
4054 error:
4055 ignore_rest_of_line ();
4056 }
4057
4058
4059 /* Parse an unwind_save directive.
4060 If the argument is non-zero, this is a .vsave directive. */
4061
4062 static void
4063 s_arm_unwind_save (int arch_v6)
4064 {
4065 char *peek;
4066 struct reg_entry *reg;
4067 bfd_boolean had_brace = FALSE;
4068
4069 if (!unwind.proc_start)
4070 as_bad (MISSING_FNSTART);
4071
4072 /* Figure out what sort of save we have. */
4073 peek = input_line_pointer;
4074
4075 if (*peek == '{')
4076 {
4077 had_brace = TRUE;
4078 peek++;
4079 }
4080
4081 reg = arm_reg_parse_multi (&peek);
4082
4083 if (!reg)
4084 {
4085 as_bad (_("register expected"));
4086 ignore_rest_of_line ();
4087 return;
4088 }
4089
4090 switch (reg->type)
4091 {
4092 case REG_TYPE_FN:
4093 if (had_brace)
4094 {
4095 as_bad (_("FPA .unwind_save does not take a register list"));
4096 ignore_rest_of_line ();
4097 return;
4098 }
4099 input_line_pointer = peek;
4100 s_arm_unwind_save_fpa (reg->number);
4101 return;
4102
4103 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4104 case REG_TYPE_VFD:
4105 if (arch_v6)
4106 s_arm_unwind_save_vfp_armv6 ();
4107 else
4108 s_arm_unwind_save_vfp ();
4109 return;
4110 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4111 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4112
4113 default:
4114 as_bad (_(".unwind_save does not support this kind of register"));
4115 ignore_rest_of_line ();
4116 }
4117 }
4118
4119
4120 /* Parse an unwind_movsp directive. */
4121
4122 static void
4123 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4124 {
4125 int reg;
4126 valueT op;
4127 int offset;
4128
4129 if (!unwind.proc_start)
4130 as_bad (MISSING_FNSTART);
4131
4132 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4133 if (reg == FAIL)
4134 {
4135 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4136 ignore_rest_of_line ();
4137 return;
4138 }
4139
4140 /* Optional constant. */
4141 if (skip_past_comma (&input_line_pointer) != FAIL)
4142 {
4143 if (immediate_for_directive (&offset) == FAIL)
4144 return;
4145 }
4146 else
4147 offset = 0;
4148
4149 demand_empty_rest_of_line ();
4150
4151 if (reg == REG_SP || reg == REG_PC)
4152 {
4153 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4154 return;
4155 }
4156
4157 if (unwind.fp_reg != REG_SP)
4158 as_bad (_("unexpected .unwind_movsp directive"));
4159
4160 /* Generate opcode to restore the value. */
4161 op = 0x90 | reg;
4162 add_unwind_opcode (op, 1);
4163
4164 /* Record the information for later. */
4165 unwind.fp_reg = reg;
4166 unwind.fp_offset = unwind.frame_size - offset;
4167 unwind.sp_restored = 1;
4168 }
4169
4170 /* Parse an unwind_pad directive. */
4171
4172 static void
4173 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4174 {
4175 int offset;
4176
4177 if (!unwind.proc_start)
4178 as_bad (MISSING_FNSTART);
4179
4180 if (immediate_for_directive (&offset) == FAIL)
4181 return;
4182
4183 if (offset & 3)
4184 {
4185 as_bad (_("stack increment must be multiple of 4"));
4186 ignore_rest_of_line ();
4187 return;
4188 }
4189
4190 /* Don't generate any opcodes, just record the details for later. */
4191 unwind.frame_size += offset;
4192 unwind.pending_offset += offset;
4193
4194 demand_empty_rest_of_line ();
4195 }
4196
4197 /* Parse an unwind_setfp directive. */
4198
4199 static void
4200 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4201 {
4202 int sp_reg;
4203 int fp_reg;
4204 int offset;
4205
4206 if (!unwind.proc_start)
4207 as_bad (MISSING_FNSTART);
4208
4209 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4210 if (skip_past_comma (&input_line_pointer) == FAIL)
4211 sp_reg = FAIL;
4212 else
4213 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4214
4215 if (fp_reg == FAIL || sp_reg == FAIL)
4216 {
4217 as_bad (_("expected <reg>, <reg>"));
4218 ignore_rest_of_line ();
4219 return;
4220 }
4221
4222 /* Optional constant. */
4223 if (skip_past_comma (&input_line_pointer) != FAIL)
4224 {
4225 if (immediate_for_directive (&offset) == FAIL)
4226 return;
4227 }
4228 else
4229 offset = 0;
4230
4231 demand_empty_rest_of_line ();
4232
4233 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4234 {
4235 as_bad (_("register must be either sp or set by a previous"
4236 "unwind_movsp directive"));
4237 return;
4238 }
4239
4240 /* Don't generate any opcodes, just record the information for later. */
4241 unwind.fp_reg = fp_reg;
4242 unwind.fp_used = 1;
4243 if (sp_reg == REG_SP)
4244 unwind.fp_offset = unwind.frame_size - offset;
4245 else
4246 unwind.fp_offset -= offset;
4247 }
4248
4249 /* Parse an unwind_raw directive. */
4250
4251 static void
4252 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4253 {
4254 expressionS exp;
4255 /* This is an arbitrary limit. */
4256 unsigned char op[16];
4257 int count;
4258
4259 if (!unwind.proc_start)
4260 as_bad (MISSING_FNSTART);
4261
4262 expression (&exp);
4263 if (exp.X_op == O_constant
4264 && skip_past_comma (&input_line_pointer) != FAIL)
4265 {
4266 unwind.frame_size += exp.X_add_number;
4267 expression (&exp);
4268 }
4269 else
4270 exp.X_op = O_illegal;
4271
4272 if (exp.X_op != O_constant)
4273 {
4274 as_bad (_("expected <offset>, <opcode>"));
4275 ignore_rest_of_line ();
4276 return;
4277 }
4278
4279 count = 0;
4280
4281 /* Parse the opcode. */
4282 for (;;)
4283 {
4284 if (count >= 16)
4285 {
4286 as_bad (_("unwind opcode too long"));
4287 ignore_rest_of_line ();
4288 }
4289 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4290 {
4291 as_bad (_("invalid unwind opcode"));
4292 ignore_rest_of_line ();
4293 return;
4294 }
4295 op[count++] = exp.X_add_number;
4296
4297 /* Parse the next byte. */
4298 if (skip_past_comma (&input_line_pointer) == FAIL)
4299 break;
4300
4301 expression (&exp);
4302 }
4303
4304 /* Add the opcode bytes in reverse order. */
4305 while (count--)
4306 add_unwind_opcode (op[count], 1);
4307
4308 demand_empty_rest_of_line ();
4309 }
4310
4311
4312 /* Parse a .eabi_attribute directive. */
4313
4314 static void
4315 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4316 {
4317 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4318
4319 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4320 attributes_set_explicitly[tag] = 1;
4321 }
4322
4323 /* Emit a tls fix for the symbol. */
4324
4325 static void
4326 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4327 {
4328 char *p;
4329 expressionS exp;
4330 #ifdef md_flush_pending_output
4331 md_flush_pending_output ();
4332 #endif
4333
4334 #ifdef md_cons_align
4335 md_cons_align (4);
4336 #endif
4337
4338 /* Since we're just labelling the code, there's no need to define a
4339 mapping symbol. */
4340 expression (&exp);
4341 p = obstack_next_free (&frchain_now->frch_obstack);
4342 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4343 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4344 : BFD_RELOC_ARM_TLS_DESCSEQ);
4345 }
4346 #endif /* OBJ_ELF */
4347
4348 static void s_arm_arch (int);
4349 static void s_arm_object_arch (int);
4350 static void s_arm_cpu (int);
4351 static void s_arm_fpu (int);
4352 static void s_arm_arch_extension (int);
4353
4354 #ifdef TE_PE
4355
4356 static void
4357 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4358 {
4359 expressionS exp;
4360
4361 do
4362 {
4363 expression (&exp);
4364 if (exp.X_op == O_symbol)
4365 exp.X_op = O_secrel;
4366
4367 emit_expr (&exp, 4);
4368 }
4369 while (*input_line_pointer++ == ',');
4370
4371 input_line_pointer--;
4372 demand_empty_rest_of_line ();
4373 }
4374 #endif /* TE_PE */
4375
4376 /* This table describes all the machine specific pseudo-ops the assembler
4377 has to support. The fields are:
4378 pseudo-op name without dot
4379 function to call to execute this pseudo-op
4380 Integer arg to pass to the function. */
4381
4382 const pseudo_typeS md_pseudo_table[] =
4383 {
4384 /* Never called because '.req' does not start a line. */
4385 { "req", s_req, 0 },
4386 /* Following two are likewise never called. */
4387 { "dn", s_dn, 0 },
4388 { "qn", s_qn, 0 },
4389 { "unreq", s_unreq, 0 },
4390 { "bss", s_bss, 0 },
4391 { "align", s_align, 0 },
4392 { "arm", s_arm, 0 },
4393 { "thumb", s_thumb, 0 },
4394 { "code", s_code, 0 },
4395 { "force_thumb", s_force_thumb, 0 },
4396 { "thumb_func", s_thumb_func, 0 },
4397 { "thumb_set", s_thumb_set, 0 },
4398 { "even", s_even, 0 },
4399 { "ltorg", s_ltorg, 0 },
4400 { "pool", s_ltorg, 0 },
4401 { "syntax", s_syntax, 0 },
4402 { "cpu", s_arm_cpu, 0 },
4403 { "arch", s_arm_arch, 0 },
4404 { "object_arch", s_arm_object_arch, 0 },
4405 { "fpu", s_arm_fpu, 0 },
4406 { "arch_extension", s_arm_arch_extension, 0 },
4407 #ifdef OBJ_ELF
4408 { "word", s_arm_elf_cons, 4 },
4409 { "long", s_arm_elf_cons, 4 },
4410 { "inst.n", s_arm_elf_inst, 2 },
4411 { "inst.w", s_arm_elf_inst, 4 },
4412 { "inst", s_arm_elf_inst, 0 },
4413 { "rel31", s_arm_rel31, 0 },
4414 { "fnstart", s_arm_unwind_fnstart, 0 },
4415 { "fnend", s_arm_unwind_fnend, 0 },
4416 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4417 { "personality", s_arm_unwind_personality, 0 },
4418 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4419 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4420 { "save", s_arm_unwind_save, 0 },
4421 { "vsave", s_arm_unwind_save, 1 },
4422 { "movsp", s_arm_unwind_movsp, 0 },
4423 { "pad", s_arm_unwind_pad, 0 },
4424 { "setfp", s_arm_unwind_setfp, 0 },
4425 { "unwind_raw", s_arm_unwind_raw, 0 },
4426 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4427 { "tlsdescseq", s_arm_tls_descseq, 0 },
4428 #else
4429 { "word", cons, 4},
4430
4431 /* These are used for dwarf. */
4432 {"2byte", cons, 2},
4433 {"4byte", cons, 4},
4434 {"8byte", cons, 8},
4435 /* These are used for dwarf2. */
4436 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4437 { "loc", dwarf2_directive_loc, 0 },
4438 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4439 #endif
4440 { "extend", float_cons, 'x' },
4441 { "ldouble", float_cons, 'x' },
4442 { "packed", float_cons, 'p' },
4443 #ifdef TE_PE
4444 {"secrel32", pe_directive_secrel, 0},
4445 #endif
4446 { 0, 0, 0 }
4447 };
4448 \f
4449 /* Parser functions used exclusively in instruction operands. */
4450
4451 /* Generic immediate-value read function for use in insn parsing.
4452 STR points to the beginning of the immediate (the leading #);
4453 VAL receives the value; if the value is outside [MIN, MAX]
4454 issue an error. PREFIX_OPT is true if the immediate prefix is
4455 optional. */
4456
4457 static int
4458 parse_immediate (char **str, int *val, int min, int max,
4459 bfd_boolean prefix_opt)
4460 {
4461 expressionS exp;
4462 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4463 if (exp.X_op != O_constant)
4464 {
4465 inst.error = _("constant expression required");
4466 return FAIL;
4467 }
4468
4469 if (exp.X_add_number < min || exp.X_add_number > max)
4470 {
4471 inst.error = _("immediate value out of range");
4472 return FAIL;
4473 }
4474
4475 *val = exp.X_add_number;
4476 return SUCCESS;
4477 }
4478
4479 /* Less-generic immediate-value read function with the possibility of loading a
4480 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4481 instructions. Puts the result directly in inst.operands[i]. */
4482
4483 static int
4484 parse_big_immediate (char **str, int i)
4485 {
4486 expressionS exp;
4487 char *ptr = *str;
4488
4489 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4490
4491 if (exp.X_op == O_constant)
4492 {
4493 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4494 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4495 O_constant. We have to be careful not to break compilation for
4496 32-bit X_add_number, though. */
4497 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4498 {
4499 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4500 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4501 inst.operands[i].regisimm = 1;
4502 }
4503 }
4504 else if (exp.X_op == O_big
4505 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4506 {
4507 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4508
4509 /* Bignums have their least significant bits in
4510 generic_bignum[0]. Make sure we put 32 bits in imm and
4511 32 bits in reg, in a (hopefully) portable way. */
4512 gas_assert (parts != 0);
4513
4514 /* Make sure that the number is not too big.
4515 PR 11972: Bignums can now be sign-extended to the
4516 size of a .octa so check that the out of range bits
4517 are all zero or all one. */
4518 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4519 {
4520 LITTLENUM_TYPE m = -1;
4521
4522 if (generic_bignum[parts * 2] != 0
4523 && generic_bignum[parts * 2] != m)
4524 return FAIL;
4525
4526 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4527 if (generic_bignum[j] != generic_bignum[j-1])
4528 return FAIL;
4529 }
4530
4531 inst.operands[i].imm = 0;
4532 for (j = 0; j < parts; j++, idx++)
4533 inst.operands[i].imm |= generic_bignum[idx]
4534 << (LITTLENUM_NUMBER_OF_BITS * j);
4535 inst.operands[i].reg = 0;
4536 for (j = 0; j < parts; j++, idx++)
4537 inst.operands[i].reg |= generic_bignum[idx]
4538 << (LITTLENUM_NUMBER_OF_BITS * j);
4539 inst.operands[i].regisimm = 1;
4540 }
4541 else
4542 return FAIL;
4543
4544 *str = ptr;
4545
4546 return SUCCESS;
4547 }
4548
4549 /* Returns the pseudo-register number of an FPA immediate constant,
4550 or FAIL if there isn't a valid constant here. */
4551
4552 static int
4553 parse_fpa_immediate (char ** str)
4554 {
4555 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4556 char * save_in;
4557 expressionS exp;
4558 int i;
4559 int j;
4560
4561 /* First try and match exact strings, this is to guarantee
4562 that some formats will work even for cross assembly. */
4563
4564 for (i = 0; fp_const[i]; i++)
4565 {
4566 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4567 {
4568 char *start = *str;
4569
4570 *str += strlen (fp_const[i]);
4571 if (is_end_of_line[(unsigned char) **str])
4572 return i + 8;
4573 *str = start;
4574 }
4575 }
4576
4577 /* Just because we didn't get a match doesn't mean that the constant
4578 isn't valid, just that it is in a format that we don't
4579 automatically recognize. Try parsing it with the standard
4580 expression routines. */
4581
4582 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4583
4584 /* Look for a raw floating point number. */
4585 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4586 && is_end_of_line[(unsigned char) *save_in])
4587 {
4588 for (i = 0; i < NUM_FLOAT_VALS; i++)
4589 {
4590 for (j = 0; j < MAX_LITTLENUMS; j++)
4591 {
4592 if (words[j] != fp_values[i][j])
4593 break;
4594 }
4595
4596 if (j == MAX_LITTLENUMS)
4597 {
4598 *str = save_in;
4599 return i + 8;
4600 }
4601 }
4602 }
4603
4604 /* Try and parse a more complex expression, this will probably fail
4605 unless the code uses a floating point prefix (eg "0f"). */
4606 save_in = input_line_pointer;
4607 input_line_pointer = *str;
4608 if (expression (&exp) == absolute_section
4609 && exp.X_op == O_big
4610 && exp.X_add_number < 0)
4611 {
4612 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4613 Ditto for 15. */
4614 if (gen_to_words (words, 5, (long) 15) == 0)
4615 {
4616 for (i = 0; i < NUM_FLOAT_VALS; i++)
4617 {
4618 for (j = 0; j < MAX_LITTLENUMS; j++)
4619 {
4620 if (words[j] != fp_values[i][j])
4621 break;
4622 }
4623
4624 if (j == MAX_LITTLENUMS)
4625 {
4626 *str = input_line_pointer;
4627 input_line_pointer = save_in;
4628 return i + 8;
4629 }
4630 }
4631 }
4632 }
4633
4634 *str = input_line_pointer;
4635 input_line_pointer = save_in;
4636 inst.error = _("invalid FPA immediate expression");
4637 return FAIL;
4638 }
4639
4640 /* Returns 1 if a number has "quarter-precision" float format
4641 0baBbbbbbc defgh000 00000000 00000000. */
4642
4643 static int
4644 is_quarter_float (unsigned imm)
4645 {
4646 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4647 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4648 }
4649
4650 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4651 0baBbbbbbc defgh000 00000000 00000000.
4652 The zero and minus-zero cases need special handling, since they can't be
4653 encoded in the "quarter-precision" float format, but can nonetheless be
4654 loaded as integer constants. */
4655
4656 static unsigned
4657 parse_qfloat_immediate (char **ccp, int *immed)
4658 {
4659 char *str = *ccp;
4660 char *fpnum;
4661 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4662 int found_fpchar = 0;
4663
4664 skip_past_char (&str, '#');
4665
4666 /* We must not accidentally parse an integer as a floating-point number. Make
4667 sure that the value we parse is not an integer by checking for special
4668 characters '.' or 'e'.
4669 FIXME: This is a horrible hack, but doing better is tricky because type
4670 information isn't in a very usable state at parse time. */
4671 fpnum = str;
4672 skip_whitespace (fpnum);
4673
4674 if (strncmp (fpnum, "0x", 2) == 0)
4675 return FAIL;
4676 else
4677 {
4678 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4679 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4680 {
4681 found_fpchar = 1;
4682 break;
4683 }
4684
4685 if (!found_fpchar)
4686 return FAIL;
4687 }
4688
4689 if ((str = atof_ieee (str, 's', words)) != NULL)
4690 {
4691 unsigned fpword = 0;
4692 int i;
4693
4694 /* Our FP word must be 32 bits (single-precision FP). */
4695 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4696 {
4697 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4698 fpword |= words[i];
4699 }
4700
4701 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4702 *immed = fpword;
4703 else
4704 return FAIL;
4705
4706 *ccp = str;
4707
4708 return SUCCESS;
4709 }
4710
4711 return FAIL;
4712 }
4713
4714 /* Shift operands. */
4715 enum shift_kind
4716 {
4717 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4718 };
4719
4720 struct asm_shift_name
4721 {
4722 const char *name;
4723 enum shift_kind kind;
4724 };
4725
4726 /* Third argument to parse_shift. */
4727 enum parse_shift_mode
4728 {
4729 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4730 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4731 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4732 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4733 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4734 };
4735
4736 /* Parse a <shift> specifier on an ARM data processing instruction.
4737 This has three forms:
4738
4739 (LSL|LSR|ASL|ASR|ROR) Rs
4740 (LSL|LSR|ASL|ASR|ROR) #imm
4741 RRX
4742
4743 Note that ASL is assimilated to LSL in the instruction encoding, and
4744 RRX to ROR #0 (which cannot be written as such). */
4745
4746 static int
4747 parse_shift (char **str, int i, enum parse_shift_mode mode)
4748 {
4749 const struct asm_shift_name *shift_name;
4750 enum shift_kind shift;
4751 char *s = *str;
4752 char *p = s;
4753 int reg;
4754
4755 for (p = *str; ISALPHA (*p); p++)
4756 ;
4757
4758 if (p == *str)
4759 {
4760 inst.error = _("shift expression expected");
4761 return FAIL;
4762 }
4763
4764 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4765 p - *str);
4766
4767 if (shift_name == NULL)
4768 {
4769 inst.error = _("shift expression expected");
4770 return FAIL;
4771 }
4772
4773 shift = shift_name->kind;
4774
4775 switch (mode)
4776 {
4777 case NO_SHIFT_RESTRICT:
4778 case SHIFT_IMMEDIATE: break;
4779
4780 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4781 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4782 {
4783 inst.error = _("'LSL' or 'ASR' required");
4784 return FAIL;
4785 }
4786 break;
4787
4788 case SHIFT_LSL_IMMEDIATE:
4789 if (shift != SHIFT_LSL)
4790 {
4791 inst.error = _("'LSL' required");
4792 return FAIL;
4793 }
4794 break;
4795
4796 case SHIFT_ASR_IMMEDIATE:
4797 if (shift != SHIFT_ASR)
4798 {
4799 inst.error = _("'ASR' required");
4800 return FAIL;
4801 }
4802 break;
4803
4804 default: abort ();
4805 }
4806
4807 if (shift != SHIFT_RRX)
4808 {
4809 /* Whitespace can appear here if the next thing is a bare digit. */
4810 skip_whitespace (p);
4811
4812 if (mode == NO_SHIFT_RESTRICT
4813 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4814 {
4815 inst.operands[i].imm = reg;
4816 inst.operands[i].immisreg = 1;
4817 }
4818 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4819 return FAIL;
4820 }
4821 inst.operands[i].shift_kind = shift;
4822 inst.operands[i].shifted = 1;
4823 *str = p;
4824 return SUCCESS;
4825 }
4826
4827 /* Parse a <shifter_operand> for an ARM data processing instruction:
4828
4829 #<immediate>
4830 #<immediate>, <rotate>
4831 <Rm>
4832 <Rm>, <shift>
4833
4834 where <shift> is defined by parse_shift above, and <rotate> is a
4835 multiple of 2 between 0 and 30. Validation of immediate operands
4836 is deferred to md_apply_fix. */
4837
4838 static int
4839 parse_shifter_operand (char **str, int i)
4840 {
4841 int value;
4842 expressionS exp;
4843
4844 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4845 {
4846 inst.operands[i].reg = value;
4847 inst.operands[i].isreg = 1;
4848
4849 /* parse_shift will override this if appropriate */
4850 inst.reloc.exp.X_op = O_constant;
4851 inst.reloc.exp.X_add_number = 0;
4852
4853 if (skip_past_comma (str) == FAIL)
4854 return SUCCESS;
4855
4856 /* Shift operation on register. */
4857 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4858 }
4859
4860 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4861 return FAIL;
4862
4863 if (skip_past_comma (str) == SUCCESS)
4864 {
4865 /* #x, y -- ie explicit rotation by Y. */
4866 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4867 return FAIL;
4868
4869 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4870 {
4871 inst.error = _("constant expression expected");
4872 return FAIL;
4873 }
4874
4875 value = exp.X_add_number;
4876 if (value < 0 || value > 30 || value % 2 != 0)
4877 {
4878 inst.error = _("invalid rotation");
4879 return FAIL;
4880 }
4881 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4882 {
4883 inst.error = _("invalid constant");
4884 return FAIL;
4885 }
4886
4887 /* Convert to decoded value. md_apply_fix will put it back. */
4888 inst.reloc.exp.X_add_number
4889 = (((inst.reloc.exp.X_add_number << (32 - value))
4890 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4891 }
4892
4893 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4894 inst.reloc.pc_rel = 0;
4895 return SUCCESS;
4896 }
4897
4898 /* Group relocation information. Each entry in the table contains the
4899 textual name of the relocation as may appear in assembler source
4900 and must end with a colon.
4901 Along with this textual name are the relocation codes to be used if
4902 the corresponding instruction is an ALU instruction (ADD or SUB only),
4903 an LDR, an LDRS, or an LDC. */
4904
4905 struct group_reloc_table_entry
4906 {
4907 const char *name;
4908 int alu_code;
4909 int ldr_code;
4910 int ldrs_code;
4911 int ldc_code;
4912 };
4913
4914 typedef enum
4915 {
4916 /* Varieties of non-ALU group relocation. */
4917
4918 GROUP_LDR,
4919 GROUP_LDRS,
4920 GROUP_LDC
4921 } group_reloc_type;
4922
4923 static struct group_reloc_table_entry group_reloc_table[] =
4924 { /* Program counter relative: */
4925 { "pc_g0_nc",
4926 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4927 0, /* LDR */
4928 0, /* LDRS */
4929 0 }, /* LDC */
4930 { "pc_g0",
4931 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4932 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4933 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4934 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4935 { "pc_g1_nc",
4936 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4937 0, /* LDR */
4938 0, /* LDRS */
4939 0 }, /* LDC */
4940 { "pc_g1",
4941 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4942 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4943 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4944 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4945 { "pc_g2",
4946 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4947 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4948 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4949 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4950 /* Section base relative */
4951 { "sb_g0_nc",
4952 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4953 0, /* LDR */
4954 0, /* LDRS */
4955 0 }, /* LDC */
4956 { "sb_g0",
4957 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4958 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4959 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4960 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4961 { "sb_g1_nc",
4962 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4963 0, /* LDR */
4964 0, /* LDRS */
4965 0 }, /* LDC */
4966 { "sb_g1",
4967 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4968 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4969 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4970 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4971 { "sb_g2",
4972 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4973 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4974 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4975 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4976
4977 /* Given the address of a pointer pointing to the textual name of a group
4978 relocation as may appear in assembler source, attempt to find its details
4979 in group_reloc_table. The pointer will be updated to the character after
4980 the trailing colon. On failure, FAIL will be returned; SUCCESS
4981 otherwise. On success, *entry will be updated to point at the relevant
4982 group_reloc_table entry. */
4983
4984 static int
4985 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4986 {
4987 unsigned int i;
4988 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4989 {
4990 int length = strlen (group_reloc_table[i].name);
4991
4992 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4993 && (*str)[length] == ':')
4994 {
4995 *out = &group_reloc_table[i];
4996 *str += (length + 1);
4997 return SUCCESS;
4998 }
4999 }
5000
5001 return FAIL;
5002 }
5003
5004 /* Parse a <shifter_operand> for an ARM data processing instruction
5005 (as for parse_shifter_operand) where group relocations are allowed:
5006
5007 #<immediate>
5008 #<immediate>, <rotate>
5009 #:<group_reloc>:<expression>
5010 <Rm>
5011 <Rm>, <shift>
5012
5013 where <group_reloc> is one of the strings defined in group_reloc_table.
5014 The hashes are optional.
5015
5016 Everything else is as for parse_shifter_operand. */
5017
5018 static parse_operand_result
5019 parse_shifter_operand_group_reloc (char **str, int i)
5020 {
5021 /* Determine if we have the sequence of characters #: or just :
5022 coming next. If we do, then we check for a group relocation.
5023 If we don't, punt the whole lot to parse_shifter_operand. */
5024
5025 if (((*str)[0] == '#' && (*str)[1] == ':')
5026 || (*str)[0] == ':')
5027 {
5028 struct group_reloc_table_entry *entry;
5029
5030 if ((*str)[0] == '#')
5031 (*str) += 2;
5032 else
5033 (*str)++;
5034
5035 /* Try to parse a group relocation. Anything else is an error. */
5036 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5037 {
5038 inst.error = _("unknown group relocation");
5039 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5040 }
5041
5042 /* We now have the group relocation table entry corresponding to
5043 the name in the assembler source. Next, we parse the expression. */
5044 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5045 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5046
5047 /* Record the relocation type (always the ALU variant here). */
5048 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5049 gas_assert (inst.reloc.type != 0);
5050
5051 return PARSE_OPERAND_SUCCESS;
5052 }
5053 else
5054 return parse_shifter_operand (str, i) == SUCCESS
5055 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5056
5057 /* Never reached. */
5058 }
5059
5060 /* Parse a Neon alignment expression. Information is written to
5061 inst.operands[i]. We assume the initial ':' has been skipped.
5062
5063 align .imm = align << 8, .immisalign=1, .preind=0 */
5064 static parse_operand_result
5065 parse_neon_alignment (char **str, int i)
5066 {
5067 char *p = *str;
5068 expressionS exp;
5069
5070 my_get_expression (&exp, &p, GE_NO_PREFIX);
5071
5072 if (exp.X_op != O_constant)
5073 {
5074 inst.error = _("alignment must be constant");
5075 return PARSE_OPERAND_FAIL;
5076 }
5077
5078 inst.operands[i].imm = exp.X_add_number << 8;
5079 inst.operands[i].immisalign = 1;
5080 /* Alignments are not pre-indexes. */
5081 inst.operands[i].preind = 0;
5082
5083 *str = p;
5084 return PARSE_OPERAND_SUCCESS;
5085 }
5086
5087 /* Parse all forms of an ARM address expression. Information is written
5088 to inst.operands[i] and/or inst.reloc.
5089
5090 Preindexed addressing (.preind=1):
5091
5092 [Rn, #offset] .reg=Rn .reloc.exp=offset
5093 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5094 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5095 .shift_kind=shift .reloc.exp=shift_imm
5096
5097 These three may have a trailing ! which causes .writeback to be set also.
5098
5099 Postindexed addressing (.postind=1, .writeback=1):
5100
5101 [Rn], #offset .reg=Rn .reloc.exp=offset
5102 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5103 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5104 .shift_kind=shift .reloc.exp=shift_imm
5105
5106 Unindexed addressing (.preind=0, .postind=0):
5107
5108 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5109
5110 Other:
5111
5112 [Rn]{!} shorthand for [Rn,#0]{!}
5113 =immediate .isreg=0 .reloc.exp=immediate
5114 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5115
5116 It is the caller's responsibility to check for addressing modes not
5117 supported by the instruction, and to set inst.reloc.type. */
5118
5119 static parse_operand_result
5120 parse_address_main (char **str, int i, int group_relocations,
5121 group_reloc_type group_type)
5122 {
5123 char *p = *str;
5124 int reg;
5125
5126 if (skip_past_char (&p, '[') == FAIL)
5127 {
5128 if (skip_past_char (&p, '=') == FAIL)
5129 {
5130 /* Bare address - translate to PC-relative offset. */
5131 inst.reloc.pc_rel = 1;
5132 inst.operands[i].reg = REG_PC;
5133 inst.operands[i].isreg = 1;
5134 inst.operands[i].preind = 1;
5135 }
5136 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5137
5138 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5139 return PARSE_OPERAND_FAIL;
5140
5141 *str = p;
5142 return PARSE_OPERAND_SUCCESS;
5143 }
5144
5145 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5146 {
5147 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5148 return PARSE_OPERAND_FAIL;
5149 }
5150 inst.operands[i].reg = reg;
5151 inst.operands[i].isreg = 1;
5152
5153 if (skip_past_comma (&p) == SUCCESS)
5154 {
5155 inst.operands[i].preind = 1;
5156
5157 if (*p == '+') p++;
5158 else if (*p == '-') p++, inst.operands[i].negative = 1;
5159
5160 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5161 {
5162 inst.operands[i].imm = reg;
5163 inst.operands[i].immisreg = 1;
5164
5165 if (skip_past_comma (&p) == SUCCESS)
5166 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5167 return PARSE_OPERAND_FAIL;
5168 }
5169 else if (skip_past_char (&p, ':') == SUCCESS)
5170 {
5171 /* FIXME: '@' should be used here, but it's filtered out by generic
5172 code before we get to see it here. This may be subject to
5173 change. */
5174 parse_operand_result result = parse_neon_alignment (&p, i);
5175
5176 if (result != PARSE_OPERAND_SUCCESS)
5177 return result;
5178 }
5179 else
5180 {
5181 if (inst.operands[i].negative)
5182 {
5183 inst.operands[i].negative = 0;
5184 p--;
5185 }
5186
5187 if (group_relocations
5188 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5189 {
5190 struct group_reloc_table_entry *entry;
5191
5192 /* Skip over the #: or : sequence. */
5193 if (*p == '#')
5194 p += 2;
5195 else
5196 p++;
5197
5198 /* Try to parse a group relocation. Anything else is an
5199 error. */
5200 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5201 {
5202 inst.error = _("unknown group relocation");
5203 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5204 }
5205
5206 /* We now have the group relocation table entry corresponding to
5207 the name in the assembler source. Next, we parse the
5208 expression. */
5209 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5210 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5211
5212 /* Record the relocation type. */
5213 switch (group_type)
5214 {
5215 case GROUP_LDR:
5216 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5217 break;
5218
5219 case GROUP_LDRS:
5220 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5221 break;
5222
5223 case GROUP_LDC:
5224 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5225 break;
5226
5227 default:
5228 gas_assert (0);
5229 }
5230
5231 if (inst.reloc.type == 0)
5232 {
5233 inst.error = _("this group relocation is not allowed on this instruction");
5234 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5235 }
5236 }
5237 else
5238 {
5239 char *q = p;
5240 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5241 return PARSE_OPERAND_FAIL;
5242 /* If the offset is 0, find out if it's a +0 or -0. */
5243 if (inst.reloc.exp.X_op == O_constant
5244 && inst.reloc.exp.X_add_number == 0)
5245 {
5246 skip_whitespace (q);
5247 if (*q == '#')
5248 {
5249 q++;
5250 skip_whitespace (q);
5251 }
5252 if (*q == '-')
5253 inst.operands[i].negative = 1;
5254 }
5255 }
5256 }
5257 }
5258 else if (skip_past_char (&p, ':') == SUCCESS)
5259 {
5260 /* FIXME: '@' should be used here, but it's filtered out by generic code
5261 before we get to see it here. This may be subject to change. */
5262 parse_operand_result result = parse_neon_alignment (&p, i);
5263
5264 if (result != PARSE_OPERAND_SUCCESS)
5265 return result;
5266 }
5267
5268 if (skip_past_char (&p, ']') == FAIL)
5269 {
5270 inst.error = _("']' expected");
5271 return PARSE_OPERAND_FAIL;
5272 }
5273
5274 if (skip_past_char (&p, '!') == SUCCESS)
5275 inst.operands[i].writeback = 1;
5276
5277 else if (skip_past_comma (&p) == SUCCESS)
5278 {
5279 if (skip_past_char (&p, '{') == SUCCESS)
5280 {
5281 /* [Rn], {expr} - unindexed, with option */
5282 if (parse_immediate (&p, &inst.operands[i].imm,
5283 0, 255, TRUE) == FAIL)
5284 return PARSE_OPERAND_FAIL;
5285
5286 if (skip_past_char (&p, '}') == FAIL)
5287 {
5288 inst.error = _("'}' expected at end of 'option' field");
5289 return PARSE_OPERAND_FAIL;
5290 }
5291 if (inst.operands[i].preind)
5292 {
5293 inst.error = _("cannot combine index with option");
5294 return PARSE_OPERAND_FAIL;
5295 }
5296 *str = p;
5297 return PARSE_OPERAND_SUCCESS;
5298 }
5299 else
5300 {
5301 inst.operands[i].postind = 1;
5302 inst.operands[i].writeback = 1;
5303
5304 if (inst.operands[i].preind)
5305 {
5306 inst.error = _("cannot combine pre- and post-indexing");
5307 return PARSE_OPERAND_FAIL;
5308 }
5309
5310 if (*p == '+') p++;
5311 else if (*p == '-') p++, inst.operands[i].negative = 1;
5312
5313 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5314 {
5315 /* We might be using the immediate for alignment already. If we
5316 are, OR the register number into the low-order bits. */
5317 if (inst.operands[i].immisalign)
5318 inst.operands[i].imm |= reg;
5319 else
5320 inst.operands[i].imm = reg;
5321 inst.operands[i].immisreg = 1;
5322
5323 if (skip_past_comma (&p) == SUCCESS)
5324 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5325 return PARSE_OPERAND_FAIL;
5326 }
5327 else
5328 {
5329 char *q = p;
5330 if (inst.operands[i].negative)
5331 {
5332 inst.operands[i].negative = 0;
5333 p--;
5334 }
5335 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5336 return PARSE_OPERAND_FAIL;
5337 /* If the offset is 0, find out if it's a +0 or -0. */
5338 if (inst.reloc.exp.X_op == O_constant
5339 && inst.reloc.exp.X_add_number == 0)
5340 {
5341 skip_whitespace (q);
5342 if (*q == '#')
5343 {
5344 q++;
5345 skip_whitespace (q);
5346 }
5347 if (*q == '-')
5348 inst.operands[i].negative = 1;
5349 }
5350 }
5351 }
5352 }
5353
5354 /* If at this point neither .preind nor .postind is set, we have a
5355 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5356 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5357 {
5358 inst.operands[i].preind = 1;
5359 inst.reloc.exp.X_op = O_constant;
5360 inst.reloc.exp.X_add_number = 0;
5361 }
5362 *str = p;
5363 return PARSE_OPERAND_SUCCESS;
5364 }
5365
5366 static int
5367 parse_address (char **str, int i)
5368 {
5369 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5370 ? SUCCESS : FAIL;
5371 }
5372
5373 static parse_operand_result
5374 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5375 {
5376 return parse_address_main (str, i, 1, type);
5377 }
5378
5379 /* Parse an operand for a MOVW or MOVT instruction. */
5380 static int
5381 parse_half (char **str)
5382 {
5383 char * p;
5384
5385 p = *str;
5386 skip_past_char (&p, '#');
5387 if (strncasecmp (p, ":lower16:", 9) == 0)
5388 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5389 else if (strncasecmp (p, ":upper16:", 9) == 0)
5390 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5391
5392 if (inst.reloc.type != BFD_RELOC_UNUSED)
5393 {
5394 p += 9;
5395 skip_whitespace (p);
5396 }
5397
5398 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5399 return FAIL;
5400
5401 if (inst.reloc.type == BFD_RELOC_UNUSED)
5402 {
5403 if (inst.reloc.exp.X_op != O_constant)
5404 {
5405 inst.error = _("constant expression expected");
5406 return FAIL;
5407 }
5408 if (inst.reloc.exp.X_add_number < 0
5409 || inst.reloc.exp.X_add_number > 0xffff)
5410 {
5411 inst.error = _("immediate value out of range");
5412 return FAIL;
5413 }
5414 }
5415 *str = p;
5416 return SUCCESS;
5417 }
5418
5419 /* Miscellaneous. */
5420
5421 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5422 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5423 static int
5424 parse_psr (char **str, bfd_boolean lhs)
5425 {
5426 char *p;
5427 unsigned long psr_field;
5428 const struct asm_psr *psr;
5429 char *start;
5430 bfd_boolean is_apsr = FALSE;
5431 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5432
5433 /* PR gas/12698: If the user has specified -march=all then m_profile will
5434 be TRUE, but we want to ignore it in this case as we are building for any
5435 CPU type, including non-m variants. */
5436 if (selected_cpu.core == arm_arch_any.core)
5437 m_profile = FALSE;
5438
5439 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5440 feature for ease of use and backwards compatibility. */
5441 p = *str;
5442 if (strncasecmp (p, "SPSR", 4) == 0)
5443 {
5444 if (m_profile)
5445 goto unsupported_psr;
5446
5447 psr_field = SPSR_BIT;
5448 }
5449 else if (strncasecmp (p, "CPSR", 4) == 0)
5450 {
5451 if (m_profile)
5452 goto unsupported_psr;
5453
5454 psr_field = 0;
5455 }
5456 else if (strncasecmp (p, "APSR", 4) == 0)
5457 {
5458 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5459 and ARMv7-R architecture CPUs. */
5460 is_apsr = TRUE;
5461 psr_field = 0;
5462 }
5463 else if (m_profile)
5464 {
5465 start = p;
5466 do
5467 p++;
5468 while (ISALNUM (*p) || *p == '_');
5469
5470 if (strncasecmp (start, "iapsr", 5) == 0
5471 || strncasecmp (start, "eapsr", 5) == 0
5472 || strncasecmp (start, "xpsr", 4) == 0
5473 || strncasecmp (start, "psr", 3) == 0)
5474 p = start + strcspn (start, "rR") + 1;
5475
5476 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5477 p - start);
5478
5479 if (!psr)
5480 return FAIL;
5481
5482 /* If APSR is being written, a bitfield may be specified. Note that
5483 APSR itself is handled above. */
5484 if (psr->field <= 3)
5485 {
5486 psr_field = psr->field;
5487 is_apsr = TRUE;
5488 goto check_suffix;
5489 }
5490
5491 *str = p;
5492 /* M-profile MSR instructions have the mask field set to "10", except
5493 *PSR variants which modify APSR, which may use a different mask (and
5494 have been handled already). Do that by setting the PSR_f field
5495 here. */
5496 return psr->field | (lhs ? PSR_f : 0);
5497 }
5498 else
5499 goto unsupported_psr;
5500
5501 p += 4;
5502 check_suffix:
5503 if (*p == '_')
5504 {
5505 /* A suffix follows. */
5506 p++;
5507 start = p;
5508
5509 do
5510 p++;
5511 while (ISALNUM (*p) || *p == '_');
5512
5513 if (is_apsr)
5514 {
5515 /* APSR uses a notation for bits, rather than fields. */
5516 unsigned int nzcvq_bits = 0;
5517 unsigned int g_bit = 0;
5518 char *bit;
5519
5520 for (bit = start; bit != p; bit++)
5521 {
5522 switch (TOLOWER (*bit))
5523 {
5524 case 'n':
5525 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5526 break;
5527
5528 case 'z':
5529 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5530 break;
5531
5532 case 'c':
5533 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5534 break;
5535
5536 case 'v':
5537 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5538 break;
5539
5540 case 'q':
5541 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5542 break;
5543
5544 case 'g':
5545 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5546 break;
5547
5548 default:
5549 inst.error = _("unexpected bit specified after APSR");
5550 return FAIL;
5551 }
5552 }
5553
5554 if (nzcvq_bits == 0x1f)
5555 psr_field |= PSR_f;
5556
5557 if (g_bit == 0x1)
5558 {
5559 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5560 {
5561 inst.error = _("selected processor does not "
5562 "support DSP extension");
5563 return FAIL;
5564 }
5565
5566 psr_field |= PSR_s;
5567 }
5568
5569 if ((nzcvq_bits & 0x20) != 0
5570 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5571 || (g_bit & 0x2) != 0)
5572 {
5573 inst.error = _("bad bitmask specified after APSR");
5574 return FAIL;
5575 }
5576 }
5577 else
5578 {
5579 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5580 p - start);
5581 if (!psr)
5582 goto error;
5583
5584 psr_field |= psr->field;
5585 }
5586 }
5587 else
5588 {
5589 if (ISALNUM (*p))
5590 goto error; /* Garbage after "[CS]PSR". */
5591
5592 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5593 is deprecated, but allow it anyway. */
5594 if (is_apsr && lhs)
5595 {
5596 psr_field |= PSR_f;
5597 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5598 "deprecated"));
5599 }
5600 else if (!m_profile)
5601 /* These bits are never right for M-profile devices: don't set them
5602 (only code paths which read/write APSR reach here). */
5603 psr_field |= (PSR_c | PSR_f);
5604 }
5605 *str = p;
5606 return psr_field;
5607
5608 unsupported_psr:
5609 inst.error = _("selected processor does not support requested special "
5610 "purpose register");
5611 return FAIL;
5612
5613 error:
5614 inst.error = _("flag for {c}psr instruction expected");
5615 return FAIL;
5616 }
5617
5618 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5619 value suitable for splatting into the AIF field of the instruction. */
5620
5621 static int
5622 parse_cps_flags (char **str)
5623 {
5624 int val = 0;
5625 int saw_a_flag = 0;
5626 char *s = *str;
5627
5628 for (;;)
5629 switch (*s++)
5630 {
5631 case '\0': case ',':
5632 goto done;
5633
5634 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5635 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5636 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5637
5638 default:
5639 inst.error = _("unrecognized CPS flag");
5640 return FAIL;
5641 }
5642
5643 done:
5644 if (saw_a_flag == 0)
5645 {
5646 inst.error = _("missing CPS flags");
5647 return FAIL;
5648 }
5649
5650 *str = s - 1;
5651 return val;
5652 }
5653
5654 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5655 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5656
5657 static int
5658 parse_endian_specifier (char **str)
5659 {
5660 int little_endian;
5661 char *s = *str;
5662
5663 if (strncasecmp (s, "BE", 2))
5664 little_endian = 0;
5665 else if (strncasecmp (s, "LE", 2))
5666 little_endian = 1;
5667 else
5668 {
5669 inst.error = _("valid endian specifiers are be or le");
5670 return FAIL;
5671 }
5672
5673 if (ISALNUM (s[2]) || s[2] == '_')
5674 {
5675 inst.error = _("valid endian specifiers are be or le");
5676 return FAIL;
5677 }
5678
5679 *str = s + 2;
5680 return little_endian;
5681 }
5682
5683 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5684 value suitable for poking into the rotate field of an sxt or sxta
5685 instruction, or FAIL on error. */
5686
5687 static int
5688 parse_ror (char **str)
5689 {
5690 int rot;
5691 char *s = *str;
5692
5693 if (strncasecmp (s, "ROR", 3) == 0)
5694 s += 3;
5695 else
5696 {
5697 inst.error = _("missing rotation field after comma");
5698 return FAIL;
5699 }
5700
5701 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5702 return FAIL;
5703
5704 switch (rot)
5705 {
5706 case 0: *str = s; return 0x0;
5707 case 8: *str = s; return 0x1;
5708 case 16: *str = s; return 0x2;
5709 case 24: *str = s; return 0x3;
5710
5711 default:
5712 inst.error = _("rotation can only be 0, 8, 16, or 24");
5713 return FAIL;
5714 }
5715 }
5716
5717 /* Parse a conditional code (from conds[] below). The value returned is in the
5718 range 0 .. 14, or FAIL. */
5719 static int
5720 parse_cond (char **str)
5721 {
5722 char *q;
5723 const struct asm_cond *c;
5724 int n;
5725 /* Condition codes are always 2 characters, so matching up to
5726 3 characters is sufficient. */
5727 char cond[3];
5728
5729 q = *str;
5730 n = 0;
5731 while (ISALPHA (*q) && n < 3)
5732 {
5733 cond[n] = TOLOWER (*q);
5734 q++;
5735 n++;
5736 }
5737
5738 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5739 if (!c)
5740 {
5741 inst.error = _("condition required");
5742 return FAIL;
5743 }
5744
5745 *str = q;
5746 return c->value;
5747 }
5748
5749 /* Parse an option for a barrier instruction. Returns the encoding for the
5750 option, or FAIL. */
5751 static int
5752 parse_barrier (char **str)
5753 {
5754 char *p, *q;
5755 const struct asm_barrier_opt *o;
5756
5757 p = q = *str;
5758 while (ISALPHA (*q))
5759 q++;
5760
5761 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5762 q - p);
5763 if (!o)
5764 return FAIL;
5765
5766 *str = q;
5767 return o->value;
5768 }
5769
5770 /* Parse the operands of a table branch instruction. Similar to a memory
5771 operand. */
5772 static int
5773 parse_tb (char **str)
5774 {
5775 char * p = *str;
5776 int reg;
5777
5778 if (skip_past_char (&p, '[') == FAIL)
5779 {
5780 inst.error = _("'[' expected");
5781 return FAIL;
5782 }
5783
5784 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5785 {
5786 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5787 return FAIL;
5788 }
5789 inst.operands[0].reg = reg;
5790
5791 if (skip_past_comma (&p) == FAIL)
5792 {
5793 inst.error = _("',' expected");
5794 return FAIL;
5795 }
5796
5797 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5798 {
5799 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5800 return FAIL;
5801 }
5802 inst.operands[0].imm = reg;
5803
5804 if (skip_past_comma (&p) == SUCCESS)
5805 {
5806 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5807 return FAIL;
5808 if (inst.reloc.exp.X_add_number != 1)
5809 {
5810 inst.error = _("invalid shift");
5811 return FAIL;
5812 }
5813 inst.operands[0].shifted = 1;
5814 }
5815
5816 if (skip_past_char (&p, ']') == FAIL)
5817 {
5818 inst.error = _("']' expected");
5819 return FAIL;
5820 }
5821 *str = p;
5822 return SUCCESS;
5823 }
5824
5825 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5826 information on the types the operands can take and how they are encoded.
5827 Up to four operands may be read; this function handles setting the
5828 ".present" field for each read operand itself.
5829 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5830 else returns FAIL. */
5831
5832 static int
5833 parse_neon_mov (char **str, int *which_operand)
5834 {
5835 int i = *which_operand, val;
5836 enum arm_reg_type rtype;
5837 char *ptr = *str;
5838 struct neon_type_el optype;
5839
5840 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5841 {
5842 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5843 inst.operands[i].reg = val;
5844 inst.operands[i].isscalar = 1;
5845 inst.operands[i].vectype = optype;
5846 inst.operands[i++].present = 1;
5847
5848 if (skip_past_comma (&ptr) == FAIL)
5849 goto wanted_comma;
5850
5851 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5852 goto wanted_arm;
5853
5854 inst.operands[i].reg = val;
5855 inst.operands[i].isreg = 1;
5856 inst.operands[i].present = 1;
5857 }
5858 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5859 != FAIL)
5860 {
5861 /* Cases 0, 1, 2, 3, 5 (D only). */
5862 if (skip_past_comma (&ptr) == FAIL)
5863 goto wanted_comma;
5864
5865 inst.operands[i].reg = val;
5866 inst.operands[i].isreg = 1;
5867 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5868 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5869 inst.operands[i].isvec = 1;
5870 inst.operands[i].vectype = optype;
5871 inst.operands[i++].present = 1;
5872
5873 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5874 {
5875 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5876 Case 13: VMOV <Sd>, <Rm> */
5877 inst.operands[i].reg = val;
5878 inst.operands[i].isreg = 1;
5879 inst.operands[i].present = 1;
5880
5881 if (rtype == REG_TYPE_NQ)
5882 {
5883 first_error (_("can't use Neon quad register here"));
5884 return FAIL;
5885 }
5886 else if (rtype != REG_TYPE_VFS)
5887 {
5888 i++;
5889 if (skip_past_comma (&ptr) == FAIL)
5890 goto wanted_comma;
5891 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5892 goto wanted_arm;
5893 inst.operands[i].reg = val;
5894 inst.operands[i].isreg = 1;
5895 inst.operands[i].present = 1;
5896 }
5897 }
5898 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5899 &optype)) != FAIL)
5900 {
5901 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5902 Case 1: VMOV<c><q> <Dd>, <Dm>
5903 Case 8: VMOV.F32 <Sd>, <Sm>
5904 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5905
5906 inst.operands[i].reg = val;
5907 inst.operands[i].isreg = 1;
5908 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5909 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5910 inst.operands[i].isvec = 1;
5911 inst.operands[i].vectype = optype;
5912 inst.operands[i].present = 1;
5913
5914 if (skip_past_comma (&ptr) == SUCCESS)
5915 {
5916 /* Case 15. */
5917 i++;
5918
5919 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5920 goto wanted_arm;
5921
5922 inst.operands[i].reg = val;
5923 inst.operands[i].isreg = 1;
5924 inst.operands[i++].present = 1;
5925
5926 if (skip_past_comma (&ptr) == FAIL)
5927 goto wanted_comma;
5928
5929 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5930 goto wanted_arm;
5931
5932 inst.operands[i].reg = val;
5933 inst.operands[i].isreg = 1;
5934 inst.operands[i++].present = 1;
5935 }
5936 }
5937 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5938 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5939 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5940 Case 10: VMOV.F32 <Sd>, #<imm>
5941 Case 11: VMOV.F64 <Dd>, #<imm> */
5942 inst.operands[i].immisfloat = 1;
5943 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5944 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5945 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5946 ;
5947 else
5948 {
5949 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5950 return FAIL;
5951 }
5952 }
5953 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5954 {
5955 /* Cases 6, 7. */
5956 inst.operands[i].reg = val;
5957 inst.operands[i].isreg = 1;
5958 inst.operands[i++].present = 1;
5959
5960 if (skip_past_comma (&ptr) == FAIL)
5961 goto wanted_comma;
5962
5963 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5964 {
5965 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5966 inst.operands[i].reg = val;
5967 inst.operands[i].isscalar = 1;
5968 inst.operands[i].present = 1;
5969 inst.operands[i].vectype = optype;
5970 }
5971 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5972 {
5973 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5974 inst.operands[i].reg = val;
5975 inst.operands[i].isreg = 1;
5976 inst.operands[i++].present = 1;
5977
5978 if (skip_past_comma (&ptr) == FAIL)
5979 goto wanted_comma;
5980
5981 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5982 == FAIL)
5983 {
5984 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5985 return FAIL;
5986 }
5987
5988 inst.operands[i].reg = val;
5989 inst.operands[i].isreg = 1;
5990 inst.operands[i].isvec = 1;
5991 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5992 inst.operands[i].vectype = optype;
5993 inst.operands[i].present = 1;
5994
5995 if (rtype == REG_TYPE_VFS)
5996 {
5997 /* Case 14. */
5998 i++;
5999 if (skip_past_comma (&ptr) == FAIL)
6000 goto wanted_comma;
6001 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6002 &optype)) == FAIL)
6003 {
6004 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6005 return FAIL;
6006 }
6007 inst.operands[i].reg = val;
6008 inst.operands[i].isreg = 1;
6009 inst.operands[i].isvec = 1;
6010 inst.operands[i].issingle = 1;
6011 inst.operands[i].vectype = optype;
6012 inst.operands[i].present = 1;
6013 }
6014 }
6015 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6016 != FAIL)
6017 {
6018 /* Case 13. */
6019 inst.operands[i].reg = val;
6020 inst.operands[i].isreg = 1;
6021 inst.operands[i].isvec = 1;
6022 inst.operands[i].issingle = 1;
6023 inst.operands[i].vectype = optype;
6024 inst.operands[i++].present = 1;
6025 }
6026 }
6027 else
6028 {
6029 first_error (_("parse error"));
6030 return FAIL;
6031 }
6032
6033 /* Successfully parsed the operands. Update args. */
6034 *which_operand = i;
6035 *str = ptr;
6036 return SUCCESS;
6037
6038 wanted_comma:
6039 first_error (_("expected comma"));
6040 return FAIL;
6041
6042 wanted_arm:
6043 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6044 return FAIL;
6045 }
6046
6047 /* Use this macro when the operand constraints are different
6048 for ARM and THUMB (e.g. ldrd). */
6049 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6050 ((arm_operand) | ((thumb_operand) << 16))
6051
6052 /* Matcher codes for parse_operands. */
6053 enum operand_parse_code
6054 {
6055 OP_stop, /* end of line */
6056
6057 OP_RR, /* ARM register */
6058 OP_RRnpc, /* ARM register, not r15 */
6059 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6060 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6061 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6062 optional trailing ! */
6063 OP_RRw, /* ARM register, not r15, optional trailing ! */
6064 OP_RCP, /* Coprocessor number */
6065 OP_RCN, /* Coprocessor register */
6066 OP_RF, /* FPA register */
6067 OP_RVS, /* VFP single precision register */
6068 OP_RVD, /* VFP double precision register (0..15) */
6069 OP_RND, /* Neon double precision register (0..31) */
6070 OP_RNQ, /* Neon quad precision register */
6071 OP_RVSD, /* VFP single or double precision register */
6072 OP_RNDQ, /* Neon double or quad precision register */
6073 OP_RNSDQ, /* Neon single, double or quad precision register */
6074 OP_RNSC, /* Neon scalar D[X] */
6075 OP_RVC, /* VFP control register */
6076 OP_RMF, /* Maverick F register */
6077 OP_RMD, /* Maverick D register */
6078 OP_RMFX, /* Maverick FX register */
6079 OP_RMDX, /* Maverick DX register */
6080 OP_RMAX, /* Maverick AX register */
6081 OP_RMDS, /* Maverick DSPSC register */
6082 OP_RIWR, /* iWMMXt wR register */
6083 OP_RIWC, /* iWMMXt wC register */
6084 OP_RIWG, /* iWMMXt wCG register */
6085 OP_RXA, /* XScale accumulator register */
6086
6087 OP_REGLST, /* ARM register list */
6088 OP_VRSLST, /* VFP single-precision register list */
6089 OP_VRDLST, /* VFP double-precision register list */
6090 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6091 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6092 OP_NSTRLST, /* Neon element/structure list */
6093
6094 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6095 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6096 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6097 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6098 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6099 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6100 OP_VMOV, /* Neon VMOV operands. */
6101 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6102 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6103 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6104
6105 OP_I0, /* immediate zero */
6106 OP_I7, /* immediate value 0 .. 7 */
6107 OP_I15, /* 0 .. 15 */
6108 OP_I16, /* 1 .. 16 */
6109 OP_I16z, /* 0 .. 16 */
6110 OP_I31, /* 0 .. 31 */
6111 OP_I31w, /* 0 .. 31, optional trailing ! */
6112 OP_I32, /* 1 .. 32 */
6113 OP_I32z, /* 0 .. 32 */
6114 OP_I63, /* 0 .. 63 */
6115 OP_I63s, /* -64 .. 63 */
6116 OP_I64, /* 1 .. 64 */
6117 OP_I64z, /* 0 .. 64 */
6118 OP_I255, /* 0 .. 255 */
6119
6120 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6121 OP_I7b, /* 0 .. 7 */
6122 OP_I15b, /* 0 .. 15 */
6123 OP_I31b, /* 0 .. 31 */
6124
6125 OP_SH, /* shifter operand */
6126 OP_SHG, /* shifter operand with possible group relocation */
6127 OP_ADDR, /* Memory address expression (any mode) */
6128 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6129 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6130 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6131 OP_EXP, /* arbitrary expression */
6132 OP_EXPi, /* same, with optional immediate prefix */
6133 OP_EXPr, /* same, with optional relocation suffix */
6134 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6135
6136 OP_CPSF, /* CPS flags */
6137 OP_ENDI, /* Endianness specifier */
6138 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6139 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6140 OP_COND, /* conditional code */
6141 OP_TB, /* Table branch. */
6142
6143 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6144
6145 OP_RRnpc_I0, /* ARM register or literal 0 */
6146 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6147 OP_RR_EXi, /* ARM register or expression with imm prefix */
6148 OP_RF_IF, /* FPA register or immediate */
6149 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6150 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6151
6152 /* Optional operands. */
6153 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6154 OP_oI31b, /* 0 .. 31 */
6155 OP_oI32b, /* 1 .. 32 */
6156 OP_oI32z, /* 0 .. 32 */
6157 OP_oIffffb, /* 0 .. 65535 */
6158 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6159
6160 OP_oRR, /* ARM register */
6161 OP_oRRnpc, /* ARM register, not the PC */
6162 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6163 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6164 OP_oRND, /* Optional Neon double precision register */
6165 OP_oRNQ, /* Optional Neon quad precision register */
6166 OP_oRNDQ, /* Optional Neon double or quad precision register */
6167 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6168 OP_oSHll, /* LSL immediate */
6169 OP_oSHar, /* ASR immediate */
6170 OP_oSHllar, /* LSL or ASR immediate */
6171 OP_oROR, /* ROR 0/8/16/24 */
6172 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6173
6174 /* Some pre-defined mixed (ARM/THUMB) operands. */
6175 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6176 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6177 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6178
6179 OP_FIRST_OPTIONAL = OP_oI7b
6180 };
6181
6182 /* Generic instruction operand parser. This does no encoding and no
6183 semantic validation; it merely squirrels values away in the inst
6184 structure. Returns SUCCESS or FAIL depending on whether the
6185 specified grammar matched. */
6186 static int
6187 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6188 {
6189 unsigned const int *upat = pattern;
6190 char *backtrack_pos = 0;
6191 const char *backtrack_error = 0;
6192 int i, val, backtrack_index = 0;
6193 enum arm_reg_type rtype;
6194 parse_operand_result result;
6195 unsigned int op_parse_code;
6196
6197 #define po_char_or_fail(chr) \
6198 do \
6199 { \
6200 if (skip_past_char (&str, chr) == FAIL) \
6201 goto bad_args; \
6202 } \
6203 while (0)
6204
6205 #define po_reg_or_fail(regtype) \
6206 do \
6207 { \
6208 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6209 & inst.operands[i].vectype); \
6210 if (val == FAIL) \
6211 { \
6212 first_error (_(reg_expected_msgs[regtype])); \
6213 goto failure; \
6214 } \
6215 inst.operands[i].reg = val; \
6216 inst.operands[i].isreg = 1; \
6217 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6218 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6219 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6220 || rtype == REG_TYPE_VFD \
6221 || rtype == REG_TYPE_NQ); \
6222 } \
6223 while (0)
6224
6225 #define po_reg_or_goto(regtype, label) \
6226 do \
6227 { \
6228 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6229 & inst.operands[i].vectype); \
6230 if (val == FAIL) \
6231 goto label; \
6232 \
6233 inst.operands[i].reg = val; \
6234 inst.operands[i].isreg = 1; \
6235 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6236 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6237 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6238 || rtype == REG_TYPE_VFD \
6239 || rtype == REG_TYPE_NQ); \
6240 } \
6241 while (0)
6242
6243 #define po_imm_or_fail(min, max, popt) \
6244 do \
6245 { \
6246 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6247 goto failure; \
6248 inst.operands[i].imm = val; \
6249 } \
6250 while (0)
6251
6252 #define po_scalar_or_goto(elsz, label) \
6253 do \
6254 { \
6255 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6256 if (val == FAIL) \
6257 goto label; \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isscalar = 1; \
6260 } \
6261 while (0)
6262
6263 #define po_misc_or_fail(expr) \
6264 do \
6265 { \
6266 if (expr) \
6267 goto failure; \
6268 } \
6269 while (0)
6270
6271 #define po_misc_or_fail_no_backtrack(expr) \
6272 do \
6273 { \
6274 result = expr; \
6275 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6276 backtrack_pos = 0; \
6277 if (result != PARSE_OPERAND_SUCCESS) \
6278 goto failure; \
6279 } \
6280 while (0)
6281
6282 #define po_barrier_or_imm(str) \
6283 do \
6284 { \
6285 val = parse_barrier (&str); \
6286 if (val == FAIL) \
6287 { \
6288 if (ISALPHA (*str)) \
6289 goto failure; \
6290 else \
6291 goto immediate; \
6292 } \
6293 else \
6294 { \
6295 if ((inst.instruction & 0xf0) == 0x60 \
6296 && val != 0xf) \
6297 { \
6298 /* ISB can only take SY as an option. */ \
6299 inst.error = _("invalid barrier type"); \
6300 goto failure; \
6301 } \
6302 } \
6303 } \
6304 while (0)
6305
6306 skip_whitespace (str);
6307
6308 for (i = 0; upat[i] != OP_stop; i++)
6309 {
6310 op_parse_code = upat[i];
6311 if (op_parse_code >= 1<<16)
6312 op_parse_code = thumb ? (op_parse_code >> 16)
6313 : (op_parse_code & ((1<<16)-1));
6314
6315 if (op_parse_code >= OP_FIRST_OPTIONAL)
6316 {
6317 /* Remember where we are in case we need to backtrack. */
6318 gas_assert (!backtrack_pos);
6319 backtrack_pos = str;
6320 backtrack_error = inst.error;
6321 backtrack_index = i;
6322 }
6323
6324 if (i > 0 && (i > 1 || inst.operands[0].present))
6325 po_char_or_fail (',');
6326
6327 switch (op_parse_code)
6328 {
6329 /* Registers */
6330 case OP_oRRnpc:
6331 case OP_oRRnpcsp:
6332 case OP_RRnpc:
6333 case OP_RRnpcsp:
6334 case OP_oRR:
6335 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6336 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6337 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6338 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6339 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6340 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6341 case OP_oRND:
6342 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6343 case OP_RVC:
6344 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6345 break;
6346 /* Also accept generic coprocessor regs for unknown registers. */
6347 coproc_reg:
6348 po_reg_or_fail (REG_TYPE_CN);
6349 break;
6350 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6351 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6352 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6353 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6354 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6355 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6356 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6357 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6358 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6359 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6360 case OP_oRNQ:
6361 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6362 case OP_oRNDQ:
6363 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6364 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6365 case OP_oRNSDQ:
6366 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6367
6368 /* Neon scalar. Using an element size of 8 means that some invalid
6369 scalars are accepted here, so deal with those in later code. */
6370 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6371
6372 case OP_RNDQ_I0:
6373 {
6374 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6375 break;
6376 try_imm0:
6377 po_imm_or_fail (0, 0, TRUE);
6378 }
6379 break;
6380
6381 case OP_RVSD_I0:
6382 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6383 break;
6384
6385 case OP_RR_RNSC:
6386 {
6387 po_scalar_or_goto (8, try_rr);
6388 break;
6389 try_rr:
6390 po_reg_or_fail (REG_TYPE_RN);
6391 }
6392 break;
6393
6394 case OP_RNSDQ_RNSC:
6395 {
6396 po_scalar_or_goto (8, try_nsdq);
6397 break;
6398 try_nsdq:
6399 po_reg_or_fail (REG_TYPE_NSDQ);
6400 }
6401 break;
6402
6403 case OP_RNDQ_RNSC:
6404 {
6405 po_scalar_or_goto (8, try_ndq);
6406 break;
6407 try_ndq:
6408 po_reg_or_fail (REG_TYPE_NDQ);
6409 }
6410 break;
6411
6412 case OP_RND_RNSC:
6413 {
6414 po_scalar_or_goto (8, try_vfd);
6415 break;
6416 try_vfd:
6417 po_reg_or_fail (REG_TYPE_VFD);
6418 }
6419 break;
6420
6421 case OP_VMOV:
6422 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6423 not careful then bad things might happen. */
6424 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6425 break;
6426
6427 case OP_RNDQ_Ibig:
6428 {
6429 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6430 break;
6431 try_immbig:
6432 /* There's a possibility of getting a 64-bit immediate here, so
6433 we need special handling. */
6434 if (parse_big_immediate (&str, i) == FAIL)
6435 {
6436 inst.error = _("immediate value is out of range");
6437 goto failure;
6438 }
6439 }
6440 break;
6441
6442 case OP_RNDQ_I63b:
6443 {
6444 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6445 break;
6446 try_shimm:
6447 po_imm_or_fail (0, 63, TRUE);
6448 }
6449 break;
6450
6451 case OP_RRnpcb:
6452 po_char_or_fail ('[');
6453 po_reg_or_fail (REG_TYPE_RN);
6454 po_char_or_fail (']');
6455 break;
6456
6457 case OP_RRnpctw:
6458 case OP_RRw:
6459 case OP_oRRw:
6460 po_reg_or_fail (REG_TYPE_RN);
6461 if (skip_past_char (&str, '!') == SUCCESS)
6462 inst.operands[i].writeback = 1;
6463 break;
6464
6465 /* Immediates */
6466 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6467 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6468 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6469 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6470 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6471 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6472 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6473 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6474 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6475 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6476 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6477 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6478
6479 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6480 case OP_oI7b:
6481 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6482 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6483 case OP_oI31b:
6484 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6485 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6486 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6487 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6488
6489 /* Immediate variants */
6490 case OP_oI255c:
6491 po_char_or_fail ('{');
6492 po_imm_or_fail (0, 255, TRUE);
6493 po_char_or_fail ('}');
6494 break;
6495
6496 case OP_I31w:
6497 /* The expression parser chokes on a trailing !, so we have
6498 to find it first and zap it. */
6499 {
6500 char *s = str;
6501 while (*s && *s != ',')
6502 s++;
6503 if (s[-1] == '!')
6504 {
6505 s[-1] = '\0';
6506 inst.operands[i].writeback = 1;
6507 }
6508 po_imm_or_fail (0, 31, TRUE);
6509 if (str == s - 1)
6510 str = s;
6511 }
6512 break;
6513
6514 /* Expressions */
6515 case OP_EXPi: EXPi:
6516 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6517 GE_OPT_PREFIX));
6518 break;
6519
6520 case OP_EXP:
6521 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6522 GE_NO_PREFIX));
6523 break;
6524
6525 case OP_EXPr: EXPr:
6526 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6527 GE_NO_PREFIX));
6528 if (inst.reloc.exp.X_op == O_symbol)
6529 {
6530 val = parse_reloc (&str);
6531 if (val == -1)
6532 {
6533 inst.error = _("unrecognized relocation suffix");
6534 goto failure;
6535 }
6536 else if (val != BFD_RELOC_UNUSED)
6537 {
6538 inst.operands[i].imm = val;
6539 inst.operands[i].hasreloc = 1;
6540 }
6541 }
6542 break;
6543
6544 /* Operand for MOVW or MOVT. */
6545 case OP_HALF:
6546 po_misc_or_fail (parse_half (&str));
6547 break;
6548
6549 /* Register or expression. */
6550 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6551 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6552
6553 /* Register or immediate. */
6554 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6555 I0: po_imm_or_fail (0, 0, FALSE); break;
6556
6557 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6558 IF:
6559 if (!is_immediate_prefix (*str))
6560 goto bad_args;
6561 str++;
6562 val = parse_fpa_immediate (&str);
6563 if (val == FAIL)
6564 goto failure;
6565 /* FPA immediates are encoded as registers 8-15.
6566 parse_fpa_immediate has already applied the offset. */
6567 inst.operands[i].reg = val;
6568 inst.operands[i].isreg = 1;
6569 break;
6570
6571 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6572 I32z: po_imm_or_fail (0, 32, FALSE); break;
6573
6574 /* Two kinds of register. */
6575 case OP_RIWR_RIWC:
6576 {
6577 struct reg_entry *rege = arm_reg_parse_multi (&str);
6578 if (!rege
6579 || (rege->type != REG_TYPE_MMXWR
6580 && rege->type != REG_TYPE_MMXWC
6581 && rege->type != REG_TYPE_MMXWCG))
6582 {
6583 inst.error = _("iWMMXt data or control register expected");
6584 goto failure;
6585 }
6586 inst.operands[i].reg = rege->number;
6587 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6588 }
6589 break;
6590
6591 case OP_RIWC_RIWG:
6592 {
6593 struct reg_entry *rege = arm_reg_parse_multi (&str);
6594 if (!rege
6595 || (rege->type != REG_TYPE_MMXWC
6596 && rege->type != REG_TYPE_MMXWCG))
6597 {
6598 inst.error = _("iWMMXt control register expected");
6599 goto failure;
6600 }
6601 inst.operands[i].reg = rege->number;
6602 inst.operands[i].isreg = 1;
6603 }
6604 break;
6605
6606 /* Misc */
6607 case OP_CPSF: val = parse_cps_flags (&str); break;
6608 case OP_ENDI: val = parse_endian_specifier (&str); break;
6609 case OP_oROR: val = parse_ror (&str); break;
6610 case OP_COND: val = parse_cond (&str); break;
6611 case OP_oBARRIER_I15:
6612 po_barrier_or_imm (str); break;
6613 immediate:
6614 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6615 goto failure;
6616 break;
6617
6618 case OP_wPSR:
6619 case OP_rPSR:
6620 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6621 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6622 {
6623 inst.error = _("Banked registers are not available with this "
6624 "architecture.");
6625 goto failure;
6626 }
6627 break;
6628 try_psr:
6629 val = parse_psr (&str, op_parse_code == OP_wPSR);
6630 break;
6631
6632 case OP_APSR_RR:
6633 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6634 break;
6635 try_apsr:
6636 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6637 instruction). */
6638 if (strncasecmp (str, "APSR_", 5) == 0)
6639 {
6640 unsigned found = 0;
6641 str += 5;
6642 while (found < 15)
6643 switch (*str++)
6644 {
6645 case 'c': found = (found & 1) ? 16 : found | 1; break;
6646 case 'n': found = (found & 2) ? 16 : found | 2; break;
6647 case 'z': found = (found & 4) ? 16 : found | 4; break;
6648 case 'v': found = (found & 8) ? 16 : found | 8; break;
6649 default: found = 16;
6650 }
6651 if (found != 15)
6652 goto failure;
6653 inst.operands[i].isvec = 1;
6654 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6655 inst.operands[i].reg = REG_PC;
6656 }
6657 else
6658 goto failure;
6659 break;
6660
6661 case OP_TB:
6662 po_misc_or_fail (parse_tb (&str));
6663 break;
6664
6665 /* Register lists. */
6666 case OP_REGLST:
6667 val = parse_reg_list (&str);
6668 if (*str == '^')
6669 {
6670 inst.operands[1].writeback = 1;
6671 str++;
6672 }
6673 break;
6674
6675 case OP_VRSLST:
6676 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6677 break;
6678
6679 case OP_VRDLST:
6680 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6681 break;
6682
6683 case OP_VRSDLST:
6684 /* Allow Q registers too. */
6685 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6686 REGLIST_NEON_D);
6687 if (val == FAIL)
6688 {
6689 inst.error = NULL;
6690 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6691 REGLIST_VFP_S);
6692 inst.operands[i].issingle = 1;
6693 }
6694 break;
6695
6696 case OP_NRDLST:
6697 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6698 REGLIST_NEON_D);
6699 break;
6700
6701 case OP_NSTRLST:
6702 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6703 &inst.operands[i].vectype);
6704 break;
6705
6706 /* Addressing modes */
6707 case OP_ADDR:
6708 po_misc_or_fail (parse_address (&str, i));
6709 break;
6710
6711 case OP_ADDRGLDR:
6712 po_misc_or_fail_no_backtrack (
6713 parse_address_group_reloc (&str, i, GROUP_LDR));
6714 break;
6715
6716 case OP_ADDRGLDRS:
6717 po_misc_or_fail_no_backtrack (
6718 parse_address_group_reloc (&str, i, GROUP_LDRS));
6719 break;
6720
6721 case OP_ADDRGLDC:
6722 po_misc_or_fail_no_backtrack (
6723 parse_address_group_reloc (&str, i, GROUP_LDC));
6724 break;
6725
6726 case OP_SH:
6727 po_misc_or_fail (parse_shifter_operand (&str, i));
6728 break;
6729
6730 case OP_SHG:
6731 po_misc_or_fail_no_backtrack (
6732 parse_shifter_operand_group_reloc (&str, i));
6733 break;
6734
6735 case OP_oSHll:
6736 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6737 break;
6738
6739 case OP_oSHar:
6740 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6741 break;
6742
6743 case OP_oSHllar:
6744 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6745 break;
6746
6747 default:
6748 as_fatal (_("unhandled operand code %d"), op_parse_code);
6749 }
6750
6751 /* Various value-based sanity checks and shared operations. We
6752 do not signal immediate failures for the register constraints;
6753 this allows a syntax error to take precedence. */
6754 switch (op_parse_code)
6755 {
6756 case OP_oRRnpc:
6757 case OP_RRnpc:
6758 case OP_RRnpcb:
6759 case OP_RRw:
6760 case OP_oRRw:
6761 case OP_RRnpc_I0:
6762 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6763 inst.error = BAD_PC;
6764 break;
6765
6766 case OP_oRRnpcsp:
6767 case OP_RRnpcsp:
6768 if (inst.operands[i].isreg)
6769 {
6770 if (inst.operands[i].reg == REG_PC)
6771 inst.error = BAD_PC;
6772 else if (inst.operands[i].reg == REG_SP)
6773 inst.error = BAD_SP;
6774 }
6775 break;
6776
6777 case OP_RRnpctw:
6778 if (inst.operands[i].isreg
6779 && inst.operands[i].reg == REG_PC
6780 && (inst.operands[i].writeback || thumb))
6781 inst.error = BAD_PC;
6782 break;
6783
6784 case OP_CPSF:
6785 case OP_ENDI:
6786 case OP_oROR:
6787 case OP_wPSR:
6788 case OP_rPSR:
6789 case OP_COND:
6790 case OP_oBARRIER_I15:
6791 case OP_REGLST:
6792 case OP_VRSLST:
6793 case OP_VRDLST:
6794 case OP_VRSDLST:
6795 case OP_NRDLST:
6796 case OP_NSTRLST:
6797 if (val == FAIL)
6798 goto failure;
6799 inst.operands[i].imm = val;
6800 break;
6801
6802 default:
6803 break;
6804 }
6805
6806 /* If we get here, this operand was successfully parsed. */
6807 inst.operands[i].present = 1;
6808 continue;
6809
6810 bad_args:
6811 inst.error = BAD_ARGS;
6812
6813 failure:
6814 if (!backtrack_pos)
6815 {
6816 /* The parse routine should already have set inst.error, but set a
6817 default here just in case. */
6818 if (!inst.error)
6819 inst.error = _("syntax error");
6820 return FAIL;
6821 }
6822
6823 /* Do not backtrack over a trailing optional argument that
6824 absorbed some text. We will only fail again, with the
6825 'garbage following instruction' error message, which is
6826 probably less helpful than the current one. */
6827 if (backtrack_index == i && backtrack_pos != str
6828 && upat[i+1] == OP_stop)
6829 {
6830 if (!inst.error)
6831 inst.error = _("syntax error");
6832 return FAIL;
6833 }
6834
6835 /* Try again, skipping the optional argument at backtrack_pos. */
6836 str = backtrack_pos;
6837 inst.error = backtrack_error;
6838 inst.operands[backtrack_index].present = 0;
6839 i = backtrack_index;
6840 backtrack_pos = 0;
6841 }
6842
6843 /* Check that we have parsed all the arguments. */
6844 if (*str != '\0' && !inst.error)
6845 inst.error = _("garbage following instruction");
6846
6847 return inst.error ? FAIL : SUCCESS;
6848 }
6849
6850 #undef po_char_or_fail
6851 #undef po_reg_or_fail
6852 #undef po_reg_or_goto
6853 #undef po_imm_or_fail
6854 #undef po_scalar_or_fail
6855 #undef po_barrier_or_imm
6856
6857 /* Shorthand macro for instruction encoding functions issuing errors. */
6858 #define constraint(expr, err) \
6859 do \
6860 { \
6861 if (expr) \
6862 { \
6863 inst.error = err; \
6864 return; \
6865 } \
6866 } \
6867 while (0)
6868
6869 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6870 instructions are unpredictable if these registers are used. This
6871 is the BadReg predicate in ARM's Thumb-2 documentation. */
6872 #define reject_bad_reg(reg) \
6873 do \
6874 if (reg == REG_SP || reg == REG_PC) \
6875 { \
6876 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6877 return; \
6878 } \
6879 while (0)
6880
6881 /* If REG is R13 (the stack pointer), warn that its use is
6882 deprecated. */
6883 #define warn_deprecated_sp(reg) \
6884 do \
6885 if (warn_on_deprecated && reg == REG_SP) \
6886 as_warn (_("use of r13 is deprecated")); \
6887 while (0)
6888
6889 /* Functions for operand encoding. ARM, then Thumb. */
6890
6891 #define rotate_left(v, n) (v << n | v >> (32 - n))
6892
6893 /* If VAL can be encoded in the immediate field of an ARM instruction,
6894 return the encoded form. Otherwise, return FAIL. */
6895
6896 static unsigned int
6897 encode_arm_immediate (unsigned int val)
6898 {
6899 unsigned int a, i;
6900
6901 for (i = 0; i < 32; i += 2)
6902 if ((a = rotate_left (val, i)) <= 0xff)
6903 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6904
6905 return FAIL;
6906 }
6907
6908 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6909 return the encoded form. Otherwise, return FAIL. */
6910 static unsigned int
6911 encode_thumb32_immediate (unsigned int val)
6912 {
6913 unsigned int a, i;
6914
6915 if (val <= 0xff)
6916 return val;
6917
6918 for (i = 1; i <= 24; i++)
6919 {
6920 a = val >> i;
6921 if ((val & ~(0xff << i)) == 0)
6922 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6923 }
6924
6925 a = val & 0xff;
6926 if (val == ((a << 16) | a))
6927 return 0x100 | a;
6928 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6929 return 0x300 | a;
6930
6931 a = val & 0xff00;
6932 if (val == ((a << 16) | a))
6933 return 0x200 | (a >> 8);
6934
6935 return FAIL;
6936 }
6937 /* Encode a VFP SP or DP register number into inst.instruction. */
6938
6939 static void
6940 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6941 {
6942 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6943 && reg > 15)
6944 {
6945 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6946 {
6947 if (thumb_mode)
6948 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6949 fpu_vfp_ext_d32);
6950 else
6951 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6952 fpu_vfp_ext_d32);
6953 }
6954 else
6955 {
6956 first_error (_("D register out of range for selected VFP version"));
6957 return;
6958 }
6959 }
6960
6961 switch (pos)
6962 {
6963 case VFP_REG_Sd:
6964 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6965 break;
6966
6967 case VFP_REG_Sn:
6968 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6969 break;
6970
6971 case VFP_REG_Sm:
6972 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6973 break;
6974
6975 case VFP_REG_Dd:
6976 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6977 break;
6978
6979 case VFP_REG_Dn:
6980 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6981 break;
6982
6983 case VFP_REG_Dm:
6984 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6985 break;
6986
6987 default:
6988 abort ();
6989 }
6990 }
6991
6992 /* Encode a <shift> in an ARM-format instruction. The immediate,
6993 if any, is handled by md_apply_fix. */
6994 static void
6995 encode_arm_shift (int i)
6996 {
6997 if (inst.operands[i].shift_kind == SHIFT_RRX)
6998 inst.instruction |= SHIFT_ROR << 5;
6999 else
7000 {
7001 inst.instruction |= inst.operands[i].shift_kind << 5;
7002 if (inst.operands[i].immisreg)
7003 {
7004 inst.instruction |= SHIFT_BY_REG;
7005 inst.instruction |= inst.operands[i].imm << 8;
7006 }
7007 else
7008 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7009 }
7010 }
7011
7012 static void
7013 encode_arm_shifter_operand (int i)
7014 {
7015 if (inst.operands[i].isreg)
7016 {
7017 inst.instruction |= inst.operands[i].reg;
7018 encode_arm_shift (i);
7019 }
7020 else
7021 inst.instruction |= INST_IMMEDIATE;
7022 }
7023
7024 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7025 static void
7026 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7027 {
7028 gas_assert (inst.operands[i].isreg);
7029 inst.instruction |= inst.operands[i].reg << 16;
7030
7031 if (inst.operands[i].preind)
7032 {
7033 if (is_t)
7034 {
7035 inst.error = _("instruction does not accept preindexed addressing");
7036 return;
7037 }
7038 inst.instruction |= PRE_INDEX;
7039 if (inst.operands[i].writeback)
7040 inst.instruction |= WRITE_BACK;
7041
7042 }
7043 else if (inst.operands[i].postind)
7044 {
7045 gas_assert (inst.operands[i].writeback);
7046 if (is_t)
7047 inst.instruction |= WRITE_BACK;
7048 }
7049 else /* unindexed - only for coprocessor */
7050 {
7051 inst.error = _("instruction does not accept unindexed addressing");
7052 return;
7053 }
7054
7055 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7056 && (((inst.instruction & 0x000f0000) >> 16)
7057 == ((inst.instruction & 0x0000f000) >> 12)))
7058 as_warn ((inst.instruction & LOAD_BIT)
7059 ? _("destination register same as write-back base")
7060 : _("source register same as write-back base"));
7061 }
7062
7063 /* inst.operands[i] was set up by parse_address. Encode it into an
7064 ARM-format mode 2 load or store instruction. If is_t is true,
7065 reject forms that cannot be used with a T instruction (i.e. not
7066 post-indexed). */
7067 static void
7068 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7069 {
7070 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7071
7072 encode_arm_addr_mode_common (i, is_t);
7073
7074 if (inst.operands[i].immisreg)
7075 {
7076 constraint ((inst.operands[i].imm == REG_PC
7077 || (is_pc && inst.operands[i].writeback)),
7078 BAD_PC_ADDRESSING);
7079 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7080 inst.instruction |= inst.operands[i].imm;
7081 if (!inst.operands[i].negative)
7082 inst.instruction |= INDEX_UP;
7083 if (inst.operands[i].shifted)
7084 {
7085 if (inst.operands[i].shift_kind == SHIFT_RRX)
7086 inst.instruction |= SHIFT_ROR << 5;
7087 else
7088 {
7089 inst.instruction |= inst.operands[i].shift_kind << 5;
7090 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7091 }
7092 }
7093 }
7094 else /* immediate offset in inst.reloc */
7095 {
7096 if (is_pc && !inst.reloc.pc_rel)
7097 {
7098 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7099
7100 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7101 cannot use PC in addressing.
7102 PC cannot be used in writeback addressing, either. */
7103 constraint ((is_t || inst.operands[i].writeback),
7104 BAD_PC_ADDRESSING);
7105
7106 /* Use of PC in str is deprecated for ARMv7. */
7107 if (warn_on_deprecated
7108 && !is_load
7109 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7110 as_warn (_("use of PC in this instruction is deprecated"));
7111 }
7112
7113 if (inst.reloc.type == BFD_RELOC_UNUSED)
7114 {
7115 /* Prefer + for zero encoded value. */
7116 if (!inst.operands[i].negative)
7117 inst.instruction |= INDEX_UP;
7118 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7119 }
7120 }
7121 }
7122
7123 /* inst.operands[i] was set up by parse_address. Encode it into an
7124 ARM-format mode 3 load or store instruction. Reject forms that
7125 cannot be used with such instructions. If is_t is true, reject
7126 forms that cannot be used with a T instruction (i.e. not
7127 post-indexed). */
7128 static void
7129 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7130 {
7131 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7132 {
7133 inst.error = _("instruction does not accept scaled register index");
7134 return;
7135 }
7136
7137 encode_arm_addr_mode_common (i, is_t);
7138
7139 if (inst.operands[i].immisreg)
7140 {
7141 constraint ((inst.operands[i].imm == REG_PC
7142 || inst.operands[i].reg == REG_PC),
7143 BAD_PC_ADDRESSING);
7144 inst.instruction |= inst.operands[i].imm;
7145 if (!inst.operands[i].negative)
7146 inst.instruction |= INDEX_UP;
7147 }
7148 else /* immediate offset in inst.reloc */
7149 {
7150 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7151 && inst.operands[i].writeback),
7152 BAD_PC_WRITEBACK);
7153 inst.instruction |= HWOFFSET_IMM;
7154 if (inst.reloc.type == BFD_RELOC_UNUSED)
7155 {
7156 /* Prefer + for zero encoded value. */
7157 if (!inst.operands[i].negative)
7158 inst.instruction |= INDEX_UP;
7159
7160 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7161 }
7162 }
7163 }
7164
7165 /* inst.operands[i] was set up by parse_address. Encode it into an
7166 ARM-format instruction. Reject all forms which cannot be encoded
7167 into a coprocessor load/store instruction. If wb_ok is false,
7168 reject use of writeback; if unind_ok is false, reject use of
7169 unindexed addressing. If reloc_override is not 0, use it instead
7170 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7171 (in which case it is preserved). */
7172
7173 static int
7174 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7175 {
7176 inst.instruction |= inst.operands[i].reg << 16;
7177
7178 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7179
7180 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7181 {
7182 gas_assert (!inst.operands[i].writeback);
7183 if (!unind_ok)
7184 {
7185 inst.error = _("instruction does not support unindexed addressing");
7186 return FAIL;
7187 }
7188 inst.instruction |= inst.operands[i].imm;
7189 inst.instruction |= INDEX_UP;
7190 return SUCCESS;
7191 }
7192
7193 if (inst.operands[i].preind)
7194 inst.instruction |= PRE_INDEX;
7195
7196 if (inst.operands[i].writeback)
7197 {
7198 if (inst.operands[i].reg == REG_PC)
7199 {
7200 inst.error = _("pc may not be used with write-back");
7201 return FAIL;
7202 }
7203 if (!wb_ok)
7204 {
7205 inst.error = _("instruction does not support writeback");
7206 return FAIL;
7207 }
7208 inst.instruction |= WRITE_BACK;
7209 }
7210
7211 if (reloc_override)
7212 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7213 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7214 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7215 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7216 {
7217 if (thumb_mode)
7218 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7219 else
7220 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7221 }
7222
7223 /* Prefer + for zero encoded value. */
7224 if (!inst.operands[i].negative)
7225 inst.instruction |= INDEX_UP;
7226
7227 return SUCCESS;
7228 }
7229
7230 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7231 Determine whether it can be performed with a move instruction; if
7232 it can, convert inst.instruction to that move instruction and
7233 return TRUE; if it can't, convert inst.instruction to a literal-pool
7234 load and return FALSE. If this is not a valid thing to do in the
7235 current context, set inst.error and return TRUE.
7236
7237 inst.operands[i] describes the destination register. */
7238
7239 static bfd_boolean
7240 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7241 {
7242 unsigned long tbit;
7243
7244 if (thumb_p)
7245 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7246 else
7247 tbit = LOAD_BIT;
7248
7249 if ((inst.instruction & tbit) == 0)
7250 {
7251 inst.error = _("invalid pseudo operation");
7252 return TRUE;
7253 }
7254 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7255 {
7256 inst.error = _("constant expression expected");
7257 return TRUE;
7258 }
7259 if (inst.reloc.exp.X_op == O_constant)
7260 {
7261 if (thumb_p)
7262 {
7263 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7264 {
7265 /* This can be done with a mov(1) instruction. */
7266 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7267 inst.instruction |= inst.reloc.exp.X_add_number;
7268 return TRUE;
7269 }
7270 }
7271 else
7272 {
7273 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7274 if (value != FAIL)
7275 {
7276 /* This can be done with a mov instruction. */
7277 inst.instruction &= LITERAL_MASK;
7278 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7279 inst.instruction |= value & 0xfff;
7280 return TRUE;
7281 }
7282
7283 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7284 if (value != FAIL)
7285 {
7286 /* This can be done with a mvn instruction. */
7287 inst.instruction &= LITERAL_MASK;
7288 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7289 inst.instruction |= value & 0xfff;
7290 return TRUE;
7291 }
7292 }
7293 }
7294
7295 if (add_to_lit_pool () == FAIL)
7296 {
7297 inst.error = _("literal pool insertion failed");
7298 return TRUE;
7299 }
7300 inst.operands[1].reg = REG_PC;
7301 inst.operands[1].isreg = 1;
7302 inst.operands[1].preind = 1;
7303 inst.reloc.pc_rel = 1;
7304 inst.reloc.type = (thumb_p
7305 ? BFD_RELOC_ARM_THUMB_OFFSET
7306 : (mode_3
7307 ? BFD_RELOC_ARM_HWLITERAL
7308 : BFD_RELOC_ARM_LITERAL));
7309 return FALSE;
7310 }
7311
7312 /* Functions for instruction encoding, sorted by sub-architecture.
7313 First some generics; their names are taken from the conventional
7314 bit positions for register arguments in ARM format instructions. */
7315
7316 static void
7317 do_noargs (void)
7318 {
7319 }
7320
7321 static void
7322 do_rd (void)
7323 {
7324 inst.instruction |= inst.operands[0].reg << 12;
7325 }
7326
7327 static void
7328 do_rd_rm (void)
7329 {
7330 inst.instruction |= inst.operands[0].reg << 12;
7331 inst.instruction |= inst.operands[1].reg;
7332 }
7333
7334 static void
7335 do_rd_rn (void)
7336 {
7337 inst.instruction |= inst.operands[0].reg << 12;
7338 inst.instruction |= inst.operands[1].reg << 16;
7339 }
7340
7341 static void
7342 do_rn_rd (void)
7343 {
7344 inst.instruction |= inst.operands[0].reg << 16;
7345 inst.instruction |= inst.operands[1].reg << 12;
7346 }
7347
7348 static void
7349 do_rd_rm_rn (void)
7350 {
7351 unsigned Rn = inst.operands[2].reg;
7352 /* Enforce restrictions on SWP instruction. */
7353 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7354 {
7355 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7356 _("Rn must not overlap other operands"));
7357
7358 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7359 if (warn_on_deprecated
7360 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7361 as_warn (_("swp{b} use is deprecated for this architecture"));
7362
7363 }
7364 inst.instruction |= inst.operands[0].reg << 12;
7365 inst.instruction |= inst.operands[1].reg;
7366 inst.instruction |= Rn << 16;
7367 }
7368
7369 static void
7370 do_rd_rn_rm (void)
7371 {
7372 inst.instruction |= inst.operands[0].reg << 12;
7373 inst.instruction |= inst.operands[1].reg << 16;
7374 inst.instruction |= inst.operands[2].reg;
7375 }
7376
7377 static void
7378 do_rm_rd_rn (void)
7379 {
7380 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7381 constraint (((inst.reloc.exp.X_op != O_constant
7382 && inst.reloc.exp.X_op != O_illegal)
7383 || inst.reloc.exp.X_add_number != 0),
7384 BAD_ADDR_MODE);
7385 inst.instruction |= inst.operands[0].reg;
7386 inst.instruction |= inst.operands[1].reg << 12;
7387 inst.instruction |= inst.operands[2].reg << 16;
7388 }
7389
7390 static void
7391 do_imm0 (void)
7392 {
7393 inst.instruction |= inst.operands[0].imm;
7394 }
7395
7396 static void
7397 do_rd_cpaddr (void)
7398 {
7399 inst.instruction |= inst.operands[0].reg << 12;
7400 encode_arm_cp_address (1, TRUE, TRUE, 0);
7401 }
7402
7403 /* ARM instructions, in alphabetical order by function name (except
7404 that wrapper functions appear immediately after the function they
7405 wrap). */
7406
7407 /* This is a pseudo-op of the form "adr rd, label" to be converted
7408 into a relative address of the form "add rd, pc, #label-.-8". */
7409
7410 static void
7411 do_adr (void)
7412 {
7413 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7414
7415 /* Frag hacking will turn this into a sub instruction if the offset turns
7416 out to be negative. */
7417 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7418 inst.reloc.pc_rel = 1;
7419 inst.reloc.exp.X_add_number -= 8;
7420 }
7421
7422 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7423 into a relative address of the form:
7424 add rd, pc, #low(label-.-8)"
7425 add rd, rd, #high(label-.-8)" */
7426
7427 static void
7428 do_adrl (void)
7429 {
7430 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7431
7432 /* Frag hacking will turn this into a sub instruction if the offset turns
7433 out to be negative. */
7434 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7435 inst.reloc.pc_rel = 1;
7436 inst.size = INSN_SIZE * 2;
7437 inst.reloc.exp.X_add_number -= 8;
7438 }
7439
7440 static void
7441 do_arit (void)
7442 {
7443 if (!inst.operands[1].present)
7444 inst.operands[1].reg = inst.operands[0].reg;
7445 inst.instruction |= inst.operands[0].reg << 12;
7446 inst.instruction |= inst.operands[1].reg << 16;
7447 encode_arm_shifter_operand (2);
7448 }
7449
7450 static void
7451 do_barrier (void)
7452 {
7453 if (inst.operands[0].present)
7454 {
7455 constraint ((inst.instruction & 0xf0) != 0x40
7456 && inst.operands[0].imm > 0xf
7457 && inst.operands[0].imm < 0x0,
7458 _("bad barrier type"));
7459 inst.instruction |= inst.operands[0].imm;
7460 }
7461 else
7462 inst.instruction |= 0xf;
7463 }
7464
7465 static void
7466 do_bfc (void)
7467 {
7468 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7469 constraint (msb > 32, _("bit-field extends past end of register"));
7470 /* The instruction encoding stores the LSB and MSB,
7471 not the LSB and width. */
7472 inst.instruction |= inst.operands[0].reg << 12;
7473 inst.instruction |= inst.operands[1].imm << 7;
7474 inst.instruction |= (msb - 1) << 16;
7475 }
7476
7477 static void
7478 do_bfi (void)
7479 {
7480 unsigned int msb;
7481
7482 /* #0 in second position is alternative syntax for bfc, which is
7483 the same instruction but with REG_PC in the Rm field. */
7484 if (!inst.operands[1].isreg)
7485 inst.operands[1].reg = REG_PC;
7486
7487 msb = inst.operands[2].imm + inst.operands[3].imm;
7488 constraint (msb > 32, _("bit-field extends past end of register"));
7489 /* The instruction encoding stores the LSB and MSB,
7490 not the LSB and width. */
7491 inst.instruction |= inst.operands[0].reg << 12;
7492 inst.instruction |= inst.operands[1].reg;
7493 inst.instruction |= inst.operands[2].imm << 7;
7494 inst.instruction |= (msb - 1) << 16;
7495 }
7496
7497 static void
7498 do_bfx (void)
7499 {
7500 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7501 _("bit-field extends past end of register"));
7502 inst.instruction |= inst.operands[0].reg << 12;
7503 inst.instruction |= inst.operands[1].reg;
7504 inst.instruction |= inst.operands[2].imm << 7;
7505 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7506 }
7507
7508 /* ARM V5 breakpoint instruction (argument parse)
7509 BKPT <16 bit unsigned immediate>
7510 Instruction is not conditional.
7511 The bit pattern given in insns[] has the COND_ALWAYS condition,
7512 and it is an error if the caller tried to override that. */
7513
7514 static void
7515 do_bkpt (void)
7516 {
7517 /* Top 12 of 16 bits to bits 19:8. */
7518 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7519
7520 /* Bottom 4 of 16 bits to bits 3:0. */
7521 inst.instruction |= inst.operands[0].imm & 0xf;
7522 }
7523
7524 static void
7525 encode_branch (int default_reloc)
7526 {
7527 if (inst.operands[0].hasreloc)
7528 {
7529 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7530 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7531 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7532 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7533 ? BFD_RELOC_ARM_PLT32
7534 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7535 }
7536 else
7537 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7538 inst.reloc.pc_rel = 1;
7539 }
7540
7541 static void
7542 do_branch (void)
7543 {
7544 #ifdef OBJ_ELF
7545 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7546 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7547 else
7548 #endif
7549 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7550 }
7551
7552 static void
7553 do_bl (void)
7554 {
7555 #ifdef OBJ_ELF
7556 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7557 {
7558 if (inst.cond == COND_ALWAYS)
7559 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7560 else
7561 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7562 }
7563 else
7564 #endif
7565 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7566 }
7567
7568 /* ARM V5 branch-link-exchange instruction (argument parse)
7569 BLX <target_addr> ie BLX(1)
7570 BLX{<condition>} <Rm> ie BLX(2)
7571 Unfortunately, there are two different opcodes for this mnemonic.
7572 So, the insns[].value is not used, and the code here zaps values
7573 into inst.instruction.
7574 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7575
7576 static void
7577 do_blx (void)
7578 {
7579 if (inst.operands[0].isreg)
7580 {
7581 /* Arg is a register; the opcode provided by insns[] is correct.
7582 It is not illegal to do "blx pc", just useless. */
7583 if (inst.operands[0].reg == REG_PC)
7584 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7585
7586 inst.instruction |= inst.operands[0].reg;
7587 }
7588 else
7589 {
7590 /* Arg is an address; this instruction cannot be executed
7591 conditionally, and the opcode must be adjusted.
7592 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7593 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7594 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7595 inst.instruction = 0xfa000000;
7596 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7597 }
7598 }
7599
7600 static void
7601 do_bx (void)
7602 {
7603 bfd_boolean want_reloc;
7604
7605 if (inst.operands[0].reg == REG_PC)
7606 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7607
7608 inst.instruction |= inst.operands[0].reg;
7609 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7610 it is for ARMv4t or earlier. */
7611 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7612 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7613 want_reloc = TRUE;
7614
7615 #ifdef OBJ_ELF
7616 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7617 #endif
7618 want_reloc = FALSE;
7619
7620 if (want_reloc)
7621 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7622 }
7623
7624
7625 /* ARM v5TEJ. Jump to Jazelle code. */
7626
7627 static void
7628 do_bxj (void)
7629 {
7630 if (inst.operands[0].reg == REG_PC)
7631 as_tsktsk (_("use of r15 in bxj is not really useful"));
7632
7633 inst.instruction |= inst.operands[0].reg;
7634 }
7635
7636 /* Co-processor data operation:
7637 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7638 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7639 static void
7640 do_cdp (void)
7641 {
7642 inst.instruction |= inst.operands[0].reg << 8;
7643 inst.instruction |= inst.operands[1].imm << 20;
7644 inst.instruction |= inst.operands[2].reg << 12;
7645 inst.instruction |= inst.operands[3].reg << 16;
7646 inst.instruction |= inst.operands[4].reg;
7647 inst.instruction |= inst.operands[5].imm << 5;
7648 }
7649
7650 static void
7651 do_cmp (void)
7652 {
7653 inst.instruction |= inst.operands[0].reg << 16;
7654 encode_arm_shifter_operand (1);
7655 }
7656
7657 /* Transfer between coprocessor and ARM registers.
7658 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7659 MRC2
7660 MCR{cond}
7661 MCR2
7662
7663 No special properties. */
7664
7665 static void
7666 do_co_reg (void)
7667 {
7668 unsigned Rd;
7669
7670 Rd = inst.operands[2].reg;
7671 if (thumb_mode)
7672 {
7673 if (inst.instruction == 0xee000010
7674 || inst.instruction == 0xfe000010)
7675 /* MCR, MCR2 */
7676 reject_bad_reg (Rd);
7677 else
7678 /* MRC, MRC2 */
7679 constraint (Rd == REG_SP, BAD_SP);
7680 }
7681 else
7682 {
7683 /* MCR */
7684 if (inst.instruction == 0xe000010)
7685 constraint (Rd == REG_PC, BAD_PC);
7686 }
7687
7688
7689 inst.instruction |= inst.operands[0].reg << 8;
7690 inst.instruction |= inst.operands[1].imm << 21;
7691 inst.instruction |= Rd << 12;
7692 inst.instruction |= inst.operands[3].reg << 16;
7693 inst.instruction |= inst.operands[4].reg;
7694 inst.instruction |= inst.operands[5].imm << 5;
7695 }
7696
7697 /* Transfer between coprocessor register and pair of ARM registers.
7698 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7699 MCRR2
7700 MRRC{cond}
7701 MRRC2
7702
7703 Two XScale instructions are special cases of these:
7704
7705 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7706 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7707
7708 Result unpredictable if Rd or Rn is R15. */
7709
7710 static void
7711 do_co_reg2c (void)
7712 {
7713 unsigned Rd, Rn;
7714
7715 Rd = inst.operands[2].reg;
7716 Rn = inst.operands[3].reg;
7717
7718 if (thumb_mode)
7719 {
7720 reject_bad_reg (Rd);
7721 reject_bad_reg (Rn);
7722 }
7723 else
7724 {
7725 constraint (Rd == REG_PC, BAD_PC);
7726 constraint (Rn == REG_PC, BAD_PC);
7727 }
7728
7729 inst.instruction |= inst.operands[0].reg << 8;
7730 inst.instruction |= inst.operands[1].imm << 4;
7731 inst.instruction |= Rd << 12;
7732 inst.instruction |= Rn << 16;
7733 inst.instruction |= inst.operands[4].reg;
7734 }
7735
7736 static void
7737 do_cpsi (void)
7738 {
7739 inst.instruction |= inst.operands[0].imm << 6;
7740 if (inst.operands[1].present)
7741 {
7742 inst.instruction |= CPSI_MMOD;
7743 inst.instruction |= inst.operands[1].imm;
7744 }
7745 }
7746
7747 static void
7748 do_dbg (void)
7749 {
7750 inst.instruction |= inst.operands[0].imm;
7751 }
7752
7753 static void
7754 do_div (void)
7755 {
7756 unsigned Rd, Rn, Rm;
7757
7758 Rd = inst.operands[0].reg;
7759 Rn = (inst.operands[1].present
7760 ? inst.operands[1].reg : Rd);
7761 Rm = inst.operands[2].reg;
7762
7763 constraint ((Rd == REG_PC), BAD_PC);
7764 constraint ((Rn == REG_PC), BAD_PC);
7765 constraint ((Rm == REG_PC), BAD_PC);
7766
7767 inst.instruction |= Rd << 16;
7768 inst.instruction |= Rn << 0;
7769 inst.instruction |= Rm << 8;
7770 }
7771
7772 static void
7773 do_it (void)
7774 {
7775 /* There is no IT instruction in ARM mode. We
7776 process it to do the validation as if in
7777 thumb mode, just in case the code gets
7778 assembled for thumb using the unified syntax. */
7779
7780 inst.size = 0;
7781 if (unified_syntax)
7782 {
7783 set_it_insn_type (IT_INSN);
7784 now_it.mask = (inst.instruction & 0xf) | 0x10;
7785 now_it.cc = inst.operands[0].imm;
7786 }
7787 }
7788
7789 static void
7790 do_ldmstm (void)
7791 {
7792 int base_reg = inst.operands[0].reg;
7793 int range = inst.operands[1].imm;
7794
7795 inst.instruction |= base_reg << 16;
7796 inst.instruction |= range;
7797
7798 if (inst.operands[1].writeback)
7799 inst.instruction |= LDM_TYPE_2_OR_3;
7800
7801 if (inst.operands[0].writeback)
7802 {
7803 inst.instruction |= WRITE_BACK;
7804 /* Check for unpredictable uses of writeback. */
7805 if (inst.instruction & LOAD_BIT)
7806 {
7807 /* Not allowed in LDM type 2. */
7808 if ((inst.instruction & LDM_TYPE_2_OR_3)
7809 && ((range & (1 << REG_PC)) == 0))
7810 as_warn (_("writeback of base register is UNPREDICTABLE"));
7811 /* Only allowed if base reg not in list for other types. */
7812 else if (range & (1 << base_reg))
7813 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7814 }
7815 else /* STM. */
7816 {
7817 /* Not allowed for type 2. */
7818 if (inst.instruction & LDM_TYPE_2_OR_3)
7819 as_warn (_("writeback of base register is UNPREDICTABLE"));
7820 /* Only allowed if base reg not in list, or first in list. */
7821 else if ((range & (1 << base_reg))
7822 && (range & ((1 << base_reg) - 1)))
7823 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7824 }
7825 }
7826 }
7827
7828 /* ARMv5TE load-consecutive (argument parse)
7829 Mode is like LDRH.
7830
7831 LDRccD R, mode
7832 STRccD R, mode. */
7833
7834 static void
7835 do_ldrd (void)
7836 {
7837 constraint (inst.operands[0].reg % 2 != 0,
7838 _("first transfer register must be even"));
7839 constraint (inst.operands[1].present
7840 && inst.operands[1].reg != inst.operands[0].reg + 1,
7841 _("can only transfer two consecutive registers"));
7842 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7843 constraint (!inst.operands[2].isreg, _("'[' expected"));
7844
7845 if (!inst.operands[1].present)
7846 inst.operands[1].reg = inst.operands[0].reg + 1;
7847
7848 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7849 register and the first register written; we have to diagnose
7850 overlap between the base and the second register written here. */
7851
7852 if (inst.operands[2].reg == inst.operands[1].reg
7853 && (inst.operands[2].writeback || inst.operands[2].postind))
7854 as_warn (_("base register written back, and overlaps "
7855 "second transfer register"));
7856
7857 if (!(inst.instruction & V4_STR_BIT))
7858 {
7859 /* For an index-register load, the index register must not overlap the
7860 destination (even if not write-back). */
7861 if (inst.operands[2].immisreg
7862 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7863 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7864 as_warn (_("index register overlaps transfer register"));
7865 }
7866 inst.instruction |= inst.operands[0].reg << 12;
7867 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7868 }
7869
7870 static void
7871 do_ldrex (void)
7872 {
7873 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7874 || inst.operands[1].postind || inst.operands[1].writeback
7875 || inst.operands[1].immisreg || inst.operands[1].shifted
7876 || inst.operands[1].negative
7877 /* This can arise if the programmer has written
7878 strex rN, rM, foo
7879 or if they have mistakenly used a register name as the last
7880 operand, eg:
7881 strex rN, rM, rX
7882 It is very difficult to distinguish between these two cases
7883 because "rX" might actually be a label. ie the register
7884 name has been occluded by a symbol of the same name. So we
7885 just generate a general 'bad addressing mode' type error
7886 message and leave it up to the programmer to discover the
7887 true cause and fix their mistake. */
7888 || (inst.operands[1].reg == REG_PC),
7889 BAD_ADDR_MODE);
7890
7891 constraint (inst.reloc.exp.X_op != O_constant
7892 || inst.reloc.exp.X_add_number != 0,
7893 _("offset must be zero in ARM encoding"));
7894
7895 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7896
7897 inst.instruction |= inst.operands[0].reg << 12;
7898 inst.instruction |= inst.operands[1].reg << 16;
7899 inst.reloc.type = BFD_RELOC_UNUSED;
7900 }
7901
7902 static void
7903 do_ldrexd (void)
7904 {
7905 constraint (inst.operands[0].reg % 2 != 0,
7906 _("even register required"));
7907 constraint (inst.operands[1].present
7908 && inst.operands[1].reg != inst.operands[0].reg + 1,
7909 _("can only load two consecutive registers"));
7910 /* If op 1 were present and equal to PC, this function wouldn't
7911 have been called in the first place. */
7912 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7913
7914 inst.instruction |= inst.operands[0].reg << 12;
7915 inst.instruction |= inst.operands[2].reg << 16;
7916 }
7917
7918 static void
7919 do_ldst (void)
7920 {
7921 inst.instruction |= inst.operands[0].reg << 12;
7922 if (!inst.operands[1].isreg)
7923 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7924 return;
7925 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7926 }
7927
7928 static void
7929 do_ldstt (void)
7930 {
7931 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7932 reject [Rn,...]. */
7933 if (inst.operands[1].preind)
7934 {
7935 constraint (inst.reloc.exp.X_op != O_constant
7936 || inst.reloc.exp.X_add_number != 0,
7937 _("this instruction requires a post-indexed address"));
7938
7939 inst.operands[1].preind = 0;
7940 inst.operands[1].postind = 1;
7941 inst.operands[1].writeback = 1;
7942 }
7943 inst.instruction |= inst.operands[0].reg << 12;
7944 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7945 }
7946
7947 /* Halfword and signed-byte load/store operations. */
7948
7949 static void
7950 do_ldstv4 (void)
7951 {
7952 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7953 inst.instruction |= inst.operands[0].reg << 12;
7954 if (!inst.operands[1].isreg)
7955 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7956 return;
7957 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7958 }
7959
7960 static void
7961 do_ldsttv4 (void)
7962 {
7963 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7964 reject [Rn,...]. */
7965 if (inst.operands[1].preind)
7966 {
7967 constraint (inst.reloc.exp.X_op != O_constant
7968 || inst.reloc.exp.X_add_number != 0,
7969 _("this instruction requires a post-indexed address"));
7970
7971 inst.operands[1].preind = 0;
7972 inst.operands[1].postind = 1;
7973 inst.operands[1].writeback = 1;
7974 }
7975 inst.instruction |= inst.operands[0].reg << 12;
7976 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7977 }
7978
7979 /* Co-processor register load/store.
7980 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7981 static void
7982 do_lstc (void)
7983 {
7984 inst.instruction |= inst.operands[0].reg << 8;
7985 inst.instruction |= inst.operands[1].reg << 12;
7986 encode_arm_cp_address (2, TRUE, TRUE, 0);
7987 }
7988
7989 static void
7990 do_mlas (void)
7991 {
7992 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7993 if (inst.operands[0].reg == inst.operands[1].reg
7994 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7995 && !(inst.instruction & 0x00400000))
7996 as_tsktsk (_("Rd and Rm should be different in mla"));
7997
7998 inst.instruction |= inst.operands[0].reg << 16;
7999 inst.instruction |= inst.operands[1].reg;
8000 inst.instruction |= inst.operands[2].reg << 8;
8001 inst.instruction |= inst.operands[3].reg << 12;
8002 }
8003
8004 static void
8005 do_mov (void)
8006 {
8007 inst.instruction |= inst.operands[0].reg << 12;
8008 encode_arm_shifter_operand (1);
8009 }
8010
8011 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8012 static void
8013 do_mov16 (void)
8014 {
8015 bfd_vma imm;
8016 bfd_boolean top;
8017
8018 top = (inst.instruction & 0x00400000) != 0;
8019 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8020 _(":lower16: not allowed this instruction"));
8021 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8022 _(":upper16: not allowed instruction"));
8023 inst.instruction |= inst.operands[0].reg << 12;
8024 if (inst.reloc.type == BFD_RELOC_UNUSED)
8025 {
8026 imm = inst.reloc.exp.X_add_number;
8027 /* The value is in two pieces: 0:11, 16:19. */
8028 inst.instruction |= (imm & 0x00000fff);
8029 inst.instruction |= (imm & 0x0000f000) << 4;
8030 }
8031 }
8032
8033 static void do_vfp_nsyn_opcode (const char *);
8034
8035 static int
8036 do_vfp_nsyn_mrs (void)
8037 {
8038 if (inst.operands[0].isvec)
8039 {
8040 if (inst.operands[1].reg != 1)
8041 first_error (_("operand 1 must be FPSCR"));
8042 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8043 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8044 do_vfp_nsyn_opcode ("fmstat");
8045 }
8046 else if (inst.operands[1].isvec)
8047 do_vfp_nsyn_opcode ("fmrx");
8048 else
8049 return FAIL;
8050
8051 return SUCCESS;
8052 }
8053
8054 static int
8055 do_vfp_nsyn_msr (void)
8056 {
8057 if (inst.operands[0].isvec)
8058 do_vfp_nsyn_opcode ("fmxr");
8059 else
8060 return FAIL;
8061
8062 return SUCCESS;
8063 }
8064
8065 static void
8066 do_vmrs (void)
8067 {
8068 unsigned Rt = inst.operands[0].reg;
8069
8070 if (thumb_mode && inst.operands[0].reg == REG_SP)
8071 {
8072 inst.error = BAD_SP;
8073 return;
8074 }
8075
8076 /* APSR_ sets isvec. All other refs to PC are illegal. */
8077 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8078 {
8079 inst.error = BAD_PC;
8080 return;
8081 }
8082
8083 if (inst.operands[1].reg != 1)
8084 first_error (_("operand 1 must be FPSCR"));
8085
8086 inst.instruction |= (Rt << 12);
8087 }
8088
8089 static void
8090 do_vmsr (void)
8091 {
8092 unsigned Rt = inst.operands[1].reg;
8093
8094 if (thumb_mode)
8095 reject_bad_reg (Rt);
8096 else if (Rt == REG_PC)
8097 {
8098 inst.error = BAD_PC;
8099 return;
8100 }
8101
8102 if (inst.operands[0].reg != 1)
8103 first_error (_("operand 0 must be FPSCR"));
8104
8105 inst.instruction |= (Rt << 12);
8106 }
8107
8108 static void
8109 do_mrs (void)
8110 {
8111 unsigned br;
8112
8113 if (do_vfp_nsyn_mrs () == SUCCESS)
8114 return;
8115
8116 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8117 inst.instruction |= inst.operands[0].reg << 12;
8118
8119 if (inst.operands[1].isreg)
8120 {
8121 br = inst.operands[1].reg;
8122 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8123 as_bad (_("bad register for mrs"));
8124 }
8125 else
8126 {
8127 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8128 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8129 != (PSR_c|PSR_f),
8130 _("'APSR', 'CPSR' or 'SPSR' expected"));
8131 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8132 }
8133
8134 inst.instruction |= br;
8135 }
8136
8137 /* Two possible forms:
8138 "{C|S}PSR_<field>, Rm",
8139 "{C|S}PSR_f, #expression". */
8140
8141 static void
8142 do_msr (void)
8143 {
8144 if (do_vfp_nsyn_msr () == SUCCESS)
8145 return;
8146
8147 inst.instruction |= inst.operands[0].imm;
8148 if (inst.operands[1].isreg)
8149 inst.instruction |= inst.operands[1].reg;
8150 else
8151 {
8152 inst.instruction |= INST_IMMEDIATE;
8153 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8154 inst.reloc.pc_rel = 0;
8155 }
8156 }
8157
8158 static void
8159 do_mul (void)
8160 {
8161 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8162
8163 if (!inst.operands[2].present)
8164 inst.operands[2].reg = inst.operands[0].reg;
8165 inst.instruction |= inst.operands[0].reg << 16;
8166 inst.instruction |= inst.operands[1].reg;
8167 inst.instruction |= inst.operands[2].reg << 8;
8168
8169 if (inst.operands[0].reg == inst.operands[1].reg
8170 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8171 as_tsktsk (_("Rd and Rm should be different in mul"));
8172 }
8173
8174 /* Long Multiply Parser
8175 UMULL RdLo, RdHi, Rm, Rs
8176 SMULL RdLo, RdHi, Rm, Rs
8177 UMLAL RdLo, RdHi, Rm, Rs
8178 SMLAL RdLo, RdHi, Rm, Rs. */
8179
8180 static void
8181 do_mull (void)
8182 {
8183 inst.instruction |= inst.operands[0].reg << 12;
8184 inst.instruction |= inst.operands[1].reg << 16;
8185 inst.instruction |= inst.operands[2].reg;
8186 inst.instruction |= inst.operands[3].reg << 8;
8187
8188 /* rdhi and rdlo must be different. */
8189 if (inst.operands[0].reg == inst.operands[1].reg)
8190 as_tsktsk (_("rdhi and rdlo must be different"));
8191
8192 /* rdhi, rdlo and rm must all be different before armv6. */
8193 if ((inst.operands[0].reg == inst.operands[2].reg
8194 || inst.operands[1].reg == inst.operands[2].reg)
8195 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8196 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8197 }
8198
8199 static void
8200 do_nop (void)
8201 {
8202 if (inst.operands[0].present
8203 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8204 {
8205 /* Architectural NOP hints are CPSR sets with no bits selected. */
8206 inst.instruction &= 0xf0000000;
8207 inst.instruction |= 0x0320f000;
8208 if (inst.operands[0].present)
8209 inst.instruction |= inst.operands[0].imm;
8210 }
8211 }
8212
8213 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8214 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8215 Condition defaults to COND_ALWAYS.
8216 Error if Rd, Rn or Rm are R15. */
8217
8218 static void
8219 do_pkhbt (void)
8220 {
8221 inst.instruction |= inst.operands[0].reg << 12;
8222 inst.instruction |= inst.operands[1].reg << 16;
8223 inst.instruction |= inst.operands[2].reg;
8224 if (inst.operands[3].present)
8225 encode_arm_shift (3);
8226 }
8227
8228 /* ARM V6 PKHTB (Argument Parse). */
8229
8230 static void
8231 do_pkhtb (void)
8232 {
8233 if (!inst.operands[3].present)
8234 {
8235 /* If the shift specifier is omitted, turn the instruction
8236 into pkhbt rd, rm, rn. */
8237 inst.instruction &= 0xfff00010;
8238 inst.instruction |= inst.operands[0].reg << 12;
8239 inst.instruction |= inst.operands[1].reg;
8240 inst.instruction |= inst.operands[2].reg << 16;
8241 }
8242 else
8243 {
8244 inst.instruction |= inst.operands[0].reg << 12;
8245 inst.instruction |= inst.operands[1].reg << 16;
8246 inst.instruction |= inst.operands[2].reg;
8247 encode_arm_shift (3);
8248 }
8249 }
8250
8251 /* ARMv5TE: Preload-Cache
8252 MP Extensions: Preload for write
8253
8254 PLD(W) <addr_mode>
8255
8256 Syntactically, like LDR with B=1, W=0, L=1. */
8257
8258 static void
8259 do_pld (void)
8260 {
8261 constraint (!inst.operands[0].isreg,
8262 _("'[' expected after PLD mnemonic"));
8263 constraint (inst.operands[0].postind,
8264 _("post-indexed expression used in preload instruction"));
8265 constraint (inst.operands[0].writeback,
8266 _("writeback used in preload instruction"));
8267 constraint (!inst.operands[0].preind,
8268 _("unindexed addressing used in preload instruction"));
8269 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8270 }
8271
8272 /* ARMv7: PLI <addr_mode> */
8273 static void
8274 do_pli (void)
8275 {
8276 constraint (!inst.operands[0].isreg,
8277 _("'[' expected after PLI mnemonic"));
8278 constraint (inst.operands[0].postind,
8279 _("post-indexed expression used in preload instruction"));
8280 constraint (inst.operands[0].writeback,
8281 _("writeback used in preload instruction"));
8282 constraint (!inst.operands[0].preind,
8283 _("unindexed addressing used in preload instruction"));
8284 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8285 inst.instruction &= ~PRE_INDEX;
8286 }
8287
8288 static void
8289 do_push_pop (void)
8290 {
8291 inst.operands[1] = inst.operands[0];
8292 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8293 inst.operands[0].isreg = 1;
8294 inst.operands[0].writeback = 1;
8295 inst.operands[0].reg = REG_SP;
8296 do_ldmstm ();
8297 }
8298
8299 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8300 word at the specified address and the following word
8301 respectively.
8302 Unconditionally executed.
8303 Error if Rn is R15. */
8304
8305 static void
8306 do_rfe (void)
8307 {
8308 inst.instruction |= inst.operands[0].reg << 16;
8309 if (inst.operands[0].writeback)
8310 inst.instruction |= WRITE_BACK;
8311 }
8312
8313 /* ARM V6 ssat (argument parse). */
8314
8315 static void
8316 do_ssat (void)
8317 {
8318 inst.instruction |= inst.operands[0].reg << 12;
8319 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8320 inst.instruction |= inst.operands[2].reg;
8321
8322 if (inst.operands[3].present)
8323 encode_arm_shift (3);
8324 }
8325
8326 /* ARM V6 usat (argument parse). */
8327
8328 static void
8329 do_usat (void)
8330 {
8331 inst.instruction |= inst.operands[0].reg << 12;
8332 inst.instruction |= inst.operands[1].imm << 16;
8333 inst.instruction |= inst.operands[2].reg;
8334
8335 if (inst.operands[3].present)
8336 encode_arm_shift (3);
8337 }
8338
8339 /* ARM V6 ssat16 (argument parse). */
8340
8341 static void
8342 do_ssat16 (void)
8343 {
8344 inst.instruction |= inst.operands[0].reg << 12;
8345 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8346 inst.instruction |= inst.operands[2].reg;
8347 }
8348
8349 static void
8350 do_usat16 (void)
8351 {
8352 inst.instruction |= inst.operands[0].reg << 12;
8353 inst.instruction |= inst.operands[1].imm << 16;
8354 inst.instruction |= inst.operands[2].reg;
8355 }
8356
8357 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8358 preserving the other bits.
8359
8360 setend <endian_specifier>, where <endian_specifier> is either
8361 BE or LE. */
8362
8363 static void
8364 do_setend (void)
8365 {
8366 if (inst.operands[0].imm)
8367 inst.instruction |= 0x200;
8368 }
8369
8370 static void
8371 do_shift (void)
8372 {
8373 unsigned int Rm = (inst.operands[1].present
8374 ? inst.operands[1].reg
8375 : inst.operands[0].reg);
8376
8377 inst.instruction |= inst.operands[0].reg << 12;
8378 inst.instruction |= Rm;
8379 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8380 {
8381 inst.instruction |= inst.operands[2].reg << 8;
8382 inst.instruction |= SHIFT_BY_REG;
8383 /* PR 12854: Error on extraneous shifts. */
8384 constraint (inst.operands[2].shifted,
8385 _("extraneous shift as part of operand to shift insn"));
8386 }
8387 else
8388 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8389 }
8390
8391 static void
8392 do_smc (void)
8393 {
8394 inst.reloc.type = BFD_RELOC_ARM_SMC;
8395 inst.reloc.pc_rel = 0;
8396 }
8397
8398 static void
8399 do_hvc (void)
8400 {
8401 inst.reloc.type = BFD_RELOC_ARM_HVC;
8402 inst.reloc.pc_rel = 0;
8403 }
8404
8405 static void
8406 do_swi (void)
8407 {
8408 inst.reloc.type = BFD_RELOC_ARM_SWI;
8409 inst.reloc.pc_rel = 0;
8410 }
8411
8412 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8413 SMLAxy{cond} Rd,Rm,Rs,Rn
8414 SMLAWy{cond} Rd,Rm,Rs,Rn
8415 Error if any register is R15. */
8416
8417 static void
8418 do_smla (void)
8419 {
8420 inst.instruction |= inst.operands[0].reg << 16;
8421 inst.instruction |= inst.operands[1].reg;
8422 inst.instruction |= inst.operands[2].reg << 8;
8423 inst.instruction |= inst.operands[3].reg << 12;
8424 }
8425
8426 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8427 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8428 Error if any register is R15.
8429 Warning if Rdlo == Rdhi. */
8430
8431 static void
8432 do_smlal (void)
8433 {
8434 inst.instruction |= inst.operands[0].reg << 12;
8435 inst.instruction |= inst.operands[1].reg << 16;
8436 inst.instruction |= inst.operands[2].reg;
8437 inst.instruction |= inst.operands[3].reg << 8;
8438
8439 if (inst.operands[0].reg == inst.operands[1].reg)
8440 as_tsktsk (_("rdhi and rdlo must be different"));
8441 }
8442
8443 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8444 SMULxy{cond} Rd,Rm,Rs
8445 Error if any register is R15. */
8446
8447 static void
8448 do_smul (void)
8449 {
8450 inst.instruction |= inst.operands[0].reg << 16;
8451 inst.instruction |= inst.operands[1].reg;
8452 inst.instruction |= inst.operands[2].reg << 8;
8453 }
8454
8455 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8456 the same for both ARM and Thumb-2. */
8457
8458 static void
8459 do_srs (void)
8460 {
8461 int reg;
8462
8463 if (inst.operands[0].present)
8464 {
8465 reg = inst.operands[0].reg;
8466 constraint (reg != REG_SP, _("SRS base register must be r13"));
8467 }
8468 else
8469 reg = REG_SP;
8470
8471 inst.instruction |= reg << 16;
8472 inst.instruction |= inst.operands[1].imm;
8473 if (inst.operands[0].writeback || inst.operands[1].writeback)
8474 inst.instruction |= WRITE_BACK;
8475 }
8476
8477 /* ARM V6 strex (argument parse). */
8478
8479 static void
8480 do_strex (void)
8481 {
8482 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8483 || inst.operands[2].postind || inst.operands[2].writeback
8484 || inst.operands[2].immisreg || inst.operands[2].shifted
8485 || inst.operands[2].negative
8486 /* See comment in do_ldrex(). */
8487 || (inst.operands[2].reg == REG_PC),
8488 BAD_ADDR_MODE);
8489
8490 constraint (inst.operands[0].reg == inst.operands[1].reg
8491 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8492
8493 constraint (inst.reloc.exp.X_op != O_constant
8494 || inst.reloc.exp.X_add_number != 0,
8495 _("offset must be zero in ARM encoding"));
8496
8497 inst.instruction |= inst.operands[0].reg << 12;
8498 inst.instruction |= inst.operands[1].reg;
8499 inst.instruction |= inst.operands[2].reg << 16;
8500 inst.reloc.type = BFD_RELOC_UNUSED;
8501 }
8502
8503 static void
8504 do_t_strexbh (void)
8505 {
8506 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8507 || inst.operands[2].postind || inst.operands[2].writeback
8508 || inst.operands[2].immisreg || inst.operands[2].shifted
8509 || inst.operands[2].negative,
8510 BAD_ADDR_MODE);
8511
8512 constraint (inst.operands[0].reg == inst.operands[1].reg
8513 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8514
8515 do_rm_rd_rn ();
8516 }
8517
8518 static void
8519 do_strexd (void)
8520 {
8521 constraint (inst.operands[1].reg % 2 != 0,
8522 _("even register required"));
8523 constraint (inst.operands[2].present
8524 && inst.operands[2].reg != inst.operands[1].reg + 1,
8525 _("can only store two consecutive registers"));
8526 /* If op 2 were present and equal to PC, this function wouldn't
8527 have been called in the first place. */
8528 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8529
8530 constraint (inst.operands[0].reg == inst.operands[1].reg
8531 || inst.operands[0].reg == inst.operands[1].reg + 1
8532 || inst.operands[0].reg == inst.operands[3].reg,
8533 BAD_OVERLAP);
8534
8535 inst.instruction |= inst.operands[0].reg << 12;
8536 inst.instruction |= inst.operands[1].reg;
8537 inst.instruction |= inst.operands[3].reg << 16;
8538 }
8539
8540 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8541 extends it to 32-bits, and adds the result to a value in another
8542 register. You can specify a rotation by 0, 8, 16, or 24 bits
8543 before extracting the 16-bit value.
8544 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8545 Condition defaults to COND_ALWAYS.
8546 Error if any register uses R15. */
8547
8548 static void
8549 do_sxtah (void)
8550 {
8551 inst.instruction |= inst.operands[0].reg << 12;
8552 inst.instruction |= inst.operands[1].reg << 16;
8553 inst.instruction |= inst.operands[2].reg;
8554 inst.instruction |= inst.operands[3].imm << 10;
8555 }
8556
8557 /* ARM V6 SXTH.
8558
8559 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8560 Condition defaults to COND_ALWAYS.
8561 Error if any register uses R15. */
8562
8563 static void
8564 do_sxth (void)
8565 {
8566 inst.instruction |= inst.operands[0].reg << 12;
8567 inst.instruction |= inst.operands[1].reg;
8568 inst.instruction |= inst.operands[2].imm << 10;
8569 }
8570 \f
8571 /* VFP instructions. In a logical order: SP variant first, monad
8572 before dyad, arithmetic then move then load/store. */
8573
8574 static void
8575 do_vfp_sp_monadic (void)
8576 {
8577 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8578 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8579 }
8580
8581 static void
8582 do_vfp_sp_dyadic (void)
8583 {
8584 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8585 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8586 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8587 }
8588
8589 static void
8590 do_vfp_sp_compare_z (void)
8591 {
8592 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8593 }
8594
8595 static void
8596 do_vfp_dp_sp_cvt (void)
8597 {
8598 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8599 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8600 }
8601
8602 static void
8603 do_vfp_sp_dp_cvt (void)
8604 {
8605 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8606 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8607 }
8608
8609 static void
8610 do_vfp_reg_from_sp (void)
8611 {
8612 inst.instruction |= inst.operands[0].reg << 12;
8613 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8614 }
8615
8616 static void
8617 do_vfp_reg2_from_sp2 (void)
8618 {
8619 constraint (inst.operands[2].imm != 2,
8620 _("only two consecutive VFP SP registers allowed here"));
8621 inst.instruction |= inst.operands[0].reg << 12;
8622 inst.instruction |= inst.operands[1].reg << 16;
8623 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8624 }
8625
8626 static void
8627 do_vfp_sp_from_reg (void)
8628 {
8629 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8630 inst.instruction |= inst.operands[1].reg << 12;
8631 }
8632
8633 static void
8634 do_vfp_sp2_from_reg2 (void)
8635 {
8636 constraint (inst.operands[0].imm != 2,
8637 _("only two consecutive VFP SP registers allowed here"));
8638 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8639 inst.instruction |= inst.operands[1].reg << 12;
8640 inst.instruction |= inst.operands[2].reg << 16;
8641 }
8642
8643 static void
8644 do_vfp_sp_ldst (void)
8645 {
8646 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8647 encode_arm_cp_address (1, FALSE, TRUE, 0);
8648 }
8649
8650 static void
8651 do_vfp_dp_ldst (void)
8652 {
8653 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8654 encode_arm_cp_address (1, FALSE, TRUE, 0);
8655 }
8656
8657
8658 static void
8659 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8660 {
8661 if (inst.operands[0].writeback)
8662 inst.instruction |= WRITE_BACK;
8663 else
8664 constraint (ldstm_type != VFP_LDSTMIA,
8665 _("this addressing mode requires base-register writeback"));
8666 inst.instruction |= inst.operands[0].reg << 16;
8667 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8668 inst.instruction |= inst.operands[1].imm;
8669 }
8670
8671 static void
8672 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8673 {
8674 int count;
8675
8676 if (inst.operands[0].writeback)
8677 inst.instruction |= WRITE_BACK;
8678 else
8679 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8680 _("this addressing mode requires base-register writeback"));
8681
8682 inst.instruction |= inst.operands[0].reg << 16;
8683 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8684
8685 count = inst.operands[1].imm << 1;
8686 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8687 count += 1;
8688
8689 inst.instruction |= count;
8690 }
8691
8692 static void
8693 do_vfp_sp_ldstmia (void)
8694 {
8695 vfp_sp_ldstm (VFP_LDSTMIA);
8696 }
8697
8698 static void
8699 do_vfp_sp_ldstmdb (void)
8700 {
8701 vfp_sp_ldstm (VFP_LDSTMDB);
8702 }
8703
8704 static void
8705 do_vfp_dp_ldstmia (void)
8706 {
8707 vfp_dp_ldstm (VFP_LDSTMIA);
8708 }
8709
8710 static void
8711 do_vfp_dp_ldstmdb (void)
8712 {
8713 vfp_dp_ldstm (VFP_LDSTMDB);
8714 }
8715
8716 static void
8717 do_vfp_xp_ldstmia (void)
8718 {
8719 vfp_dp_ldstm (VFP_LDSTMIAX);
8720 }
8721
8722 static void
8723 do_vfp_xp_ldstmdb (void)
8724 {
8725 vfp_dp_ldstm (VFP_LDSTMDBX);
8726 }
8727
8728 static void
8729 do_vfp_dp_rd_rm (void)
8730 {
8731 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8732 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8733 }
8734
8735 static void
8736 do_vfp_dp_rn_rd (void)
8737 {
8738 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8739 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8740 }
8741
8742 static void
8743 do_vfp_dp_rd_rn (void)
8744 {
8745 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8746 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8747 }
8748
8749 static void
8750 do_vfp_dp_rd_rn_rm (void)
8751 {
8752 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8753 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8754 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8755 }
8756
8757 static void
8758 do_vfp_dp_rd (void)
8759 {
8760 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8761 }
8762
8763 static void
8764 do_vfp_dp_rm_rd_rn (void)
8765 {
8766 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8767 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8768 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8769 }
8770
8771 /* VFPv3 instructions. */
8772 static void
8773 do_vfp_sp_const (void)
8774 {
8775 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8776 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8777 inst.instruction |= (inst.operands[1].imm & 0x0f);
8778 }
8779
8780 static void
8781 do_vfp_dp_const (void)
8782 {
8783 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8784 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8785 inst.instruction |= (inst.operands[1].imm & 0x0f);
8786 }
8787
8788 static void
8789 vfp_conv (int srcsize)
8790 {
8791 int immbits = srcsize - inst.operands[1].imm;
8792
8793 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
8794 {
8795 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
8796 i.e. immbits must be in range 0 - 16. */
8797 inst.error = _("immediate value out of range, expected range [0, 16]");
8798 return;
8799 }
8800 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
8801 {
8802 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
8803 i.e. immbits must be in range 0 - 31. */
8804 inst.error = _("immediate value out of range, expected range [1, 32]");
8805 return;
8806 }
8807
8808 inst.instruction |= (immbits & 1) << 5;
8809 inst.instruction |= (immbits >> 1);
8810 }
8811
8812 static void
8813 do_vfp_sp_conv_16 (void)
8814 {
8815 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8816 vfp_conv (16);
8817 }
8818
8819 static void
8820 do_vfp_dp_conv_16 (void)
8821 {
8822 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8823 vfp_conv (16);
8824 }
8825
8826 static void
8827 do_vfp_sp_conv_32 (void)
8828 {
8829 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8830 vfp_conv (32);
8831 }
8832
8833 static void
8834 do_vfp_dp_conv_32 (void)
8835 {
8836 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8837 vfp_conv (32);
8838 }
8839 \f
8840 /* FPA instructions. Also in a logical order. */
8841
8842 static void
8843 do_fpa_cmp (void)
8844 {
8845 inst.instruction |= inst.operands[0].reg << 16;
8846 inst.instruction |= inst.operands[1].reg;
8847 }
8848
8849 static void
8850 do_fpa_ldmstm (void)
8851 {
8852 inst.instruction |= inst.operands[0].reg << 12;
8853 switch (inst.operands[1].imm)
8854 {
8855 case 1: inst.instruction |= CP_T_X; break;
8856 case 2: inst.instruction |= CP_T_Y; break;
8857 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8858 case 4: break;
8859 default: abort ();
8860 }
8861
8862 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8863 {
8864 /* The instruction specified "ea" or "fd", so we can only accept
8865 [Rn]{!}. The instruction does not really support stacking or
8866 unstacking, so we have to emulate these by setting appropriate
8867 bits and offsets. */
8868 constraint (inst.reloc.exp.X_op != O_constant
8869 || inst.reloc.exp.X_add_number != 0,
8870 _("this instruction does not support indexing"));
8871
8872 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8873 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8874
8875 if (!(inst.instruction & INDEX_UP))
8876 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8877
8878 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8879 {
8880 inst.operands[2].preind = 0;
8881 inst.operands[2].postind = 1;
8882 }
8883 }
8884
8885 encode_arm_cp_address (2, TRUE, TRUE, 0);
8886 }
8887 \f
8888 /* iWMMXt instructions: strictly in alphabetical order. */
8889
8890 static void
8891 do_iwmmxt_tandorc (void)
8892 {
8893 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8894 }
8895
8896 static void
8897 do_iwmmxt_textrc (void)
8898 {
8899 inst.instruction |= inst.operands[0].reg << 12;
8900 inst.instruction |= inst.operands[1].imm;
8901 }
8902
8903 static void
8904 do_iwmmxt_textrm (void)
8905 {
8906 inst.instruction |= inst.operands[0].reg << 12;
8907 inst.instruction |= inst.operands[1].reg << 16;
8908 inst.instruction |= inst.operands[2].imm;
8909 }
8910
8911 static void
8912 do_iwmmxt_tinsr (void)
8913 {
8914 inst.instruction |= inst.operands[0].reg << 16;
8915 inst.instruction |= inst.operands[1].reg << 12;
8916 inst.instruction |= inst.operands[2].imm;
8917 }
8918
8919 static void
8920 do_iwmmxt_tmia (void)
8921 {
8922 inst.instruction |= inst.operands[0].reg << 5;
8923 inst.instruction |= inst.operands[1].reg;
8924 inst.instruction |= inst.operands[2].reg << 12;
8925 }
8926
8927 static void
8928 do_iwmmxt_waligni (void)
8929 {
8930 inst.instruction |= inst.operands[0].reg << 12;
8931 inst.instruction |= inst.operands[1].reg << 16;
8932 inst.instruction |= inst.operands[2].reg;
8933 inst.instruction |= inst.operands[3].imm << 20;
8934 }
8935
8936 static void
8937 do_iwmmxt_wmerge (void)
8938 {
8939 inst.instruction |= inst.operands[0].reg << 12;
8940 inst.instruction |= inst.operands[1].reg << 16;
8941 inst.instruction |= inst.operands[2].reg;
8942 inst.instruction |= inst.operands[3].imm << 21;
8943 }
8944
8945 static void
8946 do_iwmmxt_wmov (void)
8947 {
8948 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8949 inst.instruction |= inst.operands[0].reg << 12;
8950 inst.instruction |= inst.operands[1].reg << 16;
8951 inst.instruction |= inst.operands[1].reg;
8952 }
8953
8954 static void
8955 do_iwmmxt_wldstbh (void)
8956 {
8957 int reloc;
8958 inst.instruction |= inst.operands[0].reg << 12;
8959 if (thumb_mode)
8960 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8961 else
8962 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8963 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8964 }
8965
8966 static void
8967 do_iwmmxt_wldstw (void)
8968 {
8969 /* RIWR_RIWC clears .isreg for a control register. */
8970 if (!inst.operands[0].isreg)
8971 {
8972 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8973 inst.instruction |= 0xf0000000;
8974 }
8975
8976 inst.instruction |= inst.operands[0].reg << 12;
8977 encode_arm_cp_address (1, TRUE, TRUE, 0);
8978 }
8979
8980 static void
8981 do_iwmmxt_wldstd (void)
8982 {
8983 inst.instruction |= inst.operands[0].reg << 12;
8984 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8985 && inst.operands[1].immisreg)
8986 {
8987 inst.instruction &= ~0x1a000ff;
8988 inst.instruction |= (0xf << 28);
8989 if (inst.operands[1].preind)
8990 inst.instruction |= PRE_INDEX;
8991 if (!inst.operands[1].negative)
8992 inst.instruction |= INDEX_UP;
8993 if (inst.operands[1].writeback)
8994 inst.instruction |= WRITE_BACK;
8995 inst.instruction |= inst.operands[1].reg << 16;
8996 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8997 inst.instruction |= inst.operands[1].imm;
8998 }
8999 else
9000 encode_arm_cp_address (1, TRUE, FALSE, 0);
9001 }
9002
9003 static void
9004 do_iwmmxt_wshufh (void)
9005 {
9006 inst.instruction |= inst.operands[0].reg << 12;
9007 inst.instruction |= inst.operands[1].reg << 16;
9008 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9009 inst.instruction |= (inst.operands[2].imm & 0x0f);
9010 }
9011
9012 static void
9013 do_iwmmxt_wzero (void)
9014 {
9015 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9016 inst.instruction |= inst.operands[0].reg;
9017 inst.instruction |= inst.operands[0].reg << 12;
9018 inst.instruction |= inst.operands[0].reg << 16;
9019 }
9020
9021 static void
9022 do_iwmmxt_wrwrwr_or_imm5 (void)
9023 {
9024 if (inst.operands[2].isreg)
9025 do_rd_rn_rm ();
9026 else {
9027 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9028 _("immediate operand requires iWMMXt2"));
9029 do_rd_rn ();
9030 if (inst.operands[2].imm == 0)
9031 {
9032 switch ((inst.instruction >> 20) & 0xf)
9033 {
9034 case 4:
9035 case 5:
9036 case 6:
9037 case 7:
9038 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9039 inst.operands[2].imm = 16;
9040 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9041 break;
9042 case 8:
9043 case 9:
9044 case 10:
9045 case 11:
9046 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9047 inst.operands[2].imm = 32;
9048 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9049 break;
9050 case 12:
9051 case 13:
9052 case 14:
9053 case 15:
9054 {
9055 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9056 unsigned long wrn;
9057 wrn = (inst.instruction >> 16) & 0xf;
9058 inst.instruction &= 0xff0fff0f;
9059 inst.instruction |= wrn;
9060 /* Bail out here; the instruction is now assembled. */
9061 return;
9062 }
9063 }
9064 }
9065 /* Map 32 -> 0, etc. */
9066 inst.operands[2].imm &= 0x1f;
9067 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9068 }
9069 }
9070 \f
9071 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9072 operations first, then control, shift, and load/store. */
9073
9074 /* Insns like "foo X,Y,Z". */
9075
9076 static void
9077 do_mav_triple (void)
9078 {
9079 inst.instruction |= inst.operands[0].reg << 16;
9080 inst.instruction |= inst.operands[1].reg;
9081 inst.instruction |= inst.operands[2].reg << 12;
9082 }
9083
9084 /* Insns like "foo W,X,Y,Z".
9085 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9086
9087 static void
9088 do_mav_quad (void)
9089 {
9090 inst.instruction |= inst.operands[0].reg << 5;
9091 inst.instruction |= inst.operands[1].reg << 12;
9092 inst.instruction |= inst.operands[2].reg << 16;
9093 inst.instruction |= inst.operands[3].reg;
9094 }
9095
9096 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9097 static void
9098 do_mav_dspsc (void)
9099 {
9100 inst.instruction |= inst.operands[1].reg << 12;
9101 }
9102
9103 /* Maverick shift immediate instructions.
9104 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9105 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9106
9107 static void
9108 do_mav_shift (void)
9109 {
9110 int imm = inst.operands[2].imm;
9111
9112 inst.instruction |= inst.operands[0].reg << 12;
9113 inst.instruction |= inst.operands[1].reg << 16;
9114
9115 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9116 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9117 Bit 4 should be 0. */
9118 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9119
9120 inst.instruction |= imm;
9121 }
9122 \f
9123 /* XScale instructions. Also sorted arithmetic before move. */
9124
9125 /* Xscale multiply-accumulate (argument parse)
9126 MIAcc acc0,Rm,Rs
9127 MIAPHcc acc0,Rm,Rs
9128 MIAxycc acc0,Rm,Rs. */
9129
9130 static void
9131 do_xsc_mia (void)
9132 {
9133 inst.instruction |= inst.operands[1].reg;
9134 inst.instruction |= inst.operands[2].reg << 12;
9135 }
9136
9137 /* Xscale move-accumulator-register (argument parse)
9138
9139 MARcc acc0,RdLo,RdHi. */
9140
9141 static void
9142 do_xsc_mar (void)
9143 {
9144 inst.instruction |= inst.operands[1].reg << 12;
9145 inst.instruction |= inst.operands[2].reg << 16;
9146 }
9147
9148 /* Xscale move-register-accumulator (argument parse)
9149
9150 MRAcc RdLo,RdHi,acc0. */
9151
9152 static void
9153 do_xsc_mra (void)
9154 {
9155 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9156 inst.instruction |= inst.operands[0].reg << 12;
9157 inst.instruction |= inst.operands[1].reg << 16;
9158 }
9159 \f
9160 /* Encoding functions relevant only to Thumb. */
9161
9162 /* inst.operands[i] is a shifted-register operand; encode
9163 it into inst.instruction in the format used by Thumb32. */
9164
9165 static void
9166 encode_thumb32_shifted_operand (int i)
9167 {
9168 unsigned int value = inst.reloc.exp.X_add_number;
9169 unsigned int shift = inst.operands[i].shift_kind;
9170
9171 constraint (inst.operands[i].immisreg,
9172 _("shift by register not allowed in thumb mode"));
9173 inst.instruction |= inst.operands[i].reg;
9174 if (shift == SHIFT_RRX)
9175 inst.instruction |= SHIFT_ROR << 4;
9176 else
9177 {
9178 constraint (inst.reloc.exp.X_op != O_constant,
9179 _("expression too complex"));
9180
9181 constraint (value > 32
9182 || (value == 32 && (shift == SHIFT_LSL
9183 || shift == SHIFT_ROR)),
9184 _("shift expression is too large"));
9185
9186 if (value == 0)
9187 shift = SHIFT_LSL;
9188 else if (value == 32)
9189 value = 0;
9190
9191 inst.instruction |= shift << 4;
9192 inst.instruction |= (value & 0x1c) << 10;
9193 inst.instruction |= (value & 0x03) << 6;
9194 }
9195 }
9196
9197
9198 /* inst.operands[i] was set up by parse_address. Encode it into a
9199 Thumb32 format load or store instruction. Reject forms that cannot
9200 be used with such instructions. If is_t is true, reject forms that
9201 cannot be used with a T instruction; if is_d is true, reject forms
9202 that cannot be used with a D instruction. If it is a store insn,
9203 reject PC in Rn. */
9204
9205 static void
9206 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9207 {
9208 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9209
9210 constraint (!inst.operands[i].isreg,
9211 _("Instruction does not support =N addresses"));
9212
9213 inst.instruction |= inst.operands[i].reg << 16;
9214 if (inst.operands[i].immisreg)
9215 {
9216 constraint (is_pc, BAD_PC_ADDRESSING);
9217 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9218 constraint (inst.operands[i].negative,
9219 _("Thumb does not support negative register indexing"));
9220 constraint (inst.operands[i].postind,
9221 _("Thumb does not support register post-indexing"));
9222 constraint (inst.operands[i].writeback,
9223 _("Thumb does not support register indexing with writeback"));
9224 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9225 _("Thumb supports only LSL in shifted register indexing"));
9226
9227 inst.instruction |= inst.operands[i].imm;
9228 if (inst.operands[i].shifted)
9229 {
9230 constraint (inst.reloc.exp.X_op != O_constant,
9231 _("expression too complex"));
9232 constraint (inst.reloc.exp.X_add_number < 0
9233 || inst.reloc.exp.X_add_number > 3,
9234 _("shift out of range"));
9235 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9236 }
9237 inst.reloc.type = BFD_RELOC_UNUSED;
9238 }
9239 else if (inst.operands[i].preind)
9240 {
9241 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9242 constraint (is_t && inst.operands[i].writeback,
9243 _("cannot use writeback with this instruction"));
9244 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9245 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9246
9247 if (is_d)
9248 {
9249 inst.instruction |= 0x01000000;
9250 if (inst.operands[i].writeback)
9251 inst.instruction |= 0x00200000;
9252 }
9253 else
9254 {
9255 inst.instruction |= 0x00000c00;
9256 if (inst.operands[i].writeback)
9257 inst.instruction |= 0x00000100;
9258 }
9259 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9260 }
9261 else if (inst.operands[i].postind)
9262 {
9263 gas_assert (inst.operands[i].writeback);
9264 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9265 constraint (is_t, _("cannot use post-indexing with this instruction"));
9266
9267 if (is_d)
9268 inst.instruction |= 0x00200000;
9269 else
9270 inst.instruction |= 0x00000900;
9271 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9272 }
9273 else /* unindexed - only for coprocessor */
9274 inst.error = _("instruction does not accept unindexed addressing");
9275 }
9276
9277 /* Table of Thumb instructions which exist in both 16- and 32-bit
9278 encodings (the latter only in post-V6T2 cores). The index is the
9279 value used in the insns table below. When there is more than one
9280 possible 16-bit encoding for the instruction, this table always
9281 holds variant (1).
9282 Also contains several pseudo-instructions used during relaxation. */
9283 #define T16_32_TAB \
9284 X(_adc, 4140, eb400000), \
9285 X(_adcs, 4140, eb500000), \
9286 X(_add, 1c00, eb000000), \
9287 X(_adds, 1c00, eb100000), \
9288 X(_addi, 0000, f1000000), \
9289 X(_addis, 0000, f1100000), \
9290 X(_add_pc,000f, f20f0000), \
9291 X(_add_sp,000d, f10d0000), \
9292 X(_adr, 000f, f20f0000), \
9293 X(_and, 4000, ea000000), \
9294 X(_ands, 4000, ea100000), \
9295 X(_asr, 1000, fa40f000), \
9296 X(_asrs, 1000, fa50f000), \
9297 X(_b, e000, f000b000), \
9298 X(_bcond, d000, f0008000), \
9299 X(_bic, 4380, ea200000), \
9300 X(_bics, 4380, ea300000), \
9301 X(_cmn, 42c0, eb100f00), \
9302 X(_cmp, 2800, ebb00f00), \
9303 X(_cpsie, b660, f3af8400), \
9304 X(_cpsid, b670, f3af8600), \
9305 X(_cpy, 4600, ea4f0000), \
9306 X(_dec_sp,80dd, f1ad0d00), \
9307 X(_eor, 4040, ea800000), \
9308 X(_eors, 4040, ea900000), \
9309 X(_inc_sp,00dd, f10d0d00), \
9310 X(_ldmia, c800, e8900000), \
9311 X(_ldr, 6800, f8500000), \
9312 X(_ldrb, 7800, f8100000), \
9313 X(_ldrh, 8800, f8300000), \
9314 X(_ldrsb, 5600, f9100000), \
9315 X(_ldrsh, 5e00, f9300000), \
9316 X(_ldr_pc,4800, f85f0000), \
9317 X(_ldr_pc2,4800, f85f0000), \
9318 X(_ldr_sp,9800, f85d0000), \
9319 X(_lsl, 0000, fa00f000), \
9320 X(_lsls, 0000, fa10f000), \
9321 X(_lsr, 0800, fa20f000), \
9322 X(_lsrs, 0800, fa30f000), \
9323 X(_mov, 2000, ea4f0000), \
9324 X(_movs, 2000, ea5f0000), \
9325 X(_mul, 4340, fb00f000), \
9326 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9327 X(_mvn, 43c0, ea6f0000), \
9328 X(_mvns, 43c0, ea7f0000), \
9329 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9330 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9331 X(_orr, 4300, ea400000), \
9332 X(_orrs, 4300, ea500000), \
9333 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9334 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9335 X(_rev, ba00, fa90f080), \
9336 X(_rev16, ba40, fa90f090), \
9337 X(_revsh, bac0, fa90f0b0), \
9338 X(_ror, 41c0, fa60f000), \
9339 X(_rors, 41c0, fa70f000), \
9340 X(_sbc, 4180, eb600000), \
9341 X(_sbcs, 4180, eb700000), \
9342 X(_stmia, c000, e8800000), \
9343 X(_str, 6000, f8400000), \
9344 X(_strb, 7000, f8000000), \
9345 X(_strh, 8000, f8200000), \
9346 X(_str_sp,9000, f84d0000), \
9347 X(_sub, 1e00, eba00000), \
9348 X(_subs, 1e00, ebb00000), \
9349 X(_subi, 8000, f1a00000), \
9350 X(_subis, 8000, f1b00000), \
9351 X(_sxtb, b240, fa4ff080), \
9352 X(_sxth, b200, fa0ff080), \
9353 X(_tst, 4200, ea100f00), \
9354 X(_uxtb, b2c0, fa5ff080), \
9355 X(_uxth, b280, fa1ff080), \
9356 X(_nop, bf00, f3af8000), \
9357 X(_yield, bf10, f3af8001), \
9358 X(_wfe, bf20, f3af8002), \
9359 X(_wfi, bf30, f3af8003), \
9360 X(_sev, bf40, f3af8004),
9361
9362 /* To catch errors in encoding functions, the codes are all offset by
9363 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9364 as 16-bit instructions. */
9365 #define X(a,b,c) T_MNEM##a
9366 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9367 #undef X
9368
9369 #define X(a,b,c) 0x##b
9370 static const unsigned short thumb_op16[] = { T16_32_TAB };
9371 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9372 #undef X
9373
9374 #define X(a,b,c) 0x##c
9375 static const unsigned int thumb_op32[] = { T16_32_TAB };
9376 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9377 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9378 #undef X
9379 #undef T16_32_TAB
9380
9381 /* Thumb instruction encoders, in alphabetical order. */
9382
9383 /* ADDW or SUBW. */
9384
9385 static void
9386 do_t_add_sub_w (void)
9387 {
9388 int Rd, Rn;
9389
9390 Rd = inst.operands[0].reg;
9391 Rn = inst.operands[1].reg;
9392
9393 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9394 is the SP-{plus,minus}-immediate form of the instruction. */
9395 if (Rn == REG_SP)
9396 constraint (Rd == REG_PC, BAD_PC);
9397 else
9398 reject_bad_reg (Rd);
9399
9400 inst.instruction |= (Rn << 16) | (Rd << 8);
9401 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9402 }
9403
9404 /* Parse an add or subtract instruction. We get here with inst.instruction
9405 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9406
9407 static void
9408 do_t_add_sub (void)
9409 {
9410 int Rd, Rs, Rn;
9411
9412 Rd = inst.operands[0].reg;
9413 Rs = (inst.operands[1].present
9414 ? inst.operands[1].reg /* Rd, Rs, foo */
9415 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9416
9417 if (Rd == REG_PC)
9418 set_it_insn_type_last ();
9419
9420 if (unified_syntax)
9421 {
9422 bfd_boolean flags;
9423 bfd_boolean narrow;
9424 int opcode;
9425
9426 flags = (inst.instruction == T_MNEM_adds
9427 || inst.instruction == T_MNEM_subs);
9428 if (flags)
9429 narrow = !in_it_block ();
9430 else
9431 narrow = in_it_block ();
9432 if (!inst.operands[2].isreg)
9433 {
9434 int add;
9435
9436 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9437
9438 add = (inst.instruction == T_MNEM_add
9439 || inst.instruction == T_MNEM_adds);
9440 opcode = 0;
9441 if (inst.size_req != 4)
9442 {
9443 /* Attempt to use a narrow opcode, with relaxation if
9444 appropriate. */
9445 if (Rd == REG_SP && Rs == REG_SP && !flags)
9446 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9447 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9448 opcode = T_MNEM_add_sp;
9449 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9450 opcode = T_MNEM_add_pc;
9451 else if (Rd <= 7 && Rs <= 7 && narrow)
9452 {
9453 if (flags)
9454 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9455 else
9456 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9457 }
9458 if (opcode)
9459 {
9460 inst.instruction = THUMB_OP16(opcode);
9461 inst.instruction |= (Rd << 4) | Rs;
9462 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9463 if (inst.size_req != 2)
9464 inst.relax = opcode;
9465 }
9466 else
9467 constraint (inst.size_req == 2, BAD_HIREG);
9468 }
9469 if (inst.size_req == 4
9470 || (inst.size_req != 2 && !opcode))
9471 {
9472 if (Rd == REG_PC)
9473 {
9474 constraint (add, BAD_PC);
9475 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9476 _("only SUBS PC, LR, #const allowed"));
9477 constraint (inst.reloc.exp.X_op != O_constant,
9478 _("expression too complex"));
9479 constraint (inst.reloc.exp.X_add_number < 0
9480 || inst.reloc.exp.X_add_number > 0xff,
9481 _("immediate value out of range"));
9482 inst.instruction = T2_SUBS_PC_LR
9483 | inst.reloc.exp.X_add_number;
9484 inst.reloc.type = BFD_RELOC_UNUSED;
9485 return;
9486 }
9487 else if (Rs == REG_PC)
9488 {
9489 /* Always use addw/subw. */
9490 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9491 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9492 }
9493 else
9494 {
9495 inst.instruction = THUMB_OP32 (inst.instruction);
9496 inst.instruction = (inst.instruction & 0xe1ffffff)
9497 | 0x10000000;
9498 if (flags)
9499 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9500 else
9501 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9502 }
9503 inst.instruction |= Rd << 8;
9504 inst.instruction |= Rs << 16;
9505 }
9506 }
9507 else
9508 {
9509 unsigned int value = inst.reloc.exp.X_add_number;
9510 unsigned int shift = inst.operands[2].shift_kind;
9511
9512 Rn = inst.operands[2].reg;
9513 /* See if we can do this with a 16-bit instruction. */
9514 if (!inst.operands[2].shifted && inst.size_req != 4)
9515 {
9516 if (Rd > 7 || Rs > 7 || Rn > 7)
9517 narrow = FALSE;
9518
9519 if (narrow)
9520 {
9521 inst.instruction = ((inst.instruction == T_MNEM_adds
9522 || inst.instruction == T_MNEM_add)
9523 ? T_OPCODE_ADD_R3
9524 : T_OPCODE_SUB_R3);
9525 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9526 return;
9527 }
9528
9529 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9530 {
9531 /* Thumb-1 cores (except v6-M) require at least one high
9532 register in a narrow non flag setting add. */
9533 if (Rd > 7 || Rn > 7
9534 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9535 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9536 {
9537 if (Rd == Rn)
9538 {
9539 Rn = Rs;
9540 Rs = Rd;
9541 }
9542 inst.instruction = T_OPCODE_ADD_HI;
9543 inst.instruction |= (Rd & 8) << 4;
9544 inst.instruction |= (Rd & 7);
9545 inst.instruction |= Rn << 3;
9546 return;
9547 }
9548 }
9549 }
9550
9551 constraint (Rd == REG_PC, BAD_PC);
9552 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9553 constraint (Rs == REG_PC, BAD_PC);
9554 reject_bad_reg (Rn);
9555
9556 /* If we get here, it can't be done in 16 bits. */
9557 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9558 _("shift must be constant"));
9559 inst.instruction = THUMB_OP32 (inst.instruction);
9560 inst.instruction |= Rd << 8;
9561 inst.instruction |= Rs << 16;
9562 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9563 _("shift value over 3 not allowed in thumb mode"));
9564 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9565 _("only LSL shift allowed in thumb mode"));
9566 encode_thumb32_shifted_operand (2);
9567 }
9568 }
9569 else
9570 {
9571 constraint (inst.instruction == T_MNEM_adds
9572 || inst.instruction == T_MNEM_subs,
9573 BAD_THUMB32);
9574
9575 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9576 {
9577 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9578 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9579 BAD_HIREG);
9580
9581 inst.instruction = (inst.instruction == T_MNEM_add
9582 ? 0x0000 : 0x8000);
9583 inst.instruction |= (Rd << 4) | Rs;
9584 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9585 return;
9586 }
9587
9588 Rn = inst.operands[2].reg;
9589 constraint (inst.operands[2].shifted, _("unshifted register required"));
9590
9591 /* We now have Rd, Rs, and Rn set to registers. */
9592 if (Rd > 7 || Rs > 7 || Rn > 7)
9593 {
9594 /* Can't do this for SUB. */
9595 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9596 inst.instruction = T_OPCODE_ADD_HI;
9597 inst.instruction |= (Rd & 8) << 4;
9598 inst.instruction |= (Rd & 7);
9599 if (Rs == Rd)
9600 inst.instruction |= Rn << 3;
9601 else if (Rn == Rd)
9602 inst.instruction |= Rs << 3;
9603 else
9604 constraint (1, _("dest must overlap one source register"));
9605 }
9606 else
9607 {
9608 inst.instruction = (inst.instruction == T_MNEM_add
9609 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9610 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9611 }
9612 }
9613 }
9614
9615 static void
9616 do_t_adr (void)
9617 {
9618 unsigned Rd;
9619
9620 Rd = inst.operands[0].reg;
9621 reject_bad_reg (Rd);
9622
9623 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9624 {
9625 /* Defer to section relaxation. */
9626 inst.relax = inst.instruction;
9627 inst.instruction = THUMB_OP16 (inst.instruction);
9628 inst.instruction |= Rd << 4;
9629 }
9630 else if (unified_syntax && inst.size_req != 2)
9631 {
9632 /* Generate a 32-bit opcode. */
9633 inst.instruction = THUMB_OP32 (inst.instruction);
9634 inst.instruction |= Rd << 8;
9635 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9636 inst.reloc.pc_rel = 1;
9637 }
9638 else
9639 {
9640 /* Generate a 16-bit opcode. */
9641 inst.instruction = THUMB_OP16 (inst.instruction);
9642 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9643 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9644 inst.reloc.pc_rel = 1;
9645
9646 inst.instruction |= Rd << 4;
9647 }
9648 }
9649
9650 /* Arithmetic instructions for which there is just one 16-bit
9651 instruction encoding, and it allows only two low registers.
9652 For maximal compatibility with ARM syntax, we allow three register
9653 operands even when Thumb-32 instructions are not available, as long
9654 as the first two are identical. For instance, both "sbc r0,r1" and
9655 "sbc r0,r0,r1" are allowed. */
9656 static void
9657 do_t_arit3 (void)
9658 {
9659 int Rd, Rs, Rn;
9660
9661 Rd = inst.operands[0].reg;
9662 Rs = (inst.operands[1].present
9663 ? inst.operands[1].reg /* Rd, Rs, foo */
9664 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9665 Rn = inst.operands[2].reg;
9666
9667 reject_bad_reg (Rd);
9668 reject_bad_reg (Rs);
9669 if (inst.operands[2].isreg)
9670 reject_bad_reg (Rn);
9671
9672 if (unified_syntax)
9673 {
9674 if (!inst.operands[2].isreg)
9675 {
9676 /* For an immediate, we always generate a 32-bit opcode;
9677 section relaxation will shrink it later if possible. */
9678 inst.instruction = THUMB_OP32 (inst.instruction);
9679 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9680 inst.instruction |= Rd << 8;
9681 inst.instruction |= Rs << 16;
9682 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9683 }
9684 else
9685 {
9686 bfd_boolean narrow;
9687
9688 /* See if we can do this with a 16-bit instruction. */
9689 if (THUMB_SETS_FLAGS (inst.instruction))
9690 narrow = !in_it_block ();
9691 else
9692 narrow = in_it_block ();
9693
9694 if (Rd > 7 || Rn > 7 || Rs > 7)
9695 narrow = FALSE;
9696 if (inst.operands[2].shifted)
9697 narrow = FALSE;
9698 if (inst.size_req == 4)
9699 narrow = FALSE;
9700
9701 if (narrow
9702 && Rd == Rs)
9703 {
9704 inst.instruction = THUMB_OP16 (inst.instruction);
9705 inst.instruction |= Rd;
9706 inst.instruction |= Rn << 3;
9707 return;
9708 }
9709
9710 /* If we get here, it can't be done in 16 bits. */
9711 constraint (inst.operands[2].shifted
9712 && inst.operands[2].immisreg,
9713 _("shift must be constant"));
9714 inst.instruction = THUMB_OP32 (inst.instruction);
9715 inst.instruction |= Rd << 8;
9716 inst.instruction |= Rs << 16;
9717 encode_thumb32_shifted_operand (2);
9718 }
9719 }
9720 else
9721 {
9722 /* On its face this is a lie - the instruction does set the
9723 flags. However, the only supported mnemonic in this mode
9724 says it doesn't. */
9725 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9726
9727 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9728 _("unshifted register required"));
9729 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9730 constraint (Rd != Rs,
9731 _("dest and source1 must be the same register"));
9732
9733 inst.instruction = THUMB_OP16 (inst.instruction);
9734 inst.instruction |= Rd;
9735 inst.instruction |= Rn << 3;
9736 }
9737 }
9738
9739 /* Similarly, but for instructions where the arithmetic operation is
9740 commutative, so we can allow either of them to be different from
9741 the destination operand in a 16-bit instruction. For instance, all
9742 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9743 accepted. */
9744 static void
9745 do_t_arit3c (void)
9746 {
9747 int Rd, Rs, Rn;
9748
9749 Rd = inst.operands[0].reg;
9750 Rs = (inst.operands[1].present
9751 ? inst.operands[1].reg /* Rd, Rs, foo */
9752 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9753 Rn = inst.operands[2].reg;
9754
9755 reject_bad_reg (Rd);
9756 reject_bad_reg (Rs);
9757 if (inst.operands[2].isreg)
9758 reject_bad_reg (Rn);
9759
9760 if (unified_syntax)
9761 {
9762 if (!inst.operands[2].isreg)
9763 {
9764 /* For an immediate, we always generate a 32-bit opcode;
9765 section relaxation will shrink it later if possible. */
9766 inst.instruction = THUMB_OP32 (inst.instruction);
9767 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9768 inst.instruction |= Rd << 8;
9769 inst.instruction |= Rs << 16;
9770 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9771 }
9772 else
9773 {
9774 bfd_boolean narrow;
9775
9776 /* See if we can do this with a 16-bit instruction. */
9777 if (THUMB_SETS_FLAGS (inst.instruction))
9778 narrow = !in_it_block ();
9779 else
9780 narrow = in_it_block ();
9781
9782 if (Rd > 7 || Rn > 7 || Rs > 7)
9783 narrow = FALSE;
9784 if (inst.operands[2].shifted)
9785 narrow = FALSE;
9786 if (inst.size_req == 4)
9787 narrow = FALSE;
9788
9789 if (narrow)
9790 {
9791 if (Rd == Rs)
9792 {
9793 inst.instruction = THUMB_OP16 (inst.instruction);
9794 inst.instruction |= Rd;
9795 inst.instruction |= Rn << 3;
9796 return;
9797 }
9798 if (Rd == Rn)
9799 {
9800 inst.instruction = THUMB_OP16 (inst.instruction);
9801 inst.instruction |= Rd;
9802 inst.instruction |= Rs << 3;
9803 return;
9804 }
9805 }
9806
9807 /* If we get here, it can't be done in 16 bits. */
9808 constraint (inst.operands[2].shifted
9809 && inst.operands[2].immisreg,
9810 _("shift must be constant"));
9811 inst.instruction = THUMB_OP32 (inst.instruction);
9812 inst.instruction |= Rd << 8;
9813 inst.instruction |= Rs << 16;
9814 encode_thumb32_shifted_operand (2);
9815 }
9816 }
9817 else
9818 {
9819 /* On its face this is a lie - the instruction does set the
9820 flags. However, the only supported mnemonic in this mode
9821 says it doesn't. */
9822 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9823
9824 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9825 _("unshifted register required"));
9826 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9827
9828 inst.instruction = THUMB_OP16 (inst.instruction);
9829 inst.instruction |= Rd;
9830
9831 if (Rd == Rs)
9832 inst.instruction |= Rn << 3;
9833 else if (Rd == Rn)
9834 inst.instruction |= Rs << 3;
9835 else
9836 constraint (1, _("dest must overlap one source register"));
9837 }
9838 }
9839
9840 static void
9841 do_t_barrier (void)
9842 {
9843 if (inst.operands[0].present)
9844 {
9845 constraint ((inst.instruction & 0xf0) != 0x40
9846 && inst.operands[0].imm > 0xf
9847 && inst.operands[0].imm < 0x0,
9848 _("bad barrier type"));
9849 inst.instruction |= inst.operands[0].imm;
9850 }
9851 else
9852 inst.instruction |= 0xf;
9853 }
9854
9855 static void
9856 do_t_bfc (void)
9857 {
9858 unsigned Rd;
9859 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9860 constraint (msb > 32, _("bit-field extends past end of register"));
9861 /* The instruction encoding stores the LSB and MSB,
9862 not the LSB and width. */
9863 Rd = inst.operands[0].reg;
9864 reject_bad_reg (Rd);
9865 inst.instruction |= Rd << 8;
9866 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9867 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9868 inst.instruction |= msb - 1;
9869 }
9870
9871 static void
9872 do_t_bfi (void)
9873 {
9874 int Rd, Rn;
9875 unsigned int msb;
9876
9877 Rd = inst.operands[0].reg;
9878 reject_bad_reg (Rd);
9879
9880 /* #0 in second position is alternative syntax for bfc, which is
9881 the same instruction but with REG_PC in the Rm field. */
9882 if (!inst.operands[1].isreg)
9883 Rn = REG_PC;
9884 else
9885 {
9886 Rn = inst.operands[1].reg;
9887 reject_bad_reg (Rn);
9888 }
9889
9890 msb = inst.operands[2].imm + inst.operands[3].imm;
9891 constraint (msb > 32, _("bit-field extends past end of register"));
9892 /* The instruction encoding stores the LSB and MSB,
9893 not the LSB and width. */
9894 inst.instruction |= Rd << 8;
9895 inst.instruction |= Rn << 16;
9896 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9897 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9898 inst.instruction |= msb - 1;
9899 }
9900
9901 static void
9902 do_t_bfx (void)
9903 {
9904 unsigned Rd, Rn;
9905
9906 Rd = inst.operands[0].reg;
9907 Rn = inst.operands[1].reg;
9908
9909 reject_bad_reg (Rd);
9910 reject_bad_reg (Rn);
9911
9912 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9913 _("bit-field extends past end of register"));
9914 inst.instruction |= Rd << 8;
9915 inst.instruction |= Rn << 16;
9916 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9917 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9918 inst.instruction |= inst.operands[3].imm - 1;
9919 }
9920
9921 /* ARM V5 Thumb BLX (argument parse)
9922 BLX <target_addr> which is BLX(1)
9923 BLX <Rm> which is BLX(2)
9924 Unfortunately, there are two different opcodes for this mnemonic.
9925 So, the insns[].value is not used, and the code here zaps values
9926 into inst.instruction.
9927
9928 ??? How to take advantage of the additional two bits of displacement
9929 available in Thumb32 mode? Need new relocation? */
9930
9931 static void
9932 do_t_blx (void)
9933 {
9934 set_it_insn_type_last ();
9935
9936 if (inst.operands[0].isreg)
9937 {
9938 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9939 /* We have a register, so this is BLX(2). */
9940 inst.instruction |= inst.operands[0].reg << 3;
9941 }
9942 else
9943 {
9944 /* No register. This must be BLX(1). */
9945 inst.instruction = 0xf000e800;
9946 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
9947 }
9948 }
9949
9950 static void
9951 do_t_branch (void)
9952 {
9953 int opcode;
9954 int cond;
9955 int reloc;
9956
9957 cond = inst.cond;
9958 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9959
9960 if (in_it_block ())
9961 {
9962 /* Conditional branches inside IT blocks are encoded as unconditional
9963 branches. */
9964 cond = COND_ALWAYS;
9965 }
9966 else
9967 cond = inst.cond;
9968
9969 if (cond != COND_ALWAYS)
9970 opcode = T_MNEM_bcond;
9971 else
9972 opcode = inst.instruction;
9973
9974 if (unified_syntax
9975 && (inst.size_req == 4
9976 || (inst.size_req != 2
9977 && (inst.operands[0].hasreloc
9978 || inst.reloc.exp.X_op == O_constant))))
9979 {
9980 inst.instruction = THUMB_OP32(opcode);
9981 if (cond == COND_ALWAYS)
9982 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
9983 else
9984 {
9985 gas_assert (cond != 0xF);
9986 inst.instruction |= cond << 22;
9987 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
9988 }
9989 }
9990 else
9991 {
9992 inst.instruction = THUMB_OP16(opcode);
9993 if (cond == COND_ALWAYS)
9994 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
9995 else
9996 {
9997 inst.instruction |= cond << 8;
9998 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
9999 }
10000 /* Allow section relaxation. */
10001 if (unified_syntax && inst.size_req != 2)
10002 inst.relax = opcode;
10003 }
10004 inst.reloc.type = reloc;
10005 inst.reloc.pc_rel = 1;
10006 }
10007
10008 static void
10009 do_t_bkpt (void)
10010 {
10011 constraint (inst.cond != COND_ALWAYS,
10012 _("instruction is always unconditional"));
10013 if (inst.operands[0].present)
10014 {
10015 constraint (inst.operands[0].imm > 255,
10016 _("immediate value out of range"));
10017 inst.instruction |= inst.operands[0].imm;
10018 set_it_insn_type (NEUTRAL_IT_INSN);
10019 }
10020 }
10021
10022 static void
10023 do_t_branch23 (void)
10024 {
10025 set_it_insn_type_last ();
10026 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10027
10028 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10029 this file. We used to simply ignore the PLT reloc type here --
10030 the branch encoding is now needed to deal with TLSCALL relocs.
10031 So if we see a PLT reloc now, put it back to how it used to be to
10032 keep the preexisting behaviour. */
10033 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10034 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10035
10036 #if defined(OBJ_COFF)
10037 /* If the destination of the branch is a defined symbol which does not have
10038 the THUMB_FUNC attribute, then we must be calling a function which has
10039 the (interfacearm) attribute. We look for the Thumb entry point to that
10040 function and change the branch to refer to that function instead. */
10041 if ( inst.reloc.exp.X_op == O_symbol
10042 && inst.reloc.exp.X_add_symbol != NULL
10043 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10044 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10045 inst.reloc.exp.X_add_symbol =
10046 find_real_start (inst.reloc.exp.X_add_symbol);
10047 #endif
10048 }
10049
10050 static void
10051 do_t_bx (void)
10052 {
10053 set_it_insn_type_last ();
10054 inst.instruction |= inst.operands[0].reg << 3;
10055 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10056 should cause the alignment to be checked once it is known. This is
10057 because BX PC only works if the instruction is word aligned. */
10058 }
10059
10060 static void
10061 do_t_bxj (void)
10062 {
10063 int Rm;
10064
10065 set_it_insn_type_last ();
10066 Rm = inst.operands[0].reg;
10067 reject_bad_reg (Rm);
10068 inst.instruction |= Rm << 16;
10069 }
10070
10071 static void
10072 do_t_clz (void)
10073 {
10074 unsigned Rd;
10075 unsigned Rm;
10076
10077 Rd = inst.operands[0].reg;
10078 Rm = inst.operands[1].reg;
10079
10080 reject_bad_reg (Rd);
10081 reject_bad_reg (Rm);
10082
10083 inst.instruction |= Rd << 8;
10084 inst.instruction |= Rm << 16;
10085 inst.instruction |= Rm;
10086 }
10087
10088 static void
10089 do_t_cps (void)
10090 {
10091 set_it_insn_type (OUTSIDE_IT_INSN);
10092 inst.instruction |= inst.operands[0].imm;
10093 }
10094
10095 static void
10096 do_t_cpsi (void)
10097 {
10098 set_it_insn_type (OUTSIDE_IT_INSN);
10099 if (unified_syntax
10100 && (inst.operands[1].present || inst.size_req == 4)
10101 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10102 {
10103 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10104 inst.instruction = 0xf3af8000;
10105 inst.instruction |= imod << 9;
10106 inst.instruction |= inst.operands[0].imm << 5;
10107 if (inst.operands[1].present)
10108 inst.instruction |= 0x100 | inst.operands[1].imm;
10109 }
10110 else
10111 {
10112 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10113 && (inst.operands[0].imm & 4),
10114 _("selected processor does not support 'A' form "
10115 "of this instruction"));
10116 constraint (inst.operands[1].present || inst.size_req == 4,
10117 _("Thumb does not support the 2-argument "
10118 "form of this instruction"));
10119 inst.instruction |= inst.operands[0].imm;
10120 }
10121 }
10122
10123 /* THUMB CPY instruction (argument parse). */
10124
10125 static void
10126 do_t_cpy (void)
10127 {
10128 if (inst.size_req == 4)
10129 {
10130 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10131 inst.instruction |= inst.operands[0].reg << 8;
10132 inst.instruction |= inst.operands[1].reg;
10133 }
10134 else
10135 {
10136 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10137 inst.instruction |= (inst.operands[0].reg & 0x7);
10138 inst.instruction |= inst.operands[1].reg << 3;
10139 }
10140 }
10141
10142 static void
10143 do_t_cbz (void)
10144 {
10145 set_it_insn_type (OUTSIDE_IT_INSN);
10146 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10147 inst.instruction |= inst.operands[0].reg;
10148 inst.reloc.pc_rel = 1;
10149 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10150 }
10151
10152 static void
10153 do_t_dbg (void)
10154 {
10155 inst.instruction |= inst.operands[0].imm;
10156 }
10157
10158 static void
10159 do_t_div (void)
10160 {
10161 unsigned Rd, Rn, Rm;
10162
10163 Rd = inst.operands[0].reg;
10164 Rn = (inst.operands[1].present
10165 ? inst.operands[1].reg : Rd);
10166 Rm = inst.operands[2].reg;
10167
10168 reject_bad_reg (Rd);
10169 reject_bad_reg (Rn);
10170 reject_bad_reg (Rm);
10171
10172 inst.instruction |= Rd << 8;
10173 inst.instruction |= Rn << 16;
10174 inst.instruction |= Rm;
10175 }
10176
10177 static void
10178 do_t_hint (void)
10179 {
10180 if (unified_syntax && inst.size_req == 4)
10181 inst.instruction = THUMB_OP32 (inst.instruction);
10182 else
10183 inst.instruction = THUMB_OP16 (inst.instruction);
10184 }
10185
10186 static void
10187 do_t_it (void)
10188 {
10189 unsigned int cond = inst.operands[0].imm;
10190
10191 set_it_insn_type (IT_INSN);
10192 now_it.mask = (inst.instruction & 0xf) | 0x10;
10193 now_it.cc = cond;
10194
10195 /* If the condition is a negative condition, invert the mask. */
10196 if ((cond & 0x1) == 0x0)
10197 {
10198 unsigned int mask = inst.instruction & 0x000f;
10199
10200 if ((mask & 0x7) == 0)
10201 /* no conversion needed */;
10202 else if ((mask & 0x3) == 0)
10203 mask ^= 0x8;
10204 else if ((mask & 0x1) == 0)
10205 mask ^= 0xC;
10206 else
10207 mask ^= 0xE;
10208
10209 inst.instruction &= 0xfff0;
10210 inst.instruction |= mask;
10211 }
10212
10213 inst.instruction |= cond << 4;
10214 }
10215
10216 /* Helper function used for both push/pop and ldm/stm. */
10217 static void
10218 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10219 {
10220 bfd_boolean load;
10221
10222 load = (inst.instruction & (1 << 20)) != 0;
10223
10224 if (mask & (1 << 13))
10225 inst.error = _("SP not allowed in register list");
10226
10227 if ((mask & (1 << base)) != 0
10228 && writeback)
10229 inst.error = _("having the base register in the register list when "
10230 "using write back is UNPREDICTABLE");
10231
10232 if (load)
10233 {
10234 if (mask & (1 << 15))
10235 {
10236 if (mask & (1 << 14))
10237 inst.error = _("LR and PC should not both be in register list");
10238 else
10239 set_it_insn_type_last ();
10240 }
10241 }
10242 else
10243 {
10244 if (mask & (1 << 15))
10245 inst.error = _("PC not allowed in register list");
10246 }
10247
10248 if ((mask & (mask - 1)) == 0)
10249 {
10250 /* Single register transfers implemented as str/ldr. */
10251 if (writeback)
10252 {
10253 if (inst.instruction & (1 << 23))
10254 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10255 else
10256 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10257 }
10258 else
10259 {
10260 if (inst.instruction & (1 << 23))
10261 inst.instruction = 0x00800000; /* ia -> [base] */
10262 else
10263 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10264 }
10265
10266 inst.instruction |= 0xf8400000;
10267 if (load)
10268 inst.instruction |= 0x00100000;
10269
10270 mask = ffs (mask) - 1;
10271 mask <<= 12;
10272 }
10273 else if (writeback)
10274 inst.instruction |= WRITE_BACK;
10275
10276 inst.instruction |= mask;
10277 inst.instruction |= base << 16;
10278 }
10279
10280 static void
10281 do_t_ldmstm (void)
10282 {
10283 /* This really doesn't seem worth it. */
10284 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10285 _("expression too complex"));
10286 constraint (inst.operands[1].writeback,
10287 _("Thumb load/store multiple does not support {reglist}^"));
10288
10289 if (unified_syntax)
10290 {
10291 bfd_boolean narrow;
10292 unsigned mask;
10293
10294 narrow = FALSE;
10295 /* See if we can use a 16-bit instruction. */
10296 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10297 && inst.size_req != 4
10298 && !(inst.operands[1].imm & ~0xff))
10299 {
10300 mask = 1 << inst.operands[0].reg;
10301
10302 if (inst.operands[0].reg <= 7)
10303 {
10304 if (inst.instruction == T_MNEM_stmia
10305 ? inst.operands[0].writeback
10306 : (inst.operands[0].writeback
10307 == !(inst.operands[1].imm & mask)))
10308 {
10309 if (inst.instruction == T_MNEM_stmia
10310 && (inst.operands[1].imm & mask)
10311 && (inst.operands[1].imm & (mask - 1)))
10312 as_warn (_("value stored for r%d is UNKNOWN"),
10313 inst.operands[0].reg);
10314
10315 inst.instruction = THUMB_OP16 (inst.instruction);
10316 inst.instruction |= inst.operands[0].reg << 8;
10317 inst.instruction |= inst.operands[1].imm;
10318 narrow = TRUE;
10319 }
10320 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10321 {
10322 /* This means 1 register in reg list one of 3 situations:
10323 1. Instruction is stmia, but without writeback.
10324 2. lmdia without writeback, but with Rn not in
10325 reglist.
10326 3. ldmia with writeback, but with Rn in reglist.
10327 Case 3 is UNPREDICTABLE behaviour, so we handle
10328 case 1 and 2 which can be converted into a 16-bit
10329 str or ldr. The SP cases are handled below. */
10330 unsigned long opcode;
10331 /* First, record an error for Case 3. */
10332 if (inst.operands[1].imm & mask
10333 && inst.operands[0].writeback)
10334 inst.error =
10335 _("having the base register in the register list when "
10336 "using write back is UNPREDICTABLE");
10337
10338 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10339 : T_MNEM_ldr);
10340 inst.instruction = THUMB_OP16 (opcode);
10341 inst.instruction |= inst.operands[0].reg << 3;
10342 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10343 narrow = TRUE;
10344 }
10345 }
10346 else if (inst.operands[0] .reg == REG_SP)
10347 {
10348 if (inst.operands[0].writeback)
10349 {
10350 inst.instruction =
10351 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10352 ? T_MNEM_push : T_MNEM_pop);
10353 inst.instruction |= inst.operands[1].imm;
10354 narrow = TRUE;
10355 }
10356 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10357 {
10358 inst.instruction =
10359 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10360 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10361 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10362 narrow = TRUE;
10363 }
10364 }
10365 }
10366
10367 if (!narrow)
10368 {
10369 if (inst.instruction < 0xffff)
10370 inst.instruction = THUMB_OP32 (inst.instruction);
10371
10372 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10373 inst.operands[0].writeback);
10374 }
10375 }
10376 else
10377 {
10378 constraint (inst.operands[0].reg > 7
10379 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10380 constraint (inst.instruction != T_MNEM_ldmia
10381 && inst.instruction != T_MNEM_stmia,
10382 _("Thumb-2 instruction only valid in unified syntax"));
10383 if (inst.instruction == T_MNEM_stmia)
10384 {
10385 if (!inst.operands[0].writeback)
10386 as_warn (_("this instruction will write back the base register"));
10387 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10388 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10389 as_warn (_("value stored for r%d is UNKNOWN"),
10390 inst.operands[0].reg);
10391 }
10392 else
10393 {
10394 if (!inst.operands[0].writeback
10395 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10396 as_warn (_("this instruction will write back the base register"));
10397 else if (inst.operands[0].writeback
10398 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10399 as_warn (_("this instruction will not write back the base register"));
10400 }
10401
10402 inst.instruction = THUMB_OP16 (inst.instruction);
10403 inst.instruction |= inst.operands[0].reg << 8;
10404 inst.instruction |= inst.operands[1].imm;
10405 }
10406 }
10407
10408 static void
10409 do_t_ldrex (void)
10410 {
10411 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10412 || inst.operands[1].postind || inst.operands[1].writeback
10413 || inst.operands[1].immisreg || inst.operands[1].shifted
10414 || inst.operands[1].negative,
10415 BAD_ADDR_MODE);
10416
10417 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10418
10419 inst.instruction |= inst.operands[0].reg << 12;
10420 inst.instruction |= inst.operands[1].reg << 16;
10421 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10422 }
10423
10424 static void
10425 do_t_ldrexd (void)
10426 {
10427 if (!inst.operands[1].present)
10428 {
10429 constraint (inst.operands[0].reg == REG_LR,
10430 _("r14 not allowed as first register "
10431 "when second register is omitted"));
10432 inst.operands[1].reg = inst.operands[0].reg + 1;
10433 }
10434 constraint (inst.operands[0].reg == inst.operands[1].reg,
10435 BAD_OVERLAP);
10436
10437 inst.instruction |= inst.operands[0].reg << 12;
10438 inst.instruction |= inst.operands[1].reg << 8;
10439 inst.instruction |= inst.operands[2].reg << 16;
10440 }
10441
10442 static void
10443 do_t_ldst (void)
10444 {
10445 unsigned long opcode;
10446 int Rn;
10447
10448 if (inst.operands[0].isreg
10449 && !inst.operands[0].preind
10450 && inst.operands[0].reg == REG_PC)
10451 set_it_insn_type_last ();
10452
10453 opcode = inst.instruction;
10454 if (unified_syntax)
10455 {
10456 if (!inst.operands[1].isreg)
10457 {
10458 if (opcode <= 0xffff)
10459 inst.instruction = THUMB_OP32 (opcode);
10460 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10461 return;
10462 }
10463 if (inst.operands[1].isreg
10464 && !inst.operands[1].writeback
10465 && !inst.operands[1].shifted && !inst.operands[1].postind
10466 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10467 && opcode <= 0xffff
10468 && inst.size_req != 4)
10469 {
10470 /* Insn may have a 16-bit form. */
10471 Rn = inst.operands[1].reg;
10472 if (inst.operands[1].immisreg)
10473 {
10474 inst.instruction = THUMB_OP16 (opcode);
10475 /* [Rn, Rik] */
10476 if (Rn <= 7 && inst.operands[1].imm <= 7)
10477 goto op16;
10478 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10479 reject_bad_reg (inst.operands[1].imm);
10480 }
10481 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10482 && opcode != T_MNEM_ldrsb)
10483 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10484 || (Rn == REG_SP && opcode == T_MNEM_str))
10485 {
10486 /* [Rn, #const] */
10487 if (Rn > 7)
10488 {
10489 if (Rn == REG_PC)
10490 {
10491 if (inst.reloc.pc_rel)
10492 opcode = T_MNEM_ldr_pc2;
10493 else
10494 opcode = T_MNEM_ldr_pc;
10495 }
10496 else
10497 {
10498 if (opcode == T_MNEM_ldr)
10499 opcode = T_MNEM_ldr_sp;
10500 else
10501 opcode = T_MNEM_str_sp;
10502 }
10503 inst.instruction = inst.operands[0].reg << 8;
10504 }
10505 else
10506 {
10507 inst.instruction = inst.operands[0].reg;
10508 inst.instruction |= inst.operands[1].reg << 3;
10509 }
10510 inst.instruction |= THUMB_OP16 (opcode);
10511 if (inst.size_req == 2)
10512 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10513 else
10514 inst.relax = opcode;
10515 return;
10516 }
10517 }
10518 /* Definitely a 32-bit variant. */
10519
10520 /* Warning for Erratum 752419. */
10521 if (opcode == T_MNEM_ldr
10522 && inst.operands[0].reg == REG_SP
10523 && inst.operands[1].writeback == 1
10524 && !inst.operands[1].immisreg)
10525 {
10526 if (no_cpu_selected ()
10527 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10528 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10529 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10530 as_warn (_("This instruction may be unpredictable "
10531 "if executed on M-profile cores "
10532 "with interrupts enabled."));
10533 }
10534
10535 /* Do some validations regarding addressing modes. */
10536 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10537 && opcode != T_MNEM_str)
10538 reject_bad_reg (inst.operands[1].imm);
10539
10540 inst.instruction = THUMB_OP32 (opcode);
10541 inst.instruction |= inst.operands[0].reg << 12;
10542 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10543 return;
10544 }
10545
10546 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10547
10548 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10549 {
10550 /* Only [Rn,Rm] is acceptable. */
10551 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10552 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10553 || inst.operands[1].postind || inst.operands[1].shifted
10554 || inst.operands[1].negative,
10555 _("Thumb does not support this addressing mode"));
10556 inst.instruction = THUMB_OP16 (inst.instruction);
10557 goto op16;
10558 }
10559
10560 inst.instruction = THUMB_OP16 (inst.instruction);
10561 if (!inst.operands[1].isreg)
10562 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10563 return;
10564
10565 constraint (!inst.operands[1].preind
10566 || inst.operands[1].shifted
10567 || inst.operands[1].writeback,
10568 _("Thumb does not support this addressing mode"));
10569 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10570 {
10571 constraint (inst.instruction & 0x0600,
10572 _("byte or halfword not valid for base register"));
10573 constraint (inst.operands[1].reg == REG_PC
10574 && !(inst.instruction & THUMB_LOAD_BIT),
10575 _("r15 based store not allowed"));
10576 constraint (inst.operands[1].immisreg,
10577 _("invalid base register for register offset"));
10578
10579 if (inst.operands[1].reg == REG_PC)
10580 inst.instruction = T_OPCODE_LDR_PC;
10581 else if (inst.instruction & THUMB_LOAD_BIT)
10582 inst.instruction = T_OPCODE_LDR_SP;
10583 else
10584 inst.instruction = T_OPCODE_STR_SP;
10585
10586 inst.instruction |= inst.operands[0].reg << 8;
10587 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10588 return;
10589 }
10590
10591 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10592 if (!inst.operands[1].immisreg)
10593 {
10594 /* Immediate offset. */
10595 inst.instruction |= inst.operands[0].reg;
10596 inst.instruction |= inst.operands[1].reg << 3;
10597 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10598 return;
10599 }
10600
10601 /* Register offset. */
10602 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10603 constraint (inst.operands[1].negative,
10604 _("Thumb does not support this addressing mode"));
10605
10606 op16:
10607 switch (inst.instruction)
10608 {
10609 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10610 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10611 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10612 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10613 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10614 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10615 case 0x5600 /* ldrsb */:
10616 case 0x5e00 /* ldrsh */: break;
10617 default: abort ();
10618 }
10619
10620 inst.instruction |= inst.operands[0].reg;
10621 inst.instruction |= inst.operands[1].reg << 3;
10622 inst.instruction |= inst.operands[1].imm << 6;
10623 }
10624
10625 static void
10626 do_t_ldstd (void)
10627 {
10628 if (!inst.operands[1].present)
10629 {
10630 inst.operands[1].reg = inst.operands[0].reg + 1;
10631 constraint (inst.operands[0].reg == REG_LR,
10632 _("r14 not allowed here"));
10633 }
10634 inst.instruction |= inst.operands[0].reg << 12;
10635 inst.instruction |= inst.operands[1].reg << 8;
10636 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10637 }
10638
10639 static void
10640 do_t_ldstt (void)
10641 {
10642 inst.instruction |= inst.operands[0].reg << 12;
10643 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10644 }
10645
10646 static void
10647 do_t_mla (void)
10648 {
10649 unsigned Rd, Rn, Rm, Ra;
10650
10651 Rd = inst.operands[0].reg;
10652 Rn = inst.operands[1].reg;
10653 Rm = inst.operands[2].reg;
10654 Ra = inst.operands[3].reg;
10655
10656 reject_bad_reg (Rd);
10657 reject_bad_reg (Rn);
10658 reject_bad_reg (Rm);
10659 reject_bad_reg (Ra);
10660
10661 inst.instruction |= Rd << 8;
10662 inst.instruction |= Rn << 16;
10663 inst.instruction |= Rm;
10664 inst.instruction |= Ra << 12;
10665 }
10666
10667 static void
10668 do_t_mlal (void)
10669 {
10670 unsigned RdLo, RdHi, Rn, Rm;
10671
10672 RdLo = inst.operands[0].reg;
10673 RdHi = inst.operands[1].reg;
10674 Rn = inst.operands[2].reg;
10675 Rm = inst.operands[3].reg;
10676
10677 reject_bad_reg (RdLo);
10678 reject_bad_reg (RdHi);
10679 reject_bad_reg (Rn);
10680 reject_bad_reg (Rm);
10681
10682 inst.instruction |= RdLo << 12;
10683 inst.instruction |= RdHi << 8;
10684 inst.instruction |= Rn << 16;
10685 inst.instruction |= Rm;
10686 }
10687
10688 static void
10689 do_t_mov_cmp (void)
10690 {
10691 unsigned Rn, Rm;
10692
10693 Rn = inst.operands[0].reg;
10694 Rm = inst.operands[1].reg;
10695
10696 if (Rn == REG_PC)
10697 set_it_insn_type_last ();
10698
10699 if (unified_syntax)
10700 {
10701 int r0off = (inst.instruction == T_MNEM_mov
10702 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10703 unsigned long opcode;
10704 bfd_boolean narrow;
10705 bfd_boolean low_regs;
10706
10707 low_regs = (Rn <= 7 && Rm <= 7);
10708 opcode = inst.instruction;
10709 if (in_it_block ())
10710 narrow = opcode != T_MNEM_movs;
10711 else
10712 narrow = opcode != T_MNEM_movs || low_regs;
10713 if (inst.size_req == 4
10714 || inst.operands[1].shifted)
10715 narrow = FALSE;
10716
10717 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10718 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10719 && !inst.operands[1].shifted
10720 && Rn == REG_PC
10721 && Rm == REG_LR)
10722 {
10723 inst.instruction = T2_SUBS_PC_LR;
10724 return;
10725 }
10726
10727 if (opcode == T_MNEM_cmp)
10728 {
10729 constraint (Rn == REG_PC, BAD_PC);
10730 if (narrow)
10731 {
10732 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10733 but valid. */
10734 warn_deprecated_sp (Rm);
10735 /* R15 was documented as a valid choice for Rm in ARMv6,
10736 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10737 tools reject R15, so we do too. */
10738 constraint (Rm == REG_PC, BAD_PC);
10739 }
10740 else
10741 reject_bad_reg (Rm);
10742 }
10743 else if (opcode == T_MNEM_mov
10744 || opcode == T_MNEM_movs)
10745 {
10746 if (inst.operands[1].isreg)
10747 {
10748 if (opcode == T_MNEM_movs)
10749 {
10750 reject_bad_reg (Rn);
10751 reject_bad_reg (Rm);
10752 }
10753 else if (narrow)
10754 {
10755 /* This is mov.n. */
10756 if ((Rn == REG_SP || Rn == REG_PC)
10757 && (Rm == REG_SP || Rm == REG_PC))
10758 {
10759 as_warn (_("Use of r%u as a source register is "
10760 "deprecated when r%u is the destination "
10761 "register."), Rm, Rn);
10762 }
10763 }
10764 else
10765 {
10766 /* This is mov.w. */
10767 constraint (Rn == REG_PC, BAD_PC);
10768 constraint (Rm == REG_PC, BAD_PC);
10769 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10770 }
10771 }
10772 else
10773 reject_bad_reg (Rn);
10774 }
10775
10776 if (!inst.operands[1].isreg)
10777 {
10778 /* Immediate operand. */
10779 if (!in_it_block () && opcode == T_MNEM_mov)
10780 narrow = 0;
10781 if (low_regs && narrow)
10782 {
10783 inst.instruction = THUMB_OP16 (opcode);
10784 inst.instruction |= Rn << 8;
10785 if (inst.size_req == 2)
10786 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10787 else
10788 inst.relax = opcode;
10789 }
10790 else
10791 {
10792 inst.instruction = THUMB_OP32 (inst.instruction);
10793 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10794 inst.instruction |= Rn << r0off;
10795 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10796 }
10797 }
10798 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10799 && (inst.instruction == T_MNEM_mov
10800 || inst.instruction == T_MNEM_movs))
10801 {
10802 /* Register shifts are encoded as separate shift instructions. */
10803 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10804
10805 if (in_it_block ())
10806 narrow = !flags;
10807 else
10808 narrow = flags;
10809
10810 if (inst.size_req == 4)
10811 narrow = FALSE;
10812
10813 if (!low_regs || inst.operands[1].imm > 7)
10814 narrow = FALSE;
10815
10816 if (Rn != Rm)
10817 narrow = FALSE;
10818
10819 switch (inst.operands[1].shift_kind)
10820 {
10821 case SHIFT_LSL:
10822 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10823 break;
10824 case SHIFT_ASR:
10825 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10826 break;
10827 case SHIFT_LSR:
10828 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10829 break;
10830 case SHIFT_ROR:
10831 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10832 break;
10833 default:
10834 abort ();
10835 }
10836
10837 inst.instruction = opcode;
10838 if (narrow)
10839 {
10840 inst.instruction |= Rn;
10841 inst.instruction |= inst.operands[1].imm << 3;
10842 }
10843 else
10844 {
10845 if (flags)
10846 inst.instruction |= CONDS_BIT;
10847
10848 inst.instruction |= Rn << 8;
10849 inst.instruction |= Rm << 16;
10850 inst.instruction |= inst.operands[1].imm;
10851 }
10852 }
10853 else if (!narrow)
10854 {
10855 /* Some mov with immediate shift have narrow variants.
10856 Register shifts are handled above. */
10857 if (low_regs && inst.operands[1].shifted
10858 && (inst.instruction == T_MNEM_mov
10859 || inst.instruction == T_MNEM_movs))
10860 {
10861 if (in_it_block ())
10862 narrow = (inst.instruction == T_MNEM_mov);
10863 else
10864 narrow = (inst.instruction == T_MNEM_movs);
10865 }
10866
10867 if (narrow)
10868 {
10869 switch (inst.operands[1].shift_kind)
10870 {
10871 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10872 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10873 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10874 default: narrow = FALSE; break;
10875 }
10876 }
10877
10878 if (narrow)
10879 {
10880 inst.instruction |= Rn;
10881 inst.instruction |= Rm << 3;
10882 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10883 }
10884 else
10885 {
10886 inst.instruction = THUMB_OP32 (inst.instruction);
10887 inst.instruction |= Rn << r0off;
10888 encode_thumb32_shifted_operand (1);
10889 }
10890 }
10891 else
10892 switch (inst.instruction)
10893 {
10894 case T_MNEM_mov:
10895 inst.instruction = T_OPCODE_MOV_HR;
10896 inst.instruction |= (Rn & 0x8) << 4;
10897 inst.instruction |= (Rn & 0x7);
10898 inst.instruction |= Rm << 3;
10899 break;
10900
10901 case T_MNEM_movs:
10902 /* We know we have low registers at this point.
10903 Generate LSLS Rd, Rs, #0. */
10904 inst.instruction = T_OPCODE_LSL_I;
10905 inst.instruction |= Rn;
10906 inst.instruction |= Rm << 3;
10907 break;
10908
10909 case T_MNEM_cmp:
10910 if (low_regs)
10911 {
10912 inst.instruction = T_OPCODE_CMP_LR;
10913 inst.instruction |= Rn;
10914 inst.instruction |= Rm << 3;
10915 }
10916 else
10917 {
10918 inst.instruction = T_OPCODE_CMP_HR;
10919 inst.instruction |= (Rn & 0x8) << 4;
10920 inst.instruction |= (Rn & 0x7);
10921 inst.instruction |= Rm << 3;
10922 }
10923 break;
10924 }
10925 return;
10926 }
10927
10928 inst.instruction = THUMB_OP16 (inst.instruction);
10929
10930 /* PR 10443: Do not silently ignore shifted operands. */
10931 constraint (inst.operands[1].shifted,
10932 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10933
10934 if (inst.operands[1].isreg)
10935 {
10936 if (Rn < 8 && Rm < 8)
10937 {
10938 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10939 since a MOV instruction produces unpredictable results. */
10940 if (inst.instruction == T_OPCODE_MOV_I8)
10941 inst.instruction = T_OPCODE_ADD_I3;
10942 else
10943 inst.instruction = T_OPCODE_CMP_LR;
10944
10945 inst.instruction |= Rn;
10946 inst.instruction |= Rm << 3;
10947 }
10948 else
10949 {
10950 if (inst.instruction == T_OPCODE_MOV_I8)
10951 inst.instruction = T_OPCODE_MOV_HR;
10952 else
10953 inst.instruction = T_OPCODE_CMP_HR;
10954 do_t_cpy ();
10955 }
10956 }
10957 else
10958 {
10959 constraint (Rn > 7,
10960 _("only lo regs allowed with immediate"));
10961 inst.instruction |= Rn << 8;
10962 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10963 }
10964 }
10965
10966 static void
10967 do_t_mov16 (void)
10968 {
10969 unsigned Rd;
10970 bfd_vma imm;
10971 bfd_boolean top;
10972
10973 top = (inst.instruction & 0x00800000) != 0;
10974 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10975 {
10976 constraint (top, _(":lower16: not allowed this instruction"));
10977 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10978 }
10979 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10980 {
10981 constraint (!top, _(":upper16: not allowed this instruction"));
10982 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10983 }
10984
10985 Rd = inst.operands[0].reg;
10986 reject_bad_reg (Rd);
10987
10988 inst.instruction |= Rd << 8;
10989 if (inst.reloc.type == BFD_RELOC_UNUSED)
10990 {
10991 imm = inst.reloc.exp.X_add_number;
10992 inst.instruction |= (imm & 0xf000) << 4;
10993 inst.instruction |= (imm & 0x0800) << 15;
10994 inst.instruction |= (imm & 0x0700) << 4;
10995 inst.instruction |= (imm & 0x00ff);
10996 }
10997 }
10998
10999 static void
11000 do_t_mvn_tst (void)
11001 {
11002 unsigned Rn, Rm;
11003
11004 Rn = inst.operands[0].reg;
11005 Rm = inst.operands[1].reg;
11006
11007 if (inst.instruction == T_MNEM_cmp
11008 || inst.instruction == T_MNEM_cmn)
11009 constraint (Rn == REG_PC, BAD_PC);
11010 else
11011 reject_bad_reg (Rn);
11012 reject_bad_reg (Rm);
11013
11014 if (unified_syntax)
11015 {
11016 int r0off = (inst.instruction == T_MNEM_mvn
11017 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11018 bfd_boolean narrow;
11019
11020 if (inst.size_req == 4
11021 || inst.instruction > 0xffff
11022 || inst.operands[1].shifted
11023 || Rn > 7 || Rm > 7)
11024 narrow = FALSE;
11025 else if (inst.instruction == T_MNEM_cmn)
11026 narrow = TRUE;
11027 else if (THUMB_SETS_FLAGS (inst.instruction))
11028 narrow = !in_it_block ();
11029 else
11030 narrow = in_it_block ();
11031
11032 if (!inst.operands[1].isreg)
11033 {
11034 /* For an immediate, we always generate a 32-bit opcode;
11035 section relaxation will shrink it later if possible. */
11036 if (inst.instruction < 0xffff)
11037 inst.instruction = THUMB_OP32 (inst.instruction);
11038 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11039 inst.instruction |= Rn << r0off;
11040 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11041 }
11042 else
11043 {
11044 /* See if we can do this with a 16-bit instruction. */
11045 if (narrow)
11046 {
11047 inst.instruction = THUMB_OP16 (inst.instruction);
11048 inst.instruction |= Rn;
11049 inst.instruction |= Rm << 3;
11050 }
11051 else
11052 {
11053 constraint (inst.operands[1].shifted
11054 && inst.operands[1].immisreg,
11055 _("shift must be constant"));
11056 if (inst.instruction < 0xffff)
11057 inst.instruction = THUMB_OP32 (inst.instruction);
11058 inst.instruction |= Rn << r0off;
11059 encode_thumb32_shifted_operand (1);
11060 }
11061 }
11062 }
11063 else
11064 {
11065 constraint (inst.instruction > 0xffff
11066 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11067 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11068 _("unshifted register required"));
11069 constraint (Rn > 7 || Rm > 7,
11070 BAD_HIREG);
11071
11072 inst.instruction = THUMB_OP16 (inst.instruction);
11073 inst.instruction |= Rn;
11074 inst.instruction |= Rm << 3;
11075 }
11076 }
11077
11078 static void
11079 do_t_mrs (void)
11080 {
11081 unsigned Rd;
11082
11083 if (do_vfp_nsyn_mrs () == SUCCESS)
11084 return;
11085
11086 Rd = inst.operands[0].reg;
11087 reject_bad_reg (Rd);
11088 inst.instruction |= Rd << 8;
11089
11090 if (inst.operands[1].isreg)
11091 {
11092 unsigned br = inst.operands[1].reg;
11093 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11094 as_bad (_("bad register for mrs"));
11095
11096 inst.instruction |= br & (0xf << 16);
11097 inst.instruction |= (br & 0x300) >> 4;
11098 inst.instruction |= (br & SPSR_BIT) >> 2;
11099 }
11100 else
11101 {
11102 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11103
11104 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11105 constraint (flags != 0, _("selected processor does not support "
11106 "requested special purpose register"));
11107 else
11108 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11109 devices). */
11110 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11111 _("'APSR', 'CPSR' or 'SPSR' expected"));
11112
11113 inst.instruction |= (flags & SPSR_BIT) >> 2;
11114 inst.instruction |= inst.operands[1].imm & 0xff;
11115 inst.instruction |= 0xf0000;
11116 }
11117 }
11118
11119 static void
11120 do_t_msr (void)
11121 {
11122 int flags;
11123 unsigned Rn;
11124
11125 if (do_vfp_nsyn_msr () == SUCCESS)
11126 return;
11127
11128 constraint (!inst.operands[1].isreg,
11129 _("Thumb encoding does not support an immediate here"));
11130
11131 if (inst.operands[0].isreg)
11132 flags = (int)(inst.operands[0].reg);
11133 else
11134 flags = inst.operands[0].imm;
11135
11136 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11137 {
11138 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11139
11140 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11141 && (bits & ~(PSR_s | PSR_f)) != 0)
11142 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11143 && bits != PSR_f),
11144 _("selected processor does not support requested special "
11145 "purpose register"));
11146 }
11147 else
11148 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11149 "requested special purpose register"));
11150
11151 Rn = inst.operands[1].reg;
11152 reject_bad_reg (Rn);
11153
11154 inst.instruction |= (flags & SPSR_BIT) >> 2;
11155 inst.instruction |= (flags & 0xf0000) >> 8;
11156 inst.instruction |= (flags & 0x300) >> 4;
11157 inst.instruction |= (flags & 0xff);
11158 inst.instruction |= Rn << 16;
11159 }
11160
11161 static void
11162 do_t_mul (void)
11163 {
11164 bfd_boolean narrow;
11165 unsigned Rd, Rn, Rm;
11166
11167 if (!inst.operands[2].present)
11168 inst.operands[2].reg = inst.operands[0].reg;
11169
11170 Rd = inst.operands[0].reg;
11171 Rn = inst.operands[1].reg;
11172 Rm = inst.operands[2].reg;
11173
11174 if (unified_syntax)
11175 {
11176 if (inst.size_req == 4
11177 || (Rd != Rn
11178 && Rd != Rm)
11179 || Rn > 7
11180 || Rm > 7)
11181 narrow = FALSE;
11182 else if (inst.instruction == T_MNEM_muls)
11183 narrow = !in_it_block ();
11184 else
11185 narrow = in_it_block ();
11186 }
11187 else
11188 {
11189 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11190 constraint (Rn > 7 || Rm > 7,
11191 BAD_HIREG);
11192 narrow = TRUE;
11193 }
11194
11195 if (narrow)
11196 {
11197 /* 16-bit MULS/Conditional MUL. */
11198 inst.instruction = THUMB_OP16 (inst.instruction);
11199 inst.instruction |= Rd;
11200
11201 if (Rd == Rn)
11202 inst.instruction |= Rm << 3;
11203 else if (Rd == Rm)
11204 inst.instruction |= Rn << 3;
11205 else
11206 constraint (1, _("dest must overlap one source register"));
11207 }
11208 else
11209 {
11210 constraint (inst.instruction != T_MNEM_mul,
11211 _("Thumb-2 MUL must not set flags"));
11212 /* 32-bit MUL. */
11213 inst.instruction = THUMB_OP32 (inst.instruction);
11214 inst.instruction |= Rd << 8;
11215 inst.instruction |= Rn << 16;
11216 inst.instruction |= Rm << 0;
11217
11218 reject_bad_reg (Rd);
11219 reject_bad_reg (Rn);
11220 reject_bad_reg (Rm);
11221 }
11222 }
11223
11224 static void
11225 do_t_mull (void)
11226 {
11227 unsigned RdLo, RdHi, Rn, Rm;
11228
11229 RdLo = inst.operands[0].reg;
11230 RdHi = inst.operands[1].reg;
11231 Rn = inst.operands[2].reg;
11232 Rm = inst.operands[3].reg;
11233
11234 reject_bad_reg (RdLo);
11235 reject_bad_reg (RdHi);
11236 reject_bad_reg (Rn);
11237 reject_bad_reg (Rm);
11238
11239 inst.instruction |= RdLo << 12;
11240 inst.instruction |= RdHi << 8;
11241 inst.instruction |= Rn << 16;
11242 inst.instruction |= Rm;
11243
11244 if (RdLo == RdHi)
11245 as_tsktsk (_("rdhi and rdlo must be different"));
11246 }
11247
11248 static void
11249 do_t_nop (void)
11250 {
11251 set_it_insn_type (NEUTRAL_IT_INSN);
11252
11253 if (unified_syntax)
11254 {
11255 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11256 {
11257 inst.instruction = THUMB_OP32 (inst.instruction);
11258 inst.instruction |= inst.operands[0].imm;
11259 }
11260 else
11261 {
11262 /* PR9722: Check for Thumb2 availability before
11263 generating a thumb2 nop instruction. */
11264 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11265 {
11266 inst.instruction = THUMB_OP16 (inst.instruction);
11267 inst.instruction |= inst.operands[0].imm << 4;
11268 }
11269 else
11270 inst.instruction = 0x46c0;
11271 }
11272 }
11273 else
11274 {
11275 constraint (inst.operands[0].present,
11276 _("Thumb does not support NOP with hints"));
11277 inst.instruction = 0x46c0;
11278 }
11279 }
11280
11281 static void
11282 do_t_neg (void)
11283 {
11284 if (unified_syntax)
11285 {
11286 bfd_boolean narrow;
11287
11288 if (THUMB_SETS_FLAGS (inst.instruction))
11289 narrow = !in_it_block ();
11290 else
11291 narrow = in_it_block ();
11292 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11293 narrow = FALSE;
11294 if (inst.size_req == 4)
11295 narrow = FALSE;
11296
11297 if (!narrow)
11298 {
11299 inst.instruction = THUMB_OP32 (inst.instruction);
11300 inst.instruction |= inst.operands[0].reg << 8;
11301 inst.instruction |= inst.operands[1].reg << 16;
11302 }
11303 else
11304 {
11305 inst.instruction = THUMB_OP16 (inst.instruction);
11306 inst.instruction |= inst.operands[0].reg;
11307 inst.instruction |= inst.operands[1].reg << 3;
11308 }
11309 }
11310 else
11311 {
11312 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11313 BAD_HIREG);
11314 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11315
11316 inst.instruction = THUMB_OP16 (inst.instruction);
11317 inst.instruction |= inst.operands[0].reg;
11318 inst.instruction |= inst.operands[1].reg << 3;
11319 }
11320 }
11321
11322 static void
11323 do_t_orn (void)
11324 {
11325 unsigned Rd, Rn;
11326
11327 Rd = inst.operands[0].reg;
11328 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11329
11330 reject_bad_reg (Rd);
11331 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11332 reject_bad_reg (Rn);
11333
11334 inst.instruction |= Rd << 8;
11335 inst.instruction |= Rn << 16;
11336
11337 if (!inst.operands[2].isreg)
11338 {
11339 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11340 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11341 }
11342 else
11343 {
11344 unsigned Rm;
11345
11346 Rm = inst.operands[2].reg;
11347 reject_bad_reg (Rm);
11348
11349 constraint (inst.operands[2].shifted
11350 && inst.operands[2].immisreg,
11351 _("shift must be constant"));
11352 encode_thumb32_shifted_operand (2);
11353 }
11354 }
11355
11356 static void
11357 do_t_pkhbt (void)
11358 {
11359 unsigned Rd, Rn, Rm;
11360
11361 Rd = inst.operands[0].reg;
11362 Rn = inst.operands[1].reg;
11363 Rm = inst.operands[2].reg;
11364
11365 reject_bad_reg (Rd);
11366 reject_bad_reg (Rn);
11367 reject_bad_reg (Rm);
11368
11369 inst.instruction |= Rd << 8;
11370 inst.instruction |= Rn << 16;
11371 inst.instruction |= Rm;
11372 if (inst.operands[3].present)
11373 {
11374 unsigned int val = inst.reloc.exp.X_add_number;
11375 constraint (inst.reloc.exp.X_op != O_constant,
11376 _("expression too complex"));
11377 inst.instruction |= (val & 0x1c) << 10;
11378 inst.instruction |= (val & 0x03) << 6;
11379 }
11380 }
11381
11382 static void
11383 do_t_pkhtb (void)
11384 {
11385 if (!inst.operands[3].present)
11386 {
11387 unsigned Rtmp;
11388
11389 inst.instruction &= ~0x00000020;
11390
11391 /* PR 10168. Swap the Rm and Rn registers. */
11392 Rtmp = inst.operands[1].reg;
11393 inst.operands[1].reg = inst.operands[2].reg;
11394 inst.operands[2].reg = Rtmp;
11395 }
11396 do_t_pkhbt ();
11397 }
11398
11399 static void
11400 do_t_pld (void)
11401 {
11402 if (inst.operands[0].immisreg)
11403 reject_bad_reg (inst.operands[0].imm);
11404
11405 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11406 }
11407
11408 static void
11409 do_t_push_pop (void)
11410 {
11411 unsigned mask;
11412
11413 constraint (inst.operands[0].writeback,
11414 _("push/pop do not support {reglist}^"));
11415 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11416 _("expression too complex"));
11417
11418 mask = inst.operands[0].imm;
11419 if ((mask & ~0xff) == 0)
11420 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11421 else if ((inst.instruction == T_MNEM_push
11422 && (mask & ~0xff) == 1 << REG_LR)
11423 || (inst.instruction == T_MNEM_pop
11424 && (mask & ~0xff) == 1 << REG_PC))
11425 {
11426 inst.instruction = THUMB_OP16 (inst.instruction);
11427 inst.instruction |= THUMB_PP_PC_LR;
11428 inst.instruction |= mask & 0xff;
11429 }
11430 else if (unified_syntax)
11431 {
11432 inst.instruction = THUMB_OP32 (inst.instruction);
11433 encode_thumb2_ldmstm (13, mask, TRUE);
11434 }
11435 else
11436 {
11437 inst.error = _("invalid register list to push/pop instruction");
11438 return;
11439 }
11440 }
11441
11442 static void
11443 do_t_rbit (void)
11444 {
11445 unsigned Rd, Rm;
11446
11447 Rd = inst.operands[0].reg;
11448 Rm = inst.operands[1].reg;
11449
11450 reject_bad_reg (Rd);
11451 reject_bad_reg (Rm);
11452
11453 inst.instruction |= Rd << 8;
11454 inst.instruction |= Rm << 16;
11455 inst.instruction |= Rm;
11456 }
11457
11458 static void
11459 do_t_rev (void)
11460 {
11461 unsigned Rd, Rm;
11462
11463 Rd = inst.operands[0].reg;
11464 Rm = inst.operands[1].reg;
11465
11466 reject_bad_reg (Rd);
11467 reject_bad_reg (Rm);
11468
11469 if (Rd <= 7 && Rm <= 7
11470 && inst.size_req != 4)
11471 {
11472 inst.instruction = THUMB_OP16 (inst.instruction);
11473 inst.instruction |= Rd;
11474 inst.instruction |= Rm << 3;
11475 }
11476 else if (unified_syntax)
11477 {
11478 inst.instruction = THUMB_OP32 (inst.instruction);
11479 inst.instruction |= Rd << 8;
11480 inst.instruction |= Rm << 16;
11481 inst.instruction |= Rm;
11482 }
11483 else
11484 inst.error = BAD_HIREG;
11485 }
11486
11487 static void
11488 do_t_rrx (void)
11489 {
11490 unsigned Rd, Rm;
11491
11492 Rd = inst.operands[0].reg;
11493 Rm = inst.operands[1].reg;
11494
11495 reject_bad_reg (Rd);
11496 reject_bad_reg (Rm);
11497
11498 inst.instruction |= Rd << 8;
11499 inst.instruction |= Rm;
11500 }
11501
11502 static void
11503 do_t_rsb (void)
11504 {
11505 unsigned Rd, Rs;
11506
11507 Rd = inst.operands[0].reg;
11508 Rs = (inst.operands[1].present
11509 ? inst.operands[1].reg /* Rd, Rs, foo */
11510 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11511
11512 reject_bad_reg (Rd);
11513 reject_bad_reg (Rs);
11514 if (inst.operands[2].isreg)
11515 reject_bad_reg (inst.operands[2].reg);
11516
11517 inst.instruction |= Rd << 8;
11518 inst.instruction |= Rs << 16;
11519 if (!inst.operands[2].isreg)
11520 {
11521 bfd_boolean narrow;
11522
11523 if ((inst.instruction & 0x00100000) != 0)
11524 narrow = !in_it_block ();
11525 else
11526 narrow = in_it_block ();
11527
11528 if (Rd > 7 || Rs > 7)
11529 narrow = FALSE;
11530
11531 if (inst.size_req == 4 || !unified_syntax)
11532 narrow = FALSE;
11533
11534 if (inst.reloc.exp.X_op != O_constant
11535 || inst.reloc.exp.X_add_number != 0)
11536 narrow = FALSE;
11537
11538 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11539 relaxation, but it doesn't seem worth the hassle. */
11540 if (narrow)
11541 {
11542 inst.reloc.type = BFD_RELOC_UNUSED;
11543 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11544 inst.instruction |= Rs << 3;
11545 inst.instruction |= Rd;
11546 }
11547 else
11548 {
11549 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11550 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11551 }
11552 }
11553 else
11554 encode_thumb32_shifted_operand (2);
11555 }
11556
11557 static void
11558 do_t_setend (void)
11559 {
11560 set_it_insn_type (OUTSIDE_IT_INSN);
11561 if (inst.operands[0].imm)
11562 inst.instruction |= 0x8;
11563 }
11564
11565 static void
11566 do_t_shift (void)
11567 {
11568 if (!inst.operands[1].present)
11569 inst.operands[1].reg = inst.operands[0].reg;
11570
11571 if (unified_syntax)
11572 {
11573 bfd_boolean narrow;
11574 int shift_kind;
11575
11576 switch (inst.instruction)
11577 {
11578 case T_MNEM_asr:
11579 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11580 case T_MNEM_lsl:
11581 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11582 case T_MNEM_lsr:
11583 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11584 case T_MNEM_ror:
11585 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11586 default: abort ();
11587 }
11588
11589 if (THUMB_SETS_FLAGS (inst.instruction))
11590 narrow = !in_it_block ();
11591 else
11592 narrow = in_it_block ();
11593 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11594 narrow = FALSE;
11595 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11596 narrow = FALSE;
11597 if (inst.operands[2].isreg
11598 && (inst.operands[1].reg != inst.operands[0].reg
11599 || inst.operands[2].reg > 7))
11600 narrow = FALSE;
11601 if (inst.size_req == 4)
11602 narrow = FALSE;
11603
11604 reject_bad_reg (inst.operands[0].reg);
11605 reject_bad_reg (inst.operands[1].reg);
11606
11607 if (!narrow)
11608 {
11609 if (inst.operands[2].isreg)
11610 {
11611 reject_bad_reg (inst.operands[2].reg);
11612 inst.instruction = THUMB_OP32 (inst.instruction);
11613 inst.instruction |= inst.operands[0].reg << 8;
11614 inst.instruction |= inst.operands[1].reg << 16;
11615 inst.instruction |= inst.operands[2].reg;
11616
11617 /* PR 12854: Error on extraneous shifts. */
11618 constraint (inst.operands[2].shifted,
11619 _("extraneous shift as part of operand to shift insn"));
11620 }
11621 else
11622 {
11623 inst.operands[1].shifted = 1;
11624 inst.operands[1].shift_kind = shift_kind;
11625 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11626 ? T_MNEM_movs : T_MNEM_mov);
11627 inst.instruction |= inst.operands[0].reg << 8;
11628 encode_thumb32_shifted_operand (1);
11629 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11630 inst.reloc.type = BFD_RELOC_UNUSED;
11631 }
11632 }
11633 else
11634 {
11635 if (inst.operands[2].isreg)
11636 {
11637 switch (shift_kind)
11638 {
11639 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11640 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11641 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11642 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11643 default: abort ();
11644 }
11645
11646 inst.instruction |= inst.operands[0].reg;
11647 inst.instruction |= inst.operands[2].reg << 3;
11648
11649 /* PR 12854: Error on extraneous shifts. */
11650 constraint (inst.operands[2].shifted,
11651 _("extraneous shift as part of operand to shift insn"));
11652 }
11653 else
11654 {
11655 switch (shift_kind)
11656 {
11657 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11658 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11659 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11660 default: abort ();
11661 }
11662 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11663 inst.instruction |= inst.operands[0].reg;
11664 inst.instruction |= inst.operands[1].reg << 3;
11665 }
11666 }
11667 }
11668 else
11669 {
11670 constraint (inst.operands[0].reg > 7
11671 || inst.operands[1].reg > 7, BAD_HIREG);
11672 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11673
11674 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11675 {
11676 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11677 constraint (inst.operands[0].reg != inst.operands[1].reg,
11678 _("source1 and dest must be same register"));
11679
11680 switch (inst.instruction)
11681 {
11682 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11683 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11684 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11685 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11686 default: abort ();
11687 }
11688
11689 inst.instruction |= inst.operands[0].reg;
11690 inst.instruction |= inst.operands[2].reg << 3;
11691
11692 /* PR 12854: Error on extraneous shifts. */
11693 constraint (inst.operands[2].shifted,
11694 _("extraneous shift as part of operand to shift insn"));
11695 }
11696 else
11697 {
11698 switch (inst.instruction)
11699 {
11700 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11701 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11702 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11703 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11704 default: abort ();
11705 }
11706 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11707 inst.instruction |= inst.operands[0].reg;
11708 inst.instruction |= inst.operands[1].reg << 3;
11709 }
11710 }
11711 }
11712
11713 static void
11714 do_t_simd (void)
11715 {
11716 unsigned Rd, Rn, Rm;
11717
11718 Rd = inst.operands[0].reg;
11719 Rn = inst.operands[1].reg;
11720 Rm = inst.operands[2].reg;
11721
11722 reject_bad_reg (Rd);
11723 reject_bad_reg (Rn);
11724 reject_bad_reg (Rm);
11725
11726 inst.instruction |= Rd << 8;
11727 inst.instruction |= Rn << 16;
11728 inst.instruction |= Rm;
11729 }
11730
11731 static void
11732 do_t_simd2 (void)
11733 {
11734 unsigned Rd, Rn, Rm;
11735
11736 Rd = inst.operands[0].reg;
11737 Rm = inst.operands[1].reg;
11738 Rn = inst.operands[2].reg;
11739
11740 reject_bad_reg (Rd);
11741 reject_bad_reg (Rn);
11742 reject_bad_reg (Rm);
11743
11744 inst.instruction |= Rd << 8;
11745 inst.instruction |= Rn << 16;
11746 inst.instruction |= Rm;
11747 }
11748
11749 static void
11750 do_t_smc (void)
11751 {
11752 unsigned int value = inst.reloc.exp.X_add_number;
11753 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11754 _("SMC is not permitted on this architecture"));
11755 constraint (inst.reloc.exp.X_op != O_constant,
11756 _("expression too complex"));
11757 inst.reloc.type = BFD_RELOC_UNUSED;
11758 inst.instruction |= (value & 0xf000) >> 12;
11759 inst.instruction |= (value & 0x0ff0);
11760 inst.instruction |= (value & 0x000f) << 16;
11761 }
11762
11763 static void
11764 do_t_hvc (void)
11765 {
11766 unsigned int value = inst.reloc.exp.X_add_number;
11767
11768 inst.reloc.type = BFD_RELOC_UNUSED;
11769 inst.instruction |= (value & 0x0fff);
11770 inst.instruction |= (value & 0xf000) << 4;
11771 }
11772
11773 static void
11774 do_t_ssat_usat (int bias)
11775 {
11776 unsigned Rd, Rn;
11777
11778 Rd = inst.operands[0].reg;
11779 Rn = inst.operands[2].reg;
11780
11781 reject_bad_reg (Rd);
11782 reject_bad_reg (Rn);
11783
11784 inst.instruction |= Rd << 8;
11785 inst.instruction |= inst.operands[1].imm - bias;
11786 inst.instruction |= Rn << 16;
11787
11788 if (inst.operands[3].present)
11789 {
11790 offsetT shift_amount = inst.reloc.exp.X_add_number;
11791
11792 inst.reloc.type = BFD_RELOC_UNUSED;
11793
11794 constraint (inst.reloc.exp.X_op != O_constant,
11795 _("expression too complex"));
11796
11797 if (shift_amount != 0)
11798 {
11799 constraint (shift_amount > 31,
11800 _("shift expression is too large"));
11801
11802 if (inst.operands[3].shift_kind == SHIFT_ASR)
11803 inst.instruction |= 0x00200000; /* sh bit. */
11804
11805 inst.instruction |= (shift_amount & 0x1c) << 10;
11806 inst.instruction |= (shift_amount & 0x03) << 6;
11807 }
11808 }
11809 }
11810
11811 static void
11812 do_t_ssat (void)
11813 {
11814 do_t_ssat_usat (1);
11815 }
11816
11817 static void
11818 do_t_ssat16 (void)
11819 {
11820 unsigned Rd, Rn;
11821
11822 Rd = inst.operands[0].reg;
11823 Rn = inst.operands[2].reg;
11824
11825 reject_bad_reg (Rd);
11826 reject_bad_reg (Rn);
11827
11828 inst.instruction |= Rd << 8;
11829 inst.instruction |= inst.operands[1].imm - 1;
11830 inst.instruction |= Rn << 16;
11831 }
11832
11833 static void
11834 do_t_strex (void)
11835 {
11836 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11837 || inst.operands[2].postind || inst.operands[2].writeback
11838 || inst.operands[2].immisreg || inst.operands[2].shifted
11839 || inst.operands[2].negative,
11840 BAD_ADDR_MODE);
11841
11842 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11843
11844 inst.instruction |= inst.operands[0].reg << 8;
11845 inst.instruction |= inst.operands[1].reg << 12;
11846 inst.instruction |= inst.operands[2].reg << 16;
11847 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11848 }
11849
11850 static void
11851 do_t_strexd (void)
11852 {
11853 if (!inst.operands[2].present)
11854 inst.operands[2].reg = inst.operands[1].reg + 1;
11855
11856 constraint (inst.operands[0].reg == inst.operands[1].reg
11857 || inst.operands[0].reg == inst.operands[2].reg
11858 || inst.operands[0].reg == inst.operands[3].reg,
11859 BAD_OVERLAP);
11860
11861 inst.instruction |= inst.operands[0].reg;
11862 inst.instruction |= inst.operands[1].reg << 12;
11863 inst.instruction |= inst.operands[2].reg << 8;
11864 inst.instruction |= inst.operands[3].reg << 16;
11865 }
11866
11867 static void
11868 do_t_sxtah (void)
11869 {
11870 unsigned Rd, Rn, Rm;
11871
11872 Rd = inst.operands[0].reg;
11873 Rn = inst.operands[1].reg;
11874 Rm = inst.operands[2].reg;
11875
11876 reject_bad_reg (Rd);
11877 reject_bad_reg (Rn);
11878 reject_bad_reg (Rm);
11879
11880 inst.instruction |= Rd << 8;
11881 inst.instruction |= Rn << 16;
11882 inst.instruction |= Rm;
11883 inst.instruction |= inst.operands[3].imm << 4;
11884 }
11885
11886 static void
11887 do_t_sxth (void)
11888 {
11889 unsigned Rd, Rm;
11890
11891 Rd = inst.operands[0].reg;
11892 Rm = inst.operands[1].reg;
11893
11894 reject_bad_reg (Rd);
11895 reject_bad_reg (Rm);
11896
11897 if (inst.instruction <= 0xffff
11898 && inst.size_req != 4
11899 && Rd <= 7 && Rm <= 7
11900 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11901 {
11902 inst.instruction = THUMB_OP16 (inst.instruction);
11903 inst.instruction |= Rd;
11904 inst.instruction |= Rm << 3;
11905 }
11906 else if (unified_syntax)
11907 {
11908 if (inst.instruction <= 0xffff)
11909 inst.instruction = THUMB_OP32 (inst.instruction);
11910 inst.instruction |= Rd << 8;
11911 inst.instruction |= Rm;
11912 inst.instruction |= inst.operands[2].imm << 4;
11913 }
11914 else
11915 {
11916 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11917 _("Thumb encoding does not support rotation"));
11918 constraint (1, BAD_HIREG);
11919 }
11920 }
11921
11922 static void
11923 do_t_swi (void)
11924 {
11925 /* We have to do the following check manually as ARM_EXT_OS only applies
11926 to ARM_EXT_V6M. */
11927 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11928 {
11929 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
11930 /* This only applies to the v6m howver, not later architectures. */
11931 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
11932 as_bad (_("SVC is not permitted on this architecture"));
11933 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11934 }
11935
11936 inst.reloc.type = BFD_RELOC_ARM_SWI;
11937 }
11938
11939 static void
11940 do_t_tb (void)
11941 {
11942 unsigned Rn, Rm;
11943 int half;
11944
11945 half = (inst.instruction & 0x10) != 0;
11946 set_it_insn_type_last ();
11947 constraint (inst.operands[0].immisreg,
11948 _("instruction requires register index"));
11949
11950 Rn = inst.operands[0].reg;
11951 Rm = inst.operands[0].imm;
11952
11953 constraint (Rn == REG_SP, BAD_SP);
11954 reject_bad_reg (Rm);
11955
11956 constraint (!half && inst.operands[0].shifted,
11957 _("instruction does not allow shifted index"));
11958 inst.instruction |= (Rn << 16) | Rm;
11959 }
11960
11961 static void
11962 do_t_usat (void)
11963 {
11964 do_t_ssat_usat (0);
11965 }
11966
11967 static void
11968 do_t_usat16 (void)
11969 {
11970 unsigned Rd, Rn;
11971
11972 Rd = inst.operands[0].reg;
11973 Rn = inst.operands[2].reg;
11974
11975 reject_bad_reg (Rd);
11976 reject_bad_reg (Rn);
11977
11978 inst.instruction |= Rd << 8;
11979 inst.instruction |= inst.operands[1].imm;
11980 inst.instruction |= Rn << 16;
11981 }
11982
11983 /* Neon instruction encoder helpers. */
11984
11985 /* Encodings for the different types for various Neon opcodes. */
11986
11987 /* An "invalid" code for the following tables. */
11988 #define N_INV -1u
11989
11990 struct neon_tab_entry
11991 {
11992 unsigned integer;
11993 unsigned float_or_poly;
11994 unsigned scalar_or_imm;
11995 };
11996
11997 /* Map overloaded Neon opcodes to their respective encodings. */
11998 #define NEON_ENC_TAB \
11999 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12000 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12001 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12002 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12003 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12004 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12005 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12006 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12007 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12008 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12009 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12010 /* Register variants of the following two instructions are encoded as
12011 vcge / vcgt with the operands reversed. */ \
12012 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12013 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12014 X(vfma, N_INV, 0x0000c10, N_INV), \
12015 X(vfms, N_INV, 0x0200c10, N_INV), \
12016 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12017 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12018 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12019 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12020 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12021 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12022 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12023 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12024 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12025 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12026 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12027 X(vshl, 0x0000400, N_INV, 0x0800510), \
12028 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12029 X(vand, 0x0000110, N_INV, 0x0800030), \
12030 X(vbic, 0x0100110, N_INV, 0x0800030), \
12031 X(veor, 0x1000110, N_INV, N_INV), \
12032 X(vorn, 0x0300110, N_INV, 0x0800010), \
12033 X(vorr, 0x0200110, N_INV, 0x0800010), \
12034 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12035 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12036 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12037 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12038 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12039 X(vst1, 0x0000000, 0x0800000, N_INV), \
12040 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12041 X(vst2, 0x0000100, 0x0800100, N_INV), \
12042 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12043 X(vst3, 0x0000200, 0x0800200, N_INV), \
12044 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12045 X(vst4, 0x0000300, 0x0800300, N_INV), \
12046 X(vmovn, 0x1b20200, N_INV, N_INV), \
12047 X(vtrn, 0x1b20080, N_INV, N_INV), \
12048 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12049 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12050 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12051 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12052 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12053 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12054 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12055 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12056 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12057 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12058 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
12059
12060 enum neon_opc
12061 {
12062 #define X(OPC,I,F,S) N_MNEM_##OPC
12063 NEON_ENC_TAB
12064 #undef X
12065 };
12066
12067 static const struct neon_tab_entry neon_enc_tab[] =
12068 {
12069 #define X(OPC,I,F,S) { (I), (F), (S) }
12070 NEON_ENC_TAB
12071 #undef X
12072 };
12073
12074 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12075 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12076 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12077 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12078 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12079 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12080 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12081 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12082 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12083 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12084 #define NEON_ENC_SINGLE_(X) \
12085 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12086 #define NEON_ENC_DOUBLE_(X) \
12087 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12088
12089 #define NEON_ENCODE(type, inst) \
12090 do \
12091 { \
12092 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12093 inst.is_neon = 1; \
12094 } \
12095 while (0)
12096
12097 #define check_neon_suffixes \
12098 do \
12099 { \
12100 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12101 { \
12102 as_bad (_("invalid neon suffix for non neon instruction")); \
12103 return; \
12104 } \
12105 } \
12106 while (0)
12107
12108 /* Define shapes for instruction operands. The following mnemonic characters
12109 are used in this table:
12110
12111 F - VFP S<n> register
12112 D - Neon D<n> register
12113 Q - Neon Q<n> register
12114 I - Immediate
12115 S - Scalar
12116 R - ARM register
12117 L - D<n> register list
12118
12119 This table is used to generate various data:
12120 - enumerations of the form NS_DDR to be used as arguments to
12121 neon_select_shape.
12122 - a table classifying shapes into single, double, quad, mixed.
12123 - a table used to drive neon_select_shape. */
12124
12125 #define NEON_SHAPE_DEF \
12126 X(3, (D, D, D), DOUBLE), \
12127 X(3, (Q, Q, Q), QUAD), \
12128 X(3, (D, D, I), DOUBLE), \
12129 X(3, (Q, Q, I), QUAD), \
12130 X(3, (D, D, S), DOUBLE), \
12131 X(3, (Q, Q, S), QUAD), \
12132 X(2, (D, D), DOUBLE), \
12133 X(2, (Q, Q), QUAD), \
12134 X(2, (D, S), DOUBLE), \
12135 X(2, (Q, S), QUAD), \
12136 X(2, (D, R), DOUBLE), \
12137 X(2, (Q, R), QUAD), \
12138 X(2, (D, I), DOUBLE), \
12139 X(2, (Q, I), QUAD), \
12140 X(3, (D, L, D), DOUBLE), \
12141 X(2, (D, Q), MIXED), \
12142 X(2, (Q, D), MIXED), \
12143 X(3, (D, Q, I), MIXED), \
12144 X(3, (Q, D, I), MIXED), \
12145 X(3, (Q, D, D), MIXED), \
12146 X(3, (D, Q, Q), MIXED), \
12147 X(3, (Q, Q, D), MIXED), \
12148 X(3, (Q, D, S), MIXED), \
12149 X(3, (D, Q, S), MIXED), \
12150 X(4, (D, D, D, I), DOUBLE), \
12151 X(4, (Q, Q, Q, I), QUAD), \
12152 X(2, (F, F), SINGLE), \
12153 X(3, (F, F, F), SINGLE), \
12154 X(2, (F, I), SINGLE), \
12155 X(2, (F, D), MIXED), \
12156 X(2, (D, F), MIXED), \
12157 X(3, (F, F, I), MIXED), \
12158 X(4, (R, R, F, F), SINGLE), \
12159 X(4, (F, F, R, R), SINGLE), \
12160 X(3, (D, R, R), DOUBLE), \
12161 X(3, (R, R, D), DOUBLE), \
12162 X(2, (S, R), SINGLE), \
12163 X(2, (R, S), SINGLE), \
12164 X(2, (F, R), SINGLE), \
12165 X(2, (R, F), SINGLE)
12166
12167 #define S2(A,B) NS_##A##B
12168 #define S3(A,B,C) NS_##A##B##C
12169 #define S4(A,B,C,D) NS_##A##B##C##D
12170
12171 #define X(N, L, C) S##N L
12172
12173 enum neon_shape
12174 {
12175 NEON_SHAPE_DEF,
12176 NS_NULL
12177 };
12178
12179 #undef X
12180 #undef S2
12181 #undef S3
12182 #undef S4
12183
12184 enum neon_shape_class
12185 {
12186 SC_SINGLE,
12187 SC_DOUBLE,
12188 SC_QUAD,
12189 SC_MIXED
12190 };
12191
12192 #define X(N, L, C) SC_##C
12193
12194 static enum neon_shape_class neon_shape_class[] =
12195 {
12196 NEON_SHAPE_DEF
12197 };
12198
12199 #undef X
12200
12201 enum neon_shape_el
12202 {
12203 SE_F,
12204 SE_D,
12205 SE_Q,
12206 SE_I,
12207 SE_S,
12208 SE_R,
12209 SE_L
12210 };
12211
12212 /* Register widths of above. */
12213 static unsigned neon_shape_el_size[] =
12214 {
12215 32,
12216 64,
12217 128,
12218 0,
12219 32,
12220 32,
12221 0
12222 };
12223
12224 struct neon_shape_info
12225 {
12226 unsigned els;
12227 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12228 };
12229
12230 #define S2(A,B) { SE_##A, SE_##B }
12231 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12232 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12233
12234 #define X(N, L, C) { N, S##N L }
12235
12236 static struct neon_shape_info neon_shape_tab[] =
12237 {
12238 NEON_SHAPE_DEF
12239 };
12240
12241 #undef X
12242 #undef S2
12243 #undef S3
12244 #undef S4
12245
12246 /* Bit masks used in type checking given instructions.
12247 'N_EQK' means the type must be the same as (or based on in some way) the key
12248 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12249 set, various other bits can be set as well in order to modify the meaning of
12250 the type constraint. */
12251
12252 enum neon_type_mask
12253 {
12254 N_S8 = 0x0000001,
12255 N_S16 = 0x0000002,
12256 N_S32 = 0x0000004,
12257 N_S64 = 0x0000008,
12258 N_U8 = 0x0000010,
12259 N_U16 = 0x0000020,
12260 N_U32 = 0x0000040,
12261 N_U64 = 0x0000080,
12262 N_I8 = 0x0000100,
12263 N_I16 = 0x0000200,
12264 N_I32 = 0x0000400,
12265 N_I64 = 0x0000800,
12266 N_8 = 0x0001000,
12267 N_16 = 0x0002000,
12268 N_32 = 0x0004000,
12269 N_64 = 0x0008000,
12270 N_P8 = 0x0010000,
12271 N_P16 = 0x0020000,
12272 N_F16 = 0x0040000,
12273 N_F32 = 0x0080000,
12274 N_F64 = 0x0100000,
12275 N_KEY = 0x1000000, /* Key element (main type specifier). */
12276 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12277 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12278 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12279 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12280 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12281 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12282 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12283 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12284 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12285 N_UTYP = 0,
12286 N_MAX_NONSPECIAL = N_F64
12287 };
12288
12289 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12290
12291 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12292 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12293 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12294 #define N_SUF_32 (N_SU_32 | N_F32)
12295 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12296 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12297
12298 /* Pass this as the first type argument to neon_check_type to ignore types
12299 altogether. */
12300 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12301
12302 /* Select a "shape" for the current instruction (describing register types or
12303 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12304 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12305 function of operand parsing, so this function doesn't need to be called.
12306 Shapes should be listed in order of decreasing length. */
12307
12308 static enum neon_shape
12309 neon_select_shape (enum neon_shape shape, ...)
12310 {
12311 va_list ap;
12312 enum neon_shape first_shape = shape;
12313
12314 /* Fix missing optional operands. FIXME: we don't know at this point how
12315 many arguments we should have, so this makes the assumption that we have
12316 > 1. This is true of all current Neon opcodes, I think, but may not be
12317 true in the future. */
12318 if (!inst.operands[1].present)
12319 inst.operands[1] = inst.operands[0];
12320
12321 va_start (ap, shape);
12322
12323 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12324 {
12325 unsigned j;
12326 int matches = 1;
12327
12328 for (j = 0; j < neon_shape_tab[shape].els; j++)
12329 {
12330 if (!inst.operands[j].present)
12331 {
12332 matches = 0;
12333 break;
12334 }
12335
12336 switch (neon_shape_tab[shape].el[j])
12337 {
12338 case SE_F:
12339 if (!(inst.operands[j].isreg
12340 && inst.operands[j].isvec
12341 && inst.operands[j].issingle
12342 && !inst.operands[j].isquad))
12343 matches = 0;
12344 break;
12345
12346 case SE_D:
12347 if (!(inst.operands[j].isreg
12348 && inst.operands[j].isvec
12349 && !inst.operands[j].isquad
12350 && !inst.operands[j].issingle))
12351 matches = 0;
12352 break;
12353
12354 case SE_R:
12355 if (!(inst.operands[j].isreg
12356 && !inst.operands[j].isvec))
12357 matches = 0;
12358 break;
12359
12360 case SE_Q:
12361 if (!(inst.operands[j].isreg
12362 && inst.operands[j].isvec
12363 && inst.operands[j].isquad
12364 && !inst.operands[j].issingle))
12365 matches = 0;
12366 break;
12367
12368 case SE_I:
12369 if (!(!inst.operands[j].isreg
12370 && !inst.operands[j].isscalar))
12371 matches = 0;
12372 break;
12373
12374 case SE_S:
12375 if (!(!inst.operands[j].isreg
12376 && inst.operands[j].isscalar))
12377 matches = 0;
12378 break;
12379
12380 case SE_L:
12381 break;
12382 }
12383 if (!matches)
12384 break;
12385 }
12386 if (matches)
12387 break;
12388 }
12389
12390 va_end (ap);
12391
12392 if (shape == NS_NULL && first_shape != NS_NULL)
12393 first_error (_("invalid instruction shape"));
12394
12395 return shape;
12396 }
12397
12398 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12399 means the Q bit should be set). */
12400
12401 static int
12402 neon_quad (enum neon_shape shape)
12403 {
12404 return neon_shape_class[shape] == SC_QUAD;
12405 }
12406
12407 static void
12408 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12409 unsigned *g_size)
12410 {
12411 /* Allow modification to be made to types which are constrained to be
12412 based on the key element, based on bits set alongside N_EQK. */
12413 if ((typebits & N_EQK) != 0)
12414 {
12415 if ((typebits & N_HLF) != 0)
12416 *g_size /= 2;
12417 else if ((typebits & N_DBL) != 0)
12418 *g_size *= 2;
12419 if ((typebits & N_SGN) != 0)
12420 *g_type = NT_signed;
12421 else if ((typebits & N_UNS) != 0)
12422 *g_type = NT_unsigned;
12423 else if ((typebits & N_INT) != 0)
12424 *g_type = NT_integer;
12425 else if ((typebits & N_FLT) != 0)
12426 *g_type = NT_float;
12427 else if ((typebits & N_SIZ) != 0)
12428 *g_type = NT_untyped;
12429 }
12430 }
12431
12432 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12433 operand type, i.e. the single type specified in a Neon instruction when it
12434 is the only one given. */
12435
12436 static struct neon_type_el
12437 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12438 {
12439 struct neon_type_el dest = *key;
12440
12441 gas_assert ((thisarg & N_EQK) != 0);
12442
12443 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12444
12445 return dest;
12446 }
12447
12448 /* Convert Neon type and size into compact bitmask representation. */
12449
12450 static enum neon_type_mask
12451 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12452 {
12453 switch (type)
12454 {
12455 case NT_untyped:
12456 switch (size)
12457 {
12458 case 8: return N_8;
12459 case 16: return N_16;
12460 case 32: return N_32;
12461 case 64: return N_64;
12462 default: ;
12463 }
12464 break;
12465
12466 case NT_integer:
12467 switch (size)
12468 {
12469 case 8: return N_I8;
12470 case 16: return N_I16;
12471 case 32: return N_I32;
12472 case 64: return N_I64;
12473 default: ;
12474 }
12475 break;
12476
12477 case NT_float:
12478 switch (size)
12479 {
12480 case 16: return N_F16;
12481 case 32: return N_F32;
12482 case 64: return N_F64;
12483 default: ;
12484 }
12485 break;
12486
12487 case NT_poly:
12488 switch (size)
12489 {
12490 case 8: return N_P8;
12491 case 16: return N_P16;
12492 default: ;
12493 }
12494 break;
12495
12496 case NT_signed:
12497 switch (size)
12498 {
12499 case 8: return N_S8;
12500 case 16: return N_S16;
12501 case 32: return N_S32;
12502 case 64: return N_S64;
12503 default: ;
12504 }
12505 break;
12506
12507 case NT_unsigned:
12508 switch (size)
12509 {
12510 case 8: return N_U8;
12511 case 16: return N_U16;
12512 case 32: return N_U32;
12513 case 64: return N_U64;
12514 default: ;
12515 }
12516 break;
12517
12518 default: ;
12519 }
12520
12521 return N_UTYP;
12522 }
12523
12524 /* Convert compact Neon bitmask type representation to a type and size. Only
12525 handles the case where a single bit is set in the mask. */
12526
12527 static int
12528 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12529 enum neon_type_mask mask)
12530 {
12531 if ((mask & N_EQK) != 0)
12532 return FAIL;
12533
12534 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12535 *size = 8;
12536 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12537 *size = 16;
12538 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12539 *size = 32;
12540 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12541 *size = 64;
12542 else
12543 return FAIL;
12544
12545 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12546 *type = NT_signed;
12547 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12548 *type = NT_unsigned;
12549 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12550 *type = NT_integer;
12551 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12552 *type = NT_untyped;
12553 else if ((mask & (N_P8 | N_P16)) != 0)
12554 *type = NT_poly;
12555 else if ((mask & (N_F32 | N_F64)) != 0)
12556 *type = NT_float;
12557 else
12558 return FAIL;
12559
12560 return SUCCESS;
12561 }
12562
12563 /* Modify a bitmask of allowed types. This is only needed for type
12564 relaxation. */
12565
12566 static unsigned
12567 modify_types_allowed (unsigned allowed, unsigned mods)
12568 {
12569 unsigned size;
12570 enum neon_el_type type;
12571 unsigned destmask;
12572 int i;
12573
12574 destmask = 0;
12575
12576 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12577 {
12578 if (el_type_of_type_chk (&type, &size,
12579 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12580 {
12581 neon_modify_type_size (mods, &type, &size);
12582 destmask |= type_chk_of_el_type (type, size);
12583 }
12584 }
12585
12586 return destmask;
12587 }
12588
12589 /* Check type and return type classification.
12590 The manual states (paraphrase): If one datatype is given, it indicates the
12591 type given in:
12592 - the second operand, if there is one
12593 - the operand, if there is no second operand
12594 - the result, if there are no operands.
12595 This isn't quite good enough though, so we use a concept of a "key" datatype
12596 which is set on a per-instruction basis, which is the one which matters when
12597 only one data type is written.
12598 Note: this function has side-effects (e.g. filling in missing operands). All
12599 Neon instructions should call it before performing bit encoding. */
12600
12601 static struct neon_type_el
12602 neon_check_type (unsigned els, enum neon_shape ns, ...)
12603 {
12604 va_list ap;
12605 unsigned i, pass, key_el = 0;
12606 unsigned types[NEON_MAX_TYPE_ELS];
12607 enum neon_el_type k_type = NT_invtype;
12608 unsigned k_size = -1u;
12609 struct neon_type_el badtype = {NT_invtype, -1};
12610 unsigned key_allowed = 0;
12611
12612 /* Optional registers in Neon instructions are always (not) in operand 1.
12613 Fill in the missing operand here, if it was omitted. */
12614 if (els > 1 && !inst.operands[1].present)
12615 inst.operands[1] = inst.operands[0];
12616
12617 /* Suck up all the varargs. */
12618 va_start (ap, ns);
12619 for (i = 0; i < els; i++)
12620 {
12621 unsigned thisarg = va_arg (ap, unsigned);
12622 if (thisarg == N_IGNORE_TYPE)
12623 {
12624 va_end (ap);
12625 return badtype;
12626 }
12627 types[i] = thisarg;
12628 if ((thisarg & N_KEY) != 0)
12629 key_el = i;
12630 }
12631 va_end (ap);
12632
12633 if (inst.vectype.elems > 0)
12634 for (i = 0; i < els; i++)
12635 if (inst.operands[i].vectype.type != NT_invtype)
12636 {
12637 first_error (_("types specified in both the mnemonic and operands"));
12638 return badtype;
12639 }
12640
12641 /* Duplicate inst.vectype elements here as necessary.
12642 FIXME: No idea if this is exactly the same as the ARM assembler,
12643 particularly when an insn takes one register and one non-register
12644 operand. */
12645 if (inst.vectype.elems == 1 && els > 1)
12646 {
12647 unsigned j;
12648 inst.vectype.elems = els;
12649 inst.vectype.el[key_el] = inst.vectype.el[0];
12650 for (j = 0; j < els; j++)
12651 if (j != key_el)
12652 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12653 types[j]);
12654 }
12655 else if (inst.vectype.elems == 0 && els > 0)
12656 {
12657 unsigned j;
12658 /* No types were given after the mnemonic, so look for types specified
12659 after each operand. We allow some flexibility here; as long as the
12660 "key" operand has a type, we can infer the others. */
12661 for (j = 0; j < els; j++)
12662 if (inst.operands[j].vectype.type != NT_invtype)
12663 inst.vectype.el[j] = inst.operands[j].vectype;
12664
12665 if (inst.operands[key_el].vectype.type != NT_invtype)
12666 {
12667 for (j = 0; j < els; j++)
12668 if (inst.operands[j].vectype.type == NT_invtype)
12669 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12670 types[j]);
12671 }
12672 else
12673 {
12674 first_error (_("operand types can't be inferred"));
12675 return badtype;
12676 }
12677 }
12678 else if (inst.vectype.elems != els)
12679 {
12680 first_error (_("type specifier has the wrong number of parts"));
12681 return badtype;
12682 }
12683
12684 for (pass = 0; pass < 2; pass++)
12685 {
12686 for (i = 0; i < els; i++)
12687 {
12688 unsigned thisarg = types[i];
12689 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12690 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12691 enum neon_el_type g_type = inst.vectype.el[i].type;
12692 unsigned g_size = inst.vectype.el[i].size;
12693
12694 /* Decay more-specific signed & unsigned types to sign-insensitive
12695 integer types if sign-specific variants are unavailable. */
12696 if ((g_type == NT_signed || g_type == NT_unsigned)
12697 && (types_allowed & N_SU_ALL) == 0)
12698 g_type = NT_integer;
12699
12700 /* If only untyped args are allowed, decay any more specific types to
12701 them. Some instructions only care about signs for some element
12702 sizes, so handle that properly. */
12703 if ((g_size == 8 && (types_allowed & N_8) != 0)
12704 || (g_size == 16 && (types_allowed & N_16) != 0)
12705 || (g_size == 32 && (types_allowed & N_32) != 0)
12706 || (g_size == 64 && (types_allowed & N_64) != 0))
12707 g_type = NT_untyped;
12708
12709 if (pass == 0)
12710 {
12711 if ((thisarg & N_KEY) != 0)
12712 {
12713 k_type = g_type;
12714 k_size = g_size;
12715 key_allowed = thisarg & ~N_KEY;
12716 }
12717 }
12718 else
12719 {
12720 if ((thisarg & N_VFP) != 0)
12721 {
12722 enum neon_shape_el regshape;
12723 unsigned regwidth, match;
12724
12725 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12726 if (ns == NS_NULL)
12727 {
12728 first_error (_("invalid instruction shape"));
12729 return badtype;
12730 }
12731 regshape = neon_shape_tab[ns].el[i];
12732 regwidth = neon_shape_el_size[regshape];
12733
12734 /* In VFP mode, operands must match register widths. If we
12735 have a key operand, use its width, else use the width of
12736 the current operand. */
12737 if (k_size != -1u)
12738 match = k_size;
12739 else
12740 match = g_size;
12741
12742 if (regwidth != match)
12743 {
12744 first_error (_("operand size must match register width"));
12745 return badtype;
12746 }
12747 }
12748
12749 if ((thisarg & N_EQK) == 0)
12750 {
12751 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12752
12753 if ((given_type & types_allowed) == 0)
12754 {
12755 first_error (_("bad type in Neon instruction"));
12756 return badtype;
12757 }
12758 }
12759 else
12760 {
12761 enum neon_el_type mod_k_type = k_type;
12762 unsigned mod_k_size = k_size;
12763 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12764 if (g_type != mod_k_type || g_size != mod_k_size)
12765 {
12766 first_error (_("inconsistent types in Neon instruction"));
12767 return badtype;
12768 }
12769 }
12770 }
12771 }
12772 }
12773
12774 return inst.vectype.el[key_el];
12775 }
12776
12777 /* Neon-style VFP instruction forwarding. */
12778
12779 /* Thumb VFP instructions have 0xE in the condition field. */
12780
12781 static void
12782 do_vfp_cond_or_thumb (void)
12783 {
12784 inst.is_neon = 1;
12785
12786 if (thumb_mode)
12787 inst.instruction |= 0xe0000000;
12788 else
12789 inst.instruction |= inst.cond << 28;
12790 }
12791
12792 /* Look up and encode a simple mnemonic, for use as a helper function for the
12793 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12794 etc. It is assumed that operand parsing has already been done, and that the
12795 operands are in the form expected by the given opcode (this isn't necessarily
12796 the same as the form in which they were parsed, hence some massaging must
12797 take place before this function is called).
12798 Checks current arch version against that in the looked-up opcode. */
12799
12800 static void
12801 do_vfp_nsyn_opcode (const char *opname)
12802 {
12803 const struct asm_opcode *opcode;
12804
12805 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12806
12807 if (!opcode)
12808 abort ();
12809
12810 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12811 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12812 _(BAD_FPU));
12813
12814 inst.is_neon = 1;
12815
12816 if (thumb_mode)
12817 {
12818 inst.instruction = opcode->tvalue;
12819 opcode->tencode ();
12820 }
12821 else
12822 {
12823 inst.instruction = (inst.cond << 28) | opcode->avalue;
12824 opcode->aencode ();
12825 }
12826 }
12827
12828 static void
12829 do_vfp_nsyn_add_sub (enum neon_shape rs)
12830 {
12831 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12832
12833 if (rs == NS_FFF)
12834 {
12835 if (is_add)
12836 do_vfp_nsyn_opcode ("fadds");
12837 else
12838 do_vfp_nsyn_opcode ("fsubs");
12839 }
12840 else
12841 {
12842 if (is_add)
12843 do_vfp_nsyn_opcode ("faddd");
12844 else
12845 do_vfp_nsyn_opcode ("fsubd");
12846 }
12847 }
12848
12849 /* Check operand types to see if this is a VFP instruction, and if so call
12850 PFN (). */
12851
12852 static int
12853 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12854 {
12855 enum neon_shape rs;
12856 struct neon_type_el et;
12857
12858 switch (args)
12859 {
12860 case 2:
12861 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12862 et = neon_check_type (2, rs,
12863 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12864 break;
12865
12866 case 3:
12867 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12868 et = neon_check_type (3, rs,
12869 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12870 break;
12871
12872 default:
12873 abort ();
12874 }
12875
12876 if (et.type != NT_invtype)
12877 {
12878 pfn (rs);
12879 return SUCCESS;
12880 }
12881
12882 inst.error = NULL;
12883 return FAIL;
12884 }
12885
12886 static void
12887 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12888 {
12889 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12890
12891 if (rs == NS_FFF)
12892 {
12893 if (is_mla)
12894 do_vfp_nsyn_opcode ("fmacs");
12895 else
12896 do_vfp_nsyn_opcode ("fnmacs");
12897 }
12898 else
12899 {
12900 if (is_mla)
12901 do_vfp_nsyn_opcode ("fmacd");
12902 else
12903 do_vfp_nsyn_opcode ("fnmacd");
12904 }
12905 }
12906
12907 static void
12908 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12909 {
12910 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12911
12912 if (rs == NS_FFF)
12913 {
12914 if (is_fma)
12915 do_vfp_nsyn_opcode ("ffmas");
12916 else
12917 do_vfp_nsyn_opcode ("ffnmas");
12918 }
12919 else
12920 {
12921 if (is_fma)
12922 do_vfp_nsyn_opcode ("ffmad");
12923 else
12924 do_vfp_nsyn_opcode ("ffnmad");
12925 }
12926 }
12927
12928 static void
12929 do_vfp_nsyn_mul (enum neon_shape rs)
12930 {
12931 if (rs == NS_FFF)
12932 do_vfp_nsyn_opcode ("fmuls");
12933 else
12934 do_vfp_nsyn_opcode ("fmuld");
12935 }
12936
12937 static void
12938 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12939 {
12940 int is_neg = (inst.instruction & 0x80) != 0;
12941 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12942
12943 if (rs == NS_FF)
12944 {
12945 if (is_neg)
12946 do_vfp_nsyn_opcode ("fnegs");
12947 else
12948 do_vfp_nsyn_opcode ("fabss");
12949 }
12950 else
12951 {
12952 if (is_neg)
12953 do_vfp_nsyn_opcode ("fnegd");
12954 else
12955 do_vfp_nsyn_opcode ("fabsd");
12956 }
12957 }
12958
12959 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12960 insns belong to Neon, and are handled elsewhere. */
12961
12962 static void
12963 do_vfp_nsyn_ldm_stm (int is_dbmode)
12964 {
12965 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12966 if (is_ldm)
12967 {
12968 if (is_dbmode)
12969 do_vfp_nsyn_opcode ("fldmdbs");
12970 else
12971 do_vfp_nsyn_opcode ("fldmias");
12972 }
12973 else
12974 {
12975 if (is_dbmode)
12976 do_vfp_nsyn_opcode ("fstmdbs");
12977 else
12978 do_vfp_nsyn_opcode ("fstmias");
12979 }
12980 }
12981
12982 static void
12983 do_vfp_nsyn_sqrt (void)
12984 {
12985 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12986 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12987
12988 if (rs == NS_FF)
12989 do_vfp_nsyn_opcode ("fsqrts");
12990 else
12991 do_vfp_nsyn_opcode ("fsqrtd");
12992 }
12993
12994 static void
12995 do_vfp_nsyn_div (void)
12996 {
12997 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12998 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12999 N_F32 | N_F64 | N_KEY | N_VFP);
13000
13001 if (rs == NS_FFF)
13002 do_vfp_nsyn_opcode ("fdivs");
13003 else
13004 do_vfp_nsyn_opcode ("fdivd");
13005 }
13006
13007 static void
13008 do_vfp_nsyn_nmul (void)
13009 {
13010 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13011 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13012 N_F32 | N_F64 | N_KEY | N_VFP);
13013
13014 if (rs == NS_FFF)
13015 {
13016 NEON_ENCODE (SINGLE, inst);
13017 do_vfp_sp_dyadic ();
13018 }
13019 else
13020 {
13021 NEON_ENCODE (DOUBLE, inst);
13022 do_vfp_dp_rd_rn_rm ();
13023 }
13024 do_vfp_cond_or_thumb ();
13025 }
13026
13027 static void
13028 do_vfp_nsyn_cmp (void)
13029 {
13030 if (inst.operands[1].isreg)
13031 {
13032 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13033 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13034
13035 if (rs == NS_FF)
13036 {
13037 NEON_ENCODE (SINGLE, inst);
13038 do_vfp_sp_monadic ();
13039 }
13040 else
13041 {
13042 NEON_ENCODE (DOUBLE, inst);
13043 do_vfp_dp_rd_rm ();
13044 }
13045 }
13046 else
13047 {
13048 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13049 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13050
13051 switch (inst.instruction & 0x0fffffff)
13052 {
13053 case N_MNEM_vcmp:
13054 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13055 break;
13056 case N_MNEM_vcmpe:
13057 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13058 break;
13059 default:
13060 abort ();
13061 }
13062
13063 if (rs == NS_FI)
13064 {
13065 NEON_ENCODE (SINGLE, inst);
13066 do_vfp_sp_compare_z ();
13067 }
13068 else
13069 {
13070 NEON_ENCODE (DOUBLE, inst);
13071 do_vfp_dp_rd ();
13072 }
13073 }
13074 do_vfp_cond_or_thumb ();
13075 }
13076
13077 static void
13078 nsyn_insert_sp (void)
13079 {
13080 inst.operands[1] = inst.operands[0];
13081 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13082 inst.operands[0].reg = REG_SP;
13083 inst.operands[0].isreg = 1;
13084 inst.operands[0].writeback = 1;
13085 inst.operands[0].present = 1;
13086 }
13087
13088 static void
13089 do_vfp_nsyn_push (void)
13090 {
13091 nsyn_insert_sp ();
13092 if (inst.operands[1].issingle)
13093 do_vfp_nsyn_opcode ("fstmdbs");
13094 else
13095 do_vfp_nsyn_opcode ("fstmdbd");
13096 }
13097
13098 static void
13099 do_vfp_nsyn_pop (void)
13100 {
13101 nsyn_insert_sp ();
13102 if (inst.operands[1].issingle)
13103 do_vfp_nsyn_opcode ("fldmias");
13104 else
13105 do_vfp_nsyn_opcode ("fldmiad");
13106 }
13107
13108 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13109 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13110
13111 static void
13112 neon_dp_fixup (struct arm_it* insn)
13113 {
13114 unsigned int i = insn->instruction;
13115 insn->is_neon = 1;
13116
13117 if (thumb_mode)
13118 {
13119 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13120 if (i & (1 << 24))
13121 i |= 1 << 28;
13122
13123 i &= ~(1 << 24);
13124
13125 i |= 0xef000000;
13126 }
13127 else
13128 i |= 0xf2000000;
13129
13130 insn->instruction = i;
13131 }
13132
13133 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13134 (0, 1, 2, 3). */
13135
13136 static unsigned
13137 neon_logbits (unsigned x)
13138 {
13139 return ffs (x) - 4;
13140 }
13141
13142 #define LOW4(R) ((R) & 0xf)
13143 #define HI1(R) (((R) >> 4) & 1)
13144
13145 /* Encode insns with bit pattern:
13146
13147 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13148 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13149
13150 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13151 different meaning for some instruction. */
13152
13153 static void
13154 neon_three_same (int isquad, int ubit, int size)
13155 {
13156 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13157 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13158 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13159 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13160 inst.instruction |= LOW4 (inst.operands[2].reg);
13161 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13162 inst.instruction |= (isquad != 0) << 6;
13163 inst.instruction |= (ubit != 0) << 24;
13164 if (size != -1)
13165 inst.instruction |= neon_logbits (size) << 20;
13166
13167 neon_dp_fixup (&inst);
13168 }
13169
13170 /* Encode instructions of the form:
13171
13172 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13173 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13174
13175 Don't write size if SIZE == -1. */
13176
13177 static void
13178 neon_two_same (int qbit, int ubit, int size)
13179 {
13180 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13181 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13182 inst.instruction |= LOW4 (inst.operands[1].reg);
13183 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13184 inst.instruction |= (qbit != 0) << 6;
13185 inst.instruction |= (ubit != 0) << 24;
13186
13187 if (size != -1)
13188 inst.instruction |= neon_logbits (size) << 18;
13189
13190 neon_dp_fixup (&inst);
13191 }
13192
13193 /* Neon instruction encoders, in approximate order of appearance. */
13194
13195 static void
13196 do_neon_dyadic_i_su (void)
13197 {
13198 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13199 struct neon_type_el et = neon_check_type (3, rs,
13200 N_EQK, N_EQK, N_SU_32 | N_KEY);
13201 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13202 }
13203
13204 static void
13205 do_neon_dyadic_i64_su (void)
13206 {
13207 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13208 struct neon_type_el et = neon_check_type (3, rs,
13209 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13210 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13211 }
13212
13213 static void
13214 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13215 unsigned immbits)
13216 {
13217 unsigned size = et.size >> 3;
13218 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13219 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13220 inst.instruction |= LOW4 (inst.operands[1].reg);
13221 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13222 inst.instruction |= (isquad != 0) << 6;
13223 inst.instruction |= immbits << 16;
13224 inst.instruction |= (size >> 3) << 7;
13225 inst.instruction |= (size & 0x7) << 19;
13226 if (write_ubit)
13227 inst.instruction |= (uval != 0) << 24;
13228
13229 neon_dp_fixup (&inst);
13230 }
13231
13232 static void
13233 do_neon_shl_imm (void)
13234 {
13235 if (!inst.operands[2].isreg)
13236 {
13237 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13238 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13239 NEON_ENCODE (IMMED, inst);
13240 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13241 }
13242 else
13243 {
13244 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13245 struct neon_type_el et = neon_check_type (3, rs,
13246 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13247 unsigned int tmp;
13248
13249 /* VSHL/VQSHL 3-register variants have syntax such as:
13250 vshl.xx Dd, Dm, Dn
13251 whereas other 3-register operations encoded by neon_three_same have
13252 syntax like:
13253 vadd.xx Dd, Dn, Dm
13254 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13255 here. */
13256 tmp = inst.operands[2].reg;
13257 inst.operands[2].reg = inst.operands[1].reg;
13258 inst.operands[1].reg = tmp;
13259 NEON_ENCODE (INTEGER, inst);
13260 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13261 }
13262 }
13263
13264 static void
13265 do_neon_qshl_imm (void)
13266 {
13267 if (!inst.operands[2].isreg)
13268 {
13269 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13270 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13271
13272 NEON_ENCODE (IMMED, inst);
13273 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13274 inst.operands[2].imm);
13275 }
13276 else
13277 {
13278 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13279 struct neon_type_el et = neon_check_type (3, rs,
13280 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13281 unsigned int tmp;
13282
13283 /* See note in do_neon_shl_imm. */
13284 tmp = inst.operands[2].reg;
13285 inst.operands[2].reg = inst.operands[1].reg;
13286 inst.operands[1].reg = tmp;
13287 NEON_ENCODE (INTEGER, inst);
13288 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13289 }
13290 }
13291
13292 static void
13293 do_neon_rshl (void)
13294 {
13295 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13296 struct neon_type_el et = neon_check_type (3, rs,
13297 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13298 unsigned int tmp;
13299
13300 tmp = inst.operands[2].reg;
13301 inst.operands[2].reg = inst.operands[1].reg;
13302 inst.operands[1].reg = tmp;
13303 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13304 }
13305
13306 static int
13307 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13308 {
13309 /* Handle .I8 pseudo-instructions. */
13310 if (size == 8)
13311 {
13312 /* Unfortunately, this will make everything apart from zero out-of-range.
13313 FIXME is this the intended semantics? There doesn't seem much point in
13314 accepting .I8 if so. */
13315 immediate |= immediate << 8;
13316 size = 16;
13317 }
13318
13319 if (size >= 32)
13320 {
13321 if (immediate == (immediate & 0x000000ff))
13322 {
13323 *immbits = immediate;
13324 return 0x1;
13325 }
13326 else if (immediate == (immediate & 0x0000ff00))
13327 {
13328 *immbits = immediate >> 8;
13329 return 0x3;
13330 }
13331 else if (immediate == (immediate & 0x00ff0000))
13332 {
13333 *immbits = immediate >> 16;
13334 return 0x5;
13335 }
13336 else if (immediate == (immediate & 0xff000000))
13337 {
13338 *immbits = immediate >> 24;
13339 return 0x7;
13340 }
13341 if ((immediate & 0xffff) != (immediate >> 16))
13342 goto bad_immediate;
13343 immediate &= 0xffff;
13344 }
13345
13346 if (immediate == (immediate & 0x000000ff))
13347 {
13348 *immbits = immediate;
13349 return 0x9;
13350 }
13351 else if (immediate == (immediate & 0x0000ff00))
13352 {
13353 *immbits = immediate >> 8;
13354 return 0xb;
13355 }
13356
13357 bad_immediate:
13358 first_error (_("immediate value out of range"));
13359 return FAIL;
13360 }
13361
13362 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13363 A, B, C, D. */
13364
13365 static int
13366 neon_bits_same_in_bytes (unsigned imm)
13367 {
13368 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13369 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13370 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13371 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13372 }
13373
13374 /* For immediate of above form, return 0bABCD. */
13375
13376 static unsigned
13377 neon_squash_bits (unsigned imm)
13378 {
13379 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13380 | ((imm & 0x01000000) >> 21);
13381 }
13382
13383 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13384
13385 static unsigned
13386 neon_qfloat_bits (unsigned imm)
13387 {
13388 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13389 }
13390
13391 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13392 the instruction. *OP is passed as the initial value of the op field, and
13393 may be set to a different value depending on the constant (i.e.
13394 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13395 MVN). If the immediate looks like a repeated pattern then also
13396 try smaller element sizes. */
13397
13398 static int
13399 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13400 unsigned *immbits, int *op, int size,
13401 enum neon_el_type type)
13402 {
13403 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13404 float. */
13405 if (type == NT_float && !float_p)
13406 return FAIL;
13407
13408 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13409 {
13410 if (size != 32 || *op == 1)
13411 return FAIL;
13412 *immbits = neon_qfloat_bits (immlo);
13413 return 0xf;
13414 }
13415
13416 if (size == 64)
13417 {
13418 if (neon_bits_same_in_bytes (immhi)
13419 && neon_bits_same_in_bytes (immlo))
13420 {
13421 if (*op == 1)
13422 return FAIL;
13423 *immbits = (neon_squash_bits (immhi) << 4)
13424 | neon_squash_bits (immlo);
13425 *op = 1;
13426 return 0xe;
13427 }
13428
13429 if (immhi != immlo)
13430 return FAIL;
13431 }
13432
13433 if (size >= 32)
13434 {
13435 if (immlo == (immlo & 0x000000ff))
13436 {
13437 *immbits = immlo;
13438 return 0x0;
13439 }
13440 else if (immlo == (immlo & 0x0000ff00))
13441 {
13442 *immbits = immlo >> 8;
13443 return 0x2;
13444 }
13445 else if (immlo == (immlo & 0x00ff0000))
13446 {
13447 *immbits = immlo >> 16;
13448 return 0x4;
13449 }
13450 else if (immlo == (immlo & 0xff000000))
13451 {
13452 *immbits = immlo >> 24;
13453 return 0x6;
13454 }
13455 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13456 {
13457 *immbits = (immlo >> 8) & 0xff;
13458 return 0xc;
13459 }
13460 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13461 {
13462 *immbits = (immlo >> 16) & 0xff;
13463 return 0xd;
13464 }
13465
13466 if ((immlo & 0xffff) != (immlo >> 16))
13467 return FAIL;
13468 immlo &= 0xffff;
13469 }
13470
13471 if (size >= 16)
13472 {
13473 if (immlo == (immlo & 0x000000ff))
13474 {
13475 *immbits = immlo;
13476 return 0x8;
13477 }
13478 else if (immlo == (immlo & 0x0000ff00))
13479 {
13480 *immbits = immlo >> 8;
13481 return 0xa;
13482 }
13483
13484 if ((immlo & 0xff) != (immlo >> 8))
13485 return FAIL;
13486 immlo &= 0xff;
13487 }
13488
13489 if (immlo == (immlo & 0x000000ff))
13490 {
13491 /* Don't allow MVN with 8-bit immediate. */
13492 if (*op == 1)
13493 return FAIL;
13494 *immbits = immlo;
13495 return 0xe;
13496 }
13497
13498 return FAIL;
13499 }
13500
13501 /* Write immediate bits [7:0] to the following locations:
13502
13503 |28/24|23 19|18 16|15 4|3 0|
13504 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13505
13506 This function is used by VMOV/VMVN/VORR/VBIC. */
13507
13508 static void
13509 neon_write_immbits (unsigned immbits)
13510 {
13511 inst.instruction |= immbits & 0xf;
13512 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13513 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13514 }
13515
13516 /* Invert low-order SIZE bits of XHI:XLO. */
13517
13518 static void
13519 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13520 {
13521 unsigned immlo = xlo ? *xlo : 0;
13522 unsigned immhi = xhi ? *xhi : 0;
13523
13524 switch (size)
13525 {
13526 case 8:
13527 immlo = (~immlo) & 0xff;
13528 break;
13529
13530 case 16:
13531 immlo = (~immlo) & 0xffff;
13532 break;
13533
13534 case 64:
13535 immhi = (~immhi) & 0xffffffff;
13536 /* fall through. */
13537
13538 case 32:
13539 immlo = (~immlo) & 0xffffffff;
13540 break;
13541
13542 default:
13543 abort ();
13544 }
13545
13546 if (xlo)
13547 *xlo = immlo;
13548
13549 if (xhi)
13550 *xhi = immhi;
13551 }
13552
13553 static void
13554 do_neon_logic (void)
13555 {
13556 if (inst.operands[2].present && inst.operands[2].isreg)
13557 {
13558 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13559 neon_check_type (3, rs, N_IGNORE_TYPE);
13560 /* U bit and size field were set as part of the bitmask. */
13561 NEON_ENCODE (INTEGER, inst);
13562 neon_three_same (neon_quad (rs), 0, -1);
13563 }
13564 else
13565 {
13566 const int three_ops_form = (inst.operands[2].present
13567 && !inst.operands[2].isreg);
13568 const int immoperand = (three_ops_form ? 2 : 1);
13569 enum neon_shape rs = (three_ops_form
13570 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13571 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13572 struct neon_type_el et = neon_check_type (2, rs,
13573 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13574 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13575 unsigned immbits;
13576 int cmode;
13577
13578 if (et.type == NT_invtype)
13579 return;
13580
13581 if (three_ops_form)
13582 constraint (inst.operands[0].reg != inst.operands[1].reg,
13583 _("first and second operands shall be the same register"));
13584
13585 NEON_ENCODE (IMMED, inst);
13586
13587 immbits = inst.operands[immoperand].imm;
13588 if (et.size == 64)
13589 {
13590 /* .i64 is a pseudo-op, so the immediate must be a repeating
13591 pattern. */
13592 if (immbits != (inst.operands[immoperand].regisimm ?
13593 inst.operands[immoperand].reg : 0))
13594 {
13595 /* Set immbits to an invalid constant. */
13596 immbits = 0xdeadbeef;
13597 }
13598 }
13599
13600 switch (opcode)
13601 {
13602 case N_MNEM_vbic:
13603 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13604 break;
13605
13606 case N_MNEM_vorr:
13607 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13608 break;
13609
13610 case N_MNEM_vand:
13611 /* Pseudo-instruction for VBIC. */
13612 neon_invert_size (&immbits, 0, et.size);
13613 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13614 break;
13615
13616 case N_MNEM_vorn:
13617 /* Pseudo-instruction for VORR. */
13618 neon_invert_size (&immbits, 0, et.size);
13619 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13620 break;
13621
13622 default:
13623 abort ();
13624 }
13625
13626 if (cmode == FAIL)
13627 return;
13628
13629 inst.instruction |= neon_quad (rs) << 6;
13630 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13631 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13632 inst.instruction |= cmode << 8;
13633 neon_write_immbits (immbits);
13634
13635 neon_dp_fixup (&inst);
13636 }
13637 }
13638
13639 static void
13640 do_neon_bitfield (void)
13641 {
13642 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13643 neon_check_type (3, rs, N_IGNORE_TYPE);
13644 neon_three_same (neon_quad (rs), 0, -1);
13645 }
13646
13647 static void
13648 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13649 unsigned destbits)
13650 {
13651 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13652 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13653 types | N_KEY);
13654 if (et.type == NT_float)
13655 {
13656 NEON_ENCODE (FLOAT, inst);
13657 neon_three_same (neon_quad (rs), 0, -1);
13658 }
13659 else
13660 {
13661 NEON_ENCODE (INTEGER, inst);
13662 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13663 }
13664 }
13665
13666 static void
13667 do_neon_dyadic_if_su (void)
13668 {
13669 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13670 }
13671
13672 static void
13673 do_neon_dyadic_if_su_d (void)
13674 {
13675 /* This version only allow D registers, but that constraint is enforced during
13676 operand parsing so we don't need to do anything extra here. */
13677 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13678 }
13679
13680 static void
13681 do_neon_dyadic_if_i_d (void)
13682 {
13683 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13684 affected if we specify unsigned args. */
13685 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13686 }
13687
13688 enum vfp_or_neon_is_neon_bits
13689 {
13690 NEON_CHECK_CC = 1,
13691 NEON_CHECK_ARCH = 2
13692 };
13693
13694 /* Call this function if an instruction which may have belonged to the VFP or
13695 Neon instruction sets, but turned out to be a Neon instruction (due to the
13696 operand types involved, etc.). We have to check and/or fix-up a couple of
13697 things:
13698
13699 - Make sure the user hasn't attempted to make a Neon instruction
13700 conditional.
13701 - Alter the value in the condition code field if necessary.
13702 - Make sure that the arch supports Neon instructions.
13703
13704 Which of these operations take place depends on bits from enum
13705 vfp_or_neon_is_neon_bits.
13706
13707 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13708 current instruction's condition is COND_ALWAYS, the condition field is
13709 changed to inst.uncond_value. This is necessary because instructions shared
13710 between VFP and Neon may be conditional for the VFP variants only, and the
13711 unconditional Neon version must have, e.g., 0xF in the condition field. */
13712
13713 static int
13714 vfp_or_neon_is_neon (unsigned check)
13715 {
13716 /* Conditions are always legal in Thumb mode (IT blocks). */
13717 if (!thumb_mode && (check & NEON_CHECK_CC))
13718 {
13719 if (inst.cond != COND_ALWAYS)
13720 {
13721 first_error (_(BAD_COND));
13722 return FAIL;
13723 }
13724 if (inst.uncond_value != -1)
13725 inst.instruction |= inst.uncond_value << 28;
13726 }
13727
13728 if ((check & NEON_CHECK_ARCH)
13729 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13730 {
13731 first_error (_(BAD_FPU));
13732 return FAIL;
13733 }
13734
13735 return SUCCESS;
13736 }
13737
13738 static void
13739 do_neon_addsub_if_i (void)
13740 {
13741 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13742 return;
13743
13744 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13745 return;
13746
13747 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13748 affected if we specify unsigned args. */
13749 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13750 }
13751
13752 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13753 result to be:
13754 V<op> A,B (A is operand 0, B is operand 2)
13755 to mean:
13756 V<op> A,B,A
13757 not:
13758 V<op> A,B,B
13759 so handle that case specially. */
13760
13761 static void
13762 neon_exchange_operands (void)
13763 {
13764 void *scratch = alloca (sizeof (inst.operands[0]));
13765 if (inst.operands[1].present)
13766 {
13767 /* Swap operands[1] and operands[2]. */
13768 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13769 inst.operands[1] = inst.operands[2];
13770 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13771 }
13772 else
13773 {
13774 inst.operands[1] = inst.operands[2];
13775 inst.operands[2] = inst.operands[0];
13776 }
13777 }
13778
13779 static void
13780 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13781 {
13782 if (inst.operands[2].isreg)
13783 {
13784 if (invert)
13785 neon_exchange_operands ();
13786 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13787 }
13788 else
13789 {
13790 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13791 struct neon_type_el et = neon_check_type (2, rs,
13792 N_EQK | N_SIZ, immtypes | N_KEY);
13793
13794 NEON_ENCODE (IMMED, inst);
13795 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13796 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13797 inst.instruction |= LOW4 (inst.operands[1].reg);
13798 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13799 inst.instruction |= neon_quad (rs) << 6;
13800 inst.instruction |= (et.type == NT_float) << 10;
13801 inst.instruction |= neon_logbits (et.size) << 18;
13802
13803 neon_dp_fixup (&inst);
13804 }
13805 }
13806
13807 static void
13808 do_neon_cmp (void)
13809 {
13810 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13811 }
13812
13813 static void
13814 do_neon_cmp_inv (void)
13815 {
13816 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13817 }
13818
13819 static void
13820 do_neon_ceq (void)
13821 {
13822 neon_compare (N_IF_32, N_IF_32, FALSE);
13823 }
13824
13825 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13826 scalars, which are encoded in 5 bits, M : Rm.
13827 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13828 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13829 index in M. */
13830
13831 static unsigned
13832 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13833 {
13834 unsigned regno = NEON_SCALAR_REG (scalar);
13835 unsigned elno = NEON_SCALAR_INDEX (scalar);
13836
13837 switch (elsize)
13838 {
13839 case 16:
13840 if (regno > 7 || elno > 3)
13841 goto bad_scalar;
13842 return regno | (elno << 3);
13843
13844 case 32:
13845 if (regno > 15 || elno > 1)
13846 goto bad_scalar;
13847 return regno | (elno << 4);
13848
13849 default:
13850 bad_scalar:
13851 first_error (_("scalar out of range for multiply instruction"));
13852 }
13853
13854 return 0;
13855 }
13856
13857 /* Encode multiply / multiply-accumulate scalar instructions. */
13858
13859 static void
13860 neon_mul_mac (struct neon_type_el et, int ubit)
13861 {
13862 unsigned scalar;
13863
13864 /* Give a more helpful error message if we have an invalid type. */
13865 if (et.type == NT_invtype)
13866 return;
13867
13868 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13869 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13870 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13871 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13872 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13873 inst.instruction |= LOW4 (scalar);
13874 inst.instruction |= HI1 (scalar) << 5;
13875 inst.instruction |= (et.type == NT_float) << 8;
13876 inst.instruction |= neon_logbits (et.size) << 20;
13877 inst.instruction |= (ubit != 0) << 24;
13878
13879 neon_dp_fixup (&inst);
13880 }
13881
13882 static void
13883 do_neon_mac_maybe_scalar (void)
13884 {
13885 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13886 return;
13887
13888 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13889 return;
13890
13891 if (inst.operands[2].isscalar)
13892 {
13893 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13894 struct neon_type_el et = neon_check_type (3, rs,
13895 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13896 NEON_ENCODE (SCALAR, inst);
13897 neon_mul_mac (et, neon_quad (rs));
13898 }
13899 else
13900 {
13901 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13902 affected if we specify unsigned args. */
13903 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13904 }
13905 }
13906
13907 static void
13908 do_neon_fmac (void)
13909 {
13910 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13911 return;
13912
13913 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13914 return;
13915
13916 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13917 }
13918
13919 static void
13920 do_neon_tst (void)
13921 {
13922 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13923 struct neon_type_el et = neon_check_type (3, rs,
13924 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13925 neon_three_same (neon_quad (rs), 0, et.size);
13926 }
13927
13928 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13929 same types as the MAC equivalents. The polynomial type for this instruction
13930 is encoded the same as the integer type. */
13931
13932 static void
13933 do_neon_mul (void)
13934 {
13935 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13936 return;
13937
13938 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13939 return;
13940
13941 if (inst.operands[2].isscalar)
13942 do_neon_mac_maybe_scalar ();
13943 else
13944 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13945 }
13946
13947 static void
13948 do_neon_qdmulh (void)
13949 {
13950 if (inst.operands[2].isscalar)
13951 {
13952 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13953 struct neon_type_el et = neon_check_type (3, rs,
13954 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13955 NEON_ENCODE (SCALAR, inst);
13956 neon_mul_mac (et, neon_quad (rs));
13957 }
13958 else
13959 {
13960 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13961 struct neon_type_el et = neon_check_type (3, rs,
13962 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13963 NEON_ENCODE (INTEGER, inst);
13964 /* The U bit (rounding) comes from bit mask. */
13965 neon_three_same (neon_quad (rs), 0, et.size);
13966 }
13967 }
13968
13969 static void
13970 do_neon_fcmp_absolute (void)
13971 {
13972 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13973 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13974 /* Size field comes from bit mask. */
13975 neon_three_same (neon_quad (rs), 1, -1);
13976 }
13977
13978 static void
13979 do_neon_fcmp_absolute_inv (void)
13980 {
13981 neon_exchange_operands ();
13982 do_neon_fcmp_absolute ();
13983 }
13984
13985 static void
13986 do_neon_step (void)
13987 {
13988 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13989 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13990 neon_three_same (neon_quad (rs), 0, -1);
13991 }
13992
13993 static void
13994 do_neon_abs_neg (void)
13995 {
13996 enum neon_shape rs;
13997 struct neon_type_el et;
13998
13999 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14000 return;
14001
14002 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14003 return;
14004
14005 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14006 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14007
14008 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14009 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14010 inst.instruction |= LOW4 (inst.operands[1].reg);
14011 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14012 inst.instruction |= neon_quad (rs) << 6;
14013 inst.instruction |= (et.type == NT_float) << 10;
14014 inst.instruction |= neon_logbits (et.size) << 18;
14015
14016 neon_dp_fixup (&inst);
14017 }
14018
14019 static void
14020 do_neon_sli (void)
14021 {
14022 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14023 struct neon_type_el et = neon_check_type (2, rs,
14024 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14025 int imm = inst.operands[2].imm;
14026 constraint (imm < 0 || (unsigned)imm >= et.size,
14027 _("immediate out of range for insert"));
14028 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14029 }
14030
14031 static void
14032 do_neon_sri (void)
14033 {
14034 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14035 struct neon_type_el et = neon_check_type (2, rs,
14036 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14037 int imm = inst.operands[2].imm;
14038 constraint (imm < 1 || (unsigned)imm > et.size,
14039 _("immediate out of range for insert"));
14040 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14041 }
14042
14043 static void
14044 do_neon_qshlu_imm (void)
14045 {
14046 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14047 struct neon_type_el et = neon_check_type (2, rs,
14048 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14049 int imm = inst.operands[2].imm;
14050 constraint (imm < 0 || (unsigned)imm >= et.size,
14051 _("immediate out of range for shift"));
14052 /* Only encodes the 'U present' variant of the instruction.
14053 In this case, signed types have OP (bit 8) set to 0.
14054 Unsigned types have OP set to 1. */
14055 inst.instruction |= (et.type == NT_unsigned) << 8;
14056 /* The rest of the bits are the same as other immediate shifts. */
14057 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14058 }
14059
14060 static void
14061 do_neon_qmovn (void)
14062 {
14063 struct neon_type_el et = neon_check_type (2, NS_DQ,
14064 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14065 /* Saturating move where operands can be signed or unsigned, and the
14066 destination has the same signedness. */
14067 NEON_ENCODE (INTEGER, inst);
14068 if (et.type == NT_unsigned)
14069 inst.instruction |= 0xc0;
14070 else
14071 inst.instruction |= 0x80;
14072 neon_two_same (0, 1, et.size / 2);
14073 }
14074
14075 static void
14076 do_neon_qmovun (void)
14077 {
14078 struct neon_type_el et = neon_check_type (2, NS_DQ,
14079 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14080 /* Saturating move with unsigned results. Operands must be signed. */
14081 NEON_ENCODE (INTEGER, inst);
14082 neon_two_same (0, 1, et.size / 2);
14083 }
14084
14085 static void
14086 do_neon_rshift_sat_narrow (void)
14087 {
14088 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14089 or unsigned. If operands are unsigned, results must also be unsigned. */
14090 struct neon_type_el et = neon_check_type (2, NS_DQI,
14091 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14092 int imm = inst.operands[2].imm;
14093 /* This gets the bounds check, size encoding and immediate bits calculation
14094 right. */
14095 et.size /= 2;
14096
14097 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14098 VQMOVN.I<size> <Dd>, <Qm>. */
14099 if (imm == 0)
14100 {
14101 inst.operands[2].present = 0;
14102 inst.instruction = N_MNEM_vqmovn;
14103 do_neon_qmovn ();
14104 return;
14105 }
14106
14107 constraint (imm < 1 || (unsigned)imm > et.size,
14108 _("immediate out of range"));
14109 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14110 }
14111
14112 static void
14113 do_neon_rshift_sat_narrow_u (void)
14114 {
14115 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14116 or unsigned. If operands are unsigned, results must also be unsigned. */
14117 struct neon_type_el et = neon_check_type (2, NS_DQI,
14118 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14119 int imm = inst.operands[2].imm;
14120 /* This gets the bounds check, size encoding and immediate bits calculation
14121 right. */
14122 et.size /= 2;
14123
14124 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14125 VQMOVUN.I<size> <Dd>, <Qm>. */
14126 if (imm == 0)
14127 {
14128 inst.operands[2].present = 0;
14129 inst.instruction = N_MNEM_vqmovun;
14130 do_neon_qmovun ();
14131 return;
14132 }
14133
14134 constraint (imm < 1 || (unsigned)imm > et.size,
14135 _("immediate out of range"));
14136 /* FIXME: The manual is kind of unclear about what value U should have in
14137 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14138 must be 1. */
14139 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14140 }
14141
14142 static void
14143 do_neon_movn (void)
14144 {
14145 struct neon_type_el et = neon_check_type (2, NS_DQ,
14146 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14147 NEON_ENCODE (INTEGER, inst);
14148 neon_two_same (0, 1, et.size / 2);
14149 }
14150
14151 static void
14152 do_neon_rshift_narrow (void)
14153 {
14154 struct neon_type_el et = neon_check_type (2, NS_DQI,
14155 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14156 int imm = inst.operands[2].imm;
14157 /* This gets the bounds check, size encoding and immediate bits calculation
14158 right. */
14159 et.size /= 2;
14160
14161 /* If immediate is zero then we are a pseudo-instruction for
14162 VMOVN.I<size> <Dd>, <Qm> */
14163 if (imm == 0)
14164 {
14165 inst.operands[2].present = 0;
14166 inst.instruction = N_MNEM_vmovn;
14167 do_neon_movn ();
14168 return;
14169 }
14170
14171 constraint (imm < 1 || (unsigned)imm > et.size,
14172 _("immediate out of range for narrowing operation"));
14173 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14174 }
14175
14176 static void
14177 do_neon_shll (void)
14178 {
14179 /* FIXME: Type checking when lengthening. */
14180 struct neon_type_el et = neon_check_type (2, NS_QDI,
14181 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14182 unsigned imm = inst.operands[2].imm;
14183
14184 if (imm == et.size)
14185 {
14186 /* Maximum shift variant. */
14187 NEON_ENCODE (INTEGER, inst);
14188 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14189 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14190 inst.instruction |= LOW4 (inst.operands[1].reg);
14191 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14192 inst.instruction |= neon_logbits (et.size) << 18;
14193
14194 neon_dp_fixup (&inst);
14195 }
14196 else
14197 {
14198 /* A more-specific type check for non-max versions. */
14199 et = neon_check_type (2, NS_QDI,
14200 N_EQK | N_DBL, N_SU_32 | N_KEY);
14201 NEON_ENCODE (IMMED, inst);
14202 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14203 }
14204 }
14205
14206 /* Check the various types for the VCVT instruction, and return which version
14207 the current instruction is. */
14208
14209 static int
14210 neon_cvt_flavour (enum neon_shape rs)
14211 {
14212 #define CVT_VAR(C,X,Y) \
14213 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14214 if (et.type != NT_invtype) \
14215 { \
14216 inst.error = NULL; \
14217 return (C); \
14218 }
14219 struct neon_type_el et;
14220 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14221 || rs == NS_FF) ? N_VFP : 0;
14222 /* The instruction versions which take an immediate take one register
14223 argument, which is extended to the width of the full register. Thus the
14224 "source" and "destination" registers must have the same width. Hack that
14225 here by making the size equal to the key (wider, in this case) operand. */
14226 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14227
14228 CVT_VAR (0, N_S32, N_F32);
14229 CVT_VAR (1, N_U32, N_F32);
14230 CVT_VAR (2, N_F32, N_S32);
14231 CVT_VAR (3, N_F32, N_U32);
14232 /* Half-precision conversions. */
14233 CVT_VAR (4, N_F32, N_F16);
14234 CVT_VAR (5, N_F16, N_F32);
14235
14236 whole_reg = N_VFP;
14237
14238 /* VFP instructions. */
14239 CVT_VAR (6, N_F32, N_F64);
14240 CVT_VAR (7, N_F64, N_F32);
14241 CVT_VAR (8, N_S32, N_F64 | key);
14242 CVT_VAR (9, N_U32, N_F64 | key);
14243 CVT_VAR (10, N_F64 | key, N_S32);
14244 CVT_VAR (11, N_F64 | key, N_U32);
14245 /* VFP instructions with bitshift. */
14246 CVT_VAR (12, N_F32 | key, N_S16);
14247 CVT_VAR (13, N_F32 | key, N_U16);
14248 CVT_VAR (14, N_F64 | key, N_S16);
14249 CVT_VAR (15, N_F64 | key, N_U16);
14250 CVT_VAR (16, N_S16, N_F32 | key);
14251 CVT_VAR (17, N_U16, N_F32 | key);
14252 CVT_VAR (18, N_S16, N_F64 | key);
14253 CVT_VAR (19, N_U16, N_F64 | key);
14254
14255 return -1;
14256 #undef CVT_VAR
14257 }
14258
14259 /* Neon-syntax VFP conversions. */
14260
14261 static void
14262 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
14263 {
14264 const char *opname = 0;
14265
14266 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14267 {
14268 /* Conversions with immediate bitshift. */
14269 const char *enc[] =
14270 {
14271 "ftosls",
14272 "ftouls",
14273 "fsltos",
14274 "fultos",
14275 NULL,
14276 NULL,
14277 NULL,
14278 NULL,
14279 "ftosld",
14280 "ftould",
14281 "fsltod",
14282 "fultod",
14283 "fshtos",
14284 "fuhtos",
14285 "fshtod",
14286 "fuhtod",
14287 "ftoshs",
14288 "ftouhs",
14289 "ftoshd",
14290 "ftouhd"
14291 };
14292
14293 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14294 {
14295 opname = enc[flavour];
14296 constraint (inst.operands[0].reg != inst.operands[1].reg,
14297 _("operands 0 and 1 must be the same register"));
14298 inst.operands[1] = inst.operands[2];
14299 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14300 }
14301 }
14302 else
14303 {
14304 /* Conversions without bitshift. */
14305 const char *enc[] =
14306 {
14307 "ftosis",
14308 "ftouis",
14309 "fsitos",
14310 "fuitos",
14311 "NULL",
14312 "NULL",
14313 "fcvtsd",
14314 "fcvtds",
14315 "ftosid",
14316 "ftouid",
14317 "fsitod",
14318 "fuitod"
14319 };
14320
14321 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14322 opname = enc[flavour];
14323 }
14324
14325 if (opname)
14326 do_vfp_nsyn_opcode (opname);
14327 }
14328
14329 static void
14330 do_vfp_nsyn_cvtz (void)
14331 {
14332 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14333 int flavour = neon_cvt_flavour (rs);
14334 const char *enc[] =
14335 {
14336 "ftosizs",
14337 "ftouizs",
14338 NULL,
14339 NULL,
14340 NULL,
14341 NULL,
14342 NULL,
14343 NULL,
14344 "ftosizd",
14345 "ftouizd"
14346 };
14347
14348 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14349 do_vfp_nsyn_opcode (enc[flavour]);
14350 }
14351
14352 static void
14353 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14354 {
14355 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14356 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14357 int flavour = neon_cvt_flavour (rs);
14358
14359 /* PR11109: Handle round-to-zero for VCVT conversions. */
14360 if (round_to_zero
14361 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14362 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14363 && (rs == NS_FD || rs == NS_FF))
14364 {
14365 do_vfp_nsyn_cvtz ();
14366 return;
14367 }
14368
14369 /* VFP rather than Neon conversions. */
14370 if (flavour >= 6)
14371 {
14372 do_vfp_nsyn_cvt (rs, flavour);
14373 return;
14374 }
14375
14376 switch (rs)
14377 {
14378 case NS_DDI:
14379 case NS_QQI:
14380 {
14381 unsigned immbits;
14382 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14383
14384 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14385 return;
14386
14387 /* Fixed-point conversion with #0 immediate is encoded as an
14388 integer conversion. */
14389 if (inst.operands[2].present && inst.operands[2].imm == 0)
14390 goto int_encode;
14391 immbits = 32 - inst.operands[2].imm;
14392 NEON_ENCODE (IMMED, inst);
14393 if (flavour != -1)
14394 inst.instruction |= enctab[flavour];
14395 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14396 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14397 inst.instruction |= LOW4 (inst.operands[1].reg);
14398 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14399 inst.instruction |= neon_quad (rs) << 6;
14400 inst.instruction |= 1 << 21;
14401 inst.instruction |= immbits << 16;
14402
14403 neon_dp_fixup (&inst);
14404 }
14405 break;
14406
14407 case NS_DD:
14408 case NS_QQ:
14409 int_encode:
14410 {
14411 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14412
14413 NEON_ENCODE (INTEGER, inst);
14414
14415 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14416 return;
14417
14418 if (flavour != -1)
14419 inst.instruction |= enctab[flavour];
14420
14421 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14422 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14423 inst.instruction |= LOW4 (inst.operands[1].reg);
14424 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14425 inst.instruction |= neon_quad (rs) << 6;
14426 inst.instruction |= 2 << 18;
14427
14428 neon_dp_fixup (&inst);
14429 }
14430 break;
14431
14432 /* Half-precision conversions for Advanced SIMD -- neon. */
14433 case NS_QD:
14434 case NS_DQ:
14435
14436 if ((rs == NS_DQ)
14437 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14438 {
14439 as_bad (_("operand size must match register width"));
14440 break;
14441 }
14442
14443 if ((rs == NS_QD)
14444 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14445 {
14446 as_bad (_("operand size must match register width"));
14447 break;
14448 }
14449
14450 if (rs == NS_DQ)
14451 inst.instruction = 0x3b60600;
14452 else
14453 inst.instruction = 0x3b60700;
14454
14455 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14456 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14457 inst.instruction |= LOW4 (inst.operands[1].reg);
14458 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14459 neon_dp_fixup (&inst);
14460 break;
14461
14462 default:
14463 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14464 do_vfp_nsyn_cvt (rs, flavour);
14465 }
14466 }
14467
14468 static void
14469 do_neon_cvtr (void)
14470 {
14471 do_neon_cvt_1 (FALSE);
14472 }
14473
14474 static void
14475 do_neon_cvt (void)
14476 {
14477 do_neon_cvt_1 (TRUE);
14478 }
14479
14480 static void
14481 do_neon_cvtb (void)
14482 {
14483 inst.instruction = 0xeb20a40;
14484
14485 /* The sizes are attached to the mnemonic. */
14486 if (inst.vectype.el[0].type != NT_invtype
14487 && inst.vectype.el[0].size == 16)
14488 inst.instruction |= 0x00010000;
14489
14490 /* Programmer's syntax: the sizes are attached to the operands. */
14491 else if (inst.operands[0].vectype.type != NT_invtype
14492 && inst.operands[0].vectype.size == 16)
14493 inst.instruction |= 0x00010000;
14494
14495 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14496 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14497 do_vfp_cond_or_thumb ();
14498 }
14499
14500
14501 static void
14502 do_neon_cvtt (void)
14503 {
14504 do_neon_cvtb ();
14505 inst.instruction |= 0x80;
14506 }
14507
14508 static void
14509 neon_move_immediate (void)
14510 {
14511 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14512 struct neon_type_el et = neon_check_type (2, rs,
14513 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14514 unsigned immlo, immhi = 0, immbits;
14515 int op, cmode, float_p;
14516
14517 constraint (et.type == NT_invtype,
14518 _("operand size must be specified for immediate VMOV"));
14519
14520 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14521 op = (inst.instruction & (1 << 5)) != 0;
14522
14523 immlo = inst.operands[1].imm;
14524 if (inst.operands[1].regisimm)
14525 immhi = inst.operands[1].reg;
14526
14527 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14528 _("immediate has bits set outside the operand size"));
14529
14530 float_p = inst.operands[1].immisfloat;
14531
14532 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14533 et.size, et.type)) == FAIL)
14534 {
14535 /* Invert relevant bits only. */
14536 neon_invert_size (&immlo, &immhi, et.size);
14537 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14538 with one or the other; those cases are caught by
14539 neon_cmode_for_move_imm. */
14540 op = !op;
14541 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14542 &op, et.size, et.type)) == FAIL)
14543 {
14544 first_error (_("immediate out of range"));
14545 return;
14546 }
14547 }
14548
14549 inst.instruction &= ~(1 << 5);
14550 inst.instruction |= op << 5;
14551
14552 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14553 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14554 inst.instruction |= neon_quad (rs) << 6;
14555 inst.instruction |= cmode << 8;
14556
14557 neon_write_immbits (immbits);
14558 }
14559
14560 static void
14561 do_neon_mvn (void)
14562 {
14563 if (inst.operands[1].isreg)
14564 {
14565 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14566
14567 NEON_ENCODE (INTEGER, inst);
14568 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14569 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14570 inst.instruction |= LOW4 (inst.operands[1].reg);
14571 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14572 inst.instruction |= neon_quad (rs) << 6;
14573 }
14574 else
14575 {
14576 NEON_ENCODE (IMMED, inst);
14577 neon_move_immediate ();
14578 }
14579
14580 neon_dp_fixup (&inst);
14581 }
14582
14583 /* Encode instructions of form:
14584
14585 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14586 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14587
14588 static void
14589 neon_mixed_length (struct neon_type_el et, unsigned size)
14590 {
14591 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14592 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14593 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14594 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14595 inst.instruction |= LOW4 (inst.operands[2].reg);
14596 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14597 inst.instruction |= (et.type == NT_unsigned) << 24;
14598 inst.instruction |= neon_logbits (size) << 20;
14599
14600 neon_dp_fixup (&inst);
14601 }
14602
14603 static void
14604 do_neon_dyadic_long (void)
14605 {
14606 /* FIXME: Type checking for lengthening op. */
14607 struct neon_type_el et = neon_check_type (3, NS_QDD,
14608 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14609 neon_mixed_length (et, et.size);
14610 }
14611
14612 static void
14613 do_neon_abal (void)
14614 {
14615 struct neon_type_el et = neon_check_type (3, NS_QDD,
14616 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14617 neon_mixed_length (et, et.size);
14618 }
14619
14620 static void
14621 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14622 {
14623 if (inst.operands[2].isscalar)
14624 {
14625 struct neon_type_el et = neon_check_type (3, NS_QDS,
14626 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14627 NEON_ENCODE (SCALAR, inst);
14628 neon_mul_mac (et, et.type == NT_unsigned);
14629 }
14630 else
14631 {
14632 struct neon_type_el et = neon_check_type (3, NS_QDD,
14633 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14634 NEON_ENCODE (INTEGER, inst);
14635 neon_mixed_length (et, et.size);
14636 }
14637 }
14638
14639 static void
14640 do_neon_mac_maybe_scalar_long (void)
14641 {
14642 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14643 }
14644
14645 static void
14646 do_neon_dyadic_wide (void)
14647 {
14648 struct neon_type_el et = neon_check_type (3, NS_QQD,
14649 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14650 neon_mixed_length (et, et.size);
14651 }
14652
14653 static void
14654 do_neon_dyadic_narrow (void)
14655 {
14656 struct neon_type_el et = neon_check_type (3, NS_QDD,
14657 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14658 /* Operand sign is unimportant, and the U bit is part of the opcode,
14659 so force the operand type to integer. */
14660 et.type = NT_integer;
14661 neon_mixed_length (et, et.size / 2);
14662 }
14663
14664 static void
14665 do_neon_mul_sat_scalar_long (void)
14666 {
14667 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14668 }
14669
14670 static void
14671 do_neon_vmull (void)
14672 {
14673 if (inst.operands[2].isscalar)
14674 do_neon_mac_maybe_scalar_long ();
14675 else
14676 {
14677 struct neon_type_el et = neon_check_type (3, NS_QDD,
14678 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14679 if (et.type == NT_poly)
14680 NEON_ENCODE (POLY, inst);
14681 else
14682 NEON_ENCODE (INTEGER, inst);
14683 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14684 zero. Should be OK as-is. */
14685 neon_mixed_length (et, et.size);
14686 }
14687 }
14688
14689 static void
14690 do_neon_ext (void)
14691 {
14692 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14693 struct neon_type_el et = neon_check_type (3, rs,
14694 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14695 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14696
14697 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14698 _("shift out of range"));
14699 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14700 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14701 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14702 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14703 inst.instruction |= LOW4 (inst.operands[2].reg);
14704 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14705 inst.instruction |= neon_quad (rs) << 6;
14706 inst.instruction |= imm << 8;
14707
14708 neon_dp_fixup (&inst);
14709 }
14710
14711 static void
14712 do_neon_rev (void)
14713 {
14714 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14715 struct neon_type_el et = neon_check_type (2, rs,
14716 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14717 unsigned op = (inst.instruction >> 7) & 3;
14718 /* N (width of reversed regions) is encoded as part of the bitmask. We
14719 extract it here to check the elements to be reversed are smaller.
14720 Otherwise we'd get a reserved instruction. */
14721 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14722 gas_assert (elsize != 0);
14723 constraint (et.size >= elsize,
14724 _("elements must be smaller than reversal region"));
14725 neon_two_same (neon_quad (rs), 1, et.size);
14726 }
14727
14728 static void
14729 do_neon_dup (void)
14730 {
14731 if (inst.operands[1].isscalar)
14732 {
14733 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14734 struct neon_type_el et = neon_check_type (2, rs,
14735 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14736 unsigned sizebits = et.size >> 3;
14737 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14738 int logsize = neon_logbits (et.size);
14739 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14740
14741 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14742 return;
14743
14744 NEON_ENCODE (SCALAR, inst);
14745 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14746 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14747 inst.instruction |= LOW4 (dm);
14748 inst.instruction |= HI1 (dm) << 5;
14749 inst.instruction |= neon_quad (rs) << 6;
14750 inst.instruction |= x << 17;
14751 inst.instruction |= sizebits << 16;
14752
14753 neon_dp_fixup (&inst);
14754 }
14755 else
14756 {
14757 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14758 struct neon_type_el et = neon_check_type (2, rs,
14759 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14760 /* Duplicate ARM register to lanes of vector. */
14761 NEON_ENCODE (ARMREG, inst);
14762 switch (et.size)
14763 {
14764 case 8: inst.instruction |= 0x400000; break;
14765 case 16: inst.instruction |= 0x000020; break;
14766 case 32: inst.instruction |= 0x000000; break;
14767 default: break;
14768 }
14769 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14770 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14771 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14772 inst.instruction |= neon_quad (rs) << 21;
14773 /* The encoding for this instruction is identical for the ARM and Thumb
14774 variants, except for the condition field. */
14775 do_vfp_cond_or_thumb ();
14776 }
14777 }
14778
14779 /* VMOV has particularly many variations. It can be one of:
14780 0. VMOV<c><q> <Qd>, <Qm>
14781 1. VMOV<c><q> <Dd>, <Dm>
14782 (Register operations, which are VORR with Rm = Rn.)
14783 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14784 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14785 (Immediate loads.)
14786 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14787 (ARM register to scalar.)
14788 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14789 (Two ARM registers to vector.)
14790 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14791 (Scalar to ARM register.)
14792 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14793 (Vector to two ARM registers.)
14794 8. VMOV.F32 <Sd>, <Sm>
14795 9. VMOV.F64 <Dd>, <Dm>
14796 (VFP register moves.)
14797 10. VMOV.F32 <Sd>, #imm
14798 11. VMOV.F64 <Dd>, #imm
14799 (VFP float immediate load.)
14800 12. VMOV <Rd>, <Sm>
14801 (VFP single to ARM reg.)
14802 13. VMOV <Sd>, <Rm>
14803 (ARM reg to VFP single.)
14804 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14805 (Two ARM regs to two VFP singles.)
14806 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14807 (Two VFP singles to two ARM regs.)
14808
14809 These cases can be disambiguated using neon_select_shape, except cases 1/9
14810 and 3/11 which depend on the operand type too.
14811
14812 All the encoded bits are hardcoded by this function.
14813
14814 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14815 Cases 5, 7 may be used with VFPv2 and above.
14816
14817 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14818 can specify a type where it doesn't make sense to, and is ignored). */
14819
14820 static void
14821 do_neon_mov (void)
14822 {
14823 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14824 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14825 NS_NULL);
14826 struct neon_type_el et;
14827 const char *ldconst = 0;
14828
14829 switch (rs)
14830 {
14831 case NS_DD: /* case 1/9. */
14832 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14833 /* It is not an error here if no type is given. */
14834 inst.error = NULL;
14835 if (et.type == NT_float && et.size == 64)
14836 {
14837 do_vfp_nsyn_opcode ("fcpyd");
14838 break;
14839 }
14840 /* fall through. */
14841
14842 case NS_QQ: /* case 0/1. */
14843 {
14844 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14845 return;
14846 /* The architecture manual I have doesn't explicitly state which
14847 value the U bit should have for register->register moves, but
14848 the equivalent VORR instruction has U = 0, so do that. */
14849 inst.instruction = 0x0200110;
14850 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14851 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14852 inst.instruction |= LOW4 (inst.operands[1].reg);
14853 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14854 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14855 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14856 inst.instruction |= neon_quad (rs) << 6;
14857
14858 neon_dp_fixup (&inst);
14859 }
14860 break;
14861
14862 case NS_DI: /* case 3/11. */
14863 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14864 inst.error = NULL;
14865 if (et.type == NT_float && et.size == 64)
14866 {
14867 /* case 11 (fconstd). */
14868 ldconst = "fconstd";
14869 goto encode_fconstd;
14870 }
14871 /* fall through. */
14872
14873 case NS_QI: /* case 2/3. */
14874 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14875 return;
14876 inst.instruction = 0x0800010;
14877 neon_move_immediate ();
14878 neon_dp_fixup (&inst);
14879 break;
14880
14881 case NS_SR: /* case 4. */
14882 {
14883 unsigned bcdebits = 0;
14884 int logsize;
14885 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14886 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14887
14888 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14889 logsize = neon_logbits (et.size);
14890
14891 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14892 _(BAD_FPU));
14893 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14894 && et.size != 32, _(BAD_FPU));
14895 constraint (et.type == NT_invtype, _("bad type for scalar"));
14896 constraint (x >= 64 / et.size, _("scalar index out of range"));
14897
14898 switch (et.size)
14899 {
14900 case 8: bcdebits = 0x8; break;
14901 case 16: bcdebits = 0x1; break;
14902 case 32: bcdebits = 0x0; break;
14903 default: ;
14904 }
14905
14906 bcdebits |= x << logsize;
14907
14908 inst.instruction = 0xe000b10;
14909 do_vfp_cond_or_thumb ();
14910 inst.instruction |= LOW4 (dn) << 16;
14911 inst.instruction |= HI1 (dn) << 7;
14912 inst.instruction |= inst.operands[1].reg << 12;
14913 inst.instruction |= (bcdebits & 3) << 5;
14914 inst.instruction |= (bcdebits >> 2) << 21;
14915 }
14916 break;
14917
14918 case NS_DRR: /* case 5 (fmdrr). */
14919 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14920 _(BAD_FPU));
14921
14922 inst.instruction = 0xc400b10;
14923 do_vfp_cond_or_thumb ();
14924 inst.instruction |= LOW4 (inst.operands[0].reg);
14925 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14926 inst.instruction |= inst.operands[1].reg << 12;
14927 inst.instruction |= inst.operands[2].reg << 16;
14928 break;
14929
14930 case NS_RS: /* case 6. */
14931 {
14932 unsigned logsize;
14933 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14934 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14935 unsigned abcdebits = 0;
14936
14937 et = neon_check_type (2, NS_NULL,
14938 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14939 logsize = neon_logbits (et.size);
14940
14941 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14942 _(BAD_FPU));
14943 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14944 && et.size != 32, _(BAD_FPU));
14945 constraint (et.type == NT_invtype, _("bad type for scalar"));
14946 constraint (x >= 64 / et.size, _("scalar index out of range"));
14947
14948 switch (et.size)
14949 {
14950 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14951 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14952 case 32: abcdebits = 0x00; break;
14953 default: ;
14954 }
14955
14956 abcdebits |= x << logsize;
14957 inst.instruction = 0xe100b10;
14958 do_vfp_cond_or_thumb ();
14959 inst.instruction |= LOW4 (dn) << 16;
14960 inst.instruction |= HI1 (dn) << 7;
14961 inst.instruction |= inst.operands[0].reg << 12;
14962 inst.instruction |= (abcdebits & 3) << 5;
14963 inst.instruction |= (abcdebits >> 2) << 21;
14964 }
14965 break;
14966
14967 case NS_RRD: /* case 7 (fmrrd). */
14968 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14969 _(BAD_FPU));
14970
14971 inst.instruction = 0xc500b10;
14972 do_vfp_cond_or_thumb ();
14973 inst.instruction |= inst.operands[0].reg << 12;
14974 inst.instruction |= inst.operands[1].reg << 16;
14975 inst.instruction |= LOW4 (inst.operands[2].reg);
14976 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14977 break;
14978
14979 case NS_FF: /* case 8 (fcpys). */
14980 do_vfp_nsyn_opcode ("fcpys");
14981 break;
14982
14983 case NS_FI: /* case 10 (fconsts). */
14984 ldconst = "fconsts";
14985 encode_fconstd:
14986 if (is_quarter_float (inst.operands[1].imm))
14987 {
14988 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14989 do_vfp_nsyn_opcode (ldconst);
14990 }
14991 else
14992 first_error (_("immediate out of range"));
14993 break;
14994
14995 case NS_RF: /* case 12 (fmrs). */
14996 do_vfp_nsyn_opcode ("fmrs");
14997 break;
14998
14999 case NS_FR: /* case 13 (fmsr). */
15000 do_vfp_nsyn_opcode ("fmsr");
15001 break;
15002
15003 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15004 (one of which is a list), but we have parsed four. Do some fiddling to
15005 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15006 expect. */
15007 case NS_RRFF: /* case 14 (fmrrs). */
15008 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15009 _("VFP registers must be adjacent"));
15010 inst.operands[2].imm = 2;
15011 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15012 do_vfp_nsyn_opcode ("fmrrs");
15013 break;
15014
15015 case NS_FFRR: /* case 15 (fmsrr). */
15016 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15017 _("VFP registers must be adjacent"));
15018 inst.operands[1] = inst.operands[2];
15019 inst.operands[2] = inst.operands[3];
15020 inst.operands[0].imm = 2;
15021 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15022 do_vfp_nsyn_opcode ("fmsrr");
15023 break;
15024
15025 default:
15026 abort ();
15027 }
15028 }
15029
15030 static void
15031 do_neon_rshift_round_imm (void)
15032 {
15033 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15034 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15035 int imm = inst.operands[2].imm;
15036
15037 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15038 if (imm == 0)
15039 {
15040 inst.operands[2].present = 0;
15041 do_neon_mov ();
15042 return;
15043 }
15044
15045 constraint (imm < 1 || (unsigned)imm > et.size,
15046 _("immediate out of range for shift"));
15047 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15048 et.size - imm);
15049 }
15050
15051 static void
15052 do_neon_movl (void)
15053 {
15054 struct neon_type_el et = neon_check_type (2, NS_QD,
15055 N_EQK | N_DBL, N_SU_32 | N_KEY);
15056 unsigned sizebits = et.size >> 3;
15057 inst.instruction |= sizebits << 19;
15058 neon_two_same (0, et.type == NT_unsigned, -1);
15059 }
15060
15061 static void
15062 do_neon_trn (void)
15063 {
15064 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15065 struct neon_type_el et = neon_check_type (2, rs,
15066 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15067 NEON_ENCODE (INTEGER, inst);
15068 neon_two_same (neon_quad (rs), 1, et.size);
15069 }
15070
15071 static void
15072 do_neon_zip_uzp (void)
15073 {
15074 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15075 struct neon_type_el et = neon_check_type (2, rs,
15076 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15077 if (rs == NS_DD && et.size == 32)
15078 {
15079 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15080 inst.instruction = N_MNEM_vtrn;
15081 do_neon_trn ();
15082 return;
15083 }
15084 neon_two_same (neon_quad (rs), 1, et.size);
15085 }
15086
15087 static void
15088 do_neon_sat_abs_neg (void)
15089 {
15090 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15091 struct neon_type_el et = neon_check_type (2, rs,
15092 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15093 neon_two_same (neon_quad (rs), 1, et.size);
15094 }
15095
15096 static void
15097 do_neon_pair_long (void)
15098 {
15099 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15100 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15101 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15102 inst.instruction |= (et.type == NT_unsigned) << 7;
15103 neon_two_same (neon_quad (rs), 1, et.size);
15104 }
15105
15106 static void
15107 do_neon_recip_est (void)
15108 {
15109 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15110 struct neon_type_el et = neon_check_type (2, rs,
15111 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15112 inst.instruction |= (et.type == NT_float) << 8;
15113 neon_two_same (neon_quad (rs), 1, et.size);
15114 }
15115
15116 static void
15117 do_neon_cls (void)
15118 {
15119 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15120 struct neon_type_el et = neon_check_type (2, rs,
15121 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15122 neon_two_same (neon_quad (rs), 1, et.size);
15123 }
15124
15125 static void
15126 do_neon_clz (void)
15127 {
15128 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15129 struct neon_type_el et = neon_check_type (2, rs,
15130 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15131 neon_two_same (neon_quad (rs), 1, et.size);
15132 }
15133
15134 static void
15135 do_neon_cnt (void)
15136 {
15137 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15138 struct neon_type_el et = neon_check_type (2, rs,
15139 N_EQK | N_INT, N_8 | N_KEY);
15140 neon_two_same (neon_quad (rs), 1, et.size);
15141 }
15142
15143 static void
15144 do_neon_swp (void)
15145 {
15146 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15147 neon_two_same (neon_quad (rs), 1, -1);
15148 }
15149
15150 static void
15151 do_neon_tbl_tbx (void)
15152 {
15153 unsigned listlenbits;
15154 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15155
15156 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15157 {
15158 first_error (_("bad list length for table lookup"));
15159 return;
15160 }
15161
15162 listlenbits = inst.operands[1].imm - 1;
15163 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15164 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15165 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15166 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15167 inst.instruction |= LOW4 (inst.operands[2].reg);
15168 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15169 inst.instruction |= listlenbits << 8;
15170
15171 neon_dp_fixup (&inst);
15172 }
15173
15174 static void
15175 do_neon_ldm_stm (void)
15176 {
15177 /* P, U and L bits are part of bitmask. */
15178 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15179 unsigned offsetbits = inst.operands[1].imm * 2;
15180
15181 if (inst.operands[1].issingle)
15182 {
15183 do_vfp_nsyn_ldm_stm (is_dbmode);
15184 return;
15185 }
15186
15187 constraint (is_dbmode && !inst.operands[0].writeback,
15188 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15189
15190 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15191 _("register list must contain at least 1 and at most 16 "
15192 "registers"));
15193
15194 inst.instruction |= inst.operands[0].reg << 16;
15195 inst.instruction |= inst.operands[0].writeback << 21;
15196 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15197 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15198
15199 inst.instruction |= offsetbits;
15200
15201 do_vfp_cond_or_thumb ();
15202 }
15203
15204 static void
15205 do_neon_ldr_str (void)
15206 {
15207 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15208
15209 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15210 And is UNPREDICTABLE in thumb mode. */
15211 if (!is_ldr
15212 && inst.operands[1].reg == REG_PC
15213 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15214 {
15215 if (!thumb_mode && warn_on_deprecated)
15216 as_warn (_("Use of PC here is deprecated"));
15217 else
15218 inst.error = _("Use of PC here is UNPREDICTABLE");
15219 }
15220
15221 if (inst.operands[0].issingle)
15222 {
15223 if (is_ldr)
15224 do_vfp_nsyn_opcode ("flds");
15225 else
15226 do_vfp_nsyn_opcode ("fsts");
15227 }
15228 else
15229 {
15230 if (is_ldr)
15231 do_vfp_nsyn_opcode ("fldd");
15232 else
15233 do_vfp_nsyn_opcode ("fstd");
15234 }
15235 }
15236
15237 /* "interleave" version also handles non-interleaving register VLD1/VST1
15238 instructions. */
15239
15240 static void
15241 do_neon_ld_st_interleave (void)
15242 {
15243 struct neon_type_el et = neon_check_type (1, NS_NULL,
15244 N_8 | N_16 | N_32 | N_64);
15245 unsigned alignbits = 0;
15246 unsigned idx;
15247 /* The bits in this table go:
15248 0: register stride of one (0) or two (1)
15249 1,2: register list length, minus one (1, 2, 3, 4).
15250 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15251 We use -1 for invalid entries. */
15252 const int typetable[] =
15253 {
15254 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15255 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15256 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15257 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15258 };
15259 int typebits;
15260
15261 if (et.type == NT_invtype)
15262 return;
15263
15264 if (inst.operands[1].immisalign)
15265 switch (inst.operands[1].imm >> 8)
15266 {
15267 case 64: alignbits = 1; break;
15268 case 128:
15269 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15270 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15271 goto bad_alignment;
15272 alignbits = 2;
15273 break;
15274 case 256:
15275 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15276 goto bad_alignment;
15277 alignbits = 3;
15278 break;
15279 default:
15280 bad_alignment:
15281 first_error (_("bad alignment"));
15282 return;
15283 }
15284
15285 inst.instruction |= alignbits << 4;
15286 inst.instruction |= neon_logbits (et.size) << 6;
15287
15288 /* Bits [4:6] of the immediate in a list specifier encode register stride
15289 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15290 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15291 up the right value for "type" in a table based on this value and the given
15292 list style, then stick it back. */
15293 idx = ((inst.operands[0].imm >> 4) & 7)
15294 | (((inst.instruction >> 8) & 3) << 3);
15295
15296 typebits = typetable[idx];
15297
15298 constraint (typebits == -1, _("bad list type for instruction"));
15299
15300 inst.instruction &= ~0xf00;
15301 inst.instruction |= typebits << 8;
15302 }
15303
15304 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15305 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15306 otherwise. The variable arguments are a list of pairs of legal (size, align)
15307 values, terminated with -1. */
15308
15309 static int
15310 neon_alignment_bit (int size, int align, int *do_align, ...)
15311 {
15312 va_list ap;
15313 int result = FAIL, thissize, thisalign;
15314
15315 if (!inst.operands[1].immisalign)
15316 {
15317 *do_align = 0;
15318 return SUCCESS;
15319 }
15320
15321 va_start (ap, do_align);
15322
15323 do
15324 {
15325 thissize = va_arg (ap, int);
15326 if (thissize == -1)
15327 break;
15328 thisalign = va_arg (ap, int);
15329
15330 if (size == thissize && align == thisalign)
15331 result = SUCCESS;
15332 }
15333 while (result != SUCCESS);
15334
15335 va_end (ap);
15336
15337 if (result == SUCCESS)
15338 *do_align = 1;
15339 else
15340 first_error (_("unsupported alignment for instruction"));
15341
15342 return result;
15343 }
15344
15345 static void
15346 do_neon_ld_st_lane (void)
15347 {
15348 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15349 int align_good, do_align = 0;
15350 int logsize = neon_logbits (et.size);
15351 int align = inst.operands[1].imm >> 8;
15352 int n = (inst.instruction >> 8) & 3;
15353 int max_el = 64 / et.size;
15354
15355 if (et.type == NT_invtype)
15356 return;
15357
15358 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15359 _("bad list length"));
15360 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15361 _("scalar index out of range"));
15362 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15363 && et.size == 8,
15364 _("stride of 2 unavailable when element size is 8"));
15365
15366 switch (n)
15367 {
15368 case 0: /* VLD1 / VST1. */
15369 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15370 32, 32, -1);
15371 if (align_good == FAIL)
15372 return;
15373 if (do_align)
15374 {
15375 unsigned alignbits = 0;
15376 switch (et.size)
15377 {
15378 case 16: alignbits = 0x1; break;
15379 case 32: alignbits = 0x3; break;
15380 default: ;
15381 }
15382 inst.instruction |= alignbits << 4;
15383 }
15384 break;
15385
15386 case 1: /* VLD2 / VST2. */
15387 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15388 32, 64, -1);
15389 if (align_good == FAIL)
15390 return;
15391 if (do_align)
15392 inst.instruction |= 1 << 4;
15393 break;
15394
15395 case 2: /* VLD3 / VST3. */
15396 constraint (inst.operands[1].immisalign,
15397 _("can't use alignment with this instruction"));
15398 break;
15399
15400 case 3: /* VLD4 / VST4. */
15401 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15402 16, 64, 32, 64, 32, 128, -1);
15403 if (align_good == FAIL)
15404 return;
15405 if (do_align)
15406 {
15407 unsigned alignbits = 0;
15408 switch (et.size)
15409 {
15410 case 8: alignbits = 0x1; break;
15411 case 16: alignbits = 0x1; break;
15412 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15413 default: ;
15414 }
15415 inst.instruction |= alignbits << 4;
15416 }
15417 break;
15418
15419 default: ;
15420 }
15421
15422 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15423 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15424 inst.instruction |= 1 << (4 + logsize);
15425
15426 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15427 inst.instruction |= logsize << 10;
15428 }
15429
15430 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15431
15432 static void
15433 do_neon_ld_dup (void)
15434 {
15435 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15436 int align_good, do_align = 0;
15437
15438 if (et.type == NT_invtype)
15439 return;
15440
15441 switch ((inst.instruction >> 8) & 3)
15442 {
15443 case 0: /* VLD1. */
15444 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15445 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15446 &do_align, 16, 16, 32, 32, -1);
15447 if (align_good == FAIL)
15448 return;
15449 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15450 {
15451 case 1: break;
15452 case 2: inst.instruction |= 1 << 5; break;
15453 default: first_error (_("bad list length")); return;
15454 }
15455 inst.instruction |= neon_logbits (et.size) << 6;
15456 break;
15457
15458 case 1: /* VLD2. */
15459 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15460 &do_align, 8, 16, 16, 32, 32, 64, -1);
15461 if (align_good == FAIL)
15462 return;
15463 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15464 _("bad list length"));
15465 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15466 inst.instruction |= 1 << 5;
15467 inst.instruction |= neon_logbits (et.size) << 6;
15468 break;
15469
15470 case 2: /* VLD3. */
15471 constraint (inst.operands[1].immisalign,
15472 _("can't use alignment with this instruction"));
15473 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15474 _("bad list length"));
15475 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15476 inst.instruction |= 1 << 5;
15477 inst.instruction |= neon_logbits (et.size) << 6;
15478 break;
15479
15480 case 3: /* VLD4. */
15481 {
15482 int align = inst.operands[1].imm >> 8;
15483 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15484 16, 64, 32, 64, 32, 128, -1);
15485 if (align_good == FAIL)
15486 return;
15487 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15488 _("bad list length"));
15489 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15490 inst.instruction |= 1 << 5;
15491 if (et.size == 32 && align == 128)
15492 inst.instruction |= 0x3 << 6;
15493 else
15494 inst.instruction |= neon_logbits (et.size) << 6;
15495 }
15496 break;
15497
15498 default: ;
15499 }
15500
15501 inst.instruction |= do_align << 4;
15502 }
15503
15504 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15505 apart from bits [11:4]. */
15506
15507 static void
15508 do_neon_ldx_stx (void)
15509 {
15510 if (inst.operands[1].isreg)
15511 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15512
15513 switch (NEON_LANE (inst.operands[0].imm))
15514 {
15515 case NEON_INTERLEAVE_LANES:
15516 NEON_ENCODE (INTERLV, inst);
15517 do_neon_ld_st_interleave ();
15518 break;
15519
15520 case NEON_ALL_LANES:
15521 NEON_ENCODE (DUP, inst);
15522 do_neon_ld_dup ();
15523 break;
15524
15525 default:
15526 NEON_ENCODE (LANE, inst);
15527 do_neon_ld_st_lane ();
15528 }
15529
15530 /* L bit comes from bit mask. */
15531 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15532 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15533 inst.instruction |= inst.operands[1].reg << 16;
15534
15535 if (inst.operands[1].postind)
15536 {
15537 int postreg = inst.operands[1].imm & 0xf;
15538 constraint (!inst.operands[1].immisreg,
15539 _("post-index must be a register"));
15540 constraint (postreg == 0xd || postreg == 0xf,
15541 _("bad register for post-index"));
15542 inst.instruction |= postreg;
15543 }
15544 else if (inst.operands[1].writeback)
15545 {
15546 inst.instruction |= 0xd;
15547 }
15548 else
15549 inst.instruction |= 0xf;
15550
15551 if (thumb_mode)
15552 inst.instruction |= 0xf9000000;
15553 else
15554 inst.instruction |= 0xf4000000;
15555 }
15556 \f
15557 /* Overall per-instruction processing. */
15558
15559 /* We need to be able to fix up arbitrary expressions in some statements.
15560 This is so that we can handle symbols that are an arbitrary distance from
15561 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15562 which returns part of an address in a form which will be valid for
15563 a data instruction. We do this by pushing the expression into a symbol
15564 in the expr_section, and creating a fix for that. */
15565
15566 static void
15567 fix_new_arm (fragS * frag,
15568 int where,
15569 short int size,
15570 expressionS * exp,
15571 int pc_rel,
15572 int reloc)
15573 {
15574 fixS * new_fix;
15575
15576 switch (exp->X_op)
15577 {
15578 case O_constant:
15579 if (pc_rel)
15580 {
15581 /* Create an absolute valued symbol, so we have something to
15582 refer to in the object file. Unfortunately for us, gas's
15583 generic expression parsing will already have folded out
15584 any use of .set foo/.type foo %function that may have
15585 been used to set type information of the target location,
15586 that's being specified symbolically. We have to presume
15587 the user knows what they are doing. */
15588 char name[16 + 8];
15589 symbolS *symbol;
15590
15591 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15592
15593 symbol = symbol_find_or_make (name);
15594 S_SET_SEGMENT (symbol, absolute_section);
15595 symbol_set_frag (symbol, &zero_address_frag);
15596 S_SET_VALUE (symbol, exp->X_add_number);
15597 exp->X_op = O_symbol;
15598 exp->X_add_symbol = symbol;
15599 exp->X_add_number = 0;
15600 }
15601 /* FALLTHROUGH */
15602 case O_symbol:
15603 case O_add:
15604 case O_subtract:
15605 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15606 (enum bfd_reloc_code_real) reloc);
15607 break;
15608
15609 default:
15610 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15611 pc_rel, (enum bfd_reloc_code_real) reloc);
15612 break;
15613 }
15614
15615 /* Mark whether the fix is to a THUMB instruction, or an ARM
15616 instruction. */
15617 new_fix->tc_fix_data = thumb_mode;
15618 }
15619
15620 /* Create a frg for an instruction requiring relaxation. */
15621 static void
15622 output_relax_insn (void)
15623 {
15624 char * to;
15625 symbolS *sym;
15626 int offset;
15627
15628 /* The size of the instruction is unknown, so tie the debug info to the
15629 start of the instruction. */
15630 dwarf2_emit_insn (0);
15631
15632 switch (inst.reloc.exp.X_op)
15633 {
15634 case O_symbol:
15635 sym = inst.reloc.exp.X_add_symbol;
15636 offset = inst.reloc.exp.X_add_number;
15637 break;
15638 case O_constant:
15639 sym = NULL;
15640 offset = inst.reloc.exp.X_add_number;
15641 break;
15642 default:
15643 sym = make_expr_symbol (&inst.reloc.exp);
15644 offset = 0;
15645 break;
15646 }
15647 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15648 inst.relax, sym, offset, NULL/*offset, opcode*/);
15649 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15650 }
15651
15652 /* Write a 32-bit thumb instruction to buf. */
15653 static void
15654 put_thumb32_insn (char * buf, unsigned long insn)
15655 {
15656 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15657 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15658 }
15659
15660 static void
15661 output_inst (const char * str)
15662 {
15663 char * to = NULL;
15664
15665 if (inst.error)
15666 {
15667 as_bad ("%s -- `%s'", inst.error, str);
15668 return;
15669 }
15670 if (inst.relax)
15671 {
15672 output_relax_insn ();
15673 return;
15674 }
15675 if (inst.size == 0)
15676 return;
15677
15678 to = frag_more (inst.size);
15679 /* PR 9814: Record the thumb mode into the current frag so that we know
15680 what type of NOP padding to use, if necessary. We override any previous
15681 setting so that if the mode has changed then the NOPS that we use will
15682 match the encoding of the last instruction in the frag. */
15683 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15684
15685 if (thumb_mode && (inst.size > THUMB_SIZE))
15686 {
15687 gas_assert (inst.size == (2 * THUMB_SIZE));
15688 put_thumb32_insn (to, inst.instruction);
15689 }
15690 else if (inst.size > INSN_SIZE)
15691 {
15692 gas_assert (inst.size == (2 * INSN_SIZE));
15693 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15694 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15695 }
15696 else
15697 md_number_to_chars (to, inst.instruction, inst.size);
15698
15699 if (inst.reloc.type != BFD_RELOC_UNUSED)
15700 fix_new_arm (frag_now, to - frag_now->fr_literal,
15701 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15702 inst.reloc.type);
15703
15704 dwarf2_emit_insn (inst.size);
15705 }
15706
15707 static char *
15708 output_it_inst (int cond, int mask, char * to)
15709 {
15710 unsigned long instruction = 0xbf00;
15711
15712 mask &= 0xf;
15713 instruction |= mask;
15714 instruction |= cond << 4;
15715
15716 if (to == NULL)
15717 {
15718 to = frag_more (2);
15719 #ifdef OBJ_ELF
15720 dwarf2_emit_insn (2);
15721 #endif
15722 }
15723
15724 md_number_to_chars (to, instruction, 2);
15725
15726 return to;
15727 }
15728
15729 /* Tag values used in struct asm_opcode's tag field. */
15730 enum opcode_tag
15731 {
15732 OT_unconditional, /* Instruction cannot be conditionalized.
15733 The ARM condition field is still 0xE. */
15734 OT_unconditionalF, /* Instruction cannot be conditionalized
15735 and carries 0xF in its ARM condition field. */
15736 OT_csuffix, /* Instruction takes a conditional suffix. */
15737 OT_csuffixF, /* Some forms of the instruction take a conditional
15738 suffix, others place 0xF where the condition field
15739 would be. */
15740 OT_cinfix3, /* Instruction takes a conditional infix,
15741 beginning at character index 3. (In
15742 unified mode, it becomes a suffix.) */
15743 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15744 tsts, cmps, cmns, and teqs. */
15745 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15746 character index 3, even in unified mode. Used for
15747 legacy instructions where suffix and infix forms
15748 may be ambiguous. */
15749 OT_csuf_or_in3, /* Instruction takes either a conditional
15750 suffix or an infix at character index 3. */
15751 OT_odd_infix_unc, /* This is the unconditional variant of an
15752 instruction that takes a conditional infix
15753 at an unusual position. In unified mode,
15754 this variant will accept a suffix. */
15755 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15756 are the conditional variants of instructions that
15757 take conditional infixes in unusual positions.
15758 The infix appears at character index
15759 (tag - OT_odd_infix_0). These are not accepted
15760 in unified mode. */
15761 };
15762
15763 /* Subroutine of md_assemble, responsible for looking up the primary
15764 opcode from the mnemonic the user wrote. STR points to the
15765 beginning of the mnemonic.
15766
15767 This is not simply a hash table lookup, because of conditional
15768 variants. Most instructions have conditional variants, which are
15769 expressed with a _conditional affix_ to the mnemonic. If we were
15770 to encode each conditional variant as a literal string in the opcode
15771 table, it would have approximately 20,000 entries.
15772
15773 Most mnemonics take this affix as a suffix, and in unified syntax,
15774 'most' is upgraded to 'all'. However, in the divided syntax, some
15775 instructions take the affix as an infix, notably the s-variants of
15776 the arithmetic instructions. Of those instructions, all but six
15777 have the infix appear after the third character of the mnemonic.
15778
15779 Accordingly, the algorithm for looking up primary opcodes given
15780 an identifier is:
15781
15782 1. Look up the identifier in the opcode table.
15783 If we find a match, go to step U.
15784
15785 2. Look up the last two characters of the identifier in the
15786 conditions table. If we find a match, look up the first N-2
15787 characters of the identifier in the opcode table. If we
15788 find a match, go to step CE.
15789
15790 3. Look up the fourth and fifth characters of the identifier in
15791 the conditions table. If we find a match, extract those
15792 characters from the identifier, and look up the remaining
15793 characters in the opcode table. If we find a match, go
15794 to step CM.
15795
15796 4. Fail.
15797
15798 U. Examine the tag field of the opcode structure, in case this is
15799 one of the six instructions with its conditional infix in an
15800 unusual place. If it is, the tag tells us where to find the
15801 infix; look it up in the conditions table and set inst.cond
15802 accordingly. Otherwise, this is an unconditional instruction.
15803 Again set inst.cond accordingly. Return the opcode structure.
15804
15805 CE. Examine the tag field to make sure this is an instruction that
15806 should receive a conditional suffix. If it is not, fail.
15807 Otherwise, set inst.cond from the suffix we already looked up,
15808 and return the opcode structure.
15809
15810 CM. Examine the tag field to make sure this is an instruction that
15811 should receive a conditional infix after the third character.
15812 If it is not, fail. Otherwise, undo the edits to the current
15813 line of input and proceed as for case CE. */
15814
15815 static const struct asm_opcode *
15816 opcode_lookup (char **str)
15817 {
15818 char *end, *base;
15819 char *affix;
15820 const struct asm_opcode *opcode;
15821 const struct asm_cond *cond;
15822 char save[2];
15823
15824 /* Scan up to the end of the mnemonic, which must end in white space,
15825 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15826 for (base = end = *str; *end != '\0'; end++)
15827 if (*end == ' ' || *end == '.')
15828 break;
15829
15830 if (end == base)
15831 return NULL;
15832
15833 /* Handle a possible width suffix and/or Neon type suffix. */
15834 if (end[0] == '.')
15835 {
15836 int offset = 2;
15837
15838 /* The .w and .n suffixes are only valid if the unified syntax is in
15839 use. */
15840 if (unified_syntax && end[1] == 'w')
15841 inst.size_req = 4;
15842 else if (unified_syntax && end[1] == 'n')
15843 inst.size_req = 2;
15844 else
15845 offset = 0;
15846
15847 inst.vectype.elems = 0;
15848
15849 *str = end + offset;
15850
15851 if (end[offset] == '.')
15852 {
15853 /* See if we have a Neon type suffix (possible in either unified or
15854 non-unified ARM syntax mode). */
15855 if (parse_neon_type (&inst.vectype, str) == FAIL)
15856 return NULL;
15857 }
15858 else if (end[offset] != '\0' && end[offset] != ' ')
15859 return NULL;
15860 }
15861 else
15862 *str = end;
15863
15864 /* Look for unaffixed or special-case affixed mnemonic. */
15865 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15866 end - base);
15867 if (opcode)
15868 {
15869 /* step U */
15870 if (opcode->tag < OT_odd_infix_0)
15871 {
15872 inst.cond = COND_ALWAYS;
15873 return opcode;
15874 }
15875
15876 if (warn_on_deprecated && unified_syntax)
15877 as_warn (_("conditional infixes are deprecated in unified syntax"));
15878 affix = base + (opcode->tag - OT_odd_infix_0);
15879 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15880 gas_assert (cond);
15881
15882 inst.cond = cond->value;
15883 return opcode;
15884 }
15885
15886 /* Cannot have a conditional suffix on a mnemonic of less than two
15887 characters. */
15888 if (end - base < 3)
15889 return NULL;
15890
15891 /* Look for suffixed mnemonic. */
15892 affix = end - 2;
15893 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15894 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15895 affix - base);
15896 if (opcode && cond)
15897 {
15898 /* step CE */
15899 switch (opcode->tag)
15900 {
15901 case OT_cinfix3_legacy:
15902 /* Ignore conditional suffixes matched on infix only mnemonics. */
15903 break;
15904
15905 case OT_cinfix3:
15906 case OT_cinfix3_deprecated:
15907 case OT_odd_infix_unc:
15908 if (!unified_syntax)
15909 return 0;
15910 /* else fall through */
15911
15912 case OT_csuffix:
15913 case OT_csuffixF:
15914 case OT_csuf_or_in3:
15915 inst.cond = cond->value;
15916 return opcode;
15917
15918 case OT_unconditional:
15919 case OT_unconditionalF:
15920 if (thumb_mode)
15921 inst.cond = cond->value;
15922 else
15923 {
15924 /* Delayed diagnostic. */
15925 inst.error = BAD_COND;
15926 inst.cond = COND_ALWAYS;
15927 }
15928 return opcode;
15929
15930 default:
15931 return NULL;
15932 }
15933 }
15934
15935 /* Cannot have a usual-position infix on a mnemonic of less than
15936 six characters (five would be a suffix). */
15937 if (end - base < 6)
15938 return NULL;
15939
15940 /* Look for infixed mnemonic in the usual position. */
15941 affix = base + 3;
15942 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15943 if (!cond)
15944 return NULL;
15945
15946 memcpy (save, affix, 2);
15947 memmove (affix, affix + 2, (end - affix) - 2);
15948 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15949 (end - base) - 2);
15950 memmove (affix + 2, affix, (end - affix) - 2);
15951 memcpy (affix, save, 2);
15952
15953 if (opcode
15954 && (opcode->tag == OT_cinfix3
15955 || opcode->tag == OT_cinfix3_deprecated
15956 || opcode->tag == OT_csuf_or_in3
15957 || opcode->tag == OT_cinfix3_legacy))
15958 {
15959 /* Step CM. */
15960 if (warn_on_deprecated && unified_syntax
15961 && (opcode->tag == OT_cinfix3
15962 || opcode->tag == OT_cinfix3_deprecated))
15963 as_warn (_("conditional infixes are deprecated in unified syntax"));
15964
15965 inst.cond = cond->value;
15966 return opcode;
15967 }
15968
15969 return NULL;
15970 }
15971
15972 /* This function generates an initial IT instruction, leaving its block
15973 virtually open for the new instructions. Eventually,
15974 the mask will be updated by now_it_add_mask () each time
15975 a new instruction needs to be included in the IT block.
15976 Finally, the block is closed with close_automatic_it_block ().
15977 The block closure can be requested either from md_assemble (),
15978 a tencode (), or due to a label hook. */
15979
15980 static void
15981 new_automatic_it_block (int cond)
15982 {
15983 now_it.state = AUTOMATIC_IT_BLOCK;
15984 now_it.mask = 0x18;
15985 now_it.cc = cond;
15986 now_it.block_length = 1;
15987 mapping_state (MAP_THUMB);
15988 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15989 }
15990
15991 /* Close an automatic IT block.
15992 See comments in new_automatic_it_block (). */
15993
15994 static void
15995 close_automatic_it_block (void)
15996 {
15997 now_it.mask = 0x10;
15998 now_it.block_length = 0;
15999 }
16000
16001 /* Update the mask of the current automatically-generated IT
16002 instruction. See comments in new_automatic_it_block (). */
16003
16004 static void
16005 now_it_add_mask (int cond)
16006 {
16007 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16008 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16009 | ((bitvalue) << (nbit)))
16010 const int resulting_bit = (cond & 1);
16011
16012 now_it.mask &= 0xf;
16013 now_it.mask = SET_BIT_VALUE (now_it.mask,
16014 resulting_bit,
16015 (5 - now_it.block_length));
16016 now_it.mask = SET_BIT_VALUE (now_it.mask,
16017 1,
16018 ((5 - now_it.block_length) - 1) );
16019 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16020
16021 #undef CLEAR_BIT
16022 #undef SET_BIT_VALUE
16023 }
16024
16025 /* The IT blocks handling machinery is accessed through the these functions:
16026 it_fsm_pre_encode () from md_assemble ()
16027 set_it_insn_type () optional, from the tencode functions
16028 set_it_insn_type_last () ditto
16029 in_it_block () ditto
16030 it_fsm_post_encode () from md_assemble ()
16031 force_automatic_it_block_close () from label habdling functions
16032
16033 Rationale:
16034 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16035 initializing the IT insn type with a generic initial value depending
16036 on the inst.condition.
16037 2) During the tencode function, two things may happen:
16038 a) The tencode function overrides the IT insn type by
16039 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16040 b) The tencode function queries the IT block state by
16041 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16042
16043 Both set_it_insn_type and in_it_block run the internal FSM state
16044 handling function (handle_it_state), because: a) setting the IT insn
16045 type may incur in an invalid state (exiting the function),
16046 and b) querying the state requires the FSM to be updated.
16047 Specifically we want to avoid creating an IT block for conditional
16048 branches, so it_fsm_pre_encode is actually a guess and we can't
16049 determine whether an IT block is required until the tencode () routine
16050 has decided what type of instruction this actually it.
16051 Because of this, if set_it_insn_type and in_it_block have to be used,
16052 set_it_insn_type has to be called first.
16053
16054 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16055 determines the insn IT type depending on the inst.cond code.
16056 When a tencode () routine encodes an instruction that can be
16057 either outside an IT block, or, in the case of being inside, has to be
16058 the last one, set_it_insn_type_last () will determine the proper
16059 IT instruction type based on the inst.cond code. Otherwise,
16060 set_it_insn_type can be called for overriding that logic or
16061 for covering other cases.
16062
16063 Calling handle_it_state () may not transition the IT block state to
16064 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16065 still queried. Instead, if the FSM determines that the state should
16066 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16067 after the tencode () function: that's what it_fsm_post_encode () does.
16068
16069 Since in_it_block () calls the state handling function to get an
16070 updated state, an error may occur (due to invalid insns combination).
16071 In that case, inst.error is set.
16072 Therefore, inst.error has to be checked after the execution of
16073 the tencode () routine.
16074
16075 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16076 any pending state change (if any) that didn't take place in
16077 handle_it_state () as explained above. */
16078
16079 static void
16080 it_fsm_pre_encode (void)
16081 {
16082 if (inst.cond != COND_ALWAYS)
16083 inst.it_insn_type = INSIDE_IT_INSN;
16084 else
16085 inst.it_insn_type = OUTSIDE_IT_INSN;
16086
16087 now_it.state_handled = 0;
16088 }
16089
16090 /* IT state FSM handling function. */
16091
16092 static int
16093 handle_it_state (void)
16094 {
16095 now_it.state_handled = 1;
16096
16097 switch (now_it.state)
16098 {
16099 case OUTSIDE_IT_BLOCK:
16100 switch (inst.it_insn_type)
16101 {
16102 case OUTSIDE_IT_INSN:
16103 break;
16104
16105 case INSIDE_IT_INSN:
16106 case INSIDE_IT_LAST_INSN:
16107 if (thumb_mode == 0)
16108 {
16109 if (unified_syntax
16110 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16111 as_tsktsk (_("Warning: conditional outside an IT block"\
16112 " for Thumb."));
16113 }
16114 else
16115 {
16116 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16117 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16118 {
16119 /* Automatically generate the IT instruction. */
16120 new_automatic_it_block (inst.cond);
16121 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16122 close_automatic_it_block ();
16123 }
16124 else
16125 {
16126 inst.error = BAD_OUT_IT;
16127 return FAIL;
16128 }
16129 }
16130 break;
16131
16132 case IF_INSIDE_IT_LAST_INSN:
16133 case NEUTRAL_IT_INSN:
16134 break;
16135
16136 case IT_INSN:
16137 now_it.state = MANUAL_IT_BLOCK;
16138 now_it.block_length = 0;
16139 break;
16140 }
16141 break;
16142
16143 case AUTOMATIC_IT_BLOCK:
16144 /* Three things may happen now:
16145 a) We should increment current it block size;
16146 b) We should close current it block (closing insn or 4 insns);
16147 c) We should close current it block and start a new one (due
16148 to incompatible conditions or
16149 4 insns-length block reached). */
16150
16151 switch (inst.it_insn_type)
16152 {
16153 case OUTSIDE_IT_INSN:
16154 /* The closure of the block shall happen immediatelly,
16155 so any in_it_block () call reports the block as closed. */
16156 force_automatic_it_block_close ();
16157 break;
16158
16159 case INSIDE_IT_INSN:
16160 case INSIDE_IT_LAST_INSN:
16161 case IF_INSIDE_IT_LAST_INSN:
16162 now_it.block_length++;
16163
16164 if (now_it.block_length > 4
16165 || !now_it_compatible (inst.cond))
16166 {
16167 force_automatic_it_block_close ();
16168 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16169 new_automatic_it_block (inst.cond);
16170 }
16171 else
16172 {
16173 now_it_add_mask (inst.cond);
16174 }
16175
16176 if (now_it.state == AUTOMATIC_IT_BLOCK
16177 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16178 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16179 close_automatic_it_block ();
16180 break;
16181
16182 case NEUTRAL_IT_INSN:
16183 now_it.block_length++;
16184
16185 if (now_it.block_length > 4)
16186 force_automatic_it_block_close ();
16187 else
16188 now_it_add_mask (now_it.cc & 1);
16189 break;
16190
16191 case IT_INSN:
16192 close_automatic_it_block ();
16193 now_it.state = MANUAL_IT_BLOCK;
16194 break;
16195 }
16196 break;
16197
16198 case MANUAL_IT_BLOCK:
16199 {
16200 /* Check conditional suffixes. */
16201 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16202 int is_last;
16203 now_it.mask <<= 1;
16204 now_it.mask &= 0x1f;
16205 is_last = (now_it.mask == 0x10);
16206
16207 switch (inst.it_insn_type)
16208 {
16209 case OUTSIDE_IT_INSN:
16210 inst.error = BAD_NOT_IT;
16211 return FAIL;
16212
16213 case INSIDE_IT_INSN:
16214 if (cond != inst.cond)
16215 {
16216 inst.error = BAD_IT_COND;
16217 return FAIL;
16218 }
16219 break;
16220
16221 case INSIDE_IT_LAST_INSN:
16222 case IF_INSIDE_IT_LAST_INSN:
16223 if (cond != inst.cond)
16224 {
16225 inst.error = BAD_IT_COND;
16226 return FAIL;
16227 }
16228 if (!is_last)
16229 {
16230 inst.error = BAD_BRANCH;
16231 return FAIL;
16232 }
16233 break;
16234
16235 case NEUTRAL_IT_INSN:
16236 /* The BKPT instruction is unconditional even in an IT block. */
16237 break;
16238
16239 case IT_INSN:
16240 inst.error = BAD_IT_IT;
16241 return FAIL;
16242 }
16243 }
16244 break;
16245 }
16246
16247 return SUCCESS;
16248 }
16249
16250 static void
16251 it_fsm_post_encode (void)
16252 {
16253 int is_last;
16254
16255 if (!now_it.state_handled)
16256 handle_it_state ();
16257
16258 is_last = (now_it.mask == 0x10);
16259 if (is_last)
16260 {
16261 now_it.state = OUTSIDE_IT_BLOCK;
16262 now_it.mask = 0;
16263 }
16264 }
16265
16266 static void
16267 force_automatic_it_block_close (void)
16268 {
16269 if (now_it.state == AUTOMATIC_IT_BLOCK)
16270 {
16271 close_automatic_it_block ();
16272 now_it.state = OUTSIDE_IT_BLOCK;
16273 now_it.mask = 0;
16274 }
16275 }
16276
16277 static int
16278 in_it_block (void)
16279 {
16280 if (!now_it.state_handled)
16281 handle_it_state ();
16282
16283 return now_it.state != OUTSIDE_IT_BLOCK;
16284 }
16285
16286 void
16287 md_assemble (char *str)
16288 {
16289 char *p = str;
16290 const struct asm_opcode * opcode;
16291
16292 /* Align the previous label if needed. */
16293 if (last_label_seen != NULL)
16294 {
16295 symbol_set_frag (last_label_seen, frag_now);
16296 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16297 S_SET_SEGMENT (last_label_seen, now_seg);
16298 }
16299
16300 memset (&inst, '\0', sizeof (inst));
16301 inst.reloc.type = BFD_RELOC_UNUSED;
16302
16303 opcode = opcode_lookup (&p);
16304 if (!opcode)
16305 {
16306 /* It wasn't an instruction, but it might be a register alias of
16307 the form alias .req reg, or a Neon .dn/.qn directive. */
16308 if (! create_register_alias (str, p)
16309 && ! create_neon_reg_alias (str, p))
16310 as_bad (_("bad instruction `%s'"), str);
16311
16312 return;
16313 }
16314
16315 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16316 as_warn (_("s suffix on comparison instruction is deprecated"));
16317
16318 /* The value which unconditional instructions should have in place of the
16319 condition field. */
16320 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16321
16322 if (thumb_mode)
16323 {
16324 arm_feature_set variant;
16325
16326 variant = cpu_variant;
16327 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16328 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16329 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16330 /* Check that this instruction is supported for this CPU. */
16331 if (!opcode->tvariant
16332 || (thumb_mode == 1
16333 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16334 {
16335 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16336 return;
16337 }
16338 if (inst.cond != COND_ALWAYS && !unified_syntax
16339 && opcode->tencode != do_t_branch)
16340 {
16341 as_bad (_("Thumb does not support conditional execution"));
16342 return;
16343 }
16344
16345 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16346 {
16347 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16348 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16349 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16350 {
16351 /* Two things are addressed here.
16352 1) Implicit require narrow instructions on Thumb-1.
16353 This avoids relaxation accidentally introducing Thumb-2
16354 instructions.
16355 2) Reject wide instructions in non Thumb-2 cores. */
16356 if (inst.size_req == 0)
16357 inst.size_req = 2;
16358 else if (inst.size_req == 4)
16359 {
16360 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16361 return;
16362 }
16363 }
16364 }
16365
16366 inst.instruction = opcode->tvalue;
16367
16368 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16369 {
16370 /* Prepare the it_insn_type for those encodings that don't set
16371 it. */
16372 it_fsm_pre_encode ();
16373
16374 opcode->tencode ();
16375
16376 it_fsm_post_encode ();
16377 }
16378
16379 if (!(inst.error || inst.relax))
16380 {
16381 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16382 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16383 if (inst.size_req && inst.size_req != inst.size)
16384 {
16385 as_bad (_("cannot honor width suffix -- `%s'"), str);
16386 return;
16387 }
16388 }
16389
16390 /* Something has gone badly wrong if we try to relax a fixed size
16391 instruction. */
16392 gas_assert (inst.size_req == 0 || !inst.relax);
16393
16394 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16395 *opcode->tvariant);
16396 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16397 set those bits when Thumb-2 32-bit instructions are seen. ie.
16398 anything other than bl/blx and v6-M instructions.
16399 This is overly pessimistic for relaxable instructions. */
16400 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16401 || inst.relax)
16402 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16403 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16404 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16405 arm_ext_v6t2);
16406
16407 check_neon_suffixes;
16408
16409 if (!inst.error)
16410 {
16411 mapping_state (MAP_THUMB);
16412 }
16413 }
16414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16415 {
16416 bfd_boolean is_bx;
16417
16418 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16419 is_bx = (opcode->aencode == do_bx);
16420
16421 /* Check that this instruction is supported for this CPU. */
16422 if (!(is_bx && fix_v4bx)
16423 && !(opcode->avariant &&
16424 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16425 {
16426 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16427 return;
16428 }
16429 if (inst.size_req)
16430 {
16431 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16432 return;
16433 }
16434
16435 inst.instruction = opcode->avalue;
16436 if (opcode->tag == OT_unconditionalF)
16437 inst.instruction |= 0xF << 28;
16438 else
16439 inst.instruction |= inst.cond << 28;
16440 inst.size = INSN_SIZE;
16441 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16442 {
16443 it_fsm_pre_encode ();
16444 opcode->aencode ();
16445 it_fsm_post_encode ();
16446 }
16447 /* Arm mode bx is marked as both v4T and v5 because it's still required
16448 on a hypothetical non-thumb v5 core. */
16449 if (is_bx)
16450 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16451 else
16452 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16453 *opcode->avariant);
16454
16455 check_neon_suffixes;
16456
16457 if (!inst.error)
16458 {
16459 mapping_state (MAP_ARM);
16460 }
16461 }
16462 else
16463 {
16464 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16465 "-- `%s'"), str);
16466 return;
16467 }
16468 output_inst (str);
16469 }
16470
16471 static void
16472 check_it_blocks_finished (void)
16473 {
16474 #ifdef OBJ_ELF
16475 asection *sect;
16476
16477 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16478 if (seg_info (sect)->tc_segment_info_data.current_it.state
16479 == MANUAL_IT_BLOCK)
16480 {
16481 as_warn (_("section '%s' finished with an open IT block."),
16482 sect->name);
16483 }
16484 #else
16485 if (now_it.state == MANUAL_IT_BLOCK)
16486 as_warn (_("file finished with an open IT block."));
16487 #endif
16488 }
16489
16490 /* Various frobbings of labels and their addresses. */
16491
16492 void
16493 arm_start_line_hook (void)
16494 {
16495 last_label_seen = NULL;
16496 }
16497
16498 void
16499 arm_frob_label (symbolS * sym)
16500 {
16501 last_label_seen = sym;
16502
16503 ARM_SET_THUMB (sym, thumb_mode);
16504
16505 #if defined OBJ_COFF || defined OBJ_ELF
16506 ARM_SET_INTERWORK (sym, support_interwork);
16507 #endif
16508
16509 force_automatic_it_block_close ();
16510
16511 /* Note - do not allow local symbols (.Lxxx) to be labelled
16512 as Thumb functions. This is because these labels, whilst
16513 they exist inside Thumb code, are not the entry points for
16514 possible ARM->Thumb calls. Also, these labels can be used
16515 as part of a computed goto or switch statement. eg gcc
16516 can generate code that looks like this:
16517
16518 ldr r2, [pc, .Laaa]
16519 lsl r3, r3, #2
16520 ldr r2, [r3, r2]
16521 mov pc, r2
16522
16523 .Lbbb: .word .Lxxx
16524 .Lccc: .word .Lyyy
16525 ..etc...
16526 .Laaa: .word Lbbb
16527
16528 The first instruction loads the address of the jump table.
16529 The second instruction converts a table index into a byte offset.
16530 The third instruction gets the jump address out of the table.
16531 The fourth instruction performs the jump.
16532
16533 If the address stored at .Laaa is that of a symbol which has the
16534 Thumb_Func bit set, then the linker will arrange for this address
16535 to have the bottom bit set, which in turn would mean that the
16536 address computation performed by the third instruction would end
16537 up with the bottom bit set. Since the ARM is capable of unaligned
16538 word loads, the instruction would then load the incorrect address
16539 out of the jump table, and chaos would ensue. */
16540 if (label_is_thumb_function_name
16541 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16542 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16543 {
16544 /* When the address of a Thumb function is taken the bottom
16545 bit of that address should be set. This will allow
16546 interworking between Arm and Thumb functions to work
16547 correctly. */
16548
16549 THUMB_SET_FUNC (sym, 1);
16550
16551 label_is_thumb_function_name = FALSE;
16552 }
16553
16554 dwarf2_emit_label (sym);
16555 }
16556
16557 bfd_boolean
16558 arm_data_in_code (void)
16559 {
16560 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16561 {
16562 *input_line_pointer = '/';
16563 input_line_pointer += 5;
16564 *input_line_pointer = 0;
16565 return TRUE;
16566 }
16567
16568 return FALSE;
16569 }
16570
16571 char *
16572 arm_canonicalize_symbol_name (char * name)
16573 {
16574 int len;
16575
16576 if (thumb_mode && (len = strlen (name)) > 5
16577 && streq (name + len - 5, "/data"))
16578 *(name + len - 5) = 0;
16579
16580 return name;
16581 }
16582 \f
16583 /* Table of all register names defined by default. The user can
16584 define additional names with .req. Note that all register names
16585 should appear in both upper and lowercase variants. Some registers
16586 also have mixed-case names. */
16587
16588 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16589 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16590 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16591 #define REGSET(p,t) \
16592 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16593 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16594 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16595 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16596 #define REGSETH(p,t) \
16597 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16598 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16599 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16600 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16601 #define REGSET2(p,t) \
16602 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16603 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16604 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16605 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16606 #define SPLRBANK(base,bank,t) \
16607 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16608 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16609 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16610 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16611 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16612 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16613
16614 static const struct reg_entry reg_names[] =
16615 {
16616 /* ARM integer registers. */
16617 REGSET(r, RN), REGSET(R, RN),
16618
16619 /* ATPCS synonyms. */
16620 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16621 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16622 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16623
16624 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16625 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16626 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16627
16628 /* Well-known aliases. */
16629 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16630 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16631
16632 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16633 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16634
16635 /* Coprocessor numbers. */
16636 REGSET(p, CP), REGSET(P, CP),
16637
16638 /* Coprocessor register numbers. The "cr" variants are for backward
16639 compatibility. */
16640 REGSET(c, CN), REGSET(C, CN),
16641 REGSET(cr, CN), REGSET(CR, CN),
16642
16643 /* ARM banked registers. */
16644 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16645 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16646 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16647 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16648 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16649 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16650 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16651
16652 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16653 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16654 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16655 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16656 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16657 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16658 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16659 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16660
16661 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16662 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16663 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16664 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16665 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16666 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16667 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16668 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16669 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16670
16671 /* FPA registers. */
16672 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16673 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16674
16675 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16676 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16677
16678 /* VFP SP registers. */
16679 REGSET(s,VFS), REGSET(S,VFS),
16680 REGSETH(s,VFS), REGSETH(S,VFS),
16681
16682 /* VFP DP Registers. */
16683 REGSET(d,VFD), REGSET(D,VFD),
16684 /* Extra Neon DP registers. */
16685 REGSETH(d,VFD), REGSETH(D,VFD),
16686
16687 /* Neon QP registers. */
16688 REGSET2(q,NQ), REGSET2(Q,NQ),
16689
16690 /* VFP control registers. */
16691 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16692 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16693 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16694 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16695 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16696 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16697
16698 /* Maverick DSP coprocessor registers. */
16699 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16700 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16701
16702 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16703 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16704 REGDEF(dspsc,0,DSPSC),
16705
16706 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16707 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16708 REGDEF(DSPSC,0,DSPSC),
16709
16710 /* iWMMXt data registers - p0, c0-15. */
16711 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16712
16713 /* iWMMXt control registers - p1, c0-3. */
16714 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16715 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16716 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16717 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16718
16719 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16720 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16721 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16722 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16723 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16724
16725 /* XScale accumulator registers. */
16726 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16727 };
16728 #undef REGDEF
16729 #undef REGNUM
16730 #undef REGSET
16731
16732 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16733 within psr_required_here. */
16734 static const struct asm_psr psrs[] =
16735 {
16736 /* Backward compatibility notation. Note that "all" is no longer
16737 truly all possible PSR bits. */
16738 {"all", PSR_c | PSR_f},
16739 {"flg", PSR_f},
16740 {"ctl", PSR_c},
16741
16742 /* Individual flags. */
16743 {"f", PSR_f},
16744 {"c", PSR_c},
16745 {"x", PSR_x},
16746 {"s", PSR_s},
16747
16748 /* Combinations of flags. */
16749 {"fs", PSR_f | PSR_s},
16750 {"fx", PSR_f | PSR_x},
16751 {"fc", PSR_f | PSR_c},
16752 {"sf", PSR_s | PSR_f},
16753 {"sx", PSR_s | PSR_x},
16754 {"sc", PSR_s | PSR_c},
16755 {"xf", PSR_x | PSR_f},
16756 {"xs", PSR_x | PSR_s},
16757 {"xc", PSR_x | PSR_c},
16758 {"cf", PSR_c | PSR_f},
16759 {"cs", PSR_c | PSR_s},
16760 {"cx", PSR_c | PSR_x},
16761 {"fsx", PSR_f | PSR_s | PSR_x},
16762 {"fsc", PSR_f | PSR_s | PSR_c},
16763 {"fxs", PSR_f | PSR_x | PSR_s},
16764 {"fxc", PSR_f | PSR_x | PSR_c},
16765 {"fcs", PSR_f | PSR_c | PSR_s},
16766 {"fcx", PSR_f | PSR_c | PSR_x},
16767 {"sfx", PSR_s | PSR_f | PSR_x},
16768 {"sfc", PSR_s | PSR_f | PSR_c},
16769 {"sxf", PSR_s | PSR_x | PSR_f},
16770 {"sxc", PSR_s | PSR_x | PSR_c},
16771 {"scf", PSR_s | PSR_c | PSR_f},
16772 {"scx", PSR_s | PSR_c | PSR_x},
16773 {"xfs", PSR_x | PSR_f | PSR_s},
16774 {"xfc", PSR_x | PSR_f | PSR_c},
16775 {"xsf", PSR_x | PSR_s | PSR_f},
16776 {"xsc", PSR_x | PSR_s | PSR_c},
16777 {"xcf", PSR_x | PSR_c | PSR_f},
16778 {"xcs", PSR_x | PSR_c | PSR_s},
16779 {"cfs", PSR_c | PSR_f | PSR_s},
16780 {"cfx", PSR_c | PSR_f | PSR_x},
16781 {"csf", PSR_c | PSR_s | PSR_f},
16782 {"csx", PSR_c | PSR_s | PSR_x},
16783 {"cxf", PSR_c | PSR_x | PSR_f},
16784 {"cxs", PSR_c | PSR_x | PSR_s},
16785 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16786 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16787 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16788 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16789 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16790 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16791 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16792 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16793 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16794 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16795 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16796 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16797 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16798 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16799 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16800 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16801 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16802 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16803 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16804 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16805 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16806 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16807 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16808 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16809 };
16810
16811 /* Table of V7M psr names. */
16812 static const struct asm_psr v7m_psrs[] =
16813 {
16814 {"apsr", 0 }, {"APSR", 0 },
16815 {"iapsr", 1 }, {"IAPSR", 1 },
16816 {"eapsr", 2 }, {"EAPSR", 2 },
16817 {"psr", 3 }, {"PSR", 3 },
16818 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16819 {"ipsr", 5 }, {"IPSR", 5 },
16820 {"epsr", 6 }, {"EPSR", 6 },
16821 {"iepsr", 7 }, {"IEPSR", 7 },
16822 {"msp", 8 }, {"MSP", 8 },
16823 {"psp", 9 }, {"PSP", 9 },
16824 {"primask", 16}, {"PRIMASK", 16},
16825 {"basepri", 17}, {"BASEPRI", 17},
16826 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16827 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
16828 {"faultmask", 19}, {"FAULTMASK", 19},
16829 {"control", 20}, {"CONTROL", 20}
16830 };
16831
16832 /* Table of all shift-in-operand names. */
16833 static const struct asm_shift_name shift_names [] =
16834 {
16835 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16836 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16837 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16838 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16839 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16840 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16841 };
16842
16843 /* Table of all explicit relocation names. */
16844 #ifdef OBJ_ELF
16845 static struct reloc_entry reloc_names[] =
16846 {
16847 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16848 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16849 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16850 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16851 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16852 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16853 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16854 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16855 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16856 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16857 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16858 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16859 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16860 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16861 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16862 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16863 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16864 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
16865 };
16866 #endif
16867
16868 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16869 static const struct asm_cond conds[] =
16870 {
16871 {"eq", 0x0},
16872 {"ne", 0x1},
16873 {"cs", 0x2}, {"hs", 0x2},
16874 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16875 {"mi", 0x4},
16876 {"pl", 0x5},
16877 {"vs", 0x6},
16878 {"vc", 0x7},
16879 {"hi", 0x8},
16880 {"ls", 0x9},
16881 {"ge", 0xa},
16882 {"lt", 0xb},
16883 {"gt", 0xc},
16884 {"le", 0xd},
16885 {"al", 0xe}
16886 };
16887
16888 static struct asm_barrier_opt barrier_opt_names[] =
16889 {
16890 { "sy", 0xf }, { "SY", 0xf },
16891 { "un", 0x7 }, { "UN", 0x7 },
16892 { "st", 0xe }, { "ST", 0xe },
16893 { "unst", 0x6 }, { "UNST", 0x6 },
16894 { "ish", 0xb }, { "ISH", 0xb },
16895 { "sh", 0xb }, { "SH", 0xb },
16896 { "ishst", 0xa }, { "ISHST", 0xa },
16897 { "shst", 0xa }, { "SHST", 0xa },
16898 { "nsh", 0x7 }, { "NSH", 0x7 },
16899 { "nshst", 0x6 }, { "NSHST", 0x6 },
16900 { "osh", 0x3 }, { "OSH", 0x3 },
16901 { "oshst", 0x2 }, { "OSHST", 0x2 }
16902 };
16903
16904 /* Table of ARM-format instructions. */
16905
16906 /* Macros for gluing together operand strings. N.B. In all cases
16907 other than OPS0, the trailing OP_stop comes from default
16908 zero-initialization of the unspecified elements of the array. */
16909 #define OPS0() { OP_stop, }
16910 #define OPS1(a) { OP_##a, }
16911 #define OPS2(a,b) { OP_##a,OP_##b, }
16912 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16913 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16914 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16915 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16916
16917 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16918 This is useful when mixing operands for ARM and THUMB, i.e. using the
16919 MIX_ARM_THUMB_OPERANDS macro.
16920 In order to use these macros, prefix the number of operands with _
16921 e.g. _3. */
16922 #define OPS_1(a) { a, }
16923 #define OPS_2(a,b) { a,b, }
16924 #define OPS_3(a,b,c) { a,b,c, }
16925 #define OPS_4(a,b,c,d) { a,b,c,d, }
16926 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16927 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16928
16929 /* These macros abstract out the exact format of the mnemonic table and
16930 save some repeated characters. */
16931
16932 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16933 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16934 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16935 THUMB_VARIANT, do_##ae, do_##te }
16936
16937 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16938 a T_MNEM_xyz enumerator. */
16939 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16940 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16941 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16942 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16943
16944 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16945 infix after the third character. */
16946 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16947 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16948 THUMB_VARIANT, do_##ae, do_##te }
16949 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16950 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16951 THUMB_VARIANT, do_##ae, do_##te }
16952 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16953 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16954 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16955 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16956 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16957 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16958 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16959 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16960
16961 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16962 appear in the condition table. */
16963 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16964 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16965 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16966
16967 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16968 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16969 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16970 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16971 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16972 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16973 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16974 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16975 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16976 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16977 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16978 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16979 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16980 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16981 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16982 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16983 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16984 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16985 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16986 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16987
16988 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16989 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16990 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16991 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16992
16993 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16994 field is still 0xE. Many of the Thumb variants can be executed
16995 conditionally, so this is checked separately. */
16996 #define TUE(mnem, op, top, nops, ops, ae, te) \
16997 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16998 THUMB_VARIANT, do_##ae, do_##te }
16999
17000 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17001 condition code field. */
17002 #define TUF(mnem, op, top, nops, ops, ae, te) \
17003 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17004 THUMB_VARIANT, do_##ae, do_##te }
17005
17006 /* ARM-only variants of all the above. */
17007 #define CE(mnem, op, nops, ops, ae) \
17008 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17009
17010 #define C3(mnem, op, nops, ops, ae) \
17011 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17012
17013 /* Legacy mnemonics that always have conditional infix after the third
17014 character. */
17015 #define CL(mnem, op, nops, ops, ae) \
17016 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17017 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17018
17019 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17020 #define cCE(mnem, op, nops, ops, ae) \
17021 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17022
17023 /* Legacy coprocessor instructions where conditional infix and conditional
17024 suffix are ambiguous. For consistency this includes all FPA instructions,
17025 not just the potentially ambiguous ones. */
17026 #define cCL(mnem, op, nops, ops, ae) \
17027 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17028 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17029
17030 /* Coprocessor, takes either a suffix or a position-3 infix
17031 (for an FPA corner case). */
17032 #define C3E(mnem, op, nops, ops, ae) \
17033 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17034 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17035
17036 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17037 { m1 #m2 m3, OPS##nops ops, \
17038 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17039 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17040
17041 #define CM(m1, m2, op, nops, ops, ae) \
17042 xCM_ (m1, , m2, op, nops, ops, ae), \
17043 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17044 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17045 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17046 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17047 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17048 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17049 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17050 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17051 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17052 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17053 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17054 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17055 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17056 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17057 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17058 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17059 xCM_ (m1, le, m2, op, nops, ops, ae), \
17060 xCM_ (m1, al, m2, op, nops, ops, ae)
17061
17062 #define UE(mnem, op, nops, ops, ae) \
17063 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17064
17065 #define UF(mnem, op, nops, ops, ae) \
17066 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17067
17068 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17069 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17070 use the same encoding function for each. */
17071 #define NUF(mnem, op, nops, ops, enc) \
17072 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17073 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17074
17075 /* Neon data processing, version which indirects through neon_enc_tab for
17076 the various overloaded versions of opcodes. */
17077 #define nUF(mnem, op, nops, ops, enc) \
17078 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17079 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17080
17081 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17082 version. */
17083 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17084 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17085 THUMB_VARIANT, do_##enc, do_##enc }
17086
17087 #define NCE(mnem, op, nops, ops, enc) \
17088 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17089
17090 #define NCEF(mnem, op, nops, ops, enc) \
17091 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17092
17093 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17094 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17095 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17096 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17097
17098 #define nCE(mnem, op, nops, ops, enc) \
17099 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17100
17101 #define nCEF(mnem, op, nops, ops, enc) \
17102 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17103
17104 #define do_0 0
17105
17106 static const struct asm_opcode insns[] =
17107 {
17108 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17109 #define THUMB_VARIANT &arm_ext_v4t
17110 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17111 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17112 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17113 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17114 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17115 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17116 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17117 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17118 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17119 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17120 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17121 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17122 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17123 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17124 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17125 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17126
17127 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17128 for setting PSR flag bits. They are obsolete in V6 and do not
17129 have Thumb equivalents. */
17130 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17131 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17132 CL("tstp", 110f000, 2, (RR, SH), cmp),
17133 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17134 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17135 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17136 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17137 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17138 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17139
17140 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17141 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17142 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17143 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17144
17145 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17146 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17147 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17148 OP_RRnpc),
17149 OP_ADDRGLDR),ldst, t_ldst),
17150 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17151
17152 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17153 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17154 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17155 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17156 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17157 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17158
17159 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17160 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17161 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17162 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17163
17164 /* Pseudo ops. */
17165 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17166 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17167 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17168
17169 /* Thumb-compatibility pseudo ops. */
17170 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17171 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17172 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17173 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17174 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17175 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17176 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17177 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17178 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17179 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17180 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17181 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17182
17183 /* These may simplify to neg. */
17184 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17185 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17186
17187 #undef THUMB_VARIANT
17188 #define THUMB_VARIANT & arm_ext_v6
17189
17190 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17191
17192 /* V1 instructions with no Thumb analogue prior to V6T2. */
17193 #undef THUMB_VARIANT
17194 #define THUMB_VARIANT & arm_ext_v6t2
17195
17196 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17197 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17198 CL("teqp", 130f000, 2, (RR, SH), cmp),
17199
17200 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17201 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17202 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17203 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17204
17205 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17206 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17207
17208 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17209 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17210
17211 /* V1 instructions with no Thumb analogue at all. */
17212 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17213 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17214
17215 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17216 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17217 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17218 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17219 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17220 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17221 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17222 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17223
17224 #undef ARM_VARIANT
17225 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17226 #undef THUMB_VARIANT
17227 #define THUMB_VARIANT & arm_ext_v4t
17228
17229 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17230 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17231
17232 #undef THUMB_VARIANT
17233 #define THUMB_VARIANT & arm_ext_v6t2
17234
17235 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17236 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17237
17238 /* Generic coprocessor instructions. */
17239 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17240 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17241 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17242 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17243 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17244 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17245 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17246
17247 #undef ARM_VARIANT
17248 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17249
17250 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17251 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17252
17253 #undef ARM_VARIANT
17254 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17255 #undef THUMB_VARIANT
17256 #define THUMB_VARIANT & arm_ext_msr
17257
17258 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17259 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17260
17261 #undef ARM_VARIANT
17262 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17263 #undef THUMB_VARIANT
17264 #define THUMB_VARIANT & arm_ext_v6t2
17265
17266 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17267 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17268 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17269 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17270 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17271 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17272 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17273 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17274
17275 #undef ARM_VARIANT
17276 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17277 #undef THUMB_VARIANT
17278 #define THUMB_VARIANT & arm_ext_v4t
17279
17280 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17281 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17282 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17283 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17284 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17285 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17286
17287 #undef ARM_VARIANT
17288 #define ARM_VARIANT & arm_ext_v4t_5
17289
17290 /* ARM Architecture 4T. */
17291 /* Note: bx (and blx) are required on V5, even if the processor does
17292 not support Thumb. */
17293 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17294
17295 #undef ARM_VARIANT
17296 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17297 #undef THUMB_VARIANT
17298 #define THUMB_VARIANT & arm_ext_v5t
17299
17300 /* Note: blx has 2 variants; the .value coded here is for
17301 BLX(2). Only this variant has conditional execution. */
17302 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17303 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17304
17305 #undef THUMB_VARIANT
17306 #define THUMB_VARIANT & arm_ext_v6t2
17307
17308 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17309 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17310 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17311 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17312 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17313 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17314 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17315 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17316
17317 #undef ARM_VARIANT
17318 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17319 #undef THUMB_VARIANT
17320 #define THUMB_VARIANT &arm_ext_v5exp
17321
17322 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17323 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17324 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17325 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17326
17327 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17328 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17329
17330 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17331 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17332 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17333 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17334
17335 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17336 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17337 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17338 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17339
17340 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17341 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17342
17343 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17344 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17345 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17346 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17347
17348 #undef ARM_VARIANT
17349 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17350 #undef THUMB_VARIANT
17351 #define THUMB_VARIANT &arm_ext_v6t2
17352
17353 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17354 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17355 ldrd, t_ldstd),
17356 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17357 ADDRGLDRS), ldrd, t_ldstd),
17358
17359 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17360 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17361
17362 #undef ARM_VARIANT
17363 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17364
17365 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17366
17367 #undef ARM_VARIANT
17368 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17369 #undef THUMB_VARIANT
17370 #define THUMB_VARIANT & arm_ext_v6
17371
17372 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17373 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17374 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17375 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17376 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17377 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17378 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17379 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17380 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17381 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17382
17383 #undef THUMB_VARIANT
17384 #define THUMB_VARIANT & arm_ext_v6t2
17385
17386 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17387 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17388 strex, t_strex),
17389 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17390 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17391
17392 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17393 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17394
17395 /* ARM V6 not included in V7M. */
17396 #undef THUMB_VARIANT
17397 #define THUMB_VARIANT & arm_ext_v6_notm
17398 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17399 UF(rfeib, 9900a00, 1, (RRw), rfe),
17400 UF(rfeda, 8100a00, 1, (RRw), rfe),
17401 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17402 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17403 UF(rfefa, 9900a00, 1, (RRw), rfe),
17404 UF(rfeea, 8100a00, 1, (RRw), rfe),
17405 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17406 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17407 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17408 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17409 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17410
17411 /* ARM V6 not included in V7M (eg. integer SIMD). */
17412 #undef THUMB_VARIANT
17413 #define THUMB_VARIANT & arm_ext_v6_dsp
17414 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17415 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17416 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17417 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17418 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17419 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17420 /* Old name for QASX. */
17421 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17422 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17423 /* Old name for QSAX. */
17424 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17425 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17426 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17427 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17428 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17429 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17430 /* Old name for SASX. */
17431 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17432 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17433 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17434 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17435 /* Old name for SHASX. */
17436 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17437 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17438 /* Old name for SHSAX. */
17439 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17440 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17441 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17442 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17443 /* Old name for SSAX. */
17444 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17445 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17446 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17447 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17448 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17449 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17450 /* Old name for UASX. */
17451 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17452 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17453 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17454 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17455 /* Old name for UHASX. */
17456 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17457 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17458 /* Old name for UHSAX. */
17459 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17460 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17461 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17462 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17463 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17464 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17465 /* Old name for UQASX. */
17466 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17467 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17468 /* Old name for UQSAX. */
17469 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17470 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17471 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17472 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17473 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17474 /* Old name for USAX. */
17475 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17476 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17477 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17478 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17479 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17480 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17481 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17482 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17483 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17484 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17485 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17486 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17487 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17488 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17489 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17490 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17491 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17492 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17493 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17494 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17495 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17496 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17497 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17498 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17499 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17500 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17501 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17502 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17503 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17504 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17505 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17506 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17507 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17508 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17509
17510 #undef ARM_VARIANT
17511 #define ARM_VARIANT & arm_ext_v6k
17512 #undef THUMB_VARIANT
17513 #define THUMB_VARIANT & arm_ext_v6k
17514
17515 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17516 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17517 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17518 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17519
17520 #undef THUMB_VARIANT
17521 #define THUMB_VARIANT & arm_ext_v6_notm
17522 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17523 ldrexd, t_ldrexd),
17524 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17525 RRnpcb), strexd, t_strexd),
17526
17527 #undef THUMB_VARIANT
17528 #define THUMB_VARIANT & arm_ext_v6t2
17529 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17530 rd_rn, rd_rn),
17531 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17532 rd_rn, rd_rn),
17533 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17534 strex, t_strexbh),
17535 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17536 strex, t_strexbh),
17537 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17538
17539 #undef ARM_VARIANT
17540 #define ARM_VARIANT & arm_ext_sec
17541 #undef THUMB_VARIANT
17542 #define THUMB_VARIANT & arm_ext_sec
17543
17544 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17545
17546 #undef ARM_VARIANT
17547 #define ARM_VARIANT & arm_ext_virt
17548 #undef THUMB_VARIANT
17549 #define THUMB_VARIANT & arm_ext_virt
17550
17551 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17552 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17553
17554 #undef ARM_VARIANT
17555 #define ARM_VARIANT & arm_ext_v6t2
17556 #undef THUMB_VARIANT
17557 #define THUMB_VARIANT & arm_ext_v6t2
17558
17559 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17560 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17561 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17562 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17563
17564 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17565 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17566 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17567 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17568
17569 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17570 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17571 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17572 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17573
17574 /* Thumb-only instructions. */
17575 #undef ARM_VARIANT
17576 #define ARM_VARIANT NULL
17577 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17578 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17579
17580 /* ARM does not really have an IT instruction, so always allow it.
17581 The opcode is copied from Thumb in order to allow warnings in
17582 -mimplicit-it=[never | arm] modes. */
17583 #undef ARM_VARIANT
17584 #define ARM_VARIANT & arm_ext_v1
17585
17586 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17587 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17588 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17589 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17590 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17591 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17592 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17593 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17594 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17595 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17596 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17597 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17598 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17599 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17600 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17601 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17602 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17603 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17604
17605 /* Thumb2 only instructions. */
17606 #undef ARM_VARIANT
17607 #define ARM_VARIANT NULL
17608
17609 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17610 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17611 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17612 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17613 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17614 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17615
17616 /* Hardware division instructions. */
17617 #undef ARM_VARIANT
17618 #define ARM_VARIANT & arm_ext_adiv
17619 #undef THUMB_VARIANT
17620 #define THUMB_VARIANT & arm_ext_div
17621
17622 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17623 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17624
17625 /* ARM V6M/V7 instructions. */
17626 #undef ARM_VARIANT
17627 #define ARM_VARIANT & arm_ext_barrier
17628 #undef THUMB_VARIANT
17629 #define THUMB_VARIANT & arm_ext_barrier
17630
17631 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17632 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17633 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17634
17635 /* ARM V7 instructions. */
17636 #undef ARM_VARIANT
17637 #define ARM_VARIANT & arm_ext_v7
17638 #undef THUMB_VARIANT
17639 #define THUMB_VARIANT & arm_ext_v7
17640
17641 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17642 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17643
17644 #undef ARM_VARIANT
17645 #define ARM_VARIANT & arm_ext_mp
17646 #undef THUMB_VARIANT
17647 #define THUMB_VARIANT & arm_ext_mp
17648
17649 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17650
17651 #undef ARM_VARIANT
17652 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17653
17654 cCE("wfs", e200110, 1, (RR), rd),
17655 cCE("rfs", e300110, 1, (RR), rd),
17656 cCE("wfc", e400110, 1, (RR), rd),
17657 cCE("rfc", e500110, 1, (RR), rd),
17658
17659 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17660 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17661 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17662 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17663
17664 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17665 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17666 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17667 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17668
17669 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17670 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17671 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17672 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17673 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17674 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17675 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17676 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17677 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17678 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17679 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17680 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17681
17682 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17683 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17684 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17685 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17686 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17687 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17688 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17689 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17690 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17691 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17692 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17693 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17694
17695 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17696 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17697 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17698 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17699 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17700 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17701 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17702 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17703 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17704 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17705 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17706 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17707
17708 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17709 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17710 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17711 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17712 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17713 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17714 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17715 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17716 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17717 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17718 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17719 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17720
17721 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17722 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17723 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17724 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17725 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17726 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17727 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17728 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17729 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17730 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17731 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17732 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17733
17734 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17735 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17736 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17737 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17738 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17739 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17740 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17741 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17742 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17743 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17744 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17745 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17746
17747 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17748 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17749 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17750 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17751 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17752 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17753 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17754 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17755 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17756 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17757 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17758 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17759
17760 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17761 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17762 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17763 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17764 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17765 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17766 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17767 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17768 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17769 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17770 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17771 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17772
17773 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17774 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17775 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17776 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17777 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17778 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17779 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17780 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17781 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17782 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17783 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17784 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17785
17786 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17787 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17788 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17789 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17790 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17791 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17792 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17793 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17794 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17795 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17796 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17797 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17798
17799 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17800 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17801 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17802 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17803 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17804 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17805 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17806 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17807 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17808 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17809 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17810 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17811
17812 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17813 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17814 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17815 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17816 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17817 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17818 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17819 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17820 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17821 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17822 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17823 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17824
17825 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17826 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17827 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17828 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17829 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17830 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17831 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17832 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17833 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17834 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17835 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17836 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17837
17838 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17839 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17840 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17841 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17842 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17843 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17844 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17845 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17846 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17847 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17848 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17849 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17850
17851 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17852 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17853 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17854 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17855 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17856 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17857 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17858 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17859 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17860 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17861 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17862 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17863
17864 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17865 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17866 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17867 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17868 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17869 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17870 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17871 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17872 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17873 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17874 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17875 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17876
17877 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17878 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17879 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17880 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17881 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17882 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17883 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17884 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17885 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17886 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17887 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17888 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17889
17890 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17891 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17892 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17893 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17894 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17895 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17896 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17897 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17898 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17899 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17900 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17901 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17902
17903 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17904 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17905 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17906 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17907 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17908 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17909 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17910 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17911 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17912 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17913 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17914 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17915
17916 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17917 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17918 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17919 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17920 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17921 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17922 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17923 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17924 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17925 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17926 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17927 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17928
17929 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17930 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17931 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17932 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17933 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17934 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17935 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17936 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17937 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17938 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17939 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17940 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17941
17942 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17943 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17944 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17945 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17946 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17947 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17948 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17949 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17950 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17951 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17952 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17953 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17954
17955 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17956 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17957 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17958 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17959 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17960 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17961 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17962 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17963 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17964 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17965 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17966 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17967
17968 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17969 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17970 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17971 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17972 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17973 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17974 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17975 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17976 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17977 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17978 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17979 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17980
17981 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17982 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17983 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17984 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17985 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17986 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17987 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17988 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17989 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17990 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17991 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17992 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17993
17994 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17995 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17996 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17997 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17998 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17999 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18000 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18001 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18002 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18003 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18004 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18005 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18006
18007 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18008 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18009 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18010 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18011 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18012 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18013 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18014 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18015 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18016 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18017 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18018 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18019
18020 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18021 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18022 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18023 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18024 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18025 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18026 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18027 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18028 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18029 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18030 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18031 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18032
18033 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18034 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18035 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18036 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18037 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18038 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18039 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18040 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18041 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18042 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18043 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18044 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18045
18046 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18047 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18048 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18049 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18050
18051 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18052 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18053 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18054 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18055 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18056 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18057 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18058 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18059 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18060 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18061 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18062 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
18063
18064 /* The implementation of the FIX instruction is broken on some
18065 assemblers, in that it accepts a precision specifier as well as a
18066 rounding specifier, despite the fact that this is meaningless.
18067 To be more compatible, we accept it as well, though of course it
18068 does not set any bits. */
18069 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18070 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18071 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18072 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18073 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18074 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18075 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18076 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18077 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18078 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18079 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18080 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18081 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
18082
18083 /* Instructions that were new with the real FPA, call them V2. */
18084 #undef ARM_VARIANT
18085 #define ARM_VARIANT & fpu_fpa_ext_v2
18086
18087 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18088 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18089 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18090 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18091 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18092 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18093
18094 #undef ARM_VARIANT
18095 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18096
18097 /* Moves and type conversions. */
18098 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18099 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18100 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18101 cCE("fmstat", ef1fa10, 0, (), noargs),
18102 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
18103 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
18104 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18105 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18106 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18107 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18108 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18109 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18110 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18111 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
18112
18113 /* Memory operations. */
18114 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18115 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18116 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18117 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18118 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18119 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18120 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18121 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18122 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18123 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18124 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18125 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18126 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18127 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18128 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18129 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18130 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18131 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18132
18133 /* Monadic operations. */
18134 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18135 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18136 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
18137
18138 /* Dyadic operations. */
18139 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18140 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18141 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18142 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18143 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18144 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18145 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18146 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18147 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18148
18149 /* Comparisons. */
18150 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18151 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18152 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18153 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18154
18155 /* Double precision load/store are still present on single precision
18156 implementations. */
18157 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18158 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18159 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18160 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18161 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18162 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18163 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18164 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18165 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18166 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18167
18168 #undef ARM_VARIANT
18169 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18170
18171 /* Moves and type conversions. */
18172 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18173 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18174 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18175 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18176 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18177 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18178 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18179 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18180 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18181 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18182 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18183 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18184 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18185
18186 /* Monadic operations. */
18187 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18188 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18189 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18190
18191 /* Dyadic operations. */
18192 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18193 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18194 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18195 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18196 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18197 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18198 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18199 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18200 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18201
18202 /* Comparisons. */
18203 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18204 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18205 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18206 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18207
18208 #undef ARM_VARIANT
18209 #define ARM_VARIANT & fpu_vfp_ext_v2
18210
18211 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18212 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18213 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18214 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18215
18216 /* Instructions which may belong to either the Neon or VFP instruction sets.
18217 Individual encoder functions perform additional architecture checks. */
18218 #undef ARM_VARIANT
18219 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18220 #undef THUMB_VARIANT
18221 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18222
18223 /* These mnemonics are unique to VFP. */
18224 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18225 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18226 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18227 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18228 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18229 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18230 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18231 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18232 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18233 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18234
18235 /* Mnemonics shared by Neon and VFP. */
18236 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18237 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18238 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18239
18240 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18241 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18242
18243 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18244 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18245
18246 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18247 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18248 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18249 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18250 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18251 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18252 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18253 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18254
18255 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
18256 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18257 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18258 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18259
18260
18261 /* NOTE: All VMOV encoding is special-cased! */
18262 NCE(vmov, 0, 1, (VMOV), neon_mov),
18263 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18264
18265 #undef THUMB_VARIANT
18266 #define THUMB_VARIANT & fpu_neon_ext_v1
18267 #undef ARM_VARIANT
18268 #define ARM_VARIANT & fpu_neon_ext_v1
18269
18270 /* Data processing with three registers of the same length. */
18271 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18272 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18273 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18274 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18275 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18276 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18277 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18278 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18279 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18280 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18281 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18282 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18283 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18284 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18285 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18286 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18287 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18288 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18289 /* If not immediate, fall back to neon_dyadic_i64_su.
18290 shl_imm should accept I8 I16 I32 I64,
18291 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18292 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18293 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18294 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18295 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
18296 /* Logic ops, types optional & ignored. */
18297 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18298 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18299 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18300 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18301 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18302 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18303 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18304 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18305 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18306 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18307 /* Bitfield ops, untyped. */
18308 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18309 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18310 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18311 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18312 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18313 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18314 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18315 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18316 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18317 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18318 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18319 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18320 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18321 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18322 back to neon_dyadic_if_su. */
18323 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18324 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18325 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18326 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18327 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18328 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18329 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18330 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18331 /* Comparison. Type I8 I16 I32 F32. */
18332 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18333 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18334 /* As above, D registers only. */
18335 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18336 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18337 /* Int and float variants, signedness unimportant. */
18338 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18339 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18340 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18341 /* Add/sub take types I8 I16 I32 I64 F32. */
18342 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18343 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18344 /* vtst takes sizes 8, 16, 32. */
18345 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18346 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18347 /* VMUL takes I8 I16 I32 F32 P8. */
18348 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18349 /* VQD{R}MULH takes S16 S32. */
18350 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18351 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18352 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18353 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18354 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18355 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18356 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18357 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18358 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18359 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18360 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18361 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18362 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18363 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18364 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18365 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18366
18367 /* Two address, int/float. Types S8 S16 S32 F32. */
18368 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18369 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18370
18371 /* Data processing with two registers and a shift amount. */
18372 /* Right shifts, and variants with rounding.
18373 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18374 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18375 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18376 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18377 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18378 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18379 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18380 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18381 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18382 /* Shift and insert. Sizes accepted 8 16 32 64. */
18383 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18384 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18385 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18386 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18387 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18388 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18389 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18390 /* Right shift immediate, saturating & narrowing, with rounding variants.
18391 Types accepted S16 S32 S64 U16 U32 U64. */
18392 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18393 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18394 /* As above, unsigned. Types accepted S16 S32 S64. */
18395 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18396 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18397 /* Right shift narrowing. Types accepted I16 I32 I64. */
18398 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18399 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18400 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18401 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18402 /* CVT with optional immediate for fixed-point variant. */
18403 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18404
18405 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18406 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18407
18408 /* Data processing, three registers of different lengths. */
18409 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18410 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18411 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18412 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18413 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18414 /* If not scalar, fall back to neon_dyadic_long.
18415 Vector types as above, scalar types S16 S32 U16 U32. */
18416 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18417 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18418 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18419 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18420 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18421 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18422 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18423 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18424 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18425 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18426 /* Saturating doubling multiplies. Types S16 S32. */
18427 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18428 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18429 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18430 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18431 S16 S32 U16 U32. */
18432 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18433
18434 /* Extract. Size 8. */
18435 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18436 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18437
18438 /* Two registers, miscellaneous. */
18439 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18440 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18441 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18442 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18443 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18444 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18445 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18446 /* Vector replicate. Sizes 8 16 32. */
18447 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18448 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18449 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18450 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18451 /* VMOVN. Types I16 I32 I64. */
18452 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18453 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18454 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18455 /* VQMOVUN. Types S16 S32 S64. */
18456 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18457 /* VZIP / VUZP. Sizes 8 16 32. */
18458 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18459 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18460 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18461 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18462 /* VQABS / VQNEG. Types S8 S16 S32. */
18463 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18464 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18465 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18466 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18467 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18468 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18469 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18470 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18471 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18472 /* Reciprocal estimates. Types U32 F32. */
18473 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18474 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18475 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18476 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18477 /* VCLS. Types S8 S16 S32. */
18478 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18479 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18480 /* VCLZ. Types I8 I16 I32. */
18481 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18482 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18483 /* VCNT. Size 8. */
18484 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18485 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18486 /* Two address, untyped. */
18487 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18488 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18489 /* VTRN. Sizes 8 16 32. */
18490 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18491 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18492
18493 /* Table lookup. Size 8. */
18494 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18495 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18496
18497 #undef THUMB_VARIANT
18498 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18499 #undef ARM_VARIANT
18500 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18501
18502 /* Neon element/structure load/store. */
18503 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18504 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18505 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18506 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18507 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18508 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18509 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18510 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18511
18512 #undef THUMB_VARIANT
18513 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18514 #undef ARM_VARIANT
18515 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18516 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18517 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18518 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18519 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18520 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18521 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18522 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18523 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18524 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18525
18526 #undef THUMB_VARIANT
18527 #define THUMB_VARIANT & fpu_vfp_ext_v3
18528 #undef ARM_VARIANT
18529 #define ARM_VARIANT & fpu_vfp_ext_v3
18530
18531 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18532 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18533 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18534 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18535 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18536 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18537 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18538 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18539 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18540
18541 #undef ARM_VARIANT
18542 #define ARM_VARIANT &fpu_vfp_ext_fma
18543 #undef THUMB_VARIANT
18544 #define THUMB_VARIANT &fpu_vfp_ext_fma
18545 /* Mnemonics shared by Neon and VFP. These are included in the
18546 VFP FMA variant; NEON and VFP FMA always includes the NEON
18547 FMA instructions. */
18548 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18549 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18550 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18551 the v form should always be used. */
18552 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18553 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18554 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18555 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18556 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18557 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18558
18559 #undef THUMB_VARIANT
18560 #undef ARM_VARIANT
18561 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18562
18563 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18564 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18565 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18566 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18567 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18568 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18569 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18570 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18571
18572 #undef ARM_VARIANT
18573 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18574
18575 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18576 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18577 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18578 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18579 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18580 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18581 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18582 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18583 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18584 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18585 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18586 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18587 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18588 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18589 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18590 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18591 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18592 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18593 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18594 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18595 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18596 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18597 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18598 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18599 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18600 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18601 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18602 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18603 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18604 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18605 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18606 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18607 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18608 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18609 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18610 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18611 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18612 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18613 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18614 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18615 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18616 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18617 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18618 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18619 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18620 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18621 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18622 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18623 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18624 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18625 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18626 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18627 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18628 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18629 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18630 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18631 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18632 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18633 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18634 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18635 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18636 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18637 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18638 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18639 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18640 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18641 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18642 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18643 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18644 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18645 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18646 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18647 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18648 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18649 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18650 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18651 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18652 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18653 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18654 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18655 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18656 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18657 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18658 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18659 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18660 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18661 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18662 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18663 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18664 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18665 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18666 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18667 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18668 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18669 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18670 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18671 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18672 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18673 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18674 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18675 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18676 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18677 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18678 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18679 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18680 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18681 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18682 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18683 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18684 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18685 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18686 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18687 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18688 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18689 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18690 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18691 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18692 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18693 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18694 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18695 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18696 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18697 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18698 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18699 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18700 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18701 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18702 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18703 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18704 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18705 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18706 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18707 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18708 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18709 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18710 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18711 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18712 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18713 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18714 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18715 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18716 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18717 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18718 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18719 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18720 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18721 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18722 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18723 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18724 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18725 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18726 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18727 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18728 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18729 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18730 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18731 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18732 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18733 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18734 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18735 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18736 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
18737
18738 #undef ARM_VARIANT
18739 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18740
18741 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18742 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18743 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18744 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18745 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18746 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18747 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18748 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18749 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18750 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18751 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18752 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18753 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18754 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18755 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18756 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18757 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18758 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18759 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18760 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18761 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18762 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18763 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18764 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18765 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18766 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18767 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18768 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18769 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18770 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18771 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18772 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18773 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18774 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18775 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18776 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18777 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18778 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18779 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18780 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18781 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18782 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18783 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18784 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18785 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18786 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18787 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18788 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18789 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18790 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18791 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18792 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18793 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18794 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18795 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18796 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18797 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18798
18799 #undef ARM_VARIANT
18800 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18801
18802 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18803 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18804 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18805 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18806 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18807 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18808 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18809 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18810 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18811 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18812 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18813 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18814 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18815 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18816 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18817 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18818 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18819 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18820 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18821 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18822 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18823 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18824 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18825 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18826 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18827 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18828 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18829 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18830 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18831 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18832 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18833 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18834 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18835 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18836 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18837 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18838 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18839 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18840 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18841 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18842 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18843 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18844 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18845 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18846 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18847 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18848 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18849 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18850 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18851 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18852 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18853 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18854 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18855 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18856 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18857 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18858 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18859 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18860 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18861 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18862 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18863 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18864 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18865 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18866 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18867 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18868 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18869 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18870 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18871 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18872 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18873 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18874 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18875 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18876 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18877 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18878 };
18879 #undef ARM_VARIANT
18880 #undef THUMB_VARIANT
18881 #undef TCE
18882 #undef TCM
18883 #undef TUE
18884 #undef TUF
18885 #undef TCC
18886 #undef cCE
18887 #undef cCL
18888 #undef C3E
18889 #undef CE
18890 #undef CM
18891 #undef UE
18892 #undef UF
18893 #undef UT
18894 #undef NUF
18895 #undef nUF
18896 #undef NCE
18897 #undef nCE
18898 #undef OPS0
18899 #undef OPS1
18900 #undef OPS2
18901 #undef OPS3
18902 #undef OPS4
18903 #undef OPS5
18904 #undef OPS6
18905 #undef do_0
18906 \f
18907 /* MD interface: bits in the object file. */
18908
18909 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18910 for use in the a.out file, and stores them in the array pointed to by buf.
18911 This knows about the endian-ness of the target machine and does
18912 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18913 2 (short) and 4 (long) Floating numbers are put out as a series of
18914 LITTLENUMS (shorts, here at least). */
18915
18916 void
18917 md_number_to_chars (char * buf, valueT val, int n)
18918 {
18919 if (target_big_endian)
18920 number_to_chars_bigendian (buf, val, n);
18921 else
18922 number_to_chars_littleendian (buf, val, n);
18923 }
18924
18925 static valueT
18926 md_chars_to_number (char * buf, int n)
18927 {
18928 valueT result = 0;
18929 unsigned char * where = (unsigned char *) buf;
18930
18931 if (target_big_endian)
18932 {
18933 while (n--)
18934 {
18935 result <<= 8;
18936 result |= (*where++ & 255);
18937 }
18938 }
18939 else
18940 {
18941 while (n--)
18942 {
18943 result <<= 8;
18944 result |= (where[n] & 255);
18945 }
18946 }
18947
18948 return result;
18949 }
18950
18951 /* MD interface: Sections. */
18952
18953 /* Estimate the size of a frag before relaxing. Assume everything fits in
18954 2 bytes. */
18955
18956 int
18957 md_estimate_size_before_relax (fragS * fragp,
18958 segT segtype ATTRIBUTE_UNUSED)
18959 {
18960 fragp->fr_var = 2;
18961 return 2;
18962 }
18963
18964 /* Convert a machine dependent frag. */
18965
18966 void
18967 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18968 {
18969 unsigned long insn;
18970 unsigned long old_op;
18971 char *buf;
18972 expressionS exp;
18973 fixS *fixp;
18974 int reloc_type;
18975 int pc_rel;
18976 int opcode;
18977
18978 buf = fragp->fr_literal + fragp->fr_fix;
18979
18980 old_op = bfd_get_16(abfd, buf);
18981 if (fragp->fr_symbol)
18982 {
18983 exp.X_op = O_symbol;
18984 exp.X_add_symbol = fragp->fr_symbol;
18985 }
18986 else
18987 {
18988 exp.X_op = O_constant;
18989 }
18990 exp.X_add_number = fragp->fr_offset;
18991 opcode = fragp->fr_subtype;
18992 switch (opcode)
18993 {
18994 case T_MNEM_ldr_pc:
18995 case T_MNEM_ldr_pc2:
18996 case T_MNEM_ldr_sp:
18997 case T_MNEM_str_sp:
18998 case T_MNEM_ldr:
18999 case T_MNEM_ldrb:
19000 case T_MNEM_ldrh:
19001 case T_MNEM_str:
19002 case T_MNEM_strb:
19003 case T_MNEM_strh:
19004 if (fragp->fr_var == 4)
19005 {
19006 insn = THUMB_OP32 (opcode);
19007 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19008 {
19009 insn |= (old_op & 0x700) << 4;
19010 }
19011 else
19012 {
19013 insn |= (old_op & 7) << 12;
19014 insn |= (old_op & 0x38) << 13;
19015 }
19016 insn |= 0x00000c00;
19017 put_thumb32_insn (buf, insn);
19018 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19019 }
19020 else
19021 {
19022 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19023 }
19024 pc_rel = (opcode == T_MNEM_ldr_pc2);
19025 break;
19026 case T_MNEM_adr:
19027 if (fragp->fr_var == 4)
19028 {
19029 insn = THUMB_OP32 (opcode);
19030 insn |= (old_op & 0xf0) << 4;
19031 put_thumb32_insn (buf, insn);
19032 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19033 }
19034 else
19035 {
19036 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19037 exp.X_add_number -= 4;
19038 }
19039 pc_rel = 1;
19040 break;
19041 case T_MNEM_mov:
19042 case T_MNEM_movs:
19043 case T_MNEM_cmp:
19044 case T_MNEM_cmn:
19045 if (fragp->fr_var == 4)
19046 {
19047 int r0off = (opcode == T_MNEM_mov
19048 || opcode == T_MNEM_movs) ? 0 : 8;
19049 insn = THUMB_OP32 (opcode);
19050 insn = (insn & 0xe1ffffff) | 0x10000000;
19051 insn |= (old_op & 0x700) << r0off;
19052 put_thumb32_insn (buf, insn);
19053 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19054 }
19055 else
19056 {
19057 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19058 }
19059 pc_rel = 0;
19060 break;
19061 case T_MNEM_b:
19062 if (fragp->fr_var == 4)
19063 {
19064 insn = THUMB_OP32(opcode);
19065 put_thumb32_insn (buf, insn);
19066 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19067 }
19068 else
19069 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19070 pc_rel = 1;
19071 break;
19072 case T_MNEM_bcond:
19073 if (fragp->fr_var == 4)
19074 {
19075 insn = THUMB_OP32(opcode);
19076 insn |= (old_op & 0xf00) << 14;
19077 put_thumb32_insn (buf, insn);
19078 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19079 }
19080 else
19081 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19082 pc_rel = 1;
19083 break;
19084 case T_MNEM_add_sp:
19085 case T_MNEM_add_pc:
19086 case T_MNEM_inc_sp:
19087 case T_MNEM_dec_sp:
19088 if (fragp->fr_var == 4)
19089 {
19090 /* ??? Choose between add and addw. */
19091 insn = THUMB_OP32 (opcode);
19092 insn |= (old_op & 0xf0) << 4;
19093 put_thumb32_insn (buf, insn);
19094 if (opcode == T_MNEM_add_pc)
19095 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19096 else
19097 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19098 }
19099 else
19100 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19101 pc_rel = 0;
19102 break;
19103
19104 case T_MNEM_addi:
19105 case T_MNEM_addis:
19106 case T_MNEM_subi:
19107 case T_MNEM_subis:
19108 if (fragp->fr_var == 4)
19109 {
19110 insn = THUMB_OP32 (opcode);
19111 insn |= (old_op & 0xf0) << 4;
19112 insn |= (old_op & 0xf) << 16;
19113 put_thumb32_insn (buf, insn);
19114 if (insn & (1 << 20))
19115 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19116 else
19117 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19118 }
19119 else
19120 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19121 pc_rel = 0;
19122 break;
19123 default:
19124 abort ();
19125 }
19126 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
19127 (enum bfd_reloc_code_real) reloc_type);
19128 fixp->fx_file = fragp->fr_file;
19129 fixp->fx_line = fragp->fr_line;
19130 fragp->fr_fix += fragp->fr_var;
19131 }
19132
19133 /* Return the size of a relaxable immediate operand instruction.
19134 SHIFT and SIZE specify the form of the allowable immediate. */
19135 static int
19136 relax_immediate (fragS *fragp, int size, int shift)
19137 {
19138 offsetT offset;
19139 offsetT mask;
19140 offsetT low;
19141
19142 /* ??? Should be able to do better than this. */
19143 if (fragp->fr_symbol)
19144 return 4;
19145
19146 low = (1 << shift) - 1;
19147 mask = (1 << (shift + size)) - (1 << shift);
19148 offset = fragp->fr_offset;
19149 /* Force misaligned offsets to 32-bit variant. */
19150 if (offset & low)
19151 return 4;
19152 if (offset & ~mask)
19153 return 4;
19154 return 2;
19155 }
19156
19157 /* Get the address of a symbol during relaxation. */
19158 static addressT
19159 relaxed_symbol_addr (fragS *fragp, long stretch)
19160 {
19161 fragS *sym_frag;
19162 addressT addr;
19163 symbolS *sym;
19164
19165 sym = fragp->fr_symbol;
19166 sym_frag = symbol_get_frag (sym);
19167 know (S_GET_SEGMENT (sym) != absolute_section
19168 || sym_frag == &zero_address_frag);
19169 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19170
19171 /* If frag has yet to be reached on this pass, assume it will
19172 move by STRETCH just as we did. If this is not so, it will
19173 be because some frag between grows, and that will force
19174 another pass. */
19175
19176 if (stretch != 0
19177 && sym_frag->relax_marker != fragp->relax_marker)
19178 {
19179 fragS *f;
19180
19181 /* Adjust stretch for any alignment frag. Note that if have
19182 been expanding the earlier code, the symbol may be
19183 defined in what appears to be an earlier frag. FIXME:
19184 This doesn't handle the fr_subtype field, which specifies
19185 a maximum number of bytes to skip when doing an
19186 alignment. */
19187 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19188 {
19189 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19190 {
19191 if (stretch < 0)
19192 stretch = - ((- stretch)
19193 & ~ ((1 << (int) f->fr_offset) - 1));
19194 else
19195 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19196 if (stretch == 0)
19197 break;
19198 }
19199 }
19200 if (f != NULL)
19201 addr += stretch;
19202 }
19203
19204 return addr;
19205 }
19206
19207 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19208 load. */
19209 static int
19210 relax_adr (fragS *fragp, asection *sec, long stretch)
19211 {
19212 addressT addr;
19213 offsetT val;
19214
19215 /* Assume worst case for symbols not known to be in the same section. */
19216 if (fragp->fr_symbol == NULL
19217 || !S_IS_DEFINED (fragp->fr_symbol)
19218 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19219 || S_IS_WEAK (fragp->fr_symbol))
19220 return 4;
19221
19222 val = relaxed_symbol_addr (fragp, stretch);
19223 addr = fragp->fr_address + fragp->fr_fix;
19224 addr = (addr + 4) & ~3;
19225 /* Force misaligned targets to 32-bit variant. */
19226 if (val & 3)
19227 return 4;
19228 val -= addr;
19229 if (val < 0 || val > 1020)
19230 return 4;
19231 return 2;
19232 }
19233
19234 /* Return the size of a relaxable add/sub immediate instruction. */
19235 static int
19236 relax_addsub (fragS *fragp, asection *sec)
19237 {
19238 char *buf;
19239 int op;
19240
19241 buf = fragp->fr_literal + fragp->fr_fix;
19242 op = bfd_get_16(sec->owner, buf);
19243 if ((op & 0xf) == ((op >> 4) & 0xf))
19244 return relax_immediate (fragp, 8, 0);
19245 else
19246 return relax_immediate (fragp, 3, 0);
19247 }
19248
19249
19250 /* Return the size of a relaxable branch instruction. BITS is the
19251 size of the offset field in the narrow instruction. */
19252
19253 static int
19254 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19255 {
19256 addressT addr;
19257 offsetT val;
19258 offsetT limit;
19259
19260 /* Assume worst case for symbols not known to be in the same section. */
19261 if (!S_IS_DEFINED (fragp->fr_symbol)
19262 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19263 || S_IS_WEAK (fragp->fr_symbol))
19264 return 4;
19265
19266 #ifdef OBJ_ELF
19267 if (S_IS_DEFINED (fragp->fr_symbol)
19268 && ARM_IS_FUNC (fragp->fr_symbol))
19269 return 4;
19270
19271 /* PR 12532. Global symbols with default visibility might
19272 be preempted, so do not relax relocations to them. */
19273 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19274 && (! S_IS_LOCAL (fragp->fr_symbol)))
19275 return 4;
19276 #endif
19277
19278 val = relaxed_symbol_addr (fragp, stretch);
19279 addr = fragp->fr_address + fragp->fr_fix + 4;
19280 val -= addr;
19281
19282 /* Offset is a signed value *2 */
19283 limit = 1 << bits;
19284 if (val >= limit || val < -limit)
19285 return 4;
19286 return 2;
19287 }
19288
19289
19290 /* Relax a machine dependent frag. This returns the amount by which
19291 the current size of the frag should change. */
19292
19293 int
19294 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
19295 {
19296 int oldsize;
19297 int newsize;
19298
19299 oldsize = fragp->fr_var;
19300 switch (fragp->fr_subtype)
19301 {
19302 case T_MNEM_ldr_pc2:
19303 newsize = relax_adr (fragp, sec, stretch);
19304 break;
19305 case T_MNEM_ldr_pc:
19306 case T_MNEM_ldr_sp:
19307 case T_MNEM_str_sp:
19308 newsize = relax_immediate (fragp, 8, 2);
19309 break;
19310 case T_MNEM_ldr:
19311 case T_MNEM_str:
19312 newsize = relax_immediate (fragp, 5, 2);
19313 break;
19314 case T_MNEM_ldrh:
19315 case T_MNEM_strh:
19316 newsize = relax_immediate (fragp, 5, 1);
19317 break;
19318 case T_MNEM_ldrb:
19319 case T_MNEM_strb:
19320 newsize = relax_immediate (fragp, 5, 0);
19321 break;
19322 case T_MNEM_adr:
19323 newsize = relax_adr (fragp, sec, stretch);
19324 break;
19325 case T_MNEM_mov:
19326 case T_MNEM_movs:
19327 case T_MNEM_cmp:
19328 case T_MNEM_cmn:
19329 newsize = relax_immediate (fragp, 8, 0);
19330 break;
19331 case T_MNEM_b:
19332 newsize = relax_branch (fragp, sec, 11, stretch);
19333 break;
19334 case T_MNEM_bcond:
19335 newsize = relax_branch (fragp, sec, 8, stretch);
19336 break;
19337 case T_MNEM_add_sp:
19338 case T_MNEM_add_pc:
19339 newsize = relax_immediate (fragp, 8, 2);
19340 break;
19341 case T_MNEM_inc_sp:
19342 case T_MNEM_dec_sp:
19343 newsize = relax_immediate (fragp, 7, 2);
19344 break;
19345 case T_MNEM_addi:
19346 case T_MNEM_addis:
19347 case T_MNEM_subi:
19348 case T_MNEM_subis:
19349 newsize = relax_addsub (fragp, sec);
19350 break;
19351 default:
19352 abort ();
19353 }
19354
19355 fragp->fr_var = newsize;
19356 /* Freeze wide instructions that are at or before the same location as
19357 in the previous pass. This avoids infinite loops.
19358 Don't freeze them unconditionally because targets may be artificially
19359 misaligned by the expansion of preceding frags. */
19360 if (stretch <= 0 && newsize > 2)
19361 {
19362 md_convert_frag (sec->owner, sec, fragp);
19363 frag_wane (fragp);
19364 }
19365
19366 return newsize - oldsize;
19367 }
19368
19369 /* Round up a section size to the appropriate boundary. */
19370
19371 valueT
19372 md_section_align (segT segment ATTRIBUTE_UNUSED,
19373 valueT size)
19374 {
19375 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19376 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19377 {
19378 /* For a.out, force the section size to be aligned. If we don't do
19379 this, BFD will align it for us, but it will not write out the
19380 final bytes of the section. This may be a bug in BFD, but it is
19381 easier to fix it here since that is how the other a.out targets
19382 work. */
19383 int align;
19384
19385 align = bfd_get_section_alignment (stdoutput, segment);
19386 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19387 }
19388 #endif
19389
19390 return size;
19391 }
19392
19393 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19394 of an rs_align_code fragment. */
19395
19396 void
19397 arm_handle_align (fragS * fragP)
19398 {
19399 static char const arm_noop[2][2][4] =
19400 {
19401 { /* ARMv1 */
19402 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19403 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19404 },
19405 { /* ARMv6k */
19406 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19407 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19408 },
19409 };
19410 static char const thumb_noop[2][2][2] =
19411 {
19412 { /* Thumb-1 */
19413 {0xc0, 0x46}, /* LE */
19414 {0x46, 0xc0}, /* BE */
19415 },
19416 { /* Thumb-2 */
19417 {0x00, 0xbf}, /* LE */
19418 {0xbf, 0x00} /* BE */
19419 }
19420 };
19421 static char const wide_thumb_noop[2][4] =
19422 { /* Wide Thumb-2 */
19423 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19424 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19425 };
19426
19427 unsigned bytes, fix, noop_size;
19428 char * p;
19429 const char * noop;
19430 const char *narrow_noop = NULL;
19431 #ifdef OBJ_ELF
19432 enum mstate state;
19433 #endif
19434
19435 if (fragP->fr_type != rs_align_code)
19436 return;
19437
19438 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19439 p = fragP->fr_literal + fragP->fr_fix;
19440 fix = 0;
19441
19442 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19443 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19444
19445 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19446
19447 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19448 {
19449 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19450 {
19451 narrow_noop = thumb_noop[1][target_big_endian];
19452 noop = wide_thumb_noop[target_big_endian];
19453 }
19454 else
19455 noop = thumb_noop[0][target_big_endian];
19456 noop_size = 2;
19457 #ifdef OBJ_ELF
19458 state = MAP_THUMB;
19459 #endif
19460 }
19461 else
19462 {
19463 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19464 [target_big_endian];
19465 noop_size = 4;
19466 #ifdef OBJ_ELF
19467 state = MAP_ARM;
19468 #endif
19469 }
19470
19471 fragP->fr_var = noop_size;
19472
19473 if (bytes & (noop_size - 1))
19474 {
19475 fix = bytes & (noop_size - 1);
19476 #ifdef OBJ_ELF
19477 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19478 #endif
19479 memset (p, 0, fix);
19480 p += fix;
19481 bytes -= fix;
19482 }
19483
19484 if (narrow_noop)
19485 {
19486 if (bytes & noop_size)
19487 {
19488 /* Insert a narrow noop. */
19489 memcpy (p, narrow_noop, noop_size);
19490 p += noop_size;
19491 bytes -= noop_size;
19492 fix += noop_size;
19493 }
19494
19495 /* Use wide noops for the remainder */
19496 noop_size = 4;
19497 }
19498
19499 while (bytes >= noop_size)
19500 {
19501 memcpy (p, noop, noop_size);
19502 p += noop_size;
19503 bytes -= noop_size;
19504 fix += noop_size;
19505 }
19506
19507 fragP->fr_fix += fix;
19508 }
19509
19510 /* Called from md_do_align. Used to create an alignment
19511 frag in a code section. */
19512
19513 void
19514 arm_frag_align_code (int n, int max)
19515 {
19516 char * p;
19517
19518 /* We assume that there will never be a requirement
19519 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19520 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19521 {
19522 char err_msg[128];
19523
19524 sprintf (err_msg,
19525 _("alignments greater than %d bytes not supported in .text sections."),
19526 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19527 as_fatal ("%s", err_msg);
19528 }
19529
19530 p = frag_var (rs_align_code,
19531 MAX_MEM_FOR_RS_ALIGN_CODE,
19532 1,
19533 (relax_substateT) max,
19534 (symbolS *) NULL,
19535 (offsetT) n,
19536 (char *) NULL);
19537 *p = 0;
19538 }
19539
19540 /* Perform target specific initialisation of a frag.
19541 Note - despite the name this initialisation is not done when the frag
19542 is created, but only when its type is assigned. A frag can be created
19543 and used a long time before its type is set, so beware of assuming that
19544 this initialisationis performed first. */
19545
19546 #ifndef OBJ_ELF
19547 void
19548 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19549 {
19550 /* Record whether this frag is in an ARM or a THUMB area. */
19551 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19552 }
19553
19554 #else /* OBJ_ELF is defined. */
19555 void
19556 arm_init_frag (fragS * fragP, int max_chars)
19557 {
19558 /* If the current ARM vs THUMB mode has not already
19559 been recorded into this frag then do so now. */
19560 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19561 {
19562 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19563
19564 /* Record a mapping symbol for alignment frags. We will delete this
19565 later if the alignment ends up empty. */
19566 switch (fragP->fr_type)
19567 {
19568 case rs_align:
19569 case rs_align_test:
19570 case rs_fill:
19571 mapping_state_2 (MAP_DATA, max_chars);
19572 break;
19573 case rs_align_code:
19574 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19575 break;
19576 default:
19577 break;
19578 }
19579 }
19580 }
19581
19582 /* When we change sections we need to issue a new mapping symbol. */
19583
19584 void
19585 arm_elf_change_section (void)
19586 {
19587 /* Link an unlinked unwind index table section to the .text section. */
19588 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19589 && elf_linked_to_section (now_seg) == NULL)
19590 elf_linked_to_section (now_seg) = text_section;
19591 }
19592
19593 int
19594 arm_elf_section_type (const char * str, size_t len)
19595 {
19596 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19597 return SHT_ARM_EXIDX;
19598
19599 return -1;
19600 }
19601 \f
19602 /* Code to deal with unwinding tables. */
19603
19604 static void add_unwind_adjustsp (offsetT);
19605
19606 /* Generate any deferred unwind frame offset. */
19607
19608 static void
19609 flush_pending_unwind (void)
19610 {
19611 offsetT offset;
19612
19613 offset = unwind.pending_offset;
19614 unwind.pending_offset = 0;
19615 if (offset != 0)
19616 add_unwind_adjustsp (offset);
19617 }
19618
19619 /* Add an opcode to this list for this function. Two-byte opcodes should
19620 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19621 order. */
19622
19623 static void
19624 add_unwind_opcode (valueT op, int length)
19625 {
19626 /* Add any deferred stack adjustment. */
19627 if (unwind.pending_offset)
19628 flush_pending_unwind ();
19629
19630 unwind.sp_restored = 0;
19631
19632 if (unwind.opcode_count + length > unwind.opcode_alloc)
19633 {
19634 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19635 if (unwind.opcodes)
19636 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19637 unwind.opcode_alloc);
19638 else
19639 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19640 }
19641 while (length > 0)
19642 {
19643 length--;
19644 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19645 op >>= 8;
19646 unwind.opcode_count++;
19647 }
19648 }
19649
19650 /* Add unwind opcodes to adjust the stack pointer. */
19651
19652 static void
19653 add_unwind_adjustsp (offsetT offset)
19654 {
19655 valueT op;
19656
19657 if (offset > 0x200)
19658 {
19659 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19660 char bytes[5];
19661 int n;
19662 valueT o;
19663
19664 /* Long form: 0xb2, uleb128. */
19665 /* This might not fit in a word so add the individual bytes,
19666 remembering the list is built in reverse order. */
19667 o = (valueT) ((offset - 0x204) >> 2);
19668 if (o == 0)
19669 add_unwind_opcode (0, 1);
19670
19671 /* Calculate the uleb128 encoding of the offset. */
19672 n = 0;
19673 while (o)
19674 {
19675 bytes[n] = o & 0x7f;
19676 o >>= 7;
19677 if (o)
19678 bytes[n] |= 0x80;
19679 n++;
19680 }
19681 /* Add the insn. */
19682 for (; n; n--)
19683 add_unwind_opcode (bytes[n - 1], 1);
19684 add_unwind_opcode (0xb2, 1);
19685 }
19686 else if (offset > 0x100)
19687 {
19688 /* Two short opcodes. */
19689 add_unwind_opcode (0x3f, 1);
19690 op = (offset - 0x104) >> 2;
19691 add_unwind_opcode (op, 1);
19692 }
19693 else if (offset > 0)
19694 {
19695 /* Short opcode. */
19696 op = (offset - 4) >> 2;
19697 add_unwind_opcode (op, 1);
19698 }
19699 else if (offset < 0)
19700 {
19701 offset = -offset;
19702 while (offset > 0x100)
19703 {
19704 add_unwind_opcode (0x7f, 1);
19705 offset -= 0x100;
19706 }
19707 op = ((offset - 4) >> 2) | 0x40;
19708 add_unwind_opcode (op, 1);
19709 }
19710 }
19711
19712 /* Finish the list of unwind opcodes for this function. */
19713 static void
19714 finish_unwind_opcodes (void)
19715 {
19716 valueT op;
19717
19718 if (unwind.fp_used)
19719 {
19720 /* Adjust sp as necessary. */
19721 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19722 flush_pending_unwind ();
19723
19724 /* After restoring sp from the frame pointer. */
19725 op = 0x90 | unwind.fp_reg;
19726 add_unwind_opcode (op, 1);
19727 }
19728 else
19729 flush_pending_unwind ();
19730 }
19731
19732
19733 /* Start an exception table entry. If idx is nonzero this is an index table
19734 entry. */
19735
19736 static void
19737 start_unwind_section (const segT text_seg, int idx)
19738 {
19739 const char * text_name;
19740 const char * prefix;
19741 const char * prefix_once;
19742 const char * group_name;
19743 size_t prefix_len;
19744 size_t text_len;
19745 char * sec_name;
19746 size_t sec_name_len;
19747 int type;
19748 int flags;
19749 int linkonce;
19750
19751 if (idx)
19752 {
19753 prefix = ELF_STRING_ARM_unwind;
19754 prefix_once = ELF_STRING_ARM_unwind_once;
19755 type = SHT_ARM_EXIDX;
19756 }
19757 else
19758 {
19759 prefix = ELF_STRING_ARM_unwind_info;
19760 prefix_once = ELF_STRING_ARM_unwind_info_once;
19761 type = SHT_PROGBITS;
19762 }
19763
19764 text_name = segment_name (text_seg);
19765 if (streq (text_name, ".text"))
19766 text_name = "";
19767
19768 if (strncmp (text_name, ".gnu.linkonce.t.",
19769 strlen (".gnu.linkonce.t.")) == 0)
19770 {
19771 prefix = prefix_once;
19772 text_name += strlen (".gnu.linkonce.t.");
19773 }
19774
19775 prefix_len = strlen (prefix);
19776 text_len = strlen (text_name);
19777 sec_name_len = prefix_len + text_len;
19778 sec_name = (char *) xmalloc (sec_name_len + 1);
19779 memcpy (sec_name, prefix, prefix_len);
19780 memcpy (sec_name + prefix_len, text_name, text_len);
19781 sec_name[prefix_len + text_len] = '\0';
19782
19783 flags = SHF_ALLOC;
19784 linkonce = 0;
19785 group_name = 0;
19786
19787 /* Handle COMDAT group. */
19788 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
19789 {
19790 group_name = elf_group_name (text_seg);
19791 if (group_name == NULL)
19792 {
19793 as_bad (_("Group section `%s' has no group signature"),
19794 segment_name (text_seg));
19795 ignore_rest_of_line ();
19796 return;
19797 }
19798 flags |= SHF_GROUP;
19799 linkonce = 1;
19800 }
19801
19802 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
19803
19804 /* Set the section link for index tables. */
19805 if (idx)
19806 elf_linked_to_section (now_seg) = text_seg;
19807 }
19808
19809
19810 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19811 personality routine data. Returns zero, or the index table value for
19812 and inline entry. */
19813
19814 static valueT
19815 create_unwind_entry (int have_data)
19816 {
19817 int size;
19818 addressT where;
19819 char *ptr;
19820 /* The current word of data. */
19821 valueT data;
19822 /* The number of bytes left in this word. */
19823 int n;
19824
19825 finish_unwind_opcodes ();
19826
19827 /* Remember the current text section. */
19828 unwind.saved_seg = now_seg;
19829 unwind.saved_subseg = now_subseg;
19830
19831 start_unwind_section (now_seg, 0);
19832
19833 if (unwind.personality_routine == NULL)
19834 {
19835 if (unwind.personality_index == -2)
19836 {
19837 if (have_data)
19838 as_bad (_("handlerdata in cantunwind frame"));
19839 return 1; /* EXIDX_CANTUNWIND. */
19840 }
19841
19842 /* Use a default personality routine if none is specified. */
19843 if (unwind.personality_index == -1)
19844 {
19845 if (unwind.opcode_count > 3)
19846 unwind.personality_index = 1;
19847 else
19848 unwind.personality_index = 0;
19849 }
19850
19851 /* Space for the personality routine entry. */
19852 if (unwind.personality_index == 0)
19853 {
19854 if (unwind.opcode_count > 3)
19855 as_bad (_("too many unwind opcodes for personality routine 0"));
19856
19857 if (!have_data)
19858 {
19859 /* All the data is inline in the index table. */
19860 data = 0x80;
19861 n = 3;
19862 while (unwind.opcode_count > 0)
19863 {
19864 unwind.opcode_count--;
19865 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19866 n--;
19867 }
19868
19869 /* Pad with "finish" opcodes. */
19870 while (n--)
19871 data = (data << 8) | 0xb0;
19872
19873 return data;
19874 }
19875 size = 0;
19876 }
19877 else
19878 /* We get two opcodes "free" in the first word. */
19879 size = unwind.opcode_count - 2;
19880 }
19881 else
19882 /* An extra byte is required for the opcode count. */
19883 size = unwind.opcode_count + 1;
19884
19885 size = (size + 3) >> 2;
19886 if (size > 0xff)
19887 as_bad (_("too many unwind opcodes"));
19888
19889 frag_align (2, 0, 0);
19890 record_alignment (now_seg, 2);
19891 unwind.table_entry = expr_build_dot ();
19892
19893 /* Allocate the table entry. */
19894 ptr = frag_more ((size << 2) + 4);
19895 where = frag_now_fix () - ((size << 2) + 4);
19896
19897 switch (unwind.personality_index)
19898 {
19899 case -1:
19900 /* ??? Should this be a PLT generating relocation? */
19901 /* Custom personality routine. */
19902 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19903 BFD_RELOC_ARM_PREL31);
19904
19905 where += 4;
19906 ptr += 4;
19907
19908 /* Set the first byte to the number of additional words. */
19909 data = size - 1;
19910 n = 3;
19911 break;
19912
19913 /* ABI defined personality routines. */
19914 case 0:
19915 /* Three opcodes bytes are packed into the first word. */
19916 data = 0x80;
19917 n = 3;
19918 break;
19919
19920 case 1:
19921 case 2:
19922 /* The size and first two opcode bytes go in the first word. */
19923 data = ((0x80 + unwind.personality_index) << 8) | size;
19924 n = 2;
19925 break;
19926
19927 default:
19928 /* Should never happen. */
19929 abort ();
19930 }
19931
19932 /* Pack the opcodes into words (MSB first), reversing the list at the same
19933 time. */
19934 while (unwind.opcode_count > 0)
19935 {
19936 if (n == 0)
19937 {
19938 md_number_to_chars (ptr, data, 4);
19939 ptr += 4;
19940 n = 4;
19941 data = 0;
19942 }
19943 unwind.opcode_count--;
19944 n--;
19945 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19946 }
19947
19948 /* Finish off the last word. */
19949 if (n < 4)
19950 {
19951 /* Pad with "finish" opcodes. */
19952 while (n--)
19953 data = (data << 8) | 0xb0;
19954
19955 md_number_to_chars (ptr, data, 4);
19956 }
19957
19958 if (!have_data)
19959 {
19960 /* Add an empty descriptor if there is no user-specified data. */
19961 ptr = frag_more (4);
19962 md_number_to_chars (ptr, 0, 4);
19963 }
19964
19965 return 0;
19966 }
19967
19968
19969 /* Initialize the DWARF-2 unwind information for this procedure. */
19970
19971 void
19972 tc_arm_frame_initial_instructions (void)
19973 {
19974 cfi_add_CFA_def_cfa (REG_SP, 0);
19975 }
19976 #endif /* OBJ_ELF */
19977
19978 /* Convert REGNAME to a DWARF-2 register number. */
19979
19980 int
19981 tc_arm_regname_to_dw2regnum (char *regname)
19982 {
19983 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
19984
19985 if (reg == FAIL)
19986 return -1;
19987
19988 return reg;
19989 }
19990
19991 #ifdef TE_PE
19992 void
19993 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
19994 {
19995 expressionS exp;
19996
19997 exp.X_op = O_secrel;
19998 exp.X_add_symbol = symbol;
19999 exp.X_add_number = 0;
20000 emit_expr (&exp, size);
20001 }
20002 #endif
20003
20004 /* MD interface: Symbol and relocation handling. */
20005
20006 /* Return the address within the segment that a PC-relative fixup is
20007 relative to. For ARM, PC-relative fixups applied to instructions
20008 are generally relative to the location of the fixup plus 8 bytes.
20009 Thumb branches are offset by 4, and Thumb loads relative to PC
20010 require special handling. */
20011
20012 long
20013 md_pcrel_from_section (fixS * fixP, segT seg)
20014 {
20015 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20016
20017 /* If this is pc-relative and we are going to emit a relocation
20018 then we just want to put out any pipeline compensation that the linker
20019 will need. Otherwise we want to use the calculated base.
20020 For WinCE we skip the bias for externals as well, since this
20021 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20022 if (fixP->fx_pcrel
20023 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
20024 || (arm_force_relocation (fixP)
20025 #ifdef TE_WINCE
20026 && !S_IS_EXTERNAL (fixP->fx_addsy)
20027 #endif
20028 )))
20029 base = 0;
20030
20031
20032 switch (fixP->fx_r_type)
20033 {
20034 /* PC relative addressing on the Thumb is slightly odd as the
20035 bottom two bits of the PC are forced to zero for the
20036 calculation. This happens *after* application of the
20037 pipeline offset. However, Thumb adrl already adjusts for
20038 this, so we need not do it again. */
20039 case BFD_RELOC_ARM_THUMB_ADD:
20040 return base & ~3;
20041
20042 case BFD_RELOC_ARM_THUMB_OFFSET:
20043 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20044 case BFD_RELOC_ARM_T32_ADD_PC12:
20045 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20046 return (base + 4) & ~3;
20047
20048 /* Thumb branches are simply offset by +4. */
20049 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20050 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20051 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20052 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20053 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20054 return base + 4;
20055
20056 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20057 if (fixP->fx_addsy
20058 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20059 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20060 && ARM_IS_FUNC (fixP->fx_addsy)
20061 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20062 base = fixP->fx_where + fixP->fx_frag->fr_address;
20063 return base + 4;
20064
20065 /* BLX is like branches above, but forces the low two bits of PC to
20066 zero. */
20067 case BFD_RELOC_THUMB_PCREL_BLX:
20068 if (fixP->fx_addsy
20069 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20070 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20071 && THUMB_IS_FUNC (fixP->fx_addsy)
20072 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20073 base = fixP->fx_where + fixP->fx_frag->fr_address;
20074 return (base + 4) & ~3;
20075
20076 /* ARM mode branches are offset by +8. However, the Windows CE
20077 loader expects the relocation not to take this into account. */
20078 case BFD_RELOC_ARM_PCREL_BLX:
20079 if (fixP->fx_addsy
20080 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20081 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20082 && ARM_IS_FUNC (fixP->fx_addsy)
20083 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20084 base = fixP->fx_where + fixP->fx_frag->fr_address;
20085 return base + 8;
20086
20087 case BFD_RELOC_ARM_PCREL_CALL:
20088 if (fixP->fx_addsy
20089 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20090 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20091 && THUMB_IS_FUNC (fixP->fx_addsy)
20092 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20093 base = fixP->fx_where + fixP->fx_frag->fr_address;
20094 return base + 8;
20095
20096 case BFD_RELOC_ARM_PCREL_BRANCH:
20097 case BFD_RELOC_ARM_PCREL_JUMP:
20098 case BFD_RELOC_ARM_PLT32:
20099 #ifdef TE_WINCE
20100 /* When handling fixups immediately, because we have already
20101 discovered the value of a symbol, or the address of the frag involved
20102 we must account for the offset by +8, as the OS loader will never see the reloc.
20103 see fixup_segment() in write.c
20104 The S_IS_EXTERNAL test handles the case of global symbols.
20105 Those need the calculated base, not just the pipe compensation the linker will need. */
20106 if (fixP->fx_pcrel
20107 && fixP->fx_addsy != NULL
20108 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20109 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20110 return base + 8;
20111 return base;
20112 #else
20113 return base + 8;
20114 #endif
20115
20116
20117 /* ARM mode loads relative to PC are also offset by +8. Unlike
20118 branches, the Windows CE loader *does* expect the relocation
20119 to take this into account. */
20120 case BFD_RELOC_ARM_OFFSET_IMM:
20121 case BFD_RELOC_ARM_OFFSET_IMM8:
20122 case BFD_RELOC_ARM_HWLITERAL:
20123 case BFD_RELOC_ARM_LITERAL:
20124 case BFD_RELOC_ARM_CP_OFF_IMM:
20125 return base + 8;
20126
20127
20128 /* Other PC-relative relocations are un-offset. */
20129 default:
20130 return base;
20131 }
20132 }
20133
20134 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20135 Otherwise we have no need to default values of symbols. */
20136
20137 symbolS *
20138 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
20139 {
20140 #ifdef OBJ_ELF
20141 if (name[0] == '_' && name[1] == 'G'
20142 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20143 {
20144 if (!GOT_symbol)
20145 {
20146 if (symbol_find (name))
20147 as_bad (_("GOT already in the symbol table"));
20148
20149 GOT_symbol = symbol_new (name, undefined_section,
20150 (valueT) 0, & zero_address_frag);
20151 }
20152
20153 return GOT_symbol;
20154 }
20155 #endif
20156
20157 return NULL;
20158 }
20159
20160 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20161 computed as two separate immediate values, added together. We
20162 already know that this value cannot be computed by just one ARM
20163 instruction. */
20164
20165 static unsigned int
20166 validate_immediate_twopart (unsigned int val,
20167 unsigned int * highpart)
20168 {
20169 unsigned int a;
20170 unsigned int i;
20171
20172 for (i = 0; i < 32; i += 2)
20173 if (((a = rotate_left (val, i)) & 0xff) != 0)
20174 {
20175 if (a & 0xff00)
20176 {
20177 if (a & ~ 0xffff)
20178 continue;
20179 * highpart = (a >> 8) | ((i + 24) << 7);
20180 }
20181 else if (a & 0xff0000)
20182 {
20183 if (a & 0xff000000)
20184 continue;
20185 * highpart = (a >> 16) | ((i + 16) << 7);
20186 }
20187 else
20188 {
20189 gas_assert (a & 0xff000000);
20190 * highpart = (a >> 24) | ((i + 8) << 7);
20191 }
20192
20193 return (a & 0xff) | (i << 7);
20194 }
20195
20196 return FAIL;
20197 }
20198
20199 static int
20200 validate_offset_imm (unsigned int val, int hwse)
20201 {
20202 if ((hwse && val > 255) || val > 4095)
20203 return FAIL;
20204 return val;
20205 }
20206
20207 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20208 negative immediate constant by altering the instruction. A bit of
20209 a hack really.
20210 MOV <-> MVN
20211 AND <-> BIC
20212 ADC <-> SBC
20213 by inverting the second operand, and
20214 ADD <-> SUB
20215 CMP <-> CMN
20216 by negating the second operand. */
20217
20218 static int
20219 negate_data_op (unsigned long * instruction,
20220 unsigned long value)
20221 {
20222 int op, new_inst;
20223 unsigned long negated, inverted;
20224
20225 negated = encode_arm_immediate (-value);
20226 inverted = encode_arm_immediate (~value);
20227
20228 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20229 switch (op)
20230 {
20231 /* First negates. */
20232 case OPCODE_SUB: /* ADD <-> SUB */
20233 new_inst = OPCODE_ADD;
20234 value = negated;
20235 break;
20236
20237 case OPCODE_ADD:
20238 new_inst = OPCODE_SUB;
20239 value = negated;
20240 break;
20241
20242 case OPCODE_CMP: /* CMP <-> CMN */
20243 new_inst = OPCODE_CMN;
20244 value = negated;
20245 break;
20246
20247 case OPCODE_CMN:
20248 new_inst = OPCODE_CMP;
20249 value = negated;
20250 break;
20251
20252 /* Now Inverted ops. */
20253 case OPCODE_MOV: /* MOV <-> MVN */
20254 new_inst = OPCODE_MVN;
20255 value = inverted;
20256 break;
20257
20258 case OPCODE_MVN:
20259 new_inst = OPCODE_MOV;
20260 value = inverted;
20261 break;
20262
20263 case OPCODE_AND: /* AND <-> BIC */
20264 new_inst = OPCODE_BIC;
20265 value = inverted;
20266 break;
20267
20268 case OPCODE_BIC:
20269 new_inst = OPCODE_AND;
20270 value = inverted;
20271 break;
20272
20273 case OPCODE_ADC: /* ADC <-> SBC */
20274 new_inst = OPCODE_SBC;
20275 value = inverted;
20276 break;
20277
20278 case OPCODE_SBC:
20279 new_inst = OPCODE_ADC;
20280 value = inverted;
20281 break;
20282
20283 /* We cannot do anything. */
20284 default:
20285 return FAIL;
20286 }
20287
20288 if (value == (unsigned) FAIL)
20289 return FAIL;
20290
20291 *instruction &= OPCODE_MASK;
20292 *instruction |= new_inst << DATA_OP_SHIFT;
20293 return value;
20294 }
20295
20296 /* Like negate_data_op, but for Thumb-2. */
20297
20298 static unsigned int
20299 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
20300 {
20301 int op, new_inst;
20302 int rd;
20303 unsigned int negated, inverted;
20304
20305 negated = encode_thumb32_immediate (-value);
20306 inverted = encode_thumb32_immediate (~value);
20307
20308 rd = (*instruction >> 8) & 0xf;
20309 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20310 switch (op)
20311 {
20312 /* ADD <-> SUB. Includes CMP <-> CMN. */
20313 case T2_OPCODE_SUB:
20314 new_inst = T2_OPCODE_ADD;
20315 value = negated;
20316 break;
20317
20318 case T2_OPCODE_ADD:
20319 new_inst = T2_OPCODE_SUB;
20320 value = negated;
20321 break;
20322
20323 /* ORR <-> ORN. Includes MOV <-> MVN. */
20324 case T2_OPCODE_ORR:
20325 new_inst = T2_OPCODE_ORN;
20326 value = inverted;
20327 break;
20328
20329 case T2_OPCODE_ORN:
20330 new_inst = T2_OPCODE_ORR;
20331 value = inverted;
20332 break;
20333
20334 /* AND <-> BIC. TST has no inverted equivalent. */
20335 case T2_OPCODE_AND:
20336 new_inst = T2_OPCODE_BIC;
20337 if (rd == 15)
20338 value = FAIL;
20339 else
20340 value = inverted;
20341 break;
20342
20343 case T2_OPCODE_BIC:
20344 new_inst = T2_OPCODE_AND;
20345 value = inverted;
20346 break;
20347
20348 /* ADC <-> SBC */
20349 case T2_OPCODE_ADC:
20350 new_inst = T2_OPCODE_SBC;
20351 value = inverted;
20352 break;
20353
20354 case T2_OPCODE_SBC:
20355 new_inst = T2_OPCODE_ADC;
20356 value = inverted;
20357 break;
20358
20359 /* We cannot do anything. */
20360 default:
20361 return FAIL;
20362 }
20363
20364 if (value == (unsigned int)FAIL)
20365 return FAIL;
20366
20367 *instruction &= T2_OPCODE_MASK;
20368 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20369 return value;
20370 }
20371
20372 /* Read a 32-bit thumb instruction from buf. */
20373 static unsigned long
20374 get_thumb32_insn (char * buf)
20375 {
20376 unsigned long insn;
20377 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20378 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20379
20380 return insn;
20381 }
20382
20383
20384 /* We usually want to set the low bit on the address of thumb function
20385 symbols. In particular .word foo - . should have the low bit set.
20386 Generic code tries to fold the difference of two symbols to
20387 a constant. Prevent this and force a relocation when the first symbols
20388 is a thumb function. */
20389
20390 bfd_boolean
20391 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20392 {
20393 if (op == O_subtract
20394 && l->X_op == O_symbol
20395 && r->X_op == O_symbol
20396 && THUMB_IS_FUNC (l->X_add_symbol))
20397 {
20398 l->X_op = O_subtract;
20399 l->X_op_symbol = r->X_add_symbol;
20400 l->X_add_number -= r->X_add_number;
20401 return TRUE;
20402 }
20403
20404 /* Process as normal. */
20405 return FALSE;
20406 }
20407
20408 /* Encode Thumb2 unconditional branches and calls. The encoding
20409 for the 2 are identical for the immediate values. */
20410
20411 static void
20412 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20413 {
20414 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20415 offsetT newval;
20416 offsetT newval2;
20417 addressT S, I1, I2, lo, hi;
20418
20419 S = (value >> 24) & 0x01;
20420 I1 = (value >> 23) & 0x01;
20421 I2 = (value >> 22) & 0x01;
20422 hi = (value >> 12) & 0x3ff;
20423 lo = (value >> 1) & 0x7ff;
20424 newval = md_chars_to_number (buf, THUMB_SIZE);
20425 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20426 newval |= (S << 10) | hi;
20427 newval2 &= ~T2I1I2MASK;
20428 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20429 md_number_to_chars (buf, newval, THUMB_SIZE);
20430 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20431 }
20432
20433 void
20434 md_apply_fix (fixS * fixP,
20435 valueT * valP,
20436 segT seg)
20437 {
20438 offsetT value = * valP;
20439 offsetT newval;
20440 unsigned int newimm;
20441 unsigned long temp;
20442 int sign;
20443 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20444
20445 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20446
20447 /* Note whether this will delete the relocation. */
20448
20449 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20450 fixP->fx_done = 1;
20451
20452 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20453 consistency with the behaviour on 32-bit hosts. Remember value
20454 for emit_reloc. */
20455 value &= 0xffffffff;
20456 value ^= 0x80000000;
20457 value -= 0x80000000;
20458
20459 *valP = value;
20460 fixP->fx_addnumber = value;
20461
20462 /* Same treatment for fixP->fx_offset. */
20463 fixP->fx_offset &= 0xffffffff;
20464 fixP->fx_offset ^= 0x80000000;
20465 fixP->fx_offset -= 0x80000000;
20466
20467 switch (fixP->fx_r_type)
20468 {
20469 case BFD_RELOC_NONE:
20470 /* This will need to go in the object file. */
20471 fixP->fx_done = 0;
20472 break;
20473
20474 case BFD_RELOC_ARM_IMMEDIATE:
20475 /* We claim that this fixup has been processed here,
20476 even if in fact we generate an error because we do
20477 not have a reloc for it, so tc_gen_reloc will reject it. */
20478 fixP->fx_done = 1;
20479
20480 if (fixP->fx_addsy)
20481 {
20482 const char *msg = 0;
20483
20484 if (! S_IS_DEFINED (fixP->fx_addsy))
20485 msg = _("undefined symbol %s used as an immediate value");
20486 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20487 msg = _("symbol %s is in a different section");
20488 else if (S_IS_WEAK (fixP->fx_addsy))
20489 msg = _("symbol %s is weak and may be overridden later");
20490
20491 if (msg)
20492 {
20493 as_bad_where (fixP->fx_file, fixP->fx_line,
20494 msg, S_GET_NAME (fixP->fx_addsy));
20495 break;
20496 }
20497 }
20498
20499 newimm = encode_arm_immediate (value);
20500 temp = md_chars_to_number (buf, INSN_SIZE);
20501
20502 /* If the instruction will fail, see if we can fix things up by
20503 changing the opcode. */
20504 if (newimm == (unsigned int) FAIL
20505 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
20506 {
20507 as_bad_where (fixP->fx_file, fixP->fx_line,
20508 _("invalid constant (%lx) after fixup"),
20509 (unsigned long) value);
20510 break;
20511 }
20512
20513 newimm |= (temp & 0xfffff000);
20514 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20515 break;
20516
20517 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20518 {
20519 unsigned int highpart = 0;
20520 unsigned int newinsn = 0xe1a00000; /* nop. */
20521
20522 if (fixP->fx_addsy)
20523 {
20524 const char *msg = 0;
20525
20526 if (! S_IS_DEFINED (fixP->fx_addsy))
20527 msg = _("undefined symbol %s used as an immediate value");
20528 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20529 msg = _("symbol %s is in a different section");
20530 else if (S_IS_WEAK (fixP->fx_addsy))
20531 msg = _("symbol %s is weak and may be overridden later");
20532
20533 if (msg)
20534 {
20535 as_bad_where (fixP->fx_file, fixP->fx_line,
20536 msg, S_GET_NAME (fixP->fx_addsy));
20537 break;
20538 }
20539 }
20540
20541 newimm = encode_arm_immediate (value);
20542 temp = md_chars_to_number (buf, INSN_SIZE);
20543
20544 /* If the instruction will fail, see if we can fix things up by
20545 changing the opcode. */
20546 if (newimm == (unsigned int) FAIL
20547 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20548 {
20549 /* No ? OK - try using two ADD instructions to generate
20550 the value. */
20551 newimm = validate_immediate_twopart (value, & highpart);
20552
20553 /* Yes - then make sure that the second instruction is
20554 also an add. */
20555 if (newimm != (unsigned int) FAIL)
20556 newinsn = temp;
20557 /* Still No ? Try using a negated value. */
20558 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20559 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20560 /* Otherwise - give up. */
20561 else
20562 {
20563 as_bad_where (fixP->fx_file, fixP->fx_line,
20564 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20565 (long) value);
20566 break;
20567 }
20568
20569 /* Replace the first operand in the 2nd instruction (which
20570 is the PC) with the destination register. We have
20571 already added in the PC in the first instruction and we
20572 do not want to do it again. */
20573 newinsn &= ~ 0xf0000;
20574 newinsn |= ((newinsn & 0x0f000) << 4);
20575 }
20576
20577 newimm |= (temp & 0xfffff000);
20578 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20579
20580 highpart |= (newinsn & 0xfffff000);
20581 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20582 }
20583 break;
20584
20585 case BFD_RELOC_ARM_OFFSET_IMM:
20586 if (!fixP->fx_done && seg->use_rela_p)
20587 value = 0;
20588
20589 case BFD_RELOC_ARM_LITERAL:
20590 sign = value > 0;
20591
20592 if (value < 0)
20593 value = - value;
20594
20595 if (validate_offset_imm (value, 0) == FAIL)
20596 {
20597 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20598 as_bad_where (fixP->fx_file, fixP->fx_line,
20599 _("invalid literal constant: pool needs to be closer"));
20600 else
20601 as_bad_where (fixP->fx_file, fixP->fx_line,
20602 _("bad immediate value for offset (%ld)"),
20603 (long) value);
20604 break;
20605 }
20606
20607 newval = md_chars_to_number (buf, INSN_SIZE);
20608 if (value == 0)
20609 newval &= 0xfffff000;
20610 else
20611 {
20612 newval &= 0xff7ff000;
20613 newval |= value | (sign ? INDEX_UP : 0);
20614 }
20615 md_number_to_chars (buf, newval, INSN_SIZE);
20616 break;
20617
20618 case BFD_RELOC_ARM_OFFSET_IMM8:
20619 case BFD_RELOC_ARM_HWLITERAL:
20620 sign = value > 0;
20621
20622 if (value < 0)
20623 value = - value;
20624
20625 if (validate_offset_imm (value, 1) == FAIL)
20626 {
20627 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20628 as_bad_where (fixP->fx_file, fixP->fx_line,
20629 _("invalid literal constant: pool needs to be closer"));
20630 else
20631 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20632 (long) value);
20633 break;
20634 }
20635
20636 newval = md_chars_to_number (buf, INSN_SIZE);
20637 if (value == 0)
20638 newval &= 0xfffff0f0;
20639 else
20640 {
20641 newval &= 0xff7ff0f0;
20642 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20643 }
20644 md_number_to_chars (buf, newval, INSN_SIZE);
20645 break;
20646
20647 case BFD_RELOC_ARM_T32_OFFSET_U8:
20648 if (value < 0 || value > 1020 || value % 4 != 0)
20649 as_bad_where (fixP->fx_file, fixP->fx_line,
20650 _("bad immediate value for offset (%ld)"), (long) value);
20651 value /= 4;
20652
20653 newval = md_chars_to_number (buf+2, THUMB_SIZE);
20654 newval |= value;
20655 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20656 break;
20657
20658 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20659 /* This is a complicated relocation used for all varieties of Thumb32
20660 load/store instruction with immediate offset:
20661
20662 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20663 *4, optional writeback(W)
20664 (doubleword load/store)
20665
20666 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20667 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20668 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20669 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20670 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20671
20672 Uppercase letters indicate bits that are already encoded at
20673 this point. Lowercase letters are our problem. For the
20674 second block of instructions, the secondary opcode nybble
20675 (bits 8..11) is present, and bit 23 is zero, even if this is
20676 a PC-relative operation. */
20677 newval = md_chars_to_number (buf, THUMB_SIZE);
20678 newval <<= 16;
20679 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
20680
20681 if ((newval & 0xf0000000) == 0xe0000000)
20682 {
20683 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20684 if (value >= 0)
20685 newval |= (1 << 23);
20686 else
20687 value = -value;
20688 if (value % 4 != 0)
20689 {
20690 as_bad_where (fixP->fx_file, fixP->fx_line,
20691 _("offset not a multiple of 4"));
20692 break;
20693 }
20694 value /= 4;
20695 if (value > 0xff)
20696 {
20697 as_bad_where (fixP->fx_file, fixP->fx_line,
20698 _("offset out of range"));
20699 break;
20700 }
20701 newval &= ~0xff;
20702 }
20703 else if ((newval & 0x000f0000) == 0x000f0000)
20704 {
20705 /* PC-relative, 12-bit offset. */
20706 if (value >= 0)
20707 newval |= (1 << 23);
20708 else
20709 value = -value;
20710 if (value > 0xfff)
20711 {
20712 as_bad_where (fixP->fx_file, fixP->fx_line,
20713 _("offset out of range"));
20714 break;
20715 }
20716 newval &= ~0xfff;
20717 }
20718 else if ((newval & 0x00000100) == 0x00000100)
20719 {
20720 /* Writeback: 8-bit, +/- offset. */
20721 if (value >= 0)
20722 newval |= (1 << 9);
20723 else
20724 value = -value;
20725 if (value > 0xff)
20726 {
20727 as_bad_where (fixP->fx_file, fixP->fx_line,
20728 _("offset out of range"));
20729 break;
20730 }
20731 newval &= ~0xff;
20732 }
20733 else if ((newval & 0x00000f00) == 0x00000e00)
20734 {
20735 /* T-instruction: positive 8-bit offset. */
20736 if (value < 0 || value > 0xff)
20737 {
20738 as_bad_where (fixP->fx_file, fixP->fx_line,
20739 _("offset out of range"));
20740 break;
20741 }
20742 newval &= ~0xff;
20743 newval |= value;
20744 }
20745 else
20746 {
20747 /* Positive 12-bit or negative 8-bit offset. */
20748 int limit;
20749 if (value >= 0)
20750 {
20751 newval |= (1 << 23);
20752 limit = 0xfff;
20753 }
20754 else
20755 {
20756 value = -value;
20757 limit = 0xff;
20758 }
20759 if (value > limit)
20760 {
20761 as_bad_where (fixP->fx_file, fixP->fx_line,
20762 _("offset out of range"));
20763 break;
20764 }
20765 newval &= ~limit;
20766 }
20767
20768 newval |= value;
20769 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20770 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20771 break;
20772
20773 case BFD_RELOC_ARM_SHIFT_IMM:
20774 newval = md_chars_to_number (buf, INSN_SIZE);
20775 if (((unsigned long) value) > 32
20776 || (value == 32
20777 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20778 {
20779 as_bad_where (fixP->fx_file, fixP->fx_line,
20780 _("shift expression is too large"));
20781 break;
20782 }
20783
20784 if (value == 0)
20785 /* Shifts of zero must be done as lsl. */
20786 newval &= ~0x60;
20787 else if (value == 32)
20788 value = 0;
20789 newval &= 0xfffff07f;
20790 newval |= (value & 0x1f) << 7;
20791 md_number_to_chars (buf, newval, INSN_SIZE);
20792 break;
20793
20794 case BFD_RELOC_ARM_T32_IMMEDIATE:
20795 case BFD_RELOC_ARM_T32_ADD_IMM:
20796 case BFD_RELOC_ARM_T32_IMM12:
20797 case BFD_RELOC_ARM_T32_ADD_PC12:
20798 /* We claim that this fixup has been processed here,
20799 even if in fact we generate an error because we do
20800 not have a reloc for it, so tc_gen_reloc will reject it. */
20801 fixP->fx_done = 1;
20802
20803 if (fixP->fx_addsy
20804 && ! S_IS_DEFINED (fixP->fx_addsy))
20805 {
20806 as_bad_where (fixP->fx_file, fixP->fx_line,
20807 _("undefined symbol %s used as an immediate value"),
20808 S_GET_NAME (fixP->fx_addsy));
20809 break;
20810 }
20811
20812 newval = md_chars_to_number (buf, THUMB_SIZE);
20813 newval <<= 16;
20814 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
20815
20816 newimm = FAIL;
20817 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20818 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20819 {
20820 newimm = encode_thumb32_immediate (value);
20821 if (newimm == (unsigned int) FAIL)
20822 newimm = thumb32_negate_data_op (&newval, value);
20823 }
20824 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20825 && newimm == (unsigned int) FAIL)
20826 {
20827 /* Turn add/sum into addw/subw. */
20828 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20829 newval = (newval & 0xfeffffff) | 0x02000000;
20830 /* No flat 12-bit imm encoding for addsw/subsw. */
20831 if ((newval & 0x00100000) == 0)
20832 {
20833 /* 12 bit immediate for addw/subw. */
20834 if (value < 0)
20835 {
20836 value = -value;
20837 newval ^= 0x00a00000;
20838 }
20839 if (value > 0xfff)
20840 newimm = (unsigned int) FAIL;
20841 else
20842 newimm = value;
20843 }
20844 }
20845
20846 if (newimm == (unsigned int)FAIL)
20847 {
20848 as_bad_where (fixP->fx_file, fixP->fx_line,
20849 _("invalid constant (%lx) after fixup"),
20850 (unsigned long) value);
20851 break;
20852 }
20853
20854 newval |= (newimm & 0x800) << 15;
20855 newval |= (newimm & 0x700) << 4;
20856 newval |= (newimm & 0x0ff);
20857
20858 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20859 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20860 break;
20861
20862 case BFD_RELOC_ARM_SMC:
20863 if (((unsigned long) value) > 0xffff)
20864 as_bad_where (fixP->fx_file, fixP->fx_line,
20865 _("invalid smc expression"));
20866 newval = md_chars_to_number (buf, INSN_SIZE);
20867 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20868 md_number_to_chars (buf, newval, INSN_SIZE);
20869 break;
20870
20871 case BFD_RELOC_ARM_HVC:
20872 if (((unsigned long) value) > 0xffff)
20873 as_bad_where (fixP->fx_file, fixP->fx_line,
20874 _("invalid hvc expression"));
20875 newval = md_chars_to_number (buf, INSN_SIZE);
20876 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20877 md_number_to_chars (buf, newval, INSN_SIZE);
20878 break;
20879
20880 case BFD_RELOC_ARM_SWI:
20881 if (fixP->tc_fix_data != 0)
20882 {
20883 if (((unsigned long) value) > 0xff)
20884 as_bad_where (fixP->fx_file, fixP->fx_line,
20885 _("invalid swi expression"));
20886 newval = md_chars_to_number (buf, THUMB_SIZE);
20887 newval |= value;
20888 md_number_to_chars (buf, newval, THUMB_SIZE);
20889 }
20890 else
20891 {
20892 if (((unsigned long) value) > 0x00ffffff)
20893 as_bad_where (fixP->fx_file, fixP->fx_line,
20894 _("invalid swi expression"));
20895 newval = md_chars_to_number (buf, INSN_SIZE);
20896 newval |= value;
20897 md_number_to_chars (buf, newval, INSN_SIZE);
20898 }
20899 break;
20900
20901 case BFD_RELOC_ARM_MULTI:
20902 if (((unsigned long) value) > 0xffff)
20903 as_bad_where (fixP->fx_file, fixP->fx_line,
20904 _("invalid expression in load/store multiple"));
20905 newval = value | md_chars_to_number (buf, INSN_SIZE);
20906 md_number_to_chars (buf, newval, INSN_SIZE);
20907 break;
20908
20909 #ifdef OBJ_ELF
20910 case BFD_RELOC_ARM_PCREL_CALL:
20911
20912 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20913 && fixP->fx_addsy
20914 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20915 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20916 && THUMB_IS_FUNC (fixP->fx_addsy))
20917 /* Flip the bl to blx. This is a simple flip
20918 bit here because we generate PCREL_CALL for
20919 unconditional bls. */
20920 {
20921 newval = md_chars_to_number (buf, INSN_SIZE);
20922 newval = newval | 0x10000000;
20923 md_number_to_chars (buf, newval, INSN_SIZE);
20924 temp = 1;
20925 fixP->fx_done = 1;
20926 }
20927 else
20928 temp = 3;
20929 goto arm_branch_common;
20930
20931 case BFD_RELOC_ARM_PCREL_JUMP:
20932 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20933 && fixP->fx_addsy
20934 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20935 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20936 && THUMB_IS_FUNC (fixP->fx_addsy))
20937 {
20938 /* This would map to a bl<cond>, b<cond>,
20939 b<always> to a Thumb function. We
20940 need to force a relocation for this particular
20941 case. */
20942 newval = md_chars_to_number (buf, INSN_SIZE);
20943 fixP->fx_done = 0;
20944 }
20945
20946 case BFD_RELOC_ARM_PLT32:
20947 #endif
20948 case BFD_RELOC_ARM_PCREL_BRANCH:
20949 temp = 3;
20950 goto arm_branch_common;
20951
20952 case BFD_RELOC_ARM_PCREL_BLX:
20953
20954 temp = 1;
20955 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20956 && fixP->fx_addsy
20957 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20958 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20959 && ARM_IS_FUNC (fixP->fx_addsy))
20960 {
20961 /* Flip the blx to a bl and warn. */
20962 const char *name = S_GET_NAME (fixP->fx_addsy);
20963 newval = 0xeb000000;
20964 as_warn_where (fixP->fx_file, fixP->fx_line,
20965 _("blx to '%s' an ARM ISA state function changed to bl"),
20966 name);
20967 md_number_to_chars (buf, newval, INSN_SIZE);
20968 temp = 3;
20969 fixP->fx_done = 1;
20970 }
20971
20972 #ifdef OBJ_ELF
20973 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20974 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20975 #endif
20976
20977 arm_branch_common:
20978 /* We are going to store value (shifted right by two) in the
20979 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20980 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20981 also be be clear. */
20982 if (value & temp)
20983 as_bad_where (fixP->fx_file, fixP->fx_line,
20984 _("misaligned branch destination"));
20985 if ((value & (offsetT)0xfe000000) != (offsetT)0
20986 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20987 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
20988
20989 if (fixP->fx_done || !seg->use_rela_p)
20990 {
20991 newval = md_chars_to_number (buf, INSN_SIZE);
20992 newval |= (value >> 2) & 0x00ffffff;
20993 /* Set the H bit on BLX instructions. */
20994 if (temp == 1)
20995 {
20996 if (value & 2)
20997 newval |= 0x01000000;
20998 else
20999 newval &= ~0x01000000;
21000 }
21001 md_number_to_chars (buf, newval, INSN_SIZE);
21002 }
21003 break;
21004
21005 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21006 /* CBZ can only branch forward. */
21007
21008 /* Attempts to use CBZ to branch to the next instruction
21009 (which, strictly speaking, are prohibited) will be turned into
21010 no-ops.
21011
21012 FIXME: It may be better to remove the instruction completely and
21013 perform relaxation. */
21014 if (value == -2)
21015 {
21016 newval = md_chars_to_number (buf, THUMB_SIZE);
21017 newval = 0xbf00; /* NOP encoding T1 */
21018 md_number_to_chars (buf, newval, THUMB_SIZE);
21019 }
21020 else
21021 {
21022 if (value & ~0x7e)
21023 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21024
21025 if (fixP->fx_done || !seg->use_rela_p)
21026 {
21027 newval = md_chars_to_number (buf, THUMB_SIZE);
21028 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21029 md_number_to_chars (buf, newval, THUMB_SIZE);
21030 }
21031 }
21032 break;
21033
21034 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
21035 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
21036 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21037
21038 if (fixP->fx_done || !seg->use_rela_p)
21039 {
21040 newval = md_chars_to_number (buf, THUMB_SIZE);
21041 newval |= (value & 0x1ff) >> 1;
21042 md_number_to_chars (buf, newval, THUMB_SIZE);
21043 }
21044 break;
21045
21046 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
21047 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
21048 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21049
21050 if (fixP->fx_done || !seg->use_rela_p)
21051 {
21052 newval = md_chars_to_number (buf, THUMB_SIZE);
21053 newval |= (value & 0xfff) >> 1;
21054 md_number_to_chars (buf, newval, THUMB_SIZE);
21055 }
21056 break;
21057
21058 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21059 if (fixP->fx_addsy
21060 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21061 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21062 && ARM_IS_FUNC (fixP->fx_addsy)
21063 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21064 {
21065 /* Force a relocation for a branch 20 bits wide. */
21066 fixP->fx_done = 0;
21067 }
21068 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
21069 as_bad_where (fixP->fx_file, fixP->fx_line,
21070 _("conditional branch out of range"));
21071
21072 if (fixP->fx_done || !seg->use_rela_p)
21073 {
21074 offsetT newval2;
21075 addressT S, J1, J2, lo, hi;
21076
21077 S = (value & 0x00100000) >> 20;
21078 J2 = (value & 0x00080000) >> 19;
21079 J1 = (value & 0x00040000) >> 18;
21080 hi = (value & 0x0003f000) >> 12;
21081 lo = (value & 0x00000ffe) >> 1;
21082
21083 newval = md_chars_to_number (buf, THUMB_SIZE);
21084 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21085 newval |= (S << 10) | hi;
21086 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21087 md_number_to_chars (buf, newval, THUMB_SIZE);
21088 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21089 }
21090 break;
21091
21092 case BFD_RELOC_THUMB_PCREL_BLX:
21093 /* If there is a blx from a thumb state function to
21094 another thumb function flip this to a bl and warn
21095 about it. */
21096
21097 if (fixP->fx_addsy
21098 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21099 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21100 && THUMB_IS_FUNC (fixP->fx_addsy))
21101 {
21102 const char *name = S_GET_NAME (fixP->fx_addsy);
21103 as_warn_where (fixP->fx_file, fixP->fx_line,
21104 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21105 name);
21106 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21107 newval = newval | 0x1000;
21108 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21109 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21110 fixP->fx_done = 1;
21111 }
21112
21113
21114 goto thumb_bl_common;
21115
21116 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21117 /* A bl from Thumb state ISA to an internal ARM state function
21118 is converted to a blx. */
21119 if (fixP->fx_addsy
21120 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21121 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21122 && ARM_IS_FUNC (fixP->fx_addsy)
21123 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21124 {
21125 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21126 newval = newval & ~0x1000;
21127 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21128 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21129 fixP->fx_done = 1;
21130 }
21131
21132 thumb_bl_common:
21133
21134 #ifdef OBJ_ELF
21135 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
21136 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21137 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21138 #endif
21139
21140 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21141 /* For a BLX instruction, make sure that the relocation is rounded up
21142 to a word boundary. This follows the semantics of the instruction
21143 which specifies that bit 1 of the target address will come from bit
21144 1 of the base address. */
21145 value = (value + 1) & ~ 1;
21146
21147 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21148 {
21149 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21150 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21151 else if ((value & ~0x1ffffff)
21152 && ((value & ~0x1ffffff) != ~0x1ffffff))
21153 as_bad_where (fixP->fx_file, fixP->fx_line,
21154 _("Thumb2 branch out of range"));
21155 }
21156
21157 if (fixP->fx_done || !seg->use_rela_p)
21158 encode_thumb2_b_bl_offset (buf, value);
21159
21160 break;
21161
21162 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21163 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21164 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21165
21166 if (fixP->fx_done || !seg->use_rela_p)
21167 encode_thumb2_b_bl_offset (buf, value);
21168
21169 break;
21170
21171 case BFD_RELOC_8:
21172 if (fixP->fx_done || !seg->use_rela_p)
21173 md_number_to_chars (buf, value, 1);
21174 break;
21175
21176 case BFD_RELOC_16:
21177 if (fixP->fx_done || !seg->use_rela_p)
21178 md_number_to_chars (buf, value, 2);
21179 break;
21180
21181 #ifdef OBJ_ELF
21182 case BFD_RELOC_ARM_TLS_CALL:
21183 case BFD_RELOC_ARM_THM_TLS_CALL:
21184 case BFD_RELOC_ARM_TLS_DESCSEQ:
21185 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21186 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21187 break;
21188
21189 case BFD_RELOC_ARM_TLS_GOTDESC:
21190 case BFD_RELOC_ARM_TLS_GD32:
21191 case BFD_RELOC_ARM_TLS_LE32:
21192 case BFD_RELOC_ARM_TLS_IE32:
21193 case BFD_RELOC_ARM_TLS_LDM32:
21194 case BFD_RELOC_ARM_TLS_LDO32:
21195 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21196 /* fall through */
21197
21198 case BFD_RELOC_ARM_GOT32:
21199 case BFD_RELOC_ARM_GOTOFF:
21200 if (fixP->fx_done || !seg->use_rela_p)
21201 md_number_to_chars (buf, 0, 4);
21202 break;
21203
21204 case BFD_RELOC_ARM_GOT_PREL:
21205 if (fixP->fx_done || !seg->use_rela_p)
21206 md_number_to_chars (buf, value, 4);
21207 break;
21208
21209 case BFD_RELOC_ARM_TARGET2:
21210 /* TARGET2 is not partial-inplace, so we need to write the
21211 addend here for REL targets, because it won't be written out
21212 during reloc processing later. */
21213 if (fixP->fx_done || !seg->use_rela_p)
21214 md_number_to_chars (buf, fixP->fx_offset, 4);
21215 break;
21216 #endif
21217
21218 case BFD_RELOC_RVA:
21219 case BFD_RELOC_32:
21220 case BFD_RELOC_ARM_TARGET1:
21221 case BFD_RELOC_ARM_ROSEGREL32:
21222 case BFD_RELOC_ARM_SBREL32:
21223 case BFD_RELOC_32_PCREL:
21224 #ifdef TE_PE
21225 case BFD_RELOC_32_SECREL:
21226 #endif
21227 if (fixP->fx_done || !seg->use_rela_p)
21228 #ifdef TE_WINCE
21229 /* For WinCE we only do this for pcrel fixups. */
21230 if (fixP->fx_done || fixP->fx_pcrel)
21231 #endif
21232 md_number_to_chars (buf, value, 4);
21233 break;
21234
21235 #ifdef OBJ_ELF
21236 case BFD_RELOC_ARM_PREL31:
21237 if (fixP->fx_done || !seg->use_rela_p)
21238 {
21239 newval = md_chars_to_number (buf, 4) & 0x80000000;
21240 if ((value ^ (value >> 1)) & 0x40000000)
21241 {
21242 as_bad_where (fixP->fx_file, fixP->fx_line,
21243 _("rel31 relocation overflow"));
21244 }
21245 newval |= value & 0x7fffffff;
21246 md_number_to_chars (buf, newval, 4);
21247 }
21248 break;
21249 #endif
21250
21251 case BFD_RELOC_ARM_CP_OFF_IMM:
21252 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21253 if (value < -1023 || value > 1023 || (value & 3))
21254 as_bad_where (fixP->fx_file, fixP->fx_line,
21255 _("co-processor offset out of range"));
21256 cp_off_common:
21257 sign = value > 0;
21258 if (value < 0)
21259 value = -value;
21260 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21261 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21262 newval = md_chars_to_number (buf, INSN_SIZE);
21263 else
21264 newval = get_thumb32_insn (buf);
21265 if (value == 0)
21266 newval &= 0xffffff00;
21267 else
21268 {
21269 newval &= 0xff7fff00;
21270 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21271 }
21272 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21273 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21274 md_number_to_chars (buf, newval, INSN_SIZE);
21275 else
21276 put_thumb32_insn (buf, newval);
21277 break;
21278
21279 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
21280 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
21281 if (value < -255 || value > 255)
21282 as_bad_where (fixP->fx_file, fixP->fx_line,
21283 _("co-processor offset out of range"));
21284 value *= 4;
21285 goto cp_off_common;
21286
21287 case BFD_RELOC_ARM_THUMB_OFFSET:
21288 newval = md_chars_to_number (buf, THUMB_SIZE);
21289 /* Exactly what ranges, and where the offset is inserted depends
21290 on the type of instruction, we can establish this from the
21291 top 4 bits. */
21292 switch (newval >> 12)
21293 {
21294 case 4: /* PC load. */
21295 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21296 forced to zero for these loads; md_pcrel_from has already
21297 compensated for this. */
21298 if (value & 3)
21299 as_bad_where (fixP->fx_file, fixP->fx_line,
21300 _("invalid offset, target not word aligned (0x%08lX)"),
21301 (((unsigned long) fixP->fx_frag->fr_address
21302 + (unsigned long) fixP->fx_where) & ~3)
21303 + (unsigned long) value);
21304
21305 if (value & ~0x3fc)
21306 as_bad_where (fixP->fx_file, fixP->fx_line,
21307 _("invalid offset, value too big (0x%08lX)"),
21308 (long) value);
21309
21310 newval |= value >> 2;
21311 break;
21312
21313 case 9: /* SP load/store. */
21314 if (value & ~0x3fc)
21315 as_bad_where (fixP->fx_file, fixP->fx_line,
21316 _("invalid offset, value too big (0x%08lX)"),
21317 (long) value);
21318 newval |= value >> 2;
21319 break;
21320
21321 case 6: /* Word load/store. */
21322 if (value & ~0x7c)
21323 as_bad_where (fixP->fx_file, fixP->fx_line,
21324 _("invalid offset, value too big (0x%08lX)"),
21325 (long) value);
21326 newval |= value << 4; /* 6 - 2. */
21327 break;
21328
21329 case 7: /* Byte load/store. */
21330 if (value & ~0x1f)
21331 as_bad_where (fixP->fx_file, fixP->fx_line,
21332 _("invalid offset, value too big (0x%08lX)"),
21333 (long) value);
21334 newval |= value << 6;
21335 break;
21336
21337 case 8: /* Halfword load/store. */
21338 if (value & ~0x3e)
21339 as_bad_where (fixP->fx_file, fixP->fx_line,
21340 _("invalid offset, value too big (0x%08lX)"),
21341 (long) value);
21342 newval |= value << 5; /* 6 - 1. */
21343 break;
21344
21345 default:
21346 as_bad_where (fixP->fx_file, fixP->fx_line,
21347 "Unable to process relocation for thumb opcode: %lx",
21348 (unsigned long) newval);
21349 break;
21350 }
21351 md_number_to_chars (buf, newval, THUMB_SIZE);
21352 break;
21353
21354 case BFD_RELOC_ARM_THUMB_ADD:
21355 /* This is a complicated relocation, since we use it for all of
21356 the following immediate relocations:
21357
21358 3bit ADD/SUB
21359 8bit ADD/SUB
21360 9bit ADD/SUB SP word-aligned
21361 10bit ADD PC/SP word-aligned
21362
21363 The type of instruction being processed is encoded in the
21364 instruction field:
21365
21366 0x8000 SUB
21367 0x00F0 Rd
21368 0x000F Rs
21369 */
21370 newval = md_chars_to_number (buf, THUMB_SIZE);
21371 {
21372 int rd = (newval >> 4) & 0xf;
21373 int rs = newval & 0xf;
21374 int subtract = !!(newval & 0x8000);
21375
21376 /* Check for HI regs, only very restricted cases allowed:
21377 Adjusting SP, and using PC or SP to get an address. */
21378 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21379 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21380 as_bad_where (fixP->fx_file, fixP->fx_line,
21381 _("invalid Hi register with immediate"));
21382
21383 /* If value is negative, choose the opposite instruction. */
21384 if (value < 0)
21385 {
21386 value = -value;
21387 subtract = !subtract;
21388 if (value < 0)
21389 as_bad_where (fixP->fx_file, fixP->fx_line,
21390 _("immediate value out of range"));
21391 }
21392
21393 if (rd == REG_SP)
21394 {
21395 if (value & ~0x1fc)
21396 as_bad_where (fixP->fx_file, fixP->fx_line,
21397 _("invalid immediate for stack address calculation"));
21398 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21399 newval |= value >> 2;
21400 }
21401 else if (rs == REG_PC || rs == REG_SP)
21402 {
21403 if (subtract || value & ~0x3fc)
21404 as_bad_where (fixP->fx_file, fixP->fx_line,
21405 _("invalid immediate for address calculation (value = 0x%08lX)"),
21406 (unsigned long) value);
21407 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21408 newval |= rd << 8;
21409 newval |= value >> 2;
21410 }
21411 else if (rs == rd)
21412 {
21413 if (value & ~0xff)
21414 as_bad_where (fixP->fx_file, fixP->fx_line,
21415 _("immediate value out of range"));
21416 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21417 newval |= (rd << 8) | value;
21418 }
21419 else
21420 {
21421 if (value & ~0x7)
21422 as_bad_where (fixP->fx_file, fixP->fx_line,
21423 _("immediate value out of range"));
21424 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21425 newval |= rd | (rs << 3) | (value << 6);
21426 }
21427 }
21428 md_number_to_chars (buf, newval, THUMB_SIZE);
21429 break;
21430
21431 case BFD_RELOC_ARM_THUMB_IMM:
21432 newval = md_chars_to_number (buf, THUMB_SIZE);
21433 if (value < 0 || value > 255)
21434 as_bad_where (fixP->fx_file, fixP->fx_line,
21435 _("invalid immediate: %ld is out of range"),
21436 (long) value);
21437 newval |= value;
21438 md_number_to_chars (buf, newval, THUMB_SIZE);
21439 break;
21440
21441 case BFD_RELOC_ARM_THUMB_SHIFT:
21442 /* 5bit shift value (0..32). LSL cannot take 32. */
21443 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21444 temp = newval & 0xf800;
21445 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21446 as_bad_where (fixP->fx_file, fixP->fx_line,
21447 _("invalid shift value: %ld"), (long) value);
21448 /* Shifts of zero must be encoded as LSL. */
21449 if (value == 0)
21450 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21451 /* Shifts of 32 are encoded as zero. */
21452 else if (value == 32)
21453 value = 0;
21454 newval |= value << 6;
21455 md_number_to_chars (buf, newval, THUMB_SIZE);
21456 break;
21457
21458 case BFD_RELOC_VTABLE_INHERIT:
21459 case BFD_RELOC_VTABLE_ENTRY:
21460 fixP->fx_done = 0;
21461 return;
21462
21463 case BFD_RELOC_ARM_MOVW:
21464 case BFD_RELOC_ARM_MOVT:
21465 case BFD_RELOC_ARM_THUMB_MOVW:
21466 case BFD_RELOC_ARM_THUMB_MOVT:
21467 if (fixP->fx_done || !seg->use_rela_p)
21468 {
21469 /* REL format relocations are limited to a 16-bit addend. */
21470 if (!fixP->fx_done)
21471 {
21472 if (value < -0x8000 || value > 0x7fff)
21473 as_bad_where (fixP->fx_file, fixP->fx_line,
21474 _("offset out of range"));
21475 }
21476 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21477 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21478 {
21479 value >>= 16;
21480 }
21481
21482 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21483 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21484 {
21485 newval = get_thumb32_insn (buf);
21486 newval &= 0xfbf08f00;
21487 newval |= (value & 0xf000) << 4;
21488 newval |= (value & 0x0800) << 15;
21489 newval |= (value & 0x0700) << 4;
21490 newval |= (value & 0x00ff);
21491 put_thumb32_insn (buf, newval);
21492 }
21493 else
21494 {
21495 newval = md_chars_to_number (buf, 4);
21496 newval &= 0xfff0f000;
21497 newval |= value & 0x0fff;
21498 newval |= (value & 0xf000) << 4;
21499 md_number_to_chars (buf, newval, 4);
21500 }
21501 }
21502 return;
21503
21504 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21505 case BFD_RELOC_ARM_ALU_PC_G0:
21506 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21507 case BFD_RELOC_ARM_ALU_PC_G1:
21508 case BFD_RELOC_ARM_ALU_PC_G2:
21509 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21510 case BFD_RELOC_ARM_ALU_SB_G0:
21511 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21512 case BFD_RELOC_ARM_ALU_SB_G1:
21513 case BFD_RELOC_ARM_ALU_SB_G2:
21514 gas_assert (!fixP->fx_done);
21515 if (!seg->use_rela_p)
21516 {
21517 bfd_vma insn;
21518 bfd_vma encoded_addend;
21519 bfd_vma addend_abs = abs (value);
21520
21521 /* Check that the absolute value of the addend can be
21522 expressed as an 8-bit constant plus a rotation. */
21523 encoded_addend = encode_arm_immediate (addend_abs);
21524 if (encoded_addend == (unsigned int) FAIL)
21525 as_bad_where (fixP->fx_file, fixP->fx_line,
21526 _("the offset 0x%08lX is not representable"),
21527 (unsigned long) addend_abs);
21528
21529 /* Extract the instruction. */
21530 insn = md_chars_to_number (buf, INSN_SIZE);
21531
21532 /* If the addend is positive, use an ADD instruction.
21533 Otherwise use a SUB. Take care not to destroy the S bit. */
21534 insn &= 0xff1fffff;
21535 if (value < 0)
21536 insn |= 1 << 22;
21537 else
21538 insn |= 1 << 23;
21539
21540 /* Place the encoded addend into the first 12 bits of the
21541 instruction. */
21542 insn &= 0xfffff000;
21543 insn |= encoded_addend;
21544
21545 /* Update the instruction. */
21546 md_number_to_chars (buf, insn, INSN_SIZE);
21547 }
21548 break;
21549
21550 case BFD_RELOC_ARM_LDR_PC_G0:
21551 case BFD_RELOC_ARM_LDR_PC_G1:
21552 case BFD_RELOC_ARM_LDR_PC_G2:
21553 case BFD_RELOC_ARM_LDR_SB_G0:
21554 case BFD_RELOC_ARM_LDR_SB_G1:
21555 case BFD_RELOC_ARM_LDR_SB_G2:
21556 gas_assert (!fixP->fx_done);
21557 if (!seg->use_rela_p)
21558 {
21559 bfd_vma insn;
21560 bfd_vma addend_abs = abs (value);
21561
21562 /* Check that the absolute value of the addend can be
21563 encoded in 12 bits. */
21564 if (addend_abs >= 0x1000)
21565 as_bad_where (fixP->fx_file, fixP->fx_line,
21566 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21567 (unsigned long) addend_abs);
21568
21569 /* Extract the instruction. */
21570 insn = md_chars_to_number (buf, INSN_SIZE);
21571
21572 /* If the addend is negative, clear bit 23 of the instruction.
21573 Otherwise set it. */
21574 if (value < 0)
21575 insn &= ~(1 << 23);
21576 else
21577 insn |= 1 << 23;
21578
21579 /* Place the absolute value of the addend into the first 12 bits
21580 of the instruction. */
21581 insn &= 0xfffff000;
21582 insn |= addend_abs;
21583
21584 /* Update the instruction. */
21585 md_number_to_chars (buf, insn, INSN_SIZE);
21586 }
21587 break;
21588
21589 case BFD_RELOC_ARM_LDRS_PC_G0:
21590 case BFD_RELOC_ARM_LDRS_PC_G1:
21591 case BFD_RELOC_ARM_LDRS_PC_G2:
21592 case BFD_RELOC_ARM_LDRS_SB_G0:
21593 case BFD_RELOC_ARM_LDRS_SB_G1:
21594 case BFD_RELOC_ARM_LDRS_SB_G2:
21595 gas_assert (!fixP->fx_done);
21596 if (!seg->use_rela_p)
21597 {
21598 bfd_vma insn;
21599 bfd_vma addend_abs = abs (value);
21600
21601 /* Check that the absolute value of the addend can be
21602 encoded in 8 bits. */
21603 if (addend_abs >= 0x100)
21604 as_bad_where (fixP->fx_file, fixP->fx_line,
21605 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21606 (unsigned long) addend_abs);
21607
21608 /* Extract the instruction. */
21609 insn = md_chars_to_number (buf, INSN_SIZE);
21610
21611 /* If the addend is negative, clear bit 23 of the instruction.
21612 Otherwise set it. */
21613 if (value < 0)
21614 insn &= ~(1 << 23);
21615 else
21616 insn |= 1 << 23;
21617
21618 /* Place the first four bits of the absolute value of the addend
21619 into the first 4 bits of the instruction, and the remaining
21620 four into bits 8 .. 11. */
21621 insn &= 0xfffff0f0;
21622 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
21623
21624 /* Update the instruction. */
21625 md_number_to_chars (buf, insn, INSN_SIZE);
21626 }
21627 break;
21628
21629 case BFD_RELOC_ARM_LDC_PC_G0:
21630 case BFD_RELOC_ARM_LDC_PC_G1:
21631 case BFD_RELOC_ARM_LDC_PC_G2:
21632 case BFD_RELOC_ARM_LDC_SB_G0:
21633 case BFD_RELOC_ARM_LDC_SB_G1:
21634 case BFD_RELOC_ARM_LDC_SB_G2:
21635 gas_assert (!fixP->fx_done);
21636 if (!seg->use_rela_p)
21637 {
21638 bfd_vma insn;
21639 bfd_vma addend_abs = abs (value);
21640
21641 /* Check that the absolute value of the addend is a multiple of
21642 four and, when divided by four, fits in 8 bits. */
21643 if (addend_abs & 0x3)
21644 as_bad_where (fixP->fx_file, fixP->fx_line,
21645 _("bad offset 0x%08lX (must be word-aligned)"),
21646 (unsigned long) addend_abs);
21647
21648 if ((addend_abs >> 2) > 0xff)
21649 as_bad_where (fixP->fx_file, fixP->fx_line,
21650 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
21651 (unsigned long) addend_abs);
21652
21653 /* Extract the instruction. */
21654 insn = md_chars_to_number (buf, INSN_SIZE);
21655
21656 /* If the addend is negative, clear bit 23 of the instruction.
21657 Otherwise set it. */
21658 if (value < 0)
21659 insn &= ~(1 << 23);
21660 else
21661 insn |= 1 << 23;
21662
21663 /* Place the addend (divided by four) into the first eight
21664 bits of the instruction. */
21665 insn &= 0xfffffff0;
21666 insn |= addend_abs >> 2;
21667
21668 /* Update the instruction. */
21669 md_number_to_chars (buf, insn, INSN_SIZE);
21670 }
21671 break;
21672
21673 case BFD_RELOC_ARM_V4BX:
21674 /* This will need to go in the object file. */
21675 fixP->fx_done = 0;
21676 break;
21677
21678 case BFD_RELOC_UNUSED:
21679 default:
21680 as_bad_where (fixP->fx_file, fixP->fx_line,
21681 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21682 }
21683 }
21684
21685 /* Translate internal representation of relocation info to BFD target
21686 format. */
21687
21688 arelent *
21689 tc_gen_reloc (asection *section, fixS *fixp)
21690 {
21691 arelent * reloc;
21692 bfd_reloc_code_real_type code;
21693
21694 reloc = (arelent *) xmalloc (sizeof (arelent));
21695
21696 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
21697 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21698 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
21699
21700 if (fixp->fx_pcrel)
21701 {
21702 if (section->use_rela_p)
21703 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21704 else
21705 fixp->fx_offset = reloc->address;
21706 }
21707 reloc->addend = fixp->fx_offset;
21708
21709 switch (fixp->fx_r_type)
21710 {
21711 case BFD_RELOC_8:
21712 if (fixp->fx_pcrel)
21713 {
21714 code = BFD_RELOC_8_PCREL;
21715 break;
21716 }
21717
21718 case BFD_RELOC_16:
21719 if (fixp->fx_pcrel)
21720 {
21721 code = BFD_RELOC_16_PCREL;
21722 break;
21723 }
21724
21725 case BFD_RELOC_32:
21726 if (fixp->fx_pcrel)
21727 {
21728 code = BFD_RELOC_32_PCREL;
21729 break;
21730 }
21731
21732 case BFD_RELOC_ARM_MOVW:
21733 if (fixp->fx_pcrel)
21734 {
21735 code = BFD_RELOC_ARM_MOVW_PCREL;
21736 break;
21737 }
21738
21739 case BFD_RELOC_ARM_MOVT:
21740 if (fixp->fx_pcrel)
21741 {
21742 code = BFD_RELOC_ARM_MOVT_PCREL;
21743 break;
21744 }
21745
21746 case BFD_RELOC_ARM_THUMB_MOVW:
21747 if (fixp->fx_pcrel)
21748 {
21749 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21750 break;
21751 }
21752
21753 case BFD_RELOC_ARM_THUMB_MOVT:
21754 if (fixp->fx_pcrel)
21755 {
21756 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21757 break;
21758 }
21759
21760 case BFD_RELOC_NONE:
21761 case BFD_RELOC_ARM_PCREL_BRANCH:
21762 case BFD_RELOC_ARM_PCREL_BLX:
21763 case BFD_RELOC_RVA:
21764 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21765 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21766 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21767 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21768 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21769 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21770 case BFD_RELOC_VTABLE_ENTRY:
21771 case BFD_RELOC_VTABLE_INHERIT:
21772 #ifdef TE_PE
21773 case BFD_RELOC_32_SECREL:
21774 #endif
21775 code = fixp->fx_r_type;
21776 break;
21777
21778 case BFD_RELOC_THUMB_PCREL_BLX:
21779 #ifdef OBJ_ELF
21780 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21781 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21782 else
21783 #endif
21784 code = BFD_RELOC_THUMB_PCREL_BLX;
21785 break;
21786
21787 case BFD_RELOC_ARM_LITERAL:
21788 case BFD_RELOC_ARM_HWLITERAL:
21789 /* If this is called then the a literal has
21790 been referenced across a section boundary. */
21791 as_bad_where (fixp->fx_file, fixp->fx_line,
21792 _("literal referenced across section boundary"));
21793 return NULL;
21794
21795 #ifdef OBJ_ELF
21796 case BFD_RELOC_ARM_TLS_CALL:
21797 case BFD_RELOC_ARM_THM_TLS_CALL:
21798 case BFD_RELOC_ARM_TLS_DESCSEQ:
21799 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21800 case BFD_RELOC_ARM_GOT32:
21801 case BFD_RELOC_ARM_GOTOFF:
21802 case BFD_RELOC_ARM_GOT_PREL:
21803 case BFD_RELOC_ARM_PLT32:
21804 case BFD_RELOC_ARM_TARGET1:
21805 case BFD_RELOC_ARM_ROSEGREL32:
21806 case BFD_RELOC_ARM_SBREL32:
21807 case BFD_RELOC_ARM_PREL31:
21808 case BFD_RELOC_ARM_TARGET2:
21809 case BFD_RELOC_ARM_TLS_LE32:
21810 case BFD_RELOC_ARM_TLS_LDO32:
21811 case BFD_RELOC_ARM_PCREL_CALL:
21812 case BFD_RELOC_ARM_PCREL_JUMP:
21813 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21814 case BFD_RELOC_ARM_ALU_PC_G0:
21815 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21816 case BFD_RELOC_ARM_ALU_PC_G1:
21817 case BFD_RELOC_ARM_ALU_PC_G2:
21818 case BFD_RELOC_ARM_LDR_PC_G0:
21819 case BFD_RELOC_ARM_LDR_PC_G1:
21820 case BFD_RELOC_ARM_LDR_PC_G2:
21821 case BFD_RELOC_ARM_LDRS_PC_G0:
21822 case BFD_RELOC_ARM_LDRS_PC_G1:
21823 case BFD_RELOC_ARM_LDRS_PC_G2:
21824 case BFD_RELOC_ARM_LDC_PC_G0:
21825 case BFD_RELOC_ARM_LDC_PC_G1:
21826 case BFD_RELOC_ARM_LDC_PC_G2:
21827 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21828 case BFD_RELOC_ARM_ALU_SB_G0:
21829 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21830 case BFD_RELOC_ARM_ALU_SB_G1:
21831 case BFD_RELOC_ARM_ALU_SB_G2:
21832 case BFD_RELOC_ARM_LDR_SB_G0:
21833 case BFD_RELOC_ARM_LDR_SB_G1:
21834 case BFD_RELOC_ARM_LDR_SB_G2:
21835 case BFD_RELOC_ARM_LDRS_SB_G0:
21836 case BFD_RELOC_ARM_LDRS_SB_G1:
21837 case BFD_RELOC_ARM_LDRS_SB_G2:
21838 case BFD_RELOC_ARM_LDC_SB_G0:
21839 case BFD_RELOC_ARM_LDC_SB_G1:
21840 case BFD_RELOC_ARM_LDC_SB_G2:
21841 case BFD_RELOC_ARM_V4BX:
21842 code = fixp->fx_r_type;
21843 break;
21844
21845 case BFD_RELOC_ARM_TLS_GOTDESC:
21846 case BFD_RELOC_ARM_TLS_GD32:
21847 case BFD_RELOC_ARM_TLS_IE32:
21848 case BFD_RELOC_ARM_TLS_LDM32:
21849 /* BFD will include the symbol's address in the addend.
21850 But we don't want that, so subtract it out again here. */
21851 if (!S_IS_COMMON (fixp->fx_addsy))
21852 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21853 code = fixp->fx_r_type;
21854 break;
21855 #endif
21856
21857 case BFD_RELOC_ARM_IMMEDIATE:
21858 as_bad_where (fixp->fx_file, fixp->fx_line,
21859 _("internal relocation (type: IMMEDIATE) not fixed up"));
21860 return NULL;
21861
21862 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21863 as_bad_where (fixp->fx_file, fixp->fx_line,
21864 _("ADRL used for a symbol not defined in the same file"));
21865 return NULL;
21866
21867 case BFD_RELOC_ARM_OFFSET_IMM:
21868 if (section->use_rela_p)
21869 {
21870 code = fixp->fx_r_type;
21871 break;
21872 }
21873
21874 if (fixp->fx_addsy != NULL
21875 && !S_IS_DEFINED (fixp->fx_addsy)
21876 && S_IS_LOCAL (fixp->fx_addsy))
21877 {
21878 as_bad_where (fixp->fx_file, fixp->fx_line,
21879 _("undefined local label `%s'"),
21880 S_GET_NAME (fixp->fx_addsy));
21881 return NULL;
21882 }
21883
21884 as_bad_where (fixp->fx_file, fixp->fx_line,
21885 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21886 return NULL;
21887
21888 default:
21889 {
21890 char * type;
21891
21892 switch (fixp->fx_r_type)
21893 {
21894 case BFD_RELOC_NONE: type = "NONE"; break;
21895 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21896 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21897 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21898 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21899 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21900 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21901 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
21902 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21903 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21904 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21905 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21906 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21907 default: type = _("<unknown>"); break;
21908 }
21909 as_bad_where (fixp->fx_file, fixp->fx_line,
21910 _("cannot represent %s relocation in this object file format"),
21911 type);
21912 return NULL;
21913 }
21914 }
21915
21916 #ifdef OBJ_ELF
21917 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21918 && GOT_symbol
21919 && fixp->fx_addsy == GOT_symbol)
21920 {
21921 code = BFD_RELOC_ARM_GOTPC;
21922 reloc->addend = fixp->fx_offset = reloc->address;
21923 }
21924 #endif
21925
21926 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21927
21928 if (reloc->howto == NULL)
21929 {
21930 as_bad_where (fixp->fx_file, fixp->fx_line,
21931 _("cannot represent %s relocation in this object file format"),
21932 bfd_get_reloc_code_name (code));
21933 return NULL;
21934 }
21935
21936 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21937 vtable entry to be used in the relocation's section offset. */
21938 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21939 reloc->address = fixp->fx_offset;
21940
21941 return reloc;
21942 }
21943
21944 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21945
21946 void
21947 cons_fix_new_arm (fragS * frag,
21948 int where,
21949 int size,
21950 expressionS * exp)
21951 {
21952 bfd_reloc_code_real_type type;
21953 int pcrel = 0;
21954
21955 /* Pick a reloc.
21956 FIXME: @@ Should look at CPU word size. */
21957 switch (size)
21958 {
21959 case 1:
21960 type = BFD_RELOC_8;
21961 break;
21962 case 2:
21963 type = BFD_RELOC_16;
21964 break;
21965 case 4:
21966 default:
21967 type = BFD_RELOC_32;
21968 break;
21969 case 8:
21970 type = BFD_RELOC_64;
21971 break;
21972 }
21973
21974 #ifdef TE_PE
21975 if (exp->X_op == O_secrel)
21976 {
21977 exp->X_op = O_symbol;
21978 type = BFD_RELOC_32_SECREL;
21979 }
21980 #endif
21981
21982 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21983 }
21984
21985 #if defined (OBJ_COFF)
21986 void
21987 arm_validate_fix (fixS * fixP)
21988 {
21989 /* If the destination of the branch is a defined symbol which does not have
21990 the THUMB_FUNC attribute, then we must be calling a function which has
21991 the (interfacearm) attribute. We look for the Thumb entry point to that
21992 function and change the branch to refer to that function instead. */
21993 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21994 && fixP->fx_addsy != NULL
21995 && S_IS_DEFINED (fixP->fx_addsy)
21996 && ! THUMB_IS_FUNC (fixP->fx_addsy))
21997 {
21998 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
21999 }
22000 }
22001 #endif
22002
22003
22004 int
22005 arm_force_relocation (struct fix * fixp)
22006 {
22007 #if defined (OBJ_COFF) && defined (TE_PE)
22008 if (fixp->fx_r_type == BFD_RELOC_RVA)
22009 return 1;
22010 #endif
22011
22012 /* In case we have a call or a branch to a function in ARM ISA mode from
22013 a thumb function or vice-versa force the relocation. These relocations
22014 are cleared off for some cores that might have blx and simple transformations
22015 are possible. */
22016
22017 #ifdef OBJ_ELF
22018 switch (fixp->fx_r_type)
22019 {
22020 case BFD_RELOC_ARM_PCREL_JUMP:
22021 case BFD_RELOC_ARM_PCREL_CALL:
22022 case BFD_RELOC_THUMB_PCREL_BLX:
22023 if (THUMB_IS_FUNC (fixp->fx_addsy))
22024 return 1;
22025 break;
22026
22027 case BFD_RELOC_ARM_PCREL_BLX:
22028 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22029 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22030 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22031 if (ARM_IS_FUNC (fixp->fx_addsy))
22032 return 1;
22033 break;
22034
22035 default:
22036 break;
22037 }
22038 #endif
22039
22040 /* Resolve these relocations even if the symbol is extern or weak.
22041 Technically this is probably wrong due to symbol preemption.
22042 In practice these relocations do not have enough range to be useful
22043 at dynamic link time, and some code (e.g. in the Linux kernel)
22044 expects these references to be resolved. */
22045 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22046 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
22047 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
22048 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
22049 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22050 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22051 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
22052 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
22053 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22054 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
22055 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22056 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22057 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22058 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
22059 return 0;
22060
22061 /* Always leave these relocations for the linker. */
22062 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22063 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22064 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22065 return 1;
22066
22067 /* Always generate relocations against function symbols. */
22068 if (fixp->fx_r_type == BFD_RELOC_32
22069 && fixp->fx_addsy
22070 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22071 return 1;
22072
22073 return generic_force_reloc (fixp);
22074 }
22075
22076 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22077 /* Relocations against function names must be left unadjusted,
22078 so that the linker can use this information to generate interworking
22079 stubs. The MIPS version of this function
22080 also prevents relocations that are mips-16 specific, but I do not
22081 know why it does this.
22082
22083 FIXME:
22084 There is one other problem that ought to be addressed here, but
22085 which currently is not: Taking the address of a label (rather
22086 than a function) and then later jumping to that address. Such
22087 addresses also ought to have their bottom bit set (assuming that
22088 they reside in Thumb code), but at the moment they will not. */
22089
22090 bfd_boolean
22091 arm_fix_adjustable (fixS * fixP)
22092 {
22093 if (fixP->fx_addsy == NULL)
22094 return 1;
22095
22096 /* Preserve relocations against symbols with function type. */
22097 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
22098 return FALSE;
22099
22100 if (THUMB_IS_FUNC (fixP->fx_addsy)
22101 && fixP->fx_subsy == NULL)
22102 return FALSE;
22103
22104 /* We need the symbol name for the VTABLE entries. */
22105 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22106 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22107 return FALSE;
22108
22109 /* Don't allow symbols to be discarded on GOT related relocs. */
22110 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22111 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22112 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22113 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22114 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22115 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22116 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22117 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
22118 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22119 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22120 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22121 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22122 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
22123 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
22124 return FALSE;
22125
22126 /* Similarly for group relocations. */
22127 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22128 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22129 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22130 return FALSE;
22131
22132 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22133 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22134 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22135 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22136 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22137 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22138 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22139 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22140 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
22141 return FALSE;
22142
22143 return TRUE;
22144 }
22145 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22146
22147 #ifdef OBJ_ELF
22148
22149 const char *
22150 elf32_arm_target_format (void)
22151 {
22152 #ifdef TE_SYMBIAN
22153 return (target_big_endian
22154 ? "elf32-bigarm-symbian"
22155 : "elf32-littlearm-symbian");
22156 #elif defined (TE_VXWORKS)
22157 return (target_big_endian
22158 ? "elf32-bigarm-vxworks"
22159 : "elf32-littlearm-vxworks");
22160 #else
22161 if (target_big_endian)
22162 return "elf32-bigarm";
22163 else
22164 return "elf32-littlearm";
22165 #endif
22166 }
22167
22168 void
22169 armelf_frob_symbol (symbolS * symp,
22170 int * puntp)
22171 {
22172 elf_frob_symbol (symp, puntp);
22173 }
22174 #endif
22175
22176 /* MD interface: Finalization. */
22177
22178 void
22179 arm_cleanup (void)
22180 {
22181 literal_pool * pool;
22182
22183 /* Ensure that all the IT blocks are properly closed. */
22184 check_it_blocks_finished ();
22185
22186 for (pool = list_of_pools; pool; pool = pool->next)
22187 {
22188 /* Put it at the end of the relevant section. */
22189 subseg_set (pool->section, pool->sub_section);
22190 #ifdef OBJ_ELF
22191 arm_elf_change_section ();
22192 #endif
22193 s_ltorg (0);
22194 }
22195 }
22196
22197 #ifdef OBJ_ELF
22198 /* Remove any excess mapping symbols generated for alignment frags in
22199 SEC. We may have created a mapping symbol before a zero byte
22200 alignment; remove it if there's a mapping symbol after the
22201 alignment. */
22202 static void
22203 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22204 void *dummy ATTRIBUTE_UNUSED)
22205 {
22206 segment_info_type *seginfo = seg_info (sec);
22207 fragS *fragp;
22208
22209 if (seginfo == NULL || seginfo->frchainP == NULL)
22210 return;
22211
22212 for (fragp = seginfo->frchainP->frch_root;
22213 fragp != NULL;
22214 fragp = fragp->fr_next)
22215 {
22216 symbolS *sym = fragp->tc_frag_data.last_map;
22217 fragS *next = fragp->fr_next;
22218
22219 /* Variable-sized frags have been converted to fixed size by
22220 this point. But if this was variable-sized to start with,
22221 there will be a fixed-size frag after it. So don't handle
22222 next == NULL. */
22223 if (sym == NULL || next == NULL)
22224 continue;
22225
22226 if (S_GET_VALUE (sym) < next->fr_address)
22227 /* Not at the end of this frag. */
22228 continue;
22229 know (S_GET_VALUE (sym) == next->fr_address);
22230
22231 do
22232 {
22233 if (next->tc_frag_data.first_map != NULL)
22234 {
22235 /* Next frag starts with a mapping symbol. Discard this
22236 one. */
22237 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22238 break;
22239 }
22240
22241 if (next->fr_next == NULL)
22242 {
22243 /* This mapping symbol is at the end of the section. Discard
22244 it. */
22245 know (next->fr_fix == 0 && next->fr_var == 0);
22246 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22247 break;
22248 }
22249
22250 /* As long as we have empty frags without any mapping symbols,
22251 keep looking. */
22252 /* If the next frag is non-empty and does not start with a
22253 mapping symbol, then this mapping symbol is required. */
22254 if (next->fr_address != next->fr_next->fr_address)
22255 break;
22256
22257 next = next->fr_next;
22258 }
22259 while (next != NULL);
22260 }
22261 }
22262 #endif
22263
22264 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22265 ARM ones. */
22266
22267 void
22268 arm_adjust_symtab (void)
22269 {
22270 #ifdef OBJ_COFF
22271 symbolS * sym;
22272
22273 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22274 {
22275 if (ARM_IS_THUMB (sym))
22276 {
22277 if (THUMB_IS_FUNC (sym))
22278 {
22279 /* Mark the symbol as a Thumb function. */
22280 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22281 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22282 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
22283
22284 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22285 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22286 else
22287 as_bad (_("%s: unexpected function type: %d"),
22288 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22289 }
22290 else switch (S_GET_STORAGE_CLASS (sym))
22291 {
22292 case C_EXT:
22293 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22294 break;
22295 case C_STAT:
22296 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22297 break;
22298 case C_LABEL:
22299 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22300 break;
22301 default:
22302 /* Do nothing. */
22303 break;
22304 }
22305 }
22306
22307 if (ARM_IS_INTERWORK (sym))
22308 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
22309 }
22310 #endif
22311 #ifdef OBJ_ELF
22312 symbolS * sym;
22313 char bind;
22314
22315 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22316 {
22317 if (ARM_IS_THUMB (sym))
22318 {
22319 elf_symbol_type * elf_sym;
22320
22321 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22322 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22323
22324 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22325 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22326 {
22327 /* If it's a .thumb_func, declare it as so,
22328 otherwise tag label as .code 16. */
22329 if (THUMB_IS_FUNC (sym))
22330 elf_sym->internal_elf_sym.st_target_internal
22331 = ST_BRANCH_TO_THUMB;
22332 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22333 elf_sym->internal_elf_sym.st_info =
22334 ELF_ST_INFO (bind, STT_ARM_16BIT);
22335 }
22336 }
22337 }
22338
22339 /* Remove any overlapping mapping symbols generated by alignment frags. */
22340 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22341 /* Now do generic ELF adjustments. */
22342 elf_adjust_symtab ();
22343 #endif
22344 }
22345
22346 /* MD interface: Initialization. */
22347
22348 static void
22349 set_constant_flonums (void)
22350 {
22351 int i;
22352
22353 for (i = 0; i < NUM_FLOAT_VALS; i++)
22354 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22355 abort ();
22356 }
22357
22358 /* Auto-select Thumb mode if it's the only available instruction set for the
22359 given architecture. */
22360
22361 static void
22362 autoselect_thumb_from_cpu_variant (void)
22363 {
22364 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22365 opcode_select (16);
22366 }
22367
22368 void
22369 md_begin (void)
22370 {
22371 unsigned mach;
22372 unsigned int i;
22373
22374 if ( (arm_ops_hsh = hash_new ()) == NULL
22375 || (arm_cond_hsh = hash_new ()) == NULL
22376 || (arm_shift_hsh = hash_new ()) == NULL
22377 || (arm_psr_hsh = hash_new ()) == NULL
22378 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22379 || (arm_reg_hsh = hash_new ()) == NULL
22380 || (arm_reloc_hsh = hash_new ()) == NULL
22381 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22382 as_fatal (_("virtual memory exhausted"));
22383
22384 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22385 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22386 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22387 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22388 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22389 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22390 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22391 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22392 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22393 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22394 (void *) (v7m_psrs + i));
22395 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22396 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22397 for (i = 0;
22398 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22399 i++)
22400 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22401 (void *) (barrier_opt_names + i));
22402 #ifdef OBJ_ELF
22403 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
22404 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
22405 #endif
22406
22407 set_constant_flonums ();
22408
22409 /* Set the cpu variant based on the command-line options. We prefer
22410 -mcpu= over -march= if both are set (as for GCC); and we prefer
22411 -mfpu= over any other way of setting the floating point unit.
22412 Use of legacy options with new options are faulted. */
22413 if (legacy_cpu)
22414 {
22415 if (mcpu_cpu_opt || march_cpu_opt)
22416 as_bad (_("use of old and new-style options to set CPU type"));
22417
22418 mcpu_cpu_opt = legacy_cpu;
22419 }
22420 else if (!mcpu_cpu_opt)
22421 mcpu_cpu_opt = march_cpu_opt;
22422
22423 if (legacy_fpu)
22424 {
22425 if (mfpu_opt)
22426 as_bad (_("use of old and new-style options to set FPU type"));
22427
22428 mfpu_opt = legacy_fpu;
22429 }
22430 else if (!mfpu_opt)
22431 {
22432 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22433 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22434 /* Some environments specify a default FPU. If they don't, infer it
22435 from the processor. */
22436 if (mcpu_fpu_opt)
22437 mfpu_opt = mcpu_fpu_opt;
22438 else
22439 mfpu_opt = march_fpu_opt;
22440 #else
22441 mfpu_opt = &fpu_default;
22442 #endif
22443 }
22444
22445 if (!mfpu_opt)
22446 {
22447 if (mcpu_cpu_opt != NULL)
22448 mfpu_opt = &fpu_default;
22449 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22450 mfpu_opt = &fpu_arch_vfp_v2;
22451 else
22452 mfpu_opt = &fpu_arch_fpa;
22453 }
22454
22455 #ifdef CPU_DEFAULT
22456 if (!mcpu_cpu_opt)
22457 {
22458 mcpu_cpu_opt = &cpu_default;
22459 selected_cpu = cpu_default;
22460 }
22461 #else
22462 if (mcpu_cpu_opt)
22463 selected_cpu = *mcpu_cpu_opt;
22464 else
22465 mcpu_cpu_opt = &arm_arch_any;
22466 #endif
22467
22468 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22469
22470 autoselect_thumb_from_cpu_variant ();
22471
22472 arm_arch_used = thumb_arch_used = arm_arch_none;
22473
22474 #if defined OBJ_COFF || defined OBJ_ELF
22475 {
22476 unsigned int flags = 0;
22477
22478 #if defined OBJ_ELF
22479 flags = meabi_flags;
22480
22481 switch (meabi_flags)
22482 {
22483 case EF_ARM_EABI_UNKNOWN:
22484 #endif
22485 /* Set the flags in the private structure. */
22486 if (uses_apcs_26) flags |= F_APCS26;
22487 if (support_interwork) flags |= F_INTERWORK;
22488 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22489 if (pic_code) flags |= F_PIC;
22490 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22491 flags |= F_SOFT_FLOAT;
22492
22493 switch (mfloat_abi_opt)
22494 {
22495 case ARM_FLOAT_ABI_SOFT:
22496 case ARM_FLOAT_ABI_SOFTFP:
22497 flags |= F_SOFT_FLOAT;
22498 break;
22499
22500 case ARM_FLOAT_ABI_HARD:
22501 if (flags & F_SOFT_FLOAT)
22502 as_bad (_("hard-float conflicts with specified fpu"));
22503 break;
22504 }
22505
22506 /* Using pure-endian doubles (even if soft-float). */
22507 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22508 flags |= F_VFP_FLOAT;
22509
22510 #if defined OBJ_ELF
22511 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22512 flags |= EF_ARM_MAVERICK_FLOAT;
22513 break;
22514
22515 case EF_ARM_EABI_VER4:
22516 case EF_ARM_EABI_VER5:
22517 /* No additional flags to set. */
22518 break;
22519
22520 default:
22521 abort ();
22522 }
22523 #endif
22524 bfd_set_private_flags (stdoutput, flags);
22525
22526 /* We have run out flags in the COFF header to encode the
22527 status of ATPCS support, so instead we create a dummy,
22528 empty, debug section called .arm.atpcs. */
22529 if (atpcs)
22530 {
22531 asection * sec;
22532
22533 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22534
22535 if (sec != NULL)
22536 {
22537 bfd_set_section_flags
22538 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22539 bfd_set_section_size (stdoutput, sec, 0);
22540 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22541 }
22542 }
22543 }
22544 #endif
22545
22546 /* Record the CPU type as well. */
22547 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22548 mach = bfd_mach_arm_iWMMXt2;
22549 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22550 mach = bfd_mach_arm_iWMMXt;
22551 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22552 mach = bfd_mach_arm_XScale;
22553 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22554 mach = bfd_mach_arm_ep9312;
22555 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
22556 mach = bfd_mach_arm_5TE;
22557 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
22558 {
22559 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22560 mach = bfd_mach_arm_5T;
22561 else
22562 mach = bfd_mach_arm_5;
22563 }
22564 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
22565 {
22566 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22567 mach = bfd_mach_arm_4T;
22568 else
22569 mach = bfd_mach_arm_4;
22570 }
22571 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
22572 mach = bfd_mach_arm_3M;
22573 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22574 mach = bfd_mach_arm_3;
22575 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22576 mach = bfd_mach_arm_2a;
22577 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22578 mach = bfd_mach_arm_2;
22579 else
22580 mach = bfd_mach_arm_unknown;
22581
22582 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22583 }
22584
22585 /* Command line processing. */
22586
22587 /* md_parse_option
22588 Invocation line includes a switch not recognized by the base assembler.
22589 See if it's a processor-specific option.
22590
22591 This routine is somewhat complicated by the need for backwards
22592 compatibility (since older releases of gcc can't be changed).
22593 The new options try to make the interface as compatible as
22594 possible with GCC.
22595
22596 New options (supported) are:
22597
22598 -mcpu=<cpu name> Assemble for selected processor
22599 -march=<architecture name> Assemble for selected architecture
22600 -mfpu=<fpu architecture> Assemble for selected FPU.
22601 -EB/-mbig-endian Big-endian
22602 -EL/-mlittle-endian Little-endian
22603 -k Generate PIC code
22604 -mthumb Start in Thumb mode
22605 -mthumb-interwork Code supports ARM/Thumb interworking
22606
22607 -m[no-]warn-deprecated Warn about deprecated features
22608
22609 For now we will also provide support for:
22610
22611 -mapcs-32 32-bit Program counter
22612 -mapcs-26 26-bit Program counter
22613 -macps-float Floats passed in FP registers
22614 -mapcs-reentrant Reentrant code
22615 -matpcs
22616 (sometime these will probably be replaced with -mapcs=<list of options>
22617 and -matpcs=<list of options>)
22618
22619 The remaining options are only supported for back-wards compatibility.
22620 Cpu variants, the arm part is optional:
22621 -m[arm]1 Currently not supported.
22622 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22623 -m[arm]3 Arm 3 processor
22624 -m[arm]6[xx], Arm 6 processors
22625 -m[arm]7[xx][t][[d]m] Arm 7 processors
22626 -m[arm]8[10] Arm 8 processors
22627 -m[arm]9[20][tdmi] Arm 9 processors
22628 -mstrongarm[110[0]] StrongARM processors
22629 -mxscale XScale processors
22630 -m[arm]v[2345[t[e]]] Arm architectures
22631 -mall All (except the ARM1)
22632 FP variants:
22633 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22634 -mfpe-old (No float load/store multiples)
22635 -mvfpxd VFP Single precision
22636 -mvfp All VFP
22637 -mno-fpu Disable all floating point instructions
22638
22639 The following CPU names are recognized:
22640 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22641 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22642 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22643 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22644 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22645 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22646 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
22647
22648 */
22649
22650 const char * md_shortopts = "m:k";
22651
22652 #ifdef ARM_BI_ENDIAN
22653 #define OPTION_EB (OPTION_MD_BASE + 0)
22654 #define OPTION_EL (OPTION_MD_BASE + 1)
22655 #else
22656 #if TARGET_BYTES_BIG_ENDIAN
22657 #define OPTION_EB (OPTION_MD_BASE + 0)
22658 #else
22659 #define OPTION_EL (OPTION_MD_BASE + 1)
22660 #endif
22661 #endif
22662 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
22663
22664 struct option md_longopts[] =
22665 {
22666 #ifdef OPTION_EB
22667 {"EB", no_argument, NULL, OPTION_EB},
22668 #endif
22669 #ifdef OPTION_EL
22670 {"EL", no_argument, NULL, OPTION_EL},
22671 #endif
22672 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
22673 {NULL, no_argument, NULL, 0}
22674 };
22675
22676 size_t md_longopts_size = sizeof (md_longopts);
22677
22678 struct arm_option_table
22679 {
22680 char *option; /* Option name to match. */
22681 char *help; /* Help information. */
22682 int *var; /* Variable to change. */
22683 int value; /* What to change it to. */
22684 char *deprecated; /* If non-null, print this message. */
22685 };
22686
22687 struct arm_option_table arm_opts[] =
22688 {
22689 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22690 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22691 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22692 &support_interwork, 1, NULL},
22693 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22694 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22695 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22696 1, NULL},
22697 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22698 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22699 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22700 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22701 NULL},
22702
22703 /* These are recognized by the assembler, but have no affect on code. */
22704 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22705 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
22706
22707 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22708 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22709 &warn_on_deprecated, 0, NULL},
22710 {NULL, NULL, NULL, 0, NULL}
22711 };
22712
22713 struct arm_legacy_option_table
22714 {
22715 char *option; /* Option name to match. */
22716 const arm_feature_set **var; /* Variable to change. */
22717 const arm_feature_set value; /* What to change it to. */
22718 char *deprecated; /* If non-null, print this message. */
22719 };
22720
22721 const struct arm_legacy_option_table arm_legacy_opts[] =
22722 {
22723 /* DON'T add any new processors to this list -- we want the whole list
22724 to go away... Add them to the processors table instead. */
22725 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22726 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22727 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22728 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22729 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22730 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22731 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22732 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22733 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22734 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22735 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22736 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22737 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22738 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22739 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22740 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22741 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22742 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22743 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22744 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22745 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22746 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22747 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22748 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22749 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22750 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22751 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22752 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22753 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22754 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22755 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22756 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22757 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22758 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22759 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22760 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22761 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22762 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22763 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22764 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22765 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22766 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22767 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22768 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22769 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22770 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22771 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22772 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22773 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22774 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22775 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22776 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22777 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22778 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22779 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22780 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22781 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22782 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22783 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22784 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22785 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22786 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22787 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22788 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22789 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22790 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22791 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22792 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22793 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22794 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
22795 N_("use -mcpu=strongarm110")},
22796 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
22797 N_("use -mcpu=strongarm1100")},
22798 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
22799 N_("use -mcpu=strongarm1110")},
22800 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22801 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22802 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
22803
22804 /* Architecture variants -- don't add any more to this list either. */
22805 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22806 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22807 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22808 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22809 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22810 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22811 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22812 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22813 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22814 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22815 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22816 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22817 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22818 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22819 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22820 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22821 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22822 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22823
22824 /* Floating point variants -- don't add any more to this list either. */
22825 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22826 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22827 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22828 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
22829 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22830
22831 {NULL, NULL, ARM_ARCH_NONE, NULL}
22832 };
22833
22834 struct arm_cpu_option_table
22835 {
22836 char *name;
22837 const arm_feature_set value;
22838 /* For some CPUs we assume an FPU unless the user explicitly sets
22839 -mfpu=... */
22840 const arm_feature_set default_fpu;
22841 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22842 case. */
22843 const char *canonical_name;
22844 };
22845
22846 /* This list should, at a minimum, contain all the cpu names
22847 recognized by GCC. */
22848 static const struct arm_cpu_option_table arm_cpus[] =
22849 {
22850 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22851 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22852 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22853 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22854 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22855 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22856 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22857 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22858 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22859 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22860 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22861 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22862 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22863 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22864 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22865 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22866 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22867 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22868 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22869 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22870 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22871 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22872 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22873 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22874 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22875 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22876 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22877 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22878 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22879 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22880 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22881 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22882 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22883 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22884 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22885 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22886 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22887 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22888 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22889 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22890 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22891 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22892 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22893 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22894 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22895 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22896 /* For V5 or later processors we default to using VFP; but the user
22897 should really set the FPU type explicitly. */
22898 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22899 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22900 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22901 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22902 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22903 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22904 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22905 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22906 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22907 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22908 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22909 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22910 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22911 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22912 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22913 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22914 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22915 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22916 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22917 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22918 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22919 {"fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22920 {"fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22921 {"fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22922 {"fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22923 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22924 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22925 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22926 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22927 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22928 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22929 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
22930 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22931 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22932 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22933 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
22934 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22935 FPU_NONE, "Cortex-A5"},
22936 {"cortex-a8", ARM_ARCH_V7A_SEC,
22937 ARM_FEATURE (0, FPU_VFP_V3
22938 | FPU_NEON_EXT_V1),
22939 "Cortex-A8"},
22940 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22941 ARM_FEATURE (0, FPU_VFP_V3
22942 | FPU_NEON_EXT_V1),
22943 "Cortex-A9"},
22944 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22945 FPU_ARCH_NEON_VFP_V4,
22946 "Cortex-A15"},
22947 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22948 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22949 "Cortex-R4F"},
22950 {"cortex-r5", ARM_ARCH_V7R_IDIV,
22951 FPU_NONE, "Cortex-R5"},
22952 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22953 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
22954 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22955 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
22956 /* ??? XSCALE is really an architecture. */
22957 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22958 /* ??? iwmmxt is not a processor. */
22959 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
22960 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
22961 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22962 /* Maverick */
22963 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
22964 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
22965 };
22966
22967 struct arm_arch_option_table
22968 {
22969 char *name;
22970 const arm_feature_set value;
22971 const arm_feature_set default_fpu;
22972 };
22973
22974 /* This list should, at a minimum, contain all the architecture names
22975 recognized by GCC. */
22976 static const struct arm_arch_option_table arm_archs[] =
22977 {
22978 {"all", ARM_ANY, FPU_ARCH_FPA},
22979 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22980 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22981 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22982 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22983 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22984 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22985 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22986 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22987 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22988 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22989 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22990 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22991 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22992 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22993 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22994 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22995 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22996 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22997 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22998 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22999 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
23000 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
23001 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
23002 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
23003 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
23004 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
23005 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
23006 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
23007 /* The official spelling of the ARMv7 profile variants is the dashed form.
23008 Accept the non-dashed form for compatibility with old toolchains. */
23009 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
23010 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
23011 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
23012 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
23013 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
23014 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
23015 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
23016 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
23017 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
23018 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
23019 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
23020 };
23021
23022 /* ISA extensions in the co-processor and main instruction set space. */
23023 struct arm_option_extension_value_table
23024 {
23025 char *name;
23026 const arm_feature_set value;
23027 const arm_feature_set allowed_archs;
23028 };
23029
23030 /* The following table must be in alphabetical order with a NULL last entry.
23031 */
23032 static const struct arm_option_extension_value_table arm_extensions[] =
23033 {
23034 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23035 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
23036 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
23037 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
23038 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
23039 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
23040 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
23041 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
23042 ARM_FEATURE (ARM_EXT_V6M, 0)},
23043 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23044 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
23045 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23046 ARM_FEATURE (ARM_EXT_V7A, 0)},
23047 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
23048 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
23049 };
23050
23051 /* ISA floating-point and Advanced SIMD extensions. */
23052 struct arm_option_fpu_value_table
23053 {
23054 char *name;
23055 const arm_feature_set value;
23056 };
23057
23058 /* This list should, at a minimum, contain all the fpu names
23059 recognized by GCC. */
23060 static const struct arm_option_fpu_value_table arm_fpus[] =
23061 {
23062 {"softfpa", FPU_NONE},
23063 {"fpe", FPU_ARCH_FPE},
23064 {"fpe2", FPU_ARCH_FPE},
23065 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23066 {"fpa", FPU_ARCH_FPA},
23067 {"fpa10", FPU_ARCH_FPA},
23068 {"fpa11", FPU_ARCH_FPA},
23069 {"arm7500fe", FPU_ARCH_FPA},
23070 {"softvfp", FPU_ARCH_VFP},
23071 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23072 {"vfp", FPU_ARCH_VFP_V2},
23073 {"vfp9", FPU_ARCH_VFP_V2},
23074 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
23075 {"vfp10", FPU_ARCH_VFP_V2},
23076 {"vfp10-r0", FPU_ARCH_VFP_V1},
23077 {"vfpxd", FPU_ARCH_VFP_V1xD},
23078 {"vfpv2", FPU_ARCH_VFP_V2},
23079 {"vfpv3", FPU_ARCH_VFP_V3},
23080 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
23081 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
23082 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23083 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23084 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
23085 {"arm1020t", FPU_ARCH_VFP_V1},
23086 {"arm1020e", FPU_ARCH_VFP_V2},
23087 {"arm1136jfs", FPU_ARCH_VFP_V2},
23088 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23089 {"maverick", FPU_ARCH_MAVERICK},
23090 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
23091 {"neon-fp16", FPU_ARCH_NEON_FP16},
23092 {"vfpv4", FPU_ARCH_VFP_V4},
23093 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
23094 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
23095 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
23096 {NULL, ARM_ARCH_NONE}
23097 };
23098
23099 struct arm_option_value_table
23100 {
23101 char *name;
23102 long value;
23103 };
23104
23105 static const struct arm_option_value_table arm_float_abis[] =
23106 {
23107 {"hard", ARM_FLOAT_ABI_HARD},
23108 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23109 {"soft", ARM_FLOAT_ABI_SOFT},
23110 {NULL, 0}
23111 };
23112
23113 #ifdef OBJ_ELF
23114 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23115 static const struct arm_option_value_table arm_eabis[] =
23116 {
23117 {"gnu", EF_ARM_EABI_UNKNOWN},
23118 {"4", EF_ARM_EABI_VER4},
23119 {"5", EF_ARM_EABI_VER5},
23120 {NULL, 0}
23121 };
23122 #endif
23123
23124 struct arm_long_option_table
23125 {
23126 char * option; /* Substring to match. */
23127 char * help; /* Help information. */
23128 int (* func) (char * subopt); /* Function to decode sub-option. */
23129 char * deprecated; /* If non-null, print this message. */
23130 };
23131
23132 static bfd_boolean
23133 arm_parse_extension (char * str, const arm_feature_set **opt_p)
23134 {
23135 arm_feature_set *ext_set = (arm_feature_set *)
23136 xmalloc (sizeof (arm_feature_set));
23137
23138 /* We insist on extensions being specified in alphabetical order, and with
23139 extensions being added before being removed. We achieve this by having
23140 the global ARM_EXTENSIONS table in alphabetical order, and using the
23141 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23142 or removing it (0) and only allowing it to change in the order
23143 -1 -> 1 -> 0. */
23144 const struct arm_option_extension_value_table * opt = NULL;
23145 int adding_value = -1;
23146
23147 /* Copy the feature set, so that we can modify it. */
23148 *ext_set = **opt_p;
23149 *opt_p = ext_set;
23150
23151 while (str != NULL && *str != 0)
23152 {
23153 char * ext;
23154 size_t optlen;
23155
23156 if (*str != '+')
23157 {
23158 as_bad (_("invalid architectural extension"));
23159 return FALSE;
23160 }
23161
23162 str++;
23163 ext = strchr (str, '+');
23164
23165 if (ext != NULL)
23166 optlen = ext - str;
23167 else
23168 optlen = strlen (str);
23169
23170 if (optlen >= 2
23171 && strncmp (str, "no", 2) == 0)
23172 {
23173 if (adding_value != 0)
23174 {
23175 adding_value = 0;
23176 opt = arm_extensions;
23177 }
23178
23179 optlen -= 2;
23180 str += 2;
23181 }
23182 else if (optlen > 0)
23183 {
23184 if (adding_value == -1)
23185 {
23186 adding_value = 1;
23187 opt = arm_extensions;
23188 }
23189 else if (adding_value != 1)
23190 {
23191 as_bad (_("must specify extensions to add before specifying "
23192 "those to remove"));
23193 return FALSE;
23194 }
23195 }
23196
23197 if (optlen == 0)
23198 {
23199 as_bad (_("missing architectural extension"));
23200 return FALSE;
23201 }
23202
23203 gas_assert (adding_value != -1);
23204 gas_assert (opt != NULL);
23205
23206 /* Scan over the options table trying to find an exact match. */
23207 for (; opt->name != NULL; opt++)
23208 if (strncmp (opt->name, str, optlen) == 0
23209 && strlen (opt->name) == optlen)
23210 {
23211 /* Check we can apply the extension to this architecture. */
23212 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23213 {
23214 as_bad (_("extension does not apply to the base architecture"));
23215 return FALSE;
23216 }
23217
23218 /* Add or remove the extension. */
23219 if (adding_value)
23220 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23221 else
23222 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23223
23224 break;
23225 }
23226
23227 if (opt->name == NULL)
23228 {
23229 /* Did we fail to find an extension because it wasn't specified in
23230 alphabetical order, or because it does not exist? */
23231
23232 for (opt = arm_extensions; opt->name != NULL; opt++)
23233 if (strncmp (opt->name, str, optlen) == 0)
23234 break;
23235
23236 if (opt->name == NULL)
23237 as_bad (_("unknown architectural extension `%s'"), str);
23238 else
23239 as_bad (_("architectural extensions must be specified in "
23240 "alphabetical order"));
23241
23242 return FALSE;
23243 }
23244 else
23245 {
23246 /* We should skip the extension we've just matched the next time
23247 round. */
23248 opt++;
23249 }
23250
23251 str = ext;
23252 };
23253
23254 return TRUE;
23255 }
23256
23257 static bfd_boolean
23258 arm_parse_cpu (char * str)
23259 {
23260 const struct arm_cpu_option_table * opt;
23261 char * ext = strchr (str, '+');
23262 int optlen;
23263
23264 if (ext != NULL)
23265 optlen = ext - str;
23266 else
23267 optlen = strlen (str);
23268
23269 if (optlen == 0)
23270 {
23271 as_bad (_("missing cpu name `%s'"), str);
23272 return FALSE;
23273 }
23274
23275 for (opt = arm_cpus; opt->name != NULL; opt++)
23276 if (strncmp (opt->name, str, optlen) == 0)
23277 {
23278 mcpu_cpu_opt = &opt->value;
23279 mcpu_fpu_opt = &opt->default_fpu;
23280 if (opt->canonical_name)
23281 strcpy (selected_cpu_name, opt->canonical_name);
23282 else
23283 {
23284 int i;
23285
23286 for (i = 0; i < optlen; i++)
23287 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23288 selected_cpu_name[i] = 0;
23289 }
23290
23291 if (ext != NULL)
23292 return arm_parse_extension (ext, &mcpu_cpu_opt);
23293
23294 return TRUE;
23295 }
23296
23297 as_bad (_("unknown cpu `%s'"), str);
23298 return FALSE;
23299 }
23300
23301 static bfd_boolean
23302 arm_parse_arch (char * str)
23303 {
23304 const struct arm_arch_option_table *opt;
23305 char *ext = strchr (str, '+');
23306 int optlen;
23307
23308 if (ext != NULL)
23309 optlen = ext - str;
23310 else
23311 optlen = strlen (str);
23312
23313 if (optlen == 0)
23314 {
23315 as_bad (_("missing architecture name `%s'"), str);
23316 return FALSE;
23317 }
23318
23319 for (opt = arm_archs; opt->name != NULL; opt++)
23320 if (strncmp (opt->name, str, optlen) == 0)
23321 {
23322 march_cpu_opt = &opt->value;
23323 march_fpu_opt = &opt->default_fpu;
23324 strcpy (selected_cpu_name, opt->name);
23325
23326 if (ext != NULL)
23327 return arm_parse_extension (ext, &march_cpu_opt);
23328
23329 return TRUE;
23330 }
23331
23332 as_bad (_("unknown architecture `%s'\n"), str);
23333 return FALSE;
23334 }
23335
23336 static bfd_boolean
23337 arm_parse_fpu (char * str)
23338 {
23339 const struct arm_option_fpu_value_table * opt;
23340
23341 for (opt = arm_fpus; opt->name != NULL; opt++)
23342 if (streq (opt->name, str))
23343 {
23344 mfpu_opt = &opt->value;
23345 return TRUE;
23346 }
23347
23348 as_bad (_("unknown floating point format `%s'\n"), str);
23349 return FALSE;
23350 }
23351
23352 static bfd_boolean
23353 arm_parse_float_abi (char * str)
23354 {
23355 const struct arm_option_value_table * opt;
23356
23357 for (opt = arm_float_abis; opt->name != NULL; opt++)
23358 if (streq (opt->name, str))
23359 {
23360 mfloat_abi_opt = opt->value;
23361 return TRUE;
23362 }
23363
23364 as_bad (_("unknown floating point abi `%s'\n"), str);
23365 return FALSE;
23366 }
23367
23368 #ifdef OBJ_ELF
23369 static bfd_boolean
23370 arm_parse_eabi (char * str)
23371 {
23372 const struct arm_option_value_table *opt;
23373
23374 for (opt = arm_eabis; opt->name != NULL; opt++)
23375 if (streq (opt->name, str))
23376 {
23377 meabi_flags = opt->value;
23378 return TRUE;
23379 }
23380 as_bad (_("unknown EABI `%s'\n"), str);
23381 return FALSE;
23382 }
23383 #endif
23384
23385 static bfd_boolean
23386 arm_parse_it_mode (char * str)
23387 {
23388 bfd_boolean ret = TRUE;
23389
23390 if (streq ("arm", str))
23391 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23392 else if (streq ("thumb", str))
23393 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23394 else if (streq ("always", str))
23395 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23396 else if (streq ("never", str))
23397 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23398 else
23399 {
23400 as_bad (_("unknown implicit IT mode `%s', should be "\
23401 "arm, thumb, always, or never."), str);
23402 ret = FALSE;
23403 }
23404
23405 return ret;
23406 }
23407
23408 struct arm_long_option_table arm_long_opts[] =
23409 {
23410 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23411 arm_parse_cpu, NULL},
23412 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23413 arm_parse_arch, NULL},
23414 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23415 arm_parse_fpu, NULL},
23416 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23417 arm_parse_float_abi, NULL},
23418 #ifdef OBJ_ELF
23419 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23420 arm_parse_eabi, NULL},
23421 #endif
23422 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23423 arm_parse_it_mode, NULL},
23424 {NULL, NULL, 0, NULL}
23425 };
23426
23427 int
23428 md_parse_option (int c, char * arg)
23429 {
23430 struct arm_option_table *opt;
23431 const struct arm_legacy_option_table *fopt;
23432 struct arm_long_option_table *lopt;
23433
23434 switch (c)
23435 {
23436 #ifdef OPTION_EB
23437 case OPTION_EB:
23438 target_big_endian = 1;
23439 break;
23440 #endif
23441
23442 #ifdef OPTION_EL
23443 case OPTION_EL:
23444 target_big_endian = 0;
23445 break;
23446 #endif
23447
23448 case OPTION_FIX_V4BX:
23449 fix_v4bx = TRUE;
23450 break;
23451
23452 case 'a':
23453 /* Listing option. Just ignore these, we don't support additional
23454 ones. */
23455 return 0;
23456
23457 default:
23458 for (opt = arm_opts; opt->option != NULL; opt++)
23459 {
23460 if (c == opt->option[0]
23461 && ((arg == NULL && opt->option[1] == 0)
23462 || streq (arg, opt->option + 1)))
23463 {
23464 /* If the option is deprecated, tell the user. */
23465 if (warn_on_deprecated && opt->deprecated != NULL)
23466 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23467 arg ? arg : "", _(opt->deprecated));
23468
23469 if (opt->var != NULL)
23470 *opt->var = opt->value;
23471
23472 return 1;
23473 }
23474 }
23475
23476 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23477 {
23478 if (c == fopt->option[0]
23479 && ((arg == NULL && fopt->option[1] == 0)
23480 || streq (arg, fopt->option + 1)))
23481 {
23482 /* If the option is deprecated, tell the user. */
23483 if (warn_on_deprecated && fopt->deprecated != NULL)
23484 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23485 arg ? arg : "", _(fopt->deprecated));
23486
23487 if (fopt->var != NULL)
23488 *fopt->var = &fopt->value;
23489
23490 return 1;
23491 }
23492 }
23493
23494 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23495 {
23496 /* These options are expected to have an argument. */
23497 if (c == lopt->option[0]
23498 && arg != NULL
23499 && strncmp (arg, lopt->option + 1,
23500 strlen (lopt->option + 1)) == 0)
23501 {
23502 /* If the option is deprecated, tell the user. */
23503 if (warn_on_deprecated && lopt->deprecated != NULL)
23504 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23505 _(lopt->deprecated));
23506
23507 /* Call the sup-option parser. */
23508 return lopt->func (arg + strlen (lopt->option) - 1);
23509 }
23510 }
23511
23512 return 0;
23513 }
23514
23515 return 1;
23516 }
23517
23518 void
23519 md_show_usage (FILE * fp)
23520 {
23521 struct arm_option_table *opt;
23522 struct arm_long_option_table *lopt;
23523
23524 fprintf (fp, _(" ARM-specific assembler options:\n"));
23525
23526 for (opt = arm_opts; opt->option != NULL; opt++)
23527 if (opt->help != NULL)
23528 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
23529
23530 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23531 if (lopt->help != NULL)
23532 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
23533
23534 #ifdef OPTION_EB
23535 fprintf (fp, _("\
23536 -EB assemble code for a big-endian cpu\n"));
23537 #endif
23538
23539 #ifdef OPTION_EL
23540 fprintf (fp, _("\
23541 -EL assemble code for a little-endian cpu\n"));
23542 #endif
23543
23544 fprintf (fp, _("\
23545 --fix-v4bx Allow BX in ARMv4 code\n"));
23546 }
23547
23548
23549 #ifdef OBJ_ELF
23550 typedef struct
23551 {
23552 int val;
23553 arm_feature_set flags;
23554 } cpu_arch_ver_table;
23555
23556 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23557 least features first. */
23558 static const cpu_arch_ver_table cpu_arch_ver[] =
23559 {
23560 {1, ARM_ARCH_V4},
23561 {2, ARM_ARCH_V4T},
23562 {3, ARM_ARCH_V5},
23563 {3, ARM_ARCH_V5T},
23564 {4, ARM_ARCH_V5TE},
23565 {5, ARM_ARCH_V5TEJ},
23566 {6, ARM_ARCH_V6},
23567 {9, ARM_ARCH_V6K},
23568 {7, ARM_ARCH_V6Z},
23569 {11, ARM_ARCH_V6M},
23570 {12, ARM_ARCH_V6SM},
23571 {8, ARM_ARCH_V6T2},
23572 {10, ARM_ARCH_V7A},
23573 {10, ARM_ARCH_V7R},
23574 {10, ARM_ARCH_V7M},
23575 {0, ARM_ARCH_NONE}
23576 };
23577
23578 /* Set an attribute if it has not already been set by the user. */
23579 static void
23580 aeabi_set_attribute_int (int tag, int value)
23581 {
23582 if (tag < 1
23583 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23584 || !attributes_set_explicitly[tag])
23585 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23586 }
23587
23588 static void
23589 aeabi_set_attribute_string (int tag, const char *value)
23590 {
23591 if (tag < 1
23592 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23593 || !attributes_set_explicitly[tag])
23594 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23595 }
23596
23597 /* Set the public EABI object attributes. */
23598 static void
23599 aeabi_set_public_attributes (void)
23600 {
23601 int arch;
23602 int virt_sec = 0;
23603 arm_feature_set flags;
23604 arm_feature_set tmp;
23605 const cpu_arch_ver_table *p;
23606
23607 /* Choose the architecture based on the capabilities of the requested cpu
23608 (if any) and/or the instructions actually used. */
23609 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23610 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23611 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
23612 /*Allow the user to override the reported architecture. */
23613 if (object_arch)
23614 {
23615 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23616 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23617 }
23618
23619 /* We need to make sure that the attributes do not identify us as v6S-M
23620 when the only v6S-M feature in use is the Operating System Extensions. */
23621 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23622 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23623 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23624
23625 tmp = flags;
23626 arch = 0;
23627 for (p = cpu_arch_ver; p->val; p++)
23628 {
23629 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23630 {
23631 arch = p->val;
23632 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23633 }
23634 }
23635
23636 /* The table lookup above finds the last architecture to contribute
23637 a new feature. Unfortunately, Tag13 is a subset of the union of
23638 v6T2 and v7-M, so it is never seen as contributing a new feature.
23639 We can not search for the last entry which is entirely used,
23640 because if no CPU is specified we build up only those flags
23641 actually used. Perhaps we should separate out the specified
23642 and implicit cases. Avoid taking this path for -march=all by
23643 checking for contradictory v7-A / v7-M features. */
23644 if (arch == 10
23645 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23646 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23647 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23648 arch = 13;
23649
23650 /* Tag_CPU_name. */
23651 if (selected_cpu_name[0])
23652 {
23653 char *q;
23654
23655 q = selected_cpu_name;
23656 if (strncmp (q, "armv", 4) == 0)
23657 {
23658 int i;
23659
23660 q += 4;
23661 for (i = 0; q[i]; i++)
23662 q[i] = TOUPPER (q[i]);
23663 }
23664 aeabi_set_attribute_string (Tag_CPU_name, q);
23665 }
23666
23667 /* Tag_CPU_arch. */
23668 aeabi_set_attribute_int (Tag_CPU_arch, arch);
23669
23670 /* Tag_CPU_arch_profile. */
23671 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
23672 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
23673 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
23674 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
23675 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
23676 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
23677
23678 /* Tag_ARM_ISA_use. */
23679 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23680 || arch == 0)
23681 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
23682
23683 /* Tag_THUMB_ISA_use. */
23684 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23685 || arch == 0)
23686 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23687 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
23688
23689 /* Tag_VFP_arch. */
23690 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23691 aeabi_set_attribute_int (Tag_VFP_arch,
23692 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23693 ? 5 : 6);
23694 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
23695 aeabi_set_attribute_int (Tag_VFP_arch, 3);
23696 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
23697 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23698 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23699 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23700 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23701 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23702 aeabi_set_attribute_int (Tag_VFP_arch, 1);
23703
23704 /* Tag_ABI_HardFP_use. */
23705 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23706 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23707 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23708
23709 /* Tag_WMMX_arch. */
23710 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23711 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23712 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23713 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
23714
23715 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
23716 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
23717 aeabi_set_attribute_int
23718 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23719 ? 2 : 1));
23720
23721 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
23722 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
23723 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
23724
23725 /* Tag_DIV_use. */
23726 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23727 aeabi_set_attribute_int (Tag_DIV_use, 2);
23728 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
23729 aeabi_set_attribute_int (Tag_DIV_use, 0);
23730 else
23731 aeabi_set_attribute_int (Tag_DIV_use, 1);
23732
23733 /* Tag_MP_extension_use. */
23734 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23735 aeabi_set_attribute_int (Tag_MPextension_use, 1);
23736
23737 /* Tag Virtualization_use. */
23738 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
23739 virt_sec |= 1;
23740 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23741 virt_sec |= 2;
23742 if (virt_sec != 0)
23743 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
23744 }
23745
23746 /* Add the default contents for the .ARM.attributes section. */
23747 void
23748 arm_md_end (void)
23749 {
23750 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23751 return;
23752
23753 aeabi_set_public_attributes ();
23754 }
23755 #endif /* OBJ_ELF */
23756
23757
23758 /* Parse a .cpu directive. */
23759
23760 static void
23761 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23762 {
23763 const struct arm_cpu_option_table *opt;
23764 char *name;
23765 char saved_char;
23766
23767 name = input_line_pointer;
23768 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23769 input_line_pointer++;
23770 saved_char = *input_line_pointer;
23771 *input_line_pointer = 0;
23772
23773 /* Skip the first "all" entry. */
23774 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23775 if (streq (opt->name, name))
23776 {
23777 mcpu_cpu_opt = &opt->value;
23778 selected_cpu = opt->value;
23779 if (opt->canonical_name)
23780 strcpy (selected_cpu_name, opt->canonical_name);
23781 else
23782 {
23783 int i;
23784 for (i = 0; opt->name[i]; i++)
23785 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23786 selected_cpu_name[i] = 0;
23787 }
23788 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23789 *input_line_pointer = saved_char;
23790 demand_empty_rest_of_line ();
23791 return;
23792 }
23793 as_bad (_("unknown cpu `%s'"), name);
23794 *input_line_pointer = saved_char;
23795 ignore_rest_of_line ();
23796 }
23797
23798
23799 /* Parse a .arch directive. */
23800
23801 static void
23802 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23803 {
23804 const struct arm_arch_option_table *opt;
23805 char saved_char;
23806 char *name;
23807
23808 name = input_line_pointer;
23809 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23810 input_line_pointer++;
23811 saved_char = *input_line_pointer;
23812 *input_line_pointer = 0;
23813
23814 /* Skip the first "all" entry. */
23815 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23816 if (streq (opt->name, name))
23817 {
23818 mcpu_cpu_opt = &opt->value;
23819 selected_cpu = opt->value;
23820 strcpy (selected_cpu_name, opt->name);
23821 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23822 *input_line_pointer = saved_char;
23823 demand_empty_rest_of_line ();
23824 return;
23825 }
23826
23827 as_bad (_("unknown architecture `%s'\n"), name);
23828 *input_line_pointer = saved_char;
23829 ignore_rest_of_line ();
23830 }
23831
23832
23833 /* Parse a .object_arch directive. */
23834
23835 static void
23836 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23837 {
23838 const struct arm_arch_option_table *opt;
23839 char saved_char;
23840 char *name;
23841
23842 name = input_line_pointer;
23843 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23844 input_line_pointer++;
23845 saved_char = *input_line_pointer;
23846 *input_line_pointer = 0;
23847
23848 /* Skip the first "all" entry. */
23849 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23850 if (streq (opt->name, name))
23851 {
23852 object_arch = &opt->value;
23853 *input_line_pointer = saved_char;
23854 demand_empty_rest_of_line ();
23855 return;
23856 }
23857
23858 as_bad (_("unknown architecture `%s'\n"), name);
23859 *input_line_pointer = saved_char;
23860 ignore_rest_of_line ();
23861 }
23862
23863 /* Parse a .arch_extension directive. */
23864
23865 static void
23866 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23867 {
23868 const struct arm_option_extension_value_table *opt;
23869 char saved_char;
23870 char *name;
23871 int adding_value = 1;
23872
23873 name = input_line_pointer;
23874 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23875 input_line_pointer++;
23876 saved_char = *input_line_pointer;
23877 *input_line_pointer = 0;
23878
23879 if (strlen (name) >= 2
23880 && strncmp (name, "no", 2) == 0)
23881 {
23882 adding_value = 0;
23883 name += 2;
23884 }
23885
23886 for (opt = arm_extensions; opt->name != NULL; opt++)
23887 if (streq (opt->name, name))
23888 {
23889 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23890 {
23891 as_bad (_("architectural extension `%s' is not allowed for the "
23892 "current base architecture"), name);
23893 break;
23894 }
23895
23896 if (adding_value)
23897 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23898 else
23899 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23900
23901 mcpu_cpu_opt = &selected_cpu;
23902 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23903 *input_line_pointer = saved_char;
23904 demand_empty_rest_of_line ();
23905 return;
23906 }
23907
23908 if (opt->name == NULL)
23909 as_bad (_("unknown architecture `%s'\n"), name);
23910
23911 *input_line_pointer = saved_char;
23912 ignore_rest_of_line ();
23913 }
23914
23915 /* Parse a .fpu directive. */
23916
23917 static void
23918 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23919 {
23920 const struct arm_option_fpu_value_table *opt;
23921 char saved_char;
23922 char *name;
23923
23924 name = input_line_pointer;
23925 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23926 input_line_pointer++;
23927 saved_char = *input_line_pointer;
23928 *input_line_pointer = 0;
23929
23930 for (opt = arm_fpus; opt->name != NULL; opt++)
23931 if (streq (opt->name, name))
23932 {
23933 mfpu_opt = &opt->value;
23934 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23935 *input_line_pointer = saved_char;
23936 demand_empty_rest_of_line ();
23937 return;
23938 }
23939
23940 as_bad (_("unknown floating point format `%s'\n"), name);
23941 *input_line_pointer = saved_char;
23942 ignore_rest_of_line ();
23943 }
23944
23945 /* Copy symbol information. */
23946
23947 void
23948 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23949 {
23950 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23951 }
23952
23953 #ifdef OBJ_ELF
23954 /* Given a symbolic attribute NAME, return the proper integer value.
23955 Returns -1 if the attribute is not known. */
23956
23957 int
23958 arm_convert_symbolic_attribute (const char *name)
23959 {
23960 static const struct
23961 {
23962 const char * name;
23963 const int tag;
23964 }
23965 attribute_table[] =
23966 {
23967 /* When you modify this table you should
23968 also modify the list in doc/c-arm.texi. */
23969 #define T(tag) {#tag, tag}
23970 T (Tag_CPU_raw_name),
23971 T (Tag_CPU_name),
23972 T (Tag_CPU_arch),
23973 T (Tag_CPU_arch_profile),
23974 T (Tag_ARM_ISA_use),
23975 T (Tag_THUMB_ISA_use),
23976 T (Tag_FP_arch),
23977 T (Tag_VFP_arch),
23978 T (Tag_WMMX_arch),
23979 T (Tag_Advanced_SIMD_arch),
23980 T (Tag_PCS_config),
23981 T (Tag_ABI_PCS_R9_use),
23982 T (Tag_ABI_PCS_RW_data),
23983 T (Tag_ABI_PCS_RO_data),
23984 T (Tag_ABI_PCS_GOT_use),
23985 T (Tag_ABI_PCS_wchar_t),
23986 T (Tag_ABI_FP_rounding),
23987 T (Tag_ABI_FP_denormal),
23988 T (Tag_ABI_FP_exceptions),
23989 T (Tag_ABI_FP_user_exceptions),
23990 T (Tag_ABI_FP_number_model),
23991 T (Tag_ABI_align_needed),
23992 T (Tag_ABI_align8_needed),
23993 T (Tag_ABI_align_preserved),
23994 T (Tag_ABI_align8_preserved),
23995 T (Tag_ABI_enum_size),
23996 T (Tag_ABI_HardFP_use),
23997 T (Tag_ABI_VFP_args),
23998 T (Tag_ABI_WMMX_args),
23999 T (Tag_ABI_optimization_goals),
24000 T (Tag_ABI_FP_optimization_goals),
24001 T (Tag_compatibility),
24002 T (Tag_CPU_unaligned_access),
24003 T (Tag_FP_HP_extension),
24004 T (Tag_VFP_HP_extension),
24005 T (Tag_ABI_FP_16bit_format),
24006 T (Tag_MPextension_use),
24007 T (Tag_DIV_use),
24008 T (Tag_nodefaults),
24009 T (Tag_also_compatible_with),
24010 T (Tag_conformance),
24011 T (Tag_T2EE_use),
24012 T (Tag_Virtualization_use),
24013 /* We deliberately do not include Tag_MPextension_use_legacy. */
24014 #undef T
24015 };
24016 unsigned int i;
24017
24018 if (name == NULL)
24019 return -1;
24020
24021 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
24022 if (streq (name, attribute_table[i].name))
24023 return attribute_table[i].tag;
24024
24025 return -1;
24026 }
24027
24028
24029 /* Apply sym value for relocations only in the case that
24030 they are for local symbols and you have the respective
24031 architectural feature for blx and simple switches. */
24032 int
24033 arm_apply_sym_value (struct fix * fixP)
24034 {
24035 if (fixP->fx_addsy
24036 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
24037 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
24038 {
24039 switch (fixP->fx_r_type)
24040 {
24041 case BFD_RELOC_ARM_PCREL_BLX:
24042 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24043 if (ARM_IS_FUNC (fixP->fx_addsy))
24044 return 1;
24045 break;
24046
24047 case BFD_RELOC_ARM_PCREL_CALL:
24048 case BFD_RELOC_THUMB_PCREL_BLX:
24049 if (THUMB_IS_FUNC (fixP->fx_addsy))
24050 return 1;
24051 break;
24052
24053 default:
24054 break;
24055 }
24056
24057 }
24058 return 0;
24059 }
24060 #endif /* OBJ_ELF */
This page took 0.593897 seconds and 4 git commands to generate.