8826119f409da1f776390f6361693b6dde67ff72
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Pure syntax. */
1013
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars[] = "@";
1017
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars[] = "#";
1026
1027 char arm_line_separator_chars[] = ";";
1028
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS[] = "eE";
1032
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1036
1037 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
1038
1039 /* Prefix characters that indicate the start of an immediate
1040 value. */
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1042
1043 /* Separator character handling. */
1044
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047 static inline int
1048 skip_past_char (char ** str, char c)
1049 {
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
1052
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
1057 }
1058 else
1059 return FAIL;
1060 }
1061
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1063
1064 /* Arithmetic expressions (possibly involving symbols). */
1065
1066 /* Return TRUE if anything in the expression is a bignum. */
1067
1068 static bfd_boolean
1069 walk_no_bignums (symbolS * sp)
1070 {
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
1072 return TRUE;
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
1075 {
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1079 }
1080
1081 return FALSE;
1082 }
1083
1084 static bfd_boolean in_my_get_expression = FALSE;
1085
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1093
1094 static int
1095 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1096 {
1097 char * save_in;
1098
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1102 : GE_OPT_PREFIX;
1103
1104 switch (prefix_mode)
1105 {
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
1116 case GE_OPT_PREFIX_BIG:
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
1120 default:
1121 abort ();
1122 }
1123
1124 memset (ep, 0, sizeof (expressionS));
1125
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
1128 in_my_get_expression = TRUE;
1129 expression (ep);
1130 in_my_get_expression = FALSE;
1131
1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1133 {
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
1140 return 1;
1141 }
1142
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
1148 || (ep->X_add_symbol
1149 && (walk_no_bignums (ep->X_add_symbol)
1150 || (ep->X_op_symbol
1151 && walk_no_bignums (ep->X_op_symbol))))))
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
1158
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
1161 return SUCCESS;
1162 }
1163
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1168
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1175
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1177
1178 const char *
1179 md_atof (int type, char * litP, int * sizeP)
1180 {
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
1185
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
1194
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
1201
1202 case 'x':
1203 case 'X':
1204 prec = 5;
1205 break;
1206
1207 case 'p':
1208 case 'P':
1209 prec = 5;
1210 break;
1211
1212 default:
1213 *sizeP = 0;
1214 return _("Unrecognized or unsupported floating point constant");
1215 }
1216
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1221
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
1228 }
1229 }
1230 else
1231 {
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1233 for (i = prec - 1; i >= 0; i--)
1234 {
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
1248 }
1249 }
1250
1251 return NULL;
1252 }
1253
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1256
1257 void
1258 md_operand (expressionS * exp)
1259 {
1260 if (in_my_get_expression)
1261 exp->X_op = O_illegal;
1262 }
1263
1264 /* Immediate values. */
1265
1266 #ifdef OBJ_ELF
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1270
1271 static int
1272 immediate_for_directive (int *val)
1273 {
1274 expressionS exp;
1275 exp.X_op = O_illegal;
1276
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
1282
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
1291 }
1292 #endif
1293
1294 /* Register parsing. */
1295
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301 static struct reg_entry *
1302 arm_reg_parse_multi (char **ccp)
1303 {
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
1307
1308 skip_whitespace (start);
1309
1310 #ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
1312 return NULL;
1313 start++;
1314 #endif
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318 #endif
1319
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
1323
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
1335 }
1336
1337 static int
1338 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1339 enum arm_reg_type type)
1340 {
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg && reg->type == REG_TYPE_CN)
1350 return reg->number;
1351 break;
1352
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1360 /* Fall through. */
1361
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg && reg->type == REG_TYPE_MMXWCG)
1366 return reg->number;
1367 break;
1368
1369 default:
1370 break;
1371 }
1372
1373 return FAIL;
1374 }
1375
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379 static int
1380 arm_reg_parse (char **ccp, enum arm_reg_type type)
1381 {
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
1396 *ccp = start;
1397 return FAIL;
1398 }
1399
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414 static int
1415 parse_neon_type (struct neon_type *type, char **str)
1416 {
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
1467 return FAIL;
1468 }
1469 }
1470
1471 done:
1472 if (type)
1473 {
1474 type->el[type->elems].type = thistype;
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487 }
1488
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494 static void
1495 first_error (const char *err)
1496 {
1497 if (!inst.error)
1498 inst.error = err;
1499 }
1500
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1502 static int
1503 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504 {
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
1520 else
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
1525 }
1526 else
1527 return FAIL;
1528
1529 *ccp = str;
1530
1531 return SUCCESS;
1532 }
1533
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1539
1540 /* Record a use of the given feature. */
1541 static void
1542 record_feature_use (const arm_feature_set *feature)
1543 {
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548 }
1549
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552 static bfd_boolean
1553 mark_feature_used (const arm_feature_set *feature)
1554 {
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573 }
1574
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580 static int
1581 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
1584 {
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
1601 *ccp = str;
1602 if (typeinfo)
1603 *typeinfo = atype;
1604 return altreg;
1605 }
1606
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1612 || (type == REG_TYPE_NSDQ
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
1619 type = (enum arm_reg_type) reg->type;
1620
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
1646
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
1657
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1665 {
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
1670 return FAIL;
1671 }
1672
1673 if ((atype.defined & NTA_HASINDEX) != 0)
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
1682 atype.index = NEON_ALL_LANES;
1683 else
1684 {
1685 expressionS exp;
1686
1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
1688
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
1694
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
1697
1698 atype.index = exp.X_add_number;
1699 }
1700 }
1701
1702 if (typeinfo)
1703 *typeinfo = atype;
1704
1705 if (rtype)
1706 *rtype = type;
1707
1708 *ccp = str;
1709
1710 return reg->number;
1711 }
1712
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1719
1720 static int
1721 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1723 {
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748 }
1749
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757 static int
1758 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
1760 {
1761 int reg;
1762 char *str = *ccp;
1763 struct neon_typed_alias atype;
1764 unsigned reg_size;
1765
1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1767
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1785 return FAIL;
1786
1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1788 {
1789 first_error (_("scalar must have an index"));
1790 return FAIL;
1791 }
1792 else if (atype.index >= reg_size / elsize)
1793 {
1794 first_error (_("scalar index out of range"));
1795 return FAIL;
1796 }
1797
1798 if (type)
1799 *type = atype.eltype;
1800
1801 *ccp = str;
1802
1803 return reg * 16 + atype.index;
1804 }
1805
1806 /* Types of registers in a list. */
1807
1808 enum reg_list_els
1809 {
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
1813 REGLIST_VFP_S_VPR,
1814 REGLIST_VFP_D,
1815 REGLIST_VFP_D_VPR,
1816 REGLIST_NEON_D
1817 };
1818
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1820
1821 static long
1822 parse_reg_list (char ** strp, enum reg_list_els etype)
1823 {
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1829
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
1832 {
1833 skip_whitespace (str);
1834
1835 another_range = 0;
1836
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
1841
1842 str++;
1843 do
1844 {
1845 int reg;
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
1848
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
1851 {
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
1875 }
1876
1877 if (in_range)
1878 {
1879 int i;
1880
1881 if (reg <= cur_reg)
1882 {
1883 first_error (_("bad range in register list"));
1884 return FAIL;
1885 }
1886
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
1898
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1904
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
1911
1912 if (skip_past_char (&str, '}') == FAIL)
1913 {
1914 first_error (_("missing `}'"));
1915 return FAIL;
1916 }
1917 }
1918 else if (etype == REGLIST_RN)
1919 {
1920 expressionS exp;
1921
1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1923 return FAIL;
1924
1925 if (exp.X_op == O_constant)
1926 {
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
1933
1934 if ((range & exp.X_add_number) != 0)
1935 {
1936 int regno = range & exp.X_add_number;
1937
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
1944
1945 range |= exp.X_add_number;
1946 }
1947 else
1948 {
1949 if (inst.relocs[0].type != 0)
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
1954
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
1958 }
1959 }
1960
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
1966 }
1967 while (another_range);
1968
1969 *strp = str;
1970 return range;
1971 }
1972
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
1987
1988 static int
1989 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
1991 {
1992 char *str = *ccp;
1993 int base_reg;
1994 int new_base;
1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1996 int max_regs = 0;
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
2000 int i;
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2004
2005 if (skip_past_char (&str, '{') == FAIL)
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
2010
2011 switch (etype)
2012 {
2013 case REGLIST_VFP_S:
2014 case REGLIST_VFP_S_VPR:
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
2017 break;
2018
2019 case REGLIST_VFP_D:
2020 case REGLIST_VFP_D_VPR:
2021 regtype = REG_TYPE_VFD;
2022 break;
2023
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
2027
2028 default:
2029 gas_assert (0);
2030 }
2031
2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2033 {
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
2045 else
2046 max_regs = 16;
2047 }
2048
2049 base_reg = max_regs;
2050 *partial_match = FALSE;
2051
2052 do
2053 {
2054 int setmask = 1, addregs = 1;
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
2057
2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2059
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
2089 {
2090 first_error (_(reg_expected_msgs[regtype]));
2091 return FAIL;
2092 }
2093
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
2098 if (new_base >= max_regs)
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
2103
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
2110
2111 if (new_base < base_reg)
2112 base_reg = new_base;
2113
2114 if (mask & (setmask << new_base))
2115 {
2116 first_error (_("invalid register list"));
2117 return FAIL;
2118 }
2119
2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
2125
2126 mask |= setmask << new_base;
2127 count += addregs;
2128
2129 if (*str == '-') /* We have the start of a range expression */
2130 {
2131 int high_range;
2132
2133 str++;
2134
2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2136 == FAIL)
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
2141
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
2147
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
2150
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
2156
2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2158 {
2159 if (mask & (setmask << new_base))
2160 {
2161 inst.error = _("invalid register list");
2162 return FAIL;
2163 }
2164
2165 mask |= setmask << new_base;
2166 count += addregs;
2167 }
2168 }
2169 }
2170 while (skip_past_comma (&str) != FAIL);
2171
2172 str++;
2173
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen && count == 0) || count > max_regs)
2176 abort ();
2177
2178 *pbase = base_reg;
2179
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
2197 *ccp = str;
2198
2199 return count;
2200 }
2201
2202 /* True if two alias types are the same. */
2203
2204 static bfd_boolean
2205 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206 {
2207 if (!a && !b)
2208 return TRUE;
2209
2210 if (!a || !b)
2211 return FALSE;
2212
2213 if (a->defined != b->defined)
2214 return FALSE;
2215
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
2218 || a->eltype.size != b->eltype.size))
2219 return FALSE;
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
2223 return FALSE;
2224
2225 return TRUE;
2226 }
2227
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2235
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240 static int
2241 parse_neon_el_struct_list (char **str, unsigned *pbase,
2242 int mve,
2243 struct neon_type_el *eltype)
2244 {
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error = _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype;
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
2260
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
2263
2264 do
2265 {
2266 struct neon_typed_alias atype;
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
2271 if (getreg == FAIL)
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
2276
2277 if (base_reg == -1)
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
2286 else if (reg_incr == -1)
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
2295 else if (getreg != base_reg + reg_incr * count)
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
2300
2301 if (! neon_alias_types_same (&atype, &firsttype))
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
2306
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2308 modes. */
2309 if (ptr[0] == '-')
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
2342
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
2345 {
2346 count += 2;
2347 continue;
2348 }
2349
2350 if ((atype.defined & NTA_HASINDEX) != 0)
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
2360 else if (lane == -1)
2361 lane = NEON_INTERLEAVE_LANES;
2362 else if (lane != NEON_INTERLEAVE_LANES)
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2370
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
2374
2375 /* Sanity check. */
2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2377 || (count > 1 && reg_incr == -1))
2378 {
2379 first_error (_("error parsing element/structure list"));
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
2385 first_error (_("expected }"));
2386 return FAIL;
2387 }
2388
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
2395 *pbase = base_reg;
2396 *str = ptr;
2397
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399 }
2400
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2406
2407 static int
2408 parse_reloc (char **str)
2409 {
2410 struct reloc_entry *r;
2411 char *p, *q;
2412
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
2415
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
2430 }
2431
2432 /* Directives: register aliases. */
2433
2434 static struct reg_entry *
2435 insert_reg_alias (char *str, unsigned number, int type)
2436 {
2437 struct reg_entry *new_reg;
2438 const char *name;
2439
2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2441 {
2442 if (new_reg->builtin)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2444
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
2447 else if (new_reg->number != number || new_reg->type != type)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2449
2450 return NULL;
2451 }
2452
2453 name = xstrdup (str);
2454 new_reg = XNEW (struct reg_entry);
2455
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
2461
2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2463 abort ();
2464
2465 return new_reg;
2466 }
2467
2468 static void
2469 insert_neon_reg_alias (char *str, int number, int type,
2470 struct neon_typed_alias *atype)
2471 {
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
2473
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
2479
2480 if (atype)
2481 {
2482 reg->neon = XNEW (struct neon_typed_alias);
2483 *reg->neon = *atype;
2484 }
2485 }
2486
2487 /* Look for the .req directive. This is of the form:
2488
2489 new_register_name .req existing_register_name
2490
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2493
2494 static bfd_boolean
2495 create_register_alias (char * newname, char *p)
2496 {
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
2500
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
2505 return FALSE;
2506
2507 oldname += 6;
2508 if (*oldname == '\0')
2509 return FALSE;
2510
2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2512 if (!old)
2513 {
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2515 return TRUE;
2516 }
2517
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523 #else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526 #endif
2527
2528 nbuf = xmemdup0 (newname, nlen);
2529
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
2537
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
2554 }
2555
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
2558
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
2562
2563 free (nbuf);
2564 return TRUE;
2565 }
2566
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2576
2577 static bfd_boolean
2578 create_neon_reg_alias (char *newname, char *p)
2579 {
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2586 int namelen;
2587
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
2592
2593 nameend = p;
2594
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
2600 return FALSE;
2601
2602 p += 5;
2603
2604 if (*p == '\0')
2605 return FALSE;
2606
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
2612 return FALSE;
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2627 : exp.X_add_number;
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
2642
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
2649 typeinfo.eltype = ntype.el[0];
2650 }
2651
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
2656
2657 if (typeinfo.defined & NTA_HASINDEX)
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
2662
2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
2664
2665 if (exp.X_op != O_constant)
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
2670
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
2673
2674 if (skip_past_char (&p, ']') == FAIL)
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
2679 }
2680
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen = nameend - newname;
2686 #else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689 #endif
2690
2691 namebuf = xmemdup0 (newname, namelen);
2692
2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2694 typeinfo.defined != 0 ? &typeinfo : NULL);
2695
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
2699
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2702 typeinfo.defined != 0 ? &typeinfo : NULL);
2703
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
2707
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2710 typeinfo.defined != 0 ? &typeinfo : NULL);
2711
2712 free (namebuf);
2713 return TRUE;
2714 }
2715
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2718
2719 static void
2720 s_req (int a ATTRIBUTE_UNUSED)
2721 {
2722 as_bad (_("invalid syntax for .req directive"));
2723 }
2724
2725 static void
2726 s_dn (int a ATTRIBUTE_UNUSED)
2727 {
2728 as_bad (_("invalid syntax for .dn directive"));
2729 }
2730
2731 static void
2732 s_qn (int a ATTRIBUTE_UNUSED)
2733 {
2734 as_bad (_("invalid syntax for .qn directive"));
2735 }
2736
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2739
2740 my_alias .req r11
2741 .unreq my_alias */
2742
2743 static void
2744 s_unreq (int a ATTRIBUTE_UNUSED)
2745 {
2746 char * name;
2747 char saved_char;
2748
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2764 name);
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2770 name);
2771 else
2772 {
2773 char * p;
2774 char * nbuf;
2775
2776 hash_delete (arm_reg_hsh, name, FALSE);
2777 free ((char *) reg->name);
2778 if (reg->neon)
2779 free (reg->neon);
2780 free (reg);
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2785
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2790 if (reg)
2791 {
2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2802 if (reg)
2803 {
2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
2812 }
2813 }
2814
2815 *input_line_pointer = saved_char;
2816 demand_empty_rest_of_line ();
2817 }
2818
2819 /* Directives: Instruction set selection. */
2820
2821 #ifdef OBJ_ELF
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
2827 /* Create a new mapping symbol for the transition to STATE. */
2828
2829 static void
2830 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2831 {
2832 symbolS * symbolP;
2833 const char * symname;
2834 int type;
2835
2836 switch (state)
2837 {
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
2850 default:
2851 abort ();
2852 }
2853
2854 symbolP = symbol_new (symname, now_seg, value, frag);
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2885 if (value == 0)
2886 {
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
2900 frag->tc_frag_data.last_map = symbolP;
2901 }
2902
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907 static void
2908 insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910 {
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2924 }
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928 }
2929
2930 static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2936 void
2937 mapping_state (enum mstate state)
2938 {
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2963 /* This case will be evaluated later. */
2964 return;
2965
2966 mapping_state_2 (state, 0);
2967 }
2968
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972 static void
2973 mapping_state_2 (enum mstate state, int max_chars)
2974 {
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2997 }
2998 #undef TRANSITION
2999 #else
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3002 #endif
3003
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3005
3006 #ifdef OBJ_COFF
3007 static symbolS *
3008 find_real_start (symbolS * symbolP)
3009 {
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3026 return symbolP;
3027
3028 real_start = concat (STUB_NAME, name, NULL);
3029 new_target = symbol_find (real_start);
3030 free (real_start);
3031
3032 if (new_target == NULL)
3033 {
3034 as_warn (_("Failed to find real start of function: %s\n"), name);
3035 new_target = symbolP;
3036 }
3037
3038 return new_target;
3039 }
3040 #endif
3041
3042 static void
3043 opcode_select (int width)
3044 {
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078 }
3079
3080 static void
3081 s_arm (int ignore ATTRIBUTE_UNUSED)
3082 {
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085 }
3086
3087 static void
3088 s_thumb (int ignore ATTRIBUTE_UNUSED)
3089 {
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092 }
3093
3094 static void
3095 s_code (int unused ATTRIBUTE_UNUSED)
3096 {
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110 }
3111
3112 static void
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114 {
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127 }
3128
3129 static void
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131 {
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137 }
3138
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142 static void
3143 s_thumb_set (int equiv)
3144 {
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
3156 delim = get_symbol_name (& name);
3157 end_name = input_line_pointer;
3158 (void) restore_line_pointer (delim);
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181 #ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3184 for this symbol. */
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197 #endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200 #ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
3219 /* XXX Now we come to the Thumb specific bit of code. */
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225 #endif
3226 }
3227
3228 /* Directives: Mode selection. */
3229
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3233 static void
3234 s_syntax (int unused ATTRIBUTE_UNUSED)
3235 {
3236 char *name, delim;
3237
3238 delim = get_symbol_name (& name);
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
3249 (void) restore_line_pointer (delim);
3250 demand_empty_rest_of_line ();
3251 }
3252
3253 /* Directives: sectioning and alignment. */
3254
3255 static void
3256 s_bss (int ignore ATTRIBUTE_UNUSED)
3257 {
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
3262
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265 #endif
3266 }
3267
3268 static void
3269 s_even (int ignore ATTRIBUTE_UNUSED)
3270 {
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
3274
3275 record_alignment (now_seg, 1);
3276
3277 demand_empty_rest_of_line ();
3278 }
3279
3280 /* Directives: CodeComposer Studio. */
3281
3282 /* .ref (for CodeComposer Studio syntax only). */
3283 static void
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285 {
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290 }
3291
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3294 static void
3295 asmfunc_debug (const char * name)
3296 {
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316 }
3317
3318 static void
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320 {
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341 }
3342
3343 static void
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345 {
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367 }
3368
3369 static void
3370 s_ccs_def (int name)
3371 {
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376 }
3377
3378 /* Directives: Literal pools. */
3379
3380 static literal_pool *
3381 find_literal_pool (void)
3382 {
3383 literal_pool * pool;
3384
3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3386 {
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
3390 }
3391
3392 return pool;
3393 }
3394
3395 static literal_pool *
3396 find_or_make_literal_pool (void)
3397 {
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
3401
3402 pool = find_literal_pool ();
3403
3404 if (pool == NULL)
3405 {
3406 /* Create a new pool. */
3407 pool = XNEW (literal_pool);
3408 if (! pool)
3409 return NULL;
3410
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
3416 pool->alignment = 2;
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
3420 }
3421
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
3424 {
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
3428 }
3429
3430 /* Done. */
3431 return pool;
3432 }
3433
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3436
3437 static int
3438 add_to_lit_pool (unsigned int nbytes)
3439 {
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool * pool;
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
3445 unsigned imm1 = 0;
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3452 : inst.relocs[0].exp.X_unsigned ? 0
3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
3460
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
3465 {
3466 if (nbytes == 4)
3467 {
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
3470 && (pool->literals[entry].X_add_number
3471 == inst.relocs[0].exp.X_add_number)
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
3474 == inst.relocs[0].exp.X_unsigned))
3475 break;
3476
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
3479 && (pool->literals[entry].X_add_number
3480 == inst.relocs[0].exp.X_add_number)
3481 && (pool->literals[entry].X_add_symbol
3482 == inst.relocs[0].exp.X_add_symbol)
3483 && (pool->literals[entry].X_op_symbol
3484 == inst.relocs[0].exp.X_op_symbol)
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3493 && (pool->literals[entry].X_unsigned
3494 == inst.relocs[0].exp.X_unsigned)
3495 && (pool->literals[entry + 1].X_op == O_constant)
3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3497 && (pool->literals[entry + 1].X_unsigned
3498 == inst.relocs[0].exp.X_unsigned))
3499 break;
3500
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
3503 break;
3504
3505 pool_size += 4;
3506 }
3507
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
3544 pool->literals[entry] = inst.relocs[0].exp;
3545 pool->literals[entry].X_op = O_constant;
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
3557 pool->literals[entry] = inst.relocs[0].exp;
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3561 pool->literals[entry++].X_md = 4;
3562 pool->literals[entry] = inst.relocs[0].exp;
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
3572 pool->literals[entry] = inst.relocs[0].exp;
3573 pool->literals[entry].X_md = 4;
3574 }
3575
3576 #ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583 #endif
3584 pool->next_free_entry += 1;
3585 }
3586 else if (padding_slot_p)
3587 {
3588 pool->literals[entry] = inst.relocs[0].exp;
3589 pool->literals[entry].X_md = nbytes;
3590 }
3591
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3595
3596 return SUCCESS;
3597 }
3598
3599 bfd_boolean
3600 tc_start_label_without_colon (void)
3601 {
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
3606 const char *label = input_line_pointer;
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623 }
3624
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3627
3628 static void
3629 symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634 {
3635 size_t name_length;
3636 char * preserved_copy_of_name;
3637
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
3641
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645 #endif
3646
3647 S_SET_NAME (symbolP, preserved_copy_of_name);
3648
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
3652
3653 symbol_set_frag (symbolP, frag);
3654
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
3658
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
3662
3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3664
3665 obj_symbol_new_hook (symbolP);
3666
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669 #endif
3670
3671 #ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673 #endif /* DEBUG_SYMS */
3674 }
3675
3676 static void
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3678 {
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
3682
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
3688
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
3692 frag_align (pool->alignment, 0, 0);
3693
3694 record_alignment (now_seg, 2);
3695
3696 #ifdef OBJ_ELF
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3699 #endif
3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
3701
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
3705
3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
3707
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710 #endif
3711
3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
3713 {
3714 #ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717 #endif
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3721 }
3722
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
3726 }
3727
3728 #ifdef OBJ_ELF
3729 /* Forward declarations for functions below, in the MD interface
3730 section. */
3731 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732 static valueT create_unwind_entry (int);
3733 static void start_unwind_section (const segT, int);
3734 static void add_unwind_opcode (valueT, int);
3735 static void flush_pending_unwind (void);
3736
3737 /* Directives: Data. */
3738
3739 static void
3740 s_arm_elf_cons (int nbytes)
3741 {
3742 expressionS exp;
3743
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746 #endif
3747
3748 if (is_it_end_of_statement ())
3749 {
3750 demand_empty_rest_of_line ();
3751 return;
3752 }
3753
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes);
3756 #endif
3757
3758 mapping_state (MAP_DATA);
3759 do
3760 {
3761 int reloc;
3762 char *base = input_line_pointer;
3763
3764 expression (& exp);
3765
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
3782 reloc_howto_type *howto = (reloc_howto_type *)
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
3785 int size = bfd_get_reloc_size (howto);
3786
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
3794 if (size > nbytes)
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3808
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3822 free (save_buf);
3823 }
3824 }
3825 }
3826 }
3827 while (*input_line_pointer++ == ',');
3828
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
3832 }
3833
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837 static void
3838 emit_thumb32_expr (expressionS * exp)
3839 {
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846 }
3847
3848 /* Guess the instruction size based on the opcode. */
3849
3850 static int
3851 thumb_insn_size (int opcode)
3852 {
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859 }
3860
3861 static bfd_boolean
3862 emit_insn (expressionS *exp, int nbytes)
3863 {
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3885 else
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904 }
3905
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909 static void
3910 s_arm_elf_inst (int nbytes)
3911 {
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954 }
3955
3956 /* Parse a .rel31 directive. */
3957
3958 static void
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960 {
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
3964
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
3970
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
3975
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978 #endif
3979
3980 #ifdef md_cons_align
3981 md_cons_align (4);
3982 #endif
3983
3984 mapping_state (MAP_DATA);
3985
3986 expression (&exp);
3987
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
3992
3993 demand_empty_rest_of_line ();
3994 }
3995
3996 /* Directives: AEABI stack-unwind tables. */
3997
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
3999
4000 static void
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002 {
4003 demand_empty_rest_of_line ();
4004 if (unwind.proc_start)
4005 {
4006 as_bad (_("duplicate .fnstart directive"));
4007 return;
4008 }
4009
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
4012
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
4020 unwind.fp_reg = REG_SP;
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023 }
4024
4025
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4028
4029 static void
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031 {
4032 demand_empty_rest_of_line ();
4033 if (!unwind.proc_start)
4034 as_bad (MISSING_FNSTART);
4035
4036 if (unwind.table_entry)
4037 as_bad (_("duplicate .handlerdata directive"));
4038
4039 create_unwind_entry (1);
4040 }
4041
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4043
4044 static void
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046 {
4047 long where;
4048 char *ptr;
4049 valueT val;
4050 unsigned int marked_pr_dependency;
4051
4052 demand_empty_rest_of_line ();
4053
4054 if (!unwind.proc_start)
4055 {
4056 as_bad (_(".fnend directive without .fnstart"));
4057 return;
4058 }
4059
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
4065
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
4070
4071 ptr = frag_more (8);
4072 memset (ptr, 0, 8);
4073 where = frag_now_fix () - 8;
4074
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
4078
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4095 |= 1 << unwind.personality_index;
4096 }
4097
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
4105
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4108
4109 unwind.proc_start = NULL;
4110 }
4111
4112
4113 /* Parse an unwind_cantunwind directive. */
4114
4115 static void
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117 {
4118 demand_empty_rest_of_line ();
4119 if (!unwind.proc_start)
4120 as_bad (MISSING_FNSTART);
4121
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4124
4125 unwind.personality_index = -2;
4126 }
4127
4128
4129 /* Parse a personalityindex directive. */
4130
4131 static void
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133 {
4134 expressionS exp;
4135
4136 if (!unwind.proc_start)
4137 as_bad (MISSING_FNSTART);
4138
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4141
4142 expression (&exp);
4143
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
4146 {
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
4150 }
4151
4152 unwind.personality_index = exp.X_add_number;
4153
4154 demand_empty_rest_of_line ();
4155 }
4156
4157
4158 /* Parse a personality directive. */
4159
4160 static void
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162 {
4163 char *name, *p, c;
4164
4165 if (!unwind.proc_start)
4166 as_bad (MISSING_FNSTART);
4167
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
4170
4171 c = get_symbol_name (& name);
4172 p = input_line_pointer;
4173 if (c == '"')
4174 ++ input_line_pointer;
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178 }
4179
4180
4181 /* Parse a directive saving core registers. */
4182
4183 static void
4184 s_arm_unwind_save_core (void)
4185 {
4186 valueT op;
4187 long range;
4188 int n;
4189
4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4191 if (range == FAIL)
4192 {
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
4197
4198 demand_empty_rest_of_line ();
4199
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
4211
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
4214 {
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
4230 else
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
4240 }
4241
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
4247 }
4248
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
4255 }
4256
4257
4258 /* Parse a directive saving FPA registers. */
4259
4260 static void
4261 s_arm_unwind_save_fpa (int reg)
4262 {
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
4266
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
4272
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
4283 {
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4286 return;
4287 }
4288
4289 demand_empty_rest_of_line ();
4290
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
4297 else
4298 {
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
4302 }
4303 unwind.frame_size += num_regs * 12;
4304 }
4305
4306
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309 static void
4310 s_arm_unwind_save_vfp_armv6 (void)
4311 {
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
4317 bfd_boolean partial_match;
4318
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356 }
4357
4358
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4360
4361 static void
4362 s_arm_unwind_save_vfp (void)
4363 {
4364 int count;
4365 unsigned int reg;
4366 valueT op;
4367 bfd_boolean partial_match;
4368
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
4371 if (count == FAIL)
4372 {
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4375 return;
4376 }
4377
4378 demand_empty_rest_of_line ();
4379
4380 if (reg == 8)
4381 {
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
4385 }
4386 else
4387 {
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
4391 }
4392 unwind.frame_size += count * 8 + 4;
4393 }
4394
4395
4396 /* Parse a directive saving iWMMXt data registers. */
4397
4398 static void
4399 s_arm_unwind_save_mmxwr (void)
4400 {
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
4406
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
4409
4410 do
4411 {
4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4413
4414 if (reg == FAIL)
4415 {
4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4417 goto error;
4418 }
4419
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
4423
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4428 if (hi_reg == FAIL)
4429 {
4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
4443
4444 skip_past_char (&input_line_pointer, '}');
4445
4446 demand_empty_rest_of_line ();
4447
4448 /* Generate any deferred opcodes because we're going to be looking at
4449 the list. */
4450 flush_pending_unwind ();
4451
4452 for (i = 0; i < 16; i++)
4453 {
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
4456 }
4457
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
4462 {
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
4481
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
4484 && ((mask & op) == (1u << (reg - 1))))
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
4493 }
4494
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
4499 {
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
4505 preceding block. */
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
4523 }
4524
4525 return;
4526 error:
4527 ignore_rest_of_line ();
4528 }
4529
4530 static void
4531 s_arm_unwind_save_mmxwcg (void)
4532 {
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
4537
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
4540
4541 skip_whitespace (input_line_pointer);
4542
4543 do
4544 {
4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4546
4547 if (reg == FAIL)
4548 {
4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4550 goto error;
4551 }
4552
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
4557
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4562 if (hi_reg == FAIL)
4563 {
4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
4575 }
4576 while (skip_past_comma (&input_line_pointer) != FAIL);
4577
4578 skip_past_char (&input_line_pointer, '}');
4579
4580 demand_empty_rest_of_line ();
4581
4582 /* Generate any deferred opcodes because we're going to be looking at
4583 the list. */
4584 flush_pending_unwind ();
4585
4586 for (reg = 0; reg < 16; reg++)
4587 {
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
4590 }
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594 error:
4595 ignore_rest_of_line ();
4596 }
4597
4598
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4601
4602 static void
4603 s_arm_unwind_save (int arch_v6)
4604 {
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
4608
4609 if (!unwind.proc_start)
4610 as_bad (MISSING_FNSTART);
4611
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
4614
4615 if (*peek == '{')
4616 {
4617 had_brace = TRUE;
4618 peek++;
4619 }
4620
4621 reg = arm_reg_parse_multi (&peek);
4622
4623 if (!reg)
4624 {
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4627 return;
4628 }
4629
4630 switch (reg->type)
4631 {
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
4639 input_line_pointer = peek;
4640 s_arm_unwind_save_fpa (reg->number);
4641 return;
4642
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
4649 s_arm_unwind_save_vfp_armv6 ();
4650 else
4651 s_arm_unwind_save_vfp ();
4652 return;
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4665 }
4666 }
4667
4668
4669 /* Parse an unwind_movsp directive. */
4670
4671 static void
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673 {
4674 int reg;
4675 valueT op;
4676 int offset;
4677
4678 if (!unwind.proc_start)
4679 as_bad (MISSING_FNSTART);
4680
4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4682 if (reg == FAIL)
4683 {
4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4685 ignore_rest_of_line ();
4686 return;
4687 }
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
4698 demand_empty_rest_of_line ();
4699
4700 if (reg == REG_SP || reg == REG_PC)
4701 {
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4703 return;
4704 }
4705
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4708
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4715 unwind.fp_offset = unwind.frame_size - offset;
4716 unwind.sp_restored = 1;
4717 }
4718
4719 /* Parse an unwind_pad directive. */
4720
4721 static void
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4723 {
4724 int offset;
4725
4726 if (!unwind.proc_start)
4727 as_bad (MISSING_FNSTART);
4728
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
4731
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
4738
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744 }
4745
4746 /* Parse an unwind_setfp directive. */
4747
4748 static void
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4750 {
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
4755 if (!unwind.proc_start)
4756 as_bad (MISSING_FNSTART);
4757
4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4763
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
4770
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
4779
4780 demand_empty_rest_of_line ();
4781
4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4783 {
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
4787 }
4788
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
4792 if (sp_reg == REG_SP)
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
4796 }
4797
4798 /* Parse an unwind_raw directive. */
4799
4800 static void
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4802 {
4803 expressionS exp;
4804 /* This is an arbitrary limit. */
4805 unsigned char op[16];
4806 int count;
4807
4808 if (!unwind.proc_start)
4809 as_bad (MISSING_FNSTART);
4810
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
4814 {
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
4820
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
4827
4828 count = 0;
4829
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4837 }
4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4839 {
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
4843 }
4844 op[count++] = exp.X_add_number;
4845
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
4849
4850 expression (&exp);
4851 }
4852
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
4856
4857 demand_empty_rest_of_line ();
4858 }
4859
4860
4861 /* Parse a .eabi_attribute directive. */
4862
4863 static void
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865 {
4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4867
4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4869 attributes_set_explicitly[tag] = 1;
4870 }
4871
4872 /* Emit a tls fix for the symbol. */
4873
4874 static void
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876 {
4877 char *p;
4878 expressionS exp;
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881 #endif
4882
4883 #ifdef md_cons_align
4884 md_cons_align (4);
4885 #endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894 }
4895 #endif /* OBJ_ELF */
4896
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4902
4903 #ifdef TE_PE
4904
4905 static void
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4907 {
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922 }
4923 #endif /* TE_PE */
4924
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4930
4931 const pseudo_typeS md_pseudo_table[] =
4932 {
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
4940 { "align", s_align_ptwo, 2 },
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
4953 { "object_arch", s_arm_object_arch, 0 },
4954 { "fpu", s_arm_fpu, 0 },
4955 { "arch_extension", s_arm_arch_extension, 0 },
4956 #ifdef OBJ_ELF
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
4970 { "vsave", s_arm_unwind_save, 1 },
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
4977 #else
4978 { "word", cons, 4},
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file, 0 },
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4988 #endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
4992 #ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994 #endif
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
5002 { 0, 0, 0 }
5003 };
5004 \f
5005 /* Parser functions used exclusively in instruction operands. */
5006
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
5012
5013 static int
5014 parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016 {
5017 expressionS exp;
5018
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
5021 {
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
5025
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
5031
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034 }
5035
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040 static int
5041 parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5043 {
5044 expressionS exp;
5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5046 char *ptr = *str;
5047
5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5049
5050 if (exp_p->X_op == O_constant)
5051 {
5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5057 {
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5068
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts != 0);
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5099 inst.operands[i].regisimm = 1;
5100 }
5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5102 return FAIL;
5103
5104 *str = ptr;
5105
5106 return SUCCESS;
5107 }
5108
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5111
5112 static int
5113 parse_fpa_immediate (char ** str)
5114 {
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
5120
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5123
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5127 {
5128 char *start = *str;
5129
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
5136
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5141
5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5143
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
5151 {
5152 if (words[j] != fp_values[i][j])
5153 break;
5154 }
5155
5156 if (j == MAX_LITTLENUMS)
5157 {
5158 *str = save_in;
5159 return i + 8;
5160 }
5161 }
5162 }
5163
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
5185
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
5194 }
5195
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
5200 }
5201
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205 static int
5206 is_quarter_float (unsigned imm)
5207 {
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210 }
5211
5212
5213 /* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216 static bfd_boolean
5217 parse_ifimm_zero (char **in)
5218 {
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249 }
5250
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5256
5257 static unsigned
5258 parse_qfloat_immediate (char **ccp, int *immed)
5259 {
5260 char *str = *ccp;
5261 char *fpnum;
5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5263 int found_fpchar = 0;
5264
5265 skip_past_char (&str, '#');
5266
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
5285
5286 if (!found_fpchar)
5287 return FAIL;
5288 }
5289
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5294
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5301
5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5303 *immed = fpword;
5304 else
5305 return FAIL;
5306
5307 *ccp = str;
5308
5309 return SUCCESS;
5310 }
5311
5312 return FAIL;
5313 }
5314
5315 /* Shift operands. */
5316 enum shift_kind
5317 {
5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5319 };
5320
5321 struct asm_shift_name
5322 {
5323 const char *name;
5324 enum shift_kind kind;
5325 };
5326
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5329 {
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5336 };
5337
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5340
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
5344
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5347
5348 static int
5349 parse_shift (char **str, int i, enum parse_shift_mode mode)
5350 {
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
5356
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
5359
5360 if (p == *str)
5361 {
5362 inst.error = _("shift expression expected");
5363 return FAIL;
5364 }
5365
5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5367 p - *str);
5368
5369 if (shift_name == NULL)
5370 {
5371 inst.error = _("shift expression expected");
5372 return FAIL;
5373 }
5374
5375 shift = shift_name->kind;
5376
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
5387
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
5395
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
5403
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
5418
5419 default: abort ();
5420 }
5421
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
5426
5427 if (mode == NO_SHIFT_RESTRICT
5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
5440 }
5441
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5443
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
5448
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5452
5453 static int
5454 parse_shifter_operand (char **str, int i)
5455 {
5456 int value;
5457 expressionS exp;
5458
5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
5463
5464 /* parse_shift will override this if appropriate */
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
5467
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
5470
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5473 }
5474
5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5476 return FAIL;
5477
5478 if (skip_past_comma (str) == SUCCESS)
5479 {
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5482 return FAIL;
5483
5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
5489
5490 value = exp.X_add_number;
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
5502
5503 /* Encode as specified. */
5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5505 return SUCCESS;
5506 }
5507
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
5510 return SUCCESS;
5511 }
5512
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520 struct group_reloc_table_entry
5521 {
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527 };
5528
5529 typedef enum
5530 {
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
5535 GROUP_LDC,
5536 GROUP_MVE
5537 } group_reloc_type;
5538
5539 static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
5613
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621 static int
5622 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623 {
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
5636 }
5637
5638 return FAIL;
5639 }
5640
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str, int i)
5657 {
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
5668 (*str) += 2;
5669 else
5670 (*str)++;
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
5678
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5683
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5693
5694 /* Never reached. */
5695 }
5696
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5699
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str, int i)
5703 {
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722 }
5723
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5726
5727 Preindexed addressing (.preind=1):
5728
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5733
5734 These three may have a trailing ! which causes .writeback to be set also.
5735
5736 Postindexed addressing (.postind=1, .writeback=1):
5737
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5742
5743 Unindexed addressing (.preind=0, .postind=0):
5744
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5746
5747 Other:
5748
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5752
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5755
5756 static parse_operand_result
5757 parse_address_main (char **str, int i, int group_relocations,
5758 group_reloc_type group_type)
5759 {
5760 char *p = *str;
5761 int reg;
5762
5763 if (skip_past_char (&p, '[') == FAIL)
5764 {
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
5767 /* Bare address - translate to PC-relative offset. */
5768 inst.relocs[0].pc_rel = 1;
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
5772
5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5774 return PARSE_OPERAND_FAIL;
5775 }
5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5777 /*allow_symbol_p=*/TRUE))
5778 return PARSE_OPERAND_FAIL;
5779
5780 *str = p;
5781 return PARSE_OPERAND_SUCCESS;
5782 }
5783
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5802 {
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5807 return PARSE_OPERAND_FAIL;
5808 }
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
5811
5812 if (skip_past_comma (&p) == SUCCESS)
5813 {
5814 inst.operands[i].preind = 1;
5815
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5839 {
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5845 return PARSE_OPERAND_FAIL;
5846 }
5847 else if (skip_past_char (&p, ':') == SUCCESS)
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
5853
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
5864
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5867 {
5868 struct group_reloc_table_entry *entry;
5869
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
5875
5876 /* Try to parse a group relocation. Anything else is an
5877 error. */
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5886 expression. */
5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
5896 break;
5897
5898 case GROUP_LDRS:
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
5901 break;
5902
5903 case GROUP_LDC:
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
5906 break;
5907
5908 default:
5909 gas_assert (0);
5910 }
5911
5912 if (inst.relocs[0].type == 0)
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
5917 }
5918 else
5919 {
5920 char *q = p;
5921
5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
5938 }
5939 }
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
5945
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
5949
5950 if (skip_past_char (&p, ']') == FAIL)
5951 {
5952 inst.error = _("']' expected");
5953 return PARSE_OPERAND_FAIL;
5954 }
5955
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
5958
5959 else if (skip_past_comma (&p) == SUCCESS)
5960 {
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
5965 0, 255, TRUE) == FAIL)
5966 return PARSE_OPERAND_FAIL;
5967
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL;
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL;
5977 }
5978 *str = p;
5979 return PARSE_OPERAND_SUCCESS;
5980 }
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
5985
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL;
5990 }
5991
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
5994
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6004 {
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
6011 inst.operands[i].immisreg = 1;
6012
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6015 return PARSE_OPERAND_FAIL;
6016 }
6017 else
6018 {
6019 char *q = p;
6020
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6027 return PARSE_OPERAND_FAIL;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
6041 }
6042 }
6043 }
6044
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
6052 }
6053 *str = p;
6054 return PARSE_OPERAND_SUCCESS;
6055 }
6056
6057 static int
6058 parse_address (char **str, int i)
6059 {
6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6061 ? SUCCESS : FAIL;
6062 }
6063
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066 {
6067 return parse_address_main (str, i, 1, type);
6068 }
6069
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6071 static int
6072 parse_half (char **str)
6073 {
6074 char * p;
6075
6076 p = *str;
6077 skip_past_char (&p, '#');
6078 if (strncasecmp (p, ":lower16:", 9) == 0)
6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6082
6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6084 {
6085 p += 9;
6086 skip_whitespace (p);
6087 }
6088
6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6090 return FAIL;
6091
6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6093 {
6094 if (inst.relocs[0].exp.X_op != O_constant)
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108 }
6109
6110 /* Miscellaneous. */
6111
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114 static int
6115 parse_psr (char **str, bfd_boolean lhs)
6116 {
6117 char *p;
6118 unsigned long psr_field;
6119 const struct asm_psr *psr;
6120 char *start;
6121 bfd_boolean is_apsr = FALSE;
6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6123
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6128 m_profile = FALSE;
6129
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
6133 if (strncasecmp (p, "SPSR", 4) == 0)
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
6137
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6168 p - start);
6169
6170 if (!psr)
6171 return FAIL;
6172
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
6182 *str = p;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
6188 }
6189 else
6190 goto unsupported_psr;
6191
6192 p += 4;
6193 check_suffix:
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
6197 p++;
6198 start = p;
6199
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
6203
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
6210
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
6214 {
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
6230
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
6234
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
6238
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
6244
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
6247
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6251 {
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
6259
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
6269 {
6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6271 p - start);
6272 if (!psr)
6273 goto error;
6274
6275 psr_field |= psr->field;
6276 }
6277 }
6278 else
6279 {
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
6295 }
6296 *str = p;
6297 return psr_field;
6298
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
6307 }
6308
6309 static int
6310 parse_sys_vldr_vstr (char **str)
6311 {
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340 }
6341
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6344
6345 static int
6346 parse_cps_flags (char **str)
6347 {
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
6351
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
6357
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6361
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
6366
6367 done:
6368 if (saw_a_flag == 0)
6369 {
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
6372 }
6373
6374 *str = s - 1;
6375 return val;
6376 }
6377
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6380
6381 static int
6382 parse_endian_specifier (char **str)
6383 {
6384 int little_endian;
6385 char *s = *str;
6386
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
6392 {
6393 inst.error = _("valid endian specifiers are be or le");
6394 return FAIL;
6395 }
6396
6397 if (ISALNUM (s[2]) || s[2] == '_')
6398 {
6399 inst.error = _("valid endian specifiers are be or le");
6400 return FAIL;
6401 }
6402
6403 *str = s + 2;
6404 return little_endian;
6405 }
6406
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411 static int
6412 parse_ror (char **str)
6413 {
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
6420 {
6421 inst.error = _("missing rotation field after comma");
6422 return FAIL;
6423 }
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
6429 {
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
6437 return FAIL;
6438 }
6439 }
6440
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443 static int
6444 parse_cond (char **str)
6445 {
6446 char *q;
6447 const struct asm_cond *c;
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
6452
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
6457 cond[n] = TOLOWER (*q);
6458 q++;
6459 n++;
6460 }
6461
6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6463 if (!c)
6464 {
6465 inst.error = _("condition required");
6466 return FAIL;
6467 }
6468
6469 *str = q;
6470 return c->value;
6471 }
6472
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475 static int
6476 parse_barrier (char **str)
6477 {
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6486 q - p);
6487 if (!o)
6488 return FAIL;
6489
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
6493 *str = q;
6494 return o->value;
6495 }
6496
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499 static int
6500 parse_tb (char **str)
6501 {
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
6510
6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
6523
6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
6535 if (inst.relocs[0].exp.X_add_number != 1)
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550 }
6551
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559 static int
6560 parse_neon_mov (char **str, int *which_operand)
6561 {
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
6565 struct neon_type_el optype;
6566
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
6626 inst.operands[i].vectype = optype;
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
6630 goto wanted_comma;
6631
6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6633 goto wanted_arm;
6634
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
6646 goto wanted_comma;
6647
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
6653 inst.operands[i].vectype = optype;
6654 inst.operands[i++].present = 1;
6655
6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
6731 else
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
6736 }
6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6738 {
6739 /* Cases 6, 7, 16, 18. */
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
6743
6744 if (skip_past_comma (&ptr) == FAIL)
6745 goto wanted_comma;
6746
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6764 {
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6773 != FAIL)
6774 {
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6776
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
6837 }
6838 }
6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
6850 }
6851 else
6852 {
6853 first_error (_("parse error"));
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
6862 wanted_comma:
6863 first_error (_("expected comma"));
6864 return FAIL;
6865
6866 wanted_arm:
6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6868 return FAIL;
6869 }
6870
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6878 {
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
6897 OP_RNQ, /* Neon quad precision register */
6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
6899 OP_RVSD, /* VFP single or double precision register */
6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD, /* Neon single or double precision register */
6903 OP_RNDQ, /* Neon double or quad precision register */
6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
6906 OP_RNSDQ, /* Neon single, double or quad precision register */
6907 OP_RNSC, /* Neon scalar D[X] */
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
6924 OP_RMQ, /* MVE vector register. */
6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6926 OP_RMQRR, /* MVE vector or ARM register. */
6927
6928 /* New operands for Armv8.1-M Mainline. */
6929 OP_LR, /* ARM LR register */
6930 OP_RRe, /* ARM register, only even numbered. */
6931 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6932 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6933
6934 OP_REGLST, /* ARM register list */
6935 OP_CLRMLST, /* CLRM register list */
6936 OP_VRSLST, /* VFP single-precision register list */
6937 OP_VRDLST, /* VFP double-precision register list */
6938 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6939 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6940 OP_NSTRLST, /* Neon element/structure list */
6941 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
6942 OP_MSTRLST2, /* MVE vector list with two elements. */
6943 OP_MSTRLST4, /* MVE vector list with four elements. */
6944
6945 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6946 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6947 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6948 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6949 zero. */
6950 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6951 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6952 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6953 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6954 */
6955 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6956 scalar, or ARM register. */
6957 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6958 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
6959 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
6960 register. */
6961 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
6962 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6963 OP_VMOV, /* Neon VMOV operands. */
6964 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6965 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6966 OP_RNDQMQ_Ibig,
6967 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6968 OP_RNDQMQ_I63b_RR, /* Neon D or Q reg, immediate for shift, MVE vector or
6969 ARM register. */
6970 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6971 OP_VLDR, /* VLDR operand. */
6972
6973 OP_I0, /* immediate zero */
6974 OP_I7, /* immediate value 0 .. 7 */
6975 OP_I15, /* 0 .. 15 */
6976 OP_I16, /* 1 .. 16 */
6977 OP_I16z, /* 0 .. 16 */
6978 OP_I31, /* 0 .. 31 */
6979 OP_I31w, /* 0 .. 31, optional trailing ! */
6980 OP_I32, /* 1 .. 32 */
6981 OP_I32z, /* 0 .. 32 */
6982 OP_I63, /* 0 .. 63 */
6983 OP_I63s, /* -64 .. 63 */
6984 OP_I64, /* 1 .. 64 */
6985 OP_I64z, /* 0 .. 64 */
6986 OP_I255, /* 0 .. 255 */
6987
6988 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6989 OP_I7b, /* 0 .. 7 */
6990 OP_I15b, /* 0 .. 15 */
6991 OP_I31b, /* 0 .. 31 */
6992
6993 OP_SH, /* shifter operand */
6994 OP_SHG, /* shifter operand with possible group relocation */
6995 OP_ADDR, /* Memory address expression (any mode) */
6996 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
6997 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6998 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6999 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
7000 OP_EXP, /* arbitrary expression */
7001 OP_EXPi, /* same, with optional immediate prefix */
7002 OP_EXPr, /* same, with optional relocation suffix */
7003 OP_EXPs, /* same, with optional non-first operand relocation suffix */
7004 OP_HALF, /* 0 .. 65535 or low/high reloc. */
7005 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7006 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7007
7008 OP_CPSF, /* CPS flags */
7009 OP_ENDI, /* Endianness specifier */
7010 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7011 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7012 OP_COND, /* conditional code */
7013 OP_TB, /* Table branch. */
7014
7015 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7016
7017 OP_RRnpc_I0, /* ARM register or literal 0 */
7018 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7019 OP_RR_EXi, /* ARM register or expression with imm prefix */
7020 OP_RF_IF, /* FPA register or immediate */
7021 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7022 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7023
7024 /* Optional operands. */
7025 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7026 OP_oI31b, /* 0 .. 31 */
7027 OP_oI32b, /* 1 .. 32 */
7028 OP_oI32z, /* 0 .. 32 */
7029 OP_oIffffb, /* 0 .. 65535 */
7030 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7031
7032 OP_oRR, /* ARM register */
7033 OP_oLR, /* ARM LR register */
7034 OP_oRRnpc, /* ARM register, not the PC */
7035 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7036 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7037 OP_oRND, /* Optional Neon double precision register */
7038 OP_oRNQ, /* Optional Neon quad precision register */
7039 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7040 OP_oRNDQ, /* Optional Neon double or quad precision register */
7041 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7042 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7043 register. */
7044 OP_oSHll, /* LSL immediate */
7045 OP_oSHar, /* ASR immediate */
7046 OP_oSHllar, /* LSL or ASR immediate */
7047 OP_oROR, /* ROR 0/8/16/24 */
7048 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7049
7050 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7051
7052 /* Some pre-defined mixed (ARM/THUMB) operands. */
7053 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7054 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7055 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7056
7057 OP_FIRST_OPTIONAL = OP_oI7b
7058 };
7059
7060 /* Generic instruction operand parser. This does no encoding and no
7061 semantic validation; it merely squirrels values away in the inst
7062 structure. Returns SUCCESS or FAIL depending on whether the
7063 specified grammar matched. */
7064 static int
7065 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7066 {
7067 unsigned const int *upat = pattern;
7068 char *backtrack_pos = 0;
7069 const char *backtrack_error = 0;
7070 int i, val = 0, backtrack_index = 0;
7071 enum arm_reg_type rtype;
7072 parse_operand_result result;
7073 unsigned int op_parse_code;
7074 bfd_boolean partial_match;
7075
7076 #define po_char_or_fail(chr) \
7077 do \
7078 { \
7079 if (skip_past_char (&str, chr) == FAIL) \
7080 goto bad_args; \
7081 } \
7082 while (0)
7083
7084 #define po_reg_or_fail(regtype) \
7085 do \
7086 { \
7087 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7088 & inst.operands[i].vectype); \
7089 if (val == FAIL) \
7090 { \
7091 first_error (_(reg_expected_msgs[regtype])); \
7092 goto failure; \
7093 } \
7094 inst.operands[i].reg = val; \
7095 inst.operands[i].isreg = 1; \
7096 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7097 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7098 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7099 || rtype == REG_TYPE_VFD \
7100 || rtype == REG_TYPE_NQ); \
7101 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7102 } \
7103 while (0)
7104
7105 #define po_reg_or_goto(regtype, label) \
7106 do \
7107 { \
7108 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7109 & inst.operands[i].vectype); \
7110 if (val == FAIL) \
7111 goto label; \
7112 \
7113 inst.operands[i].reg = val; \
7114 inst.operands[i].isreg = 1; \
7115 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7116 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7117 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7118 || rtype == REG_TYPE_VFD \
7119 || rtype == REG_TYPE_NQ); \
7120 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7121 } \
7122 while (0)
7123
7124 #define po_imm_or_fail(min, max, popt) \
7125 do \
7126 { \
7127 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7128 goto failure; \
7129 inst.operands[i].imm = val; \
7130 } \
7131 while (0)
7132
7133 #define po_scalar_or_goto(elsz, label, reg_type) \
7134 do \
7135 { \
7136 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7137 reg_type); \
7138 if (val == FAIL) \
7139 goto label; \
7140 inst.operands[i].reg = val; \
7141 inst.operands[i].isscalar = 1; \
7142 } \
7143 while (0)
7144
7145 #define po_misc_or_fail(expr) \
7146 do \
7147 { \
7148 if (expr) \
7149 goto failure; \
7150 } \
7151 while (0)
7152
7153 #define po_misc_or_fail_no_backtrack(expr) \
7154 do \
7155 { \
7156 result = expr; \
7157 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7158 backtrack_pos = 0; \
7159 if (result != PARSE_OPERAND_SUCCESS) \
7160 goto failure; \
7161 } \
7162 while (0)
7163
7164 #define po_barrier_or_imm(str) \
7165 do \
7166 { \
7167 val = parse_barrier (&str); \
7168 if (val == FAIL && ! ISALPHA (*str)) \
7169 goto immediate; \
7170 if (val == FAIL \
7171 /* ISB can only take SY as an option. */ \
7172 || ((inst.instruction & 0xf0) == 0x60 \
7173 && val != 0xf)) \
7174 { \
7175 inst.error = _("invalid barrier type"); \
7176 backtrack_pos = 0; \
7177 goto failure; \
7178 } \
7179 } \
7180 while (0)
7181
7182 skip_whitespace (str);
7183
7184 for (i = 0; upat[i] != OP_stop; i++)
7185 {
7186 op_parse_code = upat[i];
7187 if (op_parse_code >= 1<<16)
7188 op_parse_code = thumb ? (op_parse_code >> 16)
7189 : (op_parse_code & ((1<<16)-1));
7190
7191 if (op_parse_code >= OP_FIRST_OPTIONAL)
7192 {
7193 /* Remember where we are in case we need to backtrack. */
7194 backtrack_pos = str;
7195 backtrack_error = inst.error;
7196 backtrack_index = i;
7197 }
7198
7199 if (i > 0 && (i > 1 || inst.operands[0].present))
7200 po_char_or_fail (',');
7201
7202 switch (op_parse_code)
7203 {
7204 /* Registers */
7205 case OP_oRRnpc:
7206 case OP_oRRnpcsp:
7207 case OP_RRnpc:
7208 case OP_RRnpcsp:
7209 case OP_oRR:
7210 case OP_RRe:
7211 case OP_RRo:
7212 case OP_LR:
7213 case OP_oLR:
7214 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7215 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7216 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7217 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7218 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7219 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7220 case OP_oRND:
7221 case OP_RNDMQR:
7222 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7223 break;
7224 try_rndmq:
7225 case OP_RNDMQ:
7226 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7227 break;
7228 try_rnd:
7229 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7230 case OP_RVC:
7231 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7232 break;
7233 /* Also accept generic coprocessor regs for unknown registers. */
7234 coproc_reg:
7235 po_reg_or_fail (REG_TYPE_CN);
7236 break;
7237 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7238 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7239 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7240 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7241 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7242 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7243 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7244 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7245 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7246 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7247 case OP_oRNQ:
7248 case OP_RNQMQ:
7249 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7250 break;
7251 try_nq:
7252 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7253 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7254 case OP_RNDQMQR:
7255 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7256 break;
7257 try_rndqmq:
7258 case OP_oRNDQMQ:
7259 case OP_RNDQMQ:
7260 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7261 break;
7262 try_rndq:
7263 case OP_oRNDQ:
7264 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7265 case OP_RVSDMQ:
7266 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7267 break;
7268 try_rvsd:
7269 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7270 case OP_RVSD_COND:
7271 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7272 break;
7273 case OP_oRNSDQ:
7274 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7275 case OP_RNSDQMQR:
7276 po_reg_or_goto (REG_TYPE_RN, try_mq);
7277 break;
7278 try_mq:
7279 case OP_oRNSDQMQ:
7280 case OP_RNSDQMQ:
7281 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7282 break;
7283 try_nsdq2:
7284 po_reg_or_fail (REG_TYPE_NSDQ);
7285 inst.error = 0;
7286 break;
7287 case OP_RMQRR:
7288 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7289 break;
7290 try_rmq:
7291 case OP_RMQ:
7292 po_reg_or_fail (REG_TYPE_MQ);
7293 break;
7294 /* Neon scalar. Using an element size of 8 means that some invalid
7295 scalars are accepted here, so deal with those in later code. */
7296 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7297
7298 case OP_RNDQ_I0:
7299 {
7300 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7301 break;
7302 try_imm0:
7303 po_imm_or_fail (0, 0, TRUE);
7304 }
7305 break;
7306
7307 case OP_RVSD_I0:
7308 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7309 break;
7310
7311 case OP_RSVDMQ_FI0:
7312 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7313 break;
7314 try_rsvd_fi0:
7315 case OP_RSVD_FI0:
7316 {
7317 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7318 break;
7319 try_ifimm0:
7320 if (parse_ifimm_zero (&str))
7321 inst.operands[i].imm = 0;
7322 else
7323 {
7324 inst.error
7325 = _("only floating point zero is allowed as immediate value");
7326 goto failure;
7327 }
7328 }
7329 break;
7330
7331 case OP_RR_RNSC:
7332 {
7333 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7334 break;
7335 try_rr:
7336 po_reg_or_fail (REG_TYPE_RN);
7337 }
7338 break;
7339
7340 case OP_RNSDQ_RNSC_MQ_RR:
7341 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7342 break;
7343 try_rnsdq_rnsc_mq:
7344 case OP_RNSDQ_RNSC_MQ:
7345 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7346 break;
7347 try_rnsdq_rnsc:
7348 case OP_RNSDQ_RNSC:
7349 {
7350 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7351 inst.error = 0;
7352 break;
7353 try_nsdq:
7354 po_reg_or_fail (REG_TYPE_NSDQ);
7355 inst.error = 0;
7356 }
7357 break;
7358
7359 case OP_RNSD_RNSC:
7360 {
7361 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7362 break;
7363 try_s_scalar:
7364 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7365 break;
7366 try_nsd:
7367 po_reg_or_fail (REG_TYPE_NSD);
7368 }
7369 break;
7370
7371 case OP_RNDQMQ_RNSC_RR:
7372 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7373 break;
7374 try_rndq_rnsc_rr:
7375 case OP_RNDQ_RNSC_RR:
7376 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7377 break;
7378 case OP_RNDQMQ_RNSC:
7379 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7380 break;
7381 try_rndq_rnsc:
7382 case OP_RNDQ_RNSC:
7383 {
7384 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7385 break;
7386 try_ndq:
7387 po_reg_or_fail (REG_TYPE_NDQ);
7388 }
7389 break;
7390
7391 case OP_RND_RNSC:
7392 {
7393 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7394 break;
7395 try_vfd:
7396 po_reg_or_fail (REG_TYPE_VFD);
7397 }
7398 break;
7399
7400 case OP_VMOV:
7401 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7402 not careful then bad things might happen. */
7403 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7404 break;
7405
7406 case OP_RNDQMQ_Ibig:
7407 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7408 break;
7409 try_rndq_ibig:
7410 case OP_RNDQ_Ibig:
7411 {
7412 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7413 break;
7414 try_immbig:
7415 /* There's a possibility of getting a 64-bit immediate here, so
7416 we need special handling. */
7417 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7418 == FAIL)
7419 {
7420 inst.error = _("immediate value is out of range");
7421 goto failure;
7422 }
7423 }
7424 break;
7425
7426 case OP_RNDQMQ_I63b_RR:
7427 po_reg_or_goto (REG_TYPE_MQ, try_rndq_i63b_rr);
7428 break;
7429 try_rndq_i63b_rr:
7430 po_reg_or_goto (REG_TYPE_RN, try_rndq_i63b);
7431 break;
7432 try_rndq_i63b:
7433 case OP_RNDQ_I63b:
7434 {
7435 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7436 break;
7437 try_shimm:
7438 po_imm_or_fail (0, 63, TRUE);
7439 }
7440 break;
7441
7442 case OP_RRnpcb:
7443 po_char_or_fail ('[');
7444 po_reg_or_fail (REG_TYPE_RN);
7445 po_char_or_fail (']');
7446 break;
7447
7448 case OP_RRnpctw:
7449 case OP_RRw:
7450 case OP_oRRw:
7451 po_reg_or_fail (REG_TYPE_RN);
7452 if (skip_past_char (&str, '!') == SUCCESS)
7453 inst.operands[i].writeback = 1;
7454 break;
7455
7456 /* Immediates */
7457 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7458 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7459 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7460 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7461 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7462 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7463 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7464 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7465 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7466 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7467 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7468 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7469
7470 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7471 case OP_oI7b:
7472 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7473 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7474 case OP_oI31b:
7475 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7476 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7477 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7478 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7479
7480 /* Immediate variants */
7481 case OP_oI255c:
7482 po_char_or_fail ('{');
7483 po_imm_or_fail (0, 255, TRUE);
7484 po_char_or_fail ('}');
7485 break;
7486
7487 case OP_I31w:
7488 /* The expression parser chokes on a trailing !, so we have
7489 to find it first and zap it. */
7490 {
7491 char *s = str;
7492 while (*s && *s != ',')
7493 s++;
7494 if (s[-1] == '!')
7495 {
7496 s[-1] = '\0';
7497 inst.operands[i].writeback = 1;
7498 }
7499 po_imm_or_fail (0, 31, TRUE);
7500 if (str == s - 1)
7501 str = s;
7502 }
7503 break;
7504
7505 /* Expressions */
7506 case OP_EXPi: EXPi:
7507 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7508 GE_OPT_PREFIX));
7509 break;
7510
7511 case OP_EXP:
7512 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7513 GE_NO_PREFIX));
7514 break;
7515
7516 case OP_EXPr: EXPr:
7517 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7518 GE_NO_PREFIX));
7519 if (inst.relocs[0].exp.X_op == O_symbol)
7520 {
7521 val = parse_reloc (&str);
7522 if (val == -1)
7523 {
7524 inst.error = _("unrecognized relocation suffix");
7525 goto failure;
7526 }
7527 else if (val != BFD_RELOC_UNUSED)
7528 {
7529 inst.operands[i].imm = val;
7530 inst.operands[i].hasreloc = 1;
7531 }
7532 }
7533 break;
7534
7535 case OP_EXPs:
7536 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7537 GE_NO_PREFIX));
7538 if (inst.relocs[i].exp.X_op == O_symbol)
7539 {
7540 inst.operands[i].hasreloc = 1;
7541 }
7542 else if (inst.relocs[i].exp.X_op == O_constant)
7543 {
7544 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7545 inst.operands[i].hasreloc = 0;
7546 }
7547 break;
7548
7549 /* Operand for MOVW or MOVT. */
7550 case OP_HALF:
7551 po_misc_or_fail (parse_half (&str));
7552 break;
7553
7554 /* Register or expression. */
7555 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7556 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7557
7558 /* Register or immediate. */
7559 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7560 I0: po_imm_or_fail (0, 0, FALSE); break;
7561
7562 case OP_RRnpcsp_I32: po_reg_or_goto (REG_TYPE_RN, I32); break;
7563 I32: po_imm_or_fail (1, 32, FALSE); break;
7564
7565 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7566 IF:
7567 if (!is_immediate_prefix (*str))
7568 goto bad_args;
7569 str++;
7570 val = parse_fpa_immediate (&str);
7571 if (val == FAIL)
7572 goto failure;
7573 /* FPA immediates are encoded as registers 8-15.
7574 parse_fpa_immediate has already applied the offset. */
7575 inst.operands[i].reg = val;
7576 inst.operands[i].isreg = 1;
7577 break;
7578
7579 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7580 I32z: po_imm_or_fail (0, 32, FALSE); break;
7581
7582 /* Two kinds of register. */
7583 case OP_RIWR_RIWC:
7584 {
7585 struct reg_entry *rege = arm_reg_parse_multi (&str);
7586 if (!rege
7587 || (rege->type != REG_TYPE_MMXWR
7588 && rege->type != REG_TYPE_MMXWC
7589 && rege->type != REG_TYPE_MMXWCG))
7590 {
7591 inst.error = _("iWMMXt data or control register expected");
7592 goto failure;
7593 }
7594 inst.operands[i].reg = rege->number;
7595 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7596 }
7597 break;
7598
7599 case OP_RIWC_RIWG:
7600 {
7601 struct reg_entry *rege = arm_reg_parse_multi (&str);
7602 if (!rege
7603 || (rege->type != REG_TYPE_MMXWC
7604 && rege->type != REG_TYPE_MMXWCG))
7605 {
7606 inst.error = _("iWMMXt control register expected");
7607 goto failure;
7608 }
7609 inst.operands[i].reg = rege->number;
7610 inst.operands[i].isreg = 1;
7611 }
7612 break;
7613
7614 /* Misc */
7615 case OP_CPSF: val = parse_cps_flags (&str); break;
7616 case OP_ENDI: val = parse_endian_specifier (&str); break;
7617 case OP_oROR: val = parse_ror (&str); break;
7618 try_cond:
7619 case OP_COND: val = parse_cond (&str); break;
7620 case OP_oBARRIER_I15:
7621 po_barrier_or_imm (str); break;
7622 immediate:
7623 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7624 goto failure;
7625 break;
7626
7627 case OP_wPSR:
7628 case OP_rPSR:
7629 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7630 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7631 {
7632 inst.error = _("Banked registers are not available with this "
7633 "architecture.");
7634 goto failure;
7635 }
7636 break;
7637 try_psr:
7638 val = parse_psr (&str, op_parse_code == OP_wPSR);
7639 break;
7640
7641 case OP_VLDR:
7642 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7643 break;
7644 try_sysreg:
7645 val = parse_sys_vldr_vstr (&str);
7646 break;
7647
7648 case OP_APSR_RR:
7649 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7650 break;
7651 try_apsr:
7652 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7653 instruction). */
7654 if (strncasecmp (str, "APSR_", 5) == 0)
7655 {
7656 unsigned found = 0;
7657 str += 5;
7658 while (found < 15)
7659 switch (*str++)
7660 {
7661 case 'c': found = (found & 1) ? 16 : found | 1; break;
7662 case 'n': found = (found & 2) ? 16 : found | 2; break;
7663 case 'z': found = (found & 4) ? 16 : found | 4; break;
7664 case 'v': found = (found & 8) ? 16 : found | 8; break;
7665 default: found = 16;
7666 }
7667 if (found != 15)
7668 goto failure;
7669 inst.operands[i].isvec = 1;
7670 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7671 inst.operands[i].reg = REG_PC;
7672 }
7673 else
7674 goto failure;
7675 break;
7676
7677 case OP_TB:
7678 po_misc_or_fail (parse_tb (&str));
7679 break;
7680
7681 /* Register lists. */
7682 case OP_REGLST:
7683 val = parse_reg_list (&str, REGLIST_RN);
7684 if (*str == '^')
7685 {
7686 inst.operands[i].writeback = 1;
7687 str++;
7688 }
7689 break;
7690
7691 case OP_CLRMLST:
7692 val = parse_reg_list (&str, REGLIST_CLRM);
7693 break;
7694
7695 case OP_VRSLST:
7696 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7697 &partial_match);
7698 break;
7699
7700 case OP_VRDLST:
7701 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7702 &partial_match);
7703 break;
7704
7705 case OP_VRSDLST:
7706 /* Allow Q registers too. */
7707 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7708 REGLIST_NEON_D, &partial_match);
7709 if (val == FAIL)
7710 {
7711 inst.error = NULL;
7712 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7713 REGLIST_VFP_S, &partial_match);
7714 inst.operands[i].issingle = 1;
7715 }
7716 break;
7717
7718 case OP_VRSDVLST:
7719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7720 REGLIST_VFP_D_VPR, &partial_match);
7721 if (val == FAIL && !partial_match)
7722 {
7723 inst.error = NULL;
7724 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7725 REGLIST_VFP_S_VPR, &partial_match);
7726 inst.operands[i].issingle = 1;
7727 }
7728 break;
7729
7730 case OP_NRDLST:
7731 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7732 REGLIST_NEON_D, &partial_match);
7733 break;
7734
7735 case OP_MSTRLST4:
7736 case OP_MSTRLST2:
7737 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7738 1, &inst.operands[i].vectype);
7739 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7740 goto failure;
7741 break;
7742 case OP_NSTRLST:
7743 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7744 0, &inst.operands[i].vectype);
7745 break;
7746
7747 /* Addressing modes */
7748 case OP_ADDRMVE:
7749 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7750 break;
7751
7752 case OP_ADDR:
7753 po_misc_or_fail (parse_address (&str, i));
7754 break;
7755
7756 case OP_ADDRGLDR:
7757 po_misc_or_fail_no_backtrack (
7758 parse_address_group_reloc (&str, i, GROUP_LDR));
7759 break;
7760
7761 case OP_ADDRGLDRS:
7762 po_misc_or_fail_no_backtrack (
7763 parse_address_group_reloc (&str, i, GROUP_LDRS));
7764 break;
7765
7766 case OP_ADDRGLDC:
7767 po_misc_or_fail_no_backtrack (
7768 parse_address_group_reloc (&str, i, GROUP_LDC));
7769 break;
7770
7771 case OP_SH:
7772 po_misc_or_fail (parse_shifter_operand (&str, i));
7773 break;
7774
7775 case OP_SHG:
7776 po_misc_or_fail_no_backtrack (
7777 parse_shifter_operand_group_reloc (&str, i));
7778 break;
7779
7780 case OP_oSHll:
7781 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7782 break;
7783
7784 case OP_oSHar:
7785 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7786 break;
7787
7788 case OP_oSHllar:
7789 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7790 break;
7791
7792 case OP_RMQRZ:
7793 case OP_oRMQRZ:
7794 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7795 break;
7796 try_rr_zr:
7797 po_reg_or_goto (REG_TYPE_RN, ZR);
7798 break;
7799 ZR:
7800 po_reg_or_fail (REG_TYPE_ZR);
7801 break;
7802
7803 default:
7804 as_fatal (_("unhandled operand code %d"), op_parse_code);
7805 }
7806
7807 /* Various value-based sanity checks and shared operations. We
7808 do not signal immediate failures for the register constraints;
7809 this allows a syntax error to take precedence. */
7810 switch (op_parse_code)
7811 {
7812 case OP_oRRnpc:
7813 case OP_RRnpc:
7814 case OP_RRnpcb:
7815 case OP_RRw:
7816 case OP_oRRw:
7817 case OP_RRnpc_I0:
7818 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7819 inst.error = BAD_PC;
7820 break;
7821
7822 case OP_oRRnpcsp:
7823 case OP_RRnpcsp:
7824 case OP_RRnpcsp_I32:
7825 if (inst.operands[i].isreg)
7826 {
7827 if (inst.operands[i].reg == REG_PC)
7828 inst.error = BAD_PC;
7829 else if (inst.operands[i].reg == REG_SP
7830 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7831 relaxed since ARMv8-A. */
7832 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7833 {
7834 gas_assert (thumb);
7835 inst.error = BAD_SP;
7836 }
7837 }
7838 break;
7839
7840 case OP_RRnpctw:
7841 if (inst.operands[i].isreg
7842 && inst.operands[i].reg == REG_PC
7843 && (inst.operands[i].writeback || thumb))
7844 inst.error = BAD_PC;
7845 break;
7846
7847 case OP_RVSD_COND:
7848 case OP_VLDR:
7849 if (inst.operands[i].isreg)
7850 break;
7851 /* fall through. */
7852
7853 case OP_CPSF:
7854 case OP_ENDI:
7855 case OP_oROR:
7856 case OP_wPSR:
7857 case OP_rPSR:
7858 case OP_COND:
7859 case OP_oBARRIER_I15:
7860 case OP_REGLST:
7861 case OP_CLRMLST:
7862 case OP_VRSLST:
7863 case OP_VRDLST:
7864 case OP_VRSDLST:
7865 case OP_VRSDVLST:
7866 case OP_NRDLST:
7867 case OP_NSTRLST:
7868 case OP_MSTRLST2:
7869 case OP_MSTRLST4:
7870 if (val == FAIL)
7871 goto failure;
7872 inst.operands[i].imm = val;
7873 break;
7874
7875 case OP_LR:
7876 case OP_oLR:
7877 if (inst.operands[i].reg != REG_LR)
7878 inst.error = _("operand must be LR register");
7879 break;
7880
7881 case OP_RMQRZ:
7882 case OP_oRMQRZ:
7883 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7884 inst.error = BAD_PC;
7885 break;
7886
7887 case OP_RRe:
7888 if (inst.operands[i].isreg
7889 && (inst.operands[i].reg & 0x00000001) != 0)
7890 inst.error = BAD_ODD;
7891 break;
7892
7893 case OP_RRo:
7894 if (inst.operands[i].isreg)
7895 {
7896 if ((inst.operands[i].reg & 0x00000001) != 1)
7897 inst.error = BAD_EVEN;
7898 else if (inst.operands[i].reg == REG_SP)
7899 as_tsktsk (MVE_BAD_SP);
7900 else if (inst.operands[i].reg == REG_PC)
7901 inst.error = BAD_PC;
7902 }
7903 break;
7904
7905 default:
7906 break;
7907 }
7908
7909 /* If we get here, this operand was successfully parsed. */
7910 inst.operands[i].present = 1;
7911 continue;
7912
7913 bad_args:
7914 inst.error = BAD_ARGS;
7915
7916 failure:
7917 if (!backtrack_pos)
7918 {
7919 /* The parse routine should already have set inst.error, but set a
7920 default here just in case. */
7921 if (!inst.error)
7922 inst.error = BAD_SYNTAX;
7923 return FAIL;
7924 }
7925
7926 /* Do not backtrack over a trailing optional argument that
7927 absorbed some text. We will only fail again, with the
7928 'garbage following instruction' error message, which is
7929 probably less helpful than the current one. */
7930 if (backtrack_index == i && backtrack_pos != str
7931 && upat[i+1] == OP_stop)
7932 {
7933 if (!inst.error)
7934 inst.error = BAD_SYNTAX;
7935 return FAIL;
7936 }
7937
7938 /* Try again, skipping the optional argument at backtrack_pos. */
7939 str = backtrack_pos;
7940 inst.error = backtrack_error;
7941 inst.operands[backtrack_index].present = 0;
7942 i = backtrack_index;
7943 backtrack_pos = 0;
7944 }
7945
7946 /* Check that we have parsed all the arguments. */
7947 if (*str != '\0' && !inst.error)
7948 inst.error = _("garbage following instruction");
7949
7950 return inst.error ? FAIL : SUCCESS;
7951 }
7952
7953 #undef po_char_or_fail
7954 #undef po_reg_or_fail
7955 #undef po_reg_or_goto
7956 #undef po_imm_or_fail
7957 #undef po_scalar_or_fail
7958 #undef po_barrier_or_imm
7959
7960 /* Shorthand macro for instruction encoding functions issuing errors. */
7961 #define constraint(expr, err) \
7962 do \
7963 { \
7964 if (expr) \
7965 { \
7966 inst.error = err; \
7967 return; \
7968 } \
7969 } \
7970 while (0)
7971
7972 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7973 instructions are unpredictable if these registers are used. This
7974 is the BadReg predicate in ARM's Thumb-2 documentation.
7975
7976 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7977 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7978 #define reject_bad_reg(reg) \
7979 do \
7980 if (reg == REG_PC) \
7981 { \
7982 inst.error = BAD_PC; \
7983 return; \
7984 } \
7985 else if (reg == REG_SP \
7986 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7987 { \
7988 inst.error = BAD_SP; \
7989 return; \
7990 } \
7991 while (0)
7992
7993 /* If REG is R13 (the stack pointer), warn that its use is
7994 deprecated. */
7995 #define warn_deprecated_sp(reg) \
7996 do \
7997 if (warn_on_deprecated && reg == REG_SP) \
7998 as_tsktsk (_("use of r13 is deprecated")); \
7999 while (0)
8000
8001 /* Functions for operand encoding. ARM, then Thumb. */
8002
8003 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
8004
8005 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
8006
8007 The only binary encoding difference is the Coprocessor number. Coprocessor
8008 9 is used for half-precision calculations or conversions. The format of the
8009 instruction is the same as the equivalent Coprocessor 10 instruction that
8010 exists for Single-Precision operation. */
8011
8012 static void
8013 do_scalar_fp16_v82_encode (void)
8014 {
8015 if (inst.cond < COND_ALWAYS)
8016 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8017 " the behaviour is UNPREDICTABLE"));
8018 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8019 _(BAD_FP16));
8020
8021 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8022 mark_feature_used (&arm_ext_fp16);
8023 }
8024
8025 /* If VAL can be encoded in the immediate field of an ARM instruction,
8026 return the encoded form. Otherwise, return FAIL. */
8027
8028 static unsigned int
8029 encode_arm_immediate (unsigned int val)
8030 {
8031 unsigned int a, i;
8032
8033 if (val <= 0xff)
8034 return val;
8035
8036 for (i = 2; i < 32; i += 2)
8037 if ((a = rotate_left (val, i)) <= 0xff)
8038 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8039
8040 return FAIL;
8041 }
8042
8043 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8044 return the encoded form. Otherwise, return FAIL. */
8045 static unsigned int
8046 encode_thumb32_immediate (unsigned int val)
8047 {
8048 unsigned int a, i;
8049
8050 if (val <= 0xff)
8051 return val;
8052
8053 for (i = 1; i <= 24; i++)
8054 {
8055 a = val >> i;
8056 if ((val & ~(0xff << i)) == 0)
8057 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8058 }
8059
8060 a = val & 0xff;
8061 if (val == ((a << 16) | a))
8062 return 0x100 | a;
8063 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8064 return 0x300 | a;
8065
8066 a = val & 0xff00;
8067 if (val == ((a << 16) | a))
8068 return 0x200 | (a >> 8);
8069
8070 return FAIL;
8071 }
8072 /* Encode a VFP SP or DP register number into inst.instruction. */
8073
8074 static void
8075 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8076 {
8077 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8078 && reg > 15)
8079 {
8080 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8081 {
8082 if (thumb_mode)
8083 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8084 fpu_vfp_ext_d32);
8085 else
8086 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8087 fpu_vfp_ext_d32);
8088 }
8089 else
8090 {
8091 first_error (_("D register out of range for selected VFP version"));
8092 return;
8093 }
8094 }
8095
8096 switch (pos)
8097 {
8098 case VFP_REG_Sd:
8099 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8100 break;
8101
8102 case VFP_REG_Sn:
8103 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8104 break;
8105
8106 case VFP_REG_Sm:
8107 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8108 break;
8109
8110 case VFP_REG_Dd:
8111 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8112 break;
8113
8114 case VFP_REG_Dn:
8115 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8116 break;
8117
8118 case VFP_REG_Dm:
8119 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8120 break;
8121
8122 default:
8123 abort ();
8124 }
8125 }
8126
8127 /* Encode a <shift> in an ARM-format instruction. The immediate,
8128 if any, is handled by md_apply_fix. */
8129 static void
8130 encode_arm_shift (int i)
8131 {
8132 /* register-shifted register. */
8133 if (inst.operands[i].immisreg)
8134 {
8135 int op_index;
8136 for (op_index = 0; op_index <= i; ++op_index)
8137 {
8138 /* Check the operand only when it's presented. In pre-UAL syntax,
8139 if the destination register is the same as the first operand, two
8140 register form of the instruction can be used. */
8141 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8142 && inst.operands[op_index].reg == REG_PC)
8143 as_warn (UNPRED_REG ("r15"));
8144 }
8145
8146 if (inst.operands[i].imm == REG_PC)
8147 as_warn (UNPRED_REG ("r15"));
8148 }
8149
8150 if (inst.operands[i].shift_kind == SHIFT_RRX)
8151 inst.instruction |= SHIFT_ROR << 5;
8152 else
8153 {
8154 inst.instruction |= inst.operands[i].shift_kind << 5;
8155 if (inst.operands[i].immisreg)
8156 {
8157 inst.instruction |= SHIFT_BY_REG;
8158 inst.instruction |= inst.operands[i].imm << 8;
8159 }
8160 else
8161 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8162 }
8163 }
8164
8165 static void
8166 encode_arm_shifter_operand (int i)
8167 {
8168 if (inst.operands[i].isreg)
8169 {
8170 inst.instruction |= inst.operands[i].reg;
8171 encode_arm_shift (i);
8172 }
8173 else
8174 {
8175 inst.instruction |= INST_IMMEDIATE;
8176 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8177 inst.instruction |= inst.operands[i].imm;
8178 }
8179 }
8180
8181 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8182 static void
8183 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8184 {
8185 /* PR 14260:
8186 Generate an error if the operand is not a register. */
8187 constraint (!inst.operands[i].isreg,
8188 _("Instruction does not support =N addresses"));
8189
8190 inst.instruction |= inst.operands[i].reg << 16;
8191
8192 if (inst.operands[i].preind)
8193 {
8194 if (is_t)
8195 {
8196 inst.error = _("instruction does not accept preindexed addressing");
8197 return;
8198 }
8199 inst.instruction |= PRE_INDEX;
8200 if (inst.operands[i].writeback)
8201 inst.instruction |= WRITE_BACK;
8202
8203 }
8204 else if (inst.operands[i].postind)
8205 {
8206 gas_assert (inst.operands[i].writeback);
8207 if (is_t)
8208 inst.instruction |= WRITE_BACK;
8209 }
8210 else /* unindexed - only for coprocessor */
8211 {
8212 inst.error = _("instruction does not accept unindexed addressing");
8213 return;
8214 }
8215
8216 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8217 && (((inst.instruction & 0x000f0000) >> 16)
8218 == ((inst.instruction & 0x0000f000) >> 12)))
8219 as_warn ((inst.instruction & LOAD_BIT)
8220 ? _("destination register same as write-back base")
8221 : _("source register same as write-back base"));
8222 }
8223
8224 /* inst.operands[i] was set up by parse_address. Encode it into an
8225 ARM-format mode 2 load or store instruction. If is_t is true,
8226 reject forms that cannot be used with a T instruction (i.e. not
8227 post-indexed). */
8228 static void
8229 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8230 {
8231 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8232
8233 encode_arm_addr_mode_common (i, is_t);
8234
8235 if (inst.operands[i].immisreg)
8236 {
8237 constraint ((inst.operands[i].imm == REG_PC
8238 || (is_pc && inst.operands[i].writeback)),
8239 BAD_PC_ADDRESSING);
8240 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8241 inst.instruction |= inst.operands[i].imm;
8242 if (!inst.operands[i].negative)
8243 inst.instruction |= INDEX_UP;
8244 if (inst.operands[i].shifted)
8245 {
8246 if (inst.operands[i].shift_kind == SHIFT_RRX)
8247 inst.instruction |= SHIFT_ROR << 5;
8248 else
8249 {
8250 inst.instruction |= inst.operands[i].shift_kind << 5;
8251 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8252 }
8253 }
8254 }
8255 else /* immediate offset in inst.relocs[0] */
8256 {
8257 if (is_pc && !inst.relocs[0].pc_rel)
8258 {
8259 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8260
8261 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8262 cannot use PC in addressing.
8263 PC cannot be used in writeback addressing, either. */
8264 constraint ((is_t || inst.operands[i].writeback),
8265 BAD_PC_ADDRESSING);
8266
8267 /* Use of PC in str is deprecated for ARMv7. */
8268 if (warn_on_deprecated
8269 && !is_load
8270 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8271 as_tsktsk (_("use of PC in this instruction is deprecated"));
8272 }
8273
8274 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8275 {
8276 /* Prefer + for zero encoded value. */
8277 if (!inst.operands[i].negative)
8278 inst.instruction |= INDEX_UP;
8279 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8280 }
8281 }
8282 }
8283
8284 /* inst.operands[i] was set up by parse_address. Encode it into an
8285 ARM-format mode 3 load or store instruction. Reject forms that
8286 cannot be used with such instructions. If is_t is true, reject
8287 forms that cannot be used with a T instruction (i.e. not
8288 post-indexed). */
8289 static void
8290 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8291 {
8292 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8293 {
8294 inst.error = _("instruction does not accept scaled register index");
8295 return;
8296 }
8297
8298 encode_arm_addr_mode_common (i, is_t);
8299
8300 if (inst.operands[i].immisreg)
8301 {
8302 constraint ((inst.operands[i].imm == REG_PC
8303 || (is_t && inst.operands[i].reg == REG_PC)),
8304 BAD_PC_ADDRESSING);
8305 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8306 BAD_PC_WRITEBACK);
8307 inst.instruction |= inst.operands[i].imm;
8308 if (!inst.operands[i].negative)
8309 inst.instruction |= INDEX_UP;
8310 }
8311 else /* immediate offset in inst.relocs[0] */
8312 {
8313 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8314 && inst.operands[i].writeback),
8315 BAD_PC_WRITEBACK);
8316 inst.instruction |= HWOFFSET_IMM;
8317 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8318 {
8319 /* Prefer + for zero encoded value. */
8320 if (!inst.operands[i].negative)
8321 inst.instruction |= INDEX_UP;
8322
8323 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8324 }
8325 }
8326 }
8327
8328 /* Write immediate bits [7:0] to the following locations:
8329
8330 |28/24|23 19|18 16|15 4|3 0|
8331 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8332
8333 This function is used by VMOV/VMVN/VORR/VBIC. */
8334
8335 static void
8336 neon_write_immbits (unsigned immbits)
8337 {
8338 inst.instruction |= immbits & 0xf;
8339 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8340 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8341 }
8342
8343 /* Invert low-order SIZE bits of XHI:XLO. */
8344
8345 static void
8346 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8347 {
8348 unsigned immlo = xlo ? *xlo : 0;
8349 unsigned immhi = xhi ? *xhi : 0;
8350
8351 switch (size)
8352 {
8353 case 8:
8354 immlo = (~immlo) & 0xff;
8355 break;
8356
8357 case 16:
8358 immlo = (~immlo) & 0xffff;
8359 break;
8360
8361 case 64:
8362 immhi = (~immhi) & 0xffffffff;
8363 /* fall through. */
8364
8365 case 32:
8366 immlo = (~immlo) & 0xffffffff;
8367 break;
8368
8369 default:
8370 abort ();
8371 }
8372
8373 if (xlo)
8374 *xlo = immlo;
8375
8376 if (xhi)
8377 *xhi = immhi;
8378 }
8379
8380 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8381 A, B, C, D. */
8382
8383 static int
8384 neon_bits_same_in_bytes (unsigned imm)
8385 {
8386 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8387 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8388 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8389 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8390 }
8391
8392 /* For immediate of above form, return 0bABCD. */
8393
8394 static unsigned
8395 neon_squash_bits (unsigned imm)
8396 {
8397 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8398 | ((imm & 0x01000000) >> 21);
8399 }
8400
8401 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8402
8403 static unsigned
8404 neon_qfloat_bits (unsigned imm)
8405 {
8406 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8407 }
8408
8409 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8410 the instruction. *OP is passed as the initial value of the op field, and
8411 may be set to a different value depending on the constant (i.e.
8412 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8413 MVN). If the immediate looks like a repeated pattern then also
8414 try smaller element sizes. */
8415
8416 static int
8417 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8418 unsigned *immbits, int *op, int size,
8419 enum neon_el_type type)
8420 {
8421 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8422 float. */
8423 if (type == NT_float && !float_p)
8424 return FAIL;
8425
8426 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8427 {
8428 if (size != 32 || *op == 1)
8429 return FAIL;
8430 *immbits = neon_qfloat_bits (immlo);
8431 return 0xf;
8432 }
8433
8434 if (size == 64)
8435 {
8436 if (neon_bits_same_in_bytes (immhi)
8437 && neon_bits_same_in_bytes (immlo))
8438 {
8439 if (*op == 1)
8440 return FAIL;
8441 *immbits = (neon_squash_bits (immhi) << 4)
8442 | neon_squash_bits (immlo);
8443 *op = 1;
8444 return 0xe;
8445 }
8446
8447 if (immhi != immlo)
8448 return FAIL;
8449 }
8450
8451 if (size >= 32)
8452 {
8453 if (immlo == (immlo & 0x000000ff))
8454 {
8455 *immbits = immlo;
8456 return 0x0;
8457 }
8458 else if (immlo == (immlo & 0x0000ff00))
8459 {
8460 *immbits = immlo >> 8;
8461 return 0x2;
8462 }
8463 else if (immlo == (immlo & 0x00ff0000))
8464 {
8465 *immbits = immlo >> 16;
8466 return 0x4;
8467 }
8468 else if (immlo == (immlo & 0xff000000))
8469 {
8470 *immbits = immlo >> 24;
8471 return 0x6;
8472 }
8473 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8474 {
8475 *immbits = (immlo >> 8) & 0xff;
8476 return 0xc;
8477 }
8478 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8479 {
8480 *immbits = (immlo >> 16) & 0xff;
8481 return 0xd;
8482 }
8483
8484 if ((immlo & 0xffff) != (immlo >> 16))
8485 return FAIL;
8486 immlo &= 0xffff;
8487 }
8488
8489 if (size >= 16)
8490 {
8491 if (immlo == (immlo & 0x000000ff))
8492 {
8493 *immbits = immlo;
8494 return 0x8;
8495 }
8496 else if (immlo == (immlo & 0x0000ff00))
8497 {
8498 *immbits = immlo >> 8;
8499 return 0xa;
8500 }
8501
8502 if ((immlo & 0xff) != (immlo >> 8))
8503 return FAIL;
8504 immlo &= 0xff;
8505 }
8506
8507 if (immlo == (immlo & 0x000000ff))
8508 {
8509 /* Don't allow MVN with 8-bit immediate. */
8510 if (*op == 1)
8511 return FAIL;
8512 *immbits = immlo;
8513 return 0xe;
8514 }
8515
8516 return FAIL;
8517 }
8518
8519 #if defined BFD_HOST_64_BIT
8520 /* Returns TRUE if double precision value V may be cast
8521 to single precision without loss of accuracy. */
8522
8523 static bfd_boolean
8524 is_double_a_single (bfd_int64_t v)
8525 {
8526 int exp = (int)((v >> 52) & 0x7FF);
8527 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8528
8529 return (exp == 0 || exp == 0x7FF
8530 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8531 && (mantissa & 0x1FFFFFFFl) == 0;
8532 }
8533
8534 /* Returns a double precision value casted to single precision
8535 (ignoring the least significant bits in exponent and mantissa). */
8536
8537 static int
8538 double_to_single (bfd_int64_t v)
8539 {
8540 int sign = (int) ((v >> 63) & 1l);
8541 int exp = (int) ((v >> 52) & 0x7FF);
8542 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8543
8544 if (exp == 0x7FF)
8545 exp = 0xFF;
8546 else
8547 {
8548 exp = exp - 1023 + 127;
8549 if (exp >= 0xFF)
8550 {
8551 /* Infinity. */
8552 exp = 0x7F;
8553 mantissa = 0;
8554 }
8555 else if (exp < 0)
8556 {
8557 /* No denormalized numbers. */
8558 exp = 0;
8559 mantissa = 0;
8560 }
8561 }
8562 mantissa >>= 29;
8563 return (sign << 31) | (exp << 23) | mantissa;
8564 }
8565 #endif /* BFD_HOST_64_BIT */
8566
8567 enum lit_type
8568 {
8569 CONST_THUMB,
8570 CONST_ARM,
8571 CONST_VEC
8572 };
8573
8574 static void do_vfp_nsyn_opcode (const char *);
8575
8576 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8577 Determine whether it can be performed with a move instruction; if
8578 it can, convert inst.instruction to that move instruction and
8579 return TRUE; if it can't, convert inst.instruction to a literal-pool
8580 load and return FALSE. If this is not a valid thing to do in the
8581 current context, set inst.error and return TRUE.
8582
8583 inst.operands[i] describes the destination register. */
8584
8585 static bfd_boolean
8586 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8587 {
8588 unsigned long tbit;
8589 bfd_boolean thumb_p = (t == CONST_THUMB);
8590 bfd_boolean arm_p = (t == CONST_ARM);
8591
8592 if (thumb_p)
8593 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8594 else
8595 tbit = LOAD_BIT;
8596
8597 if ((inst.instruction & tbit) == 0)
8598 {
8599 inst.error = _("invalid pseudo operation");
8600 return TRUE;
8601 }
8602
8603 if (inst.relocs[0].exp.X_op != O_constant
8604 && inst.relocs[0].exp.X_op != O_symbol
8605 && inst.relocs[0].exp.X_op != O_big)
8606 {
8607 inst.error = _("constant expression expected");
8608 return TRUE;
8609 }
8610
8611 if (inst.relocs[0].exp.X_op == O_constant
8612 || inst.relocs[0].exp.X_op == O_big)
8613 {
8614 #if defined BFD_HOST_64_BIT
8615 bfd_int64_t v;
8616 #else
8617 offsetT v;
8618 #endif
8619 if (inst.relocs[0].exp.X_op == O_big)
8620 {
8621 LITTLENUM_TYPE w[X_PRECISION];
8622 LITTLENUM_TYPE * l;
8623
8624 if (inst.relocs[0].exp.X_add_number == -1)
8625 {
8626 gen_to_words (w, X_PRECISION, E_PRECISION);
8627 l = w;
8628 /* FIXME: Should we check words w[2..5] ? */
8629 }
8630 else
8631 l = generic_bignum;
8632
8633 #if defined BFD_HOST_64_BIT
8634 v =
8635 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8636 << LITTLENUM_NUMBER_OF_BITS)
8637 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8638 << LITTLENUM_NUMBER_OF_BITS)
8639 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8640 << LITTLENUM_NUMBER_OF_BITS)
8641 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8642 #else
8643 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8644 | (l[0] & LITTLENUM_MASK);
8645 #endif
8646 }
8647 else
8648 v = inst.relocs[0].exp.X_add_number;
8649
8650 if (!inst.operands[i].issingle)
8651 {
8652 if (thumb_p)
8653 {
8654 /* LDR should not use lead in a flag-setting instruction being
8655 chosen so we do not check whether movs can be used. */
8656
8657 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8658 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8659 && inst.operands[i].reg != 13
8660 && inst.operands[i].reg != 15)
8661 {
8662 /* Check if on thumb2 it can be done with a mov.w, mvn or
8663 movw instruction. */
8664 unsigned int newimm;
8665 bfd_boolean isNegated;
8666
8667 newimm = encode_thumb32_immediate (v);
8668 if (newimm != (unsigned int) FAIL)
8669 isNegated = FALSE;
8670 else
8671 {
8672 newimm = encode_thumb32_immediate (~v);
8673 if (newimm != (unsigned int) FAIL)
8674 isNegated = TRUE;
8675 }
8676
8677 /* The number can be loaded with a mov.w or mvn
8678 instruction. */
8679 if (newimm != (unsigned int) FAIL
8680 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8681 {
8682 inst.instruction = (0xf04f0000 /* MOV.W. */
8683 | (inst.operands[i].reg << 8));
8684 /* Change to MOVN. */
8685 inst.instruction |= (isNegated ? 0x200000 : 0);
8686 inst.instruction |= (newimm & 0x800) << 15;
8687 inst.instruction |= (newimm & 0x700) << 4;
8688 inst.instruction |= (newimm & 0x0ff);
8689 return TRUE;
8690 }
8691 /* The number can be loaded with a movw instruction. */
8692 else if ((v & ~0xFFFF) == 0
8693 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8694 {
8695 int imm = v & 0xFFFF;
8696
8697 inst.instruction = 0xf2400000; /* MOVW. */
8698 inst.instruction |= (inst.operands[i].reg << 8);
8699 inst.instruction |= (imm & 0xf000) << 4;
8700 inst.instruction |= (imm & 0x0800) << 15;
8701 inst.instruction |= (imm & 0x0700) << 4;
8702 inst.instruction |= (imm & 0x00ff);
8703 /* In case this replacement is being done on Armv8-M
8704 Baseline we need to make sure to disable the
8705 instruction size check, as otherwise GAS will reject
8706 the use of this T32 instruction. */
8707 inst.size_req = 0;
8708 return TRUE;
8709 }
8710 }
8711 }
8712 else if (arm_p)
8713 {
8714 int value = encode_arm_immediate (v);
8715
8716 if (value != FAIL)
8717 {
8718 /* This can be done with a mov instruction. */
8719 inst.instruction &= LITERAL_MASK;
8720 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8721 inst.instruction |= value & 0xfff;
8722 return TRUE;
8723 }
8724
8725 value = encode_arm_immediate (~ v);
8726 if (value != FAIL)
8727 {
8728 /* This can be done with a mvn instruction. */
8729 inst.instruction &= LITERAL_MASK;
8730 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8731 inst.instruction |= value & 0xfff;
8732 return TRUE;
8733 }
8734 }
8735 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8736 {
8737 int op = 0;
8738 unsigned immbits = 0;
8739 unsigned immlo = inst.operands[1].imm;
8740 unsigned immhi = inst.operands[1].regisimm
8741 ? inst.operands[1].reg
8742 : inst.relocs[0].exp.X_unsigned
8743 ? 0
8744 : ((bfd_int64_t)((int) immlo)) >> 32;
8745 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8746 &op, 64, NT_invtype);
8747
8748 if (cmode == FAIL)
8749 {
8750 neon_invert_size (&immlo, &immhi, 64);
8751 op = !op;
8752 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8753 &op, 64, NT_invtype);
8754 }
8755
8756 if (cmode != FAIL)
8757 {
8758 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8759 | (1 << 23)
8760 | (cmode << 8)
8761 | (op << 5)
8762 | (1 << 4);
8763
8764 /* Fill other bits in vmov encoding for both thumb and arm. */
8765 if (thumb_mode)
8766 inst.instruction |= (0x7U << 29) | (0xF << 24);
8767 else
8768 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8769 neon_write_immbits (immbits);
8770 return TRUE;
8771 }
8772 }
8773 }
8774
8775 if (t == CONST_VEC)
8776 {
8777 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8778 if (inst.operands[i].issingle
8779 && is_quarter_float (inst.operands[1].imm)
8780 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8781 {
8782 inst.operands[1].imm =
8783 neon_qfloat_bits (v);
8784 do_vfp_nsyn_opcode ("fconsts");
8785 return TRUE;
8786 }
8787
8788 /* If our host does not support a 64-bit type then we cannot perform
8789 the following optimization. This mean that there will be a
8790 discrepancy between the output produced by an assembler built for
8791 a 32-bit-only host and the output produced from a 64-bit host, but
8792 this cannot be helped. */
8793 #if defined BFD_HOST_64_BIT
8794 else if (!inst.operands[1].issingle
8795 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8796 {
8797 if (is_double_a_single (v)
8798 && is_quarter_float (double_to_single (v)))
8799 {
8800 inst.operands[1].imm =
8801 neon_qfloat_bits (double_to_single (v));
8802 do_vfp_nsyn_opcode ("fconstd");
8803 return TRUE;
8804 }
8805 }
8806 #endif
8807 }
8808 }
8809
8810 if (add_to_lit_pool ((!inst.operands[i].isvec
8811 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8812 return TRUE;
8813
8814 inst.operands[1].reg = REG_PC;
8815 inst.operands[1].isreg = 1;
8816 inst.operands[1].preind = 1;
8817 inst.relocs[0].pc_rel = 1;
8818 inst.relocs[0].type = (thumb_p
8819 ? BFD_RELOC_ARM_THUMB_OFFSET
8820 : (mode_3
8821 ? BFD_RELOC_ARM_HWLITERAL
8822 : BFD_RELOC_ARM_LITERAL));
8823 return FALSE;
8824 }
8825
8826 /* inst.operands[i] was set up by parse_address. Encode it into an
8827 ARM-format instruction. Reject all forms which cannot be encoded
8828 into a coprocessor load/store instruction. If wb_ok is false,
8829 reject use of writeback; if unind_ok is false, reject use of
8830 unindexed addressing. If reloc_override is not 0, use it instead
8831 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8832 (in which case it is preserved). */
8833
8834 static int
8835 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8836 {
8837 if (!inst.operands[i].isreg)
8838 {
8839 /* PR 18256 */
8840 if (! inst.operands[0].isvec)
8841 {
8842 inst.error = _("invalid co-processor operand");
8843 return FAIL;
8844 }
8845 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8846 return SUCCESS;
8847 }
8848
8849 inst.instruction |= inst.operands[i].reg << 16;
8850
8851 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8852
8853 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8854 {
8855 gas_assert (!inst.operands[i].writeback);
8856 if (!unind_ok)
8857 {
8858 inst.error = _("instruction does not support unindexed addressing");
8859 return FAIL;
8860 }
8861 inst.instruction |= inst.operands[i].imm;
8862 inst.instruction |= INDEX_UP;
8863 return SUCCESS;
8864 }
8865
8866 if (inst.operands[i].preind)
8867 inst.instruction |= PRE_INDEX;
8868
8869 if (inst.operands[i].writeback)
8870 {
8871 if (inst.operands[i].reg == REG_PC)
8872 {
8873 inst.error = _("pc may not be used with write-back");
8874 return FAIL;
8875 }
8876 if (!wb_ok)
8877 {
8878 inst.error = _("instruction does not support writeback");
8879 return FAIL;
8880 }
8881 inst.instruction |= WRITE_BACK;
8882 }
8883
8884 if (reloc_override)
8885 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8886 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8887 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8888 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8889 {
8890 if (thumb_mode)
8891 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8892 else
8893 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8894 }
8895
8896 /* Prefer + for zero encoded value. */
8897 if (!inst.operands[i].negative)
8898 inst.instruction |= INDEX_UP;
8899
8900 return SUCCESS;
8901 }
8902
8903 /* Functions for instruction encoding, sorted by sub-architecture.
8904 First some generics; their names are taken from the conventional
8905 bit positions for register arguments in ARM format instructions. */
8906
8907 static void
8908 do_noargs (void)
8909 {
8910 }
8911
8912 static void
8913 do_rd (void)
8914 {
8915 inst.instruction |= inst.operands[0].reg << 12;
8916 }
8917
8918 static void
8919 do_rn (void)
8920 {
8921 inst.instruction |= inst.operands[0].reg << 16;
8922 }
8923
8924 static void
8925 do_rd_rm (void)
8926 {
8927 inst.instruction |= inst.operands[0].reg << 12;
8928 inst.instruction |= inst.operands[1].reg;
8929 }
8930
8931 static void
8932 do_rm_rn (void)
8933 {
8934 inst.instruction |= inst.operands[0].reg;
8935 inst.instruction |= inst.operands[1].reg << 16;
8936 }
8937
8938 static void
8939 do_rd_rn (void)
8940 {
8941 inst.instruction |= inst.operands[0].reg << 12;
8942 inst.instruction |= inst.operands[1].reg << 16;
8943 }
8944
8945 static void
8946 do_rn_rd (void)
8947 {
8948 inst.instruction |= inst.operands[0].reg << 16;
8949 inst.instruction |= inst.operands[1].reg << 12;
8950 }
8951
8952 static void
8953 do_tt (void)
8954 {
8955 inst.instruction |= inst.operands[0].reg << 8;
8956 inst.instruction |= inst.operands[1].reg << 16;
8957 }
8958
8959 static bfd_boolean
8960 check_obsolete (const arm_feature_set *feature, const char *msg)
8961 {
8962 if (ARM_CPU_IS_ANY (cpu_variant))
8963 {
8964 as_tsktsk ("%s", msg);
8965 return TRUE;
8966 }
8967 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8968 {
8969 as_bad ("%s", msg);
8970 return TRUE;
8971 }
8972
8973 return FALSE;
8974 }
8975
8976 static void
8977 do_rd_rm_rn (void)
8978 {
8979 unsigned Rn = inst.operands[2].reg;
8980 /* Enforce restrictions on SWP instruction. */
8981 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8982 {
8983 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8984 _("Rn must not overlap other operands"));
8985
8986 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8987 */
8988 if (!check_obsolete (&arm_ext_v8,
8989 _("swp{b} use is obsoleted for ARMv8 and later"))
8990 && warn_on_deprecated
8991 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8992 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8993 }
8994
8995 inst.instruction |= inst.operands[0].reg << 12;
8996 inst.instruction |= inst.operands[1].reg;
8997 inst.instruction |= Rn << 16;
8998 }
8999
9000 static void
9001 do_rd_rn_rm (void)
9002 {
9003 inst.instruction |= inst.operands[0].reg << 12;
9004 inst.instruction |= inst.operands[1].reg << 16;
9005 inst.instruction |= inst.operands[2].reg;
9006 }
9007
9008 static void
9009 do_rm_rd_rn (void)
9010 {
9011 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
9012 constraint (((inst.relocs[0].exp.X_op != O_constant
9013 && inst.relocs[0].exp.X_op != O_illegal)
9014 || inst.relocs[0].exp.X_add_number != 0),
9015 BAD_ADDR_MODE);
9016 inst.instruction |= inst.operands[0].reg;
9017 inst.instruction |= inst.operands[1].reg << 12;
9018 inst.instruction |= inst.operands[2].reg << 16;
9019 }
9020
9021 static void
9022 do_imm0 (void)
9023 {
9024 inst.instruction |= inst.operands[0].imm;
9025 }
9026
9027 static void
9028 do_rd_cpaddr (void)
9029 {
9030 inst.instruction |= inst.operands[0].reg << 12;
9031 encode_arm_cp_address (1, TRUE, TRUE, 0);
9032 }
9033
9034 /* ARM instructions, in alphabetical order by function name (except
9035 that wrapper functions appear immediately after the function they
9036 wrap). */
9037
9038 /* This is a pseudo-op of the form "adr rd, label" to be converted
9039 into a relative address of the form "add rd, pc, #label-.-8". */
9040
9041 static void
9042 do_adr (void)
9043 {
9044 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9045
9046 /* Frag hacking will turn this into a sub instruction if the offset turns
9047 out to be negative. */
9048 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9049 inst.relocs[0].pc_rel = 1;
9050 inst.relocs[0].exp.X_add_number -= 8;
9051
9052 if (support_interwork
9053 && inst.relocs[0].exp.X_op == O_symbol
9054 && inst.relocs[0].exp.X_add_symbol != NULL
9055 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9056 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9057 inst.relocs[0].exp.X_add_number |= 1;
9058 }
9059
9060 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9061 into a relative address of the form:
9062 add rd, pc, #low(label-.-8)"
9063 add rd, rd, #high(label-.-8)" */
9064
9065 static void
9066 do_adrl (void)
9067 {
9068 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9069
9070 /* Frag hacking will turn this into a sub instruction if the offset turns
9071 out to be negative. */
9072 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9073 inst.relocs[0].pc_rel = 1;
9074 inst.size = INSN_SIZE * 2;
9075 inst.relocs[0].exp.X_add_number -= 8;
9076
9077 if (support_interwork
9078 && inst.relocs[0].exp.X_op == O_symbol
9079 && inst.relocs[0].exp.X_add_symbol != NULL
9080 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9081 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9082 inst.relocs[0].exp.X_add_number |= 1;
9083 }
9084
9085 static void
9086 do_arit (void)
9087 {
9088 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9089 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9090 THUMB1_RELOC_ONLY);
9091 if (!inst.operands[1].present)
9092 inst.operands[1].reg = inst.operands[0].reg;
9093 inst.instruction |= inst.operands[0].reg << 12;
9094 inst.instruction |= inst.operands[1].reg << 16;
9095 encode_arm_shifter_operand (2);
9096 }
9097
9098 static void
9099 do_barrier (void)
9100 {
9101 if (inst.operands[0].present)
9102 inst.instruction |= inst.operands[0].imm;
9103 else
9104 inst.instruction |= 0xf;
9105 }
9106
9107 static void
9108 do_bfc (void)
9109 {
9110 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9111 constraint (msb > 32, _("bit-field extends past end of register"));
9112 /* The instruction encoding stores the LSB and MSB,
9113 not the LSB and width. */
9114 inst.instruction |= inst.operands[0].reg << 12;
9115 inst.instruction |= inst.operands[1].imm << 7;
9116 inst.instruction |= (msb - 1) << 16;
9117 }
9118
9119 static void
9120 do_bfi (void)
9121 {
9122 unsigned int msb;
9123
9124 /* #0 in second position is alternative syntax for bfc, which is
9125 the same instruction but with REG_PC in the Rm field. */
9126 if (!inst.operands[1].isreg)
9127 inst.operands[1].reg = REG_PC;
9128
9129 msb = inst.operands[2].imm + inst.operands[3].imm;
9130 constraint (msb > 32, _("bit-field extends past end of register"));
9131 /* The instruction encoding stores the LSB and MSB,
9132 not the LSB and width. */
9133 inst.instruction |= inst.operands[0].reg << 12;
9134 inst.instruction |= inst.operands[1].reg;
9135 inst.instruction |= inst.operands[2].imm << 7;
9136 inst.instruction |= (msb - 1) << 16;
9137 }
9138
9139 static void
9140 do_bfx (void)
9141 {
9142 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9143 _("bit-field extends past end of register"));
9144 inst.instruction |= inst.operands[0].reg << 12;
9145 inst.instruction |= inst.operands[1].reg;
9146 inst.instruction |= inst.operands[2].imm << 7;
9147 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9148 }
9149
9150 /* ARM V5 breakpoint instruction (argument parse)
9151 BKPT <16 bit unsigned immediate>
9152 Instruction is not conditional.
9153 The bit pattern given in insns[] has the COND_ALWAYS condition,
9154 and it is an error if the caller tried to override that. */
9155
9156 static void
9157 do_bkpt (void)
9158 {
9159 /* Top 12 of 16 bits to bits 19:8. */
9160 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9161
9162 /* Bottom 4 of 16 bits to bits 3:0. */
9163 inst.instruction |= inst.operands[0].imm & 0xf;
9164 }
9165
9166 static void
9167 encode_branch (int default_reloc)
9168 {
9169 if (inst.operands[0].hasreloc)
9170 {
9171 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9172 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9173 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9174 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9175 ? BFD_RELOC_ARM_PLT32
9176 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9177 }
9178 else
9179 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9180 inst.relocs[0].pc_rel = 1;
9181 }
9182
9183 static void
9184 do_branch (void)
9185 {
9186 #ifdef OBJ_ELF
9187 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9188 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9189 else
9190 #endif
9191 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9192 }
9193
9194 static void
9195 do_bl (void)
9196 {
9197 #ifdef OBJ_ELF
9198 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9199 {
9200 if (inst.cond == COND_ALWAYS)
9201 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9202 else
9203 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9204 }
9205 else
9206 #endif
9207 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9208 }
9209
9210 /* ARM V5 branch-link-exchange instruction (argument parse)
9211 BLX <target_addr> ie BLX(1)
9212 BLX{<condition>} <Rm> ie BLX(2)
9213 Unfortunately, there are two different opcodes for this mnemonic.
9214 So, the insns[].value is not used, and the code here zaps values
9215 into inst.instruction.
9216 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9217
9218 static void
9219 do_blx (void)
9220 {
9221 if (inst.operands[0].isreg)
9222 {
9223 /* Arg is a register; the opcode provided by insns[] is correct.
9224 It is not illegal to do "blx pc", just useless. */
9225 if (inst.operands[0].reg == REG_PC)
9226 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9227
9228 inst.instruction |= inst.operands[0].reg;
9229 }
9230 else
9231 {
9232 /* Arg is an address; this instruction cannot be executed
9233 conditionally, and the opcode must be adjusted.
9234 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9235 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9236 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9237 inst.instruction = 0xfa000000;
9238 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9239 }
9240 }
9241
9242 static void
9243 do_bx (void)
9244 {
9245 bfd_boolean want_reloc;
9246
9247 if (inst.operands[0].reg == REG_PC)
9248 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9249
9250 inst.instruction |= inst.operands[0].reg;
9251 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9252 it is for ARMv4t or earlier. */
9253 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9254 if (!ARM_FEATURE_ZERO (selected_object_arch)
9255 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9256 want_reloc = TRUE;
9257
9258 #ifdef OBJ_ELF
9259 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9260 #endif
9261 want_reloc = FALSE;
9262
9263 if (want_reloc)
9264 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9265 }
9266
9267
9268 /* ARM v5TEJ. Jump to Jazelle code. */
9269
9270 static void
9271 do_bxj (void)
9272 {
9273 if (inst.operands[0].reg == REG_PC)
9274 as_tsktsk (_("use of r15 in bxj is not really useful"));
9275
9276 inst.instruction |= inst.operands[0].reg;
9277 }
9278
9279 /* Co-processor data operation:
9280 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9281 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9282 static void
9283 do_cdp (void)
9284 {
9285 inst.instruction |= inst.operands[0].reg << 8;
9286 inst.instruction |= inst.operands[1].imm << 20;
9287 inst.instruction |= inst.operands[2].reg << 12;
9288 inst.instruction |= inst.operands[3].reg << 16;
9289 inst.instruction |= inst.operands[4].reg;
9290 inst.instruction |= inst.operands[5].imm << 5;
9291 }
9292
9293 static void
9294 do_cmp (void)
9295 {
9296 inst.instruction |= inst.operands[0].reg << 16;
9297 encode_arm_shifter_operand (1);
9298 }
9299
9300 /* Transfer between coprocessor and ARM registers.
9301 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9302 MRC2
9303 MCR{cond}
9304 MCR2
9305
9306 No special properties. */
9307
9308 struct deprecated_coproc_regs_s
9309 {
9310 unsigned cp;
9311 int opc1;
9312 unsigned crn;
9313 unsigned crm;
9314 int opc2;
9315 arm_feature_set deprecated;
9316 arm_feature_set obsoleted;
9317 const char *dep_msg;
9318 const char *obs_msg;
9319 };
9320
9321 #define DEPR_ACCESS_V8 \
9322 N_("This coprocessor register access is deprecated in ARMv8")
9323
9324 /* Table of all deprecated coprocessor registers. */
9325 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9326 {
9327 {15, 0, 7, 10, 5, /* CP15DMB. */
9328 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9329 DEPR_ACCESS_V8, NULL},
9330 {15, 0, 7, 10, 4, /* CP15DSB. */
9331 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9332 DEPR_ACCESS_V8, NULL},
9333 {15, 0, 7, 5, 4, /* CP15ISB. */
9334 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9335 DEPR_ACCESS_V8, NULL},
9336 {14, 6, 1, 0, 0, /* TEEHBR. */
9337 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9338 DEPR_ACCESS_V8, NULL},
9339 {14, 6, 0, 0, 0, /* TEECR. */
9340 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9341 DEPR_ACCESS_V8, NULL},
9342 };
9343
9344 #undef DEPR_ACCESS_V8
9345
9346 static const size_t deprecated_coproc_reg_count =
9347 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9348
9349 static void
9350 do_co_reg (void)
9351 {
9352 unsigned Rd;
9353 size_t i;
9354
9355 Rd = inst.operands[2].reg;
9356 if (thumb_mode)
9357 {
9358 if (inst.instruction == 0xee000010
9359 || inst.instruction == 0xfe000010)
9360 /* MCR, MCR2 */
9361 reject_bad_reg (Rd);
9362 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9363 /* MRC, MRC2 */
9364 constraint (Rd == REG_SP, BAD_SP);
9365 }
9366 else
9367 {
9368 /* MCR */
9369 if (inst.instruction == 0xe000010)
9370 constraint (Rd == REG_PC, BAD_PC);
9371 }
9372
9373 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9374 {
9375 const struct deprecated_coproc_regs_s *r =
9376 deprecated_coproc_regs + i;
9377
9378 if (inst.operands[0].reg == r->cp
9379 && inst.operands[1].imm == r->opc1
9380 && inst.operands[3].reg == r->crn
9381 && inst.operands[4].reg == r->crm
9382 && inst.operands[5].imm == r->opc2)
9383 {
9384 if (! ARM_CPU_IS_ANY (cpu_variant)
9385 && warn_on_deprecated
9386 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9387 as_tsktsk ("%s", r->dep_msg);
9388 }
9389 }
9390
9391 inst.instruction |= inst.operands[0].reg << 8;
9392 inst.instruction |= inst.operands[1].imm << 21;
9393 inst.instruction |= Rd << 12;
9394 inst.instruction |= inst.operands[3].reg << 16;
9395 inst.instruction |= inst.operands[4].reg;
9396 inst.instruction |= inst.operands[5].imm << 5;
9397 }
9398
9399 /* Transfer between coprocessor register and pair of ARM registers.
9400 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9401 MCRR2
9402 MRRC{cond}
9403 MRRC2
9404
9405 Two XScale instructions are special cases of these:
9406
9407 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9408 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9409
9410 Result unpredictable if Rd or Rn is R15. */
9411
9412 static void
9413 do_co_reg2c (void)
9414 {
9415 unsigned Rd, Rn;
9416
9417 Rd = inst.operands[2].reg;
9418 Rn = inst.operands[3].reg;
9419
9420 if (thumb_mode)
9421 {
9422 reject_bad_reg (Rd);
9423 reject_bad_reg (Rn);
9424 }
9425 else
9426 {
9427 constraint (Rd == REG_PC, BAD_PC);
9428 constraint (Rn == REG_PC, BAD_PC);
9429 }
9430
9431 /* Only check the MRRC{2} variants. */
9432 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9433 {
9434 /* If Rd == Rn, error that the operation is
9435 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9436 constraint (Rd == Rn, BAD_OVERLAP);
9437 }
9438
9439 inst.instruction |= inst.operands[0].reg << 8;
9440 inst.instruction |= inst.operands[1].imm << 4;
9441 inst.instruction |= Rd << 12;
9442 inst.instruction |= Rn << 16;
9443 inst.instruction |= inst.operands[4].reg;
9444 }
9445
9446 static void
9447 do_cpsi (void)
9448 {
9449 inst.instruction |= inst.operands[0].imm << 6;
9450 if (inst.operands[1].present)
9451 {
9452 inst.instruction |= CPSI_MMOD;
9453 inst.instruction |= inst.operands[1].imm;
9454 }
9455 }
9456
9457 static void
9458 do_dbg (void)
9459 {
9460 inst.instruction |= inst.operands[0].imm;
9461 }
9462
9463 static void
9464 do_div (void)
9465 {
9466 unsigned Rd, Rn, Rm;
9467
9468 Rd = inst.operands[0].reg;
9469 Rn = (inst.operands[1].present
9470 ? inst.operands[1].reg : Rd);
9471 Rm = inst.operands[2].reg;
9472
9473 constraint ((Rd == REG_PC), BAD_PC);
9474 constraint ((Rn == REG_PC), BAD_PC);
9475 constraint ((Rm == REG_PC), BAD_PC);
9476
9477 inst.instruction |= Rd << 16;
9478 inst.instruction |= Rn << 0;
9479 inst.instruction |= Rm << 8;
9480 }
9481
9482 static void
9483 do_it (void)
9484 {
9485 /* There is no IT instruction in ARM mode. We
9486 process it to do the validation as if in
9487 thumb mode, just in case the code gets
9488 assembled for thumb using the unified syntax. */
9489
9490 inst.size = 0;
9491 if (unified_syntax)
9492 {
9493 set_pred_insn_type (IT_INSN);
9494 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9495 now_pred.cc = inst.operands[0].imm;
9496 }
9497 }
9498
9499 /* If there is only one register in the register list,
9500 then return its register number. Otherwise return -1. */
9501 static int
9502 only_one_reg_in_list (int range)
9503 {
9504 int i = ffs (range) - 1;
9505 return (i > 15 || range != (1 << i)) ? -1 : i;
9506 }
9507
9508 static void
9509 encode_ldmstm(int from_push_pop_mnem)
9510 {
9511 int base_reg = inst.operands[0].reg;
9512 int range = inst.operands[1].imm;
9513 int one_reg;
9514
9515 inst.instruction |= base_reg << 16;
9516 inst.instruction |= range;
9517
9518 if (inst.operands[1].writeback)
9519 inst.instruction |= LDM_TYPE_2_OR_3;
9520
9521 if (inst.operands[0].writeback)
9522 {
9523 inst.instruction |= WRITE_BACK;
9524 /* Check for unpredictable uses of writeback. */
9525 if (inst.instruction & LOAD_BIT)
9526 {
9527 /* Not allowed in LDM type 2. */
9528 if ((inst.instruction & LDM_TYPE_2_OR_3)
9529 && ((range & (1 << REG_PC)) == 0))
9530 as_warn (_("writeback of base register is UNPREDICTABLE"));
9531 /* Only allowed if base reg not in list for other types. */
9532 else if (range & (1 << base_reg))
9533 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9534 }
9535 else /* STM. */
9536 {
9537 /* Not allowed for type 2. */
9538 if (inst.instruction & LDM_TYPE_2_OR_3)
9539 as_warn (_("writeback of base register is UNPREDICTABLE"));
9540 /* Only allowed if base reg not in list, or first in list. */
9541 else if ((range & (1 << base_reg))
9542 && (range & ((1 << base_reg) - 1)))
9543 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9544 }
9545 }
9546
9547 /* If PUSH/POP has only one register, then use the A2 encoding. */
9548 one_reg = only_one_reg_in_list (range);
9549 if (from_push_pop_mnem && one_reg >= 0)
9550 {
9551 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9552
9553 if (is_push && one_reg == 13 /* SP */)
9554 /* PR 22483: The A2 encoding cannot be used when
9555 pushing the stack pointer as this is UNPREDICTABLE. */
9556 return;
9557
9558 inst.instruction &= A_COND_MASK;
9559 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9560 inst.instruction |= one_reg << 12;
9561 }
9562 }
9563
9564 static void
9565 do_ldmstm (void)
9566 {
9567 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9568 }
9569
9570 /* ARMv5TE load-consecutive (argument parse)
9571 Mode is like LDRH.
9572
9573 LDRccD R, mode
9574 STRccD R, mode. */
9575
9576 static void
9577 do_ldrd (void)
9578 {
9579 constraint (inst.operands[0].reg % 2 != 0,
9580 _("first transfer register must be even"));
9581 constraint (inst.operands[1].present
9582 && inst.operands[1].reg != inst.operands[0].reg + 1,
9583 _("can only transfer two consecutive registers"));
9584 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9585 constraint (!inst.operands[2].isreg, _("'[' expected"));
9586
9587 if (!inst.operands[1].present)
9588 inst.operands[1].reg = inst.operands[0].reg + 1;
9589
9590 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9591 register and the first register written; we have to diagnose
9592 overlap between the base and the second register written here. */
9593
9594 if (inst.operands[2].reg == inst.operands[1].reg
9595 && (inst.operands[2].writeback || inst.operands[2].postind))
9596 as_warn (_("base register written back, and overlaps "
9597 "second transfer register"));
9598
9599 if (!(inst.instruction & V4_STR_BIT))
9600 {
9601 /* For an index-register load, the index register must not overlap the
9602 destination (even if not write-back). */
9603 if (inst.operands[2].immisreg
9604 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9605 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9606 as_warn (_("index register overlaps transfer register"));
9607 }
9608 inst.instruction |= inst.operands[0].reg << 12;
9609 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9610 }
9611
9612 static void
9613 do_ldrex (void)
9614 {
9615 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9616 || inst.operands[1].postind || inst.operands[1].writeback
9617 || inst.operands[1].immisreg || inst.operands[1].shifted
9618 || inst.operands[1].negative
9619 /* This can arise if the programmer has written
9620 strex rN, rM, foo
9621 or if they have mistakenly used a register name as the last
9622 operand, eg:
9623 strex rN, rM, rX
9624 It is very difficult to distinguish between these two cases
9625 because "rX" might actually be a label. ie the register
9626 name has been occluded by a symbol of the same name. So we
9627 just generate a general 'bad addressing mode' type error
9628 message and leave it up to the programmer to discover the
9629 true cause and fix their mistake. */
9630 || (inst.operands[1].reg == REG_PC),
9631 BAD_ADDR_MODE);
9632
9633 constraint (inst.relocs[0].exp.X_op != O_constant
9634 || inst.relocs[0].exp.X_add_number != 0,
9635 _("offset must be zero in ARM encoding"));
9636
9637 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9638
9639 inst.instruction |= inst.operands[0].reg << 12;
9640 inst.instruction |= inst.operands[1].reg << 16;
9641 inst.relocs[0].type = BFD_RELOC_UNUSED;
9642 }
9643
9644 static void
9645 do_ldrexd (void)
9646 {
9647 constraint (inst.operands[0].reg % 2 != 0,
9648 _("even register required"));
9649 constraint (inst.operands[1].present
9650 && inst.operands[1].reg != inst.operands[0].reg + 1,
9651 _("can only load two consecutive registers"));
9652 /* If op 1 were present and equal to PC, this function wouldn't
9653 have been called in the first place. */
9654 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9655
9656 inst.instruction |= inst.operands[0].reg << 12;
9657 inst.instruction |= inst.operands[2].reg << 16;
9658 }
9659
9660 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9661 which is not a multiple of four is UNPREDICTABLE. */
9662 static void
9663 check_ldr_r15_aligned (void)
9664 {
9665 constraint (!(inst.operands[1].immisreg)
9666 && (inst.operands[0].reg == REG_PC
9667 && inst.operands[1].reg == REG_PC
9668 && (inst.relocs[0].exp.X_add_number & 0x3)),
9669 _("ldr to register 15 must be 4-byte aligned"));
9670 }
9671
9672 static void
9673 do_ldst (void)
9674 {
9675 inst.instruction |= inst.operands[0].reg << 12;
9676 if (!inst.operands[1].isreg)
9677 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9678 return;
9679 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9680 check_ldr_r15_aligned ();
9681 }
9682
9683 static void
9684 do_ldstt (void)
9685 {
9686 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9687 reject [Rn,...]. */
9688 if (inst.operands[1].preind)
9689 {
9690 constraint (inst.relocs[0].exp.X_op != O_constant
9691 || inst.relocs[0].exp.X_add_number != 0,
9692 _("this instruction requires a post-indexed address"));
9693
9694 inst.operands[1].preind = 0;
9695 inst.operands[1].postind = 1;
9696 inst.operands[1].writeback = 1;
9697 }
9698 inst.instruction |= inst.operands[0].reg << 12;
9699 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9700 }
9701
9702 /* Halfword and signed-byte load/store operations. */
9703
9704 static void
9705 do_ldstv4 (void)
9706 {
9707 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9708 inst.instruction |= inst.operands[0].reg << 12;
9709 if (!inst.operands[1].isreg)
9710 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9711 return;
9712 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9713 }
9714
9715 static void
9716 do_ldsttv4 (void)
9717 {
9718 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9719 reject [Rn,...]. */
9720 if (inst.operands[1].preind)
9721 {
9722 constraint (inst.relocs[0].exp.X_op != O_constant
9723 || inst.relocs[0].exp.X_add_number != 0,
9724 _("this instruction requires a post-indexed address"));
9725
9726 inst.operands[1].preind = 0;
9727 inst.operands[1].postind = 1;
9728 inst.operands[1].writeback = 1;
9729 }
9730 inst.instruction |= inst.operands[0].reg << 12;
9731 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9732 }
9733
9734 /* Co-processor register load/store.
9735 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9736 static void
9737 do_lstc (void)
9738 {
9739 inst.instruction |= inst.operands[0].reg << 8;
9740 inst.instruction |= inst.operands[1].reg << 12;
9741 encode_arm_cp_address (2, TRUE, TRUE, 0);
9742 }
9743
9744 static void
9745 do_mlas (void)
9746 {
9747 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9748 if (inst.operands[0].reg == inst.operands[1].reg
9749 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9750 && !(inst.instruction & 0x00400000))
9751 as_tsktsk (_("Rd and Rm should be different in mla"));
9752
9753 inst.instruction |= inst.operands[0].reg << 16;
9754 inst.instruction |= inst.operands[1].reg;
9755 inst.instruction |= inst.operands[2].reg << 8;
9756 inst.instruction |= inst.operands[3].reg << 12;
9757 }
9758
9759 static void
9760 do_mov (void)
9761 {
9762 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9763 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9764 THUMB1_RELOC_ONLY);
9765 inst.instruction |= inst.operands[0].reg << 12;
9766 encode_arm_shifter_operand (1);
9767 }
9768
9769 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9770 static void
9771 do_mov16 (void)
9772 {
9773 bfd_vma imm;
9774 bfd_boolean top;
9775
9776 top = (inst.instruction & 0x00400000) != 0;
9777 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9778 _(":lower16: not allowed in this instruction"));
9779 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9780 _(":upper16: not allowed in this instruction"));
9781 inst.instruction |= inst.operands[0].reg << 12;
9782 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9783 {
9784 imm = inst.relocs[0].exp.X_add_number;
9785 /* The value is in two pieces: 0:11, 16:19. */
9786 inst.instruction |= (imm & 0x00000fff);
9787 inst.instruction |= (imm & 0x0000f000) << 4;
9788 }
9789 }
9790
9791 static int
9792 do_vfp_nsyn_mrs (void)
9793 {
9794 if (inst.operands[0].isvec)
9795 {
9796 if (inst.operands[1].reg != 1)
9797 first_error (_("operand 1 must be FPSCR"));
9798 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9799 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9800 do_vfp_nsyn_opcode ("fmstat");
9801 }
9802 else if (inst.operands[1].isvec)
9803 do_vfp_nsyn_opcode ("fmrx");
9804 else
9805 return FAIL;
9806
9807 return SUCCESS;
9808 }
9809
9810 static int
9811 do_vfp_nsyn_msr (void)
9812 {
9813 if (inst.operands[0].isvec)
9814 do_vfp_nsyn_opcode ("fmxr");
9815 else
9816 return FAIL;
9817
9818 return SUCCESS;
9819 }
9820
9821 static void
9822 do_vmrs (void)
9823 {
9824 unsigned Rt = inst.operands[0].reg;
9825
9826 if (thumb_mode && Rt == REG_SP)
9827 {
9828 inst.error = BAD_SP;
9829 return;
9830 }
9831
9832 /* MVFR2 is only valid at ARMv8-A. */
9833 if (inst.operands[1].reg == 5)
9834 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9835 _(BAD_FPU));
9836
9837 /* APSR_ sets isvec. All other refs to PC are illegal. */
9838 if (!inst.operands[0].isvec && Rt == REG_PC)
9839 {
9840 inst.error = BAD_PC;
9841 return;
9842 }
9843
9844 /* If we get through parsing the register name, we just insert the number
9845 generated into the instruction without further validation. */
9846 inst.instruction |= (inst.operands[1].reg << 16);
9847 inst.instruction |= (Rt << 12);
9848 }
9849
9850 static void
9851 do_vmsr (void)
9852 {
9853 unsigned Rt = inst.operands[1].reg;
9854
9855 if (thumb_mode)
9856 reject_bad_reg (Rt);
9857 else if (Rt == REG_PC)
9858 {
9859 inst.error = BAD_PC;
9860 return;
9861 }
9862
9863 /* MVFR2 is only valid for ARMv8-A. */
9864 if (inst.operands[0].reg == 5)
9865 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9866 _(BAD_FPU));
9867
9868 /* If we get through parsing the register name, we just insert the number
9869 generated into the instruction without further validation. */
9870 inst.instruction |= (inst.operands[0].reg << 16);
9871 inst.instruction |= (Rt << 12);
9872 }
9873
9874 static void
9875 do_mrs (void)
9876 {
9877 unsigned br;
9878
9879 if (do_vfp_nsyn_mrs () == SUCCESS)
9880 return;
9881
9882 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9883 inst.instruction |= inst.operands[0].reg << 12;
9884
9885 if (inst.operands[1].isreg)
9886 {
9887 br = inst.operands[1].reg;
9888 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9889 as_bad (_("bad register for mrs"));
9890 }
9891 else
9892 {
9893 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9894 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9895 != (PSR_c|PSR_f),
9896 _("'APSR', 'CPSR' or 'SPSR' expected"));
9897 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9898 }
9899
9900 inst.instruction |= br;
9901 }
9902
9903 /* Two possible forms:
9904 "{C|S}PSR_<field>, Rm",
9905 "{C|S}PSR_f, #expression". */
9906
9907 static void
9908 do_msr (void)
9909 {
9910 if (do_vfp_nsyn_msr () == SUCCESS)
9911 return;
9912
9913 inst.instruction |= inst.operands[0].imm;
9914 if (inst.operands[1].isreg)
9915 inst.instruction |= inst.operands[1].reg;
9916 else
9917 {
9918 inst.instruction |= INST_IMMEDIATE;
9919 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9920 inst.relocs[0].pc_rel = 0;
9921 }
9922 }
9923
9924 static void
9925 do_mul (void)
9926 {
9927 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9928
9929 if (!inst.operands[2].present)
9930 inst.operands[2].reg = inst.operands[0].reg;
9931 inst.instruction |= inst.operands[0].reg << 16;
9932 inst.instruction |= inst.operands[1].reg;
9933 inst.instruction |= inst.operands[2].reg << 8;
9934
9935 if (inst.operands[0].reg == inst.operands[1].reg
9936 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9937 as_tsktsk (_("Rd and Rm should be different in mul"));
9938 }
9939
9940 /* Long Multiply Parser
9941 UMULL RdLo, RdHi, Rm, Rs
9942 SMULL RdLo, RdHi, Rm, Rs
9943 UMLAL RdLo, RdHi, Rm, Rs
9944 SMLAL RdLo, RdHi, Rm, Rs. */
9945
9946 static void
9947 do_mull (void)
9948 {
9949 inst.instruction |= inst.operands[0].reg << 12;
9950 inst.instruction |= inst.operands[1].reg << 16;
9951 inst.instruction |= inst.operands[2].reg;
9952 inst.instruction |= inst.operands[3].reg << 8;
9953
9954 /* rdhi and rdlo must be different. */
9955 if (inst.operands[0].reg == inst.operands[1].reg)
9956 as_tsktsk (_("rdhi and rdlo must be different"));
9957
9958 /* rdhi, rdlo and rm must all be different before armv6. */
9959 if ((inst.operands[0].reg == inst.operands[2].reg
9960 || inst.operands[1].reg == inst.operands[2].reg)
9961 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9962 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9963 }
9964
9965 static void
9966 do_nop (void)
9967 {
9968 if (inst.operands[0].present
9969 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9970 {
9971 /* Architectural NOP hints are CPSR sets with no bits selected. */
9972 inst.instruction &= 0xf0000000;
9973 inst.instruction |= 0x0320f000;
9974 if (inst.operands[0].present)
9975 inst.instruction |= inst.operands[0].imm;
9976 }
9977 }
9978
9979 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9980 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9981 Condition defaults to COND_ALWAYS.
9982 Error if Rd, Rn or Rm are R15. */
9983
9984 static void
9985 do_pkhbt (void)
9986 {
9987 inst.instruction |= inst.operands[0].reg << 12;
9988 inst.instruction |= inst.operands[1].reg << 16;
9989 inst.instruction |= inst.operands[2].reg;
9990 if (inst.operands[3].present)
9991 encode_arm_shift (3);
9992 }
9993
9994 /* ARM V6 PKHTB (Argument Parse). */
9995
9996 static void
9997 do_pkhtb (void)
9998 {
9999 if (!inst.operands[3].present)
10000 {
10001 /* If the shift specifier is omitted, turn the instruction
10002 into pkhbt rd, rm, rn. */
10003 inst.instruction &= 0xfff00010;
10004 inst.instruction |= inst.operands[0].reg << 12;
10005 inst.instruction |= inst.operands[1].reg;
10006 inst.instruction |= inst.operands[2].reg << 16;
10007 }
10008 else
10009 {
10010 inst.instruction |= inst.operands[0].reg << 12;
10011 inst.instruction |= inst.operands[1].reg << 16;
10012 inst.instruction |= inst.operands[2].reg;
10013 encode_arm_shift (3);
10014 }
10015 }
10016
10017 /* ARMv5TE: Preload-Cache
10018 MP Extensions: Preload for write
10019
10020 PLD(W) <addr_mode>
10021
10022 Syntactically, like LDR with B=1, W=0, L=1. */
10023
10024 static void
10025 do_pld (void)
10026 {
10027 constraint (!inst.operands[0].isreg,
10028 _("'[' expected after PLD mnemonic"));
10029 constraint (inst.operands[0].postind,
10030 _("post-indexed expression used in preload instruction"));
10031 constraint (inst.operands[0].writeback,
10032 _("writeback used in preload instruction"));
10033 constraint (!inst.operands[0].preind,
10034 _("unindexed addressing used in preload instruction"));
10035 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10036 }
10037
10038 /* ARMv7: PLI <addr_mode> */
10039 static void
10040 do_pli (void)
10041 {
10042 constraint (!inst.operands[0].isreg,
10043 _("'[' expected after PLI mnemonic"));
10044 constraint (inst.operands[0].postind,
10045 _("post-indexed expression used in preload instruction"));
10046 constraint (inst.operands[0].writeback,
10047 _("writeback used in preload instruction"));
10048 constraint (!inst.operands[0].preind,
10049 _("unindexed addressing used in preload instruction"));
10050 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10051 inst.instruction &= ~PRE_INDEX;
10052 }
10053
10054 static void
10055 do_push_pop (void)
10056 {
10057 constraint (inst.operands[0].writeback,
10058 _("push/pop do not support {reglist}^"));
10059 inst.operands[1] = inst.operands[0];
10060 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10061 inst.operands[0].isreg = 1;
10062 inst.operands[0].writeback = 1;
10063 inst.operands[0].reg = REG_SP;
10064 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10065 }
10066
10067 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10068 word at the specified address and the following word
10069 respectively.
10070 Unconditionally executed.
10071 Error if Rn is R15. */
10072
10073 static void
10074 do_rfe (void)
10075 {
10076 inst.instruction |= inst.operands[0].reg << 16;
10077 if (inst.operands[0].writeback)
10078 inst.instruction |= WRITE_BACK;
10079 }
10080
10081 /* ARM V6 ssat (argument parse). */
10082
10083 static void
10084 do_ssat (void)
10085 {
10086 inst.instruction |= inst.operands[0].reg << 12;
10087 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10088 inst.instruction |= inst.operands[2].reg;
10089
10090 if (inst.operands[3].present)
10091 encode_arm_shift (3);
10092 }
10093
10094 /* ARM V6 usat (argument parse). */
10095
10096 static void
10097 do_usat (void)
10098 {
10099 inst.instruction |= inst.operands[0].reg << 12;
10100 inst.instruction |= inst.operands[1].imm << 16;
10101 inst.instruction |= inst.operands[2].reg;
10102
10103 if (inst.operands[3].present)
10104 encode_arm_shift (3);
10105 }
10106
10107 /* ARM V6 ssat16 (argument parse). */
10108
10109 static void
10110 do_ssat16 (void)
10111 {
10112 inst.instruction |= inst.operands[0].reg << 12;
10113 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10114 inst.instruction |= inst.operands[2].reg;
10115 }
10116
10117 static void
10118 do_usat16 (void)
10119 {
10120 inst.instruction |= inst.operands[0].reg << 12;
10121 inst.instruction |= inst.operands[1].imm << 16;
10122 inst.instruction |= inst.operands[2].reg;
10123 }
10124
10125 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10126 preserving the other bits.
10127
10128 setend <endian_specifier>, where <endian_specifier> is either
10129 BE or LE. */
10130
10131 static void
10132 do_setend (void)
10133 {
10134 if (warn_on_deprecated
10135 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10136 as_tsktsk (_("setend use is deprecated for ARMv8"));
10137
10138 if (inst.operands[0].imm)
10139 inst.instruction |= 0x200;
10140 }
10141
10142 static void
10143 do_shift (void)
10144 {
10145 unsigned int Rm = (inst.operands[1].present
10146 ? inst.operands[1].reg
10147 : inst.operands[0].reg);
10148
10149 inst.instruction |= inst.operands[0].reg << 12;
10150 inst.instruction |= Rm;
10151 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10152 {
10153 inst.instruction |= inst.operands[2].reg << 8;
10154 inst.instruction |= SHIFT_BY_REG;
10155 /* PR 12854: Error on extraneous shifts. */
10156 constraint (inst.operands[2].shifted,
10157 _("extraneous shift as part of operand to shift insn"));
10158 }
10159 else
10160 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10161 }
10162
10163 static void
10164 do_smc (void)
10165 {
10166 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10167 inst.relocs[0].pc_rel = 0;
10168 }
10169
10170 static void
10171 do_hvc (void)
10172 {
10173 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10174 inst.relocs[0].pc_rel = 0;
10175 }
10176
10177 static void
10178 do_swi (void)
10179 {
10180 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10181 inst.relocs[0].pc_rel = 0;
10182 }
10183
10184 static void
10185 do_setpan (void)
10186 {
10187 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10188 _("selected processor does not support SETPAN instruction"));
10189
10190 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10191 }
10192
10193 static void
10194 do_t_setpan (void)
10195 {
10196 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10197 _("selected processor does not support SETPAN instruction"));
10198
10199 inst.instruction |= (inst.operands[0].imm << 3);
10200 }
10201
10202 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10203 SMLAxy{cond} Rd,Rm,Rs,Rn
10204 SMLAWy{cond} Rd,Rm,Rs,Rn
10205 Error if any register is R15. */
10206
10207 static void
10208 do_smla (void)
10209 {
10210 inst.instruction |= inst.operands[0].reg << 16;
10211 inst.instruction |= inst.operands[1].reg;
10212 inst.instruction |= inst.operands[2].reg << 8;
10213 inst.instruction |= inst.operands[3].reg << 12;
10214 }
10215
10216 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10217 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10218 Error if any register is R15.
10219 Warning if Rdlo == Rdhi. */
10220
10221 static void
10222 do_smlal (void)
10223 {
10224 inst.instruction |= inst.operands[0].reg << 12;
10225 inst.instruction |= inst.operands[1].reg << 16;
10226 inst.instruction |= inst.operands[2].reg;
10227 inst.instruction |= inst.operands[3].reg << 8;
10228
10229 if (inst.operands[0].reg == inst.operands[1].reg)
10230 as_tsktsk (_("rdhi and rdlo must be different"));
10231 }
10232
10233 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10234 SMULxy{cond} Rd,Rm,Rs
10235 Error if any register is R15. */
10236
10237 static void
10238 do_smul (void)
10239 {
10240 inst.instruction |= inst.operands[0].reg << 16;
10241 inst.instruction |= inst.operands[1].reg;
10242 inst.instruction |= inst.operands[2].reg << 8;
10243 }
10244
10245 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10246 the same for both ARM and Thumb-2. */
10247
10248 static void
10249 do_srs (void)
10250 {
10251 int reg;
10252
10253 if (inst.operands[0].present)
10254 {
10255 reg = inst.operands[0].reg;
10256 constraint (reg != REG_SP, _("SRS base register must be r13"));
10257 }
10258 else
10259 reg = REG_SP;
10260
10261 inst.instruction |= reg << 16;
10262 inst.instruction |= inst.operands[1].imm;
10263 if (inst.operands[0].writeback || inst.operands[1].writeback)
10264 inst.instruction |= WRITE_BACK;
10265 }
10266
10267 /* ARM V6 strex (argument parse). */
10268
10269 static void
10270 do_strex (void)
10271 {
10272 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10273 || inst.operands[2].postind || inst.operands[2].writeback
10274 || inst.operands[2].immisreg || inst.operands[2].shifted
10275 || inst.operands[2].negative
10276 /* See comment in do_ldrex(). */
10277 || (inst.operands[2].reg == REG_PC),
10278 BAD_ADDR_MODE);
10279
10280 constraint (inst.operands[0].reg == inst.operands[1].reg
10281 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10282
10283 constraint (inst.relocs[0].exp.X_op != O_constant
10284 || inst.relocs[0].exp.X_add_number != 0,
10285 _("offset must be zero in ARM encoding"));
10286
10287 inst.instruction |= inst.operands[0].reg << 12;
10288 inst.instruction |= inst.operands[1].reg;
10289 inst.instruction |= inst.operands[2].reg << 16;
10290 inst.relocs[0].type = BFD_RELOC_UNUSED;
10291 }
10292
10293 static void
10294 do_t_strexbh (void)
10295 {
10296 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10297 || inst.operands[2].postind || inst.operands[2].writeback
10298 || inst.operands[2].immisreg || inst.operands[2].shifted
10299 || inst.operands[2].negative,
10300 BAD_ADDR_MODE);
10301
10302 constraint (inst.operands[0].reg == inst.operands[1].reg
10303 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10304
10305 do_rm_rd_rn ();
10306 }
10307
10308 static void
10309 do_strexd (void)
10310 {
10311 constraint (inst.operands[1].reg % 2 != 0,
10312 _("even register required"));
10313 constraint (inst.operands[2].present
10314 && inst.operands[2].reg != inst.operands[1].reg + 1,
10315 _("can only store two consecutive registers"));
10316 /* If op 2 were present and equal to PC, this function wouldn't
10317 have been called in the first place. */
10318 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10319
10320 constraint (inst.operands[0].reg == inst.operands[1].reg
10321 || inst.operands[0].reg == inst.operands[1].reg + 1
10322 || inst.operands[0].reg == inst.operands[3].reg,
10323 BAD_OVERLAP);
10324
10325 inst.instruction |= inst.operands[0].reg << 12;
10326 inst.instruction |= inst.operands[1].reg;
10327 inst.instruction |= inst.operands[3].reg << 16;
10328 }
10329
10330 /* ARM V8 STRL. */
10331 static void
10332 do_stlex (void)
10333 {
10334 constraint (inst.operands[0].reg == inst.operands[1].reg
10335 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10336
10337 do_rd_rm_rn ();
10338 }
10339
10340 static void
10341 do_t_stlex (void)
10342 {
10343 constraint (inst.operands[0].reg == inst.operands[1].reg
10344 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10345
10346 do_rm_rd_rn ();
10347 }
10348
10349 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10350 extends it to 32-bits, and adds the result to a value in another
10351 register. You can specify a rotation by 0, 8, 16, or 24 bits
10352 before extracting the 16-bit value.
10353 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10354 Condition defaults to COND_ALWAYS.
10355 Error if any register uses R15. */
10356
10357 static void
10358 do_sxtah (void)
10359 {
10360 inst.instruction |= inst.operands[0].reg << 12;
10361 inst.instruction |= inst.operands[1].reg << 16;
10362 inst.instruction |= inst.operands[2].reg;
10363 inst.instruction |= inst.operands[3].imm << 10;
10364 }
10365
10366 /* ARM V6 SXTH.
10367
10368 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10369 Condition defaults to COND_ALWAYS.
10370 Error if any register uses R15. */
10371
10372 static void
10373 do_sxth (void)
10374 {
10375 inst.instruction |= inst.operands[0].reg << 12;
10376 inst.instruction |= inst.operands[1].reg;
10377 inst.instruction |= inst.operands[2].imm << 10;
10378 }
10379 \f
10380 /* VFP instructions. In a logical order: SP variant first, monad
10381 before dyad, arithmetic then move then load/store. */
10382
10383 static void
10384 do_vfp_sp_monadic (void)
10385 {
10386 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10387 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10388 _(BAD_FPU));
10389
10390 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10391 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10392 }
10393
10394 static void
10395 do_vfp_sp_dyadic (void)
10396 {
10397 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10398 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10399 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10400 }
10401
10402 static void
10403 do_vfp_sp_compare_z (void)
10404 {
10405 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10406 }
10407
10408 static void
10409 do_vfp_dp_sp_cvt (void)
10410 {
10411 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10412 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10413 }
10414
10415 static void
10416 do_vfp_sp_dp_cvt (void)
10417 {
10418 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10419 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10420 }
10421
10422 static void
10423 do_vfp_reg_from_sp (void)
10424 {
10425 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10426 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10427 _(BAD_FPU));
10428
10429 inst.instruction |= inst.operands[0].reg << 12;
10430 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10431 }
10432
10433 static void
10434 do_vfp_reg2_from_sp2 (void)
10435 {
10436 constraint (inst.operands[2].imm != 2,
10437 _("only two consecutive VFP SP registers allowed here"));
10438 inst.instruction |= inst.operands[0].reg << 12;
10439 inst.instruction |= inst.operands[1].reg << 16;
10440 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10441 }
10442
10443 static void
10444 do_vfp_sp_from_reg (void)
10445 {
10446 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10447 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10448 _(BAD_FPU));
10449
10450 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10451 inst.instruction |= inst.operands[1].reg << 12;
10452 }
10453
10454 static void
10455 do_vfp_sp2_from_reg2 (void)
10456 {
10457 constraint (inst.operands[0].imm != 2,
10458 _("only two consecutive VFP SP registers allowed here"));
10459 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10460 inst.instruction |= inst.operands[1].reg << 12;
10461 inst.instruction |= inst.operands[2].reg << 16;
10462 }
10463
10464 static void
10465 do_vfp_sp_ldst (void)
10466 {
10467 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10468 encode_arm_cp_address (1, FALSE, TRUE, 0);
10469 }
10470
10471 static void
10472 do_vfp_dp_ldst (void)
10473 {
10474 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10475 encode_arm_cp_address (1, FALSE, TRUE, 0);
10476 }
10477
10478
10479 static void
10480 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10481 {
10482 if (inst.operands[0].writeback)
10483 inst.instruction |= WRITE_BACK;
10484 else
10485 constraint (ldstm_type != VFP_LDSTMIA,
10486 _("this addressing mode requires base-register writeback"));
10487 inst.instruction |= inst.operands[0].reg << 16;
10488 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10489 inst.instruction |= inst.operands[1].imm;
10490 }
10491
10492 static void
10493 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10494 {
10495 int count;
10496
10497 if (inst.operands[0].writeback)
10498 inst.instruction |= WRITE_BACK;
10499 else
10500 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10501 _("this addressing mode requires base-register writeback"));
10502
10503 inst.instruction |= inst.operands[0].reg << 16;
10504 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10505
10506 count = inst.operands[1].imm << 1;
10507 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10508 count += 1;
10509
10510 inst.instruction |= count;
10511 }
10512
10513 static void
10514 do_vfp_sp_ldstmia (void)
10515 {
10516 vfp_sp_ldstm (VFP_LDSTMIA);
10517 }
10518
10519 static void
10520 do_vfp_sp_ldstmdb (void)
10521 {
10522 vfp_sp_ldstm (VFP_LDSTMDB);
10523 }
10524
10525 static void
10526 do_vfp_dp_ldstmia (void)
10527 {
10528 vfp_dp_ldstm (VFP_LDSTMIA);
10529 }
10530
10531 static void
10532 do_vfp_dp_ldstmdb (void)
10533 {
10534 vfp_dp_ldstm (VFP_LDSTMDB);
10535 }
10536
10537 static void
10538 do_vfp_xp_ldstmia (void)
10539 {
10540 vfp_dp_ldstm (VFP_LDSTMIAX);
10541 }
10542
10543 static void
10544 do_vfp_xp_ldstmdb (void)
10545 {
10546 vfp_dp_ldstm (VFP_LDSTMDBX);
10547 }
10548
10549 static void
10550 do_vfp_dp_rd_rm (void)
10551 {
10552 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10553 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10554 _(BAD_FPU));
10555
10556 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10557 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10558 }
10559
10560 static void
10561 do_vfp_dp_rn_rd (void)
10562 {
10563 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10564 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10565 }
10566
10567 static void
10568 do_vfp_dp_rd_rn (void)
10569 {
10570 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10571 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10572 }
10573
10574 static void
10575 do_vfp_dp_rd_rn_rm (void)
10576 {
10577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10578 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10579 _(BAD_FPU));
10580
10581 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10582 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10583 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10584 }
10585
10586 static void
10587 do_vfp_dp_rd (void)
10588 {
10589 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10590 }
10591
10592 static void
10593 do_vfp_dp_rm_rd_rn (void)
10594 {
10595 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10596 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10597 _(BAD_FPU));
10598
10599 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10600 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10601 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10602 }
10603
10604 /* VFPv3 instructions. */
10605 static void
10606 do_vfp_sp_const (void)
10607 {
10608 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10609 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10610 inst.instruction |= (inst.operands[1].imm & 0x0f);
10611 }
10612
10613 static void
10614 do_vfp_dp_const (void)
10615 {
10616 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10617 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10618 inst.instruction |= (inst.operands[1].imm & 0x0f);
10619 }
10620
10621 static void
10622 vfp_conv (int srcsize)
10623 {
10624 int immbits = srcsize - inst.operands[1].imm;
10625
10626 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10627 {
10628 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10629 i.e. immbits must be in range 0 - 16. */
10630 inst.error = _("immediate value out of range, expected range [0, 16]");
10631 return;
10632 }
10633 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10634 {
10635 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10636 i.e. immbits must be in range 0 - 31. */
10637 inst.error = _("immediate value out of range, expected range [1, 32]");
10638 return;
10639 }
10640
10641 inst.instruction |= (immbits & 1) << 5;
10642 inst.instruction |= (immbits >> 1);
10643 }
10644
10645 static void
10646 do_vfp_sp_conv_16 (void)
10647 {
10648 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10649 vfp_conv (16);
10650 }
10651
10652 static void
10653 do_vfp_dp_conv_16 (void)
10654 {
10655 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10656 vfp_conv (16);
10657 }
10658
10659 static void
10660 do_vfp_sp_conv_32 (void)
10661 {
10662 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10663 vfp_conv (32);
10664 }
10665
10666 static void
10667 do_vfp_dp_conv_32 (void)
10668 {
10669 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10670 vfp_conv (32);
10671 }
10672 \f
10673 /* FPA instructions. Also in a logical order. */
10674
10675 static void
10676 do_fpa_cmp (void)
10677 {
10678 inst.instruction |= inst.operands[0].reg << 16;
10679 inst.instruction |= inst.operands[1].reg;
10680 }
10681
10682 static void
10683 do_fpa_ldmstm (void)
10684 {
10685 inst.instruction |= inst.operands[0].reg << 12;
10686 switch (inst.operands[1].imm)
10687 {
10688 case 1: inst.instruction |= CP_T_X; break;
10689 case 2: inst.instruction |= CP_T_Y; break;
10690 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10691 case 4: break;
10692 default: abort ();
10693 }
10694
10695 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10696 {
10697 /* The instruction specified "ea" or "fd", so we can only accept
10698 [Rn]{!}. The instruction does not really support stacking or
10699 unstacking, so we have to emulate these by setting appropriate
10700 bits and offsets. */
10701 constraint (inst.relocs[0].exp.X_op != O_constant
10702 || inst.relocs[0].exp.X_add_number != 0,
10703 _("this instruction does not support indexing"));
10704
10705 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10706 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10707
10708 if (!(inst.instruction & INDEX_UP))
10709 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10710
10711 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10712 {
10713 inst.operands[2].preind = 0;
10714 inst.operands[2].postind = 1;
10715 }
10716 }
10717
10718 encode_arm_cp_address (2, TRUE, TRUE, 0);
10719 }
10720 \f
10721 /* iWMMXt instructions: strictly in alphabetical order. */
10722
10723 static void
10724 do_iwmmxt_tandorc (void)
10725 {
10726 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10727 }
10728
10729 static void
10730 do_iwmmxt_textrc (void)
10731 {
10732 inst.instruction |= inst.operands[0].reg << 12;
10733 inst.instruction |= inst.operands[1].imm;
10734 }
10735
10736 static void
10737 do_iwmmxt_textrm (void)
10738 {
10739 inst.instruction |= inst.operands[0].reg << 12;
10740 inst.instruction |= inst.operands[1].reg << 16;
10741 inst.instruction |= inst.operands[2].imm;
10742 }
10743
10744 static void
10745 do_iwmmxt_tinsr (void)
10746 {
10747 inst.instruction |= inst.operands[0].reg << 16;
10748 inst.instruction |= inst.operands[1].reg << 12;
10749 inst.instruction |= inst.operands[2].imm;
10750 }
10751
10752 static void
10753 do_iwmmxt_tmia (void)
10754 {
10755 inst.instruction |= inst.operands[0].reg << 5;
10756 inst.instruction |= inst.operands[1].reg;
10757 inst.instruction |= inst.operands[2].reg << 12;
10758 }
10759
10760 static void
10761 do_iwmmxt_waligni (void)
10762 {
10763 inst.instruction |= inst.operands[0].reg << 12;
10764 inst.instruction |= inst.operands[1].reg << 16;
10765 inst.instruction |= inst.operands[2].reg;
10766 inst.instruction |= inst.operands[3].imm << 20;
10767 }
10768
10769 static void
10770 do_iwmmxt_wmerge (void)
10771 {
10772 inst.instruction |= inst.operands[0].reg << 12;
10773 inst.instruction |= inst.operands[1].reg << 16;
10774 inst.instruction |= inst.operands[2].reg;
10775 inst.instruction |= inst.operands[3].imm << 21;
10776 }
10777
10778 static void
10779 do_iwmmxt_wmov (void)
10780 {
10781 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10782 inst.instruction |= inst.operands[0].reg << 12;
10783 inst.instruction |= inst.operands[1].reg << 16;
10784 inst.instruction |= inst.operands[1].reg;
10785 }
10786
10787 static void
10788 do_iwmmxt_wldstbh (void)
10789 {
10790 int reloc;
10791 inst.instruction |= inst.operands[0].reg << 12;
10792 if (thumb_mode)
10793 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10794 else
10795 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10796 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10797 }
10798
10799 static void
10800 do_iwmmxt_wldstw (void)
10801 {
10802 /* RIWR_RIWC clears .isreg for a control register. */
10803 if (!inst.operands[0].isreg)
10804 {
10805 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10806 inst.instruction |= 0xf0000000;
10807 }
10808
10809 inst.instruction |= inst.operands[0].reg << 12;
10810 encode_arm_cp_address (1, TRUE, TRUE, 0);
10811 }
10812
10813 static void
10814 do_iwmmxt_wldstd (void)
10815 {
10816 inst.instruction |= inst.operands[0].reg << 12;
10817 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10818 && inst.operands[1].immisreg)
10819 {
10820 inst.instruction &= ~0x1a000ff;
10821 inst.instruction |= (0xfU << 28);
10822 if (inst.operands[1].preind)
10823 inst.instruction |= PRE_INDEX;
10824 if (!inst.operands[1].negative)
10825 inst.instruction |= INDEX_UP;
10826 if (inst.operands[1].writeback)
10827 inst.instruction |= WRITE_BACK;
10828 inst.instruction |= inst.operands[1].reg << 16;
10829 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10830 inst.instruction |= inst.operands[1].imm;
10831 }
10832 else
10833 encode_arm_cp_address (1, TRUE, FALSE, 0);
10834 }
10835
10836 static void
10837 do_iwmmxt_wshufh (void)
10838 {
10839 inst.instruction |= inst.operands[0].reg << 12;
10840 inst.instruction |= inst.operands[1].reg << 16;
10841 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10842 inst.instruction |= (inst.operands[2].imm & 0x0f);
10843 }
10844
10845 static void
10846 do_iwmmxt_wzero (void)
10847 {
10848 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10849 inst.instruction |= inst.operands[0].reg;
10850 inst.instruction |= inst.operands[0].reg << 12;
10851 inst.instruction |= inst.operands[0].reg << 16;
10852 }
10853
10854 static void
10855 do_iwmmxt_wrwrwr_or_imm5 (void)
10856 {
10857 if (inst.operands[2].isreg)
10858 do_rd_rn_rm ();
10859 else {
10860 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10861 _("immediate operand requires iWMMXt2"));
10862 do_rd_rn ();
10863 if (inst.operands[2].imm == 0)
10864 {
10865 switch ((inst.instruction >> 20) & 0xf)
10866 {
10867 case 4:
10868 case 5:
10869 case 6:
10870 case 7:
10871 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10872 inst.operands[2].imm = 16;
10873 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10874 break;
10875 case 8:
10876 case 9:
10877 case 10:
10878 case 11:
10879 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10880 inst.operands[2].imm = 32;
10881 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10882 break;
10883 case 12:
10884 case 13:
10885 case 14:
10886 case 15:
10887 {
10888 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10889 unsigned long wrn;
10890 wrn = (inst.instruction >> 16) & 0xf;
10891 inst.instruction &= 0xff0fff0f;
10892 inst.instruction |= wrn;
10893 /* Bail out here; the instruction is now assembled. */
10894 return;
10895 }
10896 }
10897 }
10898 /* Map 32 -> 0, etc. */
10899 inst.operands[2].imm &= 0x1f;
10900 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10901 }
10902 }
10903 \f
10904 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10905 operations first, then control, shift, and load/store. */
10906
10907 /* Insns like "foo X,Y,Z". */
10908
10909 static void
10910 do_mav_triple (void)
10911 {
10912 inst.instruction |= inst.operands[0].reg << 16;
10913 inst.instruction |= inst.operands[1].reg;
10914 inst.instruction |= inst.operands[2].reg << 12;
10915 }
10916
10917 /* Insns like "foo W,X,Y,Z".
10918 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10919
10920 static void
10921 do_mav_quad (void)
10922 {
10923 inst.instruction |= inst.operands[0].reg << 5;
10924 inst.instruction |= inst.operands[1].reg << 12;
10925 inst.instruction |= inst.operands[2].reg << 16;
10926 inst.instruction |= inst.operands[3].reg;
10927 }
10928
10929 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10930 static void
10931 do_mav_dspsc (void)
10932 {
10933 inst.instruction |= inst.operands[1].reg << 12;
10934 }
10935
10936 /* Maverick shift immediate instructions.
10937 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10938 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10939
10940 static void
10941 do_mav_shift (void)
10942 {
10943 int imm = inst.operands[2].imm;
10944
10945 inst.instruction |= inst.operands[0].reg << 12;
10946 inst.instruction |= inst.operands[1].reg << 16;
10947
10948 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10949 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10950 Bit 4 should be 0. */
10951 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10952
10953 inst.instruction |= imm;
10954 }
10955 \f
10956 /* XScale instructions. Also sorted arithmetic before move. */
10957
10958 /* Xscale multiply-accumulate (argument parse)
10959 MIAcc acc0,Rm,Rs
10960 MIAPHcc acc0,Rm,Rs
10961 MIAxycc acc0,Rm,Rs. */
10962
10963 static void
10964 do_xsc_mia (void)
10965 {
10966 inst.instruction |= inst.operands[1].reg;
10967 inst.instruction |= inst.operands[2].reg << 12;
10968 }
10969
10970 /* Xscale move-accumulator-register (argument parse)
10971
10972 MARcc acc0,RdLo,RdHi. */
10973
10974 static void
10975 do_xsc_mar (void)
10976 {
10977 inst.instruction |= inst.operands[1].reg << 12;
10978 inst.instruction |= inst.operands[2].reg << 16;
10979 }
10980
10981 /* Xscale move-register-accumulator (argument parse)
10982
10983 MRAcc RdLo,RdHi,acc0. */
10984
10985 static void
10986 do_xsc_mra (void)
10987 {
10988 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10989 inst.instruction |= inst.operands[0].reg << 12;
10990 inst.instruction |= inst.operands[1].reg << 16;
10991 }
10992 \f
10993 /* Encoding functions relevant only to Thumb. */
10994
10995 /* inst.operands[i] is a shifted-register operand; encode
10996 it into inst.instruction in the format used by Thumb32. */
10997
10998 static void
10999 encode_thumb32_shifted_operand (int i)
11000 {
11001 unsigned int value = inst.relocs[0].exp.X_add_number;
11002 unsigned int shift = inst.operands[i].shift_kind;
11003
11004 constraint (inst.operands[i].immisreg,
11005 _("shift by register not allowed in thumb mode"));
11006 inst.instruction |= inst.operands[i].reg;
11007 if (shift == SHIFT_RRX)
11008 inst.instruction |= SHIFT_ROR << 4;
11009 else
11010 {
11011 constraint (inst.relocs[0].exp.X_op != O_constant,
11012 _("expression too complex"));
11013
11014 constraint (value > 32
11015 || (value == 32 && (shift == SHIFT_LSL
11016 || shift == SHIFT_ROR)),
11017 _("shift expression is too large"));
11018
11019 if (value == 0)
11020 shift = SHIFT_LSL;
11021 else if (value == 32)
11022 value = 0;
11023
11024 inst.instruction |= shift << 4;
11025 inst.instruction |= (value & 0x1c) << 10;
11026 inst.instruction |= (value & 0x03) << 6;
11027 }
11028 }
11029
11030
11031 /* inst.operands[i] was set up by parse_address. Encode it into a
11032 Thumb32 format load or store instruction. Reject forms that cannot
11033 be used with such instructions. If is_t is true, reject forms that
11034 cannot be used with a T instruction; if is_d is true, reject forms
11035 that cannot be used with a D instruction. If it is a store insn,
11036 reject PC in Rn. */
11037
11038 static void
11039 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11040 {
11041 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11042
11043 constraint (!inst.operands[i].isreg,
11044 _("Instruction does not support =N addresses"));
11045
11046 inst.instruction |= inst.operands[i].reg << 16;
11047 if (inst.operands[i].immisreg)
11048 {
11049 constraint (is_pc, BAD_PC_ADDRESSING);
11050 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11051 constraint (inst.operands[i].negative,
11052 _("Thumb does not support negative register indexing"));
11053 constraint (inst.operands[i].postind,
11054 _("Thumb does not support register post-indexing"));
11055 constraint (inst.operands[i].writeback,
11056 _("Thumb does not support register indexing with writeback"));
11057 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11058 _("Thumb supports only LSL in shifted register indexing"));
11059
11060 inst.instruction |= inst.operands[i].imm;
11061 if (inst.operands[i].shifted)
11062 {
11063 constraint (inst.relocs[0].exp.X_op != O_constant,
11064 _("expression too complex"));
11065 constraint (inst.relocs[0].exp.X_add_number < 0
11066 || inst.relocs[0].exp.X_add_number > 3,
11067 _("shift out of range"));
11068 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11069 }
11070 inst.relocs[0].type = BFD_RELOC_UNUSED;
11071 }
11072 else if (inst.operands[i].preind)
11073 {
11074 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11075 constraint (is_t && inst.operands[i].writeback,
11076 _("cannot use writeback with this instruction"));
11077 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11078 BAD_PC_ADDRESSING);
11079
11080 if (is_d)
11081 {
11082 inst.instruction |= 0x01000000;
11083 if (inst.operands[i].writeback)
11084 inst.instruction |= 0x00200000;
11085 }
11086 else
11087 {
11088 inst.instruction |= 0x00000c00;
11089 if (inst.operands[i].writeback)
11090 inst.instruction |= 0x00000100;
11091 }
11092 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11093 }
11094 else if (inst.operands[i].postind)
11095 {
11096 gas_assert (inst.operands[i].writeback);
11097 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11098 constraint (is_t, _("cannot use post-indexing with this instruction"));
11099
11100 if (is_d)
11101 inst.instruction |= 0x00200000;
11102 else
11103 inst.instruction |= 0x00000900;
11104 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11105 }
11106 else /* unindexed - only for coprocessor */
11107 inst.error = _("instruction does not accept unindexed addressing");
11108 }
11109
11110 /* Table of Thumb instructions which exist in both 16- and 32-bit
11111 encodings (the latter only in post-V6T2 cores). The index is the
11112 value used in the insns table below. When there is more than one
11113 possible 16-bit encoding for the instruction, this table always
11114 holds variant (1).
11115 Also contains several pseudo-instructions used during relaxation. */
11116 #define T16_32_TAB \
11117 X(_adc, 4140, eb400000), \
11118 X(_adcs, 4140, eb500000), \
11119 X(_add, 1c00, eb000000), \
11120 X(_adds, 1c00, eb100000), \
11121 X(_addi, 0000, f1000000), \
11122 X(_addis, 0000, f1100000), \
11123 X(_add_pc,000f, f20f0000), \
11124 X(_add_sp,000d, f10d0000), \
11125 X(_adr, 000f, f20f0000), \
11126 X(_and, 4000, ea000000), \
11127 X(_ands, 4000, ea100000), \
11128 X(_asr, 1000, fa40f000), \
11129 X(_asrs, 1000, fa50f000), \
11130 X(_b, e000, f000b000), \
11131 X(_bcond, d000, f0008000), \
11132 X(_bf, 0000, f040e001), \
11133 X(_bfcsel,0000, f000e001), \
11134 X(_bfx, 0000, f060e001), \
11135 X(_bfl, 0000, f000c001), \
11136 X(_bflx, 0000, f070e001), \
11137 X(_bic, 4380, ea200000), \
11138 X(_bics, 4380, ea300000), \
11139 X(_cmn, 42c0, eb100f00), \
11140 X(_cmp, 2800, ebb00f00), \
11141 X(_cpsie, b660, f3af8400), \
11142 X(_cpsid, b670, f3af8600), \
11143 X(_cpy, 4600, ea4f0000), \
11144 X(_dec_sp,80dd, f1ad0d00), \
11145 X(_dls, 0000, f040e001), \
11146 X(_dlstp, 0000, f000e001), \
11147 X(_eor, 4040, ea800000), \
11148 X(_eors, 4040, ea900000), \
11149 X(_inc_sp,00dd, f10d0d00), \
11150 X(_lctp, 0000, f00fe001), \
11151 X(_ldmia, c800, e8900000), \
11152 X(_ldr, 6800, f8500000), \
11153 X(_ldrb, 7800, f8100000), \
11154 X(_ldrh, 8800, f8300000), \
11155 X(_ldrsb, 5600, f9100000), \
11156 X(_ldrsh, 5e00, f9300000), \
11157 X(_ldr_pc,4800, f85f0000), \
11158 X(_ldr_pc2,4800, f85f0000), \
11159 X(_ldr_sp,9800, f85d0000), \
11160 X(_le, 0000, f00fc001), \
11161 X(_letp, 0000, f01fc001), \
11162 X(_lsl, 0000, fa00f000), \
11163 X(_lsls, 0000, fa10f000), \
11164 X(_lsr, 0800, fa20f000), \
11165 X(_lsrs, 0800, fa30f000), \
11166 X(_mov, 2000, ea4f0000), \
11167 X(_movs, 2000, ea5f0000), \
11168 X(_mul, 4340, fb00f000), \
11169 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11170 X(_mvn, 43c0, ea6f0000), \
11171 X(_mvns, 43c0, ea7f0000), \
11172 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11173 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11174 X(_orr, 4300, ea400000), \
11175 X(_orrs, 4300, ea500000), \
11176 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11177 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11178 X(_rev, ba00, fa90f080), \
11179 X(_rev16, ba40, fa90f090), \
11180 X(_revsh, bac0, fa90f0b0), \
11181 X(_ror, 41c0, fa60f000), \
11182 X(_rors, 41c0, fa70f000), \
11183 X(_sbc, 4180, eb600000), \
11184 X(_sbcs, 4180, eb700000), \
11185 X(_stmia, c000, e8800000), \
11186 X(_str, 6000, f8400000), \
11187 X(_strb, 7000, f8000000), \
11188 X(_strh, 8000, f8200000), \
11189 X(_str_sp,9000, f84d0000), \
11190 X(_sub, 1e00, eba00000), \
11191 X(_subs, 1e00, ebb00000), \
11192 X(_subi, 8000, f1a00000), \
11193 X(_subis, 8000, f1b00000), \
11194 X(_sxtb, b240, fa4ff080), \
11195 X(_sxth, b200, fa0ff080), \
11196 X(_tst, 4200, ea100f00), \
11197 X(_uxtb, b2c0, fa5ff080), \
11198 X(_uxth, b280, fa1ff080), \
11199 X(_nop, bf00, f3af8000), \
11200 X(_yield, bf10, f3af8001), \
11201 X(_wfe, bf20, f3af8002), \
11202 X(_wfi, bf30, f3af8003), \
11203 X(_wls, 0000, f040c001), \
11204 X(_wlstp, 0000, f000c001), \
11205 X(_sev, bf40, f3af8004), \
11206 X(_sevl, bf50, f3af8005), \
11207 X(_udf, de00, f7f0a000)
11208
11209 /* To catch errors in encoding functions, the codes are all offset by
11210 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11211 as 16-bit instructions. */
11212 #define X(a,b,c) T_MNEM##a
11213 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11214 #undef X
11215
11216 #define X(a,b,c) 0x##b
11217 static const unsigned short thumb_op16[] = { T16_32_TAB };
11218 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11219 #undef X
11220
11221 #define X(a,b,c) 0x##c
11222 static const unsigned int thumb_op32[] = { T16_32_TAB };
11223 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11224 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11225 #undef X
11226 #undef T16_32_TAB
11227
11228 /* Thumb instruction encoders, in alphabetical order. */
11229
11230 /* ADDW or SUBW. */
11231
11232 static void
11233 do_t_add_sub_w (void)
11234 {
11235 int Rd, Rn;
11236
11237 Rd = inst.operands[0].reg;
11238 Rn = inst.operands[1].reg;
11239
11240 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11241 is the SP-{plus,minus}-immediate form of the instruction. */
11242 if (Rn == REG_SP)
11243 constraint (Rd == REG_PC, BAD_PC);
11244 else
11245 reject_bad_reg (Rd);
11246
11247 inst.instruction |= (Rn << 16) | (Rd << 8);
11248 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11249 }
11250
11251 /* Parse an add or subtract instruction. We get here with inst.instruction
11252 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11253
11254 static void
11255 do_t_add_sub (void)
11256 {
11257 int Rd, Rs, Rn;
11258
11259 Rd = inst.operands[0].reg;
11260 Rs = (inst.operands[1].present
11261 ? inst.operands[1].reg /* Rd, Rs, foo */
11262 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11263
11264 if (Rd == REG_PC)
11265 set_pred_insn_type_last ();
11266
11267 if (unified_syntax)
11268 {
11269 bfd_boolean flags;
11270 bfd_boolean narrow;
11271 int opcode;
11272
11273 flags = (inst.instruction == T_MNEM_adds
11274 || inst.instruction == T_MNEM_subs);
11275 if (flags)
11276 narrow = !in_pred_block ();
11277 else
11278 narrow = in_pred_block ();
11279 if (!inst.operands[2].isreg)
11280 {
11281 int add;
11282
11283 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11284 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11285
11286 add = (inst.instruction == T_MNEM_add
11287 || inst.instruction == T_MNEM_adds);
11288 opcode = 0;
11289 if (inst.size_req != 4)
11290 {
11291 /* Attempt to use a narrow opcode, with relaxation if
11292 appropriate. */
11293 if (Rd == REG_SP && Rs == REG_SP && !flags)
11294 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11295 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11296 opcode = T_MNEM_add_sp;
11297 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11298 opcode = T_MNEM_add_pc;
11299 else if (Rd <= 7 && Rs <= 7 && narrow)
11300 {
11301 if (flags)
11302 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11303 else
11304 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11305 }
11306 if (opcode)
11307 {
11308 inst.instruction = THUMB_OP16(opcode);
11309 inst.instruction |= (Rd << 4) | Rs;
11310 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11311 || (inst.relocs[0].type
11312 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11313 {
11314 if (inst.size_req == 2)
11315 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11316 else
11317 inst.relax = opcode;
11318 }
11319 }
11320 else
11321 constraint (inst.size_req == 2, BAD_HIREG);
11322 }
11323 if (inst.size_req == 4
11324 || (inst.size_req != 2 && !opcode))
11325 {
11326 constraint ((inst.relocs[0].type
11327 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11328 && (inst.relocs[0].type
11329 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11330 THUMB1_RELOC_ONLY);
11331 if (Rd == REG_PC)
11332 {
11333 constraint (add, BAD_PC);
11334 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11335 _("only SUBS PC, LR, #const allowed"));
11336 constraint (inst.relocs[0].exp.X_op != O_constant,
11337 _("expression too complex"));
11338 constraint (inst.relocs[0].exp.X_add_number < 0
11339 || inst.relocs[0].exp.X_add_number > 0xff,
11340 _("immediate value out of range"));
11341 inst.instruction = T2_SUBS_PC_LR
11342 | inst.relocs[0].exp.X_add_number;
11343 inst.relocs[0].type = BFD_RELOC_UNUSED;
11344 return;
11345 }
11346 else if (Rs == REG_PC)
11347 {
11348 /* Always use addw/subw. */
11349 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11350 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11351 }
11352 else
11353 {
11354 inst.instruction = THUMB_OP32 (inst.instruction);
11355 inst.instruction = (inst.instruction & 0xe1ffffff)
11356 | 0x10000000;
11357 if (flags)
11358 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11359 else
11360 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11361 }
11362 inst.instruction |= Rd << 8;
11363 inst.instruction |= Rs << 16;
11364 }
11365 }
11366 else
11367 {
11368 unsigned int value = inst.relocs[0].exp.X_add_number;
11369 unsigned int shift = inst.operands[2].shift_kind;
11370
11371 Rn = inst.operands[2].reg;
11372 /* See if we can do this with a 16-bit instruction. */
11373 if (!inst.operands[2].shifted && inst.size_req != 4)
11374 {
11375 if (Rd > 7 || Rs > 7 || Rn > 7)
11376 narrow = FALSE;
11377
11378 if (narrow)
11379 {
11380 inst.instruction = ((inst.instruction == T_MNEM_adds
11381 || inst.instruction == T_MNEM_add)
11382 ? T_OPCODE_ADD_R3
11383 : T_OPCODE_SUB_R3);
11384 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11385 return;
11386 }
11387
11388 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11389 {
11390 /* Thumb-1 cores (except v6-M) require at least one high
11391 register in a narrow non flag setting add. */
11392 if (Rd > 7 || Rn > 7
11393 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11394 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11395 {
11396 if (Rd == Rn)
11397 {
11398 Rn = Rs;
11399 Rs = Rd;
11400 }
11401 inst.instruction = T_OPCODE_ADD_HI;
11402 inst.instruction |= (Rd & 8) << 4;
11403 inst.instruction |= (Rd & 7);
11404 inst.instruction |= Rn << 3;
11405 return;
11406 }
11407 }
11408 }
11409
11410 constraint (Rd == REG_PC, BAD_PC);
11411 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11412 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11413 constraint (Rs == REG_PC, BAD_PC);
11414 reject_bad_reg (Rn);
11415
11416 /* If we get here, it can't be done in 16 bits. */
11417 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11418 _("shift must be constant"));
11419 inst.instruction = THUMB_OP32 (inst.instruction);
11420 inst.instruction |= Rd << 8;
11421 inst.instruction |= Rs << 16;
11422 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11423 _("shift value over 3 not allowed in thumb mode"));
11424 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11425 _("only LSL shift allowed in thumb mode"));
11426 encode_thumb32_shifted_operand (2);
11427 }
11428 }
11429 else
11430 {
11431 constraint (inst.instruction == T_MNEM_adds
11432 || inst.instruction == T_MNEM_subs,
11433 BAD_THUMB32);
11434
11435 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11436 {
11437 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11438 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11439 BAD_HIREG);
11440
11441 inst.instruction = (inst.instruction == T_MNEM_add
11442 ? 0x0000 : 0x8000);
11443 inst.instruction |= (Rd << 4) | Rs;
11444 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11445 return;
11446 }
11447
11448 Rn = inst.operands[2].reg;
11449 constraint (inst.operands[2].shifted, _("unshifted register required"));
11450
11451 /* We now have Rd, Rs, and Rn set to registers. */
11452 if (Rd > 7 || Rs > 7 || Rn > 7)
11453 {
11454 /* Can't do this for SUB. */
11455 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11456 inst.instruction = T_OPCODE_ADD_HI;
11457 inst.instruction |= (Rd & 8) << 4;
11458 inst.instruction |= (Rd & 7);
11459 if (Rs == Rd)
11460 inst.instruction |= Rn << 3;
11461 else if (Rn == Rd)
11462 inst.instruction |= Rs << 3;
11463 else
11464 constraint (1, _("dest must overlap one source register"));
11465 }
11466 else
11467 {
11468 inst.instruction = (inst.instruction == T_MNEM_add
11469 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11470 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11471 }
11472 }
11473 }
11474
11475 static void
11476 do_t_adr (void)
11477 {
11478 unsigned Rd;
11479
11480 Rd = inst.operands[0].reg;
11481 reject_bad_reg (Rd);
11482
11483 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11484 {
11485 /* Defer to section relaxation. */
11486 inst.relax = inst.instruction;
11487 inst.instruction = THUMB_OP16 (inst.instruction);
11488 inst.instruction |= Rd << 4;
11489 }
11490 else if (unified_syntax && inst.size_req != 2)
11491 {
11492 /* Generate a 32-bit opcode. */
11493 inst.instruction = THUMB_OP32 (inst.instruction);
11494 inst.instruction |= Rd << 8;
11495 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11496 inst.relocs[0].pc_rel = 1;
11497 }
11498 else
11499 {
11500 /* Generate a 16-bit opcode. */
11501 inst.instruction = THUMB_OP16 (inst.instruction);
11502 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11503 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11504 inst.relocs[0].pc_rel = 1;
11505 inst.instruction |= Rd << 4;
11506 }
11507
11508 if (inst.relocs[0].exp.X_op == O_symbol
11509 && inst.relocs[0].exp.X_add_symbol != NULL
11510 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11511 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11512 inst.relocs[0].exp.X_add_number += 1;
11513 }
11514
11515 /* Arithmetic instructions for which there is just one 16-bit
11516 instruction encoding, and it allows only two low registers.
11517 For maximal compatibility with ARM syntax, we allow three register
11518 operands even when Thumb-32 instructions are not available, as long
11519 as the first two are identical. For instance, both "sbc r0,r1" and
11520 "sbc r0,r0,r1" are allowed. */
11521 static void
11522 do_t_arit3 (void)
11523 {
11524 int Rd, Rs, Rn;
11525
11526 Rd = inst.operands[0].reg;
11527 Rs = (inst.operands[1].present
11528 ? inst.operands[1].reg /* Rd, Rs, foo */
11529 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11530 Rn = inst.operands[2].reg;
11531
11532 reject_bad_reg (Rd);
11533 reject_bad_reg (Rs);
11534 if (inst.operands[2].isreg)
11535 reject_bad_reg (Rn);
11536
11537 if (unified_syntax)
11538 {
11539 if (!inst.operands[2].isreg)
11540 {
11541 /* For an immediate, we always generate a 32-bit opcode;
11542 section relaxation will shrink it later if possible. */
11543 inst.instruction = THUMB_OP32 (inst.instruction);
11544 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11545 inst.instruction |= Rd << 8;
11546 inst.instruction |= Rs << 16;
11547 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11548 }
11549 else
11550 {
11551 bfd_boolean narrow;
11552
11553 /* See if we can do this with a 16-bit instruction. */
11554 if (THUMB_SETS_FLAGS (inst.instruction))
11555 narrow = !in_pred_block ();
11556 else
11557 narrow = in_pred_block ();
11558
11559 if (Rd > 7 || Rn > 7 || Rs > 7)
11560 narrow = FALSE;
11561 if (inst.operands[2].shifted)
11562 narrow = FALSE;
11563 if (inst.size_req == 4)
11564 narrow = FALSE;
11565
11566 if (narrow
11567 && Rd == Rs)
11568 {
11569 inst.instruction = THUMB_OP16 (inst.instruction);
11570 inst.instruction |= Rd;
11571 inst.instruction |= Rn << 3;
11572 return;
11573 }
11574
11575 /* If we get here, it can't be done in 16 bits. */
11576 constraint (inst.operands[2].shifted
11577 && inst.operands[2].immisreg,
11578 _("shift must be constant"));
11579 inst.instruction = THUMB_OP32 (inst.instruction);
11580 inst.instruction |= Rd << 8;
11581 inst.instruction |= Rs << 16;
11582 encode_thumb32_shifted_operand (2);
11583 }
11584 }
11585 else
11586 {
11587 /* On its face this is a lie - the instruction does set the
11588 flags. However, the only supported mnemonic in this mode
11589 says it doesn't. */
11590 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11591
11592 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11593 _("unshifted register required"));
11594 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11595 constraint (Rd != Rs,
11596 _("dest and source1 must be the same register"));
11597
11598 inst.instruction = THUMB_OP16 (inst.instruction);
11599 inst.instruction |= Rd;
11600 inst.instruction |= Rn << 3;
11601 }
11602 }
11603
11604 /* Similarly, but for instructions where the arithmetic operation is
11605 commutative, so we can allow either of them to be different from
11606 the destination operand in a 16-bit instruction. For instance, all
11607 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11608 accepted. */
11609 static void
11610 do_t_arit3c (void)
11611 {
11612 int Rd, Rs, Rn;
11613
11614 Rd = inst.operands[0].reg;
11615 Rs = (inst.operands[1].present
11616 ? inst.operands[1].reg /* Rd, Rs, foo */
11617 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11618 Rn = inst.operands[2].reg;
11619
11620 reject_bad_reg (Rd);
11621 reject_bad_reg (Rs);
11622 if (inst.operands[2].isreg)
11623 reject_bad_reg (Rn);
11624
11625 if (unified_syntax)
11626 {
11627 if (!inst.operands[2].isreg)
11628 {
11629 /* For an immediate, we always generate a 32-bit opcode;
11630 section relaxation will shrink it later if possible. */
11631 inst.instruction = THUMB_OP32 (inst.instruction);
11632 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11633 inst.instruction |= Rd << 8;
11634 inst.instruction |= Rs << 16;
11635 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11636 }
11637 else
11638 {
11639 bfd_boolean narrow;
11640
11641 /* See if we can do this with a 16-bit instruction. */
11642 if (THUMB_SETS_FLAGS (inst.instruction))
11643 narrow = !in_pred_block ();
11644 else
11645 narrow = in_pred_block ();
11646
11647 if (Rd > 7 || Rn > 7 || Rs > 7)
11648 narrow = FALSE;
11649 if (inst.operands[2].shifted)
11650 narrow = FALSE;
11651 if (inst.size_req == 4)
11652 narrow = FALSE;
11653
11654 if (narrow)
11655 {
11656 if (Rd == Rs)
11657 {
11658 inst.instruction = THUMB_OP16 (inst.instruction);
11659 inst.instruction |= Rd;
11660 inst.instruction |= Rn << 3;
11661 return;
11662 }
11663 if (Rd == Rn)
11664 {
11665 inst.instruction = THUMB_OP16 (inst.instruction);
11666 inst.instruction |= Rd;
11667 inst.instruction |= Rs << 3;
11668 return;
11669 }
11670 }
11671
11672 /* If we get here, it can't be done in 16 bits. */
11673 constraint (inst.operands[2].shifted
11674 && inst.operands[2].immisreg,
11675 _("shift must be constant"));
11676 inst.instruction = THUMB_OP32 (inst.instruction);
11677 inst.instruction |= Rd << 8;
11678 inst.instruction |= Rs << 16;
11679 encode_thumb32_shifted_operand (2);
11680 }
11681 }
11682 else
11683 {
11684 /* On its face this is a lie - the instruction does set the
11685 flags. However, the only supported mnemonic in this mode
11686 says it doesn't. */
11687 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11688
11689 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11690 _("unshifted register required"));
11691 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11692
11693 inst.instruction = THUMB_OP16 (inst.instruction);
11694 inst.instruction |= Rd;
11695
11696 if (Rd == Rs)
11697 inst.instruction |= Rn << 3;
11698 else if (Rd == Rn)
11699 inst.instruction |= Rs << 3;
11700 else
11701 constraint (1, _("dest must overlap one source register"));
11702 }
11703 }
11704
11705 static void
11706 do_t_bfc (void)
11707 {
11708 unsigned Rd;
11709 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11710 constraint (msb > 32, _("bit-field extends past end of register"));
11711 /* The instruction encoding stores the LSB and MSB,
11712 not the LSB and width. */
11713 Rd = inst.operands[0].reg;
11714 reject_bad_reg (Rd);
11715 inst.instruction |= Rd << 8;
11716 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11717 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11718 inst.instruction |= msb - 1;
11719 }
11720
11721 static void
11722 do_t_bfi (void)
11723 {
11724 int Rd, Rn;
11725 unsigned int msb;
11726
11727 Rd = inst.operands[0].reg;
11728 reject_bad_reg (Rd);
11729
11730 /* #0 in second position is alternative syntax for bfc, which is
11731 the same instruction but with REG_PC in the Rm field. */
11732 if (!inst.operands[1].isreg)
11733 Rn = REG_PC;
11734 else
11735 {
11736 Rn = inst.operands[1].reg;
11737 reject_bad_reg (Rn);
11738 }
11739
11740 msb = inst.operands[2].imm + inst.operands[3].imm;
11741 constraint (msb > 32, _("bit-field extends past end of register"));
11742 /* The instruction encoding stores the LSB and MSB,
11743 not the LSB and width. */
11744 inst.instruction |= Rd << 8;
11745 inst.instruction |= Rn << 16;
11746 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11747 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11748 inst.instruction |= msb - 1;
11749 }
11750
11751 static void
11752 do_t_bfx (void)
11753 {
11754 unsigned Rd, Rn;
11755
11756 Rd = inst.operands[0].reg;
11757 Rn = inst.operands[1].reg;
11758
11759 reject_bad_reg (Rd);
11760 reject_bad_reg (Rn);
11761
11762 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11763 _("bit-field extends past end of register"));
11764 inst.instruction |= Rd << 8;
11765 inst.instruction |= Rn << 16;
11766 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11767 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11768 inst.instruction |= inst.operands[3].imm - 1;
11769 }
11770
11771 /* ARM V5 Thumb BLX (argument parse)
11772 BLX <target_addr> which is BLX(1)
11773 BLX <Rm> which is BLX(2)
11774 Unfortunately, there are two different opcodes for this mnemonic.
11775 So, the insns[].value is not used, and the code here zaps values
11776 into inst.instruction.
11777
11778 ??? How to take advantage of the additional two bits of displacement
11779 available in Thumb32 mode? Need new relocation? */
11780
11781 static void
11782 do_t_blx (void)
11783 {
11784 set_pred_insn_type_last ();
11785
11786 if (inst.operands[0].isreg)
11787 {
11788 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11789 /* We have a register, so this is BLX(2). */
11790 inst.instruction |= inst.operands[0].reg << 3;
11791 }
11792 else
11793 {
11794 /* No register. This must be BLX(1). */
11795 inst.instruction = 0xf000e800;
11796 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11797 }
11798 }
11799
11800 static void
11801 do_t_branch (void)
11802 {
11803 int opcode;
11804 int cond;
11805 bfd_reloc_code_real_type reloc;
11806
11807 cond = inst.cond;
11808 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11809
11810 if (in_pred_block ())
11811 {
11812 /* Conditional branches inside IT blocks are encoded as unconditional
11813 branches. */
11814 cond = COND_ALWAYS;
11815 }
11816 else
11817 cond = inst.cond;
11818
11819 if (cond != COND_ALWAYS)
11820 opcode = T_MNEM_bcond;
11821 else
11822 opcode = inst.instruction;
11823
11824 if (unified_syntax
11825 && (inst.size_req == 4
11826 || (inst.size_req != 2
11827 && (inst.operands[0].hasreloc
11828 || inst.relocs[0].exp.X_op == O_constant))))
11829 {
11830 inst.instruction = THUMB_OP32(opcode);
11831 if (cond == COND_ALWAYS)
11832 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11833 else
11834 {
11835 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11836 _("selected architecture does not support "
11837 "wide conditional branch instruction"));
11838
11839 gas_assert (cond != 0xF);
11840 inst.instruction |= cond << 22;
11841 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11842 }
11843 }
11844 else
11845 {
11846 inst.instruction = THUMB_OP16(opcode);
11847 if (cond == COND_ALWAYS)
11848 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11849 else
11850 {
11851 inst.instruction |= cond << 8;
11852 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11853 }
11854 /* Allow section relaxation. */
11855 if (unified_syntax && inst.size_req != 2)
11856 inst.relax = opcode;
11857 }
11858 inst.relocs[0].type = reloc;
11859 inst.relocs[0].pc_rel = 1;
11860 }
11861
11862 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11863 between the two is the maximum immediate allowed - which is passed in
11864 RANGE. */
11865 static void
11866 do_t_bkpt_hlt1 (int range)
11867 {
11868 constraint (inst.cond != COND_ALWAYS,
11869 _("instruction is always unconditional"));
11870 if (inst.operands[0].present)
11871 {
11872 constraint (inst.operands[0].imm > range,
11873 _("immediate value out of range"));
11874 inst.instruction |= inst.operands[0].imm;
11875 }
11876
11877 set_pred_insn_type (NEUTRAL_IT_INSN);
11878 }
11879
11880 static void
11881 do_t_hlt (void)
11882 {
11883 do_t_bkpt_hlt1 (63);
11884 }
11885
11886 static void
11887 do_t_bkpt (void)
11888 {
11889 do_t_bkpt_hlt1 (255);
11890 }
11891
11892 static void
11893 do_t_branch23 (void)
11894 {
11895 set_pred_insn_type_last ();
11896 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11897
11898 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11899 this file. We used to simply ignore the PLT reloc type here --
11900 the branch encoding is now needed to deal with TLSCALL relocs.
11901 So if we see a PLT reloc now, put it back to how it used to be to
11902 keep the preexisting behaviour. */
11903 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11904 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11905
11906 #if defined(OBJ_COFF)
11907 /* If the destination of the branch is a defined symbol which does not have
11908 the THUMB_FUNC attribute, then we must be calling a function which has
11909 the (interfacearm) attribute. We look for the Thumb entry point to that
11910 function and change the branch to refer to that function instead. */
11911 if ( inst.relocs[0].exp.X_op == O_symbol
11912 && inst.relocs[0].exp.X_add_symbol != NULL
11913 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11914 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11915 inst.relocs[0].exp.X_add_symbol
11916 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11917 #endif
11918 }
11919
11920 static void
11921 do_t_bx (void)
11922 {
11923 set_pred_insn_type_last ();
11924 inst.instruction |= inst.operands[0].reg << 3;
11925 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11926 should cause the alignment to be checked once it is known. This is
11927 because BX PC only works if the instruction is word aligned. */
11928 }
11929
11930 static void
11931 do_t_bxj (void)
11932 {
11933 int Rm;
11934
11935 set_pred_insn_type_last ();
11936 Rm = inst.operands[0].reg;
11937 reject_bad_reg (Rm);
11938 inst.instruction |= Rm << 16;
11939 }
11940
11941 static void
11942 do_t_clz (void)
11943 {
11944 unsigned Rd;
11945 unsigned Rm;
11946
11947 Rd = inst.operands[0].reg;
11948 Rm = inst.operands[1].reg;
11949
11950 reject_bad_reg (Rd);
11951 reject_bad_reg (Rm);
11952
11953 inst.instruction |= Rd << 8;
11954 inst.instruction |= Rm << 16;
11955 inst.instruction |= Rm;
11956 }
11957
11958 static void
11959 do_t_csdb (void)
11960 {
11961 set_pred_insn_type (OUTSIDE_PRED_INSN);
11962 }
11963
11964 static void
11965 do_t_cps (void)
11966 {
11967 set_pred_insn_type (OUTSIDE_PRED_INSN);
11968 inst.instruction |= inst.operands[0].imm;
11969 }
11970
11971 static void
11972 do_t_cpsi (void)
11973 {
11974 set_pred_insn_type (OUTSIDE_PRED_INSN);
11975 if (unified_syntax
11976 && (inst.operands[1].present || inst.size_req == 4)
11977 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11978 {
11979 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11980 inst.instruction = 0xf3af8000;
11981 inst.instruction |= imod << 9;
11982 inst.instruction |= inst.operands[0].imm << 5;
11983 if (inst.operands[1].present)
11984 inst.instruction |= 0x100 | inst.operands[1].imm;
11985 }
11986 else
11987 {
11988 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11989 && (inst.operands[0].imm & 4),
11990 _("selected processor does not support 'A' form "
11991 "of this instruction"));
11992 constraint (inst.operands[1].present || inst.size_req == 4,
11993 _("Thumb does not support the 2-argument "
11994 "form of this instruction"));
11995 inst.instruction |= inst.operands[0].imm;
11996 }
11997 }
11998
11999 /* THUMB CPY instruction (argument parse). */
12000
12001 static void
12002 do_t_cpy (void)
12003 {
12004 if (inst.size_req == 4)
12005 {
12006 inst.instruction = THUMB_OP32 (T_MNEM_mov);
12007 inst.instruction |= inst.operands[0].reg << 8;
12008 inst.instruction |= inst.operands[1].reg;
12009 }
12010 else
12011 {
12012 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
12013 inst.instruction |= (inst.operands[0].reg & 0x7);
12014 inst.instruction |= inst.operands[1].reg << 3;
12015 }
12016 }
12017
12018 static void
12019 do_t_cbz (void)
12020 {
12021 set_pred_insn_type (OUTSIDE_PRED_INSN);
12022 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12023 inst.instruction |= inst.operands[0].reg;
12024 inst.relocs[0].pc_rel = 1;
12025 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
12026 }
12027
12028 static void
12029 do_t_dbg (void)
12030 {
12031 inst.instruction |= inst.operands[0].imm;
12032 }
12033
12034 static void
12035 do_t_div (void)
12036 {
12037 unsigned Rd, Rn, Rm;
12038
12039 Rd = inst.operands[0].reg;
12040 Rn = (inst.operands[1].present
12041 ? inst.operands[1].reg : Rd);
12042 Rm = inst.operands[2].reg;
12043
12044 reject_bad_reg (Rd);
12045 reject_bad_reg (Rn);
12046 reject_bad_reg (Rm);
12047
12048 inst.instruction |= Rd << 8;
12049 inst.instruction |= Rn << 16;
12050 inst.instruction |= Rm;
12051 }
12052
12053 static void
12054 do_t_hint (void)
12055 {
12056 if (unified_syntax && inst.size_req == 4)
12057 inst.instruction = THUMB_OP32 (inst.instruction);
12058 else
12059 inst.instruction = THUMB_OP16 (inst.instruction);
12060 }
12061
12062 static void
12063 do_t_it (void)
12064 {
12065 unsigned int cond = inst.operands[0].imm;
12066
12067 set_pred_insn_type (IT_INSN);
12068 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12069 now_pred.cc = cond;
12070 now_pred.warn_deprecated = FALSE;
12071 now_pred.type = SCALAR_PRED;
12072
12073 /* If the condition is a negative condition, invert the mask. */
12074 if ((cond & 0x1) == 0x0)
12075 {
12076 unsigned int mask = inst.instruction & 0x000f;
12077
12078 if ((mask & 0x7) == 0)
12079 {
12080 /* No conversion needed. */
12081 now_pred.block_length = 1;
12082 }
12083 else if ((mask & 0x3) == 0)
12084 {
12085 mask ^= 0x8;
12086 now_pred.block_length = 2;
12087 }
12088 else if ((mask & 0x1) == 0)
12089 {
12090 mask ^= 0xC;
12091 now_pred.block_length = 3;
12092 }
12093 else
12094 {
12095 mask ^= 0xE;
12096 now_pred.block_length = 4;
12097 }
12098
12099 inst.instruction &= 0xfff0;
12100 inst.instruction |= mask;
12101 }
12102
12103 inst.instruction |= cond << 4;
12104 }
12105
12106 /* Helper function used for both push/pop and ldm/stm. */
12107 static void
12108 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12109 bfd_boolean writeback)
12110 {
12111 bfd_boolean load, store;
12112
12113 gas_assert (base != -1 || !do_io);
12114 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12115 store = do_io && !load;
12116
12117 if (mask & (1 << 13))
12118 inst.error = _("SP not allowed in register list");
12119
12120 if (do_io && (mask & (1 << base)) != 0
12121 && writeback)
12122 inst.error = _("having the base register in the register list when "
12123 "using write back is UNPREDICTABLE");
12124
12125 if (load)
12126 {
12127 if (mask & (1 << 15))
12128 {
12129 if (mask & (1 << 14))
12130 inst.error = _("LR and PC should not both be in register list");
12131 else
12132 set_pred_insn_type_last ();
12133 }
12134 }
12135 else if (store)
12136 {
12137 if (mask & (1 << 15))
12138 inst.error = _("PC not allowed in register list");
12139 }
12140
12141 if (do_io && ((mask & (mask - 1)) == 0))
12142 {
12143 /* Single register transfers implemented as str/ldr. */
12144 if (writeback)
12145 {
12146 if (inst.instruction & (1 << 23))
12147 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12148 else
12149 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12150 }
12151 else
12152 {
12153 if (inst.instruction & (1 << 23))
12154 inst.instruction = 0x00800000; /* ia -> [base] */
12155 else
12156 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12157 }
12158
12159 inst.instruction |= 0xf8400000;
12160 if (load)
12161 inst.instruction |= 0x00100000;
12162
12163 mask = ffs (mask) - 1;
12164 mask <<= 12;
12165 }
12166 else if (writeback)
12167 inst.instruction |= WRITE_BACK;
12168
12169 inst.instruction |= mask;
12170 if (do_io)
12171 inst.instruction |= base << 16;
12172 }
12173
12174 static void
12175 do_t_ldmstm (void)
12176 {
12177 /* This really doesn't seem worth it. */
12178 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12179 _("expression too complex"));
12180 constraint (inst.operands[1].writeback,
12181 _("Thumb load/store multiple does not support {reglist}^"));
12182
12183 if (unified_syntax)
12184 {
12185 bfd_boolean narrow;
12186 unsigned mask;
12187
12188 narrow = FALSE;
12189 /* See if we can use a 16-bit instruction. */
12190 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12191 && inst.size_req != 4
12192 && !(inst.operands[1].imm & ~0xff))
12193 {
12194 mask = 1 << inst.operands[0].reg;
12195
12196 if (inst.operands[0].reg <= 7)
12197 {
12198 if (inst.instruction == T_MNEM_stmia
12199 ? inst.operands[0].writeback
12200 : (inst.operands[0].writeback
12201 == !(inst.operands[1].imm & mask)))
12202 {
12203 if (inst.instruction == T_MNEM_stmia
12204 && (inst.operands[1].imm & mask)
12205 && (inst.operands[1].imm & (mask - 1)))
12206 as_warn (_("value stored for r%d is UNKNOWN"),
12207 inst.operands[0].reg);
12208
12209 inst.instruction = THUMB_OP16 (inst.instruction);
12210 inst.instruction |= inst.operands[0].reg << 8;
12211 inst.instruction |= inst.operands[1].imm;
12212 narrow = TRUE;
12213 }
12214 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12215 {
12216 /* This means 1 register in reg list one of 3 situations:
12217 1. Instruction is stmia, but without writeback.
12218 2. lmdia without writeback, but with Rn not in
12219 reglist.
12220 3. ldmia with writeback, but with Rn in reglist.
12221 Case 3 is UNPREDICTABLE behaviour, so we handle
12222 case 1 and 2 which can be converted into a 16-bit
12223 str or ldr. The SP cases are handled below. */
12224 unsigned long opcode;
12225 /* First, record an error for Case 3. */
12226 if (inst.operands[1].imm & mask
12227 && inst.operands[0].writeback)
12228 inst.error =
12229 _("having the base register in the register list when "
12230 "using write back is UNPREDICTABLE");
12231
12232 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12233 : T_MNEM_ldr);
12234 inst.instruction = THUMB_OP16 (opcode);
12235 inst.instruction |= inst.operands[0].reg << 3;
12236 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12237 narrow = TRUE;
12238 }
12239 }
12240 else if (inst.operands[0] .reg == REG_SP)
12241 {
12242 if (inst.operands[0].writeback)
12243 {
12244 inst.instruction =
12245 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12246 ? T_MNEM_push : T_MNEM_pop);
12247 inst.instruction |= inst.operands[1].imm;
12248 narrow = TRUE;
12249 }
12250 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12251 {
12252 inst.instruction =
12253 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12254 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12255 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12256 narrow = TRUE;
12257 }
12258 }
12259 }
12260
12261 if (!narrow)
12262 {
12263 if (inst.instruction < 0xffff)
12264 inst.instruction = THUMB_OP32 (inst.instruction);
12265
12266 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12267 inst.operands[1].imm,
12268 inst.operands[0].writeback);
12269 }
12270 }
12271 else
12272 {
12273 constraint (inst.operands[0].reg > 7
12274 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12275 constraint (inst.instruction != T_MNEM_ldmia
12276 && inst.instruction != T_MNEM_stmia,
12277 _("Thumb-2 instruction only valid in unified syntax"));
12278 if (inst.instruction == T_MNEM_stmia)
12279 {
12280 if (!inst.operands[0].writeback)
12281 as_warn (_("this instruction will write back the base register"));
12282 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12283 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12284 as_warn (_("value stored for r%d is UNKNOWN"),
12285 inst.operands[0].reg);
12286 }
12287 else
12288 {
12289 if (!inst.operands[0].writeback
12290 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12291 as_warn (_("this instruction will write back the base register"));
12292 else if (inst.operands[0].writeback
12293 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12294 as_warn (_("this instruction will not write back the base register"));
12295 }
12296
12297 inst.instruction = THUMB_OP16 (inst.instruction);
12298 inst.instruction |= inst.operands[0].reg << 8;
12299 inst.instruction |= inst.operands[1].imm;
12300 }
12301 }
12302
12303 static void
12304 do_t_ldrex (void)
12305 {
12306 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12307 || inst.operands[1].postind || inst.operands[1].writeback
12308 || inst.operands[1].immisreg || inst.operands[1].shifted
12309 || inst.operands[1].negative,
12310 BAD_ADDR_MODE);
12311
12312 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12313
12314 inst.instruction |= inst.operands[0].reg << 12;
12315 inst.instruction |= inst.operands[1].reg << 16;
12316 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12317 }
12318
12319 static void
12320 do_t_ldrexd (void)
12321 {
12322 if (!inst.operands[1].present)
12323 {
12324 constraint (inst.operands[0].reg == REG_LR,
12325 _("r14 not allowed as first register "
12326 "when second register is omitted"));
12327 inst.operands[1].reg = inst.operands[0].reg + 1;
12328 }
12329 constraint (inst.operands[0].reg == inst.operands[1].reg,
12330 BAD_OVERLAP);
12331
12332 inst.instruction |= inst.operands[0].reg << 12;
12333 inst.instruction |= inst.operands[1].reg << 8;
12334 inst.instruction |= inst.operands[2].reg << 16;
12335 }
12336
12337 static void
12338 do_t_ldst (void)
12339 {
12340 unsigned long opcode;
12341 int Rn;
12342
12343 if (inst.operands[0].isreg
12344 && !inst.operands[0].preind
12345 && inst.operands[0].reg == REG_PC)
12346 set_pred_insn_type_last ();
12347
12348 opcode = inst.instruction;
12349 if (unified_syntax)
12350 {
12351 if (!inst.operands[1].isreg)
12352 {
12353 if (opcode <= 0xffff)
12354 inst.instruction = THUMB_OP32 (opcode);
12355 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12356 return;
12357 }
12358 if (inst.operands[1].isreg
12359 && !inst.operands[1].writeback
12360 && !inst.operands[1].shifted && !inst.operands[1].postind
12361 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12362 && opcode <= 0xffff
12363 && inst.size_req != 4)
12364 {
12365 /* Insn may have a 16-bit form. */
12366 Rn = inst.operands[1].reg;
12367 if (inst.operands[1].immisreg)
12368 {
12369 inst.instruction = THUMB_OP16 (opcode);
12370 /* [Rn, Rik] */
12371 if (Rn <= 7 && inst.operands[1].imm <= 7)
12372 goto op16;
12373 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12374 reject_bad_reg (inst.operands[1].imm);
12375 }
12376 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12377 && opcode != T_MNEM_ldrsb)
12378 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12379 || (Rn == REG_SP && opcode == T_MNEM_str))
12380 {
12381 /* [Rn, #const] */
12382 if (Rn > 7)
12383 {
12384 if (Rn == REG_PC)
12385 {
12386 if (inst.relocs[0].pc_rel)
12387 opcode = T_MNEM_ldr_pc2;
12388 else
12389 opcode = T_MNEM_ldr_pc;
12390 }
12391 else
12392 {
12393 if (opcode == T_MNEM_ldr)
12394 opcode = T_MNEM_ldr_sp;
12395 else
12396 opcode = T_MNEM_str_sp;
12397 }
12398 inst.instruction = inst.operands[0].reg << 8;
12399 }
12400 else
12401 {
12402 inst.instruction = inst.operands[0].reg;
12403 inst.instruction |= inst.operands[1].reg << 3;
12404 }
12405 inst.instruction |= THUMB_OP16 (opcode);
12406 if (inst.size_req == 2)
12407 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12408 else
12409 inst.relax = opcode;
12410 return;
12411 }
12412 }
12413 /* Definitely a 32-bit variant. */
12414
12415 /* Warning for Erratum 752419. */
12416 if (opcode == T_MNEM_ldr
12417 && inst.operands[0].reg == REG_SP
12418 && inst.operands[1].writeback == 1
12419 && !inst.operands[1].immisreg)
12420 {
12421 if (no_cpu_selected ()
12422 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12423 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12424 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12425 as_warn (_("This instruction may be unpredictable "
12426 "if executed on M-profile cores "
12427 "with interrupts enabled."));
12428 }
12429
12430 /* Do some validations regarding addressing modes. */
12431 if (inst.operands[1].immisreg)
12432 reject_bad_reg (inst.operands[1].imm);
12433
12434 constraint (inst.operands[1].writeback == 1
12435 && inst.operands[0].reg == inst.operands[1].reg,
12436 BAD_OVERLAP);
12437
12438 inst.instruction = THUMB_OP32 (opcode);
12439 inst.instruction |= inst.operands[0].reg << 12;
12440 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12441 check_ldr_r15_aligned ();
12442 return;
12443 }
12444
12445 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12446
12447 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12448 {
12449 /* Only [Rn,Rm] is acceptable. */
12450 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12451 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12452 || inst.operands[1].postind || inst.operands[1].shifted
12453 || inst.operands[1].negative,
12454 _("Thumb does not support this addressing mode"));
12455 inst.instruction = THUMB_OP16 (inst.instruction);
12456 goto op16;
12457 }
12458
12459 inst.instruction = THUMB_OP16 (inst.instruction);
12460 if (!inst.operands[1].isreg)
12461 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12462 return;
12463
12464 constraint (!inst.operands[1].preind
12465 || inst.operands[1].shifted
12466 || inst.operands[1].writeback,
12467 _("Thumb does not support this addressing mode"));
12468 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12469 {
12470 constraint (inst.instruction & 0x0600,
12471 _("byte or halfword not valid for base register"));
12472 constraint (inst.operands[1].reg == REG_PC
12473 && !(inst.instruction & THUMB_LOAD_BIT),
12474 _("r15 based store not allowed"));
12475 constraint (inst.operands[1].immisreg,
12476 _("invalid base register for register offset"));
12477
12478 if (inst.operands[1].reg == REG_PC)
12479 inst.instruction = T_OPCODE_LDR_PC;
12480 else if (inst.instruction & THUMB_LOAD_BIT)
12481 inst.instruction = T_OPCODE_LDR_SP;
12482 else
12483 inst.instruction = T_OPCODE_STR_SP;
12484
12485 inst.instruction |= inst.operands[0].reg << 8;
12486 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12487 return;
12488 }
12489
12490 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12491 if (!inst.operands[1].immisreg)
12492 {
12493 /* Immediate offset. */
12494 inst.instruction |= inst.operands[0].reg;
12495 inst.instruction |= inst.operands[1].reg << 3;
12496 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12497 return;
12498 }
12499
12500 /* Register offset. */
12501 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12502 constraint (inst.operands[1].negative,
12503 _("Thumb does not support this addressing mode"));
12504
12505 op16:
12506 switch (inst.instruction)
12507 {
12508 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12509 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12510 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12511 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12512 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12513 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12514 case 0x5600 /* ldrsb */:
12515 case 0x5e00 /* ldrsh */: break;
12516 default: abort ();
12517 }
12518
12519 inst.instruction |= inst.operands[0].reg;
12520 inst.instruction |= inst.operands[1].reg << 3;
12521 inst.instruction |= inst.operands[1].imm << 6;
12522 }
12523
12524 static void
12525 do_t_ldstd (void)
12526 {
12527 if (!inst.operands[1].present)
12528 {
12529 inst.operands[1].reg = inst.operands[0].reg + 1;
12530 constraint (inst.operands[0].reg == REG_LR,
12531 _("r14 not allowed here"));
12532 constraint (inst.operands[0].reg == REG_R12,
12533 _("r12 not allowed here"));
12534 }
12535
12536 if (inst.operands[2].writeback
12537 && (inst.operands[0].reg == inst.operands[2].reg
12538 || inst.operands[1].reg == inst.operands[2].reg))
12539 as_warn (_("base register written back, and overlaps "
12540 "one of transfer registers"));
12541
12542 inst.instruction |= inst.operands[0].reg << 12;
12543 inst.instruction |= inst.operands[1].reg << 8;
12544 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12545 }
12546
12547 static void
12548 do_t_ldstt (void)
12549 {
12550 inst.instruction |= inst.operands[0].reg << 12;
12551 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12552 }
12553
12554 static void
12555 do_t_mla (void)
12556 {
12557 unsigned Rd, Rn, Rm, Ra;
12558
12559 Rd = inst.operands[0].reg;
12560 Rn = inst.operands[1].reg;
12561 Rm = inst.operands[2].reg;
12562 Ra = inst.operands[3].reg;
12563
12564 reject_bad_reg (Rd);
12565 reject_bad_reg (Rn);
12566 reject_bad_reg (Rm);
12567 reject_bad_reg (Ra);
12568
12569 inst.instruction |= Rd << 8;
12570 inst.instruction |= Rn << 16;
12571 inst.instruction |= Rm;
12572 inst.instruction |= Ra << 12;
12573 }
12574
12575 static void
12576 do_t_mlal (void)
12577 {
12578 unsigned RdLo, RdHi, Rn, Rm;
12579
12580 RdLo = inst.operands[0].reg;
12581 RdHi = inst.operands[1].reg;
12582 Rn = inst.operands[2].reg;
12583 Rm = inst.operands[3].reg;
12584
12585 reject_bad_reg (RdLo);
12586 reject_bad_reg (RdHi);
12587 reject_bad_reg (Rn);
12588 reject_bad_reg (Rm);
12589
12590 inst.instruction |= RdLo << 12;
12591 inst.instruction |= RdHi << 8;
12592 inst.instruction |= Rn << 16;
12593 inst.instruction |= Rm;
12594 }
12595
12596 static void
12597 do_t_mov_cmp (void)
12598 {
12599 unsigned Rn, Rm;
12600
12601 Rn = inst.operands[0].reg;
12602 Rm = inst.operands[1].reg;
12603
12604 if (Rn == REG_PC)
12605 set_pred_insn_type_last ();
12606
12607 if (unified_syntax)
12608 {
12609 int r0off = (inst.instruction == T_MNEM_mov
12610 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12611 unsigned long opcode;
12612 bfd_boolean narrow;
12613 bfd_boolean low_regs;
12614
12615 low_regs = (Rn <= 7 && Rm <= 7);
12616 opcode = inst.instruction;
12617 if (in_pred_block ())
12618 narrow = opcode != T_MNEM_movs;
12619 else
12620 narrow = opcode != T_MNEM_movs || low_regs;
12621 if (inst.size_req == 4
12622 || inst.operands[1].shifted)
12623 narrow = FALSE;
12624
12625 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12626 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12627 && !inst.operands[1].shifted
12628 && Rn == REG_PC
12629 && Rm == REG_LR)
12630 {
12631 inst.instruction = T2_SUBS_PC_LR;
12632 return;
12633 }
12634
12635 if (opcode == T_MNEM_cmp)
12636 {
12637 constraint (Rn == REG_PC, BAD_PC);
12638 if (narrow)
12639 {
12640 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12641 but valid. */
12642 warn_deprecated_sp (Rm);
12643 /* R15 was documented as a valid choice for Rm in ARMv6,
12644 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12645 tools reject R15, so we do too. */
12646 constraint (Rm == REG_PC, BAD_PC);
12647 }
12648 else
12649 reject_bad_reg (Rm);
12650 }
12651 else if (opcode == T_MNEM_mov
12652 || opcode == T_MNEM_movs)
12653 {
12654 if (inst.operands[1].isreg)
12655 {
12656 if (opcode == T_MNEM_movs)
12657 {
12658 reject_bad_reg (Rn);
12659 reject_bad_reg (Rm);
12660 }
12661 else if (narrow)
12662 {
12663 /* This is mov.n. */
12664 if ((Rn == REG_SP || Rn == REG_PC)
12665 && (Rm == REG_SP || Rm == REG_PC))
12666 {
12667 as_tsktsk (_("Use of r%u as a source register is "
12668 "deprecated when r%u is the destination "
12669 "register."), Rm, Rn);
12670 }
12671 }
12672 else
12673 {
12674 /* This is mov.w. */
12675 constraint (Rn == REG_PC, BAD_PC);
12676 constraint (Rm == REG_PC, BAD_PC);
12677 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12678 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12679 }
12680 }
12681 else
12682 reject_bad_reg (Rn);
12683 }
12684
12685 if (!inst.operands[1].isreg)
12686 {
12687 /* Immediate operand. */
12688 if (!in_pred_block () && opcode == T_MNEM_mov)
12689 narrow = 0;
12690 if (low_regs && narrow)
12691 {
12692 inst.instruction = THUMB_OP16 (opcode);
12693 inst.instruction |= Rn << 8;
12694 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12695 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12696 {
12697 if (inst.size_req == 2)
12698 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12699 else
12700 inst.relax = opcode;
12701 }
12702 }
12703 else
12704 {
12705 constraint ((inst.relocs[0].type
12706 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12707 && (inst.relocs[0].type
12708 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12709 THUMB1_RELOC_ONLY);
12710
12711 inst.instruction = THUMB_OP32 (inst.instruction);
12712 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12713 inst.instruction |= Rn << r0off;
12714 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12715 }
12716 }
12717 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12718 && (inst.instruction == T_MNEM_mov
12719 || inst.instruction == T_MNEM_movs))
12720 {
12721 /* Register shifts are encoded as separate shift instructions. */
12722 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12723
12724 if (in_pred_block ())
12725 narrow = !flags;
12726 else
12727 narrow = flags;
12728
12729 if (inst.size_req == 4)
12730 narrow = FALSE;
12731
12732 if (!low_regs || inst.operands[1].imm > 7)
12733 narrow = FALSE;
12734
12735 if (Rn != Rm)
12736 narrow = FALSE;
12737
12738 switch (inst.operands[1].shift_kind)
12739 {
12740 case SHIFT_LSL:
12741 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12742 break;
12743 case SHIFT_ASR:
12744 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12745 break;
12746 case SHIFT_LSR:
12747 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12748 break;
12749 case SHIFT_ROR:
12750 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12751 break;
12752 default:
12753 abort ();
12754 }
12755
12756 inst.instruction = opcode;
12757 if (narrow)
12758 {
12759 inst.instruction |= Rn;
12760 inst.instruction |= inst.operands[1].imm << 3;
12761 }
12762 else
12763 {
12764 if (flags)
12765 inst.instruction |= CONDS_BIT;
12766
12767 inst.instruction |= Rn << 8;
12768 inst.instruction |= Rm << 16;
12769 inst.instruction |= inst.operands[1].imm;
12770 }
12771 }
12772 else if (!narrow)
12773 {
12774 /* Some mov with immediate shift have narrow variants.
12775 Register shifts are handled above. */
12776 if (low_regs && inst.operands[1].shifted
12777 && (inst.instruction == T_MNEM_mov
12778 || inst.instruction == T_MNEM_movs))
12779 {
12780 if (in_pred_block ())
12781 narrow = (inst.instruction == T_MNEM_mov);
12782 else
12783 narrow = (inst.instruction == T_MNEM_movs);
12784 }
12785
12786 if (narrow)
12787 {
12788 switch (inst.operands[1].shift_kind)
12789 {
12790 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12791 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12792 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12793 default: narrow = FALSE; break;
12794 }
12795 }
12796
12797 if (narrow)
12798 {
12799 inst.instruction |= Rn;
12800 inst.instruction |= Rm << 3;
12801 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12802 }
12803 else
12804 {
12805 inst.instruction = THUMB_OP32 (inst.instruction);
12806 inst.instruction |= Rn << r0off;
12807 encode_thumb32_shifted_operand (1);
12808 }
12809 }
12810 else
12811 switch (inst.instruction)
12812 {
12813 case T_MNEM_mov:
12814 /* In v4t or v5t a move of two lowregs produces unpredictable
12815 results. Don't allow this. */
12816 if (low_regs)
12817 {
12818 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12819 "MOV Rd, Rs with two low registers is not "
12820 "permitted on this architecture");
12821 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12822 arm_ext_v6);
12823 }
12824
12825 inst.instruction = T_OPCODE_MOV_HR;
12826 inst.instruction |= (Rn & 0x8) << 4;
12827 inst.instruction |= (Rn & 0x7);
12828 inst.instruction |= Rm << 3;
12829 break;
12830
12831 case T_MNEM_movs:
12832 /* We know we have low registers at this point.
12833 Generate LSLS Rd, Rs, #0. */
12834 inst.instruction = T_OPCODE_LSL_I;
12835 inst.instruction |= Rn;
12836 inst.instruction |= Rm << 3;
12837 break;
12838
12839 case T_MNEM_cmp:
12840 if (low_regs)
12841 {
12842 inst.instruction = T_OPCODE_CMP_LR;
12843 inst.instruction |= Rn;
12844 inst.instruction |= Rm << 3;
12845 }
12846 else
12847 {
12848 inst.instruction = T_OPCODE_CMP_HR;
12849 inst.instruction |= (Rn & 0x8) << 4;
12850 inst.instruction |= (Rn & 0x7);
12851 inst.instruction |= Rm << 3;
12852 }
12853 break;
12854 }
12855 return;
12856 }
12857
12858 inst.instruction = THUMB_OP16 (inst.instruction);
12859
12860 /* PR 10443: Do not silently ignore shifted operands. */
12861 constraint (inst.operands[1].shifted,
12862 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12863
12864 if (inst.operands[1].isreg)
12865 {
12866 if (Rn < 8 && Rm < 8)
12867 {
12868 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12869 since a MOV instruction produces unpredictable results. */
12870 if (inst.instruction == T_OPCODE_MOV_I8)
12871 inst.instruction = T_OPCODE_ADD_I3;
12872 else
12873 inst.instruction = T_OPCODE_CMP_LR;
12874
12875 inst.instruction |= Rn;
12876 inst.instruction |= Rm << 3;
12877 }
12878 else
12879 {
12880 if (inst.instruction == T_OPCODE_MOV_I8)
12881 inst.instruction = T_OPCODE_MOV_HR;
12882 else
12883 inst.instruction = T_OPCODE_CMP_HR;
12884 do_t_cpy ();
12885 }
12886 }
12887 else
12888 {
12889 constraint (Rn > 7,
12890 _("only lo regs allowed with immediate"));
12891 inst.instruction |= Rn << 8;
12892 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12893 }
12894 }
12895
12896 static void
12897 do_t_mov16 (void)
12898 {
12899 unsigned Rd;
12900 bfd_vma imm;
12901 bfd_boolean top;
12902
12903 top = (inst.instruction & 0x00800000) != 0;
12904 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12905 {
12906 constraint (top, _(":lower16: not allowed in this instruction"));
12907 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12908 }
12909 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12910 {
12911 constraint (!top, _(":upper16: not allowed in this instruction"));
12912 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12913 }
12914
12915 Rd = inst.operands[0].reg;
12916 reject_bad_reg (Rd);
12917
12918 inst.instruction |= Rd << 8;
12919 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12920 {
12921 imm = inst.relocs[0].exp.X_add_number;
12922 inst.instruction |= (imm & 0xf000) << 4;
12923 inst.instruction |= (imm & 0x0800) << 15;
12924 inst.instruction |= (imm & 0x0700) << 4;
12925 inst.instruction |= (imm & 0x00ff);
12926 }
12927 }
12928
12929 static void
12930 do_t_mvn_tst (void)
12931 {
12932 unsigned Rn, Rm;
12933
12934 Rn = inst.operands[0].reg;
12935 Rm = inst.operands[1].reg;
12936
12937 if (inst.instruction == T_MNEM_cmp
12938 || inst.instruction == T_MNEM_cmn)
12939 constraint (Rn == REG_PC, BAD_PC);
12940 else
12941 reject_bad_reg (Rn);
12942 reject_bad_reg (Rm);
12943
12944 if (unified_syntax)
12945 {
12946 int r0off = (inst.instruction == T_MNEM_mvn
12947 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12948 bfd_boolean narrow;
12949
12950 if (inst.size_req == 4
12951 || inst.instruction > 0xffff
12952 || inst.operands[1].shifted
12953 || Rn > 7 || Rm > 7)
12954 narrow = FALSE;
12955 else if (inst.instruction == T_MNEM_cmn
12956 || inst.instruction == T_MNEM_tst)
12957 narrow = TRUE;
12958 else if (THUMB_SETS_FLAGS (inst.instruction))
12959 narrow = !in_pred_block ();
12960 else
12961 narrow = in_pred_block ();
12962
12963 if (!inst.operands[1].isreg)
12964 {
12965 /* For an immediate, we always generate a 32-bit opcode;
12966 section relaxation will shrink it later if possible. */
12967 if (inst.instruction < 0xffff)
12968 inst.instruction = THUMB_OP32 (inst.instruction);
12969 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12970 inst.instruction |= Rn << r0off;
12971 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12972 }
12973 else
12974 {
12975 /* See if we can do this with a 16-bit instruction. */
12976 if (narrow)
12977 {
12978 inst.instruction = THUMB_OP16 (inst.instruction);
12979 inst.instruction |= Rn;
12980 inst.instruction |= Rm << 3;
12981 }
12982 else
12983 {
12984 constraint (inst.operands[1].shifted
12985 && inst.operands[1].immisreg,
12986 _("shift must be constant"));
12987 if (inst.instruction < 0xffff)
12988 inst.instruction = THUMB_OP32 (inst.instruction);
12989 inst.instruction |= Rn << r0off;
12990 encode_thumb32_shifted_operand (1);
12991 }
12992 }
12993 }
12994 else
12995 {
12996 constraint (inst.instruction > 0xffff
12997 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12998 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12999 _("unshifted register required"));
13000 constraint (Rn > 7 || Rm > 7,
13001 BAD_HIREG);
13002
13003 inst.instruction = THUMB_OP16 (inst.instruction);
13004 inst.instruction |= Rn;
13005 inst.instruction |= Rm << 3;
13006 }
13007 }
13008
13009 static void
13010 do_t_mrs (void)
13011 {
13012 unsigned Rd;
13013
13014 if (do_vfp_nsyn_mrs () == SUCCESS)
13015 return;
13016
13017 Rd = inst.operands[0].reg;
13018 reject_bad_reg (Rd);
13019 inst.instruction |= Rd << 8;
13020
13021 if (inst.operands[1].isreg)
13022 {
13023 unsigned br = inst.operands[1].reg;
13024 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13025 as_bad (_("bad register for mrs"));
13026
13027 inst.instruction |= br & (0xf << 16);
13028 inst.instruction |= (br & 0x300) >> 4;
13029 inst.instruction |= (br & SPSR_BIT) >> 2;
13030 }
13031 else
13032 {
13033 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13034
13035 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13036 {
13037 /* PR gas/12698: The constraint is only applied for m_profile.
13038 If the user has specified -march=all, we want to ignore it as
13039 we are building for any CPU type, including non-m variants. */
13040 bfd_boolean m_profile =
13041 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13042 constraint ((flags != 0) && m_profile, _("selected processor does "
13043 "not support requested special purpose register"));
13044 }
13045 else
13046 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13047 devices). */
13048 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13049 _("'APSR', 'CPSR' or 'SPSR' expected"));
13050
13051 inst.instruction |= (flags & SPSR_BIT) >> 2;
13052 inst.instruction |= inst.operands[1].imm & 0xff;
13053 inst.instruction |= 0xf0000;
13054 }
13055 }
13056
13057 static void
13058 do_t_msr (void)
13059 {
13060 int flags;
13061 unsigned Rn;
13062
13063 if (do_vfp_nsyn_msr () == SUCCESS)
13064 return;
13065
13066 constraint (!inst.operands[1].isreg,
13067 _("Thumb encoding does not support an immediate here"));
13068
13069 if (inst.operands[0].isreg)
13070 flags = (int)(inst.operands[0].reg);
13071 else
13072 flags = inst.operands[0].imm;
13073
13074 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13075 {
13076 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13077
13078 /* PR gas/12698: The constraint is only applied for m_profile.
13079 If the user has specified -march=all, we want to ignore it as
13080 we are building for any CPU type, including non-m variants. */
13081 bfd_boolean m_profile =
13082 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13083 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13084 && (bits & ~(PSR_s | PSR_f)) != 0)
13085 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13086 && bits != PSR_f)) && m_profile,
13087 _("selected processor does not support requested special "
13088 "purpose register"));
13089 }
13090 else
13091 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13092 "requested special purpose register"));
13093
13094 Rn = inst.operands[1].reg;
13095 reject_bad_reg (Rn);
13096
13097 inst.instruction |= (flags & SPSR_BIT) >> 2;
13098 inst.instruction |= (flags & 0xf0000) >> 8;
13099 inst.instruction |= (flags & 0x300) >> 4;
13100 inst.instruction |= (flags & 0xff);
13101 inst.instruction |= Rn << 16;
13102 }
13103
13104 static void
13105 do_t_mul (void)
13106 {
13107 bfd_boolean narrow;
13108 unsigned Rd, Rn, Rm;
13109
13110 if (!inst.operands[2].present)
13111 inst.operands[2].reg = inst.operands[0].reg;
13112
13113 Rd = inst.operands[0].reg;
13114 Rn = inst.operands[1].reg;
13115 Rm = inst.operands[2].reg;
13116
13117 if (unified_syntax)
13118 {
13119 if (inst.size_req == 4
13120 || (Rd != Rn
13121 && Rd != Rm)
13122 || Rn > 7
13123 || Rm > 7)
13124 narrow = FALSE;
13125 else if (inst.instruction == T_MNEM_muls)
13126 narrow = !in_pred_block ();
13127 else
13128 narrow = in_pred_block ();
13129 }
13130 else
13131 {
13132 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13133 constraint (Rn > 7 || Rm > 7,
13134 BAD_HIREG);
13135 narrow = TRUE;
13136 }
13137
13138 if (narrow)
13139 {
13140 /* 16-bit MULS/Conditional MUL. */
13141 inst.instruction = THUMB_OP16 (inst.instruction);
13142 inst.instruction |= Rd;
13143
13144 if (Rd == Rn)
13145 inst.instruction |= Rm << 3;
13146 else if (Rd == Rm)
13147 inst.instruction |= Rn << 3;
13148 else
13149 constraint (1, _("dest must overlap one source register"));
13150 }
13151 else
13152 {
13153 constraint (inst.instruction != T_MNEM_mul,
13154 _("Thumb-2 MUL must not set flags"));
13155 /* 32-bit MUL. */
13156 inst.instruction = THUMB_OP32 (inst.instruction);
13157 inst.instruction |= Rd << 8;
13158 inst.instruction |= Rn << 16;
13159 inst.instruction |= Rm << 0;
13160
13161 reject_bad_reg (Rd);
13162 reject_bad_reg (Rn);
13163 reject_bad_reg (Rm);
13164 }
13165 }
13166
13167 static void
13168 do_t_mull (void)
13169 {
13170 unsigned RdLo, RdHi, Rn, Rm;
13171
13172 RdLo = inst.operands[0].reg;
13173 RdHi = inst.operands[1].reg;
13174 Rn = inst.operands[2].reg;
13175 Rm = inst.operands[3].reg;
13176
13177 reject_bad_reg (RdLo);
13178 reject_bad_reg (RdHi);
13179 reject_bad_reg (Rn);
13180 reject_bad_reg (Rm);
13181
13182 inst.instruction |= RdLo << 12;
13183 inst.instruction |= RdHi << 8;
13184 inst.instruction |= Rn << 16;
13185 inst.instruction |= Rm;
13186
13187 if (RdLo == RdHi)
13188 as_tsktsk (_("rdhi and rdlo must be different"));
13189 }
13190
13191 static void
13192 do_t_nop (void)
13193 {
13194 set_pred_insn_type (NEUTRAL_IT_INSN);
13195
13196 if (unified_syntax)
13197 {
13198 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13199 {
13200 inst.instruction = THUMB_OP32 (inst.instruction);
13201 inst.instruction |= inst.operands[0].imm;
13202 }
13203 else
13204 {
13205 /* PR9722: Check for Thumb2 availability before
13206 generating a thumb2 nop instruction. */
13207 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13208 {
13209 inst.instruction = THUMB_OP16 (inst.instruction);
13210 inst.instruction |= inst.operands[0].imm << 4;
13211 }
13212 else
13213 inst.instruction = 0x46c0;
13214 }
13215 }
13216 else
13217 {
13218 constraint (inst.operands[0].present,
13219 _("Thumb does not support NOP with hints"));
13220 inst.instruction = 0x46c0;
13221 }
13222 }
13223
13224 static void
13225 do_t_neg (void)
13226 {
13227 if (unified_syntax)
13228 {
13229 bfd_boolean narrow;
13230
13231 if (THUMB_SETS_FLAGS (inst.instruction))
13232 narrow = !in_pred_block ();
13233 else
13234 narrow = in_pred_block ();
13235 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13236 narrow = FALSE;
13237 if (inst.size_req == 4)
13238 narrow = FALSE;
13239
13240 if (!narrow)
13241 {
13242 inst.instruction = THUMB_OP32 (inst.instruction);
13243 inst.instruction |= inst.operands[0].reg << 8;
13244 inst.instruction |= inst.operands[1].reg << 16;
13245 }
13246 else
13247 {
13248 inst.instruction = THUMB_OP16 (inst.instruction);
13249 inst.instruction |= inst.operands[0].reg;
13250 inst.instruction |= inst.operands[1].reg << 3;
13251 }
13252 }
13253 else
13254 {
13255 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13256 BAD_HIREG);
13257 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13258
13259 inst.instruction = THUMB_OP16 (inst.instruction);
13260 inst.instruction |= inst.operands[0].reg;
13261 inst.instruction |= inst.operands[1].reg << 3;
13262 }
13263 }
13264
13265 static void
13266 do_t_orn (void)
13267 {
13268 unsigned Rd, Rn;
13269
13270 Rd = inst.operands[0].reg;
13271 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13272
13273 reject_bad_reg (Rd);
13274 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13275 reject_bad_reg (Rn);
13276
13277 inst.instruction |= Rd << 8;
13278 inst.instruction |= Rn << 16;
13279
13280 if (!inst.operands[2].isreg)
13281 {
13282 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13283 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13284 }
13285 else
13286 {
13287 unsigned Rm;
13288
13289 Rm = inst.operands[2].reg;
13290 reject_bad_reg (Rm);
13291
13292 constraint (inst.operands[2].shifted
13293 && inst.operands[2].immisreg,
13294 _("shift must be constant"));
13295 encode_thumb32_shifted_operand (2);
13296 }
13297 }
13298
13299 static void
13300 do_t_pkhbt (void)
13301 {
13302 unsigned Rd, Rn, Rm;
13303
13304 Rd = inst.operands[0].reg;
13305 Rn = inst.operands[1].reg;
13306 Rm = inst.operands[2].reg;
13307
13308 reject_bad_reg (Rd);
13309 reject_bad_reg (Rn);
13310 reject_bad_reg (Rm);
13311
13312 inst.instruction |= Rd << 8;
13313 inst.instruction |= Rn << 16;
13314 inst.instruction |= Rm;
13315 if (inst.operands[3].present)
13316 {
13317 unsigned int val = inst.relocs[0].exp.X_add_number;
13318 constraint (inst.relocs[0].exp.X_op != O_constant,
13319 _("expression too complex"));
13320 inst.instruction |= (val & 0x1c) << 10;
13321 inst.instruction |= (val & 0x03) << 6;
13322 }
13323 }
13324
13325 static void
13326 do_t_pkhtb (void)
13327 {
13328 if (!inst.operands[3].present)
13329 {
13330 unsigned Rtmp;
13331
13332 inst.instruction &= ~0x00000020;
13333
13334 /* PR 10168. Swap the Rm and Rn registers. */
13335 Rtmp = inst.operands[1].reg;
13336 inst.operands[1].reg = inst.operands[2].reg;
13337 inst.operands[2].reg = Rtmp;
13338 }
13339 do_t_pkhbt ();
13340 }
13341
13342 static void
13343 do_t_pld (void)
13344 {
13345 if (inst.operands[0].immisreg)
13346 reject_bad_reg (inst.operands[0].imm);
13347
13348 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13349 }
13350
13351 static void
13352 do_t_push_pop (void)
13353 {
13354 unsigned mask;
13355
13356 constraint (inst.operands[0].writeback,
13357 _("push/pop do not support {reglist}^"));
13358 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13359 _("expression too complex"));
13360
13361 mask = inst.operands[0].imm;
13362 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13363 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13364 else if (inst.size_req != 4
13365 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13366 ? REG_LR : REG_PC)))
13367 {
13368 inst.instruction = THUMB_OP16 (inst.instruction);
13369 inst.instruction |= THUMB_PP_PC_LR;
13370 inst.instruction |= mask & 0xff;
13371 }
13372 else if (unified_syntax)
13373 {
13374 inst.instruction = THUMB_OP32 (inst.instruction);
13375 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13376 }
13377 else
13378 {
13379 inst.error = _("invalid register list to push/pop instruction");
13380 return;
13381 }
13382 }
13383
13384 static void
13385 do_t_clrm (void)
13386 {
13387 if (unified_syntax)
13388 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13389 else
13390 {
13391 inst.error = _("invalid register list to push/pop instruction");
13392 return;
13393 }
13394 }
13395
13396 static void
13397 do_t_vscclrm (void)
13398 {
13399 if (inst.operands[0].issingle)
13400 {
13401 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13402 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13403 inst.instruction |= inst.operands[0].imm;
13404 }
13405 else
13406 {
13407 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13408 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13409 inst.instruction |= 1 << 8;
13410 inst.instruction |= inst.operands[0].imm << 1;
13411 }
13412 }
13413
13414 static void
13415 do_t_rbit (void)
13416 {
13417 unsigned Rd, Rm;
13418
13419 Rd = inst.operands[0].reg;
13420 Rm = inst.operands[1].reg;
13421
13422 reject_bad_reg (Rd);
13423 reject_bad_reg (Rm);
13424
13425 inst.instruction |= Rd << 8;
13426 inst.instruction |= Rm << 16;
13427 inst.instruction |= Rm;
13428 }
13429
13430 static void
13431 do_t_rev (void)
13432 {
13433 unsigned Rd, Rm;
13434
13435 Rd = inst.operands[0].reg;
13436 Rm = inst.operands[1].reg;
13437
13438 reject_bad_reg (Rd);
13439 reject_bad_reg (Rm);
13440
13441 if (Rd <= 7 && Rm <= 7
13442 && inst.size_req != 4)
13443 {
13444 inst.instruction = THUMB_OP16 (inst.instruction);
13445 inst.instruction |= Rd;
13446 inst.instruction |= Rm << 3;
13447 }
13448 else if (unified_syntax)
13449 {
13450 inst.instruction = THUMB_OP32 (inst.instruction);
13451 inst.instruction |= Rd << 8;
13452 inst.instruction |= Rm << 16;
13453 inst.instruction |= Rm;
13454 }
13455 else
13456 inst.error = BAD_HIREG;
13457 }
13458
13459 static void
13460 do_t_rrx (void)
13461 {
13462 unsigned Rd, Rm;
13463
13464 Rd = inst.operands[0].reg;
13465 Rm = inst.operands[1].reg;
13466
13467 reject_bad_reg (Rd);
13468 reject_bad_reg (Rm);
13469
13470 inst.instruction |= Rd << 8;
13471 inst.instruction |= Rm;
13472 }
13473
13474 static void
13475 do_t_rsb (void)
13476 {
13477 unsigned Rd, Rs;
13478
13479 Rd = inst.operands[0].reg;
13480 Rs = (inst.operands[1].present
13481 ? inst.operands[1].reg /* Rd, Rs, foo */
13482 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13483
13484 reject_bad_reg (Rd);
13485 reject_bad_reg (Rs);
13486 if (inst.operands[2].isreg)
13487 reject_bad_reg (inst.operands[2].reg);
13488
13489 inst.instruction |= Rd << 8;
13490 inst.instruction |= Rs << 16;
13491 if (!inst.operands[2].isreg)
13492 {
13493 bfd_boolean narrow;
13494
13495 if ((inst.instruction & 0x00100000) != 0)
13496 narrow = !in_pred_block ();
13497 else
13498 narrow = in_pred_block ();
13499
13500 if (Rd > 7 || Rs > 7)
13501 narrow = FALSE;
13502
13503 if (inst.size_req == 4 || !unified_syntax)
13504 narrow = FALSE;
13505
13506 if (inst.relocs[0].exp.X_op != O_constant
13507 || inst.relocs[0].exp.X_add_number != 0)
13508 narrow = FALSE;
13509
13510 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13511 relaxation, but it doesn't seem worth the hassle. */
13512 if (narrow)
13513 {
13514 inst.relocs[0].type = BFD_RELOC_UNUSED;
13515 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13516 inst.instruction |= Rs << 3;
13517 inst.instruction |= Rd;
13518 }
13519 else
13520 {
13521 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13522 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13523 }
13524 }
13525 else
13526 encode_thumb32_shifted_operand (2);
13527 }
13528
13529 static void
13530 do_t_setend (void)
13531 {
13532 if (warn_on_deprecated
13533 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13534 as_tsktsk (_("setend use is deprecated for ARMv8"));
13535
13536 set_pred_insn_type (OUTSIDE_PRED_INSN);
13537 if (inst.operands[0].imm)
13538 inst.instruction |= 0x8;
13539 }
13540
13541 static void
13542 do_t_shift (void)
13543 {
13544 if (!inst.operands[1].present)
13545 inst.operands[1].reg = inst.operands[0].reg;
13546
13547 if (unified_syntax)
13548 {
13549 bfd_boolean narrow;
13550 int shift_kind;
13551
13552 switch (inst.instruction)
13553 {
13554 case T_MNEM_asr:
13555 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13556 case T_MNEM_lsl:
13557 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13558 case T_MNEM_lsr:
13559 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13560 case T_MNEM_ror:
13561 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13562 default: abort ();
13563 }
13564
13565 if (THUMB_SETS_FLAGS (inst.instruction))
13566 narrow = !in_pred_block ();
13567 else
13568 narrow = in_pred_block ();
13569 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13570 narrow = FALSE;
13571 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13572 narrow = FALSE;
13573 if (inst.operands[2].isreg
13574 && (inst.operands[1].reg != inst.operands[0].reg
13575 || inst.operands[2].reg > 7))
13576 narrow = FALSE;
13577 if (inst.size_req == 4)
13578 narrow = FALSE;
13579
13580 reject_bad_reg (inst.operands[0].reg);
13581 reject_bad_reg (inst.operands[1].reg);
13582
13583 if (!narrow)
13584 {
13585 if (inst.operands[2].isreg)
13586 {
13587 reject_bad_reg (inst.operands[2].reg);
13588 inst.instruction = THUMB_OP32 (inst.instruction);
13589 inst.instruction |= inst.operands[0].reg << 8;
13590 inst.instruction |= inst.operands[1].reg << 16;
13591 inst.instruction |= inst.operands[2].reg;
13592
13593 /* PR 12854: Error on extraneous shifts. */
13594 constraint (inst.operands[2].shifted,
13595 _("extraneous shift as part of operand to shift insn"));
13596 }
13597 else
13598 {
13599 inst.operands[1].shifted = 1;
13600 inst.operands[1].shift_kind = shift_kind;
13601 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13602 ? T_MNEM_movs : T_MNEM_mov);
13603 inst.instruction |= inst.operands[0].reg << 8;
13604 encode_thumb32_shifted_operand (1);
13605 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13606 inst.relocs[0].type = BFD_RELOC_UNUSED;
13607 }
13608 }
13609 else
13610 {
13611 if (inst.operands[2].isreg)
13612 {
13613 switch (shift_kind)
13614 {
13615 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13616 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13617 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13618 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13619 default: abort ();
13620 }
13621
13622 inst.instruction |= inst.operands[0].reg;
13623 inst.instruction |= inst.operands[2].reg << 3;
13624
13625 /* PR 12854: Error on extraneous shifts. */
13626 constraint (inst.operands[2].shifted,
13627 _("extraneous shift as part of operand to shift insn"));
13628 }
13629 else
13630 {
13631 switch (shift_kind)
13632 {
13633 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13634 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13635 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13636 default: abort ();
13637 }
13638 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13639 inst.instruction |= inst.operands[0].reg;
13640 inst.instruction |= inst.operands[1].reg << 3;
13641 }
13642 }
13643 }
13644 else
13645 {
13646 constraint (inst.operands[0].reg > 7
13647 || inst.operands[1].reg > 7, BAD_HIREG);
13648 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13649
13650 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13651 {
13652 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13653 constraint (inst.operands[0].reg != inst.operands[1].reg,
13654 _("source1 and dest must be same register"));
13655
13656 switch (inst.instruction)
13657 {
13658 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13659 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13660 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13661 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13662 default: abort ();
13663 }
13664
13665 inst.instruction |= inst.operands[0].reg;
13666 inst.instruction |= inst.operands[2].reg << 3;
13667
13668 /* PR 12854: Error on extraneous shifts. */
13669 constraint (inst.operands[2].shifted,
13670 _("extraneous shift as part of operand to shift insn"));
13671 }
13672 else
13673 {
13674 switch (inst.instruction)
13675 {
13676 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13677 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13678 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13679 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13680 default: abort ();
13681 }
13682 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13683 inst.instruction |= inst.operands[0].reg;
13684 inst.instruction |= inst.operands[1].reg << 3;
13685 }
13686 }
13687 }
13688
13689 static void
13690 do_t_simd (void)
13691 {
13692 unsigned Rd, Rn, Rm;
13693
13694 Rd = inst.operands[0].reg;
13695 Rn = inst.operands[1].reg;
13696 Rm = inst.operands[2].reg;
13697
13698 reject_bad_reg (Rd);
13699 reject_bad_reg (Rn);
13700 reject_bad_reg (Rm);
13701
13702 inst.instruction |= Rd << 8;
13703 inst.instruction |= Rn << 16;
13704 inst.instruction |= Rm;
13705 }
13706
13707 static void
13708 do_t_simd2 (void)
13709 {
13710 unsigned Rd, Rn, Rm;
13711
13712 Rd = inst.operands[0].reg;
13713 Rm = inst.operands[1].reg;
13714 Rn = inst.operands[2].reg;
13715
13716 reject_bad_reg (Rd);
13717 reject_bad_reg (Rn);
13718 reject_bad_reg (Rm);
13719
13720 inst.instruction |= Rd << 8;
13721 inst.instruction |= Rn << 16;
13722 inst.instruction |= Rm;
13723 }
13724
13725 static void
13726 do_t_smc (void)
13727 {
13728 unsigned int value = inst.relocs[0].exp.X_add_number;
13729 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13730 _("SMC is not permitted on this architecture"));
13731 constraint (inst.relocs[0].exp.X_op != O_constant,
13732 _("expression too complex"));
13733 inst.relocs[0].type = BFD_RELOC_UNUSED;
13734 inst.instruction |= (value & 0xf000) >> 12;
13735 inst.instruction |= (value & 0x0ff0);
13736 inst.instruction |= (value & 0x000f) << 16;
13737 /* PR gas/15623: SMC instructions must be last in an IT block. */
13738 set_pred_insn_type_last ();
13739 }
13740
13741 static void
13742 do_t_hvc (void)
13743 {
13744 unsigned int value = inst.relocs[0].exp.X_add_number;
13745
13746 inst.relocs[0].type = BFD_RELOC_UNUSED;
13747 inst.instruction |= (value & 0x0fff);
13748 inst.instruction |= (value & 0xf000) << 4;
13749 }
13750
13751 static void
13752 do_t_ssat_usat (int bias)
13753 {
13754 unsigned Rd, Rn;
13755
13756 Rd = inst.operands[0].reg;
13757 Rn = inst.operands[2].reg;
13758
13759 reject_bad_reg (Rd);
13760 reject_bad_reg (Rn);
13761
13762 inst.instruction |= Rd << 8;
13763 inst.instruction |= inst.operands[1].imm - bias;
13764 inst.instruction |= Rn << 16;
13765
13766 if (inst.operands[3].present)
13767 {
13768 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13769
13770 inst.relocs[0].type = BFD_RELOC_UNUSED;
13771
13772 constraint (inst.relocs[0].exp.X_op != O_constant,
13773 _("expression too complex"));
13774
13775 if (shift_amount != 0)
13776 {
13777 constraint (shift_amount > 31,
13778 _("shift expression is too large"));
13779
13780 if (inst.operands[3].shift_kind == SHIFT_ASR)
13781 inst.instruction |= 0x00200000; /* sh bit. */
13782
13783 inst.instruction |= (shift_amount & 0x1c) << 10;
13784 inst.instruction |= (shift_amount & 0x03) << 6;
13785 }
13786 }
13787 }
13788
13789 static void
13790 do_t_ssat (void)
13791 {
13792 do_t_ssat_usat (1);
13793 }
13794
13795 static void
13796 do_t_ssat16 (void)
13797 {
13798 unsigned Rd, Rn;
13799
13800 Rd = inst.operands[0].reg;
13801 Rn = inst.operands[2].reg;
13802
13803 reject_bad_reg (Rd);
13804 reject_bad_reg (Rn);
13805
13806 inst.instruction |= Rd << 8;
13807 inst.instruction |= inst.operands[1].imm - 1;
13808 inst.instruction |= Rn << 16;
13809 }
13810
13811 static void
13812 do_t_strex (void)
13813 {
13814 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13815 || inst.operands[2].postind || inst.operands[2].writeback
13816 || inst.operands[2].immisreg || inst.operands[2].shifted
13817 || inst.operands[2].negative,
13818 BAD_ADDR_MODE);
13819
13820 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13821
13822 inst.instruction |= inst.operands[0].reg << 8;
13823 inst.instruction |= inst.operands[1].reg << 12;
13824 inst.instruction |= inst.operands[2].reg << 16;
13825 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13826 }
13827
13828 static void
13829 do_t_strexd (void)
13830 {
13831 if (!inst.operands[2].present)
13832 inst.operands[2].reg = inst.operands[1].reg + 1;
13833
13834 constraint (inst.operands[0].reg == inst.operands[1].reg
13835 || inst.operands[0].reg == inst.operands[2].reg
13836 || inst.operands[0].reg == inst.operands[3].reg,
13837 BAD_OVERLAP);
13838
13839 inst.instruction |= inst.operands[0].reg;
13840 inst.instruction |= inst.operands[1].reg << 12;
13841 inst.instruction |= inst.operands[2].reg << 8;
13842 inst.instruction |= inst.operands[3].reg << 16;
13843 }
13844
13845 static void
13846 do_t_sxtah (void)
13847 {
13848 unsigned Rd, Rn, Rm;
13849
13850 Rd = inst.operands[0].reg;
13851 Rn = inst.operands[1].reg;
13852 Rm = inst.operands[2].reg;
13853
13854 reject_bad_reg (Rd);
13855 reject_bad_reg (Rn);
13856 reject_bad_reg (Rm);
13857
13858 inst.instruction |= Rd << 8;
13859 inst.instruction |= Rn << 16;
13860 inst.instruction |= Rm;
13861 inst.instruction |= inst.operands[3].imm << 4;
13862 }
13863
13864 static void
13865 do_t_sxth (void)
13866 {
13867 unsigned Rd, Rm;
13868
13869 Rd = inst.operands[0].reg;
13870 Rm = inst.operands[1].reg;
13871
13872 reject_bad_reg (Rd);
13873 reject_bad_reg (Rm);
13874
13875 if (inst.instruction <= 0xffff
13876 && inst.size_req != 4
13877 && Rd <= 7 && Rm <= 7
13878 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13879 {
13880 inst.instruction = THUMB_OP16 (inst.instruction);
13881 inst.instruction |= Rd;
13882 inst.instruction |= Rm << 3;
13883 }
13884 else if (unified_syntax)
13885 {
13886 if (inst.instruction <= 0xffff)
13887 inst.instruction = THUMB_OP32 (inst.instruction);
13888 inst.instruction |= Rd << 8;
13889 inst.instruction |= Rm;
13890 inst.instruction |= inst.operands[2].imm << 4;
13891 }
13892 else
13893 {
13894 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13895 _("Thumb encoding does not support rotation"));
13896 constraint (1, BAD_HIREG);
13897 }
13898 }
13899
13900 static void
13901 do_t_swi (void)
13902 {
13903 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13904 }
13905
13906 static void
13907 do_t_tb (void)
13908 {
13909 unsigned Rn, Rm;
13910 int half;
13911
13912 half = (inst.instruction & 0x10) != 0;
13913 set_pred_insn_type_last ();
13914 constraint (inst.operands[0].immisreg,
13915 _("instruction requires register index"));
13916
13917 Rn = inst.operands[0].reg;
13918 Rm = inst.operands[0].imm;
13919
13920 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13921 constraint (Rn == REG_SP, BAD_SP);
13922 reject_bad_reg (Rm);
13923
13924 constraint (!half && inst.operands[0].shifted,
13925 _("instruction does not allow shifted index"));
13926 inst.instruction |= (Rn << 16) | Rm;
13927 }
13928
13929 static void
13930 do_t_udf (void)
13931 {
13932 if (!inst.operands[0].present)
13933 inst.operands[0].imm = 0;
13934
13935 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13936 {
13937 constraint (inst.size_req == 2,
13938 _("immediate value out of range"));
13939 inst.instruction = THUMB_OP32 (inst.instruction);
13940 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13941 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13942 }
13943 else
13944 {
13945 inst.instruction = THUMB_OP16 (inst.instruction);
13946 inst.instruction |= inst.operands[0].imm;
13947 }
13948
13949 set_pred_insn_type (NEUTRAL_IT_INSN);
13950 }
13951
13952
13953 static void
13954 do_t_usat (void)
13955 {
13956 do_t_ssat_usat (0);
13957 }
13958
13959 static void
13960 do_t_usat16 (void)
13961 {
13962 unsigned Rd, Rn;
13963
13964 Rd = inst.operands[0].reg;
13965 Rn = inst.operands[2].reg;
13966
13967 reject_bad_reg (Rd);
13968 reject_bad_reg (Rn);
13969
13970 inst.instruction |= Rd << 8;
13971 inst.instruction |= inst.operands[1].imm;
13972 inst.instruction |= Rn << 16;
13973 }
13974
13975 /* Checking the range of the branch offset (VAL) with NBITS bits
13976 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13977 static int
13978 v8_1_branch_value_check (int val, int nbits, int is_signed)
13979 {
13980 gas_assert (nbits > 0 && nbits <= 32);
13981 if (is_signed)
13982 {
13983 int cmp = (1 << (nbits - 1));
13984 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13985 return FAIL;
13986 }
13987 else
13988 {
13989 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13990 return FAIL;
13991 }
13992 return SUCCESS;
13993 }
13994
13995 /* For branches in Armv8.1-M Mainline. */
13996 static void
13997 do_t_branch_future (void)
13998 {
13999 unsigned long insn = inst.instruction;
14000
14001 inst.instruction = THUMB_OP32 (inst.instruction);
14002 if (inst.operands[0].hasreloc == 0)
14003 {
14004 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
14005 as_bad (BAD_BRANCH_OFF);
14006
14007 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
14008 }
14009 else
14010 {
14011 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
14012 inst.relocs[0].pc_rel = 1;
14013 }
14014
14015 switch (insn)
14016 {
14017 case T_MNEM_bf:
14018 if (inst.operands[1].hasreloc == 0)
14019 {
14020 int val = inst.operands[1].imm;
14021 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14022 as_bad (BAD_BRANCH_OFF);
14023
14024 int immA = (val & 0x0001f000) >> 12;
14025 int immB = (val & 0x00000ffc) >> 2;
14026 int immC = (val & 0x00000002) >> 1;
14027 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14028 }
14029 else
14030 {
14031 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14032 inst.relocs[1].pc_rel = 1;
14033 }
14034 break;
14035
14036 case T_MNEM_bfl:
14037 if (inst.operands[1].hasreloc == 0)
14038 {
14039 int val = inst.operands[1].imm;
14040 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14041 as_bad (BAD_BRANCH_OFF);
14042
14043 int immA = (val & 0x0007f000) >> 12;
14044 int immB = (val & 0x00000ffc) >> 2;
14045 int immC = (val & 0x00000002) >> 1;
14046 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14047 }
14048 else
14049 {
14050 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14051 inst.relocs[1].pc_rel = 1;
14052 }
14053 break;
14054
14055 case T_MNEM_bfcsel:
14056 /* Operand 1. */
14057 if (inst.operands[1].hasreloc == 0)
14058 {
14059 int val = inst.operands[1].imm;
14060 int immA = (val & 0x00001000) >> 12;
14061 int immB = (val & 0x00000ffc) >> 2;
14062 int immC = (val & 0x00000002) >> 1;
14063 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14064 }
14065 else
14066 {
14067 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14068 inst.relocs[1].pc_rel = 1;
14069 }
14070
14071 /* Operand 2. */
14072 if (inst.operands[2].hasreloc == 0)
14073 {
14074 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14075 int val2 = inst.operands[2].imm;
14076 int val0 = inst.operands[0].imm & 0x1f;
14077 int diff = val2 - val0;
14078 if (diff == 4)
14079 inst.instruction |= 1 << 17; /* T bit. */
14080 else if (diff != 2)
14081 as_bad (_("out of range label-relative fixup value"));
14082 }
14083 else
14084 {
14085 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14086 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14087 inst.relocs[2].pc_rel = 1;
14088 }
14089
14090 /* Operand 3. */
14091 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14092 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14093 break;
14094
14095 case T_MNEM_bfx:
14096 case T_MNEM_bflx:
14097 inst.instruction |= inst.operands[1].reg << 16;
14098 break;
14099
14100 default: abort ();
14101 }
14102 }
14103
14104 /* Helper function for do_t_loloop to handle relocations. */
14105 static void
14106 v8_1_loop_reloc (int is_le)
14107 {
14108 if (inst.relocs[0].exp.X_op == O_constant)
14109 {
14110 int value = inst.relocs[0].exp.X_add_number;
14111 value = (is_le) ? -value : value;
14112
14113 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14114 as_bad (BAD_BRANCH_OFF);
14115
14116 int imml, immh;
14117
14118 immh = (value & 0x00000ffc) >> 2;
14119 imml = (value & 0x00000002) >> 1;
14120
14121 inst.instruction |= (imml << 11) | (immh << 1);
14122 }
14123 else
14124 {
14125 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14126 inst.relocs[0].pc_rel = 1;
14127 }
14128 }
14129
14130 /* For shifts in MVE. */
14131 static void
14132 do_mve_scalar_shift (void)
14133 {
14134 if (!inst.operands[2].present)
14135 {
14136 inst.operands[2] = inst.operands[1];
14137 inst.operands[1].reg = 0xf;
14138 }
14139
14140 inst.instruction |= inst.operands[0].reg << 16;
14141 inst.instruction |= inst.operands[1].reg << 8;
14142
14143 if (inst.operands[2].isreg)
14144 {
14145 /* Assuming Rm is already checked not to be 11x1. */
14146 constraint (inst.operands[2].reg == inst.operands[0].reg, BAD_OVERLAP);
14147 constraint (inst.operands[2].reg == inst.operands[1].reg, BAD_OVERLAP);
14148 inst.instruction |= inst.operands[2].reg << 12;
14149 }
14150 else
14151 {
14152 /* Assuming imm is already checked as [1,32]. */
14153 unsigned int value = inst.operands[2].imm;
14154 inst.instruction |= (value & 0x1c) << 10;
14155 inst.instruction |= (value & 0x03) << 6;
14156 /* Change last 4 bits from 0xd to 0xf. */
14157 inst.instruction |= 0x2;
14158 }
14159 }
14160
14161 /* MVE instruction encoder helpers. */
14162 #define M_MNEM_vabav 0xee800f01
14163 #define M_MNEM_vmladav 0xeef00e00
14164 #define M_MNEM_vmladava 0xeef00e20
14165 #define M_MNEM_vmladavx 0xeef01e00
14166 #define M_MNEM_vmladavax 0xeef01e20
14167 #define M_MNEM_vmlsdav 0xeef00e01
14168 #define M_MNEM_vmlsdava 0xeef00e21
14169 #define M_MNEM_vmlsdavx 0xeef01e01
14170 #define M_MNEM_vmlsdavax 0xeef01e21
14171 #define M_MNEM_vmullt 0xee011e00
14172 #define M_MNEM_vmullb 0xee010e00
14173 #define M_MNEM_vst20 0xfc801e00
14174 #define M_MNEM_vst21 0xfc801e20
14175 #define M_MNEM_vst40 0xfc801e01
14176 #define M_MNEM_vst41 0xfc801e21
14177 #define M_MNEM_vst42 0xfc801e41
14178 #define M_MNEM_vst43 0xfc801e61
14179 #define M_MNEM_vld20 0xfc901e00
14180 #define M_MNEM_vld21 0xfc901e20
14181 #define M_MNEM_vld40 0xfc901e01
14182 #define M_MNEM_vld41 0xfc901e21
14183 #define M_MNEM_vld42 0xfc901e41
14184 #define M_MNEM_vld43 0xfc901e61
14185 #define M_MNEM_vstrb 0xec000e00
14186 #define M_MNEM_vstrh 0xec000e10
14187 #define M_MNEM_vstrw 0xec000e40
14188 #define M_MNEM_vstrd 0xec000e50
14189 #define M_MNEM_vldrb 0xec100e00
14190 #define M_MNEM_vldrh 0xec100e10
14191 #define M_MNEM_vldrw 0xec100e40
14192 #define M_MNEM_vldrd 0xec100e50
14193 #define M_MNEM_vmovlt 0xeea01f40
14194 #define M_MNEM_vmovlb 0xeea00f40
14195 #define M_MNEM_vmovnt 0xfe311e81
14196 #define M_MNEM_vmovnb 0xfe310e81
14197 #define M_MNEM_vadc 0xee300f00
14198 #define M_MNEM_vadci 0xee301f00
14199 #define M_MNEM_vbrsr 0xfe011e60
14200 #define M_MNEM_vaddlv 0xee890f00
14201 #define M_MNEM_vaddlva 0xee890f20
14202 #define M_MNEM_vaddv 0xeef10f00
14203 #define M_MNEM_vaddva 0xeef10f20
14204 #define M_MNEM_vddup 0xee011f6e
14205 #define M_MNEM_vdwdup 0xee011f60
14206 #define M_MNEM_vidup 0xee010f6e
14207 #define M_MNEM_viwdup 0xee010f60
14208 #define M_MNEM_vmaxv 0xeee20f00
14209 #define M_MNEM_vmaxav 0xeee00f00
14210 #define M_MNEM_vminv 0xeee20f80
14211 #define M_MNEM_vminav 0xeee00f80
14212 #define M_MNEM_vmlaldav 0xee800e00
14213 #define M_MNEM_vmlaldava 0xee800e20
14214 #define M_MNEM_vmlaldavx 0xee801e00
14215 #define M_MNEM_vmlaldavax 0xee801e20
14216 #define M_MNEM_vmlsldav 0xee800e01
14217 #define M_MNEM_vmlsldava 0xee800e21
14218 #define M_MNEM_vmlsldavx 0xee801e01
14219 #define M_MNEM_vmlsldavax 0xee801e21
14220 #define M_MNEM_vrmlaldavhx 0xee801f00
14221 #define M_MNEM_vrmlaldavhax 0xee801f20
14222 #define M_MNEM_vrmlsldavh 0xfe800e01
14223 #define M_MNEM_vrmlsldavha 0xfe800e21
14224 #define M_MNEM_vrmlsldavhx 0xfe801e01
14225 #define M_MNEM_vrmlsldavhax 0xfe801e21
14226 #define M_MNEM_vqmovnt 0xee331e01
14227 #define M_MNEM_vqmovnb 0xee330e01
14228 #define M_MNEM_vqmovunt 0xee311e81
14229 #define M_MNEM_vqmovunb 0xee310e81
14230 #define M_MNEM_vshrnt 0xee801fc1
14231 #define M_MNEM_vshrnb 0xee800fc1
14232 #define M_MNEM_vrshrnt 0xfe801fc1
14233 #define M_MNEM_vqshrnt 0xee801f40
14234 #define M_MNEM_vqshrnb 0xee800f40
14235 #define M_MNEM_vqshrunt 0xee801fc0
14236 #define M_MNEM_vqshrunb 0xee800fc0
14237 #define M_MNEM_vrshrnb 0xfe800fc1
14238 #define M_MNEM_vqrshrnt 0xee801f41
14239 #define M_MNEM_vqrshrnb 0xee800f41
14240 #define M_MNEM_vqrshrunt 0xfe801fc0
14241 #define M_MNEM_vqrshrunb 0xfe800fc0
14242
14243 /* Neon instruction encoder helpers. */
14244
14245 /* Encodings for the different types for various Neon opcodes. */
14246
14247 /* An "invalid" code for the following tables. */
14248 #define N_INV -1u
14249
14250 struct neon_tab_entry
14251 {
14252 unsigned integer;
14253 unsigned float_or_poly;
14254 unsigned scalar_or_imm;
14255 };
14256
14257 /* Map overloaded Neon opcodes to their respective encodings. */
14258 #define NEON_ENC_TAB \
14259 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14260 X(vabdl, 0x0800700, N_INV, N_INV), \
14261 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14262 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14263 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14264 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14265 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14266 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14267 X(vaddl, 0x0800000, N_INV, N_INV), \
14268 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14269 X(vsubl, 0x0800200, N_INV, N_INV), \
14270 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14271 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14272 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14273 /* Register variants of the following two instructions are encoded as
14274 vcge / vcgt with the operands reversed. */ \
14275 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14276 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14277 X(vfma, N_INV, 0x0000c10, N_INV), \
14278 X(vfms, N_INV, 0x0200c10, N_INV), \
14279 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14280 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14281 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14282 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14283 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14284 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14285 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14286 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14287 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14288 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14289 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14290 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14291 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14292 X(vshl, 0x0000400, N_INV, 0x0800510), \
14293 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14294 X(vand, 0x0000110, N_INV, 0x0800030), \
14295 X(vbic, 0x0100110, N_INV, 0x0800030), \
14296 X(veor, 0x1000110, N_INV, N_INV), \
14297 X(vorn, 0x0300110, N_INV, 0x0800010), \
14298 X(vorr, 0x0200110, N_INV, 0x0800010), \
14299 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14300 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14301 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14302 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14303 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14304 X(vst1, 0x0000000, 0x0800000, N_INV), \
14305 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14306 X(vst2, 0x0000100, 0x0800100, N_INV), \
14307 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14308 X(vst3, 0x0000200, 0x0800200, N_INV), \
14309 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14310 X(vst4, 0x0000300, 0x0800300, N_INV), \
14311 X(vmovn, 0x1b20200, N_INV, N_INV), \
14312 X(vtrn, 0x1b20080, N_INV, N_INV), \
14313 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14314 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14315 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14316 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14317 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14318 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14319 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14320 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14321 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14322 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14323 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14324 X(vseleq, 0xe000a00, N_INV, N_INV), \
14325 X(vselvs, 0xe100a00, N_INV, N_INV), \
14326 X(vselge, 0xe200a00, N_INV, N_INV), \
14327 X(vselgt, 0xe300a00, N_INV, N_INV), \
14328 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14329 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14330 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14331 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14332 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14333 X(aes, 0x3b00300, N_INV, N_INV), \
14334 X(sha3op, 0x2000c00, N_INV, N_INV), \
14335 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14336 X(sha2op, 0x3ba0380, N_INV, N_INV)
14337
14338 enum neon_opc
14339 {
14340 #define X(OPC,I,F,S) N_MNEM_##OPC
14341 NEON_ENC_TAB
14342 #undef X
14343 };
14344
14345 static const struct neon_tab_entry neon_enc_tab[] =
14346 {
14347 #define X(OPC,I,F,S) { (I), (F), (S) }
14348 NEON_ENC_TAB
14349 #undef X
14350 };
14351
14352 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14353 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14354 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14355 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14356 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14357 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14358 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14359 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14360 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14361 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14362 #define NEON_ENC_SINGLE_(X) \
14363 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14364 #define NEON_ENC_DOUBLE_(X) \
14365 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14366 #define NEON_ENC_FPV8_(X) \
14367 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14368
14369 #define NEON_ENCODE(type, inst) \
14370 do \
14371 { \
14372 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14373 inst.is_neon = 1; \
14374 } \
14375 while (0)
14376
14377 #define check_neon_suffixes \
14378 do \
14379 { \
14380 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14381 { \
14382 as_bad (_("invalid neon suffix for non neon instruction")); \
14383 return; \
14384 } \
14385 } \
14386 while (0)
14387
14388 /* Define shapes for instruction operands. The following mnemonic characters
14389 are used in this table:
14390
14391 F - VFP S<n> register
14392 D - Neon D<n> register
14393 Q - Neon Q<n> register
14394 I - Immediate
14395 S - Scalar
14396 R - ARM register
14397 L - D<n> register list
14398
14399 This table is used to generate various data:
14400 - enumerations of the form NS_DDR to be used as arguments to
14401 neon_select_shape.
14402 - a table classifying shapes into single, double, quad, mixed.
14403 - a table used to drive neon_select_shape. */
14404
14405 #define NEON_SHAPE_DEF \
14406 X(4, (R, R, Q, Q), QUAD), \
14407 X(4, (Q, R, R, I), QUAD), \
14408 X(4, (R, R, S, S), QUAD), \
14409 X(4, (S, S, R, R), QUAD), \
14410 X(3, (Q, R, I), QUAD), \
14411 X(3, (I, Q, Q), QUAD), \
14412 X(3, (I, Q, R), QUAD), \
14413 X(3, (R, Q, Q), QUAD), \
14414 X(3, (D, D, D), DOUBLE), \
14415 X(3, (Q, Q, Q), QUAD), \
14416 X(3, (D, D, I), DOUBLE), \
14417 X(3, (Q, Q, I), QUAD), \
14418 X(3, (D, D, S), DOUBLE), \
14419 X(3, (Q, Q, S), QUAD), \
14420 X(3, (Q, Q, R), QUAD), \
14421 X(3, (R, R, Q), QUAD), \
14422 X(2, (R, Q), QUAD), \
14423 X(2, (D, D), DOUBLE), \
14424 X(2, (Q, Q), QUAD), \
14425 X(2, (D, S), DOUBLE), \
14426 X(2, (Q, S), QUAD), \
14427 X(2, (D, R), DOUBLE), \
14428 X(2, (Q, R), QUAD), \
14429 X(2, (D, I), DOUBLE), \
14430 X(2, (Q, I), QUAD), \
14431 X(3, (D, L, D), DOUBLE), \
14432 X(2, (D, Q), MIXED), \
14433 X(2, (Q, D), MIXED), \
14434 X(3, (D, Q, I), MIXED), \
14435 X(3, (Q, D, I), MIXED), \
14436 X(3, (Q, D, D), MIXED), \
14437 X(3, (D, Q, Q), MIXED), \
14438 X(3, (Q, Q, D), MIXED), \
14439 X(3, (Q, D, S), MIXED), \
14440 X(3, (D, Q, S), MIXED), \
14441 X(4, (D, D, D, I), DOUBLE), \
14442 X(4, (Q, Q, Q, I), QUAD), \
14443 X(4, (D, D, S, I), DOUBLE), \
14444 X(4, (Q, Q, S, I), QUAD), \
14445 X(2, (F, F), SINGLE), \
14446 X(3, (F, F, F), SINGLE), \
14447 X(2, (F, I), SINGLE), \
14448 X(2, (F, D), MIXED), \
14449 X(2, (D, F), MIXED), \
14450 X(3, (F, F, I), MIXED), \
14451 X(4, (R, R, F, F), SINGLE), \
14452 X(4, (F, F, R, R), SINGLE), \
14453 X(3, (D, R, R), DOUBLE), \
14454 X(3, (R, R, D), DOUBLE), \
14455 X(2, (S, R), SINGLE), \
14456 X(2, (R, S), SINGLE), \
14457 X(2, (F, R), SINGLE), \
14458 X(2, (R, F), SINGLE), \
14459 /* Used for MVE tail predicated loop instructions. */\
14460 X(2, (R, R), QUAD), \
14461 /* Half float shape supported so far. */\
14462 X (2, (H, D), MIXED), \
14463 X (2, (D, H), MIXED), \
14464 X (2, (H, F), MIXED), \
14465 X (2, (F, H), MIXED), \
14466 X (2, (H, H), HALF), \
14467 X (2, (H, R), HALF), \
14468 X (2, (R, H), HALF), \
14469 X (2, (H, I), HALF), \
14470 X (3, (H, H, H), HALF), \
14471 X (3, (H, F, I), MIXED), \
14472 X (3, (F, H, I), MIXED), \
14473 X (3, (D, H, H), MIXED), \
14474 X (3, (D, H, S), MIXED)
14475
14476 #define S2(A,B) NS_##A##B
14477 #define S3(A,B,C) NS_##A##B##C
14478 #define S4(A,B,C,D) NS_##A##B##C##D
14479
14480 #define X(N, L, C) S##N L
14481
14482 enum neon_shape
14483 {
14484 NEON_SHAPE_DEF,
14485 NS_NULL
14486 };
14487
14488 #undef X
14489 #undef S2
14490 #undef S3
14491 #undef S4
14492
14493 enum neon_shape_class
14494 {
14495 SC_HALF,
14496 SC_SINGLE,
14497 SC_DOUBLE,
14498 SC_QUAD,
14499 SC_MIXED
14500 };
14501
14502 #define X(N, L, C) SC_##C
14503
14504 static enum neon_shape_class neon_shape_class[] =
14505 {
14506 NEON_SHAPE_DEF
14507 };
14508
14509 #undef X
14510
14511 enum neon_shape_el
14512 {
14513 SE_H,
14514 SE_F,
14515 SE_D,
14516 SE_Q,
14517 SE_I,
14518 SE_S,
14519 SE_R,
14520 SE_L
14521 };
14522
14523 /* Register widths of above. */
14524 static unsigned neon_shape_el_size[] =
14525 {
14526 16,
14527 32,
14528 64,
14529 128,
14530 0,
14531 32,
14532 32,
14533 0
14534 };
14535
14536 struct neon_shape_info
14537 {
14538 unsigned els;
14539 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14540 };
14541
14542 #define S2(A,B) { SE_##A, SE_##B }
14543 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14544 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14545
14546 #define X(N, L, C) { N, S##N L }
14547
14548 static struct neon_shape_info neon_shape_tab[] =
14549 {
14550 NEON_SHAPE_DEF
14551 };
14552
14553 #undef X
14554 #undef S2
14555 #undef S3
14556 #undef S4
14557
14558 /* Bit masks used in type checking given instructions.
14559 'N_EQK' means the type must be the same as (or based on in some way) the key
14560 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14561 set, various other bits can be set as well in order to modify the meaning of
14562 the type constraint. */
14563
14564 enum neon_type_mask
14565 {
14566 N_S8 = 0x0000001,
14567 N_S16 = 0x0000002,
14568 N_S32 = 0x0000004,
14569 N_S64 = 0x0000008,
14570 N_U8 = 0x0000010,
14571 N_U16 = 0x0000020,
14572 N_U32 = 0x0000040,
14573 N_U64 = 0x0000080,
14574 N_I8 = 0x0000100,
14575 N_I16 = 0x0000200,
14576 N_I32 = 0x0000400,
14577 N_I64 = 0x0000800,
14578 N_8 = 0x0001000,
14579 N_16 = 0x0002000,
14580 N_32 = 0x0004000,
14581 N_64 = 0x0008000,
14582 N_P8 = 0x0010000,
14583 N_P16 = 0x0020000,
14584 N_F16 = 0x0040000,
14585 N_F32 = 0x0080000,
14586 N_F64 = 0x0100000,
14587 N_P64 = 0x0200000,
14588 N_KEY = 0x1000000, /* Key element (main type specifier). */
14589 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14590 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14591 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14592 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14593 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14594 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14595 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14596 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14597 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14598 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14599 N_UTYP = 0,
14600 N_MAX_NONSPECIAL = N_P64
14601 };
14602
14603 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14604
14605 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14606 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14607 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14608 #define N_S_32 (N_S8 | N_S16 | N_S32)
14609 #define N_F_16_32 (N_F16 | N_F32)
14610 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14611 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14612 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14613 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14614 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14615 #define N_F_MVE (N_F16 | N_F32)
14616 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14617
14618 /* Pass this as the first type argument to neon_check_type to ignore types
14619 altogether. */
14620 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14621
14622 /* Select a "shape" for the current instruction (describing register types or
14623 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14624 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14625 function of operand parsing, so this function doesn't need to be called.
14626 Shapes should be listed in order of decreasing length. */
14627
14628 static enum neon_shape
14629 neon_select_shape (enum neon_shape shape, ...)
14630 {
14631 va_list ap;
14632 enum neon_shape first_shape = shape;
14633
14634 /* Fix missing optional operands. FIXME: we don't know at this point how
14635 many arguments we should have, so this makes the assumption that we have
14636 > 1. This is true of all current Neon opcodes, I think, but may not be
14637 true in the future. */
14638 if (!inst.operands[1].present)
14639 inst.operands[1] = inst.operands[0];
14640
14641 va_start (ap, shape);
14642
14643 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14644 {
14645 unsigned j;
14646 int matches = 1;
14647
14648 for (j = 0; j < neon_shape_tab[shape].els; j++)
14649 {
14650 if (!inst.operands[j].present)
14651 {
14652 matches = 0;
14653 break;
14654 }
14655
14656 switch (neon_shape_tab[shape].el[j])
14657 {
14658 /* If a .f16, .16, .u16, .s16 type specifier is given over
14659 a VFP single precision register operand, it's essentially
14660 means only half of the register is used.
14661
14662 If the type specifier is given after the mnemonics, the
14663 information is stored in inst.vectype. If the type specifier
14664 is given after register operand, the information is stored
14665 in inst.operands[].vectype.
14666
14667 When there is only one type specifier, and all the register
14668 operands are the same type of hardware register, the type
14669 specifier applies to all register operands.
14670
14671 If no type specifier is given, the shape is inferred from
14672 operand information.
14673
14674 for example:
14675 vadd.f16 s0, s1, s2: NS_HHH
14676 vabs.f16 s0, s1: NS_HH
14677 vmov.f16 s0, r1: NS_HR
14678 vmov.f16 r0, s1: NS_RH
14679 vcvt.f16 r0, s1: NS_RH
14680 vcvt.f16.s32 s2, s2, #29: NS_HFI
14681 vcvt.f16.s32 s2, s2: NS_HF
14682 */
14683 case SE_H:
14684 if (!(inst.operands[j].isreg
14685 && inst.operands[j].isvec
14686 && inst.operands[j].issingle
14687 && !inst.operands[j].isquad
14688 && ((inst.vectype.elems == 1
14689 && inst.vectype.el[0].size == 16)
14690 || (inst.vectype.elems > 1
14691 && inst.vectype.el[j].size == 16)
14692 || (inst.vectype.elems == 0
14693 && inst.operands[j].vectype.type != NT_invtype
14694 && inst.operands[j].vectype.size == 16))))
14695 matches = 0;
14696 break;
14697
14698 case SE_F:
14699 if (!(inst.operands[j].isreg
14700 && inst.operands[j].isvec
14701 && inst.operands[j].issingle
14702 && !inst.operands[j].isquad
14703 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14704 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14705 || (inst.vectype.elems == 0
14706 && (inst.operands[j].vectype.size == 32
14707 || inst.operands[j].vectype.type == NT_invtype)))))
14708 matches = 0;
14709 break;
14710
14711 case SE_D:
14712 if (!(inst.operands[j].isreg
14713 && inst.operands[j].isvec
14714 && !inst.operands[j].isquad
14715 && !inst.operands[j].issingle))
14716 matches = 0;
14717 break;
14718
14719 case SE_R:
14720 if (!(inst.operands[j].isreg
14721 && !inst.operands[j].isvec))
14722 matches = 0;
14723 break;
14724
14725 case SE_Q:
14726 if (!(inst.operands[j].isreg
14727 && inst.operands[j].isvec
14728 && inst.operands[j].isquad
14729 && !inst.operands[j].issingle))
14730 matches = 0;
14731 break;
14732
14733 case SE_I:
14734 if (!(!inst.operands[j].isreg
14735 && !inst.operands[j].isscalar))
14736 matches = 0;
14737 break;
14738
14739 case SE_S:
14740 if (!(!inst.operands[j].isreg
14741 && inst.operands[j].isscalar))
14742 matches = 0;
14743 break;
14744
14745 case SE_L:
14746 break;
14747 }
14748 if (!matches)
14749 break;
14750 }
14751 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14752 /* We've matched all the entries in the shape table, and we don't
14753 have any left over operands which have not been matched. */
14754 break;
14755 }
14756
14757 va_end (ap);
14758
14759 if (shape == NS_NULL && first_shape != NS_NULL)
14760 first_error (_("invalid instruction shape"));
14761
14762 return shape;
14763 }
14764
14765 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14766 means the Q bit should be set). */
14767
14768 static int
14769 neon_quad (enum neon_shape shape)
14770 {
14771 return neon_shape_class[shape] == SC_QUAD;
14772 }
14773
14774 static void
14775 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14776 unsigned *g_size)
14777 {
14778 /* Allow modification to be made to types which are constrained to be
14779 based on the key element, based on bits set alongside N_EQK. */
14780 if ((typebits & N_EQK) != 0)
14781 {
14782 if ((typebits & N_HLF) != 0)
14783 *g_size /= 2;
14784 else if ((typebits & N_DBL) != 0)
14785 *g_size *= 2;
14786 if ((typebits & N_SGN) != 0)
14787 *g_type = NT_signed;
14788 else if ((typebits & N_UNS) != 0)
14789 *g_type = NT_unsigned;
14790 else if ((typebits & N_INT) != 0)
14791 *g_type = NT_integer;
14792 else if ((typebits & N_FLT) != 0)
14793 *g_type = NT_float;
14794 else if ((typebits & N_SIZ) != 0)
14795 *g_type = NT_untyped;
14796 }
14797 }
14798
14799 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14800 operand type, i.e. the single type specified in a Neon instruction when it
14801 is the only one given. */
14802
14803 static struct neon_type_el
14804 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14805 {
14806 struct neon_type_el dest = *key;
14807
14808 gas_assert ((thisarg & N_EQK) != 0);
14809
14810 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14811
14812 return dest;
14813 }
14814
14815 /* Convert Neon type and size into compact bitmask representation. */
14816
14817 static enum neon_type_mask
14818 type_chk_of_el_type (enum neon_el_type type, unsigned size)
14819 {
14820 switch (type)
14821 {
14822 case NT_untyped:
14823 switch (size)
14824 {
14825 case 8: return N_8;
14826 case 16: return N_16;
14827 case 32: return N_32;
14828 case 64: return N_64;
14829 default: ;
14830 }
14831 break;
14832
14833 case NT_integer:
14834 switch (size)
14835 {
14836 case 8: return N_I8;
14837 case 16: return N_I16;
14838 case 32: return N_I32;
14839 case 64: return N_I64;
14840 default: ;
14841 }
14842 break;
14843
14844 case NT_float:
14845 switch (size)
14846 {
14847 case 16: return N_F16;
14848 case 32: return N_F32;
14849 case 64: return N_F64;
14850 default: ;
14851 }
14852 break;
14853
14854 case NT_poly:
14855 switch (size)
14856 {
14857 case 8: return N_P8;
14858 case 16: return N_P16;
14859 case 64: return N_P64;
14860 default: ;
14861 }
14862 break;
14863
14864 case NT_signed:
14865 switch (size)
14866 {
14867 case 8: return N_S8;
14868 case 16: return N_S16;
14869 case 32: return N_S32;
14870 case 64: return N_S64;
14871 default: ;
14872 }
14873 break;
14874
14875 case NT_unsigned:
14876 switch (size)
14877 {
14878 case 8: return N_U8;
14879 case 16: return N_U16;
14880 case 32: return N_U32;
14881 case 64: return N_U64;
14882 default: ;
14883 }
14884 break;
14885
14886 default: ;
14887 }
14888
14889 return N_UTYP;
14890 }
14891
14892 /* Convert compact Neon bitmask type representation to a type and size. Only
14893 handles the case where a single bit is set in the mask. */
14894
14895 static int
14896 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14897 enum neon_type_mask mask)
14898 {
14899 if ((mask & N_EQK) != 0)
14900 return FAIL;
14901
14902 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14903 *size = 8;
14904 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14905 *size = 16;
14906 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14907 *size = 32;
14908 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14909 *size = 64;
14910 else
14911 return FAIL;
14912
14913 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14914 *type = NT_signed;
14915 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14916 *type = NT_unsigned;
14917 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14918 *type = NT_integer;
14919 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14920 *type = NT_untyped;
14921 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14922 *type = NT_poly;
14923 else if ((mask & (N_F_ALL)) != 0)
14924 *type = NT_float;
14925 else
14926 return FAIL;
14927
14928 return SUCCESS;
14929 }
14930
14931 /* Modify a bitmask of allowed types. This is only needed for type
14932 relaxation. */
14933
14934 static unsigned
14935 modify_types_allowed (unsigned allowed, unsigned mods)
14936 {
14937 unsigned size;
14938 enum neon_el_type type;
14939 unsigned destmask;
14940 int i;
14941
14942 destmask = 0;
14943
14944 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14945 {
14946 if (el_type_of_type_chk (&type, &size,
14947 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14948 {
14949 neon_modify_type_size (mods, &type, &size);
14950 destmask |= type_chk_of_el_type (type, size);
14951 }
14952 }
14953
14954 return destmask;
14955 }
14956
14957 /* Check type and return type classification.
14958 The manual states (paraphrase): If one datatype is given, it indicates the
14959 type given in:
14960 - the second operand, if there is one
14961 - the operand, if there is no second operand
14962 - the result, if there are no operands.
14963 This isn't quite good enough though, so we use a concept of a "key" datatype
14964 which is set on a per-instruction basis, which is the one which matters when
14965 only one data type is written.
14966 Note: this function has side-effects (e.g. filling in missing operands). All
14967 Neon instructions should call it before performing bit encoding. */
14968
14969 static struct neon_type_el
14970 neon_check_type (unsigned els, enum neon_shape ns, ...)
14971 {
14972 va_list ap;
14973 unsigned i, pass, key_el = 0;
14974 unsigned types[NEON_MAX_TYPE_ELS];
14975 enum neon_el_type k_type = NT_invtype;
14976 unsigned k_size = -1u;
14977 struct neon_type_el badtype = {NT_invtype, -1};
14978 unsigned key_allowed = 0;
14979
14980 /* Optional registers in Neon instructions are always (not) in operand 1.
14981 Fill in the missing operand here, if it was omitted. */
14982 if (els > 1 && !inst.operands[1].present)
14983 inst.operands[1] = inst.operands[0];
14984
14985 /* Suck up all the varargs. */
14986 va_start (ap, ns);
14987 for (i = 0; i < els; i++)
14988 {
14989 unsigned thisarg = va_arg (ap, unsigned);
14990 if (thisarg == N_IGNORE_TYPE)
14991 {
14992 va_end (ap);
14993 return badtype;
14994 }
14995 types[i] = thisarg;
14996 if ((thisarg & N_KEY) != 0)
14997 key_el = i;
14998 }
14999 va_end (ap);
15000
15001 if (inst.vectype.elems > 0)
15002 for (i = 0; i < els; i++)
15003 if (inst.operands[i].vectype.type != NT_invtype)
15004 {
15005 first_error (_("types specified in both the mnemonic and operands"));
15006 return badtype;
15007 }
15008
15009 /* Duplicate inst.vectype elements here as necessary.
15010 FIXME: No idea if this is exactly the same as the ARM assembler,
15011 particularly when an insn takes one register and one non-register
15012 operand. */
15013 if (inst.vectype.elems == 1 && els > 1)
15014 {
15015 unsigned j;
15016 inst.vectype.elems = els;
15017 inst.vectype.el[key_el] = inst.vectype.el[0];
15018 for (j = 0; j < els; j++)
15019 if (j != key_el)
15020 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15021 types[j]);
15022 }
15023 else if (inst.vectype.elems == 0 && els > 0)
15024 {
15025 unsigned j;
15026 /* No types were given after the mnemonic, so look for types specified
15027 after each operand. We allow some flexibility here; as long as the
15028 "key" operand has a type, we can infer the others. */
15029 for (j = 0; j < els; j++)
15030 if (inst.operands[j].vectype.type != NT_invtype)
15031 inst.vectype.el[j] = inst.operands[j].vectype;
15032
15033 if (inst.operands[key_el].vectype.type != NT_invtype)
15034 {
15035 for (j = 0; j < els; j++)
15036 if (inst.operands[j].vectype.type == NT_invtype)
15037 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15038 types[j]);
15039 }
15040 else
15041 {
15042 first_error (_("operand types can't be inferred"));
15043 return badtype;
15044 }
15045 }
15046 else if (inst.vectype.elems != els)
15047 {
15048 first_error (_("type specifier has the wrong number of parts"));
15049 return badtype;
15050 }
15051
15052 for (pass = 0; pass < 2; pass++)
15053 {
15054 for (i = 0; i < els; i++)
15055 {
15056 unsigned thisarg = types[i];
15057 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15058 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15059 enum neon_el_type g_type = inst.vectype.el[i].type;
15060 unsigned g_size = inst.vectype.el[i].size;
15061
15062 /* Decay more-specific signed & unsigned types to sign-insensitive
15063 integer types if sign-specific variants are unavailable. */
15064 if ((g_type == NT_signed || g_type == NT_unsigned)
15065 && (types_allowed & N_SU_ALL) == 0)
15066 g_type = NT_integer;
15067
15068 /* If only untyped args are allowed, decay any more specific types to
15069 them. Some instructions only care about signs for some element
15070 sizes, so handle that properly. */
15071 if (((types_allowed & N_UNT) == 0)
15072 && ((g_size == 8 && (types_allowed & N_8) != 0)
15073 || (g_size == 16 && (types_allowed & N_16) != 0)
15074 || (g_size == 32 && (types_allowed & N_32) != 0)
15075 || (g_size == 64 && (types_allowed & N_64) != 0)))
15076 g_type = NT_untyped;
15077
15078 if (pass == 0)
15079 {
15080 if ((thisarg & N_KEY) != 0)
15081 {
15082 k_type = g_type;
15083 k_size = g_size;
15084 key_allowed = thisarg & ~N_KEY;
15085
15086 /* Check architecture constraint on FP16 extension. */
15087 if (k_size == 16
15088 && k_type == NT_float
15089 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15090 {
15091 inst.error = _(BAD_FP16);
15092 return badtype;
15093 }
15094 }
15095 }
15096 else
15097 {
15098 if ((thisarg & N_VFP) != 0)
15099 {
15100 enum neon_shape_el regshape;
15101 unsigned regwidth, match;
15102
15103 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15104 if (ns == NS_NULL)
15105 {
15106 first_error (_("invalid instruction shape"));
15107 return badtype;
15108 }
15109 regshape = neon_shape_tab[ns].el[i];
15110 regwidth = neon_shape_el_size[regshape];
15111
15112 /* In VFP mode, operands must match register widths. If we
15113 have a key operand, use its width, else use the width of
15114 the current operand. */
15115 if (k_size != -1u)
15116 match = k_size;
15117 else
15118 match = g_size;
15119
15120 /* FP16 will use a single precision register. */
15121 if (regwidth == 32 && match == 16)
15122 {
15123 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15124 match = regwidth;
15125 else
15126 {
15127 inst.error = _(BAD_FP16);
15128 return badtype;
15129 }
15130 }
15131
15132 if (regwidth != match)
15133 {
15134 first_error (_("operand size must match register width"));
15135 return badtype;
15136 }
15137 }
15138
15139 if ((thisarg & N_EQK) == 0)
15140 {
15141 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15142
15143 if ((given_type & types_allowed) == 0)
15144 {
15145 first_error (BAD_SIMD_TYPE);
15146 return badtype;
15147 }
15148 }
15149 else
15150 {
15151 enum neon_el_type mod_k_type = k_type;
15152 unsigned mod_k_size = k_size;
15153 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15154 if (g_type != mod_k_type || g_size != mod_k_size)
15155 {
15156 first_error (_("inconsistent types in Neon instruction"));
15157 return badtype;
15158 }
15159 }
15160 }
15161 }
15162 }
15163
15164 return inst.vectype.el[key_el];
15165 }
15166
15167 /* Neon-style VFP instruction forwarding. */
15168
15169 /* Thumb VFP instructions have 0xE in the condition field. */
15170
15171 static void
15172 do_vfp_cond_or_thumb (void)
15173 {
15174 inst.is_neon = 1;
15175
15176 if (thumb_mode)
15177 inst.instruction |= 0xe0000000;
15178 else
15179 inst.instruction |= inst.cond << 28;
15180 }
15181
15182 /* Look up and encode a simple mnemonic, for use as a helper function for the
15183 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15184 etc. It is assumed that operand parsing has already been done, and that the
15185 operands are in the form expected by the given opcode (this isn't necessarily
15186 the same as the form in which they were parsed, hence some massaging must
15187 take place before this function is called).
15188 Checks current arch version against that in the looked-up opcode. */
15189
15190 static void
15191 do_vfp_nsyn_opcode (const char *opname)
15192 {
15193 const struct asm_opcode *opcode;
15194
15195 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15196
15197 if (!opcode)
15198 abort ();
15199
15200 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15201 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15202 _(BAD_FPU));
15203
15204 inst.is_neon = 1;
15205
15206 if (thumb_mode)
15207 {
15208 inst.instruction = opcode->tvalue;
15209 opcode->tencode ();
15210 }
15211 else
15212 {
15213 inst.instruction = (inst.cond << 28) | opcode->avalue;
15214 opcode->aencode ();
15215 }
15216 }
15217
15218 static void
15219 do_vfp_nsyn_add_sub (enum neon_shape rs)
15220 {
15221 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15222
15223 if (rs == NS_FFF || rs == NS_HHH)
15224 {
15225 if (is_add)
15226 do_vfp_nsyn_opcode ("fadds");
15227 else
15228 do_vfp_nsyn_opcode ("fsubs");
15229
15230 /* ARMv8.2 fp16 instruction. */
15231 if (rs == NS_HHH)
15232 do_scalar_fp16_v82_encode ();
15233 }
15234 else
15235 {
15236 if (is_add)
15237 do_vfp_nsyn_opcode ("faddd");
15238 else
15239 do_vfp_nsyn_opcode ("fsubd");
15240 }
15241 }
15242
15243 /* Check operand types to see if this is a VFP instruction, and if so call
15244 PFN (). */
15245
15246 static int
15247 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15248 {
15249 enum neon_shape rs;
15250 struct neon_type_el et;
15251
15252 switch (args)
15253 {
15254 case 2:
15255 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15256 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15257 break;
15258
15259 case 3:
15260 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15261 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15262 N_F_ALL | N_KEY | N_VFP);
15263 break;
15264
15265 default:
15266 abort ();
15267 }
15268
15269 if (et.type != NT_invtype)
15270 {
15271 pfn (rs);
15272 return SUCCESS;
15273 }
15274
15275 inst.error = NULL;
15276 return FAIL;
15277 }
15278
15279 static void
15280 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15281 {
15282 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15283
15284 if (rs == NS_FFF || rs == NS_HHH)
15285 {
15286 if (is_mla)
15287 do_vfp_nsyn_opcode ("fmacs");
15288 else
15289 do_vfp_nsyn_opcode ("fnmacs");
15290
15291 /* ARMv8.2 fp16 instruction. */
15292 if (rs == NS_HHH)
15293 do_scalar_fp16_v82_encode ();
15294 }
15295 else
15296 {
15297 if (is_mla)
15298 do_vfp_nsyn_opcode ("fmacd");
15299 else
15300 do_vfp_nsyn_opcode ("fnmacd");
15301 }
15302 }
15303
15304 static void
15305 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15306 {
15307 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15308
15309 if (rs == NS_FFF || rs == NS_HHH)
15310 {
15311 if (is_fma)
15312 do_vfp_nsyn_opcode ("ffmas");
15313 else
15314 do_vfp_nsyn_opcode ("ffnmas");
15315
15316 /* ARMv8.2 fp16 instruction. */
15317 if (rs == NS_HHH)
15318 do_scalar_fp16_v82_encode ();
15319 }
15320 else
15321 {
15322 if (is_fma)
15323 do_vfp_nsyn_opcode ("ffmad");
15324 else
15325 do_vfp_nsyn_opcode ("ffnmad");
15326 }
15327 }
15328
15329 static void
15330 do_vfp_nsyn_mul (enum neon_shape rs)
15331 {
15332 if (rs == NS_FFF || rs == NS_HHH)
15333 {
15334 do_vfp_nsyn_opcode ("fmuls");
15335
15336 /* ARMv8.2 fp16 instruction. */
15337 if (rs == NS_HHH)
15338 do_scalar_fp16_v82_encode ();
15339 }
15340 else
15341 do_vfp_nsyn_opcode ("fmuld");
15342 }
15343
15344 static void
15345 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15346 {
15347 int is_neg = (inst.instruction & 0x80) != 0;
15348 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15349
15350 if (rs == NS_FF || rs == NS_HH)
15351 {
15352 if (is_neg)
15353 do_vfp_nsyn_opcode ("fnegs");
15354 else
15355 do_vfp_nsyn_opcode ("fabss");
15356
15357 /* ARMv8.2 fp16 instruction. */
15358 if (rs == NS_HH)
15359 do_scalar_fp16_v82_encode ();
15360 }
15361 else
15362 {
15363 if (is_neg)
15364 do_vfp_nsyn_opcode ("fnegd");
15365 else
15366 do_vfp_nsyn_opcode ("fabsd");
15367 }
15368 }
15369
15370 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15371 insns belong to Neon, and are handled elsewhere. */
15372
15373 static void
15374 do_vfp_nsyn_ldm_stm (int is_dbmode)
15375 {
15376 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15377 if (is_ldm)
15378 {
15379 if (is_dbmode)
15380 do_vfp_nsyn_opcode ("fldmdbs");
15381 else
15382 do_vfp_nsyn_opcode ("fldmias");
15383 }
15384 else
15385 {
15386 if (is_dbmode)
15387 do_vfp_nsyn_opcode ("fstmdbs");
15388 else
15389 do_vfp_nsyn_opcode ("fstmias");
15390 }
15391 }
15392
15393 static void
15394 do_vfp_nsyn_sqrt (void)
15395 {
15396 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15397 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15398
15399 if (rs == NS_FF || rs == NS_HH)
15400 {
15401 do_vfp_nsyn_opcode ("fsqrts");
15402
15403 /* ARMv8.2 fp16 instruction. */
15404 if (rs == NS_HH)
15405 do_scalar_fp16_v82_encode ();
15406 }
15407 else
15408 do_vfp_nsyn_opcode ("fsqrtd");
15409 }
15410
15411 static void
15412 do_vfp_nsyn_div (void)
15413 {
15414 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15415 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15416 N_F_ALL | N_KEY | N_VFP);
15417
15418 if (rs == NS_FFF || rs == NS_HHH)
15419 {
15420 do_vfp_nsyn_opcode ("fdivs");
15421
15422 /* ARMv8.2 fp16 instruction. */
15423 if (rs == NS_HHH)
15424 do_scalar_fp16_v82_encode ();
15425 }
15426 else
15427 do_vfp_nsyn_opcode ("fdivd");
15428 }
15429
15430 static void
15431 do_vfp_nsyn_nmul (void)
15432 {
15433 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15434 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15435 N_F_ALL | N_KEY | N_VFP);
15436
15437 if (rs == NS_FFF || rs == NS_HHH)
15438 {
15439 NEON_ENCODE (SINGLE, inst);
15440 do_vfp_sp_dyadic ();
15441
15442 /* ARMv8.2 fp16 instruction. */
15443 if (rs == NS_HHH)
15444 do_scalar_fp16_v82_encode ();
15445 }
15446 else
15447 {
15448 NEON_ENCODE (DOUBLE, inst);
15449 do_vfp_dp_rd_rn_rm ();
15450 }
15451 do_vfp_cond_or_thumb ();
15452
15453 }
15454
15455 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15456 (0, 1, 2, 3). */
15457
15458 static unsigned
15459 neon_logbits (unsigned x)
15460 {
15461 return ffs (x) - 4;
15462 }
15463
15464 #define LOW4(R) ((R) & 0xf)
15465 #define HI1(R) (((R) >> 4) & 1)
15466
15467 static unsigned
15468 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15469 {
15470 switch (et.type)
15471 {
15472 default:
15473 first_error (BAD_EL_TYPE);
15474 return 0;
15475 case NT_float:
15476 switch (inst.operands[0].imm)
15477 {
15478 default:
15479 first_error (_("invalid condition"));
15480 return 0;
15481 case 0x0:
15482 /* eq. */
15483 return 0;
15484 case 0x1:
15485 /* ne. */
15486 return 1;
15487 case 0xa:
15488 /* ge/ */
15489 return 4;
15490 case 0xb:
15491 /* lt. */
15492 return 5;
15493 case 0xc:
15494 /* gt. */
15495 return 6;
15496 case 0xd:
15497 /* le. */
15498 return 7;
15499 }
15500 case NT_integer:
15501 /* only accept eq and ne. */
15502 if (inst.operands[0].imm > 1)
15503 {
15504 first_error (_("invalid condition"));
15505 return 0;
15506 }
15507 return inst.operands[0].imm;
15508 case NT_unsigned:
15509 if (inst.operands[0].imm == 0x2)
15510 return 2;
15511 else if (inst.operands[0].imm == 0x8)
15512 return 3;
15513 else
15514 {
15515 first_error (_("invalid condition"));
15516 return 0;
15517 }
15518 case NT_signed:
15519 switch (inst.operands[0].imm)
15520 {
15521 default:
15522 first_error (_("invalid condition"));
15523 return 0;
15524 case 0xa:
15525 /* ge. */
15526 return 4;
15527 case 0xb:
15528 /* lt. */
15529 return 5;
15530 case 0xc:
15531 /* gt. */
15532 return 6;
15533 case 0xd:
15534 /* le. */
15535 return 7;
15536 }
15537 }
15538 /* Should be unreachable. */
15539 abort ();
15540 }
15541
15542 static void
15543 do_mve_vpt (void)
15544 {
15545 /* We are dealing with a vector predicated block. */
15546 if (inst.operands[0].present)
15547 {
15548 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15549 struct neon_type_el et
15550 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15551 N_EQK);
15552
15553 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15554
15555 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15556
15557 if (et.type == NT_invtype)
15558 return;
15559
15560 if (et.type == NT_float)
15561 {
15562 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15563 BAD_FPU);
15564 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15565 inst.instruction |= (et.size == 16) << 28;
15566 inst.instruction |= 0x3 << 20;
15567 }
15568 else
15569 {
15570 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15571 BAD_EL_TYPE);
15572 inst.instruction |= 1 << 28;
15573 inst.instruction |= neon_logbits (et.size) << 20;
15574 }
15575
15576 if (inst.operands[2].isquad)
15577 {
15578 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15579 inst.instruction |= LOW4 (inst.operands[2].reg);
15580 inst.instruction |= (fcond & 0x2) >> 1;
15581 }
15582 else
15583 {
15584 if (inst.operands[2].reg == REG_SP)
15585 as_tsktsk (MVE_BAD_SP);
15586 inst.instruction |= 1 << 6;
15587 inst.instruction |= (fcond & 0x2) << 4;
15588 inst.instruction |= inst.operands[2].reg;
15589 }
15590 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15591 inst.instruction |= (fcond & 0x4) << 10;
15592 inst.instruction |= (fcond & 0x1) << 7;
15593
15594 }
15595 set_pred_insn_type (VPT_INSN);
15596 now_pred.cc = 0;
15597 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15598 | ((inst.instruction & 0xe000) >> 13);
15599 now_pred.warn_deprecated = FALSE;
15600 now_pred.type = VECTOR_PRED;
15601 inst.is_neon = 1;
15602 }
15603
15604 static void
15605 do_mve_vcmp (void)
15606 {
15607 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15608 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15609 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15610 if (!inst.operands[2].present)
15611 first_error (_("MVE vector or ARM register expected"));
15612 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15613
15614 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15615 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15616 && inst.operands[1].isquad)
15617 {
15618 inst.instruction = N_MNEM_vcmp;
15619 inst.cond = 0x10;
15620 }
15621
15622 if (inst.cond > COND_ALWAYS)
15623 inst.pred_insn_type = INSIDE_VPT_INSN;
15624 else
15625 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15626
15627 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15628 struct neon_type_el et
15629 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15630 N_EQK);
15631
15632 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15633 && !inst.operands[2].iszr, BAD_PC);
15634
15635 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15636
15637 inst.instruction = 0xee010f00;
15638 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15639 inst.instruction |= (fcond & 0x4) << 10;
15640 inst.instruction |= (fcond & 0x1) << 7;
15641 if (et.type == NT_float)
15642 {
15643 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15644 BAD_FPU);
15645 inst.instruction |= (et.size == 16) << 28;
15646 inst.instruction |= 0x3 << 20;
15647 }
15648 else
15649 {
15650 inst.instruction |= 1 << 28;
15651 inst.instruction |= neon_logbits (et.size) << 20;
15652 }
15653 if (inst.operands[2].isquad)
15654 {
15655 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15656 inst.instruction |= (fcond & 0x2) >> 1;
15657 inst.instruction |= LOW4 (inst.operands[2].reg);
15658 }
15659 else
15660 {
15661 if (inst.operands[2].reg == REG_SP)
15662 as_tsktsk (MVE_BAD_SP);
15663 inst.instruction |= 1 << 6;
15664 inst.instruction |= (fcond & 0x2) << 4;
15665 inst.instruction |= inst.operands[2].reg;
15666 }
15667
15668 inst.is_neon = 1;
15669 return;
15670 }
15671
15672 static void
15673 do_mve_vmaxa_vmina (void)
15674 {
15675 if (inst.cond > COND_ALWAYS)
15676 inst.pred_insn_type = INSIDE_VPT_INSN;
15677 else
15678 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15679
15680 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15681 struct neon_type_el et
15682 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15683
15684 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15685 inst.instruction |= neon_logbits (et.size) << 18;
15686 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15687 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15688 inst.instruction |= LOW4 (inst.operands[1].reg);
15689 inst.is_neon = 1;
15690 }
15691
15692 static void
15693 do_mve_vfmas (void)
15694 {
15695 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15696 struct neon_type_el et
15697 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15698
15699 if (inst.cond > COND_ALWAYS)
15700 inst.pred_insn_type = INSIDE_VPT_INSN;
15701 else
15702 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15703
15704 if (inst.operands[2].reg == REG_SP)
15705 as_tsktsk (MVE_BAD_SP);
15706 else if (inst.operands[2].reg == REG_PC)
15707 as_tsktsk (MVE_BAD_PC);
15708
15709 inst.instruction |= (et.size == 16) << 28;
15710 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15711 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15712 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15713 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15714 inst.instruction |= inst.operands[2].reg;
15715 inst.is_neon = 1;
15716 }
15717
15718 static void
15719 do_mve_viddup (void)
15720 {
15721 if (inst.cond > COND_ALWAYS)
15722 inst.pred_insn_type = INSIDE_VPT_INSN;
15723 else
15724 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15725
15726 unsigned imm = inst.relocs[0].exp.X_add_number;
15727 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15728 _("immediate must be either 1, 2, 4 or 8"));
15729
15730 enum neon_shape rs;
15731 struct neon_type_el et;
15732 unsigned Rm;
15733 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15734 {
15735 rs = neon_select_shape (NS_QRI, NS_NULL);
15736 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15737 Rm = 7;
15738 }
15739 else
15740 {
15741 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15742 if (inst.operands[2].reg == REG_SP)
15743 as_tsktsk (MVE_BAD_SP);
15744 else if (inst.operands[2].reg == REG_PC)
15745 first_error (BAD_PC);
15746
15747 rs = neon_select_shape (NS_QRRI, NS_NULL);
15748 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15749 Rm = inst.operands[2].reg >> 1;
15750 }
15751 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15752 inst.instruction |= neon_logbits (et.size) << 20;
15753 inst.instruction |= inst.operands[1].reg << 16;
15754 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15755 inst.instruction |= (imm > 2) << 7;
15756 inst.instruction |= Rm << 1;
15757 inst.instruction |= (imm == 2 || imm == 8);
15758 inst.is_neon = 1;
15759 }
15760
15761 static void
15762 do_mve_vmlas (void)
15763 {
15764 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15765 struct neon_type_el et
15766 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15767
15768 if (inst.operands[2].reg == REG_PC)
15769 as_tsktsk (MVE_BAD_PC);
15770 else if (inst.operands[2].reg == REG_SP)
15771 as_tsktsk (MVE_BAD_SP);
15772
15773 if (inst.cond > COND_ALWAYS)
15774 inst.pred_insn_type = INSIDE_VPT_INSN;
15775 else
15776 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15777
15778 inst.instruction |= (et.type == NT_unsigned) << 28;
15779 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15780 inst.instruction |= neon_logbits (et.size) << 20;
15781 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15782 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15783 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15784 inst.instruction |= inst.operands[2].reg;
15785 inst.is_neon = 1;
15786 }
15787
15788 static void
15789 do_mve_vshll (void)
15790 {
15791 struct neon_type_el et
15792 = neon_check_type (2, NS_QQI, N_EQK, N_S8 | N_U8 | N_S16 | N_U16 | N_KEY);
15793
15794 if (inst.cond > COND_ALWAYS)
15795 inst.pred_insn_type = INSIDE_VPT_INSN;
15796 else
15797 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15798
15799 int imm = inst.operands[2].imm;
15800 constraint (imm < 1 || (unsigned)imm > et.size,
15801 _("immediate value out of range"));
15802
15803 if ((unsigned)imm == et.size)
15804 {
15805 inst.instruction |= neon_logbits (et.size) << 18;
15806 inst.instruction |= 0x110001;
15807 }
15808 else
15809 {
15810 inst.instruction |= (et.size + imm) << 16;
15811 inst.instruction |= 0x800140;
15812 }
15813
15814 inst.instruction |= (et.type == NT_unsigned) << 28;
15815 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15816 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15817 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15818 inst.instruction |= LOW4 (inst.operands[1].reg);
15819 inst.is_neon = 1;
15820 }
15821
15822 static void
15823 do_mve_vshlc (void)
15824 {
15825 if (inst.cond > COND_ALWAYS)
15826 inst.pred_insn_type = INSIDE_VPT_INSN;
15827 else
15828 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15829
15830 if (inst.operands[1].reg == REG_PC)
15831 as_tsktsk (MVE_BAD_PC);
15832 else if (inst.operands[1].reg == REG_SP)
15833 as_tsktsk (MVE_BAD_SP);
15834
15835 int imm = inst.operands[2].imm;
15836 constraint (imm < 1 || imm > 32, _("immediate value out of range"));
15837
15838 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15839 inst.instruction |= (imm & 0x1f) << 16;
15840 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15841 inst.instruction |= inst.operands[1].reg;
15842 inst.is_neon = 1;
15843 }
15844
15845 static void
15846 do_mve_vshrn (void)
15847 {
15848 unsigned types;
15849 switch (inst.instruction)
15850 {
15851 case M_MNEM_vshrnt:
15852 case M_MNEM_vshrnb:
15853 case M_MNEM_vrshrnt:
15854 case M_MNEM_vrshrnb:
15855 types = N_I16 | N_I32;
15856 break;
15857 case M_MNEM_vqshrnt:
15858 case M_MNEM_vqshrnb:
15859 case M_MNEM_vqrshrnt:
15860 case M_MNEM_vqrshrnb:
15861 types = N_U16 | N_U32 | N_S16 | N_S32;
15862 break;
15863 case M_MNEM_vqshrunt:
15864 case M_MNEM_vqshrunb:
15865 case M_MNEM_vqrshrunt:
15866 case M_MNEM_vqrshrunb:
15867 types = N_S16 | N_S32;
15868 break;
15869 default:
15870 abort ();
15871 }
15872
15873 struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY);
15874
15875 if (inst.cond > COND_ALWAYS)
15876 inst.pred_insn_type = INSIDE_VPT_INSN;
15877 else
15878 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15879
15880 unsigned Qd = inst.operands[0].reg;
15881 unsigned Qm = inst.operands[1].reg;
15882 unsigned imm = inst.operands[2].imm;
15883 constraint (imm < 1 || ((unsigned) imm) > (et.size / 2),
15884 et.size == 16
15885 ? _("immediate operand expected in the range [1,8]")
15886 : _("immediate operand expected in the range [1,16]"));
15887
15888 inst.instruction |= (et.type == NT_unsigned) << 28;
15889 inst.instruction |= HI1 (Qd) << 22;
15890 inst.instruction |= (et.size - imm) << 16;
15891 inst.instruction |= LOW4 (Qd) << 12;
15892 inst.instruction |= HI1 (Qm) << 5;
15893 inst.instruction |= LOW4 (Qm);
15894 inst.is_neon = 1;
15895 }
15896
15897 static void
15898 do_mve_vqmovn (void)
15899 {
15900 struct neon_type_el et;
15901 if (inst.instruction == M_MNEM_vqmovnt
15902 || inst.instruction == M_MNEM_vqmovnb)
15903 et = neon_check_type (2, NS_QQ, N_EQK,
15904 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
15905 else
15906 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
15907
15908 if (inst.cond > COND_ALWAYS)
15909 inst.pred_insn_type = INSIDE_VPT_INSN;
15910 else
15911 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15912
15913 inst.instruction |= (et.type == NT_unsigned) << 28;
15914 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15915 inst.instruction |= (et.size == 32) << 18;
15916 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15917 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15918 inst.instruction |= LOW4 (inst.operands[1].reg);
15919 inst.is_neon = 1;
15920 }
15921
15922 static void
15923 do_mve_vpsel (void)
15924 {
15925 neon_select_shape (NS_QQQ, NS_NULL);
15926
15927 if (inst.cond > COND_ALWAYS)
15928 inst.pred_insn_type = INSIDE_VPT_INSN;
15929 else
15930 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15931
15932 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15933 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15934 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15935 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15936 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15937 inst.instruction |= LOW4 (inst.operands[2].reg);
15938 inst.is_neon = 1;
15939 }
15940
15941 static void
15942 do_mve_vpnot (void)
15943 {
15944 if (inst.cond > COND_ALWAYS)
15945 inst.pred_insn_type = INSIDE_VPT_INSN;
15946 else
15947 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15948 }
15949
15950 static void
15951 do_mve_vmaxnma_vminnma (void)
15952 {
15953 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15954 struct neon_type_el et
15955 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15956
15957 if (inst.cond > COND_ALWAYS)
15958 inst.pred_insn_type = INSIDE_VPT_INSN;
15959 else
15960 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15961
15962 inst.instruction |= (et.size == 16) << 28;
15963 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15964 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15965 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15966 inst.instruction |= LOW4 (inst.operands[1].reg);
15967 inst.is_neon = 1;
15968 }
15969
15970 static void
15971 do_mve_vcmul (void)
15972 {
15973 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15974 struct neon_type_el et
15975 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15976
15977 if (inst.cond > COND_ALWAYS)
15978 inst.pred_insn_type = INSIDE_VPT_INSN;
15979 else
15980 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15981
15982 unsigned rot = inst.relocs[0].exp.X_add_number;
15983 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15984 _("immediate out of range"));
15985
15986 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15987 || inst.operands[0].reg == inst.operands[2].reg))
15988 as_tsktsk (BAD_MVE_SRCDEST);
15989
15990 inst.instruction |= (et.size == 32) << 28;
15991 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15992 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15993 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15994 inst.instruction |= (rot > 90) << 12;
15995 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15996 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15997 inst.instruction |= LOW4 (inst.operands[2].reg);
15998 inst.instruction |= (rot == 90 || rot == 270);
15999 inst.is_neon = 1;
16000 }
16001
16002 /* To handle the Low Overhead Loop instructions
16003 in Armv8.1-M Mainline and MVE. */
16004 static void
16005 do_t_loloop (void)
16006 {
16007 unsigned long insn = inst.instruction;
16008
16009 inst.instruction = THUMB_OP32 (inst.instruction);
16010
16011 if (insn == T_MNEM_lctp)
16012 return;
16013
16014 set_pred_insn_type (MVE_OUTSIDE_PRED_INSN);
16015
16016 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16017 {
16018 struct neon_type_el et
16019 = neon_check_type (2, NS_RR, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16020 inst.instruction |= neon_logbits (et.size) << 20;
16021 inst.is_neon = 1;
16022 }
16023
16024 switch (insn)
16025 {
16026 case T_MNEM_letp:
16027 constraint (!inst.operands[0].present,
16028 _("expected LR"));
16029 /* fall through. */
16030 case T_MNEM_le:
16031 /* le <label>. */
16032 if (!inst.operands[0].present)
16033 inst.instruction |= 1 << 21;
16034
16035 v8_1_loop_reloc (TRUE);
16036 break;
16037
16038 case T_MNEM_wls:
16039 case T_MNEM_wlstp:
16040 v8_1_loop_reloc (FALSE);
16041 /* fall through. */
16042 case T_MNEM_dlstp:
16043 case T_MNEM_dls:
16044 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
16045
16046 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16047 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16048 else if (inst.operands[1].reg == REG_PC)
16049 as_tsktsk (MVE_BAD_PC);
16050 if (inst.operands[1].reg == REG_SP)
16051 as_tsktsk (MVE_BAD_SP);
16052
16053 inst.instruction |= (inst.operands[1].reg << 16);
16054 break;
16055
16056 default:
16057 abort ();
16058 }
16059 }
16060
16061
16062 static void
16063 do_vfp_nsyn_cmp (void)
16064 {
16065 enum neon_shape rs;
16066 if (!inst.operands[0].isreg)
16067 {
16068 do_mve_vcmp ();
16069 return;
16070 }
16071 else
16072 {
16073 constraint (inst.operands[2].present, BAD_SYNTAX);
16074 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
16075 BAD_FPU);
16076 }
16077
16078 if (inst.operands[1].isreg)
16079 {
16080 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
16081 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
16082
16083 if (rs == NS_FF || rs == NS_HH)
16084 {
16085 NEON_ENCODE (SINGLE, inst);
16086 do_vfp_sp_monadic ();
16087 }
16088 else
16089 {
16090 NEON_ENCODE (DOUBLE, inst);
16091 do_vfp_dp_rd_rm ();
16092 }
16093 }
16094 else
16095 {
16096 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
16097 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
16098
16099 switch (inst.instruction & 0x0fffffff)
16100 {
16101 case N_MNEM_vcmp:
16102 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
16103 break;
16104 case N_MNEM_vcmpe:
16105 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
16106 break;
16107 default:
16108 abort ();
16109 }
16110
16111 if (rs == NS_FI || rs == NS_HI)
16112 {
16113 NEON_ENCODE (SINGLE, inst);
16114 do_vfp_sp_compare_z ();
16115 }
16116 else
16117 {
16118 NEON_ENCODE (DOUBLE, inst);
16119 do_vfp_dp_rd ();
16120 }
16121 }
16122 do_vfp_cond_or_thumb ();
16123
16124 /* ARMv8.2 fp16 instruction. */
16125 if (rs == NS_HI || rs == NS_HH)
16126 do_scalar_fp16_v82_encode ();
16127 }
16128
16129 static void
16130 nsyn_insert_sp (void)
16131 {
16132 inst.operands[1] = inst.operands[0];
16133 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
16134 inst.operands[0].reg = REG_SP;
16135 inst.operands[0].isreg = 1;
16136 inst.operands[0].writeback = 1;
16137 inst.operands[0].present = 1;
16138 }
16139
16140 static void
16141 do_vfp_nsyn_push (void)
16142 {
16143 nsyn_insert_sp ();
16144
16145 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16146 _("register list must contain at least 1 and at most 16 "
16147 "registers"));
16148
16149 if (inst.operands[1].issingle)
16150 do_vfp_nsyn_opcode ("fstmdbs");
16151 else
16152 do_vfp_nsyn_opcode ("fstmdbd");
16153 }
16154
16155 static void
16156 do_vfp_nsyn_pop (void)
16157 {
16158 nsyn_insert_sp ();
16159
16160 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16161 _("register list must contain at least 1 and at most 16 "
16162 "registers"));
16163
16164 if (inst.operands[1].issingle)
16165 do_vfp_nsyn_opcode ("fldmias");
16166 else
16167 do_vfp_nsyn_opcode ("fldmiad");
16168 }
16169
16170 /* Fix up Neon data-processing instructions, ORing in the correct bits for
16171 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16172
16173 static void
16174 neon_dp_fixup (struct arm_it* insn)
16175 {
16176 unsigned int i = insn->instruction;
16177 insn->is_neon = 1;
16178
16179 if (thumb_mode)
16180 {
16181 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16182 if (i & (1 << 24))
16183 i |= 1 << 28;
16184
16185 i &= ~(1 << 24);
16186
16187 i |= 0xef000000;
16188 }
16189 else
16190 i |= 0xf2000000;
16191
16192 insn->instruction = i;
16193 }
16194
16195 static void
16196 mve_encode_qqr (int size, int U, int fp)
16197 {
16198 if (inst.operands[2].reg == REG_SP)
16199 as_tsktsk (MVE_BAD_SP);
16200 else if (inst.operands[2].reg == REG_PC)
16201 as_tsktsk (MVE_BAD_PC);
16202
16203 if (fp)
16204 {
16205 /* vadd. */
16206 if (((unsigned)inst.instruction) == 0xd00)
16207 inst.instruction = 0xee300f40;
16208 /* vsub. */
16209 else if (((unsigned)inst.instruction) == 0x200d00)
16210 inst.instruction = 0xee301f40;
16211 /* vmul. */
16212 else if (((unsigned)inst.instruction) == 0x1000d10)
16213 inst.instruction = 0xee310e60;
16214
16215 /* Setting size which is 1 for F16 and 0 for F32. */
16216 inst.instruction |= (size == 16) << 28;
16217 }
16218 else
16219 {
16220 /* vadd. */
16221 if (((unsigned)inst.instruction) == 0x800)
16222 inst.instruction = 0xee010f40;
16223 /* vsub. */
16224 else if (((unsigned)inst.instruction) == 0x1000800)
16225 inst.instruction = 0xee011f40;
16226 /* vhadd. */
16227 else if (((unsigned)inst.instruction) == 0)
16228 inst.instruction = 0xee000f40;
16229 /* vhsub. */
16230 else if (((unsigned)inst.instruction) == 0x200)
16231 inst.instruction = 0xee001f40;
16232 /* vmla. */
16233 else if (((unsigned)inst.instruction) == 0x900)
16234 inst.instruction = 0xee010e40;
16235 /* vmul. */
16236 else if (((unsigned)inst.instruction) == 0x910)
16237 inst.instruction = 0xee011e60;
16238 /* vqadd. */
16239 else if (((unsigned)inst.instruction) == 0x10)
16240 inst.instruction = 0xee000f60;
16241 /* vqsub. */
16242 else if (((unsigned)inst.instruction) == 0x210)
16243 inst.instruction = 0xee001f60;
16244 /* vqrdmlah. */
16245 else if (((unsigned)inst.instruction) == 0x3000b10)
16246 inst.instruction = 0xee000e40;
16247 /* vqdmulh. */
16248 else if (((unsigned)inst.instruction) == 0x0000b00)
16249 inst.instruction = 0xee010e60;
16250 /* vqrdmulh. */
16251 else if (((unsigned)inst.instruction) == 0x1000b00)
16252 inst.instruction = 0xfe010e60;
16253
16254 /* Set U-bit. */
16255 inst.instruction |= U << 28;
16256
16257 /* Setting bits for size. */
16258 inst.instruction |= neon_logbits (size) << 20;
16259 }
16260 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16261 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16262 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16263 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16264 inst.instruction |= inst.operands[2].reg;
16265 inst.is_neon = 1;
16266 }
16267
16268 static void
16269 mve_encode_rqq (unsigned bit28, unsigned size)
16270 {
16271 inst.instruction |= bit28 << 28;
16272 inst.instruction |= neon_logbits (size) << 20;
16273 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16274 inst.instruction |= inst.operands[0].reg << 12;
16275 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16276 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16277 inst.instruction |= LOW4 (inst.operands[2].reg);
16278 inst.is_neon = 1;
16279 }
16280
16281 static void
16282 mve_encode_qqq (int ubit, int size)
16283 {
16284
16285 inst.instruction |= (ubit != 0) << 28;
16286 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16287 inst.instruction |= neon_logbits (size) << 20;
16288 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16289 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16290 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16291 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16292 inst.instruction |= LOW4 (inst.operands[2].reg);
16293
16294 inst.is_neon = 1;
16295 }
16296
16297 static void
16298 mve_encode_rq (unsigned bit28, unsigned size)
16299 {
16300 inst.instruction |= bit28 << 28;
16301 inst.instruction |= neon_logbits (size) << 18;
16302 inst.instruction |= inst.operands[0].reg << 12;
16303 inst.instruction |= LOW4 (inst.operands[1].reg);
16304 inst.is_neon = 1;
16305 }
16306
16307 static void
16308 mve_encode_rrqq (unsigned U, unsigned size)
16309 {
16310 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16311
16312 inst.instruction |= U << 28;
16313 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16314 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16315 inst.instruction |= (size == 32) << 16;
16316 inst.instruction |= inst.operands[0].reg << 12;
16317 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16318 inst.instruction |= inst.operands[3].reg;
16319 inst.is_neon = 1;
16320 }
16321
16322 /* Encode insns with bit pattern:
16323
16324 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16325 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16326
16327 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16328 different meaning for some instruction. */
16329
16330 static void
16331 neon_three_same (int isquad, int ubit, int size)
16332 {
16333 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16334 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16335 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16336 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16337 inst.instruction |= LOW4 (inst.operands[2].reg);
16338 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16339 inst.instruction |= (isquad != 0) << 6;
16340 inst.instruction |= (ubit != 0) << 24;
16341 if (size != -1)
16342 inst.instruction |= neon_logbits (size) << 20;
16343
16344 neon_dp_fixup (&inst);
16345 }
16346
16347 /* Encode instructions of the form:
16348
16349 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16350 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16351
16352 Don't write size if SIZE == -1. */
16353
16354 static void
16355 neon_two_same (int qbit, int ubit, int size)
16356 {
16357 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16358 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16359 inst.instruction |= LOW4 (inst.operands[1].reg);
16360 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16361 inst.instruction |= (qbit != 0) << 6;
16362 inst.instruction |= (ubit != 0) << 24;
16363
16364 if (size != -1)
16365 inst.instruction |= neon_logbits (size) << 18;
16366
16367 neon_dp_fixup (&inst);
16368 }
16369
16370 enum vfp_or_neon_is_neon_bits
16371 {
16372 NEON_CHECK_CC = 1,
16373 NEON_CHECK_ARCH = 2,
16374 NEON_CHECK_ARCH8 = 4
16375 };
16376
16377 /* Call this function if an instruction which may have belonged to the VFP or
16378 Neon instruction sets, but turned out to be a Neon instruction (due to the
16379 operand types involved, etc.). We have to check and/or fix-up a couple of
16380 things:
16381
16382 - Make sure the user hasn't attempted to make a Neon instruction
16383 conditional.
16384 - Alter the value in the condition code field if necessary.
16385 - Make sure that the arch supports Neon instructions.
16386
16387 Which of these operations take place depends on bits from enum
16388 vfp_or_neon_is_neon_bits.
16389
16390 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16391 current instruction's condition is COND_ALWAYS, the condition field is
16392 changed to inst.uncond_value. This is necessary because instructions shared
16393 between VFP and Neon may be conditional for the VFP variants only, and the
16394 unconditional Neon version must have, e.g., 0xF in the condition field. */
16395
16396 static int
16397 vfp_or_neon_is_neon (unsigned check)
16398 {
16399 /* Conditions are always legal in Thumb mode (IT blocks). */
16400 if (!thumb_mode && (check & NEON_CHECK_CC))
16401 {
16402 if (inst.cond != COND_ALWAYS)
16403 {
16404 first_error (_(BAD_COND));
16405 return FAIL;
16406 }
16407 if (inst.uncond_value != -1)
16408 inst.instruction |= inst.uncond_value << 28;
16409 }
16410
16411
16412 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16413 || ((check & NEON_CHECK_ARCH8)
16414 && !mark_feature_used (&fpu_neon_ext_armv8)))
16415 {
16416 first_error (_(BAD_FPU));
16417 return FAIL;
16418 }
16419
16420 return SUCCESS;
16421 }
16422
16423
16424 /* Return TRUE if the SIMD instruction is available for the current
16425 cpu_variant. FP is set to TRUE if this is a SIMD floating-point
16426 instruction. CHECK contains th. CHECK contains the set of bits to pass to
16427 vfp_or_neon_is_neon for the NEON specific checks. */
16428
16429 static bfd_boolean
16430 check_simd_pred_availability (int fp, unsigned check)
16431 {
16432 if (inst.cond > COND_ALWAYS)
16433 {
16434 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16435 {
16436 inst.error = BAD_FPU;
16437 return FALSE;
16438 }
16439 inst.pred_insn_type = INSIDE_VPT_INSN;
16440 }
16441 else if (inst.cond < COND_ALWAYS)
16442 {
16443 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16444 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16445 else if (vfp_or_neon_is_neon (check) == FAIL)
16446 return FALSE;
16447 }
16448 else
16449 {
16450 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16451 && vfp_or_neon_is_neon (check) == FAIL)
16452 return FALSE;
16453
16454 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16455 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16456 }
16457 return TRUE;
16458 }
16459
16460 /* Neon instruction encoders, in approximate order of appearance. */
16461
16462 static void
16463 do_neon_dyadic_i_su (void)
16464 {
16465 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16466 return;
16467
16468 enum neon_shape rs;
16469 struct neon_type_el et;
16470 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16471 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16472 else
16473 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16474
16475 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16476
16477
16478 if (rs != NS_QQR)
16479 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16480 else
16481 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16482 }
16483
16484 static void
16485 do_neon_dyadic_i64_su (void)
16486 {
16487 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
16488 return;
16489 enum neon_shape rs;
16490 struct neon_type_el et;
16491 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16492 {
16493 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16494 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16495 }
16496 else
16497 {
16498 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16499 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16500 }
16501 if (rs == NS_QQR)
16502 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16503 else
16504 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16505 }
16506
16507 static void
16508 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16509 unsigned immbits)
16510 {
16511 unsigned size = et.size >> 3;
16512 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16513 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16514 inst.instruction |= LOW4 (inst.operands[1].reg);
16515 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16516 inst.instruction |= (isquad != 0) << 6;
16517 inst.instruction |= immbits << 16;
16518 inst.instruction |= (size >> 3) << 7;
16519 inst.instruction |= (size & 0x7) << 19;
16520 if (write_ubit)
16521 inst.instruction |= (uval != 0) << 24;
16522
16523 neon_dp_fixup (&inst);
16524 }
16525
16526 static void
16527 do_neon_shl (void)
16528 {
16529 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16530 return;
16531
16532 if (!inst.operands[2].isreg)
16533 {
16534 enum neon_shape rs;
16535 struct neon_type_el et;
16536 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16537 {
16538 rs = neon_select_shape (NS_QQI, NS_NULL);
16539 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_MVE);
16540 }
16541 else
16542 {
16543 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16544 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16545 }
16546 int imm = inst.operands[2].imm;
16547
16548 constraint (imm < 0 || (unsigned)imm >= et.size,
16549 _("immediate out of range for shift"));
16550 NEON_ENCODE (IMMED, inst);
16551 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16552 }
16553 else
16554 {
16555 enum neon_shape rs;
16556 struct neon_type_el et;
16557 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16558 {
16559 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16560 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16561 }
16562 else
16563 {
16564 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16565 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16566 }
16567
16568
16569 if (rs == NS_QQR)
16570 {
16571 constraint (inst.operands[0].reg != inst.operands[1].reg,
16572 _("invalid instruction shape"));
16573 if (inst.operands[2].reg == REG_SP)
16574 as_tsktsk (MVE_BAD_SP);
16575 else if (inst.operands[2].reg == REG_PC)
16576 as_tsktsk (MVE_BAD_PC);
16577
16578 inst.instruction = 0xee311e60;
16579 inst.instruction |= (et.type == NT_unsigned) << 28;
16580 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16581 inst.instruction |= neon_logbits (et.size) << 18;
16582 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16583 inst.instruction |= inst.operands[2].reg;
16584 inst.is_neon = 1;
16585 }
16586 else
16587 {
16588 unsigned int tmp;
16589
16590 /* VSHL/VQSHL 3-register variants have syntax such as:
16591 vshl.xx Dd, Dm, Dn
16592 whereas other 3-register operations encoded by neon_three_same have
16593 syntax like:
16594 vadd.xx Dd, Dn, Dm
16595 (i.e. with Dn & Dm reversed). Swap operands[1].reg and
16596 operands[2].reg here. */
16597 tmp = inst.operands[2].reg;
16598 inst.operands[2].reg = inst.operands[1].reg;
16599 inst.operands[1].reg = tmp;
16600 NEON_ENCODE (INTEGER, inst);
16601 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16602 }
16603 }
16604 }
16605
16606 static void
16607 do_neon_qshl (void)
16608 {
16609 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16610 return;
16611
16612 if (!inst.operands[2].isreg)
16613 {
16614 enum neon_shape rs;
16615 struct neon_type_el et;
16616 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16617 {
16618 rs = neon_select_shape (NS_QQI, NS_NULL);
16619 et = neon_check_type (2, rs, N_EQK, N_KEY | N_SU_MVE);
16620 }
16621 else
16622 {
16623 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16624 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16625 }
16626 int imm = inst.operands[2].imm;
16627
16628 constraint (imm < 0 || (unsigned)imm >= et.size,
16629 _("immediate out of range for shift"));
16630 NEON_ENCODE (IMMED, inst);
16631 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
16632 }
16633 else
16634 {
16635 enum neon_shape rs;
16636 struct neon_type_el et;
16637
16638 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16639 {
16640 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16641 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16642 }
16643 else
16644 {
16645 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16646 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16647 }
16648
16649 if (rs == NS_QQR)
16650 {
16651 constraint (inst.operands[0].reg != inst.operands[1].reg,
16652 _("invalid instruction shape"));
16653 if (inst.operands[2].reg == REG_SP)
16654 as_tsktsk (MVE_BAD_SP);
16655 else if (inst.operands[2].reg == REG_PC)
16656 as_tsktsk (MVE_BAD_PC);
16657
16658 inst.instruction = 0xee311ee0;
16659 inst.instruction |= (et.type == NT_unsigned) << 28;
16660 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16661 inst.instruction |= neon_logbits (et.size) << 18;
16662 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16663 inst.instruction |= inst.operands[2].reg;
16664 inst.is_neon = 1;
16665 }
16666 else
16667 {
16668 unsigned int tmp;
16669
16670 /* See note in do_neon_shl. */
16671 tmp = inst.operands[2].reg;
16672 inst.operands[2].reg = inst.operands[1].reg;
16673 inst.operands[1].reg = tmp;
16674 NEON_ENCODE (INTEGER, inst);
16675 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16676 }
16677 }
16678 }
16679
16680 static void
16681 do_neon_rshl (void)
16682 {
16683 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16684 return;
16685
16686 enum neon_shape rs;
16687 struct neon_type_el et;
16688 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16689 {
16690 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16691 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16692 }
16693 else
16694 {
16695 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16696 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16697 }
16698
16699 unsigned int tmp;
16700
16701 if (rs == NS_QQR)
16702 {
16703 if (inst.operands[2].reg == REG_PC)
16704 as_tsktsk (MVE_BAD_PC);
16705 else if (inst.operands[2].reg == REG_SP)
16706 as_tsktsk (MVE_BAD_SP);
16707
16708 constraint (inst.operands[0].reg != inst.operands[1].reg,
16709 _("invalid instruction shape"));
16710
16711 if (inst.instruction == 0x0000510)
16712 /* We are dealing with vqrshl. */
16713 inst.instruction = 0xee331ee0;
16714 else
16715 /* We are dealing with vrshl. */
16716 inst.instruction = 0xee331e60;
16717
16718 inst.instruction |= (et.type == NT_unsigned) << 28;
16719 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16720 inst.instruction |= neon_logbits (et.size) << 18;
16721 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16722 inst.instruction |= inst.operands[2].reg;
16723 inst.is_neon = 1;
16724 }
16725 else
16726 {
16727 tmp = inst.operands[2].reg;
16728 inst.operands[2].reg = inst.operands[1].reg;
16729 inst.operands[1].reg = tmp;
16730 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16731 }
16732 }
16733
16734 static int
16735 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16736 {
16737 /* Handle .I8 pseudo-instructions. */
16738 if (size == 8)
16739 {
16740 /* Unfortunately, this will make everything apart from zero out-of-range.
16741 FIXME is this the intended semantics? There doesn't seem much point in
16742 accepting .I8 if so. */
16743 immediate |= immediate << 8;
16744 size = 16;
16745 }
16746
16747 if (size >= 32)
16748 {
16749 if (immediate == (immediate & 0x000000ff))
16750 {
16751 *immbits = immediate;
16752 return 0x1;
16753 }
16754 else if (immediate == (immediate & 0x0000ff00))
16755 {
16756 *immbits = immediate >> 8;
16757 return 0x3;
16758 }
16759 else if (immediate == (immediate & 0x00ff0000))
16760 {
16761 *immbits = immediate >> 16;
16762 return 0x5;
16763 }
16764 else if (immediate == (immediate & 0xff000000))
16765 {
16766 *immbits = immediate >> 24;
16767 return 0x7;
16768 }
16769 if ((immediate & 0xffff) != (immediate >> 16))
16770 goto bad_immediate;
16771 immediate &= 0xffff;
16772 }
16773
16774 if (immediate == (immediate & 0x000000ff))
16775 {
16776 *immbits = immediate;
16777 return 0x9;
16778 }
16779 else if (immediate == (immediate & 0x0000ff00))
16780 {
16781 *immbits = immediate >> 8;
16782 return 0xb;
16783 }
16784
16785 bad_immediate:
16786 first_error (_("immediate value out of range"));
16787 return FAIL;
16788 }
16789
16790 static void
16791 do_neon_logic (void)
16792 {
16793 if (inst.operands[2].present && inst.operands[2].isreg)
16794 {
16795 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16796 if (rs == NS_QQQ
16797 && !check_simd_pred_availability (FALSE,
16798 NEON_CHECK_ARCH | NEON_CHECK_CC))
16799 return;
16800 else if (rs != NS_QQQ
16801 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16802 first_error (BAD_FPU);
16803
16804 neon_check_type (3, rs, N_IGNORE_TYPE);
16805 /* U bit and size field were set as part of the bitmask. */
16806 NEON_ENCODE (INTEGER, inst);
16807 neon_three_same (neon_quad (rs), 0, -1);
16808 }
16809 else
16810 {
16811 const int three_ops_form = (inst.operands[2].present
16812 && !inst.operands[2].isreg);
16813 const int immoperand = (three_ops_form ? 2 : 1);
16814 enum neon_shape rs = (three_ops_form
16815 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16816 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
16817 /* Because neon_select_shape makes the second operand a copy of the first
16818 if the second operand is not present. */
16819 if (rs == NS_QQI
16820 && !check_simd_pred_availability (FALSE,
16821 NEON_CHECK_ARCH | NEON_CHECK_CC))
16822 return;
16823 else if (rs != NS_QQI
16824 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16825 first_error (BAD_FPU);
16826
16827 struct neon_type_el et;
16828 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16829 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16830 else
16831 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16832 | N_KEY, N_EQK);
16833
16834 if (et.type == NT_invtype)
16835 return;
16836 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
16837 unsigned immbits;
16838 int cmode;
16839
16840
16841 if (three_ops_form)
16842 constraint (inst.operands[0].reg != inst.operands[1].reg,
16843 _("first and second operands shall be the same register"));
16844
16845 NEON_ENCODE (IMMED, inst);
16846
16847 immbits = inst.operands[immoperand].imm;
16848 if (et.size == 64)
16849 {
16850 /* .i64 is a pseudo-op, so the immediate must be a repeating
16851 pattern. */
16852 if (immbits != (inst.operands[immoperand].regisimm ?
16853 inst.operands[immoperand].reg : 0))
16854 {
16855 /* Set immbits to an invalid constant. */
16856 immbits = 0xdeadbeef;
16857 }
16858 }
16859
16860 switch (opcode)
16861 {
16862 case N_MNEM_vbic:
16863 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16864 break;
16865
16866 case N_MNEM_vorr:
16867 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16868 break;
16869
16870 case N_MNEM_vand:
16871 /* Pseudo-instruction for VBIC. */
16872 neon_invert_size (&immbits, 0, et.size);
16873 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16874 break;
16875
16876 case N_MNEM_vorn:
16877 /* Pseudo-instruction for VORR. */
16878 neon_invert_size (&immbits, 0, et.size);
16879 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16880 break;
16881
16882 default:
16883 abort ();
16884 }
16885
16886 if (cmode == FAIL)
16887 return;
16888
16889 inst.instruction |= neon_quad (rs) << 6;
16890 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16891 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16892 inst.instruction |= cmode << 8;
16893 neon_write_immbits (immbits);
16894
16895 neon_dp_fixup (&inst);
16896 }
16897 }
16898
16899 static void
16900 do_neon_bitfield (void)
16901 {
16902 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16903 neon_check_type (3, rs, N_IGNORE_TYPE);
16904 neon_three_same (neon_quad (rs), 0, -1);
16905 }
16906
16907 static void
16908 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
16909 unsigned destbits)
16910 {
16911 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16912 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
16913 types | N_KEY);
16914 if (et.type == NT_float)
16915 {
16916 NEON_ENCODE (FLOAT, inst);
16917 if (rs == NS_QQR)
16918 mve_encode_qqr (et.size, 0, 1);
16919 else
16920 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
16921 }
16922 else
16923 {
16924 NEON_ENCODE (INTEGER, inst);
16925 if (rs == NS_QQR)
16926 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
16927 else
16928 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
16929 }
16930 }
16931
16932
16933 static void
16934 do_neon_dyadic_if_su_d (void)
16935 {
16936 /* This version only allow D registers, but that constraint is enforced during
16937 operand parsing so we don't need to do anything extra here. */
16938 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16939 }
16940
16941 static void
16942 do_neon_dyadic_if_i_d (void)
16943 {
16944 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16945 affected if we specify unsigned args. */
16946 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16947 }
16948
16949 static void
16950 do_mve_vstr_vldr_QI (int size, int elsize, int load)
16951 {
16952 constraint (size < 32, BAD_ADDR_MODE);
16953 constraint (size != elsize, BAD_EL_TYPE);
16954 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16955 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16956 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16957 _("destination register and offset register may not be the"
16958 " same"));
16959
16960 int imm = inst.relocs[0].exp.X_add_number;
16961 int add = 1;
16962 if (imm < 0)
16963 {
16964 add = 0;
16965 imm = -imm;
16966 }
16967 constraint ((imm % (size / 8) != 0)
16968 || imm > (0x7f << neon_logbits (size)),
16969 (size == 32) ? _("immediate must be a multiple of 4 in the"
16970 " range of +/-[0,508]")
16971 : _("immediate must be a multiple of 8 in the"
16972 " range of +/-[0,1016]"));
16973 inst.instruction |= 0x11 << 24;
16974 inst.instruction |= add << 23;
16975 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16976 inst.instruction |= inst.operands[1].writeback << 21;
16977 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16978 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16979 inst.instruction |= 1 << 12;
16980 inst.instruction |= (size == 64) << 8;
16981 inst.instruction &= 0xffffff00;
16982 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16983 inst.instruction |= imm >> neon_logbits (size);
16984 }
16985
16986 static void
16987 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16988 {
16989 unsigned os = inst.operands[1].imm >> 5;
16990 constraint (os != 0 && size == 8,
16991 _("can not shift offsets when accessing less than half-word"));
16992 constraint (os && os != neon_logbits (size),
16993 _("shift immediate must be 1, 2 or 3 for half-word, word"
16994 " or double-word accesses respectively"));
16995 if (inst.operands[1].reg == REG_PC)
16996 as_tsktsk (MVE_BAD_PC);
16997
16998 switch (size)
16999 {
17000 case 8:
17001 constraint (elsize >= 64, BAD_EL_TYPE);
17002 break;
17003 case 16:
17004 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17005 break;
17006 case 32:
17007 case 64:
17008 constraint (elsize != size, BAD_EL_TYPE);
17009 break;
17010 default:
17011 break;
17012 }
17013 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
17014 BAD_ADDR_MODE);
17015 if (load)
17016 {
17017 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
17018 _("destination register and offset register may not be"
17019 " the same"));
17020 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
17021 BAD_EL_TYPE);
17022 constraint (inst.vectype.el[0].type != NT_unsigned
17023 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
17024 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
17025 }
17026 else
17027 {
17028 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
17029 }
17030
17031 inst.instruction |= 1 << 23;
17032 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17033 inst.instruction |= inst.operands[1].reg << 16;
17034 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17035 inst.instruction |= neon_logbits (elsize) << 7;
17036 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
17037 inst.instruction |= LOW4 (inst.operands[1].imm);
17038 inst.instruction |= !!os;
17039 }
17040
17041 static void
17042 do_mve_vstr_vldr_RI (int size, int elsize, int load)
17043 {
17044 enum neon_el_type type = inst.vectype.el[0].type;
17045
17046 constraint (size >= 64, BAD_ADDR_MODE);
17047 switch (size)
17048 {
17049 case 16:
17050 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17051 break;
17052 case 32:
17053 constraint (elsize != size, BAD_EL_TYPE);
17054 break;
17055 default:
17056 break;
17057 }
17058 if (load)
17059 {
17060 constraint (elsize != size && type != NT_unsigned
17061 && type != NT_signed, BAD_EL_TYPE);
17062 }
17063 else
17064 {
17065 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
17066 }
17067
17068 int imm = inst.relocs[0].exp.X_add_number;
17069 int add = 1;
17070 if (imm < 0)
17071 {
17072 add = 0;
17073 imm = -imm;
17074 }
17075
17076 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
17077 {
17078 switch (size)
17079 {
17080 case 8:
17081 constraint (1, _("immediate must be in the range of +/-[0,127]"));
17082 break;
17083 case 16:
17084 constraint (1, _("immediate must be a multiple of 2 in the"
17085 " range of +/-[0,254]"));
17086 break;
17087 case 32:
17088 constraint (1, _("immediate must be a multiple of 4 in the"
17089 " range of +/-[0,508]"));
17090 break;
17091 }
17092 }
17093
17094 if (size != elsize)
17095 {
17096 constraint (inst.operands[1].reg > 7, BAD_HIREG);
17097 constraint (inst.operands[0].reg > 14,
17098 _("MVE vector register in the range [Q0..Q7] expected"));
17099 inst.instruction |= (load && type == NT_unsigned) << 28;
17100 inst.instruction |= (size == 16) << 19;
17101 inst.instruction |= neon_logbits (elsize) << 7;
17102 }
17103 else
17104 {
17105 if (inst.operands[1].reg == REG_PC)
17106 as_tsktsk (MVE_BAD_PC);
17107 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17108 as_tsktsk (MVE_BAD_SP);
17109 inst.instruction |= 1 << 12;
17110 inst.instruction |= neon_logbits (size) << 7;
17111 }
17112 inst.instruction |= inst.operands[1].preind << 24;
17113 inst.instruction |= add << 23;
17114 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17115 inst.instruction |= inst.operands[1].writeback << 21;
17116 inst.instruction |= inst.operands[1].reg << 16;
17117 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17118 inst.instruction &= 0xffffff80;
17119 inst.instruction |= imm >> neon_logbits (size);
17120
17121 }
17122
17123 static void
17124 do_mve_vstr_vldr (void)
17125 {
17126 unsigned size;
17127 int load = 0;
17128
17129 if (inst.cond > COND_ALWAYS)
17130 inst.pred_insn_type = INSIDE_VPT_INSN;
17131 else
17132 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17133
17134 switch (inst.instruction)
17135 {
17136 default:
17137 gas_assert (0);
17138 break;
17139 case M_MNEM_vldrb:
17140 load = 1;
17141 /* fall through. */
17142 case M_MNEM_vstrb:
17143 size = 8;
17144 break;
17145 case M_MNEM_vldrh:
17146 load = 1;
17147 /* fall through. */
17148 case M_MNEM_vstrh:
17149 size = 16;
17150 break;
17151 case M_MNEM_vldrw:
17152 load = 1;
17153 /* fall through. */
17154 case M_MNEM_vstrw:
17155 size = 32;
17156 break;
17157 case M_MNEM_vldrd:
17158 load = 1;
17159 /* fall through. */
17160 case M_MNEM_vstrd:
17161 size = 64;
17162 break;
17163 }
17164 unsigned elsize = inst.vectype.el[0].size;
17165
17166 if (inst.operands[1].isquad)
17167 {
17168 /* We are dealing with [Q, imm]{!} cases. */
17169 do_mve_vstr_vldr_QI (size, elsize, load);
17170 }
17171 else
17172 {
17173 if (inst.operands[1].immisreg == 2)
17174 {
17175 /* We are dealing with [R, Q, {UXTW #os}] cases. */
17176 do_mve_vstr_vldr_RQ (size, elsize, load);
17177 }
17178 else if (!inst.operands[1].immisreg)
17179 {
17180 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
17181 do_mve_vstr_vldr_RI (size, elsize, load);
17182 }
17183 else
17184 constraint (1, BAD_ADDR_MODE);
17185 }
17186
17187 inst.is_neon = 1;
17188 }
17189
17190 static void
17191 do_mve_vst_vld (void)
17192 {
17193 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17194 return;
17195
17196 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
17197 || inst.relocs[0].exp.X_add_number != 0
17198 || inst.operands[1].immisreg != 0,
17199 BAD_ADDR_MODE);
17200 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
17201 if (inst.operands[1].reg == REG_PC)
17202 as_tsktsk (MVE_BAD_PC);
17203 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17204 as_tsktsk (MVE_BAD_SP);
17205
17206
17207 /* These instructions are one of the "exceptions" mentioned in
17208 handle_pred_state. They are MVE instructions that are not VPT compatible
17209 and do not accept a VPT code, thus appending such a code is a syntax
17210 error. */
17211 if (inst.cond > COND_ALWAYS)
17212 first_error (BAD_SYNTAX);
17213 /* If we append a scalar condition code we can set this to
17214 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
17215 else if (inst.cond < COND_ALWAYS)
17216 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17217 else
17218 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
17219
17220 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17221 inst.instruction |= inst.operands[1].writeback << 21;
17222 inst.instruction |= inst.operands[1].reg << 16;
17223 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17224 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
17225 inst.is_neon = 1;
17226 }
17227
17228 static void
17229 do_mve_vaddlv (void)
17230 {
17231 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
17232 struct neon_type_el et
17233 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
17234
17235 if (et.type == NT_invtype)
17236 first_error (BAD_EL_TYPE);
17237
17238 if (inst.cond > COND_ALWAYS)
17239 inst.pred_insn_type = INSIDE_VPT_INSN;
17240 else
17241 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17242
17243 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17244
17245 inst.instruction |= (et.type == NT_unsigned) << 28;
17246 inst.instruction |= inst.operands[1].reg << 19;
17247 inst.instruction |= inst.operands[0].reg << 12;
17248 inst.instruction |= inst.operands[2].reg;
17249 inst.is_neon = 1;
17250 }
17251
17252 static void
17253 do_neon_dyadic_if_su (void)
17254 {
17255 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17256 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17257 N_SUF_32 | N_KEY);
17258
17259 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
17260 || inst.instruction == ((unsigned) N_MNEM_vmin))
17261 && et.type == NT_float
17262 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
17263
17264 if (!check_simd_pred_availability (et.type == NT_float,
17265 NEON_CHECK_ARCH | NEON_CHECK_CC))
17266 return;
17267
17268 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17269 }
17270
17271 static void
17272 do_neon_addsub_if_i (void)
17273 {
17274 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
17275 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
17276 return;
17277
17278 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17279 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
17280 N_EQK, N_IF_32 | N_I64 | N_KEY);
17281
17282 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
17283 /* If we are parsing Q registers and the element types match MVE, which NEON
17284 also supports, then we must check whether this is an instruction that can
17285 be used by both MVE/NEON. This distinction can be made based on whether
17286 they are predicated or not. */
17287 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
17288 {
17289 if (!check_simd_pred_availability (et.type == NT_float,
17290 NEON_CHECK_ARCH | NEON_CHECK_CC))
17291 return;
17292 }
17293 else
17294 {
17295 /* If they are either in a D register or are using an unsupported. */
17296 if (rs != NS_QQR
17297 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17298 return;
17299 }
17300
17301 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17302 affected if we specify unsigned args. */
17303 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
17304 }
17305
17306 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17307 result to be:
17308 V<op> A,B (A is operand 0, B is operand 2)
17309 to mean:
17310 V<op> A,B,A
17311 not:
17312 V<op> A,B,B
17313 so handle that case specially. */
17314
17315 static void
17316 neon_exchange_operands (void)
17317 {
17318 if (inst.operands[1].present)
17319 {
17320 void *scratch = xmalloc (sizeof (inst.operands[0]));
17321
17322 /* Swap operands[1] and operands[2]. */
17323 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17324 inst.operands[1] = inst.operands[2];
17325 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
17326 free (scratch);
17327 }
17328 else
17329 {
17330 inst.operands[1] = inst.operands[2];
17331 inst.operands[2] = inst.operands[0];
17332 }
17333 }
17334
17335 static void
17336 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17337 {
17338 if (inst.operands[2].isreg)
17339 {
17340 if (invert)
17341 neon_exchange_operands ();
17342 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
17343 }
17344 else
17345 {
17346 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17347 struct neon_type_el et = neon_check_type (2, rs,
17348 N_EQK | N_SIZ, immtypes | N_KEY);
17349
17350 NEON_ENCODE (IMMED, inst);
17351 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17352 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17353 inst.instruction |= LOW4 (inst.operands[1].reg);
17354 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17355 inst.instruction |= neon_quad (rs) << 6;
17356 inst.instruction |= (et.type == NT_float) << 10;
17357 inst.instruction |= neon_logbits (et.size) << 18;
17358
17359 neon_dp_fixup (&inst);
17360 }
17361 }
17362
17363 static void
17364 do_neon_cmp (void)
17365 {
17366 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
17367 }
17368
17369 static void
17370 do_neon_cmp_inv (void)
17371 {
17372 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
17373 }
17374
17375 static void
17376 do_neon_ceq (void)
17377 {
17378 neon_compare (N_IF_32, N_IF_32, FALSE);
17379 }
17380
17381 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17382 scalars, which are encoded in 5 bits, M : Rm.
17383 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17384 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17385 index in M.
17386
17387 Dot Product instructions are similar to multiply instructions except elsize
17388 should always be 32.
17389
17390 This function translates SCALAR, which is GAS's internal encoding of indexed
17391 scalar register, to raw encoding. There is also register and index range
17392 check based on ELSIZE. */
17393
17394 static unsigned
17395 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17396 {
17397 unsigned regno = NEON_SCALAR_REG (scalar);
17398 unsigned elno = NEON_SCALAR_INDEX (scalar);
17399
17400 switch (elsize)
17401 {
17402 case 16:
17403 if (regno > 7 || elno > 3)
17404 goto bad_scalar;
17405 return regno | (elno << 3);
17406
17407 case 32:
17408 if (regno > 15 || elno > 1)
17409 goto bad_scalar;
17410 return regno | (elno << 4);
17411
17412 default:
17413 bad_scalar:
17414 first_error (_("scalar out of range for multiply instruction"));
17415 }
17416
17417 return 0;
17418 }
17419
17420 /* Encode multiply / multiply-accumulate scalar instructions. */
17421
17422 static void
17423 neon_mul_mac (struct neon_type_el et, int ubit)
17424 {
17425 unsigned scalar;
17426
17427 /* Give a more helpful error message if we have an invalid type. */
17428 if (et.type == NT_invtype)
17429 return;
17430
17431 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
17432 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17433 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17434 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17435 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17436 inst.instruction |= LOW4 (scalar);
17437 inst.instruction |= HI1 (scalar) << 5;
17438 inst.instruction |= (et.type == NT_float) << 8;
17439 inst.instruction |= neon_logbits (et.size) << 20;
17440 inst.instruction |= (ubit != 0) << 24;
17441
17442 neon_dp_fixup (&inst);
17443 }
17444
17445 static void
17446 do_neon_mac_maybe_scalar (void)
17447 {
17448 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17449 return;
17450
17451 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17452 return;
17453
17454 if (inst.operands[2].isscalar)
17455 {
17456 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17457 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17458 struct neon_type_el et = neon_check_type (3, rs,
17459 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
17460 NEON_ENCODE (SCALAR, inst);
17461 neon_mul_mac (et, neon_quad (rs));
17462 }
17463 else if (!inst.operands[2].isvec)
17464 {
17465 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17466
17467 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17468 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17469
17470 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17471 }
17472 else
17473 {
17474 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17475 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17476 affected if we specify unsigned args. */
17477 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17478 }
17479 }
17480
17481 static void
17482 do_neon_fmac (void)
17483 {
17484 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17485 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
17486 return;
17487
17488 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17489 return;
17490
17491 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17492 {
17493 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17494 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17495 N_EQK);
17496
17497 if (rs == NS_QQR)
17498 {
17499 if (inst.operands[2].reg == REG_SP)
17500 as_tsktsk (MVE_BAD_SP);
17501 else if (inst.operands[2].reg == REG_PC)
17502 as_tsktsk (MVE_BAD_PC);
17503
17504 inst.instruction = 0xee310e40;
17505 inst.instruction |= (et.size == 16) << 28;
17506 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17507 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17508 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17509 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17510 inst.instruction |= inst.operands[2].reg;
17511 inst.is_neon = 1;
17512 return;
17513 }
17514 }
17515 else
17516 {
17517 constraint (!inst.operands[2].isvec, BAD_FPU);
17518 }
17519
17520 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17521 }
17522
17523 static void
17524 do_neon_tst (void)
17525 {
17526 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17527 struct neon_type_el et = neon_check_type (3, rs,
17528 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17529 neon_three_same (neon_quad (rs), 0, et.size);
17530 }
17531
17532 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17533 same types as the MAC equivalents. The polynomial type for this instruction
17534 is encoded the same as the integer type. */
17535
17536 static void
17537 do_neon_mul (void)
17538 {
17539 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17540 return;
17541
17542 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17543 return;
17544
17545 if (inst.operands[2].isscalar)
17546 {
17547 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17548 do_neon_mac_maybe_scalar ();
17549 }
17550 else
17551 {
17552 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17553 {
17554 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17555 struct neon_type_el et
17556 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17557 if (et.type == NT_float)
17558 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17559 BAD_FPU);
17560
17561 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17562 }
17563 else
17564 {
17565 constraint (!inst.operands[2].isvec, BAD_FPU);
17566 neon_dyadic_misc (NT_poly,
17567 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17568 }
17569 }
17570 }
17571
17572 static void
17573 do_neon_qdmulh (void)
17574 {
17575 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
17576 return;
17577
17578 if (inst.operands[2].isscalar)
17579 {
17580 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17581 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17582 struct neon_type_el et = neon_check_type (3, rs,
17583 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17584 NEON_ENCODE (SCALAR, inst);
17585 neon_mul_mac (et, neon_quad (rs));
17586 }
17587 else
17588 {
17589 enum neon_shape rs;
17590 struct neon_type_el et;
17591 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17592 {
17593 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17594 et = neon_check_type (3, rs,
17595 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17596 }
17597 else
17598 {
17599 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17600 et = neon_check_type (3, rs,
17601 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17602 }
17603
17604 NEON_ENCODE (INTEGER, inst);
17605 if (rs == NS_QQR)
17606 mve_encode_qqr (et.size, 0, 0);
17607 else
17608 /* The U bit (rounding) comes from bit mask. */
17609 neon_three_same (neon_quad (rs), 0, et.size);
17610 }
17611 }
17612
17613 static void
17614 do_mve_vaddv (void)
17615 {
17616 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17617 struct neon_type_el et
17618 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17619
17620 if (et.type == NT_invtype)
17621 first_error (BAD_EL_TYPE);
17622
17623 if (inst.cond > COND_ALWAYS)
17624 inst.pred_insn_type = INSIDE_VPT_INSN;
17625 else
17626 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17627
17628 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17629
17630 mve_encode_rq (et.type == NT_unsigned, et.size);
17631 }
17632
17633 static void
17634 do_mve_vhcadd (void)
17635 {
17636 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17637 struct neon_type_el et
17638 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17639
17640 if (inst.cond > COND_ALWAYS)
17641 inst.pred_insn_type = INSIDE_VPT_INSN;
17642 else
17643 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17644
17645 unsigned rot = inst.relocs[0].exp.X_add_number;
17646 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17647
17648 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17649 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17650 "operand makes instruction UNPREDICTABLE"));
17651
17652 mve_encode_qqq (0, et.size);
17653 inst.instruction |= (rot == 270) << 12;
17654 inst.is_neon = 1;
17655 }
17656
17657 static void
17658 do_mve_vqdmull (void)
17659 {
17660 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17661 struct neon_type_el et
17662 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17663
17664 if (et.size == 32
17665 && (inst.operands[0].reg == inst.operands[1].reg
17666 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
17667 as_tsktsk (BAD_MVE_SRCDEST);
17668
17669 if (inst.cond > COND_ALWAYS)
17670 inst.pred_insn_type = INSIDE_VPT_INSN;
17671 else
17672 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17673
17674 if (rs == NS_QQQ)
17675 {
17676 mve_encode_qqq (et.size == 32, 64);
17677 inst.instruction |= 1;
17678 }
17679 else
17680 {
17681 mve_encode_qqr (64, et.size == 32, 0);
17682 inst.instruction |= 0x3 << 5;
17683 }
17684 }
17685
17686 static void
17687 do_mve_vadc (void)
17688 {
17689 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17690 struct neon_type_el et
17691 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17692
17693 if (et.type == NT_invtype)
17694 first_error (BAD_EL_TYPE);
17695
17696 if (inst.cond > COND_ALWAYS)
17697 inst.pred_insn_type = INSIDE_VPT_INSN;
17698 else
17699 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17700
17701 mve_encode_qqq (0, 64);
17702 }
17703
17704 static void
17705 do_mve_vbrsr (void)
17706 {
17707 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17708 struct neon_type_el et
17709 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17710
17711 if (inst.cond > COND_ALWAYS)
17712 inst.pred_insn_type = INSIDE_VPT_INSN;
17713 else
17714 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17715
17716 mve_encode_qqr (et.size, 0, 0);
17717 }
17718
17719 static void
17720 do_mve_vsbc (void)
17721 {
17722 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17723
17724 if (inst.cond > COND_ALWAYS)
17725 inst.pred_insn_type = INSIDE_VPT_INSN;
17726 else
17727 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17728
17729 mve_encode_qqq (1, 64);
17730 }
17731
17732 static void
17733 do_mve_vmulh (void)
17734 {
17735 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17736 struct neon_type_el et
17737 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17738
17739 if (inst.cond > COND_ALWAYS)
17740 inst.pred_insn_type = INSIDE_VPT_INSN;
17741 else
17742 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17743
17744 mve_encode_qqq (et.type == NT_unsigned, et.size);
17745 }
17746
17747 static void
17748 do_mve_vqdmlah (void)
17749 {
17750 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17751 struct neon_type_el et
17752 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17753
17754 if (inst.cond > COND_ALWAYS)
17755 inst.pred_insn_type = INSIDE_VPT_INSN;
17756 else
17757 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17758
17759 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17760 }
17761
17762 static void
17763 do_mve_vqdmladh (void)
17764 {
17765 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17766 struct neon_type_el et
17767 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17768
17769 if (inst.cond > COND_ALWAYS)
17770 inst.pred_insn_type = INSIDE_VPT_INSN;
17771 else
17772 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17773
17774 if (et.size == 32
17775 && (inst.operands[0].reg == inst.operands[1].reg
17776 || inst.operands[0].reg == inst.operands[2].reg))
17777 as_tsktsk (BAD_MVE_SRCDEST);
17778
17779 mve_encode_qqq (0, et.size);
17780 }
17781
17782
17783 static void
17784 do_mve_vmull (void)
17785 {
17786
17787 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17788 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17789 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17790 && inst.cond == COND_ALWAYS
17791 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17792 {
17793 if (rs == NS_QQQ)
17794 {
17795
17796 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17797 N_SUF_32 | N_F64 | N_P8
17798 | N_P16 | N_I_MVE | N_KEY);
17799 if (((et.type == NT_poly) && et.size == 8
17800 && ARM_CPU_IS_ANY (cpu_variant))
17801 || (et.type == NT_integer) || (et.type == NT_float))
17802 goto neon_vmul;
17803 }
17804 else
17805 goto neon_vmul;
17806 }
17807
17808 constraint (rs != NS_QQQ, BAD_FPU);
17809 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17810 N_SU_32 | N_P8 | N_P16 | N_KEY);
17811
17812 /* We are dealing with MVE's vmullt. */
17813 if (et.size == 32
17814 && (inst.operands[0].reg == inst.operands[1].reg
17815 || inst.operands[0].reg == inst.operands[2].reg))
17816 as_tsktsk (BAD_MVE_SRCDEST);
17817
17818 if (inst.cond > COND_ALWAYS)
17819 inst.pred_insn_type = INSIDE_VPT_INSN;
17820 else
17821 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17822
17823 if (et.type == NT_poly)
17824 mve_encode_qqq (neon_logbits (et.size), 64);
17825 else
17826 mve_encode_qqq (et.type == NT_unsigned, et.size);
17827
17828 return;
17829
17830 neon_vmul:
17831 inst.instruction = N_MNEM_vmul;
17832 inst.cond = 0xb;
17833 if (thumb_mode)
17834 inst.pred_insn_type = INSIDE_IT_INSN;
17835 do_neon_mul ();
17836 }
17837
17838 static void
17839 do_mve_vabav (void)
17840 {
17841 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17842
17843 if (rs == NS_NULL)
17844 return;
17845
17846 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17847 return;
17848
17849 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17850 | N_S16 | N_S32 | N_U8 | N_U16
17851 | N_U32);
17852
17853 if (inst.cond > COND_ALWAYS)
17854 inst.pred_insn_type = INSIDE_VPT_INSN;
17855 else
17856 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17857
17858 mve_encode_rqq (et.type == NT_unsigned, et.size);
17859 }
17860
17861 static void
17862 do_mve_vmladav (void)
17863 {
17864 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17865 struct neon_type_el et = neon_check_type (3, rs,
17866 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17867
17868 if (et.type == NT_unsigned
17869 && (inst.instruction == M_MNEM_vmladavx
17870 || inst.instruction == M_MNEM_vmladavax
17871 || inst.instruction == M_MNEM_vmlsdav
17872 || inst.instruction == M_MNEM_vmlsdava
17873 || inst.instruction == M_MNEM_vmlsdavx
17874 || inst.instruction == M_MNEM_vmlsdavax))
17875 first_error (BAD_SIMD_TYPE);
17876
17877 constraint (inst.operands[2].reg > 14,
17878 _("MVE vector register in the range [Q0..Q7] expected"));
17879
17880 if (inst.cond > COND_ALWAYS)
17881 inst.pred_insn_type = INSIDE_VPT_INSN;
17882 else
17883 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17884
17885 if (inst.instruction == M_MNEM_vmlsdav
17886 || inst.instruction == M_MNEM_vmlsdava
17887 || inst.instruction == M_MNEM_vmlsdavx
17888 || inst.instruction == M_MNEM_vmlsdavax)
17889 inst.instruction |= (et.size == 8) << 28;
17890 else
17891 inst.instruction |= (et.size == 8) << 8;
17892
17893 mve_encode_rqq (et.type == NT_unsigned, 64);
17894 inst.instruction |= (et.size == 32) << 16;
17895 }
17896
17897 static void
17898 do_mve_vmlaldav (void)
17899 {
17900 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
17901 struct neon_type_el et
17902 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
17903 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
17904
17905 if (et.type == NT_unsigned
17906 && (inst.instruction == M_MNEM_vmlsldav
17907 || inst.instruction == M_MNEM_vmlsldava
17908 || inst.instruction == M_MNEM_vmlsldavx
17909 || inst.instruction == M_MNEM_vmlsldavax))
17910 first_error (BAD_SIMD_TYPE);
17911
17912 if (inst.cond > COND_ALWAYS)
17913 inst.pred_insn_type = INSIDE_VPT_INSN;
17914 else
17915 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17916
17917 mve_encode_rrqq (et.type == NT_unsigned, et.size);
17918 }
17919
17920 static void
17921 do_mve_vrmlaldavh (void)
17922 {
17923 struct neon_type_el et;
17924 if (inst.instruction == M_MNEM_vrmlsldavh
17925 || inst.instruction == M_MNEM_vrmlsldavha
17926 || inst.instruction == M_MNEM_vrmlsldavhx
17927 || inst.instruction == M_MNEM_vrmlsldavhax)
17928 {
17929 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17930 if (inst.operands[1].reg == REG_SP)
17931 as_tsktsk (MVE_BAD_SP);
17932 }
17933 else
17934 {
17935 if (inst.instruction == M_MNEM_vrmlaldavhx
17936 || inst.instruction == M_MNEM_vrmlaldavhax)
17937 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17938 else
17939 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
17940 N_U32 | N_S32 | N_KEY);
17941 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17942 with vmax/min instructions, making the use of SP in assembly really
17943 nonsensical, so instead of issuing a warning like we do for other uses
17944 of SP for the odd register operand we error out. */
17945 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
17946 }
17947
17948 /* Make sure we still check the second operand is an odd one and that PC is
17949 disallowed. This because we are parsing for any GPR operand, to be able
17950 to distinguish between giving a warning or an error for SP as described
17951 above. */
17952 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
17953 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17954
17955 if (inst.cond > COND_ALWAYS)
17956 inst.pred_insn_type = INSIDE_VPT_INSN;
17957 else
17958 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17959
17960 mve_encode_rrqq (et.type == NT_unsigned, 0);
17961 }
17962
17963
17964 static void
17965 do_mve_vmaxnmv (void)
17966 {
17967 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17968 struct neon_type_el et
17969 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17970
17971 if (inst.cond > COND_ALWAYS)
17972 inst.pred_insn_type = INSIDE_VPT_INSN;
17973 else
17974 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17975
17976 if (inst.operands[0].reg == REG_SP)
17977 as_tsktsk (MVE_BAD_SP);
17978 else if (inst.operands[0].reg == REG_PC)
17979 as_tsktsk (MVE_BAD_PC);
17980
17981 mve_encode_rq (et.size == 16, 64);
17982 }
17983
17984 static void
17985 do_mve_vmaxv (void)
17986 {
17987 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17988 struct neon_type_el et;
17989
17990 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17991 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17992 else
17993 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17994
17995 if (inst.cond > COND_ALWAYS)
17996 inst.pred_insn_type = INSIDE_VPT_INSN;
17997 else
17998 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17999
18000 if (inst.operands[0].reg == REG_SP)
18001 as_tsktsk (MVE_BAD_SP);
18002 else if (inst.operands[0].reg == REG_PC)
18003 as_tsktsk (MVE_BAD_PC);
18004
18005 mve_encode_rq (et.type == NT_unsigned, et.size);
18006 }
18007
18008
18009 static void
18010 do_neon_qrdmlah (void)
18011 {
18012 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18013 return;
18014 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18015 {
18016 /* Check we're on the correct architecture. */
18017 if (!mark_feature_used (&fpu_neon_ext_armv8))
18018 inst.error
18019 = _("instruction form not available on this architecture.");
18020 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
18021 {
18022 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
18023 record_feature_use (&fpu_neon_ext_v8_1);
18024 }
18025 if (inst.operands[2].isscalar)
18026 {
18027 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
18028 struct neon_type_el et = neon_check_type (3, rs,
18029 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18030 NEON_ENCODE (SCALAR, inst);
18031 neon_mul_mac (et, neon_quad (rs));
18032 }
18033 else
18034 {
18035 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18036 struct neon_type_el et = neon_check_type (3, rs,
18037 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18038 NEON_ENCODE (INTEGER, inst);
18039 /* The U bit (rounding) comes from bit mask. */
18040 neon_three_same (neon_quad (rs), 0, et.size);
18041 }
18042 }
18043 else
18044 {
18045 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18046 struct neon_type_el et
18047 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
18048
18049 NEON_ENCODE (INTEGER, inst);
18050 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
18051 }
18052 }
18053
18054 static void
18055 do_neon_fcmp_absolute (void)
18056 {
18057 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18058 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18059 N_F_16_32 | N_KEY);
18060 /* Size field comes from bit mask. */
18061 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
18062 }
18063
18064 static void
18065 do_neon_fcmp_absolute_inv (void)
18066 {
18067 neon_exchange_operands ();
18068 do_neon_fcmp_absolute ();
18069 }
18070
18071 static void
18072 do_neon_step (void)
18073 {
18074 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18075 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18076 N_F_16_32 | N_KEY);
18077 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
18078 }
18079
18080 static void
18081 do_neon_abs_neg (void)
18082 {
18083 enum neon_shape rs;
18084 struct neon_type_el et;
18085
18086 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
18087 return;
18088
18089 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18090 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
18091
18092 if (!check_simd_pred_availability (et.type == NT_float,
18093 NEON_CHECK_ARCH | NEON_CHECK_CC))
18094 return;
18095
18096 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18097 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18098 inst.instruction |= LOW4 (inst.operands[1].reg);
18099 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18100 inst.instruction |= neon_quad (rs) << 6;
18101 inst.instruction |= (et.type == NT_float) << 10;
18102 inst.instruction |= neon_logbits (et.size) << 18;
18103
18104 neon_dp_fixup (&inst);
18105 }
18106
18107 static void
18108 do_neon_sli (void)
18109 {
18110 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18111 return;
18112
18113 enum neon_shape rs;
18114 struct neon_type_el et;
18115 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18116 {
18117 rs = neon_select_shape (NS_QQI, NS_NULL);
18118 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18119 }
18120 else
18121 {
18122 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18123 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18124 }
18125
18126
18127 int imm = inst.operands[2].imm;
18128 constraint (imm < 0 || (unsigned)imm >= et.size,
18129 _("immediate out of range for insert"));
18130 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18131 }
18132
18133 static void
18134 do_neon_sri (void)
18135 {
18136 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18137 return;
18138
18139 enum neon_shape rs;
18140 struct neon_type_el et;
18141 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18142 {
18143 rs = neon_select_shape (NS_QQI, NS_NULL);
18144 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18145 }
18146 else
18147 {
18148 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18149 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18150 }
18151
18152 int imm = inst.operands[2].imm;
18153 constraint (imm < 1 || (unsigned)imm > et.size,
18154 _("immediate out of range for insert"));
18155 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
18156 }
18157
18158 static void
18159 do_neon_qshlu_imm (void)
18160 {
18161 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18162 return;
18163
18164 enum neon_shape rs;
18165 struct neon_type_el et;
18166 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18167 {
18168 rs = neon_select_shape (NS_QQI, NS_NULL);
18169 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18170 }
18171 else
18172 {
18173 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18174 et = neon_check_type (2, rs, N_EQK | N_UNS,
18175 N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
18176 }
18177
18178 int imm = inst.operands[2].imm;
18179 constraint (imm < 0 || (unsigned)imm >= et.size,
18180 _("immediate out of range for shift"));
18181 /* Only encodes the 'U present' variant of the instruction.
18182 In this case, signed types have OP (bit 8) set to 0.
18183 Unsigned types have OP set to 1. */
18184 inst.instruction |= (et.type == NT_unsigned) << 8;
18185 /* The rest of the bits are the same as other immediate shifts. */
18186 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18187 }
18188
18189 static void
18190 do_neon_qmovn (void)
18191 {
18192 struct neon_type_el et = neon_check_type (2, NS_DQ,
18193 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18194 /* Saturating move where operands can be signed or unsigned, and the
18195 destination has the same signedness. */
18196 NEON_ENCODE (INTEGER, inst);
18197 if (et.type == NT_unsigned)
18198 inst.instruction |= 0xc0;
18199 else
18200 inst.instruction |= 0x80;
18201 neon_two_same (0, 1, et.size / 2);
18202 }
18203
18204 static void
18205 do_neon_qmovun (void)
18206 {
18207 struct neon_type_el et = neon_check_type (2, NS_DQ,
18208 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18209 /* Saturating move with unsigned results. Operands must be signed. */
18210 NEON_ENCODE (INTEGER, inst);
18211 neon_two_same (0, 1, et.size / 2);
18212 }
18213
18214 static void
18215 do_neon_rshift_sat_narrow (void)
18216 {
18217 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18218 or unsigned. If operands are unsigned, results must also be unsigned. */
18219 struct neon_type_el et = neon_check_type (2, NS_DQI,
18220 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18221 int imm = inst.operands[2].imm;
18222 /* This gets the bounds check, size encoding and immediate bits calculation
18223 right. */
18224 et.size /= 2;
18225
18226 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
18227 VQMOVN.I<size> <Dd>, <Qm>. */
18228 if (imm == 0)
18229 {
18230 inst.operands[2].present = 0;
18231 inst.instruction = N_MNEM_vqmovn;
18232 do_neon_qmovn ();
18233 return;
18234 }
18235
18236 constraint (imm < 1 || (unsigned)imm > et.size,
18237 _("immediate out of range"));
18238 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
18239 }
18240
18241 static void
18242 do_neon_rshift_sat_narrow_u (void)
18243 {
18244 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18245 or unsigned. If operands are unsigned, results must also be unsigned. */
18246 struct neon_type_el et = neon_check_type (2, NS_DQI,
18247 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18248 int imm = inst.operands[2].imm;
18249 /* This gets the bounds check, size encoding and immediate bits calculation
18250 right. */
18251 et.size /= 2;
18252
18253 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
18254 VQMOVUN.I<size> <Dd>, <Qm>. */
18255 if (imm == 0)
18256 {
18257 inst.operands[2].present = 0;
18258 inst.instruction = N_MNEM_vqmovun;
18259 do_neon_qmovun ();
18260 return;
18261 }
18262
18263 constraint (imm < 1 || (unsigned)imm > et.size,
18264 _("immediate out of range"));
18265 /* FIXME: The manual is kind of unclear about what value U should have in
18266 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
18267 must be 1. */
18268 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
18269 }
18270
18271 static void
18272 do_neon_movn (void)
18273 {
18274 struct neon_type_el et = neon_check_type (2, NS_DQ,
18275 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18276 NEON_ENCODE (INTEGER, inst);
18277 neon_two_same (0, 1, et.size / 2);
18278 }
18279
18280 static void
18281 do_neon_rshift_narrow (void)
18282 {
18283 struct neon_type_el et = neon_check_type (2, NS_DQI,
18284 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18285 int imm = inst.operands[2].imm;
18286 /* This gets the bounds check, size encoding and immediate bits calculation
18287 right. */
18288 et.size /= 2;
18289
18290 /* If immediate is zero then we are a pseudo-instruction for
18291 VMOVN.I<size> <Dd>, <Qm> */
18292 if (imm == 0)
18293 {
18294 inst.operands[2].present = 0;
18295 inst.instruction = N_MNEM_vmovn;
18296 do_neon_movn ();
18297 return;
18298 }
18299
18300 constraint (imm < 1 || (unsigned)imm > et.size,
18301 _("immediate out of range for narrowing operation"));
18302 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
18303 }
18304
18305 static void
18306 do_neon_shll (void)
18307 {
18308 /* FIXME: Type checking when lengthening. */
18309 struct neon_type_el et = neon_check_type (2, NS_QDI,
18310 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
18311 unsigned imm = inst.operands[2].imm;
18312
18313 if (imm == et.size)
18314 {
18315 /* Maximum shift variant. */
18316 NEON_ENCODE (INTEGER, inst);
18317 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18318 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18319 inst.instruction |= LOW4 (inst.operands[1].reg);
18320 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18321 inst.instruction |= neon_logbits (et.size) << 18;
18322
18323 neon_dp_fixup (&inst);
18324 }
18325 else
18326 {
18327 /* A more-specific type check for non-max versions. */
18328 et = neon_check_type (2, NS_QDI,
18329 N_EQK | N_DBL, N_SU_32 | N_KEY);
18330 NEON_ENCODE (IMMED, inst);
18331 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
18332 }
18333 }
18334
18335 /* Check the various types for the VCVT instruction, and return which version
18336 the current instruction is. */
18337
18338 #define CVT_FLAVOUR_VAR \
18339 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18340 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18341 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18342 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18343 /* Half-precision conversions. */ \
18344 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18345 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18346 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18347 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
18348 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18349 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
18350 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18351 Compared with single/double precision variants, only the co-processor \
18352 field is different, so the encoding flow is reused here. */ \
18353 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18354 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18355 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18356 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
18357 /* VFP instructions. */ \
18358 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18359 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18360 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18361 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18362 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18363 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18364 /* VFP instructions with bitshift. */ \
18365 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18366 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18367 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18368 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18369 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18370 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18371 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18372 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18373
18374 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18375 neon_cvt_flavour_##C,
18376
18377 /* The different types of conversions we can do. */
18378 enum neon_cvt_flavour
18379 {
18380 CVT_FLAVOUR_VAR
18381 neon_cvt_flavour_invalid,
18382 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18383 };
18384
18385 #undef CVT_VAR
18386
18387 static enum neon_cvt_flavour
18388 get_neon_cvt_flavour (enum neon_shape rs)
18389 {
18390 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18391 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18392 if (et.type != NT_invtype) \
18393 { \
18394 inst.error = NULL; \
18395 return (neon_cvt_flavour_##C); \
18396 }
18397
18398 struct neon_type_el et;
18399 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
18400 || rs == NS_FF) ? N_VFP : 0;
18401 /* The instruction versions which take an immediate take one register
18402 argument, which is extended to the width of the full register. Thus the
18403 "source" and "destination" registers must have the same width. Hack that
18404 here by making the size equal to the key (wider, in this case) operand. */
18405 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
18406
18407 CVT_FLAVOUR_VAR;
18408
18409 return neon_cvt_flavour_invalid;
18410 #undef CVT_VAR
18411 }
18412
18413 enum neon_cvt_mode
18414 {
18415 neon_cvt_mode_a,
18416 neon_cvt_mode_n,
18417 neon_cvt_mode_p,
18418 neon_cvt_mode_m,
18419 neon_cvt_mode_z,
18420 neon_cvt_mode_x,
18421 neon_cvt_mode_r
18422 };
18423
18424 /* Neon-syntax VFP conversions. */
18425
18426 static void
18427 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
18428 {
18429 const char *opname = 0;
18430
18431 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18432 || rs == NS_FHI || rs == NS_HFI)
18433 {
18434 /* Conversions with immediate bitshift. */
18435 const char *enc[] =
18436 {
18437 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18438 CVT_FLAVOUR_VAR
18439 NULL
18440 #undef CVT_VAR
18441 };
18442
18443 if (flavour < (int) ARRAY_SIZE (enc))
18444 {
18445 opname = enc[flavour];
18446 constraint (inst.operands[0].reg != inst.operands[1].reg,
18447 _("operands 0 and 1 must be the same register"));
18448 inst.operands[1] = inst.operands[2];
18449 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18450 }
18451 }
18452 else
18453 {
18454 /* Conversions without bitshift. */
18455 const char *enc[] =
18456 {
18457 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18458 CVT_FLAVOUR_VAR
18459 NULL
18460 #undef CVT_VAR
18461 };
18462
18463 if (flavour < (int) ARRAY_SIZE (enc))
18464 opname = enc[flavour];
18465 }
18466
18467 if (opname)
18468 do_vfp_nsyn_opcode (opname);
18469
18470 /* ARMv8.2 fp16 VCVT instruction. */
18471 if (flavour == neon_cvt_flavour_s32_f16
18472 || flavour == neon_cvt_flavour_u32_f16
18473 || flavour == neon_cvt_flavour_f16_u32
18474 || flavour == neon_cvt_flavour_f16_s32)
18475 do_scalar_fp16_v82_encode ();
18476 }
18477
18478 static void
18479 do_vfp_nsyn_cvtz (void)
18480 {
18481 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
18482 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18483 const char *enc[] =
18484 {
18485 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18486 CVT_FLAVOUR_VAR
18487 NULL
18488 #undef CVT_VAR
18489 };
18490
18491 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
18492 do_vfp_nsyn_opcode (enc[flavour]);
18493 }
18494
18495 static void
18496 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
18497 enum neon_cvt_mode mode)
18498 {
18499 int sz, op;
18500 int rm;
18501
18502 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18503 D register operands. */
18504 if (flavour == neon_cvt_flavour_s32_f64
18505 || flavour == neon_cvt_flavour_u32_f64)
18506 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18507 _(BAD_FPU));
18508
18509 if (flavour == neon_cvt_flavour_s32_f16
18510 || flavour == neon_cvt_flavour_u32_f16)
18511 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18512 _(BAD_FP16));
18513
18514 set_pred_insn_type (OUTSIDE_PRED_INSN);
18515
18516 switch (flavour)
18517 {
18518 case neon_cvt_flavour_s32_f64:
18519 sz = 1;
18520 op = 1;
18521 break;
18522 case neon_cvt_flavour_s32_f32:
18523 sz = 0;
18524 op = 1;
18525 break;
18526 case neon_cvt_flavour_s32_f16:
18527 sz = 0;
18528 op = 1;
18529 break;
18530 case neon_cvt_flavour_u32_f64:
18531 sz = 1;
18532 op = 0;
18533 break;
18534 case neon_cvt_flavour_u32_f32:
18535 sz = 0;
18536 op = 0;
18537 break;
18538 case neon_cvt_flavour_u32_f16:
18539 sz = 0;
18540 op = 0;
18541 break;
18542 default:
18543 first_error (_("invalid instruction shape"));
18544 return;
18545 }
18546
18547 switch (mode)
18548 {
18549 case neon_cvt_mode_a: rm = 0; break;
18550 case neon_cvt_mode_n: rm = 1; break;
18551 case neon_cvt_mode_p: rm = 2; break;
18552 case neon_cvt_mode_m: rm = 3; break;
18553 default: first_error (_("invalid rounding mode")); return;
18554 }
18555
18556 NEON_ENCODE (FPV8, inst);
18557 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18558 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18559 inst.instruction |= sz << 8;
18560
18561 /* ARMv8.2 fp16 VCVT instruction. */
18562 if (flavour == neon_cvt_flavour_s32_f16
18563 ||flavour == neon_cvt_flavour_u32_f16)
18564 do_scalar_fp16_v82_encode ();
18565 inst.instruction |= op << 7;
18566 inst.instruction |= rm << 16;
18567 inst.instruction |= 0xf0000000;
18568 inst.is_neon = TRUE;
18569 }
18570
18571 static void
18572 do_neon_cvt_1 (enum neon_cvt_mode mode)
18573 {
18574 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
18575 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18576 NS_FH, NS_HF, NS_FHI, NS_HFI,
18577 NS_NULL);
18578 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18579
18580 if (flavour == neon_cvt_flavour_invalid)
18581 return;
18582
18583 /* PR11109: Handle round-to-zero for VCVT conversions. */
18584 if (mode == neon_cvt_mode_z
18585 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
18586 && (flavour == neon_cvt_flavour_s16_f16
18587 || flavour == neon_cvt_flavour_u16_f16
18588 || flavour == neon_cvt_flavour_s32_f32
18589 || flavour == neon_cvt_flavour_u32_f32
18590 || flavour == neon_cvt_flavour_s32_f64
18591 || flavour == neon_cvt_flavour_u32_f64)
18592 && (rs == NS_FD || rs == NS_FF))
18593 {
18594 do_vfp_nsyn_cvtz ();
18595 return;
18596 }
18597
18598 /* ARMv8.2 fp16 VCVT conversions. */
18599 if (mode == neon_cvt_mode_z
18600 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18601 && (flavour == neon_cvt_flavour_s32_f16
18602 || flavour == neon_cvt_flavour_u32_f16)
18603 && (rs == NS_FH))
18604 {
18605 do_vfp_nsyn_cvtz ();
18606 do_scalar_fp16_v82_encode ();
18607 return;
18608 }
18609
18610 /* VFP rather than Neon conversions. */
18611 if (flavour >= neon_cvt_flavour_first_fp)
18612 {
18613 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18614 do_vfp_nsyn_cvt (rs, flavour);
18615 else
18616 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18617
18618 return;
18619 }
18620
18621 switch (rs)
18622 {
18623 case NS_QQI:
18624 if (mode == neon_cvt_mode_z
18625 && (flavour == neon_cvt_flavour_f16_s16
18626 || flavour == neon_cvt_flavour_f16_u16
18627 || flavour == neon_cvt_flavour_s16_f16
18628 || flavour == neon_cvt_flavour_u16_f16
18629 || flavour == neon_cvt_flavour_f32_u32
18630 || flavour == neon_cvt_flavour_f32_s32
18631 || flavour == neon_cvt_flavour_s32_f32
18632 || flavour == neon_cvt_flavour_u32_f32))
18633 {
18634 if (!check_simd_pred_availability (TRUE,
18635 NEON_CHECK_CC | NEON_CHECK_ARCH))
18636 return;
18637 }
18638 else if (mode == neon_cvt_mode_n)
18639 {
18640 /* We are dealing with vcvt with the 'ne' condition. */
18641 inst.cond = 0x1;
18642 inst.instruction = N_MNEM_vcvt;
18643 do_neon_cvt_1 (neon_cvt_mode_z);
18644 return;
18645 }
18646 /* fall through. */
18647 case NS_DDI:
18648 {
18649 unsigned immbits;
18650 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18651 0x0000100, 0x1000100, 0x0, 0x1000000};
18652
18653 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18654 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18655 return;
18656
18657 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18658 {
18659 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18660 _("immediate value out of range"));
18661 switch (flavour)
18662 {
18663 case neon_cvt_flavour_f16_s16:
18664 case neon_cvt_flavour_f16_u16:
18665 case neon_cvt_flavour_s16_f16:
18666 case neon_cvt_flavour_u16_f16:
18667 constraint (inst.operands[2].imm > 16,
18668 _("immediate value out of range"));
18669 break;
18670 case neon_cvt_flavour_f32_u32:
18671 case neon_cvt_flavour_f32_s32:
18672 case neon_cvt_flavour_s32_f32:
18673 case neon_cvt_flavour_u32_f32:
18674 constraint (inst.operands[2].imm > 32,
18675 _("immediate value out of range"));
18676 break;
18677 default:
18678 inst.error = BAD_FPU;
18679 return;
18680 }
18681 }
18682
18683 /* Fixed-point conversion with #0 immediate is encoded as an
18684 integer conversion. */
18685 if (inst.operands[2].present && inst.operands[2].imm == 0)
18686 goto int_encode;
18687 NEON_ENCODE (IMMED, inst);
18688 if (flavour != neon_cvt_flavour_invalid)
18689 inst.instruction |= enctab[flavour];
18690 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18691 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18692 inst.instruction |= LOW4 (inst.operands[1].reg);
18693 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18694 inst.instruction |= neon_quad (rs) << 6;
18695 inst.instruction |= 1 << 21;
18696 if (flavour < neon_cvt_flavour_s16_f16)
18697 {
18698 inst.instruction |= 1 << 21;
18699 immbits = 32 - inst.operands[2].imm;
18700 inst.instruction |= immbits << 16;
18701 }
18702 else
18703 {
18704 inst.instruction |= 3 << 20;
18705 immbits = 16 - inst.operands[2].imm;
18706 inst.instruction |= immbits << 16;
18707 inst.instruction &= ~(1 << 9);
18708 }
18709
18710 neon_dp_fixup (&inst);
18711 }
18712 break;
18713
18714 case NS_QQ:
18715 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18716 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18717 && (flavour == neon_cvt_flavour_s16_f16
18718 || flavour == neon_cvt_flavour_u16_f16
18719 || flavour == neon_cvt_flavour_s32_f32
18720 || flavour == neon_cvt_flavour_u32_f32))
18721 {
18722 if (!check_simd_pred_availability (TRUE,
18723 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18724 return;
18725 }
18726 else if (mode == neon_cvt_mode_z
18727 && (flavour == neon_cvt_flavour_f16_s16
18728 || flavour == neon_cvt_flavour_f16_u16
18729 || flavour == neon_cvt_flavour_s16_f16
18730 || flavour == neon_cvt_flavour_u16_f16
18731 || flavour == neon_cvt_flavour_f32_u32
18732 || flavour == neon_cvt_flavour_f32_s32
18733 || flavour == neon_cvt_flavour_s32_f32
18734 || flavour == neon_cvt_flavour_u32_f32))
18735 {
18736 if (!check_simd_pred_availability (TRUE,
18737 NEON_CHECK_CC | NEON_CHECK_ARCH))
18738 return;
18739 }
18740 /* fall through. */
18741 case NS_DD:
18742 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18743 {
18744
18745 NEON_ENCODE (FLOAT, inst);
18746 if (!check_simd_pred_availability (TRUE,
18747 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18748 return;
18749
18750 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18751 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18752 inst.instruction |= LOW4 (inst.operands[1].reg);
18753 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18754 inst.instruction |= neon_quad (rs) << 6;
18755 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18756 || flavour == neon_cvt_flavour_u32_f32) << 7;
18757 inst.instruction |= mode << 8;
18758 if (flavour == neon_cvt_flavour_u16_f16
18759 || flavour == neon_cvt_flavour_s16_f16)
18760 /* Mask off the original size bits and reencode them. */
18761 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18762
18763 if (thumb_mode)
18764 inst.instruction |= 0xfc000000;
18765 else
18766 inst.instruction |= 0xf0000000;
18767 }
18768 else
18769 {
18770 int_encode:
18771 {
18772 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18773 0x100, 0x180, 0x0, 0x080};
18774
18775 NEON_ENCODE (INTEGER, inst);
18776
18777 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18778 {
18779 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18780 return;
18781 }
18782
18783 if (flavour != neon_cvt_flavour_invalid)
18784 inst.instruction |= enctab[flavour];
18785
18786 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18787 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18788 inst.instruction |= LOW4 (inst.operands[1].reg);
18789 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18790 inst.instruction |= neon_quad (rs) << 6;
18791 if (flavour >= neon_cvt_flavour_s16_f16
18792 && flavour <= neon_cvt_flavour_f16_u16)
18793 /* Half precision. */
18794 inst.instruction |= 1 << 18;
18795 else
18796 inst.instruction |= 2 << 18;
18797
18798 neon_dp_fixup (&inst);
18799 }
18800 }
18801 break;
18802
18803 /* Half-precision conversions for Advanced SIMD -- neon. */
18804 case NS_QD:
18805 case NS_DQ:
18806 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18807 return;
18808
18809 if ((rs == NS_DQ)
18810 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18811 {
18812 as_bad (_("operand size must match register width"));
18813 break;
18814 }
18815
18816 if ((rs == NS_QD)
18817 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18818 {
18819 as_bad (_("operand size must match register width"));
18820 break;
18821 }
18822
18823 if (rs == NS_DQ)
18824 inst.instruction = 0x3b60600;
18825 else
18826 inst.instruction = 0x3b60700;
18827
18828 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18829 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18830 inst.instruction |= LOW4 (inst.operands[1].reg);
18831 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18832 neon_dp_fixup (&inst);
18833 break;
18834
18835 default:
18836 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
18837 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18838 do_vfp_nsyn_cvt (rs, flavour);
18839 else
18840 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18841 }
18842 }
18843
18844 static void
18845 do_neon_cvtr (void)
18846 {
18847 do_neon_cvt_1 (neon_cvt_mode_x);
18848 }
18849
18850 static void
18851 do_neon_cvt (void)
18852 {
18853 do_neon_cvt_1 (neon_cvt_mode_z);
18854 }
18855
18856 static void
18857 do_neon_cvta (void)
18858 {
18859 do_neon_cvt_1 (neon_cvt_mode_a);
18860 }
18861
18862 static void
18863 do_neon_cvtn (void)
18864 {
18865 do_neon_cvt_1 (neon_cvt_mode_n);
18866 }
18867
18868 static void
18869 do_neon_cvtp (void)
18870 {
18871 do_neon_cvt_1 (neon_cvt_mode_p);
18872 }
18873
18874 static void
18875 do_neon_cvtm (void)
18876 {
18877 do_neon_cvt_1 (neon_cvt_mode_m);
18878 }
18879
18880 static void
18881 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
18882 {
18883 if (is_double)
18884 mark_feature_used (&fpu_vfp_ext_armv8);
18885
18886 encode_arm_vfp_reg (inst.operands[0].reg,
18887 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18888 encode_arm_vfp_reg (inst.operands[1].reg,
18889 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18890 inst.instruction |= to ? 0x10000 : 0;
18891 inst.instruction |= t ? 0x80 : 0;
18892 inst.instruction |= is_double ? 0x100 : 0;
18893 do_vfp_cond_or_thumb ();
18894 }
18895
18896 static void
18897 do_neon_cvttb_1 (bfd_boolean t)
18898 {
18899 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
18900 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
18901
18902 if (rs == NS_NULL)
18903 return;
18904 else if (rs == NS_QQ || rs == NS_QQI)
18905 {
18906 int single_to_half = 0;
18907 if (!check_simd_pred_availability (TRUE, NEON_CHECK_ARCH))
18908 return;
18909
18910 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18911
18912 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18913 && (flavour == neon_cvt_flavour_u16_f16
18914 || flavour == neon_cvt_flavour_s16_f16
18915 || flavour == neon_cvt_flavour_f16_s16
18916 || flavour == neon_cvt_flavour_f16_u16
18917 || flavour == neon_cvt_flavour_u32_f32
18918 || flavour == neon_cvt_flavour_s32_f32
18919 || flavour == neon_cvt_flavour_f32_s32
18920 || flavour == neon_cvt_flavour_f32_u32))
18921 {
18922 inst.cond = 0xf;
18923 inst.instruction = N_MNEM_vcvt;
18924 set_pred_insn_type (INSIDE_VPT_INSN);
18925 do_neon_cvt_1 (neon_cvt_mode_z);
18926 return;
18927 }
18928 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18929 single_to_half = 1;
18930 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18931 {
18932 first_error (BAD_FPU);
18933 return;
18934 }
18935
18936 inst.instruction = 0xee3f0e01;
18937 inst.instruction |= single_to_half << 28;
18938 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18939 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18940 inst.instruction |= t << 12;
18941 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18942 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18943 inst.is_neon = 1;
18944 }
18945 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18946 {
18947 inst.error = NULL;
18948 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18949 }
18950 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18951 {
18952 inst.error = NULL;
18953 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18954 }
18955 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18956 {
18957 /* The VCVTB and VCVTT instructions with D-register operands
18958 don't work for SP only targets. */
18959 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18960 _(BAD_FPU));
18961
18962 inst.error = NULL;
18963 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18964 }
18965 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18966 {
18967 /* The VCVTB and VCVTT instructions with D-register operands
18968 don't work for SP only targets. */
18969 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18970 _(BAD_FPU));
18971
18972 inst.error = NULL;
18973 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18974 }
18975 else
18976 return;
18977 }
18978
18979 static void
18980 do_neon_cvtb (void)
18981 {
18982 do_neon_cvttb_1 (FALSE);
18983 }
18984
18985
18986 static void
18987 do_neon_cvtt (void)
18988 {
18989 do_neon_cvttb_1 (TRUE);
18990 }
18991
18992 static void
18993 neon_move_immediate (void)
18994 {
18995 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18996 struct neon_type_el et = neon_check_type (2, rs,
18997 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
18998 unsigned immlo, immhi = 0, immbits;
18999 int op, cmode, float_p;
19000
19001 constraint (et.type == NT_invtype,
19002 _("operand size must be specified for immediate VMOV"));
19003
19004 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
19005 op = (inst.instruction & (1 << 5)) != 0;
19006
19007 immlo = inst.operands[1].imm;
19008 if (inst.operands[1].regisimm)
19009 immhi = inst.operands[1].reg;
19010
19011 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
19012 _("immediate has bits set outside the operand size"));
19013
19014 float_p = inst.operands[1].immisfloat;
19015
19016 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
19017 et.size, et.type)) == FAIL)
19018 {
19019 /* Invert relevant bits only. */
19020 neon_invert_size (&immlo, &immhi, et.size);
19021 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
19022 with one or the other; those cases are caught by
19023 neon_cmode_for_move_imm. */
19024 op = !op;
19025 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
19026 &op, et.size, et.type)) == FAIL)
19027 {
19028 first_error (_("immediate out of range"));
19029 return;
19030 }
19031 }
19032
19033 inst.instruction &= ~(1 << 5);
19034 inst.instruction |= op << 5;
19035
19036 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19037 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19038 inst.instruction |= neon_quad (rs) << 6;
19039 inst.instruction |= cmode << 8;
19040
19041 neon_write_immbits (immbits);
19042 }
19043
19044 static void
19045 do_neon_mvn (void)
19046 {
19047 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
19048 return;
19049
19050 if (inst.operands[1].isreg)
19051 {
19052 enum neon_shape rs;
19053 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19054 rs = neon_select_shape (NS_QQ, NS_NULL);
19055 else
19056 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19057
19058 NEON_ENCODE (INTEGER, inst);
19059 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19060 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19061 inst.instruction |= LOW4 (inst.operands[1].reg);
19062 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19063 inst.instruction |= neon_quad (rs) << 6;
19064 }
19065 else
19066 {
19067 NEON_ENCODE (IMMED, inst);
19068 neon_move_immediate ();
19069 }
19070
19071 neon_dp_fixup (&inst);
19072
19073 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19074 {
19075 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
19076 constraint ((inst.instruction & 0xd00) == 0xd00,
19077 _("immediate value out of range"));
19078 }
19079 }
19080
19081 /* Encode instructions of form:
19082
19083 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
19084 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
19085
19086 static void
19087 neon_mixed_length (struct neon_type_el et, unsigned size)
19088 {
19089 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19090 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19091 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19092 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19093 inst.instruction |= LOW4 (inst.operands[2].reg);
19094 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19095 inst.instruction |= (et.type == NT_unsigned) << 24;
19096 inst.instruction |= neon_logbits (size) << 20;
19097
19098 neon_dp_fixup (&inst);
19099 }
19100
19101 static void
19102 do_neon_dyadic_long (void)
19103 {
19104 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
19105 if (rs == NS_QDD)
19106 {
19107 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
19108 return;
19109
19110 NEON_ENCODE (INTEGER, inst);
19111 /* FIXME: Type checking for lengthening op. */
19112 struct neon_type_el et = neon_check_type (3, NS_QDD,
19113 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
19114 neon_mixed_length (et, et.size);
19115 }
19116 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19117 && (inst.cond == 0xf || inst.cond == 0x10))
19118 {
19119 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
19120 in an IT block with le/lt conditions. */
19121
19122 if (inst.cond == 0xf)
19123 inst.cond = 0xb;
19124 else if (inst.cond == 0x10)
19125 inst.cond = 0xd;
19126
19127 inst.pred_insn_type = INSIDE_IT_INSN;
19128
19129 if (inst.instruction == N_MNEM_vaddl)
19130 {
19131 inst.instruction = N_MNEM_vadd;
19132 do_neon_addsub_if_i ();
19133 }
19134 else if (inst.instruction == N_MNEM_vsubl)
19135 {
19136 inst.instruction = N_MNEM_vsub;
19137 do_neon_addsub_if_i ();
19138 }
19139 else if (inst.instruction == N_MNEM_vabdl)
19140 {
19141 inst.instruction = N_MNEM_vabd;
19142 do_neon_dyadic_if_su ();
19143 }
19144 }
19145 else
19146 first_error (BAD_FPU);
19147 }
19148
19149 static void
19150 do_neon_abal (void)
19151 {
19152 struct neon_type_el et = neon_check_type (3, NS_QDD,
19153 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
19154 neon_mixed_length (et, et.size);
19155 }
19156
19157 static void
19158 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
19159 {
19160 if (inst.operands[2].isscalar)
19161 {
19162 struct neon_type_el et = neon_check_type (3, NS_QDS,
19163 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
19164 NEON_ENCODE (SCALAR, inst);
19165 neon_mul_mac (et, et.type == NT_unsigned);
19166 }
19167 else
19168 {
19169 struct neon_type_el et = neon_check_type (3, NS_QDD,
19170 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
19171 NEON_ENCODE (INTEGER, inst);
19172 neon_mixed_length (et, et.size);
19173 }
19174 }
19175
19176 static void
19177 do_neon_mac_maybe_scalar_long (void)
19178 {
19179 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
19180 }
19181
19182 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
19183 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
19184
19185 static unsigned
19186 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
19187 {
19188 unsigned regno = NEON_SCALAR_REG (scalar);
19189 unsigned elno = NEON_SCALAR_INDEX (scalar);
19190
19191 if (quad_p)
19192 {
19193 if (regno > 7 || elno > 3)
19194 goto bad_scalar;
19195
19196 return ((regno & 0x7)
19197 | ((elno & 0x1) << 3)
19198 | (((elno >> 1) & 0x1) << 5));
19199 }
19200 else
19201 {
19202 if (regno > 15 || elno > 1)
19203 goto bad_scalar;
19204
19205 return (((regno & 0x1) << 5)
19206 | ((regno >> 1) & 0x7)
19207 | ((elno & 0x1) << 3));
19208 }
19209
19210 bad_scalar:
19211 first_error (_("scalar out of range for multiply instruction"));
19212 return 0;
19213 }
19214
19215 static void
19216 do_neon_fmac_maybe_scalar_long (int subtype)
19217 {
19218 enum neon_shape rs;
19219 int high8;
19220 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
19221 field (bits[21:20]) has different meaning. For scalar index variant, it's
19222 used to differentiate add and subtract, otherwise it's with fixed value
19223 0x2. */
19224 int size = -1;
19225
19226 if (inst.cond != COND_ALWAYS)
19227 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
19228 "behaviour is UNPREDICTABLE"));
19229
19230 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
19231 _(BAD_FP16));
19232
19233 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19234 _(BAD_FPU));
19235
19236 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
19237 be a scalar index register. */
19238 if (inst.operands[2].isscalar)
19239 {
19240 high8 = 0xfe000000;
19241 if (subtype)
19242 size = 16;
19243 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
19244 }
19245 else
19246 {
19247 high8 = 0xfc000000;
19248 size = 32;
19249 if (subtype)
19250 inst.instruction |= (0x1 << 23);
19251 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
19252 }
19253
19254 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
19255
19256 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
19257 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
19258 so we simply pass -1 as size. */
19259 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
19260 neon_three_same (quad_p, 0, size);
19261
19262 /* Undo neon_dp_fixup. Redo the high eight bits. */
19263 inst.instruction &= 0x00ffffff;
19264 inst.instruction |= high8;
19265
19266 #define LOW1(R) ((R) & 0x1)
19267 #define HI4(R) (((R) >> 1) & 0xf)
19268 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
19269 whether the instruction is in Q form and whether Vm is a scalar indexed
19270 operand. */
19271 if (inst.operands[2].isscalar)
19272 {
19273 unsigned rm
19274 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
19275 inst.instruction &= 0xffffffd0;
19276 inst.instruction |= rm;
19277
19278 if (!quad_p)
19279 {
19280 /* Redo Rn as well. */
19281 inst.instruction &= 0xfff0ff7f;
19282 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19283 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19284 }
19285 }
19286 else if (!quad_p)
19287 {
19288 /* Redo Rn and Rm. */
19289 inst.instruction &= 0xfff0ff50;
19290 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19291 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19292 inst.instruction |= HI4 (inst.operands[2].reg);
19293 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
19294 }
19295 }
19296
19297 static void
19298 do_neon_vfmal (void)
19299 {
19300 return do_neon_fmac_maybe_scalar_long (0);
19301 }
19302
19303 static void
19304 do_neon_vfmsl (void)
19305 {
19306 return do_neon_fmac_maybe_scalar_long (1);
19307 }
19308
19309 static void
19310 do_neon_dyadic_wide (void)
19311 {
19312 struct neon_type_el et = neon_check_type (3, NS_QQD,
19313 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
19314 neon_mixed_length (et, et.size);
19315 }
19316
19317 static void
19318 do_neon_dyadic_narrow (void)
19319 {
19320 struct neon_type_el et = neon_check_type (3, NS_QDD,
19321 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
19322 /* Operand sign is unimportant, and the U bit is part of the opcode,
19323 so force the operand type to integer. */
19324 et.type = NT_integer;
19325 neon_mixed_length (et, et.size / 2);
19326 }
19327
19328 static void
19329 do_neon_mul_sat_scalar_long (void)
19330 {
19331 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
19332 }
19333
19334 static void
19335 do_neon_vmull (void)
19336 {
19337 if (inst.operands[2].isscalar)
19338 do_neon_mac_maybe_scalar_long ();
19339 else
19340 {
19341 struct neon_type_el et = neon_check_type (3, NS_QDD,
19342 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
19343
19344 if (et.type == NT_poly)
19345 NEON_ENCODE (POLY, inst);
19346 else
19347 NEON_ENCODE (INTEGER, inst);
19348
19349 /* For polynomial encoding the U bit must be zero, and the size must
19350 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19351 obviously, as 0b10). */
19352 if (et.size == 64)
19353 {
19354 /* Check we're on the correct architecture. */
19355 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19356 inst.error =
19357 _("Instruction form not available on this architecture.");
19358
19359 et.size = 32;
19360 }
19361
19362 neon_mixed_length (et, et.size);
19363 }
19364 }
19365
19366 static void
19367 do_neon_ext (void)
19368 {
19369 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19370 struct neon_type_el et = neon_check_type (3, rs,
19371 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19372 unsigned imm = (inst.operands[3].imm * et.size) / 8;
19373
19374 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19375 _("shift out of range"));
19376 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19377 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19378 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19379 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19380 inst.instruction |= LOW4 (inst.operands[2].reg);
19381 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19382 inst.instruction |= neon_quad (rs) << 6;
19383 inst.instruction |= imm << 8;
19384
19385 neon_dp_fixup (&inst);
19386 }
19387
19388 static void
19389 do_neon_rev (void)
19390 {
19391 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
19392 return;
19393
19394 enum neon_shape rs;
19395 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19396 rs = neon_select_shape (NS_QQ, NS_NULL);
19397 else
19398 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19399
19400 struct neon_type_el et = neon_check_type (2, rs,
19401 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19402
19403 unsigned op = (inst.instruction >> 7) & 3;
19404 /* N (width of reversed regions) is encoded as part of the bitmask. We
19405 extract it here to check the elements to be reversed are smaller.
19406 Otherwise we'd get a reserved instruction. */
19407 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
19408
19409 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && elsize == 64
19410 && inst.operands[0].reg == inst.operands[1].reg)
19411 as_tsktsk (_("Warning: 64-bit element size and same destination and source"
19412 " operands makes instruction UNPREDICTABLE"));
19413
19414 gas_assert (elsize != 0);
19415 constraint (et.size >= elsize,
19416 _("elements must be smaller than reversal region"));
19417 neon_two_same (neon_quad (rs), 1, et.size);
19418 }
19419
19420 static void
19421 do_neon_dup (void)
19422 {
19423 if (inst.operands[1].isscalar)
19424 {
19425 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19426 BAD_FPU);
19427 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
19428 struct neon_type_el et = neon_check_type (2, rs,
19429 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19430 unsigned sizebits = et.size >> 3;
19431 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
19432 int logsize = neon_logbits (et.size);
19433 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
19434
19435 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
19436 return;
19437
19438 NEON_ENCODE (SCALAR, inst);
19439 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19440 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19441 inst.instruction |= LOW4 (dm);
19442 inst.instruction |= HI1 (dm) << 5;
19443 inst.instruction |= neon_quad (rs) << 6;
19444 inst.instruction |= x << 17;
19445 inst.instruction |= sizebits << 16;
19446
19447 neon_dp_fixup (&inst);
19448 }
19449 else
19450 {
19451 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19452 struct neon_type_el et = neon_check_type (2, rs,
19453 N_8 | N_16 | N_32 | N_KEY, N_EQK);
19454 if (rs == NS_QR)
19455 {
19456 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH))
19457 return;
19458 }
19459 else
19460 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19461 BAD_FPU);
19462
19463 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19464 {
19465 if (inst.operands[1].reg == REG_SP)
19466 as_tsktsk (MVE_BAD_SP);
19467 else if (inst.operands[1].reg == REG_PC)
19468 as_tsktsk (MVE_BAD_PC);
19469 }
19470
19471 /* Duplicate ARM register to lanes of vector. */
19472 NEON_ENCODE (ARMREG, inst);
19473 switch (et.size)
19474 {
19475 case 8: inst.instruction |= 0x400000; break;
19476 case 16: inst.instruction |= 0x000020; break;
19477 case 32: inst.instruction |= 0x000000; break;
19478 default: break;
19479 }
19480 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19481 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19482 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
19483 inst.instruction |= neon_quad (rs) << 21;
19484 /* The encoding for this instruction is identical for the ARM and Thumb
19485 variants, except for the condition field. */
19486 do_vfp_cond_or_thumb ();
19487 }
19488 }
19489
19490 static void
19491 do_mve_mov (int toQ)
19492 {
19493 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19494 return;
19495 if (inst.cond > COND_ALWAYS)
19496 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19497
19498 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19499 if (toQ)
19500 {
19501 Q0 = 0;
19502 Q1 = 1;
19503 Rt = 2;
19504 Rt2 = 3;
19505 }
19506
19507 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19508 _("Index one must be [2,3] and index two must be two less than"
19509 " index one."));
19510 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19511 _("General purpose registers may not be the same"));
19512 constraint (inst.operands[Rt].reg == REG_SP
19513 || inst.operands[Rt2].reg == REG_SP,
19514 BAD_SP);
19515 constraint (inst.operands[Rt].reg == REG_PC
19516 || inst.operands[Rt2].reg == REG_PC,
19517 BAD_PC);
19518
19519 inst.instruction = 0xec000f00;
19520 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19521 inst.instruction |= !!toQ << 20;
19522 inst.instruction |= inst.operands[Rt2].reg << 16;
19523 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19524 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19525 inst.instruction |= inst.operands[Rt].reg;
19526 }
19527
19528 static void
19529 do_mve_movn (void)
19530 {
19531 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19532 return;
19533
19534 if (inst.cond > COND_ALWAYS)
19535 inst.pred_insn_type = INSIDE_VPT_INSN;
19536 else
19537 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19538
19539 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19540 | N_KEY);
19541
19542 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19543 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19544 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19545 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19546 inst.instruction |= LOW4 (inst.operands[1].reg);
19547 inst.is_neon = 1;
19548
19549 }
19550
19551 /* VMOV has particularly many variations. It can be one of:
19552 0. VMOV<c><q> <Qd>, <Qm>
19553 1. VMOV<c><q> <Dd>, <Dm>
19554 (Register operations, which are VORR with Rm = Rn.)
19555 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19556 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19557 (Immediate loads.)
19558 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19559 (ARM register to scalar.)
19560 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19561 (Two ARM registers to vector.)
19562 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19563 (Scalar to ARM register.)
19564 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19565 (Vector to two ARM registers.)
19566 8. VMOV.F32 <Sd>, <Sm>
19567 9. VMOV.F64 <Dd>, <Dm>
19568 (VFP register moves.)
19569 10. VMOV.F32 <Sd>, #imm
19570 11. VMOV.F64 <Dd>, #imm
19571 (VFP float immediate load.)
19572 12. VMOV <Rd>, <Sm>
19573 (VFP single to ARM reg.)
19574 13. VMOV <Sd>, <Rm>
19575 (ARM reg to VFP single.)
19576 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19577 (Two ARM regs to two VFP singles.)
19578 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19579 (Two VFP singles to two ARM regs.)
19580 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19581 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19582 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19583 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
19584
19585 These cases can be disambiguated using neon_select_shape, except cases 1/9
19586 and 3/11 which depend on the operand type too.
19587
19588 All the encoded bits are hardcoded by this function.
19589
19590 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19591 Cases 5, 7 may be used with VFPv2 and above.
19592
19593 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
19594 can specify a type where it doesn't make sense to, and is ignored). */
19595
19596 static void
19597 do_neon_mov (void)
19598 {
19599 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19600 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19601 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19602 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19603 NS_NULL);
19604 struct neon_type_el et;
19605 const char *ldconst = 0;
19606
19607 switch (rs)
19608 {
19609 case NS_DD: /* case 1/9. */
19610 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19611 /* It is not an error here if no type is given. */
19612 inst.error = NULL;
19613 if (et.type == NT_float && et.size == 64)
19614 {
19615 do_vfp_nsyn_opcode ("fcpyd");
19616 break;
19617 }
19618 /* fall through. */
19619
19620 case NS_QQ: /* case 0/1. */
19621 {
19622 if (!check_simd_pred_availability (FALSE,
19623 NEON_CHECK_CC | NEON_CHECK_ARCH))
19624 return;
19625 /* The architecture manual I have doesn't explicitly state which
19626 value the U bit should have for register->register moves, but
19627 the equivalent VORR instruction has U = 0, so do that. */
19628 inst.instruction = 0x0200110;
19629 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19630 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19631 inst.instruction |= LOW4 (inst.operands[1].reg);
19632 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19633 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19634 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19635 inst.instruction |= neon_quad (rs) << 6;
19636
19637 neon_dp_fixup (&inst);
19638 }
19639 break;
19640
19641 case NS_DI: /* case 3/11. */
19642 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19643 inst.error = NULL;
19644 if (et.type == NT_float && et.size == 64)
19645 {
19646 /* case 11 (fconstd). */
19647 ldconst = "fconstd";
19648 goto encode_fconstd;
19649 }
19650 /* fall through. */
19651
19652 case NS_QI: /* case 2/3. */
19653 if (!check_simd_pred_availability (FALSE,
19654 NEON_CHECK_CC | NEON_CHECK_ARCH))
19655 return;
19656 inst.instruction = 0x0800010;
19657 neon_move_immediate ();
19658 neon_dp_fixup (&inst);
19659 break;
19660
19661 case NS_SR: /* case 4. */
19662 {
19663 unsigned bcdebits = 0;
19664 int logsize;
19665 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19666 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
19667
19668 /* .<size> is optional here, defaulting to .32. */
19669 if (inst.vectype.elems == 0
19670 && inst.operands[0].vectype.type == NT_invtype
19671 && inst.operands[1].vectype.type == NT_invtype)
19672 {
19673 inst.vectype.el[0].type = NT_untyped;
19674 inst.vectype.el[0].size = 32;
19675 inst.vectype.elems = 1;
19676 }
19677
19678 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19679 logsize = neon_logbits (et.size);
19680
19681 if (et.size != 32)
19682 {
19683 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19684 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19685 return;
19686 }
19687 else
19688 {
19689 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19690 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19691 _(BAD_FPU));
19692 }
19693
19694 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19695 {
19696 if (inst.operands[1].reg == REG_SP)
19697 as_tsktsk (MVE_BAD_SP);
19698 else if (inst.operands[1].reg == REG_PC)
19699 as_tsktsk (MVE_BAD_PC);
19700 }
19701 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19702
19703 constraint (et.type == NT_invtype, _("bad type for scalar"));
19704 constraint (x >= size / et.size, _("scalar index out of range"));
19705
19706
19707 switch (et.size)
19708 {
19709 case 8: bcdebits = 0x8; break;
19710 case 16: bcdebits = 0x1; break;
19711 case 32: bcdebits = 0x0; break;
19712 default: ;
19713 }
19714
19715 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19716
19717 inst.instruction = 0xe000b10;
19718 do_vfp_cond_or_thumb ();
19719 inst.instruction |= LOW4 (dn) << 16;
19720 inst.instruction |= HI1 (dn) << 7;
19721 inst.instruction |= inst.operands[1].reg << 12;
19722 inst.instruction |= (bcdebits & 3) << 5;
19723 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19724 inst.instruction |= (x >> (3-logsize)) << 16;
19725 }
19726 break;
19727
19728 case NS_DRR: /* case 5 (fmdrr). */
19729 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19730 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19731 _(BAD_FPU));
19732
19733 inst.instruction = 0xc400b10;
19734 do_vfp_cond_or_thumb ();
19735 inst.instruction |= LOW4 (inst.operands[0].reg);
19736 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19737 inst.instruction |= inst.operands[1].reg << 12;
19738 inst.instruction |= inst.operands[2].reg << 16;
19739 break;
19740
19741 case NS_RS: /* case 6. */
19742 {
19743 unsigned logsize;
19744 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19745 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19746 unsigned abcdebits = 0;
19747
19748 /* .<dt> is optional here, defaulting to .32. */
19749 if (inst.vectype.elems == 0
19750 && inst.operands[0].vectype.type == NT_invtype
19751 && inst.operands[1].vectype.type == NT_invtype)
19752 {
19753 inst.vectype.el[0].type = NT_untyped;
19754 inst.vectype.el[0].size = 32;
19755 inst.vectype.elems = 1;
19756 }
19757
19758 et = neon_check_type (2, NS_NULL,
19759 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
19760 logsize = neon_logbits (et.size);
19761
19762 if (et.size != 32)
19763 {
19764 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19765 && vfp_or_neon_is_neon (NEON_CHECK_CC
19766 | NEON_CHECK_ARCH) == FAIL)
19767 return;
19768 }
19769 else
19770 {
19771 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19772 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19773 _(BAD_FPU));
19774 }
19775
19776 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19777 {
19778 if (inst.operands[0].reg == REG_SP)
19779 as_tsktsk (MVE_BAD_SP);
19780 else if (inst.operands[0].reg == REG_PC)
19781 as_tsktsk (MVE_BAD_PC);
19782 }
19783
19784 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19785
19786 constraint (et.type == NT_invtype, _("bad type for scalar"));
19787 constraint (x >= size / et.size, _("scalar index out of range"));
19788
19789 switch (et.size)
19790 {
19791 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19792 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19793 case 32: abcdebits = 0x00; break;
19794 default: ;
19795 }
19796
19797 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19798 inst.instruction = 0xe100b10;
19799 do_vfp_cond_or_thumb ();
19800 inst.instruction |= LOW4 (dn) << 16;
19801 inst.instruction |= HI1 (dn) << 7;
19802 inst.instruction |= inst.operands[0].reg << 12;
19803 inst.instruction |= (abcdebits & 3) << 5;
19804 inst.instruction |= (abcdebits >> 2) << 21;
19805 inst.instruction |= (x >> (3-logsize)) << 16;
19806 }
19807 break;
19808
19809 case NS_RRD: /* case 7 (fmrrd). */
19810 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19811 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19812 _(BAD_FPU));
19813
19814 inst.instruction = 0xc500b10;
19815 do_vfp_cond_or_thumb ();
19816 inst.instruction |= inst.operands[0].reg << 12;
19817 inst.instruction |= inst.operands[1].reg << 16;
19818 inst.instruction |= LOW4 (inst.operands[2].reg);
19819 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19820 break;
19821
19822 case NS_FF: /* case 8 (fcpys). */
19823 do_vfp_nsyn_opcode ("fcpys");
19824 break;
19825
19826 case NS_HI:
19827 case NS_FI: /* case 10 (fconsts). */
19828 ldconst = "fconsts";
19829 encode_fconstd:
19830 if (!inst.operands[1].immisfloat)
19831 {
19832 unsigned new_imm;
19833 /* Immediate has to fit in 8 bits so float is enough. */
19834 float imm = (float) inst.operands[1].imm;
19835 memcpy (&new_imm, &imm, sizeof (float));
19836 /* But the assembly may have been written to provide an integer
19837 bit pattern that equates to a float, so check that the
19838 conversion has worked. */
19839 if (is_quarter_float (new_imm))
19840 {
19841 if (is_quarter_float (inst.operands[1].imm))
19842 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19843
19844 inst.operands[1].imm = new_imm;
19845 inst.operands[1].immisfloat = 1;
19846 }
19847 }
19848
19849 if (is_quarter_float (inst.operands[1].imm))
19850 {
19851 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19852 do_vfp_nsyn_opcode (ldconst);
19853
19854 /* ARMv8.2 fp16 vmov.f16 instruction. */
19855 if (rs == NS_HI)
19856 do_scalar_fp16_v82_encode ();
19857 }
19858 else
19859 first_error (_("immediate out of range"));
19860 break;
19861
19862 case NS_RH:
19863 case NS_RF: /* case 12 (fmrs). */
19864 do_vfp_nsyn_opcode ("fmrs");
19865 /* ARMv8.2 fp16 vmov.f16 instruction. */
19866 if (rs == NS_RH)
19867 do_scalar_fp16_v82_encode ();
19868 break;
19869
19870 case NS_HR:
19871 case NS_FR: /* case 13 (fmsr). */
19872 do_vfp_nsyn_opcode ("fmsr");
19873 /* ARMv8.2 fp16 vmov.f16 instruction. */
19874 if (rs == NS_HR)
19875 do_scalar_fp16_v82_encode ();
19876 break;
19877
19878 case NS_RRSS:
19879 do_mve_mov (0);
19880 break;
19881 case NS_SSRR:
19882 do_mve_mov (1);
19883 break;
19884
19885 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19886 (one of which is a list), but we have parsed four. Do some fiddling to
19887 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19888 expect. */
19889 case NS_RRFF: /* case 14 (fmrrs). */
19890 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19891 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19892 _(BAD_FPU));
19893 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
19894 _("VFP registers must be adjacent"));
19895 inst.operands[2].imm = 2;
19896 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19897 do_vfp_nsyn_opcode ("fmrrs");
19898 break;
19899
19900 case NS_FFRR: /* case 15 (fmsrr). */
19901 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19902 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19903 _(BAD_FPU));
19904 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
19905 _("VFP registers must be adjacent"));
19906 inst.operands[1] = inst.operands[2];
19907 inst.operands[2] = inst.operands[3];
19908 inst.operands[0].imm = 2;
19909 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19910 do_vfp_nsyn_opcode ("fmsrr");
19911 break;
19912
19913 case NS_NULL:
19914 /* neon_select_shape has determined that the instruction
19915 shape is wrong and has already set the error message. */
19916 break;
19917
19918 default:
19919 abort ();
19920 }
19921 }
19922
19923 static void
19924 do_mve_movl (void)
19925 {
19926 if (!(inst.operands[0].present && inst.operands[0].isquad
19927 && inst.operands[1].present && inst.operands[1].isquad
19928 && !inst.operands[2].present))
19929 {
19930 inst.instruction = 0;
19931 inst.cond = 0xb;
19932 if (thumb_mode)
19933 set_pred_insn_type (INSIDE_IT_INSN);
19934 do_neon_mov ();
19935 return;
19936 }
19937
19938 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19939 return;
19940
19941 if (inst.cond != COND_ALWAYS)
19942 inst.pred_insn_type = INSIDE_VPT_INSN;
19943
19944 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19945 | N_S16 | N_U16 | N_KEY);
19946
19947 inst.instruction |= (et.type == NT_unsigned) << 28;
19948 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19949 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19950 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19951 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19952 inst.instruction |= LOW4 (inst.operands[1].reg);
19953 inst.is_neon = 1;
19954 }
19955
19956 static void
19957 do_neon_rshift_round_imm (void)
19958 {
19959 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
19960 return;
19961
19962 enum neon_shape rs;
19963 struct neon_type_el et;
19964
19965 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19966 {
19967 rs = neon_select_shape (NS_QQI, NS_NULL);
19968 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
19969 }
19970 else
19971 {
19972 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
19973 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19974 }
19975 int imm = inst.operands[2].imm;
19976
19977 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19978 if (imm == 0)
19979 {
19980 inst.operands[2].present = 0;
19981 do_neon_mov ();
19982 return;
19983 }
19984
19985 constraint (imm < 1 || (unsigned)imm > et.size,
19986 _("immediate out of range for shift"));
19987 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
19988 et.size - imm);
19989 }
19990
19991 static void
19992 do_neon_movhf (void)
19993 {
19994 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19995 constraint (rs != NS_HH, _("invalid suffix"));
19996
19997 if (inst.cond != COND_ALWAYS)
19998 {
19999 if (thumb_mode)
20000 {
20001 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
20002 " the behaviour is UNPREDICTABLE"));
20003 }
20004 else
20005 {
20006 inst.error = BAD_COND;
20007 return;
20008 }
20009 }
20010
20011 do_vfp_sp_monadic ();
20012
20013 inst.is_neon = 1;
20014 inst.instruction |= 0xf0000000;
20015 }
20016
20017 static void
20018 do_neon_movl (void)
20019 {
20020 struct neon_type_el et = neon_check_type (2, NS_QD,
20021 N_EQK | N_DBL, N_SU_32 | N_KEY);
20022 unsigned sizebits = et.size >> 3;
20023 inst.instruction |= sizebits << 19;
20024 neon_two_same (0, et.type == NT_unsigned, -1);
20025 }
20026
20027 static void
20028 do_neon_trn (void)
20029 {
20030 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20031 struct neon_type_el et = neon_check_type (2, rs,
20032 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20033 NEON_ENCODE (INTEGER, inst);
20034 neon_two_same (neon_quad (rs), 1, et.size);
20035 }
20036
20037 static void
20038 do_neon_zip_uzp (void)
20039 {
20040 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20041 struct neon_type_el et = neon_check_type (2, rs,
20042 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20043 if (rs == NS_DD && et.size == 32)
20044 {
20045 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
20046 inst.instruction = N_MNEM_vtrn;
20047 do_neon_trn ();
20048 return;
20049 }
20050 neon_two_same (neon_quad (rs), 1, et.size);
20051 }
20052
20053 static void
20054 do_neon_sat_abs_neg (void)
20055 {
20056 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
20057 return;
20058
20059 enum neon_shape rs;
20060 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20061 rs = neon_select_shape (NS_QQ, NS_NULL);
20062 else
20063 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20064 struct neon_type_el et = neon_check_type (2, rs,
20065 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20066 neon_two_same (neon_quad (rs), 1, et.size);
20067 }
20068
20069 static void
20070 do_neon_pair_long (void)
20071 {
20072 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20073 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
20074 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
20075 inst.instruction |= (et.type == NT_unsigned) << 7;
20076 neon_two_same (neon_quad (rs), 1, et.size);
20077 }
20078
20079 static void
20080 do_neon_recip_est (void)
20081 {
20082 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20083 struct neon_type_el et = neon_check_type (2, rs,
20084 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
20085 inst.instruction |= (et.type == NT_float) << 8;
20086 neon_two_same (neon_quad (rs), 1, et.size);
20087 }
20088
20089 static void
20090 do_neon_cls (void)
20091 {
20092 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20093 return;
20094
20095 enum neon_shape rs;
20096 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20097 rs = neon_select_shape (NS_QQ, NS_NULL);
20098 else
20099 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20100
20101 struct neon_type_el et = neon_check_type (2, rs,
20102 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20103 neon_two_same (neon_quad (rs), 1, et.size);
20104 }
20105
20106 static void
20107 do_neon_clz (void)
20108 {
20109 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20110 return;
20111
20112 enum neon_shape rs;
20113 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20114 rs = neon_select_shape (NS_QQ, NS_NULL);
20115 else
20116 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20117
20118 struct neon_type_el et = neon_check_type (2, rs,
20119 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
20120 neon_two_same (neon_quad (rs), 1, et.size);
20121 }
20122
20123 static void
20124 do_neon_cnt (void)
20125 {
20126 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20127 struct neon_type_el et = neon_check_type (2, rs,
20128 N_EQK | N_INT, N_8 | N_KEY);
20129 neon_two_same (neon_quad (rs), 1, et.size);
20130 }
20131
20132 static void
20133 do_neon_swp (void)
20134 {
20135 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20136 neon_two_same (neon_quad (rs), 1, -1);
20137 }
20138
20139 static void
20140 do_neon_tbl_tbx (void)
20141 {
20142 unsigned listlenbits;
20143 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
20144
20145 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
20146 {
20147 first_error (_("bad list length for table lookup"));
20148 return;
20149 }
20150
20151 listlenbits = inst.operands[1].imm - 1;
20152 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20153 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20154 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20155 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20156 inst.instruction |= LOW4 (inst.operands[2].reg);
20157 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20158 inst.instruction |= listlenbits << 8;
20159
20160 neon_dp_fixup (&inst);
20161 }
20162
20163 static void
20164 do_neon_ldm_stm (void)
20165 {
20166 /* P, U and L bits are part of bitmask. */
20167 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
20168 unsigned offsetbits = inst.operands[1].imm * 2;
20169
20170 if (inst.operands[1].issingle)
20171 {
20172 do_vfp_nsyn_ldm_stm (is_dbmode);
20173 return;
20174 }
20175
20176 constraint (is_dbmode && !inst.operands[0].writeback,
20177 _("writeback (!) must be used for VLDMDB and VSTMDB"));
20178
20179 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
20180 _("register list must contain at least 1 and at most 16 "
20181 "registers"));
20182
20183 inst.instruction |= inst.operands[0].reg << 16;
20184 inst.instruction |= inst.operands[0].writeback << 21;
20185 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
20186 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
20187
20188 inst.instruction |= offsetbits;
20189
20190 do_vfp_cond_or_thumb ();
20191 }
20192
20193 static void
20194 do_neon_ldr_str (void)
20195 {
20196 int is_ldr = (inst.instruction & (1 << 20)) != 0;
20197
20198 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
20199 And is UNPREDICTABLE in thumb mode. */
20200 if (!is_ldr
20201 && inst.operands[1].reg == REG_PC
20202 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
20203 {
20204 if (thumb_mode)
20205 inst.error = _("Use of PC here is UNPREDICTABLE");
20206 else if (warn_on_deprecated)
20207 as_tsktsk (_("Use of PC here is deprecated"));
20208 }
20209
20210 if (inst.operands[0].issingle)
20211 {
20212 if (is_ldr)
20213 do_vfp_nsyn_opcode ("flds");
20214 else
20215 do_vfp_nsyn_opcode ("fsts");
20216
20217 /* ARMv8.2 vldr.16/vstr.16 instruction. */
20218 if (inst.vectype.el[0].size == 16)
20219 do_scalar_fp16_v82_encode ();
20220 }
20221 else
20222 {
20223 if (is_ldr)
20224 do_vfp_nsyn_opcode ("fldd");
20225 else
20226 do_vfp_nsyn_opcode ("fstd");
20227 }
20228 }
20229
20230 static void
20231 do_t_vldr_vstr_sysreg (void)
20232 {
20233 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
20234 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
20235
20236 /* Use of PC is UNPREDICTABLE. */
20237 if (inst.operands[1].reg == REG_PC)
20238 inst.error = _("Use of PC here is UNPREDICTABLE");
20239
20240 if (inst.operands[1].immisreg)
20241 inst.error = _("instruction does not accept register index");
20242
20243 if (!inst.operands[1].isreg)
20244 inst.error = _("instruction does not accept PC-relative addressing");
20245
20246 if (abs (inst.operands[1].imm) >= (1 << 7))
20247 inst.error = _("immediate value out of range");
20248
20249 inst.instruction = 0xec000f80;
20250 if (is_vldr)
20251 inst.instruction |= 1 << sysreg_vldr_bitno;
20252 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
20253 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
20254 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
20255 }
20256
20257 static void
20258 do_vldr_vstr (void)
20259 {
20260 bfd_boolean sysreg_op = !inst.operands[0].isreg;
20261
20262 /* VLDR/VSTR (System Register). */
20263 if (sysreg_op)
20264 {
20265 if (!mark_feature_used (&arm_ext_v8_1m_main))
20266 as_bad (_("Instruction not permitted on this architecture"));
20267
20268 do_t_vldr_vstr_sysreg ();
20269 }
20270 /* VLDR/VSTR. */
20271 else
20272 {
20273 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
20274 as_bad (_("Instruction not permitted on this architecture"));
20275 do_neon_ldr_str ();
20276 }
20277 }
20278
20279 /* "interleave" version also handles non-interleaving register VLD1/VST1
20280 instructions. */
20281
20282 static void
20283 do_neon_ld_st_interleave (void)
20284 {
20285 struct neon_type_el et = neon_check_type (1, NS_NULL,
20286 N_8 | N_16 | N_32 | N_64);
20287 unsigned alignbits = 0;
20288 unsigned idx;
20289 /* The bits in this table go:
20290 0: register stride of one (0) or two (1)
20291 1,2: register list length, minus one (1, 2, 3, 4).
20292 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
20293 We use -1 for invalid entries. */
20294 const int typetable[] =
20295 {
20296 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
20297 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
20298 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
20299 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
20300 };
20301 int typebits;
20302
20303 if (et.type == NT_invtype)
20304 return;
20305
20306 if (inst.operands[1].immisalign)
20307 switch (inst.operands[1].imm >> 8)
20308 {
20309 case 64: alignbits = 1; break;
20310 case 128:
20311 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
20312 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20313 goto bad_alignment;
20314 alignbits = 2;
20315 break;
20316 case 256:
20317 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20318 goto bad_alignment;
20319 alignbits = 3;
20320 break;
20321 default:
20322 bad_alignment:
20323 first_error (_("bad alignment"));
20324 return;
20325 }
20326
20327 inst.instruction |= alignbits << 4;
20328 inst.instruction |= neon_logbits (et.size) << 6;
20329
20330 /* Bits [4:6] of the immediate in a list specifier encode register stride
20331 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20332 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20333 up the right value for "type" in a table based on this value and the given
20334 list style, then stick it back. */
20335 idx = ((inst.operands[0].imm >> 4) & 7)
20336 | (((inst.instruction >> 8) & 3) << 3);
20337
20338 typebits = typetable[idx];
20339
20340 constraint (typebits == -1, _("bad list type for instruction"));
20341 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
20342 BAD_EL_TYPE);
20343
20344 inst.instruction &= ~0xf00;
20345 inst.instruction |= typebits << 8;
20346 }
20347
20348 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20349 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20350 otherwise. The variable arguments are a list of pairs of legal (size, align)
20351 values, terminated with -1. */
20352
20353 static int
20354 neon_alignment_bit (int size, int align, int *do_alignment, ...)
20355 {
20356 va_list ap;
20357 int result = FAIL, thissize, thisalign;
20358
20359 if (!inst.operands[1].immisalign)
20360 {
20361 *do_alignment = 0;
20362 return SUCCESS;
20363 }
20364
20365 va_start (ap, do_alignment);
20366
20367 do
20368 {
20369 thissize = va_arg (ap, int);
20370 if (thissize == -1)
20371 break;
20372 thisalign = va_arg (ap, int);
20373
20374 if (size == thissize && align == thisalign)
20375 result = SUCCESS;
20376 }
20377 while (result != SUCCESS);
20378
20379 va_end (ap);
20380
20381 if (result == SUCCESS)
20382 *do_alignment = 1;
20383 else
20384 first_error (_("unsupported alignment for instruction"));
20385
20386 return result;
20387 }
20388
20389 static void
20390 do_neon_ld_st_lane (void)
20391 {
20392 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20393 int align_good, do_alignment = 0;
20394 int logsize = neon_logbits (et.size);
20395 int align = inst.operands[1].imm >> 8;
20396 int n = (inst.instruction >> 8) & 3;
20397 int max_el = 64 / et.size;
20398
20399 if (et.type == NT_invtype)
20400 return;
20401
20402 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
20403 _("bad list length"));
20404 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
20405 _("scalar index out of range"));
20406 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
20407 && et.size == 8,
20408 _("stride of 2 unavailable when element size is 8"));
20409
20410 switch (n)
20411 {
20412 case 0: /* VLD1 / VST1. */
20413 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
20414 32, 32, -1);
20415 if (align_good == FAIL)
20416 return;
20417 if (do_alignment)
20418 {
20419 unsigned alignbits = 0;
20420 switch (et.size)
20421 {
20422 case 16: alignbits = 0x1; break;
20423 case 32: alignbits = 0x3; break;
20424 default: ;
20425 }
20426 inst.instruction |= alignbits << 4;
20427 }
20428 break;
20429
20430 case 1: /* VLD2 / VST2. */
20431 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20432 16, 32, 32, 64, -1);
20433 if (align_good == FAIL)
20434 return;
20435 if (do_alignment)
20436 inst.instruction |= 1 << 4;
20437 break;
20438
20439 case 2: /* VLD3 / VST3. */
20440 constraint (inst.operands[1].immisalign,
20441 _("can't use alignment with this instruction"));
20442 break;
20443
20444 case 3: /* VLD4 / VST4. */
20445 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20446 16, 64, 32, 64, 32, 128, -1);
20447 if (align_good == FAIL)
20448 return;
20449 if (do_alignment)
20450 {
20451 unsigned alignbits = 0;
20452 switch (et.size)
20453 {
20454 case 8: alignbits = 0x1; break;
20455 case 16: alignbits = 0x1; break;
20456 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20457 default: ;
20458 }
20459 inst.instruction |= alignbits << 4;
20460 }
20461 break;
20462
20463 default: ;
20464 }
20465
20466 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20467 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20468 inst.instruction |= 1 << (4 + logsize);
20469
20470 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20471 inst.instruction |= logsize << 10;
20472 }
20473
20474 /* Encode single n-element structure to all lanes VLD<n> instructions. */
20475
20476 static void
20477 do_neon_ld_dup (void)
20478 {
20479 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20480 int align_good, do_alignment = 0;
20481
20482 if (et.type == NT_invtype)
20483 return;
20484
20485 switch ((inst.instruction >> 8) & 3)
20486 {
20487 case 0: /* VLD1. */
20488 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
20489 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20490 &do_alignment, 16, 16, 32, 32, -1);
20491 if (align_good == FAIL)
20492 return;
20493 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
20494 {
20495 case 1: break;
20496 case 2: inst.instruction |= 1 << 5; break;
20497 default: first_error (_("bad list length")); return;
20498 }
20499 inst.instruction |= neon_logbits (et.size) << 6;
20500 break;
20501
20502 case 1: /* VLD2. */
20503 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20504 &do_alignment, 8, 16, 16, 32, 32, 64,
20505 -1);
20506 if (align_good == FAIL)
20507 return;
20508 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
20509 _("bad list length"));
20510 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20511 inst.instruction |= 1 << 5;
20512 inst.instruction |= neon_logbits (et.size) << 6;
20513 break;
20514
20515 case 2: /* VLD3. */
20516 constraint (inst.operands[1].immisalign,
20517 _("can't use alignment with this instruction"));
20518 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
20519 _("bad list length"));
20520 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20521 inst.instruction |= 1 << 5;
20522 inst.instruction |= neon_logbits (et.size) << 6;
20523 break;
20524
20525 case 3: /* VLD4. */
20526 {
20527 int align = inst.operands[1].imm >> 8;
20528 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20529 16, 64, 32, 64, 32, 128, -1);
20530 if (align_good == FAIL)
20531 return;
20532 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
20533 _("bad list length"));
20534 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20535 inst.instruction |= 1 << 5;
20536 if (et.size == 32 && align == 128)
20537 inst.instruction |= 0x3 << 6;
20538 else
20539 inst.instruction |= neon_logbits (et.size) << 6;
20540 }
20541 break;
20542
20543 default: ;
20544 }
20545
20546 inst.instruction |= do_alignment << 4;
20547 }
20548
20549 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20550 apart from bits [11:4]. */
20551
20552 static void
20553 do_neon_ldx_stx (void)
20554 {
20555 if (inst.operands[1].isreg)
20556 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
20557
20558 switch (NEON_LANE (inst.operands[0].imm))
20559 {
20560 case NEON_INTERLEAVE_LANES:
20561 NEON_ENCODE (INTERLV, inst);
20562 do_neon_ld_st_interleave ();
20563 break;
20564
20565 case NEON_ALL_LANES:
20566 NEON_ENCODE (DUP, inst);
20567 if (inst.instruction == N_INV)
20568 {
20569 first_error ("only loads support such operands");
20570 break;
20571 }
20572 do_neon_ld_dup ();
20573 break;
20574
20575 default:
20576 NEON_ENCODE (LANE, inst);
20577 do_neon_ld_st_lane ();
20578 }
20579
20580 /* L bit comes from bit mask. */
20581 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20582 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20583 inst.instruction |= inst.operands[1].reg << 16;
20584
20585 if (inst.operands[1].postind)
20586 {
20587 int postreg = inst.operands[1].imm & 0xf;
20588 constraint (!inst.operands[1].immisreg,
20589 _("post-index must be a register"));
20590 constraint (postreg == 0xd || postreg == 0xf,
20591 _("bad register for post-index"));
20592 inst.instruction |= postreg;
20593 }
20594 else
20595 {
20596 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
20597 constraint (inst.relocs[0].exp.X_op != O_constant
20598 || inst.relocs[0].exp.X_add_number != 0,
20599 BAD_ADDR_MODE);
20600
20601 if (inst.operands[1].writeback)
20602 {
20603 inst.instruction |= 0xd;
20604 }
20605 else
20606 inst.instruction |= 0xf;
20607 }
20608
20609 if (thumb_mode)
20610 inst.instruction |= 0xf9000000;
20611 else
20612 inst.instruction |= 0xf4000000;
20613 }
20614
20615 /* FP v8. */
20616 static void
20617 do_vfp_nsyn_fpv8 (enum neon_shape rs)
20618 {
20619 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20620 D register operands. */
20621 if (neon_shape_class[rs] == SC_DOUBLE)
20622 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20623 _(BAD_FPU));
20624
20625 NEON_ENCODE (FPV8, inst);
20626
20627 if (rs == NS_FFF || rs == NS_HHH)
20628 {
20629 do_vfp_sp_dyadic ();
20630
20631 /* ARMv8.2 fp16 instruction. */
20632 if (rs == NS_HHH)
20633 do_scalar_fp16_v82_encode ();
20634 }
20635 else
20636 do_vfp_dp_rd_rn_rm ();
20637
20638 if (rs == NS_DDD)
20639 inst.instruction |= 0x100;
20640
20641 inst.instruction |= 0xf0000000;
20642 }
20643
20644 static void
20645 do_vsel (void)
20646 {
20647 set_pred_insn_type (OUTSIDE_PRED_INSN);
20648
20649 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20650 first_error (_("invalid instruction shape"));
20651 }
20652
20653 static void
20654 do_vmaxnm (void)
20655 {
20656 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20657 set_pred_insn_type (OUTSIDE_PRED_INSN);
20658
20659 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20660 return;
20661
20662 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH8))
20663 return;
20664
20665 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
20666 }
20667
20668 static void
20669 do_vrint_1 (enum neon_cvt_mode mode)
20670 {
20671 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
20672 struct neon_type_el et;
20673
20674 if (rs == NS_NULL)
20675 return;
20676
20677 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20678 D register operands. */
20679 if (neon_shape_class[rs] == SC_DOUBLE)
20680 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20681 _(BAD_FPU));
20682
20683 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20684 | N_VFP);
20685 if (et.type != NT_invtype)
20686 {
20687 /* VFP encodings. */
20688 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20689 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
20690 set_pred_insn_type (OUTSIDE_PRED_INSN);
20691
20692 NEON_ENCODE (FPV8, inst);
20693 if (rs == NS_FF || rs == NS_HH)
20694 do_vfp_sp_monadic ();
20695 else
20696 do_vfp_dp_rd_rm ();
20697
20698 switch (mode)
20699 {
20700 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20701 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20702 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20703 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20704 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20705 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20706 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20707 default: abort ();
20708 }
20709
20710 inst.instruction |= (rs == NS_DD) << 8;
20711 do_vfp_cond_or_thumb ();
20712
20713 /* ARMv8.2 fp16 vrint instruction. */
20714 if (rs == NS_HH)
20715 do_scalar_fp16_v82_encode ();
20716 }
20717 else
20718 {
20719 /* Neon encodings (or something broken...). */
20720 inst.error = NULL;
20721 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
20722
20723 if (et.type == NT_invtype)
20724 return;
20725
20726 if (!check_simd_pred_availability (TRUE,
20727 NEON_CHECK_CC | NEON_CHECK_ARCH8))
20728 return;
20729
20730 NEON_ENCODE (FLOAT, inst);
20731
20732 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20733 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20734 inst.instruction |= LOW4 (inst.operands[1].reg);
20735 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20736 inst.instruction |= neon_quad (rs) << 6;
20737 /* Mask off the original size bits and reencode them. */
20738 inst.instruction = ((inst.instruction & 0xfff3ffff)
20739 | neon_logbits (et.size) << 18);
20740
20741 switch (mode)
20742 {
20743 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20744 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20745 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20746 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20747 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20748 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20749 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20750 default: abort ();
20751 }
20752
20753 if (thumb_mode)
20754 inst.instruction |= 0xfc000000;
20755 else
20756 inst.instruction |= 0xf0000000;
20757 }
20758 }
20759
20760 static void
20761 do_vrintx (void)
20762 {
20763 do_vrint_1 (neon_cvt_mode_x);
20764 }
20765
20766 static void
20767 do_vrintz (void)
20768 {
20769 do_vrint_1 (neon_cvt_mode_z);
20770 }
20771
20772 static void
20773 do_vrintr (void)
20774 {
20775 do_vrint_1 (neon_cvt_mode_r);
20776 }
20777
20778 static void
20779 do_vrinta (void)
20780 {
20781 do_vrint_1 (neon_cvt_mode_a);
20782 }
20783
20784 static void
20785 do_vrintn (void)
20786 {
20787 do_vrint_1 (neon_cvt_mode_n);
20788 }
20789
20790 static void
20791 do_vrintp (void)
20792 {
20793 do_vrint_1 (neon_cvt_mode_p);
20794 }
20795
20796 static void
20797 do_vrintm (void)
20798 {
20799 do_vrint_1 (neon_cvt_mode_m);
20800 }
20801
20802 static unsigned
20803 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20804 {
20805 unsigned regno = NEON_SCALAR_REG (opnd);
20806 unsigned elno = NEON_SCALAR_INDEX (opnd);
20807
20808 if (elsize == 16 && elno < 2 && regno < 16)
20809 return regno | (elno << 4);
20810 else if (elsize == 32 && elno == 0)
20811 return regno;
20812
20813 first_error (_("scalar out of range"));
20814 return 0;
20815 }
20816
20817 static void
20818 do_vcmla (void)
20819 {
20820 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20821 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20822 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20823 constraint (inst.relocs[0].exp.X_op != O_constant,
20824 _("expression too complex"));
20825 unsigned rot = inst.relocs[0].exp.X_add_number;
20826 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20827 _("immediate out of range"));
20828 rot /= 90;
20829
20830 if (!check_simd_pred_availability (TRUE,
20831 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20832 return;
20833
20834 if (inst.operands[2].isscalar)
20835 {
20836 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20837 first_error (_("invalid instruction shape"));
20838 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20839 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20840 N_KEY | N_F16 | N_F32).size;
20841 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20842 inst.is_neon = 1;
20843 inst.instruction = 0xfe000800;
20844 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20845 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20846 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20847 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20848 inst.instruction |= LOW4 (m);
20849 inst.instruction |= HI1 (m) << 5;
20850 inst.instruction |= neon_quad (rs) << 6;
20851 inst.instruction |= rot << 20;
20852 inst.instruction |= (size == 32) << 23;
20853 }
20854 else
20855 {
20856 enum neon_shape rs;
20857 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20858 rs = neon_select_shape (NS_QQQI, NS_NULL);
20859 else
20860 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20861
20862 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20863 N_KEY | N_F16 | N_F32).size;
20864 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20865 && (inst.operands[0].reg == inst.operands[1].reg
20866 || inst.operands[0].reg == inst.operands[2].reg))
20867 as_tsktsk (BAD_MVE_SRCDEST);
20868
20869 neon_three_same (neon_quad (rs), 0, -1);
20870 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20871 inst.instruction |= 0xfc200800;
20872 inst.instruction |= rot << 23;
20873 inst.instruction |= (size == 32) << 20;
20874 }
20875 }
20876
20877 static void
20878 do_vcadd (void)
20879 {
20880 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20881 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20882 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20883 constraint (inst.relocs[0].exp.X_op != O_constant,
20884 _("expression too complex"));
20885
20886 unsigned rot = inst.relocs[0].exp.X_add_number;
20887 constraint (rot != 90 && rot != 270, _("immediate out of range"));
20888 enum neon_shape rs;
20889 struct neon_type_el et;
20890 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20891 {
20892 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20893 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20894 }
20895 else
20896 {
20897 rs = neon_select_shape (NS_QQQI, NS_NULL);
20898 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20899 | N_I16 | N_I32);
20900 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20901 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20902 "operand makes instruction UNPREDICTABLE"));
20903 }
20904
20905 if (et.type == NT_invtype)
20906 return;
20907
20908 if (!check_simd_pred_availability (et.type == NT_float,
20909 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20910 return;
20911
20912 if (et.type == NT_float)
20913 {
20914 neon_three_same (neon_quad (rs), 0, -1);
20915 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20916 inst.instruction |= 0xfc800800;
20917 inst.instruction |= (rot == 270) << 24;
20918 inst.instruction |= (et.size == 32) << 20;
20919 }
20920 else
20921 {
20922 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20923 inst.instruction = 0xfe000f00;
20924 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20925 inst.instruction |= neon_logbits (et.size) << 20;
20926 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20927 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20928 inst.instruction |= (rot == 270) << 12;
20929 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20930 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20931 inst.instruction |= LOW4 (inst.operands[2].reg);
20932 inst.is_neon = 1;
20933 }
20934 }
20935
20936 /* Dot Product instructions encoding support. */
20937
20938 static void
20939 do_neon_dotproduct (int unsigned_p)
20940 {
20941 enum neon_shape rs;
20942 unsigned scalar_oprd2 = 0;
20943 int high8;
20944
20945 if (inst.cond != COND_ALWAYS)
20946 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20947 "is UNPREDICTABLE"));
20948
20949 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20950 _(BAD_FPU));
20951
20952 /* Dot Product instructions are in three-same D/Q register format or the third
20953 operand can be a scalar index register. */
20954 if (inst.operands[2].isscalar)
20955 {
20956 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20957 high8 = 0xfe000000;
20958 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20959 }
20960 else
20961 {
20962 high8 = 0xfc000000;
20963 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20964 }
20965
20966 if (unsigned_p)
20967 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20968 else
20969 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20970
20971 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20972 Product instruction, so we pass 0 as the "ubit" parameter. And the
20973 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20974 neon_three_same (neon_quad (rs), 0, 32);
20975
20976 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20977 different NEON three-same encoding. */
20978 inst.instruction &= 0x00ffffff;
20979 inst.instruction |= high8;
20980 /* Encode 'U' bit which indicates signedness. */
20981 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20982 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20983 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20984 the instruction encoding. */
20985 if (inst.operands[2].isscalar)
20986 {
20987 inst.instruction &= 0xffffffd0;
20988 inst.instruction |= LOW4 (scalar_oprd2);
20989 inst.instruction |= HI1 (scalar_oprd2) << 5;
20990 }
20991 }
20992
20993 /* Dot Product instructions for signed integer. */
20994
20995 static void
20996 do_neon_dotproduct_s (void)
20997 {
20998 return do_neon_dotproduct (0);
20999 }
21000
21001 /* Dot Product instructions for unsigned integer. */
21002
21003 static void
21004 do_neon_dotproduct_u (void)
21005 {
21006 return do_neon_dotproduct (1);
21007 }
21008
21009 /* Crypto v1 instructions. */
21010 static void
21011 do_crypto_2op_1 (unsigned elttype, int op)
21012 {
21013 set_pred_insn_type (OUTSIDE_PRED_INSN);
21014
21015 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
21016 == NT_invtype)
21017 return;
21018
21019 inst.error = NULL;
21020
21021 NEON_ENCODE (INTEGER, inst);
21022 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21023 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21024 inst.instruction |= LOW4 (inst.operands[1].reg);
21025 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
21026 if (op != -1)
21027 inst.instruction |= op << 6;
21028
21029 if (thumb_mode)
21030 inst.instruction |= 0xfc000000;
21031 else
21032 inst.instruction |= 0xf0000000;
21033 }
21034
21035 static void
21036 do_crypto_3op_1 (int u, int op)
21037 {
21038 set_pred_insn_type (OUTSIDE_PRED_INSN);
21039
21040 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
21041 N_32 | N_UNT | N_KEY).type == NT_invtype)
21042 return;
21043
21044 inst.error = NULL;
21045
21046 NEON_ENCODE (INTEGER, inst);
21047 neon_three_same (1, u, 8 << op);
21048 }
21049
21050 static void
21051 do_aese (void)
21052 {
21053 do_crypto_2op_1 (N_8, 0);
21054 }
21055
21056 static void
21057 do_aesd (void)
21058 {
21059 do_crypto_2op_1 (N_8, 1);
21060 }
21061
21062 static void
21063 do_aesmc (void)
21064 {
21065 do_crypto_2op_1 (N_8, 2);
21066 }
21067
21068 static void
21069 do_aesimc (void)
21070 {
21071 do_crypto_2op_1 (N_8, 3);
21072 }
21073
21074 static void
21075 do_sha1c (void)
21076 {
21077 do_crypto_3op_1 (0, 0);
21078 }
21079
21080 static void
21081 do_sha1p (void)
21082 {
21083 do_crypto_3op_1 (0, 1);
21084 }
21085
21086 static void
21087 do_sha1m (void)
21088 {
21089 do_crypto_3op_1 (0, 2);
21090 }
21091
21092 static void
21093 do_sha1su0 (void)
21094 {
21095 do_crypto_3op_1 (0, 3);
21096 }
21097
21098 static void
21099 do_sha256h (void)
21100 {
21101 do_crypto_3op_1 (1, 0);
21102 }
21103
21104 static void
21105 do_sha256h2 (void)
21106 {
21107 do_crypto_3op_1 (1, 1);
21108 }
21109
21110 static void
21111 do_sha256su1 (void)
21112 {
21113 do_crypto_3op_1 (1, 2);
21114 }
21115
21116 static void
21117 do_sha1h (void)
21118 {
21119 do_crypto_2op_1 (N_32, -1);
21120 }
21121
21122 static void
21123 do_sha1su1 (void)
21124 {
21125 do_crypto_2op_1 (N_32, 0);
21126 }
21127
21128 static void
21129 do_sha256su0 (void)
21130 {
21131 do_crypto_2op_1 (N_32, 1);
21132 }
21133
21134 static void
21135 do_crc32_1 (unsigned int poly, unsigned int sz)
21136 {
21137 unsigned int Rd = inst.operands[0].reg;
21138 unsigned int Rn = inst.operands[1].reg;
21139 unsigned int Rm = inst.operands[2].reg;
21140
21141 set_pred_insn_type (OUTSIDE_PRED_INSN);
21142 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
21143 inst.instruction |= LOW4 (Rn) << 16;
21144 inst.instruction |= LOW4 (Rm);
21145 inst.instruction |= sz << (thumb_mode ? 4 : 21);
21146 inst.instruction |= poly << (thumb_mode ? 20 : 9);
21147
21148 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
21149 as_warn (UNPRED_REG ("r15"));
21150 }
21151
21152 static void
21153 do_crc32b (void)
21154 {
21155 do_crc32_1 (0, 0);
21156 }
21157
21158 static void
21159 do_crc32h (void)
21160 {
21161 do_crc32_1 (0, 1);
21162 }
21163
21164 static void
21165 do_crc32w (void)
21166 {
21167 do_crc32_1 (0, 2);
21168 }
21169
21170 static void
21171 do_crc32cb (void)
21172 {
21173 do_crc32_1 (1, 0);
21174 }
21175
21176 static void
21177 do_crc32ch (void)
21178 {
21179 do_crc32_1 (1, 1);
21180 }
21181
21182 static void
21183 do_crc32cw (void)
21184 {
21185 do_crc32_1 (1, 2);
21186 }
21187
21188 static void
21189 do_vjcvt (void)
21190 {
21191 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21192 _(BAD_FPU));
21193 neon_check_type (2, NS_FD, N_S32, N_F64);
21194 do_vfp_sp_dp_cvt ();
21195 do_vfp_cond_or_thumb ();
21196 }
21197
21198 \f
21199 /* Overall per-instruction processing. */
21200
21201 /* We need to be able to fix up arbitrary expressions in some statements.
21202 This is so that we can handle symbols that are an arbitrary distance from
21203 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
21204 which returns part of an address in a form which will be valid for
21205 a data instruction. We do this by pushing the expression into a symbol
21206 in the expr_section, and creating a fix for that. */
21207
21208 static void
21209 fix_new_arm (fragS * frag,
21210 int where,
21211 short int size,
21212 expressionS * exp,
21213 int pc_rel,
21214 int reloc)
21215 {
21216 fixS * new_fix;
21217
21218 switch (exp->X_op)
21219 {
21220 case O_constant:
21221 if (pc_rel)
21222 {
21223 /* Create an absolute valued symbol, so we have something to
21224 refer to in the object file. Unfortunately for us, gas's
21225 generic expression parsing will already have folded out
21226 any use of .set foo/.type foo %function that may have
21227 been used to set type information of the target location,
21228 that's being specified symbolically. We have to presume
21229 the user knows what they are doing. */
21230 char name[16 + 8];
21231 symbolS *symbol;
21232
21233 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
21234
21235 symbol = symbol_find_or_make (name);
21236 S_SET_SEGMENT (symbol, absolute_section);
21237 symbol_set_frag (symbol, &zero_address_frag);
21238 S_SET_VALUE (symbol, exp->X_add_number);
21239 exp->X_op = O_symbol;
21240 exp->X_add_symbol = symbol;
21241 exp->X_add_number = 0;
21242 }
21243 /* FALLTHROUGH */
21244 case O_symbol:
21245 case O_add:
21246 case O_subtract:
21247 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
21248 (enum bfd_reloc_code_real) reloc);
21249 break;
21250
21251 default:
21252 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
21253 pc_rel, (enum bfd_reloc_code_real) reloc);
21254 break;
21255 }
21256
21257 /* Mark whether the fix is to a THUMB instruction, or an ARM
21258 instruction. */
21259 new_fix->tc_fix_data = thumb_mode;
21260 }
21261
21262 /* Create a frg for an instruction requiring relaxation. */
21263 static void
21264 output_relax_insn (void)
21265 {
21266 char * to;
21267 symbolS *sym;
21268 int offset;
21269
21270 /* The size of the instruction is unknown, so tie the debug info to the
21271 start of the instruction. */
21272 dwarf2_emit_insn (0);
21273
21274 switch (inst.relocs[0].exp.X_op)
21275 {
21276 case O_symbol:
21277 sym = inst.relocs[0].exp.X_add_symbol;
21278 offset = inst.relocs[0].exp.X_add_number;
21279 break;
21280 case O_constant:
21281 sym = NULL;
21282 offset = inst.relocs[0].exp.X_add_number;
21283 break;
21284 default:
21285 sym = make_expr_symbol (&inst.relocs[0].exp);
21286 offset = 0;
21287 break;
21288 }
21289 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
21290 inst.relax, sym, offset, NULL/*offset, opcode*/);
21291 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
21292 }
21293
21294 /* Write a 32-bit thumb instruction to buf. */
21295 static void
21296 put_thumb32_insn (char * buf, unsigned long insn)
21297 {
21298 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
21299 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
21300 }
21301
21302 static void
21303 output_inst (const char * str)
21304 {
21305 char * to = NULL;
21306
21307 if (inst.error)
21308 {
21309 as_bad ("%s -- `%s'", inst.error, str);
21310 return;
21311 }
21312 if (inst.relax)
21313 {
21314 output_relax_insn ();
21315 return;
21316 }
21317 if (inst.size == 0)
21318 return;
21319
21320 to = frag_more (inst.size);
21321 /* PR 9814: Record the thumb mode into the current frag so that we know
21322 what type of NOP padding to use, if necessary. We override any previous
21323 setting so that if the mode has changed then the NOPS that we use will
21324 match the encoding of the last instruction in the frag. */
21325 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21326
21327 if (thumb_mode && (inst.size > THUMB_SIZE))
21328 {
21329 gas_assert (inst.size == (2 * THUMB_SIZE));
21330 put_thumb32_insn (to, inst.instruction);
21331 }
21332 else if (inst.size > INSN_SIZE)
21333 {
21334 gas_assert (inst.size == (2 * INSN_SIZE));
21335 md_number_to_chars (to, inst.instruction, INSN_SIZE);
21336 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
21337 }
21338 else
21339 md_number_to_chars (to, inst.instruction, inst.size);
21340
21341 int r;
21342 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21343 {
21344 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
21345 fix_new_arm (frag_now, to - frag_now->fr_literal,
21346 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
21347 inst.relocs[r].type);
21348 }
21349
21350 dwarf2_emit_insn (inst.size);
21351 }
21352
21353 static char *
21354 output_it_inst (int cond, int mask, char * to)
21355 {
21356 unsigned long instruction = 0xbf00;
21357
21358 mask &= 0xf;
21359 instruction |= mask;
21360 instruction |= cond << 4;
21361
21362 if (to == NULL)
21363 {
21364 to = frag_more (2);
21365 #ifdef OBJ_ELF
21366 dwarf2_emit_insn (2);
21367 #endif
21368 }
21369
21370 md_number_to_chars (to, instruction, 2);
21371
21372 return to;
21373 }
21374
21375 /* Tag values used in struct asm_opcode's tag field. */
21376 enum opcode_tag
21377 {
21378 OT_unconditional, /* Instruction cannot be conditionalized.
21379 The ARM condition field is still 0xE. */
21380 OT_unconditionalF, /* Instruction cannot be conditionalized
21381 and carries 0xF in its ARM condition field. */
21382 OT_csuffix, /* Instruction takes a conditional suffix. */
21383 OT_csuffixF, /* Some forms of the instruction take a scalar
21384 conditional suffix, others place 0xF where the
21385 condition field would be, others take a vector
21386 conditional suffix. */
21387 OT_cinfix3, /* Instruction takes a conditional infix,
21388 beginning at character index 3. (In
21389 unified mode, it becomes a suffix.) */
21390 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21391 tsts, cmps, cmns, and teqs. */
21392 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21393 character index 3, even in unified mode. Used for
21394 legacy instructions where suffix and infix forms
21395 may be ambiguous. */
21396 OT_csuf_or_in3, /* Instruction takes either a conditional
21397 suffix or an infix at character index 3. */
21398 OT_odd_infix_unc, /* This is the unconditional variant of an
21399 instruction that takes a conditional infix
21400 at an unusual position. In unified mode,
21401 this variant will accept a suffix. */
21402 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
21403 are the conditional variants of instructions that
21404 take conditional infixes in unusual positions.
21405 The infix appears at character index
21406 (tag - OT_odd_infix_0). These are not accepted
21407 in unified mode. */
21408 };
21409
21410 /* Subroutine of md_assemble, responsible for looking up the primary
21411 opcode from the mnemonic the user wrote. STR points to the
21412 beginning of the mnemonic.
21413
21414 This is not simply a hash table lookup, because of conditional
21415 variants. Most instructions have conditional variants, which are
21416 expressed with a _conditional affix_ to the mnemonic. If we were
21417 to encode each conditional variant as a literal string in the opcode
21418 table, it would have approximately 20,000 entries.
21419
21420 Most mnemonics take this affix as a suffix, and in unified syntax,
21421 'most' is upgraded to 'all'. However, in the divided syntax, some
21422 instructions take the affix as an infix, notably the s-variants of
21423 the arithmetic instructions. Of those instructions, all but six
21424 have the infix appear after the third character of the mnemonic.
21425
21426 Accordingly, the algorithm for looking up primary opcodes given
21427 an identifier is:
21428
21429 1. Look up the identifier in the opcode table.
21430 If we find a match, go to step U.
21431
21432 2. Look up the last two characters of the identifier in the
21433 conditions table. If we find a match, look up the first N-2
21434 characters of the identifier in the opcode table. If we
21435 find a match, go to step CE.
21436
21437 3. Look up the fourth and fifth characters of the identifier in
21438 the conditions table. If we find a match, extract those
21439 characters from the identifier, and look up the remaining
21440 characters in the opcode table. If we find a match, go
21441 to step CM.
21442
21443 4. Fail.
21444
21445 U. Examine the tag field of the opcode structure, in case this is
21446 one of the six instructions with its conditional infix in an
21447 unusual place. If it is, the tag tells us where to find the
21448 infix; look it up in the conditions table and set inst.cond
21449 accordingly. Otherwise, this is an unconditional instruction.
21450 Again set inst.cond accordingly. Return the opcode structure.
21451
21452 CE. Examine the tag field to make sure this is an instruction that
21453 should receive a conditional suffix. If it is not, fail.
21454 Otherwise, set inst.cond from the suffix we already looked up,
21455 and return the opcode structure.
21456
21457 CM. Examine the tag field to make sure this is an instruction that
21458 should receive a conditional infix after the third character.
21459 If it is not, fail. Otherwise, undo the edits to the current
21460 line of input and proceed as for case CE. */
21461
21462 static const struct asm_opcode *
21463 opcode_lookup (char **str)
21464 {
21465 char *end, *base;
21466 char *affix;
21467 const struct asm_opcode *opcode;
21468 const struct asm_cond *cond;
21469 char save[2];
21470
21471 /* Scan up to the end of the mnemonic, which must end in white space,
21472 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
21473 for (base = end = *str; *end != '\0'; end++)
21474 if (*end == ' ' || *end == '.')
21475 break;
21476
21477 if (end == base)
21478 return NULL;
21479
21480 /* Handle a possible width suffix and/or Neon type suffix. */
21481 if (end[0] == '.')
21482 {
21483 int offset = 2;
21484
21485 /* The .w and .n suffixes are only valid if the unified syntax is in
21486 use. */
21487 if (unified_syntax && end[1] == 'w')
21488 inst.size_req = 4;
21489 else if (unified_syntax && end[1] == 'n')
21490 inst.size_req = 2;
21491 else
21492 offset = 0;
21493
21494 inst.vectype.elems = 0;
21495
21496 *str = end + offset;
21497
21498 if (end[offset] == '.')
21499 {
21500 /* See if we have a Neon type suffix (possible in either unified or
21501 non-unified ARM syntax mode). */
21502 if (parse_neon_type (&inst.vectype, str) == FAIL)
21503 return NULL;
21504 }
21505 else if (end[offset] != '\0' && end[offset] != ' ')
21506 return NULL;
21507 }
21508 else
21509 *str = end;
21510
21511 /* Look for unaffixed or special-case affixed mnemonic. */
21512 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21513 end - base);
21514 if (opcode)
21515 {
21516 /* step U */
21517 if (opcode->tag < OT_odd_infix_0)
21518 {
21519 inst.cond = COND_ALWAYS;
21520 return opcode;
21521 }
21522
21523 if (warn_on_deprecated && unified_syntax)
21524 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21525 affix = base + (opcode->tag - OT_odd_infix_0);
21526 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21527 gas_assert (cond);
21528
21529 inst.cond = cond->value;
21530 return opcode;
21531 }
21532 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21533 {
21534 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21535 */
21536 if (end - base < 2)
21537 return NULL;
21538 affix = end - 1;
21539 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
21540 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21541 affix - base);
21542 /* If this opcode can not be vector predicated then don't accept it with a
21543 vector predication code. */
21544 if (opcode && !opcode->mayBeVecPred)
21545 opcode = NULL;
21546 }
21547 if (!opcode || !cond)
21548 {
21549 /* Cannot have a conditional suffix on a mnemonic of less than two
21550 characters. */
21551 if (end - base < 3)
21552 return NULL;
21553
21554 /* Look for suffixed mnemonic. */
21555 affix = end - 2;
21556 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21557 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21558 affix - base);
21559 }
21560
21561 if (opcode && cond)
21562 {
21563 /* step CE */
21564 switch (opcode->tag)
21565 {
21566 case OT_cinfix3_legacy:
21567 /* Ignore conditional suffixes matched on infix only mnemonics. */
21568 break;
21569
21570 case OT_cinfix3:
21571 case OT_cinfix3_deprecated:
21572 case OT_odd_infix_unc:
21573 if (!unified_syntax)
21574 return NULL;
21575 /* Fall through. */
21576
21577 case OT_csuffix:
21578 case OT_csuffixF:
21579 case OT_csuf_or_in3:
21580 inst.cond = cond->value;
21581 return opcode;
21582
21583 case OT_unconditional:
21584 case OT_unconditionalF:
21585 if (thumb_mode)
21586 inst.cond = cond->value;
21587 else
21588 {
21589 /* Delayed diagnostic. */
21590 inst.error = BAD_COND;
21591 inst.cond = COND_ALWAYS;
21592 }
21593 return opcode;
21594
21595 default:
21596 return NULL;
21597 }
21598 }
21599
21600 /* Cannot have a usual-position infix on a mnemonic of less than
21601 six characters (five would be a suffix). */
21602 if (end - base < 6)
21603 return NULL;
21604
21605 /* Look for infixed mnemonic in the usual position. */
21606 affix = base + 3;
21607 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21608 if (!cond)
21609 return NULL;
21610
21611 memcpy (save, affix, 2);
21612 memmove (affix, affix + 2, (end - affix) - 2);
21613 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21614 (end - base) - 2);
21615 memmove (affix + 2, affix, (end - affix) - 2);
21616 memcpy (affix, save, 2);
21617
21618 if (opcode
21619 && (opcode->tag == OT_cinfix3
21620 || opcode->tag == OT_cinfix3_deprecated
21621 || opcode->tag == OT_csuf_or_in3
21622 || opcode->tag == OT_cinfix3_legacy))
21623 {
21624 /* Step CM. */
21625 if (warn_on_deprecated && unified_syntax
21626 && (opcode->tag == OT_cinfix3
21627 || opcode->tag == OT_cinfix3_deprecated))
21628 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21629
21630 inst.cond = cond->value;
21631 return opcode;
21632 }
21633
21634 return NULL;
21635 }
21636
21637 /* This function generates an initial IT instruction, leaving its block
21638 virtually open for the new instructions. Eventually,
21639 the mask will be updated by now_pred_add_mask () each time
21640 a new instruction needs to be included in the IT block.
21641 Finally, the block is closed with close_automatic_it_block ().
21642 The block closure can be requested either from md_assemble (),
21643 a tencode (), or due to a label hook. */
21644
21645 static void
21646 new_automatic_it_block (int cond)
21647 {
21648 now_pred.state = AUTOMATIC_PRED_BLOCK;
21649 now_pred.mask = 0x18;
21650 now_pred.cc = cond;
21651 now_pred.block_length = 1;
21652 mapping_state (MAP_THUMB);
21653 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21654 now_pred.warn_deprecated = FALSE;
21655 now_pred.insn_cond = TRUE;
21656 }
21657
21658 /* Close an automatic IT block.
21659 See comments in new_automatic_it_block (). */
21660
21661 static void
21662 close_automatic_it_block (void)
21663 {
21664 now_pred.mask = 0x10;
21665 now_pred.block_length = 0;
21666 }
21667
21668 /* Update the mask of the current automatically-generated IT
21669 instruction. See comments in new_automatic_it_block (). */
21670
21671 static void
21672 now_pred_add_mask (int cond)
21673 {
21674 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21675 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
21676 | ((bitvalue) << (nbit)))
21677 const int resulting_bit = (cond & 1);
21678
21679 now_pred.mask &= 0xf;
21680 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21681 resulting_bit,
21682 (5 - now_pred.block_length));
21683 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21684 1,
21685 ((5 - now_pred.block_length) - 1));
21686 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
21687
21688 #undef CLEAR_BIT
21689 #undef SET_BIT_VALUE
21690 }
21691
21692 /* The IT blocks handling machinery is accessed through the these functions:
21693 it_fsm_pre_encode () from md_assemble ()
21694 set_pred_insn_type () optional, from the tencode functions
21695 set_pred_insn_type_last () ditto
21696 in_pred_block () ditto
21697 it_fsm_post_encode () from md_assemble ()
21698 force_automatic_it_block_close () from label handling functions
21699
21700 Rationale:
21701 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
21702 initializing the IT insn type with a generic initial value depending
21703 on the inst.condition.
21704 2) During the tencode function, two things may happen:
21705 a) The tencode function overrides the IT insn type by
21706 calling either set_pred_insn_type (type) or
21707 set_pred_insn_type_last ().
21708 b) The tencode function queries the IT block state by
21709 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
21710
21711 Both set_pred_insn_type and in_pred_block run the internal FSM state
21712 handling function (handle_pred_state), because: a) setting the IT insn
21713 type may incur in an invalid state (exiting the function),
21714 and b) querying the state requires the FSM to be updated.
21715 Specifically we want to avoid creating an IT block for conditional
21716 branches, so it_fsm_pre_encode is actually a guess and we can't
21717 determine whether an IT block is required until the tencode () routine
21718 has decided what type of instruction this actually it.
21719 Because of this, if set_pred_insn_type and in_pred_block have to be
21720 used, set_pred_insn_type has to be called first.
21721
21722 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21723 that determines the insn IT type depending on the inst.cond code.
21724 When a tencode () routine encodes an instruction that can be
21725 either outside an IT block, or, in the case of being inside, has to be
21726 the last one, set_pred_insn_type_last () will determine the proper
21727 IT instruction type based on the inst.cond code. Otherwise,
21728 set_pred_insn_type can be called for overriding that logic or
21729 for covering other cases.
21730
21731 Calling handle_pred_state () may not transition the IT block state to
21732 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
21733 still queried. Instead, if the FSM determines that the state should
21734 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
21735 after the tencode () function: that's what it_fsm_post_encode () does.
21736
21737 Since in_pred_block () calls the state handling function to get an
21738 updated state, an error may occur (due to invalid insns combination).
21739 In that case, inst.error is set.
21740 Therefore, inst.error has to be checked after the execution of
21741 the tencode () routine.
21742
21743 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
21744 any pending state change (if any) that didn't take place in
21745 handle_pred_state () as explained above. */
21746
21747 static void
21748 it_fsm_pre_encode (void)
21749 {
21750 if (inst.cond != COND_ALWAYS)
21751 inst.pred_insn_type = INSIDE_IT_INSN;
21752 else
21753 inst.pred_insn_type = OUTSIDE_PRED_INSN;
21754
21755 now_pred.state_handled = 0;
21756 }
21757
21758 /* IT state FSM handling function. */
21759 /* MVE instructions and non-MVE instructions are handled differently because of
21760 the introduction of VPT blocks.
21761 Specifications say that any non-MVE instruction inside a VPT block is
21762 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21763 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
21764 few exceptions we have MVE_UNPREDICABLE_INSN.
21765 The error messages provided depending on the different combinations possible
21766 are described in the cases below:
21767 For 'most' MVE instructions:
21768 1) In an IT block, with an IT code: syntax error
21769 2) In an IT block, with a VPT code: error: must be in a VPT block
21770 3) In an IT block, with no code: warning: UNPREDICTABLE
21771 4) In a VPT block, with an IT code: syntax error
21772 5) In a VPT block, with a VPT code: OK!
21773 6) In a VPT block, with no code: error: missing code
21774 7) Outside a pred block, with an IT code: error: syntax error
21775 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21776 9) Outside a pred block, with no code: OK!
21777 For non-MVE instructions:
21778 10) In an IT block, with an IT code: OK!
21779 11) In an IT block, with a VPT code: syntax error
21780 12) In an IT block, with no code: error: missing code
21781 13) In a VPT block, with an IT code: error: should be in an IT block
21782 14) In a VPT block, with a VPT code: syntax error
21783 15) In a VPT block, with no code: UNPREDICTABLE
21784 16) Outside a pred block, with an IT code: error: should be in an IT block
21785 17) Outside a pred block, with a VPT code: syntax error
21786 18) Outside a pred block, with no code: OK!
21787 */
21788
21789
21790 static int
21791 handle_pred_state (void)
21792 {
21793 now_pred.state_handled = 1;
21794 now_pred.insn_cond = FALSE;
21795
21796 switch (now_pred.state)
21797 {
21798 case OUTSIDE_PRED_BLOCK:
21799 switch (inst.pred_insn_type)
21800 {
21801 case MVE_UNPREDICABLE_INSN:
21802 case MVE_OUTSIDE_PRED_INSN:
21803 if (inst.cond < COND_ALWAYS)
21804 {
21805 /* Case 7: Outside a pred block, with an IT code: error: syntax
21806 error. */
21807 inst.error = BAD_SYNTAX;
21808 return FAIL;
21809 }
21810 /* Case 9: Outside a pred block, with no code: OK! */
21811 break;
21812 case OUTSIDE_PRED_INSN:
21813 if (inst.cond > COND_ALWAYS)
21814 {
21815 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21816 */
21817 inst.error = BAD_SYNTAX;
21818 return FAIL;
21819 }
21820 /* Case 18: Outside a pred block, with no code: OK! */
21821 break;
21822
21823 case INSIDE_VPT_INSN:
21824 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21825 a VPT block. */
21826 inst.error = BAD_OUT_VPT;
21827 return FAIL;
21828
21829 case INSIDE_IT_INSN:
21830 case INSIDE_IT_LAST_INSN:
21831 if (inst.cond < COND_ALWAYS)
21832 {
21833 /* Case 16: Outside a pred block, with an IT code: error: should
21834 be in an IT block. */
21835 if (thumb_mode == 0)
21836 {
21837 if (unified_syntax
21838 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21839 as_tsktsk (_("Warning: conditional outside an IT block"\
21840 " for Thumb."));
21841 }
21842 else
21843 {
21844 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21845 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21846 {
21847 /* Automatically generate the IT instruction. */
21848 new_automatic_it_block (inst.cond);
21849 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21850 close_automatic_it_block ();
21851 }
21852 else
21853 {
21854 inst.error = BAD_OUT_IT;
21855 return FAIL;
21856 }
21857 }
21858 break;
21859 }
21860 else if (inst.cond > COND_ALWAYS)
21861 {
21862 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21863 */
21864 inst.error = BAD_SYNTAX;
21865 return FAIL;
21866 }
21867 else
21868 gas_assert (0);
21869 case IF_INSIDE_IT_LAST_INSN:
21870 case NEUTRAL_IT_INSN:
21871 break;
21872
21873 case VPT_INSN:
21874 if (inst.cond != COND_ALWAYS)
21875 first_error (BAD_SYNTAX);
21876 now_pred.state = MANUAL_PRED_BLOCK;
21877 now_pred.block_length = 0;
21878 now_pred.type = VECTOR_PRED;
21879 now_pred.cc = 0;
21880 break;
21881 case IT_INSN:
21882 now_pred.state = MANUAL_PRED_BLOCK;
21883 now_pred.block_length = 0;
21884 now_pred.type = SCALAR_PRED;
21885 break;
21886 }
21887 break;
21888
21889 case AUTOMATIC_PRED_BLOCK:
21890 /* Three things may happen now:
21891 a) We should increment current it block size;
21892 b) We should close current it block (closing insn or 4 insns);
21893 c) We should close current it block and start a new one (due
21894 to incompatible conditions or
21895 4 insns-length block reached). */
21896
21897 switch (inst.pred_insn_type)
21898 {
21899 case INSIDE_VPT_INSN:
21900 case VPT_INSN:
21901 case MVE_UNPREDICABLE_INSN:
21902 case MVE_OUTSIDE_PRED_INSN:
21903 gas_assert (0);
21904 case OUTSIDE_PRED_INSN:
21905 /* The closure of the block shall happen immediately,
21906 so any in_pred_block () call reports the block as closed. */
21907 force_automatic_it_block_close ();
21908 break;
21909
21910 case INSIDE_IT_INSN:
21911 case INSIDE_IT_LAST_INSN:
21912 case IF_INSIDE_IT_LAST_INSN:
21913 now_pred.block_length++;
21914
21915 if (now_pred.block_length > 4
21916 || !now_pred_compatible (inst.cond))
21917 {
21918 force_automatic_it_block_close ();
21919 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
21920 new_automatic_it_block (inst.cond);
21921 }
21922 else
21923 {
21924 now_pred.insn_cond = TRUE;
21925 now_pred_add_mask (inst.cond);
21926 }
21927
21928 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21929 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21930 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
21931 close_automatic_it_block ();
21932 break;
21933
21934 case NEUTRAL_IT_INSN:
21935 now_pred.block_length++;
21936 now_pred.insn_cond = TRUE;
21937
21938 if (now_pred.block_length > 4)
21939 force_automatic_it_block_close ();
21940 else
21941 now_pred_add_mask (now_pred.cc & 1);
21942 break;
21943
21944 case IT_INSN:
21945 close_automatic_it_block ();
21946 now_pred.state = MANUAL_PRED_BLOCK;
21947 break;
21948 }
21949 break;
21950
21951 case MANUAL_PRED_BLOCK:
21952 {
21953 int cond, is_last;
21954 if (now_pred.type == SCALAR_PRED)
21955 {
21956 /* Check conditional suffixes. */
21957 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21958 now_pred.mask <<= 1;
21959 now_pred.mask &= 0x1f;
21960 is_last = (now_pred.mask == 0x10);
21961 }
21962 else
21963 {
21964 now_pred.cc ^= (now_pred.mask >> 4);
21965 cond = now_pred.cc + 0xf;
21966 now_pred.mask <<= 1;
21967 now_pred.mask &= 0x1f;
21968 is_last = now_pred.mask == 0x10;
21969 }
21970 now_pred.insn_cond = TRUE;
21971
21972 switch (inst.pred_insn_type)
21973 {
21974 case OUTSIDE_PRED_INSN:
21975 if (now_pred.type == SCALAR_PRED)
21976 {
21977 if (inst.cond == COND_ALWAYS)
21978 {
21979 /* Case 12: In an IT block, with no code: error: missing
21980 code. */
21981 inst.error = BAD_NOT_IT;
21982 return FAIL;
21983 }
21984 else if (inst.cond > COND_ALWAYS)
21985 {
21986 /* Case 11: In an IT block, with a VPT code: syntax error.
21987 */
21988 inst.error = BAD_SYNTAX;
21989 return FAIL;
21990 }
21991 else if (thumb_mode)
21992 {
21993 /* This is for some special cases where a non-MVE
21994 instruction is not allowed in an IT block, such as cbz,
21995 but are put into one with a condition code.
21996 You could argue this should be a syntax error, but we
21997 gave the 'not allowed in IT block' diagnostic in the
21998 past so we will keep doing so. */
21999 inst.error = BAD_NOT_IT;
22000 return FAIL;
22001 }
22002 break;
22003 }
22004 else
22005 {
22006 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
22007 as_tsktsk (MVE_NOT_VPT);
22008 return SUCCESS;
22009 }
22010 case MVE_OUTSIDE_PRED_INSN:
22011 if (now_pred.type == SCALAR_PRED)
22012 {
22013 if (inst.cond == COND_ALWAYS)
22014 {
22015 /* Case 3: In an IT block, with no code: warning:
22016 UNPREDICTABLE. */
22017 as_tsktsk (MVE_NOT_IT);
22018 return SUCCESS;
22019 }
22020 else if (inst.cond < COND_ALWAYS)
22021 {
22022 /* Case 1: In an IT block, with an IT code: syntax error.
22023 */
22024 inst.error = BAD_SYNTAX;
22025 return FAIL;
22026 }
22027 else
22028 gas_assert (0);
22029 }
22030 else
22031 {
22032 if (inst.cond < COND_ALWAYS)
22033 {
22034 /* Case 4: In a VPT block, with an IT code: syntax error.
22035 */
22036 inst.error = BAD_SYNTAX;
22037 return FAIL;
22038 }
22039 else if (inst.cond == COND_ALWAYS)
22040 {
22041 /* Case 6: In a VPT block, with no code: error: missing
22042 code. */
22043 inst.error = BAD_NOT_VPT;
22044 return FAIL;
22045 }
22046 else
22047 {
22048 gas_assert (0);
22049 }
22050 }
22051 case MVE_UNPREDICABLE_INSN:
22052 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
22053 return SUCCESS;
22054 case INSIDE_IT_INSN:
22055 if (inst.cond > COND_ALWAYS)
22056 {
22057 /* Case 11: In an IT block, with a VPT code: syntax error. */
22058 /* Case 14: In a VPT block, with a VPT code: syntax error. */
22059 inst.error = BAD_SYNTAX;
22060 return FAIL;
22061 }
22062 else if (now_pred.type == SCALAR_PRED)
22063 {
22064 /* Case 10: In an IT block, with an IT code: OK! */
22065 if (cond != inst.cond)
22066 {
22067 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
22068 BAD_VPT_COND;
22069 return FAIL;
22070 }
22071 }
22072 else
22073 {
22074 /* Case 13: In a VPT block, with an IT code: error: should be
22075 in an IT block. */
22076 inst.error = BAD_OUT_IT;
22077 return FAIL;
22078 }
22079 break;
22080
22081 case INSIDE_VPT_INSN:
22082 if (now_pred.type == SCALAR_PRED)
22083 {
22084 /* Case 2: In an IT block, with a VPT code: error: must be in a
22085 VPT block. */
22086 inst.error = BAD_OUT_VPT;
22087 return FAIL;
22088 }
22089 /* Case 5: In a VPT block, with a VPT code: OK! */
22090 else if (cond != inst.cond)
22091 {
22092 inst.error = BAD_VPT_COND;
22093 return FAIL;
22094 }
22095 break;
22096 case INSIDE_IT_LAST_INSN:
22097 case IF_INSIDE_IT_LAST_INSN:
22098 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
22099 {
22100 /* Case 4: In a VPT block, with an IT code: syntax error. */
22101 /* Case 11: In an IT block, with a VPT code: syntax error. */
22102 inst.error = BAD_SYNTAX;
22103 return FAIL;
22104 }
22105 else if (cond != inst.cond)
22106 {
22107 inst.error = BAD_IT_COND;
22108 return FAIL;
22109 }
22110 if (!is_last)
22111 {
22112 inst.error = BAD_BRANCH;
22113 return FAIL;
22114 }
22115 break;
22116
22117 case NEUTRAL_IT_INSN:
22118 /* The BKPT instruction is unconditional even in a IT or VPT
22119 block. */
22120 break;
22121
22122 case IT_INSN:
22123 if (now_pred.type == SCALAR_PRED)
22124 {
22125 inst.error = BAD_IT_IT;
22126 return FAIL;
22127 }
22128 /* fall through. */
22129 case VPT_INSN:
22130 if (inst.cond == COND_ALWAYS)
22131 {
22132 /* Executing a VPT/VPST instruction inside an IT block or a
22133 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
22134 */
22135 if (now_pred.type == SCALAR_PRED)
22136 as_tsktsk (MVE_NOT_IT);
22137 else
22138 as_tsktsk (MVE_NOT_VPT);
22139 return SUCCESS;
22140 }
22141 else
22142 {
22143 /* VPT/VPST do not accept condition codes. */
22144 inst.error = BAD_SYNTAX;
22145 return FAIL;
22146 }
22147 }
22148 }
22149 break;
22150 }
22151
22152 return SUCCESS;
22153 }
22154
22155 struct depr_insn_mask
22156 {
22157 unsigned long pattern;
22158 unsigned long mask;
22159 const char* description;
22160 };
22161
22162 /* List of 16-bit instruction patterns deprecated in an IT block in
22163 ARMv8. */
22164 static const struct depr_insn_mask depr_it_insns[] = {
22165 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
22166 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
22167 { 0xa000, 0xb800, N_("ADR") },
22168 { 0x4800, 0xf800, N_("Literal loads") },
22169 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
22170 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
22171 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
22172 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
22173 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
22174 { 0, 0, NULL }
22175 };
22176
22177 static void
22178 it_fsm_post_encode (void)
22179 {
22180 int is_last;
22181
22182 if (!now_pred.state_handled)
22183 handle_pred_state ();
22184
22185 if (now_pred.insn_cond
22186 && !now_pred.warn_deprecated
22187 && warn_on_deprecated
22188 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
22189 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
22190 {
22191 if (inst.instruction >= 0x10000)
22192 {
22193 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
22194 "performance deprecated in ARMv8-A and ARMv8-R"));
22195 now_pred.warn_deprecated = TRUE;
22196 }
22197 else
22198 {
22199 const struct depr_insn_mask *p = depr_it_insns;
22200
22201 while (p->mask != 0)
22202 {
22203 if ((inst.instruction & p->mask) == p->pattern)
22204 {
22205 as_tsktsk (_("IT blocks containing 16-bit Thumb "
22206 "instructions of the following class are "
22207 "performance deprecated in ARMv8-A and "
22208 "ARMv8-R: %s"), p->description);
22209 now_pred.warn_deprecated = TRUE;
22210 break;
22211 }
22212
22213 ++p;
22214 }
22215 }
22216
22217 if (now_pred.block_length > 1)
22218 {
22219 as_tsktsk (_("IT blocks containing more than one conditional "
22220 "instruction are performance deprecated in ARMv8-A and "
22221 "ARMv8-R"));
22222 now_pred.warn_deprecated = TRUE;
22223 }
22224 }
22225
22226 is_last = (now_pred.mask == 0x10);
22227 if (is_last)
22228 {
22229 now_pred.state = OUTSIDE_PRED_BLOCK;
22230 now_pred.mask = 0;
22231 }
22232 }
22233
22234 static void
22235 force_automatic_it_block_close (void)
22236 {
22237 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
22238 {
22239 close_automatic_it_block ();
22240 now_pred.state = OUTSIDE_PRED_BLOCK;
22241 now_pred.mask = 0;
22242 }
22243 }
22244
22245 static int
22246 in_pred_block (void)
22247 {
22248 if (!now_pred.state_handled)
22249 handle_pred_state ();
22250
22251 return now_pred.state != OUTSIDE_PRED_BLOCK;
22252 }
22253
22254 /* Whether OPCODE only has T32 encoding. Since this function is only used by
22255 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
22256 here, hence the "known" in the function name. */
22257
22258 static bfd_boolean
22259 known_t32_only_insn (const struct asm_opcode *opcode)
22260 {
22261 /* Original Thumb-1 wide instruction. */
22262 if (opcode->tencode == do_t_blx
22263 || opcode->tencode == do_t_branch23
22264 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
22265 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
22266 return TRUE;
22267
22268 /* Wide-only instruction added to ARMv8-M Baseline. */
22269 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
22270 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
22271 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
22272 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
22273 return TRUE;
22274
22275 return FALSE;
22276 }
22277
22278 /* Whether wide instruction variant can be used if available for a valid OPCODE
22279 in ARCH. */
22280
22281 static bfd_boolean
22282 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
22283 {
22284 if (known_t32_only_insn (opcode))
22285 return TRUE;
22286
22287 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
22288 of variant T3 of B.W is checked in do_t_branch. */
22289 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22290 && opcode->tencode == do_t_branch)
22291 return TRUE;
22292
22293 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
22294 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22295 && opcode->tencode == do_t_mov_cmp
22296 /* Make sure CMP instruction is not affected. */
22297 && opcode->aencode == do_mov)
22298 return TRUE;
22299
22300 /* Wide instruction variants of all instructions with narrow *and* wide
22301 variants become available with ARMv6t2. Other opcodes are either
22302 narrow-only or wide-only and are thus available if OPCODE is valid. */
22303 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
22304 return TRUE;
22305
22306 /* OPCODE with narrow only instruction variant or wide variant not
22307 available. */
22308 return FALSE;
22309 }
22310
22311 void
22312 md_assemble (char *str)
22313 {
22314 char *p = str;
22315 const struct asm_opcode * opcode;
22316
22317 /* Align the previous label if needed. */
22318 if (last_label_seen != NULL)
22319 {
22320 symbol_set_frag (last_label_seen, frag_now);
22321 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
22322 S_SET_SEGMENT (last_label_seen, now_seg);
22323 }
22324
22325 memset (&inst, '\0', sizeof (inst));
22326 int r;
22327 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
22328 inst.relocs[r].type = BFD_RELOC_UNUSED;
22329
22330 opcode = opcode_lookup (&p);
22331 if (!opcode)
22332 {
22333 /* It wasn't an instruction, but it might be a register alias of
22334 the form alias .req reg, or a Neon .dn/.qn directive. */
22335 if (! create_register_alias (str, p)
22336 && ! create_neon_reg_alias (str, p))
22337 as_bad (_("bad instruction `%s'"), str);
22338
22339 return;
22340 }
22341
22342 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
22343 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
22344
22345 /* The value which unconditional instructions should have in place of the
22346 condition field. */
22347 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
22348
22349 if (thumb_mode)
22350 {
22351 arm_feature_set variant;
22352
22353 variant = cpu_variant;
22354 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
22355 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
22356 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
22357 /* Check that this instruction is supported for this CPU. */
22358 if (!opcode->tvariant
22359 || (thumb_mode == 1
22360 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
22361 {
22362 if (opcode->tencode == do_t_swi)
22363 as_bad (_("SVC is not permitted on this architecture"));
22364 else
22365 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
22366 return;
22367 }
22368 if (inst.cond != COND_ALWAYS && !unified_syntax
22369 && opcode->tencode != do_t_branch)
22370 {
22371 as_bad (_("Thumb does not support conditional execution"));
22372 return;
22373 }
22374
22375 /* Two things are addressed here:
22376 1) Implicit require narrow instructions on Thumb-1.
22377 This avoids relaxation accidentally introducing Thumb-2
22378 instructions.
22379 2) Reject wide instructions in non Thumb-2 cores.
22380
22381 Only instructions with narrow and wide variants need to be handled
22382 but selecting all non wide-only instructions is easier. */
22383 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
22384 && !t32_insn_ok (variant, opcode))
22385 {
22386 if (inst.size_req == 0)
22387 inst.size_req = 2;
22388 else if (inst.size_req == 4)
22389 {
22390 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22391 as_bad (_("selected processor does not support 32bit wide "
22392 "variant of instruction `%s'"), str);
22393 else
22394 as_bad (_("selected processor does not support `%s' in "
22395 "Thumb-2 mode"), str);
22396 return;
22397 }
22398 }
22399
22400 inst.instruction = opcode->tvalue;
22401
22402 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
22403 {
22404 /* Prepare the pred_insn_type for those encodings that don't set
22405 it. */
22406 it_fsm_pre_encode ();
22407
22408 opcode->tencode ();
22409
22410 it_fsm_post_encode ();
22411 }
22412
22413 if (!(inst.error || inst.relax))
22414 {
22415 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
22416 inst.size = (inst.instruction > 0xffff ? 4 : 2);
22417 if (inst.size_req && inst.size_req != inst.size)
22418 {
22419 as_bad (_("cannot honor width suffix -- `%s'"), str);
22420 return;
22421 }
22422 }
22423
22424 /* Something has gone badly wrong if we try to relax a fixed size
22425 instruction. */
22426 gas_assert (inst.size_req == 0 || !inst.relax);
22427
22428 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22429 *opcode->tvariant);
22430 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
22431 set those bits when Thumb-2 32-bit instructions are seen. The impact
22432 of relaxable instructions will be considered later after we finish all
22433 relaxation. */
22434 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
22435 variant = arm_arch_none;
22436 else
22437 variant = cpu_variant;
22438 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
22439 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22440 arm_ext_v6t2);
22441
22442 check_neon_suffixes;
22443
22444 if (!inst.error)
22445 {
22446 mapping_state (MAP_THUMB);
22447 }
22448 }
22449 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22450 {
22451 bfd_boolean is_bx;
22452
22453 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
22454 is_bx = (opcode->aencode == do_bx);
22455
22456 /* Check that this instruction is supported for this CPU. */
22457 if (!(is_bx && fix_v4bx)
22458 && !(opcode->avariant &&
22459 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
22460 {
22461 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
22462 return;
22463 }
22464 if (inst.size_req)
22465 {
22466 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
22467 return;
22468 }
22469
22470 inst.instruction = opcode->avalue;
22471 if (opcode->tag == OT_unconditionalF)
22472 inst.instruction |= 0xFU << 28;
22473 else
22474 inst.instruction |= inst.cond << 28;
22475 inst.size = INSN_SIZE;
22476 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
22477 {
22478 it_fsm_pre_encode ();
22479 opcode->aencode ();
22480 it_fsm_post_encode ();
22481 }
22482 /* Arm mode bx is marked as both v4T and v5 because it's still required
22483 on a hypothetical non-thumb v5 core. */
22484 if (is_bx)
22485 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
22486 else
22487 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
22488 *opcode->avariant);
22489
22490 check_neon_suffixes;
22491
22492 if (!inst.error)
22493 {
22494 mapping_state (MAP_ARM);
22495 }
22496 }
22497 else
22498 {
22499 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22500 "-- `%s'"), str);
22501 return;
22502 }
22503 output_inst (str);
22504 }
22505
22506 static void
22507 check_pred_blocks_finished (void)
22508 {
22509 #ifdef OBJ_ELF
22510 asection *sect;
22511
22512 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
22513 if (seg_info (sect)->tc_segment_info_data.current_pred.state
22514 == MANUAL_PRED_BLOCK)
22515 {
22516 if (now_pred.type == SCALAR_PRED)
22517 as_warn (_("section '%s' finished with an open IT block."),
22518 sect->name);
22519 else
22520 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22521 sect->name);
22522 }
22523 #else
22524 if (now_pred.state == MANUAL_PRED_BLOCK)
22525 {
22526 if (now_pred.type == SCALAR_PRED)
22527 as_warn (_("file finished with an open IT block."));
22528 else
22529 as_warn (_("file finished with an open VPT/VPST block."));
22530 }
22531 #endif
22532 }
22533
22534 /* Various frobbings of labels and their addresses. */
22535
22536 void
22537 arm_start_line_hook (void)
22538 {
22539 last_label_seen = NULL;
22540 }
22541
22542 void
22543 arm_frob_label (symbolS * sym)
22544 {
22545 last_label_seen = sym;
22546
22547 ARM_SET_THUMB (sym, thumb_mode);
22548
22549 #if defined OBJ_COFF || defined OBJ_ELF
22550 ARM_SET_INTERWORK (sym, support_interwork);
22551 #endif
22552
22553 force_automatic_it_block_close ();
22554
22555 /* Note - do not allow local symbols (.Lxxx) to be labelled
22556 as Thumb functions. This is because these labels, whilst
22557 they exist inside Thumb code, are not the entry points for
22558 possible ARM->Thumb calls. Also, these labels can be used
22559 as part of a computed goto or switch statement. eg gcc
22560 can generate code that looks like this:
22561
22562 ldr r2, [pc, .Laaa]
22563 lsl r3, r3, #2
22564 ldr r2, [r3, r2]
22565 mov pc, r2
22566
22567 .Lbbb: .word .Lxxx
22568 .Lccc: .word .Lyyy
22569 ..etc...
22570 .Laaa: .word Lbbb
22571
22572 The first instruction loads the address of the jump table.
22573 The second instruction converts a table index into a byte offset.
22574 The third instruction gets the jump address out of the table.
22575 The fourth instruction performs the jump.
22576
22577 If the address stored at .Laaa is that of a symbol which has the
22578 Thumb_Func bit set, then the linker will arrange for this address
22579 to have the bottom bit set, which in turn would mean that the
22580 address computation performed by the third instruction would end
22581 up with the bottom bit set. Since the ARM is capable of unaligned
22582 word loads, the instruction would then load the incorrect address
22583 out of the jump table, and chaos would ensue. */
22584 if (label_is_thumb_function_name
22585 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22586 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
22587 {
22588 /* When the address of a Thumb function is taken the bottom
22589 bit of that address should be set. This will allow
22590 interworking between Arm and Thumb functions to work
22591 correctly. */
22592
22593 THUMB_SET_FUNC (sym, 1);
22594
22595 label_is_thumb_function_name = FALSE;
22596 }
22597
22598 dwarf2_emit_label (sym);
22599 }
22600
22601 bfd_boolean
22602 arm_data_in_code (void)
22603 {
22604 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
22605 {
22606 *input_line_pointer = '/';
22607 input_line_pointer += 5;
22608 *input_line_pointer = 0;
22609 return TRUE;
22610 }
22611
22612 return FALSE;
22613 }
22614
22615 char *
22616 arm_canonicalize_symbol_name (char * name)
22617 {
22618 int len;
22619
22620 if (thumb_mode && (len = strlen (name)) > 5
22621 && streq (name + len - 5, "/data"))
22622 *(name + len - 5) = 0;
22623
22624 return name;
22625 }
22626 \f
22627 /* Table of all register names defined by default. The user can
22628 define additional names with .req. Note that all register names
22629 should appear in both upper and lowercase variants. Some registers
22630 also have mixed-case names. */
22631
22632 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
22633 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
22634 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
22635 #define REGSET(p,t) \
22636 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22637 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22638 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22639 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
22640 #define REGSETH(p,t) \
22641 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22642 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22643 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22644 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22645 #define REGSET2(p,t) \
22646 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22647 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22648 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22649 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
22650 #define SPLRBANK(base,bank,t) \
22651 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22652 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22653 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22654 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22655 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22656 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
22657
22658 static const struct reg_entry reg_names[] =
22659 {
22660 /* ARM integer registers. */
22661 REGSET(r, RN), REGSET(R, RN),
22662
22663 /* ATPCS synonyms. */
22664 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22665 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22666 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
22667
22668 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22669 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22670 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
22671
22672 /* Well-known aliases. */
22673 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22674 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22675
22676 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22677 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22678
22679 /* Defining the new Zero register from ARMv8.1-M. */
22680 REGDEF(zr,15,ZR),
22681 REGDEF(ZR,15,ZR),
22682
22683 /* Coprocessor numbers. */
22684 REGSET(p, CP), REGSET(P, CP),
22685
22686 /* Coprocessor register numbers. The "cr" variants are for backward
22687 compatibility. */
22688 REGSET(c, CN), REGSET(C, CN),
22689 REGSET(cr, CN), REGSET(CR, CN),
22690
22691 /* ARM banked registers. */
22692 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22693 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22694 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22695 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22696 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22697 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22698 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22699
22700 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22701 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22702 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22703 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22704 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
22705 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
22706 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22707 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22708
22709 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22710 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22711 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22712 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22713 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22714 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22715 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
22716 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
22717 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22718
22719 /* FPA registers. */
22720 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22721 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22722
22723 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22724 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22725
22726 /* VFP SP registers. */
22727 REGSET(s,VFS), REGSET(S,VFS),
22728 REGSETH(s,VFS), REGSETH(S,VFS),
22729
22730 /* VFP DP Registers. */
22731 REGSET(d,VFD), REGSET(D,VFD),
22732 /* Extra Neon DP registers. */
22733 REGSETH(d,VFD), REGSETH(D,VFD),
22734
22735 /* Neon QP registers. */
22736 REGSET2(q,NQ), REGSET2(Q,NQ),
22737
22738 /* VFP control registers. */
22739 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22740 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
22741 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22742 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22743 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22744 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
22745 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
22746
22747 /* Maverick DSP coprocessor registers. */
22748 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22749 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22750
22751 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22752 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22753 REGDEF(dspsc,0,DSPSC),
22754
22755 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22756 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22757 REGDEF(DSPSC,0,DSPSC),
22758
22759 /* iWMMXt data registers - p0, c0-15. */
22760 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22761
22762 /* iWMMXt control registers - p1, c0-3. */
22763 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22764 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22765 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22766 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22767
22768 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22769 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22770 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22771 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22772 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22773
22774 /* XScale accumulator registers. */
22775 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22776 };
22777 #undef REGDEF
22778 #undef REGNUM
22779 #undef REGSET
22780
22781 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22782 within psr_required_here. */
22783 static const struct asm_psr psrs[] =
22784 {
22785 /* Backward compatibility notation. Note that "all" is no longer
22786 truly all possible PSR bits. */
22787 {"all", PSR_c | PSR_f},
22788 {"flg", PSR_f},
22789 {"ctl", PSR_c},
22790
22791 /* Individual flags. */
22792 {"f", PSR_f},
22793 {"c", PSR_c},
22794 {"x", PSR_x},
22795 {"s", PSR_s},
22796
22797 /* Combinations of flags. */
22798 {"fs", PSR_f | PSR_s},
22799 {"fx", PSR_f | PSR_x},
22800 {"fc", PSR_f | PSR_c},
22801 {"sf", PSR_s | PSR_f},
22802 {"sx", PSR_s | PSR_x},
22803 {"sc", PSR_s | PSR_c},
22804 {"xf", PSR_x | PSR_f},
22805 {"xs", PSR_x | PSR_s},
22806 {"xc", PSR_x | PSR_c},
22807 {"cf", PSR_c | PSR_f},
22808 {"cs", PSR_c | PSR_s},
22809 {"cx", PSR_c | PSR_x},
22810 {"fsx", PSR_f | PSR_s | PSR_x},
22811 {"fsc", PSR_f | PSR_s | PSR_c},
22812 {"fxs", PSR_f | PSR_x | PSR_s},
22813 {"fxc", PSR_f | PSR_x | PSR_c},
22814 {"fcs", PSR_f | PSR_c | PSR_s},
22815 {"fcx", PSR_f | PSR_c | PSR_x},
22816 {"sfx", PSR_s | PSR_f | PSR_x},
22817 {"sfc", PSR_s | PSR_f | PSR_c},
22818 {"sxf", PSR_s | PSR_x | PSR_f},
22819 {"sxc", PSR_s | PSR_x | PSR_c},
22820 {"scf", PSR_s | PSR_c | PSR_f},
22821 {"scx", PSR_s | PSR_c | PSR_x},
22822 {"xfs", PSR_x | PSR_f | PSR_s},
22823 {"xfc", PSR_x | PSR_f | PSR_c},
22824 {"xsf", PSR_x | PSR_s | PSR_f},
22825 {"xsc", PSR_x | PSR_s | PSR_c},
22826 {"xcf", PSR_x | PSR_c | PSR_f},
22827 {"xcs", PSR_x | PSR_c | PSR_s},
22828 {"cfs", PSR_c | PSR_f | PSR_s},
22829 {"cfx", PSR_c | PSR_f | PSR_x},
22830 {"csf", PSR_c | PSR_s | PSR_f},
22831 {"csx", PSR_c | PSR_s | PSR_x},
22832 {"cxf", PSR_c | PSR_x | PSR_f},
22833 {"cxs", PSR_c | PSR_x | PSR_s},
22834 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22835 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22836 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22837 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22838 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22839 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22840 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22841 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22842 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22843 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22844 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22845 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22846 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22847 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22848 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22849 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22850 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22851 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22852 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22853 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22854 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22855 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22856 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22857 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22858 };
22859
22860 /* Table of V7M psr names. */
22861 static const struct asm_psr v7m_psrs[] =
22862 {
22863 {"apsr", 0x0 }, {"APSR", 0x0 },
22864 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22865 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22866 {"psr", 0x3 }, {"PSR", 0x3 },
22867 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22868 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22869 {"epsr", 0x6 }, {"EPSR", 0x6 },
22870 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22871 {"msp", 0x8 }, {"MSP", 0x8 },
22872 {"psp", 0x9 }, {"PSP", 0x9 },
22873 {"msplim", 0xa }, {"MSPLIM", 0xa },
22874 {"psplim", 0xb }, {"PSPLIM", 0xb },
22875 {"primask", 0x10}, {"PRIMASK", 0x10},
22876 {"basepri", 0x11}, {"BASEPRI", 0x11},
22877 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
22878 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22879 {"control", 0x14}, {"CONTROL", 0x14},
22880 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22881 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22882 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22883 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22884 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22885 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22886 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22887 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22888 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
22889 };
22890
22891 /* Table of all shift-in-operand names. */
22892 static const struct asm_shift_name shift_names [] =
22893 {
22894 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22895 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22896 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22897 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22898 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
22899 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22900 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
22901 };
22902
22903 /* Table of all explicit relocation names. */
22904 #ifdef OBJ_ELF
22905 static struct reloc_entry reloc_names[] =
22906 {
22907 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22908 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22909 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22910 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22911 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22912 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22913 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22914 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22915 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22916 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
22917 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
22918 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22919 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
22920 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
22921 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
22922 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
22923 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
22924 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22925 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22926 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22927 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22928 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22929 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
22930 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22931 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22932 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22933 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
22934 };
22935 #endif
22936
22937 /* Table of all conditional affixes. */
22938 static const struct asm_cond conds[] =
22939 {
22940 {"eq", 0x0},
22941 {"ne", 0x1},
22942 {"cs", 0x2}, {"hs", 0x2},
22943 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22944 {"mi", 0x4},
22945 {"pl", 0x5},
22946 {"vs", 0x6},
22947 {"vc", 0x7},
22948 {"hi", 0x8},
22949 {"ls", 0x9},
22950 {"ge", 0xa},
22951 {"lt", 0xb},
22952 {"gt", 0xc},
22953 {"le", 0xd},
22954 {"al", 0xe}
22955 };
22956 static const struct asm_cond vconds[] =
22957 {
22958 {"t", 0xf},
22959 {"e", 0x10}
22960 };
22961
22962 #define UL_BARRIER(L,U,CODE,FEAT) \
22963 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22964 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
22965
22966 static struct asm_barrier_opt barrier_opt_names[] =
22967 {
22968 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22969 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22970 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22971 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22972 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22973 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22974 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22975 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22976 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22977 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22978 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22979 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22980 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22981 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22982 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22983 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
22984 };
22985
22986 #undef UL_BARRIER
22987
22988 /* Table of ARM-format instructions. */
22989
22990 /* Macros for gluing together operand strings. N.B. In all cases
22991 other than OPS0, the trailing OP_stop comes from default
22992 zero-initialization of the unspecified elements of the array. */
22993 #define OPS0() { OP_stop, }
22994 #define OPS1(a) { OP_##a, }
22995 #define OPS2(a,b) { OP_##a,OP_##b, }
22996 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22997 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22998 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22999 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
23000
23001 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
23002 This is useful when mixing operands for ARM and THUMB, i.e. using the
23003 MIX_ARM_THUMB_OPERANDS macro.
23004 In order to use these macros, prefix the number of operands with _
23005 e.g. _3. */
23006 #define OPS_1(a) { a, }
23007 #define OPS_2(a,b) { a,b, }
23008 #define OPS_3(a,b,c) { a,b,c, }
23009 #define OPS_4(a,b,c,d) { a,b,c,d, }
23010 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
23011 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
23012
23013 /* These macros abstract out the exact format of the mnemonic table and
23014 save some repeated characters. */
23015
23016 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
23017 #define TxCE(mnem, op, top, nops, ops, ae, te) \
23018 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
23019 THUMB_VARIANT, do_##ae, do_##te, 0 }
23020
23021 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
23022 a T_MNEM_xyz enumerator. */
23023 #define TCE(mnem, aop, top, nops, ops, ae, te) \
23024 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
23025 #define tCE(mnem, aop, top, nops, ops, ae, te) \
23026 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23027
23028 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
23029 infix after the third character. */
23030 #define TxC3(mnem, op, top, nops, ops, ae, te) \
23031 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
23032 THUMB_VARIANT, do_##ae, do_##te, 0 }
23033 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
23034 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
23035 THUMB_VARIANT, do_##ae, do_##te, 0 }
23036 #define TC3(mnem, aop, top, nops, ops, ae, te) \
23037 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
23038 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
23039 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
23040 #define tC3(mnem, aop, top, nops, ops, ae, te) \
23041 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23042 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
23043 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23044
23045 /* Mnemonic that cannot be conditionalized. The ARM condition-code
23046 field is still 0xE. Many of the Thumb variants can be executed
23047 conditionally, so this is checked separately. */
23048 #define TUE(mnem, op, top, nops, ops, ae, te) \
23049 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
23050 THUMB_VARIANT, do_##ae, do_##te, 0 }
23051
23052 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
23053 Used by mnemonics that have very minimal differences in the encoding for
23054 ARM and Thumb variants and can be handled in a common function. */
23055 #define TUEc(mnem, op, top, nops, ops, en) \
23056 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
23057 THUMB_VARIANT, do_##en, do_##en, 0 }
23058
23059 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
23060 condition code field. */
23061 #define TUF(mnem, op, top, nops, ops, ae, te) \
23062 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
23063 THUMB_VARIANT, do_##ae, do_##te, 0 }
23064
23065 /* ARM-only variants of all the above. */
23066 #define CE(mnem, op, nops, ops, ae) \
23067 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23068
23069 #define C3(mnem, op, nops, ops, ae) \
23070 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23071
23072 /* Thumb-only variants of TCE and TUE. */
23073 #define ToC(mnem, top, nops, ops, te) \
23074 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23075 do_##te, 0 }
23076
23077 #define ToU(mnem, top, nops, ops, te) \
23078 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
23079 NULL, do_##te, 0 }
23080
23081 /* T_MNEM_xyz enumerator variants of ToC. */
23082 #define toC(mnem, top, nops, ops, te) \
23083 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
23084 do_##te, 0 }
23085
23086 /* T_MNEM_xyz enumerator variants of ToU. */
23087 #define toU(mnem, top, nops, ops, te) \
23088 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
23089 NULL, do_##te, 0 }
23090
23091 /* Legacy mnemonics that always have conditional infix after the third
23092 character. */
23093 #define CL(mnem, op, nops, ops, ae) \
23094 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
23095 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23096
23097 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
23098 #define cCE(mnem, op, nops, ops, ae) \
23099 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23100
23101 /* mov instructions that are shared between coprocessor and MVE. */
23102 #define mcCE(mnem, op, nops, ops, ae) \
23103 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
23104
23105 /* Legacy coprocessor instructions where conditional infix and conditional
23106 suffix are ambiguous. For consistency this includes all FPA instructions,
23107 not just the potentially ambiguous ones. */
23108 #define cCL(mnem, op, nops, ops, ae) \
23109 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
23110 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23111
23112 /* Coprocessor, takes either a suffix or a position-3 infix
23113 (for an FPA corner case). */
23114 #define C3E(mnem, op, nops, ops, ae) \
23115 { mnem, OPS##nops ops, OT_csuf_or_in3, \
23116 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23117
23118 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
23119 { m1 #m2 m3, OPS##nops ops, \
23120 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
23121 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23122
23123 #define CM(m1, m2, op, nops, ops, ae) \
23124 xCM_ (m1, , m2, op, nops, ops, ae), \
23125 xCM_ (m1, eq, m2, op, nops, ops, ae), \
23126 xCM_ (m1, ne, m2, op, nops, ops, ae), \
23127 xCM_ (m1, cs, m2, op, nops, ops, ae), \
23128 xCM_ (m1, hs, m2, op, nops, ops, ae), \
23129 xCM_ (m1, cc, m2, op, nops, ops, ae), \
23130 xCM_ (m1, ul, m2, op, nops, ops, ae), \
23131 xCM_ (m1, lo, m2, op, nops, ops, ae), \
23132 xCM_ (m1, mi, m2, op, nops, ops, ae), \
23133 xCM_ (m1, pl, m2, op, nops, ops, ae), \
23134 xCM_ (m1, vs, m2, op, nops, ops, ae), \
23135 xCM_ (m1, vc, m2, op, nops, ops, ae), \
23136 xCM_ (m1, hi, m2, op, nops, ops, ae), \
23137 xCM_ (m1, ls, m2, op, nops, ops, ae), \
23138 xCM_ (m1, ge, m2, op, nops, ops, ae), \
23139 xCM_ (m1, lt, m2, op, nops, ops, ae), \
23140 xCM_ (m1, gt, m2, op, nops, ops, ae), \
23141 xCM_ (m1, le, m2, op, nops, ops, ae), \
23142 xCM_ (m1, al, m2, op, nops, ops, ae)
23143
23144 #define UE(mnem, op, nops, ops, ae) \
23145 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23146
23147 #define UF(mnem, op, nops, ops, ae) \
23148 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23149
23150 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
23151 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
23152 use the same encoding function for each. */
23153 #define NUF(mnem, op, nops, ops, enc) \
23154 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23155 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
23156
23157 /* Neon data processing, version which indirects through neon_enc_tab for
23158 the various overloaded versions of opcodes. */
23159 #define nUF(mnem, op, nops, ops, enc) \
23160 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23161 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
23162
23163 /* Neon insn with conditional suffix for the ARM version, non-overloaded
23164 version. */
23165 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
23166 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
23167 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
23168
23169 #define NCE(mnem, op, nops, ops, enc) \
23170 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
23171
23172 #define NCEF(mnem, op, nops, ops, enc) \
23173 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23174
23175 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
23176 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
23177 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
23178 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
23179
23180 #define nCE(mnem, op, nops, ops, enc) \
23181 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
23182
23183 #define nCEF(mnem, op, nops, ops, enc) \
23184 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23185
23186 /* */
23187 #define mCEF(mnem, op, nops, ops, enc) \
23188 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
23189 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23190
23191
23192 /* nCEF but for MVE predicated instructions. */
23193 #define mnCEF(mnem, op, nops, ops, enc) \
23194 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23195
23196 /* nCE but for MVE predicated instructions. */
23197 #define mnCE(mnem, op, nops, ops, enc) \
23198 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23199
23200 /* NUF but for potentially MVE predicated instructions. */
23201 #define MNUF(mnem, op, nops, ops, enc) \
23202 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23203 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23204
23205 /* nUF but for potentially MVE predicated instructions. */
23206 #define mnUF(mnem, op, nops, ops, enc) \
23207 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23208 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23209
23210 /* ToC but for potentially MVE predicated instructions. */
23211 #define mToC(mnem, top, nops, ops, te) \
23212 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23213 do_##te, 1 }
23214
23215 /* NCE but for MVE predicated instructions. */
23216 #define MNCE(mnem, op, nops, ops, enc) \
23217 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23218
23219 /* NCEF but for MVE predicated instructions. */
23220 #define MNCEF(mnem, op, nops, ops, enc) \
23221 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23222 #define do_0 0
23223
23224 static const struct asm_opcode insns[] =
23225 {
23226 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
23227 #define THUMB_VARIANT & arm_ext_v4t
23228 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
23229 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
23230 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
23231 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
23232 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
23233 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
23234 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
23235 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
23236 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
23237 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
23238 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
23239 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
23240 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
23241 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
23242 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
23243 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
23244
23245 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
23246 for setting PSR flag bits. They are obsolete in V6 and do not
23247 have Thumb equivalents. */
23248 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23249 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23250 CL("tstp", 110f000, 2, (RR, SH), cmp),
23251 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23252 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23253 CL("cmpp", 150f000, 2, (RR, SH), cmp),
23254 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23255 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23256 CL("cmnp", 170f000, 2, (RR, SH), cmp),
23257
23258 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
23259 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
23260 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
23261 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
23262
23263 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
23264 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23265 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
23266 OP_RRnpc),
23267 OP_ADDRGLDR),ldst, t_ldst),
23268 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23269
23270 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23271 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23272 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23273 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23274 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23275 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23276
23277 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
23278 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
23279
23280 /* Pseudo ops. */
23281 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
23282 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
23283 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
23284 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
23285
23286 /* Thumb-compatibility pseudo ops. */
23287 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
23288 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
23289 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
23290 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
23291 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
23292 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
23293 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
23294 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
23295 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
23296 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
23297 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
23298 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
23299
23300 /* These may simplify to neg. */
23301 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
23302 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
23303
23304 #undef THUMB_VARIANT
23305 #define THUMB_VARIANT & arm_ext_os
23306
23307 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
23308 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
23309
23310 #undef THUMB_VARIANT
23311 #define THUMB_VARIANT & arm_ext_v6
23312
23313 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
23314
23315 /* V1 instructions with no Thumb analogue prior to V6T2. */
23316 #undef THUMB_VARIANT
23317 #define THUMB_VARIANT & arm_ext_v6t2
23318
23319 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23320 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23321 CL("teqp", 130f000, 2, (RR, SH), cmp),
23322
23323 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23324 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23325 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
23326 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23327
23328 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23329 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23330
23331 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23332 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23333
23334 /* V1 instructions with no Thumb analogue at all. */
23335 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
23336 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
23337
23338 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
23339 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
23340 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
23341 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
23342 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
23343 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
23344 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
23345 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
23346
23347 #undef ARM_VARIANT
23348 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
23349 #undef THUMB_VARIANT
23350 #define THUMB_VARIANT & arm_ext_v4t
23351
23352 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23353 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23354
23355 #undef THUMB_VARIANT
23356 #define THUMB_VARIANT & arm_ext_v6t2
23357
23358 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23359 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
23360
23361 /* Generic coprocessor instructions. */
23362 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23363 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23364 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23365 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23366 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23367 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23368 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
23369
23370 #undef ARM_VARIANT
23371 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23372
23373 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23374 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23375
23376 #undef ARM_VARIANT
23377 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23378 #undef THUMB_VARIANT
23379 #define THUMB_VARIANT & arm_ext_msr
23380
23381 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23382 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
23383
23384 #undef ARM_VARIANT
23385 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23386 #undef THUMB_VARIANT
23387 #define THUMB_VARIANT & arm_ext_v6t2
23388
23389 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23390 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23391 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23392 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23393 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23394 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23395 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23396 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23397
23398 #undef ARM_VARIANT
23399 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
23400 #undef THUMB_VARIANT
23401 #define THUMB_VARIANT & arm_ext_v4t
23402
23403 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23404 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23405 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23406 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23407 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23408 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23409
23410 #undef ARM_VARIANT
23411 #define ARM_VARIANT & arm_ext_v4t_5
23412
23413 /* ARM Architecture 4T. */
23414 /* Note: bx (and blx) are required on V5, even if the processor does
23415 not support Thumb. */
23416 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
23417
23418 #undef ARM_VARIANT
23419 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
23420 #undef THUMB_VARIANT
23421 #define THUMB_VARIANT & arm_ext_v5t
23422
23423 /* Note: blx has 2 variants; the .value coded here is for
23424 BLX(2). Only this variant has conditional execution. */
23425 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
23426 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
23427
23428 #undef THUMB_VARIANT
23429 #define THUMB_VARIANT & arm_ext_v6t2
23430
23431 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
23432 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23433 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23434 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23435 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23436 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23437 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23438 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23439
23440 #undef ARM_VARIANT
23441 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
23442 #undef THUMB_VARIANT
23443 #define THUMB_VARIANT & arm_ext_v5exp
23444
23445 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23446 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23447 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23448 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23449
23450 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23451 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23452
23453 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23454 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23455 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23456 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23457
23458 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23459 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23460 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23461 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23462
23463 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23464 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23465
23466 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23467 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23468 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23469 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23470
23471 #undef ARM_VARIANT
23472 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
23473 #undef THUMB_VARIANT
23474 #define THUMB_VARIANT & arm_ext_v6t2
23475
23476 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
23477 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
23478 ldrd, t_ldstd),
23479 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
23480 ADDRGLDRS), ldrd, t_ldstd),
23481
23482 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23483 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23484
23485 #undef ARM_VARIANT
23486 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23487
23488 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
23489
23490 #undef ARM_VARIANT
23491 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23492 #undef THUMB_VARIANT
23493 #define THUMB_VARIANT & arm_ext_v6
23494
23495 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
23496 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
23497 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23498 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23499 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23500 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23501 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23502 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23503 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23504 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
23505
23506 #undef THUMB_VARIANT
23507 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23508
23509 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
23510 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23511 strex, t_strex),
23512 #undef THUMB_VARIANT
23513 #define THUMB_VARIANT & arm_ext_v6t2
23514
23515 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23516 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23517
23518 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
23519 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
23520
23521 /* ARM V6 not included in V7M. */
23522 #undef THUMB_VARIANT
23523 #define THUMB_VARIANT & arm_ext_v6_notm
23524 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23525 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23526 UF(rfeib, 9900a00, 1, (RRw), rfe),
23527 UF(rfeda, 8100a00, 1, (RRw), rfe),
23528 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23529 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23530 UF(rfefa, 8100a00, 1, (RRw), rfe),
23531 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23532 UF(rfeed, 9900a00, 1, (RRw), rfe),
23533 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23534 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23535 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23536 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
23537 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
23538 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
23539 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
23540 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23541 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23542 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
23543
23544 /* ARM V6 not included in V7M (eg. integer SIMD). */
23545 #undef THUMB_VARIANT
23546 #define THUMB_VARIANT & arm_ext_v6_dsp
23547 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
23548 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
23549 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23550 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23551 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23552 /* Old name for QASX. */
23553 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23554 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23555 /* Old name for QSAX. */
23556 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23557 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23558 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23559 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23560 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23561 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23562 /* Old name for SASX. */
23563 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23564 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23565 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23566 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23567 /* Old name for SHASX. */
23568 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23569 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23570 /* Old name for SHSAX. */
23571 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23572 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23573 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23574 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23575 /* Old name for SSAX. */
23576 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23577 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23578 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23579 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23580 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23581 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23582 /* Old name for UASX. */
23583 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23584 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23585 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23586 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23587 /* Old name for UHASX. */
23588 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23589 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23590 /* Old name for UHSAX. */
23591 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23592 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23593 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23594 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23595 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23596 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23597 /* Old name for UQASX. */
23598 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23599 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23600 /* Old name for UQSAX. */
23601 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23602 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23603 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23604 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23605 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23606 /* Old name for USAX. */
23607 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23608 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23609 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23610 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23611 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23612 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23613 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23614 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23615 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23616 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23617 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23618 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23619 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23620 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23621 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23622 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23623 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23624 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23625 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23626 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23627 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23628 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23629 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23630 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23631 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23632 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23633 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23634 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23635 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23636 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23637 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23638 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23639 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23640 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
23641
23642 #undef ARM_VARIANT
23643 #define ARM_VARIANT & arm_ext_v6k_v6t2
23644 #undef THUMB_VARIANT
23645 #define THUMB_VARIANT & arm_ext_v6k_v6t2
23646
23647 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23648 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23649 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23650 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
23651
23652 #undef THUMB_VARIANT
23653 #define THUMB_VARIANT & arm_ext_v6_notm
23654 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23655 ldrexd, t_ldrexd),
23656 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23657 RRnpcb), strexd, t_strexd),
23658
23659 #undef THUMB_VARIANT
23660 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23661 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23662 rd_rn, rd_rn),
23663 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23664 rd_rn, rd_rn),
23665 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23666 strex, t_strexbh),
23667 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23668 strex, t_strexbh),
23669 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
23670
23671 #undef ARM_VARIANT
23672 #define ARM_VARIANT & arm_ext_sec
23673 #undef THUMB_VARIANT
23674 #define THUMB_VARIANT & arm_ext_sec
23675
23676 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
23677
23678 #undef ARM_VARIANT
23679 #define ARM_VARIANT & arm_ext_virt
23680 #undef THUMB_VARIANT
23681 #define THUMB_VARIANT & arm_ext_virt
23682
23683 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23684 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23685
23686 #undef ARM_VARIANT
23687 #define ARM_VARIANT & arm_ext_pan
23688 #undef THUMB_VARIANT
23689 #define THUMB_VARIANT & arm_ext_pan
23690
23691 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23692
23693 #undef ARM_VARIANT
23694 #define ARM_VARIANT & arm_ext_v6t2
23695 #undef THUMB_VARIANT
23696 #define THUMB_VARIANT & arm_ext_v6t2
23697
23698 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23699 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23700 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23701 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23702
23703 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23704 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
23705
23706 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23707 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23708 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23709 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23710
23711 #undef ARM_VARIANT
23712 #define ARM_VARIANT & arm_ext_v3
23713 #undef THUMB_VARIANT
23714 #define THUMB_VARIANT & arm_ext_v6t2
23715
23716 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
23717 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23718 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
23719
23720 #undef ARM_VARIANT
23721 #define ARM_VARIANT & arm_ext_v6t2
23722 #undef THUMB_VARIANT
23723 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23724 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23725 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23726
23727 /* Thumb-only instructions. */
23728 #undef ARM_VARIANT
23729 #define ARM_VARIANT NULL
23730 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23731 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
23732
23733 /* ARM does not really have an IT instruction, so always allow it.
23734 The opcode is copied from Thumb in order to allow warnings in
23735 -mimplicit-it=[never | arm] modes. */
23736 #undef ARM_VARIANT
23737 #define ARM_VARIANT & arm_ext_v1
23738 #undef THUMB_VARIANT
23739 #define THUMB_VARIANT & arm_ext_v6t2
23740
23741 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23742 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23743 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23744 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23745 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23746 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23747 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23748 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23749 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23750 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23751 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23752 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23753 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23754 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23755 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
23756 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
23757 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23758 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
23759
23760 /* Thumb2 only instructions. */
23761 #undef ARM_VARIANT
23762 #define ARM_VARIANT NULL
23763
23764 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23765 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23766 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23767 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23768 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23769 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
23770
23771 /* Hardware division instructions. */
23772 #undef ARM_VARIANT
23773 #define ARM_VARIANT & arm_ext_adiv
23774 #undef THUMB_VARIANT
23775 #define THUMB_VARIANT & arm_ext_div
23776
23777 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23778 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
23779
23780 /* ARM V6M/V7 instructions. */
23781 #undef ARM_VARIANT
23782 #define ARM_VARIANT & arm_ext_barrier
23783 #undef THUMB_VARIANT
23784 #define THUMB_VARIANT & arm_ext_barrier
23785
23786 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23787 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23788 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
23789
23790 /* ARM V7 instructions. */
23791 #undef ARM_VARIANT
23792 #define ARM_VARIANT & arm_ext_v7
23793 #undef THUMB_VARIANT
23794 #define THUMB_VARIANT & arm_ext_v7
23795
23796 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23797 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
23798
23799 #undef ARM_VARIANT
23800 #define ARM_VARIANT & arm_ext_mp
23801 #undef THUMB_VARIANT
23802 #define THUMB_VARIANT & arm_ext_mp
23803
23804 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23805
23806 /* AArchv8 instructions. */
23807 #undef ARM_VARIANT
23808 #define ARM_VARIANT & arm_ext_v8
23809
23810 /* Instructions shared between armv8-a and armv8-m. */
23811 #undef THUMB_VARIANT
23812 #define THUMB_VARIANT & arm_ext_atomics
23813
23814 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23815 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23816 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23817 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23818 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23819 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23820 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23821 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23822 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23823 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23824 stlex, t_stlex),
23825 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23826 stlex, t_stlex),
23827 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23828 stlex, t_stlex),
23829 #undef THUMB_VARIANT
23830 #define THUMB_VARIANT & arm_ext_v8
23831
23832 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
23833 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23834 ldrexd, t_ldrexd),
23835 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23836 strexd, t_strexd),
23837
23838 /* Defined in V8 but is in undefined encoding space for earlier
23839 architectures. However earlier architectures are required to treat
23840 this instuction as a semihosting trap as well. Hence while not explicitly
23841 defined as such, it is in fact correct to define the instruction for all
23842 architectures. */
23843 #undef THUMB_VARIANT
23844 #define THUMB_VARIANT & arm_ext_v1
23845 #undef ARM_VARIANT
23846 #define ARM_VARIANT & arm_ext_v1
23847 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23848
23849 /* ARMv8 T32 only. */
23850 #undef ARM_VARIANT
23851 #define ARM_VARIANT NULL
23852 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23853 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23854 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23855
23856 /* FP for ARMv8. */
23857 #undef ARM_VARIANT
23858 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
23859 #undef THUMB_VARIANT
23860 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
23861
23862 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23863 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23864 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23865 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
23866 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
23867 mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz),
23868 mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx),
23869 mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta),
23870 mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn),
23871 mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp),
23872 mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm),
23873
23874 /* Crypto v1 extensions. */
23875 #undef ARM_VARIANT
23876 #define ARM_VARIANT & fpu_crypto_ext_armv8
23877 #undef THUMB_VARIANT
23878 #define THUMB_VARIANT & fpu_crypto_ext_armv8
23879
23880 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23881 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23882 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23883 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
23884 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23885 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23886 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23887 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23888 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23889 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23890 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
23891 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23892 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23893 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
23894
23895 #undef ARM_VARIANT
23896 #define ARM_VARIANT & crc_ext_armv8
23897 #undef THUMB_VARIANT
23898 #define THUMB_VARIANT & crc_ext_armv8
23899 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23900 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23901 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23902 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23903 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23904 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23905
23906 /* ARMv8.2 RAS extension. */
23907 #undef ARM_VARIANT
23908 #define ARM_VARIANT & arm_ext_ras
23909 #undef THUMB_VARIANT
23910 #define THUMB_VARIANT & arm_ext_ras
23911 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23912
23913 #undef ARM_VARIANT
23914 #define ARM_VARIANT & arm_ext_v8_3
23915 #undef THUMB_VARIANT
23916 #define THUMB_VARIANT & arm_ext_v8_3
23917 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23918
23919 #undef ARM_VARIANT
23920 #define ARM_VARIANT & fpu_neon_ext_dotprod
23921 #undef THUMB_VARIANT
23922 #define THUMB_VARIANT & fpu_neon_ext_dotprod
23923 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23924 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23925
23926 #undef ARM_VARIANT
23927 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
23928 #undef THUMB_VARIANT
23929 #define THUMB_VARIANT NULL
23930
23931 cCE("wfs", e200110, 1, (RR), rd),
23932 cCE("rfs", e300110, 1, (RR), rd),
23933 cCE("wfc", e400110, 1, (RR), rd),
23934 cCE("rfc", e500110, 1, (RR), rd),
23935
23936 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23937 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23938 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23939 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23940
23941 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23942 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23943 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23944 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23945
23946 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23947 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23948 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23949 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23950 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23951 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23952 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23953 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23954 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23955 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23956 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23957 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23958
23959 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23960 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23961 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23962 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23963 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23964 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23965 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23966 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23967 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23968 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23969 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23970 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23971
23972 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23973 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23974 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23975 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23976 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23977 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23978 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23979 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23980 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23981 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23982 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23983 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23984
23985 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23986 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23987 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23988 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23989 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23990 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23991 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23992 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23993 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23994 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23995 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23996 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23997
23998 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23999 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
24000 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
24001 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
24002 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
24003 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
24004 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
24005 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
24006 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
24007 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
24008 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
24009 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
24010
24011 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
24012 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
24013 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
24014 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
24015 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
24016 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
24017 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
24018 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
24019 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
24020 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
24021 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
24022 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
24023
24024 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
24025 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
24026 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
24027 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
24028 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
24029 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
24030 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
24031 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
24032 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
24033 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
24034 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
24035 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
24036
24037 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
24038 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
24039 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
24040 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
24041 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
24042 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
24043 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
24044 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
24045 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
24046 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
24047 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
24048 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
24049
24050 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
24051 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
24052 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
24053 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
24054 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
24055 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
24056 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
24057 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
24058 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
24059 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
24060 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
24061 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
24062
24063 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
24064 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
24065 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
24066 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
24067 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
24068 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
24069 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
24070 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
24071 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
24072 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
24073 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
24074 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
24075
24076 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
24077 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
24078 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
24079 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
24080 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
24081 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
24082 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
24083 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
24084 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
24085 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
24086 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
24087 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
24088
24089 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
24090 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
24091 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
24092 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
24093 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
24094 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
24095 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
24096 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
24097 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
24098 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
24099 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
24100 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
24101
24102 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
24103 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
24104 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
24105 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
24106 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
24107 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
24108 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
24109 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
24110 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
24111 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
24112 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
24113 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
24114
24115 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
24116 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
24117 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
24118 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
24119 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
24120 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
24121 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
24122 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
24123 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
24124 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
24125 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
24126 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
24127
24128 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
24129 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
24130 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
24131 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
24132 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
24133 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
24134 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
24135 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
24136 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
24137 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
24138 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
24139 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
24140
24141 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
24142 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
24143 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
24144 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
24145 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
24146 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
24147 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
24148 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
24149 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
24150 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
24151 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
24152 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
24153
24154 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
24155 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
24156 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
24157 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
24158 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
24159 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24160 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24161 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24162 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
24163 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
24164 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
24165 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
24166
24167 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
24168 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
24169 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
24170 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
24171 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
24172 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24173 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24174 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24175 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
24176 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
24177 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
24178 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
24179
24180 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
24181 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
24182 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
24183 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
24184 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
24185 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24186 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24187 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24188 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
24189 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
24190 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
24191 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
24192
24193 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
24194 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
24195 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
24196 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
24197 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
24198 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24199 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24200 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24201 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
24202 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
24203 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
24204 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
24205
24206 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
24207 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
24208 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
24209 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
24210 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
24211 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24212 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24213 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24214 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
24215 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
24216 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
24217 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
24218
24219 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
24220 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
24221 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
24222 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
24223 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
24224 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24225 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24226 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24227 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
24228 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
24229 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
24230 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
24231
24232 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
24233 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
24234 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
24235 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
24236 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
24237 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24238 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24239 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24240 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
24241 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
24242 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
24243 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
24244
24245 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
24246 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
24247 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
24248 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
24249 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
24250 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24251 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24252 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24253 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
24254 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
24255 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
24256 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
24257
24258 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
24259 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
24260 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
24261 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
24262 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
24263 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24264 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24265 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24266 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
24267 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
24268 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
24269 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
24270
24271 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
24272 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
24273 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
24274 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
24275 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
24276 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24277 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24278 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24279 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
24280 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
24281 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
24282 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
24283
24284 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24285 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24286 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24287 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24288 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24289 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24290 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24291 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24292 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24293 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24294 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24295 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24296
24297 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24298 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24299 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24300 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24301 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24302 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24303 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24304 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24305 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24306 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24307 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24308 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24309
24310 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24311 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24312 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24313 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24314 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24315 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24316 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24317 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24318 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24319 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24320 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24321 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24322
24323 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
24324 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
24325 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
24326 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
24327
24328 cCL("flts", e000110, 2, (RF, RR), rn_rd),
24329 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
24330 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
24331 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
24332 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
24333 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
24334 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
24335 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
24336 cCL("flte", e080110, 2, (RF, RR), rn_rd),
24337 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
24338 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
24339 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
24340
24341 /* The implementation of the FIX instruction is broken on some
24342 assemblers, in that it accepts a precision specifier as well as a
24343 rounding specifier, despite the fact that this is meaningless.
24344 To be more compatible, we accept it as well, though of course it
24345 does not set any bits. */
24346 cCE("fix", e100110, 2, (RR, RF), rd_rm),
24347 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
24348 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
24349 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
24350 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
24351 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
24352 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
24353 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
24354 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
24355 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
24356 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
24357 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
24358 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
24359
24360 /* Instructions that were new with the real FPA, call them V2. */
24361 #undef ARM_VARIANT
24362 #define ARM_VARIANT & fpu_fpa_ext_v2
24363
24364 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24365 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24366 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24367 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24368 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24369 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24370
24371 #undef ARM_VARIANT
24372 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
24373
24374 /* Moves and type conversions. */
24375 cCE("fmstat", ef1fa10, 0, (), noargs),
24376 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
24377 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
24378 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
24379 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
24380 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
24381 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24382 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
24383 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24384 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
24385 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
24386
24387 /* Memory operations. */
24388 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24389 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24390 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24391 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24392 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24393 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24394 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24395 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24396 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24397 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24398 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24399 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24400 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24401 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24402 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24403 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24404 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24405 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24406
24407 /* Monadic operations. */
24408 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
24409 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
24410 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
24411
24412 /* Dyadic operations. */
24413 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24414 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24415 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24416 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24417 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24418 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24419 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24420 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24421 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24422
24423 /* Comparisons. */
24424 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
24425 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
24426 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
24427 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
24428
24429 /* Double precision load/store are still present on single precision
24430 implementations. */
24431 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24432 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24433 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24434 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24435 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24436 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24437 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24438 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24439 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24440 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24441
24442 #undef ARM_VARIANT
24443 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
24444
24445 /* Moves and type conversions. */
24446 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24447 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24448 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
24449 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
24450 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
24451 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
24452 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24453 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
24454 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24455 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24456 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24457 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24458
24459 /* Monadic operations. */
24460 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24461 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24462 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24463
24464 /* Dyadic operations. */
24465 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24466 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24467 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24468 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24469 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24470 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24471 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24472 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24473 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24474
24475 /* Comparisons. */
24476 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24477 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
24478 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24479 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
24480
24481 /* Instructions which may belong to either the Neon or VFP instruction sets.
24482 Individual encoder functions perform additional architecture checks. */
24483 #undef ARM_VARIANT
24484 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24485 #undef THUMB_VARIANT
24486 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
24487
24488 /* These mnemonics are unique to VFP. */
24489 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
24490 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
24491 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24492 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24493 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24494 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
24495 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
24496 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
24497
24498 /* Mnemonics shared by Neon and VFP. */
24499 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
24500
24501 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24502 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24503 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24504 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24505 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24506 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24507
24508 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
24509 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
24510 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
24511 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
24512
24513
24514 /* NOTE: All VMOV encoding is special-cased! */
24515 NCE(vmovq, 0, 1, (VMOV), neon_mov),
24516
24517 #undef THUMB_VARIANT
24518 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24519 by different feature bits. Since we are setting the Thumb guard, we can
24520 require Thumb-1 which makes it a nop guard and set the right feature bit in
24521 do_vldr_vstr (). */
24522 #define THUMB_VARIANT & arm_ext_v4t
24523 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24524 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24525
24526 #undef ARM_VARIANT
24527 #define ARM_VARIANT & arm_ext_fp16
24528 #undef THUMB_VARIANT
24529 #define THUMB_VARIANT & arm_ext_fp16
24530 /* New instructions added from v8.2, allowing the extraction and insertion of
24531 the upper 16 bits of a 32-bit vector register. */
24532 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
24533 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
24534
24535 /* New backported fma/fms instructions optional in v8.2. */
24536 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
24537 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
24538
24539 #undef THUMB_VARIANT
24540 #define THUMB_VARIANT & fpu_neon_ext_v1
24541 #undef ARM_VARIANT
24542 #define ARM_VARIANT & fpu_neon_ext_v1
24543
24544 /* Data processing with three registers of the same length. */
24545 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24546 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
24547 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
24548 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24549 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24550 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24551 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
24552 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24553 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24554 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24555 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24556 /* If not immediate, fall back to neon_dyadic_i64_su.
24557 shl should accept I8 I16 I32 I64,
24558 qshl should accept S8 S16 S32 S64 U8 U16 U32 U64. */
24559 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl),
24560 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl),
24561 /* Logic ops, types optional & ignored. */
24562 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24563 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24564 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24565 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24566 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
24567 /* Bitfield ops, untyped. */
24568 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24569 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24570 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24571 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24572 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24573 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24574 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
24575 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24576 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24577 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24578 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24579 back to neon_dyadic_if_su. */
24580 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24581 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24582 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24583 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24584 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24585 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24586 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24587 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24588 /* Comparison. Type I8 I16 I32 F32. */
24589 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24590 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
24591 /* As above, D registers only. */
24592 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24593 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24594 /* Int and float variants, signedness unimportant. */
24595 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24596 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24597 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
24598 /* Add/sub take types I8 I16 I32 I64 F32. */
24599 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24600 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24601 /* vtst takes sizes 8, 16, 32. */
24602 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24603 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24604 /* VMUL takes I8 I16 I32 F32 P8. */
24605 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
24606 /* VQD{R}MULH takes S16 S32. */
24607 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24608 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24609 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24610 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24611 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24612 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24613 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24614 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24615 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24616 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24617 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24618 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24619 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24620 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24621 /* ARM v8.1 extension. */
24622 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24623 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24624 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24625
24626 /* Two address, int/float. Types S8 S16 S32 F32. */
24627 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
24628 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24629
24630 /* Data processing with two registers and a shift amount. */
24631 /* Right shifts, and variants with rounding.
24632 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24633 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24634 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24635 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24636 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24637 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24638 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24639 /* Shift and insert. Sizes accepted 8 16 32 64. */
24640 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
24641 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24642 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24643 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24644 /* Right shift immediate, saturating & narrowing, with rounding variants.
24645 Types accepted S16 S32 S64 U16 U32 U64. */
24646 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24647 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24648 /* As above, unsigned. Types accepted S16 S32 S64. */
24649 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24650 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24651 /* Right shift narrowing. Types accepted I16 I32 I64. */
24652 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24653 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24654 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
24655 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
24656 /* CVT with optional immediate for fixed-point variant. */
24657 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
24658
24659 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
24660
24661 /* Data processing, three registers of different lengths. */
24662 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24663 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
24664 /* If not scalar, fall back to neon_dyadic_long.
24665 Vector types as above, scalar types S16 S32 U16 U32. */
24666 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24667 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24668 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24669 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24670 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24671 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24672 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24673 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24674 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24675 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24676 /* Saturating doubling multiplies. Types S16 S32. */
24677 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24678 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24679 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24680 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24681 S16 S32 U16 U32. */
24682 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
24683
24684 /* Extract. Size 8. */
24685 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24686 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
24687
24688 /* Two registers, miscellaneous. */
24689 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24690 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
24691 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
24692 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24693 /* Vector replicate. Sizes 8 16 32. */
24694 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
24695 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24696 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24697 /* VMOVN. Types I16 I32 I64. */
24698 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
24699 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
24700 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
24701 /* VQMOVUN. Types S16 S32 S64. */
24702 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
24703 /* VZIP / VUZP. Sizes 8 16 32. */
24704 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24705 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24706 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24707 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24708 /* VQABS / VQNEG. Types S8 S16 S32. */
24709 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
24710 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24711 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24712 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24713 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24714 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24715 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
24716 /* Reciprocal estimates. Types U32 F16 F32. */
24717 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24718 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24719 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24720 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24721 /* VCLS. Types S8 S16 S32. */
24722 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24723 /* VCLZ. Types I8 I16 I32. */
24724 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24725 /* VCNT. Size 8. */
24726 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24727 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24728 /* Two address, untyped. */
24729 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24730 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24731 /* VTRN. Sizes 8 16 32. */
24732 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24733 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
24734
24735 /* Table lookup. Size 8. */
24736 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24737 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24738
24739 #undef THUMB_VARIANT
24740 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24741 #undef ARM_VARIANT
24742 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24743
24744 /* Neon element/structure load/store. */
24745 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24746 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24747 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24748 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24749 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24750 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24751 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24752 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24753
24754 #undef THUMB_VARIANT
24755 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
24756 #undef ARM_VARIANT
24757 #define ARM_VARIANT & fpu_vfp_ext_v3xd
24758 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24759 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24760 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24761 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24762 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24763 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24764 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24765 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24766 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24767
24768 #undef THUMB_VARIANT
24769 #define THUMB_VARIANT & fpu_vfp_ext_v3
24770 #undef ARM_VARIANT
24771 #define ARM_VARIANT & fpu_vfp_ext_v3
24772
24773 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
24774 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24775 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24776 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24777 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24778 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24779 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24780 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24781 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24782
24783 #undef ARM_VARIANT
24784 #define ARM_VARIANT & fpu_vfp_ext_fma
24785 #undef THUMB_VARIANT
24786 #define THUMB_VARIANT & fpu_vfp_ext_fma
24787 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
24788 VFP FMA variant; NEON and VFP FMA always includes the NEON
24789 FMA instructions. */
24790 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24791 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24792
24793 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24794 the v form should always be used. */
24795 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24796 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24797 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24798 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24799 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24800 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24801
24802 #undef THUMB_VARIANT
24803 #undef ARM_VARIANT
24804 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24805
24806 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24807 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24808 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24809 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24810 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24811 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24812 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24813 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
24814
24815 #undef ARM_VARIANT
24816 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24817
24818 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24819 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24820 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24821 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24822 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24823 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24824 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24825 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24826 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
24827 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24828 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24829 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24830 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24831 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24832 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24833 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24834 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24835 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24836 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24837 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24838 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24839 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24840 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24841 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24842 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24843 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24844 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24845 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24846 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
24847 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24848 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24849 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24850 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24851 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24852 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24853 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24854 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24855 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24856 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24857 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24858 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24859 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24860 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24861 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24862 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24863 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24864 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
24865 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24866 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24867 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24868 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24869 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24870 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24871 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24872 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24873 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24874 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24875 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24876 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24877 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24878 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24879 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24880 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24881 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24882 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24883 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24884 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24885 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24886 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24887 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24888 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24889 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24890 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24891 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24892 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24893 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24894 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24895 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24896 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24897 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24898 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24899 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24900 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24901 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24902 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24903 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24904 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24905 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24906 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24907 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24908 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24909 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24910 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24911 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24912 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24913 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24914 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24915 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24916 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24917 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24918 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24919 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24920 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24921 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24922 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24923 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24924 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24925 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24926 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24927 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24928 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24929 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24930 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24931 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24932 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24933 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24934 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24935 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24936 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24937 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24938 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24939 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24940 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24941 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24942 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24943 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24944 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24945 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24946 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24947 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24948 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24949 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24950 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24951 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24952 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24953 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24954 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24955 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24956 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24957 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24958 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24959 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24960 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24961 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24962 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24963 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24964 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24965 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24966 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24967 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24968 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24969 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24970 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24971 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24972 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24973 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24974 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24975 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24976 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24977 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24978 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24979 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
24980
24981 #undef ARM_VARIANT
24982 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24983
24984 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24985 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24986 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24987 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24988 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24989 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24990 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24991 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24992 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24993 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24994 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24995 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24996 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24997 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24998 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24999 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25000 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25001 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25002 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25003 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25004 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
25005 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25006 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25007 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25008 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25009 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25010 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25011 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25012 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25013 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25014 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25015 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25016 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25017 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25018 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25019 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25020 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25021 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25022 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25023 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25024 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25025 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25026 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25027 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25028 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25029 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25030 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25031 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25032 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25033 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25034 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25035 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25036 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25037 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25038 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25039 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25040 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25041
25042 #undef ARM_VARIANT
25043 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
25044
25045 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25046 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25047 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25048 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25049 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25050 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25051 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25052 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25053 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
25054 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
25055 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
25056 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
25057 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
25058 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
25059 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
25060 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
25061 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
25062 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
25063 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
25064 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
25065 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
25066 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
25067 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
25068 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
25069 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
25070 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
25071 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
25072 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
25073 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
25074 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
25075 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
25076 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
25077 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
25078 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
25079 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
25080 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
25081 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
25082 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
25083 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
25084 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
25085 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
25086 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
25087 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
25088 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
25089 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
25090 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
25091 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
25092 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
25093 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
25094 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
25095 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
25096 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
25097 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
25098 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
25099 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
25100 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
25101 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
25102 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
25103 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
25104 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
25105 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
25106 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
25107 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
25108 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
25109 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25110 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25111 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25112 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25113 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25114 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25115 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25116 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25117 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
25118 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
25119 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
25120 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
25121
25122 /* ARMv8.5-A instructions. */
25123 #undef ARM_VARIANT
25124 #define ARM_VARIANT & arm_ext_sb
25125 #undef THUMB_VARIANT
25126 #define THUMB_VARIANT & arm_ext_sb
25127 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
25128
25129 #undef ARM_VARIANT
25130 #define ARM_VARIANT & arm_ext_predres
25131 #undef THUMB_VARIANT
25132 #define THUMB_VARIANT & arm_ext_predres
25133 CE("cfprctx", e070f93, 1, (RRnpc), rd),
25134 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
25135 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
25136
25137 /* ARMv8-M instructions. */
25138 #undef ARM_VARIANT
25139 #define ARM_VARIANT NULL
25140 #undef THUMB_VARIANT
25141 #define THUMB_VARIANT & arm_ext_v8m
25142 ToU("sg", e97fe97f, 0, (), noargs),
25143 ToC("blxns", 4784, 1, (RRnpc), t_blx),
25144 ToC("bxns", 4704, 1, (RRnpc), t_bx),
25145 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
25146 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
25147 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
25148 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
25149
25150 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
25151 instructions behave as nop if no VFP is present. */
25152 #undef THUMB_VARIANT
25153 #define THUMB_VARIANT & arm_ext_v8m_main
25154 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
25155 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
25156
25157 /* Armv8.1-M Mainline instructions. */
25158 #undef THUMB_VARIANT
25159 #define THUMB_VARIANT & arm_ext_v8_1m_main
25160 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
25161 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
25162 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
25163 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
25164 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
25165
25166 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
25167 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
25168 toU("le", _le, 2, (oLR, EXP), t_loloop),
25169
25170 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
25171 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
25172
25173 #undef THUMB_VARIANT
25174 #define THUMB_VARIANT & mve_ext
25175 ToC("lsll", ea50010d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
25176 ToC("lsrl", ea50011f, 3, (RRe, RRo, I32), mve_scalar_shift),
25177 ToC("asrl", ea50012d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
25178 ToC("uqrshll", ea51010d, 3, (RRe, RRo, RRnpcsp), mve_scalar_shift),
25179 ToC("sqrshrl", ea51012d, 3, (RRe, RRo, RRnpcsp), mve_scalar_shift),
25180 ToC("uqshll", ea51010f, 3, (RRe, RRo, I32), mve_scalar_shift),
25181 ToC("urshrl", ea51011f, 3, (RRe, RRo, I32), mve_scalar_shift),
25182 ToC("srshrl", ea51012f, 3, (RRe, RRo, I32), mve_scalar_shift),
25183 ToC("sqshll", ea51013f, 3, (RRe, RRo, I32), mve_scalar_shift),
25184 ToC("uqrshl", ea500f0d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
25185 ToC("sqrshr", ea500f2d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
25186 ToC("uqshl", ea500f0f, 2, (RRnpcsp, I32), mve_scalar_shift),
25187 ToC("urshr", ea500f1f, 2, (RRnpcsp, I32), mve_scalar_shift),
25188 ToC("srshr", ea500f2f, 2, (RRnpcsp, I32), mve_scalar_shift),
25189 ToC("sqshl", ea500f3f, 2, (RRnpcsp, I32), mve_scalar_shift),
25190
25191 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25192 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25193 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25194 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25195 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25196 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25197 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25198 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25199 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25200 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25201 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25202 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25203 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25204 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25205 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25206
25207 ToC("vpst", fe710f4d, 0, (), mve_vpt),
25208 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
25209 ToC("vpste", fe718f4d, 0, (), mve_vpt),
25210 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
25211 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
25212 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
25213 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
25214 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
25215 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
25216 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
25217 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
25218 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
25219 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
25220 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
25221 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
25222
25223 /* MVE and MVE FP only. */
25224 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
25225 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
25226 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
25227 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25228 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25229 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
25230 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
25231 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25232 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25233 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25234 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25235 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25236 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25237 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25238 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25239 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25240 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25241
25242 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25243 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25244 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25245 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25246 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25247 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25248 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25249 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25250 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25251 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25252 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25253 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25254 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25255 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25256 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25257 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25258 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25259 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25260 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25261 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25262
25263 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
25264 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
25265 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
25266 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
25267 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
25268 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
25269 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
25270 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
25271 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25272 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
25273 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25274 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25275 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25276 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
25277 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
25278 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
25279 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
25280
25281 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25282 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25283 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25284 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25285 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25286 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25287 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25288 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25289 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25290 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25291 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25292 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25293 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25294 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25295 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25296 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25297 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25298 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25299 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25300 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25301
25302 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
25303 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25304 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25305 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
25306 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
25307
25308 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25309 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25310 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25311 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25312 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25313 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25314 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25315 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25316 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25317 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25318 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25319 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25320 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25321 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
25322 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
25323 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
25324 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
25325
25326 mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25327 mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25328 mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25329 mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25330 mCEF(vqshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25331 mCEF(vqshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25332 mCEF(vqshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25333 mCEF(vqshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25334 mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25335 mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25336 mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25337 mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25338
25339 mToC("vshlc", eea00fc0, 3, (RMQ, RR, I32z), mve_vshlc),
25340 mToC("vshllt", ee201e00, 3, (RMQ, RMQ, I32), mve_vshll),
25341 mToC("vshllb", ee200e00, 3, (RMQ, RMQ, I32), mve_vshll),
25342
25343 toU("dlstp", _dlstp, 2, (LR, RR), t_loloop),
25344 toU("wlstp", _wlstp, 3, (LR, RR, EXP), t_loloop),
25345 toU("letp", _letp, 2, (LR, EXP), t_loloop),
25346 toU("lctp", _lctp, 0, (), t_loloop),
25347
25348 #undef THUMB_VARIANT
25349 #define THUMB_VARIANT & mve_fp_ext
25350 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
25351 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
25352 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25353 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25354 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
25355 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
25356 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
25357 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
25358
25359 #undef ARM_VARIANT
25360 #define ARM_VARIANT & fpu_vfp_ext_v1
25361 #undef THUMB_VARIANT
25362 #define THUMB_VARIANT & arm_ext_v6t2
25363 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
25364 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
25365
25366 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25367
25368 #undef ARM_VARIANT
25369 #define ARM_VARIANT & fpu_vfp_ext_v1xd
25370
25371 MNCE(vmov, 0, 1, (VMOV), neon_mov),
25372 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
25373 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
25374 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
25375
25376 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
25377 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25378 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25379
25380 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25381 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25382
25383 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
25384 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
25385
25386 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25387 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25388
25389 #undef ARM_VARIANT
25390 #define ARM_VARIANT & fpu_vfp_ext_v2
25391
25392 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
25393 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
25394 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
25395 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
25396
25397 #undef ARM_VARIANT
25398 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
25399 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
25400 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
25401 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
25402 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
25403 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25404 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25405
25406 #undef ARM_VARIANT
25407 #define ARM_VARIANT & fpu_neon_ext_v1
25408 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25409 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
25410 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25411 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25412 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25413 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25414 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25415 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25416 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
25417 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
25418 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
25419 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
25420 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25421 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
25422 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25423 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25424 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25425 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25426 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25427 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
25428 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25429 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25430 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
25431 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25432 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25433 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25434 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25435 MNUF(vshr, 0800010, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
25436 MNUF(vrshr, 0800210, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
25437 MNUF(vsli, 1800510, 3, (RNDQMQ, oRNDQMQ, I63), neon_sli),
25438 MNUF(vsri, 1800410, 3, (RNDQMQ, oRNDQMQ, I64z), neon_sri),
25439 MNUF(vrev64, 1b00000, 2, (RNDQMQ, RNDQMQ), neon_rev),
25440 MNUF(vrev32, 1b00080, 2, (RNDQMQ, RNDQMQ), neon_rev),
25441 MNUF(vrev16, 1b00100, 2, (RNDQMQ, RNDQMQ), neon_rev),
25442 mnUF(vshl, _vshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_shl),
25443 mnUF(vqshl, _vqshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_qshl),
25444 MNUF(vqshlu, 1800610, 3, (RNDQMQ, oRNDQMQ, I63), neon_qshlu_imm),
25445
25446 #undef ARM_VARIANT
25447 #define ARM_VARIANT & arm_ext_v8_3
25448 #undef THUMB_VARIANT
25449 #define THUMB_VARIANT & arm_ext_v6t2_v8m
25450 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
25451 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
25452 };
25453 #undef ARM_VARIANT
25454 #undef THUMB_VARIANT
25455 #undef TCE
25456 #undef TUE
25457 #undef TUF
25458 #undef TCC
25459 #undef cCE
25460 #undef cCL
25461 #undef C3E
25462 #undef C3
25463 #undef CE
25464 #undef CM
25465 #undef CL
25466 #undef UE
25467 #undef UF
25468 #undef UT
25469 #undef NUF
25470 #undef nUF
25471 #undef NCE
25472 #undef nCE
25473 #undef OPS0
25474 #undef OPS1
25475 #undef OPS2
25476 #undef OPS3
25477 #undef OPS4
25478 #undef OPS5
25479 #undef OPS6
25480 #undef do_0
25481 #undef ToC
25482 #undef toC
25483 #undef ToU
25484 #undef toU
25485 \f
25486 /* MD interface: bits in the object file. */
25487
25488 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
25489 for use in the a.out file, and stores them in the array pointed to by buf.
25490 This knows about the endian-ness of the target machine and does
25491 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
25492 2 (short) and 4 (long) Floating numbers are put out as a series of
25493 LITTLENUMS (shorts, here at least). */
25494
25495 void
25496 md_number_to_chars (char * buf, valueT val, int n)
25497 {
25498 if (target_big_endian)
25499 number_to_chars_bigendian (buf, val, n);
25500 else
25501 number_to_chars_littleendian (buf, val, n);
25502 }
25503
25504 static valueT
25505 md_chars_to_number (char * buf, int n)
25506 {
25507 valueT result = 0;
25508 unsigned char * where = (unsigned char *) buf;
25509
25510 if (target_big_endian)
25511 {
25512 while (n--)
25513 {
25514 result <<= 8;
25515 result |= (*where++ & 255);
25516 }
25517 }
25518 else
25519 {
25520 while (n--)
25521 {
25522 result <<= 8;
25523 result |= (where[n] & 255);
25524 }
25525 }
25526
25527 return result;
25528 }
25529
25530 /* MD interface: Sections. */
25531
25532 /* Calculate the maximum variable size (i.e., excluding fr_fix)
25533 that an rs_machine_dependent frag may reach. */
25534
25535 unsigned int
25536 arm_frag_max_var (fragS *fragp)
25537 {
25538 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25539 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25540
25541 Note that we generate relaxable instructions even for cases that don't
25542 really need it, like an immediate that's a trivial constant. So we're
25543 overestimating the instruction size for some of those cases. Rather
25544 than putting more intelligence here, it would probably be better to
25545 avoid generating a relaxation frag in the first place when it can be
25546 determined up front that a short instruction will suffice. */
25547
25548 gas_assert (fragp->fr_type == rs_machine_dependent);
25549 return INSN_SIZE;
25550 }
25551
25552 /* Estimate the size of a frag before relaxing. Assume everything fits in
25553 2 bytes. */
25554
25555 int
25556 md_estimate_size_before_relax (fragS * fragp,
25557 segT segtype ATTRIBUTE_UNUSED)
25558 {
25559 fragp->fr_var = 2;
25560 return 2;
25561 }
25562
25563 /* Convert a machine dependent frag. */
25564
25565 void
25566 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
25567 {
25568 unsigned long insn;
25569 unsigned long old_op;
25570 char *buf;
25571 expressionS exp;
25572 fixS *fixp;
25573 int reloc_type;
25574 int pc_rel;
25575 int opcode;
25576
25577 buf = fragp->fr_literal + fragp->fr_fix;
25578
25579 old_op = bfd_get_16(abfd, buf);
25580 if (fragp->fr_symbol)
25581 {
25582 exp.X_op = O_symbol;
25583 exp.X_add_symbol = fragp->fr_symbol;
25584 }
25585 else
25586 {
25587 exp.X_op = O_constant;
25588 }
25589 exp.X_add_number = fragp->fr_offset;
25590 opcode = fragp->fr_subtype;
25591 switch (opcode)
25592 {
25593 case T_MNEM_ldr_pc:
25594 case T_MNEM_ldr_pc2:
25595 case T_MNEM_ldr_sp:
25596 case T_MNEM_str_sp:
25597 case T_MNEM_ldr:
25598 case T_MNEM_ldrb:
25599 case T_MNEM_ldrh:
25600 case T_MNEM_str:
25601 case T_MNEM_strb:
25602 case T_MNEM_strh:
25603 if (fragp->fr_var == 4)
25604 {
25605 insn = THUMB_OP32 (opcode);
25606 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
25607 {
25608 insn |= (old_op & 0x700) << 4;
25609 }
25610 else
25611 {
25612 insn |= (old_op & 7) << 12;
25613 insn |= (old_op & 0x38) << 13;
25614 }
25615 insn |= 0x00000c00;
25616 put_thumb32_insn (buf, insn);
25617 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25618 }
25619 else
25620 {
25621 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25622 }
25623 pc_rel = (opcode == T_MNEM_ldr_pc2);
25624 break;
25625 case T_MNEM_adr:
25626 if (fragp->fr_var == 4)
25627 {
25628 insn = THUMB_OP32 (opcode);
25629 insn |= (old_op & 0xf0) << 4;
25630 put_thumb32_insn (buf, insn);
25631 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25632 }
25633 else
25634 {
25635 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25636 exp.X_add_number -= 4;
25637 }
25638 pc_rel = 1;
25639 break;
25640 case T_MNEM_mov:
25641 case T_MNEM_movs:
25642 case T_MNEM_cmp:
25643 case T_MNEM_cmn:
25644 if (fragp->fr_var == 4)
25645 {
25646 int r0off = (opcode == T_MNEM_mov
25647 || opcode == T_MNEM_movs) ? 0 : 8;
25648 insn = THUMB_OP32 (opcode);
25649 insn = (insn & 0xe1ffffff) | 0x10000000;
25650 insn |= (old_op & 0x700) << r0off;
25651 put_thumb32_insn (buf, insn);
25652 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25653 }
25654 else
25655 {
25656 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25657 }
25658 pc_rel = 0;
25659 break;
25660 case T_MNEM_b:
25661 if (fragp->fr_var == 4)
25662 {
25663 insn = THUMB_OP32(opcode);
25664 put_thumb32_insn (buf, insn);
25665 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25666 }
25667 else
25668 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25669 pc_rel = 1;
25670 break;
25671 case T_MNEM_bcond:
25672 if (fragp->fr_var == 4)
25673 {
25674 insn = THUMB_OP32(opcode);
25675 insn |= (old_op & 0xf00) << 14;
25676 put_thumb32_insn (buf, insn);
25677 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25678 }
25679 else
25680 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25681 pc_rel = 1;
25682 break;
25683 case T_MNEM_add_sp:
25684 case T_MNEM_add_pc:
25685 case T_MNEM_inc_sp:
25686 case T_MNEM_dec_sp:
25687 if (fragp->fr_var == 4)
25688 {
25689 /* ??? Choose between add and addw. */
25690 insn = THUMB_OP32 (opcode);
25691 insn |= (old_op & 0xf0) << 4;
25692 put_thumb32_insn (buf, insn);
25693 if (opcode == T_MNEM_add_pc)
25694 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25695 else
25696 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25697 }
25698 else
25699 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25700 pc_rel = 0;
25701 break;
25702
25703 case T_MNEM_addi:
25704 case T_MNEM_addis:
25705 case T_MNEM_subi:
25706 case T_MNEM_subis:
25707 if (fragp->fr_var == 4)
25708 {
25709 insn = THUMB_OP32 (opcode);
25710 insn |= (old_op & 0xf0) << 4;
25711 insn |= (old_op & 0xf) << 16;
25712 put_thumb32_insn (buf, insn);
25713 if (insn & (1 << 20))
25714 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25715 else
25716 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25717 }
25718 else
25719 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25720 pc_rel = 0;
25721 break;
25722 default:
25723 abort ();
25724 }
25725 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
25726 (enum bfd_reloc_code_real) reloc_type);
25727 fixp->fx_file = fragp->fr_file;
25728 fixp->fx_line = fragp->fr_line;
25729 fragp->fr_fix += fragp->fr_var;
25730
25731 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25732 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25733 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25734 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
25735 }
25736
25737 /* Return the size of a relaxable immediate operand instruction.
25738 SHIFT and SIZE specify the form of the allowable immediate. */
25739 static int
25740 relax_immediate (fragS *fragp, int size, int shift)
25741 {
25742 offsetT offset;
25743 offsetT mask;
25744 offsetT low;
25745
25746 /* ??? Should be able to do better than this. */
25747 if (fragp->fr_symbol)
25748 return 4;
25749
25750 low = (1 << shift) - 1;
25751 mask = (1 << (shift + size)) - (1 << shift);
25752 offset = fragp->fr_offset;
25753 /* Force misaligned offsets to 32-bit variant. */
25754 if (offset & low)
25755 return 4;
25756 if (offset & ~mask)
25757 return 4;
25758 return 2;
25759 }
25760
25761 /* Get the address of a symbol during relaxation. */
25762 static addressT
25763 relaxed_symbol_addr (fragS *fragp, long stretch)
25764 {
25765 fragS *sym_frag;
25766 addressT addr;
25767 symbolS *sym;
25768
25769 sym = fragp->fr_symbol;
25770 sym_frag = symbol_get_frag (sym);
25771 know (S_GET_SEGMENT (sym) != absolute_section
25772 || sym_frag == &zero_address_frag);
25773 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25774
25775 /* If frag has yet to be reached on this pass, assume it will
25776 move by STRETCH just as we did. If this is not so, it will
25777 be because some frag between grows, and that will force
25778 another pass. */
25779
25780 if (stretch != 0
25781 && sym_frag->relax_marker != fragp->relax_marker)
25782 {
25783 fragS *f;
25784
25785 /* Adjust stretch for any alignment frag. Note that if have
25786 been expanding the earlier code, the symbol may be
25787 defined in what appears to be an earlier frag. FIXME:
25788 This doesn't handle the fr_subtype field, which specifies
25789 a maximum number of bytes to skip when doing an
25790 alignment. */
25791 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25792 {
25793 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25794 {
25795 if (stretch < 0)
25796 stretch = - ((- stretch)
25797 & ~ ((1 << (int) f->fr_offset) - 1));
25798 else
25799 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25800 if (stretch == 0)
25801 break;
25802 }
25803 }
25804 if (f != NULL)
25805 addr += stretch;
25806 }
25807
25808 return addr;
25809 }
25810
25811 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
25812 load. */
25813 static int
25814 relax_adr (fragS *fragp, asection *sec, long stretch)
25815 {
25816 addressT addr;
25817 offsetT val;
25818
25819 /* Assume worst case for symbols not known to be in the same section. */
25820 if (fragp->fr_symbol == NULL
25821 || !S_IS_DEFINED (fragp->fr_symbol)
25822 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25823 || S_IS_WEAK (fragp->fr_symbol))
25824 return 4;
25825
25826 val = relaxed_symbol_addr (fragp, stretch);
25827 addr = fragp->fr_address + fragp->fr_fix;
25828 addr = (addr + 4) & ~3;
25829 /* Force misaligned targets to 32-bit variant. */
25830 if (val & 3)
25831 return 4;
25832 val -= addr;
25833 if (val < 0 || val > 1020)
25834 return 4;
25835 return 2;
25836 }
25837
25838 /* Return the size of a relaxable add/sub immediate instruction. */
25839 static int
25840 relax_addsub (fragS *fragp, asection *sec)
25841 {
25842 char *buf;
25843 int op;
25844
25845 buf = fragp->fr_literal + fragp->fr_fix;
25846 op = bfd_get_16(sec->owner, buf);
25847 if ((op & 0xf) == ((op >> 4) & 0xf))
25848 return relax_immediate (fragp, 8, 0);
25849 else
25850 return relax_immediate (fragp, 3, 0);
25851 }
25852
25853 /* Return TRUE iff the definition of symbol S could be pre-empted
25854 (overridden) at link or load time. */
25855 static bfd_boolean
25856 symbol_preemptible (symbolS *s)
25857 {
25858 /* Weak symbols can always be pre-empted. */
25859 if (S_IS_WEAK (s))
25860 return TRUE;
25861
25862 /* Non-global symbols cannot be pre-empted. */
25863 if (! S_IS_EXTERNAL (s))
25864 return FALSE;
25865
25866 #ifdef OBJ_ELF
25867 /* In ELF, a global symbol can be marked protected, or private. In that
25868 case it can't be pre-empted (other definitions in the same link unit
25869 would violate the ODR). */
25870 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
25871 return FALSE;
25872 #endif
25873
25874 /* Other global symbols might be pre-empted. */
25875 return TRUE;
25876 }
25877
25878 /* Return the size of a relaxable branch instruction. BITS is the
25879 size of the offset field in the narrow instruction. */
25880
25881 static int
25882 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
25883 {
25884 addressT addr;
25885 offsetT val;
25886 offsetT limit;
25887
25888 /* Assume worst case for symbols not known to be in the same section. */
25889 if (!S_IS_DEFINED (fragp->fr_symbol)
25890 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25891 || S_IS_WEAK (fragp->fr_symbol))
25892 return 4;
25893
25894 #ifdef OBJ_ELF
25895 /* A branch to a function in ARM state will require interworking. */
25896 if (S_IS_DEFINED (fragp->fr_symbol)
25897 && ARM_IS_FUNC (fragp->fr_symbol))
25898 return 4;
25899 #endif
25900
25901 if (symbol_preemptible (fragp->fr_symbol))
25902 return 4;
25903
25904 val = relaxed_symbol_addr (fragp, stretch);
25905 addr = fragp->fr_address + fragp->fr_fix + 4;
25906 val -= addr;
25907
25908 /* Offset is a signed value *2 */
25909 limit = 1 << bits;
25910 if (val >= limit || val < -limit)
25911 return 4;
25912 return 2;
25913 }
25914
25915
25916 /* Relax a machine dependent frag. This returns the amount by which
25917 the current size of the frag should change. */
25918
25919 int
25920 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
25921 {
25922 int oldsize;
25923 int newsize;
25924
25925 oldsize = fragp->fr_var;
25926 switch (fragp->fr_subtype)
25927 {
25928 case T_MNEM_ldr_pc2:
25929 newsize = relax_adr (fragp, sec, stretch);
25930 break;
25931 case T_MNEM_ldr_pc:
25932 case T_MNEM_ldr_sp:
25933 case T_MNEM_str_sp:
25934 newsize = relax_immediate (fragp, 8, 2);
25935 break;
25936 case T_MNEM_ldr:
25937 case T_MNEM_str:
25938 newsize = relax_immediate (fragp, 5, 2);
25939 break;
25940 case T_MNEM_ldrh:
25941 case T_MNEM_strh:
25942 newsize = relax_immediate (fragp, 5, 1);
25943 break;
25944 case T_MNEM_ldrb:
25945 case T_MNEM_strb:
25946 newsize = relax_immediate (fragp, 5, 0);
25947 break;
25948 case T_MNEM_adr:
25949 newsize = relax_adr (fragp, sec, stretch);
25950 break;
25951 case T_MNEM_mov:
25952 case T_MNEM_movs:
25953 case T_MNEM_cmp:
25954 case T_MNEM_cmn:
25955 newsize = relax_immediate (fragp, 8, 0);
25956 break;
25957 case T_MNEM_b:
25958 newsize = relax_branch (fragp, sec, 11, stretch);
25959 break;
25960 case T_MNEM_bcond:
25961 newsize = relax_branch (fragp, sec, 8, stretch);
25962 break;
25963 case T_MNEM_add_sp:
25964 case T_MNEM_add_pc:
25965 newsize = relax_immediate (fragp, 8, 2);
25966 break;
25967 case T_MNEM_inc_sp:
25968 case T_MNEM_dec_sp:
25969 newsize = relax_immediate (fragp, 7, 2);
25970 break;
25971 case T_MNEM_addi:
25972 case T_MNEM_addis:
25973 case T_MNEM_subi:
25974 case T_MNEM_subis:
25975 newsize = relax_addsub (fragp, sec);
25976 break;
25977 default:
25978 abort ();
25979 }
25980
25981 fragp->fr_var = newsize;
25982 /* Freeze wide instructions that are at or before the same location as
25983 in the previous pass. This avoids infinite loops.
25984 Don't freeze them unconditionally because targets may be artificially
25985 misaligned by the expansion of preceding frags. */
25986 if (stretch <= 0 && newsize > 2)
25987 {
25988 md_convert_frag (sec->owner, sec, fragp);
25989 frag_wane (fragp);
25990 }
25991
25992 return newsize - oldsize;
25993 }
25994
25995 /* Round up a section size to the appropriate boundary. */
25996
25997 valueT
25998 md_section_align (segT segment ATTRIBUTE_UNUSED,
25999 valueT size)
26000 {
26001 return size;
26002 }
26003
26004 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
26005 of an rs_align_code fragment. */
26006
26007 void
26008 arm_handle_align (fragS * fragP)
26009 {
26010 static unsigned char const arm_noop[2][2][4] =
26011 {
26012 { /* ARMv1 */
26013 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
26014 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
26015 },
26016 { /* ARMv6k */
26017 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
26018 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
26019 },
26020 };
26021 static unsigned char const thumb_noop[2][2][2] =
26022 {
26023 { /* Thumb-1 */
26024 {0xc0, 0x46}, /* LE */
26025 {0x46, 0xc0}, /* BE */
26026 },
26027 { /* Thumb-2 */
26028 {0x00, 0xbf}, /* LE */
26029 {0xbf, 0x00} /* BE */
26030 }
26031 };
26032 static unsigned char const wide_thumb_noop[2][4] =
26033 { /* Wide Thumb-2 */
26034 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
26035 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
26036 };
26037
26038 unsigned bytes, fix, noop_size;
26039 char * p;
26040 const unsigned char * noop;
26041 const unsigned char *narrow_noop = NULL;
26042 #ifdef OBJ_ELF
26043 enum mstate state;
26044 #endif
26045
26046 if (fragP->fr_type != rs_align_code)
26047 return;
26048
26049 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
26050 p = fragP->fr_literal + fragP->fr_fix;
26051 fix = 0;
26052
26053 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
26054 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
26055
26056 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
26057
26058 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
26059 {
26060 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26061 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
26062 {
26063 narrow_noop = thumb_noop[1][target_big_endian];
26064 noop = wide_thumb_noop[target_big_endian];
26065 }
26066 else
26067 noop = thumb_noop[0][target_big_endian];
26068 noop_size = 2;
26069 #ifdef OBJ_ELF
26070 state = MAP_THUMB;
26071 #endif
26072 }
26073 else
26074 {
26075 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26076 ? selected_cpu : arm_arch_none,
26077 arm_ext_v6k) != 0]
26078 [target_big_endian];
26079 noop_size = 4;
26080 #ifdef OBJ_ELF
26081 state = MAP_ARM;
26082 #endif
26083 }
26084
26085 fragP->fr_var = noop_size;
26086
26087 if (bytes & (noop_size - 1))
26088 {
26089 fix = bytes & (noop_size - 1);
26090 #ifdef OBJ_ELF
26091 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
26092 #endif
26093 memset (p, 0, fix);
26094 p += fix;
26095 bytes -= fix;
26096 }
26097
26098 if (narrow_noop)
26099 {
26100 if (bytes & noop_size)
26101 {
26102 /* Insert a narrow noop. */
26103 memcpy (p, narrow_noop, noop_size);
26104 p += noop_size;
26105 bytes -= noop_size;
26106 fix += noop_size;
26107 }
26108
26109 /* Use wide noops for the remainder */
26110 noop_size = 4;
26111 }
26112
26113 while (bytes >= noop_size)
26114 {
26115 memcpy (p, noop, noop_size);
26116 p += noop_size;
26117 bytes -= noop_size;
26118 fix += noop_size;
26119 }
26120
26121 fragP->fr_fix += fix;
26122 }
26123
26124 /* Called from md_do_align. Used to create an alignment
26125 frag in a code section. */
26126
26127 void
26128 arm_frag_align_code (int n, int max)
26129 {
26130 char * p;
26131
26132 /* We assume that there will never be a requirement
26133 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
26134 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
26135 {
26136 char err_msg[128];
26137
26138 sprintf (err_msg,
26139 _("alignments greater than %d bytes not supported in .text sections."),
26140 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
26141 as_fatal ("%s", err_msg);
26142 }
26143
26144 p = frag_var (rs_align_code,
26145 MAX_MEM_FOR_RS_ALIGN_CODE,
26146 1,
26147 (relax_substateT) max,
26148 (symbolS *) NULL,
26149 (offsetT) n,
26150 (char *) NULL);
26151 *p = 0;
26152 }
26153
26154 /* Perform target specific initialisation of a frag.
26155 Note - despite the name this initialisation is not done when the frag
26156 is created, but only when its type is assigned. A frag can be created
26157 and used a long time before its type is set, so beware of assuming that
26158 this initialisation is performed first. */
26159
26160 #ifndef OBJ_ELF
26161 void
26162 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
26163 {
26164 /* Record whether this frag is in an ARM or a THUMB area. */
26165 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26166 }
26167
26168 #else /* OBJ_ELF is defined. */
26169 void
26170 arm_init_frag (fragS * fragP, int max_chars)
26171 {
26172 bfd_boolean frag_thumb_mode;
26173
26174 /* If the current ARM vs THUMB mode has not already
26175 been recorded into this frag then do so now. */
26176 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
26177 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26178
26179 /* PR 21809: Do not set a mapping state for debug sections
26180 - it just confuses other tools. */
26181 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
26182 return;
26183
26184 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
26185
26186 /* Record a mapping symbol for alignment frags. We will delete this
26187 later if the alignment ends up empty. */
26188 switch (fragP->fr_type)
26189 {
26190 case rs_align:
26191 case rs_align_test:
26192 case rs_fill:
26193 mapping_state_2 (MAP_DATA, max_chars);
26194 break;
26195 case rs_align_code:
26196 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
26197 break;
26198 default:
26199 break;
26200 }
26201 }
26202
26203 /* When we change sections we need to issue a new mapping symbol. */
26204
26205 void
26206 arm_elf_change_section (void)
26207 {
26208 /* Link an unlinked unwind index table section to the .text section. */
26209 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
26210 && elf_linked_to_section (now_seg) == NULL)
26211 elf_linked_to_section (now_seg) = text_section;
26212 }
26213
26214 int
26215 arm_elf_section_type (const char * str, size_t len)
26216 {
26217 if (len == 5 && strncmp (str, "exidx", 5) == 0)
26218 return SHT_ARM_EXIDX;
26219
26220 return -1;
26221 }
26222 \f
26223 /* Code to deal with unwinding tables. */
26224
26225 static void add_unwind_adjustsp (offsetT);
26226
26227 /* Generate any deferred unwind frame offset. */
26228
26229 static void
26230 flush_pending_unwind (void)
26231 {
26232 offsetT offset;
26233
26234 offset = unwind.pending_offset;
26235 unwind.pending_offset = 0;
26236 if (offset != 0)
26237 add_unwind_adjustsp (offset);
26238 }
26239
26240 /* Add an opcode to this list for this function. Two-byte opcodes should
26241 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
26242 order. */
26243
26244 static void
26245 add_unwind_opcode (valueT op, int length)
26246 {
26247 /* Add any deferred stack adjustment. */
26248 if (unwind.pending_offset)
26249 flush_pending_unwind ();
26250
26251 unwind.sp_restored = 0;
26252
26253 if (unwind.opcode_count + length > unwind.opcode_alloc)
26254 {
26255 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
26256 if (unwind.opcodes)
26257 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
26258 unwind.opcode_alloc);
26259 else
26260 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
26261 }
26262 while (length > 0)
26263 {
26264 length--;
26265 unwind.opcodes[unwind.opcode_count] = op & 0xff;
26266 op >>= 8;
26267 unwind.opcode_count++;
26268 }
26269 }
26270
26271 /* Add unwind opcodes to adjust the stack pointer. */
26272
26273 static void
26274 add_unwind_adjustsp (offsetT offset)
26275 {
26276 valueT op;
26277
26278 if (offset > 0x200)
26279 {
26280 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
26281 char bytes[5];
26282 int n;
26283 valueT o;
26284
26285 /* Long form: 0xb2, uleb128. */
26286 /* This might not fit in a word so add the individual bytes,
26287 remembering the list is built in reverse order. */
26288 o = (valueT) ((offset - 0x204) >> 2);
26289 if (o == 0)
26290 add_unwind_opcode (0, 1);
26291
26292 /* Calculate the uleb128 encoding of the offset. */
26293 n = 0;
26294 while (o)
26295 {
26296 bytes[n] = o & 0x7f;
26297 o >>= 7;
26298 if (o)
26299 bytes[n] |= 0x80;
26300 n++;
26301 }
26302 /* Add the insn. */
26303 for (; n; n--)
26304 add_unwind_opcode (bytes[n - 1], 1);
26305 add_unwind_opcode (0xb2, 1);
26306 }
26307 else if (offset > 0x100)
26308 {
26309 /* Two short opcodes. */
26310 add_unwind_opcode (0x3f, 1);
26311 op = (offset - 0x104) >> 2;
26312 add_unwind_opcode (op, 1);
26313 }
26314 else if (offset > 0)
26315 {
26316 /* Short opcode. */
26317 op = (offset - 4) >> 2;
26318 add_unwind_opcode (op, 1);
26319 }
26320 else if (offset < 0)
26321 {
26322 offset = -offset;
26323 while (offset > 0x100)
26324 {
26325 add_unwind_opcode (0x7f, 1);
26326 offset -= 0x100;
26327 }
26328 op = ((offset - 4) >> 2) | 0x40;
26329 add_unwind_opcode (op, 1);
26330 }
26331 }
26332
26333 /* Finish the list of unwind opcodes for this function. */
26334
26335 static void
26336 finish_unwind_opcodes (void)
26337 {
26338 valueT op;
26339
26340 if (unwind.fp_used)
26341 {
26342 /* Adjust sp as necessary. */
26343 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
26344 flush_pending_unwind ();
26345
26346 /* After restoring sp from the frame pointer. */
26347 op = 0x90 | unwind.fp_reg;
26348 add_unwind_opcode (op, 1);
26349 }
26350 else
26351 flush_pending_unwind ();
26352 }
26353
26354
26355 /* Start an exception table entry. If idx is nonzero this is an index table
26356 entry. */
26357
26358 static void
26359 start_unwind_section (const segT text_seg, int idx)
26360 {
26361 const char * text_name;
26362 const char * prefix;
26363 const char * prefix_once;
26364 const char * group_name;
26365 char * sec_name;
26366 int type;
26367 int flags;
26368 int linkonce;
26369
26370 if (idx)
26371 {
26372 prefix = ELF_STRING_ARM_unwind;
26373 prefix_once = ELF_STRING_ARM_unwind_once;
26374 type = SHT_ARM_EXIDX;
26375 }
26376 else
26377 {
26378 prefix = ELF_STRING_ARM_unwind_info;
26379 prefix_once = ELF_STRING_ARM_unwind_info_once;
26380 type = SHT_PROGBITS;
26381 }
26382
26383 text_name = segment_name (text_seg);
26384 if (streq (text_name, ".text"))
26385 text_name = "";
26386
26387 if (strncmp (text_name, ".gnu.linkonce.t.",
26388 strlen (".gnu.linkonce.t.")) == 0)
26389 {
26390 prefix = prefix_once;
26391 text_name += strlen (".gnu.linkonce.t.");
26392 }
26393
26394 sec_name = concat (prefix, text_name, (char *) NULL);
26395
26396 flags = SHF_ALLOC;
26397 linkonce = 0;
26398 group_name = 0;
26399
26400 /* Handle COMDAT group. */
26401 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
26402 {
26403 group_name = elf_group_name (text_seg);
26404 if (group_name == NULL)
26405 {
26406 as_bad (_("Group section `%s' has no group signature"),
26407 segment_name (text_seg));
26408 ignore_rest_of_line ();
26409 return;
26410 }
26411 flags |= SHF_GROUP;
26412 linkonce = 1;
26413 }
26414
26415 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
26416 linkonce, 0);
26417
26418 /* Set the section link for index tables. */
26419 if (idx)
26420 elf_linked_to_section (now_seg) = text_seg;
26421 }
26422
26423
26424 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
26425 personality routine data. Returns zero, or the index table value for
26426 an inline entry. */
26427
26428 static valueT
26429 create_unwind_entry (int have_data)
26430 {
26431 int size;
26432 addressT where;
26433 char *ptr;
26434 /* The current word of data. */
26435 valueT data;
26436 /* The number of bytes left in this word. */
26437 int n;
26438
26439 finish_unwind_opcodes ();
26440
26441 /* Remember the current text section. */
26442 unwind.saved_seg = now_seg;
26443 unwind.saved_subseg = now_subseg;
26444
26445 start_unwind_section (now_seg, 0);
26446
26447 if (unwind.personality_routine == NULL)
26448 {
26449 if (unwind.personality_index == -2)
26450 {
26451 if (have_data)
26452 as_bad (_("handlerdata in cantunwind frame"));
26453 return 1; /* EXIDX_CANTUNWIND. */
26454 }
26455
26456 /* Use a default personality routine if none is specified. */
26457 if (unwind.personality_index == -1)
26458 {
26459 if (unwind.opcode_count > 3)
26460 unwind.personality_index = 1;
26461 else
26462 unwind.personality_index = 0;
26463 }
26464
26465 /* Space for the personality routine entry. */
26466 if (unwind.personality_index == 0)
26467 {
26468 if (unwind.opcode_count > 3)
26469 as_bad (_("too many unwind opcodes for personality routine 0"));
26470
26471 if (!have_data)
26472 {
26473 /* All the data is inline in the index table. */
26474 data = 0x80;
26475 n = 3;
26476 while (unwind.opcode_count > 0)
26477 {
26478 unwind.opcode_count--;
26479 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26480 n--;
26481 }
26482
26483 /* Pad with "finish" opcodes. */
26484 while (n--)
26485 data = (data << 8) | 0xb0;
26486
26487 return data;
26488 }
26489 size = 0;
26490 }
26491 else
26492 /* We get two opcodes "free" in the first word. */
26493 size = unwind.opcode_count - 2;
26494 }
26495 else
26496 {
26497 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
26498 if (unwind.personality_index != -1)
26499 {
26500 as_bad (_("attempt to recreate an unwind entry"));
26501 return 1;
26502 }
26503
26504 /* An extra byte is required for the opcode count. */
26505 size = unwind.opcode_count + 1;
26506 }
26507
26508 size = (size + 3) >> 2;
26509 if (size > 0xff)
26510 as_bad (_("too many unwind opcodes"));
26511
26512 frag_align (2, 0, 0);
26513 record_alignment (now_seg, 2);
26514 unwind.table_entry = expr_build_dot ();
26515
26516 /* Allocate the table entry. */
26517 ptr = frag_more ((size << 2) + 4);
26518 /* PR 13449: Zero the table entries in case some of them are not used. */
26519 memset (ptr, 0, (size << 2) + 4);
26520 where = frag_now_fix () - ((size << 2) + 4);
26521
26522 switch (unwind.personality_index)
26523 {
26524 case -1:
26525 /* ??? Should this be a PLT generating relocation? */
26526 /* Custom personality routine. */
26527 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
26528 BFD_RELOC_ARM_PREL31);
26529
26530 where += 4;
26531 ptr += 4;
26532
26533 /* Set the first byte to the number of additional words. */
26534 data = size > 0 ? size - 1 : 0;
26535 n = 3;
26536 break;
26537
26538 /* ABI defined personality routines. */
26539 case 0:
26540 /* Three opcodes bytes are packed into the first word. */
26541 data = 0x80;
26542 n = 3;
26543 break;
26544
26545 case 1:
26546 case 2:
26547 /* The size and first two opcode bytes go in the first word. */
26548 data = ((0x80 + unwind.personality_index) << 8) | size;
26549 n = 2;
26550 break;
26551
26552 default:
26553 /* Should never happen. */
26554 abort ();
26555 }
26556
26557 /* Pack the opcodes into words (MSB first), reversing the list at the same
26558 time. */
26559 while (unwind.opcode_count > 0)
26560 {
26561 if (n == 0)
26562 {
26563 md_number_to_chars (ptr, data, 4);
26564 ptr += 4;
26565 n = 4;
26566 data = 0;
26567 }
26568 unwind.opcode_count--;
26569 n--;
26570 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26571 }
26572
26573 /* Finish off the last word. */
26574 if (n < 4)
26575 {
26576 /* Pad with "finish" opcodes. */
26577 while (n--)
26578 data = (data << 8) | 0xb0;
26579
26580 md_number_to_chars (ptr, data, 4);
26581 }
26582
26583 if (!have_data)
26584 {
26585 /* Add an empty descriptor if there is no user-specified data. */
26586 ptr = frag_more (4);
26587 md_number_to_chars (ptr, 0, 4);
26588 }
26589
26590 return 0;
26591 }
26592
26593
26594 /* Initialize the DWARF-2 unwind information for this procedure. */
26595
26596 void
26597 tc_arm_frame_initial_instructions (void)
26598 {
26599 cfi_add_CFA_def_cfa (REG_SP, 0);
26600 }
26601 #endif /* OBJ_ELF */
26602
26603 /* Convert REGNAME to a DWARF-2 register number. */
26604
26605 int
26606 tc_arm_regname_to_dw2regnum (char *regname)
26607 {
26608 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
26609 if (reg != FAIL)
26610 return reg;
26611
26612 /* PR 16694: Allow VFP registers as well. */
26613 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
26614 if (reg != FAIL)
26615 return 64 + reg;
26616
26617 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
26618 if (reg != FAIL)
26619 return reg + 256;
26620
26621 return FAIL;
26622 }
26623
26624 #ifdef TE_PE
26625 void
26626 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
26627 {
26628 expressionS exp;
26629
26630 exp.X_op = O_secrel;
26631 exp.X_add_symbol = symbol;
26632 exp.X_add_number = 0;
26633 emit_expr (&exp, size);
26634 }
26635 #endif
26636
26637 /* MD interface: Symbol and relocation handling. */
26638
26639 /* Return the address within the segment that a PC-relative fixup is
26640 relative to. For ARM, PC-relative fixups applied to instructions
26641 are generally relative to the location of the fixup plus 8 bytes.
26642 Thumb branches are offset by 4, and Thumb loads relative to PC
26643 require special handling. */
26644
26645 long
26646 md_pcrel_from_section (fixS * fixP, segT seg)
26647 {
26648 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26649
26650 /* If this is pc-relative and we are going to emit a relocation
26651 then we just want to put out any pipeline compensation that the linker
26652 will need. Otherwise we want to use the calculated base.
26653 For WinCE we skip the bias for externals as well, since this
26654 is how the MS ARM-CE assembler behaves and we want to be compatible. */
26655 if (fixP->fx_pcrel
26656 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
26657 || (arm_force_relocation (fixP)
26658 #ifdef TE_WINCE
26659 && !S_IS_EXTERNAL (fixP->fx_addsy)
26660 #endif
26661 )))
26662 base = 0;
26663
26664
26665 switch (fixP->fx_r_type)
26666 {
26667 /* PC relative addressing on the Thumb is slightly odd as the
26668 bottom two bits of the PC are forced to zero for the
26669 calculation. This happens *after* application of the
26670 pipeline offset. However, Thumb adrl already adjusts for
26671 this, so we need not do it again. */
26672 case BFD_RELOC_ARM_THUMB_ADD:
26673 return base & ~3;
26674
26675 case BFD_RELOC_ARM_THUMB_OFFSET:
26676 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26677 case BFD_RELOC_ARM_T32_ADD_PC12:
26678 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
26679 return (base + 4) & ~3;
26680
26681 /* Thumb branches are simply offset by +4. */
26682 case BFD_RELOC_THUMB_PCREL_BRANCH5:
26683 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26684 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26685 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26686 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26687 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26688 case BFD_RELOC_THUMB_PCREL_BFCSEL:
26689 case BFD_RELOC_ARM_THUMB_BF17:
26690 case BFD_RELOC_ARM_THUMB_BF19:
26691 case BFD_RELOC_ARM_THUMB_BF13:
26692 case BFD_RELOC_ARM_THUMB_LOOP12:
26693 return base + 4;
26694
26695 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26696 if (fixP->fx_addsy
26697 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26698 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26699 && ARM_IS_FUNC (fixP->fx_addsy)
26700 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26701 base = fixP->fx_where + fixP->fx_frag->fr_address;
26702 return base + 4;
26703
26704 /* BLX is like branches above, but forces the low two bits of PC to
26705 zero. */
26706 case BFD_RELOC_THUMB_PCREL_BLX:
26707 if (fixP->fx_addsy
26708 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26709 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26710 && THUMB_IS_FUNC (fixP->fx_addsy)
26711 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26712 base = fixP->fx_where + fixP->fx_frag->fr_address;
26713 return (base + 4) & ~3;
26714
26715 /* ARM mode branches are offset by +8. However, the Windows CE
26716 loader expects the relocation not to take this into account. */
26717 case BFD_RELOC_ARM_PCREL_BLX:
26718 if (fixP->fx_addsy
26719 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26720 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26721 && ARM_IS_FUNC (fixP->fx_addsy)
26722 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26723 base = fixP->fx_where + fixP->fx_frag->fr_address;
26724 return base + 8;
26725
26726 case BFD_RELOC_ARM_PCREL_CALL:
26727 if (fixP->fx_addsy
26728 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26729 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26730 && THUMB_IS_FUNC (fixP->fx_addsy)
26731 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26732 base = fixP->fx_where + fixP->fx_frag->fr_address;
26733 return base + 8;
26734
26735 case BFD_RELOC_ARM_PCREL_BRANCH:
26736 case BFD_RELOC_ARM_PCREL_JUMP:
26737 case BFD_RELOC_ARM_PLT32:
26738 #ifdef TE_WINCE
26739 /* When handling fixups immediately, because we have already
26740 discovered the value of a symbol, or the address of the frag involved
26741 we must account for the offset by +8, as the OS loader will never see the reloc.
26742 see fixup_segment() in write.c
26743 The S_IS_EXTERNAL test handles the case of global symbols.
26744 Those need the calculated base, not just the pipe compensation the linker will need. */
26745 if (fixP->fx_pcrel
26746 && fixP->fx_addsy != NULL
26747 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26748 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26749 return base + 8;
26750 return base;
26751 #else
26752 return base + 8;
26753 #endif
26754
26755
26756 /* ARM mode loads relative to PC are also offset by +8. Unlike
26757 branches, the Windows CE loader *does* expect the relocation
26758 to take this into account. */
26759 case BFD_RELOC_ARM_OFFSET_IMM:
26760 case BFD_RELOC_ARM_OFFSET_IMM8:
26761 case BFD_RELOC_ARM_HWLITERAL:
26762 case BFD_RELOC_ARM_LITERAL:
26763 case BFD_RELOC_ARM_CP_OFF_IMM:
26764 return base + 8;
26765
26766
26767 /* Other PC-relative relocations are un-offset. */
26768 default:
26769 return base;
26770 }
26771 }
26772
26773 static bfd_boolean flag_warn_syms = TRUE;
26774
26775 bfd_boolean
26776 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
26777 {
26778 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26779 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26780 does mean that the resulting code might be very confusing to the reader.
26781 Also this warning can be triggered if the user omits an operand before
26782 an immediate address, eg:
26783
26784 LDR =foo
26785
26786 GAS treats this as an assignment of the value of the symbol foo to a
26787 symbol LDR, and so (without this code) it will not issue any kind of
26788 warning or error message.
26789
26790 Note - ARM instructions are case-insensitive but the strings in the hash
26791 table are all stored in lower case, so we must first ensure that name is
26792 lower case too. */
26793 if (flag_warn_syms && arm_ops_hsh)
26794 {
26795 char * nbuf = strdup (name);
26796 char * p;
26797
26798 for (p = nbuf; *p; p++)
26799 *p = TOLOWER (*p);
26800 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26801 {
26802 static struct hash_control * already_warned = NULL;
26803
26804 if (already_warned == NULL)
26805 already_warned = hash_new ();
26806 /* Only warn about the symbol once. To keep the code
26807 simple we let hash_insert do the lookup for us. */
26808 if (hash_insert (already_warned, nbuf, NULL) == NULL)
26809 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
26810 }
26811 else
26812 free (nbuf);
26813 }
26814
26815 return FALSE;
26816 }
26817
26818 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26819 Otherwise we have no need to default values of symbols. */
26820
26821 symbolS *
26822 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26823 {
26824 #ifdef OBJ_ELF
26825 if (name[0] == '_' && name[1] == 'G'
26826 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26827 {
26828 if (!GOT_symbol)
26829 {
26830 if (symbol_find (name))
26831 as_bad (_("GOT already in the symbol table"));
26832
26833 GOT_symbol = symbol_new (name, undefined_section,
26834 (valueT) 0, & zero_address_frag);
26835 }
26836
26837 return GOT_symbol;
26838 }
26839 #endif
26840
26841 return NULL;
26842 }
26843
26844 /* Subroutine of md_apply_fix. Check to see if an immediate can be
26845 computed as two separate immediate values, added together. We
26846 already know that this value cannot be computed by just one ARM
26847 instruction. */
26848
26849 static unsigned int
26850 validate_immediate_twopart (unsigned int val,
26851 unsigned int * highpart)
26852 {
26853 unsigned int a;
26854 unsigned int i;
26855
26856 for (i = 0; i < 32; i += 2)
26857 if (((a = rotate_left (val, i)) & 0xff) != 0)
26858 {
26859 if (a & 0xff00)
26860 {
26861 if (a & ~ 0xffff)
26862 continue;
26863 * highpart = (a >> 8) | ((i + 24) << 7);
26864 }
26865 else if (a & 0xff0000)
26866 {
26867 if (a & 0xff000000)
26868 continue;
26869 * highpart = (a >> 16) | ((i + 16) << 7);
26870 }
26871 else
26872 {
26873 gas_assert (a & 0xff000000);
26874 * highpart = (a >> 24) | ((i + 8) << 7);
26875 }
26876
26877 return (a & 0xff) | (i << 7);
26878 }
26879
26880 return FAIL;
26881 }
26882
26883 static int
26884 validate_offset_imm (unsigned int val, int hwse)
26885 {
26886 if ((hwse && val > 255) || val > 4095)
26887 return FAIL;
26888 return val;
26889 }
26890
26891 /* Subroutine of md_apply_fix. Do those data_ops which can take a
26892 negative immediate constant by altering the instruction. A bit of
26893 a hack really.
26894 MOV <-> MVN
26895 AND <-> BIC
26896 ADC <-> SBC
26897 by inverting the second operand, and
26898 ADD <-> SUB
26899 CMP <-> CMN
26900 by negating the second operand. */
26901
26902 static int
26903 negate_data_op (unsigned long * instruction,
26904 unsigned long value)
26905 {
26906 int op, new_inst;
26907 unsigned long negated, inverted;
26908
26909 negated = encode_arm_immediate (-value);
26910 inverted = encode_arm_immediate (~value);
26911
26912 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26913 switch (op)
26914 {
26915 /* First negates. */
26916 case OPCODE_SUB: /* ADD <-> SUB */
26917 new_inst = OPCODE_ADD;
26918 value = negated;
26919 break;
26920
26921 case OPCODE_ADD:
26922 new_inst = OPCODE_SUB;
26923 value = negated;
26924 break;
26925
26926 case OPCODE_CMP: /* CMP <-> CMN */
26927 new_inst = OPCODE_CMN;
26928 value = negated;
26929 break;
26930
26931 case OPCODE_CMN:
26932 new_inst = OPCODE_CMP;
26933 value = negated;
26934 break;
26935
26936 /* Now Inverted ops. */
26937 case OPCODE_MOV: /* MOV <-> MVN */
26938 new_inst = OPCODE_MVN;
26939 value = inverted;
26940 break;
26941
26942 case OPCODE_MVN:
26943 new_inst = OPCODE_MOV;
26944 value = inverted;
26945 break;
26946
26947 case OPCODE_AND: /* AND <-> BIC */
26948 new_inst = OPCODE_BIC;
26949 value = inverted;
26950 break;
26951
26952 case OPCODE_BIC:
26953 new_inst = OPCODE_AND;
26954 value = inverted;
26955 break;
26956
26957 case OPCODE_ADC: /* ADC <-> SBC */
26958 new_inst = OPCODE_SBC;
26959 value = inverted;
26960 break;
26961
26962 case OPCODE_SBC:
26963 new_inst = OPCODE_ADC;
26964 value = inverted;
26965 break;
26966
26967 /* We cannot do anything. */
26968 default:
26969 return FAIL;
26970 }
26971
26972 if (value == (unsigned) FAIL)
26973 return FAIL;
26974
26975 *instruction &= OPCODE_MASK;
26976 *instruction |= new_inst << DATA_OP_SHIFT;
26977 return value;
26978 }
26979
26980 /* Like negate_data_op, but for Thumb-2. */
26981
26982 static unsigned int
26983 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
26984 {
26985 int op, new_inst;
26986 int rd;
26987 unsigned int negated, inverted;
26988
26989 negated = encode_thumb32_immediate (-value);
26990 inverted = encode_thumb32_immediate (~value);
26991
26992 rd = (*instruction >> 8) & 0xf;
26993 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26994 switch (op)
26995 {
26996 /* ADD <-> SUB. Includes CMP <-> CMN. */
26997 case T2_OPCODE_SUB:
26998 new_inst = T2_OPCODE_ADD;
26999 value = negated;
27000 break;
27001
27002 case T2_OPCODE_ADD:
27003 new_inst = T2_OPCODE_SUB;
27004 value = negated;
27005 break;
27006
27007 /* ORR <-> ORN. Includes MOV <-> MVN. */
27008 case T2_OPCODE_ORR:
27009 new_inst = T2_OPCODE_ORN;
27010 value = inverted;
27011 break;
27012
27013 case T2_OPCODE_ORN:
27014 new_inst = T2_OPCODE_ORR;
27015 value = inverted;
27016 break;
27017
27018 /* AND <-> BIC. TST has no inverted equivalent. */
27019 case T2_OPCODE_AND:
27020 new_inst = T2_OPCODE_BIC;
27021 if (rd == 15)
27022 value = FAIL;
27023 else
27024 value = inverted;
27025 break;
27026
27027 case T2_OPCODE_BIC:
27028 new_inst = T2_OPCODE_AND;
27029 value = inverted;
27030 break;
27031
27032 /* ADC <-> SBC */
27033 case T2_OPCODE_ADC:
27034 new_inst = T2_OPCODE_SBC;
27035 value = inverted;
27036 break;
27037
27038 case T2_OPCODE_SBC:
27039 new_inst = T2_OPCODE_ADC;
27040 value = inverted;
27041 break;
27042
27043 /* We cannot do anything. */
27044 default:
27045 return FAIL;
27046 }
27047
27048 if (value == (unsigned int)FAIL)
27049 return FAIL;
27050
27051 *instruction &= T2_OPCODE_MASK;
27052 *instruction |= new_inst << T2_DATA_OP_SHIFT;
27053 return value;
27054 }
27055
27056 /* Read a 32-bit thumb instruction from buf. */
27057
27058 static unsigned long
27059 get_thumb32_insn (char * buf)
27060 {
27061 unsigned long insn;
27062 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
27063 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27064
27065 return insn;
27066 }
27067
27068 /* We usually want to set the low bit on the address of thumb function
27069 symbols. In particular .word foo - . should have the low bit set.
27070 Generic code tries to fold the difference of two symbols to
27071 a constant. Prevent this and force a relocation when the first symbols
27072 is a thumb function. */
27073
27074 bfd_boolean
27075 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
27076 {
27077 if (op == O_subtract
27078 && l->X_op == O_symbol
27079 && r->X_op == O_symbol
27080 && THUMB_IS_FUNC (l->X_add_symbol))
27081 {
27082 l->X_op = O_subtract;
27083 l->X_op_symbol = r->X_add_symbol;
27084 l->X_add_number -= r->X_add_number;
27085 return TRUE;
27086 }
27087
27088 /* Process as normal. */
27089 return FALSE;
27090 }
27091
27092 /* Encode Thumb2 unconditional branches and calls. The encoding
27093 for the 2 are identical for the immediate values. */
27094
27095 static void
27096 encode_thumb2_b_bl_offset (char * buf, offsetT value)
27097 {
27098 #define T2I1I2MASK ((1 << 13) | (1 << 11))
27099 offsetT newval;
27100 offsetT newval2;
27101 addressT S, I1, I2, lo, hi;
27102
27103 S = (value >> 24) & 0x01;
27104 I1 = (value >> 23) & 0x01;
27105 I2 = (value >> 22) & 0x01;
27106 hi = (value >> 12) & 0x3ff;
27107 lo = (value >> 1) & 0x7ff;
27108 newval = md_chars_to_number (buf, THUMB_SIZE);
27109 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27110 newval |= (S << 10) | hi;
27111 newval2 &= ~T2I1I2MASK;
27112 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
27113 md_number_to_chars (buf, newval, THUMB_SIZE);
27114 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27115 }
27116
27117 void
27118 md_apply_fix (fixS * fixP,
27119 valueT * valP,
27120 segT seg)
27121 {
27122 offsetT value = * valP;
27123 offsetT newval;
27124 unsigned int newimm;
27125 unsigned long temp;
27126 int sign;
27127 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
27128
27129 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
27130
27131 /* Note whether this will delete the relocation. */
27132
27133 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
27134 fixP->fx_done = 1;
27135
27136 /* On a 64-bit host, silently truncate 'value' to 32 bits for
27137 consistency with the behaviour on 32-bit hosts. Remember value
27138 for emit_reloc. */
27139 value &= 0xffffffff;
27140 value ^= 0x80000000;
27141 value -= 0x80000000;
27142
27143 *valP = value;
27144 fixP->fx_addnumber = value;
27145
27146 /* Same treatment for fixP->fx_offset. */
27147 fixP->fx_offset &= 0xffffffff;
27148 fixP->fx_offset ^= 0x80000000;
27149 fixP->fx_offset -= 0x80000000;
27150
27151 switch (fixP->fx_r_type)
27152 {
27153 case BFD_RELOC_NONE:
27154 /* This will need to go in the object file. */
27155 fixP->fx_done = 0;
27156 break;
27157
27158 case BFD_RELOC_ARM_IMMEDIATE:
27159 /* We claim that this fixup has been processed here,
27160 even if in fact we generate an error because we do
27161 not have a reloc for it, so tc_gen_reloc will reject it. */
27162 fixP->fx_done = 1;
27163
27164 if (fixP->fx_addsy)
27165 {
27166 const char *msg = 0;
27167
27168 if (! S_IS_DEFINED (fixP->fx_addsy))
27169 msg = _("undefined symbol %s used as an immediate value");
27170 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27171 msg = _("symbol %s is in a different section");
27172 else if (S_IS_WEAK (fixP->fx_addsy))
27173 msg = _("symbol %s is weak and may be overridden later");
27174
27175 if (msg)
27176 {
27177 as_bad_where (fixP->fx_file, fixP->fx_line,
27178 msg, S_GET_NAME (fixP->fx_addsy));
27179 break;
27180 }
27181 }
27182
27183 temp = md_chars_to_number (buf, INSN_SIZE);
27184
27185 /* If the offset is negative, we should use encoding A2 for ADR. */
27186 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
27187 newimm = negate_data_op (&temp, value);
27188 else
27189 {
27190 newimm = encode_arm_immediate (value);
27191
27192 /* If the instruction will fail, see if we can fix things up by
27193 changing the opcode. */
27194 if (newimm == (unsigned int) FAIL)
27195 newimm = negate_data_op (&temp, value);
27196 /* MOV accepts both ARM modified immediate (A1 encoding) and
27197 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
27198 When disassembling, MOV is preferred when there is no encoding
27199 overlap. */
27200 if (newimm == (unsigned int) FAIL
27201 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
27202 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
27203 && !((temp >> SBIT_SHIFT) & 0x1)
27204 && value >= 0 && value <= 0xffff)
27205 {
27206 /* Clear bits[23:20] to change encoding from A1 to A2. */
27207 temp &= 0xff0fffff;
27208 /* Encoding high 4bits imm. Code below will encode the remaining
27209 low 12bits. */
27210 temp |= (value & 0x0000f000) << 4;
27211 newimm = value & 0x00000fff;
27212 }
27213 }
27214
27215 if (newimm == (unsigned int) FAIL)
27216 {
27217 as_bad_where (fixP->fx_file, fixP->fx_line,
27218 _("invalid constant (%lx) after fixup"),
27219 (unsigned long) value);
27220 break;
27221 }
27222
27223 newimm |= (temp & 0xfffff000);
27224 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27225 break;
27226
27227 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27228 {
27229 unsigned int highpart = 0;
27230 unsigned int newinsn = 0xe1a00000; /* nop. */
27231
27232 if (fixP->fx_addsy)
27233 {
27234 const char *msg = 0;
27235
27236 if (! S_IS_DEFINED (fixP->fx_addsy))
27237 msg = _("undefined symbol %s used as an immediate value");
27238 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27239 msg = _("symbol %s is in a different section");
27240 else if (S_IS_WEAK (fixP->fx_addsy))
27241 msg = _("symbol %s is weak and may be overridden later");
27242
27243 if (msg)
27244 {
27245 as_bad_where (fixP->fx_file, fixP->fx_line,
27246 msg, S_GET_NAME (fixP->fx_addsy));
27247 break;
27248 }
27249 }
27250
27251 newimm = encode_arm_immediate (value);
27252 temp = md_chars_to_number (buf, INSN_SIZE);
27253
27254 /* If the instruction will fail, see if we can fix things up by
27255 changing the opcode. */
27256 if (newimm == (unsigned int) FAIL
27257 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
27258 {
27259 /* No ? OK - try using two ADD instructions to generate
27260 the value. */
27261 newimm = validate_immediate_twopart (value, & highpart);
27262
27263 /* Yes - then make sure that the second instruction is
27264 also an add. */
27265 if (newimm != (unsigned int) FAIL)
27266 newinsn = temp;
27267 /* Still No ? Try using a negated value. */
27268 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
27269 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
27270 /* Otherwise - give up. */
27271 else
27272 {
27273 as_bad_where (fixP->fx_file, fixP->fx_line,
27274 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
27275 (long) value);
27276 break;
27277 }
27278
27279 /* Replace the first operand in the 2nd instruction (which
27280 is the PC) with the destination register. We have
27281 already added in the PC in the first instruction and we
27282 do not want to do it again. */
27283 newinsn &= ~ 0xf0000;
27284 newinsn |= ((newinsn & 0x0f000) << 4);
27285 }
27286
27287 newimm |= (temp & 0xfffff000);
27288 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27289
27290 highpart |= (newinsn & 0xfffff000);
27291 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
27292 }
27293 break;
27294
27295 case BFD_RELOC_ARM_OFFSET_IMM:
27296 if (!fixP->fx_done && seg->use_rela_p)
27297 value = 0;
27298 /* Fall through. */
27299
27300 case BFD_RELOC_ARM_LITERAL:
27301 sign = value > 0;
27302
27303 if (value < 0)
27304 value = - value;
27305
27306 if (validate_offset_imm (value, 0) == FAIL)
27307 {
27308 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
27309 as_bad_where (fixP->fx_file, fixP->fx_line,
27310 _("invalid literal constant: pool needs to be closer"));
27311 else
27312 as_bad_where (fixP->fx_file, fixP->fx_line,
27313 _("bad immediate value for offset (%ld)"),
27314 (long) value);
27315 break;
27316 }
27317
27318 newval = md_chars_to_number (buf, INSN_SIZE);
27319 if (value == 0)
27320 newval &= 0xfffff000;
27321 else
27322 {
27323 newval &= 0xff7ff000;
27324 newval |= value | (sign ? INDEX_UP : 0);
27325 }
27326 md_number_to_chars (buf, newval, INSN_SIZE);
27327 break;
27328
27329 case BFD_RELOC_ARM_OFFSET_IMM8:
27330 case BFD_RELOC_ARM_HWLITERAL:
27331 sign = value > 0;
27332
27333 if (value < 0)
27334 value = - value;
27335
27336 if (validate_offset_imm (value, 1) == FAIL)
27337 {
27338 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
27339 as_bad_where (fixP->fx_file, fixP->fx_line,
27340 _("invalid literal constant: pool needs to be closer"));
27341 else
27342 as_bad_where (fixP->fx_file, fixP->fx_line,
27343 _("bad immediate value for 8-bit offset (%ld)"),
27344 (long) value);
27345 break;
27346 }
27347
27348 newval = md_chars_to_number (buf, INSN_SIZE);
27349 if (value == 0)
27350 newval &= 0xfffff0f0;
27351 else
27352 {
27353 newval &= 0xff7ff0f0;
27354 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
27355 }
27356 md_number_to_chars (buf, newval, INSN_SIZE);
27357 break;
27358
27359 case BFD_RELOC_ARM_T32_OFFSET_U8:
27360 if (value < 0 || value > 1020 || value % 4 != 0)
27361 as_bad_where (fixP->fx_file, fixP->fx_line,
27362 _("bad immediate value for offset (%ld)"), (long) value);
27363 value /= 4;
27364
27365 newval = md_chars_to_number (buf+2, THUMB_SIZE);
27366 newval |= value;
27367 md_number_to_chars (buf+2, newval, THUMB_SIZE);
27368 break;
27369
27370 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27371 /* This is a complicated relocation used for all varieties of Thumb32
27372 load/store instruction with immediate offset:
27373
27374 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
27375 *4, optional writeback(W)
27376 (doubleword load/store)
27377
27378 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
27379 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
27380 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
27381 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
27382 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
27383
27384 Uppercase letters indicate bits that are already encoded at
27385 this point. Lowercase letters are our problem. For the
27386 second block of instructions, the secondary opcode nybble
27387 (bits 8..11) is present, and bit 23 is zero, even if this is
27388 a PC-relative operation. */
27389 newval = md_chars_to_number (buf, THUMB_SIZE);
27390 newval <<= 16;
27391 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
27392
27393 if ((newval & 0xf0000000) == 0xe0000000)
27394 {
27395 /* Doubleword load/store: 8-bit offset, scaled by 4. */
27396 if (value >= 0)
27397 newval |= (1 << 23);
27398 else
27399 value = -value;
27400 if (value % 4 != 0)
27401 {
27402 as_bad_where (fixP->fx_file, fixP->fx_line,
27403 _("offset not a multiple of 4"));
27404 break;
27405 }
27406 value /= 4;
27407 if (value > 0xff)
27408 {
27409 as_bad_where (fixP->fx_file, fixP->fx_line,
27410 _("offset out of range"));
27411 break;
27412 }
27413 newval &= ~0xff;
27414 }
27415 else if ((newval & 0x000f0000) == 0x000f0000)
27416 {
27417 /* PC-relative, 12-bit offset. */
27418 if (value >= 0)
27419 newval |= (1 << 23);
27420 else
27421 value = -value;
27422 if (value > 0xfff)
27423 {
27424 as_bad_where (fixP->fx_file, fixP->fx_line,
27425 _("offset out of range"));
27426 break;
27427 }
27428 newval &= ~0xfff;
27429 }
27430 else if ((newval & 0x00000100) == 0x00000100)
27431 {
27432 /* Writeback: 8-bit, +/- offset. */
27433 if (value >= 0)
27434 newval |= (1 << 9);
27435 else
27436 value = -value;
27437 if (value > 0xff)
27438 {
27439 as_bad_where (fixP->fx_file, fixP->fx_line,
27440 _("offset out of range"));
27441 break;
27442 }
27443 newval &= ~0xff;
27444 }
27445 else if ((newval & 0x00000f00) == 0x00000e00)
27446 {
27447 /* T-instruction: positive 8-bit offset. */
27448 if (value < 0 || value > 0xff)
27449 {
27450 as_bad_where (fixP->fx_file, fixP->fx_line,
27451 _("offset out of range"));
27452 break;
27453 }
27454 newval &= ~0xff;
27455 newval |= value;
27456 }
27457 else
27458 {
27459 /* Positive 12-bit or negative 8-bit offset. */
27460 int limit;
27461 if (value >= 0)
27462 {
27463 newval |= (1 << 23);
27464 limit = 0xfff;
27465 }
27466 else
27467 {
27468 value = -value;
27469 limit = 0xff;
27470 }
27471 if (value > limit)
27472 {
27473 as_bad_where (fixP->fx_file, fixP->fx_line,
27474 _("offset out of range"));
27475 break;
27476 }
27477 newval &= ~limit;
27478 }
27479
27480 newval |= value;
27481 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
27482 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
27483 break;
27484
27485 case BFD_RELOC_ARM_SHIFT_IMM:
27486 newval = md_chars_to_number (buf, INSN_SIZE);
27487 if (((unsigned long) value) > 32
27488 || (value == 32
27489 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
27490 {
27491 as_bad_where (fixP->fx_file, fixP->fx_line,
27492 _("shift expression is too large"));
27493 break;
27494 }
27495
27496 if (value == 0)
27497 /* Shifts of zero must be done as lsl. */
27498 newval &= ~0x60;
27499 else if (value == 32)
27500 value = 0;
27501 newval &= 0xfffff07f;
27502 newval |= (value & 0x1f) << 7;
27503 md_number_to_chars (buf, newval, INSN_SIZE);
27504 break;
27505
27506 case BFD_RELOC_ARM_T32_IMMEDIATE:
27507 case BFD_RELOC_ARM_T32_ADD_IMM:
27508 case BFD_RELOC_ARM_T32_IMM12:
27509 case BFD_RELOC_ARM_T32_ADD_PC12:
27510 /* We claim that this fixup has been processed here,
27511 even if in fact we generate an error because we do
27512 not have a reloc for it, so tc_gen_reloc will reject it. */
27513 fixP->fx_done = 1;
27514
27515 if (fixP->fx_addsy
27516 && ! S_IS_DEFINED (fixP->fx_addsy))
27517 {
27518 as_bad_where (fixP->fx_file, fixP->fx_line,
27519 _("undefined symbol %s used as an immediate value"),
27520 S_GET_NAME (fixP->fx_addsy));
27521 break;
27522 }
27523
27524 newval = md_chars_to_number (buf, THUMB_SIZE);
27525 newval <<= 16;
27526 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
27527
27528 newimm = FAIL;
27529 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27530 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27531 Thumb2 modified immediate encoding (T2). */
27532 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
27533 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27534 {
27535 newimm = encode_thumb32_immediate (value);
27536 if (newimm == (unsigned int) FAIL)
27537 newimm = thumb32_negate_data_op (&newval, value);
27538 }
27539 if (newimm == (unsigned int) FAIL)
27540 {
27541 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
27542 {
27543 /* Turn add/sum into addw/subw. */
27544 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27545 newval = (newval & 0xfeffffff) | 0x02000000;
27546 /* No flat 12-bit imm encoding for addsw/subsw. */
27547 if ((newval & 0x00100000) == 0)
27548 {
27549 /* 12 bit immediate for addw/subw. */
27550 if (value < 0)
27551 {
27552 value = -value;
27553 newval ^= 0x00a00000;
27554 }
27555 if (value > 0xfff)
27556 newimm = (unsigned int) FAIL;
27557 else
27558 newimm = value;
27559 }
27560 }
27561 else
27562 {
27563 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27564 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27565 disassembling, MOV is preferred when there is no encoding
27566 overlap. */
27567 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
27568 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27569 but with the Rn field [19:16] set to 1111. */
27570 && (((newval >> 16) & 0xf) == 0xf)
27571 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
27572 && !((newval >> T2_SBIT_SHIFT) & 0x1)
27573 && value >= 0 && value <= 0xffff)
27574 {
27575 /* Toggle bit[25] to change encoding from T2 to T3. */
27576 newval ^= 1 << 25;
27577 /* Clear bits[19:16]. */
27578 newval &= 0xfff0ffff;
27579 /* Encoding high 4bits imm. Code below will encode the
27580 remaining low 12bits. */
27581 newval |= (value & 0x0000f000) << 4;
27582 newimm = value & 0x00000fff;
27583 }
27584 }
27585 }
27586
27587 if (newimm == (unsigned int)FAIL)
27588 {
27589 as_bad_where (fixP->fx_file, fixP->fx_line,
27590 _("invalid constant (%lx) after fixup"),
27591 (unsigned long) value);
27592 break;
27593 }
27594
27595 newval |= (newimm & 0x800) << 15;
27596 newval |= (newimm & 0x700) << 4;
27597 newval |= (newimm & 0x0ff);
27598
27599 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
27600 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
27601 break;
27602
27603 case BFD_RELOC_ARM_SMC:
27604 if (((unsigned long) value) > 0xffff)
27605 as_bad_where (fixP->fx_file, fixP->fx_line,
27606 _("invalid smc expression"));
27607 newval = md_chars_to_number (buf, INSN_SIZE);
27608 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27609 md_number_to_chars (buf, newval, INSN_SIZE);
27610 break;
27611
27612 case BFD_RELOC_ARM_HVC:
27613 if (((unsigned long) value) > 0xffff)
27614 as_bad_where (fixP->fx_file, fixP->fx_line,
27615 _("invalid hvc expression"));
27616 newval = md_chars_to_number (buf, INSN_SIZE);
27617 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27618 md_number_to_chars (buf, newval, INSN_SIZE);
27619 break;
27620
27621 case BFD_RELOC_ARM_SWI:
27622 if (fixP->tc_fix_data != 0)
27623 {
27624 if (((unsigned long) value) > 0xff)
27625 as_bad_where (fixP->fx_file, fixP->fx_line,
27626 _("invalid swi expression"));
27627 newval = md_chars_to_number (buf, THUMB_SIZE);
27628 newval |= value;
27629 md_number_to_chars (buf, newval, THUMB_SIZE);
27630 }
27631 else
27632 {
27633 if (((unsigned long) value) > 0x00ffffff)
27634 as_bad_where (fixP->fx_file, fixP->fx_line,
27635 _("invalid swi expression"));
27636 newval = md_chars_to_number (buf, INSN_SIZE);
27637 newval |= value;
27638 md_number_to_chars (buf, newval, INSN_SIZE);
27639 }
27640 break;
27641
27642 case BFD_RELOC_ARM_MULTI:
27643 if (((unsigned long) value) > 0xffff)
27644 as_bad_where (fixP->fx_file, fixP->fx_line,
27645 _("invalid expression in load/store multiple"));
27646 newval = value | md_chars_to_number (buf, INSN_SIZE);
27647 md_number_to_chars (buf, newval, INSN_SIZE);
27648 break;
27649
27650 #ifdef OBJ_ELF
27651 case BFD_RELOC_ARM_PCREL_CALL:
27652
27653 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27654 && fixP->fx_addsy
27655 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27656 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27657 && THUMB_IS_FUNC (fixP->fx_addsy))
27658 /* Flip the bl to blx. This is a simple flip
27659 bit here because we generate PCREL_CALL for
27660 unconditional bls. */
27661 {
27662 newval = md_chars_to_number (buf, INSN_SIZE);
27663 newval = newval | 0x10000000;
27664 md_number_to_chars (buf, newval, INSN_SIZE);
27665 temp = 1;
27666 fixP->fx_done = 1;
27667 }
27668 else
27669 temp = 3;
27670 goto arm_branch_common;
27671
27672 case BFD_RELOC_ARM_PCREL_JUMP:
27673 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27674 && fixP->fx_addsy
27675 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27676 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27677 && THUMB_IS_FUNC (fixP->fx_addsy))
27678 {
27679 /* This would map to a bl<cond>, b<cond>,
27680 b<always> to a Thumb function. We
27681 need to force a relocation for this particular
27682 case. */
27683 newval = md_chars_to_number (buf, INSN_SIZE);
27684 fixP->fx_done = 0;
27685 }
27686 /* Fall through. */
27687
27688 case BFD_RELOC_ARM_PLT32:
27689 #endif
27690 case BFD_RELOC_ARM_PCREL_BRANCH:
27691 temp = 3;
27692 goto arm_branch_common;
27693
27694 case BFD_RELOC_ARM_PCREL_BLX:
27695
27696 temp = 1;
27697 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27698 && fixP->fx_addsy
27699 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27700 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27701 && ARM_IS_FUNC (fixP->fx_addsy))
27702 {
27703 /* Flip the blx to a bl and warn. */
27704 const char *name = S_GET_NAME (fixP->fx_addsy);
27705 newval = 0xeb000000;
27706 as_warn_where (fixP->fx_file, fixP->fx_line,
27707 _("blx to '%s' an ARM ISA state function changed to bl"),
27708 name);
27709 md_number_to_chars (buf, newval, INSN_SIZE);
27710 temp = 3;
27711 fixP->fx_done = 1;
27712 }
27713
27714 #ifdef OBJ_ELF
27715 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27716 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
27717 #endif
27718
27719 arm_branch_common:
27720 /* We are going to store value (shifted right by two) in the
27721 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27722 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
27723 also be clear. */
27724 if (value & temp)
27725 as_bad_where (fixP->fx_file, fixP->fx_line,
27726 _("misaligned branch destination"));
27727 if ((value & (offsetT)0xfe000000) != (offsetT)0
27728 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
27729 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27730
27731 if (fixP->fx_done || !seg->use_rela_p)
27732 {
27733 newval = md_chars_to_number (buf, INSN_SIZE);
27734 newval |= (value >> 2) & 0x00ffffff;
27735 /* Set the H bit on BLX instructions. */
27736 if (temp == 1)
27737 {
27738 if (value & 2)
27739 newval |= 0x01000000;
27740 else
27741 newval &= ~0x01000000;
27742 }
27743 md_number_to_chars (buf, newval, INSN_SIZE);
27744 }
27745 break;
27746
27747 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27748 /* CBZ can only branch forward. */
27749
27750 /* Attempts to use CBZ to branch to the next instruction
27751 (which, strictly speaking, are prohibited) will be turned into
27752 no-ops.
27753
27754 FIXME: It may be better to remove the instruction completely and
27755 perform relaxation. */
27756 if (value == -2)
27757 {
27758 newval = md_chars_to_number (buf, THUMB_SIZE);
27759 newval = 0xbf00; /* NOP encoding T1 */
27760 md_number_to_chars (buf, newval, THUMB_SIZE);
27761 }
27762 else
27763 {
27764 if (value & ~0x7e)
27765 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27766
27767 if (fixP->fx_done || !seg->use_rela_p)
27768 {
27769 newval = md_chars_to_number (buf, THUMB_SIZE);
27770 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27771 md_number_to_chars (buf, newval, THUMB_SIZE);
27772 }
27773 }
27774 break;
27775
27776 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
27777 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
27778 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27779
27780 if (fixP->fx_done || !seg->use_rela_p)
27781 {
27782 newval = md_chars_to_number (buf, THUMB_SIZE);
27783 newval |= (value & 0x1ff) >> 1;
27784 md_number_to_chars (buf, newval, THUMB_SIZE);
27785 }
27786 break;
27787
27788 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
27789 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
27790 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27791
27792 if (fixP->fx_done || !seg->use_rela_p)
27793 {
27794 newval = md_chars_to_number (buf, THUMB_SIZE);
27795 newval |= (value & 0xfff) >> 1;
27796 md_number_to_chars (buf, newval, THUMB_SIZE);
27797 }
27798 break;
27799
27800 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27801 if (fixP->fx_addsy
27802 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27803 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27804 && ARM_IS_FUNC (fixP->fx_addsy)
27805 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27806 {
27807 /* Force a relocation for a branch 20 bits wide. */
27808 fixP->fx_done = 0;
27809 }
27810 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
27811 as_bad_where (fixP->fx_file, fixP->fx_line,
27812 _("conditional branch out of range"));
27813
27814 if (fixP->fx_done || !seg->use_rela_p)
27815 {
27816 offsetT newval2;
27817 addressT S, J1, J2, lo, hi;
27818
27819 S = (value & 0x00100000) >> 20;
27820 J2 = (value & 0x00080000) >> 19;
27821 J1 = (value & 0x00040000) >> 18;
27822 hi = (value & 0x0003f000) >> 12;
27823 lo = (value & 0x00000ffe) >> 1;
27824
27825 newval = md_chars_to_number (buf, THUMB_SIZE);
27826 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27827 newval |= (S << 10) | hi;
27828 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27829 md_number_to_chars (buf, newval, THUMB_SIZE);
27830 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27831 }
27832 break;
27833
27834 case BFD_RELOC_THUMB_PCREL_BLX:
27835 /* If there is a blx from a thumb state function to
27836 another thumb function flip this to a bl and warn
27837 about it. */
27838
27839 if (fixP->fx_addsy
27840 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27841 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27842 && THUMB_IS_FUNC (fixP->fx_addsy))
27843 {
27844 const char *name = S_GET_NAME (fixP->fx_addsy);
27845 as_warn_where (fixP->fx_file, fixP->fx_line,
27846 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27847 name);
27848 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27849 newval = newval | 0x1000;
27850 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27851 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27852 fixP->fx_done = 1;
27853 }
27854
27855
27856 goto thumb_bl_common;
27857
27858 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27859 /* A bl from Thumb state ISA to an internal ARM state function
27860 is converted to a blx. */
27861 if (fixP->fx_addsy
27862 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27863 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27864 && ARM_IS_FUNC (fixP->fx_addsy)
27865 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27866 {
27867 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27868 newval = newval & ~0x1000;
27869 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27870 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
27871 fixP->fx_done = 1;
27872 }
27873
27874 thumb_bl_common:
27875
27876 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27877 /* For a BLX instruction, make sure that the relocation is rounded up
27878 to a word boundary. This follows the semantics of the instruction
27879 which specifies that bit 1 of the target address will come from bit
27880 1 of the base address. */
27881 value = (value + 3) & ~ 3;
27882
27883 #ifdef OBJ_ELF
27884 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
27885 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27886 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27887 #endif
27888
27889 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
27890 {
27891 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
27892 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27893 else if ((value & ~0x1ffffff)
27894 && ((value & ~0x1ffffff) != ~0x1ffffff))
27895 as_bad_where (fixP->fx_file, fixP->fx_line,
27896 _("Thumb2 branch out of range"));
27897 }
27898
27899 if (fixP->fx_done || !seg->use_rela_p)
27900 encode_thumb2_b_bl_offset (buf, value);
27901
27902 break;
27903
27904 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27905 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27906 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27907
27908 if (fixP->fx_done || !seg->use_rela_p)
27909 encode_thumb2_b_bl_offset (buf, value);
27910
27911 break;
27912
27913 case BFD_RELOC_8:
27914 if (fixP->fx_done || !seg->use_rela_p)
27915 *buf = value;
27916 break;
27917
27918 case BFD_RELOC_16:
27919 if (fixP->fx_done || !seg->use_rela_p)
27920 md_number_to_chars (buf, value, 2);
27921 break;
27922
27923 #ifdef OBJ_ELF
27924 case BFD_RELOC_ARM_TLS_CALL:
27925 case BFD_RELOC_ARM_THM_TLS_CALL:
27926 case BFD_RELOC_ARM_TLS_DESCSEQ:
27927 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
27928 case BFD_RELOC_ARM_TLS_GOTDESC:
27929 case BFD_RELOC_ARM_TLS_GD32:
27930 case BFD_RELOC_ARM_TLS_LE32:
27931 case BFD_RELOC_ARM_TLS_IE32:
27932 case BFD_RELOC_ARM_TLS_LDM32:
27933 case BFD_RELOC_ARM_TLS_LDO32:
27934 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27935 break;
27936
27937 /* Same handling as above, but with the arm_fdpic guard. */
27938 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27939 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27940 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27941 if (arm_fdpic)
27942 {
27943 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27944 }
27945 else
27946 {
27947 as_bad_where (fixP->fx_file, fixP->fx_line,
27948 _("Relocation supported only in FDPIC mode"));
27949 }
27950 break;
27951
27952 case BFD_RELOC_ARM_GOT32:
27953 case BFD_RELOC_ARM_GOTOFF:
27954 break;
27955
27956 case BFD_RELOC_ARM_GOT_PREL:
27957 if (fixP->fx_done || !seg->use_rela_p)
27958 md_number_to_chars (buf, value, 4);
27959 break;
27960
27961 case BFD_RELOC_ARM_TARGET2:
27962 /* TARGET2 is not partial-inplace, so we need to write the
27963 addend here for REL targets, because it won't be written out
27964 during reloc processing later. */
27965 if (fixP->fx_done || !seg->use_rela_p)
27966 md_number_to_chars (buf, fixP->fx_offset, 4);
27967 break;
27968
27969 /* Relocations for FDPIC. */
27970 case BFD_RELOC_ARM_GOTFUNCDESC:
27971 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27972 case BFD_RELOC_ARM_FUNCDESC:
27973 if (arm_fdpic)
27974 {
27975 if (fixP->fx_done || !seg->use_rela_p)
27976 md_number_to_chars (buf, 0, 4);
27977 }
27978 else
27979 {
27980 as_bad_where (fixP->fx_file, fixP->fx_line,
27981 _("Relocation supported only in FDPIC mode"));
27982 }
27983 break;
27984 #endif
27985
27986 case BFD_RELOC_RVA:
27987 case BFD_RELOC_32:
27988 case BFD_RELOC_ARM_TARGET1:
27989 case BFD_RELOC_ARM_ROSEGREL32:
27990 case BFD_RELOC_ARM_SBREL32:
27991 case BFD_RELOC_32_PCREL:
27992 #ifdef TE_PE
27993 case BFD_RELOC_32_SECREL:
27994 #endif
27995 if (fixP->fx_done || !seg->use_rela_p)
27996 #ifdef TE_WINCE
27997 /* For WinCE we only do this for pcrel fixups. */
27998 if (fixP->fx_done || fixP->fx_pcrel)
27999 #endif
28000 md_number_to_chars (buf, value, 4);
28001 break;
28002
28003 #ifdef OBJ_ELF
28004 case BFD_RELOC_ARM_PREL31:
28005 if (fixP->fx_done || !seg->use_rela_p)
28006 {
28007 newval = md_chars_to_number (buf, 4) & 0x80000000;
28008 if ((value ^ (value >> 1)) & 0x40000000)
28009 {
28010 as_bad_where (fixP->fx_file, fixP->fx_line,
28011 _("rel31 relocation overflow"));
28012 }
28013 newval |= value & 0x7fffffff;
28014 md_number_to_chars (buf, newval, 4);
28015 }
28016 break;
28017 #endif
28018
28019 case BFD_RELOC_ARM_CP_OFF_IMM:
28020 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
28021 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
28022 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
28023 newval = md_chars_to_number (buf, INSN_SIZE);
28024 else
28025 newval = get_thumb32_insn (buf);
28026 if ((newval & 0x0f200f00) == 0x0d000900)
28027 {
28028 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
28029 has permitted values that are multiples of 2, in the range 0
28030 to 510. */
28031 if (value < -510 || value > 510 || (value & 1))
28032 as_bad_where (fixP->fx_file, fixP->fx_line,
28033 _("co-processor offset out of range"));
28034 }
28035 else if ((newval & 0xfe001f80) == 0xec000f80)
28036 {
28037 if (value < -511 || value > 512 || (value & 3))
28038 as_bad_where (fixP->fx_file, fixP->fx_line,
28039 _("co-processor offset out of range"));
28040 }
28041 else if (value < -1023 || value > 1023 || (value & 3))
28042 as_bad_where (fixP->fx_file, fixP->fx_line,
28043 _("co-processor offset out of range"));
28044 cp_off_common:
28045 sign = value > 0;
28046 if (value < 0)
28047 value = -value;
28048 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28049 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28050 newval = md_chars_to_number (buf, INSN_SIZE);
28051 else
28052 newval = get_thumb32_insn (buf);
28053 if (value == 0)
28054 {
28055 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28056 newval &= 0xffffff80;
28057 else
28058 newval &= 0xffffff00;
28059 }
28060 else
28061 {
28062 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28063 newval &= 0xff7fff80;
28064 else
28065 newval &= 0xff7fff00;
28066 if ((newval & 0x0f200f00) == 0x0d000900)
28067 {
28068 /* This is a fp16 vstr/vldr.
28069
28070 It requires the immediate offset in the instruction is shifted
28071 left by 1 to be a half-word offset.
28072
28073 Here, left shift by 1 first, and later right shift by 2
28074 should get the right offset. */
28075 value <<= 1;
28076 }
28077 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
28078 }
28079 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28080 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28081 md_number_to_chars (buf, newval, INSN_SIZE);
28082 else
28083 put_thumb32_insn (buf, newval);
28084 break;
28085
28086 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
28087 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
28088 if (value < -255 || value > 255)
28089 as_bad_where (fixP->fx_file, fixP->fx_line,
28090 _("co-processor offset out of range"));
28091 value *= 4;
28092 goto cp_off_common;
28093
28094 case BFD_RELOC_ARM_THUMB_OFFSET:
28095 newval = md_chars_to_number (buf, THUMB_SIZE);
28096 /* Exactly what ranges, and where the offset is inserted depends
28097 on the type of instruction, we can establish this from the
28098 top 4 bits. */
28099 switch (newval >> 12)
28100 {
28101 case 4: /* PC load. */
28102 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
28103 forced to zero for these loads; md_pcrel_from has already
28104 compensated for this. */
28105 if (value & 3)
28106 as_bad_where (fixP->fx_file, fixP->fx_line,
28107 _("invalid offset, target not word aligned (0x%08lX)"),
28108 (((unsigned long) fixP->fx_frag->fr_address
28109 + (unsigned long) fixP->fx_where) & ~3)
28110 + (unsigned long) value);
28111
28112 if (value & ~0x3fc)
28113 as_bad_where (fixP->fx_file, fixP->fx_line,
28114 _("invalid offset, value too big (0x%08lX)"),
28115 (long) value);
28116
28117 newval |= value >> 2;
28118 break;
28119
28120 case 9: /* SP load/store. */
28121 if (value & ~0x3fc)
28122 as_bad_where (fixP->fx_file, fixP->fx_line,
28123 _("invalid offset, value too big (0x%08lX)"),
28124 (long) value);
28125 newval |= value >> 2;
28126 break;
28127
28128 case 6: /* Word load/store. */
28129 if (value & ~0x7c)
28130 as_bad_where (fixP->fx_file, fixP->fx_line,
28131 _("invalid offset, value too big (0x%08lX)"),
28132 (long) value);
28133 newval |= value << 4; /* 6 - 2. */
28134 break;
28135
28136 case 7: /* Byte load/store. */
28137 if (value & ~0x1f)
28138 as_bad_where (fixP->fx_file, fixP->fx_line,
28139 _("invalid offset, value too big (0x%08lX)"),
28140 (long) value);
28141 newval |= value << 6;
28142 break;
28143
28144 case 8: /* Halfword load/store. */
28145 if (value & ~0x3e)
28146 as_bad_where (fixP->fx_file, fixP->fx_line,
28147 _("invalid offset, value too big (0x%08lX)"),
28148 (long) value);
28149 newval |= value << 5; /* 6 - 1. */
28150 break;
28151
28152 default:
28153 as_bad_where (fixP->fx_file, fixP->fx_line,
28154 "Unable to process relocation for thumb opcode: %lx",
28155 (unsigned long) newval);
28156 break;
28157 }
28158 md_number_to_chars (buf, newval, THUMB_SIZE);
28159 break;
28160
28161 case BFD_RELOC_ARM_THUMB_ADD:
28162 /* This is a complicated relocation, since we use it for all of
28163 the following immediate relocations:
28164
28165 3bit ADD/SUB
28166 8bit ADD/SUB
28167 9bit ADD/SUB SP word-aligned
28168 10bit ADD PC/SP word-aligned
28169
28170 The type of instruction being processed is encoded in the
28171 instruction field:
28172
28173 0x8000 SUB
28174 0x00F0 Rd
28175 0x000F Rs
28176 */
28177 newval = md_chars_to_number (buf, THUMB_SIZE);
28178 {
28179 int rd = (newval >> 4) & 0xf;
28180 int rs = newval & 0xf;
28181 int subtract = !!(newval & 0x8000);
28182
28183 /* Check for HI regs, only very restricted cases allowed:
28184 Adjusting SP, and using PC or SP to get an address. */
28185 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
28186 || (rs > 7 && rs != REG_SP && rs != REG_PC))
28187 as_bad_where (fixP->fx_file, fixP->fx_line,
28188 _("invalid Hi register with immediate"));
28189
28190 /* If value is negative, choose the opposite instruction. */
28191 if (value < 0)
28192 {
28193 value = -value;
28194 subtract = !subtract;
28195 if (value < 0)
28196 as_bad_where (fixP->fx_file, fixP->fx_line,
28197 _("immediate value out of range"));
28198 }
28199
28200 if (rd == REG_SP)
28201 {
28202 if (value & ~0x1fc)
28203 as_bad_where (fixP->fx_file, fixP->fx_line,
28204 _("invalid immediate for stack address calculation"));
28205 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
28206 newval |= value >> 2;
28207 }
28208 else if (rs == REG_PC || rs == REG_SP)
28209 {
28210 /* PR gas/18541. If the addition is for a defined symbol
28211 within range of an ADR instruction then accept it. */
28212 if (subtract
28213 && value == 4
28214 && fixP->fx_addsy != NULL)
28215 {
28216 subtract = 0;
28217
28218 if (! S_IS_DEFINED (fixP->fx_addsy)
28219 || S_GET_SEGMENT (fixP->fx_addsy) != seg
28220 || S_IS_WEAK (fixP->fx_addsy))
28221 {
28222 as_bad_where (fixP->fx_file, fixP->fx_line,
28223 _("address calculation needs a strongly defined nearby symbol"));
28224 }
28225 else
28226 {
28227 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
28228
28229 /* Round up to the next 4-byte boundary. */
28230 if (v & 3)
28231 v = (v + 3) & ~ 3;
28232 else
28233 v += 4;
28234 v = S_GET_VALUE (fixP->fx_addsy) - v;
28235
28236 if (v & ~0x3fc)
28237 {
28238 as_bad_where (fixP->fx_file, fixP->fx_line,
28239 _("symbol too far away"));
28240 }
28241 else
28242 {
28243 fixP->fx_done = 1;
28244 value = v;
28245 }
28246 }
28247 }
28248
28249 if (subtract || value & ~0x3fc)
28250 as_bad_where (fixP->fx_file, fixP->fx_line,
28251 _("invalid immediate for address calculation (value = 0x%08lX)"),
28252 (unsigned long) (subtract ? - value : value));
28253 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
28254 newval |= rd << 8;
28255 newval |= value >> 2;
28256 }
28257 else if (rs == rd)
28258 {
28259 if (value & ~0xff)
28260 as_bad_where (fixP->fx_file, fixP->fx_line,
28261 _("immediate value out of range"));
28262 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
28263 newval |= (rd << 8) | value;
28264 }
28265 else
28266 {
28267 if (value & ~0x7)
28268 as_bad_where (fixP->fx_file, fixP->fx_line,
28269 _("immediate value out of range"));
28270 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
28271 newval |= rd | (rs << 3) | (value << 6);
28272 }
28273 }
28274 md_number_to_chars (buf, newval, THUMB_SIZE);
28275 break;
28276
28277 case BFD_RELOC_ARM_THUMB_IMM:
28278 newval = md_chars_to_number (buf, THUMB_SIZE);
28279 if (value < 0 || value > 255)
28280 as_bad_where (fixP->fx_file, fixP->fx_line,
28281 _("invalid immediate: %ld is out of range"),
28282 (long) value);
28283 newval |= value;
28284 md_number_to_chars (buf, newval, THUMB_SIZE);
28285 break;
28286
28287 case BFD_RELOC_ARM_THUMB_SHIFT:
28288 /* 5bit shift value (0..32). LSL cannot take 32. */
28289 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
28290 temp = newval & 0xf800;
28291 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
28292 as_bad_where (fixP->fx_file, fixP->fx_line,
28293 _("invalid shift value: %ld"), (long) value);
28294 /* Shifts of zero must be encoded as LSL. */
28295 if (value == 0)
28296 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
28297 /* Shifts of 32 are encoded as zero. */
28298 else if (value == 32)
28299 value = 0;
28300 newval |= value << 6;
28301 md_number_to_chars (buf, newval, THUMB_SIZE);
28302 break;
28303
28304 case BFD_RELOC_VTABLE_INHERIT:
28305 case BFD_RELOC_VTABLE_ENTRY:
28306 fixP->fx_done = 0;
28307 return;
28308
28309 case BFD_RELOC_ARM_MOVW:
28310 case BFD_RELOC_ARM_MOVT:
28311 case BFD_RELOC_ARM_THUMB_MOVW:
28312 case BFD_RELOC_ARM_THUMB_MOVT:
28313 if (fixP->fx_done || !seg->use_rela_p)
28314 {
28315 /* REL format relocations are limited to a 16-bit addend. */
28316 if (!fixP->fx_done)
28317 {
28318 if (value < -0x8000 || value > 0x7fff)
28319 as_bad_where (fixP->fx_file, fixP->fx_line,
28320 _("offset out of range"));
28321 }
28322 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28323 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28324 {
28325 value >>= 16;
28326 }
28327
28328 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28329 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28330 {
28331 newval = get_thumb32_insn (buf);
28332 newval &= 0xfbf08f00;
28333 newval |= (value & 0xf000) << 4;
28334 newval |= (value & 0x0800) << 15;
28335 newval |= (value & 0x0700) << 4;
28336 newval |= (value & 0x00ff);
28337 put_thumb32_insn (buf, newval);
28338 }
28339 else
28340 {
28341 newval = md_chars_to_number (buf, 4);
28342 newval &= 0xfff0f000;
28343 newval |= value & 0x0fff;
28344 newval |= (value & 0xf000) << 4;
28345 md_number_to_chars (buf, newval, 4);
28346 }
28347 }
28348 return;
28349
28350 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28351 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28352 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28353 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28354 gas_assert (!fixP->fx_done);
28355 {
28356 bfd_vma insn;
28357 bfd_boolean is_mov;
28358 bfd_vma encoded_addend = value;
28359
28360 /* Check that addend can be encoded in instruction. */
28361 if (!seg->use_rela_p && (value < 0 || value > 255))
28362 as_bad_where (fixP->fx_file, fixP->fx_line,
28363 _("the offset 0x%08lX is not representable"),
28364 (unsigned long) encoded_addend);
28365
28366 /* Extract the instruction. */
28367 insn = md_chars_to_number (buf, THUMB_SIZE);
28368 is_mov = (insn & 0xf800) == 0x2000;
28369
28370 /* Encode insn. */
28371 if (is_mov)
28372 {
28373 if (!seg->use_rela_p)
28374 insn |= encoded_addend;
28375 }
28376 else
28377 {
28378 int rd, rs;
28379
28380 /* Extract the instruction. */
28381 /* Encoding is the following
28382 0x8000 SUB
28383 0x00F0 Rd
28384 0x000F Rs
28385 */
28386 /* The following conditions must be true :
28387 - ADD
28388 - Rd == Rs
28389 - Rd <= 7
28390 */
28391 rd = (insn >> 4) & 0xf;
28392 rs = insn & 0xf;
28393 if ((insn & 0x8000) || (rd != rs) || rd > 7)
28394 as_bad_where (fixP->fx_file, fixP->fx_line,
28395 _("Unable to process relocation for thumb opcode: %lx"),
28396 (unsigned long) insn);
28397
28398 /* Encode as ADD immediate8 thumb 1 code. */
28399 insn = 0x3000 | (rd << 8);
28400
28401 /* Place the encoded addend into the first 8 bits of the
28402 instruction. */
28403 if (!seg->use_rela_p)
28404 insn |= encoded_addend;
28405 }
28406
28407 /* Update the instruction. */
28408 md_number_to_chars (buf, insn, THUMB_SIZE);
28409 }
28410 break;
28411
28412 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28413 case BFD_RELOC_ARM_ALU_PC_G0:
28414 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28415 case BFD_RELOC_ARM_ALU_PC_G1:
28416 case BFD_RELOC_ARM_ALU_PC_G2:
28417 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28418 case BFD_RELOC_ARM_ALU_SB_G0:
28419 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28420 case BFD_RELOC_ARM_ALU_SB_G1:
28421 case BFD_RELOC_ARM_ALU_SB_G2:
28422 gas_assert (!fixP->fx_done);
28423 if (!seg->use_rela_p)
28424 {
28425 bfd_vma insn;
28426 bfd_vma encoded_addend;
28427 bfd_vma addend_abs = llabs (value);
28428
28429 /* Check that the absolute value of the addend can be
28430 expressed as an 8-bit constant plus a rotation. */
28431 encoded_addend = encode_arm_immediate (addend_abs);
28432 if (encoded_addend == (unsigned int) FAIL)
28433 as_bad_where (fixP->fx_file, fixP->fx_line,
28434 _("the offset 0x%08lX is not representable"),
28435 (unsigned long) addend_abs);
28436
28437 /* Extract the instruction. */
28438 insn = md_chars_to_number (buf, INSN_SIZE);
28439
28440 /* If the addend is positive, use an ADD instruction.
28441 Otherwise use a SUB. Take care not to destroy the S bit. */
28442 insn &= 0xff1fffff;
28443 if (value < 0)
28444 insn |= 1 << 22;
28445 else
28446 insn |= 1 << 23;
28447
28448 /* Place the encoded addend into the first 12 bits of the
28449 instruction. */
28450 insn &= 0xfffff000;
28451 insn |= encoded_addend;
28452
28453 /* Update the instruction. */
28454 md_number_to_chars (buf, insn, INSN_SIZE);
28455 }
28456 break;
28457
28458 case BFD_RELOC_ARM_LDR_PC_G0:
28459 case BFD_RELOC_ARM_LDR_PC_G1:
28460 case BFD_RELOC_ARM_LDR_PC_G2:
28461 case BFD_RELOC_ARM_LDR_SB_G0:
28462 case BFD_RELOC_ARM_LDR_SB_G1:
28463 case BFD_RELOC_ARM_LDR_SB_G2:
28464 gas_assert (!fixP->fx_done);
28465 if (!seg->use_rela_p)
28466 {
28467 bfd_vma insn;
28468 bfd_vma addend_abs = llabs (value);
28469
28470 /* Check that the absolute value of the addend can be
28471 encoded in 12 bits. */
28472 if (addend_abs >= 0x1000)
28473 as_bad_where (fixP->fx_file, fixP->fx_line,
28474 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
28475 (unsigned long) addend_abs);
28476
28477 /* Extract the instruction. */
28478 insn = md_chars_to_number (buf, INSN_SIZE);
28479
28480 /* If the addend is negative, clear bit 23 of the instruction.
28481 Otherwise set it. */
28482 if (value < 0)
28483 insn &= ~(1 << 23);
28484 else
28485 insn |= 1 << 23;
28486
28487 /* Place the absolute value of the addend into the first 12 bits
28488 of the instruction. */
28489 insn &= 0xfffff000;
28490 insn |= addend_abs;
28491
28492 /* Update the instruction. */
28493 md_number_to_chars (buf, insn, INSN_SIZE);
28494 }
28495 break;
28496
28497 case BFD_RELOC_ARM_LDRS_PC_G0:
28498 case BFD_RELOC_ARM_LDRS_PC_G1:
28499 case BFD_RELOC_ARM_LDRS_PC_G2:
28500 case BFD_RELOC_ARM_LDRS_SB_G0:
28501 case BFD_RELOC_ARM_LDRS_SB_G1:
28502 case BFD_RELOC_ARM_LDRS_SB_G2:
28503 gas_assert (!fixP->fx_done);
28504 if (!seg->use_rela_p)
28505 {
28506 bfd_vma insn;
28507 bfd_vma addend_abs = llabs (value);
28508
28509 /* Check that the absolute value of the addend can be
28510 encoded in 8 bits. */
28511 if (addend_abs >= 0x100)
28512 as_bad_where (fixP->fx_file, fixP->fx_line,
28513 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
28514 (unsigned long) addend_abs);
28515
28516 /* Extract the instruction. */
28517 insn = md_chars_to_number (buf, INSN_SIZE);
28518
28519 /* If the addend is negative, clear bit 23 of the instruction.
28520 Otherwise set it. */
28521 if (value < 0)
28522 insn &= ~(1 << 23);
28523 else
28524 insn |= 1 << 23;
28525
28526 /* Place the first four bits of the absolute value of the addend
28527 into the first 4 bits of the instruction, and the remaining
28528 four into bits 8 .. 11. */
28529 insn &= 0xfffff0f0;
28530 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
28531
28532 /* Update the instruction. */
28533 md_number_to_chars (buf, insn, INSN_SIZE);
28534 }
28535 break;
28536
28537 case BFD_RELOC_ARM_LDC_PC_G0:
28538 case BFD_RELOC_ARM_LDC_PC_G1:
28539 case BFD_RELOC_ARM_LDC_PC_G2:
28540 case BFD_RELOC_ARM_LDC_SB_G0:
28541 case BFD_RELOC_ARM_LDC_SB_G1:
28542 case BFD_RELOC_ARM_LDC_SB_G2:
28543 gas_assert (!fixP->fx_done);
28544 if (!seg->use_rela_p)
28545 {
28546 bfd_vma insn;
28547 bfd_vma addend_abs = llabs (value);
28548
28549 /* Check that the absolute value of the addend is a multiple of
28550 four and, when divided by four, fits in 8 bits. */
28551 if (addend_abs & 0x3)
28552 as_bad_where (fixP->fx_file, fixP->fx_line,
28553 _("bad offset 0x%08lX (must be word-aligned)"),
28554 (unsigned long) addend_abs);
28555
28556 if ((addend_abs >> 2) > 0xff)
28557 as_bad_where (fixP->fx_file, fixP->fx_line,
28558 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28559 (unsigned long) addend_abs);
28560
28561 /* Extract the instruction. */
28562 insn = md_chars_to_number (buf, INSN_SIZE);
28563
28564 /* If the addend is negative, clear bit 23 of the instruction.
28565 Otherwise set it. */
28566 if (value < 0)
28567 insn &= ~(1 << 23);
28568 else
28569 insn |= 1 << 23;
28570
28571 /* Place the addend (divided by four) into the first eight
28572 bits of the instruction. */
28573 insn &= 0xfffffff0;
28574 insn |= addend_abs >> 2;
28575
28576 /* Update the instruction. */
28577 md_number_to_chars (buf, insn, INSN_SIZE);
28578 }
28579 break;
28580
28581 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28582 if (fixP->fx_addsy
28583 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28584 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28585 && ARM_IS_FUNC (fixP->fx_addsy)
28586 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28587 {
28588 /* Force a relocation for a branch 5 bits wide. */
28589 fixP->fx_done = 0;
28590 }
28591 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
28592 as_bad_where (fixP->fx_file, fixP->fx_line,
28593 BAD_BRANCH_OFF);
28594
28595 if (fixP->fx_done || !seg->use_rela_p)
28596 {
28597 addressT boff = value >> 1;
28598
28599 newval = md_chars_to_number (buf, THUMB_SIZE);
28600 newval |= (boff << 7);
28601 md_number_to_chars (buf, newval, THUMB_SIZE);
28602 }
28603 break;
28604
28605 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28606 if (fixP->fx_addsy
28607 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28608 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28609 && ARM_IS_FUNC (fixP->fx_addsy)
28610 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28611 {
28612 fixP->fx_done = 0;
28613 }
28614 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
28615 as_bad_where (fixP->fx_file, fixP->fx_line,
28616 _("branch out of range"));
28617
28618 if (fixP->fx_done || !seg->use_rela_p)
28619 {
28620 newval = md_chars_to_number (buf, THUMB_SIZE);
28621
28622 addressT boff = ((newval & 0x0780) >> 7) << 1;
28623 addressT diff = value - boff;
28624
28625 if (diff == 4)
28626 {
28627 newval |= 1 << 1; /* T bit. */
28628 }
28629 else if (diff != 2)
28630 {
28631 as_bad_where (fixP->fx_file, fixP->fx_line,
28632 _("out of range label-relative fixup value"));
28633 }
28634 md_number_to_chars (buf, newval, THUMB_SIZE);
28635 }
28636 break;
28637
28638 case BFD_RELOC_ARM_THUMB_BF17:
28639 if (fixP->fx_addsy
28640 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28641 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28642 && ARM_IS_FUNC (fixP->fx_addsy)
28643 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28644 {
28645 /* Force a relocation for a branch 17 bits wide. */
28646 fixP->fx_done = 0;
28647 }
28648
28649 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28650 as_bad_where (fixP->fx_file, fixP->fx_line,
28651 BAD_BRANCH_OFF);
28652
28653 if (fixP->fx_done || !seg->use_rela_p)
28654 {
28655 offsetT newval2;
28656 addressT immA, immB, immC;
28657
28658 immA = (value & 0x0001f000) >> 12;
28659 immB = (value & 0x00000ffc) >> 2;
28660 immC = (value & 0x00000002) >> 1;
28661
28662 newval = md_chars_to_number (buf, THUMB_SIZE);
28663 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28664 newval |= immA;
28665 newval2 |= (immC << 11) | (immB << 1);
28666 md_number_to_chars (buf, newval, THUMB_SIZE);
28667 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28668 }
28669 break;
28670
28671 case BFD_RELOC_ARM_THUMB_BF19:
28672 if (fixP->fx_addsy
28673 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28674 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28675 && ARM_IS_FUNC (fixP->fx_addsy)
28676 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28677 {
28678 /* Force a relocation for a branch 19 bits wide. */
28679 fixP->fx_done = 0;
28680 }
28681
28682 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28683 as_bad_where (fixP->fx_file, fixP->fx_line,
28684 BAD_BRANCH_OFF);
28685
28686 if (fixP->fx_done || !seg->use_rela_p)
28687 {
28688 offsetT newval2;
28689 addressT immA, immB, immC;
28690
28691 immA = (value & 0x0007f000) >> 12;
28692 immB = (value & 0x00000ffc) >> 2;
28693 immC = (value & 0x00000002) >> 1;
28694
28695 newval = md_chars_to_number (buf, THUMB_SIZE);
28696 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28697 newval |= immA;
28698 newval2 |= (immC << 11) | (immB << 1);
28699 md_number_to_chars (buf, newval, THUMB_SIZE);
28700 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28701 }
28702 break;
28703
28704 case BFD_RELOC_ARM_THUMB_BF13:
28705 if (fixP->fx_addsy
28706 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28707 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28708 && ARM_IS_FUNC (fixP->fx_addsy)
28709 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28710 {
28711 /* Force a relocation for a branch 13 bits wide. */
28712 fixP->fx_done = 0;
28713 }
28714
28715 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28716 as_bad_where (fixP->fx_file, fixP->fx_line,
28717 BAD_BRANCH_OFF);
28718
28719 if (fixP->fx_done || !seg->use_rela_p)
28720 {
28721 offsetT newval2;
28722 addressT immA, immB, immC;
28723
28724 immA = (value & 0x00001000) >> 12;
28725 immB = (value & 0x00000ffc) >> 2;
28726 immC = (value & 0x00000002) >> 1;
28727
28728 newval = md_chars_to_number (buf, THUMB_SIZE);
28729 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28730 newval |= immA;
28731 newval2 |= (immC << 11) | (immB << 1);
28732 md_number_to_chars (buf, newval, THUMB_SIZE);
28733 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28734 }
28735 break;
28736
28737 case BFD_RELOC_ARM_THUMB_LOOP12:
28738 if (fixP->fx_addsy
28739 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28740 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28741 && ARM_IS_FUNC (fixP->fx_addsy)
28742 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28743 {
28744 /* Force a relocation for a branch 12 bits wide. */
28745 fixP->fx_done = 0;
28746 }
28747
28748 bfd_vma insn = get_thumb32_insn (buf);
28749 /* le lr, <label>, le <label> or letp lr, <label> */
28750 if (((insn & 0xffffffff) == 0xf00fc001)
28751 || ((insn & 0xffffffff) == 0xf02fc001)
28752 || ((insn & 0xffffffff) == 0xf01fc001))
28753 value = -value;
28754
28755 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28756 as_bad_where (fixP->fx_file, fixP->fx_line,
28757 BAD_BRANCH_OFF);
28758 if (fixP->fx_done || !seg->use_rela_p)
28759 {
28760 addressT imml, immh;
28761
28762 immh = (value & 0x00000ffc) >> 2;
28763 imml = (value & 0x00000002) >> 1;
28764
28765 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28766 newval |= (imml << 11) | (immh << 1);
28767 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28768 }
28769 break;
28770
28771 case BFD_RELOC_ARM_V4BX:
28772 /* This will need to go in the object file. */
28773 fixP->fx_done = 0;
28774 break;
28775
28776 case BFD_RELOC_UNUSED:
28777 default:
28778 as_bad_where (fixP->fx_file, fixP->fx_line,
28779 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28780 }
28781 }
28782
28783 /* Translate internal representation of relocation info to BFD target
28784 format. */
28785
28786 arelent *
28787 tc_gen_reloc (asection *section, fixS *fixp)
28788 {
28789 arelent * reloc;
28790 bfd_reloc_code_real_type code;
28791
28792 reloc = XNEW (arelent);
28793
28794 reloc->sym_ptr_ptr = XNEW (asymbol *);
28795 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28796 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
28797
28798 if (fixp->fx_pcrel)
28799 {
28800 if (section->use_rela_p)
28801 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28802 else
28803 fixp->fx_offset = reloc->address;
28804 }
28805 reloc->addend = fixp->fx_offset;
28806
28807 switch (fixp->fx_r_type)
28808 {
28809 case BFD_RELOC_8:
28810 if (fixp->fx_pcrel)
28811 {
28812 code = BFD_RELOC_8_PCREL;
28813 break;
28814 }
28815 /* Fall through. */
28816
28817 case BFD_RELOC_16:
28818 if (fixp->fx_pcrel)
28819 {
28820 code = BFD_RELOC_16_PCREL;
28821 break;
28822 }
28823 /* Fall through. */
28824
28825 case BFD_RELOC_32:
28826 if (fixp->fx_pcrel)
28827 {
28828 code = BFD_RELOC_32_PCREL;
28829 break;
28830 }
28831 /* Fall through. */
28832
28833 case BFD_RELOC_ARM_MOVW:
28834 if (fixp->fx_pcrel)
28835 {
28836 code = BFD_RELOC_ARM_MOVW_PCREL;
28837 break;
28838 }
28839 /* Fall through. */
28840
28841 case BFD_RELOC_ARM_MOVT:
28842 if (fixp->fx_pcrel)
28843 {
28844 code = BFD_RELOC_ARM_MOVT_PCREL;
28845 break;
28846 }
28847 /* Fall through. */
28848
28849 case BFD_RELOC_ARM_THUMB_MOVW:
28850 if (fixp->fx_pcrel)
28851 {
28852 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
28853 break;
28854 }
28855 /* Fall through. */
28856
28857 case BFD_RELOC_ARM_THUMB_MOVT:
28858 if (fixp->fx_pcrel)
28859 {
28860 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
28861 break;
28862 }
28863 /* Fall through. */
28864
28865 case BFD_RELOC_NONE:
28866 case BFD_RELOC_ARM_PCREL_BRANCH:
28867 case BFD_RELOC_ARM_PCREL_BLX:
28868 case BFD_RELOC_RVA:
28869 case BFD_RELOC_THUMB_PCREL_BRANCH7:
28870 case BFD_RELOC_THUMB_PCREL_BRANCH9:
28871 case BFD_RELOC_THUMB_PCREL_BRANCH12:
28872 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28873 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28874 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28875 case BFD_RELOC_VTABLE_ENTRY:
28876 case BFD_RELOC_VTABLE_INHERIT:
28877 #ifdef TE_PE
28878 case BFD_RELOC_32_SECREL:
28879 #endif
28880 code = fixp->fx_r_type;
28881 break;
28882
28883 case BFD_RELOC_THUMB_PCREL_BLX:
28884 #ifdef OBJ_ELF
28885 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28886 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
28887 else
28888 #endif
28889 code = BFD_RELOC_THUMB_PCREL_BLX;
28890 break;
28891
28892 case BFD_RELOC_ARM_LITERAL:
28893 case BFD_RELOC_ARM_HWLITERAL:
28894 /* If this is called then the a literal has
28895 been referenced across a section boundary. */
28896 as_bad_where (fixp->fx_file, fixp->fx_line,
28897 _("literal referenced across section boundary"));
28898 return NULL;
28899
28900 #ifdef OBJ_ELF
28901 case BFD_RELOC_ARM_TLS_CALL:
28902 case BFD_RELOC_ARM_THM_TLS_CALL:
28903 case BFD_RELOC_ARM_TLS_DESCSEQ:
28904 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
28905 case BFD_RELOC_ARM_GOT32:
28906 case BFD_RELOC_ARM_GOTOFF:
28907 case BFD_RELOC_ARM_GOT_PREL:
28908 case BFD_RELOC_ARM_PLT32:
28909 case BFD_RELOC_ARM_TARGET1:
28910 case BFD_RELOC_ARM_ROSEGREL32:
28911 case BFD_RELOC_ARM_SBREL32:
28912 case BFD_RELOC_ARM_PREL31:
28913 case BFD_RELOC_ARM_TARGET2:
28914 case BFD_RELOC_ARM_TLS_LDO32:
28915 case BFD_RELOC_ARM_PCREL_CALL:
28916 case BFD_RELOC_ARM_PCREL_JUMP:
28917 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28918 case BFD_RELOC_ARM_ALU_PC_G0:
28919 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28920 case BFD_RELOC_ARM_ALU_PC_G1:
28921 case BFD_RELOC_ARM_ALU_PC_G2:
28922 case BFD_RELOC_ARM_LDR_PC_G0:
28923 case BFD_RELOC_ARM_LDR_PC_G1:
28924 case BFD_RELOC_ARM_LDR_PC_G2:
28925 case BFD_RELOC_ARM_LDRS_PC_G0:
28926 case BFD_RELOC_ARM_LDRS_PC_G1:
28927 case BFD_RELOC_ARM_LDRS_PC_G2:
28928 case BFD_RELOC_ARM_LDC_PC_G0:
28929 case BFD_RELOC_ARM_LDC_PC_G1:
28930 case BFD_RELOC_ARM_LDC_PC_G2:
28931 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28932 case BFD_RELOC_ARM_ALU_SB_G0:
28933 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28934 case BFD_RELOC_ARM_ALU_SB_G1:
28935 case BFD_RELOC_ARM_ALU_SB_G2:
28936 case BFD_RELOC_ARM_LDR_SB_G0:
28937 case BFD_RELOC_ARM_LDR_SB_G1:
28938 case BFD_RELOC_ARM_LDR_SB_G2:
28939 case BFD_RELOC_ARM_LDRS_SB_G0:
28940 case BFD_RELOC_ARM_LDRS_SB_G1:
28941 case BFD_RELOC_ARM_LDRS_SB_G2:
28942 case BFD_RELOC_ARM_LDC_SB_G0:
28943 case BFD_RELOC_ARM_LDC_SB_G1:
28944 case BFD_RELOC_ARM_LDC_SB_G2:
28945 case BFD_RELOC_ARM_V4BX:
28946 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28947 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28948 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28949 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28950 case BFD_RELOC_ARM_GOTFUNCDESC:
28951 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28952 case BFD_RELOC_ARM_FUNCDESC:
28953 case BFD_RELOC_ARM_THUMB_BF17:
28954 case BFD_RELOC_ARM_THUMB_BF19:
28955 case BFD_RELOC_ARM_THUMB_BF13:
28956 code = fixp->fx_r_type;
28957 break;
28958
28959 case BFD_RELOC_ARM_TLS_GOTDESC:
28960 case BFD_RELOC_ARM_TLS_GD32:
28961 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
28962 case BFD_RELOC_ARM_TLS_LE32:
28963 case BFD_RELOC_ARM_TLS_IE32:
28964 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
28965 case BFD_RELOC_ARM_TLS_LDM32:
28966 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
28967 /* BFD will include the symbol's address in the addend.
28968 But we don't want that, so subtract it out again here. */
28969 if (!S_IS_COMMON (fixp->fx_addsy))
28970 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28971 code = fixp->fx_r_type;
28972 break;
28973 #endif
28974
28975 case BFD_RELOC_ARM_IMMEDIATE:
28976 as_bad_where (fixp->fx_file, fixp->fx_line,
28977 _("internal relocation (type: IMMEDIATE) not fixed up"));
28978 return NULL;
28979
28980 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28981 as_bad_where (fixp->fx_file, fixp->fx_line,
28982 _("ADRL used for a symbol not defined in the same file"));
28983 return NULL;
28984
28985 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28986 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28987 case BFD_RELOC_ARM_THUMB_LOOP12:
28988 as_bad_where (fixp->fx_file, fixp->fx_line,
28989 _("%s used for a symbol not defined in the same file"),
28990 bfd_get_reloc_code_name (fixp->fx_r_type));
28991 return NULL;
28992
28993 case BFD_RELOC_ARM_OFFSET_IMM:
28994 if (section->use_rela_p)
28995 {
28996 code = fixp->fx_r_type;
28997 break;
28998 }
28999
29000 if (fixp->fx_addsy != NULL
29001 && !S_IS_DEFINED (fixp->fx_addsy)
29002 && S_IS_LOCAL (fixp->fx_addsy))
29003 {
29004 as_bad_where (fixp->fx_file, fixp->fx_line,
29005 _("undefined local label `%s'"),
29006 S_GET_NAME (fixp->fx_addsy));
29007 return NULL;
29008 }
29009
29010 as_bad_where (fixp->fx_file, fixp->fx_line,
29011 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
29012 return NULL;
29013
29014 default:
29015 {
29016 const char * type;
29017
29018 switch (fixp->fx_r_type)
29019 {
29020 case BFD_RELOC_NONE: type = "NONE"; break;
29021 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
29022 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
29023 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
29024 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
29025 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
29026 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
29027 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
29028 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
29029 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
29030 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
29031 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
29032 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
29033 default: type = _("<unknown>"); break;
29034 }
29035 as_bad_where (fixp->fx_file, fixp->fx_line,
29036 _("cannot represent %s relocation in this object file format"),
29037 type);
29038 return NULL;
29039 }
29040 }
29041
29042 #ifdef OBJ_ELF
29043 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
29044 && GOT_symbol
29045 && fixp->fx_addsy == GOT_symbol)
29046 {
29047 code = BFD_RELOC_ARM_GOTPC;
29048 reloc->addend = fixp->fx_offset = reloc->address;
29049 }
29050 #endif
29051
29052 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
29053
29054 if (reloc->howto == NULL)
29055 {
29056 as_bad_where (fixp->fx_file, fixp->fx_line,
29057 _("cannot represent %s relocation in this object file format"),
29058 bfd_get_reloc_code_name (code));
29059 return NULL;
29060 }
29061
29062 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
29063 vtable entry to be used in the relocation's section offset. */
29064 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
29065 reloc->address = fixp->fx_offset;
29066
29067 return reloc;
29068 }
29069
29070 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
29071
29072 void
29073 cons_fix_new_arm (fragS * frag,
29074 int where,
29075 int size,
29076 expressionS * exp,
29077 bfd_reloc_code_real_type reloc)
29078 {
29079 int pcrel = 0;
29080
29081 /* Pick a reloc.
29082 FIXME: @@ Should look at CPU word size. */
29083 switch (size)
29084 {
29085 case 1:
29086 reloc = BFD_RELOC_8;
29087 break;
29088 case 2:
29089 reloc = BFD_RELOC_16;
29090 break;
29091 case 4:
29092 default:
29093 reloc = BFD_RELOC_32;
29094 break;
29095 case 8:
29096 reloc = BFD_RELOC_64;
29097 break;
29098 }
29099
29100 #ifdef TE_PE
29101 if (exp->X_op == O_secrel)
29102 {
29103 exp->X_op = O_symbol;
29104 reloc = BFD_RELOC_32_SECREL;
29105 }
29106 #endif
29107
29108 fix_new_exp (frag, where, size, exp, pcrel, reloc);
29109 }
29110
29111 #if defined (OBJ_COFF)
29112 void
29113 arm_validate_fix (fixS * fixP)
29114 {
29115 /* If the destination of the branch is a defined symbol which does not have
29116 the THUMB_FUNC attribute, then we must be calling a function which has
29117 the (interfacearm) attribute. We look for the Thumb entry point to that
29118 function and change the branch to refer to that function instead. */
29119 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
29120 && fixP->fx_addsy != NULL
29121 && S_IS_DEFINED (fixP->fx_addsy)
29122 && ! THUMB_IS_FUNC (fixP->fx_addsy))
29123 {
29124 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
29125 }
29126 }
29127 #endif
29128
29129
29130 int
29131 arm_force_relocation (struct fix * fixp)
29132 {
29133 #if defined (OBJ_COFF) && defined (TE_PE)
29134 if (fixp->fx_r_type == BFD_RELOC_RVA)
29135 return 1;
29136 #endif
29137
29138 /* In case we have a call or a branch to a function in ARM ISA mode from
29139 a thumb function or vice-versa force the relocation. These relocations
29140 are cleared off for some cores that might have blx and simple transformations
29141 are possible. */
29142
29143 #ifdef OBJ_ELF
29144 switch (fixp->fx_r_type)
29145 {
29146 case BFD_RELOC_ARM_PCREL_JUMP:
29147 case BFD_RELOC_ARM_PCREL_CALL:
29148 case BFD_RELOC_THUMB_PCREL_BLX:
29149 if (THUMB_IS_FUNC (fixp->fx_addsy))
29150 return 1;
29151 break;
29152
29153 case BFD_RELOC_ARM_PCREL_BLX:
29154 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29155 case BFD_RELOC_THUMB_PCREL_BRANCH20:
29156 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29157 if (ARM_IS_FUNC (fixp->fx_addsy))
29158 return 1;
29159 break;
29160
29161 default:
29162 break;
29163 }
29164 #endif
29165
29166 /* Resolve these relocations even if the symbol is extern or weak.
29167 Technically this is probably wrong due to symbol preemption.
29168 In practice these relocations do not have enough range to be useful
29169 at dynamic link time, and some code (e.g. in the Linux kernel)
29170 expects these references to be resolved. */
29171 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
29172 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
29173 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
29174 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
29175 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
29176 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
29177 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
29178 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
29179 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
29180 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
29181 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
29182 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
29183 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
29184 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
29185 return 0;
29186
29187 /* Always leave these relocations for the linker. */
29188 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29189 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29190 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29191 return 1;
29192
29193 /* Always generate relocations against function symbols. */
29194 if (fixp->fx_r_type == BFD_RELOC_32
29195 && fixp->fx_addsy
29196 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
29197 return 1;
29198
29199 return generic_force_reloc (fixp);
29200 }
29201
29202 #if defined (OBJ_ELF) || defined (OBJ_COFF)
29203 /* Relocations against function names must be left unadjusted,
29204 so that the linker can use this information to generate interworking
29205 stubs. The MIPS version of this function
29206 also prevents relocations that are mips-16 specific, but I do not
29207 know why it does this.
29208
29209 FIXME:
29210 There is one other problem that ought to be addressed here, but
29211 which currently is not: Taking the address of a label (rather
29212 than a function) and then later jumping to that address. Such
29213 addresses also ought to have their bottom bit set (assuming that
29214 they reside in Thumb code), but at the moment they will not. */
29215
29216 bfd_boolean
29217 arm_fix_adjustable (fixS * fixP)
29218 {
29219 if (fixP->fx_addsy == NULL)
29220 return 1;
29221
29222 /* Preserve relocations against symbols with function type. */
29223 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
29224 return FALSE;
29225
29226 if (THUMB_IS_FUNC (fixP->fx_addsy)
29227 && fixP->fx_subsy == NULL)
29228 return FALSE;
29229
29230 /* We need the symbol name for the VTABLE entries. */
29231 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
29232 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
29233 return FALSE;
29234
29235 /* Don't allow symbols to be discarded on GOT related relocs. */
29236 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
29237 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
29238 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
29239 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
29240 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
29241 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
29242 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
29243 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
29244 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
29245 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
29246 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
29247 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
29248 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
29249 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
29250 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
29251 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
29252 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
29253 return FALSE;
29254
29255 /* Similarly for group relocations. */
29256 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29257 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29258 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29259 return FALSE;
29260
29261 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
29262 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
29263 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
29264 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
29265 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
29266 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
29267 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
29268 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
29269 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
29270 return FALSE;
29271
29272 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
29273 offsets, so keep these symbols. */
29274 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
29275 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
29276 return FALSE;
29277
29278 return TRUE;
29279 }
29280 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
29281
29282 #ifdef OBJ_ELF
29283 const char *
29284 elf32_arm_target_format (void)
29285 {
29286 #ifdef TE_SYMBIAN
29287 return (target_big_endian
29288 ? "elf32-bigarm-symbian"
29289 : "elf32-littlearm-symbian");
29290 #elif defined (TE_VXWORKS)
29291 return (target_big_endian
29292 ? "elf32-bigarm-vxworks"
29293 : "elf32-littlearm-vxworks");
29294 #elif defined (TE_NACL)
29295 return (target_big_endian
29296 ? "elf32-bigarm-nacl"
29297 : "elf32-littlearm-nacl");
29298 #else
29299 if (arm_fdpic)
29300 {
29301 if (target_big_endian)
29302 return "elf32-bigarm-fdpic";
29303 else
29304 return "elf32-littlearm-fdpic";
29305 }
29306 else
29307 {
29308 if (target_big_endian)
29309 return "elf32-bigarm";
29310 else
29311 return "elf32-littlearm";
29312 }
29313 #endif
29314 }
29315
29316 void
29317 armelf_frob_symbol (symbolS * symp,
29318 int * puntp)
29319 {
29320 elf_frob_symbol (symp, puntp);
29321 }
29322 #endif
29323
29324 /* MD interface: Finalization. */
29325
29326 void
29327 arm_cleanup (void)
29328 {
29329 literal_pool * pool;
29330
29331 /* Ensure that all the predication blocks are properly closed. */
29332 check_pred_blocks_finished ();
29333
29334 for (pool = list_of_pools; pool; pool = pool->next)
29335 {
29336 /* Put it at the end of the relevant section. */
29337 subseg_set (pool->section, pool->sub_section);
29338 #ifdef OBJ_ELF
29339 arm_elf_change_section ();
29340 #endif
29341 s_ltorg (0);
29342 }
29343 }
29344
29345 #ifdef OBJ_ELF
29346 /* Remove any excess mapping symbols generated for alignment frags in
29347 SEC. We may have created a mapping symbol before a zero byte
29348 alignment; remove it if there's a mapping symbol after the
29349 alignment. */
29350 static void
29351 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
29352 void *dummy ATTRIBUTE_UNUSED)
29353 {
29354 segment_info_type *seginfo = seg_info (sec);
29355 fragS *fragp;
29356
29357 if (seginfo == NULL || seginfo->frchainP == NULL)
29358 return;
29359
29360 for (fragp = seginfo->frchainP->frch_root;
29361 fragp != NULL;
29362 fragp = fragp->fr_next)
29363 {
29364 symbolS *sym = fragp->tc_frag_data.last_map;
29365 fragS *next = fragp->fr_next;
29366
29367 /* Variable-sized frags have been converted to fixed size by
29368 this point. But if this was variable-sized to start with,
29369 there will be a fixed-size frag after it. So don't handle
29370 next == NULL. */
29371 if (sym == NULL || next == NULL)
29372 continue;
29373
29374 if (S_GET_VALUE (sym) < next->fr_address)
29375 /* Not at the end of this frag. */
29376 continue;
29377 know (S_GET_VALUE (sym) == next->fr_address);
29378
29379 do
29380 {
29381 if (next->tc_frag_data.first_map != NULL)
29382 {
29383 /* Next frag starts with a mapping symbol. Discard this
29384 one. */
29385 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29386 break;
29387 }
29388
29389 if (next->fr_next == NULL)
29390 {
29391 /* This mapping symbol is at the end of the section. Discard
29392 it. */
29393 know (next->fr_fix == 0 && next->fr_var == 0);
29394 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29395 break;
29396 }
29397
29398 /* As long as we have empty frags without any mapping symbols,
29399 keep looking. */
29400 /* If the next frag is non-empty and does not start with a
29401 mapping symbol, then this mapping symbol is required. */
29402 if (next->fr_address != next->fr_next->fr_address)
29403 break;
29404
29405 next = next->fr_next;
29406 }
29407 while (next != NULL);
29408 }
29409 }
29410 #endif
29411
29412 /* Adjust the symbol table. This marks Thumb symbols as distinct from
29413 ARM ones. */
29414
29415 void
29416 arm_adjust_symtab (void)
29417 {
29418 #ifdef OBJ_COFF
29419 symbolS * sym;
29420
29421 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29422 {
29423 if (ARM_IS_THUMB (sym))
29424 {
29425 if (THUMB_IS_FUNC (sym))
29426 {
29427 /* Mark the symbol as a Thumb function. */
29428 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
29429 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
29430 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
29431
29432 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
29433 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
29434 else
29435 as_bad (_("%s: unexpected function type: %d"),
29436 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
29437 }
29438 else switch (S_GET_STORAGE_CLASS (sym))
29439 {
29440 case C_EXT:
29441 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
29442 break;
29443 case C_STAT:
29444 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
29445 break;
29446 case C_LABEL:
29447 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
29448 break;
29449 default:
29450 /* Do nothing. */
29451 break;
29452 }
29453 }
29454
29455 if (ARM_IS_INTERWORK (sym))
29456 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
29457 }
29458 #endif
29459 #ifdef OBJ_ELF
29460 symbolS * sym;
29461 char bind;
29462
29463 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29464 {
29465 if (ARM_IS_THUMB (sym))
29466 {
29467 elf_symbol_type * elf_sym;
29468
29469 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
29470 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
29471
29472 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
29473 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
29474 {
29475 /* If it's a .thumb_func, declare it as so,
29476 otherwise tag label as .code 16. */
29477 if (THUMB_IS_FUNC (sym))
29478 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
29479 ST_BRANCH_TO_THUMB);
29480 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
29481 elf_sym->internal_elf_sym.st_info =
29482 ELF_ST_INFO (bind, STT_ARM_16BIT);
29483 }
29484 }
29485 }
29486
29487 /* Remove any overlapping mapping symbols generated by alignment frags. */
29488 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
29489 /* Now do generic ELF adjustments. */
29490 elf_adjust_symtab ();
29491 #endif
29492 }
29493
29494 /* MD interface: Initialization. */
29495
29496 static void
29497 set_constant_flonums (void)
29498 {
29499 int i;
29500
29501 for (i = 0; i < NUM_FLOAT_VALS; i++)
29502 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
29503 abort ();
29504 }
29505
29506 /* Auto-select Thumb mode if it's the only available instruction set for the
29507 given architecture. */
29508
29509 static void
29510 autoselect_thumb_from_cpu_variant (void)
29511 {
29512 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
29513 opcode_select (16);
29514 }
29515
29516 void
29517 md_begin (void)
29518 {
29519 unsigned mach;
29520 unsigned int i;
29521
29522 if ( (arm_ops_hsh = hash_new ()) == NULL
29523 || (arm_cond_hsh = hash_new ()) == NULL
29524 || (arm_vcond_hsh = hash_new ()) == NULL
29525 || (arm_shift_hsh = hash_new ()) == NULL
29526 || (arm_psr_hsh = hash_new ()) == NULL
29527 || (arm_v7m_psr_hsh = hash_new ()) == NULL
29528 || (arm_reg_hsh = hash_new ()) == NULL
29529 || (arm_reloc_hsh = hash_new ()) == NULL
29530 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
29531 as_fatal (_("virtual memory exhausted"));
29532
29533 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
29534 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
29535 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
29536 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
29537 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
29538 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
29539 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
29540 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
29541 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
29542 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
29543 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
29544 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
29545 (void *) (v7m_psrs + i));
29546 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
29547 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
29548 for (i = 0;
29549 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
29550 i++)
29551 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
29552 (void *) (barrier_opt_names + i));
29553 #ifdef OBJ_ELF
29554 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
29555 {
29556 struct reloc_entry * entry = reloc_names + i;
29557
29558 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
29559 /* This makes encode_branch() use the EABI versions of this relocation. */
29560 entry->reloc = BFD_RELOC_UNUSED;
29561
29562 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
29563 }
29564 #endif
29565
29566 set_constant_flonums ();
29567
29568 /* Set the cpu variant based on the command-line options. We prefer
29569 -mcpu= over -march= if both are set (as for GCC); and we prefer
29570 -mfpu= over any other way of setting the floating point unit.
29571 Use of legacy options with new options are faulted. */
29572 if (legacy_cpu)
29573 {
29574 if (mcpu_cpu_opt || march_cpu_opt)
29575 as_bad (_("use of old and new-style options to set CPU type"));
29576
29577 selected_arch = *legacy_cpu;
29578 }
29579 else if (mcpu_cpu_opt)
29580 {
29581 selected_arch = *mcpu_cpu_opt;
29582 selected_ext = *mcpu_ext_opt;
29583 }
29584 else if (march_cpu_opt)
29585 {
29586 selected_arch = *march_cpu_opt;
29587 selected_ext = *march_ext_opt;
29588 }
29589 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
29590
29591 if (legacy_fpu)
29592 {
29593 if (mfpu_opt)
29594 as_bad (_("use of old and new-style options to set FPU type"));
29595
29596 selected_fpu = *legacy_fpu;
29597 }
29598 else if (mfpu_opt)
29599 selected_fpu = *mfpu_opt;
29600 else
29601 {
29602 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29603 || defined (TE_NetBSD) || defined (TE_VXWORKS))
29604 /* Some environments specify a default FPU. If they don't, infer it
29605 from the processor. */
29606 if (mcpu_fpu_opt)
29607 selected_fpu = *mcpu_fpu_opt;
29608 else if (march_fpu_opt)
29609 selected_fpu = *march_fpu_opt;
29610 #else
29611 selected_fpu = fpu_default;
29612 #endif
29613 }
29614
29615 if (ARM_FEATURE_ZERO (selected_fpu))
29616 {
29617 if (!no_cpu_selected ())
29618 selected_fpu = fpu_default;
29619 else
29620 selected_fpu = fpu_arch_fpa;
29621 }
29622
29623 #ifdef CPU_DEFAULT
29624 if (ARM_FEATURE_ZERO (selected_arch))
29625 {
29626 selected_arch = cpu_default;
29627 selected_cpu = selected_arch;
29628 }
29629 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29630 #else
29631 /* Autodection of feature mode: allow all features in cpu_variant but leave
29632 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29633 after all instruction have been processed and we can decide what CPU
29634 should be selected. */
29635 if (ARM_FEATURE_ZERO (selected_arch))
29636 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
29637 else
29638 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29639 #endif
29640
29641 autoselect_thumb_from_cpu_variant ();
29642
29643 arm_arch_used = thumb_arch_used = arm_arch_none;
29644
29645 #if defined OBJ_COFF || defined OBJ_ELF
29646 {
29647 unsigned int flags = 0;
29648
29649 #if defined OBJ_ELF
29650 flags = meabi_flags;
29651
29652 switch (meabi_flags)
29653 {
29654 case EF_ARM_EABI_UNKNOWN:
29655 #endif
29656 /* Set the flags in the private structure. */
29657 if (uses_apcs_26) flags |= F_APCS26;
29658 if (support_interwork) flags |= F_INTERWORK;
29659 if (uses_apcs_float) flags |= F_APCS_FLOAT;
29660 if (pic_code) flags |= F_PIC;
29661 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
29662 flags |= F_SOFT_FLOAT;
29663
29664 switch (mfloat_abi_opt)
29665 {
29666 case ARM_FLOAT_ABI_SOFT:
29667 case ARM_FLOAT_ABI_SOFTFP:
29668 flags |= F_SOFT_FLOAT;
29669 break;
29670
29671 case ARM_FLOAT_ABI_HARD:
29672 if (flags & F_SOFT_FLOAT)
29673 as_bad (_("hard-float conflicts with specified fpu"));
29674 break;
29675 }
29676
29677 /* Using pure-endian doubles (even if soft-float). */
29678 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
29679 flags |= F_VFP_FLOAT;
29680
29681 #if defined OBJ_ELF
29682 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
29683 flags |= EF_ARM_MAVERICK_FLOAT;
29684 break;
29685
29686 case EF_ARM_EABI_VER4:
29687 case EF_ARM_EABI_VER5:
29688 /* No additional flags to set. */
29689 break;
29690
29691 default:
29692 abort ();
29693 }
29694 #endif
29695 bfd_set_private_flags (stdoutput, flags);
29696
29697 /* We have run out flags in the COFF header to encode the
29698 status of ATPCS support, so instead we create a dummy,
29699 empty, debug section called .arm.atpcs. */
29700 if (atpcs)
29701 {
29702 asection * sec;
29703
29704 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29705
29706 if (sec != NULL)
29707 {
29708 bfd_set_section_flags
29709 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29710 bfd_set_section_size (stdoutput, sec, 0);
29711 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29712 }
29713 }
29714 }
29715 #endif
29716
29717 /* Record the CPU type as well. */
29718 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29719 mach = bfd_mach_arm_iWMMXt2;
29720 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
29721 mach = bfd_mach_arm_iWMMXt;
29722 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
29723 mach = bfd_mach_arm_XScale;
29724 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
29725 mach = bfd_mach_arm_ep9312;
29726 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
29727 mach = bfd_mach_arm_5TE;
29728 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
29729 {
29730 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29731 mach = bfd_mach_arm_5T;
29732 else
29733 mach = bfd_mach_arm_5;
29734 }
29735 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
29736 {
29737 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29738 mach = bfd_mach_arm_4T;
29739 else
29740 mach = bfd_mach_arm_4;
29741 }
29742 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
29743 mach = bfd_mach_arm_3M;
29744 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29745 mach = bfd_mach_arm_3;
29746 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29747 mach = bfd_mach_arm_2a;
29748 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29749 mach = bfd_mach_arm_2;
29750 else
29751 mach = bfd_mach_arm_unknown;
29752
29753 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29754 }
29755
29756 /* Command line processing. */
29757
29758 /* md_parse_option
29759 Invocation line includes a switch not recognized by the base assembler.
29760 See if it's a processor-specific option.
29761
29762 This routine is somewhat complicated by the need for backwards
29763 compatibility (since older releases of gcc can't be changed).
29764 The new options try to make the interface as compatible as
29765 possible with GCC.
29766
29767 New options (supported) are:
29768
29769 -mcpu=<cpu name> Assemble for selected processor
29770 -march=<architecture name> Assemble for selected architecture
29771 -mfpu=<fpu architecture> Assemble for selected FPU.
29772 -EB/-mbig-endian Big-endian
29773 -EL/-mlittle-endian Little-endian
29774 -k Generate PIC code
29775 -mthumb Start in Thumb mode
29776 -mthumb-interwork Code supports ARM/Thumb interworking
29777
29778 -m[no-]warn-deprecated Warn about deprecated features
29779 -m[no-]warn-syms Warn when symbols match instructions
29780
29781 For now we will also provide support for:
29782
29783 -mapcs-32 32-bit Program counter
29784 -mapcs-26 26-bit Program counter
29785 -macps-float Floats passed in FP registers
29786 -mapcs-reentrant Reentrant code
29787 -matpcs
29788 (sometime these will probably be replaced with -mapcs=<list of options>
29789 and -matpcs=<list of options>)
29790
29791 The remaining options are only supported for back-wards compatibility.
29792 Cpu variants, the arm part is optional:
29793 -m[arm]1 Currently not supported.
29794 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29795 -m[arm]3 Arm 3 processor
29796 -m[arm]6[xx], Arm 6 processors
29797 -m[arm]7[xx][t][[d]m] Arm 7 processors
29798 -m[arm]8[10] Arm 8 processors
29799 -m[arm]9[20][tdmi] Arm 9 processors
29800 -mstrongarm[110[0]] StrongARM processors
29801 -mxscale XScale processors
29802 -m[arm]v[2345[t[e]]] Arm architectures
29803 -mall All (except the ARM1)
29804 FP variants:
29805 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29806 -mfpe-old (No float load/store multiples)
29807 -mvfpxd VFP Single precision
29808 -mvfp All VFP
29809 -mno-fpu Disable all floating point instructions
29810
29811 The following CPU names are recognized:
29812 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29813 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29814 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29815 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29816 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29817 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29818 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
29819
29820 */
29821
29822 const char * md_shortopts = "m:k";
29823
29824 #ifdef ARM_BI_ENDIAN
29825 #define OPTION_EB (OPTION_MD_BASE + 0)
29826 #define OPTION_EL (OPTION_MD_BASE + 1)
29827 #else
29828 #if TARGET_BYTES_BIG_ENDIAN
29829 #define OPTION_EB (OPTION_MD_BASE + 0)
29830 #else
29831 #define OPTION_EL (OPTION_MD_BASE + 1)
29832 #endif
29833 #endif
29834 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
29835 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
29836
29837 struct option md_longopts[] =
29838 {
29839 #ifdef OPTION_EB
29840 {"EB", no_argument, NULL, OPTION_EB},
29841 #endif
29842 #ifdef OPTION_EL
29843 {"EL", no_argument, NULL, OPTION_EL},
29844 #endif
29845 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
29846 #ifdef OBJ_ELF
29847 {"fdpic", no_argument, NULL, OPTION_FDPIC},
29848 #endif
29849 {NULL, no_argument, NULL, 0}
29850 };
29851
29852 size_t md_longopts_size = sizeof (md_longopts);
29853
29854 struct arm_option_table
29855 {
29856 const char * option; /* Option name to match. */
29857 const char * help; /* Help information. */
29858 int * var; /* Variable to change. */
29859 int value; /* What to change it to. */
29860 const char * deprecated; /* If non-null, print this message. */
29861 };
29862
29863 struct arm_option_table arm_opts[] =
29864 {
29865 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
29866 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
29867 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29868 &support_interwork, 1, NULL},
29869 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
29870 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
29871 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
29872 1, NULL},
29873 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
29874 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
29875 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
29876 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
29877 NULL},
29878
29879 /* These are recognized by the assembler, but have no affect on code. */
29880 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
29881 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
29882
29883 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
29884 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29885 &warn_on_deprecated, 0, NULL},
29886 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
29887 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
29888 {NULL, NULL, NULL, 0, NULL}
29889 };
29890
29891 struct arm_legacy_option_table
29892 {
29893 const char * option; /* Option name to match. */
29894 const arm_feature_set ** var; /* Variable to change. */
29895 const arm_feature_set value; /* What to change it to. */
29896 const char * deprecated; /* If non-null, print this message. */
29897 };
29898
29899 const struct arm_legacy_option_table arm_legacy_opts[] =
29900 {
29901 /* DON'T add any new processors to this list -- we want the whole list
29902 to go away... Add them to the processors table instead. */
29903 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29904 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29905 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29906 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29907 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29908 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29909 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29910 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29911 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29912 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29913 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29914 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29915 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29916 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29917 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29918 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29919 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29920 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29921 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29922 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29923 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29924 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29925 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29926 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29927 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29928 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29929 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29930 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29931 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29932 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29933 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29934 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29935 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29936 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29937 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29938 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29939 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29940 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29941 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29942 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29943 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29944 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29945 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29946 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29947 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29948 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29949 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29950 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29951 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29952 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29953 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29954 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29955 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29956 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29957 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29958 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29959 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29960 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29961 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29962 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29963 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29964 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29965 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29966 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29967 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29968 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29969 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29970 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29971 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29972 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
29973 N_("use -mcpu=strongarm110")},
29974 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
29975 N_("use -mcpu=strongarm1100")},
29976 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
29977 N_("use -mcpu=strongarm1110")},
29978 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29979 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29980 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
29981
29982 /* Architecture variants -- don't add any more to this list either. */
29983 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29984 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29985 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29986 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29987 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29988 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29989 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29990 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29991 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29992 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29993 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29994 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29995 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29996 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29997 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29998 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29999 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
30000 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
30001
30002 /* Floating point variants -- don't add any more to this list either. */
30003 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
30004 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
30005 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
30006 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
30007 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
30008
30009 {NULL, NULL, ARM_ARCH_NONE, NULL}
30010 };
30011
30012 struct arm_cpu_option_table
30013 {
30014 const char * name;
30015 size_t name_len;
30016 const arm_feature_set value;
30017 const arm_feature_set ext;
30018 /* For some CPUs we assume an FPU unless the user explicitly sets
30019 -mfpu=... */
30020 const arm_feature_set default_fpu;
30021 /* The canonical name of the CPU, or NULL to use NAME converted to upper
30022 case. */
30023 const char * canonical_name;
30024 };
30025
30026 /* This list should, at a minimum, contain all the cpu names
30027 recognized by GCC. */
30028 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
30029
30030 static const struct arm_cpu_option_table arm_cpus[] =
30031 {
30032 ARM_CPU_OPT ("all", NULL, ARM_ANY,
30033 ARM_ARCH_NONE,
30034 FPU_ARCH_FPA),
30035 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
30036 ARM_ARCH_NONE,
30037 FPU_ARCH_FPA),
30038 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
30039 ARM_ARCH_NONE,
30040 FPU_ARCH_FPA),
30041 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
30042 ARM_ARCH_NONE,
30043 FPU_ARCH_FPA),
30044 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
30045 ARM_ARCH_NONE,
30046 FPU_ARCH_FPA),
30047 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
30048 ARM_ARCH_NONE,
30049 FPU_ARCH_FPA),
30050 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
30051 ARM_ARCH_NONE,
30052 FPU_ARCH_FPA),
30053 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
30054 ARM_ARCH_NONE,
30055 FPU_ARCH_FPA),
30056 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
30057 ARM_ARCH_NONE,
30058 FPU_ARCH_FPA),
30059 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
30060 ARM_ARCH_NONE,
30061 FPU_ARCH_FPA),
30062 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
30063 ARM_ARCH_NONE,
30064 FPU_ARCH_FPA),
30065 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
30066 ARM_ARCH_NONE,
30067 FPU_ARCH_FPA),
30068 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
30069 ARM_ARCH_NONE,
30070 FPU_ARCH_FPA),
30071 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
30072 ARM_ARCH_NONE,
30073 FPU_ARCH_FPA),
30074 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
30075 ARM_ARCH_NONE,
30076 FPU_ARCH_FPA),
30077 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
30078 ARM_ARCH_NONE,
30079 FPU_ARCH_FPA),
30080 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
30081 ARM_ARCH_NONE,
30082 FPU_ARCH_FPA),
30083 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
30084 ARM_ARCH_NONE,
30085 FPU_ARCH_FPA),
30086 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
30087 ARM_ARCH_NONE,
30088 FPU_ARCH_FPA),
30089 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
30090 ARM_ARCH_NONE,
30091 FPU_ARCH_FPA),
30092 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
30093 ARM_ARCH_NONE,
30094 FPU_ARCH_FPA),
30095 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
30096 ARM_ARCH_NONE,
30097 FPU_ARCH_FPA),
30098 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
30099 ARM_ARCH_NONE,
30100 FPU_ARCH_FPA),
30101 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
30102 ARM_ARCH_NONE,
30103 FPU_ARCH_FPA),
30104 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
30105 ARM_ARCH_NONE,
30106 FPU_ARCH_FPA),
30107 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
30108 ARM_ARCH_NONE,
30109 FPU_ARCH_FPA),
30110 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
30111 ARM_ARCH_NONE,
30112 FPU_ARCH_FPA),
30113 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
30114 ARM_ARCH_NONE,
30115 FPU_ARCH_FPA),
30116 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
30117 ARM_ARCH_NONE,
30118 FPU_ARCH_FPA),
30119 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
30120 ARM_ARCH_NONE,
30121 FPU_ARCH_FPA),
30122 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
30123 ARM_ARCH_NONE,
30124 FPU_ARCH_FPA),
30125 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
30126 ARM_ARCH_NONE,
30127 FPU_ARCH_FPA),
30128 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
30129 ARM_ARCH_NONE,
30130 FPU_ARCH_FPA),
30131 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
30132 ARM_ARCH_NONE,
30133 FPU_ARCH_FPA),
30134 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
30135 ARM_ARCH_NONE,
30136 FPU_ARCH_FPA),
30137 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
30138 ARM_ARCH_NONE,
30139 FPU_ARCH_FPA),
30140 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
30141 ARM_ARCH_NONE,
30142 FPU_ARCH_FPA),
30143 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
30144 ARM_ARCH_NONE,
30145 FPU_ARCH_FPA),
30146 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
30147 ARM_ARCH_NONE,
30148 FPU_ARCH_FPA),
30149 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
30150 ARM_ARCH_NONE,
30151 FPU_ARCH_FPA),
30152 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
30153 ARM_ARCH_NONE,
30154 FPU_ARCH_FPA),
30155 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
30156 ARM_ARCH_NONE,
30157 FPU_ARCH_FPA),
30158 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
30159 ARM_ARCH_NONE,
30160 FPU_ARCH_FPA),
30161 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
30162 ARM_ARCH_NONE,
30163 FPU_ARCH_FPA),
30164 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
30165 ARM_ARCH_NONE,
30166 FPU_ARCH_FPA),
30167 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
30168 ARM_ARCH_NONE,
30169 FPU_ARCH_FPA),
30170
30171 /* For V5 or later processors we default to using VFP; but the user
30172 should really set the FPU type explicitly. */
30173 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
30174 ARM_ARCH_NONE,
30175 FPU_ARCH_VFP_V2),
30176 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
30177 ARM_ARCH_NONE,
30178 FPU_ARCH_VFP_V2),
30179 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30180 ARM_ARCH_NONE,
30181 FPU_ARCH_VFP_V2),
30182 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30183 ARM_ARCH_NONE,
30184 FPU_ARCH_VFP_V2),
30185 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
30186 ARM_ARCH_NONE,
30187 FPU_ARCH_VFP_V2),
30188 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
30189 ARM_ARCH_NONE,
30190 FPU_ARCH_VFP_V2),
30191 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
30192 ARM_ARCH_NONE,
30193 FPU_ARCH_VFP_V2),
30194 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
30195 ARM_ARCH_NONE,
30196 FPU_ARCH_VFP_V2),
30197 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
30198 ARM_ARCH_NONE,
30199 FPU_ARCH_VFP_V2),
30200 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
30201 ARM_ARCH_NONE,
30202 FPU_ARCH_VFP_V2),
30203 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
30204 ARM_ARCH_NONE,
30205 FPU_ARCH_VFP_V2),
30206 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
30207 ARM_ARCH_NONE,
30208 FPU_ARCH_VFP_V2),
30209 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
30210 ARM_ARCH_NONE,
30211 FPU_ARCH_VFP_V1),
30212 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
30213 ARM_ARCH_NONE,
30214 FPU_ARCH_VFP_V1),
30215 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
30216 ARM_ARCH_NONE,
30217 FPU_ARCH_VFP_V2),
30218 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
30219 ARM_ARCH_NONE,
30220 FPU_ARCH_VFP_V2),
30221 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
30222 ARM_ARCH_NONE,
30223 FPU_ARCH_VFP_V1),
30224 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
30225 ARM_ARCH_NONE,
30226 FPU_ARCH_VFP_V2),
30227 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
30228 ARM_ARCH_NONE,
30229 FPU_ARCH_VFP_V2),
30230 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
30231 ARM_ARCH_NONE,
30232 FPU_ARCH_VFP_V2),
30233 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
30234 ARM_ARCH_NONE,
30235 FPU_ARCH_VFP_V2),
30236 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
30237 ARM_ARCH_NONE,
30238 FPU_ARCH_VFP_V2),
30239 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
30240 ARM_ARCH_NONE,
30241 FPU_ARCH_VFP_V2),
30242 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
30243 ARM_ARCH_NONE,
30244 FPU_ARCH_VFP_V2),
30245 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
30246 ARM_ARCH_NONE,
30247 FPU_ARCH_VFP_V2),
30248 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
30249 ARM_ARCH_NONE,
30250 FPU_ARCH_VFP_V2),
30251 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
30252 ARM_ARCH_NONE,
30253 FPU_NONE),
30254 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
30255 ARM_ARCH_NONE,
30256 FPU_NONE),
30257 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
30258 ARM_ARCH_NONE,
30259 FPU_ARCH_VFP_V2),
30260 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
30261 ARM_ARCH_NONE,
30262 FPU_ARCH_VFP_V2),
30263 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
30264 ARM_ARCH_NONE,
30265 FPU_ARCH_VFP_V2),
30266 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
30267 ARM_ARCH_NONE,
30268 FPU_NONE),
30269 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
30270 ARM_ARCH_NONE,
30271 FPU_NONE),
30272 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
30273 ARM_ARCH_NONE,
30274 FPU_ARCH_VFP_V2),
30275 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
30276 ARM_ARCH_NONE,
30277 FPU_NONE),
30278 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
30279 ARM_ARCH_NONE,
30280 FPU_ARCH_VFP_V2),
30281 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
30282 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30283 FPU_NONE),
30284 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
30285 ARM_ARCH_NONE,
30286 FPU_ARCH_NEON_VFP_V4),
30287 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
30288 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30289 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30290 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
30291 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30292 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30293 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
30294 ARM_ARCH_NONE,
30295 FPU_ARCH_NEON_VFP_V4),
30296 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
30297 ARM_ARCH_NONE,
30298 FPU_ARCH_NEON_VFP_V4),
30299 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
30300 ARM_ARCH_NONE,
30301 FPU_ARCH_NEON_VFP_V4),
30302 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
30303 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30304 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30305 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
30306 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30307 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30308 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
30309 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30310 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30311 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
30312 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30313 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30314 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
30315 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30316 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30317 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
30318 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30319 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30320 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
30321 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30322 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30323 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
30324 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30325 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30326 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
30327 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30328 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30329 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
30330 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30331 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30332 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
30333 ARM_ARCH_NONE,
30334 FPU_NONE),
30335 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
30336 ARM_ARCH_NONE,
30337 FPU_ARCH_VFP_V3D16),
30338 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
30339 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30340 FPU_NONE),
30341 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
30342 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30343 FPU_ARCH_VFP_V3D16),
30344 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
30345 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30346 FPU_ARCH_VFP_V3D16),
30347 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
30348 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30349 FPU_ARCH_NEON_VFP_ARMV8),
30350 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
30351 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30352 FPU_NONE),
30353 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
30354 ARM_ARCH_NONE,
30355 FPU_NONE),
30356 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
30357 ARM_ARCH_NONE,
30358 FPU_NONE),
30359 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
30360 ARM_ARCH_NONE,
30361 FPU_NONE),
30362 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
30363 ARM_ARCH_NONE,
30364 FPU_NONE),
30365 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
30366 ARM_ARCH_NONE,
30367 FPU_NONE),
30368 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
30369 ARM_ARCH_NONE,
30370 FPU_NONE),
30371 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
30372 ARM_ARCH_NONE,
30373 FPU_NONE),
30374 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
30375 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30376 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30377 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
30378 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30379 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30380 /* ??? XSCALE is really an architecture. */
30381 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
30382 ARM_ARCH_NONE,
30383 FPU_ARCH_VFP_V2),
30384
30385 /* ??? iwmmxt is not a processor. */
30386 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
30387 ARM_ARCH_NONE,
30388 FPU_ARCH_VFP_V2),
30389 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
30390 ARM_ARCH_NONE,
30391 FPU_ARCH_VFP_V2),
30392 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
30393 ARM_ARCH_NONE,
30394 FPU_ARCH_VFP_V2),
30395
30396 /* Maverick. */
30397 ARM_CPU_OPT ("ep9312", "ARM920T",
30398 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
30399 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
30400
30401 /* Marvell processors. */
30402 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
30403 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30404 FPU_ARCH_VFP_V3D16),
30405 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
30406 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30407 FPU_ARCH_NEON_VFP_V4),
30408
30409 /* APM X-Gene family. */
30410 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
30411 ARM_ARCH_NONE,
30412 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30413 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
30414 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30415 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30416
30417 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30418 };
30419 #undef ARM_CPU_OPT
30420
30421 struct arm_ext_table
30422 {
30423 const char * name;
30424 size_t name_len;
30425 const arm_feature_set merge;
30426 const arm_feature_set clear;
30427 };
30428
30429 struct arm_arch_option_table
30430 {
30431 const char * name;
30432 size_t name_len;
30433 const arm_feature_set value;
30434 const arm_feature_set default_fpu;
30435 const struct arm_ext_table * ext_table;
30436 };
30437
30438 /* Used to add support for +E and +noE extension. */
30439 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
30440 /* Used to add support for a +E extension. */
30441 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
30442 /* Used to add support for a +noE extension. */
30443 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
30444
30445 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
30446 ~0 & ~FPU_ENDIAN_PURE)
30447
30448 static const struct arm_ext_table armv5te_ext_table[] =
30449 {
30450 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
30451 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30452 };
30453
30454 static const struct arm_ext_table armv7_ext_table[] =
30455 {
30456 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30457 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30458 };
30459
30460 static const struct arm_ext_table armv7ve_ext_table[] =
30461 {
30462 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
30463 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
30464 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30465 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30466 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30467 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
30468 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30469
30470 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
30471 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30472
30473 /* Aliases for +simd. */
30474 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30475
30476 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30477 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30478 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30479
30480 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30481 };
30482
30483 static const struct arm_ext_table armv7a_ext_table[] =
30484 {
30485 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30486 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30487 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30488 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30489 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30490 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
30491 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30492
30493 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
30494 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30495
30496 /* Aliases for +simd. */
30497 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30498 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30499
30500 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30501 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30502
30503 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
30504 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
30505 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30506 };
30507
30508 static const struct arm_ext_table armv7r_ext_table[] =
30509 {
30510 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
30511 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
30512 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30513 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30514 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
30515 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30516 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30517 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
30518 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30519 };
30520
30521 static const struct arm_ext_table armv7em_ext_table[] =
30522 {
30523 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
30524 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30525 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
30526 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
30527 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30528 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
30529 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30530 };
30531
30532 static const struct arm_ext_table armv8a_ext_table[] =
30533 {
30534 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30535 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30536 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30537 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30538
30539 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30540 should use the +simd option to turn on FP. */
30541 ARM_REMOVE ("fp", ALL_FP),
30542 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30543 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30544 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30545 };
30546
30547
30548 static const struct arm_ext_table armv81a_ext_table[] =
30549 {
30550 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30551 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30552 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30553
30554 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30555 should use the +simd option to turn on FP. */
30556 ARM_REMOVE ("fp", ALL_FP),
30557 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30558 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30559 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30560 };
30561
30562 static const struct arm_ext_table armv82a_ext_table[] =
30563 {
30564 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30565 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
30566 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
30567 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30568 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30569 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30570
30571 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30572 should use the +simd option to turn on FP. */
30573 ARM_REMOVE ("fp", ALL_FP),
30574 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30575 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30576 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30577 };
30578
30579 static const struct arm_ext_table armv84a_ext_table[] =
30580 {
30581 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30582 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30583 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30584 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30585
30586 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30587 should use the +simd option to turn on FP. */
30588 ARM_REMOVE ("fp", ALL_FP),
30589 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30590 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30591 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30592 };
30593
30594 static const struct arm_ext_table armv85a_ext_table[] =
30595 {
30596 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30597 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30598 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30599 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30600
30601 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30602 should use the +simd option to turn on FP. */
30603 ARM_REMOVE ("fp", ALL_FP),
30604 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30605 };
30606
30607 static const struct arm_ext_table armv8m_main_ext_table[] =
30608 {
30609 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30610 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30611 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
30612 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30613 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30614 };
30615
30616 static const struct arm_ext_table armv8_1m_main_ext_table[] =
30617 {
30618 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30619 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30620 ARM_EXT ("fp",
30621 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30622 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30623 ALL_FP),
30624 ARM_ADD ("fp.dp",
30625 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30626 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30627 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30628 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30629 ARM_ADD ("mve.fp",
30630 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30631 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30632 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30633 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30634 };
30635
30636 static const struct arm_ext_table armv8r_ext_table[] =
30637 {
30638 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30639 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30640 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30641 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30642 ARM_REMOVE ("fp", ALL_FP),
30643 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30644 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30645 };
30646
30647 /* This list should, at a minimum, contain all the architecture names
30648 recognized by GCC. */
30649 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30650 #define ARM_ARCH_OPT2(N, V, DF, ext) \
30651 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
30652
30653 static const struct arm_arch_option_table arm_archs[] =
30654 {
30655 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30656 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30657 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30658 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30659 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30660 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30661 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30662 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30663 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30664 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30665 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30666 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30667 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30668 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
30669 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30670 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30671 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30672 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30673 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30674 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30675 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
30676 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30677 kept to preserve existing behaviour. */
30678 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30679 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30680 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30681 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30682 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
30683 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30684 kept to preserve existing behaviour. */
30685 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30686 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30687 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30688 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
30689 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
30690 /* The official spelling of the ARMv7 profile variants is the dashed form.
30691 Accept the non-dashed form for compatibility with old toolchains. */
30692 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30693 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30694 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30695 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30696 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30697 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30698 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30699 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
30700 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
30701 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30702 armv8m_main),
30703 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30704 armv8_1m_main),
30705 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30706 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30707 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30708 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30709 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30710 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30711 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
30712 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30713 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30714 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
30715 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30716 };
30717 #undef ARM_ARCH_OPT
30718
30719 /* ISA extensions in the co-processor and main instruction set space. */
30720
30721 struct arm_option_extension_value_table
30722 {
30723 const char * name;
30724 size_t name_len;
30725 const arm_feature_set merge_value;
30726 const arm_feature_set clear_value;
30727 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30728 indicates that an extension is available for all architectures while
30729 ARM_ANY marks an empty entry. */
30730 const arm_feature_set allowed_archs[2];
30731 };
30732
30733 /* The following table must be in alphabetical order with a NULL last entry. */
30734
30735 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30736 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
30737
30738 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
30739 use the context sensitive approach using arm_ext_table's. */
30740 static const struct arm_option_extension_value_table arm_extensions[] =
30741 {
30742 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30743 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30744 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30745 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30746 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30747 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30748 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30749 ARM_ARCH_V8_2A),
30750 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30751 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30752 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
30753 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30754 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30755 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30756 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30757 ARM_ARCH_V8_2A),
30758 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30759 | ARM_EXT2_FP16_FML),
30760 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30761 | ARM_EXT2_FP16_FML),
30762 ARM_ARCH_V8_2A),
30763 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30764 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30765 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30766 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30767 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30768 Thumb divide instruction. Due to this having the same name as the
30769 previous entry, this will be ignored when doing command-line parsing and
30770 only considered by build attribute selection code. */
30771 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30772 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30773 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
30774 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
30775 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
30776 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
30777 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
30778 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
30779 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30780 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30781 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30782 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30783 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30784 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30785 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30786 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
30787 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30788 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
30789 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30790 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30791 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30792 ARM_ARCH_V8A),
30793 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30794 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
30795 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30796 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30797 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
30798 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30799 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30800 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30801 ARM_ARCH_V8A),
30802 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30803 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30804 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30805 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30806 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30807 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30808 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30809 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30810 | ARM_EXT_DIV),
30811 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30812 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30813 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
30814 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30815 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
30816 };
30817 #undef ARM_EXT_OPT
30818
30819 /* ISA floating-point and Advanced SIMD extensions. */
30820 struct arm_option_fpu_value_table
30821 {
30822 const char * name;
30823 const arm_feature_set value;
30824 };
30825
30826 /* This list should, at a minimum, contain all the fpu names
30827 recognized by GCC. */
30828 static const struct arm_option_fpu_value_table arm_fpus[] =
30829 {
30830 {"softfpa", FPU_NONE},
30831 {"fpe", FPU_ARCH_FPE},
30832 {"fpe2", FPU_ARCH_FPE},
30833 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30834 {"fpa", FPU_ARCH_FPA},
30835 {"fpa10", FPU_ARCH_FPA},
30836 {"fpa11", FPU_ARCH_FPA},
30837 {"arm7500fe", FPU_ARCH_FPA},
30838 {"softvfp", FPU_ARCH_VFP},
30839 {"softvfp+vfp", FPU_ARCH_VFP_V2},
30840 {"vfp", FPU_ARCH_VFP_V2},
30841 {"vfp9", FPU_ARCH_VFP_V2},
30842 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
30843 {"vfp10", FPU_ARCH_VFP_V2},
30844 {"vfp10-r0", FPU_ARCH_VFP_V1},
30845 {"vfpxd", FPU_ARCH_VFP_V1xD},
30846 {"vfpv2", FPU_ARCH_VFP_V2},
30847 {"vfpv3", FPU_ARCH_VFP_V3},
30848 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
30849 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
30850 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
30851 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
30852 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
30853 {"arm1020t", FPU_ARCH_VFP_V1},
30854 {"arm1020e", FPU_ARCH_VFP_V2},
30855 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
30856 {"arm1136jf-s", FPU_ARCH_VFP_V2},
30857 {"maverick", FPU_ARCH_MAVERICK},
30858 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
30859 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
30860 {"neon-fp16", FPU_ARCH_NEON_FP16},
30861 {"vfpv4", FPU_ARCH_VFP_V4},
30862 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
30863 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
30864 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
30865 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
30866 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
30867 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
30868 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
30869 {"crypto-neon-fp-armv8",
30870 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
30871 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
30872 {"crypto-neon-fp-armv8.1",
30873 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
30874 {NULL, ARM_ARCH_NONE}
30875 };
30876
30877 struct arm_option_value_table
30878 {
30879 const char *name;
30880 long value;
30881 };
30882
30883 static const struct arm_option_value_table arm_float_abis[] =
30884 {
30885 {"hard", ARM_FLOAT_ABI_HARD},
30886 {"softfp", ARM_FLOAT_ABI_SOFTFP},
30887 {"soft", ARM_FLOAT_ABI_SOFT},
30888 {NULL, 0}
30889 };
30890
30891 #ifdef OBJ_ELF
30892 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
30893 static const struct arm_option_value_table arm_eabis[] =
30894 {
30895 {"gnu", EF_ARM_EABI_UNKNOWN},
30896 {"4", EF_ARM_EABI_VER4},
30897 {"5", EF_ARM_EABI_VER5},
30898 {NULL, 0}
30899 };
30900 #endif
30901
30902 struct arm_long_option_table
30903 {
30904 const char * option; /* Substring to match. */
30905 const char * help; /* Help information. */
30906 int (* func) (const char * subopt); /* Function to decode sub-option. */
30907 const char * deprecated; /* If non-null, print this message. */
30908 };
30909
30910 static bfd_boolean
30911 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
30912 arm_feature_set *ext_set,
30913 const struct arm_ext_table *ext_table)
30914 {
30915 /* We insist on extensions being specified in alphabetical order, and with
30916 extensions being added before being removed. We achieve this by having
30917 the global ARM_EXTENSIONS table in alphabetical order, and using the
30918 ADDING_VALUE variable to indicate whether we are adding an extension (1)
30919 or removing it (0) and only allowing it to change in the order
30920 -1 -> 1 -> 0. */
30921 const struct arm_option_extension_value_table * opt = NULL;
30922 const arm_feature_set arm_any = ARM_ANY;
30923 int adding_value = -1;
30924
30925 while (str != NULL && *str != 0)
30926 {
30927 const char *ext;
30928 size_t len;
30929
30930 if (*str != '+')
30931 {
30932 as_bad (_("invalid architectural extension"));
30933 return FALSE;
30934 }
30935
30936 str++;
30937 ext = strchr (str, '+');
30938
30939 if (ext != NULL)
30940 len = ext - str;
30941 else
30942 len = strlen (str);
30943
30944 if (len >= 2 && strncmp (str, "no", 2) == 0)
30945 {
30946 if (adding_value != 0)
30947 {
30948 adding_value = 0;
30949 opt = arm_extensions;
30950 }
30951
30952 len -= 2;
30953 str += 2;
30954 }
30955 else if (len > 0)
30956 {
30957 if (adding_value == -1)
30958 {
30959 adding_value = 1;
30960 opt = arm_extensions;
30961 }
30962 else if (adding_value != 1)
30963 {
30964 as_bad (_("must specify extensions to add before specifying "
30965 "those to remove"));
30966 return FALSE;
30967 }
30968 }
30969
30970 if (len == 0)
30971 {
30972 as_bad (_("missing architectural extension"));
30973 return FALSE;
30974 }
30975
30976 gas_assert (adding_value != -1);
30977 gas_assert (opt != NULL);
30978
30979 if (ext_table != NULL)
30980 {
30981 const struct arm_ext_table * ext_opt = ext_table;
30982 bfd_boolean found = FALSE;
30983 for (; ext_opt->name != NULL; ext_opt++)
30984 if (ext_opt->name_len == len
30985 && strncmp (ext_opt->name, str, len) == 0)
30986 {
30987 if (adding_value)
30988 {
30989 if (ARM_FEATURE_ZERO (ext_opt->merge))
30990 /* TODO: Option not supported. When we remove the
30991 legacy table this case should error out. */
30992 continue;
30993
30994 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30995 }
30996 else
30997 {
30998 if (ARM_FEATURE_ZERO (ext_opt->clear))
30999 /* TODO: Option not supported. When we remove the
31000 legacy table this case should error out. */
31001 continue;
31002 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
31003 }
31004 found = TRUE;
31005 break;
31006 }
31007 if (found)
31008 {
31009 str = ext;
31010 continue;
31011 }
31012 }
31013
31014 /* Scan over the options table trying to find an exact match. */
31015 for (; opt->name != NULL; opt++)
31016 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31017 {
31018 int i, nb_allowed_archs =
31019 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31020 /* Check we can apply the extension to this architecture. */
31021 for (i = 0; i < nb_allowed_archs; i++)
31022 {
31023 /* Empty entry. */
31024 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
31025 continue;
31026 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
31027 break;
31028 }
31029 if (i == nb_allowed_archs)
31030 {
31031 as_bad (_("extension does not apply to the base architecture"));
31032 return FALSE;
31033 }
31034
31035 /* Add or remove the extension. */
31036 if (adding_value)
31037 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
31038 else
31039 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
31040
31041 /* Allowing Thumb division instructions for ARMv7 in autodetection
31042 rely on this break so that duplicate extensions (extensions
31043 with the same name as a previous extension in the list) are not
31044 considered for command-line parsing. */
31045 break;
31046 }
31047
31048 if (opt->name == NULL)
31049 {
31050 /* Did we fail to find an extension because it wasn't specified in
31051 alphabetical order, or because it does not exist? */
31052
31053 for (opt = arm_extensions; opt->name != NULL; opt++)
31054 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31055 break;
31056
31057 if (opt->name == NULL)
31058 as_bad (_("unknown architectural extension `%s'"), str);
31059 else
31060 as_bad (_("architectural extensions must be specified in "
31061 "alphabetical order"));
31062
31063 return FALSE;
31064 }
31065 else
31066 {
31067 /* We should skip the extension we've just matched the next time
31068 round. */
31069 opt++;
31070 }
31071
31072 str = ext;
31073 };
31074
31075 return TRUE;
31076 }
31077
31078 static bfd_boolean
31079 arm_parse_cpu (const char *str)
31080 {
31081 const struct arm_cpu_option_table *opt;
31082 const char *ext = strchr (str, '+');
31083 size_t len;
31084
31085 if (ext != NULL)
31086 len = ext - str;
31087 else
31088 len = strlen (str);
31089
31090 if (len == 0)
31091 {
31092 as_bad (_("missing cpu name `%s'"), str);
31093 return FALSE;
31094 }
31095
31096 for (opt = arm_cpus; opt->name != NULL; opt++)
31097 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31098 {
31099 mcpu_cpu_opt = &opt->value;
31100 if (mcpu_ext_opt == NULL)
31101 mcpu_ext_opt = XNEW (arm_feature_set);
31102 *mcpu_ext_opt = opt->ext;
31103 mcpu_fpu_opt = &opt->default_fpu;
31104 if (opt->canonical_name)
31105 {
31106 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
31107 strcpy (selected_cpu_name, opt->canonical_name);
31108 }
31109 else
31110 {
31111 size_t i;
31112
31113 if (len >= sizeof selected_cpu_name)
31114 len = (sizeof selected_cpu_name) - 1;
31115
31116 for (i = 0; i < len; i++)
31117 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31118 selected_cpu_name[i] = 0;
31119 }
31120
31121 if (ext != NULL)
31122 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
31123
31124 return TRUE;
31125 }
31126
31127 as_bad (_("unknown cpu `%s'"), str);
31128 return FALSE;
31129 }
31130
31131 static bfd_boolean
31132 arm_parse_arch (const char *str)
31133 {
31134 const struct arm_arch_option_table *opt;
31135 const char *ext = strchr (str, '+');
31136 size_t len;
31137
31138 if (ext != NULL)
31139 len = ext - str;
31140 else
31141 len = strlen (str);
31142
31143 if (len == 0)
31144 {
31145 as_bad (_("missing architecture name `%s'"), str);
31146 return FALSE;
31147 }
31148
31149 for (opt = arm_archs; opt->name != NULL; opt++)
31150 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31151 {
31152 march_cpu_opt = &opt->value;
31153 if (march_ext_opt == NULL)
31154 march_ext_opt = XNEW (arm_feature_set);
31155 *march_ext_opt = arm_arch_none;
31156 march_fpu_opt = &opt->default_fpu;
31157 strcpy (selected_cpu_name, opt->name);
31158
31159 if (ext != NULL)
31160 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
31161 opt->ext_table);
31162
31163 return TRUE;
31164 }
31165
31166 as_bad (_("unknown architecture `%s'\n"), str);
31167 return FALSE;
31168 }
31169
31170 static bfd_boolean
31171 arm_parse_fpu (const char * str)
31172 {
31173 const struct arm_option_fpu_value_table * opt;
31174
31175 for (opt = arm_fpus; opt->name != NULL; opt++)
31176 if (streq (opt->name, str))
31177 {
31178 mfpu_opt = &opt->value;
31179 return TRUE;
31180 }
31181
31182 as_bad (_("unknown floating point format `%s'\n"), str);
31183 return FALSE;
31184 }
31185
31186 static bfd_boolean
31187 arm_parse_float_abi (const char * str)
31188 {
31189 const struct arm_option_value_table * opt;
31190
31191 for (opt = arm_float_abis; opt->name != NULL; opt++)
31192 if (streq (opt->name, str))
31193 {
31194 mfloat_abi_opt = opt->value;
31195 return TRUE;
31196 }
31197
31198 as_bad (_("unknown floating point abi `%s'\n"), str);
31199 return FALSE;
31200 }
31201
31202 #ifdef OBJ_ELF
31203 static bfd_boolean
31204 arm_parse_eabi (const char * str)
31205 {
31206 const struct arm_option_value_table *opt;
31207
31208 for (opt = arm_eabis; opt->name != NULL; opt++)
31209 if (streq (opt->name, str))
31210 {
31211 meabi_flags = opt->value;
31212 return TRUE;
31213 }
31214 as_bad (_("unknown EABI `%s'\n"), str);
31215 return FALSE;
31216 }
31217 #endif
31218
31219 static bfd_boolean
31220 arm_parse_it_mode (const char * str)
31221 {
31222 bfd_boolean ret = TRUE;
31223
31224 if (streq ("arm", str))
31225 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
31226 else if (streq ("thumb", str))
31227 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
31228 else if (streq ("always", str))
31229 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
31230 else if (streq ("never", str))
31231 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
31232 else
31233 {
31234 as_bad (_("unknown implicit IT mode `%s', should be "\
31235 "arm, thumb, always, or never."), str);
31236 ret = FALSE;
31237 }
31238
31239 return ret;
31240 }
31241
31242 static bfd_boolean
31243 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
31244 {
31245 codecomposer_syntax = TRUE;
31246 arm_comment_chars[0] = ';';
31247 arm_line_separator_chars[0] = 0;
31248 return TRUE;
31249 }
31250
31251 struct arm_long_option_table arm_long_opts[] =
31252 {
31253 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
31254 arm_parse_cpu, NULL},
31255 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
31256 arm_parse_arch, NULL},
31257 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
31258 arm_parse_fpu, NULL},
31259 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
31260 arm_parse_float_abi, NULL},
31261 #ifdef OBJ_ELF
31262 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
31263 arm_parse_eabi, NULL},
31264 #endif
31265 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
31266 arm_parse_it_mode, NULL},
31267 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
31268 arm_ccs_mode, NULL},
31269 {NULL, NULL, 0, NULL}
31270 };
31271
31272 int
31273 md_parse_option (int c, const char * arg)
31274 {
31275 struct arm_option_table *opt;
31276 const struct arm_legacy_option_table *fopt;
31277 struct arm_long_option_table *lopt;
31278
31279 switch (c)
31280 {
31281 #ifdef OPTION_EB
31282 case OPTION_EB:
31283 target_big_endian = 1;
31284 break;
31285 #endif
31286
31287 #ifdef OPTION_EL
31288 case OPTION_EL:
31289 target_big_endian = 0;
31290 break;
31291 #endif
31292
31293 case OPTION_FIX_V4BX:
31294 fix_v4bx = TRUE;
31295 break;
31296
31297 #ifdef OBJ_ELF
31298 case OPTION_FDPIC:
31299 arm_fdpic = TRUE;
31300 break;
31301 #endif /* OBJ_ELF */
31302
31303 case 'a':
31304 /* Listing option. Just ignore these, we don't support additional
31305 ones. */
31306 return 0;
31307
31308 default:
31309 for (opt = arm_opts; opt->option != NULL; opt++)
31310 {
31311 if (c == opt->option[0]
31312 && ((arg == NULL && opt->option[1] == 0)
31313 || streq (arg, opt->option + 1)))
31314 {
31315 /* If the option is deprecated, tell the user. */
31316 if (warn_on_deprecated && opt->deprecated != NULL)
31317 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31318 arg ? arg : "", _(opt->deprecated));
31319
31320 if (opt->var != NULL)
31321 *opt->var = opt->value;
31322
31323 return 1;
31324 }
31325 }
31326
31327 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
31328 {
31329 if (c == fopt->option[0]
31330 && ((arg == NULL && fopt->option[1] == 0)
31331 || streq (arg, fopt->option + 1)))
31332 {
31333 /* If the option is deprecated, tell the user. */
31334 if (warn_on_deprecated && fopt->deprecated != NULL)
31335 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31336 arg ? arg : "", _(fopt->deprecated));
31337
31338 if (fopt->var != NULL)
31339 *fopt->var = &fopt->value;
31340
31341 return 1;
31342 }
31343 }
31344
31345 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31346 {
31347 /* These options are expected to have an argument. */
31348 if (c == lopt->option[0]
31349 && arg != NULL
31350 && strncmp (arg, lopt->option + 1,
31351 strlen (lopt->option + 1)) == 0)
31352 {
31353 /* If the option is deprecated, tell the user. */
31354 if (warn_on_deprecated && lopt->deprecated != NULL)
31355 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
31356 _(lopt->deprecated));
31357
31358 /* Call the sup-option parser. */
31359 return lopt->func (arg + strlen (lopt->option) - 1);
31360 }
31361 }
31362
31363 return 0;
31364 }
31365
31366 return 1;
31367 }
31368
31369 void
31370 md_show_usage (FILE * fp)
31371 {
31372 struct arm_option_table *opt;
31373 struct arm_long_option_table *lopt;
31374
31375 fprintf (fp, _(" ARM-specific assembler options:\n"));
31376
31377 for (opt = arm_opts; opt->option != NULL; opt++)
31378 if (opt->help != NULL)
31379 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
31380
31381 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31382 if (lopt->help != NULL)
31383 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
31384
31385 #ifdef OPTION_EB
31386 fprintf (fp, _("\
31387 -EB assemble code for a big-endian cpu\n"));
31388 #endif
31389
31390 #ifdef OPTION_EL
31391 fprintf (fp, _("\
31392 -EL assemble code for a little-endian cpu\n"));
31393 #endif
31394
31395 fprintf (fp, _("\
31396 --fix-v4bx Allow BX in ARMv4 code\n"));
31397
31398 #ifdef OBJ_ELF
31399 fprintf (fp, _("\
31400 --fdpic generate an FDPIC object file\n"));
31401 #endif /* OBJ_ELF */
31402 }
31403
31404 #ifdef OBJ_ELF
31405
31406 typedef struct
31407 {
31408 int val;
31409 arm_feature_set flags;
31410 } cpu_arch_ver_table;
31411
31412 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
31413 chronologically for architectures, with an exception for ARMv6-M and
31414 ARMv6S-M due to legacy reasons. No new architecture should have a
31415 special case. This allows for build attribute selection results to be
31416 stable when new architectures are added. */
31417 static const cpu_arch_ver_table cpu_arch_ver[] =
31418 {
31419 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
31420 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
31421 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
31422 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
31423 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
31424 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
31425 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
31426 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
31427 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
31428 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
31429 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
31430 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
31431 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
31432 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
31433 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
31434 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
31435 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
31436 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
31437 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
31438 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
31439 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
31440 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
31441 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
31442 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
31443
31444 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
31445 always selected build attributes to match those of ARMv6-M
31446 (resp. ARMv6S-M). However, due to these architectures being a strict
31447 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
31448 would be selected when fully respecting chronology of architectures.
31449 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
31450 move them before ARMv7 architectures. */
31451 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
31452 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
31453
31454 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
31455 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
31456 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
31457 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
31458 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
31459 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
31460 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
31461 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
31462 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
31463 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
31464 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
31465 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
31466 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
31467 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
31468 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
31469 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
31470 {-1, ARM_ARCH_NONE}
31471 };
31472
31473 /* Set an attribute if it has not already been set by the user. */
31474
31475 static void
31476 aeabi_set_attribute_int (int tag, int value)
31477 {
31478 if (tag < 1
31479 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31480 || !attributes_set_explicitly[tag])
31481 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
31482 }
31483
31484 static void
31485 aeabi_set_attribute_string (int tag, const char *value)
31486 {
31487 if (tag < 1
31488 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31489 || !attributes_set_explicitly[tag])
31490 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
31491 }
31492
31493 /* Return whether features in the *NEEDED feature set are available via
31494 extensions for the architecture whose feature set is *ARCH_FSET. */
31495
31496 static bfd_boolean
31497 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
31498 const arm_feature_set *needed)
31499 {
31500 int i, nb_allowed_archs;
31501 arm_feature_set ext_fset;
31502 const struct arm_option_extension_value_table *opt;
31503
31504 ext_fset = arm_arch_none;
31505 for (opt = arm_extensions; opt->name != NULL; opt++)
31506 {
31507 /* Extension does not provide any feature we need. */
31508 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
31509 continue;
31510
31511 nb_allowed_archs =
31512 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31513 for (i = 0; i < nb_allowed_archs; i++)
31514 {
31515 /* Empty entry. */
31516 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
31517 break;
31518
31519 /* Extension is available, add it. */
31520 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
31521 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
31522 }
31523 }
31524
31525 /* Can we enable all features in *needed? */
31526 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
31527 }
31528
31529 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31530 a given architecture feature set *ARCH_EXT_FSET including extension feature
31531 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31532 - if true, check for an exact match of the architecture modulo extensions;
31533 - otherwise, select build attribute value of the first superset
31534 architecture released so that results remains stable when new architectures
31535 are added.
31536 For -march/-mcpu=all the build attribute value of the most featureful
31537 architecture is returned. Tag_CPU_arch_profile result is returned in
31538 PROFILE. */
31539
31540 static int
31541 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
31542 const arm_feature_set *ext_fset,
31543 char *profile, int exact_match)
31544 {
31545 arm_feature_set arch_fset;
31546 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
31547
31548 /* Select most featureful architecture with all its extensions if building
31549 for -march=all as the feature sets used to set build attributes. */
31550 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
31551 {
31552 /* Force revisiting of decision for each new architecture. */
31553 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
31554 *profile = 'A';
31555 return TAG_CPU_ARCH_V8;
31556 }
31557
31558 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
31559
31560 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
31561 {
31562 arm_feature_set known_arch_fset;
31563
31564 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
31565 if (exact_match)
31566 {
31567 /* Base architecture match user-specified architecture and
31568 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31569 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
31570 {
31571 p_ver_ret = p_ver;
31572 goto found;
31573 }
31574 /* Base architecture match user-specified architecture only
31575 (eg. ARMv6-M in the same case as above). Record it in case we
31576 find a match with above condition. */
31577 else if (p_ver_ret == NULL
31578 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
31579 p_ver_ret = p_ver;
31580 }
31581 else
31582 {
31583
31584 /* Architecture has all features wanted. */
31585 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
31586 {
31587 arm_feature_set added_fset;
31588
31589 /* Compute features added by this architecture over the one
31590 recorded in p_ver_ret. */
31591 if (p_ver_ret != NULL)
31592 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
31593 p_ver_ret->flags);
31594 /* First architecture that match incl. with extensions, or the
31595 only difference in features over the recorded match is
31596 features that were optional and are now mandatory. */
31597 if (p_ver_ret == NULL
31598 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
31599 {
31600 p_ver_ret = p_ver;
31601 goto found;
31602 }
31603 }
31604 else if (p_ver_ret == NULL)
31605 {
31606 arm_feature_set needed_ext_fset;
31607
31608 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
31609
31610 /* Architecture has all features needed when using some
31611 extensions. Record it and continue searching in case there
31612 exist an architecture providing all needed features without
31613 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31614 OS extension). */
31615 if (have_ext_for_needed_feat_p (&known_arch_fset,
31616 &needed_ext_fset))
31617 p_ver_ret = p_ver;
31618 }
31619 }
31620 }
31621
31622 if (p_ver_ret == NULL)
31623 return -1;
31624
31625 found:
31626 /* Tag_CPU_arch_profile. */
31627 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31628 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31629 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31630 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31631 *profile = 'A';
31632 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31633 *profile = 'R';
31634 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31635 *profile = 'M';
31636 else
31637 *profile = '\0';
31638 return p_ver_ret->val;
31639 }
31640
31641 /* Set the public EABI object attributes. */
31642
31643 static void
31644 aeabi_set_public_attributes (void)
31645 {
31646 char profile = '\0';
31647 int arch = -1;
31648 int virt_sec = 0;
31649 int fp16_optional = 0;
31650 int skip_exact_match = 0;
31651 arm_feature_set flags, flags_arch, flags_ext;
31652
31653 /* Autodetection mode, choose the architecture based the instructions
31654 actually used. */
31655 if (no_cpu_selected ())
31656 {
31657 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
31658
31659 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31660 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
31661
31662 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31663 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
31664
31665 /* Code run during relaxation relies on selected_cpu being set. */
31666 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31667 flags_ext = arm_arch_none;
31668 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31669 selected_ext = flags_ext;
31670 selected_cpu = flags;
31671 }
31672 /* Otherwise, choose the architecture based on the capabilities of the
31673 requested cpu. */
31674 else
31675 {
31676 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31677 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31678 flags_ext = selected_ext;
31679 flags = selected_cpu;
31680 }
31681 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
31682
31683 /* Allow the user to override the reported architecture. */
31684 if (!ARM_FEATURE_ZERO (selected_object_arch))
31685 {
31686 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
31687 flags_ext = arm_arch_none;
31688 }
31689 else
31690 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
31691
31692 /* When this function is run again after relaxation has happened there is no
31693 way to determine whether an architecture or CPU was specified by the user:
31694 - selected_cpu is set above for relaxation to work;
31695 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31696 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31697 Therefore, if not in -march=all case we first try an exact match and fall
31698 back to autodetection. */
31699 if (!skip_exact_match)
31700 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31701 if (arch == -1)
31702 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31703 if (arch == -1)
31704 as_bad (_("no architecture contains all the instructions used\n"));
31705
31706 /* Tag_CPU_name. */
31707 if (selected_cpu_name[0])
31708 {
31709 char *q;
31710
31711 q = selected_cpu_name;
31712 if (strncmp (q, "armv", 4) == 0)
31713 {
31714 int i;
31715
31716 q += 4;
31717 for (i = 0; q[i]; i++)
31718 q[i] = TOUPPER (q[i]);
31719 }
31720 aeabi_set_attribute_string (Tag_CPU_name, q);
31721 }
31722
31723 /* Tag_CPU_arch. */
31724 aeabi_set_attribute_int (Tag_CPU_arch, arch);
31725
31726 /* Tag_CPU_arch_profile. */
31727 if (profile != '\0')
31728 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
31729
31730 /* Tag_DSP_extension. */
31731 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
31732 aeabi_set_attribute_int (Tag_DSP_extension, 1);
31733
31734 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31735 /* Tag_ARM_ISA_use. */
31736 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
31737 || ARM_FEATURE_ZERO (flags_arch))
31738 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
31739
31740 /* Tag_THUMB_ISA_use. */
31741 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
31742 || ARM_FEATURE_ZERO (flags_arch))
31743 {
31744 int thumb_isa_use;
31745
31746 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31747 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
31748 thumb_isa_use = 3;
31749 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31750 thumb_isa_use = 2;
31751 else
31752 thumb_isa_use = 1;
31753 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31754 }
31755
31756 /* Tag_VFP_arch. */
31757 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31758 aeabi_set_attribute_int (Tag_VFP_arch,
31759 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31760 ? 7 : 8);
31761 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
31762 aeabi_set_attribute_int (Tag_VFP_arch,
31763 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31764 ? 5 : 6);
31765 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
31766 {
31767 fp16_optional = 1;
31768 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31769 }
31770 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
31771 {
31772 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31773 fp16_optional = 1;
31774 }
31775 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31776 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31777 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
31778 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
31779 aeabi_set_attribute_int (Tag_VFP_arch, 1);
31780
31781 /* Tag_ABI_HardFP_use. */
31782 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31783 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31784 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31785
31786 /* Tag_WMMX_arch. */
31787 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31788 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31789 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31790 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
31791
31792 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
31793 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31794 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31795 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
31796 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31797 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31798 {
31799 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31800 {
31801 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31802 }
31803 else
31804 {
31805 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31806 fp16_optional = 1;
31807 }
31808 }
31809
31810 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31811 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31812 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31813 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31814
31815 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
31816 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
31817 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
31818
31819 /* Tag_DIV_use.
31820
31821 We set Tag_DIV_use to two when integer divide instructions have been used
31822 in ARM state, or when Thumb integer divide instructions have been used,
31823 but we have no architecture profile set, nor have we any ARM instructions.
31824
31825 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31826 by the base architecture.
31827
31828 For new architectures we will have to check these tests. */
31829 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
31830 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31831 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
31832 aeabi_set_attribute_int (Tag_DIV_use, 0);
31833 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31834 || (profile == '\0'
31835 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
31836 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
31837 aeabi_set_attribute_int (Tag_DIV_use, 2);
31838
31839 /* Tag_MP_extension_use. */
31840 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
31841 aeabi_set_attribute_int (Tag_MPextension_use, 1);
31842
31843 /* Tag Virtualization_use. */
31844 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
31845 virt_sec |= 1;
31846 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
31847 virt_sec |= 2;
31848 if (virt_sec != 0)
31849 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
31850 }
31851
31852 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
31853 finished and free extension feature bits which will not be used anymore. */
31854
31855 void
31856 arm_md_post_relax (void)
31857 {
31858 aeabi_set_public_attributes ();
31859 XDELETE (mcpu_ext_opt);
31860 mcpu_ext_opt = NULL;
31861 XDELETE (march_ext_opt);
31862 march_ext_opt = NULL;
31863 }
31864
31865 /* Add the default contents for the .ARM.attributes section. */
31866
31867 void
31868 arm_md_end (void)
31869 {
31870 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
31871 return;
31872
31873 aeabi_set_public_attributes ();
31874 }
31875 #endif /* OBJ_ELF */
31876
31877 /* Parse a .cpu directive. */
31878
31879 static void
31880 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
31881 {
31882 const struct arm_cpu_option_table *opt;
31883 char *name;
31884 char saved_char;
31885
31886 name = input_line_pointer;
31887 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31888 input_line_pointer++;
31889 saved_char = *input_line_pointer;
31890 *input_line_pointer = 0;
31891
31892 /* Skip the first "all" entry. */
31893 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
31894 if (streq (opt->name, name))
31895 {
31896 selected_arch = opt->value;
31897 selected_ext = opt->ext;
31898 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31899 if (opt->canonical_name)
31900 strcpy (selected_cpu_name, opt->canonical_name);
31901 else
31902 {
31903 int i;
31904 for (i = 0; opt->name[i]; i++)
31905 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31906
31907 selected_cpu_name[i] = 0;
31908 }
31909 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31910
31911 *input_line_pointer = saved_char;
31912 demand_empty_rest_of_line ();
31913 return;
31914 }
31915 as_bad (_("unknown cpu `%s'"), name);
31916 *input_line_pointer = saved_char;
31917 ignore_rest_of_line ();
31918 }
31919
31920 /* Parse a .arch directive. */
31921
31922 static void
31923 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31924 {
31925 const struct arm_arch_option_table *opt;
31926 char saved_char;
31927 char *name;
31928
31929 name = input_line_pointer;
31930 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31931 input_line_pointer++;
31932 saved_char = *input_line_pointer;
31933 *input_line_pointer = 0;
31934
31935 /* Skip the first "all" entry. */
31936 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31937 if (streq (opt->name, name))
31938 {
31939 selected_arch = opt->value;
31940 selected_ext = arm_arch_none;
31941 selected_cpu = selected_arch;
31942 strcpy (selected_cpu_name, opt->name);
31943 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31944 *input_line_pointer = saved_char;
31945 demand_empty_rest_of_line ();
31946 return;
31947 }
31948
31949 as_bad (_("unknown architecture `%s'\n"), name);
31950 *input_line_pointer = saved_char;
31951 ignore_rest_of_line ();
31952 }
31953
31954 /* Parse a .object_arch directive. */
31955
31956 static void
31957 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31958 {
31959 const struct arm_arch_option_table *opt;
31960 char saved_char;
31961 char *name;
31962
31963 name = input_line_pointer;
31964 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31965 input_line_pointer++;
31966 saved_char = *input_line_pointer;
31967 *input_line_pointer = 0;
31968
31969 /* Skip the first "all" entry. */
31970 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31971 if (streq (opt->name, name))
31972 {
31973 selected_object_arch = opt->value;
31974 *input_line_pointer = saved_char;
31975 demand_empty_rest_of_line ();
31976 return;
31977 }
31978
31979 as_bad (_("unknown architecture `%s'\n"), name);
31980 *input_line_pointer = saved_char;
31981 ignore_rest_of_line ();
31982 }
31983
31984 /* Parse a .arch_extension directive. */
31985
31986 static void
31987 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31988 {
31989 const struct arm_option_extension_value_table *opt;
31990 char saved_char;
31991 char *name;
31992 int adding_value = 1;
31993
31994 name = input_line_pointer;
31995 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31996 input_line_pointer++;
31997 saved_char = *input_line_pointer;
31998 *input_line_pointer = 0;
31999
32000 if (strlen (name) >= 2
32001 && strncmp (name, "no", 2) == 0)
32002 {
32003 adding_value = 0;
32004 name += 2;
32005 }
32006
32007 for (opt = arm_extensions; opt->name != NULL; opt++)
32008 if (streq (opt->name, name))
32009 {
32010 int i, nb_allowed_archs =
32011 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
32012 for (i = 0; i < nb_allowed_archs; i++)
32013 {
32014 /* Empty entry. */
32015 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
32016 continue;
32017 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
32018 break;
32019 }
32020
32021 if (i == nb_allowed_archs)
32022 {
32023 as_bad (_("architectural extension `%s' is not allowed for the "
32024 "current base architecture"), name);
32025 break;
32026 }
32027
32028 if (adding_value)
32029 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
32030 opt->merge_value);
32031 else
32032 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
32033
32034 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32035 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32036 *input_line_pointer = saved_char;
32037 demand_empty_rest_of_line ();
32038 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
32039 on this return so that duplicate extensions (extensions with the
32040 same name as a previous extension in the list) are not considered
32041 for command-line parsing. */
32042 return;
32043 }
32044
32045 if (opt->name == NULL)
32046 as_bad (_("unknown architecture extension `%s'\n"), name);
32047
32048 *input_line_pointer = saved_char;
32049 ignore_rest_of_line ();
32050 }
32051
32052 /* Parse a .fpu directive. */
32053
32054 static void
32055 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
32056 {
32057 const struct arm_option_fpu_value_table *opt;
32058 char saved_char;
32059 char *name;
32060
32061 name = input_line_pointer;
32062 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32063 input_line_pointer++;
32064 saved_char = *input_line_pointer;
32065 *input_line_pointer = 0;
32066
32067 for (opt = arm_fpus; opt->name != NULL; opt++)
32068 if (streq (opt->name, name))
32069 {
32070 selected_fpu = opt->value;
32071 #ifndef CPU_DEFAULT
32072 if (no_cpu_selected ())
32073 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
32074 else
32075 #endif
32076 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32077 *input_line_pointer = saved_char;
32078 demand_empty_rest_of_line ();
32079 return;
32080 }
32081
32082 as_bad (_("unknown floating point format `%s'\n"), name);
32083 *input_line_pointer = saved_char;
32084 ignore_rest_of_line ();
32085 }
32086
32087 /* Copy symbol information. */
32088
32089 void
32090 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
32091 {
32092 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
32093 }
32094
32095 #ifdef OBJ_ELF
32096 /* Given a symbolic attribute NAME, return the proper integer value.
32097 Returns -1 if the attribute is not known. */
32098
32099 int
32100 arm_convert_symbolic_attribute (const char *name)
32101 {
32102 static const struct
32103 {
32104 const char * name;
32105 const int tag;
32106 }
32107 attribute_table[] =
32108 {
32109 /* When you modify this table you should
32110 also modify the list in doc/c-arm.texi. */
32111 #define T(tag) {#tag, tag}
32112 T (Tag_CPU_raw_name),
32113 T (Tag_CPU_name),
32114 T (Tag_CPU_arch),
32115 T (Tag_CPU_arch_profile),
32116 T (Tag_ARM_ISA_use),
32117 T (Tag_THUMB_ISA_use),
32118 T (Tag_FP_arch),
32119 T (Tag_VFP_arch),
32120 T (Tag_WMMX_arch),
32121 T (Tag_Advanced_SIMD_arch),
32122 T (Tag_PCS_config),
32123 T (Tag_ABI_PCS_R9_use),
32124 T (Tag_ABI_PCS_RW_data),
32125 T (Tag_ABI_PCS_RO_data),
32126 T (Tag_ABI_PCS_GOT_use),
32127 T (Tag_ABI_PCS_wchar_t),
32128 T (Tag_ABI_FP_rounding),
32129 T (Tag_ABI_FP_denormal),
32130 T (Tag_ABI_FP_exceptions),
32131 T (Tag_ABI_FP_user_exceptions),
32132 T (Tag_ABI_FP_number_model),
32133 T (Tag_ABI_align_needed),
32134 T (Tag_ABI_align8_needed),
32135 T (Tag_ABI_align_preserved),
32136 T (Tag_ABI_align8_preserved),
32137 T (Tag_ABI_enum_size),
32138 T (Tag_ABI_HardFP_use),
32139 T (Tag_ABI_VFP_args),
32140 T (Tag_ABI_WMMX_args),
32141 T (Tag_ABI_optimization_goals),
32142 T (Tag_ABI_FP_optimization_goals),
32143 T (Tag_compatibility),
32144 T (Tag_CPU_unaligned_access),
32145 T (Tag_FP_HP_extension),
32146 T (Tag_VFP_HP_extension),
32147 T (Tag_ABI_FP_16bit_format),
32148 T (Tag_MPextension_use),
32149 T (Tag_DIV_use),
32150 T (Tag_nodefaults),
32151 T (Tag_also_compatible_with),
32152 T (Tag_conformance),
32153 T (Tag_T2EE_use),
32154 T (Tag_Virtualization_use),
32155 T (Tag_DSP_extension),
32156 T (Tag_MVE_arch),
32157 /* We deliberately do not include Tag_MPextension_use_legacy. */
32158 #undef T
32159 };
32160 unsigned int i;
32161
32162 if (name == NULL)
32163 return -1;
32164
32165 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
32166 if (streq (name, attribute_table[i].name))
32167 return attribute_table[i].tag;
32168
32169 return -1;
32170 }
32171
32172 /* Apply sym value for relocations only in the case that they are for
32173 local symbols in the same segment as the fixup and you have the
32174 respective architectural feature for blx and simple switches. */
32175
32176 int
32177 arm_apply_sym_value (struct fix * fixP, segT this_seg)
32178 {
32179 if (fixP->fx_addsy
32180 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
32181 /* PR 17444: If the local symbol is in a different section then a reloc
32182 will always be generated for it, so applying the symbol value now
32183 will result in a double offset being stored in the relocation. */
32184 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
32185 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
32186 {
32187 switch (fixP->fx_r_type)
32188 {
32189 case BFD_RELOC_ARM_PCREL_BLX:
32190 case BFD_RELOC_THUMB_PCREL_BRANCH23:
32191 if (ARM_IS_FUNC (fixP->fx_addsy))
32192 return 1;
32193 break;
32194
32195 case BFD_RELOC_ARM_PCREL_CALL:
32196 case BFD_RELOC_THUMB_PCREL_BLX:
32197 if (THUMB_IS_FUNC (fixP->fx_addsy))
32198 return 1;
32199 break;
32200
32201 default:
32202 break;
32203 }
32204
32205 }
32206 return 0;
32207 }
32208 #endif /* OBJ_ELF */
This page took 0.800658 seconds and 4 git commands to generate.