tc-ppc.c md_apply_fix tidy
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2015 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 #endif /* OBJ_ELF */
79
80 /* Results from operand parsing worker functions. */
81
82 typedef enum
83 {
84 PARSE_OPERAND_SUCCESS,
85 PARSE_OPERAND_FAIL,
86 PARSE_OPERAND_FAIL_NO_BACKTRACK
87 } parse_operand_result;
88
89 enum arm_float_abi
90 {
91 ARM_FLOAT_ABI_HARD,
92 ARM_FLOAT_ABI_SOFTFP,
93 ARM_FLOAT_ABI_SOFT
94 };
95
96 /* Types of processor to assemble for. */
97 #ifndef CPU_DEFAULT
98 /* The code that was here used to select a default CPU depending on compiler
99 pre-defines which were only present when doing native builds, thus
100 changing gas' default behaviour depending upon the build host.
101
102 If you have a target that requires a default CPU option then the you
103 should define CPU_DEFAULT here. */
104 #endif
105
106 #ifndef FPU_DEFAULT
107 # ifdef TE_LINUX
108 # define FPU_DEFAULT FPU_ARCH_FPA
109 # elif defined (TE_NetBSD)
110 # ifdef OBJ_ELF
111 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
112 # else
113 /* Legacy a.out format. */
114 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
115 # endif
116 # elif defined (TE_VXWORKS)
117 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
118 # else
119 /* For backwards compatibility, default to FPA. */
120 # define FPU_DEFAULT FPU_ARCH_FPA
121 # endif
122 #endif /* ifndef FPU_DEFAULT */
123
124 #define streq(a, b) (strcmp (a, b) == 0)
125
126 static arm_feature_set cpu_variant;
127 static arm_feature_set arm_arch_used;
128 static arm_feature_set thumb_arch_used;
129
130 /* Flags stored in private area of BFD structure. */
131 static int uses_apcs_26 = FALSE;
132 static int atpcs = FALSE;
133 static int support_interwork = FALSE;
134 static int uses_apcs_float = FALSE;
135 static int pic_code = FALSE;
136 static int fix_v4bx = FALSE;
137 /* Warn on using deprecated features. */
138 static int warn_on_deprecated = TRUE;
139
140 /* Understand CodeComposer Studio assembly syntax. */
141 bfd_boolean codecomposer_syntax = FALSE;
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE_CORE_LOW (ARM_EXT_V6M);
189 static const arm_feature_set arm_ext_v6_notm =
190 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
191 static const arm_feature_set arm_ext_v6_dsp =
192 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
193 static const arm_feature_set arm_ext_barrier =
194 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
195 static const arm_feature_set arm_ext_msr =
196 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
197 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
198 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
199 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
200 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
201 static const arm_feature_set arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
202 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
203 static const arm_feature_set arm_ext_m =
204 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M);
205 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
206 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
207 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
208 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
209 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
210 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
211
212 static const arm_feature_set arm_arch_any = ARM_ANY;
213 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1, -1);
214 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
215 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
216 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
217
218 static const arm_feature_set arm_cext_iwmmxt2 =
219 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
220 static const arm_feature_set arm_cext_iwmmxt =
221 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
222 static const arm_feature_set arm_cext_xscale =
223 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
224 static const arm_feature_set arm_cext_maverick =
225 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
226 static const arm_feature_set fpu_fpa_ext_v1 =
227 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
228 static const arm_feature_set fpu_fpa_ext_v2 =
229 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
230 static const arm_feature_set fpu_vfp_ext_v1xd =
231 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
232 static const arm_feature_set fpu_vfp_ext_v1 =
233 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
234 static const arm_feature_set fpu_vfp_ext_v2 =
235 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
236 static const arm_feature_set fpu_vfp_ext_v3xd =
237 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
238 static const arm_feature_set fpu_vfp_ext_v3 =
239 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
240 static const arm_feature_set fpu_vfp_ext_d32 =
241 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
242 static const arm_feature_set fpu_neon_ext_v1 =
243 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
244 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
245 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
246 static const arm_feature_set fpu_vfp_fp16 =
247 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
248 static const arm_feature_set fpu_neon_ext_fma =
249 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
250 static const arm_feature_set fpu_vfp_ext_fma =
251 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
252 static const arm_feature_set fpu_vfp_ext_armv8 =
253 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
254 static const arm_feature_set fpu_vfp_ext_armv8xd =
255 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
256 static const arm_feature_set fpu_neon_ext_armv8 =
257 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
258 static const arm_feature_set fpu_crypto_ext_armv8 =
259 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
260 static const arm_feature_set crc_ext_armv8 =
261 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
262 static const arm_feature_set fpu_neon_ext_v8_1 =
263 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8 | FPU_NEON_EXT_RDMA);
264
265 static int mfloat_abi_opt = -1;
266 /* Record user cpu selection for object attributes. */
267 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
268 /* Must be long enough to hold any of the names in arm_cpus. */
269 static char selected_cpu_name[20];
270
271 extern FLONUM_TYPE generic_floating_point_number;
272
273 /* Return if no cpu was selected on command-line. */
274 static bfd_boolean
275 no_cpu_selected (void)
276 {
277 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
278 }
279
280 #ifdef OBJ_ELF
281 # ifdef EABI_DEFAULT
282 static int meabi_flags = EABI_DEFAULT;
283 # else
284 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
285 # endif
286
287 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
288
289 bfd_boolean
290 arm_is_eabi (void)
291 {
292 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
293 }
294 #endif
295
296 #ifdef OBJ_ELF
297 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
298 symbolS * GOT_symbol;
299 #endif
300
301 /* 0: assemble for ARM,
302 1: assemble for Thumb,
303 2: assemble for Thumb even though target CPU does not support thumb
304 instructions. */
305 static int thumb_mode = 0;
306 /* A value distinct from the possible values for thumb_mode that we
307 can use to record whether thumb_mode has been copied into the
308 tc_frag_data field of a frag. */
309 #define MODE_RECORDED (1 << 4)
310
311 /* Specifies the intrinsic IT insn behavior mode. */
312 enum implicit_it_mode
313 {
314 IMPLICIT_IT_MODE_NEVER = 0x00,
315 IMPLICIT_IT_MODE_ARM = 0x01,
316 IMPLICIT_IT_MODE_THUMB = 0x02,
317 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
318 };
319 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
320
321 /* If unified_syntax is true, we are processing the new unified
322 ARM/Thumb syntax. Important differences from the old ARM mode:
323
324 - Immediate operands do not require a # prefix.
325 - Conditional affixes always appear at the end of the
326 instruction. (For backward compatibility, those instructions
327 that formerly had them in the middle, continue to accept them
328 there.)
329 - The IT instruction may appear, and if it does is validated
330 against subsequent conditional affixes. It does not generate
331 machine code.
332
333 Important differences from the old Thumb mode:
334
335 - Immediate operands do not require a # prefix.
336 - Most of the V6T2 instructions are only available in unified mode.
337 - The .N and .W suffixes are recognized and honored (it is an error
338 if they cannot be honored).
339 - All instructions set the flags if and only if they have an 's' affix.
340 - Conditional affixes may be used. They are validated against
341 preceding IT instructions. Unlike ARM mode, you cannot use a
342 conditional affix except in the scope of an IT instruction. */
343
344 static bfd_boolean unified_syntax = FALSE;
345
346 /* An immediate operand can start with #, and ld*, st*, pld operands
347 can contain [ and ]. We need to tell APP not to elide whitespace
348 before a [, which can appear as the first operand for pld.
349 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
350 const char arm_symbol_chars[] = "#[]{}";
351
352 enum neon_el_type
353 {
354 NT_invtype,
355 NT_untyped,
356 NT_integer,
357 NT_float,
358 NT_poly,
359 NT_signed,
360 NT_unsigned
361 };
362
363 struct neon_type_el
364 {
365 enum neon_el_type type;
366 unsigned size;
367 };
368
369 #define NEON_MAX_TYPE_ELS 4
370
371 struct neon_type
372 {
373 struct neon_type_el el[NEON_MAX_TYPE_ELS];
374 unsigned elems;
375 };
376
377 enum it_instruction_type
378 {
379 OUTSIDE_IT_INSN,
380 INSIDE_IT_INSN,
381 INSIDE_IT_LAST_INSN,
382 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
383 if inside, should be the last one. */
384 NEUTRAL_IT_INSN, /* This could be either inside or outside,
385 i.e. BKPT and NOP. */
386 IT_INSN /* The IT insn has been parsed. */
387 };
388
389 /* The maximum number of operands we need. */
390 #define ARM_IT_MAX_OPERANDS 6
391
392 struct arm_it
393 {
394 const char * error;
395 unsigned long instruction;
396 int size;
397 int size_req;
398 int cond;
399 /* "uncond_value" is set to the value in place of the conditional field in
400 unconditional versions of the instruction, or -1 if nothing is
401 appropriate. */
402 int uncond_value;
403 struct neon_type vectype;
404 /* This does not indicate an actual NEON instruction, only that
405 the mnemonic accepts neon-style type suffixes. */
406 int is_neon;
407 /* Set to the opcode if the instruction needs relaxation.
408 Zero if the instruction is not relaxed. */
409 unsigned long relax;
410 struct
411 {
412 bfd_reloc_code_real_type type;
413 expressionS exp;
414 int pc_rel;
415 } reloc;
416
417 enum it_instruction_type it_insn_type;
418
419 struct
420 {
421 unsigned reg;
422 signed int imm;
423 struct neon_type_el vectype;
424 unsigned present : 1; /* Operand present. */
425 unsigned isreg : 1; /* Operand was a register. */
426 unsigned immisreg : 1; /* .imm field is a second register. */
427 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
428 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
429 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
430 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
431 instructions. This allows us to disambiguate ARM <-> vector insns. */
432 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
433 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
434 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
435 unsigned issingle : 1; /* Operand is VFP single-precision register. */
436 unsigned hasreloc : 1; /* Operand has relocation suffix. */
437 unsigned writeback : 1; /* Operand has trailing ! */
438 unsigned preind : 1; /* Preindexed address. */
439 unsigned postind : 1; /* Postindexed address. */
440 unsigned negative : 1; /* Index register was negated. */
441 unsigned shifted : 1; /* Shift applied to operation. */
442 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
443 } operands[ARM_IT_MAX_OPERANDS];
444 };
445
446 static struct arm_it inst;
447
448 #define NUM_FLOAT_VALS 8
449
450 const char * fp_const[] =
451 {
452 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
453 };
454
455 /* Number of littlenums required to hold an extended precision number. */
456 #define MAX_LITTLENUMS 6
457
458 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
459
460 #define FAIL (-1)
461 #define SUCCESS (0)
462
463 #define SUFF_S 1
464 #define SUFF_D 2
465 #define SUFF_E 3
466 #define SUFF_P 4
467
468 #define CP_T_X 0x00008000
469 #define CP_T_Y 0x00400000
470
471 #define CONDS_BIT 0x00100000
472 #define LOAD_BIT 0x00100000
473
474 #define DOUBLE_LOAD_FLAG 0x00000001
475
476 struct asm_cond
477 {
478 const char * template_name;
479 unsigned long value;
480 };
481
482 #define COND_ALWAYS 0xE
483
484 struct asm_psr
485 {
486 const char * template_name;
487 unsigned long field;
488 };
489
490 struct asm_barrier_opt
491 {
492 const char * template_name;
493 unsigned long value;
494 const arm_feature_set arch;
495 };
496
497 /* The bit that distinguishes CPSR and SPSR. */
498 #define SPSR_BIT (1 << 22)
499
500 /* The individual PSR flag bits. */
501 #define PSR_c (1 << 16)
502 #define PSR_x (1 << 17)
503 #define PSR_s (1 << 18)
504 #define PSR_f (1 << 19)
505
506 struct reloc_entry
507 {
508 char * name;
509 bfd_reloc_code_real_type reloc;
510 };
511
512 enum vfp_reg_pos
513 {
514 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
515 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
516 };
517
518 enum vfp_ldstm_type
519 {
520 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
521 };
522
523 /* Bits for DEFINED field in neon_typed_alias. */
524 #define NTA_HASTYPE 1
525 #define NTA_HASINDEX 2
526
527 struct neon_typed_alias
528 {
529 unsigned char defined;
530 unsigned char index;
531 struct neon_type_el eltype;
532 };
533
534 /* ARM register categories. This includes coprocessor numbers and various
535 architecture extensions' registers. */
536 enum arm_reg_type
537 {
538 REG_TYPE_RN,
539 REG_TYPE_CP,
540 REG_TYPE_CN,
541 REG_TYPE_FN,
542 REG_TYPE_VFS,
543 REG_TYPE_VFD,
544 REG_TYPE_NQ,
545 REG_TYPE_VFSD,
546 REG_TYPE_NDQ,
547 REG_TYPE_NSDQ,
548 REG_TYPE_VFC,
549 REG_TYPE_MVF,
550 REG_TYPE_MVD,
551 REG_TYPE_MVFX,
552 REG_TYPE_MVDX,
553 REG_TYPE_MVAX,
554 REG_TYPE_DSPSC,
555 REG_TYPE_MMXWR,
556 REG_TYPE_MMXWC,
557 REG_TYPE_MMXWCG,
558 REG_TYPE_XSCALE,
559 REG_TYPE_RNB
560 };
561
562 /* Structure for a hash table entry for a register.
563 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
564 information which states whether a vector type or index is specified (for a
565 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
566 struct reg_entry
567 {
568 const char * name;
569 unsigned int number;
570 unsigned char type;
571 unsigned char builtin;
572 struct neon_typed_alias * neon;
573 };
574
575 /* Diagnostics used when we don't get a register of the expected type. */
576 const char * const reg_expected_msgs[] =
577 {
578 N_("ARM register expected"),
579 N_("bad or missing co-processor number"),
580 N_("co-processor register expected"),
581 N_("FPA register expected"),
582 N_("VFP single precision register expected"),
583 N_("VFP/Neon double precision register expected"),
584 N_("Neon quad precision register expected"),
585 N_("VFP single or double precision register expected"),
586 N_("Neon double or quad precision register expected"),
587 N_("VFP single, double or Neon quad precision register expected"),
588 N_("VFP system register expected"),
589 N_("Maverick MVF register expected"),
590 N_("Maverick MVD register expected"),
591 N_("Maverick MVFX register expected"),
592 N_("Maverick MVDX register expected"),
593 N_("Maverick MVAX register expected"),
594 N_("Maverick DSPSC register expected"),
595 N_("iWMMXt data register expected"),
596 N_("iWMMXt control register expected"),
597 N_("iWMMXt scalar register expected"),
598 N_("XScale accumulator register expected"),
599 };
600
601 /* Some well known registers that we refer to directly elsewhere. */
602 #define REG_R12 12
603 #define REG_SP 13
604 #define REG_LR 14
605 #define REG_PC 15
606
607 /* ARM instructions take 4bytes in the object file, Thumb instructions
608 take 2: */
609 #define INSN_SIZE 4
610
611 struct asm_opcode
612 {
613 /* Basic string to match. */
614 const char * template_name;
615
616 /* Parameters to instruction. */
617 unsigned int operands[8];
618
619 /* Conditional tag - see opcode_lookup. */
620 unsigned int tag : 4;
621
622 /* Basic instruction code. */
623 unsigned int avalue : 28;
624
625 /* Thumb-format instruction code. */
626 unsigned int tvalue;
627
628 /* Which architecture variant provides this instruction. */
629 const arm_feature_set * avariant;
630 const arm_feature_set * tvariant;
631
632 /* Function to call to encode instruction in ARM format. */
633 void (* aencode) (void);
634
635 /* Function to call to encode instruction in Thumb format. */
636 void (* tencode) (void);
637 };
638
639 /* Defines for various bits that we will want to toggle. */
640 #define INST_IMMEDIATE 0x02000000
641 #define OFFSET_REG 0x02000000
642 #define HWOFFSET_IMM 0x00400000
643 #define SHIFT_BY_REG 0x00000010
644 #define PRE_INDEX 0x01000000
645 #define INDEX_UP 0x00800000
646 #define WRITE_BACK 0x00200000
647 #define LDM_TYPE_2_OR_3 0x00400000
648 #define CPSI_MMOD 0x00020000
649
650 #define LITERAL_MASK 0xf000f000
651 #define OPCODE_MASK 0xfe1fffff
652 #define V4_STR_BIT 0x00000020
653 #define VLDR_VMOV_SAME 0x0040f000
654
655 #define T2_SUBS_PC_LR 0xf3de8f00
656
657 #define DATA_OP_SHIFT 21
658
659 #define T2_OPCODE_MASK 0xfe1fffff
660 #define T2_DATA_OP_SHIFT 21
661
662 #define A_COND_MASK 0xf0000000
663 #define A_PUSH_POP_OP_MASK 0x0fff0000
664
665 /* Opcodes for pushing/poping registers to/from the stack. */
666 #define A1_OPCODE_PUSH 0x092d0000
667 #define A2_OPCODE_PUSH 0x052d0004
668 #define A2_OPCODE_POP 0x049d0004
669
670 /* Codes to distinguish the arithmetic instructions. */
671 #define OPCODE_AND 0
672 #define OPCODE_EOR 1
673 #define OPCODE_SUB 2
674 #define OPCODE_RSB 3
675 #define OPCODE_ADD 4
676 #define OPCODE_ADC 5
677 #define OPCODE_SBC 6
678 #define OPCODE_RSC 7
679 #define OPCODE_TST 8
680 #define OPCODE_TEQ 9
681 #define OPCODE_CMP 10
682 #define OPCODE_CMN 11
683 #define OPCODE_ORR 12
684 #define OPCODE_MOV 13
685 #define OPCODE_BIC 14
686 #define OPCODE_MVN 15
687
688 #define T2_OPCODE_AND 0
689 #define T2_OPCODE_BIC 1
690 #define T2_OPCODE_ORR 2
691 #define T2_OPCODE_ORN 3
692 #define T2_OPCODE_EOR 4
693 #define T2_OPCODE_ADD 8
694 #define T2_OPCODE_ADC 10
695 #define T2_OPCODE_SBC 11
696 #define T2_OPCODE_SUB 13
697 #define T2_OPCODE_RSB 14
698
699 #define T_OPCODE_MUL 0x4340
700 #define T_OPCODE_TST 0x4200
701 #define T_OPCODE_CMN 0x42c0
702 #define T_OPCODE_NEG 0x4240
703 #define T_OPCODE_MVN 0x43c0
704
705 #define T_OPCODE_ADD_R3 0x1800
706 #define T_OPCODE_SUB_R3 0x1a00
707 #define T_OPCODE_ADD_HI 0x4400
708 #define T_OPCODE_ADD_ST 0xb000
709 #define T_OPCODE_SUB_ST 0xb080
710 #define T_OPCODE_ADD_SP 0xa800
711 #define T_OPCODE_ADD_PC 0xa000
712 #define T_OPCODE_ADD_I8 0x3000
713 #define T_OPCODE_SUB_I8 0x3800
714 #define T_OPCODE_ADD_I3 0x1c00
715 #define T_OPCODE_SUB_I3 0x1e00
716
717 #define T_OPCODE_ASR_R 0x4100
718 #define T_OPCODE_LSL_R 0x4080
719 #define T_OPCODE_LSR_R 0x40c0
720 #define T_OPCODE_ROR_R 0x41c0
721 #define T_OPCODE_ASR_I 0x1000
722 #define T_OPCODE_LSL_I 0x0000
723 #define T_OPCODE_LSR_I 0x0800
724
725 #define T_OPCODE_MOV_I8 0x2000
726 #define T_OPCODE_CMP_I8 0x2800
727 #define T_OPCODE_CMP_LR 0x4280
728 #define T_OPCODE_MOV_HR 0x4600
729 #define T_OPCODE_CMP_HR 0x4500
730
731 #define T_OPCODE_LDR_PC 0x4800
732 #define T_OPCODE_LDR_SP 0x9800
733 #define T_OPCODE_STR_SP 0x9000
734 #define T_OPCODE_LDR_IW 0x6800
735 #define T_OPCODE_STR_IW 0x6000
736 #define T_OPCODE_LDR_IH 0x8800
737 #define T_OPCODE_STR_IH 0x8000
738 #define T_OPCODE_LDR_IB 0x7800
739 #define T_OPCODE_STR_IB 0x7000
740 #define T_OPCODE_LDR_RW 0x5800
741 #define T_OPCODE_STR_RW 0x5000
742 #define T_OPCODE_LDR_RH 0x5a00
743 #define T_OPCODE_STR_RH 0x5200
744 #define T_OPCODE_LDR_RB 0x5c00
745 #define T_OPCODE_STR_RB 0x5400
746
747 #define T_OPCODE_PUSH 0xb400
748 #define T_OPCODE_POP 0xbc00
749
750 #define T_OPCODE_BRANCH 0xe000
751
752 #define THUMB_SIZE 2 /* Size of thumb instruction. */
753 #define THUMB_PP_PC_LR 0x0100
754 #define THUMB_LOAD_BIT 0x0800
755 #define THUMB2_LOAD_BIT 0x00100000
756
757 #define BAD_ARGS _("bad arguments to instruction")
758 #define BAD_SP _("r13 not allowed here")
759 #define BAD_PC _("r15 not allowed here")
760 #define BAD_COND _("instruction cannot be conditional")
761 #define BAD_OVERLAP _("registers may not be the same")
762 #define BAD_HIREG _("lo register required")
763 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
764 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
765 #define BAD_BRANCH _("branch must be last instruction in IT block")
766 #define BAD_NOT_IT _("instruction not allowed in IT block")
767 #define BAD_FPU _("selected FPU does not support instruction")
768 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
769 #define BAD_IT_COND _("incorrect condition in IT block")
770 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
771 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
772 #define BAD_PC_ADDRESSING \
773 _("cannot use register index with PC-relative addressing")
774 #define BAD_PC_WRITEBACK \
775 _("cannot use writeback with PC-relative addressing")
776 #define BAD_RANGE _("branch out of range")
777 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
778
779 static struct hash_control * arm_ops_hsh;
780 static struct hash_control * arm_cond_hsh;
781 static struct hash_control * arm_shift_hsh;
782 static struct hash_control * arm_psr_hsh;
783 static struct hash_control * arm_v7m_psr_hsh;
784 static struct hash_control * arm_reg_hsh;
785 static struct hash_control * arm_reloc_hsh;
786 static struct hash_control * arm_barrier_opt_hsh;
787
788 /* Stuff needed to resolve the label ambiguity
789 As:
790 ...
791 label: <insn>
792 may differ from:
793 ...
794 label:
795 <insn> */
796
797 symbolS * last_label_seen;
798 static int label_is_thumb_function_name = FALSE;
799
800 /* Literal pool structure. Held on a per-section
801 and per-sub-section basis. */
802
803 #define MAX_LITERAL_POOL_SIZE 1024
804 typedef struct literal_pool
805 {
806 expressionS literals [MAX_LITERAL_POOL_SIZE];
807 unsigned int next_free_entry;
808 unsigned int id;
809 symbolS * symbol;
810 segT section;
811 subsegT sub_section;
812 #ifdef OBJ_ELF
813 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
814 #endif
815 struct literal_pool * next;
816 unsigned int alignment;
817 } literal_pool;
818
819 /* Pointer to a linked list of literal pools. */
820 literal_pool * list_of_pools = NULL;
821
822 typedef enum asmfunc_states
823 {
824 OUTSIDE_ASMFUNC,
825 WAITING_ASMFUNC_NAME,
826 WAITING_ENDASMFUNC
827 } asmfunc_states;
828
829 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
830
831 #ifdef OBJ_ELF
832 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
833 #else
834 static struct current_it now_it;
835 #endif
836
837 static inline int
838 now_it_compatible (int cond)
839 {
840 return (cond & ~1) == (now_it.cc & ~1);
841 }
842
843 static inline int
844 conditional_insn (void)
845 {
846 return inst.cond != COND_ALWAYS;
847 }
848
849 static int in_it_block (void);
850
851 static int handle_it_state (void);
852
853 static void force_automatic_it_block_close (void);
854
855 static void it_fsm_post_encode (void);
856
857 #define set_it_insn_type(type) \
858 do \
859 { \
860 inst.it_insn_type = type; \
861 if (handle_it_state () == FAIL) \
862 return; \
863 } \
864 while (0)
865
866 #define set_it_insn_type_nonvoid(type, failret) \
867 do \
868 { \
869 inst.it_insn_type = type; \
870 if (handle_it_state () == FAIL) \
871 return failret; \
872 } \
873 while(0)
874
875 #define set_it_insn_type_last() \
876 do \
877 { \
878 if (inst.cond == COND_ALWAYS) \
879 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
880 else \
881 set_it_insn_type (INSIDE_IT_LAST_INSN); \
882 } \
883 while (0)
884
885 /* Pure syntax. */
886
887 /* This array holds the chars that always start a comment. If the
888 pre-processor is disabled, these aren't very useful. */
889 char arm_comment_chars[] = "@";
890
891 /* This array holds the chars that only start a comment at the beginning of
892 a line. If the line seems to have the form '# 123 filename'
893 .line and .file directives will appear in the pre-processed output. */
894 /* Note that input_file.c hand checks for '#' at the beginning of the
895 first line of the input file. This is because the compiler outputs
896 #NO_APP at the beginning of its output. */
897 /* Also note that comments like this one will always work. */
898 const char line_comment_chars[] = "#";
899
900 char arm_line_separator_chars[] = ";";
901
902 /* Chars that can be used to separate mant
903 from exp in floating point numbers. */
904 const char EXP_CHARS[] = "eE";
905
906 /* Chars that mean this number is a floating point constant. */
907 /* As in 0f12.456 */
908 /* or 0d1.2345e12 */
909
910 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
911
912 /* Prefix characters that indicate the start of an immediate
913 value. */
914 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
915
916 /* Separator character handling. */
917
918 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
919
920 static inline int
921 skip_past_char (char ** str, char c)
922 {
923 /* PR gas/14987: Allow for whitespace before the expected character. */
924 skip_whitespace (*str);
925
926 if (**str == c)
927 {
928 (*str)++;
929 return SUCCESS;
930 }
931 else
932 return FAIL;
933 }
934
935 #define skip_past_comma(str) skip_past_char (str, ',')
936
937 /* Arithmetic expressions (possibly involving symbols). */
938
939 /* Return TRUE if anything in the expression is a bignum. */
940
941 static int
942 walk_no_bignums (symbolS * sp)
943 {
944 if (symbol_get_value_expression (sp)->X_op == O_big)
945 return 1;
946
947 if (symbol_get_value_expression (sp)->X_add_symbol)
948 {
949 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
950 || (symbol_get_value_expression (sp)->X_op_symbol
951 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
952 }
953
954 return 0;
955 }
956
957 static int in_my_get_expression = 0;
958
959 /* Third argument to my_get_expression. */
960 #define GE_NO_PREFIX 0
961 #define GE_IMM_PREFIX 1
962 #define GE_OPT_PREFIX 2
963 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
964 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
965 #define GE_OPT_PREFIX_BIG 3
966
967 static int
968 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
969 {
970 char * save_in;
971 segT seg;
972
973 /* In unified syntax, all prefixes are optional. */
974 if (unified_syntax)
975 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
976 : GE_OPT_PREFIX;
977
978 switch (prefix_mode)
979 {
980 case GE_NO_PREFIX: break;
981 case GE_IMM_PREFIX:
982 if (!is_immediate_prefix (**str))
983 {
984 inst.error = _("immediate expression requires a # prefix");
985 return FAIL;
986 }
987 (*str)++;
988 break;
989 case GE_OPT_PREFIX:
990 case GE_OPT_PREFIX_BIG:
991 if (is_immediate_prefix (**str))
992 (*str)++;
993 break;
994 default: abort ();
995 }
996
997 memset (ep, 0, sizeof (expressionS));
998
999 save_in = input_line_pointer;
1000 input_line_pointer = *str;
1001 in_my_get_expression = 1;
1002 seg = expression (ep);
1003 in_my_get_expression = 0;
1004
1005 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1006 {
1007 /* We found a bad or missing expression in md_operand(). */
1008 *str = input_line_pointer;
1009 input_line_pointer = save_in;
1010 if (inst.error == NULL)
1011 inst.error = (ep->X_op == O_absent
1012 ? _("missing expression") :_("bad expression"));
1013 return 1;
1014 }
1015
1016 #ifdef OBJ_AOUT
1017 if (seg != absolute_section
1018 && seg != text_section
1019 && seg != data_section
1020 && seg != bss_section
1021 && seg != undefined_section)
1022 {
1023 inst.error = _("bad segment");
1024 *str = input_line_pointer;
1025 input_line_pointer = save_in;
1026 return 1;
1027 }
1028 #else
1029 (void) seg;
1030 #endif
1031
1032 /* Get rid of any bignums now, so that we don't generate an error for which
1033 we can't establish a line number later on. Big numbers are never valid
1034 in instructions, which is where this routine is always called. */
1035 if (prefix_mode != GE_OPT_PREFIX_BIG
1036 && (ep->X_op == O_big
1037 || (ep->X_add_symbol
1038 && (walk_no_bignums (ep->X_add_symbol)
1039 || (ep->X_op_symbol
1040 && walk_no_bignums (ep->X_op_symbol))))))
1041 {
1042 inst.error = _("invalid constant");
1043 *str = input_line_pointer;
1044 input_line_pointer = save_in;
1045 return 1;
1046 }
1047
1048 *str = input_line_pointer;
1049 input_line_pointer = save_in;
1050 return 0;
1051 }
1052
1053 /* Turn a string in input_line_pointer into a floating point constant
1054 of type TYPE, and store the appropriate bytes in *LITP. The number
1055 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1056 returned, or NULL on OK.
1057
1058 Note that fp constants aren't represent in the normal way on the ARM.
1059 In big endian mode, things are as expected. However, in little endian
1060 mode fp constants are big-endian word-wise, and little-endian byte-wise
1061 within the words. For example, (double) 1.1 in big endian mode is
1062 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1063 the byte sequence 99 99 f1 3f 9a 99 99 99.
1064
1065 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1066
1067 char *
1068 md_atof (int type, char * litP, int * sizeP)
1069 {
1070 int prec;
1071 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1072 char *t;
1073 int i;
1074
1075 switch (type)
1076 {
1077 case 'f':
1078 case 'F':
1079 case 's':
1080 case 'S':
1081 prec = 2;
1082 break;
1083
1084 case 'd':
1085 case 'D':
1086 case 'r':
1087 case 'R':
1088 prec = 4;
1089 break;
1090
1091 case 'x':
1092 case 'X':
1093 prec = 5;
1094 break;
1095
1096 case 'p':
1097 case 'P':
1098 prec = 5;
1099 break;
1100
1101 default:
1102 *sizeP = 0;
1103 return _("Unrecognized or unsupported floating point constant");
1104 }
1105
1106 t = atof_ieee (input_line_pointer, type, words);
1107 if (t)
1108 input_line_pointer = t;
1109 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1110
1111 if (target_big_endian)
1112 {
1113 for (i = 0; i < prec; i++)
1114 {
1115 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1116 litP += sizeof (LITTLENUM_TYPE);
1117 }
1118 }
1119 else
1120 {
1121 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1122 for (i = prec - 1; i >= 0; i--)
1123 {
1124 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1125 litP += sizeof (LITTLENUM_TYPE);
1126 }
1127 else
1128 /* For a 4 byte float the order of elements in `words' is 1 0.
1129 For an 8 byte float the order is 1 0 3 2. */
1130 for (i = 0; i < prec; i += 2)
1131 {
1132 md_number_to_chars (litP, (valueT) words[i + 1],
1133 sizeof (LITTLENUM_TYPE));
1134 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1135 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1136 litP += 2 * sizeof (LITTLENUM_TYPE);
1137 }
1138 }
1139
1140 return NULL;
1141 }
1142
1143 /* We handle all bad expressions here, so that we can report the faulty
1144 instruction in the error message. */
1145 void
1146 md_operand (expressionS * exp)
1147 {
1148 if (in_my_get_expression)
1149 exp->X_op = O_illegal;
1150 }
1151
1152 /* Immediate values. */
1153
1154 /* Generic immediate-value read function for use in directives.
1155 Accepts anything that 'expression' can fold to a constant.
1156 *val receives the number. */
1157 #ifdef OBJ_ELF
1158 static int
1159 immediate_for_directive (int *val)
1160 {
1161 expressionS exp;
1162 exp.X_op = O_illegal;
1163
1164 if (is_immediate_prefix (*input_line_pointer))
1165 {
1166 input_line_pointer++;
1167 expression (&exp);
1168 }
1169
1170 if (exp.X_op != O_constant)
1171 {
1172 as_bad (_("expected #constant"));
1173 ignore_rest_of_line ();
1174 return FAIL;
1175 }
1176 *val = exp.X_add_number;
1177 return SUCCESS;
1178 }
1179 #endif
1180
1181 /* Register parsing. */
1182
1183 /* Generic register parser. CCP points to what should be the
1184 beginning of a register name. If it is indeed a valid register
1185 name, advance CCP over it and return the reg_entry structure;
1186 otherwise return NULL. Does not issue diagnostics. */
1187
1188 static struct reg_entry *
1189 arm_reg_parse_multi (char **ccp)
1190 {
1191 char *start = *ccp;
1192 char *p;
1193 struct reg_entry *reg;
1194
1195 skip_whitespace (start);
1196
1197 #ifdef REGISTER_PREFIX
1198 if (*start != REGISTER_PREFIX)
1199 return NULL;
1200 start++;
1201 #endif
1202 #ifdef OPTIONAL_REGISTER_PREFIX
1203 if (*start == OPTIONAL_REGISTER_PREFIX)
1204 start++;
1205 #endif
1206
1207 p = start;
1208 if (!ISALPHA (*p) || !is_name_beginner (*p))
1209 return NULL;
1210
1211 do
1212 p++;
1213 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1214
1215 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1216
1217 if (!reg)
1218 return NULL;
1219
1220 *ccp = p;
1221 return reg;
1222 }
1223
1224 static int
1225 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1226 enum arm_reg_type type)
1227 {
1228 /* Alternative syntaxes are accepted for a few register classes. */
1229 switch (type)
1230 {
1231 case REG_TYPE_MVF:
1232 case REG_TYPE_MVD:
1233 case REG_TYPE_MVFX:
1234 case REG_TYPE_MVDX:
1235 /* Generic coprocessor register names are allowed for these. */
1236 if (reg && reg->type == REG_TYPE_CN)
1237 return reg->number;
1238 break;
1239
1240 case REG_TYPE_CP:
1241 /* For backward compatibility, a bare number is valid here. */
1242 {
1243 unsigned long processor = strtoul (start, ccp, 10);
1244 if (*ccp != start && processor <= 15)
1245 return processor;
1246 }
1247
1248 case REG_TYPE_MMXWC:
1249 /* WC includes WCG. ??? I'm not sure this is true for all
1250 instructions that take WC registers. */
1251 if (reg && reg->type == REG_TYPE_MMXWCG)
1252 return reg->number;
1253 break;
1254
1255 default:
1256 break;
1257 }
1258
1259 return FAIL;
1260 }
1261
1262 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1263 return value is the register number or FAIL. */
1264
1265 static int
1266 arm_reg_parse (char **ccp, enum arm_reg_type type)
1267 {
1268 char *start = *ccp;
1269 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1270 int ret;
1271
1272 /* Do not allow a scalar (reg+index) to parse as a register. */
1273 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1274 return FAIL;
1275
1276 if (reg && reg->type == type)
1277 return reg->number;
1278
1279 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1280 return ret;
1281
1282 *ccp = start;
1283 return FAIL;
1284 }
1285
1286 /* Parse a Neon type specifier. *STR should point at the leading '.'
1287 character. Does no verification at this stage that the type fits the opcode
1288 properly. E.g.,
1289
1290 .i32.i32.s16
1291 .s32.f32
1292 .u16
1293
1294 Can all be legally parsed by this function.
1295
1296 Fills in neon_type struct pointer with parsed information, and updates STR
1297 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1298 type, FAIL if not. */
1299
1300 static int
1301 parse_neon_type (struct neon_type *type, char **str)
1302 {
1303 char *ptr = *str;
1304
1305 if (type)
1306 type->elems = 0;
1307
1308 while (type->elems < NEON_MAX_TYPE_ELS)
1309 {
1310 enum neon_el_type thistype = NT_untyped;
1311 unsigned thissize = -1u;
1312
1313 if (*ptr != '.')
1314 break;
1315
1316 ptr++;
1317
1318 /* Just a size without an explicit type. */
1319 if (ISDIGIT (*ptr))
1320 goto parsesize;
1321
1322 switch (TOLOWER (*ptr))
1323 {
1324 case 'i': thistype = NT_integer; break;
1325 case 'f': thistype = NT_float; break;
1326 case 'p': thistype = NT_poly; break;
1327 case 's': thistype = NT_signed; break;
1328 case 'u': thistype = NT_unsigned; break;
1329 case 'd':
1330 thistype = NT_float;
1331 thissize = 64;
1332 ptr++;
1333 goto done;
1334 default:
1335 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1336 return FAIL;
1337 }
1338
1339 ptr++;
1340
1341 /* .f is an abbreviation for .f32. */
1342 if (thistype == NT_float && !ISDIGIT (*ptr))
1343 thissize = 32;
1344 else
1345 {
1346 parsesize:
1347 thissize = strtoul (ptr, &ptr, 10);
1348
1349 if (thissize != 8 && thissize != 16 && thissize != 32
1350 && thissize != 64)
1351 {
1352 as_bad (_("bad size %d in type specifier"), thissize);
1353 return FAIL;
1354 }
1355 }
1356
1357 done:
1358 if (type)
1359 {
1360 type->el[type->elems].type = thistype;
1361 type->el[type->elems].size = thissize;
1362 type->elems++;
1363 }
1364 }
1365
1366 /* Empty/missing type is not a successful parse. */
1367 if (type->elems == 0)
1368 return FAIL;
1369
1370 *str = ptr;
1371
1372 return SUCCESS;
1373 }
1374
1375 /* Errors may be set multiple times during parsing or bit encoding
1376 (particularly in the Neon bits), but usually the earliest error which is set
1377 will be the most meaningful. Avoid overwriting it with later (cascading)
1378 errors by calling this function. */
1379
1380 static void
1381 first_error (const char *err)
1382 {
1383 if (!inst.error)
1384 inst.error = err;
1385 }
1386
1387 /* Parse a single type, e.g. ".s32", leading period included. */
1388 static int
1389 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1390 {
1391 char *str = *ccp;
1392 struct neon_type optype;
1393
1394 if (*str == '.')
1395 {
1396 if (parse_neon_type (&optype, &str) == SUCCESS)
1397 {
1398 if (optype.elems == 1)
1399 *vectype = optype.el[0];
1400 else
1401 {
1402 first_error (_("only one type should be specified for operand"));
1403 return FAIL;
1404 }
1405 }
1406 else
1407 {
1408 first_error (_("vector type expected"));
1409 return FAIL;
1410 }
1411 }
1412 else
1413 return FAIL;
1414
1415 *ccp = str;
1416
1417 return SUCCESS;
1418 }
1419
1420 /* Special meanings for indices (which have a range of 0-7), which will fit into
1421 a 4-bit integer. */
1422
1423 #define NEON_ALL_LANES 15
1424 #define NEON_INTERLEAVE_LANES 14
1425
1426 /* Parse either a register or a scalar, with an optional type. Return the
1427 register number, and optionally fill in the actual type of the register
1428 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1429 type/index information in *TYPEINFO. */
1430
1431 static int
1432 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1433 enum arm_reg_type *rtype,
1434 struct neon_typed_alias *typeinfo)
1435 {
1436 char *str = *ccp;
1437 struct reg_entry *reg = arm_reg_parse_multi (&str);
1438 struct neon_typed_alias atype;
1439 struct neon_type_el parsetype;
1440
1441 atype.defined = 0;
1442 atype.index = -1;
1443 atype.eltype.type = NT_invtype;
1444 atype.eltype.size = -1;
1445
1446 /* Try alternate syntax for some types of register. Note these are mutually
1447 exclusive with the Neon syntax extensions. */
1448 if (reg == NULL)
1449 {
1450 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1451 if (altreg != FAIL)
1452 *ccp = str;
1453 if (typeinfo)
1454 *typeinfo = atype;
1455 return altreg;
1456 }
1457
1458 /* Undo polymorphism when a set of register types may be accepted. */
1459 if ((type == REG_TYPE_NDQ
1460 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1461 || (type == REG_TYPE_VFSD
1462 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1463 || (type == REG_TYPE_NSDQ
1464 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1465 || reg->type == REG_TYPE_NQ))
1466 || (type == REG_TYPE_MMXWC
1467 && (reg->type == REG_TYPE_MMXWCG)))
1468 type = (enum arm_reg_type) reg->type;
1469
1470 if (type != reg->type)
1471 return FAIL;
1472
1473 if (reg->neon)
1474 atype = *reg->neon;
1475
1476 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1477 {
1478 if ((atype.defined & NTA_HASTYPE) != 0)
1479 {
1480 first_error (_("can't redefine type for operand"));
1481 return FAIL;
1482 }
1483 atype.defined |= NTA_HASTYPE;
1484 atype.eltype = parsetype;
1485 }
1486
1487 if (skip_past_char (&str, '[') == SUCCESS)
1488 {
1489 if (type != REG_TYPE_VFD)
1490 {
1491 first_error (_("only D registers may be indexed"));
1492 return FAIL;
1493 }
1494
1495 if ((atype.defined & NTA_HASINDEX) != 0)
1496 {
1497 first_error (_("can't change index for operand"));
1498 return FAIL;
1499 }
1500
1501 atype.defined |= NTA_HASINDEX;
1502
1503 if (skip_past_char (&str, ']') == SUCCESS)
1504 atype.index = NEON_ALL_LANES;
1505 else
1506 {
1507 expressionS exp;
1508
1509 my_get_expression (&exp, &str, GE_NO_PREFIX);
1510
1511 if (exp.X_op != O_constant)
1512 {
1513 first_error (_("constant expression required"));
1514 return FAIL;
1515 }
1516
1517 if (skip_past_char (&str, ']') == FAIL)
1518 return FAIL;
1519
1520 atype.index = exp.X_add_number;
1521 }
1522 }
1523
1524 if (typeinfo)
1525 *typeinfo = atype;
1526
1527 if (rtype)
1528 *rtype = type;
1529
1530 *ccp = str;
1531
1532 return reg->number;
1533 }
1534
1535 /* Like arm_reg_parse, but allow allow the following extra features:
1536 - If RTYPE is non-zero, return the (possibly restricted) type of the
1537 register (e.g. Neon double or quad reg when either has been requested).
1538 - If this is a Neon vector type with additional type information, fill
1539 in the struct pointed to by VECTYPE (if non-NULL).
1540 This function will fault on encountering a scalar. */
1541
1542 static int
1543 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1544 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1545 {
1546 struct neon_typed_alias atype;
1547 char *str = *ccp;
1548 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1549
1550 if (reg == FAIL)
1551 return FAIL;
1552
1553 /* Do not allow regname(... to parse as a register. */
1554 if (*str == '(')
1555 return FAIL;
1556
1557 /* Do not allow a scalar (reg+index) to parse as a register. */
1558 if ((atype.defined & NTA_HASINDEX) != 0)
1559 {
1560 first_error (_("register operand expected, but got scalar"));
1561 return FAIL;
1562 }
1563
1564 if (vectype)
1565 *vectype = atype.eltype;
1566
1567 *ccp = str;
1568
1569 return reg;
1570 }
1571
1572 #define NEON_SCALAR_REG(X) ((X) >> 4)
1573 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1574
1575 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1576 have enough information to be able to do a good job bounds-checking. So, we
1577 just do easy checks here, and do further checks later. */
1578
1579 static int
1580 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1581 {
1582 int reg;
1583 char *str = *ccp;
1584 struct neon_typed_alias atype;
1585
1586 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1587
1588 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1589 return FAIL;
1590
1591 if (atype.index == NEON_ALL_LANES)
1592 {
1593 first_error (_("scalar must have an index"));
1594 return FAIL;
1595 }
1596 else if (atype.index >= 64 / elsize)
1597 {
1598 first_error (_("scalar index out of range"));
1599 return FAIL;
1600 }
1601
1602 if (type)
1603 *type = atype.eltype;
1604
1605 *ccp = str;
1606
1607 return reg * 16 + atype.index;
1608 }
1609
1610 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1611
1612 static long
1613 parse_reg_list (char ** strp)
1614 {
1615 char * str = * strp;
1616 long range = 0;
1617 int another_range;
1618
1619 /* We come back here if we get ranges concatenated by '+' or '|'. */
1620 do
1621 {
1622 skip_whitespace (str);
1623
1624 another_range = 0;
1625
1626 if (*str == '{')
1627 {
1628 int in_range = 0;
1629 int cur_reg = -1;
1630
1631 str++;
1632 do
1633 {
1634 int reg;
1635
1636 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1637 {
1638 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1639 return FAIL;
1640 }
1641
1642 if (in_range)
1643 {
1644 int i;
1645
1646 if (reg <= cur_reg)
1647 {
1648 first_error (_("bad range in register list"));
1649 return FAIL;
1650 }
1651
1652 for (i = cur_reg + 1; i < reg; i++)
1653 {
1654 if (range & (1 << i))
1655 as_tsktsk
1656 (_("Warning: duplicated register (r%d) in register list"),
1657 i);
1658 else
1659 range |= 1 << i;
1660 }
1661 in_range = 0;
1662 }
1663
1664 if (range & (1 << reg))
1665 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1666 reg);
1667 else if (reg <= cur_reg)
1668 as_tsktsk (_("Warning: register range not in ascending order"));
1669
1670 range |= 1 << reg;
1671 cur_reg = reg;
1672 }
1673 while (skip_past_comma (&str) != FAIL
1674 || (in_range = 1, *str++ == '-'));
1675 str--;
1676
1677 if (skip_past_char (&str, '}') == FAIL)
1678 {
1679 first_error (_("missing `}'"));
1680 return FAIL;
1681 }
1682 }
1683 else
1684 {
1685 expressionS exp;
1686
1687 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1688 return FAIL;
1689
1690 if (exp.X_op == O_constant)
1691 {
1692 if (exp.X_add_number
1693 != (exp.X_add_number & 0x0000ffff))
1694 {
1695 inst.error = _("invalid register mask");
1696 return FAIL;
1697 }
1698
1699 if ((range & exp.X_add_number) != 0)
1700 {
1701 int regno = range & exp.X_add_number;
1702
1703 regno &= -regno;
1704 regno = (1 << regno) - 1;
1705 as_tsktsk
1706 (_("Warning: duplicated register (r%d) in register list"),
1707 regno);
1708 }
1709
1710 range |= exp.X_add_number;
1711 }
1712 else
1713 {
1714 if (inst.reloc.type != 0)
1715 {
1716 inst.error = _("expression too complex");
1717 return FAIL;
1718 }
1719
1720 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1721 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1722 inst.reloc.pc_rel = 0;
1723 }
1724 }
1725
1726 if (*str == '|' || *str == '+')
1727 {
1728 str++;
1729 another_range = 1;
1730 }
1731 }
1732 while (another_range);
1733
1734 *strp = str;
1735 return range;
1736 }
1737
1738 /* Types of registers in a list. */
1739
1740 enum reg_list_els
1741 {
1742 REGLIST_VFP_S,
1743 REGLIST_VFP_D,
1744 REGLIST_NEON_D
1745 };
1746
1747 /* Parse a VFP register list. If the string is invalid return FAIL.
1748 Otherwise return the number of registers, and set PBASE to the first
1749 register. Parses registers of type ETYPE.
1750 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1751 - Q registers can be used to specify pairs of D registers
1752 - { } can be omitted from around a singleton register list
1753 FIXME: This is not implemented, as it would require backtracking in
1754 some cases, e.g.:
1755 vtbl.8 d3,d4,d5
1756 This could be done (the meaning isn't really ambiguous), but doesn't
1757 fit in well with the current parsing framework.
1758 - 32 D registers may be used (also true for VFPv3).
1759 FIXME: Types are ignored in these register lists, which is probably a
1760 bug. */
1761
1762 static int
1763 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1764 {
1765 char *str = *ccp;
1766 int base_reg;
1767 int new_base;
1768 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1769 int max_regs = 0;
1770 int count = 0;
1771 int warned = 0;
1772 unsigned long mask = 0;
1773 int i;
1774
1775 if (skip_past_char (&str, '{') == FAIL)
1776 {
1777 inst.error = _("expecting {");
1778 return FAIL;
1779 }
1780
1781 switch (etype)
1782 {
1783 case REGLIST_VFP_S:
1784 regtype = REG_TYPE_VFS;
1785 max_regs = 32;
1786 break;
1787
1788 case REGLIST_VFP_D:
1789 regtype = REG_TYPE_VFD;
1790 break;
1791
1792 case REGLIST_NEON_D:
1793 regtype = REG_TYPE_NDQ;
1794 break;
1795 }
1796
1797 if (etype != REGLIST_VFP_S)
1798 {
1799 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1800 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1801 {
1802 max_regs = 32;
1803 if (thumb_mode)
1804 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1805 fpu_vfp_ext_d32);
1806 else
1807 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1808 fpu_vfp_ext_d32);
1809 }
1810 else
1811 max_regs = 16;
1812 }
1813
1814 base_reg = max_regs;
1815
1816 do
1817 {
1818 int setmask = 1, addregs = 1;
1819
1820 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1821
1822 if (new_base == FAIL)
1823 {
1824 first_error (_(reg_expected_msgs[regtype]));
1825 return FAIL;
1826 }
1827
1828 if (new_base >= max_regs)
1829 {
1830 first_error (_("register out of range in list"));
1831 return FAIL;
1832 }
1833
1834 /* Note: a value of 2 * n is returned for the register Q<n>. */
1835 if (regtype == REG_TYPE_NQ)
1836 {
1837 setmask = 3;
1838 addregs = 2;
1839 }
1840
1841 if (new_base < base_reg)
1842 base_reg = new_base;
1843
1844 if (mask & (setmask << new_base))
1845 {
1846 first_error (_("invalid register list"));
1847 return FAIL;
1848 }
1849
1850 if ((mask >> new_base) != 0 && ! warned)
1851 {
1852 as_tsktsk (_("register list not in ascending order"));
1853 warned = 1;
1854 }
1855
1856 mask |= setmask << new_base;
1857 count += addregs;
1858
1859 if (*str == '-') /* We have the start of a range expression */
1860 {
1861 int high_range;
1862
1863 str++;
1864
1865 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1866 == FAIL)
1867 {
1868 inst.error = gettext (reg_expected_msgs[regtype]);
1869 return FAIL;
1870 }
1871
1872 if (high_range >= max_regs)
1873 {
1874 first_error (_("register out of range in list"));
1875 return FAIL;
1876 }
1877
1878 if (regtype == REG_TYPE_NQ)
1879 high_range = high_range + 1;
1880
1881 if (high_range <= new_base)
1882 {
1883 inst.error = _("register range not in ascending order");
1884 return FAIL;
1885 }
1886
1887 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1888 {
1889 if (mask & (setmask << new_base))
1890 {
1891 inst.error = _("invalid register list");
1892 return FAIL;
1893 }
1894
1895 mask |= setmask << new_base;
1896 count += addregs;
1897 }
1898 }
1899 }
1900 while (skip_past_comma (&str) != FAIL);
1901
1902 str++;
1903
1904 /* Sanity check -- should have raised a parse error above. */
1905 if (count == 0 || count > max_regs)
1906 abort ();
1907
1908 *pbase = base_reg;
1909
1910 /* Final test -- the registers must be consecutive. */
1911 mask >>= base_reg;
1912 for (i = 0; i < count; i++)
1913 {
1914 if ((mask & (1u << i)) == 0)
1915 {
1916 inst.error = _("non-contiguous register range");
1917 return FAIL;
1918 }
1919 }
1920
1921 *ccp = str;
1922
1923 return count;
1924 }
1925
1926 /* True if two alias types are the same. */
1927
1928 static bfd_boolean
1929 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1930 {
1931 if (!a && !b)
1932 return TRUE;
1933
1934 if (!a || !b)
1935 return FALSE;
1936
1937 if (a->defined != b->defined)
1938 return FALSE;
1939
1940 if ((a->defined & NTA_HASTYPE) != 0
1941 && (a->eltype.type != b->eltype.type
1942 || a->eltype.size != b->eltype.size))
1943 return FALSE;
1944
1945 if ((a->defined & NTA_HASINDEX) != 0
1946 && (a->index != b->index))
1947 return FALSE;
1948
1949 return TRUE;
1950 }
1951
1952 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1953 The base register is put in *PBASE.
1954 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1955 the return value.
1956 The register stride (minus one) is put in bit 4 of the return value.
1957 Bits [6:5] encode the list length (minus one).
1958 The type of the list elements is put in *ELTYPE, if non-NULL. */
1959
1960 #define NEON_LANE(X) ((X) & 0xf)
1961 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1962 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1963
1964 static int
1965 parse_neon_el_struct_list (char **str, unsigned *pbase,
1966 struct neon_type_el *eltype)
1967 {
1968 char *ptr = *str;
1969 int base_reg = -1;
1970 int reg_incr = -1;
1971 int count = 0;
1972 int lane = -1;
1973 int leading_brace = 0;
1974 enum arm_reg_type rtype = REG_TYPE_NDQ;
1975 const char *const incr_error = _("register stride must be 1 or 2");
1976 const char *const type_error = _("mismatched element/structure types in list");
1977 struct neon_typed_alias firsttype;
1978
1979 if (skip_past_char (&ptr, '{') == SUCCESS)
1980 leading_brace = 1;
1981
1982 do
1983 {
1984 struct neon_typed_alias atype;
1985 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1986
1987 if (getreg == FAIL)
1988 {
1989 first_error (_(reg_expected_msgs[rtype]));
1990 return FAIL;
1991 }
1992
1993 if (base_reg == -1)
1994 {
1995 base_reg = getreg;
1996 if (rtype == REG_TYPE_NQ)
1997 {
1998 reg_incr = 1;
1999 }
2000 firsttype = atype;
2001 }
2002 else if (reg_incr == -1)
2003 {
2004 reg_incr = getreg - base_reg;
2005 if (reg_incr < 1 || reg_incr > 2)
2006 {
2007 first_error (_(incr_error));
2008 return FAIL;
2009 }
2010 }
2011 else if (getreg != base_reg + reg_incr * count)
2012 {
2013 first_error (_(incr_error));
2014 return FAIL;
2015 }
2016
2017 if (! neon_alias_types_same (&atype, &firsttype))
2018 {
2019 first_error (_(type_error));
2020 return FAIL;
2021 }
2022
2023 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2024 modes. */
2025 if (ptr[0] == '-')
2026 {
2027 struct neon_typed_alias htype;
2028 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2029 if (lane == -1)
2030 lane = NEON_INTERLEAVE_LANES;
2031 else if (lane != NEON_INTERLEAVE_LANES)
2032 {
2033 first_error (_(type_error));
2034 return FAIL;
2035 }
2036 if (reg_incr == -1)
2037 reg_incr = 1;
2038 else if (reg_incr != 1)
2039 {
2040 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2041 return FAIL;
2042 }
2043 ptr++;
2044 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2045 if (hireg == FAIL)
2046 {
2047 first_error (_(reg_expected_msgs[rtype]));
2048 return FAIL;
2049 }
2050 if (! neon_alias_types_same (&htype, &firsttype))
2051 {
2052 first_error (_(type_error));
2053 return FAIL;
2054 }
2055 count += hireg + dregs - getreg;
2056 continue;
2057 }
2058
2059 /* If we're using Q registers, we can't use [] or [n] syntax. */
2060 if (rtype == REG_TYPE_NQ)
2061 {
2062 count += 2;
2063 continue;
2064 }
2065
2066 if ((atype.defined & NTA_HASINDEX) != 0)
2067 {
2068 if (lane == -1)
2069 lane = atype.index;
2070 else if (lane != atype.index)
2071 {
2072 first_error (_(type_error));
2073 return FAIL;
2074 }
2075 }
2076 else if (lane == -1)
2077 lane = NEON_INTERLEAVE_LANES;
2078 else if (lane != NEON_INTERLEAVE_LANES)
2079 {
2080 first_error (_(type_error));
2081 return FAIL;
2082 }
2083 count++;
2084 }
2085 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2086
2087 /* No lane set by [x]. We must be interleaving structures. */
2088 if (lane == -1)
2089 lane = NEON_INTERLEAVE_LANES;
2090
2091 /* Sanity check. */
2092 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2093 || (count > 1 && reg_incr == -1))
2094 {
2095 first_error (_("error parsing element/structure list"));
2096 return FAIL;
2097 }
2098
2099 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2100 {
2101 first_error (_("expected }"));
2102 return FAIL;
2103 }
2104
2105 if (reg_incr == -1)
2106 reg_incr = 1;
2107
2108 if (eltype)
2109 *eltype = firsttype.eltype;
2110
2111 *pbase = base_reg;
2112 *str = ptr;
2113
2114 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2115 }
2116
2117 /* Parse an explicit relocation suffix on an expression. This is
2118 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2119 arm_reloc_hsh contains no entries, so this function can only
2120 succeed if there is no () after the word. Returns -1 on error,
2121 BFD_RELOC_UNUSED if there wasn't any suffix. */
2122
2123 static int
2124 parse_reloc (char **str)
2125 {
2126 struct reloc_entry *r;
2127 char *p, *q;
2128
2129 if (**str != '(')
2130 return BFD_RELOC_UNUSED;
2131
2132 p = *str + 1;
2133 q = p;
2134
2135 while (*q && *q != ')' && *q != ',')
2136 q++;
2137 if (*q != ')')
2138 return -1;
2139
2140 if ((r = (struct reloc_entry *)
2141 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2142 return -1;
2143
2144 *str = q + 1;
2145 return r->reloc;
2146 }
2147
2148 /* Directives: register aliases. */
2149
2150 static struct reg_entry *
2151 insert_reg_alias (char *str, unsigned number, int type)
2152 {
2153 struct reg_entry *new_reg;
2154 const char *name;
2155
2156 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2157 {
2158 if (new_reg->builtin)
2159 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2160
2161 /* Only warn about a redefinition if it's not defined as the
2162 same register. */
2163 else if (new_reg->number != number || new_reg->type != type)
2164 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2165
2166 return NULL;
2167 }
2168
2169 name = xstrdup (str);
2170 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2171
2172 new_reg->name = name;
2173 new_reg->number = number;
2174 new_reg->type = type;
2175 new_reg->builtin = FALSE;
2176 new_reg->neon = NULL;
2177
2178 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2179 abort ();
2180
2181 return new_reg;
2182 }
2183
2184 static void
2185 insert_neon_reg_alias (char *str, int number, int type,
2186 struct neon_typed_alias *atype)
2187 {
2188 struct reg_entry *reg = insert_reg_alias (str, number, type);
2189
2190 if (!reg)
2191 {
2192 first_error (_("attempt to redefine typed alias"));
2193 return;
2194 }
2195
2196 if (atype)
2197 {
2198 reg->neon = (struct neon_typed_alias *)
2199 xmalloc (sizeof (struct neon_typed_alias));
2200 *reg->neon = *atype;
2201 }
2202 }
2203
2204 /* Look for the .req directive. This is of the form:
2205
2206 new_register_name .req existing_register_name
2207
2208 If we find one, or if it looks sufficiently like one that we want to
2209 handle any error here, return TRUE. Otherwise return FALSE. */
2210
2211 static bfd_boolean
2212 create_register_alias (char * newname, char *p)
2213 {
2214 struct reg_entry *old;
2215 char *oldname, *nbuf;
2216 size_t nlen;
2217
2218 /* The input scrubber ensures that whitespace after the mnemonic is
2219 collapsed to single spaces. */
2220 oldname = p;
2221 if (strncmp (oldname, " .req ", 6) != 0)
2222 return FALSE;
2223
2224 oldname += 6;
2225 if (*oldname == '\0')
2226 return FALSE;
2227
2228 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2229 if (!old)
2230 {
2231 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2232 return TRUE;
2233 }
2234
2235 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2236 the desired alias name, and p points to its end. If not, then
2237 the desired alias name is in the global original_case_string. */
2238 #ifdef TC_CASE_SENSITIVE
2239 nlen = p - newname;
2240 #else
2241 newname = original_case_string;
2242 nlen = strlen (newname);
2243 #endif
2244
2245 nbuf = (char *) alloca (nlen + 1);
2246 memcpy (nbuf, newname, nlen);
2247 nbuf[nlen] = '\0';
2248
2249 /* Create aliases under the new name as stated; an all-lowercase
2250 version of the new name; and an all-uppercase version of the new
2251 name. */
2252 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2253 {
2254 for (p = nbuf; *p; p++)
2255 *p = TOUPPER (*p);
2256
2257 if (strncmp (nbuf, newname, nlen))
2258 {
2259 /* If this attempt to create an additional alias fails, do not bother
2260 trying to create the all-lower case alias. We will fail and issue
2261 a second, duplicate error message. This situation arises when the
2262 programmer does something like:
2263 foo .req r0
2264 Foo .req r1
2265 The second .req creates the "Foo" alias but then fails to create
2266 the artificial FOO alias because it has already been created by the
2267 first .req. */
2268 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2269 return TRUE;
2270 }
2271
2272 for (p = nbuf; *p; p++)
2273 *p = TOLOWER (*p);
2274
2275 if (strncmp (nbuf, newname, nlen))
2276 insert_reg_alias (nbuf, old->number, old->type);
2277 }
2278
2279 return TRUE;
2280 }
2281
2282 /* Create a Neon typed/indexed register alias using directives, e.g.:
2283 X .dn d5.s32[1]
2284 Y .qn 6.s16
2285 Z .dn d7
2286 T .dn Z[0]
2287 These typed registers can be used instead of the types specified after the
2288 Neon mnemonic, so long as all operands given have types. Types can also be
2289 specified directly, e.g.:
2290 vadd d0.s32, d1.s32, d2.s32 */
2291
2292 static bfd_boolean
2293 create_neon_reg_alias (char *newname, char *p)
2294 {
2295 enum arm_reg_type basetype;
2296 struct reg_entry *basereg;
2297 struct reg_entry mybasereg;
2298 struct neon_type ntype;
2299 struct neon_typed_alias typeinfo;
2300 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2301 int namelen;
2302
2303 typeinfo.defined = 0;
2304 typeinfo.eltype.type = NT_invtype;
2305 typeinfo.eltype.size = -1;
2306 typeinfo.index = -1;
2307
2308 nameend = p;
2309
2310 if (strncmp (p, " .dn ", 5) == 0)
2311 basetype = REG_TYPE_VFD;
2312 else if (strncmp (p, " .qn ", 5) == 0)
2313 basetype = REG_TYPE_NQ;
2314 else
2315 return FALSE;
2316
2317 p += 5;
2318
2319 if (*p == '\0')
2320 return FALSE;
2321
2322 basereg = arm_reg_parse_multi (&p);
2323
2324 if (basereg && basereg->type != basetype)
2325 {
2326 as_bad (_("bad type for register"));
2327 return FALSE;
2328 }
2329
2330 if (basereg == NULL)
2331 {
2332 expressionS exp;
2333 /* Try parsing as an integer. */
2334 my_get_expression (&exp, &p, GE_NO_PREFIX);
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("expression must be constant"));
2338 return FALSE;
2339 }
2340 basereg = &mybasereg;
2341 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2342 : exp.X_add_number;
2343 basereg->neon = 0;
2344 }
2345
2346 if (basereg->neon)
2347 typeinfo = *basereg->neon;
2348
2349 if (parse_neon_type (&ntype, &p) == SUCCESS)
2350 {
2351 /* We got a type. */
2352 if (typeinfo.defined & NTA_HASTYPE)
2353 {
2354 as_bad (_("can't redefine the type of a register alias"));
2355 return FALSE;
2356 }
2357
2358 typeinfo.defined |= NTA_HASTYPE;
2359 if (ntype.elems != 1)
2360 {
2361 as_bad (_("you must specify a single type only"));
2362 return FALSE;
2363 }
2364 typeinfo.eltype = ntype.el[0];
2365 }
2366
2367 if (skip_past_char (&p, '[') == SUCCESS)
2368 {
2369 expressionS exp;
2370 /* We got a scalar index. */
2371
2372 if (typeinfo.defined & NTA_HASINDEX)
2373 {
2374 as_bad (_("can't redefine the index of a scalar alias"));
2375 return FALSE;
2376 }
2377
2378 my_get_expression (&exp, &p, GE_NO_PREFIX);
2379
2380 if (exp.X_op != O_constant)
2381 {
2382 as_bad (_("scalar index must be constant"));
2383 return FALSE;
2384 }
2385
2386 typeinfo.defined |= NTA_HASINDEX;
2387 typeinfo.index = exp.X_add_number;
2388
2389 if (skip_past_char (&p, ']') == FAIL)
2390 {
2391 as_bad (_("expecting ]"));
2392 return FALSE;
2393 }
2394 }
2395
2396 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2397 the desired alias name, and p points to its end. If not, then
2398 the desired alias name is in the global original_case_string. */
2399 #ifdef TC_CASE_SENSITIVE
2400 namelen = nameend - newname;
2401 #else
2402 newname = original_case_string;
2403 namelen = strlen (newname);
2404 #endif
2405
2406 namebuf = (char *) alloca (namelen + 1);
2407 strncpy (namebuf, newname, namelen);
2408 namebuf[namelen] = '\0';
2409
2410 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2411 typeinfo.defined != 0 ? &typeinfo : NULL);
2412
2413 /* Insert name in all uppercase. */
2414 for (p = namebuf; *p; p++)
2415 *p = TOUPPER (*p);
2416
2417 if (strncmp (namebuf, newname, namelen))
2418 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2419 typeinfo.defined != 0 ? &typeinfo : NULL);
2420
2421 /* Insert name in all lowercase. */
2422 for (p = namebuf; *p; p++)
2423 *p = TOLOWER (*p);
2424
2425 if (strncmp (namebuf, newname, namelen))
2426 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2427 typeinfo.defined != 0 ? &typeinfo : NULL);
2428
2429 return TRUE;
2430 }
2431
2432 /* Should never be called, as .req goes between the alias and the
2433 register name, not at the beginning of the line. */
2434
2435 static void
2436 s_req (int a ATTRIBUTE_UNUSED)
2437 {
2438 as_bad (_("invalid syntax for .req directive"));
2439 }
2440
2441 static void
2442 s_dn (int a ATTRIBUTE_UNUSED)
2443 {
2444 as_bad (_("invalid syntax for .dn directive"));
2445 }
2446
2447 static void
2448 s_qn (int a ATTRIBUTE_UNUSED)
2449 {
2450 as_bad (_("invalid syntax for .qn directive"));
2451 }
2452
2453 /* The .unreq directive deletes an alias which was previously defined
2454 by .req. For example:
2455
2456 my_alias .req r11
2457 .unreq my_alias */
2458
2459 static void
2460 s_unreq (int a ATTRIBUTE_UNUSED)
2461 {
2462 char * name;
2463 char saved_char;
2464
2465 name = input_line_pointer;
2466
2467 while (*input_line_pointer != 0
2468 && *input_line_pointer != ' '
2469 && *input_line_pointer != '\n')
2470 ++input_line_pointer;
2471
2472 saved_char = *input_line_pointer;
2473 *input_line_pointer = 0;
2474
2475 if (!*name)
2476 as_bad (_("invalid syntax for .unreq directive"));
2477 else
2478 {
2479 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2480 name);
2481
2482 if (!reg)
2483 as_bad (_("unknown register alias '%s'"), name);
2484 else if (reg->builtin)
2485 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2486 name);
2487 else
2488 {
2489 char * p;
2490 char * nbuf;
2491
2492 hash_delete (arm_reg_hsh, name, FALSE);
2493 free ((char *) reg->name);
2494 if (reg->neon)
2495 free (reg->neon);
2496 free (reg);
2497
2498 /* Also locate the all upper case and all lower case versions.
2499 Do not complain if we cannot find one or the other as it
2500 was probably deleted above. */
2501
2502 nbuf = strdup (name);
2503 for (p = nbuf; *p; p++)
2504 *p = TOUPPER (*p);
2505 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2506 if (reg)
2507 {
2508 hash_delete (arm_reg_hsh, nbuf, FALSE);
2509 free ((char *) reg->name);
2510 if (reg->neon)
2511 free (reg->neon);
2512 free (reg);
2513 }
2514
2515 for (p = nbuf; *p; p++)
2516 *p = TOLOWER (*p);
2517 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2518 if (reg)
2519 {
2520 hash_delete (arm_reg_hsh, nbuf, FALSE);
2521 free ((char *) reg->name);
2522 if (reg->neon)
2523 free (reg->neon);
2524 free (reg);
2525 }
2526
2527 free (nbuf);
2528 }
2529 }
2530
2531 *input_line_pointer = saved_char;
2532 demand_empty_rest_of_line ();
2533 }
2534
2535 /* Directives: Instruction set selection. */
2536
2537 #ifdef OBJ_ELF
2538 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2539 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2540 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2541 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2542
2543 /* Create a new mapping symbol for the transition to STATE. */
2544
2545 static void
2546 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2547 {
2548 symbolS * symbolP;
2549 const char * symname;
2550 int type;
2551
2552 switch (state)
2553 {
2554 case MAP_DATA:
2555 symname = "$d";
2556 type = BSF_NO_FLAGS;
2557 break;
2558 case MAP_ARM:
2559 symname = "$a";
2560 type = BSF_NO_FLAGS;
2561 break;
2562 case MAP_THUMB:
2563 symname = "$t";
2564 type = BSF_NO_FLAGS;
2565 break;
2566 default:
2567 abort ();
2568 }
2569
2570 symbolP = symbol_new (symname, now_seg, value, frag);
2571 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2572
2573 switch (state)
2574 {
2575 case MAP_ARM:
2576 THUMB_SET_FUNC (symbolP, 0);
2577 ARM_SET_THUMB (symbolP, 0);
2578 ARM_SET_INTERWORK (symbolP, support_interwork);
2579 break;
2580
2581 case MAP_THUMB:
2582 THUMB_SET_FUNC (symbolP, 1);
2583 ARM_SET_THUMB (symbolP, 1);
2584 ARM_SET_INTERWORK (symbolP, support_interwork);
2585 break;
2586
2587 case MAP_DATA:
2588 default:
2589 break;
2590 }
2591
2592 /* Save the mapping symbols for future reference. Also check that
2593 we do not place two mapping symbols at the same offset within a
2594 frag. We'll handle overlap between frags in
2595 check_mapping_symbols.
2596
2597 If .fill or other data filling directive generates zero sized data,
2598 the mapping symbol for the following code will have the same value
2599 as the one generated for the data filling directive. In this case,
2600 we replace the old symbol with the new one at the same address. */
2601 if (value == 0)
2602 {
2603 if (frag->tc_frag_data.first_map != NULL)
2604 {
2605 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2606 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2607 }
2608 frag->tc_frag_data.first_map = symbolP;
2609 }
2610 if (frag->tc_frag_data.last_map != NULL)
2611 {
2612 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2613 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2614 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2615 }
2616 frag->tc_frag_data.last_map = symbolP;
2617 }
2618
2619 /* We must sometimes convert a region marked as code to data during
2620 code alignment, if an odd number of bytes have to be padded. The
2621 code mapping symbol is pushed to an aligned address. */
2622
2623 static void
2624 insert_data_mapping_symbol (enum mstate state,
2625 valueT value, fragS *frag, offsetT bytes)
2626 {
2627 /* If there was already a mapping symbol, remove it. */
2628 if (frag->tc_frag_data.last_map != NULL
2629 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2630 {
2631 symbolS *symp = frag->tc_frag_data.last_map;
2632
2633 if (value == 0)
2634 {
2635 know (frag->tc_frag_data.first_map == symp);
2636 frag->tc_frag_data.first_map = NULL;
2637 }
2638 frag->tc_frag_data.last_map = NULL;
2639 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2640 }
2641
2642 make_mapping_symbol (MAP_DATA, value, frag);
2643 make_mapping_symbol (state, value + bytes, frag);
2644 }
2645
2646 static void mapping_state_2 (enum mstate state, int max_chars);
2647
2648 /* Set the mapping state to STATE. Only call this when about to
2649 emit some STATE bytes to the file. */
2650
2651 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2652 void
2653 mapping_state (enum mstate state)
2654 {
2655 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2656
2657 if (mapstate == state)
2658 /* The mapping symbol has already been emitted.
2659 There is nothing else to do. */
2660 return;
2661
2662 if (state == MAP_ARM || state == MAP_THUMB)
2663 /* PR gas/12931
2664 All ARM instructions require 4-byte alignment.
2665 (Almost) all Thumb instructions require 2-byte alignment.
2666
2667 When emitting instructions into any section, mark the section
2668 appropriately.
2669
2670 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2671 but themselves require 2-byte alignment; this applies to some
2672 PC- relative forms. However, these cases will invovle implicit
2673 literal pool generation or an explicit .align >=2, both of
2674 which will cause the section to me marked with sufficient
2675 alignment. Thus, we don't handle those cases here. */
2676 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2677
2678 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2679 /* This case will be evaluated later. */
2680 return;
2681
2682 mapping_state_2 (state, 0);
2683 }
2684
2685 /* Same as mapping_state, but MAX_CHARS bytes have already been
2686 allocated. Put the mapping symbol that far back. */
2687
2688 static void
2689 mapping_state_2 (enum mstate state, int max_chars)
2690 {
2691 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2692
2693 if (!SEG_NORMAL (now_seg))
2694 return;
2695
2696 if (mapstate == state)
2697 /* The mapping symbol has already been emitted.
2698 There is nothing else to do. */
2699 return;
2700
2701 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2702 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2703 {
2704 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2705 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2706
2707 if (add_symbol)
2708 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2709 }
2710
2711 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2712 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2713 }
2714 #undef TRANSITION
2715 #else
2716 #define mapping_state(x) ((void)0)
2717 #define mapping_state_2(x, y) ((void)0)
2718 #endif
2719
2720 /* Find the real, Thumb encoded start of a Thumb function. */
2721
2722 #ifdef OBJ_COFF
2723 static symbolS *
2724 find_real_start (symbolS * symbolP)
2725 {
2726 char * real_start;
2727 const char * name = S_GET_NAME (symbolP);
2728 symbolS * new_target;
2729
2730 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2731 #define STUB_NAME ".real_start_of"
2732
2733 if (name == NULL)
2734 abort ();
2735
2736 /* The compiler may generate BL instructions to local labels because
2737 it needs to perform a branch to a far away location. These labels
2738 do not have a corresponding ".real_start_of" label. We check
2739 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2740 the ".real_start_of" convention for nonlocal branches. */
2741 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2742 return symbolP;
2743
2744 real_start = ACONCAT ((STUB_NAME, name, NULL));
2745 new_target = symbol_find (real_start);
2746
2747 if (new_target == NULL)
2748 {
2749 as_warn (_("Failed to find real start of function: %s\n"), name);
2750 new_target = symbolP;
2751 }
2752
2753 return new_target;
2754 }
2755 #endif
2756
2757 static void
2758 opcode_select (int width)
2759 {
2760 switch (width)
2761 {
2762 case 16:
2763 if (! thumb_mode)
2764 {
2765 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2766 as_bad (_("selected processor does not support THUMB opcodes"));
2767
2768 thumb_mode = 1;
2769 /* No need to force the alignment, since we will have been
2770 coming from ARM mode, which is word-aligned. */
2771 record_alignment (now_seg, 1);
2772 }
2773 break;
2774
2775 case 32:
2776 if (thumb_mode)
2777 {
2778 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2779 as_bad (_("selected processor does not support ARM opcodes"));
2780
2781 thumb_mode = 0;
2782
2783 if (!need_pass_2)
2784 frag_align (2, 0, 0);
2785
2786 record_alignment (now_seg, 1);
2787 }
2788 break;
2789
2790 default:
2791 as_bad (_("invalid instruction size selected (%d)"), width);
2792 }
2793 }
2794
2795 static void
2796 s_arm (int ignore ATTRIBUTE_UNUSED)
2797 {
2798 opcode_select (32);
2799 demand_empty_rest_of_line ();
2800 }
2801
2802 static void
2803 s_thumb (int ignore ATTRIBUTE_UNUSED)
2804 {
2805 opcode_select (16);
2806 demand_empty_rest_of_line ();
2807 }
2808
2809 static void
2810 s_code (int unused ATTRIBUTE_UNUSED)
2811 {
2812 int temp;
2813
2814 temp = get_absolute_expression ();
2815 switch (temp)
2816 {
2817 case 16:
2818 case 32:
2819 opcode_select (temp);
2820 break;
2821
2822 default:
2823 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2824 }
2825 }
2826
2827 static void
2828 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2829 {
2830 /* If we are not already in thumb mode go into it, EVEN if
2831 the target processor does not support thumb instructions.
2832 This is used by gcc/config/arm/lib1funcs.asm for example
2833 to compile interworking support functions even if the
2834 target processor should not support interworking. */
2835 if (! thumb_mode)
2836 {
2837 thumb_mode = 2;
2838 record_alignment (now_seg, 1);
2839 }
2840
2841 demand_empty_rest_of_line ();
2842 }
2843
2844 static void
2845 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2846 {
2847 s_thumb (0);
2848
2849 /* The following label is the name/address of the start of a Thumb function.
2850 We need to know this for the interworking support. */
2851 label_is_thumb_function_name = TRUE;
2852 }
2853
2854 /* Perform a .set directive, but also mark the alias as
2855 being a thumb function. */
2856
2857 static void
2858 s_thumb_set (int equiv)
2859 {
2860 /* XXX the following is a duplicate of the code for s_set() in read.c
2861 We cannot just call that code as we need to get at the symbol that
2862 is created. */
2863 char * name;
2864 char delim;
2865 char * end_name;
2866 symbolS * symbolP;
2867
2868 /* Especial apologies for the random logic:
2869 This just grew, and could be parsed much more simply!
2870 Dean - in haste. */
2871 delim = get_symbol_name (& name);
2872 end_name = input_line_pointer;
2873 (void) restore_line_pointer (delim);
2874
2875 if (*input_line_pointer != ',')
2876 {
2877 *end_name = 0;
2878 as_bad (_("expected comma after name \"%s\""), name);
2879 *end_name = delim;
2880 ignore_rest_of_line ();
2881 return;
2882 }
2883
2884 input_line_pointer++;
2885 *end_name = 0;
2886
2887 if (name[0] == '.' && name[1] == '\0')
2888 {
2889 /* XXX - this should not happen to .thumb_set. */
2890 abort ();
2891 }
2892
2893 if ((symbolP = symbol_find (name)) == NULL
2894 && (symbolP = md_undefined_symbol (name)) == NULL)
2895 {
2896 #ifndef NO_LISTING
2897 /* When doing symbol listings, play games with dummy fragments living
2898 outside the normal fragment chain to record the file and line info
2899 for this symbol. */
2900 if (listing & LISTING_SYMBOLS)
2901 {
2902 extern struct list_info_struct * listing_tail;
2903 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2904
2905 memset (dummy_frag, 0, sizeof (fragS));
2906 dummy_frag->fr_type = rs_fill;
2907 dummy_frag->line = listing_tail;
2908 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2909 dummy_frag->fr_symbol = symbolP;
2910 }
2911 else
2912 #endif
2913 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2914
2915 #ifdef OBJ_COFF
2916 /* "set" symbols are local unless otherwise specified. */
2917 SF_SET_LOCAL (symbolP);
2918 #endif /* OBJ_COFF */
2919 } /* Make a new symbol. */
2920
2921 symbol_table_insert (symbolP);
2922
2923 * end_name = delim;
2924
2925 if (equiv
2926 && S_IS_DEFINED (symbolP)
2927 && S_GET_SEGMENT (symbolP) != reg_section)
2928 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2929
2930 pseudo_set (symbolP);
2931
2932 demand_empty_rest_of_line ();
2933
2934 /* XXX Now we come to the Thumb specific bit of code. */
2935
2936 THUMB_SET_FUNC (symbolP, 1);
2937 ARM_SET_THUMB (symbolP, 1);
2938 #if defined OBJ_ELF || defined OBJ_COFF
2939 ARM_SET_INTERWORK (symbolP, support_interwork);
2940 #endif
2941 }
2942
2943 /* Directives: Mode selection. */
2944
2945 /* .syntax [unified|divided] - choose the new unified syntax
2946 (same for Arm and Thumb encoding, modulo slight differences in what
2947 can be represented) or the old divergent syntax for each mode. */
2948 static void
2949 s_syntax (int unused ATTRIBUTE_UNUSED)
2950 {
2951 char *name, delim;
2952
2953 delim = get_symbol_name (& name);
2954
2955 if (!strcasecmp (name, "unified"))
2956 unified_syntax = TRUE;
2957 else if (!strcasecmp (name, "divided"))
2958 unified_syntax = FALSE;
2959 else
2960 {
2961 as_bad (_("unrecognized syntax mode \"%s\""), name);
2962 return;
2963 }
2964 (void) restore_line_pointer (delim);
2965 demand_empty_rest_of_line ();
2966 }
2967
2968 /* Directives: sectioning and alignment. */
2969
2970 static void
2971 s_bss (int ignore ATTRIBUTE_UNUSED)
2972 {
2973 /* We don't support putting frags in the BSS segment, we fake it by
2974 marking in_bss, then looking at s_skip for clues. */
2975 subseg_set (bss_section, 0);
2976 demand_empty_rest_of_line ();
2977
2978 #ifdef md_elf_section_change_hook
2979 md_elf_section_change_hook ();
2980 #endif
2981 }
2982
2983 static void
2984 s_even (int ignore ATTRIBUTE_UNUSED)
2985 {
2986 /* Never make frag if expect extra pass. */
2987 if (!need_pass_2)
2988 frag_align (1, 0, 0);
2989
2990 record_alignment (now_seg, 1);
2991
2992 demand_empty_rest_of_line ();
2993 }
2994
2995 /* Directives: CodeComposer Studio. */
2996
2997 /* .ref (for CodeComposer Studio syntax only). */
2998 static void
2999 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3000 {
3001 if (codecomposer_syntax)
3002 ignore_rest_of_line ();
3003 else
3004 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3005 }
3006
3007 /* If name is not NULL, then it is used for marking the beginning of a
3008 function, wherease if it is NULL then it means the function end. */
3009 static void
3010 asmfunc_debug (const char * name)
3011 {
3012 static const char * last_name = NULL;
3013
3014 if (name != NULL)
3015 {
3016 gas_assert (last_name == NULL);
3017 last_name = name;
3018
3019 if (debug_type == DEBUG_STABS)
3020 stabs_generate_asm_func (name, name);
3021 }
3022 else
3023 {
3024 gas_assert (last_name != NULL);
3025
3026 if (debug_type == DEBUG_STABS)
3027 stabs_generate_asm_endfunc (last_name, last_name);
3028
3029 last_name = NULL;
3030 }
3031 }
3032
3033 static void
3034 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3035 {
3036 if (codecomposer_syntax)
3037 {
3038 switch (asmfunc_state)
3039 {
3040 case OUTSIDE_ASMFUNC:
3041 asmfunc_state = WAITING_ASMFUNC_NAME;
3042 break;
3043
3044 case WAITING_ASMFUNC_NAME:
3045 as_bad (_(".asmfunc repeated."));
3046 break;
3047
3048 case WAITING_ENDASMFUNC:
3049 as_bad (_(".asmfunc without function."));
3050 break;
3051 }
3052 demand_empty_rest_of_line ();
3053 }
3054 else
3055 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3056 }
3057
3058 static void
3059 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3060 {
3061 if (codecomposer_syntax)
3062 {
3063 switch (asmfunc_state)
3064 {
3065 case OUTSIDE_ASMFUNC:
3066 as_bad (_(".endasmfunc without a .asmfunc."));
3067 break;
3068
3069 case WAITING_ASMFUNC_NAME:
3070 as_bad (_(".endasmfunc without function."));
3071 break;
3072
3073 case WAITING_ENDASMFUNC:
3074 asmfunc_state = OUTSIDE_ASMFUNC;
3075 asmfunc_debug (NULL);
3076 break;
3077 }
3078 demand_empty_rest_of_line ();
3079 }
3080 else
3081 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3082 }
3083
3084 static void
3085 s_ccs_def (int name)
3086 {
3087 if (codecomposer_syntax)
3088 s_globl (name);
3089 else
3090 as_bad (_(".def pseudo-op only available with -mccs flag."));
3091 }
3092
3093 /* Directives: Literal pools. */
3094
3095 static literal_pool *
3096 find_literal_pool (void)
3097 {
3098 literal_pool * pool;
3099
3100 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3101 {
3102 if (pool->section == now_seg
3103 && pool->sub_section == now_subseg)
3104 break;
3105 }
3106
3107 return pool;
3108 }
3109
3110 static literal_pool *
3111 find_or_make_literal_pool (void)
3112 {
3113 /* Next literal pool ID number. */
3114 static unsigned int latest_pool_num = 1;
3115 literal_pool * pool;
3116
3117 pool = find_literal_pool ();
3118
3119 if (pool == NULL)
3120 {
3121 /* Create a new pool. */
3122 pool = (literal_pool *) xmalloc (sizeof (* pool));
3123 if (! pool)
3124 return NULL;
3125
3126 pool->next_free_entry = 0;
3127 pool->section = now_seg;
3128 pool->sub_section = now_subseg;
3129 pool->next = list_of_pools;
3130 pool->symbol = NULL;
3131 pool->alignment = 2;
3132
3133 /* Add it to the list. */
3134 list_of_pools = pool;
3135 }
3136
3137 /* New pools, and emptied pools, will have a NULL symbol. */
3138 if (pool->symbol == NULL)
3139 {
3140 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3141 (valueT) 0, &zero_address_frag);
3142 pool->id = latest_pool_num ++;
3143 }
3144
3145 /* Done. */
3146 return pool;
3147 }
3148
3149 /* Add the literal in the global 'inst'
3150 structure to the relevant literal pool. */
3151
3152 static int
3153 add_to_lit_pool (unsigned int nbytes)
3154 {
3155 #define PADDING_SLOT 0x1
3156 #define LIT_ENTRY_SIZE_MASK 0xFF
3157 literal_pool * pool;
3158 unsigned int entry, pool_size = 0;
3159 bfd_boolean padding_slot_p = FALSE;
3160 unsigned imm1 = 0;
3161 unsigned imm2 = 0;
3162
3163 if (nbytes == 8)
3164 {
3165 imm1 = inst.operands[1].imm;
3166 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3167 : inst.reloc.exp.X_unsigned ? 0
3168 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3169 if (target_big_endian)
3170 {
3171 imm1 = imm2;
3172 imm2 = inst.operands[1].imm;
3173 }
3174 }
3175
3176 pool = find_or_make_literal_pool ();
3177
3178 /* Check if this literal value is already in the pool. */
3179 for (entry = 0; entry < pool->next_free_entry; entry ++)
3180 {
3181 if (nbytes == 4)
3182 {
3183 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3184 && (inst.reloc.exp.X_op == O_constant)
3185 && (pool->literals[entry].X_add_number
3186 == inst.reloc.exp.X_add_number)
3187 && (pool->literals[entry].X_md == nbytes)
3188 && (pool->literals[entry].X_unsigned
3189 == inst.reloc.exp.X_unsigned))
3190 break;
3191
3192 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3193 && (inst.reloc.exp.X_op == O_symbol)
3194 && (pool->literals[entry].X_add_number
3195 == inst.reloc.exp.X_add_number)
3196 && (pool->literals[entry].X_add_symbol
3197 == inst.reloc.exp.X_add_symbol)
3198 && (pool->literals[entry].X_op_symbol
3199 == inst.reloc.exp.X_op_symbol)
3200 && (pool->literals[entry].X_md == nbytes))
3201 break;
3202 }
3203 else if ((nbytes == 8)
3204 && !(pool_size & 0x7)
3205 && ((entry + 1) != pool->next_free_entry)
3206 && (pool->literals[entry].X_op == O_constant)
3207 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3208 && (pool->literals[entry].X_unsigned
3209 == inst.reloc.exp.X_unsigned)
3210 && (pool->literals[entry + 1].X_op == O_constant)
3211 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3212 && (pool->literals[entry + 1].X_unsigned
3213 == inst.reloc.exp.X_unsigned))
3214 break;
3215
3216 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3217 if (padding_slot_p && (nbytes == 4))
3218 break;
3219
3220 pool_size += 4;
3221 }
3222
3223 /* Do we need to create a new entry? */
3224 if (entry == pool->next_free_entry)
3225 {
3226 if (entry >= MAX_LITERAL_POOL_SIZE)
3227 {
3228 inst.error = _("literal pool overflow");
3229 return FAIL;
3230 }
3231
3232 if (nbytes == 8)
3233 {
3234 /* For 8-byte entries, we align to an 8-byte boundary,
3235 and split it into two 4-byte entries, because on 32-bit
3236 host, 8-byte constants are treated as big num, thus
3237 saved in "generic_bignum" which will be overwritten
3238 by later assignments.
3239
3240 We also need to make sure there is enough space for
3241 the split.
3242
3243 We also check to make sure the literal operand is a
3244 constant number. */
3245 if (!(inst.reloc.exp.X_op == O_constant
3246 || inst.reloc.exp.X_op == O_big))
3247 {
3248 inst.error = _("invalid type for literal pool");
3249 return FAIL;
3250 }
3251 else if (pool_size & 0x7)
3252 {
3253 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3254 {
3255 inst.error = _("literal pool overflow");
3256 return FAIL;
3257 }
3258
3259 pool->literals[entry] = inst.reloc.exp;
3260 pool->literals[entry].X_add_number = 0;
3261 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3262 pool->next_free_entry += 1;
3263 pool_size += 4;
3264 }
3265 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3266 {
3267 inst.error = _("literal pool overflow");
3268 return FAIL;
3269 }
3270
3271 pool->literals[entry] = inst.reloc.exp;
3272 pool->literals[entry].X_op = O_constant;
3273 pool->literals[entry].X_add_number = imm1;
3274 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3275 pool->literals[entry++].X_md = 4;
3276 pool->literals[entry] = inst.reloc.exp;
3277 pool->literals[entry].X_op = O_constant;
3278 pool->literals[entry].X_add_number = imm2;
3279 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3280 pool->literals[entry].X_md = 4;
3281 pool->alignment = 3;
3282 pool->next_free_entry += 1;
3283 }
3284 else
3285 {
3286 pool->literals[entry] = inst.reloc.exp;
3287 pool->literals[entry].X_md = 4;
3288 }
3289
3290 #ifdef OBJ_ELF
3291 /* PR ld/12974: Record the location of the first source line to reference
3292 this entry in the literal pool. If it turns out during linking that the
3293 symbol does not exist we will be able to give an accurate line number for
3294 the (first use of the) missing reference. */
3295 if (debug_type == DEBUG_DWARF2)
3296 dwarf2_where (pool->locs + entry);
3297 #endif
3298 pool->next_free_entry += 1;
3299 }
3300 else if (padding_slot_p)
3301 {
3302 pool->literals[entry] = inst.reloc.exp;
3303 pool->literals[entry].X_md = nbytes;
3304 }
3305
3306 inst.reloc.exp.X_op = O_symbol;
3307 inst.reloc.exp.X_add_number = pool_size;
3308 inst.reloc.exp.X_add_symbol = pool->symbol;
3309
3310 return SUCCESS;
3311 }
3312
3313 bfd_boolean
3314 tc_start_label_without_colon (void)
3315 {
3316 bfd_boolean ret = TRUE;
3317
3318 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3319 {
3320 const char *label = input_line_pointer;
3321
3322 while (!is_end_of_line[(int) label[-1]])
3323 --label;
3324
3325 if (*label == '.')
3326 {
3327 as_bad (_("Invalid label '%s'"), label);
3328 ret = FALSE;
3329 }
3330
3331 asmfunc_debug (label);
3332
3333 asmfunc_state = WAITING_ENDASMFUNC;
3334 }
3335
3336 return ret;
3337 }
3338
3339 /* Can't use symbol_new here, so have to create a symbol and then at
3340 a later date assign it a value. Thats what these functions do. */
3341
3342 static void
3343 symbol_locate (symbolS * symbolP,
3344 const char * name, /* It is copied, the caller can modify. */
3345 segT segment, /* Segment identifier (SEG_<something>). */
3346 valueT valu, /* Symbol value. */
3347 fragS * frag) /* Associated fragment. */
3348 {
3349 size_t name_length;
3350 char * preserved_copy_of_name;
3351
3352 name_length = strlen (name) + 1; /* +1 for \0. */
3353 obstack_grow (&notes, name, name_length);
3354 preserved_copy_of_name = (char *) obstack_finish (&notes);
3355
3356 #ifdef tc_canonicalize_symbol_name
3357 preserved_copy_of_name =
3358 tc_canonicalize_symbol_name (preserved_copy_of_name);
3359 #endif
3360
3361 S_SET_NAME (symbolP, preserved_copy_of_name);
3362
3363 S_SET_SEGMENT (symbolP, segment);
3364 S_SET_VALUE (symbolP, valu);
3365 symbol_clear_list_pointers (symbolP);
3366
3367 symbol_set_frag (symbolP, frag);
3368
3369 /* Link to end of symbol chain. */
3370 {
3371 extern int symbol_table_frozen;
3372
3373 if (symbol_table_frozen)
3374 abort ();
3375 }
3376
3377 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3378
3379 obj_symbol_new_hook (symbolP);
3380
3381 #ifdef tc_symbol_new_hook
3382 tc_symbol_new_hook (symbolP);
3383 #endif
3384
3385 #ifdef DEBUG_SYMS
3386 verify_symbol_chain (symbol_rootP, symbol_lastP);
3387 #endif /* DEBUG_SYMS */
3388 }
3389
3390 static void
3391 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3392 {
3393 unsigned int entry;
3394 literal_pool * pool;
3395 char sym_name[20];
3396
3397 pool = find_literal_pool ();
3398 if (pool == NULL
3399 || pool->symbol == NULL
3400 || pool->next_free_entry == 0)
3401 return;
3402
3403 /* Align pool as you have word accesses.
3404 Only make a frag if we have to. */
3405 if (!need_pass_2)
3406 frag_align (pool->alignment, 0, 0);
3407
3408 record_alignment (now_seg, 2);
3409
3410 #ifdef OBJ_ELF
3411 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3412 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3413 #endif
3414 sprintf (sym_name, "$$lit_\002%x", pool->id);
3415
3416 symbol_locate (pool->symbol, sym_name, now_seg,
3417 (valueT) frag_now_fix (), frag_now);
3418 symbol_table_insert (pool->symbol);
3419
3420 ARM_SET_THUMB (pool->symbol, thumb_mode);
3421
3422 #if defined OBJ_COFF || defined OBJ_ELF
3423 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3424 #endif
3425
3426 for (entry = 0; entry < pool->next_free_entry; entry ++)
3427 {
3428 #ifdef OBJ_ELF
3429 if (debug_type == DEBUG_DWARF2)
3430 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3431 #endif
3432 /* First output the expression in the instruction to the pool. */
3433 emit_expr (&(pool->literals[entry]),
3434 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3435 }
3436
3437 /* Mark the pool as empty. */
3438 pool->next_free_entry = 0;
3439 pool->symbol = NULL;
3440 }
3441
3442 #ifdef OBJ_ELF
3443 /* Forward declarations for functions below, in the MD interface
3444 section. */
3445 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3446 static valueT create_unwind_entry (int);
3447 static void start_unwind_section (const segT, int);
3448 static void add_unwind_opcode (valueT, int);
3449 static void flush_pending_unwind (void);
3450
3451 /* Directives: Data. */
3452
3453 static void
3454 s_arm_elf_cons (int nbytes)
3455 {
3456 expressionS exp;
3457
3458 #ifdef md_flush_pending_output
3459 md_flush_pending_output ();
3460 #endif
3461
3462 if (is_it_end_of_statement ())
3463 {
3464 demand_empty_rest_of_line ();
3465 return;
3466 }
3467
3468 #ifdef md_cons_align
3469 md_cons_align (nbytes);
3470 #endif
3471
3472 mapping_state (MAP_DATA);
3473 do
3474 {
3475 int reloc;
3476 char *base = input_line_pointer;
3477
3478 expression (& exp);
3479
3480 if (exp.X_op != O_symbol)
3481 emit_expr (&exp, (unsigned int) nbytes);
3482 else
3483 {
3484 char *before_reloc = input_line_pointer;
3485 reloc = parse_reloc (&input_line_pointer);
3486 if (reloc == -1)
3487 {
3488 as_bad (_("unrecognized relocation suffix"));
3489 ignore_rest_of_line ();
3490 return;
3491 }
3492 else if (reloc == BFD_RELOC_UNUSED)
3493 emit_expr (&exp, (unsigned int) nbytes);
3494 else
3495 {
3496 reloc_howto_type *howto = (reloc_howto_type *)
3497 bfd_reloc_type_lookup (stdoutput,
3498 (bfd_reloc_code_real_type) reloc);
3499 int size = bfd_get_reloc_size (howto);
3500
3501 if (reloc == BFD_RELOC_ARM_PLT32)
3502 {
3503 as_bad (_("(plt) is only valid on branch targets"));
3504 reloc = BFD_RELOC_UNUSED;
3505 size = 0;
3506 }
3507
3508 if (size > nbytes)
3509 as_bad (_("%s relocations do not fit in %d bytes"),
3510 howto->name, nbytes);
3511 else
3512 {
3513 /* We've parsed an expression stopping at O_symbol.
3514 But there may be more expression left now that we
3515 have parsed the relocation marker. Parse it again.
3516 XXX Surely there is a cleaner way to do this. */
3517 char *p = input_line_pointer;
3518 int offset;
3519 char *save_buf = (char *) alloca (input_line_pointer - base);
3520 memcpy (save_buf, base, input_line_pointer - base);
3521 memmove (base + (input_line_pointer - before_reloc),
3522 base, before_reloc - base);
3523
3524 input_line_pointer = base + (input_line_pointer-before_reloc);
3525 expression (&exp);
3526 memcpy (base, save_buf, p - base);
3527
3528 offset = nbytes - size;
3529 p = frag_more (nbytes);
3530 memset (p, 0, nbytes);
3531 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3532 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3533 }
3534 }
3535 }
3536 }
3537 while (*input_line_pointer++ == ',');
3538
3539 /* Put terminator back into stream. */
3540 input_line_pointer --;
3541 demand_empty_rest_of_line ();
3542 }
3543
3544 /* Emit an expression containing a 32-bit thumb instruction.
3545 Implementation based on put_thumb32_insn. */
3546
3547 static void
3548 emit_thumb32_expr (expressionS * exp)
3549 {
3550 expressionS exp_high = *exp;
3551
3552 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3553 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3554 exp->X_add_number &= 0xffff;
3555 emit_expr (exp, (unsigned int) THUMB_SIZE);
3556 }
3557
3558 /* Guess the instruction size based on the opcode. */
3559
3560 static int
3561 thumb_insn_size (int opcode)
3562 {
3563 if ((unsigned int) opcode < 0xe800u)
3564 return 2;
3565 else if ((unsigned int) opcode >= 0xe8000000u)
3566 return 4;
3567 else
3568 return 0;
3569 }
3570
3571 static bfd_boolean
3572 emit_insn (expressionS *exp, int nbytes)
3573 {
3574 int size = 0;
3575
3576 if (exp->X_op == O_constant)
3577 {
3578 size = nbytes;
3579
3580 if (size == 0)
3581 size = thumb_insn_size (exp->X_add_number);
3582
3583 if (size != 0)
3584 {
3585 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3586 {
3587 as_bad (_(".inst.n operand too big. "\
3588 "Use .inst.w instead"));
3589 size = 0;
3590 }
3591 else
3592 {
3593 if (now_it.state == AUTOMATIC_IT_BLOCK)
3594 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3595 else
3596 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3597
3598 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3599 emit_thumb32_expr (exp);
3600 else
3601 emit_expr (exp, (unsigned int) size);
3602
3603 it_fsm_post_encode ();
3604 }
3605 }
3606 else
3607 as_bad (_("cannot determine Thumb instruction size. " \
3608 "Use .inst.n/.inst.w instead"));
3609 }
3610 else
3611 as_bad (_("constant expression required"));
3612
3613 return (size != 0);
3614 }
3615
3616 /* Like s_arm_elf_cons but do not use md_cons_align and
3617 set the mapping state to MAP_ARM/MAP_THUMB. */
3618
3619 static void
3620 s_arm_elf_inst (int nbytes)
3621 {
3622 if (is_it_end_of_statement ())
3623 {
3624 demand_empty_rest_of_line ();
3625 return;
3626 }
3627
3628 /* Calling mapping_state () here will not change ARM/THUMB,
3629 but will ensure not to be in DATA state. */
3630
3631 if (thumb_mode)
3632 mapping_state (MAP_THUMB);
3633 else
3634 {
3635 if (nbytes != 0)
3636 {
3637 as_bad (_("width suffixes are invalid in ARM mode"));
3638 ignore_rest_of_line ();
3639 return;
3640 }
3641
3642 nbytes = 4;
3643
3644 mapping_state (MAP_ARM);
3645 }
3646
3647 do
3648 {
3649 expressionS exp;
3650
3651 expression (& exp);
3652
3653 if (! emit_insn (& exp, nbytes))
3654 {
3655 ignore_rest_of_line ();
3656 return;
3657 }
3658 }
3659 while (*input_line_pointer++ == ',');
3660
3661 /* Put terminator back into stream. */
3662 input_line_pointer --;
3663 demand_empty_rest_of_line ();
3664 }
3665
3666 /* Parse a .rel31 directive. */
3667
3668 static void
3669 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3670 {
3671 expressionS exp;
3672 char *p;
3673 valueT highbit;
3674
3675 highbit = 0;
3676 if (*input_line_pointer == '1')
3677 highbit = 0x80000000;
3678 else if (*input_line_pointer != '0')
3679 as_bad (_("expected 0 or 1"));
3680
3681 input_line_pointer++;
3682 if (*input_line_pointer != ',')
3683 as_bad (_("missing comma"));
3684 input_line_pointer++;
3685
3686 #ifdef md_flush_pending_output
3687 md_flush_pending_output ();
3688 #endif
3689
3690 #ifdef md_cons_align
3691 md_cons_align (4);
3692 #endif
3693
3694 mapping_state (MAP_DATA);
3695
3696 expression (&exp);
3697
3698 p = frag_more (4);
3699 md_number_to_chars (p, highbit, 4);
3700 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3701 BFD_RELOC_ARM_PREL31);
3702
3703 demand_empty_rest_of_line ();
3704 }
3705
3706 /* Directives: AEABI stack-unwind tables. */
3707
3708 /* Parse an unwind_fnstart directive. Simply records the current location. */
3709
3710 static void
3711 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3712 {
3713 demand_empty_rest_of_line ();
3714 if (unwind.proc_start)
3715 {
3716 as_bad (_("duplicate .fnstart directive"));
3717 return;
3718 }
3719
3720 /* Mark the start of the function. */
3721 unwind.proc_start = expr_build_dot ();
3722
3723 /* Reset the rest of the unwind info. */
3724 unwind.opcode_count = 0;
3725 unwind.table_entry = NULL;
3726 unwind.personality_routine = NULL;
3727 unwind.personality_index = -1;
3728 unwind.frame_size = 0;
3729 unwind.fp_offset = 0;
3730 unwind.fp_reg = REG_SP;
3731 unwind.fp_used = 0;
3732 unwind.sp_restored = 0;
3733 }
3734
3735
3736 /* Parse a handlerdata directive. Creates the exception handling table entry
3737 for the function. */
3738
3739 static void
3740 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3741 {
3742 demand_empty_rest_of_line ();
3743 if (!unwind.proc_start)
3744 as_bad (MISSING_FNSTART);
3745
3746 if (unwind.table_entry)
3747 as_bad (_("duplicate .handlerdata directive"));
3748
3749 create_unwind_entry (1);
3750 }
3751
3752 /* Parse an unwind_fnend directive. Generates the index table entry. */
3753
3754 static void
3755 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3756 {
3757 long where;
3758 char *ptr;
3759 valueT val;
3760 unsigned int marked_pr_dependency;
3761
3762 demand_empty_rest_of_line ();
3763
3764 if (!unwind.proc_start)
3765 {
3766 as_bad (_(".fnend directive without .fnstart"));
3767 return;
3768 }
3769
3770 /* Add eh table entry. */
3771 if (unwind.table_entry == NULL)
3772 val = create_unwind_entry (0);
3773 else
3774 val = 0;
3775
3776 /* Add index table entry. This is two words. */
3777 start_unwind_section (unwind.saved_seg, 1);
3778 frag_align (2, 0, 0);
3779 record_alignment (now_seg, 2);
3780
3781 ptr = frag_more (8);
3782 memset (ptr, 0, 8);
3783 where = frag_now_fix () - 8;
3784
3785 /* Self relative offset of the function start. */
3786 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3787 BFD_RELOC_ARM_PREL31);
3788
3789 /* Indicate dependency on EHABI-defined personality routines to the
3790 linker, if it hasn't been done already. */
3791 marked_pr_dependency
3792 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3793 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3794 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3795 {
3796 static const char *const name[] =
3797 {
3798 "__aeabi_unwind_cpp_pr0",
3799 "__aeabi_unwind_cpp_pr1",
3800 "__aeabi_unwind_cpp_pr2"
3801 };
3802 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3803 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3804 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3805 |= 1 << unwind.personality_index;
3806 }
3807
3808 if (val)
3809 /* Inline exception table entry. */
3810 md_number_to_chars (ptr + 4, val, 4);
3811 else
3812 /* Self relative offset of the table entry. */
3813 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3814 BFD_RELOC_ARM_PREL31);
3815
3816 /* Restore the original section. */
3817 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3818
3819 unwind.proc_start = NULL;
3820 }
3821
3822
3823 /* Parse an unwind_cantunwind directive. */
3824
3825 static void
3826 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3827 {
3828 demand_empty_rest_of_line ();
3829 if (!unwind.proc_start)
3830 as_bad (MISSING_FNSTART);
3831
3832 if (unwind.personality_routine || unwind.personality_index != -1)
3833 as_bad (_("personality routine specified for cantunwind frame"));
3834
3835 unwind.personality_index = -2;
3836 }
3837
3838
3839 /* Parse a personalityindex directive. */
3840
3841 static void
3842 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3843 {
3844 expressionS exp;
3845
3846 if (!unwind.proc_start)
3847 as_bad (MISSING_FNSTART);
3848
3849 if (unwind.personality_routine || unwind.personality_index != -1)
3850 as_bad (_("duplicate .personalityindex directive"));
3851
3852 expression (&exp);
3853
3854 if (exp.X_op != O_constant
3855 || exp.X_add_number < 0 || exp.X_add_number > 15)
3856 {
3857 as_bad (_("bad personality routine number"));
3858 ignore_rest_of_line ();
3859 return;
3860 }
3861
3862 unwind.personality_index = exp.X_add_number;
3863
3864 demand_empty_rest_of_line ();
3865 }
3866
3867
3868 /* Parse a personality directive. */
3869
3870 static void
3871 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3872 {
3873 char *name, *p, c;
3874
3875 if (!unwind.proc_start)
3876 as_bad (MISSING_FNSTART);
3877
3878 if (unwind.personality_routine || unwind.personality_index != -1)
3879 as_bad (_("duplicate .personality directive"));
3880
3881 c = get_symbol_name (& name);
3882 p = input_line_pointer;
3883 if (c == '"')
3884 ++ input_line_pointer;
3885 unwind.personality_routine = symbol_find_or_make (name);
3886 *p = c;
3887 demand_empty_rest_of_line ();
3888 }
3889
3890
3891 /* Parse a directive saving core registers. */
3892
3893 static void
3894 s_arm_unwind_save_core (void)
3895 {
3896 valueT op;
3897 long range;
3898 int n;
3899
3900 range = parse_reg_list (&input_line_pointer);
3901 if (range == FAIL)
3902 {
3903 as_bad (_("expected register list"));
3904 ignore_rest_of_line ();
3905 return;
3906 }
3907
3908 demand_empty_rest_of_line ();
3909
3910 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3911 into .unwind_save {..., sp...}. We aren't bothered about the value of
3912 ip because it is clobbered by calls. */
3913 if (unwind.sp_restored && unwind.fp_reg == 12
3914 && (range & 0x3000) == 0x1000)
3915 {
3916 unwind.opcode_count--;
3917 unwind.sp_restored = 0;
3918 range = (range | 0x2000) & ~0x1000;
3919 unwind.pending_offset = 0;
3920 }
3921
3922 /* Pop r4-r15. */
3923 if (range & 0xfff0)
3924 {
3925 /* See if we can use the short opcodes. These pop a block of up to 8
3926 registers starting with r4, plus maybe r14. */
3927 for (n = 0; n < 8; n++)
3928 {
3929 /* Break at the first non-saved register. */
3930 if ((range & (1 << (n + 4))) == 0)
3931 break;
3932 }
3933 /* See if there are any other bits set. */
3934 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3935 {
3936 /* Use the long form. */
3937 op = 0x8000 | ((range >> 4) & 0xfff);
3938 add_unwind_opcode (op, 2);
3939 }
3940 else
3941 {
3942 /* Use the short form. */
3943 if (range & 0x4000)
3944 op = 0xa8; /* Pop r14. */
3945 else
3946 op = 0xa0; /* Do not pop r14. */
3947 op |= (n - 1);
3948 add_unwind_opcode (op, 1);
3949 }
3950 }
3951
3952 /* Pop r0-r3. */
3953 if (range & 0xf)
3954 {
3955 op = 0xb100 | (range & 0xf);
3956 add_unwind_opcode (op, 2);
3957 }
3958
3959 /* Record the number of bytes pushed. */
3960 for (n = 0; n < 16; n++)
3961 {
3962 if (range & (1 << n))
3963 unwind.frame_size += 4;
3964 }
3965 }
3966
3967
3968 /* Parse a directive saving FPA registers. */
3969
3970 static void
3971 s_arm_unwind_save_fpa (int reg)
3972 {
3973 expressionS exp;
3974 int num_regs;
3975 valueT op;
3976
3977 /* Get Number of registers to transfer. */
3978 if (skip_past_comma (&input_line_pointer) != FAIL)
3979 expression (&exp);
3980 else
3981 exp.X_op = O_illegal;
3982
3983 if (exp.X_op != O_constant)
3984 {
3985 as_bad (_("expected , <constant>"));
3986 ignore_rest_of_line ();
3987 return;
3988 }
3989
3990 num_regs = exp.X_add_number;
3991
3992 if (num_regs < 1 || num_regs > 4)
3993 {
3994 as_bad (_("number of registers must be in the range [1:4]"));
3995 ignore_rest_of_line ();
3996 return;
3997 }
3998
3999 demand_empty_rest_of_line ();
4000
4001 if (reg == 4)
4002 {
4003 /* Short form. */
4004 op = 0xb4 | (num_regs - 1);
4005 add_unwind_opcode (op, 1);
4006 }
4007 else
4008 {
4009 /* Long form. */
4010 op = 0xc800 | (reg << 4) | (num_regs - 1);
4011 add_unwind_opcode (op, 2);
4012 }
4013 unwind.frame_size += num_regs * 12;
4014 }
4015
4016
4017 /* Parse a directive saving VFP registers for ARMv6 and above. */
4018
4019 static void
4020 s_arm_unwind_save_vfp_armv6 (void)
4021 {
4022 int count;
4023 unsigned int start;
4024 valueT op;
4025 int num_vfpv3_regs = 0;
4026 int num_regs_below_16;
4027
4028 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4029 if (count == FAIL)
4030 {
4031 as_bad (_("expected register list"));
4032 ignore_rest_of_line ();
4033 return;
4034 }
4035
4036 demand_empty_rest_of_line ();
4037
4038 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4039 than FSTMX/FLDMX-style ones). */
4040
4041 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4042 if (start >= 16)
4043 num_vfpv3_regs = count;
4044 else if (start + count > 16)
4045 num_vfpv3_regs = start + count - 16;
4046
4047 if (num_vfpv3_regs > 0)
4048 {
4049 int start_offset = start > 16 ? start - 16 : 0;
4050 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4051 add_unwind_opcode (op, 2);
4052 }
4053
4054 /* Generate opcode for registers numbered in the range 0 .. 15. */
4055 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4056 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4057 if (num_regs_below_16 > 0)
4058 {
4059 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4060 add_unwind_opcode (op, 2);
4061 }
4062
4063 unwind.frame_size += count * 8;
4064 }
4065
4066
4067 /* Parse a directive saving VFP registers for pre-ARMv6. */
4068
4069 static void
4070 s_arm_unwind_save_vfp (void)
4071 {
4072 int count;
4073 unsigned int reg;
4074 valueT op;
4075
4076 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
4077 if (count == FAIL)
4078 {
4079 as_bad (_("expected register list"));
4080 ignore_rest_of_line ();
4081 return;
4082 }
4083
4084 demand_empty_rest_of_line ();
4085
4086 if (reg == 8)
4087 {
4088 /* Short form. */
4089 op = 0xb8 | (count - 1);
4090 add_unwind_opcode (op, 1);
4091 }
4092 else
4093 {
4094 /* Long form. */
4095 op = 0xb300 | (reg << 4) | (count - 1);
4096 add_unwind_opcode (op, 2);
4097 }
4098 unwind.frame_size += count * 8 + 4;
4099 }
4100
4101
4102 /* Parse a directive saving iWMMXt data registers. */
4103
4104 static void
4105 s_arm_unwind_save_mmxwr (void)
4106 {
4107 int reg;
4108 int hi_reg;
4109 int i;
4110 unsigned mask = 0;
4111 valueT op;
4112
4113 if (*input_line_pointer == '{')
4114 input_line_pointer++;
4115
4116 do
4117 {
4118 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4119
4120 if (reg == FAIL)
4121 {
4122 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4123 goto error;
4124 }
4125
4126 if (mask >> reg)
4127 as_tsktsk (_("register list not in ascending order"));
4128 mask |= 1 << reg;
4129
4130 if (*input_line_pointer == '-')
4131 {
4132 input_line_pointer++;
4133 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4134 if (hi_reg == FAIL)
4135 {
4136 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4137 goto error;
4138 }
4139 else if (reg >= hi_reg)
4140 {
4141 as_bad (_("bad register range"));
4142 goto error;
4143 }
4144 for (; reg < hi_reg; reg++)
4145 mask |= 1 << reg;
4146 }
4147 }
4148 while (skip_past_comma (&input_line_pointer) != FAIL);
4149
4150 skip_past_char (&input_line_pointer, '}');
4151
4152 demand_empty_rest_of_line ();
4153
4154 /* Generate any deferred opcodes because we're going to be looking at
4155 the list. */
4156 flush_pending_unwind ();
4157
4158 for (i = 0; i < 16; i++)
4159 {
4160 if (mask & (1 << i))
4161 unwind.frame_size += 8;
4162 }
4163
4164 /* Attempt to combine with a previous opcode. We do this because gcc
4165 likes to output separate unwind directives for a single block of
4166 registers. */
4167 if (unwind.opcode_count > 0)
4168 {
4169 i = unwind.opcodes[unwind.opcode_count - 1];
4170 if ((i & 0xf8) == 0xc0)
4171 {
4172 i &= 7;
4173 /* Only merge if the blocks are contiguous. */
4174 if (i < 6)
4175 {
4176 if ((mask & 0xfe00) == (1 << 9))
4177 {
4178 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4179 unwind.opcode_count--;
4180 }
4181 }
4182 else if (i == 6 && unwind.opcode_count >= 2)
4183 {
4184 i = unwind.opcodes[unwind.opcode_count - 2];
4185 reg = i >> 4;
4186 i &= 0xf;
4187
4188 op = 0xffff << (reg - 1);
4189 if (reg > 0
4190 && ((mask & op) == (1u << (reg - 1))))
4191 {
4192 op = (1 << (reg + i + 1)) - 1;
4193 op &= ~((1 << reg) - 1);
4194 mask |= op;
4195 unwind.opcode_count -= 2;
4196 }
4197 }
4198 }
4199 }
4200
4201 hi_reg = 15;
4202 /* We want to generate opcodes in the order the registers have been
4203 saved, ie. descending order. */
4204 for (reg = 15; reg >= -1; reg--)
4205 {
4206 /* Save registers in blocks. */
4207 if (reg < 0
4208 || !(mask & (1 << reg)))
4209 {
4210 /* We found an unsaved reg. Generate opcodes to save the
4211 preceding block. */
4212 if (reg != hi_reg)
4213 {
4214 if (reg == 9)
4215 {
4216 /* Short form. */
4217 op = 0xc0 | (hi_reg - 10);
4218 add_unwind_opcode (op, 1);
4219 }
4220 else
4221 {
4222 /* Long form. */
4223 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4224 add_unwind_opcode (op, 2);
4225 }
4226 }
4227 hi_reg = reg - 1;
4228 }
4229 }
4230
4231 return;
4232 error:
4233 ignore_rest_of_line ();
4234 }
4235
4236 static void
4237 s_arm_unwind_save_mmxwcg (void)
4238 {
4239 int reg;
4240 int hi_reg;
4241 unsigned mask = 0;
4242 valueT op;
4243
4244 if (*input_line_pointer == '{')
4245 input_line_pointer++;
4246
4247 skip_whitespace (input_line_pointer);
4248
4249 do
4250 {
4251 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4252
4253 if (reg == FAIL)
4254 {
4255 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4256 goto error;
4257 }
4258
4259 reg -= 8;
4260 if (mask >> reg)
4261 as_tsktsk (_("register list not in ascending order"));
4262 mask |= 1 << reg;
4263
4264 if (*input_line_pointer == '-')
4265 {
4266 input_line_pointer++;
4267 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4268 if (hi_reg == FAIL)
4269 {
4270 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4271 goto error;
4272 }
4273 else if (reg >= hi_reg)
4274 {
4275 as_bad (_("bad register range"));
4276 goto error;
4277 }
4278 for (; reg < hi_reg; reg++)
4279 mask |= 1 << reg;
4280 }
4281 }
4282 while (skip_past_comma (&input_line_pointer) != FAIL);
4283
4284 skip_past_char (&input_line_pointer, '}');
4285
4286 demand_empty_rest_of_line ();
4287
4288 /* Generate any deferred opcodes because we're going to be looking at
4289 the list. */
4290 flush_pending_unwind ();
4291
4292 for (reg = 0; reg < 16; reg++)
4293 {
4294 if (mask & (1 << reg))
4295 unwind.frame_size += 4;
4296 }
4297 op = 0xc700 | mask;
4298 add_unwind_opcode (op, 2);
4299 return;
4300 error:
4301 ignore_rest_of_line ();
4302 }
4303
4304
4305 /* Parse an unwind_save directive.
4306 If the argument is non-zero, this is a .vsave directive. */
4307
4308 static void
4309 s_arm_unwind_save (int arch_v6)
4310 {
4311 char *peek;
4312 struct reg_entry *reg;
4313 bfd_boolean had_brace = FALSE;
4314
4315 if (!unwind.proc_start)
4316 as_bad (MISSING_FNSTART);
4317
4318 /* Figure out what sort of save we have. */
4319 peek = input_line_pointer;
4320
4321 if (*peek == '{')
4322 {
4323 had_brace = TRUE;
4324 peek++;
4325 }
4326
4327 reg = arm_reg_parse_multi (&peek);
4328
4329 if (!reg)
4330 {
4331 as_bad (_("register expected"));
4332 ignore_rest_of_line ();
4333 return;
4334 }
4335
4336 switch (reg->type)
4337 {
4338 case REG_TYPE_FN:
4339 if (had_brace)
4340 {
4341 as_bad (_("FPA .unwind_save does not take a register list"));
4342 ignore_rest_of_line ();
4343 return;
4344 }
4345 input_line_pointer = peek;
4346 s_arm_unwind_save_fpa (reg->number);
4347 return;
4348
4349 case REG_TYPE_RN:
4350 s_arm_unwind_save_core ();
4351 return;
4352
4353 case REG_TYPE_VFD:
4354 if (arch_v6)
4355 s_arm_unwind_save_vfp_armv6 ();
4356 else
4357 s_arm_unwind_save_vfp ();
4358 return;
4359
4360 case REG_TYPE_MMXWR:
4361 s_arm_unwind_save_mmxwr ();
4362 return;
4363
4364 case REG_TYPE_MMXWCG:
4365 s_arm_unwind_save_mmxwcg ();
4366 return;
4367
4368 default:
4369 as_bad (_(".unwind_save does not support this kind of register"));
4370 ignore_rest_of_line ();
4371 }
4372 }
4373
4374
4375 /* Parse an unwind_movsp directive. */
4376
4377 static void
4378 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4379 {
4380 int reg;
4381 valueT op;
4382 int offset;
4383
4384 if (!unwind.proc_start)
4385 as_bad (MISSING_FNSTART);
4386
4387 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4388 if (reg == FAIL)
4389 {
4390 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4391 ignore_rest_of_line ();
4392 return;
4393 }
4394
4395 /* Optional constant. */
4396 if (skip_past_comma (&input_line_pointer) != FAIL)
4397 {
4398 if (immediate_for_directive (&offset) == FAIL)
4399 return;
4400 }
4401 else
4402 offset = 0;
4403
4404 demand_empty_rest_of_line ();
4405
4406 if (reg == REG_SP || reg == REG_PC)
4407 {
4408 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4409 return;
4410 }
4411
4412 if (unwind.fp_reg != REG_SP)
4413 as_bad (_("unexpected .unwind_movsp directive"));
4414
4415 /* Generate opcode to restore the value. */
4416 op = 0x90 | reg;
4417 add_unwind_opcode (op, 1);
4418
4419 /* Record the information for later. */
4420 unwind.fp_reg = reg;
4421 unwind.fp_offset = unwind.frame_size - offset;
4422 unwind.sp_restored = 1;
4423 }
4424
4425 /* Parse an unwind_pad directive. */
4426
4427 static void
4428 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4429 {
4430 int offset;
4431
4432 if (!unwind.proc_start)
4433 as_bad (MISSING_FNSTART);
4434
4435 if (immediate_for_directive (&offset) == FAIL)
4436 return;
4437
4438 if (offset & 3)
4439 {
4440 as_bad (_("stack increment must be multiple of 4"));
4441 ignore_rest_of_line ();
4442 return;
4443 }
4444
4445 /* Don't generate any opcodes, just record the details for later. */
4446 unwind.frame_size += offset;
4447 unwind.pending_offset += offset;
4448
4449 demand_empty_rest_of_line ();
4450 }
4451
4452 /* Parse an unwind_setfp directive. */
4453
4454 static void
4455 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4456 {
4457 int sp_reg;
4458 int fp_reg;
4459 int offset;
4460
4461 if (!unwind.proc_start)
4462 as_bad (MISSING_FNSTART);
4463
4464 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4465 if (skip_past_comma (&input_line_pointer) == FAIL)
4466 sp_reg = FAIL;
4467 else
4468 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4469
4470 if (fp_reg == FAIL || sp_reg == FAIL)
4471 {
4472 as_bad (_("expected <reg>, <reg>"));
4473 ignore_rest_of_line ();
4474 return;
4475 }
4476
4477 /* Optional constant. */
4478 if (skip_past_comma (&input_line_pointer) != FAIL)
4479 {
4480 if (immediate_for_directive (&offset) == FAIL)
4481 return;
4482 }
4483 else
4484 offset = 0;
4485
4486 demand_empty_rest_of_line ();
4487
4488 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4489 {
4490 as_bad (_("register must be either sp or set by a previous"
4491 "unwind_movsp directive"));
4492 return;
4493 }
4494
4495 /* Don't generate any opcodes, just record the information for later. */
4496 unwind.fp_reg = fp_reg;
4497 unwind.fp_used = 1;
4498 if (sp_reg == REG_SP)
4499 unwind.fp_offset = unwind.frame_size - offset;
4500 else
4501 unwind.fp_offset -= offset;
4502 }
4503
4504 /* Parse an unwind_raw directive. */
4505
4506 static void
4507 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4508 {
4509 expressionS exp;
4510 /* This is an arbitrary limit. */
4511 unsigned char op[16];
4512 int count;
4513
4514 if (!unwind.proc_start)
4515 as_bad (MISSING_FNSTART);
4516
4517 expression (&exp);
4518 if (exp.X_op == O_constant
4519 && skip_past_comma (&input_line_pointer) != FAIL)
4520 {
4521 unwind.frame_size += exp.X_add_number;
4522 expression (&exp);
4523 }
4524 else
4525 exp.X_op = O_illegal;
4526
4527 if (exp.X_op != O_constant)
4528 {
4529 as_bad (_("expected <offset>, <opcode>"));
4530 ignore_rest_of_line ();
4531 return;
4532 }
4533
4534 count = 0;
4535
4536 /* Parse the opcode. */
4537 for (;;)
4538 {
4539 if (count >= 16)
4540 {
4541 as_bad (_("unwind opcode too long"));
4542 ignore_rest_of_line ();
4543 }
4544 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4545 {
4546 as_bad (_("invalid unwind opcode"));
4547 ignore_rest_of_line ();
4548 return;
4549 }
4550 op[count++] = exp.X_add_number;
4551
4552 /* Parse the next byte. */
4553 if (skip_past_comma (&input_line_pointer) == FAIL)
4554 break;
4555
4556 expression (&exp);
4557 }
4558
4559 /* Add the opcode bytes in reverse order. */
4560 while (count--)
4561 add_unwind_opcode (op[count], 1);
4562
4563 demand_empty_rest_of_line ();
4564 }
4565
4566
4567 /* Parse a .eabi_attribute directive. */
4568
4569 static void
4570 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4571 {
4572 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4573
4574 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4575 attributes_set_explicitly[tag] = 1;
4576 }
4577
4578 /* Emit a tls fix for the symbol. */
4579
4580 static void
4581 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4582 {
4583 char *p;
4584 expressionS exp;
4585 #ifdef md_flush_pending_output
4586 md_flush_pending_output ();
4587 #endif
4588
4589 #ifdef md_cons_align
4590 md_cons_align (4);
4591 #endif
4592
4593 /* Since we're just labelling the code, there's no need to define a
4594 mapping symbol. */
4595 expression (&exp);
4596 p = obstack_next_free (&frchain_now->frch_obstack);
4597 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4598 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4599 : BFD_RELOC_ARM_TLS_DESCSEQ);
4600 }
4601 #endif /* OBJ_ELF */
4602
4603 static void s_arm_arch (int);
4604 static void s_arm_object_arch (int);
4605 static void s_arm_cpu (int);
4606 static void s_arm_fpu (int);
4607 static void s_arm_arch_extension (int);
4608
4609 #ifdef TE_PE
4610
4611 static void
4612 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4613 {
4614 expressionS exp;
4615
4616 do
4617 {
4618 expression (&exp);
4619 if (exp.X_op == O_symbol)
4620 exp.X_op = O_secrel;
4621
4622 emit_expr (&exp, 4);
4623 }
4624 while (*input_line_pointer++ == ',');
4625
4626 input_line_pointer--;
4627 demand_empty_rest_of_line ();
4628 }
4629 #endif /* TE_PE */
4630
4631 /* This table describes all the machine specific pseudo-ops the assembler
4632 has to support. The fields are:
4633 pseudo-op name without dot
4634 function to call to execute this pseudo-op
4635 Integer arg to pass to the function. */
4636
4637 const pseudo_typeS md_pseudo_table[] =
4638 {
4639 /* Never called because '.req' does not start a line. */
4640 { "req", s_req, 0 },
4641 /* Following two are likewise never called. */
4642 { "dn", s_dn, 0 },
4643 { "qn", s_qn, 0 },
4644 { "unreq", s_unreq, 0 },
4645 { "bss", s_bss, 0 },
4646 { "align", s_align_ptwo, 2 },
4647 { "arm", s_arm, 0 },
4648 { "thumb", s_thumb, 0 },
4649 { "code", s_code, 0 },
4650 { "force_thumb", s_force_thumb, 0 },
4651 { "thumb_func", s_thumb_func, 0 },
4652 { "thumb_set", s_thumb_set, 0 },
4653 { "even", s_even, 0 },
4654 { "ltorg", s_ltorg, 0 },
4655 { "pool", s_ltorg, 0 },
4656 { "syntax", s_syntax, 0 },
4657 { "cpu", s_arm_cpu, 0 },
4658 { "arch", s_arm_arch, 0 },
4659 { "object_arch", s_arm_object_arch, 0 },
4660 { "fpu", s_arm_fpu, 0 },
4661 { "arch_extension", s_arm_arch_extension, 0 },
4662 #ifdef OBJ_ELF
4663 { "word", s_arm_elf_cons, 4 },
4664 { "long", s_arm_elf_cons, 4 },
4665 { "inst.n", s_arm_elf_inst, 2 },
4666 { "inst.w", s_arm_elf_inst, 4 },
4667 { "inst", s_arm_elf_inst, 0 },
4668 { "rel31", s_arm_rel31, 0 },
4669 { "fnstart", s_arm_unwind_fnstart, 0 },
4670 { "fnend", s_arm_unwind_fnend, 0 },
4671 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4672 { "personality", s_arm_unwind_personality, 0 },
4673 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4674 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4675 { "save", s_arm_unwind_save, 0 },
4676 { "vsave", s_arm_unwind_save, 1 },
4677 { "movsp", s_arm_unwind_movsp, 0 },
4678 { "pad", s_arm_unwind_pad, 0 },
4679 { "setfp", s_arm_unwind_setfp, 0 },
4680 { "unwind_raw", s_arm_unwind_raw, 0 },
4681 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4682 { "tlsdescseq", s_arm_tls_descseq, 0 },
4683 #else
4684 { "word", cons, 4},
4685
4686 /* These are used for dwarf. */
4687 {"2byte", cons, 2},
4688 {"4byte", cons, 4},
4689 {"8byte", cons, 8},
4690 /* These are used for dwarf2. */
4691 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4692 { "loc", dwarf2_directive_loc, 0 },
4693 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4694 #endif
4695 { "extend", float_cons, 'x' },
4696 { "ldouble", float_cons, 'x' },
4697 { "packed", float_cons, 'p' },
4698 #ifdef TE_PE
4699 {"secrel32", pe_directive_secrel, 0},
4700 #endif
4701
4702 /* These are for compatibility with CodeComposer Studio. */
4703 {"ref", s_ccs_ref, 0},
4704 {"def", s_ccs_def, 0},
4705 {"asmfunc", s_ccs_asmfunc, 0},
4706 {"endasmfunc", s_ccs_endasmfunc, 0},
4707
4708 { 0, 0, 0 }
4709 };
4710 \f
4711 /* Parser functions used exclusively in instruction operands. */
4712
4713 /* Generic immediate-value read function for use in insn parsing.
4714 STR points to the beginning of the immediate (the leading #);
4715 VAL receives the value; if the value is outside [MIN, MAX]
4716 issue an error. PREFIX_OPT is true if the immediate prefix is
4717 optional. */
4718
4719 static int
4720 parse_immediate (char **str, int *val, int min, int max,
4721 bfd_boolean prefix_opt)
4722 {
4723 expressionS exp;
4724 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4725 if (exp.X_op != O_constant)
4726 {
4727 inst.error = _("constant expression required");
4728 return FAIL;
4729 }
4730
4731 if (exp.X_add_number < min || exp.X_add_number > max)
4732 {
4733 inst.error = _("immediate value out of range");
4734 return FAIL;
4735 }
4736
4737 *val = exp.X_add_number;
4738 return SUCCESS;
4739 }
4740
4741 /* Less-generic immediate-value read function with the possibility of loading a
4742 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4743 instructions. Puts the result directly in inst.operands[i]. */
4744
4745 static int
4746 parse_big_immediate (char **str, int i, expressionS *in_exp,
4747 bfd_boolean allow_symbol_p)
4748 {
4749 expressionS exp;
4750 expressionS *exp_p = in_exp ? in_exp : &exp;
4751 char *ptr = *str;
4752
4753 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
4754
4755 if (exp_p->X_op == O_constant)
4756 {
4757 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
4758 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4759 O_constant. We have to be careful not to break compilation for
4760 32-bit X_add_number, though. */
4761 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4762 {
4763 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4764 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4765 & 0xffffffff);
4766 inst.operands[i].regisimm = 1;
4767 }
4768 }
4769 else if (exp_p->X_op == O_big
4770 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
4771 {
4772 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4773
4774 /* Bignums have their least significant bits in
4775 generic_bignum[0]. Make sure we put 32 bits in imm and
4776 32 bits in reg, in a (hopefully) portable way. */
4777 gas_assert (parts != 0);
4778
4779 /* Make sure that the number is not too big.
4780 PR 11972: Bignums can now be sign-extended to the
4781 size of a .octa so check that the out of range bits
4782 are all zero or all one. */
4783 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
4784 {
4785 LITTLENUM_TYPE m = -1;
4786
4787 if (generic_bignum[parts * 2] != 0
4788 && generic_bignum[parts * 2] != m)
4789 return FAIL;
4790
4791 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
4792 if (generic_bignum[j] != generic_bignum[j-1])
4793 return FAIL;
4794 }
4795
4796 inst.operands[i].imm = 0;
4797 for (j = 0; j < parts; j++, idx++)
4798 inst.operands[i].imm |= generic_bignum[idx]
4799 << (LITTLENUM_NUMBER_OF_BITS * j);
4800 inst.operands[i].reg = 0;
4801 for (j = 0; j < parts; j++, idx++)
4802 inst.operands[i].reg |= generic_bignum[idx]
4803 << (LITTLENUM_NUMBER_OF_BITS * j);
4804 inst.operands[i].regisimm = 1;
4805 }
4806 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
4807 return FAIL;
4808
4809 *str = ptr;
4810
4811 return SUCCESS;
4812 }
4813
4814 /* Returns the pseudo-register number of an FPA immediate constant,
4815 or FAIL if there isn't a valid constant here. */
4816
4817 static int
4818 parse_fpa_immediate (char ** str)
4819 {
4820 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4821 char * save_in;
4822 expressionS exp;
4823 int i;
4824 int j;
4825
4826 /* First try and match exact strings, this is to guarantee
4827 that some formats will work even for cross assembly. */
4828
4829 for (i = 0; fp_const[i]; i++)
4830 {
4831 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4832 {
4833 char *start = *str;
4834
4835 *str += strlen (fp_const[i]);
4836 if (is_end_of_line[(unsigned char) **str])
4837 return i + 8;
4838 *str = start;
4839 }
4840 }
4841
4842 /* Just because we didn't get a match doesn't mean that the constant
4843 isn't valid, just that it is in a format that we don't
4844 automatically recognize. Try parsing it with the standard
4845 expression routines. */
4846
4847 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4848
4849 /* Look for a raw floating point number. */
4850 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4851 && is_end_of_line[(unsigned char) *save_in])
4852 {
4853 for (i = 0; i < NUM_FLOAT_VALS; i++)
4854 {
4855 for (j = 0; j < MAX_LITTLENUMS; j++)
4856 {
4857 if (words[j] != fp_values[i][j])
4858 break;
4859 }
4860
4861 if (j == MAX_LITTLENUMS)
4862 {
4863 *str = save_in;
4864 return i + 8;
4865 }
4866 }
4867 }
4868
4869 /* Try and parse a more complex expression, this will probably fail
4870 unless the code uses a floating point prefix (eg "0f"). */
4871 save_in = input_line_pointer;
4872 input_line_pointer = *str;
4873 if (expression (&exp) == absolute_section
4874 && exp.X_op == O_big
4875 && exp.X_add_number < 0)
4876 {
4877 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4878 Ditto for 15. */
4879 #define X_PRECISION 5
4880 #define E_PRECISION 15L
4881 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
4882 {
4883 for (i = 0; i < NUM_FLOAT_VALS; i++)
4884 {
4885 for (j = 0; j < MAX_LITTLENUMS; j++)
4886 {
4887 if (words[j] != fp_values[i][j])
4888 break;
4889 }
4890
4891 if (j == MAX_LITTLENUMS)
4892 {
4893 *str = input_line_pointer;
4894 input_line_pointer = save_in;
4895 return i + 8;
4896 }
4897 }
4898 }
4899 }
4900
4901 *str = input_line_pointer;
4902 input_line_pointer = save_in;
4903 inst.error = _("invalid FPA immediate expression");
4904 return FAIL;
4905 }
4906
4907 /* Returns 1 if a number has "quarter-precision" float format
4908 0baBbbbbbc defgh000 00000000 00000000. */
4909
4910 static int
4911 is_quarter_float (unsigned imm)
4912 {
4913 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4914 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4915 }
4916
4917
4918 /* Detect the presence of a floating point or integer zero constant,
4919 i.e. #0.0 or #0. */
4920
4921 static bfd_boolean
4922 parse_ifimm_zero (char **in)
4923 {
4924 int error_code;
4925
4926 if (!is_immediate_prefix (**in))
4927 return FALSE;
4928
4929 ++*in;
4930
4931 /* Accept #0x0 as a synonym for #0. */
4932 if (strncmp (*in, "0x", 2) == 0)
4933 {
4934 int val;
4935 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
4936 return FALSE;
4937 return TRUE;
4938 }
4939
4940 error_code = atof_generic (in, ".", EXP_CHARS,
4941 &generic_floating_point_number);
4942
4943 if (!error_code
4944 && generic_floating_point_number.sign == '+'
4945 && (generic_floating_point_number.low
4946 > generic_floating_point_number.leader))
4947 return TRUE;
4948
4949 return FALSE;
4950 }
4951
4952 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4953 0baBbbbbbc defgh000 00000000 00000000.
4954 The zero and minus-zero cases need special handling, since they can't be
4955 encoded in the "quarter-precision" float format, but can nonetheless be
4956 loaded as integer constants. */
4957
4958 static unsigned
4959 parse_qfloat_immediate (char **ccp, int *immed)
4960 {
4961 char *str = *ccp;
4962 char *fpnum;
4963 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4964 int found_fpchar = 0;
4965
4966 skip_past_char (&str, '#');
4967
4968 /* We must not accidentally parse an integer as a floating-point number. Make
4969 sure that the value we parse is not an integer by checking for special
4970 characters '.' or 'e'.
4971 FIXME: This is a horrible hack, but doing better is tricky because type
4972 information isn't in a very usable state at parse time. */
4973 fpnum = str;
4974 skip_whitespace (fpnum);
4975
4976 if (strncmp (fpnum, "0x", 2) == 0)
4977 return FAIL;
4978 else
4979 {
4980 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4981 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4982 {
4983 found_fpchar = 1;
4984 break;
4985 }
4986
4987 if (!found_fpchar)
4988 return FAIL;
4989 }
4990
4991 if ((str = atof_ieee (str, 's', words)) != NULL)
4992 {
4993 unsigned fpword = 0;
4994 int i;
4995
4996 /* Our FP word must be 32 bits (single-precision FP). */
4997 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4998 {
4999 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5000 fpword |= words[i];
5001 }
5002
5003 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5004 *immed = fpword;
5005 else
5006 return FAIL;
5007
5008 *ccp = str;
5009
5010 return SUCCESS;
5011 }
5012
5013 return FAIL;
5014 }
5015
5016 /* Shift operands. */
5017 enum shift_kind
5018 {
5019 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5020 };
5021
5022 struct asm_shift_name
5023 {
5024 const char *name;
5025 enum shift_kind kind;
5026 };
5027
5028 /* Third argument to parse_shift. */
5029 enum parse_shift_mode
5030 {
5031 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5032 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5033 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5034 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5035 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5036 };
5037
5038 /* Parse a <shift> specifier on an ARM data processing instruction.
5039 This has three forms:
5040
5041 (LSL|LSR|ASL|ASR|ROR) Rs
5042 (LSL|LSR|ASL|ASR|ROR) #imm
5043 RRX
5044
5045 Note that ASL is assimilated to LSL in the instruction encoding, and
5046 RRX to ROR #0 (which cannot be written as such). */
5047
5048 static int
5049 parse_shift (char **str, int i, enum parse_shift_mode mode)
5050 {
5051 const struct asm_shift_name *shift_name;
5052 enum shift_kind shift;
5053 char *s = *str;
5054 char *p = s;
5055 int reg;
5056
5057 for (p = *str; ISALPHA (*p); p++)
5058 ;
5059
5060 if (p == *str)
5061 {
5062 inst.error = _("shift expression expected");
5063 return FAIL;
5064 }
5065
5066 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5067 p - *str);
5068
5069 if (shift_name == NULL)
5070 {
5071 inst.error = _("shift expression expected");
5072 return FAIL;
5073 }
5074
5075 shift = shift_name->kind;
5076
5077 switch (mode)
5078 {
5079 case NO_SHIFT_RESTRICT:
5080 case SHIFT_IMMEDIATE: break;
5081
5082 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5083 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5084 {
5085 inst.error = _("'LSL' or 'ASR' required");
5086 return FAIL;
5087 }
5088 break;
5089
5090 case SHIFT_LSL_IMMEDIATE:
5091 if (shift != SHIFT_LSL)
5092 {
5093 inst.error = _("'LSL' required");
5094 return FAIL;
5095 }
5096 break;
5097
5098 case SHIFT_ASR_IMMEDIATE:
5099 if (shift != SHIFT_ASR)
5100 {
5101 inst.error = _("'ASR' required");
5102 return FAIL;
5103 }
5104 break;
5105
5106 default: abort ();
5107 }
5108
5109 if (shift != SHIFT_RRX)
5110 {
5111 /* Whitespace can appear here if the next thing is a bare digit. */
5112 skip_whitespace (p);
5113
5114 if (mode == NO_SHIFT_RESTRICT
5115 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5116 {
5117 inst.operands[i].imm = reg;
5118 inst.operands[i].immisreg = 1;
5119 }
5120 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5121 return FAIL;
5122 }
5123 inst.operands[i].shift_kind = shift;
5124 inst.operands[i].shifted = 1;
5125 *str = p;
5126 return SUCCESS;
5127 }
5128
5129 /* Parse a <shifter_operand> for an ARM data processing instruction:
5130
5131 #<immediate>
5132 #<immediate>, <rotate>
5133 <Rm>
5134 <Rm>, <shift>
5135
5136 where <shift> is defined by parse_shift above, and <rotate> is a
5137 multiple of 2 between 0 and 30. Validation of immediate operands
5138 is deferred to md_apply_fix. */
5139
5140 static int
5141 parse_shifter_operand (char **str, int i)
5142 {
5143 int value;
5144 expressionS exp;
5145
5146 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5147 {
5148 inst.operands[i].reg = value;
5149 inst.operands[i].isreg = 1;
5150
5151 /* parse_shift will override this if appropriate */
5152 inst.reloc.exp.X_op = O_constant;
5153 inst.reloc.exp.X_add_number = 0;
5154
5155 if (skip_past_comma (str) == FAIL)
5156 return SUCCESS;
5157
5158 /* Shift operation on register. */
5159 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5160 }
5161
5162 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
5163 return FAIL;
5164
5165 if (skip_past_comma (str) == SUCCESS)
5166 {
5167 /* #x, y -- ie explicit rotation by Y. */
5168 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5169 return FAIL;
5170
5171 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
5172 {
5173 inst.error = _("constant expression expected");
5174 return FAIL;
5175 }
5176
5177 value = exp.X_add_number;
5178 if (value < 0 || value > 30 || value % 2 != 0)
5179 {
5180 inst.error = _("invalid rotation");
5181 return FAIL;
5182 }
5183 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
5184 {
5185 inst.error = _("invalid constant");
5186 return FAIL;
5187 }
5188
5189 /* Encode as specified. */
5190 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
5191 return SUCCESS;
5192 }
5193
5194 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
5195 inst.reloc.pc_rel = 0;
5196 return SUCCESS;
5197 }
5198
5199 /* Group relocation information. Each entry in the table contains the
5200 textual name of the relocation as may appear in assembler source
5201 and must end with a colon.
5202 Along with this textual name are the relocation codes to be used if
5203 the corresponding instruction is an ALU instruction (ADD or SUB only),
5204 an LDR, an LDRS, or an LDC. */
5205
5206 struct group_reloc_table_entry
5207 {
5208 const char *name;
5209 int alu_code;
5210 int ldr_code;
5211 int ldrs_code;
5212 int ldc_code;
5213 };
5214
5215 typedef enum
5216 {
5217 /* Varieties of non-ALU group relocation. */
5218
5219 GROUP_LDR,
5220 GROUP_LDRS,
5221 GROUP_LDC
5222 } group_reloc_type;
5223
5224 static struct group_reloc_table_entry group_reloc_table[] =
5225 { /* Program counter relative: */
5226 { "pc_g0_nc",
5227 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5228 0, /* LDR */
5229 0, /* LDRS */
5230 0 }, /* LDC */
5231 { "pc_g0",
5232 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5233 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5234 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5235 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5236 { "pc_g1_nc",
5237 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5238 0, /* LDR */
5239 0, /* LDRS */
5240 0 }, /* LDC */
5241 { "pc_g1",
5242 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5243 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5244 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5245 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5246 { "pc_g2",
5247 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5248 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5249 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5250 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5251 /* Section base relative */
5252 { "sb_g0_nc",
5253 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5254 0, /* LDR */
5255 0, /* LDRS */
5256 0 }, /* LDC */
5257 { "sb_g0",
5258 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5259 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5260 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5261 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5262 { "sb_g1_nc",
5263 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5264 0, /* LDR */
5265 0, /* LDRS */
5266 0 }, /* LDC */
5267 { "sb_g1",
5268 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5269 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5270 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5271 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5272 { "sb_g2",
5273 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5274 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5275 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5276 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
5277
5278 /* Given the address of a pointer pointing to the textual name of a group
5279 relocation as may appear in assembler source, attempt to find its details
5280 in group_reloc_table. The pointer will be updated to the character after
5281 the trailing colon. On failure, FAIL will be returned; SUCCESS
5282 otherwise. On success, *entry will be updated to point at the relevant
5283 group_reloc_table entry. */
5284
5285 static int
5286 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5287 {
5288 unsigned int i;
5289 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5290 {
5291 int length = strlen (group_reloc_table[i].name);
5292
5293 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5294 && (*str)[length] == ':')
5295 {
5296 *out = &group_reloc_table[i];
5297 *str += (length + 1);
5298 return SUCCESS;
5299 }
5300 }
5301
5302 return FAIL;
5303 }
5304
5305 /* Parse a <shifter_operand> for an ARM data processing instruction
5306 (as for parse_shifter_operand) where group relocations are allowed:
5307
5308 #<immediate>
5309 #<immediate>, <rotate>
5310 #:<group_reloc>:<expression>
5311 <Rm>
5312 <Rm>, <shift>
5313
5314 where <group_reloc> is one of the strings defined in group_reloc_table.
5315 The hashes are optional.
5316
5317 Everything else is as for parse_shifter_operand. */
5318
5319 static parse_operand_result
5320 parse_shifter_operand_group_reloc (char **str, int i)
5321 {
5322 /* Determine if we have the sequence of characters #: or just :
5323 coming next. If we do, then we check for a group relocation.
5324 If we don't, punt the whole lot to parse_shifter_operand. */
5325
5326 if (((*str)[0] == '#' && (*str)[1] == ':')
5327 || (*str)[0] == ':')
5328 {
5329 struct group_reloc_table_entry *entry;
5330
5331 if ((*str)[0] == '#')
5332 (*str) += 2;
5333 else
5334 (*str)++;
5335
5336 /* Try to parse a group relocation. Anything else is an error. */
5337 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5338 {
5339 inst.error = _("unknown group relocation");
5340 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5341 }
5342
5343 /* We now have the group relocation table entry corresponding to
5344 the name in the assembler source. Next, we parse the expression. */
5345 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5346 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5347
5348 /* Record the relocation type (always the ALU variant here). */
5349 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5350 gas_assert (inst.reloc.type != 0);
5351
5352 return PARSE_OPERAND_SUCCESS;
5353 }
5354 else
5355 return parse_shifter_operand (str, i) == SUCCESS
5356 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5357
5358 /* Never reached. */
5359 }
5360
5361 /* Parse a Neon alignment expression. Information is written to
5362 inst.operands[i]. We assume the initial ':' has been skipped.
5363
5364 align .imm = align << 8, .immisalign=1, .preind=0 */
5365 static parse_operand_result
5366 parse_neon_alignment (char **str, int i)
5367 {
5368 char *p = *str;
5369 expressionS exp;
5370
5371 my_get_expression (&exp, &p, GE_NO_PREFIX);
5372
5373 if (exp.X_op != O_constant)
5374 {
5375 inst.error = _("alignment must be constant");
5376 return PARSE_OPERAND_FAIL;
5377 }
5378
5379 inst.operands[i].imm = exp.X_add_number << 8;
5380 inst.operands[i].immisalign = 1;
5381 /* Alignments are not pre-indexes. */
5382 inst.operands[i].preind = 0;
5383
5384 *str = p;
5385 return PARSE_OPERAND_SUCCESS;
5386 }
5387
5388 /* Parse all forms of an ARM address expression. Information is written
5389 to inst.operands[i] and/or inst.reloc.
5390
5391 Preindexed addressing (.preind=1):
5392
5393 [Rn, #offset] .reg=Rn .reloc.exp=offset
5394 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5395 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5396 .shift_kind=shift .reloc.exp=shift_imm
5397
5398 These three may have a trailing ! which causes .writeback to be set also.
5399
5400 Postindexed addressing (.postind=1, .writeback=1):
5401
5402 [Rn], #offset .reg=Rn .reloc.exp=offset
5403 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5404 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5405 .shift_kind=shift .reloc.exp=shift_imm
5406
5407 Unindexed addressing (.preind=0, .postind=0):
5408
5409 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5410
5411 Other:
5412
5413 [Rn]{!} shorthand for [Rn,#0]{!}
5414 =immediate .isreg=0 .reloc.exp=immediate
5415 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5416
5417 It is the caller's responsibility to check for addressing modes not
5418 supported by the instruction, and to set inst.reloc.type. */
5419
5420 static parse_operand_result
5421 parse_address_main (char **str, int i, int group_relocations,
5422 group_reloc_type group_type)
5423 {
5424 char *p = *str;
5425 int reg;
5426
5427 if (skip_past_char (&p, '[') == FAIL)
5428 {
5429 if (skip_past_char (&p, '=') == FAIL)
5430 {
5431 /* Bare address - translate to PC-relative offset. */
5432 inst.reloc.pc_rel = 1;
5433 inst.operands[i].reg = REG_PC;
5434 inst.operands[i].isreg = 1;
5435 inst.operands[i].preind = 1;
5436
5437 if (my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX_BIG))
5438 return PARSE_OPERAND_FAIL;
5439 }
5440 else if (parse_big_immediate (&p, i, &inst.reloc.exp,
5441 /*allow_symbol_p=*/TRUE))
5442 return PARSE_OPERAND_FAIL;
5443
5444 *str = p;
5445 return PARSE_OPERAND_SUCCESS;
5446 }
5447
5448 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5449 skip_whitespace (p);
5450
5451 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5452 {
5453 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5454 return PARSE_OPERAND_FAIL;
5455 }
5456 inst.operands[i].reg = reg;
5457 inst.operands[i].isreg = 1;
5458
5459 if (skip_past_comma (&p) == SUCCESS)
5460 {
5461 inst.operands[i].preind = 1;
5462
5463 if (*p == '+') p++;
5464 else if (*p == '-') p++, inst.operands[i].negative = 1;
5465
5466 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5467 {
5468 inst.operands[i].imm = reg;
5469 inst.operands[i].immisreg = 1;
5470
5471 if (skip_past_comma (&p) == SUCCESS)
5472 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5473 return PARSE_OPERAND_FAIL;
5474 }
5475 else if (skip_past_char (&p, ':') == SUCCESS)
5476 {
5477 /* FIXME: '@' should be used here, but it's filtered out by generic
5478 code before we get to see it here. This may be subject to
5479 change. */
5480 parse_operand_result result = parse_neon_alignment (&p, i);
5481
5482 if (result != PARSE_OPERAND_SUCCESS)
5483 return result;
5484 }
5485 else
5486 {
5487 if (inst.operands[i].negative)
5488 {
5489 inst.operands[i].negative = 0;
5490 p--;
5491 }
5492
5493 if (group_relocations
5494 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5495 {
5496 struct group_reloc_table_entry *entry;
5497
5498 /* Skip over the #: or : sequence. */
5499 if (*p == '#')
5500 p += 2;
5501 else
5502 p++;
5503
5504 /* Try to parse a group relocation. Anything else is an
5505 error. */
5506 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5507 {
5508 inst.error = _("unknown group relocation");
5509 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5510 }
5511
5512 /* We now have the group relocation table entry corresponding to
5513 the name in the assembler source. Next, we parse the
5514 expression. */
5515 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5516 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5517
5518 /* Record the relocation type. */
5519 switch (group_type)
5520 {
5521 case GROUP_LDR:
5522 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5523 break;
5524
5525 case GROUP_LDRS:
5526 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5527 break;
5528
5529 case GROUP_LDC:
5530 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5531 break;
5532
5533 default:
5534 gas_assert (0);
5535 }
5536
5537 if (inst.reloc.type == 0)
5538 {
5539 inst.error = _("this group relocation is not allowed on this instruction");
5540 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5541 }
5542 }
5543 else
5544 {
5545 char *q = p;
5546 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5547 return PARSE_OPERAND_FAIL;
5548 /* If the offset is 0, find out if it's a +0 or -0. */
5549 if (inst.reloc.exp.X_op == O_constant
5550 && inst.reloc.exp.X_add_number == 0)
5551 {
5552 skip_whitespace (q);
5553 if (*q == '#')
5554 {
5555 q++;
5556 skip_whitespace (q);
5557 }
5558 if (*q == '-')
5559 inst.operands[i].negative = 1;
5560 }
5561 }
5562 }
5563 }
5564 else if (skip_past_char (&p, ':') == SUCCESS)
5565 {
5566 /* FIXME: '@' should be used here, but it's filtered out by generic code
5567 before we get to see it here. This may be subject to change. */
5568 parse_operand_result result = parse_neon_alignment (&p, i);
5569
5570 if (result != PARSE_OPERAND_SUCCESS)
5571 return result;
5572 }
5573
5574 if (skip_past_char (&p, ']') == FAIL)
5575 {
5576 inst.error = _("']' expected");
5577 return PARSE_OPERAND_FAIL;
5578 }
5579
5580 if (skip_past_char (&p, '!') == SUCCESS)
5581 inst.operands[i].writeback = 1;
5582
5583 else if (skip_past_comma (&p) == SUCCESS)
5584 {
5585 if (skip_past_char (&p, '{') == SUCCESS)
5586 {
5587 /* [Rn], {expr} - unindexed, with option */
5588 if (parse_immediate (&p, &inst.operands[i].imm,
5589 0, 255, TRUE) == FAIL)
5590 return PARSE_OPERAND_FAIL;
5591
5592 if (skip_past_char (&p, '}') == FAIL)
5593 {
5594 inst.error = _("'}' expected at end of 'option' field");
5595 return PARSE_OPERAND_FAIL;
5596 }
5597 if (inst.operands[i].preind)
5598 {
5599 inst.error = _("cannot combine index with option");
5600 return PARSE_OPERAND_FAIL;
5601 }
5602 *str = p;
5603 return PARSE_OPERAND_SUCCESS;
5604 }
5605 else
5606 {
5607 inst.operands[i].postind = 1;
5608 inst.operands[i].writeback = 1;
5609
5610 if (inst.operands[i].preind)
5611 {
5612 inst.error = _("cannot combine pre- and post-indexing");
5613 return PARSE_OPERAND_FAIL;
5614 }
5615
5616 if (*p == '+') p++;
5617 else if (*p == '-') p++, inst.operands[i].negative = 1;
5618
5619 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5620 {
5621 /* We might be using the immediate for alignment already. If we
5622 are, OR the register number into the low-order bits. */
5623 if (inst.operands[i].immisalign)
5624 inst.operands[i].imm |= reg;
5625 else
5626 inst.operands[i].imm = reg;
5627 inst.operands[i].immisreg = 1;
5628
5629 if (skip_past_comma (&p) == SUCCESS)
5630 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5631 return PARSE_OPERAND_FAIL;
5632 }
5633 else
5634 {
5635 char *q = p;
5636 if (inst.operands[i].negative)
5637 {
5638 inst.operands[i].negative = 0;
5639 p--;
5640 }
5641 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5642 return PARSE_OPERAND_FAIL;
5643 /* If the offset is 0, find out if it's a +0 or -0. */
5644 if (inst.reloc.exp.X_op == O_constant
5645 && inst.reloc.exp.X_add_number == 0)
5646 {
5647 skip_whitespace (q);
5648 if (*q == '#')
5649 {
5650 q++;
5651 skip_whitespace (q);
5652 }
5653 if (*q == '-')
5654 inst.operands[i].negative = 1;
5655 }
5656 }
5657 }
5658 }
5659
5660 /* If at this point neither .preind nor .postind is set, we have a
5661 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5662 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5663 {
5664 inst.operands[i].preind = 1;
5665 inst.reloc.exp.X_op = O_constant;
5666 inst.reloc.exp.X_add_number = 0;
5667 }
5668 *str = p;
5669 return PARSE_OPERAND_SUCCESS;
5670 }
5671
5672 static int
5673 parse_address (char **str, int i)
5674 {
5675 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5676 ? SUCCESS : FAIL;
5677 }
5678
5679 static parse_operand_result
5680 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5681 {
5682 return parse_address_main (str, i, 1, type);
5683 }
5684
5685 /* Parse an operand for a MOVW or MOVT instruction. */
5686 static int
5687 parse_half (char **str)
5688 {
5689 char * p;
5690
5691 p = *str;
5692 skip_past_char (&p, '#');
5693 if (strncasecmp (p, ":lower16:", 9) == 0)
5694 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5695 else if (strncasecmp (p, ":upper16:", 9) == 0)
5696 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5697
5698 if (inst.reloc.type != BFD_RELOC_UNUSED)
5699 {
5700 p += 9;
5701 skip_whitespace (p);
5702 }
5703
5704 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5705 return FAIL;
5706
5707 if (inst.reloc.type == BFD_RELOC_UNUSED)
5708 {
5709 if (inst.reloc.exp.X_op != O_constant)
5710 {
5711 inst.error = _("constant expression expected");
5712 return FAIL;
5713 }
5714 if (inst.reloc.exp.X_add_number < 0
5715 || inst.reloc.exp.X_add_number > 0xffff)
5716 {
5717 inst.error = _("immediate value out of range");
5718 return FAIL;
5719 }
5720 }
5721 *str = p;
5722 return SUCCESS;
5723 }
5724
5725 /* Miscellaneous. */
5726
5727 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5728 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5729 static int
5730 parse_psr (char **str, bfd_boolean lhs)
5731 {
5732 char *p;
5733 unsigned long psr_field;
5734 const struct asm_psr *psr;
5735 char *start;
5736 bfd_boolean is_apsr = FALSE;
5737 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5738
5739 /* PR gas/12698: If the user has specified -march=all then m_profile will
5740 be TRUE, but we want to ignore it in this case as we are building for any
5741 CPU type, including non-m variants. */
5742 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
5743 m_profile = FALSE;
5744
5745 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5746 feature for ease of use and backwards compatibility. */
5747 p = *str;
5748 if (strncasecmp (p, "SPSR", 4) == 0)
5749 {
5750 if (m_profile)
5751 goto unsupported_psr;
5752
5753 psr_field = SPSR_BIT;
5754 }
5755 else if (strncasecmp (p, "CPSR", 4) == 0)
5756 {
5757 if (m_profile)
5758 goto unsupported_psr;
5759
5760 psr_field = 0;
5761 }
5762 else if (strncasecmp (p, "APSR", 4) == 0)
5763 {
5764 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5765 and ARMv7-R architecture CPUs. */
5766 is_apsr = TRUE;
5767 psr_field = 0;
5768 }
5769 else if (m_profile)
5770 {
5771 start = p;
5772 do
5773 p++;
5774 while (ISALNUM (*p) || *p == '_');
5775
5776 if (strncasecmp (start, "iapsr", 5) == 0
5777 || strncasecmp (start, "eapsr", 5) == 0
5778 || strncasecmp (start, "xpsr", 4) == 0
5779 || strncasecmp (start, "psr", 3) == 0)
5780 p = start + strcspn (start, "rR") + 1;
5781
5782 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5783 p - start);
5784
5785 if (!psr)
5786 return FAIL;
5787
5788 /* If APSR is being written, a bitfield may be specified. Note that
5789 APSR itself is handled above. */
5790 if (psr->field <= 3)
5791 {
5792 psr_field = psr->field;
5793 is_apsr = TRUE;
5794 goto check_suffix;
5795 }
5796
5797 *str = p;
5798 /* M-profile MSR instructions have the mask field set to "10", except
5799 *PSR variants which modify APSR, which may use a different mask (and
5800 have been handled already). Do that by setting the PSR_f field
5801 here. */
5802 return psr->field | (lhs ? PSR_f : 0);
5803 }
5804 else
5805 goto unsupported_psr;
5806
5807 p += 4;
5808 check_suffix:
5809 if (*p == '_')
5810 {
5811 /* A suffix follows. */
5812 p++;
5813 start = p;
5814
5815 do
5816 p++;
5817 while (ISALNUM (*p) || *p == '_');
5818
5819 if (is_apsr)
5820 {
5821 /* APSR uses a notation for bits, rather than fields. */
5822 unsigned int nzcvq_bits = 0;
5823 unsigned int g_bit = 0;
5824 char *bit;
5825
5826 for (bit = start; bit != p; bit++)
5827 {
5828 switch (TOLOWER (*bit))
5829 {
5830 case 'n':
5831 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5832 break;
5833
5834 case 'z':
5835 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5836 break;
5837
5838 case 'c':
5839 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5840 break;
5841
5842 case 'v':
5843 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5844 break;
5845
5846 case 'q':
5847 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5848 break;
5849
5850 case 'g':
5851 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5852 break;
5853
5854 default:
5855 inst.error = _("unexpected bit specified after APSR");
5856 return FAIL;
5857 }
5858 }
5859
5860 if (nzcvq_bits == 0x1f)
5861 psr_field |= PSR_f;
5862
5863 if (g_bit == 0x1)
5864 {
5865 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5866 {
5867 inst.error = _("selected processor does not "
5868 "support DSP extension");
5869 return FAIL;
5870 }
5871
5872 psr_field |= PSR_s;
5873 }
5874
5875 if ((nzcvq_bits & 0x20) != 0
5876 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5877 || (g_bit & 0x2) != 0)
5878 {
5879 inst.error = _("bad bitmask specified after APSR");
5880 return FAIL;
5881 }
5882 }
5883 else
5884 {
5885 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5886 p - start);
5887 if (!psr)
5888 goto error;
5889
5890 psr_field |= psr->field;
5891 }
5892 }
5893 else
5894 {
5895 if (ISALNUM (*p))
5896 goto error; /* Garbage after "[CS]PSR". */
5897
5898 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5899 is deprecated, but allow it anyway. */
5900 if (is_apsr && lhs)
5901 {
5902 psr_field |= PSR_f;
5903 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5904 "deprecated"));
5905 }
5906 else if (!m_profile)
5907 /* These bits are never right for M-profile devices: don't set them
5908 (only code paths which read/write APSR reach here). */
5909 psr_field |= (PSR_c | PSR_f);
5910 }
5911 *str = p;
5912 return psr_field;
5913
5914 unsupported_psr:
5915 inst.error = _("selected processor does not support requested special "
5916 "purpose register");
5917 return FAIL;
5918
5919 error:
5920 inst.error = _("flag for {c}psr instruction expected");
5921 return FAIL;
5922 }
5923
5924 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5925 value suitable for splatting into the AIF field of the instruction. */
5926
5927 static int
5928 parse_cps_flags (char **str)
5929 {
5930 int val = 0;
5931 int saw_a_flag = 0;
5932 char *s = *str;
5933
5934 for (;;)
5935 switch (*s++)
5936 {
5937 case '\0': case ',':
5938 goto done;
5939
5940 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5941 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5942 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5943
5944 default:
5945 inst.error = _("unrecognized CPS flag");
5946 return FAIL;
5947 }
5948
5949 done:
5950 if (saw_a_flag == 0)
5951 {
5952 inst.error = _("missing CPS flags");
5953 return FAIL;
5954 }
5955
5956 *str = s - 1;
5957 return val;
5958 }
5959
5960 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5961 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5962
5963 static int
5964 parse_endian_specifier (char **str)
5965 {
5966 int little_endian;
5967 char *s = *str;
5968
5969 if (strncasecmp (s, "BE", 2))
5970 little_endian = 0;
5971 else if (strncasecmp (s, "LE", 2))
5972 little_endian = 1;
5973 else
5974 {
5975 inst.error = _("valid endian specifiers are be or le");
5976 return FAIL;
5977 }
5978
5979 if (ISALNUM (s[2]) || s[2] == '_')
5980 {
5981 inst.error = _("valid endian specifiers are be or le");
5982 return FAIL;
5983 }
5984
5985 *str = s + 2;
5986 return little_endian;
5987 }
5988
5989 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5990 value suitable for poking into the rotate field of an sxt or sxta
5991 instruction, or FAIL on error. */
5992
5993 static int
5994 parse_ror (char **str)
5995 {
5996 int rot;
5997 char *s = *str;
5998
5999 if (strncasecmp (s, "ROR", 3) == 0)
6000 s += 3;
6001 else
6002 {
6003 inst.error = _("missing rotation field after comma");
6004 return FAIL;
6005 }
6006
6007 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6008 return FAIL;
6009
6010 switch (rot)
6011 {
6012 case 0: *str = s; return 0x0;
6013 case 8: *str = s; return 0x1;
6014 case 16: *str = s; return 0x2;
6015 case 24: *str = s; return 0x3;
6016
6017 default:
6018 inst.error = _("rotation can only be 0, 8, 16, or 24");
6019 return FAIL;
6020 }
6021 }
6022
6023 /* Parse a conditional code (from conds[] below). The value returned is in the
6024 range 0 .. 14, or FAIL. */
6025 static int
6026 parse_cond (char **str)
6027 {
6028 char *q;
6029 const struct asm_cond *c;
6030 int n;
6031 /* Condition codes are always 2 characters, so matching up to
6032 3 characters is sufficient. */
6033 char cond[3];
6034
6035 q = *str;
6036 n = 0;
6037 while (ISALPHA (*q) && n < 3)
6038 {
6039 cond[n] = TOLOWER (*q);
6040 q++;
6041 n++;
6042 }
6043
6044 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6045 if (!c)
6046 {
6047 inst.error = _("condition required");
6048 return FAIL;
6049 }
6050
6051 *str = q;
6052 return c->value;
6053 }
6054
6055 /* If the given feature available in the selected CPU, mark it as used.
6056 Returns TRUE iff feature is available. */
6057 static bfd_boolean
6058 mark_feature_used (const arm_feature_set *feature)
6059 {
6060 /* Ensure the option is valid on the current architecture. */
6061 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6062 return FALSE;
6063
6064 /* Add the appropriate architecture feature for the barrier option used.
6065 */
6066 if (thumb_mode)
6067 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6068 else
6069 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6070
6071 return TRUE;
6072 }
6073
6074 /* Parse an option for a barrier instruction. Returns the encoding for the
6075 option, or FAIL. */
6076 static int
6077 parse_barrier (char **str)
6078 {
6079 char *p, *q;
6080 const struct asm_barrier_opt *o;
6081
6082 p = q = *str;
6083 while (ISALPHA (*q))
6084 q++;
6085
6086 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6087 q - p);
6088 if (!o)
6089 return FAIL;
6090
6091 if (!mark_feature_used (&o->arch))
6092 return FAIL;
6093
6094 *str = q;
6095 return o->value;
6096 }
6097
6098 /* Parse the operands of a table branch instruction. Similar to a memory
6099 operand. */
6100 static int
6101 parse_tb (char **str)
6102 {
6103 char * p = *str;
6104 int reg;
6105
6106 if (skip_past_char (&p, '[') == FAIL)
6107 {
6108 inst.error = _("'[' expected");
6109 return FAIL;
6110 }
6111
6112 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6113 {
6114 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6115 return FAIL;
6116 }
6117 inst.operands[0].reg = reg;
6118
6119 if (skip_past_comma (&p) == FAIL)
6120 {
6121 inst.error = _("',' expected");
6122 return FAIL;
6123 }
6124
6125 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6126 {
6127 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6128 return FAIL;
6129 }
6130 inst.operands[0].imm = reg;
6131
6132 if (skip_past_comma (&p) == SUCCESS)
6133 {
6134 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6135 return FAIL;
6136 if (inst.reloc.exp.X_add_number != 1)
6137 {
6138 inst.error = _("invalid shift");
6139 return FAIL;
6140 }
6141 inst.operands[0].shifted = 1;
6142 }
6143
6144 if (skip_past_char (&p, ']') == FAIL)
6145 {
6146 inst.error = _("']' expected");
6147 return FAIL;
6148 }
6149 *str = p;
6150 return SUCCESS;
6151 }
6152
6153 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6154 information on the types the operands can take and how they are encoded.
6155 Up to four operands may be read; this function handles setting the
6156 ".present" field for each read operand itself.
6157 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6158 else returns FAIL. */
6159
6160 static int
6161 parse_neon_mov (char **str, int *which_operand)
6162 {
6163 int i = *which_operand, val;
6164 enum arm_reg_type rtype;
6165 char *ptr = *str;
6166 struct neon_type_el optype;
6167
6168 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6169 {
6170 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6171 inst.operands[i].reg = val;
6172 inst.operands[i].isscalar = 1;
6173 inst.operands[i].vectype = optype;
6174 inst.operands[i++].present = 1;
6175
6176 if (skip_past_comma (&ptr) == FAIL)
6177 goto wanted_comma;
6178
6179 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6180 goto wanted_arm;
6181
6182 inst.operands[i].reg = val;
6183 inst.operands[i].isreg = 1;
6184 inst.operands[i].present = 1;
6185 }
6186 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6187 != FAIL)
6188 {
6189 /* Cases 0, 1, 2, 3, 5 (D only). */
6190 if (skip_past_comma (&ptr) == FAIL)
6191 goto wanted_comma;
6192
6193 inst.operands[i].reg = val;
6194 inst.operands[i].isreg = 1;
6195 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6196 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6197 inst.operands[i].isvec = 1;
6198 inst.operands[i].vectype = optype;
6199 inst.operands[i++].present = 1;
6200
6201 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6202 {
6203 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6204 Case 13: VMOV <Sd>, <Rm> */
6205 inst.operands[i].reg = val;
6206 inst.operands[i].isreg = 1;
6207 inst.operands[i].present = 1;
6208
6209 if (rtype == REG_TYPE_NQ)
6210 {
6211 first_error (_("can't use Neon quad register here"));
6212 return FAIL;
6213 }
6214 else if (rtype != REG_TYPE_VFS)
6215 {
6216 i++;
6217 if (skip_past_comma (&ptr) == FAIL)
6218 goto wanted_comma;
6219 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6220 goto wanted_arm;
6221 inst.operands[i].reg = val;
6222 inst.operands[i].isreg = 1;
6223 inst.operands[i].present = 1;
6224 }
6225 }
6226 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6227 &optype)) != FAIL)
6228 {
6229 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6230 Case 1: VMOV<c><q> <Dd>, <Dm>
6231 Case 8: VMOV.F32 <Sd>, <Sm>
6232 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6233
6234 inst.operands[i].reg = val;
6235 inst.operands[i].isreg = 1;
6236 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6237 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6238 inst.operands[i].isvec = 1;
6239 inst.operands[i].vectype = optype;
6240 inst.operands[i].present = 1;
6241
6242 if (skip_past_comma (&ptr) == SUCCESS)
6243 {
6244 /* Case 15. */
6245 i++;
6246
6247 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6248 goto wanted_arm;
6249
6250 inst.operands[i].reg = val;
6251 inst.operands[i].isreg = 1;
6252 inst.operands[i++].present = 1;
6253
6254 if (skip_past_comma (&ptr) == FAIL)
6255 goto wanted_comma;
6256
6257 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6258 goto wanted_arm;
6259
6260 inst.operands[i].reg = val;
6261 inst.operands[i].isreg = 1;
6262 inst.operands[i].present = 1;
6263 }
6264 }
6265 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6266 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6267 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6268 Case 10: VMOV.F32 <Sd>, #<imm>
6269 Case 11: VMOV.F64 <Dd>, #<imm> */
6270 inst.operands[i].immisfloat = 1;
6271 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6272 == SUCCESS)
6273 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6274 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6275 ;
6276 else
6277 {
6278 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6279 return FAIL;
6280 }
6281 }
6282 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6283 {
6284 /* Cases 6, 7. */
6285 inst.operands[i].reg = val;
6286 inst.operands[i].isreg = 1;
6287 inst.operands[i++].present = 1;
6288
6289 if (skip_past_comma (&ptr) == FAIL)
6290 goto wanted_comma;
6291
6292 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6293 {
6294 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6295 inst.operands[i].reg = val;
6296 inst.operands[i].isscalar = 1;
6297 inst.operands[i].present = 1;
6298 inst.operands[i].vectype = optype;
6299 }
6300 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6301 {
6302 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6303 inst.operands[i].reg = val;
6304 inst.operands[i].isreg = 1;
6305 inst.operands[i++].present = 1;
6306
6307 if (skip_past_comma (&ptr) == FAIL)
6308 goto wanted_comma;
6309
6310 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6311 == FAIL)
6312 {
6313 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6314 return FAIL;
6315 }
6316
6317 inst.operands[i].reg = val;
6318 inst.operands[i].isreg = 1;
6319 inst.operands[i].isvec = 1;
6320 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6321 inst.operands[i].vectype = optype;
6322 inst.operands[i].present = 1;
6323
6324 if (rtype == REG_TYPE_VFS)
6325 {
6326 /* Case 14. */
6327 i++;
6328 if (skip_past_comma (&ptr) == FAIL)
6329 goto wanted_comma;
6330 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6331 &optype)) == FAIL)
6332 {
6333 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6334 return FAIL;
6335 }
6336 inst.operands[i].reg = val;
6337 inst.operands[i].isreg = 1;
6338 inst.operands[i].isvec = 1;
6339 inst.operands[i].issingle = 1;
6340 inst.operands[i].vectype = optype;
6341 inst.operands[i].present = 1;
6342 }
6343 }
6344 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6345 != FAIL)
6346 {
6347 /* Case 13. */
6348 inst.operands[i].reg = val;
6349 inst.operands[i].isreg = 1;
6350 inst.operands[i].isvec = 1;
6351 inst.operands[i].issingle = 1;
6352 inst.operands[i].vectype = optype;
6353 inst.operands[i].present = 1;
6354 }
6355 }
6356 else
6357 {
6358 first_error (_("parse error"));
6359 return FAIL;
6360 }
6361
6362 /* Successfully parsed the operands. Update args. */
6363 *which_operand = i;
6364 *str = ptr;
6365 return SUCCESS;
6366
6367 wanted_comma:
6368 first_error (_("expected comma"));
6369 return FAIL;
6370
6371 wanted_arm:
6372 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6373 return FAIL;
6374 }
6375
6376 /* Use this macro when the operand constraints are different
6377 for ARM and THUMB (e.g. ldrd). */
6378 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6379 ((arm_operand) | ((thumb_operand) << 16))
6380
6381 /* Matcher codes for parse_operands. */
6382 enum operand_parse_code
6383 {
6384 OP_stop, /* end of line */
6385
6386 OP_RR, /* ARM register */
6387 OP_RRnpc, /* ARM register, not r15 */
6388 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6389 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6390 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6391 optional trailing ! */
6392 OP_RRw, /* ARM register, not r15, optional trailing ! */
6393 OP_RCP, /* Coprocessor number */
6394 OP_RCN, /* Coprocessor register */
6395 OP_RF, /* FPA register */
6396 OP_RVS, /* VFP single precision register */
6397 OP_RVD, /* VFP double precision register (0..15) */
6398 OP_RND, /* Neon double precision register (0..31) */
6399 OP_RNQ, /* Neon quad precision register */
6400 OP_RVSD, /* VFP single or double precision register */
6401 OP_RNDQ, /* Neon double or quad precision register */
6402 OP_RNSDQ, /* Neon single, double or quad precision register */
6403 OP_RNSC, /* Neon scalar D[X] */
6404 OP_RVC, /* VFP control register */
6405 OP_RMF, /* Maverick F register */
6406 OP_RMD, /* Maverick D register */
6407 OP_RMFX, /* Maverick FX register */
6408 OP_RMDX, /* Maverick DX register */
6409 OP_RMAX, /* Maverick AX register */
6410 OP_RMDS, /* Maverick DSPSC register */
6411 OP_RIWR, /* iWMMXt wR register */
6412 OP_RIWC, /* iWMMXt wC register */
6413 OP_RIWG, /* iWMMXt wCG register */
6414 OP_RXA, /* XScale accumulator register */
6415
6416 OP_REGLST, /* ARM register list */
6417 OP_VRSLST, /* VFP single-precision register list */
6418 OP_VRDLST, /* VFP double-precision register list */
6419 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6420 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6421 OP_NSTRLST, /* Neon element/structure list */
6422
6423 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6424 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6425 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6426 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6427 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6428 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6429 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6430 OP_VMOV, /* Neon VMOV operands. */
6431 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6432 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6433 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6434
6435 OP_I0, /* immediate zero */
6436 OP_I7, /* immediate value 0 .. 7 */
6437 OP_I15, /* 0 .. 15 */
6438 OP_I16, /* 1 .. 16 */
6439 OP_I16z, /* 0 .. 16 */
6440 OP_I31, /* 0 .. 31 */
6441 OP_I31w, /* 0 .. 31, optional trailing ! */
6442 OP_I32, /* 1 .. 32 */
6443 OP_I32z, /* 0 .. 32 */
6444 OP_I63, /* 0 .. 63 */
6445 OP_I63s, /* -64 .. 63 */
6446 OP_I64, /* 1 .. 64 */
6447 OP_I64z, /* 0 .. 64 */
6448 OP_I255, /* 0 .. 255 */
6449
6450 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6451 OP_I7b, /* 0 .. 7 */
6452 OP_I15b, /* 0 .. 15 */
6453 OP_I31b, /* 0 .. 31 */
6454
6455 OP_SH, /* shifter operand */
6456 OP_SHG, /* shifter operand with possible group relocation */
6457 OP_ADDR, /* Memory address expression (any mode) */
6458 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6459 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6460 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6461 OP_EXP, /* arbitrary expression */
6462 OP_EXPi, /* same, with optional immediate prefix */
6463 OP_EXPr, /* same, with optional relocation suffix */
6464 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6465
6466 OP_CPSF, /* CPS flags */
6467 OP_ENDI, /* Endianness specifier */
6468 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6469 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6470 OP_COND, /* conditional code */
6471 OP_TB, /* Table branch. */
6472
6473 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6474
6475 OP_RRnpc_I0, /* ARM register or literal 0 */
6476 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6477 OP_RR_EXi, /* ARM register or expression with imm prefix */
6478 OP_RF_IF, /* FPA register or immediate */
6479 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6480 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6481
6482 /* Optional operands. */
6483 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6484 OP_oI31b, /* 0 .. 31 */
6485 OP_oI32b, /* 1 .. 32 */
6486 OP_oI32z, /* 0 .. 32 */
6487 OP_oIffffb, /* 0 .. 65535 */
6488 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6489
6490 OP_oRR, /* ARM register */
6491 OP_oRRnpc, /* ARM register, not the PC */
6492 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6493 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6494 OP_oRND, /* Optional Neon double precision register */
6495 OP_oRNQ, /* Optional Neon quad precision register */
6496 OP_oRNDQ, /* Optional Neon double or quad precision register */
6497 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6498 OP_oSHll, /* LSL immediate */
6499 OP_oSHar, /* ASR immediate */
6500 OP_oSHllar, /* LSL or ASR immediate */
6501 OP_oROR, /* ROR 0/8/16/24 */
6502 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6503
6504 /* Some pre-defined mixed (ARM/THUMB) operands. */
6505 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6506 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6507 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6508
6509 OP_FIRST_OPTIONAL = OP_oI7b
6510 };
6511
6512 /* Generic instruction operand parser. This does no encoding and no
6513 semantic validation; it merely squirrels values away in the inst
6514 structure. Returns SUCCESS or FAIL depending on whether the
6515 specified grammar matched. */
6516 static int
6517 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6518 {
6519 unsigned const int *upat = pattern;
6520 char *backtrack_pos = 0;
6521 const char *backtrack_error = 0;
6522 int i, val = 0, backtrack_index = 0;
6523 enum arm_reg_type rtype;
6524 parse_operand_result result;
6525 unsigned int op_parse_code;
6526
6527 #define po_char_or_fail(chr) \
6528 do \
6529 { \
6530 if (skip_past_char (&str, chr) == FAIL) \
6531 goto bad_args; \
6532 } \
6533 while (0)
6534
6535 #define po_reg_or_fail(regtype) \
6536 do \
6537 { \
6538 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6539 & inst.operands[i].vectype); \
6540 if (val == FAIL) \
6541 { \
6542 first_error (_(reg_expected_msgs[regtype])); \
6543 goto failure; \
6544 } \
6545 inst.operands[i].reg = val; \
6546 inst.operands[i].isreg = 1; \
6547 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6548 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6549 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6550 || rtype == REG_TYPE_VFD \
6551 || rtype == REG_TYPE_NQ); \
6552 } \
6553 while (0)
6554
6555 #define po_reg_or_goto(regtype, label) \
6556 do \
6557 { \
6558 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6559 & inst.operands[i].vectype); \
6560 if (val == FAIL) \
6561 goto label; \
6562 \
6563 inst.operands[i].reg = val; \
6564 inst.operands[i].isreg = 1; \
6565 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6566 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6567 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6568 || rtype == REG_TYPE_VFD \
6569 || rtype == REG_TYPE_NQ); \
6570 } \
6571 while (0)
6572
6573 #define po_imm_or_fail(min, max, popt) \
6574 do \
6575 { \
6576 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6577 goto failure; \
6578 inst.operands[i].imm = val; \
6579 } \
6580 while (0)
6581
6582 #define po_scalar_or_goto(elsz, label) \
6583 do \
6584 { \
6585 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6586 if (val == FAIL) \
6587 goto label; \
6588 inst.operands[i].reg = val; \
6589 inst.operands[i].isscalar = 1; \
6590 } \
6591 while (0)
6592
6593 #define po_misc_or_fail(expr) \
6594 do \
6595 { \
6596 if (expr) \
6597 goto failure; \
6598 } \
6599 while (0)
6600
6601 #define po_misc_or_fail_no_backtrack(expr) \
6602 do \
6603 { \
6604 result = expr; \
6605 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6606 backtrack_pos = 0; \
6607 if (result != PARSE_OPERAND_SUCCESS) \
6608 goto failure; \
6609 } \
6610 while (0)
6611
6612 #define po_barrier_or_imm(str) \
6613 do \
6614 { \
6615 val = parse_barrier (&str); \
6616 if (val == FAIL && ! ISALPHA (*str)) \
6617 goto immediate; \
6618 if (val == FAIL \
6619 /* ISB can only take SY as an option. */ \
6620 || ((inst.instruction & 0xf0) == 0x60 \
6621 && val != 0xf)) \
6622 { \
6623 inst.error = _("invalid barrier type"); \
6624 backtrack_pos = 0; \
6625 goto failure; \
6626 } \
6627 } \
6628 while (0)
6629
6630 skip_whitespace (str);
6631
6632 for (i = 0; upat[i] != OP_stop; i++)
6633 {
6634 op_parse_code = upat[i];
6635 if (op_parse_code >= 1<<16)
6636 op_parse_code = thumb ? (op_parse_code >> 16)
6637 : (op_parse_code & ((1<<16)-1));
6638
6639 if (op_parse_code >= OP_FIRST_OPTIONAL)
6640 {
6641 /* Remember where we are in case we need to backtrack. */
6642 gas_assert (!backtrack_pos);
6643 backtrack_pos = str;
6644 backtrack_error = inst.error;
6645 backtrack_index = i;
6646 }
6647
6648 if (i > 0 && (i > 1 || inst.operands[0].present))
6649 po_char_or_fail (',');
6650
6651 switch (op_parse_code)
6652 {
6653 /* Registers */
6654 case OP_oRRnpc:
6655 case OP_oRRnpcsp:
6656 case OP_RRnpc:
6657 case OP_RRnpcsp:
6658 case OP_oRR:
6659 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6660 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6661 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6662 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6663 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6664 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6665 case OP_oRND:
6666 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6667 case OP_RVC:
6668 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6669 break;
6670 /* Also accept generic coprocessor regs for unknown registers. */
6671 coproc_reg:
6672 po_reg_or_fail (REG_TYPE_CN);
6673 break;
6674 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6675 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6676 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6677 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6678 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6679 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6680 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6681 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6682 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6683 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6684 case OP_oRNQ:
6685 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6686 case OP_oRNDQ:
6687 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6688 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6689 case OP_oRNSDQ:
6690 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6691
6692 /* Neon scalar. Using an element size of 8 means that some invalid
6693 scalars are accepted here, so deal with those in later code. */
6694 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6695
6696 case OP_RNDQ_I0:
6697 {
6698 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6699 break;
6700 try_imm0:
6701 po_imm_or_fail (0, 0, TRUE);
6702 }
6703 break;
6704
6705 case OP_RVSD_I0:
6706 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6707 break;
6708
6709 case OP_RSVD_FI0:
6710 {
6711 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6712 break;
6713 try_ifimm0:
6714 if (parse_ifimm_zero (&str))
6715 inst.operands[i].imm = 0;
6716 else
6717 {
6718 inst.error
6719 = _("only floating point zero is allowed as immediate value");
6720 goto failure;
6721 }
6722 }
6723 break;
6724
6725 case OP_RR_RNSC:
6726 {
6727 po_scalar_or_goto (8, try_rr);
6728 break;
6729 try_rr:
6730 po_reg_or_fail (REG_TYPE_RN);
6731 }
6732 break;
6733
6734 case OP_RNSDQ_RNSC:
6735 {
6736 po_scalar_or_goto (8, try_nsdq);
6737 break;
6738 try_nsdq:
6739 po_reg_or_fail (REG_TYPE_NSDQ);
6740 }
6741 break;
6742
6743 case OP_RNDQ_RNSC:
6744 {
6745 po_scalar_or_goto (8, try_ndq);
6746 break;
6747 try_ndq:
6748 po_reg_or_fail (REG_TYPE_NDQ);
6749 }
6750 break;
6751
6752 case OP_RND_RNSC:
6753 {
6754 po_scalar_or_goto (8, try_vfd);
6755 break;
6756 try_vfd:
6757 po_reg_or_fail (REG_TYPE_VFD);
6758 }
6759 break;
6760
6761 case OP_VMOV:
6762 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6763 not careful then bad things might happen. */
6764 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6765 break;
6766
6767 case OP_RNDQ_Ibig:
6768 {
6769 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6770 break;
6771 try_immbig:
6772 /* There's a possibility of getting a 64-bit immediate here, so
6773 we need special handling. */
6774 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6775 == FAIL)
6776 {
6777 inst.error = _("immediate value is out of range");
6778 goto failure;
6779 }
6780 }
6781 break;
6782
6783 case OP_RNDQ_I63b:
6784 {
6785 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6786 break;
6787 try_shimm:
6788 po_imm_or_fail (0, 63, TRUE);
6789 }
6790 break;
6791
6792 case OP_RRnpcb:
6793 po_char_or_fail ('[');
6794 po_reg_or_fail (REG_TYPE_RN);
6795 po_char_or_fail (']');
6796 break;
6797
6798 case OP_RRnpctw:
6799 case OP_RRw:
6800 case OP_oRRw:
6801 po_reg_or_fail (REG_TYPE_RN);
6802 if (skip_past_char (&str, '!') == SUCCESS)
6803 inst.operands[i].writeback = 1;
6804 break;
6805
6806 /* Immediates */
6807 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6808 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6809 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6810 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6811 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6812 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6813 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6814 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6815 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6816 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6817 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6818 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6819
6820 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6821 case OP_oI7b:
6822 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6823 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6824 case OP_oI31b:
6825 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6826 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6827 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6828 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6829
6830 /* Immediate variants */
6831 case OP_oI255c:
6832 po_char_or_fail ('{');
6833 po_imm_or_fail (0, 255, TRUE);
6834 po_char_or_fail ('}');
6835 break;
6836
6837 case OP_I31w:
6838 /* The expression parser chokes on a trailing !, so we have
6839 to find it first and zap it. */
6840 {
6841 char *s = str;
6842 while (*s && *s != ',')
6843 s++;
6844 if (s[-1] == '!')
6845 {
6846 s[-1] = '\0';
6847 inst.operands[i].writeback = 1;
6848 }
6849 po_imm_or_fail (0, 31, TRUE);
6850 if (str == s - 1)
6851 str = s;
6852 }
6853 break;
6854
6855 /* Expressions */
6856 case OP_EXPi: EXPi:
6857 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6858 GE_OPT_PREFIX));
6859 break;
6860
6861 case OP_EXP:
6862 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6863 GE_NO_PREFIX));
6864 break;
6865
6866 case OP_EXPr: EXPr:
6867 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6868 GE_NO_PREFIX));
6869 if (inst.reloc.exp.X_op == O_symbol)
6870 {
6871 val = parse_reloc (&str);
6872 if (val == -1)
6873 {
6874 inst.error = _("unrecognized relocation suffix");
6875 goto failure;
6876 }
6877 else if (val != BFD_RELOC_UNUSED)
6878 {
6879 inst.operands[i].imm = val;
6880 inst.operands[i].hasreloc = 1;
6881 }
6882 }
6883 break;
6884
6885 /* Operand for MOVW or MOVT. */
6886 case OP_HALF:
6887 po_misc_or_fail (parse_half (&str));
6888 break;
6889
6890 /* Register or expression. */
6891 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6892 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6893
6894 /* Register or immediate. */
6895 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6896 I0: po_imm_or_fail (0, 0, FALSE); break;
6897
6898 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6899 IF:
6900 if (!is_immediate_prefix (*str))
6901 goto bad_args;
6902 str++;
6903 val = parse_fpa_immediate (&str);
6904 if (val == FAIL)
6905 goto failure;
6906 /* FPA immediates are encoded as registers 8-15.
6907 parse_fpa_immediate has already applied the offset. */
6908 inst.operands[i].reg = val;
6909 inst.operands[i].isreg = 1;
6910 break;
6911
6912 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6913 I32z: po_imm_or_fail (0, 32, FALSE); break;
6914
6915 /* Two kinds of register. */
6916 case OP_RIWR_RIWC:
6917 {
6918 struct reg_entry *rege = arm_reg_parse_multi (&str);
6919 if (!rege
6920 || (rege->type != REG_TYPE_MMXWR
6921 && rege->type != REG_TYPE_MMXWC
6922 && rege->type != REG_TYPE_MMXWCG))
6923 {
6924 inst.error = _("iWMMXt data or control register expected");
6925 goto failure;
6926 }
6927 inst.operands[i].reg = rege->number;
6928 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6929 }
6930 break;
6931
6932 case OP_RIWC_RIWG:
6933 {
6934 struct reg_entry *rege = arm_reg_parse_multi (&str);
6935 if (!rege
6936 || (rege->type != REG_TYPE_MMXWC
6937 && rege->type != REG_TYPE_MMXWCG))
6938 {
6939 inst.error = _("iWMMXt control register expected");
6940 goto failure;
6941 }
6942 inst.operands[i].reg = rege->number;
6943 inst.operands[i].isreg = 1;
6944 }
6945 break;
6946
6947 /* Misc */
6948 case OP_CPSF: val = parse_cps_flags (&str); break;
6949 case OP_ENDI: val = parse_endian_specifier (&str); break;
6950 case OP_oROR: val = parse_ror (&str); break;
6951 case OP_COND: val = parse_cond (&str); break;
6952 case OP_oBARRIER_I15:
6953 po_barrier_or_imm (str); break;
6954 immediate:
6955 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6956 goto failure;
6957 break;
6958
6959 case OP_wPSR:
6960 case OP_rPSR:
6961 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6962 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6963 {
6964 inst.error = _("Banked registers are not available with this "
6965 "architecture.");
6966 goto failure;
6967 }
6968 break;
6969 try_psr:
6970 val = parse_psr (&str, op_parse_code == OP_wPSR);
6971 break;
6972
6973 case OP_APSR_RR:
6974 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6975 break;
6976 try_apsr:
6977 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6978 instruction). */
6979 if (strncasecmp (str, "APSR_", 5) == 0)
6980 {
6981 unsigned found = 0;
6982 str += 5;
6983 while (found < 15)
6984 switch (*str++)
6985 {
6986 case 'c': found = (found & 1) ? 16 : found | 1; break;
6987 case 'n': found = (found & 2) ? 16 : found | 2; break;
6988 case 'z': found = (found & 4) ? 16 : found | 4; break;
6989 case 'v': found = (found & 8) ? 16 : found | 8; break;
6990 default: found = 16;
6991 }
6992 if (found != 15)
6993 goto failure;
6994 inst.operands[i].isvec = 1;
6995 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6996 inst.operands[i].reg = REG_PC;
6997 }
6998 else
6999 goto failure;
7000 break;
7001
7002 case OP_TB:
7003 po_misc_or_fail (parse_tb (&str));
7004 break;
7005
7006 /* Register lists. */
7007 case OP_REGLST:
7008 val = parse_reg_list (&str);
7009 if (*str == '^')
7010 {
7011 inst.operands[i].writeback = 1;
7012 str++;
7013 }
7014 break;
7015
7016 case OP_VRSLST:
7017 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
7018 break;
7019
7020 case OP_VRDLST:
7021 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
7022 break;
7023
7024 case OP_VRSDLST:
7025 /* Allow Q registers too. */
7026 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7027 REGLIST_NEON_D);
7028 if (val == FAIL)
7029 {
7030 inst.error = NULL;
7031 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7032 REGLIST_VFP_S);
7033 inst.operands[i].issingle = 1;
7034 }
7035 break;
7036
7037 case OP_NRDLST:
7038 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7039 REGLIST_NEON_D);
7040 break;
7041
7042 case OP_NSTRLST:
7043 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7044 &inst.operands[i].vectype);
7045 break;
7046
7047 /* Addressing modes */
7048 case OP_ADDR:
7049 po_misc_or_fail (parse_address (&str, i));
7050 break;
7051
7052 case OP_ADDRGLDR:
7053 po_misc_or_fail_no_backtrack (
7054 parse_address_group_reloc (&str, i, GROUP_LDR));
7055 break;
7056
7057 case OP_ADDRGLDRS:
7058 po_misc_or_fail_no_backtrack (
7059 parse_address_group_reloc (&str, i, GROUP_LDRS));
7060 break;
7061
7062 case OP_ADDRGLDC:
7063 po_misc_or_fail_no_backtrack (
7064 parse_address_group_reloc (&str, i, GROUP_LDC));
7065 break;
7066
7067 case OP_SH:
7068 po_misc_or_fail (parse_shifter_operand (&str, i));
7069 break;
7070
7071 case OP_SHG:
7072 po_misc_or_fail_no_backtrack (
7073 parse_shifter_operand_group_reloc (&str, i));
7074 break;
7075
7076 case OP_oSHll:
7077 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7078 break;
7079
7080 case OP_oSHar:
7081 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7082 break;
7083
7084 case OP_oSHllar:
7085 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7086 break;
7087
7088 default:
7089 as_fatal (_("unhandled operand code %d"), op_parse_code);
7090 }
7091
7092 /* Various value-based sanity checks and shared operations. We
7093 do not signal immediate failures for the register constraints;
7094 this allows a syntax error to take precedence. */
7095 switch (op_parse_code)
7096 {
7097 case OP_oRRnpc:
7098 case OP_RRnpc:
7099 case OP_RRnpcb:
7100 case OP_RRw:
7101 case OP_oRRw:
7102 case OP_RRnpc_I0:
7103 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7104 inst.error = BAD_PC;
7105 break;
7106
7107 case OP_oRRnpcsp:
7108 case OP_RRnpcsp:
7109 if (inst.operands[i].isreg)
7110 {
7111 if (inst.operands[i].reg == REG_PC)
7112 inst.error = BAD_PC;
7113 else if (inst.operands[i].reg == REG_SP)
7114 inst.error = BAD_SP;
7115 }
7116 break;
7117
7118 case OP_RRnpctw:
7119 if (inst.operands[i].isreg
7120 && inst.operands[i].reg == REG_PC
7121 && (inst.operands[i].writeback || thumb))
7122 inst.error = BAD_PC;
7123 break;
7124
7125 case OP_CPSF:
7126 case OP_ENDI:
7127 case OP_oROR:
7128 case OP_wPSR:
7129 case OP_rPSR:
7130 case OP_COND:
7131 case OP_oBARRIER_I15:
7132 case OP_REGLST:
7133 case OP_VRSLST:
7134 case OP_VRDLST:
7135 case OP_VRSDLST:
7136 case OP_NRDLST:
7137 case OP_NSTRLST:
7138 if (val == FAIL)
7139 goto failure;
7140 inst.operands[i].imm = val;
7141 break;
7142
7143 default:
7144 break;
7145 }
7146
7147 /* If we get here, this operand was successfully parsed. */
7148 inst.operands[i].present = 1;
7149 continue;
7150
7151 bad_args:
7152 inst.error = BAD_ARGS;
7153
7154 failure:
7155 if (!backtrack_pos)
7156 {
7157 /* The parse routine should already have set inst.error, but set a
7158 default here just in case. */
7159 if (!inst.error)
7160 inst.error = _("syntax error");
7161 return FAIL;
7162 }
7163
7164 /* Do not backtrack over a trailing optional argument that
7165 absorbed some text. We will only fail again, with the
7166 'garbage following instruction' error message, which is
7167 probably less helpful than the current one. */
7168 if (backtrack_index == i && backtrack_pos != str
7169 && upat[i+1] == OP_stop)
7170 {
7171 if (!inst.error)
7172 inst.error = _("syntax error");
7173 return FAIL;
7174 }
7175
7176 /* Try again, skipping the optional argument at backtrack_pos. */
7177 str = backtrack_pos;
7178 inst.error = backtrack_error;
7179 inst.operands[backtrack_index].present = 0;
7180 i = backtrack_index;
7181 backtrack_pos = 0;
7182 }
7183
7184 /* Check that we have parsed all the arguments. */
7185 if (*str != '\0' && !inst.error)
7186 inst.error = _("garbage following instruction");
7187
7188 return inst.error ? FAIL : SUCCESS;
7189 }
7190
7191 #undef po_char_or_fail
7192 #undef po_reg_or_fail
7193 #undef po_reg_or_goto
7194 #undef po_imm_or_fail
7195 #undef po_scalar_or_fail
7196 #undef po_barrier_or_imm
7197
7198 /* Shorthand macro for instruction encoding functions issuing errors. */
7199 #define constraint(expr, err) \
7200 do \
7201 { \
7202 if (expr) \
7203 { \
7204 inst.error = err; \
7205 return; \
7206 } \
7207 } \
7208 while (0)
7209
7210 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7211 instructions are unpredictable if these registers are used. This
7212 is the BadReg predicate in ARM's Thumb-2 documentation. */
7213 #define reject_bad_reg(reg) \
7214 do \
7215 if (reg == REG_SP || reg == REG_PC) \
7216 { \
7217 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
7218 return; \
7219 } \
7220 while (0)
7221
7222 /* If REG is R13 (the stack pointer), warn that its use is
7223 deprecated. */
7224 #define warn_deprecated_sp(reg) \
7225 do \
7226 if (warn_on_deprecated && reg == REG_SP) \
7227 as_tsktsk (_("use of r13 is deprecated")); \
7228 while (0)
7229
7230 /* Functions for operand encoding. ARM, then Thumb. */
7231
7232 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7233
7234 /* If VAL can be encoded in the immediate field of an ARM instruction,
7235 return the encoded form. Otherwise, return FAIL. */
7236
7237 static unsigned int
7238 encode_arm_immediate (unsigned int val)
7239 {
7240 unsigned int a, i;
7241
7242 for (i = 0; i < 32; i += 2)
7243 if ((a = rotate_left (val, i)) <= 0xff)
7244 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7245
7246 return FAIL;
7247 }
7248
7249 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7250 return the encoded form. Otherwise, return FAIL. */
7251 static unsigned int
7252 encode_thumb32_immediate (unsigned int val)
7253 {
7254 unsigned int a, i;
7255
7256 if (val <= 0xff)
7257 return val;
7258
7259 for (i = 1; i <= 24; i++)
7260 {
7261 a = val >> i;
7262 if ((val & ~(0xff << i)) == 0)
7263 return ((val >> i) & 0x7f) | ((32 - i) << 7);
7264 }
7265
7266 a = val & 0xff;
7267 if (val == ((a << 16) | a))
7268 return 0x100 | a;
7269 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7270 return 0x300 | a;
7271
7272 a = val & 0xff00;
7273 if (val == ((a << 16) | a))
7274 return 0x200 | (a >> 8);
7275
7276 return FAIL;
7277 }
7278 /* Encode a VFP SP or DP register number into inst.instruction. */
7279
7280 static void
7281 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7282 {
7283 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7284 && reg > 15)
7285 {
7286 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
7287 {
7288 if (thumb_mode)
7289 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7290 fpu_vfp_ext_d32);
7291 else
7292 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7293 fpu_vfp_ext_d32);
7294 }
7295 else
7296 {
7297 first_error (_("D register out of range for selected VFP version"));
7298 return;
7299 }
7300 }
7301
7302 switch (pos)
7303 {
7304 case VFP_REG_Sd:
7305 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7306 break;
7307
7308 case VFP_REG_Sn:
7309 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7310 break;
7311
7312 case VFP_REG_Sm:
7313 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7314 break;
7315
7316 case VFP_REG_Dd:
7317 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7318 break;
7319
7320 case VFP_REG_Dn:
7321 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7322 break;
7323
7324 case VFP_REG_Dm:
7325 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7326 break;
7327
7328 default:
7329 abort ();
7330 }
7331 }
7332
7333 /* Encode a <shift> in an ARM-format instruction. The immediate,
7334 if any, is handled by md_apply_fix. */
7335 static void
7336 encode_arm_shift (int i)
7337 {
7338 if (inst.operands[i].shift_kind == SHIFT_RRX)
7339 inst.instruction |= SHIFT_ROR << 5;
7340 else
7341 {
7342 inst.instruction |= inst.operands[i].shift_kind << 5;
7343 if (inst.operands[i].immisreg)
7344 {
7345 inst.instruction |= SHIFT_BY_REG;
7346 inst.instruction |= inst.operands[i].imm << 8;
7347 }
7348 else
7349 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7350 }
7351 }
7352
7353 static void
7354 encode_arm_shifter_operand (int i)
7355 {
7356 if (inst.operands[i].isreg)
7357 {
7358 inst.instruction |= inst.operands[i].reg;
7359 encode_arm_shift (i);
7360 }
7361 else
7362 {
7363 inst.instruction |= INST_IMMEDIATE;
7364 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7365 inst.instruction |= inst.operands[i].imm;
7366 }
7367 }
7368
7369 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7370 static void
7371 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7372 {
7373 /* PR 14260:
7374 Generate an error if the operand is not a register. */
7375 constraint (!inst.operands[i].isreg,
7376 _("Instruction does not support =N addresses"));
7377
7378 inst.instruction |= inst.operands[i].reg << 16;
7379
7380 if (inst.operands[i].preind)
7381 {
7382 if (is_t)
7383 {
7384 inst.error = _("instruction does not accept preindexed addressing");
7385 return;
7386 }
7387 inst.instruction |= PRE_INDEX;
7388 if (inst.operands[i].writeback)
7389 inst.instruction |= WRITE_BACK;
7390
7391 }
7392 else if (inst.operands[i].postind)
7393 {
7394 gas_assert (inst.operands[i].writeback);
7395 if (is_t)
7396 inst.instruction |= WRITE_BACK;
7397 }
7398 else /* unindexed - only for coprocessor */
7399 {
7400 inst.error = _("instruction does not accept unindexed addressing");
7401 return;
7402 }
7403
7404 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7405 && (((inst.instruction & 0x000f0000) >> 16)
7406 == ((inst.instruction & 0x0000f000) >> 12)))
7407 as_warn ((inst.instruction & LOAD_BIT)
7408 ? _("destination register same as write-back base")
7409 : _("source register same as write-back base"));
7410 }
7411
7412 /* inst.operands[i] was set up by parse_address. Encode it into an
7413 ARM-format mode 2 load or store instruction. If is_t is true,
7414 reject forms that cannot be used with a T instruction (i.e. not
7415 post-indexed). */
7416 static void
7417 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7418 {
7419 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7420
7421 encode_arm_addr_mode_common (i, is_t);
7422
7423 if (inst.operands[i].immisreg)
7424 {
7425 constraint ((inst.operands[i].imm == REG_PC
7426 || (is_pc && inst.operands[i].writeback)),
7427 BAD_PC_ADDRESSING);
7428 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7429 inst.instruction |= inst.operands[i].imm;
7430 if (!inst.operands[i].negative)
7431 inst.instruction |= INDEX_UP;
7432 if (inst.operands[i].shifted)
7433 {
7434 if (inst.operands[i].shift_kind == SHIFT_RRX)
7435 inst.instruction |= SHIFT_ROR << 5;
7436 else
7437 {
7438 inst.instruction |= inst.operands[i].shift_kind << 5;
7439 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7440 }
7441 }
7442 }
7443 else /* immediate offset in inst.reloc */
7444 {
7445 if (is_pc && !inst.reloc.pc_rel)
7446 {
7447 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7448
7449 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7450 cannot use PC in addressing.
7451 PC cannot be used in writeback addressing, either. */
7452 constraint ((is_t || inst.operands[i].writeback),
7453 BAD_PC_ADDRESSING);
7454
7455 /* Use of PC in str is deprecated for ARMv7. */
7456 if (warn_on_deprecated
7457 && !is_load
7458 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7459 as_tsktsk (_("use of PC in this instruction is deprecated"));
7460 }
7461
7462 if (inst.reloc.type == BFD_RELOC_UNUSED)
7463 {
7464 /* Prefer + for zero encoded value. */
7465 if (!inst.operands[i].negative)
7466 inst.instruction |= INDEX_UP;
7467 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7468 }
7469 }
7470 }
7471
7472 /* inst.operands[i] was set up by parse_address. Encode it into an
7473 ARM-format mode 3 load or store instruction. Reject forms that
7474 cannot be used with such instructions. If is_t is true, reject
7475 forms that cannot be used with a T instruction (i.e. not
7476 post-indexed). */
7477 static void
7478 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7479 {
7480 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7481 {
7482 inst.error = _("instruction does not accept scaled register index");
7483 return;
7484 }
7485
7486 encode_arm_addr_mode_common (i, is_t);
7487
7488 if (inst.operands[i].immisreg)
7489 {
7490 constraint ((inst.operands[i].imm == REG_PC
7491 || (is_t && inst.operands[i].reg == REG_PC)),
7492 BAD_PC_ADDRESSING);
7493 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7494 BAD_PC_WRITEBACK);
7495 inst.instruction |= inst.operands[i].imm;
7496 if (!inst.operands[i].negative)
7497 inst.instruction |= INDEX_UP;
7498 }
7499 else /* immediate offset in inst.reloc */
7500 {
7501 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7502 && inst.operands[i].writeback),
7503 BAD_PC_WRITEBACK);
7504 inst.instruction |= HWOFFSET_IMM;
7505 if (inst.reloc.type == BFD_RELOC_UNUSED)
7506 {
7507 /* Prefer + for zero encoded value. */
7508 if (!inst.operands[i].negative)
7509 inst.instruction |= INDEX_UP;
7510
7511 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7512 }
7513 }
7514 }
7515
7516 /* Write immediate bits [7:0] to the following locations:
7517
7518 |28/24|23 19|18 16|15 4|3 0|
7519 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7520
7521 This function is used by VMOV/VMVN/VORR/VBIC. */
7522
7523 static void
7524 neon_write_immbits (unsigned immbits)
7525 {
7526 inst.instruction |= immbits & 0xf;
7527 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7528 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7529 }
7530
7531 /* Invert low-order SIZE bits of XHI:XLO. */
7532
7533 static void
7534 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7535 {
7536 unsigned immlo = xlo ? *xlo : 0;
7537 unsigned immhi = xhi ? *xhi : 0;
7538
7539 switch (size)
7540 {
7541 case 8:
7542 immlo = (~immlo) & 0xff;
7543 break;
7544
7545 case 16:
7546 immlo = (~immlo) & 0xffff;
7547 break;
7548
7549 case 64:
7550 immhi = (~immhi) & 0xffffffff;
7551 /* fall through. */
7552
7553 case 32:
7554 immlo = (~immlo) & 0xffffffff;
7555 break;
7556
7557 default:
7558 abort ();
7559 }
7560
7561 if (xlo)
7562 *xlo = immlo;
7563
7564 if (xhi)
7565 *xhi = immhi;
7566 }
7567
7568 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7569 A, B, C, D. */
7570
7571 static int
7572 neon_bits_same_in_bytes (unsigned imm)
7573 {
7574 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7575 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7576 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7577 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7578 }
7579
7580 /* For immediate of above form, return 0bABCD. */
7581
7582 static unsigned
7583 neon_squash_bits (unsigned imm)
7584 {
7585 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7586 | ((imm & 0x01000000) >> 21);
7587 }
7588
7589 /* Compress quarter-float representation to 0b...000 abcdefgh. */
7590
7591 static unsigned
7592 neon_qfloat_bits (unsigned imm)
7593 {
7594 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7595 }
7596
7597 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7598 the instruction. *OP is passed as the initial value of the op field, and
7599 may be set to a different value depending on the constant (i.e.
7600 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7601 MVN). If the immediate looks like a repeated pattern then also
7602 try smaller element sizes. */
7603
7604 static int
7605 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7606 unsigned *immbits, int *op, int size,
7607 enum neon_el_type type)
7608 {
7609 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7610 float. */
7611 if (type == NT_float && !float_p)
7612 return FAIL;
7613
7614 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
7615 {
7616 if (size != 32 || *op == 1)
7617 return FAIL;
7618 *immbits = neon_qfloat_bits (immlo);
7619 return 0xf;
7620 }
7621
7622 if (size == 64)
7623 {
7624 if (neon_bits_same_in_bytes (immhi)
7625 && neon_bits_same_in_bytes (immlo))
7626 {
7627 if (*op == 1)
7628 return FAIL;
7629 *immbits = (neon_squash_bits (immhi) << 4)
7630 | neon_squash_bits (immlo);
7631 *op = 1;
7632 return 0xe;
7633 }
7634
7635 if (immhi != immlo)
7636 return FAIL;
7637 }
7638
7639 if (size >= 32)
7640 {
7641 if (immlo == (immlo & 0x000000ff))
7642 {
7643 *immbits = immlo;
7644 return 0x0;
7645 }
7646 else if (immlo == (immlo & 0x0000ff00))
7647 {
7648 *immbits = immlo >> 8;
7649 return 0x2;
7650 }
7651 else if (immlo == (immlo & 0x00ff0000))
7652 {
7653 *immbits = immlo >> 16;
7654 return 0x4;
7655 }
7656 else if (immlo == (immlo & 0xff000000))
7657 {
7658 *immbits = immlo >> 24;
7659 return 0x6;
7660 }
7661 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7662 {
7663 *immbits = (immlo >> 8) & 0xff;
7664 return 0xc;
7665 }
7666 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7667 {
7668 *immbits = (immlo >> 16) & 0xff;
7669 return 0xd;
7670 }
7671
7672 if ((immlo & 0xffff) != (immlo >> 16))
7673 return FAIL;
7674 immlo &= 0xffff;
7675 }
7676
7677 if (size >= 16)
7678 {
7679 if (immlo == (immlo & 0x000000ff))
7680 {
7681 *immbits = immlo;
7682 return 0x8;
7683 }
7684 else if (immlo == (immlo & 0x0000ff00))
7685 {
7686 *immbits = immlo >> 8;
7687 return 0xa;
7688 }
7689
7690 if ((immlo & 0xff) != (immlo >> 8))
7691 return FAIL;
7692 immlo &= 0xff;
7693 }
7694
7695 if (immlo == (immlo & 0x000000ff))
7696 {
7697 /* Don't allow MVN with 8-bit immediate. */
7698 if (*op == 1)
7699 return FAIL;
7700 *immbits = immlo;
7701 return 0xe;
7702 }
7703
7704 return FAIL;
7705 }
7706
7707 #if defined BFD_HOST_64_BIT
7708 /* Returns TRUE if double precision value V may be cast
7709 to single precision without loss of accuracy. */
7710
7711 static bfd_boolean
7712 is_double_a_single (bfd_int64_t v)
7713 {
7714 int exp = (int)((v >> 52) & 0x7FF);
7715 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7716
7717 return (exp == 0 || exp == 0x7FF
7718 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7719 && (mantissa & 0x1FFFFFFFl) == 0;
7720 }
7721
7722 /* Returns a double precision value casted to single precision
7723 (ignoring the least significant bits in exponent and mantissa). */
7724
7725 static int
7726 double_to_single (bfd_int64_t v)
7727 {
7728 int sign = (int) ((v >> 63) & 1l);
7729 int exp = (int) ((v >> 52) & 0x7FF);
7730 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7731
7732 if (exp == 0x7FF)
7733 exp = 0xFF;
7734 else
7735 {
7736 exp = exp - 1023 + 127;
7737 if (exp >= 0xFF)
7738 {
7739 /* Infinity. */
7740 exp = 0x7F;
7741 mantissa = 0;
7742 }
7743 else if (exp < 0)
7744 {
7745 /* No denormalized numbers. */
7746 exp = 0;
7747 mantissa = 0;
7748 }
7749 }
7750 mantissa >>= 29;
7751 return (sign << 31) | (exp << 23) | mantissa;
7752 }
7753 #endif /* BFD_HOST_64_BIT */
7754
7755 enum lit_type
7756 {
7757 CONST_THUMB,
7758 CONST_ARM,
7759 CONST_VEC
7760 };
7761
7762 static void do_vfp_nsyn_opcode (const char *);
7763
7764 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7765 Determine whether it can be performed with a move instruction; if
7766 it can, convert inst.instruction to that move instruction and
7767 return TRUE; if it can't, convert inst.instruction to a literal-pool
7768 load and return FALSE. If this is not a valid thing to do in the
7769 current context, set inst.error and return TRUE.
7770
7771 inst.operands[i] describes the destination register. */
7772
7773 static bfd_boolean
7774 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
7775 {
7776 unsigned long tbit;
7777 bfd_boolean thumb_p = (t == CONST_THUMB);
7778 bfd_boolean arm_p = (t == CONST_ARM);
7779
7780 if (thumb_p)
7781 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7782 else
7783 tbit = LOAD_BIT;
7784
7785 if ((inst.instruction & tbit) == 0)
7786 {
7787 inst.error = _("invalid pseudo operation");
7788 return TRUE;
7789 }
7790
7791 if (inst.reloc.exp.X_op != O_constant
7792 && inst.reloc.exp.X_op != O_symbol
7793 && inst.reloc.exp.X_op != O_big)
7794 {
7795 inst.error = _("constant expression expected");
7796 return TRUE;
7797 }
7798
7799 if (inst.reloc.exp.X_op == O_constant
7800 || inst.reloc.exp.X_op == O_big)
7801 {
7802 #if defined BFD_HOST_64_BIT
7803 bfd_int64_t v;
7804 #else
7805 offsetT v;
7806 #endif
7807 if (inst.reloc.exp.X_op == O_big)
7808 {
7809 LITTLENUM_TYPE w[X_PRECISION];
7810 LITTLENUM_TYPE * l;
7811
7812 if (inst.reloc.exp.X_add_number == -1)
7813 {
7814 gen_to_words (w, X_PRECISION, E_PRECISION);
7815 l = w;
7816 /* FIXME: Should we check words w[2..5] ? */
7817 }
7818 else
7819 l = generic_bignum;
7820
7821 #if defined BFD_HOST_64_BIT
7822 v =
7823 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
7824 << LITTLENUM_NUMBER_OF_BITS)
7825 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
7826 << LITTLENUM_NUMBER_OF_BITS)
7827 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
7828 << LITTLENUM_NUMBER_OF_BITS)
7829 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
7830 #else
7831 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
7832 | (l[0] & LITTLENUM_MASK);
7833 #endif
7834 }
7835 else
7836 v = inst.reloc.exp.X_add_number;
7837
7838 if (!inst.operands[i].issingle)
7839 {
7840 if (thumb_p)
7841 {
7842 /* This can be encoded only for a low register. */
7843 if ((v & ~0xFF) == 0 && (inst.operands[i].reg < 8))
7844 {
7845 /* This can be done with a mov(1) instruction. */
7846 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7847 inst.instruction |= v;
7848 return TRUE;
7849 }
7850
7851 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
7852 {
7853 /* Check if on thumb2 it can be done with a mov.w or mvn.w
7854 instruction. */
7855 unsigned int newimm;
7856 bfd_boolean isNegated;
7857
7858 newimm = encode_thumb32_immediate (v);
7859 if (newimm != (unsigned int) FAIL)
7860 isNegated = FALSE;
7861 else
7862 {
7863 newimm = encode_thumb32_immediate (~v);
7864 if (newimm != (unsigned int) FAIL)
7865 isNegated = TRUE;
7866 }
7867
7868 if (newimm != (unsigned int) FAIL)
7869 {
7870 inst.instruction = (0xf04f0000
7871 | (inst.operands[i].reg << 8));
7872 inst.instruction |= (isNegated ? 0x200000 : 0);
7873 inst.instruction |= (newimm & 0x800) << 15;
7874 inst.instruction |= (newimm & 0x700) << 4;
7875 inst.instruction |= (newimm & 0x0ff);
7876 return TRUE;
7877 }
7878 else if ((v & ~0xFFFF) == 0)
7879 {
7880 /* The number can be loaded with a mov.w instruction. */
7881 int imm = v & 0xFFFF;
7882
7883 inst.instruction = 0xf2400000; /* MOVW. */
7884 inst.instruction |= (inst.operands[i].reg << 8);
7885 inst.instruction |= (imm & 0xf000) << 4;
7886 inst.instruction |= (imm & 0x0800) << 15;
7887 inst.instruction |= (imm & 0x0700) << 4;
7888 inst.instruction |= (imm & 0x00ff);
7889 return TRUE;
7890 }
7891 }
7892 }
7893 else if (arm_p)
7894 {
7895 int value = encode_arm_immediate (v);
7896
7897 if (value != FAIL)
7898 {
7899 /* This can be done with a mov instruction. */
7900 inst.instruction &= LITERAL_MASK;
7901 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7902 inst.instruction |= value & 0xfff;
7903 return TRUE;
7904 }
7905
7906 value = encode_arm_immediate (~ v);
7907 if (value != FAIL)
7908 {
7909 /* This can be done with a mvn instruction. */
7910 inst.instruction &= LITERAL_MASK;
7911 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7912 inst.instruction |= value & 0xfff;
7913 return TRUE;
7914 }
7915 }
7916 else if (t == CONST_VEC)
7917 {
7918 int op = 0;
7919 unsigned immbits = 0;
7920 unsigned immlo = inst.operands[1].imm;
7921 unsigned immhi = inst.operands[1].regisimm
7922 ? inst.operands[1].reg
7923 : inst.reloc.exp.X_unsigned
7924 ? 0
7925 : ((bfd_int64_t)((int) immlo)) >> 32;
7926 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
7927 &op, 64, NT_invtype);
7928
7929 if (cmode == FAIL)
7930 {
7931 neon_invert_size (&immlo, &immhi, 64);
7932 op = !op;
7933 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
7934 &op, 64, NT_invtype);
7935 }
7936
7937 if (cmode != FAIL)
7938 {
7939 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
7940 | (1 << 23)
7941 | (cmode << 8)
7942 | (op << 5)
7943 | (1 << 4);
7944
7945 /* Fill other bits in vmov encoding for both thumb and arm. */
7946 if (thumb_mode)
7947 inst.instruction |= (0x7U << 29) | (0xF << 24);
7948 else
7949 inst.instruction |= (0xFU << 28) | (0x1 << 25);
7950 neon_write_immbits (immbits);
7951 return TRUE;
7952 }
7953 }
7954 }
7955
7956 if (t == CONST_VEC)
7957 {
7958 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
7959 if (inst.operands[i].issingle
7960 && is_quarter_float (inst.operands[1].imm)
7961 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
7962 {
7963 inst.operands[1].imm =
7964 neon_qfloat_bits (v);
7965 do_vfp_nsyn_opcode ("fconsts");
7966 return TRUE;
7967 }
7968
7969 /* If our host does not support a 64-bit type then we cannot perform
7970 the following optimization. This mean that there will be a
7971 discrepancy between the output produced by an assembler built for
7972 a 32-bit-only host and the output produced from a 64-bit host, but
7973 this cannot be helped. */
7974 #if defined BFD_HOST_64_BIT
7975 else if (!inst.operands[1].issingle
7976 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
7977 {
7978 if (is_double_a_single (v)
7979 && is_quarter_float (double_to_single (v)))
7980 {
7981 inst.operands[1].imm =
7982 neon_qfloat_bits (double_to_single (v));
7983 do_vfp_nsyn_opcode ("fconstd");
7984 return TRUE;
7985 }
7986 }
7987 #endif
7988 }
7989 }
7990
7991 if (add_to_lit_pool ((!inst.operands[i].isvec
7992 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
7993 return TRUE;
7994
7995 inst.operands[1].reg = REG_PC;
7996 inst.operands[1].isreg = 1;
7997 inst.operands[1].preind = 1;
7998 inst.reloc.pc_rel = 1;
7999 inst.reloc.type = (thumb_p
8000 ? BFD_RELOC_ARM_THUMB_OFFSET
8001 : (mode_3
8002 ? BFD_RELOC_ARM_HWLITERAL
8003 : BFD_RELOC_ARM_LITERAL));
8004 return FALSE;
8005 }
8006
8007 /* inst.operands[i] was set up by parse_address. Encode it into an
8008 ARM-format instruction. Reject all forms which cannot be encoded
8009 into a coprocessor load/store instruction. If wb_ok is false,
8010 reject use of writeback; if unind_ok is false, reject use of
8011 unindexed addressing. If reloc_override is not 0, use it instead
8012 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8013 (in which case it is preserved). */
8014
8015 static int
8016 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8017 {
8018 if (!inst.operands[i].isreg)
8019 {
8020 /* PR 18256 */
8021 if (! inst.operands[0].isvec)
8022 {
8023 inst.error = _("invalid co-processor operand");
8024 return FAIL;
8025 }
8026 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8027 return SUCCESS;
8028 }
8029
8030 inst.instruction |= inst.operands[i].reg << 16;
8031
8032 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8033
8034 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8035 {
8036 gas_assert (!inst.operands[i].writeback);
8037 if (!unind_ok)
8038 {
8039 inst.error = _("instruction does not support unindexed addressing");
8040 return FAIL;
8041 }
8042 inst.instruction |= inst.operands[i].imm;
8043 inst.instruction |= INDEX_UP;
8044 return SUCCESS;
8045 }
8046
8047 if (inst.operands[i].preind)
8048 inst.instruction |= PRE_INDEX;
8049
8050 if (inst.operands[i].writeback)
8051 {
8052 if (inst.operands[i].reg == REG_PC)
8053 {
8054 inst.error = _("pc may not be used with write-back");
8055 return FAIL;
8056 }
8057 if (!wb_ok)
8058 {
8059 inst.error = _("instruction does not support writeback");
8060 return FAIL;
8061 }
8062 inst.instruction |= WRITE_BACK;
8063 }
8064
8065 if (reloc_override)
8066 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
8067 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
8068 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
8069 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
8070 {
8071 if (thumb_mode)
8072 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8073 else
8074 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
8075 }
8076
8077 /* Prefer + for zero encoded value. */
8078 if (!inst.operands[i].negative)
8079 inst.instruction |= INDEX_UP;
8080
8081 return SUCCESS;
8082 }
8083
8084 /* Functions for instruction encoding, sorted by sub-architecture.
8085 First some generics; their names are taken from the conventional
8086 bit positions for register arguments in ARM format instructions. */
8087
8088 static void
8089 do_noargs (void)
8090 {
8091 }
8092
8093 static void
8094 do_rd (void)
8095 {
8096 inst.instruction |= inst.operands[0].reg << 12;
8097 }
8098
8099 static void
8100 do_rd_rm (void)
8101 {
8102 inst.instruction |= inst.operands[0].reg << 12;
8103 inst.instruction |= inst.operands[1].reg;
8104 }
8105
8106 static void
8107 do_rm_rn (void)
8108 {
8109 inst.instruction |= inst.operands[0].reg;
8110 inst.instruction |= inst.operands[1].reg << 16;
8111 }
8112
8113 static void
8114 do_rd_rn (void)
8115 {
8116 inst.instruction |= inst.operands[0].reg << 12;
8117 inst.instruction |= inst.operands[1].reg << 16;
8118 }
8119
8120 static void
8121 do_rn_rd (void)
8122 {
8123 inst.instruction |= inst.operands[0].reg << 16;
8124 inst.instruction |= inst.operands[1].reg << 12;
8125 }
8126
8127 static bfd_boolean
8128 check_obsolete (const arm_feature_set *feature, const char *msg)
8129 {
8130 if (ARM_CPU_IS_ANY (cpu_variant))
8131 {
8132 as_tsktsk ("%s", msg);
8133 return TRUE;
8134 }
8135 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8136 {
8137 as_bad ("%s", msg);
8138 return TRUE;
8139 }
8140
8141 return FALSE;
8142 }
8143
8144 static void
8145 do_rd_rm_rn (void)
8146 {
8147 unsigned Rn = inst.operands[2].reg;
8148 /* Enforce restrictions on SWP instruction. */
8149 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8150 {
8151 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8152 _("Rn must not overlap other operands"));
8153
8154 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8155 */
8156 if (!check_obsolete (&arm_ext_v8,
8157 _("swp{b} use is obsoleted for ARMv8 and later"))
8158 && warn_on_deprecated
8159 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8160 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8161 }
8162
8163 inst.instruction |= inst.operands[0].reg << 12;
8164 inst.instruction |= inst.operands[1].reg;
8165 inst.instruction |= Rn << 16;
8166 }
8167
8168 static void
8169 do_rd_rn_rm (void)
8170 {
8171 inst.instruction |= inst.operands[0].reg << 12;
8172 inst.instruction |= inst.operands[1].reg << 16;
8173 inst.instruction |= inst.operands[2].reg;
8174 }
8175
8176 static void
8177 do_rm_rd_rn (void)
8178 {
8179 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8180 constraint (((inst.reloc.exp.X_op != O_constant
8181 && inst.reloc.exp.X_op != O_illegal)
8182 || inst.reloc.exp.X_add_number != 0),
8183 BAD_ADDR_MODE);
8184 inst.instruction |= inst.operands[0].reg;
8185 inst.instruction |= inst.operands[1].reg << 12;
8186 inst.instruction |= inst.operands[2].reg << 16;
8187 }
8188
8189 static void
8190 do_imm0 (void)
8191 {
8192 inst.instruction |= inst.operands[0].imm;
8193 }
8194
8195 static void
8196 do_rd_cpaddr (void)
8197 {
8198 inst.instruction |= inst.operands[0].reg << 12;
8199 encode_arm_cp_address (1, TRUE, TRUE, 0);
8200 }
8201
8202 /* ARM instructions, in alphabetical order by function name (except
8203 that wrapper functions appear immediately after the function they
8204 wrap). */
8205
8206 /* This is a pseudo-op of the form "adr rd, label" to be converted
8207 into a relative address of the form "add rd, pc, #label-.-8". */
8208
8209 static void
8210 do_adr (void)
8211 {
8212 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8213
8214 /* Frag hacking will turn this into a sub instruction if the offset turns
8215 out to be negative. */
8216 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8217 inst.reloc.pc_rel = 1;
8218 inst.reloc.exp.X_add_number -= 8;
8219 }
8220
8221 /* This is a pseudo-op of the form "adrl rd, label" to be converted
8222 into a relative address of the form:
8223 add rd, pc, #low(label-.-8)"
8224 add rd, rd, #high(label-.-8)" */
8225
8226 static void
8227 do_adrl (void)
8228 {
8229 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8230
8231 /* Frag hacking will turn this into a sub instruction if the offset turns
8232 out to be negative. */
8233 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
8234 inst.reloc.pc_rel = 1;
8235 inst.size = INSN_SIZE * 2;
8236 inst.reloc.exp.X_add_number -= 8;
8237 }
8238
8239 static void
8240 do_arit (void)
8241 {
8242 if (!inst.operands[1].present)
8243 inst.operands[1].reg = inst.operands[0].reg;
8244 inst.instruction |= inst.operands[0].reg << 12;
8245 inst.instruction |= inst.operands[1].reg << 16;
8246 encode_arm_shifter_operand (2);
8247 }
8248
8249 static void
8250 do_barrier (void)
8251 {
8252 if (inst.operands[0].present)
8253 inst.instruction |= inst.operands[0].imm;
8254 else
8255 inst.instruction |= 0xf;
8256 }
8257
8258 static void
8259 do_bfc (void)
8260 {
8261 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8262 constraint (msb > 32, _("bit-field extends past end of register"));
8263 /* The instruction encoding stores the LSB and MSB,
8264 not the LSB and width. */
8265 inst.instruction |= inst.operands[0].reg << 12;
8266 inst.instruction |= inst.operands[1].imm << 7;
8267 inst.instruction |= (msb - 1) << 16;
8268 }
8269
8270 static void
8271 do_bfi (void)
8272 {
8273 unsigned int msb;
8274
8275 /* #0 in second position is alternative syntax for bfc, which is
8276 the same instruction but with REG_PC in the Rm field. */
8277 if (!inst.operands[1].isreg)
8278 inst.operands[1].reg = REG_PC;
8279
8280 msb = inst.operands[2].imm + inst.operands[3].imm;
8281 constraint (msb > 32, _("bit-field extends past end of register"));
8282 /* The instruction encoding stores the LSB and MSB,
8283 not the LSB and width. */
8284 inst.instruction |= inst.operands[0].reg << 12;
8285 inst.instruction |= inst.operands[1].reg;
8286 inst.instruction |= inst.operands[2].imm << 7;
8287 inst.instruction |= (msb - 1) << 16;
8288 }
8289
8290 static void
8291 do_bfx (void)
8292 {
8293 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8294 _("bit-field extends past end of register"));
8295 inst.instruction |= inst.operands[0].reg << 12;
8296 inst.instruction |= inst.operands[1].reg;
8297 inst.instruction |= inst.operands[2].imm << 7;
8298 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8299 }
8300
8301 /* ARM V5 breakpoint instruction (argument parse)
8302 BKPT <16 bit unsigned immediate>
8303 Instruction is not conditional.
8304 The bit pattern given in insns[] has the COND_ALWAYS condition,
8305 and it is an error if the caller tried to override that. */
8306
8307 static void
8308 do_bkpt (void)
8309 {
8310 /* Top 12 of 16 bits to bits 19:8. */
8311 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
8312
8313 /* Bottom 4 of 16 bits to bits 3:0. */
8314 inst.instruction |= inst.operands[0].imm & 0xf;
8315 }
8316
8317 static void
8318 encode_branch (int default_reloc)
8319 {
8320 if (inst.operands[0].hasreloc)
8321 {
8322 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8323 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8324 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
8325 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
8326 ? BFD_RELOC_ARM_PLT32
8327 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
8328 }
8329 else
8330 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
8331 inst.reloc.pc_rel = 1;
8332 }
8333
8334 static void
8335 do_branch (void)
8336 {
8337 #ifdef OBJ_ELF
8338 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8339 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8340 else
8341 #endif
8342 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8343 }
8344
8345 static void
8346 do_bl (void)
8347 {
8348 #ifdef OBJ_ELF
8349 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8350 {
8351 if (inst.cond == COND_ALWAYS)
8352 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8353 else
8354 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8355 }
8356 else
8357 #endif
8358 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8359 }
8360
8361 /* ARM V5 branch-link-exchange instruction (argument parse)
8362 BLX <target_addr> ie BLX(1)
8363 BLX{<condition>} <Rm> ie BLX(2)
8364 Unfortunately, there are two different opcodes for this mnemonic.
8365 So, the insns[].value is not used, and the code here zaps values
8366 into inst.instruction.
8367 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
8368
8369 static void
8370 do_blx (void)
8371 {
8372 if (inst.operands[0].isreg)
8373 {
8374 /* Arg is a register; the opcode provided by insns[] is correct.
8375 It is not illegal to do "blx pc", just useless. */
8376 if (inst.operands[0].reg == REG_PC)
8377 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
8378
8379 inst.instruction |= inst.operands[0].reg;
8380 }
8381 else
8382 {
8383 /* Arg is an address; this instruction cannot be executed
8384 conditionally, and the opcode must be adjusted.
8385 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8386 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
8387 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8388 inst.instruction = 0xfa000000;
8389 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
8390 }
8391 }
8392
8393 static void
8394 do_bx (void)
8395 {
8396 bfd_boolean want_reloc;
8397
8398 if (inst.operands[0].reg == REG_PC)
8399 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
8400
8401 inst.instruction |= inst.operands[0].reg;
8402 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8403 it is for ARMv4t or earlier. */
8404 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
8405 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
8406 want_reloc = TRUE;
8407
8408 #ifdef OBJ_ELF
8409 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
8410 #endif
8411 want_reloc = FALSE;
8412
8413 if (want_reloc)
8414 inst.reloc.type = BFD_RELOC_ARM_V4BX;
8415 }
8416
8417
8418 /* ARM v5TEJ. Jump to Jazelle code. */
8419
8420 static void
8421 do_bxj (void)
8422 {
8423 if (inst.operands[0].reg == REG_PC)
8424 as_tsktsk (_("use of r15 in bxj is not really useful"));
8425
8426 inst.instruction |= inst.operands[0].reg;
8427 }
8428
8429 /* Co-processor data operation:
8430 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8431 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8432 static void
8433 do_cdp (void)
8434 {
8435 inst.instruction |= inst.operands[0].reg << 8;
8436 inst.instruction |= inst.operands[1].imm << 20;
8437 inst.instruction |= inst.operands[2].reg << 12;
8438 inst.instruction |= inst.operands[3].reg << 16;
8439 inst.instruction |= inst.operands[4].reg;
8440 inst.instruction |= inst.operands[5].imm << 5;
8441 }
8442
8443 static void
8444 do_cmp (void)
8445 {
8446 inst.instruction |= inst.operands[0].reg << 16;
8447 encode_arm_shifter_operand (1);
8448 }
8449
8450 /* Transfer between coprocessor and ARM registers.
8451 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8452 MRC2
8453 MCR{cond}
8454 MCR2
8455
8456 No special properties. */
8457
8458 struct deprecated_coproc_regs_s
8459 {
8460 unsigned cp;
8461 int opc1;
8462 unsigned crn;
8463 unsigned crm;
8464 int opc2;
8465 arm_feature_set deprecated;
8466 arm_feature_set obsoleted;
8467 const char *dep_msg;
8468 const char *obs_msg;
8469 };
8470
8471 #define DEPR_ACCESS_V8 \
8472 N_("This coprocessor register access is deprecated in ARMv8")
8473
8474 /* Table of all deprecated coprocessor registers. */
8475 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8476 {
8477 {15, 0, 7, 10, 5, /* CP15DMB. */
8478 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8479 DEPR_ACCESS_V8, NULL},
8480 {15, 0, 7, 10, 4, /* CP15DSB. */
8481 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8482 DEPR_ACCESS_V8, NULL},
8483 {15, 0, 7, 5, 4, /* CP15ISB. */
8484 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8485 DEPR_ACCESS_V8, NULL},
8486 {14, 6, 1, 0, 0, /* TEEHBR. */
8487 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8488 DEPR_ACCESS_V8, NULL},
8489 {14, 6, 0, 0, 0, /* TEECR. */
8490 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8491 DEPR_ACCESS_V8, NULL},
8492 };
8493
8494 #undef DEPR_ACCESS_V8
8495
8496 static const size_t deprecated_coproc_reg_count =
8497 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8498
8499 static void
8500 do_co_reg (void)
8501 {
8502 unsigned Rd;
8503 size_t i;
8504
8505 Rd = inst.operands[2].reg;
8506 if (thumb_mode)
8507 {
8508 if (inst.instruction == 0xee000010
8509 || inst.instruction == 0xfe000010)
8510 /* MCR, MCR2 */
8511 reject_bad_reg (Rd);
8512 else
8513 /* MRC, MRC2 */
8514 constraint (Rd == REG_SP, BAD_SP);
8515 }
8516 else
8517 {
8518 /* MCR */
8519 if (inst.instruction == 0xe000010)
8520 constraint (Rd == REG_PC, BAD_PC);
8521 }
8522
8523 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8524 {
8525 const struct deprecated_coproc_regs_s *r =
8526 deprecated_coproc_regs + i;
8527
8528 if (inst.operands[0].reg == r->cp
8529 && inst.operands[1].imm == r->opc1
8530 && inst.operands[3].reg == r->crn
8531 && inst.operands[4].reg == r->crm
8532 && inst.operands[5].imm == r->opc2)
8533 {
8534 if (! ARM_CPU_IS_ANY (cpu_variant)
8535 && warn_on_deprecated
8536 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
8537 as_tsktsk ("%s", r->dep_msg);
8538 }
8539 }
8540
8541 inst.instruction |= inst.operands[0].reg << 8;
8542 inst.instruction |= inst.operands[1].imm << 21;
8543 inst.instruction |= Rd << 12;
8544 inst.instruction |= inst.operands[3].reg << 16;
8545 inst.instruction |= inst.operands[4].reg;
8546 inst.instruction |= inst.operands[5].imm << 5;
8547 }
8548
8549 /* Transfer between coprocessor register and pair of ARM registers.
8550 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8551 MCRR2
8552 MRRC{cond}
8553 MRRC2
8554
8555 Two XScale instructions are special cases of these:
8556
8557 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8558 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
8559
8560 Result unpredictable if Rd or Rn is R15. */
8561
8562 static void
8563 do_co_reg2c (void)
8564 {
8565 unsigned Rd, Rn;
8566
8567 Rd = inst.operands[2].reg;
8568 Rn = inst.operands[3].reg;
8569
8570 if (thumb_mode)
8571 {
8572 reject_bad_reg (Rd);
8573 reject_bad_reg (Rn);
8574 }
8575 else
8576 {
8577 constraint (Rd == REG_PC, BAD_PC);
8578 constraint (Rn == REG_PC, BAD_PC);
8579 }
8580
8581 inst.instruction |= inst.operands[0].reg << 8;
8582 inst.instruction |= inst.operands[1].imm << 4;
8583 inst.instruction |= Rd << 12;
8584 inst.instruction |= Rn << 16;
8585 inst.instruction |= inst.operands[4].reg;
8586 }
8587
8588 static void
8589 do_cpsi (void)
8590 {
8591 inst.instruction |= inst.operands[0].imm << 6;
8592 if (inst.operands[1].present)
8593 {
8594 inst.instruction |= CPSI_MMOD;
8595 inst.instruction |= inst.operands[1].imm;
8596 }
8597 }
8598
8599 static void
8600 do_dbg (void)
8601 {
8602 inst.instruction |= inst.operands[0].imm;
8603 }
8604
8605 static void
8606 do_div (void)
8607 {
8608 unsigned Rd, Rn, Rm;
8609
8610 Rd = inst.operands[0].reg;
8611 Rn = (inst.operands[1].present
8612 ? inst.operands[1].reg : Rd);
8613 Rm = inst.operands[2].reg;
8614
8615 constraint ((Rd == REG_PC), BAD_PC);
8616 constraint ((Rn == REG_PC), BAD_PC);
8617 constraint ((Rm == REG_PC), BAD_PC);
8618
8619 inst.instruction |= Rd << 16;
8620 inst.instruction |= Rn << 0;
8621 inst.instruction |= Rm << 8;
8622 }
8623
8624 static void
8625 do_it (void)
8626 {
8627 /* There is no IT instruction in ARM mode. We
8628 process it to do the validation as if in
8629 thumb mode, just in case the code gets
8630 assembled for thumb using the unified syntax. */
8631
8632 inst.size = 0;
8633 if (unified_syntax)
8634 {
8635 set_it_insn_type (IT_INSN);
8636 now_it.mask = (inst.instruction & 0xf) | 0x10;
8637 now_it.cc = inst.operands[0].imm;
8638 }
8639 }
8640
8641 /* If there is only one register in the register list,
8642 then return its register number. Otherwise return -1. */
8643 static int
8644 only_one_reg_in_list (int range)
8645 {
8646 int i = ffs (range) - 1;
8647 return (i > 15 || range != (1 << i)) ? -1 : i;
8648 }
8649
8650 static void
8651 encode_ldmstm(int from_push_pop_mnem)
8652 {
8653 int base_reg = inst.operands[0].reg;
8654 int range = inst.operands[1].imm;
8655 int one_reg;
8656
8657 inst.instruction |= base_reg << 16;
8658 inst.instruction |= range;
8659
8660 if (inst.operands[1].writeback)
8661 inst.instruction |= LDM_TYPE_2_OR_3;
8662
8663 if (inst.operands[0].writeback)
8664 {
8665 inst.instruction |= WRITE_BACK;
8666 /* Check for unpredictable uses of writeback. */
8667 if (inst.instruction & LOAD_BIT)
8668 {
8669 /* Not allowed in LDM type 2. */
8670 if ((inst.instruction & LDM_TYPE_2_OR_3)
8671 && ((range & (1 << REG_PC)) == 0))
8672 as_warn (_("writeback of base register is UNPREDICTABLE"));
8673 /* Only allowed if base reg not in list for other types. */
8674 else if (range & (1 << base_reg))
8675 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8676 }
8677 else /* STM. */
8678 {
8679 /* Not allowed for type 2. */
8680 if (inst.instruction & LDM_TYPE_2_OR_3)
8681 as_warn (_("writeback of base register is UNPREDICTABLE"));
8682 /* Only allowed if base reg not in list, or first in list. */
8683 else if ((range & (1 << base_reg))
8684 && (range & ((1 << base_reg) - 1)))
8685 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
8686 }
8687 }
8688
8689 /* If PUSH/POP has only one register, then use the A2 encoding. */
8690 one_reg = only_one_reg_in_list (range);
8691 if (from_push_pop_mnem && one_reg >= 0)
8692 {
8693 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8694
8695 inst.instruction &= A_COND_MASK;
8696 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8697 inst.instruction |= one_reg << 12;
8698 }
8699 }
8700
8701 static void
8702 do_ldmstm (void)
8703 {
8704 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
8705 }
8706
8707 /* ARMv5TE load-consecutive (argument parse)
8708 Mode is like LDRH.
8709
8710 LDRccD R, mode
8711 STRccD R, mode. */
8712
8713 static void
8714 do_ldrd (void)
8715 {
8716 constraint (inst.operands[0].reg % 2 != 0,
8717 _("first transfer register must be even"));
8718 constraint (inst.operands[1].present
8719 && inst.operands[1].reg != inst.operands[0].reg + 1,
8720 _("can only transfer two consecutive registers"));
8721 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8722 constraint (!inst.operands[2].isreg, _("'[' expected"));
8723
8724 if (!inst.operands[1].present)
8725 inst.operands[1].reg = inst.operands[0].reg + 1;
8726
8727 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8728 register and the first register written; we have to diagnose
8729 overlap between the base and the second register written here. */
8730
8731 if (inst.operands[2].reg == inst.operands[1].reg
8732 && (inst.operands[2].writeback || inst.operands[2].postind))
8733 as_warn (_("base register written back, and overlaps "
8734 "second transfer register"));
8735
8736 if (!(inst.instruction & V4_STR_BIT))
8737 {
8738 /* For an index-register load, the index register must not overlap the
8739 destination (even if not write-back). */
8740 if (inst.operands[2].immisreg
8741 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8742 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8743 as_warn (_("index register overlaps transfer register"));
8744 }
8745 inst.instruction |= inst.operands[0].reg << 12;
8746 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8747 }
8748
8749 static void
8750 do_ldrex (void)
8751 {
8752 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8753 || inst.operands[1].postind || inst.operands[1].writeback
8754 || inst.operands[1].immisreg || inst.operands[1].shifted
8755 || inst.operands[1].negative
8756 /* This can arise if the programmer has written
8757 strex rN, rM, foo
8758 or if they have mistakenly used a register name as the last
8759 operand, eg:
8760 strex rN, rM, rX
8761 It is very difficult to distinguish between these two cases
8762 because "rX" might actually be a label. ie the register
8763 name has been occluded by a symbol of the same name. So we
8764 just generate a general 'bad addressing mode' type error
8765 message and leave it up to the programmer to discover the
8766 true cause and fix their mistake. */
8767 || (inst.operands[1].reg == REG_PC),
8768 BAD_ADDR_MODE);
8769
8770 constraint (inst.reloc.exp.X_op != O_constant
8771 || inst.reloc.exp.X_add_number != 0,
8772 _("offset must be zero in ARM encoding"));
8773
8774 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8775
8776 inst.instruction |= inst.operands[0].reg << 12;
8777 inst.instruction |= inst.operands[1].reg << 16;
8778 inst.reloc.type = BFD_RELOC_UNUSED;
8779 }
8780
8781 static void
8782 do_ldrexd (void)
8783 {
8784 constraint (inst.operands[0].reg % 2 != 0,
8785 _("even register required"));
8786 constraint (inst.operands[1].present
8787 && inst.operands[1].reg != inst.operands[0].reg + 1,
8788 _("can only load two consecutive registers"));
8789 /* If op 1 were present and equal to PC, this function wouldn't
8790 have been called in the first place. */
8791 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8792
8793 inst.instruction |= inst.operands[0].reg << 12;
8794 inst.instruction |= inst.operands[2].reg << 16;
8795 }
8796
8797 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8798 which is not a multiple of four is UNPREDICTABLE. */
8799 static void
8800 check_ldr_r15_aligned (void)
8801 {
8802 constraint (!(inst.operands[1].immisreg)
8803 && (inst.operands[0].reg == REG_PC
8804 && inst.operands[1].reg == REG_PC
8805 && (inst.reloc.exp.X_add_number & 0x3)),
8806 _("ldr to register 15 must be 4-byte alligned"));
8807 }
8808
8809 static void
8810 do_ldst (void)
8811 {
8812 inst.instruction |= inst.operands[0].reg << 12;
8813 if (!inst.operands[1].isreg)
8814 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
8815 return;
8816 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8817 check_ldr_r15_aligned ();
8818 }
8819
8820 static void
8821 do_ldstt (void)
8822 {
8823 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8824 reject [Rn,...]. */
8825 if (inst.operands[1].preind)
8826 {
8827 constraint (inst.reloc.exp.X_op != O_constant
8828 || inst.reloc.exp.X_add_number != 0,
8829 _("this instruction requires a post-indexed address"));
8830
8831 inst.operands[1].preind = 0;
8832 inst.operands[1].postind = 1;
8833 inst.operands[1].writeback = 1;
8834 }
8835 inst.instruction |= inst.operands[0].reg << 12;
8836 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8837 }
8838
8839 /* Halfword and signed-byte load/store operations. */
8840
8841 static void
8842 do_ldstv4 (void)
8843 {
8844 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8845 inst.instruction |= inst.operands[0].reg << 12;
8846 if (!inst.operands[1].isreg)
8847 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
8848 return;
8849 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8850 }
8851
8852 static void
8853 do_ldsttv4 (void)
8854 {
8855 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8856 reject [Rn,...]. */
8857 if (inst.operands[1].preind)
8858 {
8859 constraint (inst.reloc.exp.X_op != O_constant
8860 || inst.reloc.exp.X_add_number != 0,
8861 _("this instruction requires a post-indexed address"));
8862
8863 inst.operands[1].preind = 0;
8864 inst.operands[1].postind = 1;
8865 inst.operands[1].writeback = 1;
8866 }
8867 inst.instruction |= inst.operands[0].reg << 12;
8868 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8869 }
8870
8871 /* Co-processor register load/store.
8872 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8873 static void
8874 do_lstc (void)
8875 {
8876 inst.instruction |= inst.operands[0].reg << 8;
8877 inst.instruction |= inst.operands[1].reg << 12;
8878 encode_arm_cp_address (2, TRUE, TRUE, 0);
8879 }
8880
8881 static void
8882 do_mlas (void)
8883 {
8884 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8885 if (inst.operands[0].reg == inst.operands[1].reg
8886 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8887 && !(inst.instruction & 0x00400000))
8888 as_tsktsk (_("Rd and Rm should be different in mla"));
8889
8890 inst.instruction |= inst.operands[0].reg << 16;
8891 inst.instruction |= inst.operands[1].reg;
8892 inst.instruction |= inst.operands[2].reg << 8;
8893 inst.instruction |= inst.operands[3].reg << 12;
8894 }
8895
8896 static void
8897 do_mov (void)
8898 {
8899 inst.instruction |= inst.operands[0].reg << 12;
8900 encode_arm_shifter_operand (1);
8901 }
8902
8903 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8904 static void
8905 do_mov16 (void)
8906 {
8907 bfd_vma imm;
8908 bfd_boolean top;
8909
8910 top = (inst.instruction & 0x00400000) != 0;
8911 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8912 _(":lower16: not allowed this instruction"));
8913 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8914 _(":upper16: not allowed instruction"));
8915 inst.instruction |= inst.operands[0].reg << 12;
8916 if (inst.reloc.type == BFD_RELOC_UNUSED)
8917 {
8918 imm = inst.reloc.exp.X_add_number;
8919 /* The value is in two pieces: 0:11, 16:19. */
8920 inst.instruction |= (imm & 0x00000fff);
8921 inst.instruction |= (imm & 0x0000f000) << 4;
8922 }
8923 }
8924
8925 static int
8926 do_vfp_nsyn_mrs (void)
8927 {
8928 if (inst.operands[0].isvec)
8929 {
8930 if (inst.operands[1].reg != 1)
8931 first_error (_("operand 1 must be FPSCR"));
8932 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8933 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8934 do_vfp_nsyn_opcode ("fmstat");
8935 }
8936 else if (inst.operands[1].isvec)
8937 do_vfp_nsyn_opcode ("fmrx");
8938 else
8939 return FAIL;
8940
8941 return SUCCESS;
8942 }
8943
8944 static int
8945 do_vfp_nsyn_msr (void)
8946 {
8947 if (inst.operands[0].isvec)
8948 do_vfp_nsyn_opcode ("fmxr");
8949 else
8950 return FAIL;
8951
8952 return SUCCESS;
8953 }
8954
8955 static void
8956 do_vmrs (void)
8957 {
8958 unsigned Rt = inst.operands[0].reg;
8959
8960 if (thumb_mode && Rt == REG_SP)
8961 {
8962 inst.error = BAD_SP;
8963 return;
8964 }
8965
8966 /* APSR_ sets isvec. All other refs to PC are illegal. */
8967 if (!inst.operands[0].isvec && Rt == REG_PC)
8968 {
8969 inst.error = BAD_PC;
8970 return;
8971 }
8972
8973 /* If we get through parsing the register name, we just insert the number
8974 generated into the instruction without further validation. */
8975 inst.instruction |= (inst.operands[1].reg << 16);
8976 inst.instruction |= (Rt << 12);
8977 }
8978
8979 static void
8980 do_vmsr (void)
8981 {
8982 unsigned Rt = inst.operands[1].reg;
8983
8984 if (thumb_mode)
8985 reject_bad_reg (Rt);
8986 else if (Rt == REG_PC)
8987 {
8988 inst.error = BAD_PC;
8989 return;
8990 }
8991
8992 /* If we get through parsing the register name, we just insert the number
8993 generated into the instruction without further validation. */
8994 inst.instruction |= (inst.operands[0].reg << 16);
8995 inst.instruction |= (Rt << 12);
8996 }
8997
8998 static void
8999 do_mrs (void)
9000 {
9001 unsigned br;
9002
9003 if (do_vfp_nsyn_mrs () == SUCCESS)
9004 return;
9005
9006 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9007 inst.instruction |= inst.operands[0].reg << 12;
9008
9009 if (inst.operands[1].isreg)
9010 {
9011 br = inst.operands[1].reg;
9012 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
9013 as_bad (_("bad register for mrs"));
9014 }
9015 else
9016 {
9017 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9018 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9019 != (PSR_c|PSR_f),
9020 _("'APSR', 'CPSR' or 'SPSR' expected"));
9021 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9022 }
9023
9024 inst.instruction |= br;
9025 }
9026
9027 /* Two possible forms:
9028 "{C|S}PSR_<field>, Rm",
9029 "{C|S}PSR_f, #expression". */
9030
9031 static void
9032 do_msr (void)
9033 {
9034 if (do_vfp_nsyn_msr () == SUCCESS)
9035 return;
9036
9037 inst.instruction |= inst.operands[0].imm;
9038 if (inst.operands[1].isreg)
9039 inst.instruction |= inst.operands[1].reg;
9040 else
9041 {
9042 inst.instruction |= INST_IMMEDIATE;
9043 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
9044 inst.reloc.pc_rel = 0;
9045 }
9046 }
9047
9048 static void
9049 do_mul (void)
9050 {
9051 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9052
9053 if (!inst.operands[2].present)
9054 inst.operands[2].reg = inst.operands[0].reg;
9055 inst.instruction |= inst.operands[0].reg << 16;
9056 inst.instruction |= inst.operands[1].reg;
9057 inst.instruction |= inst.operands[2].reg << 8;
9058
9059 if (inst.operands[0].reg == inst.operands[1].reg
9060 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9061 as_tsktsk (_("Rd and Rm should be different in mul"));
9062 }
9063
9064 /* Long Multiply Parser
9065 UMULL RdLo, RdHi, Rm, Rs
9066 SMULL RdLo, RdHi, Rm, Rs
9067 UMLAL RdLo, RdHi, Rm, Rs
9068 SMLAL RdLo, RdHi, Rm, Rs. */
9069
9070 static void
9071 do_mull (void)
9072 {
9073 inst.instruction |= inst.operands[0].reg << 12;
9074 inst.instruction |= inst.operands[1].reg << 16;
9075 inst.instruction |= inst.operands[2].reg;
9076 inst.instruction |= inst.operands[3].reg << 8;
9077
9078 /* rdhi and rdlo must be different. */
9079 if (inst.operands[0].reg == inst.operands[1].reg)
9080 as_tsktsk (_("rdhi and rdlo must be different"));
9081
9082 /* rdhi, rdlo and rm must all be different before armv6. */
9083 if ((inst.operands[0].reg == inst.operands[2].reg
9084 || inst.operands[1].reg == inst.operands[2].reg)
9085 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9086 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9087 }
9088
9089 static void
9090 do_nop (void)
9091 {
9092 if (inst.operands[0].present
9093 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9094 {
9095 /* Architectural NOP hints are CPSR sets with no bits selected. */
9096 inst.instruction &= 0xf0000000;
9097 inst.instruction |= 0x0320f000;
9098 if (inst.operands[0].present)
9099 inst.instruction |= inst.operands[0].imm;
9100 }
9101 }
9102
9103 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9104 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9105 Condition defaults to COND_ALWAYS.
9106 Error if Rd, Rn or Rm are R15. */
9107
9108 static void
9109 do_pkhbt (void)
9110 {
9111 inst.instruction |= inst.operands[0].reg << 12;
9112 inst.instruction |= inst.operands[1].reg << 16;
9113 inst.instruction |= inst.operands[2].reg;
9114 if (inst.operands[3].present)
9115 encode_arm_shift (3);
9116 }
9117
9118 /* ARM V6 PKHTB (Argument Parse). */
9119
9120 static void
9121 do_pkhtb (void)
9122 {
9123 if (!inst.operands[3].present)
9124 {
9125 /* If the shift specifier is omitted, turn the instruction
9126 into pkhbt rd, rm, rn. */
9127 inst.instruction &= 0xfff00010;
9128 inst.instruction |= inst.operands[0].reg << 12;
9129 inst.instruction |= inst.operands[1].reg;
9130 inst.instruction |= inst.operands[2].reg << 16;
9131 }
9132 else
9133 {
9134 inst.instruction |= inst.operands[0].reg << 12;
9135 inst.instruction |= inst.operands[1].reg << 16;
9136 inst.instruction |= inst.operands[2].reg;
9137 encode_arm_shift (3);
9138 }
9139 }
9140
9141 /* ARMv5TE: Preload-Cache
9142 MP Extensions: Preload for write
9143
9144 PLD(W) <addr_mode>
9145
9146 Syntactically, like LDR with B=1, W=0, L=1. */
9147
9148 static void
9149 do_pld (void)
9150 {
9151 constraint (!inst.operands[0].isreg,
9152 _("'[' expected after PLD mnemonic"));
9153 constraint (inst.operands[0].postind,
9154 _("post-indexed expression used in preload instruction"));
9155 constraint (inst.operands[0].writeback,
9156 _("writeback used in preload instruction"));
9157 constraint (!inst.operands[0].preind,
9158 _("unindexed addressing used in preload instruction"));
9159 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9160 }
9161
9162 /* ARMv7: PLI <addr_mode> */
9163 static void
9164 do_pli (void)
9165 {
9166 constraint (!inst.operands[0].isreg,
9167 _("'[' expected after PLI mnemonic"));
9168 constraint (inst.operands[0].postind,
9169 _("post-indexed expression used in preload instruction"));
9170 constraint (inst.operands[0].writeback,
9171 _("writeback used in preload instruction"));
9172 constraint (!inst.operands[0].preind,
9173 _("unindexed addressing used in preload instruction"));
9174 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9175 inst.instruction &= ~PRE_INDEX;
9176 }
9177
9178 static void
9179 do_push_pop (void)
9180 {
9181 constraint (inst.operands[0].writeback,
9182 _("push/pop do not support {reglist}^"));
9183 inst.operands[1] = inst.operands[0];
9184 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9185 inst.operands[0].isreg = 1;
9186 inst.operands[0].writeback = 1;
9187 inst.operands[0].reg = REG_SP;
9188 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
9189 }
9190
9191 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9192 word at the specified address and the following word
9193 respectively.
9194 Unconditionally executed.
9195 Error if Rn is R15. */
9196
9197 static void
9198 do_rfe (void)
9199 {
9200 inst.instruction |= inst.operands[0].reg << 16;
9201 if (inst.operands[0].writeback)
9202 inst.instruction |= WRITE_BACK;
9203 }
9204
9205 /* ARM V6 ssat (argument parse). */
9206
9207 static void
9208 do_ssat (void)
9209 {
9210 inst.instruction |= inst.operands[0].reg << 12;
9211 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9212 inst.instruction |= inst.operands[2].reg;
9213
9214 if (inst.operands[3].present)
9215 encode_arm_shift (3);
9216 }
9217
9218 /* ARM V6 usat (argument parse). */
9219
9220 static void
9221 do_usat (void)
9222 {
9223 inst.instruction |= inst.operands[0].reg << 12;
9224 inst.instruction |= inst.operands[1].imm << 16;
9225 inst.instruction |= inst.operands[2].reg;
9226
9227 if (inst.operands[3].present)
9228 encode_arm_shift (3);
9229 }
9230
9231 /* ARM V6 ssat16 (argument parse). */
9232
9233 static void
9234 do_ssat16 (void)
9235 {
9236 inst.instruction |= inst.operands[0].reg << 12;
9237 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9238 inst.instruction |= inst.operands[2].reg;
9239 }
9240
9241 static void
9242 do_usat16 (void)
9243 {
9244 inst.instruction |= inst.operands[0].reg << 12;
9245 inst.instruction |= inst.operands[1].imm << 16;
9246 inst.instruction |= inst.operands[2].reg;
9247 }
9248
9249 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9250 preserving the other bits.
9251
9252 setend <endian_specifier>, where <endian_specifier> is either
9253 BE or LE. */
9254
9255 static void
9256 do_setend (void)
9257 {
9258 if (warn_on_deprecated
9259 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9260 as_tsktsk (_("setend use is deprecated for ARMv8"));
9261
9262 if (inst.operands[0].imm)
9263 inst.instruction |= 0x200;
9264 }
9265
9266 static void
9267 do_shift (void)
9268 {
9269 unsigned int Rm = (inst.operands[1].present
9270 ? inst.operands[1].reg
9271 : inst.operands[0].reg);
9272
9273 inst.instruction |= inst.operands[0].reg << 12;
9274 inst.instruction |= Rm;
9275 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
9276 {
9277 inst.instruction |= inst.operands[2].reg << 8;
9278 inst.instruction |= SHIFT_BY_REG;
9279 /* PR 12854: Error on extraneous shifts. */
9280 constraint (inst.operands[2].shifted,
9281 _("extraneous shift as part of operand to shift insn"));
9282 }
9283 else
9284 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
9285 }
9286
9287 static void
9288 do_smc (void)
9289 {
9290 inst.reloc.type = BFD_RELOC_ARM_SMC;
9291 inst.reloc.pc_rel = 0;
9292 }
9293
9294 static void
9295 do_hvc (void)
9296 {
9297 inst.reloc.type = BFD_RELOC_ARM_HVC;
9298 inst.reloc.pc_rel = 0;
9299 }
9300
9301 static void
9302 do_swi (void)
9303 {
9304 inst.reloc.type = BFD_RELOC_ARM_SWI;
9305 inst.reloc.pc_rel = 0;
9306 }
9307
9308 static void
9309 do_setpan (void)
9310 {
9311 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9312 _("selected processor does not support SETPAN instruction"));
9313
9314 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9315 }
9316
9317 static void
9318 do_t_setpan (void)
9319 {
9320 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9321 _("selected processor does not support SETPAN instruction"));
9322
9323 inst.instruction |= (inst.operands[0].imm << 3);
9324 }
9325
9326 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9327 SMLAxy{cond} Rd,Rm,Rs,Rn
9328 SMLAWy{cond} Rd,Rm,Rs,Rn
9329 Error if any register is R15. */
9330
9331 static void
9332 do_smla (void)
9333 {
9334 inst.instruction |= inst.operands[0].reg << 16;
9335 inst.instruction |= inst.operands[1].reg;
9336 inst.instruction |= inst.operands[2].reg << 8;
9337 inst.instruction |= inst.operands[3].reg << 12;
9338 }
9339
9340 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9341 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9342 Error if any register is R15.
9343 Warning if Rdlo == Rdhi. */
9344
9345 static void
9346 do_smlal (void)
9347 {
9348 inst.instruction |= inst.operands[0].reg << 12;
9349 inst.instruction |= inst.operands[1].reg << 16;
9350 inst.instruction |= inst.operands[2].reg;
9351 inst.instruction |= inst.operands[3].reg << 8;
9352
9353 if (inst.operands[0].reg == inst.operands[1].reg)
9354 as_tsktsk (_("rdhi and rdlo must be different"));
9355 }
9356
9357 /* ARM V5E (El Segundo) signed-multiply (argument parse)
9358 SMULxy{cond} Rd,Rm,Rs
9359 Error if any register is R15. */
9360
9361 static void
9362 do_smul (void)
9363 {
9364 inst.instruction |= inst.operands[0].reg << 16;
9365 inst.instruction |= inst.operands[1].reg;
9366 inst.instruction |= inst.operands[2].reg << 8;
9367 }
9368
9369 /* ARM V6 srs (argument parse). The variable fields in the encoding are
9370 the same for both ARM and Thumb-2. */
9371
9372 static void
9373 do_srs (void)
9374 {
9375 int reg;
9376
9377 if (inst.operands[0].present)
9378 {
9379 reg = inst.operands[0].reg;
9380 constraint (reg != REG_SP, _("SRS base register must be r13"));
9381 }
9382 else
9383 reg = REG_SP;
9384
9385 inst.instruction |= reg << 16;
9386 inst.instruction |= inst.operands[1].imm;
9387 if (inst.operands[0].writeback || inst.operands[1].writeback)
9388 inst.instruction |= WRITE_BACK;
9389 }
9390
9391 /* ARM V6 strex (argument parse). */
9392
9393 static void
9394 do_strex (void)
9395 {
9396 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9397 || inst.operands[2].postind || inst.operands[2].writeback
9398 || inst.operands[2].immisreg || inst.operands[2].shifted
9399 || inst.operands[2].negative
9400 /* See comment in do_ldrex(). */
9401 || (inst.operands[2].reg == REG_PC),
9402 BAD_ADDR_MODE);
9403
9404 constraint (inst.operands[0].reg == inst.operands[1].reg
9405 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9406
9407 constraint (inst.reloc.exp.X_op != O_constant
9408 || inst.reloc.exp.X_add_number != 0,
9409 _("offset must be zero in ARM encoding"));
9410
9411 inst.instruction |= inst.operands[0].reg << 12;
9412 inst.instruction |= inst.operands[1].reg;
9413 inst.instruction |= inst.operands[2].reg << 16;
9414 inst.reloc.type = BFD_RELOC_UNUSED;
9415 }
9416
9417 static void
9418 do_t_strexbh (void)
9419 {
9420 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9421 || inst.operands[2].postind || inst.operands[2].writeback
9422 || inst.operands[2].immisreg || inst.operands[2].shifted
9423 || inst.operands[2].negative,
9424 BAD_ADDR_MODE);
9425
9426 constraint (inst.operands[0].reg == inst.operands[1].reg
9427 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9428
9429 do_rm_rd_rn ();
9430 }
9431
9432 static void
9433 do_strexd (void)
9434 {
9435 constraint (inst.operands[1].reg % 2 != 0,
9436 _("even register required"));
9437 constraint (inst.operands[2].present
9438 && inst.operands[2].reg != inst.operands[1].reg + 1,
9439 _("can only store two consecutive registers"));
9440 /* If op 2 were present and equal to PC, this function wouldn't
9441 have been called in the first place. */
9442 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
9443
9444 constraint (inst.operands[0].reg == inst.operands[1].reg
9445 || inst.operands[0].reg == inst.operands[1].reg + 1
9446 || inst.operands[0].reg == inst.operands[3].reg,
9447 BAD_OVERLAP);
9448
9449 inst.instruction |= inst.operands[0].reg << 12;
9450 inst.instruction |= inst.operands[1].reg;
9451 inst.instruction |= inst.operands[3].reg << 16;
9452 }
9453
9454 /* ARM V8 STRL. */
9455 static void
9456 do_stlex (void)
9457 {
9458 constraint (inst.operands[0].reg == inst.operands[1].reg
9459 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9460
9461 do_rd_rm_rn ();
9462 }
9463
9464 static void
9465 do_t_stlex (void)
9466 {
9467 constraint (inst.operands[0].reg == inst.operands[1].reg
9468 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9469
9470 do_rm_rd_rn ();
9471 }
9472
9473 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9474 extends it to 32-bits, and adds the result to a value in another
9475 register. You can specify a rotation by 0, 8, 16, or 24 bits
9476 before extracting the 16-bit value.
9477 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9478 Condition defaults to COND_ALWAYS.
9479 Error if any register uses R15. */
9480
9481 static void
9482 do_sxtah (void)
9483 {
9484 inst.instruction |= inst.operands[0].reg << 12;
9485 inst.instruction |= inst.operands[1].reg << 16;
9486 inst.instruction |= inst.operands[2].reg;
9487 inst.instruction |= inst.operands[3].imm << 10;
9488 }
9489
9490 /* ARM V6 SXTH.
9491
9492 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9493 Condition defaults to COND_ALWAYS.
9494 Error if any register uses R15. */
9495
9496 static void
9497 do_sxth (void)
9498 {
9499 inst.instruction |= inst.operands[0].reg << 12;
9500 inst.instruction |= inst.operands[1].reg;
9501 inst.instruction |= inst.operands[2].imm << 10;
9502 }
9503 \f
9504 /* VFP instructions. In a logical order: SP variant first, monad
9505 before dyad, arithmetic then move then load/store. */
9506
9507 static void
9508 do_vfp_sp_monadic (void)
9509 {
9510 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9511 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9512 }
9513
9514 static void
9515 do_vfp_sp_dyadic (void)
9516 {
9517 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9518 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9519 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9520 }
9521
9522 static void
9523 do_vfp_sp_compare_z (void)
9524 {
9525 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9526 }
9527
9528 static void
9529 do_vfp_dp_sp_cvt (void)
9530 {
9531 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9532 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9533 }
9534
9535 static void
9536 do_vfp_sp_dp_cvt (void)
9537 {
9538 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9539 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9540 }
9541
9542 static void
9543 do_vfp_reg_from_sp (void)
9544 {
9545 inst.instruction |= inst.operands[0].reg << 12;
9546 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9547 }
9548
9549 static void
9550 do_vfp_reg2_from_sp2 (void)
9551 {
9552 constraint (inst.operands[2].imm != 2,
9553 _("only two consecutive VFP SP registers allowed here"));
9554 inst.instruction |= inst.operands[0].reg << 12;
9555 inst.instruction |= inst.operands[1].reg << 16;
9556 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9557 }
9558
9559 static void
9560 do_vfp_sp_from_reg (void)
9561 {
9562 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
9563 inst.instruction |= inst.operands[1].reg << 12;
9564 }
9565
9566 static void
9567 do_vfp_sp2_from_reg2 (void)
9568 {
9569 constraint (inst.operands[0].imm != 2,
9570 _("only two consecutive VFP SP registers allowed here"));
9571 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
9572 inst.instruction |= inst.operands[1].reg << 12;
9573 inst.instruction |= inst.operands[2].reg << 16;
9574 }
9575
9576 static void
9577 do_vfp_sp_ldst (void)
9578 {
9579 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9580 encode_arm_cp_address (1, FALSE, TRUE, 0);
9581 }
9582
9583 static void
9584 do_vfp_dp_ldst (void)
9585 {
9586 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9587 encode_arm_cp_address (1, FALSE, TRUE, 0);
9588 }
9589
9590
9591 static void
9592 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
9593 {
9594 if (inst.operands[0].writeback)
9595 inst.instruction |= WRITE_BACK;
9596 else
9597 constraint (ldstm_type != VFP_LDSTMIA,
9598 _("this addressing mode requires base-register writeback"));
9599 inst.instruction |= inst.operands[0].reg << 16;
9600 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
9601 inst.instruction |= inst.operands[1].imm;
9602 }
9603
9604 static void
9605 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
9606 {
9607 int count;
9608
9609 if (inst.operands[0].writeback)
9610 inst.instruction |= WRITE_BACK;
9611 else
9612 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9613 _("this addressing mode requires base-register writeback"));
9614
9615 inst.instruction |= inst.operands[0].reg << 16;
9616 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9617
9618 count = inst.operands[1].imm << 1;
9619 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9620 count += 1;
9621
9622 inst.instruction |= count;
9623 }
9624
9625 static void
9626 do_vfp_sp_ldstmia (void)
9627 {
9628 vfp_sp_ldstm (VFP_LDSTMIA);
9629 }
9630
9631 static void
9632 do_vfp_sp_ldstmdb (void)
9633 {
9634 vfp_sp_ldstm (VFP_LDSTMDB);
9635 }
9636
9637 static void
9638 do_vfp_dp_ldstmia (void)
9639 {
9640 vfp_dp_ldstm (VFP_LDSTMIA);
9641 }
9642
9643 static void
9644 do_vfp_dp_ldstmdb (void)
9645 {
9646 vfp_dp_ldstm (VFP_LDSTMDB);
9647 }
9648
9649 static void
9650 do_vfp_xp_ldstmia (void)
9651 {
9652 vfp_dp_ldstm (VFP_LDSTMIAX);
9653 }
9654
9655 static void
9656 do_vfp_xp_ldstmdb (void)
9657 {
9658 vfp_dp_ldstm (VFP_LDSTMDBX);
9659 }
9660
9661 static void
9662 do_vfp_dp_rd_rm (void)
9663 {
9664 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9665 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9666 }
9667
9668 static void
9669 do_vfp_dp_rn_rd (void)
9670 {
9671 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9672 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9673 }
9674
9675 static void
9676 do_vfp_dp_rd_rn (void)
9677 {
9678 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9679 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9680 }
9681
9682 static void
9683 do_vfp_dp_rd_rn_rm (void)
9684 {
9685 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9686 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9687 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9688 }
9689
9690 static void
9691 do_vfp_dp_rd (void)
9692 {
9693 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9694 }
9695
9696 static void
9697 do_vfp_dp_rm_rd_rn (void)
9698 {
9699 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9700 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9701 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9702 }
9703
9704 /* VFPv3 instructions. */
9705 static void
9706 do_vfp_sp_const (void)
9707 {
9708 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9709 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9710 inst.instruction |= (inst.operands[1].imm & 0x0f);
9711 }
9712
9713 static void
9714 do_vfp_dp_const (void)
9715 {
9716 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9717 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9718 inst.instruction |= (inst.operands[1].imm & 0x0f);
9719 }
9720
9721 static void
9722 vfp_conv (int srcsize)
9723 {
9724 int immbits = srcsize - inst.operands[1].imm;
9725
9726 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9727 {
9728 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9729 i.e. immbits must be in range 0 - 16. */
9730 inst.error = _("immediate value out of range, expected range [0, 16]");
9731 return;
9732 }
9733 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9734 {
9735 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9736 i.e. immbits must be in range 0 - 31. */
9737 inst.error = _("immediate value out of range, expected range [1, 32]");
9738 return;
9739 }
9740
9741 inst.instruction |= (immbits & 1) << 5;
9742 inst.instruction |= (immbits >> 1);
9743 }
9744
9745 static void
9746 do_vfp_sp_conv_16 (void)
9747 {
9748 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9749 vfp_conv (16);
9750 }
9751
9752 static void
9753 do_vfp_dp_conv_16 (void)
9754 {
9755 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9756 vfp_conv (16);
9757 }
9758
9759 static void
9760 do_vfp_sp_conv_32 (void)
9761 {
9762 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9763 vfp_conv (32);
9764 }
9765
9766 static void
9767 do_vfp_dp_conv_32 (void)
9768 {
9769 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9770 vfp_conv (32);
9771 }
9772 \f
9773 /* FPA instructions. Also in a logical order. */
9774
9775 static void
9776 do_fpa_cmp (void)
9777 {
9778 inst.instruction |= inst.operands[0].reg << 16;
9779 inst.instruction |= inst.operands[1].reg;
9780 }
9781
9782 static void
9783 do_fpa_ldmstm (void)
9784 {
9785 inst.instruction |= inst.operands[0].reg << 12;
9786 switch (inst.operands[1].imm)
9787 {
9788 case 1: inst.instruction |= CP_T_X; break;
9789 case 2: inst.instruction |= CP_T_Y; break;
9790 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9791 case 4: break;
9792 default: abort ();
9793 }
9794
9795 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9796 {
9797 /* The instruction specified "ea" or "fd", so we can only accept
9798 [Rn]{!}. The instruction does not really support stacking or
9799 unstacking, so we have to emulate these by setting appropriate
9800 bits and offsets. */
9801 constraint (inst.reloc.exp.X_op != O_constant
9802 || inst.reloc.exp.X_add_number != 0,
9803 _("this instruction does not support indexing"));
9804
9805 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9806 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9807
9808 if (!(inst.instruction & INDEX_UP))
9809 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9810
9811 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9812 {
9813 inst.operands[2].preind = 0;
9814 inst.operands[2].postind = 1;
9815 }
9816 }
9817
9818 encode_arm_cp_address (2, TRUE, TRUE, 0);
9819 }
9820 \f
9821 /* iWMMXt instructions: strictly in alphabetical order. */
9822
9823 static void
9824 do_iwmmxt_tandorc (void)
9825 {
9826 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9827 }
9828
9829 static void
9830 do_iwmmxt_textrc (void)
9831 {
9832 inst.instruction |= inst.operands[0].reg << 12;
9833 inst.instruction |= inst.operands[1].imm;
9834 }
9835
9836 static void
9837 do_iwmmxt_textrm (void)
9838 {
9839 inst.instruction |= inst.operands[0].reg << 12;
9840 inst.instruction |= inst.operands[1].reg << 16;
9841 inst.instruction |= inst.operands[2].imm;
9842 }
9843
9844 static void
9845 do_iwmmxt_tinsr (void)
9846 {
9847 inst.instruction |= inst.operands[0].reg << 16;
9848 inst.instruction |= inst.operands[1].reg << 12;
9849 inst.instruction |= inst.operands[2].imm;
9850 }
9851
9852 static void
9853 do_iwmmxt_tmia (void)
9854 {
9855 inst.instruction |= inst.operands[0].reg << 5;
9856 inst.instruction |= inst.operands[1].reg;
9857 inst.instruction |= inst.operands[2].reg << 12;
9858 }
9859
9860 static void
9861 do_iwmmxt_waligni (void)
9862 {
9863 inst.instruction |= inst.operands[0].reg << 12;
9864 inst.instruction |= inst.operands[1].reg << 16;
9865 inst.instruction |= inst.operands[2].reg;
9866 inst.instruction |= inst.operands[3].imm << 20;
9867 }
9868
9869 static void
9870 do_iwmmxt_wmerge (void)
9871 {
9872 inst.instruction |= inst.operands[0].reg << 12;
9873 inst.instruction |= inst.operands[1].reg << 16;
9874 inst.instruction |= inst.operands[2].reg;
9875 inst.instruction |= inst.operands[3].imm << 21;
9876 }
9877
9878 static void
9879 do_iwmmxt_wmov (void)
9880 {
9881 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9882 inst.instruction |= inst.operands[0].reg << 12;
9883 inst.instruction |= inst.operands[1].reg << 16;
9884 inst.instruction |= inst.operands[1].reg;
9885 }
9886
9887 static void
9888 do_iwmmxt_wldstbh (void)
9889 {
9890 int reloc;
9891 inst.instruction |= inst.operands[0].reg << 12;
9892 if (thumb_mode)
9893 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9894 else
9895 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9896 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9897 }
9898
9899 static void
9900 do_iwmmxt_wldstw (void)
9901 {
9902 /* RIWR_RIWC clears .isreg for a control register. */
9903 if (!inst.operands[0].isreg)
9904 {
9905 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9906 inst.instruction |= 0xf0000000;
9907 }
9908
9909 inst.instruction |= inst.operands[0].reg << 12;
9910 encode_arm_cp_address (1, TRUE, TRUE, 0);
9911 }
9912
9913 static void
9914 do_iwmmxt_wldstd (void)
9915 {
9916 inst.instruction |= inst.operands[0].reg << 12;
9917 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9918 && inst.operands[1].immisreg)
9919 {
9920 inst.instruction &= ~0x1a000ff;
9921 inst.instruction |= (0xfU << 28);
9922 if (inst.operands[1].preind)
9923 inst.instruction |= PRE_INDEX;
9924 if (!inst.operands[1].negative)
9925 inst.instruction |= INDEX_UP;
9926 if (inst.operands[1].writeback)
9927 inst.instruction |= WRITE_BACK;
9928 inst.instruction |= inst.operands[1].reg << 16;
9929 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9930 inst.instruction |= inst.operands[1].imm;
9931 }
9932 else
9933 encode_arm_cp_address (1, TRUE, FALSE, 0);
9934 }
9935
9936 static void
9937 do_iwmmxt_wshufh (void)
9938 {
9939 inst.instruction |= inst.operands[0].reg << 12;
9940 inst.instruction |= inst.operands[1].reg << 16;
9941 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9942 inst.instruction |= (inst.operands[2].imm & 0x0f);
9943 }
9944
9945 static void
9946 do_iwmmxt_wzero (void)
9947 {
9948 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9949 inst.instruction |= inst.operands[0].reg;
9950 inst.instruction |= inst.operands[0].reg << 12;
9951 inst.instruction |= inst.operands[0].reg << 16;
9952 }
9953
9954 static void
9955 do_iwmmxt_wrwrwr_or_imm5 (void)
9956 {
9957 if (inst.operands[2].isreg)
9958 do_rd_rn_rm ();
9959 else {
9960 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9961 _("immediate operand requires iWMMXt2"));
9962 do_rd_rn ();
9963 if (inst.operands[2].imm == 0)
9964 {
9965 switch ((inst.instruction >> 20) & 0xf)
9966 {
9967 case 4:
9968 case 5:
9969 case 6:
9970 case 7:
9971 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9972 inst.operands[2].imm = 16;
9973 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9974 break;
9975 case 8:
9976 case 9:
9977 case 10:
9978 case 11:
9979 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9980 inst.operands[2].imm = 32;
9981 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9982 break;
9983 case 12:
9984 case 13:
9985 case 14:
9986 case 15:
9987 {
9988 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9989 unsigned long wrn;
9990 wrn = (inst.instruction >> 16) & 0xf;
9991 inst.instruction &= 0xff0fff0f;
9992 inst.instruction |= wrn;
9993 /* Bail out here; the instruction is now assembled. */
9994 return;
9995 }
9996 }
9997 }
9998 /* Map 32 -> 0, etc. */
9999 inst.operands[2].imm &= 0x1f;
10000 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10001 }
10002 }
10003 \f
10004 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10005 operations first, then control, shift, and load/store. */
10006
10007 /* Insns like "foo X,Y,Z". */
10008
10009 static void
10010 do_mav_triple (void)
10011 {
10012 inst.instruction |= inst.operands[0].reg << 16;
10013 inst.instruction |= inst.operands[1].reg;
10014 inst.instruction |= inst.operands[2].reg << 12;
10015 }
10016
10017 /* Insns like "foo W,X,Y,Z".
10018 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10019
10020 static void
10021 do_mav_quad (void)
10022 {
10023 inst.instruction |= inst.operands[0].reg << 5;
10024 inst.instruction |= inst.operands[1].reg << 12;
10025 inst.instruction |= inst.operands[2].reg << 16;
10026 inst.instruction |= inst.operands[3].reg;
10027 }
10028
10029 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10030 static void
10031 do_mav_dspsc (void)
10032 {
10033 inst.instruction |= inst.operands[1].reg << 12;
10034 }
10035
10036 /* Maverick shift immediate instructions.
10037 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10038 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10039
10040 static void
10041 do_mav_shift (void)
10042 {
10043 int imm = inst.operands[2].imm;
10044
10045 inst.instruction |= inst.operands[0].reg << 12;
10046 inst.instruction |= inst.operands[1].reg << 16;
10047
10048 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10049 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10050 Bit 4 should be 0. */
10051 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10052
10053 inst.instruction |= imm;
10054 }
10055 \f
10056 /* XScale instructions. Also sorted arithmetic before move. */
10057
10058 /* Xscale multiply-accumulate (argument parse)
10059 MIAcc acc0,Rm,Rs
10060 MIAPHcc acc0,Rm,Rs
10061 MIAxycc acc0,Rm,Rs. */
10062
10063 static void
10064 do_xsc_mia (void)
10065 {
10066 inst.instruction |= inst.operands[1].reg;
10067 inst.instruction |= inst.operands[2].reg << 12;
10068 }
10069
10070 /* Xscale move-accumulator-register (argument parse)
10071
10072 MARcc acc0,RdLo,RdHi. */
10073
10074 static void
10075 do_xsc_mar (void)
10076 {
10077 inst.instruction |= inst.operands[1].reg << 12;
10078 inst.instruction |= inst.operands[2].reg << 16;
10079 }
10080
10081 /* Xscale move-register-accumulator (argument parse)
10082
10083 MRAcc RdLo,RdHi,acc0. */
10084
10085 static void
10086 do_xsc_mra (void)
10087 {
10088 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10089 inst.instruction |= inst.operands[0].reg << 12;
10090 inst.instruction |= inst.operands[1].reg << 16;
10091 }
10092 \f
10093 /* Encoding functions relevant only to Thumb. */
10094
10095 /* inst.operands[i] is a shifted-register operand; encode
10096 it into inst.instruction in the format used by Thumb32. */
10097
10098 static void
10099 encode_thumb32_shifted_operand (int i)
10100 {
10101 unsigned int value = inst.reloc.exp.X_add_number;
10102 unsigned int shift = inst.operands[i].shift_kind;
10103
10104 constraint (inst.operands[i].immisreg,
10105 _("shift by register not allowed in thumb mode"));
10106 inst.instruction |= inst.operands[i].reg;
10107 if (shift == SHIFT_RRX)
10108 inst.instruction |= SHIFT_ROR << 4;
10109 else
10110 {
10111 constraint (inst.reloc.exp.X_op != O_constant,
10112 _("expression too complex"));
10113
10114 constraint (value > 32
10115 || (value == 32 && (shift == SHIFT_LSL
10116 || shift == SHIFT_ROR)),
10117 _("shift expression is too large"));
10118
10119 if (value == 0)
10120 shift = SHIFT_LSL;
10121 else if (value == 32)
10122 value = 0;
10123
10124 inst.instruction |= shift << 4;
10125 inst.instruction |= (value & 0x1c) << 10;
10126 inst.instruction |= (value & 0x03) << 6;
10127 }
10128 }
10129
10130
10131 /* inst.operands[i] was set up by parse_address. Encode it into a
10132 Thumb32 format load or store instruction. Reject forms that cannot
10133 be used with such instructions. If is_t is true, reject forms that
10134 cannot be used with a T instruction; if is_d is true, reject forms
10135 that cannot be used with a D instruction. If it is a store insn,
10136 reject PC in Rn. */
10137
10138 static void
10139 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10140 {
10141 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
10142
10143 constraint (!inst.operands[i].isreg,
10144 _("Instruction does not support =N addresses"));
10145
10146 inst.instruction |= inst.operands[i].reg << 16;
10147 if (inst.operands[i].immisreg)
10148 {
10149 constraint (is_pc, BAD_PC_ADDRESSING);
10150 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10151 constraint (inst.operands[i].negative,
10152 _("Thumb does not support negative register indexing"));
10153 constraint (inst.operands[i].postind,
10154 _("Thumb does not support register post-indexing"));
10155 constraint (inst.operands[i].writeback,
10156 _("Thumb does not support register indexing with writeback"));
10157 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10158 _("Thumb supports only LSL in shifted register indexing"));
10159
10160 inst.instruction |= inst.operands[i].imm;
10161 if (inst.operands[i].shifted)
10162 {
10163 constraint (inst.reloc.exp.X_op != O_constant,
10164 _("expression too complex"));
10165 constraint (inst.reloc.exp.X_add_number < 0
10166 || inst.reloc.exp.X_add_number > 3,
10167 _("shift out of range"));
10168 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10169 }
10170 inst.reloc.type = BFD_RELOC_UNUSED;
10171 }
10172 else if (inst.operands[i].preind)
10173 {
10174 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
10175 constraint (is_t && inst.operands[i].writeback,
10176 _("cannot use writeback with this instruction"));
10177 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10178 BAD_PC_ADDRESSING);
10179
10180 if (is_d)
10181 {
10182 inst.instruction |= 0x01000000;
10183 if (inst.operands[i].writeback)
10184 inst.instruction |= 0x00200000;
10185 }
10186 else
10187 {
10188 inst.instruction |= 0x00000c00;
10189 if (inst.operands[i].writeback)
10190 inst.instruction |= 0x00000100;
10191 }
10192 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10193 }
10194 else if (inst.operands[i].postind)
10195 {
10196 gas_assert (inst.operands[i].writeback);
10197 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10198 constraint (is_t, _("cannot use post-indexing with this instruction"));
10199
10200 if (is_d)
10201 inst.instruction |= 0x00200000;
10202 else
10203 inst.instruction |= 0x00000900;
10204 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10205 }
10206 else /* unindexed - only for coprocessor */
10207 inst.error = _("instruction does not accept unindexed addressing");
10208 }
10209
10210 /* Table of Thumb instructions which exist in both 16- and 32-bit
10211 encodings (the latter only in post-V6T2 cores). The index is the
10212 value used in the insns table below. When there is more than one
10213 possible 16-bit encoding for the instruction, this table always
10214 holds variant (1).
10215 Also contains several pseudo-instructions used during relaxation. */
10216 #define T16_32_TAB \
10217 X(_adc, 4140, eb400000), \
10218 X(_adcs, 4140, eb500000), \
10219 X(_add, 1c00, eb000000), \
10220 X(_adds, 1c00, eb100000), \
10221 X(_addi, 0000, f1000000), \
10222 X(_addis, 0000, f1100000), \
10223 X(_add_pc,000f, f20f0000), \
10224 X(_add_sp,000d, f10d0000), \
10225 X(_adr, 000f, f20f0000), \
10226 X(_and, 4000, ea000000), \
10227 X(_ands, 4000, ea100000), \
10228 X(_asr, 1000, fa40f000), \
10229 X(_asrs, 1000, fa50f000), \
10230 X(_b, e000, f000b000), \
10231 X(_bcond, d000, f0008000), \
10232 X(_bic, 4380, ea200000), \
10233 X(_bics, 4380, ea300000), \
10234 X(_cmn, 42c0, eb100f00), \
10235 X(_cmp, 2800, ebb00f00), \
10236 X(_cpsie, b660, f3af8400), \
10237 X(_cpsid, b670, f3af8600), \
10238 X(_cpy, 4600, ea4f0000), \
10239 X(_dec_sp,80dd, f1ad0d00), \
10240 X(_eor, 4040, ea800000), \
10241 X(_eors, 4040, ea900000), \
10242 X(_inc_sp,00dd, f10d0d00), \
10243 X(_ldmia, c800, e8900000), \
10244 X(_ldr, 6800, f8500000), \
10245 X(_ldrb, 7800, f8100000), \
10246 X(_ldrh, 8800, f8300000), \
10247 X(_ldrsb, 5600, f9100000), \
10248 X(_ldrsh, 5e00, f9300000), \
10249 X(_ldr_pc,4800, f85f0000), \
10250 X(_ldr_pc2,4800, f85f0000), \
10251 X(_ldr_sp,9800, f85d0000), \
10252 X(_lsl, 0000, fa00f000), \
10253 X(_lsls, 0000, fa10f000), \
10254 X(_lsr, 0800, fa20f000), \
10255 X(_lsrs, 0800, fa30f000), \
10256 X(_mov, 2000, ea4f0000), \
10257 X(_movs, 2000, ea5f0000), \
10258 X(_mul, 4340, fb00f000), \
10259 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10260 X(_mvn, 43c0, ea6f0000), \
10261 X(_mvns, 43c0, ea7f0000), \
10262 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10263 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10264 X(_orr, 4300, ea400000), \
10265 X(_orrs, 4300, ea500000), \
10266 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10267 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10268 X(_rev, ba00, fa90f080), \
10269 X(_rev16, ba40, fa90f090), \
10270 X(_revsh, bac0, fa90f0b0), \
10271 X(_ror, 41c0, fa60f000), \
10272 X(_rors, 41c0, fa70f000), \
10273 X(_sbc, 4180, eb600000), \
10274 X(_sbcs, 4180, eb700000), \
10275 X(_stmia, c000, e8800000), \
10276 X(_str, 6000, f8400000), \
10277 X(_strb, 7000, f8000000), \
10278 X(_strh, 8000, f8200000), \
10279 X(_str_sp,9000, f84d0000), \
10280 X(_sub, 1e00, eba00000), \
10281 X(_subs, 1e00, ebb00000), \
10282 X(_subi, 8000, f1a00000), \
10283 X(_subis, 8000, f1b00000), \
10284 X(_sxtb, b240, fa4ff080), \
10285 X(_sxth, b200, fa0ff080), \
10286 X(_tst, 4200, ea100f00), \
10287 X(_uxtb, b2c0, fa5ff080), \
10288 X(_uxth, b280, fa1ff080), \
10289 X(_nop, bf00, f3af8000), \
10290 X(_yield, bf10, f3af8001), \
10291 X(_wfe, bf20, f3af8002), \
10292 X(_wfi, bf30, f3af8003), \
10293 X(_sev, bf40, f3af8004), \
10294 X(_sevl, bf50, f3af8005), \
10295 X(_udf, de00, f7f0a000)
10296
10297 /* To catch errors in encoding functions, the codes are all offset by
10298 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10299 as 16-bit instructions. */
10300 #define X(a,b,c) T_MNEM##a
10301 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10302 #undef X
10303
10304 #define X(a,b,c) 0x##b
10305 static const unsigned short thumb_op16[] = { T16_32_TAB };
10306 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10307 #undef X
10308
10309 #define X(a,b,c) 0x##c
10310 static const unsigned int thumb_op32[] = { T16_32_TAB };
10311 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10312 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
10313 #undef X
10314 #undef T16_32_TAB
10315
10316 /* Thumb instruction encoders, in alphabetical order. */
10317
10318 /* ADDW or SUBW. */
10319
10320 static void
10321 do_t_add_sub_w (void)
10322 {
10323 int Rd, Rn;
10324
10325 Rd = inst.operands[0].reg;
10326 Rn = inst.operands[1].reg;
10327
10328 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10329 is the SP-{plus,minus}-immediate form of the instruction. */
10330 if (Rn == REG_SP)
10331 constraint (Rd == REG_PC, BAD_PC);
10332 else
10333 reject_bad_reg (Rd);
10334
10335 inst.instruction |= (Rn << 16) | (Rd << 8);
10336 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10337 }
10338
10339 /* Parse an add or subtract instruction. We get here with inst.instruction
10340 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
10341
10342 static void
10343 do_t_add_sub (void)
10344 {
10345 int Rd, Rs, Rn;
10346
10347 Rd = inst.operands[0].reg;
10348 Rs = (inst.operands[1].present
10349 ? inst.operands[1].reg /* Rd, Rs, foo */
10350 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10351
10352 if (Rd == REG_PC)
10353 set_it_insn_type_last ();
10354
10355 if (unified_syntax)
10356 {
10357 bfd_boolean flags;
10358 bfd_boolean narrow;
10359 int opcode;
10360
10361 flags = (inst.instruction == T_MNEM_adds
10362 || inst.instruction == T_MNEM_subs);
10363 if (flags)
10364 narrow = !in_it_block ();
10365 else
10366 narrow = in_it_block ();
10367 if (!inst.operands[2].isreg)
10368 {
10369 int add;
10370
10371 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10372
10373 add = (inst.instruction == T_MNEM_add
10374 || inst.instruction == T_MNEM_adds);
10375 opcode = 0;
10376 if (inst.size_req != 4)
10377 {
10378 /* Attempt to use a narrow opcode, with relaxation if
10379 appropriate. */
10380 if (Rd == REG_SP && Rs == REG_SP && !flags)
10381 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10382 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10383 opcode = T_MNEM_add_sp;
10384 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10385 opcode = T_MNEM_add_pc;
10386 else if (Rd <= 7 && Rs <= 7 && narrow)
10387 {
10388 if (flags)
10389 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10390 else
10391 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10392 }
10393 if (opcode)
10394 {
10395 inst.instruction = THUMB_OP16(opcode);
10396 inst.instruction |= (Rd << 4) | Rs;
10397 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10398 if (inst.size_req != 2)
10399 inst.relax = opcode;
10400 }
10401 else
10402 constraint (inst.size_req == 2, BAD_HIREG);
10403 }
10404 if (inst.size_req == 4
10405 || (inst.size_req != 2 && !opcode))
10406 {
10407 if (Rd == REG_PC)
10408 {
10409 constraint (add, BAD_PC);
10410 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10411 _("only SUBS PC, LR, #const allowed"));
10412 constraint (inst.reloc.exp.X_op != O_constant,
10413 _("expression too complex"));
10414 constraint (inst.reloc.exp.X_add_number < 0
10415 || inst.reloc.exp.X_add_number > 0xff,
10416 _("immediate value out of range"));
10417 inst.instruction = T2_SUBS_PC_LR
10418 | inst.reloc.exp.X_add_number;
10419 inst.reloc.type = BFD_RELOC_UNUSED;
10420 return;
10421 }
10422 else if (Rs == REG_PC)
10423 {
10424 /* Always use addw/subw. */
10425 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
10426 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10427 }
10428 else
10429 {
10430 inst.instruction = THUMB_OP32 (inst.instruction);
10431 inst.instruction = (inst.instruction & 0xe1ffffff)
10432 | 0x10000000;
10433 if (flags)
10434 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10435 else
10436 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
10437 }
10438 inst.instruction |= Rd << 8;
10439 inst.instruction |= Rs << 16;
10440 }
10441 }
10442 else
10443 {
10444 unsigned int value = inst.reloc.exp.X_add_number;
10445 unsigned int shift = inst.operands[2].shift_kind;
10446
10447 Rn = inst.operands[2].reg;
10448 /* See if we can do this with a 16-bit instruction. */
10449 if (!inst.operands[2].shifted && inst.size_req != 4)
10450 {
10451 if (Rd > 7 || Rs > 7 || Rn > 7)
10452 narrow = FALSE;
10453
10454 if (narrow)
10455 {
10456 inst.instruction = ((inst.instruction == T_MNEM_adds
10457 || inst.instruction == T_MNEM_add)
10458 ? T_OPCODE_ADD_R3
10459 : T_OPCODE_SUB_R3);
10460 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10461 return;
10462 }
10463
10464 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
10465 {
10466 /* Thumb-1 cores (except v6-M) require at least one high
10467 register in a narrow non flag setting add. */
10468 if (Rd > 7 || Rn > 7
10469 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10470 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
10471 {
10472 if (Rd == Rn)
10473 {
10474 Rn = Rs;
10475 Rs = Rd;
10476 }
10477 inst.instruction = T_OPCODE_ADD_HI;
10478 inst.instruction |= (Rd & 8) << 4;
10479 inst.instruction |= (Rd & 7);
10480 inst.instruction |= Rn << 3;
10481 return;
10482 }
10483 }
10484 }
10485
10486 constraint (Rd == REG_PC, BAD_PC);
10487 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10488 constraint (Rs == REG_PC, BAD_PC);
10489 reject_bad_reg (Rn);
10490
10491 /* If we get here, it can't be done in 16 bits. */
10492 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10493 _("shift must be constant"));
10494 inst.instruction = THUMB_OP32 (inst.instruction);
10495 inst.instruction |= Rd << 8;
10496 inst.instruction |= Rs << 16;
10497 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10498 _("shift value over 3 not allowed in thumb mode"));
10499 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10500 _("only LSL shift allowed in thumb mode"));
10501 encode_thumb32_shifted_operand (2);
10502 }
10503 }
10504 else
10505 {
10506 constraint (inst.instruction == T_MNEM_adds
10507 || inst.instruction == T_MNEM_subs,
10508 BAD_THUMB32);
10509
10510 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
10511 {
10512 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10513 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10514 BAD_HIREG);
10515
10516 inst.instruction = (inst.instruction == T_MNEM_add
10517 ? 0x0000 : 0x8000);
10518 inst.instruction |= (Rd << 4) | Rs;
10519 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10520 return;
10521 }
10522
10523 Rn = inst.operands[2].reg;
10524 constraint (inst.operands[2].shifted, _("unshifted register required"));
10525
10526 /* We now have Rd, Rs, and Rn set to registers. */
10527 if (Rd > 7 || Rs > 7 || Rn > 7)
10528 {
10529 /* Can't do this for SUB. */
10530 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10531 inst.instruction = T_OPCODE_ADD_HI;
10532 inst.instruction |= (Rd & 8) << 4;
10533 inst.instruction |= (Rd & 7);
10534 if (Rs == Rd)
10535 inst.instruction |= Rn << 3;
10536 else if (Rn == Rd)
10537 inst.instruction |= Rs << 3;
10538 else
10539 constraint (1, _("dest must overlap one source register"));
10540 }
10541 else
10542 {
10543 inst.instruction = (inst.instruction == T_MNEM_add
10544 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10545 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10546 }
10547 }
10548 }
10549
10550 static void
10551 do_t_adr (void)
10552 {
10553 unsigned Rd;
10554
10555 Rd = inst.operands[0].reg;
10556 reject_bad_reg (Rd);
10557
10558 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
10559 {
10560 /* Defer to section relaxation. */
10561 inst.relax = inst.instruction;
10562 inst.instruction = THUMB_OP16 (inst.instruction);
10563 inst.instruction |= Rd << 4;
10564 }
10565 else if (unified_syntax && inst.size_req != 2)
10566 {
10567 /* Generate a 32-bit opcode. */
10568 inst.instruction = THUMB_OP32 (inst.instruction);
10569 inst.instruction |= Rd << 8;
10570 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
10571 inst.reloc.pc_rel = 1;
10572 }
10573 else
10574 {
10575 /* Generate a 16-bit opcode. */
10576 inst.instruction = THUMB_OP16 (inst.instruction);
10577 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10578 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
10579 inst.reloc.pc_rel = 1;
10580
10581 inst.instruction |= Rd << 4;
10582 }
10583 }
10584
10585 /* Arithmetic instructions for which there is just one 16-bit
10586 instruction encoding, and it allows only two low registers.
10587 For maximal compatibility with ARM syntax, we allow three register
10588 operands even when Thumb-32 instructions are not available, as long
10589 as the first two are identical. For instance, both "sbc r0,r1" and
10590 "sbc r0,r0,r1" are allowed. */
10591 static void
10592 do_t_arit3 (void)
10593 {
10594 int Rd, Rs, Rn;
10595
10596 Rd = inst.operands[0].reg;
10597 Rs = (inst.operands[1].present
10598 ? inst.operands[1].reg /* Rd, Rs, foo */
10599 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10600 Rn = inst.operands[2].reg;
10601
10602 reject_bad_reg (Rd);
10603 reject_bad_reg (Rs);
10604 if (inst.operands[2].isreg)
10605 reject_bad_reg (Rn);
10606
10607 if (unified_syntax)
10608 {
10609 if (!inst.operands[2].isreg)
10610 {
10611 /* For an immediate, we always generate a 32-bit opcode;
10612 section relaxation will shrink it later if possible. */
10613 inst.instruction = THUMB_OP32 (inst.instruction);
10614 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10615 inst.instruction |= Rd << 8;
10616 inst.instruction |= Rs << 16;
10617 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10618 }
10619 else
10620 {
10621 bfd_boolean narrow;
10622
10623 /* See if we can do this with a 16-bit instruction. */
10624 if (THUMB_SETS_FLAGS (inst.instruction))
10625 narrow = !in_it_block ();
10626 else
10627 narrow = in_it_block ();
10628
10629 if (Rd > 7 || Rn > 7 || Rs > 7)
10630 narrow = FALSE;
10631 if (inst.operands[2].shifted)
10632 narrow = FALSE;
10633 if (inst.size_req == 4)
10634 narrow = FALSE;
10635
10636 if (narrow
10637 && Rd == Rs)
10638 {
10639 inst.instruction = THUMB_OP16 (inst.instruction);
10640 inst.instruction |= Rd;
10641 inst.instruction |= Rn << 3;
10642 return;
10643 }
10644
10645 /* If we get here, it can't be done in 16 bits. */
10646 constraint (inst.operands[2].shifted
10647 && inst.operands[2].immisreg,
10648 _("shift must be constant"));
10649 inst.instruction = THUMB_OP32 (inst.instruction);
10650 inst.instruction |= Rd << 8;
10651 inst.instruction |= Rs << 16;
10652 encode_thumb32_shifted_operand (2);
10653 }
10654 }
10655 else
10656 {
10657 /* On its face this is a lie - the instruction does set the
10658 flags. However, the only supported mnemonic in this mode
10659 says it doesn't. */
10660 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10661
10662 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10663 _("unshifted register required"));
10664 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10665 constraint (Rd != Rs,
10666 _("dest and source1 must be the same register"));
10667
10668 inst.instruction = THUMB_OP16 (inst.instruction);
10669 inst.instruction |= Rd;
10670 inst.instruction |= Rn << 3;
10671 }
10672 }
10673
10674 /* Similarly, but for instructions where the arithmetic operation is
10675 commutative, so we can allow either of them to be different from
10676 the destination operand in a 16-bit instruction. For instance, all
10677 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10678 accepted. */
10679 static void
10680 do_t_arit3c (void)
10681 {
10682 int Rd, Rs, Rn;
10683
10684 Rd = inst.operands[0].reg;
10685 Rs = (inst.operands[1].present
10686 ? inst.operands[1].reg /* Rd, Rs, foo */
10687 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10688 Rn = inst.operands[2].reg;
10689
10690 reject_bad_reg (Rd);
10691 reject_bad_reg (Rs);
10692 if (inst.operands[2].isreg)
10693 reject_bad_reg (Rn);
10694
10695 if (unified_syntax)
10696 {
10697 if (!inst.operands[2].isreg)
10698 {
10699 /* For an immediate, we always generate a 32-bit opcode;
10700 section relaxation will shrink it later if possible. */
10701 inst.instruction = THUMB_OP32 (inst.instruction);
10702 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10703 inst.instruction |= Rd << 8;
10704 inst.instruction |= Rs << 16;
10705 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10706 }
10707 else
10708 {
10709 bfd_boolean narrow;
10710
10711 /* See if we can do this with a 16-bit instruction. */
10712 if (THUMB_SETS_FLAGS (inst.instruction))
10713 narrow = !in_it_block ();
10714 else
10715 narrow = in_it_block ();
10716
10717 if (Rd > 7 || Rn > 7 || Rs > 7)
10718 narrow = FALSE;
10719 if (inst.operands[2].shifted)
10720 narrow = FALSE;
10721 if (inst.size_req == 4)
10722 narrow = FALSE;
10723
10724 if (narrow)
10725 {
10726 if (Rd == Rs)
10727 {
10728 inst.instruction = THUMB_OP16 (inst.instruction);
10729 inst.instruction |= Rd;
10730 inst.instruction |= Rn << 3;
10731 return;
10732 }
10733 if (Rd == Rn)
10734 {
10735 inst.instruction = THUMB_OP16 (inst.instruction);
10736 inst.instruction |= Rd;
10737 inst.instruction |= Rs << 3;
10738 return;
10739 }
10740 }
10741
10742 /* If we get here, it can't be done in 16 bits. */
10743 constraint (inst.operands[2].shifted
10744 && inst.operands[2].immisreg,
10745 _("shift must be constant"));
10746 inst.instruction = THUMB_OP32 (inst.instruction);
10747 inst.instruction |= Rd << 8;
10748 inst.instruction |= Rs << 16;
10749 encode_thumb32_shifted_operand (2);
10750 }
10751 }
10752 else
10753 {
10754 /* On its face this is a lie - the instruction does set the
10755 flags. However, the only supported mnemonic in this mode
10756 says it doesn't. */
10757 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10758
10759 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10760 _("unshifted register required"));
10761 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10762
10763 inst.instruction = THUMB_OP16 (inst.instruction);
10764 inst.instruction |= Rd;
10765
10766 if (Rd == Rs)
10767 inst.instruction |= Rn << 3;
10768 else if (Rd == Rn)
10769 inst.instruction |= Rs << 3;
10770 else
10771 constraint (1, _("dest must overlap one source register"));
10772 }
10773 }
10774
10775 static void
10776 do_t_bfc (void)
10777 {
10778 unsigned Rd;
10779 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10780 constraint (msb > 32, _("bit-field extends past end of register"));
10781 /* The instruction encoding stores the LSB and MSB,
10782 not the LSB and width. */
10783 Rd = inst.operands[0].reg;
10784 reject_bad_reg (Rd);
10785 inst.instruction |= Rd << 8;
10786 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10787 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10788 inst.instruction |= msb - 1;
10789 }
10790
10791 static void
10792 do_t_bfi (void)
10793 {
10794 int Rd, Rn;
10795 unsigned int msb;
10796
10797 Rd = inst.operands[0].reg;
10798 reject_bad_reg (Rd);
10799
10800 /* #0 in second position is alternative syntax for bfc, which is
10801 the same instruction but with REG_PC in the Rm field. */
10802 if (!inst.operands[1].isreg)
10803 Rn = REG_PC;
10804 else
10805 {
10806 Rn = inst.operands[1].reg;
10807 reject_bad_reg (Rn);
10808 }
10809
10810 msb = inst.operands[2].imm + inst.operands[3].imm;
10811 constraint (msb > 32, _("bit-field extends past end of register"));
10812 /* The instruction encoding stores the LSB and MSB,
10813 not the LSB and width. */
10814 inst.instruction |= Rd << 8;
10815 inst.instruction |= Rn << 16;
10816 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10817 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10818 inst.instruction |= msb - 1;
10819 }
10820
10821 static void
10822 do_t_bfx (void)
10823 {
10824 unsigned Rd, Rn;
10825
10826 Rd = inst.operands[0].reg;
10827 Rn = inst.operands[1].reg;
10828
10829 reject_bad_reg (Rd);
10830 reject_bad_reg (Rn);
10831
10832 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10833 _("bit-field extends past end of register"));
10834 inst.instruction |= Rd << 8;
10835 inst.instruction |= Rn << 16;
10836 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10837 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10838 inst.instruction |= inst.operands[3].imm - 1;
10839 }
10840
10841 /* ARM V5 Thumb BLX (argument parse)
10842 BLX <target_addr> which is BLX(1)
10843 BLX <Rm> which is BLX(2)
10844 Unfortunately, there are two different opcodes for this mnemonic.
10845 So, the insns[].value is not used, and the code here zaps values
10846 into inst.instruction.
10847
10848 ??? How to take advantage of the additional two bits of displacement
10849 available in Thumb32 mode? Need new relocation? */
10850
10851 static void
10852 do_t_blx (void)
10853 {
10854 set_it_insn_type_last ();
10855
10856 if (inst.operands[0].isreg)
10857 {
10858 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10859 /* We have a register, so this is BLX(2). */
10860 inst.instruction |= inst.operands[0].reg << 3;
10861 }
10862 else
10863 {
10864 /* No register. This must be BLX(1). */
10865 inst.instruction = 0xf000e800;
10866 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10867 }
10868 }
10869
10870 static void
10871 do_t_branch (void)
10872 {
10873 int opcode;
10874 int cond;
10875 int reloc;
10876
10877 cond = inst.cond;
10878 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10879
10880 if (in_it_block ())
10881 {
10882 /* Conditional branches inside IT blocks are encoded as unconditional
10883 branches. */
10884 cond = COND_ALWAYS;
10885 }
10886 else
10887 cond = inst.cond;
10888
10889 if (cond != COND_ALWAYS)
10890 opcode = T_MNEM_bcond;
10891 else
10892 opcode = inst.instruction;
10893
10894 if (unified_syntax
10895 && (inst.size_req == 4
10896 || (inst.size_req != 2
10897 && (inst.operands[0].hasreloc
10898 || inst.reloc.exp.X_op == O_constant))))
10899 {
10900 inst.instruction = THUMB_OP32(opcode);
10901 if (cond == COND_ALWAYS)
10902 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10903 else
10904 {
10905 gas_assert (cond != 0xF);
10906 inst.instruction |= cond << 22;
10907 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10908 }
10909 }
10910 else
10911 {
10912 inst.instruction = THUMB_OP16(opcode);
10913 if (cond == COND_ALWAYS)
10914 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10915 else
10916 {
10917 inst.instruction |= cond << 8;
10918 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10919 }
10920 /* Allow section relaxation. */
10921 if (unified_syntax && inst.size_req != 2)
10922 inst.relax = opcode;
10923 }
10924 inst.reloc.type = reloc;
10925 inst.reloc.pc_rel = 1;
10926 }
10927
10928 /* Actually do the work for Thumb state bkpt and hlt. The only difference
10929 between the two is the maximum immediate allowed - which is passed in
10930 RANGE. */
10931 static void
10932 do_t_bkpt_hlt1 (int range)
10933 {
10934 constraint (inst.cond != COND_ALWAYS,
10935 _("instruction is always unconditional"));
10936 if (inst.operands[0].present)
10937 {
10938 constraint (inst.operands[0].imm > range,
10939 _("immediate value out of range"));
10940 inst.instruction |= inst.operands[0].imm;
10941 }
10942
10943 set_it_insn_type (NEUTRAL_IT_INSN);
10944 }
10945
10946 static void
10947 do_t_hlt (void)
10948 {
10949 do_t_bkpt_hlt1 (63);
10950 }
10951
10952 static void
10953 do_t_bkpt (void)
10954 {
10955 do_t_bkpt_hlt1 (255);
10956 }
10957
10958 static void
10959 do_t_branch23 (void)
10960 {
10961 set_it_insn_type_last ();
10962 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10963
10964 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10965 this file. We used to simply ignore the PLT reloc type here --
10966 the branch encoding is now needed to deal with TLSCALL relocs.
10967 So if we see a PLT reloc now, put it back to how it used to be to
10968 keep the preexisting behaviour. */
10969 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10970 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10971
10972 #if defined(OBJ_COFF)
10973 /* If the destination of the branch is a defined symbol which does not have
10974 the THUMB_FUNC attribute, then we must be calling a function which has
10975 the (interfacearm) attribute. We look for the Thumb entry point to that
10976 function and change the branch to refer to that function instead. */
10977 if ( inst.reloc.exp.X_op == O_symbol
10978 && inst.reloc.exp.X_add_symbol != NULL
10979 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10980 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10981 inst.reloc.exp.X_add_symbol =
10982 find_real_start (inst.reloc.exp.X_add_symbol);
10983 #endif
10984 }
10985
10986 static void
10987 do_t_bx (void)
10988 {
10989 set_it_insn_type_last ();
10990 inst.instruction |= inst.operands[0].reg << 3;
10991 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10992 should cause the alignment to be checked once it is known. This is
10993 because BX PC only works if the instruction is word aligned. */
10994 }
10995
10996 static void
10997 do_t_bxj (void)
10998 {
10999 int Rm;
11000
11001 set_it_insn_type_last ();
11002 Rm = inst.operands[0].reg;
11003 reject_bad_reg (Rm);
11004 inst.instruction |= Rm << 16;
11005 }
11006
11007 static void
11008 do_t_clz (void)
11009 {
11010 unsigned Rd;
11011 unsigned Rm;
11012
11013 Rd = inst.operands[0].reg;
11014 Rm = inst.operands[1].reg;
11015
11016 reject_bad_reg (Rd);
11017 reject_bad_reg (Rm);
11018
11019 inst.instruction |= Rd << 8;
11020 inst.instruction |= Rm << 16;
11021 inst.instruction |= Rm;
11022 }
11023
11024 static void
11025 do_t_cps (void)
11026 {
11027 set_it_insn_type (OUTSIDE_IT_INSN);
11028 inst.instruction |= inst.operands[0].imm;
11029 }
11030
11031 static void
11032 do_t_cpsi (void)
11033 {
11034 set_it_insn_type (OUTSIDE_IT_INSN);
11035 if (unified_syntax
11036 && (inst.operands[1].present || inst.size_req == 4)
11037 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11038 {
11039 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11040 inst.instruction = 0xf3af8000;
11041 inst.instruction |= imod << 9;
11042 inst.instruction |= inst.operands[0].imm << 5;
11043 if (inst.operands[1].present)
11044 inst.instruction |= 0x100 | inst.operands[1].imm;
11045 }
11046 else
11047 {
11048 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11049 && (inst.operands[0].imm & 4),
11050 _("selected processor does not support 'A' form "
11051 "of this instruction"));
11052 constraint (inst.operands[1].present || inst.size_req == 4,
11053 _("Thumb does not support the 2-argument "
11054 "form of this instruction"));
11055 inst.instruction |= inst.operands[0].imm;
11056 }
11057 }
11058
11059 /* THUMB CPY instruction (argument parse). */
11060
11061 static void
11062 do_t_cpy (void)
11063 {
11064 if (inst.size_req == 4)
11065 {
11066 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11067 inst.instruction |= inst.operands[0].reg << 8;
11068 inst.instruction |= inst.operands[1].reg;
11069 }
11070 else
11071 {
11072 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11073 inst.instruction |= (inst.operands[0].reg & 0x7);
11074 inst.instruction |= inst.operands[1].reg << 3;
11075 }
11076 }
11077
11078 static void
11079 do_t_cbz (void)
11080 {
11081 set_it_insn_type (OUTSIDE_IT_INSN);
11082 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11083 inst.instruction |= inst.operands[0].reg;
11084 inst.reloc.pc_rel = 1;
11085 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11086 }
11087
11088 static void
11089 do_t_dbg (void)
11090 {
11091 inst.instruction |= inst.operands[0].imm;
11092 }
11093
11094 static void
11095 do_t_div (void)
11096 {
11097 unsigned Rd, Rn, Rm;
11098
11099 Rd = inst.operands[0].reg;
11100 Rn = (inst.operands[1].present
11101 ? inst.operands[1].reg : Rd);
11102 Rm = inst.operands[2].reg;
11103
11104 reject_bad_reg (Rd);
11105 reject_bad_reg (Rn);
11106 reject_bad_reg (Rm);
11107
11108 inst.instruction |= Rd << 8;
11109 inst.instruction |= Rn << 16;
11110 inst.instruction |= Rm;
11111 }
11112
11113 static void
11114 do_t_hint (void)
11115 {
11116 if (unified_syntax && inst.size_req == 4)
11117 inst.instruction = THUMB_OP32 (inst.instruction);
11118 else
11119 inst.instruction = THUMB_OP16 (inst.instruction);
11120 }
11121
11122 static void
11123 do_t_it (void)
11124 {
11125 unsigned int cond = inst.operands[0].imm;
11126
11127 set_it_insn_type (IT_INSN);
11128 now_it.mask = (inst.instruction & 0xf) | 0x10;
11129 now_it.cc = cond;
11130 now_it.warn_deprecated = FALSE;
11131
11132 /* If the condition is a negative condition, invert the mask. */
11133 if ((cond & 0x1) == 0x0)
11134 {
11135 unsigned int mask = inst.instruction & 0x000f;
11136
11137 if ((mask & 0x7) == 0)
11138 {
11139 /* No conversion needed. */
11140 now_it.block_length = 1;
11141 }
11142 else if ((mask & 0x3) == 0)
11143 {
11144 mask ^= 0x8;
11145 now_it.block_length = 2;
11146 }
11147 else if ((mask & 0x1) == 0)
11148 {
11149 mask ^= 0xC;
11150 now_it.block_length = 3;
11151 }
11152 else
11153 {
11154 mask ^= 0xE;
11155 now_it.block_length = 4;
11156 }
11157
11158 inst.instruction &= 0xfff0;
11159 inst.instruction |= mask;
11160 }
11161
11162 inst.instruction |= cond << 4;
11163 }
11164
11165 /* Helper function used for both push/pop and ldm/stm. */
11166 static void
11167 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11168 {
11169 bfd_boolean load;
11170
11171 load = (inst.instruction & (1 << 20)) != 0;
11172
11173 if (mask & (1 << 13))
11174 inst.error = _("SP not allowed in register list");
11175
11176 if ((mask & (1 << base)) != 0
11177 && writeback)
11178 inst.error = _("having the base register in the register list when "
11179 "using write back is UNPREDICTABLE");
11180
11181 if (load)
11182 {
11183 if (mask & (1 << 15))
11184 {
11185 if (mask & (1 << 14))
11186 inst.error = _("LR and PC should not both be in register list");
11187 else
11188 set_it_insn_type_last ();
11189 }
11190 }
11191 else
11192 {
11193 if (mask & (1 << 15))
11194 inst.error = _("PC not allowed in register list");
11195 }
11196
11197 if ((mask & (mask - 1)) == 0)
11198 {
11199 /* Single register transfers implemented as str/ldr. */
11200 if (writeback)
11201 {
11202 if (inst.instruction & (1 << 23))
11203 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11204 else
11205 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11206 }
11207 else
11208 {
11209 if (inst.instruction & (1 << 23))
11210 inst.instruction = 0x00800000; /* ia -> [base] */
11211 else
11212 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11213 }
11214
11215 inst.instruction |= 0xf8400000;
11216 if (load)
11217 inst.instruction |= 0x00100000;
11218
11219 mask = ffs (mask) - 1;
11220 mask <<= 12;
11221 }
11222 else if (writeback)
11223 inst.instruction |= WRITE_BACK;
11224
11225 inst.instruction |= mask;
11226 inst.instruction |= base << 16;
11227 }
11228
11229 static void
11230 do_t_ldmstm (void)
11231 {
11232 /* This really doesn't seem worth it. */
11233 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11234 _("expression too complex"));
11235 constraint (inst.operands[1].writeback,
11236 _("Thumb load/store multiple does not support {reglist}^"));
11237
11238 if (unified_syntax)
11239 {
11240 bfd_boolean narrow;
11241 unsigned mask;
11242
11243 narrow = FALSE;
11244 /* See if we can use a 16-bit instruction. */
11245 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11246 && inst.size_req != 4
11247 && !(inst.operands[1].imm & ~0xff))
11248 {
11249 mask = 1 << inst.operands[0].reg;
11250
11251 if (inst.operands[0].reg <= 7)
11252 {
11253 if (inst.instruction == T_MNEM_stmia
11254 ? inst.operands[0].writeback
11255 : (inst.operands[0].writeback
11256 == !(inst.operands[1].imm & mask)))
11257 {
11258 if (inst.instruction == T_MNEM_stmia
11259 && (inst.operands[1].imm & mask)
11260 && (inst.operands[1].imm & (mask - 1)))
11261 as_warn (_("value stored for r%d is UNKNOWN"),
11262 inst.operands[0].reg);
11263
11264 inst.instruction = THUMB_OP16 (inst.instruction);
11265 inst.instruction |= inst.operands[0].reg << 8;
11266 inst.instruction |= inst.operands[1].imm;
11267 narrow = TRUE;
11268 }
11269 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11270 {
11271 /* This means 1 register in reg list one of 3 situations:
11272 1. Instruction is stmia, but without writeback.
11273 2. lmdia without writeback, but with Rn not in
11274 reglist.
11275 3. ldmia with writeback, but with Rn in reglist.
11276 Case 3 is UNPREDICTABLE behaviour, so we handle
11277 case 1 and 2 which can be converted into a 16-bit
11278 str or ldr. The SP cases are handled below. */
11279 unsigned long opcode;
11280 /* First, record an error for Case 3. */
11281 if (inst.operands[1].imm & mask
11282 && inst.operands[0].writeback)
11283 inst.error =
11284 _("having the base register in the register list when "
11285 "using write back is UNPREDICTABLE");
11286
11287 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
11288 : T_MNEM_ldr);
11289 inst.instruction = THUMB_OP16 (opcode);
11290 inst.instruction |= inst.operands[0].reg << 3;
11291 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11292 narrow = TRUE;
11293 }
11294 }
11295 else if (inst.operands[0] .reg == REG_SP)
11296 {
11297 if (inst.operands[0].writeback)
11298 {
11299 inst.instruction =
11300 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11301 ? T_MNEM_push : T_MNEM_pop);
11302 inst.instruction |= inst.operands[1].imm;
11303 narrow = TRUE;
11304 }
11305 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11306 {
11307 inst.instruction =
11308 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11309 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
11310 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
11311 narrow = TRUE;
11312 }
11313 }
11314 }
11315
11316 if (!narrow)
11317 {
11318 if (inst.instruction < 0xffff)
11319 inst.instruction = THUMB_OP32 (inst.instruction);
11320
11321 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11322 inst.operands[0].writeback);
11323 }
11324 }
11325 else
11326 {
11327 constraint (inst.operands[0].reg > 7
11328 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
11329 constraint (inst.instruction != T_MNEM_ldmia
11330 && inst.instruction != T_MNEM_stmia,
11331 _("Thumb-2 instruction only valid in unified syntax"));
11332 if (inst.instruction == T_MNEM_stmia)
11333 {
11334 if (!inst.operands[0].writeback)
11335 as_warn (_("this instruction will write back the base register"));
11336 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11337 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
11338 as_warn (_("value stored for r%d is UNKNOWN"),
11339 inst.operands[0].reg);
11340 }
11341 else
11342 {
11343 if (!inst.operands[0].writeback
11344 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11345 as_warn (_("this instruction will write back the base register"));
11346 else if (inst.operands[0].writeback
11347 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11348 as_warn (_("this instruction will not write back the base register"));
11349 }
11350
11351 inst.instruction = THUMB_OP16 (inst.instruction);
11352 inst.instruction |= inst.operands[0].reg << 8;
11353 inst.instruction |= inst.operands[1].imm;
11354 }
11355 }
11356
11357 static void
11358 do_t_ldrex (void)
11359 {
11360 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11361 || inst.operands[1].postind || inst.operands[1].writeback
11362 || inst.operands[1].immisreg || inst.operands[1].shifted
11363 || inst.operands[1].negative,
11364 BAD_ADDR_MODE);
11365
11366 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11367
11368 inst.instruction |= inst.operands[0].reg << 12;
11369 inst.instruction |= inst.operands[1].reg << 16;
11370 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11371 }
11372
11373 static void
11374 do_t_ldrexd (void)
11375 {
11376 if (!inst.operands[1].present)
11377 {
11378 constraint (inst.operands[0].reg == REG_LR,
11379 _("r14 not allowed as first register "
11380 "when second register is omitted"));
11381 inst.operands[1].reg = inst.operands[0].reg + 1;
11382 }
11383 constraint (inst.operands[0].reg == inst.operands[1].reg,
11384 BAD_OVERLAP);
11385
11386 inst.instruction |= inst.operands[0].reg << 12;
11387 inst.instruction |= inst.operands[1].reg << 8;
11388 inst.instruction |= inst.operands[2].reg << 16;
11389 }
11390
11391 static void
11392 do_t_ldst (void)
11393 {
11394 unsigned long opcode;
11395 int Rn;
11396
11397 if (inst.operands[0].isreg
11398 && !inst.operands[0].preind
11399 && inst.operands[0].reg == REG_PC)
11400 set_it_insn_type_last ();
11401
11402 opcode = inst.instruction;
11403 if (unified_syntax)
11404 {
11405 if (!inst.operands[1].isreg)
11406 {
11407 if (opcode <= 0xffff)
11408 inst.instruction = THUMB_OP32 (opcode);
11409 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11410 return;
11411 }
11412 if (inst.operands[1].isreg
11413 && !inst.operands[1].writeback
11414 && !inst.operands[1].shifted && !inst.operands[1].postind
11415 && !inst.operands[1].negative && inst.operands[0].reg <= 7
11416 && opcode <= 0xffff
11417 && inst.size_req != 4)
11418 {
11419 /* Insn may have a 16-bit form. */
11420 Rn = inst.operands[1].reg;
11421 if (inst.operands[1].immisreg)
11422 {
11423 inst.instruction = THUMB_OP16 (opcode);
11424 /* [Rn, Rik] */
11425 if (Rn <= 7 && inst.operands[1].imm <= 7)
11426 goto op16;
11427 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11428 reject_bad_reg (inst.operands[1].imm);
11429 }
11430 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11431 && opcode != T_MNEM_ldrsb)
11432 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11433 || (Rn == REG_SP && opcode == T_MNEM_str))
11434 {
11435 /* [Rn, #const] */
11436 if (Rn > 7)
11437 {
11438 if (Rn == REG_PC)
11439 {
11440 if (inst.reloc.pc_rel)
11441 opcode = T_MNEM_ldr_pc2;
11442 else
11443 opcode = T_MNEM_ldr_pc;
11444 }
11445 else
11446 {
11447 if (opcode == T_MNEM_ldr)
11448 opcode = T_MNEM_ldr_sp;
11449 else
11450 opcode = T_MNEM_str_sp;
11451 }
11452 inst.instruction = inst.operands[0].reg << 8;
11453 }
11454 else
11455 {
11456 inst.instruction = inst.operands[0].reg;
11457 inst.instruction |= inst.operands[1].reg << 3;
11458 }
11459 inst.instruction |= THUMB_OP16 (opcode);
11460 if (inst.size_req == 2)
11461 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11462 else
11463 inst.relax = opcode;
11464 return;
11465 }
11466 }
11467 /* Definitely a 32-bit variant. */
11468
11469 /* Warning for Erratum 752419. */
11470 if (opcode == T_MNEM_ldr
11471 && inst.operands[0].reg == REG_SP
11472 && inst.operands[1].writeback == 1
11473 && !inst.operands[1].immisreg)
11474 {
11475 if (no_cpu_selected ()
11476 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
11477 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11478 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
11479 as_warn (_("This instruction may be unpredictable "
11480 "if executed on M-profile cores "
11481 "with interrupts enabled."));
11482 }
11483
11484 /* Do some validations regarding addressing modes. */
11485 if (inst.operands[1].immisreg)
11486 reject_bad_reg (inst.operands[1].imm);
11487
11488 constraint (inst.operands[1].writeback == 1
11489 && inst.operands[0].reg == inst.operands[1].reg,
11490 BAD_OVERLAP);
11491
11492 inst.instruction = THUMB_OP32 (opcode);
11493 inst.instruction |= inst.operands[0].reg << 12;
11494 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
11495 check_ldr_r15_aligned ();
11496 return;
11497 }
11498
11499 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11500
11501 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
11502 {
11503 /* Only [Rn,Rm] is acceptable. */
11504 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11505 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11506 || inst.operands[1].postind || inst.operands[1].shifted
11507 || inst.operands[1].negative,
11508 _("Thumb does not support this addressing mode"));
11509 inst.instruction = THUMB_OP16 (inst.instruction);
11510 goto op16;
11511 }
11512
11513 inst.instruction = THUMB_OP16 (inst.instruction);
11514 if (!inst.operands[1].isreg)
11515 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11516 return;
11517
11518 constraint (!inst.operands[1].preind
11519 || inst.operands[1].shifted
11520 || inst.operands[1].writeback,
11521 _("Thumb does not support this addressing mode"));
11522 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
11523 {
11524 constraint (inst.instruction & 0x0600,
11525 _("byte or halfword not valid for base register"));
11526 constraint (inst.operands[1].reg == REG_PC
11527 && !(inst.instruction & THUMB_LOAD_BIT),
11528 _("r15 based store not allowed"));
11529 constraint (inst.operands[1].immisreg,
11530 _("invalid base register for register offset"));
11531
11532 if (inst.operands[1].reg == REG_PC)
11533 inst.instruction = T_OPCODE_LDR_PC;
11534 else if (inst.instruction & THUMB_LOAD_BIT)
11535 inst.instruction = T_OPCODE_LDR_SP;
11536 else
11537 inst.instruction = T_OPCODE_STR_SP;
11538
11539 inst.instruction |= inst.operands[0].reg << 8;
11540 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11541 return;
11542 }
11543
11544 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11545 if (!inst.operands[1].immisreg)
11546 {
11547 /* Immediate offset. */
11548 inst.instruction |= inst.operands[0].reg;
11549 inst.instruction |= inst.operands[1].reg << 3;
11550 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11551 return;
11552 }
11553
11554 /* Register offset. */
11555 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11556 constraint (inst.operands[1].negative,
11557 _("Thumb does not support this addressing mode"));
11558
11559 op16:
11560 switch (inst.instruction)
11561 {
11562 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11563 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11564 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11565 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11566 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11567 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11568 case 0x5600 /* ldrsb */:
11569 case 0x5e00 /* ldrsh */: break;
11570 default: abort ();
11571 }
11572
11573 inst.instruction |= inst.operands[0].reg;
11574 inst.instruction |= inst.operands[1].reg << 3;
11575 inst.instruction |= inst.operands[1].imm << 6;
11576 }
11577
11578 static void
11579 do_t_ldstd (void)
11580 {
11581 if (!inst.operands[1].present)
11582 {
11583 inst.operands[1].reg = inst.operands[0].reg + 1;
11584 constraint (inst.operands[0].reg == REG_LR,
11585 _("r14 not allowed here"));
11586 constraint (inst.operands[0].reg == REG_R12,
11587 _("r12 not allowed here"));
11588 }
11589
11590 if (inst.operands[2].writeback
11591 && (inst.operands[0].reg == inst.operands[2].reg
11592 || inst.operands[1].reg == inst.operands[2].reg))
11593 as_warn (_("base register written back, and overlaps "
11594 "one of transfer registers"));
11595
11596 inst.instruction |= inst.operands[0].reg << 12;
11597 inst.instruction |= inst.operands[1].reg << 8;
11598 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
11599 }
11600
11601 static void
11602 do_t_ldstt (void)
11603 {
11604 inst.instruction |= inst.operands[0].reg << 12;
11605 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11606 }
11607
11608 static void
11609 do_t_mla (void)
11610 {
11611 unsigned Rd, Rn, Rm, Ra;
11612
11613 Rd = inst.operands[0].reg;
11614 Rn = inst.operands[1].reg;
11615 Rm = inst.operands[2].reg;
11616 Ra = inst.operands[3].reg;
11617
11618 reject_bad_reg (Rd);
11619 reject_bad_reg (Rn);
11620 reject_bad_reg (Rm);
11621 reject_bad_reg (Ra);
11622
11623 inst.instruction |= Rd << 8;
11624 inst.instruction |= Rn << 16;
11625 inst.instruction |= Rm;
11626 inst.instruction |= Ra << 12;
11627 }
11628
11629 static void
11630 do_t_mlal (void)
11631 {
11632 unsigned RdLo, RdHi, Rn, Rm;
11633
11634 RdLo = inst.operands[0].reg;
11635 RdHi = inst.operands[1].reg;
11636 Rn = inst.operands[2].reg;
11637 Rm = inst.operands[3].reg;
11638
11639 reject_bad_reg (RdLo);
11640 reject_bad_reg (RdHi);
11641 reject_bad_reg (Rn);
11642 reject_bad_reg (Rm);
11643
11644 inst.instruction |= RdLo << 12;
11645 inst.instruction |= RdHi << 8;
11646 inst.instruction |= Rn << 16;
11647 inst.instruction |= Rm;
11648 }
11649
11650 static void
11651 do_t_mov_cmp (void)
11652 {
11653 unsigned Rn, Rm;
11654
11655 Rn = inst.operands[0].reg;
11656 Rm = inst.operands[1].reg;
11657
11658 if (Rn == REG_PC)
11659 set_it_insn_type_last ();
11660
11661 if (unified_syntax)
11662 {
11663 int r0off = (inst.instruction == T_MNEM_mov
11664 || inst.instruction == T_MNEM_movs) ? 8 : 16;
11665 unsigned long opcode;
11666 bfd_boolean narrow;
11667 bfd_boolean low_regs;
11668
11669 low_regs = (Rn <= 7 && Rm <= 7);
11670 opcode = inst.instruction;
11671 if (in_it_block ())
11672 narrow = opcode != T_MNEM_movs;
11673 else
11674 narrow = opcode != T_MNEM_movs || low_regs;
11675 if (inst.size_req == 4
11676 || inst.operands[1].shifted)
11677 narrow = FALSE;
11678
11679 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11680 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11681 && !inst.operands[1].shifted
11682 && Rn == REG_PC
11683 && Rm == REG_LR)
11684 {
11685 inst.instruction = T2_SUBS_PC_LR;
11686 return;
11687 }
11688
11689 if (opcode == T_MNEM_cmp)
11690 {
11691 constraint (Rn == REG_PC, BAD_PC);
11692 if (narrow)
11693 {
11694 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
11695 but valid. */
11696 warn_deprecated_sp (Rm);
11697 /* R15 was documented as a valid choice for Rm in ARMv6,
11698 but as UNPREDICTABLE in ARMv7. ARM's proprietary
11699 tools reject R15, so we do too. */
11700 constraint (Rm == REG_PC, BAD_PC);
11701 }
11702 else
11703 reject_bad_reg (Rm);
11704 }
11705 else if (opcode == T_MNEM_mov
11706 || opcode == T_MNEM_movs)
11707 {
11708 if (inst.operands[1].isreg)
11709 {
11710 if (opcode == T_MNEM_movs)
11711 {
11712 reject_bad_reg (Rn);
11713 reject_bad_reg (Rm);
11714 }
11715 else if (narrow)
11716 {
11717 /* This is mov.n. */
11718 if ((Rn == REG_SP || Rn == REG_PC)
11719 && (Rm == REG_SP || Rm == REG_PC))
11720 {
11721 as_tsktsk (_("Use of r%u as a source register is "
11722 "deprecated when r%u is the destination "
11723 "register."), Rm, Rn);
11724 }
11725 }
11726 else
11727 {
11728 /* This is mov.w. */
11729 constraint (Rn == REG_PC, BAD_PC);
11730 constraint (Rm == REG_PC, BAD_PC);
11731 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11732 }
11733 }
11734 else
11735 reject_bad_reg (Rn);
11736 }
11737
11738 if (!inst.operands[1].isreg)
11739 {
11740 /* Immediate operand. */
11741 if (!in_it_block () && opcode == T_MNEM_mov)
11742 narrow = 0;
11743 if (low_regs && narrow)
11744 {
11745 inst.instruction = THUMB_OP16 (opcode);
11746 inst.instruction |= Rn << 8;
11747 if (inst.size_req == 2)
11748 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11749 else
11750 inst.relax = opcode;
11751 }
11752 else
11753 {
11754 inst.instruction = THUMB_OP32 (inst.instruction);
11755 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11756 inst.instruction |= Rn << r0off;
11757 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11758 }
11759 }
11760 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11761 && (inst.instruction == T_MNEM_mov
11762 || inst.instruction == T_MNEM_movs))
11763 {
11764 /* Register shifts are encoded as separate shift instructions. */
11765 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11766
11767 if (in_it_block ())
11768 narrow = !flags;
11769 else
11770 narrow = flags;
11771
11772 if (inst.size_req == 4)
11773 narrow = FALSE;
11774
11775 if (!low_regs || inst.operands[1].imm > 7)
11776 narrow = FALSE;
11777
11778 if (Rn != Rm)
11779 narrow = FALSE;
11780
11781 switch (inst.operands[1].shift_kind)
11782 {
11783 case SHIFT_LSL:
11784 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11785 break;
11786 case SHIFT_ASR:
11787 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11788 break;
11789 case SHIFT_LSR:
11790 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11791 break;
11792 case SHIFT_ROR:
11793 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11794 break;
11795 default:
11796 abort ();
11797 }
11798
11799 inst.instruction = opcode;
11800 if (narrow)
11801 {
11802 inst.instruction |= Rn;
11803 inst.instruction |= inst.operands[1].imm << 3;
11804 }
11805 else
11806 {
11807 if (flags)
11808 inst.instruction |= CONDS_BIT;
11809
11810 inst.instruction |= Rn << 8;
11811 inst.instruction |= Rm << 16;
11812 inst.instruction |= inst.operands[1].imm;
11813 }
11814 }
11815 else if (!narrow)
11816 {
11817 /* Some mov with immediate shift have narrow variants.
11818 Register shifts are handled above. */
11819 if (low_regs && inst.operands[1].shifted
11820 && (inst.instruction == T_MNEM_mov
11821 || inst.instruction == T_MNEM_movs))
11822 {
11823 if (in_it_block ())
11824 narrow = (inst.instruction == T_MNEM_mov);
11825 else
11826 narrow = (inst.instruction == T_MNEM_movs);
11827 }
11828
11829 if (narrow)
11830 {
11831 switch (inst.operands[1].shift_kind)
11832 {
11833 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11834 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11835 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11836 default: narrow = FALSE; break;
11837 }
11838 }
11839
11840 if (narrow)
11841 {
11842 inst.instruction |= Rn;
11843 inst.instruction |= Rm << 3;
11844 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11845 }
11846 else
11847 {
11848 inst.instruction = THUMB_OP32 (inst.instruction);
11849 inst.instruction |= Rn << r0off;
11850 encode_thumb32_shifted_operand (1);
11851 }
11852 }
11853 else
11854 switch (inst.instruction)
11855 {
11856 case T_MNEM_mov:
11857 /* In v4t or v5t a move of two lowregs produces unpredictable
11858 results. Don't allow this. */
11859 if (low_regs)
11860 {
11861 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11862 "MOV Rd, Rs with two low registers is not "
11863 "permitted on this architecture");
11864 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11865 arm_ext_v6);
11866 }
11867
11868 inst.instruction = T_OPCODE_MOV_HR;
11869 inst.instruction |= (Rn & 0x8) << 4;
11870 inst.instruction |= (Rn & 0x7);
11871 inst.instruction |= Rm << 3;
11872 break;
11873
11874 case T_MNEM_movs:
11875 /* We know we have low registers at this point.
11876 Generate LSLS Rd, Rs, #0. */
11877 inst.instruction = T_OPCODE_LSL_I;
11878 inst.instruction |= Rn;
11879 inst.instruction |= Rm << 3;
11880 break;
11881
11882 case T_MNEM_cmp:
11883 if (low_regs)
11884 {
11885 inst.instruction = T_OPCODE_CMP_LR;
11886 inst.instruction |= Rn;
11887 inst.instruction |= Rm << 3;
11888 }
11889 else
11890 {
11891 inst.instruction = T_OPCODE_CMP_HR;
11892 inst.instruction |= (Rn & 0x8) << 4;
11893 inst.instruction |= (Rn & 0x7);
11894 inst.instruction |= Rm << 3;
11895 }
11896 break;
11897 }
11898 return;
11899 }
11900
11901 inst.instruction = THUMB_OP16 (inst.instruction);
11902
11903 /* PR 10443: Do not silently ignore shifted operands. */
11904 constraint (inst.operands[1].shifted,
11905 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11906
11907 if (inst.operands[1].isreg)
11908 {
11909 if (Rn < 8 && Rm < 8)
11910 {
11911 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11912 since a MOV instruction produces unpredictable results. */
11913 if (inst.instruction == T_OPCODE_MOV_I8)
11914 inst.instruction = T_OPCODE_ADD_I3;
11915 else
11916 inst.instruction = T_OPCODE_CMP_LR;
11917
11918 inst.instruction |= Rn;
11919 inst.instruction |= Rm << 3;
11920 }
11921 else
11922 {
11923 if (inst.instruction == T_OPCODE_MOV_I8)
11924 inst.instruction = T_OPCODE_MOV_HR;
11925 else
11926 inst.instruction = T_OPCODE_CMP_HR;
11927 do_t_cpy ();
11928 }
11929 }
11930 else
11931 {
11932 constraint (Rn > 7,
11933 _("only lo regs allowed with immediate"));
11934 inst.instruction |= Rn << 8;
11935 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11936 }
11937 }
11938
11939 static void
11940 do_t_mov16 (void)
11941 {
11942 unsigned Rd;
11943 bfd_vma imm;
11944 bfd_boolean top;
11945
11946 top = (inst.instruction & 0x00800000) != 0;
11947 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11948 {
11949 constraint (top, _(":lower16: not allowed this instruction"));
11950 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11951 }
11952 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11953 {
11954 constraint (!top, _(":upper16: not allowed this instruction"));
11955 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11956 }
11957
11958 Rd = inst.operands[0].reg;
11959 reject_bad_reg (Rd);
11960
11961 inst.instruction |= Rd << 8;
11962 if (inst.reloc.type == BFD_RELOC_UNUSED)
11963 {
11964 imm = inst.reloc.exp.X_add_number;
11965 inst.instruction |= (imm & 0xf000) << 4;
11966 inst.instruction |= (imm & 0x0800) << 15;
11967 inst.instruction |= (imm & 0x0700) << 4;
11968 inst.instruction |= (imm & 0x00ff);
11969 }
11970 }
11971
11972 static void
11973 do_t_mvn_tst (void)
11974 {
11975 unsigned Rn, Rm;
11976
11977 Rn = inst.operands[0].reg;
11978 Rm = inst.operands[1].reg;
11979
11980 if (inst.instruction == T_MNEM_cmp
11981 || inst.instruction == T_MNEM_cmn)
11982 constraint (Rn == REG_PC, BAD_PC);
11983 else
11984 reject_bad_reg (Rn);
11985 reject_bad_reg (Rm);
11986
11987 if (unified_syntax)
11988 {
11989 int r0off = (inst.instruction == T_MNEM_mvn
11990 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11991 bfd_boolean narrow;
11992
11993 if (inst.size_req == 4
11994 || inst.instruction > 0xffff
11995 || inst.operands[1].shifted
11996 || Rn > 7 || Rm > 7)
11997 narrow = FALSE;
11998 else if (inst.instruction == T_MNEM_cmn
11999 || inst.instruction == T_MNEM_tst)
12000 narrow = TRUE;
12001 else if (THUMB_SETS_FLAGS (inst.instruction))
12002 narrow = !in_it_block ();
12003 else
12004 narrow = in_it_block ();
12005
12006 if (!inst.operands[1].isreg)
12007 {
12008 /* For an immediate, we always generate a 32-bit opcode;
12009 section relaxation will shrink it later if possible. */
12010 if (inst.instruction < 0xffff)
12011 inst.instruction = THUMB_OP32 (inst.instruction);
12012 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12013 inst.instruction |= Rn << r0off;
12014 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12015 }
12016 else
12017 {
12018 /* See if we can do this with a 16-bit instruction. */
12019 if (narrow)
12020 {
12021 inst.instruction = THUMB_OP16 (inst.instruction);
12022 inst.instruction |= Rn;
12023 inst.instruction |= Rm << 3;
12024 }
12025 else
12026 {
12027 constraint (inst.operands[1].shifted
12028 && inst.operands[1].immisreg,
12029 _("shift must be constant"));
12030 if (inst.instruction < 0xffff)
12031 inst.instruction = THUMB_OP32 (inst.instruction);
12032 inst.instruction |= Rn << r0off;
12033 encode_thumb32_shifted_operand (1);
12034 }
12035 }
12036 }
12037 else
12038 {
12039 constraint (inst.instruction > 0xffff
12040 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12041 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12042 _("unshifted register required"));
12043 constraint (Rn > 7 || Rm > 7,
12044 BAD_HIREG);
12045
12046 inst.instruction = THUMB_OP16 (inst.instruction);
12047 inst.instruction |= Rn;
12048 inst.instruction |= Rm << 3;
12049 }
12050 }
12051
12052 static void
12053 do_t_mrs (void)
12054 {
12055 unsigned Rd;
12056
12057 if (do_vfp_nsyn_mrs () == SUCCESS)
12058 return;
12059
12060 Rd = inst.operands[0].reg;
12061 reject_bad_reg (Rd);
12062 inst.instruction |= Rd << 8;
12063
12064 if (inst.operands[1].isreg)
12065 {
12066 unsigned br = inst.operands[1].reg;
12067 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12068 as_bad (_("bad register for mrs"));
12069
12070 inst.instruction |= br & (0xf << 16);
12071 inst.instruction |= (br & 0x300) >> 4;
12072 inst.instruction |= (br & SPSR_BIT) >> 2;
12073 }
12074 else
12075 {
12076 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12077
12078 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12079 {
12080 /* PR gas/12698: The constraint is only applied for m_profile.
12081 If the user has specified -march=all, we want to ignore it as
12082 we are building for any CPU type, including non-m variants. */
12083 bfd_boolean m_profile =
12084 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12085 constraint ((flags != 0) && m_profile, _("selected processor does "
12086 "not support requested special purpose register"));
12087 }
12088 else
12089 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12090 devices). */
12091 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12092 _("'APSR', 'CPSR' or 'SPSR' expected"));
12093
12094 inst.instruction |= (flags & SPSR_BIT) >> 2;
12095 inst.instruction |= inst.operands[1].imm & 0xff;
12096 inst.instruction |= 0xf0000;
12097 }
12098 }
12099
12100 static void
12101 do_t_msr (void)
12102 {
12103 int flags;
12104 unsigned Rn;
12105
12106 if (do_vfp_nsyn_msr () == SUCCESS)
12107 return;
12108
12109 constraint (!inst.operands[1].isreg,
12110 _("Thumb encoding does not support an immediate here"));
12111
12112 if (inst.operands[0].isreg)
12113 flags = (int)(inst.operands[0].reg);
12114 else
12115 flags = inst.operands[0].imm;
12116
12117 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12118 {
12119 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12120
12121 /* PR gas/12698: The constraint is only applied for m_profile.
12122 If the user has specified -march=all, we want to ignore it as
12123 we are building for any CPU type, including non-m variants. */
12124 bfd_boolean m_profile =
12125 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12126 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12127 && (bits & ~(PSR_s | PSR_f)) != 0)
12128 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12129 && bits != PSR_f)) && m_profile,
12130 _("selected processor does not support requested special "
12131 "purpose register"));
12132 }
12133 else
12134 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12135 "requested special purpose register"));
12136
12137 Rn = inst.operands[1].reg;
12138 reject_bad_reg (Rn);
12139
12140 inst.instruction |= (flags & SPSR_BIT) >> 2;
12141 inst.instruction |= (flags & 0xf0000) >> 8;
12142 inst.instruction |= (flags & 0x300) >> 4;
12143 inst.instruction |= (flags & 0xff);
12144 inst.instruction |= Rn << 16;
12145 }
12146
12147 static void
12148 do_t_mul (void)
12149 {
12150 bfd_boolean narrow;
12151 unsigned Rd, Rn, Rm;
12152
12153 if (!inst.operands[2].present)
12154 inst.operands[2].reg = inst.operands[0].reg;
12155
12156 Rd = inst.operands[0].reg;
12157 Rn = inst.operands[1].reg;
12158 Rm = inst.operands[2].reg;
12159
12160 if (unified_syntax)
12161 {
12162 if (inst.size_req == 4
12163 || (Rd != Rn
12164 && Rd != Rm)
12165 || Rn > 7
12166 || Rm > 7)
12167 narrow = FALSE;
12168 else if (inst.instruction == T_MNEM_muls)
12169 narrow = !in_it_block ();
12170 else
12171 narrow = in_it_block ();
12172 }
12173 else
12174 {
12175 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
12176 constraint (Rn > 7 || Rm > 7,
12177 BAD_HIREG);
12178 narrow = TRUE;
12179 }
12180
12181 if (narrow)
12182 {
12183 /* 16-bit MULS/Conditional MUL. */
12184 inst.instruction = THUMB_OP16 (inst.instruction);
12185 inst.instruction |= Rd;
12186
12187 if (Rd == Rn)
12188 inst.instruction |= Rm << 3;
12189 else if (Rd == Rm)
12190 inst.instruction |= Rn << 3;
12191 else
12192 constraint (1, _("dest must overlap one source register"));
12193 }
12194 else
12195 {
12196 constraint (inst.instruction != T_MNEM_mul,
12197 _("Thumb-2 MUL must not set flags"));
12198 /* 32-bit MUL. */
12199 inst.instruction = THUMB_OP32 (inst.instruction);
12200 inst.instruction |= Rd << 8;
12201 inst.instruction |= Rn << 16;
12202 inst.instruction |= Rm << 0;
12203
12204 reject_bad_reg (Rd);
12205 reject_bad_reg (Rn);
12206 reject_bad_reg (Rm);
12207 }
12208 }
12209
12210 static void
12211 do_t_mull (void)
12212 {
12213 unsigned RdLo, RdHi, Rn, Rm;
12214
12215 RdLo = inst.operands[0].reg;
12216 RdHi = inst.operands[1].reg;
12217 Rn = inst.operands[2].reg;
12218 Rm = inst.operands[3].reg;
12219
12220 reject_bad_reg (RdLo);
12221 reject_bad_reg (RdHi);
12222 reject_bad_reg (Rn);
12223 reject_bad_reg (Rm);
12224
12225 inst.instruction |= RdLo << 12;
12226 inst.instruction |= RdHi << 8;
12227 inst.instruction |= Rn << 16;
12228 inst.instruction |= Rm;
12229
12230 if (RdLo == RdHi)
12231 as_tsktsk (_("rdhi and rdlo must be different"));
12232 }
12233
12234 static void
12235 do_t_nop (void)
12236 {
12237 set_it_insn_type (NEUTRAL_IT_INSN);
12238
12239 if (unified_syntax)
12240 {
12241 if (inst.size_req == 4 || inst.operands[0].imm > 15)
12242 {
12243 inst.instruction = THUMB_OP32 (inst.instruction);
12244 inst.instruction |= inst.operands[0].imm;
12245 }
12246 else
12247 {
12248 /* PR9722: Check for Thumb2 availability before
12249 generating a thumb2 nop instruction. */
12250 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
12251 {
12252 inst.instruction = THUMB_OP16 (inst.instruction);
12253 inst.instruction |= inst.operands[0].imm << 4;
12254 }
12255 else
12256 inst.instruction = 0x46c0;
12257 }
12258 }
12259 else
12260 {
12261 constraint (inst.operands[0].present,
12262 _("Thumb does not support NOP with hints"));
12263 inst.instruction = 0x46c0;
12264 }
12265 }
12266
12267 static void
12268 do_t_neg (void)
12269 {
12270 if (unified_syntax)
12271 {
12272 bfd_boolean narrow;
12273
12274 if (THUMB_SETS_FLAGS (inst.instruction))
12275 narrow = !in_it_block ();
12276 else
12277 narrow = in_it_block ();
12278 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12279 narrow = FALSE;
12280 if (inst.size_req == 4)
12281 narrow = FALSE;
12282
12283 if (!narrow)
12284 {
12285 inst.instruction = THUMB_OP32 (inst.instruction);
12286 inst.instruction |= inst.operands[0].reg << 8;
12287 inst.instruction |= inst.operands[1].reg << 16;
12288 }
12289 else
12290 {
12291 inst.instruction = THUMB_OP16 (inst.instruction);
12292 inst.instruction |= inst.operands[0].reg;
12293 inst.instruction |= inst.operands[1].reg << 3;
12294 }
12295 }
12296 else
12297 {
12298 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12299 BAD_HIREG);
12300 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12301
12302 inst.instruction = THUMB_OP16 (inst.instruction);
12303 inst.instruction |= inst.operands[0].reg;
12304 inst.instruction |= inst.operands[1].reg << 3;
12305 }
12306 }
12307
12308 static void
12309 do_t_orn (void)
12310 {
12311 unsigned Rd, Rn;
12312
12313 Rd = inst.operands[0].reg;
12314 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12315
12316 reject_bad_reg (Rd);
12317 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12318 reject_bad_reg (Rn);
12319
12320 inst.instruction |= Rd << 8;
12321 inst.instruction |= Rn << 16;
12322
12323 if (!inst.operands[2].isreg)
12324 {
12325 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12326 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12327 }
12328 else
12329 {
12330 unsigned Rm;
12331
12332 Rm = inst.operands[2].reg;
12333 reject_bad_reg (Rm);
12334
12335 constraint (inst.operands[2].shifted
12336 && inst.operands[2].immisreg,
12337 _("shift must be constant"));
12338 encode_thumb32_shifted_operand (2);
12339 }
12340 }
12341
12342 static void
12343 do_t_pkhbt (void)
12344 {
12345 unsigned Rd, Rn, Rm;
12346
12347 Rd = inst.operands[0].reg;
12348 Rn = inst.operands[1].reg;
12349 Rm = inst.operands[2].reg;
12350
12351 reject_bad_reg (Rd);
12352 reject_bad_reg (Rn);
12353 reject_bad_reg (Rm);
12354
12355 inst.instruction |= Rd << 8;
12356 inst.instruction |= Rn << 16;
12357 inst.instruction |= Rm;
12358 if (inst.operands[3].present)
12359 {
12360 unsigned int val = inst.reloc.exp.X_add_number;
12361 constraint (inst.reloc.exp.X_op != O_constant,
12362 _("expression too complex"));
12363 inst.instruction |= (val & 0x1c) << 10;
12364 inst.instruction |= (val & 0x03) << 6;
12365 }
12366 }
12367
12368 static void
12369 do_t_pkhtb (void)
12370 {
12371 if (!inst.operands[3].present)
12372 {
12373 unsigned Rtmp;
12374
12375 inst.instruction &= ~0x00000020;
12376
12377 /* PR 10168. Swap the Rm and Rn registers. */
12378 Rtmp = inst.operands[1].reg;
12379 inst.operands[1].reg = inst.operands[2].reg;
12380 inst.operands[2].reg = Rtmp;
12381 }
12382 do_t_pkhbt ();
12383 }
12384
12385 static void
12386 do_t_pld (void)
12387 {
12388 if (inst.operands[0].immisreg)
12389 reject_bad_reg (inst.operands[0].imm);
12390
12391 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12392 }
12393
12394 static void
12395 do_t_push_pop (void)
12396 {
12397 unsigned mask;
12398
12399 constraint (inst.operands[0].writeback,
12400 _("push/pop do not support {reglist}^"));
12401 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
12402 _("expression too complex"));
12403
12404 mask = inst.operands[0].imm;
12405 if (inst.size_req != 4 && (mask & ~0xff) == 0)
12406 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
12407 else if (inst.size_req != 4
12408 && (mask & ~0xff) == (1 << (inst.instruction == T_MNEM_push
12409 ? REG_LR : REG_PC)))
12410 {
12411 inst.instruction = THUMB_OP16 (inst.instruction);
12412 inst.instruction |= THUMB_PP_PC_LR;
12413 inst.instruction |= mask & 0xff;
12414 }
12415 else if (unified_syntax)
12416 {
12417 inst.instruction = THUMB_OP32 (inst.instruction);
12418 encode_thumb2_ldmstm (13, mask, TRUE);
12419 }
12420 else
12421 {
12422 inst.error = _("invalid register list to push/pop instruction");
12423 return;
12424 }
12425 }
12426
12427 static void
12428 do_t_rbit (void)
12429 {
12430 unsigned Rd, Rm;
12431
12432 Rd = inst.operands[0].reg;
12433 Rm = inst.operands[1].reg;
12434
12435 reject_bad_reg (Rd);
12436 reject_bad_reg (Rm);
12437
12438 inst.instruction |= Rd << 8;
12439 inst.instruction |= Rm << 16;
12440 inst.instruction |= Rm;
12441 }
12442
12443 static void
12444 do_t_rev (void)
12445 {
12446 unsigned Rd, Rm;
12447
12448 Rd = inst.operands[0].reg;
12449 Rm = inst.operands[1].reg;
12450
12451 reject_bad_reg (Rd);
12452 reject_bad_reg (Rm);
12453
12454 if (Rd <= 7 && Rm <= 7
12455 && inst.size_req != 4)
12456 {
12457 inst.instruction = THUMB_OP16 (inst.instruction);
12458 inst.instruction |= Rd;
12459 inst.instruction |= Rm << 3;
12460 }
12461 else if (unified_syntax)
12462 {
12463 inst.instruction = THUMB_OP32 (inst.instruction);
12464 inst.instruction |= Rd << 8;
12465 inst.instruction |= Rm << 16;
12466 inst.instruction |= Rm;
12467 }
12468 else
12469 inst.error = BAD_HIREG;
12470 }
12471
12472 static void
12473 do_t_rrx (void)
12474 {
12475 unsigned Rd, Rm;
12476
12477 Rd = inst.operands[0].reg;
12478 Rm = inst.operands[1].reg;
12479
12480 reject_bad_reg (Rd);
12481 reject_bad_reg (Rm);
12482
12483 inst.instruction |= Rd << 8;
12484 inst.instruction |= Rm;
12485 }
12486
12487 static void
12488 do_t_rsb (void)
12489 {
12490 unsigned Rd, Rs;
12491
12492 Rd = inst.operands[0].reg;
12493 Rs = (inst.operands[1].present
12494 ? inst.operands[1].reg /* Rd, Rs, foo */
12495 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
12496
12497 reject_bad_reg (Rd);
12498 reject_bad_reg (Rs);
12499 if (inst.operands[2].isreg)
12500 reject_bad_reg (inst.operands[2].reg);
12501
12502 inst.instruction |= Rd << 8;
12503 inst.instruction |= Rs << 16;
12504 if (!inst.operands[2].isreg)
12505 {
12506 bfd_boolean narrow;
12507
12508 if ((inst.instruction & 0x00100000) != 0)
12509 narrow = !in_it_block ();
12510 else
12511 narrow = in_it_block ();
12512
12513 if (Rd > 7 || Rs > 7)
12514 narrow = FALSE;
12515
12516 if (inst.size_req == 4 || !unified_syntax)
12517 narrow = FALSE;
12518
12519 if (inst.reloc.exp.X_op != O_constant
12520 || inst.reloc.exp.X_add_number != 0)
12521 narrow = FALSE;
12522
12523 /* Turn rsb #0 into 16-bit neg. We should probably do this via
12524 relaxation, but it doesn't seem worth the hassle. */
12525 if (narrow)
12526 {
12527 inst.reloc.type = BFD_RELOC_UNUSED;
12528 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12529 inst.instruction |= Rs << 3;
12530 inst.instruction |= Rd;
12531 }
12532 else
12533 {
12534 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12535 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12536 }
12537 }
12538 else
12539 encode_thumb32_shifted_operand (2);
12540 }
12541
12542 static void
12543 do_t_setend (void)
12544 {
12545 if (warn_on_deprecated
12546 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12547 as_tsktsk (_("setend use is deprecated for ARMv8"));
12548
12549 set_it_insn_type (OUTSIDE_IT_INSN);
12550 if (inst.operands[0].imm)
12551 inst.instruction |= 0x8;
12552 }
12553
12554 static void
12555 do_t_shift (void)
12556 {
12557 if (!inst.operands[1].present)
12558 inst.operands[1].reg = inst.operands[0].reg;
12559
12560 if (unified_syntax)
12561 {
12562 bfd_boolean narrow;
12563 int shift_kind;
12564
12565 switch (inst.instruction)
12566 {
12567 case T_MNEM_asr:
12568 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12569 case T_MNEM_lsl:
12570 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12571 case T_MNEM_lsr:
12572 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12573 case T_MNEM_ror:
12574 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12575 default: abort ();
12576 }
12577
12578 if (THUMB_SETS_FLAGS (inst.instruction))
12579 narrow = !in_it_block ();
12580 else
12581 narrow = in_it_block ();
12582 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12583 narrow = FALSE;
12584 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12585 narrow = FALSE;
12586 if (inst.operands[2].isreg
12587 && (inst.operands[1].reg != inst.operands[0].reg
12588 || inst.operands[2].reg > 7))
12589 narrow = FALSE;
12590 if (inst.size_req == 4)
12591 narrow = FALSE;
12592
12593 reject_bad_reg (inst.operands[0].reg);
12594 reject_bad_reg (inst.operands[1].reg);
12595
12596 if (!narrow)
12597 {
12598 if (inst.operands[2].isreg)
12599 {
12600 reject_bad_reg (inst.operands[2].reg);
12601 inst.instruction = THUMB_OP32 (inst.instruction);
12602 inst.instruction |= inst.operands[0].reg << 8;
12603 inst.instruction |= inst.operands[1].reg << 16;
12604 inst.instruction |= inst.operands[2].reg;
12605
12606 /* PR 12854: Error on extraneous shifts. */
12607 constraint (inst.operands[2].shifted,
12608 _("extraneous shift as part of operand to shift insn"));
12609 }
12610 else
12611 {
12612 inst.operands[1].shifted = 1;
12613 inst.operands[1].shift_kind = shift_kind;
12614 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12615 ? T_MNEM_movs : T_MNEM_mov);
12616 inst.instruction |= inst.operands[0].reg << 8;
12617 encode_thumb32_shifted_operand (1);
12618 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
12619 inst.reloc.type = BFD_RELOC_UNUSED;
12620 }
12621 }
12622 else
12623 {
12624 if (inst.operands[2].isreg)
12625 {
12626 switch (shift_kind)
12627 {
12628 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12629 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12630 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12631 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
12632 default: abort ();
12633 }
12634
12635 inst.instruction |= inst.operands[0].reg;
12636 inst.instruction |= inst.operands[2].reg << 3;
12637
12638 /* PR 12854: Error on extraneous shifts. */
12639 constraint (inst.operands[2].shifted,
12640 _("extraneous shift as part of operand to shift insn"));
12641 }
12642 else
12643 {
12644 switch (shift_kind)
12645 {
12646 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12647 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12648 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12649 default: abort ();
12650 }
12651 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12652 inst.instruction |= inst.operands[0].reg;
12653 inst.instruction |= inst.operands[1].reg << 3;
12654 }
12655 }
12656 }
12657 else
12658 {
12659 constraint (inst.operands[0].reg > 7
12660 || inst.operands[1].reg > 7, BAD_HIREG);
12661 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12662
12663 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12664 {
12665 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12666 constraint (inst.operands[0].reg != inst.operands[1].reg,
12667 _("source1 and dest must be same register"));
12668
12669 switch (inst.instruction)
12670 {
12671 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12672 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12673 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12674 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12675 default: abort ();
12676 }
12677
12678 inst.instruction |= inst.operands[0].reg;
12679 inst.instruction |= inst.operands[2].reg << 3;
12680
12681 /* PR 12854: Error on extraneous shifts. */
12682 constraint (inst.operands[2].shifted,
12683 _("extraneous shift as part of operand to shift insn"));
12684 }
12685 else
12686 {
12687 switch (inst.instruction)
12688 {
12689 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
12690 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
12691 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
12692 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
12693 default: abort ();
12694 }
12695 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12696 inst.instruction |= inst.operands[0].reg;
12697 inst.instruction |= inst.operands[1].reg << 3;
12698 }
12699 }
12700 }
12701
12702 static void
12703 do_t_simd (void)
12704 {
12705 unsigned Rd, Rn, Rm;
12706
12707 Rd = inst.operands[0].reg;
12708 Rn = inst.operands[1].reg;
12709 Rm = inst.operands[2].reg;
12710
12711 reject_bad_reg (Rd);
12712 reject_bad_reg (Rn);
12713 reject_bad_reg (Rm);
12714
12715 inst.instruction |= Rd << 8;
12716 inst.instruction |= Rn << 16;
12717 inst.instruction |= Rm;
12718 }
12719
12720 static void
12721 do_t_simd2 (void)
12722 {
12723 unsigned Rd, Rn, Rm;
12724
12725 Rd = inst.operands[0].reg;
12726 Rm = inst.operands[1].reg;
12727 Rn = inst.operands[2].reg;
12728
12729 reject_bad_reg (Rd);
12730 reject_bad_reg (Rn);
12731 reject_bad_reg (Rm);
12732
12733 inst.instruction |= Rd << 8;
12734 inst.instruction |= Rn << 16;
12735 inst.instruction |= Rm;
12736 }
12737
12738 static void
12739 do_t_smc (void)
12740 {
12741 unsigned int value = inst.reloc.exp.X_add_number;
12742 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12743 _("SMC is not permitted on this architecture"));
12744 constraint (inst.reloc.exp.X_op != O_constant,
12745 _("expression too complex"));
12746 inst.reloc.type = BFD_RELOC_UNUSED;
12747 inst.instruction |= (value & 0xf000) >> 12;
12748 inst.instruction |= (value & 0x0ff0);
12749 inst.instruction |= (value & 0x000f) << 16;
12750 /* PR gas/15623: SMC instructions must be last in an IT block. */
12751 set_it_insn_type_last ();
12752 }
12753
12754 static void
12755 do_t_hvc (void)
12756 {
12757 unsigned int value = inst.reloc.exp.X_add_number;
12758
12759 inst.reloc.type = BFD_RELOC_UNUSED;
12760 inst.instruction |= (value & 0x0fff);
12761 inst.instruction |= (value & 0xf000) << 4;
12762 }
12763
12764 static void
12765 do_t_ssat_usat (int bias)
12766 {
12767 unsigned Rd, Rn;
12768
12769 Rd = inst.operands[0].reg;
12770 Rn = inst.operands[2].reg;
12771
12772 reject_bad_reg (Rd);
12773 reject_bad_reg (Rn);
12774
12775 inst.instruction |= Rd << 8;
12776 inst.instruction |= inst.operands[1].imm - bias;
12777 inst.instruction |= Rn << 16;
12778
12779 if (inst.operands[3].present)
12780 {
12781 offsetT shift_amount = inst.reloc.exp.X_add_number;
12782
12783 inst.reloc.type = BFD_RELOC_UNUSED;
12784
12785 constraint (inst.reloc.exp.X_op != O_constant,
12786 _("expression too complex"));
12787
12788 if (shift_amount != 0)
12789 {
12790 constraint (shift_amount > 31,
12791 _("shift expression is too large"));
12792
12793 if (inst.operands[3].shift_kind == SHIFT_ASR)
12794 inst.instruction |= 0x00200000; /* sh bit. */
12795
12796 inst.instruction |= (shift_amount & 0x1c) << 10;
12797 inst.instruction |= (shift_amount & 0x03) << 6;
12798 }
12799 }
12800 }
12801
12802 static void
12803 do_t_ssat (void)
12804 {
12805 do_t_ssat_usat (1);
12806 }
12807
12808 static void
12809 do_t_ssat16 (void)
12810 {
12811 unsigned Rd, Rn;
12812
12813 Rd = inst.operands[0].reg;
12814 Rn = inst.operands[2].reg;
12815
12816 reject_bad_reg (Rd);
12817 reject_bad_reg (Rn);
12818
12819 inst.instruction |= Rd << 8;
12820 inst.instruction |= inst.operands[1].imm - 1;
12821 inst.instruction |= Rn << 16;
12822 }
12823
12824 static void
12825 do_t_strex (void)
12826 {
12827 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12828 || inst.operands[2].postind || inst.operands[2].writeback
12829 || inst.operands[2].immisreg || inst.operands[2].shifted
12830 || inst.operands[2].negative,
12831 BAD_ADDR_MODE);
12832
12833 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12834
12835 inst.instruction |= inst.operands[0].reg << 8;
12836 inst.instruction |= inst.operands[1].reg << 12;
12837 inst.instruction |= inst.operands[2].reg << 16;
12838 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12839 }
12840
12841 static void
12842 do_t_strexd (void)
12843 {
12844 if (!inst.operands[2].present)
12845 inst.operands[2].reg = inst.operands[1].reg + 1;
12846
12847 constraint (inst.operands[0].reg == inst.operands[1].reg
12848 || inst.operands[0].reg == inst.operands[2].reg
12849 || inst.operands[0].reg == inst.operands[3].reg,
12850 BAD_OVERLAP);
12851
12852 inst.instruction |= inst.operands[0].reg;
12853 inst.instruction |= inst.operands[1].reg << 12;
12854 inst.instruction |= inst.operands[2].reg << 8;
12855 inst.instruction |= inst.operands[3].reg << 16;
12856 }
12857
12858 static void
12859 do_t_sxtah (void)
12860 {
12861 unsigned Rd, Rn, Rm;
12862
12863 Rd = inst.operands[0].reg;
12864 Rn = inst.operands[1].reg;
12865 Rm = inst.operands[2].reg;
12866
12867 reject_bad_reg (Rd);
12868 reject_bad_reg (Rn);
12869 reject_bad_reg (Rm);
12870
12871 inst.instruction |= Rd << 8;
12872 inst.instruction |= Rn << 16;
12873 inst.instruction |= Rm;
12874 inst.instruction |= inst.operands[3].imm << 4;
12875 }
12876
12877 static void
12878 do_t_sxth (void)
12879 {
12880 unsigned Rd, Rm;
12881
12882 Rd = inst.operands[0].reg;
12883 Rm = inst.operands[1].reg;
12884
12885 reject_bad_reg (Rd);
12886 reject_bad_reg (Rm);
12887
12888 if (inst.instruction <= 0xffff
12889 && inst.size_req != 4
12890 && Rd <= 7 && Rm <= 7
12891 && (!inst.operands[2].present || inst.operands[2].imm == 0))
12892 {
12893 inst.instruction = THUMB_OP16 (inst.instruction);
12894 inst.instruction |= Rd;
12895 inst.instruction |= Rm << 3;
12896 }
12897 else if (unified_syntax)
12898 {
12899 if (inst.instruction <= 0xffff)
12900 inst.instruction = THUMB_OP32 (inst.instruction);
12901 inst.instruction |= Rd << 8;
12902 inst.instruction |= Rm;
12903 inst.instruction |= inst.operands[2].imm << 4;
12904 }
12905 else
12906 {
12907 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12908 _("Thumb encoding does not support rotation"));
12909 constraint (1, BAD_HIREG);
12910 }
12911 }
12912
12913 static void
12914 do_t_swi (void)
12915 {
12916 /* We have to do the following check manually as ARM_EXT_OS only applies
12917 to ARM_EXT_V6M. */
12918 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12919 {
12920 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12921 /* This only applies to the v6m howver, not later architectures. */
12922 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
12923 as_bad (_("SVC is not permitted on this architecture"));
12924 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12925 }
12926
12927 inst.reloc.type = BFD_RELOC_ARM_SWI;
12928 }
12929
12930 static void
12931 do_t_tb (void)
12932 {
12933 unsigned Rn, Rm;
12934 int half;
12935
12936 half = (inst.instruction & 0x10) != 0;
12937 set_it_insn_type_last ();
12938 constraint (inst.operands[0].immisreg,
12939 _("instruction requires register index"));
12940
12941 Rn = inst.operands[0].reg;
12942 Rm = inst.operands[0].imm;
12943
12944 constraint (Rn == REG_SP, BAD_SP);
12945 reject_bad_reg (Rm);
12946
12947 constraint (!half && inst.operands[0].shifted,
12948 _("instruction does not allow shifted index"));
12949 inst.instruction |= (Rn << 16) | Rm;
12950 }
12951
12952 static void
12953 do_t_udf (void)
12954 {
12955 if (!inst.operands[0].present)
12956 inst.operands[0].imm = 0;
12957
12958 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
12959 {
12960 constraint (inst.size_req == 2,
12961 _("immediate value out of range"));
12962 inst.instruction = THUMB_OP32 (inst.instruction);
12963 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
12964 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
12965 }
12966 else
12967 {
12968 inst.instruction = THUMB_OP16 (inst.instruction);
12969 inst.instruction |= inst.operands[0].imm;
12970 }
12971
12972 set_it_insn_type (NEUTRAL_IT_INSN);
12973 }
12974
12975
12976 static void
12977 do_t_usat (void)
12978 {
12979 do_t_ssat_usat (0);
12980 }
12981
12982 static void
12983 do_t_usat16 (void)
12984 {
12985 unsigned Rd, Rn;
12986
12987 Rd = inst.operands[0].reg;
12988 Rn = inst.operands[2].reg;
12989
12990 reject_bad_reg (Rd);
12991 reject_bad_reg (Rn);
12992
12993 inst.instruction |= Rd << 8;
12994 inst.instruction |= inst.operands[1].imm;
12995 inst.instruction |= Rn << 16;
12996 }
12997
12998 /* Neon instruction encoder helpers. */
12999
13000 /* Encodings for the different types for various Neon opcodes. */
13001
13002 /* An "invalid" code for the following tables. */
13003 #define N_INV -1u
13004
13005 struct neon_tab_entry
13006 {
13007 unsigned integer;
13008 unsigned float_or_poly;
13009 unsigned scalar_or_imm;
13010 };
13011
13012 /* Map overloaded Neon opcodes to their respective encodings. */
13013 #define NEON_ENC_TAB \
13014 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13015 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13016 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13017 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13018 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13019 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13020 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13021 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13022 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13023 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13024 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13025 /* Register variants of the following two instructions are encoded as
13026 vcge / vcgt with the operands reversed. */ \
13027 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13028 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
13029 X(vfma, N_INV, 0x0000c10, N_INV), \
13030 X(vfms, N_INV, 0x0200c10, N_INV), \
13031 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13032 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13033 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13034 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13035 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13036 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13037 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13038 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13039 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13040 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13041 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
13042 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13043 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
13044 X(vshl, 0x0000400, N_INV, 0x0800510), \
13045 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13046 X(vand, 0x0000110, N_INV, 0x0800030), \
13047 X(vbic, 0x0100110, N_INV, 0x0800030), \
13048 X(veor, 0x1000110, N_INV, N_INV), \
13049 X(vorn, 0x0300110, N_INV, 0x0800010), \
13050 X(vorr, 0x0200110, N_INV, 0x0800010), \
13051 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13052 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13053 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13054 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13055 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13056 X(vst1, 0x0000000, 0x0800000, N_INV), \
13057 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13058 X(vst2, 0x0000100, 0x0800100, N_INV), \
13059 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13060 X(vst3, 0x0000200, 0x0800200, N_INV), \
13061 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13062 X(vst4, 0x0000300, 0x0800300, N_INV), \
13063 X(vmovn, 0x1b20200, N_INV, N_INV), \
13064 X(vtrn, 0x1b20080, N_INV, N_INV), \
13065 X(vqmovn, 0x1b20200, N_INV, N_INV), \
13066 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13067 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
13068 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13069 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
13070 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13071 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
13072 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13073 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13074 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
13075 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13076 X(vseleq, 0xe000a00, N_INV, N_INV), \
13077 X(vselvs, 0xe100a00, N_INV, N_INV), \
13078 X(vselge, 0xe200a00, N_INV, N_INV), \
13079 X(vselgt, 0xe300a00, N_INV, N_INV), \
13080 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
13081 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
13082 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13083 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
13084 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
13085 X(aes, 0x3b00300, N_INV, N_INV), \
13086 X(sha3op, 0x2000c00, N_INV, N_INV), \
13087 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13088 X(sha2op, 0x3ba0380, N_INV, N_INV)
13089
13090 enum neon_opc
13091 {
13092 #define X(OPC,I,F,S) N_MNEM_##OPC
13093 NEON_ENC_TAB
13094 #undef X
13095 };
13096
13097 static const struct neon_tab_entry neon_enc_tab[] =
13098 {
13099 #define X(OPC,I,F,S) { (I), (F), (S) }
13100 NEON_ENC_TAB
13101 #undef X
13102 };
13103
13104 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
13105 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13106 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13107 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13108 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13109 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13110 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13111 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13112 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13113 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13114 #define NEON_ENC_SINGLE_(X) \
13115 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
13116 #define NEON_ENC_DOUBLE_(X) \
13117 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
13118 #define NEON_ENC_FPV8_(X) \
13119 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
13120
13121 #define NEON_ENCODE(type, inst) \
13122 do \
13123 { \
13124 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13125 inst.is_neon = 1; \
13126 } \
13127 while (0)
13128
13129 #define check_neon_suffixes \
13130 do \
13131 { \
13132 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13133 { \
13134 as_bad (_("invalid neon suffix for non neon instruction")); \
13135 return; \
13136 } \
13137 } \
13138 while (0)
13139
13140 /* Define shapes for instruction operands. The following mnemonic characters
13141 are used in this table:
13142
13143 F - VFP S<n> register
13144 D - Neon D<n> register
13145 Q - Neon Q<n> register
13146 I - Immediate
13147 S - Scalar
13148 R - ARM register
13149 L - D<n> register list
13150
13151 This table is used to generate various data:
13152 - enumerations of the form NS_DDR to be used as arguments to
13153 neon_select_shape.
13154 - a table classifying shapes into single, double, quad, mixed.
13155 - a table used to drive neon_select_shape. */
13156
13157 #define NEON_SHAPE_DEF \
13158 X(3, (D, D, D), DOUBLE), \
13159 X(3, (Q, Q, Q), QUAD), \
13160 X(3, (D, D, I), DOUBLE), \
13161 X(3, (Q, Q, I), QUAD), \
13162 X(3, (D, D, S), DOUBLE), \
13163 X(3, (Q, Q, S), QUAD), \
13164 X(2, (D, D), DOUBLE), \
13165 X(2, (Q, Q), QUAD), \
13166 X(2, (D, S), DOUBLE), \
13167 X(2, (Q, S), QUAD), \
13168 X(2, (D, R), DOUBLE), \
13169 X(2, (Q, R), QUAD), \
13170 X(2, (D, I), DOUBLE), \
13171 X(2, (Q, I), QUAD), \
13172 X(3, (D, L, D), DOUBLE), \
13173 X(2, (D, Q), MIXED), \
13174 X(2, (Q, D), MIXED), \
13175 X(3, (D, Q, I), MIXED), \
13176 X(3, (Q, D, I), MIXED), \
13177 X(3, (Q, D, D), MIXED), \
13178 X(3, (D, Q, Q), MIXED), \
13179 X(3, (Q, Q, D), MIXED), \
13180 X(3, (Q, D, S), MIXED), \
13181 X(3, (D, Q, S), MIXED), \
13182 X(4, (D, D, D, I), DOUBLE), \
13183 X(4, (Q, Q, Q, I), QUAD), \
13184 X(2, (F, F), SINGLE), \
13185 X(3, (F, F, F), SINGLE), \
13186 X(2, (F, I), SINGLE), \
13187 X(2, (F, D), MIXED), \
13188 X(2, (D, F), MIXED), \
13189 X(3, (F, F, I), MIXED), \
13190 X(4, (R, R, F, F), SINGLE), \
13191 X(4, (F, F, R, R), SINGLE), \
13192 X(3, (D, R, R), DOUBLE), \
13193 X(3, (R, R, D), DOUBLE), \
13194 X(2, (S, R), SINGLE), \
13195 X(2, (R, S), SINGLE), \
13196 X(2, (F, R), SINGLE), \
13197 X(2, (R, F), SINGLE)
13198
13199 #define S2(A,B) NS_##A##B
13200 #define S3(A,B,C) NS_##A##B##C
13201 #define S4(A,B,C,D) NS_##A##B##C##D
13202
13203 #define X(N, L, C) S##N L
13204
13205 enum neon_shape
13206 {
13207 NEON_SHAPE_DEF,
13208 NS_NULL
13209 };
13210
13211 #undef X
13212 #undef S2
13213 #undef S3
13214 #undef S4
13215
13216 enum neon_shape_class
13217 {
13218 SC_SINGLE,
13219 SC_DOUBLE,
13220 SC_QUAD,
13221 SC_MIXED
13222 };
13223
13224 #define X(N, L, C) SC_##C
13225
13226 static enum neon_shape_class neon_shape_class[] =
13227 {
13228 NEON_SHAPE_DEF
13229 };
13230
13231 #undef X
13232
13233 enum neon_shape_el
13234 {
13235 SE_F,
13236 SE_D,
13237 SE_Q,
13238 SE_I,
13239 SE_S,
13240 SE_R,
13241 SE_L
13242 };
13243
13244 /* Register widths of above. */
13245 static unsigned neon_shape_el_size[] =
13246 {
13247 32,
13248 64,
13249 128,
13250 0,
13251 32,
13252 32,
13253 0
13254 };
13255
13256 struct neon_shape_info
13257 {
13258 unsigned els;
13259 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13260 };
13261
13262 #define S2(A,B) { SE_##A, SE_##B }
13263 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13264 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13265
13266 #define X(N, L, C) { N, S##N L }
13267
13268 static struct neon_shape_info neon_shape_tab[] =
13269 {
13270 NEON_SHAPE_DEF
13271 };
13272
13273 #undef X
13274 #undef S2
13275 #undef S3
13276 #undef S4
13277
13278 /* Bit masks used in type checking given instructions.
13279 'N_EQK' means the type must be the same as (or based on in some way) the key
13280 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13281 set, various other bits can be set as well in order to modify the meaning of
13282 the type constraint. */
13283
13284 enum neon_type_mask
13285 {
13286 N_S8 = 0x0000001,
13287 N_S16 = 0x0000002,
13288 N_S32 = 0x0000004,
13289 N_S64 = 0x0000008,
13290 N_U8 = 0x0000010,
13291 N_U16 = 0x0000020,
13292 N_U32 = 0x0000040,
13293 N_U64 = 0x0000080,
13294 N_I8 = 0x0000100,
13295 N_I16 = 0x0000200,
13296 N_I32 = 0x0000400,
13297 N_I64 = 0x0000800,
13298 N_8 = 0x0001000,
13299 N_16 = 0x0002000,
13300 N_32 = 0x0004000,
13301 N_64 = 0x0008000,
13302 N_P8 = 0x0010000,
13303 N_P16 = 0x0020000,
13304 N_F16 = 0x0040000,
13305 N_F32 = 0x0080000,
13306 N_F64 = 0x0100000,
13307 N_P64 = 0x0200000,
13308 N_KEY = 0x1000000, /* Key element (main type specifier). */
13309 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
13310 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
13311 N_UNT = 0x8000000, /* Must be explicitly untyped. */
13312 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13313 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13314 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13315 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13316 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13317 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13318 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
13319 N_UTYP = 0,
13320 N_MAX_NONSPECIAL = N_P64
13321 };
13322
13323 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13324
13325 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13326 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13327 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
13328 #define N_SUF_32 (N_SU_32 | N_F32)
13329 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
13330 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
13331
13332 /* Pass this as the first type argument to neon_check_type to ignore types
13333 altogether. */
13334 #define N_IGNORE_TYPE (N_KEY | N_EQK)
13335
13336 /* Select a "shape" for the current instruction (describing register types or
13337 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13338 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13339 function of operand parsing, so this function doesn't need to be called.
13340 Shapes should be listed in order of decreasing length. */
13341
13342 static enum neon_shape
13343 neon_select_shape (enum neon_shape shape, ...)
13344 {
13345 va_list ap;
13346 enum neon_shape first_shape = shape;
13347
13348 /* Fix missing optional operands. FIXME: we don't know at this point how
13349 many arguments we should have, so this makes the assumption that we have
13350 > 1. This is true of all current Neon opcodes, I think, but may not be
13351 true in the future. */
13352 if (!inst.operands[1].present)
13353 inst.operands[1] = inst.operands[0];
13354
13355 va_start (ap, shape);
13356
13357 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
13358 {
13359 unsigned j;
13360 int matches = 1;
13361
13362 for (j = 0; j < neon_shape_tab[shape].els; j++)
13363 {
13364 if (!inst.operands[j].present)
13365 {
13366 matches = 0;
13367 break;
13368 }
13369
13370 switch (neon_shape_tab[shape].el[j])
13371 {
13372 case SE_F:
13373 if (!(inst.operands[j].isreg
13374 && inst.operands[j].isvec
13375 && inst.operands[j].issingle
13376 && !inst.operands[j].isquad))
13377 matches = 0;
13378 break;
13379
13380 case SE_D:
13381 if (!(inst.operands[j].isreg
13382 && inst.operands[j].isvec
13383 && !inst.operands[j].isquad
13384 && !inst.operands[j].issingle))
13385 matches = 0;
13386 break;
13387
13388 case SE_R:
13389 if (!(inst.operands[j].isreg
13390 && !inst.operands[j].isvec))
13391 matches = 0;
13392 break;
13393
13394 case SE_Q:
13395 if (!(inst.operands[j].isreg
13396 && inst.operands[j].isvec
13397 && inst.operands[j].isquad
13398 && !inst.operands[j].issingle))
13399 matches = 0;
13400 break;
13401
13402 case SE_I:
13403 if (!(!inst.operands[j].isreg
13404 && !inst.operands[j].isscalar))
13405 matches = 0;
13406 break;
13407
13408 case SE_S:
13409 if (!(!inst.operands[j].isreg
13410 && inst.operands[j].isscalar))
13411 matches = 0;
13412 break;
13413
13414 case SE_L:
13415 break;
13416 }
13417 if (!matches)
13418 break;
13419 }
13420 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13421 /* We've matched all the entries in the shape table, and we don't
13422 have any left over operands which have not been matched. */
13423 break;
13424 }
13425
13426 va_end (ap);
13427
13428 if (shape == NS_NULL && first_shape != NS_NULL)
13429 first_error (_("invalid instruction shape"));
13430
13431 return shape;
13432 }
13433
13434 /* True if SHAPE is predominantly a quadword operation (most of the time, this
13435 means the Q bit should be set). */
13436
13437 static int
13438 neon_quad (enum neon_shape shape)
13439 {
13440 return neon_shape_class[shape] == SC_QUAD;
13441 }
13442
13443 static void
13444 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
13445 unsigned *g_size)
13446 {
13447 /* Allow modification to be made to types which are constrained to be
13448 based on the key element, based on bits set alongside N_EQK. */
13449 if ((typebits & N_EQK) != 0)
13450 {
13451 if ((typebits & N_HLF) != 0)
13452 *g_size /= 2;
13453 else if ((typebits & N_DBL) != 0)
13454 *g_size *= 2;
13455 if ((typebits & N_SGN) != 0)
13456 *g_type = NT_signed;
13457 else if ((typebits & N_UNS) != 0)
13458 *g_type = NT_unsigned;
13459 else if ((typebits & N_INT) != 0)
13460 *g_type = NT_integer;
13461 else if ((typebits & N_FLT) != 0)
13462 *g_type = NT_float;
13463 else if ((typebits & N_SIZ) != 0)
13464 *g_type = NT_untyped;
13465 }
13466 }
13467
13468 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13469 operand type, i.e. the single type specified in a Neon instruction when it
13470 is the only one given. */
13471
13472 static struct neon_type_el
13473 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13474 {
13475 struct neon_type_el dest = *key;
13476
13477 gas_assert ((thisarg & N_EQK) != 0);
13478
13479 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13480
13481 return dest;
13482 }
13483
13484 /* Convert Neon type and size into compact bitmask representation. */
13485
13486 static enum neon_type_mask
13487 type_chk_of_el_type (enum neon_el_type type, unsigned size)
13488 {
13489 switch (type)
13490 {
13491 case NT_untyped:
13492 switch (size)
13493 {
13494 case 8: return N_8;
13495 case 16: return N_16;
13496 case 32: return N_32;
13497 case 64: return N_64;
13498 default: ;
13499 }
13500 break;
13501
13502 case NT_integer:
13503 switch (size)
13504 {
13505 case 8: return N_I8;
13506 case 16: return N_I16;
13507 case 32: return N_I32;
13508 case 64: return N_I64;
13509 default: ;
13510 }
13511 break;
13512
13513 case NT_float:
13514 switch (size)
13515 {
13516 case 16: return N_F16;
13517 case 32: return N_F32;
13518 case 64: return N_F64;
13519 default: ;
13520 }
13521 break;
13522
13523 case NT_poly:
13524 switch (size)
13525 {
13526 case 8: return N_P8;
13527 case 16: return N_P16;
13528 case 64: return N_P64;
13529 default: ;
13530 }
13531 break;
13532
13533 case NT_signed:
13534 switch (size)
13535 {
13536 case 8: return N_S8;
13537 case 16: return N_S16;
13538 case 32: return N_S32;
13539 case 64: return N_S64;
13540 default: ;
13541 }
13542 break;
13543
13544 case NT_unsigned:
13545 switch (size)
13546 {
13547 case 8: return N_U8;
13548 case 16: return N_U16;
13549 case 32: return N_U32;
13550 case 64: return N_U64;
13551 default: ;
13552 }
13553 break;
13554
13555 default: ;
13556 }
13557
13558 return N_UTYP;
13559 }
13560
13561 /* Convert compact Neon bitmask type representation to a type and size. Only
13562 handles the case where a single bit is set in the mask. */
13563
13564 static int
13565 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
13566 enum neon_type_mask mask)
13567 {
13568 if ((mask & N_EQK) != 0)
13569 return FAIL;
13570
13571 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
13572 *size = 8;
13573 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
13574 *size = 16;
13575 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
13576 *size = 32;
13577 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
13578 *size = 64;
13579 else
13580 return FAIL;
13581
13582 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
13583 *type = NT_signed;
13584 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
13585 *type = NT_unsigned;
13586 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
13587 *type = NT_integer;
13588 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
13589 *type = NT_untyped;
13590 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
13591 *type = NT_poly;
13592 else if ((mask & (N_F16 | N_F32 | N_F64)) != 0)
13593 *type = NT_float;
13594 else
13595 return FAIL;
13596
13597 return SUCCESS;
13598 }
13599
13600 /* Modify a bitmask of allowed types. This is only needed for type
13601 relaxation. */
13602
13603 static unsigned
13604 modify_types_allowed (unsigned allowed, unsigned mods)
13605 {
13606 unsigned size;
13607 enum neon_el_type type;
13608 unsigned destmask;
13609 int i;
13610
13611 destmask = 0;
13612
13613 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
13614 {
13615 if (el_type_of_type_chk (&type, &size,
13616 (enum neon_type_mask) (allowed & i)) == SUCCESS)
13617 {
13618 neon_modify_type_size (mods, &type, &size);
13619 destmask |= type_chk_of_el_type (type, size);
13620 }
13621 }
13622
13623 return destmask;
13624 }
13625
13626 /* Check type and return type classification.
13627 The manual states (paraphrase): If one datatype is given, it indicates the
13628 type given in:
13629 - the second operand, if there is one
13630 - the operand, if there is no second operand
13631 - the result, if there are no operands.
13632 This isn't quite good enough though, so we use a concept of a "key" datatype
13633 which is set on a per-instruction basis, which is the one which matters when
13634 only one data type is written.
13635 Note: this function has side-effects (e.g. filling in missing operands). All
13636 Neon instructions should call it before performing bit encoding. */
13637
13638 static struct neon_type_el
13639 neon_check_type (unsigned els, enum neon_shape ns, ...)
13640 {
13641 va_list ap;
13642 unsigned i, pass, key_el = 0;
13643 unsigned types[NEON_MAX_TYPE_ELS];
13644 enum neon_el_type k_type = NT_invtype;
13645 unsigned k_size = -1u;
13646 struct neon_type_el badtype = {NT_invtype, -1};
13647 unsigned key_allowed = 0;
13648
13649 /* Optional registers in Neon instructions are always (not) in operand 1.
13650 Fill in the missing operand here, if it was omitted. */
13651 if (els > 1 && !inst.operands[1].present)
13652 inst.operands[1] = inst.operands[0];
13653
13654 /* Suck up all the varargs. */
13655 va_start (ap, ns);
13656 for (i = 0; i < els; i++)
13657 {
13658 unsigned thisarg = va_arg (ap, unsigned);
13659 if (thisarg == N_IGNORE_TYPE)
13660 {
13661 va_end (ap);
13662 return badtype;
13663 }
13664 types[i] = thisarg;
13665 if ((thisarg & N_KEY) != 0)
13666 key_el = i;
13667 }
13668 va_end (ap);
13669
13670 if (inst.vectype.elems > 0)
13671 for (i = 0; i < els; i++)
13672 if (inst.operands[i].vectype.type != NT_invtype)
13673 {
13674 first_error (_("types specified in both the mnemonic and operands"));
13675 return badtype;
13676 }
13677
13678 /* Duplicate inst.vectype elements here as necessary.
13679 FIXME: No idea if this is exactly the same as the ARM assembler,
13680 particularly when an insn takes one register and one non-register
13681 operand. */
13682 if (inst.vectype.elems == 1 && els > 1)
13683 {
13684 unsigned j;
13685 inst.vectype.elems = els;
13686 inst.vectype.el[key_el] = inst.vectype.el[0];
13687 for (j = 0; j < els; j++)
13688 if (j != key_el)
13689 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13690 types[j]);
13691 }
13692 else if (inst.vectype.elems == 0 && els > 0)
13693 {
13694 unsigned j;
13695 /* No types were given after the mnemonic, so look for types specified
13696 after each operand. We allow some flexibility here; as long as the
13697 "key" operand has a type, we can infer the others. */
13698 for (j = 0; j < els; j++)
13699 if (inst.operands[j].vectype.type != NT_invtype)
13700 inst.vectype.el[j] = inst.operands[j].vectype;
13701
13702 if (inst.operands[key_el].vectype.type != NT_invtype)
13703 {
13704 for (j = 0; j < els; j++)
13705 if (inst.operands[j].vectype.type == NT_invtype)
13706 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13707 types[j]);
13708 }
13709 else
13710 {
13711 first_error (_("operand types can't be inferred"));
13712 return badtype;
13713 }
13714 }
13715 else if (inst.vectype.elems != els)
13716 {
13717 first_error (_("type specifier has the wrong number of parts"));
13718 return badtype;
13719 }
13720
13721 for (pass = 0; pass < 2; pass++)
13722 {
13723 for (i = 0; i < els; i++)
13724 {
13725 unsigned thisarg = types[i];
13726 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
13727 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
13728 enum neon_el_type g_type = inst.vectype.el[i].type;
13729 unsigned g_size = inst.vectype.el[i].size;
13730
13731 /* Decay more-specific signed & unsigned types to sign-insensitive
13732 integer types if sign-specific variants are unavailable. */
13733 if ((g_type == NT_signed || g_type == NT_unsigned)
13734 && (types_allowed & N_SU_ALL) == 0)
13735 g_type = NT_integer;
13736
13737 /* If only untyped args are allowed, decay any more specific types to
13738 them. Some instructions only care about signs for some element
13739 sizes, so handle that properly. */
13740 if (((types_allowed & N_UNT) == 0)
13741 && ((g_size == 8 && (types_allowed & N_8) != 0)
13742 || (g_size == 16 && (types_allowed & N_16) != 0)
13743 || (g_size == 32 && (types_allowed & N_32) != 0)
13744 || (g_size == 64 && (types_allowed & N_64) != 0)))
13745 g_type = NT_untyped;
13746
13747 if (pass == 0)
13748 {
13749 if ((thisarg & N_KEY) != 0)
13750 {
13751 k_type = g_type;
13752 k_size = g_size;
13753 key_allowed = thisarg & ~N_KEY;
13754 }
13755 }
13756 else
13757 {
13758 if ((thisarg & N_VFP) != 0)
13759 {
13760 enum neon_shape_el regshape;
13761 unsigned regwidth, match;
13762
13763 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13764 if (ns == NS_NULL)
13765 {
13766 first_error (_("invalid instruction shape"));
13767 return badtype;
13768 }
13769 regshape = neon_shape_tab[ns].el[i];
13770 regwidth = neon_shape_el_size[regshape];
13771
13772 /* In VFP mode, operands must match register widths. If we
13773 have a key operand, use its width, else use the width of
13774 the current operand. */
13775 if (k_size != -1u)
13776 match = k_size;
13777 else
13778 match = g_size;
13779
13780 if (regwidth != match)
13781 {
13782 first_error (_("operand size must match register width"));
13783 return badtype;
13784 }
13785 }
13786
13787 if ((thisarg & N_EQK) == 0)
13788 {
13789 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13790
13791 if ((given_type & types_allowed) == 0)
13792 {
13793 first_error (_("bad type in Neon instruction"));
13794 return badtype;
13795 }
13796 }
13797 else
13798 {
13799 enum neon_el_type mod_k_type = k_type;
13800 unsigned mod_k_size = k_size;
13801 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13802 if (g_type != mod_k_type || g_size != mod_k_size)
13803 {
13804 first_error (_("inconsistent types in Neon instruction"));
13805 return badtype;
13806 }
13807 }
13808 }
13809 }
13810 }
13811
13812 return inst.vectype.el[key_el];
13813 }
13814
13815 /* Neon-style VFP instruction forwarding. */
13816
13817 /* Thumb VFP instructions have 0xE in the condition field. */
13818
13819 static void
13820 do_vfp_cond_or_thumb (void)
13821 {
13822 inst.is_neon = 1;
13823
13824 if (thumb_mode)
13825 inst.instruction |= 0xe0000000;
13826 else
13827 inst.instruction |= inst.cond << 28;
13828 }
13829
13830 /* Look up and encode a simple mnemonic, for use as a helper function for the
13831 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13832 etc. It is assumed that operand parsing has already been done, and that the
13833 operands are in the form expected by the given opcode (this isn't necessarily
13834 the same as the form in which they were parsed, hence some massaging must
13835 take place before this function is called).
13836 Checks current arch version against that in the looked-up opcode. */
13837
13838 static void
13839 do_vfp_nsyn_opcode (const char *opname)
13840 {
13841 const struct asm_opcode *opcode;
13842
13843 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
13844
13845 if (!opcode)
13846 abort ();
13847
13848 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13849 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13850 _(BAD_FPU));
13851
13852 inst.is_neon = 1;
13853
13854 if (thumb_mode)
13855 {
13856 inst.instruction = opcode->tvalue;
13857 opcode->tencode ();
13858 }
13859 else
13860 {
13861 inst.instruction = (inst.cond << 28) | opcode->avalue;
13862 opcode->aencode ();
13863 }
13864 }
13865
13866 static void
13867 do_vfp_nsyn_add_sub (enum neon_shape rs)
13868 {
13869 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13870
13871 if (rs == NS_FFF)
13872 {
13873 if (is_add)
13874 do_vfp_nsyn_opcode ("fadds");
13875 else
13876 do_vfp_nsyn_opcode ("fsubs");
13877 }
13878 else
13879 {
13880 if (is_add)
13881 do_vfp_nsyn_opcode ("faddd");
13882 else
13883 do_vfp_nsyn_opcode ("fsubd");
13884 }
13885 }
13886
13887 /* Check operand types to see if this is a VFP instruction, and if so call
13888 PFN (). */
13889
13890 static int
13891 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13892 {
13893 enum neon_shape rs;
13894 struct neon_type_el et;
13895
13896 switch (args)
13897 {
13898 case 2:
13899 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13900 et = neon_check_type (2, rs,
13901 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13902 break;
13903
13904 case 3:
13905 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13906 et = neon_check_type (3, rs,
13907 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13908 break;
13909
13910 default:
13911 abort ();
13912 }
13913
13914 if (et.type != NT_invtype)
13915 {
13916 pfn (rs);
13917 return SUCCESS;
13918 }
13919
13920 inst.error = NULL;
13921 return FAIL;
13922 }
13923
13924 static void
13925 do_vfp_nsyn_mla_mls (enum neon_shape rs)
13926 {
13927 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
13928
13929 if (rs == NS_FFF)
13930 {
13931 if (is_mla)
13932 do_vfp_nsyn_opcode ("fmacs");
13933 else
13934 do_vfp_nsyn_opcode ("fnmacs");
13935 }
13936 else
13937 {
13938 if (is_mla)
13939 do_vfp_nsyn_opcode ("fmacd");
13940 else
13941 do_vfp_nsyn_opcode ("fnmacd");
13942 }
13943 }
13944
13945 static void
13946 do_vfp_nsyn_fma_fms (enum neon_shape rs)
13947 {
13948 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13949
13950 if (rs == NS_FFF)
13951 {
13952 if (is_fma)
13953 do_vfp_nsyn_opcode ("ffmas");
13954 else
13955 do_vfp_nsyn_opcode ("ffnmas");
13956 }
13957 else
13958 {
13959 if (is_fma)
13960 do_vfp_nsyn_opcode ("ffmad");
13961 else
13962 do_vfp_nsyn_opcode ("ffnmad");
13963 }
13964 }
13965
13966 static void
13967 do_vfp_nsyn_mul (enum neon_shape rs)
13968 {
13969 if (rs == NS_FFF)
13970 do_vfp_nsyn_opcode ("fmuls");
13971 else
13972 do_vfp_nsyn_opcode ("fmuld");
13973 }
13974
13975 static void
13976 do_vfp_nsyn_abs_neg (enum neon_shape rs)
13977 {
13978 int is_neg = (inst.instruction & 0x80) != 0;
13979 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13980
13981 if (rs == NS_FF)
13982 {
13983 if (is_neg)
13984 do_vfp_nsyn_opcode ("fnegs");
13985 else
13986 do_vfp_nsyn_opcode ("fabss");
13987 }
13988 else
13989 {
13990 if (is_neg)
13991 do_vfp_nsyn_opcode ("fnegd");
13992 else
13993 do_vfp_nsyn_opcode ("fabsd");
13994 }
13995 }
13996
13997 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13998 insns belong to Neon, and are handled elsewhere. */
13999
14000 static void
14001 do_vfp_nsyn_ldm_stm (int is_dbmode)
14002 {
14003 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14004 if (is_ldm)
14005 {
14006 if (is_dbmode)
14007 do_vfp_nsyn_opcode ("fldmdbs");
14008 else
14009 do_vfp_nsyn_opcode ("fldmias");
14010 }
14011 else
14012 {
14013 if (is_dbmode)
14014 do_vfp_nsyn_opcode ("fstmdbs");
14015 else
14016 do_vfp_nsyn_opcode ("fstmias");
14017 }
14018 }
14019
14020 static void
14021 do_vfp_nsyn_sqrt (void)
14022 {
14023 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
14024 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
14025
14026 if (rs == NS_FF)
14027 do_vfp_nsyn_opcode ("fsqrts");
14028 else
14029 do_vfp_nsyn_opcode ("fsqrtd");
14030 }
14031
14032 static void
14033 do_vfp_nsyn_div (void)
14034 {
14035 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
14036 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14037 N_F32 | N_F64 | N_KEY | N_VFP);
14038
14039 if (rs == NS_FFF)
14040 do_vfp_nsyn_opcode ("fdivs");
14041 else
14042 do_vfp_nsyn_opcode ("fdivd");
14043 }
14044
14045 static void
14046 do_vfp_nsyn_nmul (void)
14047 {
14048 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
14049 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14050 N_F32 | N_F64 | N_KEY | N_VFP);
14051
14052 if (rs == NS_FFF)
14053 {
14054 NEON_ENCODE (SINGLE, inst);
14055 do_vfp_sp_dyadic ();
14056 }
14057 else
14058 {
14059 NEON_ENCODE (DOUBLE, inst);
14060 do_vfp_dp_rd_rn_rm ();
14061 }
14062 do_vfp_cond_or_thumb ();
14063 }
14064
14065 static void
14066 do_vfp_nsyn_cmp (void)
14067 {
14068 if (inst.operands[1].isreg)
14069 {
14070 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
14071 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
14072
14073 if (rs == NS_FF)
14074 {
14075 NEON_ENCODE (SINGLE, inst);
14076 do_vfp_sp_monadic ();
14077 }
14078 else
14079 {
14080 NEON_ENCODE (DOUBLE, inst);
14081 do_vfp_dp_rd_rm ();
14082 }
14083 }
14084 else
14085 {
14086 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
14087 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
14088
14089 switch (inst.instruction & 0x0fffffff)
14090 {
14091 case N_MNEM_vcmp:
14092 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14093 break;
14094 case N_MNEM_vcmpe:
14095 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14096 break;
14097 default:
14098 abort ();
14099 }
14100
14101 if (rs == NS_FI)
14102 {
14103 NEON_ENCODE (SINGLE, inst);
14104 do_vfp_sp_compare_z ();
14105 }
14106 else
14107 {
14108 NEON_ENCODE (DOUBLE, inst);
14109 do_vfp_dp_rd ();
14110 }
14111 }
14112 do_vfp_cond_or_thumb ();
14113 }
14114
14115 static void
14116 nsyn_insert_sp (void)
14117 {
14118 inst.operands[1] = inst.operands[0];
14119 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
14120 inst.operands[0].reg = REG_SP;
14121 inst.operands[0].isreg = 1;
14122 inst.operands[0].writeback = 1;
14123 inst.operands[0].present = 1;
14124 }
14125
14126 static void
14127 do_vfp_nsyn_push (void)
14128 {
14129 nsyn_insert_sp ();
14130 if (inst.operands[1].issingle)
14131 do_vfp_nsyn_opcode ("fstmdbs");
14132 else
14133 do_vfp_nsyn_opcode ("fstmdbd");
14134 }
14135
14136 static void
14137 do_vfp_nsyn_pop (void)
14138 {
14139 nsyn_insert_sp ();
14140 if (inst.operands[1].issingle)
14141 do_vfp_nsyn_opcode ("fldmias");
14142 else
14143 do_vfp_nsyn_opcode ("fldmiad");
14144 }
14145
14146 /* Fix up Neon data-processing instructions, ORing in the correct bits for
14147 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14148
14149 static void
14150 neon_dp_fixup (struct arm_it* insn)
14151 {
14152 unsigned int i = insn->instruction;
14153 insn->is_neon = 1;
14154
14155 if (thumb_mode)
14156 {
14157 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14158 if (i & (1 << 24))
14159 i |= 1 << 28;
14160
14161 i &= ~(1 << 24);
14162
14163 i |= 0xef000000;
14164 }
14165 else
14166 i |= 0xf2000000;
14167
14168 insn->instruction = i;
14169 }
14170
14171 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14172 (0, 1, 2, 3). */
14173
14174 static unsigned
14175 neon_logbits (unsigned x)
14176 {
14177 return ffs (x) - 4;
14178 }
14179
14180 #define LOW4(R) ((R) & 0xf)
14181 #define HI1(R) (((R) >> 4) & 1)
14182
14183 /* Encode insns with bit pattern:
14184
14185 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14186 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
14187
14188 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14189 different meaning for some instruction. */
14190
14191 static void
14192 neon_three_same (int isquad, int ubit, int size)
14193 {
14194 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14195 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14196 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14197 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14198 inst.instruction |= LOW4 (inst.operands[2].reg);
14199 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14200 inst.instruction |= (isquad != 0) << 6;
14201 inst.instruction |= (ubit != 0) << 24;
14202 if (size != -1)
14203 inst.instruction |= neon_logbits (size) << 20;
14204
14205 neon_dp_fixup (&inst);
14206 }
14207
14208 /* Encode instructions of the form:
14209
14210 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14211 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
14212
14213 Don't write size if SIZE == -1. */
14214
14215 static void
14216 neon_two_same (int qbit, int ubit, int size)
14217 {
14218 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14219 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14220 inst.instruction |= LOW4 (inst.operands[1].reg);
14221 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14222 inst.instruction |= (qbit != 0) << 6;
14223 inst.instruction |= (ubit != 0) << 24;
14224
14225 if (size != -1)
14226 inst.instruction |= neon_logbits (size) << 18;
14227
14228 neon_dp_fixup (&inst);
14229 }
14230
14231 /* Neon instruction encoders, in approximate order of appearance. */
14232
14233 static void
14234 do_neon_dyadic_i_su (void)
14235 {
14236 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14237 struct neon_type_el et = neon_check_type (3, rs,
14238 N_EQK, N_EQK, N_SU_32 | N_KEY);
14239 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14240 }
14241
14242 static void
14243 do_neon_dyadic_i64_su (void)
14244 {
14245 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14246 struct neon_type_el et = neon_check_type (3, rs,
14247 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14248 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14249 }
14250
14251 static void
14252 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
14253 unsigned immbits)
14254 {
14255 unsigned size = et.size >> 3;
14256 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14257 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14258 inst.instruction |= LOW4 (inst.operands[1].reg);
14259 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14260 inst.instruction |= (isquad != 0) << 6;
14261 inst.instruction |= immbits << 16;
14262 inst.instruction |= (size >> 3) << 7;
14263 inst.instruction |= (size & 0x7) << 19;
14264 if (write_ubit)
14265 inst.instruction |= (uval != 0) << 24;
14266
14267 neon_dp_fixup (&inst);
14268 }
14269
14270 static void
14271 do_neon_shl_imm (void)
14272 {
14273 if (!inst.operands[2].isreg)
14274 {
14275 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14276 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
14277 int imm = inst.operands[2].imm;
14278
14279 constraint (imm < 0 || (unsigned)imm >= et.size,
14280 _("immediate out of range for shift"));
14281 NEON_ENCODE (IMMED, inst);
14282 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14283 }
14284 else
14285 {
14286 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14287 struct neon_type_el et = neon_check_type (3, rs,
14288 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14289 unsigned int tmp;
14290
14291 /* VSHL/VQSHL 3-register variants have syntax such as:
14292 vshl.xx Dd, Dm, Dn
14293 whereas other 3-register operations encoded by neon_three_same have
14294 syntax like:
14295 vadd.xx Dd, Dn, Dm
14296 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14297 here. */
14298 tmp = inst.operands[2].reg;
14299 inst.operands[2].reg = inst.operands[1].reg;
14300 inst.operands[1].reg = tmp;
14301 NEON_ENCODE (INTEGER, inst);
14302 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14303 }
14304 }
14305
14306 static void
14307 do_neon_qshl_imm (void)
14308 {
14309 if (!inst.operands[2].isreg)
14310 {
14311 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14312 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14313 int imm = inst.operands[2].imm;
14314
14315 constraint (imm < 0 || (unsigned)imm >= et.size,
14316 _("immediate out of range for shift"));
14317 NEON_ENCODE (IMMED, inst);
14318 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
14319 }
14320 else
14321 {
14322 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14323 struct neon_type_el et = neon_check_type (3, rs,
14324 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14325 unsigned int tmp;
14326
14327 /* See note in do_neon_shl_imm. */
14328 tmp = inst.operands[2].reg;
14329 inst.operands[2].reg = inst.operands[1].reg;
14330 inst.operands[1].reg = tmp;
14331 NEON_ENCODE (INTEGER, inst);
14332 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14333 }
14334 }
14335
14336 static void
14337 do_neon_rshl (void)
14338 {
14339 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14340 struct neon_type_el et = neon_check_type (3, rs,
14341 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14342 unsigned int tmp;
14343
14344 tmp = inst.operands[2].reg;
14345 inst.operands[2].reg = inst.operands[1].reg;
14346 inst.operands[1].reg = tmp;
14347 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14348 }
14349
14350 static int
14351 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14352 {
14353 /* Handle .I8 pseudo-instructions. */
14354 if (size == 8)
14355 {
14356 /* Unfortunately, this will make everything apart from zero out-of-range.
14357 FIXME is this the intended semantics? There doesn't seem much point in
14358 accepting .I8 if so. */
14359 immediate |= immediate << 8;
14360 size = 16;
14361 }
14362
14363 if (size >= 32)
14364 {
14365 if (immediate == (immediate & 0x000000ff))
14366 {
14367 *immbits = immediate;
14368 return 0x1;
14369 }
14370 else if (immediate == (immediate & 0x0000ff00))
14371 {
14372 *immbits = immediate >> 8;
14373 return 0x3;
14374 }
14375 else if (immediate == (immediate & 0x00ff0000))
14376 {
14377 *immbits = immediate >> 16;
14378 return 0x5;
14379 }
14380 else if (immediate == (immediate & 0xff000000))
14381 {
14382 *immbits = immediate >> 24;
14383 return 0x7;
14384 }
14385 if ((immediate & 0xffff) != (immediate >> 16))
14386 goto bad_immediate;
14387 immediate &= 0xffff;
14388 }
14389
14390 if (immediate == (immediate & 0x000000ff))
14391 {
14392 *immbits = immediate;
14393 return 0x9;
14394 }
14395 else if (immediate == (immediate & 0x0000ff00))
14396 {
14397 *immbits = immediate >> 8;
14398 return 0xb;
14399 }
14400
14401 bad_immediate:
14402 first_error (_("immediate value out of range"));
14403 return FAIL;
14404 }
14405
14406 static void
14407 do_neon_logic (void)
14408 {
14409 if (inst.operands[2].present && inst.operands[2].isreg)
14410 {
14411 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14412 neon_check_type (3, rs, N_IGNORE_TYPE);
14413 /* U bit and size field were set as part of the bitmask. */
14414 NEON_ENCODE (INTEGER, inst);
14415 neon_three_same (neon_quad (rs), 0, -1);
14416 }
14417 else
14418 {
14419 const int three_ops_form = (inst.operands[2].present
14420 && !inst.operands[2].isreg);
14421 const int immoperand = (three_ops_form ? 2 : 1);
14422 enum neon_shape rs = (three_ops_form
14423 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14424 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
14425 struct neon_type_el et = neon_check_type (2, rs,
14426 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14427 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
14428 unsigned immbits;
14429 int cmode;
14430
14431 if (et.type == NT_invtype)
14432 return;
14433
14434 if (three_ops_form)
14435 constraint (inst.operands[0].reg != inst.operands[1].reg,
14436 _("first and second operands shall be the same register"));
14437
14438 NEON_ENCODE (IMMED, inst);
14439
14440 immbits = inst.operands[immoperand].imm;
14441 if (et.size == 64)
14442 {
14443 /* .i64 is a pseudo-op, so the immediate must be a repeating
14444 pattern. */
14445 if (immbits != (inst.operands[immoperand].regisimm ?
14446 inst.operands[immoperand].reg : 0))
14447 {
14448 /* Set immbits to an invalid constant. */
14449 immbits = 0xdeadbeef;
14450 }
14451 }
14452
14453 switch (opcode)
14454 {
14455 case N_MNEM_vbic:
14456 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14457 break;
14458
14459 case N_MNEM_vorr:
14460 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14461 break;
14462
14463 case N_MNEM_vand:
14464 /* Pseudo-instruction for VBIC. */
14465 neon_invert_size (&immbits, 0, et.size);
14466 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14467 break;
14468
14469 case N_MNEM_vorn:
14470 /* Pseudo-instruction for VORR. */
14471 neon_invert_size (&immbits, 0, et.size);
14472 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14473 break;
14474
14475 default:
14476 abort ();
14477 }
14478
14479 if (cmode == FAIL)
14480 return;
14481
14482 inst.instruction |= neon_quad (rs) << 6;
14483 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14484 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14485 inst.instruction |= cmode << 8;
14486 neon_write_immbits (immbits);
14487
14488 neon_dp_fixup (&inst);
14489 }
14490 }
14491
14492 static void
14493 do_neon_bitfield (void)
14494 {
14495 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14496 neon_check_type (3, rs, N_IGNORE_TYPE);
14497 neon_three_same (neon_quad (rs), 0, -1);
14498 }
14499
14500 static void
14501 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
14502 unsigned destbits)
14503 {
14504 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14505 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
14506 types | N_KEY);
14507 if (et.type == NT_float)
14508 {
14509 NEON_ENCODE (FLOAT, inst);
14510 neon_three_same (neon_quad (rs), 0, -1);
14511 }
14512 else
14513 {
14514 NEON_ENCODE (INTEGER, inst);
14515 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
14516 }
14517 }
14518
14519 static void
14520 do_neon_dyadic_if_su (void)
14521 {
14522 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14523 }
14524
14525 static void
14526 do_neon_dyadic_if_su_d (void)
14527 {
14528 /* This version only allow D registers, but that constraint is enforced during
14529 operand parsing so we don't need to do anything extra here. */
14530 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14531 }
14532
14533 static void
14534 do_neon_dyadic_if_i_d (void)
14535 {
14536 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14537 affected if we specify unsigned args. */
14538 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14539 }
14540
14541 enum vfp_or_neon_is_neon_bits
14542 {
14543 NEON_CHECK_CC = 1,
14544 NEON_CHECK_ARCH = 2,
14545 NEON_CHECK_ARCH8 = 4
14546 };
14547
14548 /* Call this function if an instruction which may have belonged to the VFP or
14549 Neon instruction sets, but turned out to be a Neon instruction (due to the
14550 operand types involved, etc.). We have to check and/or fix-up a couple of
14551 things:
14552
14553 - Make sure the user hasn't attempted to make a Neon instruction
14554 conditional.
14555 - Alter the value in the condition code field if necessary.
14556 - Make sure that the arch supports Neon instructions.
14557
14558 Which of these operations take place depends on bits from enum
14559 vfp_or_neon_is_neon_bits.
14560
14561 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14562 current instruction's condition is COND_ALWAYS, the condition field is
14563 changed to inst.uncond_value. This is necessary because instructions shared
14564 between VFP and Neon may be conditional for the VFP variants only, and the
14565 unconditional Neon version must have, e.g., 0xF in the condition field. */
14566
14567 static int
14568 vfp_or_neon_is_neon (unsigned check)
14569 {
14570 /* Conditions are always legal in Thumb mode (IT blocks). */
14571 if (!thumb_mode && (check & NEON_CHECK_CC))
14572 {
14573 if (inst.cond != COND_ALWAYS)
14574 {
14575 first_error (_(BAD_COND));
14576 return FAIL;
14577 }
14578 if (inst.uncond_value != -1)
14579 inst.instruction |= inst.uncond_value << 28;
14580 }
14581
14582 if ((check & NEON_CHECK_ARCH)
14583 && !mark_feature_used (&fpu_neon_ext_v1))
14584 {
14585 first_error (_(BAD_FPU));
14586 return FAIL;
14587 }
14588
14589 if ((check & NEON_CHECK_ARCH8)
14590 && !mark_feature_used (&fpu_neon_ext_armv8))
14591 {
14592 first_error (_(BAD_FPU));
14593 return FAIL;
14594 }
14595
14596 return SUCCESS;
14597 }
14598
14599 static void
14600 do_neon_addsub_if_i (void)
14601 {
14602 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14603 return;
14604
14605 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14606 return;
14607
14608 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14609 affected if we specify unsigned args. */
14610 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
14611 }
14612
14613 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14614 result to be:
14615 V<op> A,B (A is operand 0, B is operand 2)
14616 to mean:
14617 V<op> A,B,A
14618 not:
14619 V<op> A,B,B
14620 so handle that case specially. */
14621
14622 static void
14623 neon_exchange_operands (void)
14624 {
14625 void *scratch = alloca (sizeof (inst.operands[0]));
14626 if (inst.operands[1].present)
14627 {
14628 /* Swap operands[1] and operands[2]. */
14629 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14630 inst.operands[1] = inst.operands[2];
14631 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14632 }
14633 else
14634 {
14635 inst.operands[1] = inst.operands[2];
14636 inst.operands[2] = inst.operands[0];
14637 }
14638 }
14639
14640 static void
14641 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14642 {
14643 if (inst.operands[2].isreg)
14644 {
14645 if (invert)
14646 neon_exchange_operands ();
14647 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14648 }
14649 else
14650 {
14651 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14652 struct neon_type_el et = neon_check_type (2, rs,
14653 N_EQK | N_SIZ, immtypes | N_KEY);
14654
14655 NEON_ENCODE (IMMED, inst);
14656 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14657 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14658 inst.instruction |= LOW4 (inst.operands[1].reg);
14659 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14660 inst.instruction |= neon_quad (rs) << 6;
14661 inst.instruction |= (et.type == NT_float) << 10;
14662 inst.instruction |= neon_logbits (et.size) << 18;
14663
14664 neon_dp_fixup (&inst);
14665 }
14666 }
14667
14668 static void
14669 do_neon_cmp (void)
14670 {
14671 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14672 }
14673
14674 static void
14675 do_neon_cmp_inv (void)
14676 {
14677 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14678 }
14679
14680 static void
14681 do_neon_ceq (void)
14682 {
14683 neon_compare (N_IF_32, N_IF_32, FALSE);
14684 }
14685
14686 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14687 scalars, which are encoded in 5 bits, M : Rm.
14688 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14689 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14690 index in M. */
14691
14692 static unsigned
14693 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14694 {
14695 unsigned regno = NEON_SCALAR_REG (scalar);
14696 unsigned elno = NEON_SCALAR_INDEX (scalar);
14697
14698 switch (elsize)
14699 {
14700 case 16:
14701 if (regno > 7 || elno > 3)
14702 goto bad_scalar;
14703 return regno | (elno << 3);
14704
14705 case 32:
14706 if (regno > 15 || elno > 1)
14707 goto bad_scalar;
14708 return regno | (elno << 4);
14709
14710 default:
14711 bad_scalar:
14712 first_error (_("scalar out of range for multiply instruction"));
14713 }
14714
14715 return 0;
14716 }
14717
14718 /* Encode multiply / multiply-accumulate scalar instructions. */
14719
14720 static void
14721 neon_mul_mac (struct neon_type_el et, int ubit)
14722 {
14723 unsigned scalar;
14724
14725 /* Give a more helpful error message if we have an invalid type. */
14726 if (et.type == NT_invtype)
14727 return;
14728
14729 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14730 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14731 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14732 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14733 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14734 inst.instruction |= LOW4 (scalar);
14735 inst.instruction |= HI1 (scalar) << 5;
14736 inst.instruction |= (et.type == NT_float) << 8;
14737 inst.instruction |= neon_logbits (et.size) << 20;
14738 inst.instruction |= (ubit != 0) << 24;
14739
14740 neon_dp_fixup (&inst);
14741 }
14742
14743 static void
14744 do_neon_mac_maybe_scalar (void)
14745 {
14746 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14747 return;
14748
14749 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14750 return;
14751
14752 if (inst.operands[2].isscalar)
14753 {
14754 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14755 struct neon_type_el et = neon_check_type (3, rs,
14756 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14757 NEON_ENCODE (SCALAR, inst);
14758 neon_mul_mac (et, neon_quad (rs));
14759 }
14760 else
14761 {
14762 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14763 affected if we specify unsigned args. */
14764 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14765 }
14766 }
14767
14768 static void
14769 do_neon_fmac (void)
14770 {
14771 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14772 return;
14773
14774 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14775 return;
14776
14777 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14778 }
14779
14780 static void
14781 do_neon_tst (void)
14782 {
14783 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14784 struct neon_type_el et = neon_check_type (3, rs,
14785 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
14786 neon_three_same (neon_quad (rs), 0, et.size);
14787 }
14788
14789 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14790 same types as the MAC equivalents. The polynomial type for this instruction
14791 is encoded the same as the integer type. */
14792
14793 static void
14794 do_neon_mul (void)
14795 {
14796 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14797 return;
14798
14799 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14800 return;
14801
14802 if (inst.operands[2].isscalar)
14803 do_neon_mac_maybe_scalar ();
14804 else
14805 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
14806 }
14807
14808 static void
14809 do_neon_qdmulh (void)
14810 {
14811 if (inst.operands[2].isscalar)
14812 {
14813 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14814 struct neon_type_el et = neon_check_type (3, rs,
14815 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14816 NEON_ENCODE (SCALAR, inst);
14817 neon_mul_mac (et, neon_quad (rs));
14818 }
14819 else
14820 {
14821 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14822 struct neon_type_el et = neon_check_type (3, rs,
14823 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14824 NEON_ENCODE (INTEGER, inst);
14825 /* The U bit (rounding) comes from bit mask. */
14826 neon_three_same (neon_quad (rs), 0, et.size);
14827 }
14828 }
14829
14830 static void
14831 do_neon_fcmp_absolute (void)
14832 {
14833 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14834 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14835 /* Size field comes from bit mask. */
14836 neon_three_same (neon_quad (rs), 1, -1);
14837 }
14838
14839 static void
14840 do_neon_fcmp_absolute_inv (void)
14841 {
14842 neon_exchange_operands ();
14843 do_neon_fcmp_absolute ();
14844 }
14845
14846 static void
14847 do_neon_step (void)
14848 {
14849 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14850 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14851 neon_three_same (neon_quad (rs), 0, -1);
14852 }
14853
14854 static void
14855 do_neon_abs_neg (void)
14856 {
14857 enum neon_shape rs;
14858 struct neon_type_el et;
14859
14860 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14861 return;
14862
14863 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14864 return;
14865
14866 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14867 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14868
14869 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14870 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14871 inst.instruction |= LOW4 (inst.operands[1].reg);
14872 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14873 inst.instruction |= neon_quad (rs) << 6;
14874 inst.instruction |= (et.type == NT_float) << 10;
14875 inst.instruction |= neon_logbits (et.size) << 18;
14876
14877 neon_dp_fixup (&inst);
14878 }
14879
14880 static void
14881 do_neon_sli (void)
14882 {
14883 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14884 struct neon_type_el et = neon_check_type (2, rs,
14885 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14886 int imm = inst.operands[2].imm;
14887 constraint (imm < 0 || (unsigned)imm >= et.size,
14888 _("immediate out of range for insert"));
14889 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14890 }
14891
14892 static void
14893 do_neon_sri (void)
14894 {
14895 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14896 struct neon_type_el et = neon_check_type (2, rs,
14897 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14898 int imm = inst.operands[2].imm;
14899 constraint (imm < 1 || (unsigned)imm > et.size,
14900 _("immediate out of range for insert"));
14901 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14902 }
14903
14904 static void
14905 do_neon_qshlu_imm (void)
14906 {
14907 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14908 struct neon_type_el et = neon_check_type (2, rs,
14909 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14910 int imm = inst.operands[2].imm;
14911 constraint (imm < 0 || (unsigned)imm >= et.size,
14912 _("immediate out of range for shift"));
14913 /* Only encodes the 'U present' variant of the instruction.
14914 In this case, signed types have OP (bit 8) set to 0.
14915 Unsigned types have OP set to 1. */
14916 inst.instruction |= (et.type == NT_unsigned) << 8;
14917 /* The rest of the bits are the same as other immediate shifts. */
14918 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14919 }
14920
14921 static void
14922 do_neon_qmovn (void)
14923 {
14924 struct neon_type_el et = neon_check_type (2, NS_DQ,
14925 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14926 /* Saturating move where operands can be signed or unsigned, and the
14927 destination has the same signedness. */
14928 NEON_ENCODE (INTEGER, inst);
14929 if (et.type == NT_unsigned)
14930 inst.instruction |= 0xc0;
14931 else
14932 inst.instruction |= 0x80;
14933 neon_two_same (0, 1, et.size / 2);
14934 }
14935
14936 static void
14937 do_neon_qmovun (void)
14938 {
14939 struct neon_type_el et = neon_check_type (2, NS_DQ,
14940 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14941 /* Saturating move with unsigned results. Operands must be signed. */
14942 NEON_ENCODE (INTEGER, inst);
14943 neon_two_same (0, 1, et.size / 2);
14944 }
14945
14946 static void
14947 do_neon_rshift_sat_narrow (void)
14948 {
14949 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14950 or unsigned. If operands are unsigned, results must also be unsigned. */
14951 struct neon_type_el et = neon_check_type (2, NS_DQI,
14952 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14953 int imm = inst.operands[2].imm;
14954 /* This gets the bounds check, size encoding and immediate bits calculation
14955 right. */
14956 et.size /= 2;
14957
14958 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14959 VQMOVN.I<size> <Dd>, <Qm>. */
14960 if (imm == 0)
14961 {
14962 inst.operands[2].present = 0;
14963 inst.instruction = N_MNEM_vqmovn;
14964 do_neon_qmovn ();
14965 return;
14966 }
14967
14968 constraint (imm < 1 || (unsigned)imm > et.size,
14969 _("immediate out of range"));
14970 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14971 }
14972
14973 static void
14974 do_neon_rshift_sat_narrow_u (void)
14975 {
14976 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14977 or unsigned. If operands are unsigned, results must also be unsigned. */
14978 struct neon_type_el et = neon_check_type (2, NS_DQI,
14979 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14980 int imm = inst.operands[2].imm;
14981 /* This gets the bounds check, size encoding and immediate bits calculation
14982 right. */
14983 et.size /= 2;
14984
14985 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14986 VQMOVUN.I<size> <Dd>, <Qm>. */
14987 if (imm == 0)
14988 {
14989 inst.operands[2].present = 0;
14990 inst.instruction = N_MNEM_vqmovun;
14991 do_neon_qmovun ();
14992 return;
14993 }
14994
14995 constraint (imm < 1 || (unsigned)imm > et.size,
14996 _("immediate out of range"));
14997 /* FIXME: The manual is kind of unclear about what value U should have in
14998 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14999 must be 1. */
15000 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15001 }
15002
15003 static void
15004 do_neon_movn (void)
15005 {
15006 struct neon_type_el et = neon_check_type (2, NS_DQ,
15007 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15008 NEON_ENCODE (INTEGER, inst);
15009 neon_two_same (0, 1, et.size / 2);
15010 }
15011
15012 static void
15013 do_neon_rshift_narrow (void)
15014 {
15015 struct neon_type_el et = neon_check_type (2, NS_DQI,
15016 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15017 int imm = inst.operands[2].imm;
15018 /* This gets the bounds check, size encoding and immediate bits calculation
15019 right. */
15020 et.size /= 2;
15021
15022 /* If immediate is zero then we are a pseudo-instruction for
15023 VMOVN.I<size> <Dd>, <Qm> */
15024 if (imm == 0)
15025 {
15026 inst.operands[2].present = 0;
15027 inst.instruction = N_MNEM_vmovn;
15028 do_neon_movn ();
15029 return;
15030 }
15031
15032 constraint (imm < 1 || (unsigned)imm > et.size,
15033 _("immediate out of range for narrowing operation"));
15034 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15035 }
15036
15037 static void
15038 do_neon_shll (void)
15039 {
15040 /* FIXME: Type checking when lengthening. */
15041 struct neon_type_el et = neon_check_type (2, NS_QDI,
15042 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15043 unsigned imm = inst.operands[2].imm;
15044
15045 if (imm == et.size)
15046 {
15047 /* Maximum shift variant. */
15048 NEON_ENCODE (INTEGER, inst);
15049 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15050 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15051 inst.instruction |= LOW4 (inst.operands[1].reg);
15052 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15053 inst.instruction |= neon_logbits (et.size) << 18;
15054
15055 neon_dp_fixup (&inst);
15056 }
15057 else
15058 {
15059 /* A more-specific type check for non-max versions. */
15060 et = neon_check_type (2, NS_QDI,
15061 N_EQK | N_DBL, N_SU_32 | N_KEY);
15062 NEON_ENCODE (IMMED, inst);
15063 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15064 }
15065 }
15066
15067 /* Check the various types for the VCVT instruction, and return which version
15068 the current instruction is. */
15069
15070 #define CVT_FLAVOUR_VAR \
15071 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15072 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15073 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15074 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15075 /* Half-precision conversions. */ \
15076 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15077 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
15078 /* VFP instructions. */ \
15079 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15080 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15081 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15082 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15083 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15084 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15085 /* VFP instructions with bitshift. */ \
15086 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15087 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15088 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15089 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15090 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15091 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15092 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15093 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15094
15095 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15096 neon_cvt_flavour_##C,
15097
15098 /* The different types of conversions we can do. */
15099 enum neon_cvt_flavour
15100 {
15101 CVT_FLAVOUR_VAR
15102 neon_cvt_flavour_invalid,
15103 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15104 };
15105
15106 #undef CVT_VAR
15107
15108 static enum neon_cvt_flavour
15109 get_neon_cvt_flavour (enum neon_shape rs)
15110 {
15111 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15112 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15113 if (et.type != NT_invtype) \
15114 { \
15115 inst.error = NULL; \
15116 return (neon_cvt_flavour_##C); \
15117 }
15118
15119 struct neon_type_el et;
15120 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
15121 || rs == NS_FF) ? N_VFP : 0;
15122 /* The instruction versions which take an immediate take one register
15123 argument, which is extended to the width of the full register. Thus the
15124 "source" and "destination" registers must have the same width. Hack that
15125 here by making the size equal to the key (wider, in this case) operand. */
15126 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
15127
15128 CVT_FLAVOUR_VAR;
15129
15130 return neon_cvt_flavour_invalid;
15131 #undef CVT_VAR
15132 }
15133
15134 enum neon_cvt_mode
15135 {
15136 neon_cvt_mode_a,
15137 neon_cvt_mode_n,
15138 neon_cvt_mode_p,
15139 neon_cvt_mode_m,
15140 neon_cvt_mode_z,
15141 neon_cvt_mode_x,
15142 neon_cvt_mode_r
15143 };
15144
15145 /* Neon-syntax VFP conversions. */
15146
15147 static void
15148 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
15149 {
15150 const char *opname = 0;
15151
15152 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
15153 {
15154 /* Conversions with immediate bitshift. */
15155 const char *enc[] =
15156 {
15157 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15158 CVT_FLAVOUR_VAR
15159 NULL
15160 #undef CVT_VAR
15161 };
15162
15163 if (flavour < (int) ARRAY_SIZE (enc))
15164 {
15165 opname = enc[flavour];
15166 constraint (inst.operands[0].reg != inst.operands[1].reg,
15167 _("operands 0 and 1 must be the same register"));
15168 inst.operands[1] = inst.operands[2];
15169 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15170 }
15171 }
15172 else
15173 {
15174 /* Conversions without bitshift. */
15175 const char *enc[] =
15176 {
15177 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15178 CVT_FLAVOUR_VAR
15179 NULL
15180 #undef CVT_VAR
15181 };
15182
15183 if (flavour < (int) ARRAY_SIZE (enc))
15184 opname = enc[flavour];
15185 }
15186
15187 if (opname)
15188 do_vfp_nsyn_opcode (opname);
15189 }
15190
15191 static void
15192 do_vfp_nsyn_cvtz (void)
15193 {
15194 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
15195 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15196 const char *enc[] =
15197 {
15198 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15199 CVT_FLAVOUR_VAR
15200 NULL
15201 #undef CVT_VAR
15202 };
15203
15204 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
15205 do_vfp_nsyn_opcode (enc[flavour]);
15206 }
15207
15208 static void
15209 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
15210 enum neon_cvt_mode mode)
15211 {
15212 int sz, op;
15213 int rm;
15214
15215 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15216 D register operands. */
15217 if (flavour == neon_cvt_flavour_s32_f64
15218 || flavour == neon_cvt_flavour_u32_f64)
15219 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15220 _(BAD_FPU));
15221
15222 set_it_insn_type (OUTSIDE_IT_INSN);
15223
15224 switch (flavour)
15225 {
15226 case neon_cvt_flavour_s32_f64:
15227 sz = 1;
15228 op = 1;
15229 break;
15230 case neon_cvt_flavour_s32_f32:
15231 sz = 0;
15232 op = 1;
15233 break;
15234 case neon_cvt_flavour_u32_f64:
15235 sz = 1;
15236 op = 0;
15237 break;
15238 case neon_cvt_flavour_u32_f32:
15239 sz = 0;
15240 op = 0;
15241 break;
15242 default:
15243 first_error (_("invalid instruction shape"));
15244 return;
15245 }
15246
15247 switch (mode)
15248 {
15249 case neon_cvt_mode_a: rm = 0; break;
15250 case neon_cvt_mode_n: rm = 1; break;
15251 case neon_cvt_mode_p: rm = 2; break;
15252 case neon_cvt_mode_m: rm = 3; break;
15253 default: first_error (_("invalid rounding mode")); return;
15254 }
15255
15256 NEON_ENCODE (FPV8, inst);
15257 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15258 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15259 inst.instruction |= sz << 8;
15260 inst.instruction |= op << 7;
15261 inst.instruction |= rm << 16;
15262 inst.instruction |= 0xf0000000;
15263 inst.is_neon = TRUE;
15264 }
15265
15266 static void
15267 do_neon_cvt_1 (enum neon_cvt_mode mode)
15268 {
15269 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
15270 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
15271 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15272
15273 /* PR11109: Handle round-to-zero for VCVT conversions. */
15274 if (mode == neon_cvt_mode_z
15275 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
15276 && (flavour == neon_cvt_flavour_s32_f32
15277 || flavour == neon_cvt_flavour_u32_f32
15278 || flavour == neon_cvt_flavour_s32_f64
15279 || flavour == neon_cvt_flavour_u32_f64)
15280 && (rs == NS_FD || rs == NS_FF))
15281 {
15282 do_vfp_nsyn_cvtz ();
15283 return;
15284 }
15285
15286 /* VFP rather than Neon conversions. */
15287 if (flavour >= neon_cvt_flavour_first_fp)
15288 {
15289 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15290 do_vfp_nsyn_cvt (rs, flavour);
15291 else
15292 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15293
15294 return;
15295 }
15296
15297 switch (rs)
15298 {
15299 case NS_DDI:
15300 case NS_QQI:
15301 {
15302 unsigned immbits;
15303 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
15304
15305 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15306 return;
15307
15308 /* Fixed-point conversion with #0 immediate is encoded as an
15309 integer conversion. */
15310 if (inst.operands[2].present && inst.operands[2].imm == 0)
15311 goto int_encode;
15312 immbits = 32 - inst.operands[2].imm;
15313 NEON_ENCODE (IMMED, inst);
15314 if (flavour != neon_cvt_flavour_invalid)
15315 inst.instruction |= enctab[flavour];
15316 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15317 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15318 inst.instruction |= LOW4 (inst.operands[1].reg);
15319 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15320 inst.instruction |= neon_quad (rs) << 6;
15321 inst.instruction |= 1 << 21;
15322 inst.instruction |= immbits << 16;
15323
15324 neon_dp_fixup (&inst);
15325 }
15326 break;
15327
15328 case NS_DD:
15329 case NS_QQ:
15330 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15331 {
15332 NEON_ENCODE (FLOAT, inst);
15333 set_it_insn_type (OUTSIDE_IT_INSN);
15334
15335 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15336 return;
15337
15338 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15339 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15340 inst.instruction |= LOW4 (inst.operands[1].reg);
15341 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15342 inst.instruction |= neon_quad (rs) << 6;
15343 inst.instruction |= (flavour == neon_cvt_flavour_u32_f32) << 7;
15344 inst.instruction |= mode << 8;
15345 if (thumb_mode)
15346 inst.instruction |= 0xfc000000;
15347 else
15348 inst.instruction |= 0xf0000000;
15349 }
15350 else
15351 {
15352 int_encode:
15353 {
15354 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
15355
15356 NEON_ENCODE (INTEGER, inst);
15357
15358 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15359 return;
15360
15361 if (flavour != neon_cvt_flavour_invalid)
15362 inst.instruction |= enctab[flavour];
15363
15364 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15365 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15366 inst.instruction |= LOW4 (inst.operands[1].reg);
15367 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15368 inst.instruction |= neon_quad (rs) << 6;
15369 inst.instruction |= 2 << 18;
15370
15371 neon_dp_fixup (&inst);
15372 }
15373 }
15374 break;
15375
15376 /* Half-precision conversions for Advanced SIMD -- neon. */
15377 case NS_QD:
15378 case NS_DQ:
15379
15380 if ((rs == NS_DQ)
15381 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
15382 {
15383 as_bad (_("operand size must match register width"));
15384 break;
15385 }
15386
15387 if ((rs == NS_QD)
15388 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
15389 {
15390 as_bad (_("operand size must match register width"));
15391 break;
15392 }
15393
15394 if (rs == NS_DQ)
15395 inst.instruction = 0x3b60600;
15396 else
15397 inst.instruction = 0x3b60700;
15398
15399 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15400 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15401 inst.instruction |= LOW4 (inst.operands[1].reg);
15402 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15403 neon_dp_fixup (&inst);
15404 break;
15405
15406 default:
15407 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
15408 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15409 do_vfp_nsyn_cvt (rs, flavour);
15410 else
15411 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15412 }
15413 }
15414
15415 static void
15416 do_neon_cvtr (void)
15417 {
15418 do_neon_cvt_1 (neon_cvt_mode_x);
15419 }
15420
15421 static void
15422 do_neon_cvt (void)
15423 {
15424 do_neon_cvt_1 (neon_cvt_mode_z);
15425 }
15426
15427 static void
15428 do_neon_cvta (void)
15429 {
15430 do_neon_cvt_1 (neon_cvt_mode_a);
15431 }
15432
15433 static void
15434 do_neon_cvtn (void)
15435 {
15436 do_neon_cvt_1 (neon_cvt_mode_n);
15437 }
15438
15439 static void
15440 do_neon_cvtp (void)
15441 {
15442 do_neon_cvt_1 (neon_cvt_mode_p);
15443 }
15444
15445 static void
15446 do_neon_cvtm (void)
15447 {
15448 do_neon_cvt_1 (neon_cvt_mode_m);
15449 }
15450
15451 static void
15452 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
15453 {
15454 if (is_double)
15455 mark_feature_used (&fpu_vfp_ext_armv8);
15456
15457 encode_arm_vfp_reg (inst.operands[0].reg,
15458 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
15459 encode_arm_vfp_reg (inst.operands[1].reg,
15460 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
15461 inst.instruction |= to ? 0x10000 : 0;
15462 inst.instruction |= t ? 0x80 : 0;
15463 inst.instruction |= is_double ? 0x100 : 0;
15464 do_vfp_cond_or_thumb ();
15465 }
15466
15467 static void
15468 do_neon_cvttb_1 (bfd_boolean t)
15469 {
15470 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_DF, NS_NULL);
15471
15472 if (rs == NS_NULL)
15473 return;
15474 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
15475 {
15476 inst.error = NULL;
15477 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
15478 }
15479 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
15480 {
15481 inst.error = NULL;
15482 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
15483 }
15484 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
15485 {
15486 /* The VCVTB and VCVTT instructions with D-register operands
15487 don't work for SP only targets. */
15488 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15489 _(BAD_FPU));
15490
15491 inst.error = NULL;
15492 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
15493 }
15494 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
15495 {
15496 /* The VCVTB and VCVTT instructions with D-register operands
15497 don't work for SP only targets. */
15498 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15499 _(BAD_FPU));
15500
15501 inst.error = NULL;
15502 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
15503 }
15504 else
15505 return;
15506 }
15507
15508 static void
15509 do_neon_cvtb (void)
15510 {
15511 do_neon_cvttb_1 (FALSE);
15512 }
15513
15514
15515 static void
15516 do_neon_cvtt (void)
15517 {
15518 do_neon_cvttb_1 (TRUE);
15519 }
15520
15521 static void
15522 neon_move_immediate (void)
15523 {
15524 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
15525 struct neon_type_el et = neon_check_type (2, rs,
15526 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
15527 unsigned immlo, immhi = 0, immbits;
15528 int op, cmode, float_p;
15529
15530 constraint (et.type == NT_invtype,
15531 _("operand size must be specified for immediate VMOV"));
15532
15533 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
15534 op = (inst.instruction & (1 << 5)) != 0;
15535
15536 immlo = inst.operands[1].imm;
15537 if (inst.operands[1].regisimm)
15538 immhi = inst.operands[1].reg;
15539
15540 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
15541 _("immediate has bits set outside the operand size"));
15542
15543 float_p = inst.operands[1].immisfloat;
15544
15545 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
15546 et.size, et.type)) == FAIL)
15547 {
15548 /* Invert relevant bits only. */
15549 neon_invert_size (&immlo, &immhi, et.size);
15550 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
15551 with one or the other; those cases are caught by
15552 neon_cmode_for_move_imm. */
15553 op = !op;
15554 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
15555 &op, et.size, et.type)) == FAIL)
15556 {
15557 first_error (_("immediate out of range"));
15558 return;
15559 }
15560 }
15561
15562 inst.instruction &= ~(1 << 5);
15563 inst.instruction |= op << 5;
15564
15565 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15566 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15567 inst.instruction |= neon_quad (rs) << 6;
15568 inst.instruction |= cmode << 8;
15569
15570 neon_write_immbits (immbits);
15571 }
15572
15573 static void
15574 do_neon_mvn (void)
15575 {
15576 if (inst.operands[1].isreg)
15577 {
15578 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15579
15580 NEON_ENCODE (INTEGER, inst);
15581 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15582 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15583 inst.instruction |= LOW4 (inst.operands[1].reg);
15584 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15585 inst.instruction |= neon_quad (rs) << 6;
15586 }
15587 else
15588 {
15589 NEON_ENCODE (IMMED, inst);
15590 neon_move_immediate ();
15591 }
15592
15593 neon_dp_fixup (&inst);
15594 }
15595
15596 /* Encode instructions of form:
15597
15598 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15599 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
15600
15601 static void
15602 neon_mixed_length (struct neon_type_el et, unsigned size)
15603 {
15604 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15605 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15606 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15607 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15608 inst.instruction |= LOW4 (inst.operands[2].reg);
15609 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15610 inst.instruction |= (et.type == NT_unsigned) << 24;
15611 inst.instruction |= neon_logbits (size) << 20;
15612
15613 neon_dp_fixup (&inst);
15614 }
15615
15616 static void
15617 do_neon_dyadic_long (void)
15618 {
15619 /* FIXME: Type checking for lengthening op. */
15620 struct neon_type_el et = neon_check_type (3, NS_QDD,
15621 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
15622 neon_mixed_length (et, et.size);
15623 }
15624
15625 static void
15626 do_neon_abal (void)
15627 {
15628 struct neon_type_el et = neon_check_type (3, NS_QDD,
15629 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
15630 neon_mixed_length (et, et.size);
15631 }
15632
15633 static void
15634 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
15635 {
15636 if (inst.operands[2].isscalar)
15637 {
15638 struct neon_type_el et = neon_check_type (3, NS_QDS,
15639 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
15640 NEON_ENCODE (SCALAR, inst);
15641 neon_mul_mac (et, et.type == NT_unsigned);
15642 }
15643 else
15644 {
15645 struct neon_type_el et = neon_check_type (3, NS_QDD,
15646 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
15647 NEON_ENCODE (INTEGER, inst);
15648 neon_mixed_length (et, et.size);
15649 }
15650 }
15651
15652 static void
15653 do_neon_mac_maybe_scalar_long (void)
15654 {
15655 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
15656 }
15657
15658 static void
15659 do_neon_dyadic_wide (void)
15660 {
15661 struct neon_type_el et = neon_check_type (3, NS_QQD,
15662 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
15663 neon_mixed_length (et, et.size);
15664 }
15665
15666 static void
15667 do_neon_dyadic_narrow (void)
15668 {
15669 struct neon_type_el et = neon_check_type (3, NS_QDD,
15670 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
15671 /* Operand sign is unimportant, and the U bit is part of the opcode,
15672 so force the operand type to integer. */
15673 et.type = NT_integer;
15674 neon_mixed_length (et, et.size / 2);
15675 }
15676
15677 static void
15678 do_neon_mul_sat_scalar_long (void)
15679 {
15680 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
15681 }
15682
15683 static void
15684 do_neon_vmull (void)
15685 {
15686 if (inst.operands[2].isscalar)
15687 do_neon_mac_maybe_scalar_long ();
15688 else
15689 {
15690 struct neon_type_el et = neon_check_type (3, NS_QDD,
15691 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
15692
15693 if (et.type == NT_poly)
15694 NEON_ENCODE (POLY, inst);
15695 else
15696 NEON_ENCODE (INTEGER, inst);
15697
15698 /* For polynomial encoding the U bit must be zero, and the size must
15699 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
15700 obviously, as 0b10). */
15701 if (et.size == 64)
15702 {
15703 /* Check we're on the correct architecture. */
15704 if (!mark_feature_used (&fpu_crypto_ext_armv8))
15705 inst.error =
15706 _("Instruction form not available on this architecture.");
15707
15708 et.size = 32;
15709 }
15710
15711 neon_mixed_length (et, et.size);
15712 }
15713 }
15714
15715 static void
15716 do_neon_ext (void)
15717 {
15718 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
15719 struct neon_type_el et = neon_check_type (3, rs,
15720 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15721 unsigned imm = (inst.operands[3].imm * et.size) / 8;
15722
15723 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
15724 _("shift out of range"));
15725 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15726 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15727 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15728 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15729 inst.instruction |= LOW4 (inst.operands[2].reg);
15730 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15731 inst.instruction |= neon_quad (rs) << 6;
15732 inst.instruction |= imm << 8;
15733
15734 neon_dp_fixup (&inst);
15735 }
15736
15737 static void
15738 do_neon_rev (void)
15739 {
15740 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15741 struct neon_type_el et = neon_check_type (2, rs,
15742 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15743 unsigned op = (inst.instruction >> 7) & 3;
15744 /* N (width of reversed regions) is encoded as part of the bitmask. We
15745 extract it here to check the elements to be reversed are smaller.
15746 Otherwise we'd get a reserved instruction. */
15747 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
15748 gas_assert (elsize != 0);
15749 constraint (et.size >= elsize,
15750 _("elements must be smaller than reversal region"));
15751 neon_two_same (neon_quad (rs), 1, et.size);
15752 }
15753
15754 static void
15755 do_neon_dup (void)
15756 {
15757 if (inst.operands[1].isscalar)
15758 {
15759 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
15760 struct neon_type_el et = neon_check_type (2, rs,
15761 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15762 unsigned sizebits = et.size >> 3;
15763 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
15764 int logsize = neon_logbits (et.size);
15765 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
15766
15767 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15768 return;
15769
15770 NEON_ENCODE (SCALAR, inst);
15771 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15772 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15773 inst.instruction |= LOW4 (dm);
15774 inst.instruction |= HI1 (dm) << 5;
15775 inst.instruction |= neon_quad (rs) << 6;
15776 inst.instruction |= x << 17;
15777 inst.instruction |= sizebits << 16;
15778
15779 neon_dp_fixup (&inst);
15780 }
15781 else
15782 {
15783 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15784 struct neon_type_el et = neon_check_type (2, rs,
15785 N_8 | N_16 | N_32 | N_KEY, N_EQK);
15786 /* Duplicate ARM register to lanes of vector. */
15787 NEON_ENCODE (ARMREG, inst);
15788 switch (et.size)
15789 {
15790 case 8: inst.instruction |= 0x400000; break;
15791 case 16: inst.instruction |= 0x000020; break;
15792 case 32: inst.instruction |= 0x000000; break;
15793 default: break;
15794 }
15795 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15796 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15797 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
15798 inst.instruction |= neon_quad (rs) << 21;
15799 /* The encoding for this instruction is identical for the ARM and Thumb
15800 variants, except for the condition field. */
15801 do_vfp_cond_or_thumb ();
15802 }
15803 }
15804
15805 /* VMOV has particularly many variations. It can be one of:
15806 0. VMOV<c><q> <Qd>, <Qm>
15807 1. VMOV<c><q> <Dd>, <Dm>
15808 (Register operations, which are VORR with Rm = Rn.)
15809 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15810 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15811 (Immediate loads.)
15812 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15813 (ARM register to scalar.)
15814 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15815 (Two ARM registers to vector.)
15816 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15817 (Scalar to ARM register.)
15818 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15819 (Vector to two ARM registers.)
15820 8. VMOV.F32 <Sd>, <Sm>
15821 9. VMOV.F64 <Dd>, <Dm>
15822 (VFP register moves.)
15823 10. VMOV.F32 <Sd>, #imm
15824 11. VMOV.F64 <Dd>, #imm
15825 (VFP float immediate load.)
15826 12. VMOV <Rd>, <Sm>
15827 (VFP single to ARM reg.)
15828 13. VMOV <Sd>, <Rm>
15829 (ARM reg to VFP single.)
15830 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15831 (Two ARM regs to two VFP singles.)
15832 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15833 (Two VFP singles to two ARM regs.)
15834
15835 These cases can be disambiguated using neon_select_shape, except cases 1/9
15836 and 3/11 which depend on the operand type too.
15837
15838 All the encoded bits are hardcoded by this function.
15839
15840 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15841 Cases 5, 7 may be used with VFPv2 and above.
15842
15843 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15844 can specify a type where it doesn't make sense to, and is ignored). */
15845
15846 static void
15847 do_neon_mov (void)
15848 {
15849 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15850 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15851 NS_NULL);
15852 struct neon_type_el et;
15853 const char *ldconst = 0;
15854
15855 switch (rs)
15856 {
15857 case NS_DD: /* case 1/9. */
15858 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15859 /* It is not an error here if no type is given. */
15860 inst.error = NULL;
15861 if (et.type == NT_float && et.size == 64)
15862 {
15863 do_vfp_nsyn_opcode ("fcpyd");
15864 break;
15865 }
15866 /* fall through. */
15867
15868 case NS_QQ: /* case 0/1. */
15869 {
15870 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15871 return;
15872 /* The architecture manual I have doesn't explicitly state which
15873 value the U bit should have for register->register moves, but
15874 the equivalent VORR instruction has U = 0, so do that. */
15875 inst.instruction = 0x0200110;
15876 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15877 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15878 inst.instruction |= LOW4 (inst.operands[1].reg);
15879 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15880 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15881 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15882 inst.instruction |= neon_quad (rs) << 6;
15883
15884 neon_dp_fixup (&inst);
15885 }
15886 break;
15887
15888 case NS_DI: /* case 3/11. */
15889 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15890 inst.error = NULL;
15891 if (et.type == NT_float && et.size == 64)
15892 {
15893 /* case 11 (fconstd). */
15894 ldconst = "fconstd";
15895 goto encode_fconstd;
15896 }
15897 /* fall through. */
15898
15899 case NS_QI: /* case 2/3. */
15900 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15901 return;
15902 inst.instruction = 0x0800010;
15903 neon_move_immediate ();
15904 neon_dp_fixup (&inst);
15905 break;
15906
15907 case NS_SR: /* case 4. */
15908 {
15909 unsigned bcdebits = 0;
15910 int logsize;
15911 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15912 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15913
15914 /* .<size> is optional here, defaulting to .32. */
15915 if (inst.vectype.elems == 0
15916 && inst.operands[0].vectype.type == NT_invtype
15917 && inst.operands[1].vectype.type == NT_invtype)
15918 {
15919 inst.vectype.el[0].type = NT_untyped;
15920 inst.vectype.el[0].size = 32;
15921 inst.vectype.elems = 1;
15922 }
15923
15924 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15925 logsize = neon_logbits (et.size);
15926
15927 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15928 _(BAD_FPU));
15929 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15930 && et.size != 32, _(BAD_FPU));
15931 constraint (et.type == NT_invtype, _("bad type for scalar"));
15932 constraint (x >= 64 / et.size, _("scalar index out of range"));
15933
15934 switch (et.size)
15935 {
15936 case 8: bcdebits = 0x8; break;
15937 case 16: bcdebits = 0x1; break;
15938 case 32: bcdebits = 0x0; break;
15939 default: ;
15940 }
15941
15942 bcdebits |= x << logsize;
15943
15944 inst.instruction = 0xe000b10;
15945 do_vfp_cond_or_thumb ();
15946 inst.instruction |= LOW4 (dn) << 16;
15947 inst.instruction |= HI1 (dn) << 7;
15948 inst.instruction |= inst.operands[1].reg << 12;
15949 inst.instruction |= (bcdebits & 3) << 5;
15950 inst.instruction |= (bcdebits >> 2) << 21;
15951 }
15952 break;
15953
15954 case NS_DRR: /* case 5 (fmdrr). */
15955 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15956 _(BAD_FPU));
15957
15958 inst.instruction = 0xc400b10;
15959 do_vfp_cond_or_thumb ();
15960 inst.instruction |= LOW4 (inst.operands[0].reg);
15961 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15962 inst.instruction |= inst.operands[1].reg << 12;
15963 inst.instruction |= inst.operands[2].reg << 16;
15964 break;
15965
15966 case NS_RS: /* case 6. */
15967 {
15968 unsigned logsize;
15969 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15970 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15971 unsigned abcdebits = 0;
15972
15973 /* .<dt> is optional here, defaulting to .32. */
15974 if (inst.vectype.elems == 0
15975 && inst.operands[0].vectype.type == NT_invtype
15976 && inst.operands[1].vectype.type == NT_invtype)
15977 {
15978 inst.vectype.el[0].type = NT_untyped;
15979 inst.vectype.el[0].size = 32;
15980 inst.vectype.elems = 1;
15981 }
15982
15983 et = neon_check_type (2, NS_NULL,
15984 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15985 logsize = neon_logbits (et.size);
15986
15987 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15988 _(BAD_FPU));
15989 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15990 && et.size != 32, _(BAD_FPU));
15991 constraint (et.type == NT_invtype, _("bad type for scalar"));
15992 constraint (x >= 64 / et.size, _("scalar index out of range"));
15993
15994 switch (et.size)
15995 {
15996 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15997 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15998 case 32: abcdebits = 0x00; break;
15999 default: ;
16000 }
16001
16002 abcdebits |= x << logsize;
16003 inst.instruction = 0xe100b10;
16004 do_vfp_cond_or_thumb ();
16005 inst.instruction |= LOW4 (dn) << 16;
16006 inst.instruction |= HI1 (dn) << 7;
16007 inst.instruction |= inst.operands[0].reg << 12;
16008 inst.instruction |= (abcdebits & 3) << 5;
16009 inst.instruction |= (abcdebits >> 2) << 21;
16010 }
16011 break;
16012
16013 case NS_RRD: /* case 7 (fmrrd). */
16014 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16015 _(BAD_FPU));
16016
16017 inst.instruction = 0xc500b10;
16018 do_vfp_cond_or_thumb ();
16019 inst.instruction |= inst.operands[0].reg << 12;
16020 inst.instruction |= inst.operands[1].reg << 16;
16021 inst.instruction |= LOW4 (inst.operands[2].reg);
16022 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16023 break;
16024
16025 case NS_FF: /* case 8 (fcpys). */
16026 do_vfp_nsyn_opcode ("fcpys");
16027 break;
16028
16029 case NS_FI: /* case 10 (fconsts). */
16030 ldconst = "fconsts";
16031 encode_fconstd:
16032 if (is_quarter_float (inst.operands[1].imm))
16033 {
16034 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16035 do_vfp_nsyn_opcode (ldconst);
16036 }
16037 else
16038 first_error (_("immediate out of range"));
16039 break;
16040
16041 case NS_RF: /* case 12 (fmrs). */
16042 do_vfp_nsyn_opcode ("fmrs");
16043 break;
16044
16045 case NS_FR: /* case 13 (fmsr). */
16046 do_vfp_nsyn_opcode ("fmsr");
16047 break;
16048
16049 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16050 (one of which is a list), but we have parsed four. Do some fiddling to
16051 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16052 expect. */
16053 case NS_RRFF: /* case 14 (fmrrs). */
16054 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
16055 _("VFP registers must be adjacent"));
16056 inst.operands[2].imm = 2;
16057 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16058 do_vfp_nsyn_opcode ("fmrrs");
16059 break;
16060
16061 case NS_FFRR: /* case 15 (fmsrr). */
16062 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
16063 _("VFP registers must be adjacent"));
16064 inst.operands[1] = inst.operands[2];
16065 inst.operands[2] = inst.operands[3];
16066 inst.operands[0].imm = 2;
16067 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16068 do_vfp_nsyn_opcode ("fmsrr");
16069 break;
16070
16071 case NS_NULL:
16072 /* neon_select_shape has determined that the instruction
16073 shape is wrong and has already set the error message. */
16074 break;
16075
16076 default:
16077 abort ();
16078 }
16079 }
16080
16081 static void
16082 do_neon_rshift_round_imm (void)
16083 {
16084 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16085 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16086 int imm = inst.operands[2].imm;
16087
16088 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16089 if (imm == 0)
16090 {
16091 inst.operands[2].present = 0;
16092 do_neon_mov ();
16093 return;
16094 }
16095
16096 constraint (imm < 1 || (unsigned)imm > et.size,
16097 _("immediate out of range for shift"));
16098 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
16099 et.size - imm);
16100 }
16101
16102 static void
16103 do_neon_movl (void)
16104 {
16105 struct neon_type_el et = neon_check_type (2, NS_QD,
16106 N_EQK | N_DBL, N_SU_32 | N_KEY);
16107 unsigned sizebits = et.size >> 3;
16108 inst.instruction |= sizebits << 19;
16109 neon_two_same (0, et.type == NT_unsigned, -1);
16110 }
16111
16112 static void
16113 do_neon_trn (void)
16114 {
16115 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16116 struct neon_type_el et = neon_check_type (2, rs,
16117 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16118 NEON_ENCODE (INTEGER, inst);
16119 neon_two_same (neon_quad (rs), 1, et.size);
16120 }
16121
16122 static void
16123 do_neon_zip_uzp (void)
16124 {
16125 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16126 struct neon_type_el et = neon_check_type (2, rs,
16127 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16128 if (rs == NS_DD && et.size == 32)
16129 {
16130 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
16131 inst.instruction = N_MNEM_vtrn;
16132 do_neon_trn ();
16133 return;
16134 }
16135 neon_two_same (neon_quad (rs), 1, et.size);
16136 }
16137
16138 static void
16139 do_neon_sat_abs_neg (void)
16140 {
16141 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16142 struct neon_type_el et = neon_check_type (2, rs,
16143 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16144 neon_two_same (neon_quad (rs), 1, et.size);
16145 }
16146
16147 static void
16148 do_neon_pair_long (void)
16149 {
16150 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16151 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16152 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
16153 inst.instruction |= (et.type == NT_unsigned) << 7;
16154 neon_two_same (neon_quad (rs), 1, et.size);
16155 }
16156
16157 static void
16158 do_neon_recip_est (void)
16159 {
16160 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16161 struct neon_type_el et = neon_check_type (2, rs,
16162 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
16163 inst.instruction |= (et.type == NT_float) << 8;
16164 neon_two_same (neon_quad (rs), 1, et.size);
16165 }
16166
16167 static void
16168 do_neon_cls (void)
16169 {
16170 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16171 struct neon_type_el et = neon_check_type (2, rs,
16172 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16173 neon_two_same (neon_quad (rs), 1, et.size);
16174 }
16175
16176 static void
16177 do_neon_clz (void)
16178 {
16179 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16180 struct neon_type_el et = neon_check_type (2, rs,
16181 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
16182 neon_two_same (neon_quad (rs), 1, et.size);
16183 }
16184
16185 static void
16186 do_neon_cnt (void)
16187 {
16188 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16189 struct neon_type_el et = neon_check_type (2, rs,
16190 N_EQK | N_INT, N_8 | N_KEY);
16191 neon_two_same (neon_quad (rs), 1, et.size);
16192 }
16193
16194 static void
16195 do_neon_swp (void)
16196 {
16197 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16198 neon_two_same (neon_quad (rs), 1, -1);
16199 }
16200
16201 static void
16202 do_neon_tbl_tbx (void)
16203 {
16204 unsigned listlenbits;
16205 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
16206
16207 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
16208 {
16209 first_error (_("bad list length for table lookup"));
16210 return;
16211 }
16212
16213 listlenbits = inst.operands[1].imm - 1;
16214 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16215 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16216 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16217 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16218 inst.instruction |= LOW4 (inst.operands[2].reg);
16219 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16220 inst.instruction |= listlenbits << 8;
16221
16222 neon_dp_fixup (&inst);
16223 }
16224
16225 static void
16226 do_neon_ldm_stm (void)
16227 {
16228 /* P, U and L bits are part of bitmask. */
16229 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
16230 unsigned offsetbits = inst.operands[1].imm * 2;
16231
16232 if (inst.operands[1].issingle)
16233 {
16234 do_vfp_nsyn_ldm_stm (is_dbmode);
16235 return;
16236 }
16237
16238 constraint (is_dbmode && !inst.operands[0].writeback,
16239 _("writeback (!) must be used for VLDMDB and VSTMDB"));
16240
16241 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16242 _("register list must contain at least 1 and at most 16 "
16243 "registers"));
16244
16245 inst.instruction |= inst.operands[0].reg << 16;
16246 inst.instruction |= inst.operands[0].writeback << 21;
16247 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16248 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
16249
16250 inst.instruction |= offsetbits;
16251
16252 do_vfp_cond_or_thumb ();
16253 }
16254
16255 static void
16256 do_neon_ldr_str (void)
16257 {
16258 int is_ldr = (inst.instruction & (1 << 20)) != 0;
16259
16260 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
16261 And is UNPREDICTABLE in thumb mode. */
16262 if (!is_ldr
16263 && inst.operands[1].reg == REG_PC
16264 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
16265 {
16266 if (thumb_mode)
16267 inst.error = _("Use of PC here is UNPREDICTABLE");
16268 else if (warn_on_deprecated)
16269 as_tsktsk (_("Use of PC here is deprecated"));
16270 }
16271
16272 if (inst.operands[0].issingle)
16273 {
16274 if (is_ldr)
16275 do_vfp_nsyn_opcode ("flds");
16276 else
16277 do_vfp_nsyn_opcode ("fsts");
16278 }
16279 else
16280 {
16281 if (is_ldr)
16282 do_vfp_nsyn_opcode ("fldd");
16283 else
16284 do_vfp_nsyn_opcode ("fstd");
16285 }
16286 }
16287
16288 /* "interleave" version also handles non-interleaving register VLD1/VST1
16289 instructions. */
16290
16291 static void
16292 do_neon_ld_st_interleave (void)
16293 {
16294 struct neon_type_el et = neon_check_type (1, NS_NULL,
16295 N_8 | N_16 | N_32 | N_64);
16296 unsigned alignbits = 0;
16297 unsigned idx;
16298 /* The bits in this table go:
16299 0: register stride of one (0) or two (1)
16300 1,2: register list length, minus one (1, 2, 3, 4).
16301 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
16302 We use -1 for invalid entries. */
16303 const int typetable[] =
16304 {
16305 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
16306 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
16307 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
16308 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
16309 };
16310 int typebits;
16311
16312 if (et.type == NT_invtype)
16313 return;
16314
16315 if (inst.operands[1].immisalign)
16316 switch (inst.operands[1].imm >> 8)
16317 {
16318 case 64: alignbits = 1; break;
16319 case 128:
16320 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
16321 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
16322 goto bad_alignment;
16323 alignbits = 2;
16324 break;
16325 case 256:
16326 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
16327 goto bad_alignment;
16328 alignbits = 3;
16329 break;
16330 default:
16331 bad_alignment:
16332 first_error (_("bad alignment"));
16333 return;
16334 }
16335
16336 inst.instruction |= alignbits << 4;
16337 inst.instruction |= neon_logbits (et.size) << 6;
16338
16339 /* Bits [4:6] of the immediate in a list specifier encode register stride
16340 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
16341 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
16342 up the right value for "type" in a table based on this value and the given
16343 list style, then stick it back. */
16344 idx = ((inst.operands[0].imm >> 4) & 7)
16345 | (((inst.instruction >> 8) & 3) << 3);
16346
16347 typebits = typetable[idx];
16348
16349 constraint (typebits == -1, _("bad list type for instruction"));
16350 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
16351 _("bad element type for instruction"));
16352
16353 inst.instruction &= ~0xf00;
16354 inst.instruction |= typebits << 8;
16355 }
16356
16357 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
16358 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
16359 otherwise. The variable arguments are a list of pairs of legal (size, align)
16360 values, terminated with -1. */
16361
16362 static int
16363 neon_alignment_bit (int size, int align, int *do_align, ...)
16364 {
16365 va_list ap;
16366 int result = FAIL, thissize, thisalign;
16367
16368 if (!inst.operands[1].immisalign)
16369 {
16370 *do_align = 0;
16371 return SUCCESS;
16372 }
16373
16374 va_start (ap, do_align);
16375
16376 do
16377 {
16378 thissize = va_arg (ap, int);
16379 if (thissize == -1)
16380 break;
16381 thisalign = va_arg (ap, int);
16382
16383 if (size == thissize && align == thisalign)
16384 result = SUCCESS;
16385 }
16386 while (result != SUCCESS);
16387
16388 va_end (ap);
16389
16390 if (result == SUCCESS)
16391 *do_align = 1;
16392 else
16393 first_error (_("unsupported alignment for instruction"));
16394
16395 return result;
16396 }
16397
16398 static void
16399 do_neon_ld_st_lane (void)
16400 {
16401 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
16402 int align_good, do_align = 0;
16403 int logsize = neon_logbits (et.size);
16404 int align = inst.operands[1].imm >> 8;
16405 int n = (inst.instruction >> 8) & 3;
16406 int max_el = 64 / et.size;
16407
16408 if (et.type == NT_invtype)
16409 return;
16410
16411 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
16412 _("bad list length"));
16413 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
16414 _("scalar index out of range"));
16415 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
16416 && et.size == 8,
16417 _("stride of 2 unavailable when element size is 8"));
16418
16419 switch (n)
16420 {
16421 case 0: /* VLD1 / VST1. */
16422 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
16423 32, 32, -1);
16424 if (align_good == FAIL)
16425 return;
16426 if (do_align)
16427 {
16428 unsigned alignbits = 0;
16429 switch (et.size)
16430 {
16431 case 16: alignbits = 0x1; break;
16432 case 32: alignbits = 0x3; break;
16433 default: ;
16434 }
16435 inst.instruction |= alignbits << 4;
16436 }
16437 break;
16438
16439 case 1: /* VLD2 / VST2. */
16440 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
16441 32, 64, -1);
16442 if (align_good == FAIL)
16443 return;
16444 if (do_align)
16445 inst.instruction |= 1 << 4;
16446 break;
16447
16448 case 2: /* VLD3 / VST3. */
16449 constraint (inst.operands[1].immisalign,
16450 _("can't use alignment with this instruction"));
16451 break;
16452
16453 case 3: /* VLD4 / VST4. */
16454 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
16455 16, 64, 32, 64, 32, 128, -1);
16456 if (align_good == FAIL)
16457 return;
16458 if (do_align)
16459 {
16460 unsigned alignbits = 0;
16461 switch (et.size)
16462 {
16463 case 8: alignbits = 0x1; break;
16464 case 16: alignbits = 0x1; break;
16465 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
16466 default: ;
16467 }
16468 inst.instruction |= alignbits << 4;
16469 }
16470 break;
16471
16472 default: ;
16473 }
16474
16475 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
16476 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16477 inst.instruction |= 1 << (4 + logsize);
16478
16479 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
16480 inst.instruction |= logsize << 10;
16481 }
16482
16483 /* Encode single n-element structure to all lanes VLD<n> instructions. */
16484
16485 static void
16486 do_neon_ld_dup (void)
16487 {
16488 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
16489 int align_good, do_align = 0;
16490
16491 if (et.type == NT_invtype)
16492 return;
16493
16494 switch ((inst.instruction >> 8) & 3)
16495 {
16496 case 0: /* VLD1. */
16497 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
16498 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
16499 &do_align, 16, 16, 32, 32, -1);
16500 if (align_good == FAIL)
16501 return;
16502 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
16503 {
16504 case 1: break;
16505 case 2: inst.instruction |= 1 << 5; break;
16506 default: first_error (_("bad list length")); return;
16507 }
16508 inst.instruction |= neon_logbits (et.size) << 6;
16509 break;
16510
16511 case 1: /* VLD2. */
16512 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
16513 &do_align, 8, 16, 16, 32, 32, 64, -1);
16514 if (align_good == FAIL)
16515 return;
16516 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
16517 _("bad list length"));
16518 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16519 inst.instruction |= 1 << 5;
16520 inst.instruction |= neon_logbits (et.size) << 6;
16521 break;
16522
16523 case 2: /* VLD3. */
16524 constraint (inst.operands[1].immisalign,
16525 _("can't use alignment with this instruction"));
16526 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
16527 _("bad list length"));
16528 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16529 inst.instruction |= 1 << 5;
16530 inst.instruction |= neon_logbits (et.size) << 6;
16531 break;
16532
16533 case 3: /* VLD4. */
16534 {
16535 int align = inst.operands[1].imm >> 8;
16536 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
16537 16, 64, 32, 64, 32, 128, -1);
16538 if (align_good == FAIL)
16539 return;
16540 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
16541 _("bad list length"));
16542 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16543 inst.instruction |= 1 << 5;
16544 if (et.size == 32 && align == 128)
16545 inst.instruction |= 0x3 << 6;
16546 else
16547 inst.instruction |= neon_logbits (et.size) << 6;
16548 }
16549 break;
16550
16551 default: ;
16552 }
16553
16554 inst.instruction |= do_align << 4;
16555 }
16556
16557 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
16558 apart from bits [11:4]. */
16559
16560 static void
16561 do_neon_ldx_stx (void)
16562 {
16563 if (inst.operands[1].isreg)
16564 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16565
16566 switch (NEON_LANE (inst.operands[0].imm))
16567 {
16568 case NEON_INTERLEAVE_LANES:
16569 NEON_ENCODE (INTERLV, inst);
16570 do_neon_ld_st_interleave ();
16571 break;
16572
16573 case NEON_ALL_LANES:
16574 NEON_ENCODE (DUP, inst);
16575 if (inst.instruction == N_INV)
16576 {
16577 first_error ("only loads support such operands");
16578 break;
16579 }
16580 do_neon_ld_dup ();
16581 break;
16582
16583 default:
16584 NEON_ENCODE (LANE, inst);
16585 do_neon_ld_st_lane ();
16586 }
16587
16588 /* L bit comes from bit mask. */
16589 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16590 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16591 inst.instruction |= inst.operands[1].reg << 16;
16592
16593 if (inst.operands[1].postind)
16594 {
16595 int postreg = inst.operands[1].imm & 0xf;
16596 constraint (!inst.operands[1].immisreg,
16597 _("post-index must be a register"));
16598 constraint (postreg == 0xd || postreg == 0xf,
16599 _("bad register for post-index"));
16600 inst.instruction |= postreg;
16601 }
16602 else
16603 {
16604 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16605 constraint (inst.reloc.exp.X_op != O_constant
16606 || inst.reloc.exp.X_add_number != 0,
16607 BAD_ADDR_MODE);
16608
16609 if (inst.operands[1].writeback)
16610 {
16611 inst.instruction |= 0xd;
16612 }
16613 else
16614 inst.instruction |= 0xf;
16615 }
16616
16617 if (thumb_mode)
16618 inst.instruction |= 0xf9000000;
16619 else
16620 inst.instruction |= 0xf4000000;
16621 }
16622
16623 /* FP v8. */
16624 static void
16625 do_vfp_nsyn_fpv8 (enum neon_shape rs)
16626 {
16627 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
16628 D register operands. */
16629 if (neon_shape_class[rs] == SC_DOUBLE)
16630 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16631 _(BAD_FPU));
16632
16633 NEON_ENCODE (FPV8, inst);
16634
16635 if (rs == NS_FFF)
16636 do_vfp_sp_dyadic ();
16637 else
16638 do_vfp_dp_rd_rn_rm ();
16639
16640 if (rs == NS_DDD)
16641 inst.instruction |= 0x100;
16642
16643 inst.instruction |= 0xf0000000;
16644 }
16645
16646 static void
16647 do_vsel (void)
16648 {
16649 set_it_insn_type (OUTSIDE_IT_INSN);
16650
16651 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
16652 first_error (_("invalid instruction shape"));
16653 }
16654
16655 static void
16656 do_vmaxnm (void)
16657 {
16658 set_it_insn_type (OUTSIDE_IT_INSN);
16659
16660 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
16661 return;
16662
16663 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16664 return;
16665
16666 neon_dyadic_misc (NT_untyped, N_F32, 0);
16667 }
16668
16669 static void
16670 do_vrint_1 (enum neon_cvt_mode mode)
16671 {
16672 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_QQ, NS_NULL);
16673 struct neon_type_el et;
16674
16675 if (rs == NS_NULL)
16676 return;
16677
16678 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
16679 D register operands. */
16680 if (neon_shape_class[rs] == SC_DOUBLE)
16681 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16682 _(BAD_FPU));
16683
16684 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
16685 if (et.type != NT_invtype)
16686 {
16687 /* VFP encodings. */
16688 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
16689 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
16690 set_it_insn_type (OUTSIDE_IT_INSN);
16691
16692 NEON_ENCODE (FPV8, inst);
16693 if (rs == NS_FF)
16694 do_vfp_sp_monadic ();
16695 else
16696 do_vfp_dp_rd_rm ();
16697
16698 switch (mode)
16699 {
16700 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
16701 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
16702 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
16703 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
16704 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
16705 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
16706 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
16707 default: abort ();
16708 }
16709
16710 inst.instruction |= (rs == NS_DD) << 8;
16711 do_vfp_cond_or_thumb ();
16712 }
16713 else
16714 {
16715 /* Neon encodings (or something broken...). */
16716 inst.error = NULL;
16717 et = neon_check_type (2, rs, N_EQK, N_F32 | N_KEY);
16718
16719 if (et.type == NT_invtype)
16720 return;
16721
16722 set_it_insn_type (OUTSIDE_IT_INSN);
16723 NEON_ENCODE (FLOAT, inst);
16724
16725 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16726 return;
16727
16728 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16729 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16730 inst.instruction |= LOW4 (inst.operands[1].reg);
16731 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16732 inst.instruction |= neon_quad (rs) << 6;
16733 switch (mode)
16734 {
16735 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
16736 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
16737 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
16738 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
16739 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
16740 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
16741 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
16742 default: abort ();
16743 }
16744
16745 if (thumb_mode)
16746 inst.instruction |= 0xfc000000;
16747 else
16748 inst.instruction |= 0xf0000000;
16749 }
16750 }
16751
16752 static void
16753 do_vrintx (void)
16754 {
16755 do_vrint_1 (neon_cvt_mode_x);
16756 }
16757
16758 static void
16759 do_vrintz (void)
16760 {
16761 do_vrint_1 (neon_cvt_mode_z);
16762 }
16763
16764 static void
16765 do_vrintr (void)
16766 {
16767 do_vrint_1 (neon_cvt_mode_r);
16768 }
16769
16770 static void
16771 do_vrinta (void)
16772 {
16773 do_vrint_1 (neon_cvt_mode_a);
16774 }
16775
16776 static void
16777 do_vrintn (void)
16778 {
16779 do_vrint_1 (neon_cvt_mode_n);
16780 }
16781
16782 static void
16783 do_vrintp (void)
16784 {
16785 do_vrint_1 (neon_cvt_mode_p);
16786 }
16787
16788 static void
16789 do_vrintm (void)
16790 {
16791 do_vrint_1 (neon_cvt_mode_m);
16792 }
16793
16794 /* Crypto v1 instructions. */
16795 static void
16796 do_crypto_2op_1 (unsigned elttype, int op)
16797 {
16798 set_it_insn_type (OUTSIDE_IT_INSN);
16799
16800 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
16801 == NT_invtype)
16802 return;
16803
16804 inst.error = NULL;
16805
16806 NEON_ENCODE (INTEGER, inst);
16807 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16808 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16809 inst.instruction |= LOW4 (inst.operands[1].reg);
16810 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16811 if (op != -1)
16812 inst.instruction |= op << 6;
16813
16814 if (thumb_mode)
16815 inst.instruction |= 0xfc000000;
16816 else
16817 inst.instruction |= 0xf0000000;
16818 }
16819
16820 static void
16821 do_crypto_3op_1 (int u, int op)
16822 {
16823 set_it_insn_type (OUTSIDE_IT_INSN);
16824
16825 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
16826 N_32 | N_UNT | N_KEY).type == NT_invtype)
16827 return;
16828
16829 inst.error = NULL;
16830
16831 NEON_ENCODE (INTEGER, inst);
16832 neon_three_same (1, u, 8 << op);
16833 }
16834
16835 static void
16836 do_aese (void)
16837 {
16838 do_crypto_2op_1 (N_8, 0);
16839 }
16840
16841 static void
16842 do_aesd (void)
16843 {
16844 do_crypto_2op_1 (N_8, 1);
16845 }
16846
16847 static void
16848 do_aesmc (void)
16849 {
16850 do_crypto_2op_1 (N_8, 2);
16851 }
16852
16853 static void
16854 do_aesimc (void)
16855 {
16856 do_crypto_2op_1 (N_8, 3);
16857 }
16858
16859 static void
16860 do_sha1c (void)
16861 {
16862 do_crypto_3op_1 (0, 0);
16863 }
16864
16865 static void
16866 do_sha1p (void)
16867 {
16868 do_crypto_3op_1 (0, 1);
16869 }
16870
16871 static void
16872 do_sha1m (void)
16873 {
16874 do_crypto_3op_1 (0, 2);
16875 }
16876
16877 static void
16878 do_sha1su0 (void)
16879 {
16880 do_crypto_3op_1 (0, 3);
16881 }
16882
16883 static void
16884 do_sha256h (void)
16885 {
16886 do_crypto_3op_1 (1, 0);
16887 }
16888
16889 static void
16890 do_sha256h2 (void)
16891 {
16892 do_crypto_3op_1 (1, 1);
16893 }
16894
16895 static void
16896 do_sha256su1 (void)
16897 {
16898 do_crypto_3op_1 (1, 2);
16899 }
16900
16901 static void
16902 do_sha1h (void)
16903 {
16904 do_crypto_2op_1 (N_32, -1);
16905 }
16906
16907 static void
16908 do_sha1su1 (void)
16909 {
16910 do_crypto_2op_1 (N_32, 0);
16911 }
16912
16913 static void
16914 do_sha256su0 (void)
16915 {
16916 do_crypto_2op_1 (N_32, 1);
16917 }
16918
16919 static void
16920 do_crc32_1 (unsigned int poly, unsigned int sz)
16921 {
16922 unsigned int Rd = inst.operands[0].reg;
16923 unsigned int Rn = inst.operands[1].reg;
16924 unsigned int Rm = inst.operands[2].reg;
16925
16926 set_it_insn_type (OUTSIDE_IT_INSN);
16927 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
16928 inst.instruction |= LOW4 (Rn) << 16;
16929 inst.instruction |= LOW4 (Rm);
16930 inst.instruction |= sz << (thumb_mode ? 4 : 21);
16931 inst.instruction |= poly << (thumb_mode ? 20 : 9);
16932
16933 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
16934 as_warn (UNPRED_REG ("r15"));
16935 if (thumb_mode && (Rd == REG_SP || Rn == REG_SP || Rm == REG_SP))
16936 as_warn (UNPRED_REG ("r13"));
16937 }
16938
16939 static void
16940 do_crc32b (void)
16941 {
16942 do_crc32_1 (0, 0);
16943 }
16944
16945 static void
16946 do_crc32h (void)
16947 {
16948 do_crc32_1 (0, 1);
16949 }
16950
16951 static void
16952 do_crc32w (void)
16953 {
16954 do_crc32_1 (0, 2);
16955 }
16956
16957 static void
16958 do_crc32cb (void)
16959 {
16960 do_crc32_1 (1, 0);
16961 }
16962
16963 static void
16964 do_crc32ch (void)
16965 {
16966 do_crc32_1 (1, 1);
16967 }
16968
16969 static void
16970 do_crc32cw (void)
16971 {
16972 do_crc32_1 (1, 2);
16973 }
16974
16975 \f
16976 /* Overall per-instruction processing. */
16977
16978 /* We need to be able to fix up arbitrary expressions in some statements.
16979 This is so that we can handle symbols that are an arbitrary distance from
16980 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
16981 which returns part of an address in a form which will be valid for
16982 a data instruction. We do this by pushing the expression into a symbol
16983 in the expr_section, and creating a fix for that. */
16984
16985 static void
16986 fix_new_arm (fragS * frag,
16987 int where,
16988 short int size,
16989 expressionS * exp,
16990 int pc_rel,
16991 int reloc)
16992 {
16993 fixS * new_fix;
16994
16995 switch (exp->X_op)
16996 {
16997 case O_constant:
16998 if (pc_rel)
16999 {
17000 /* Create an absolute valued symbol, so we have something to
17001 refer to in the object file. Unfortunately for us, gas's
17002 generic expression parsing will already have folded out
17003 any use of .set foo/.type foo %function that may have
17004 been used to set type information of the target location,
17005 that's being specified symbolically. We have to presume
17006 the user knows what they are doing. */
17007 char name[16 + 8];
17008 symbolS *symbol;
17009
17010 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
17011
17012 symbol = symbol_find_or_make (name);
17013 S_SET_SEGMENT (symbol, absolute_section);
17014 symbol_set_frag (symbol, &zero_address_frag);
17015 S_SET_VALUE (symbol, exp->X_add_number);
17016 exp->X_op = O_symbol;
17017 exp->X_add_symbol = symbol;
17018 exp->X_add_number = 0;
17019 }
17020 /* FALLTHROUGH */
17021 case O_symbol:
17022 case O_add:
17023 case O_subtract:
17024 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
17025 (enum bfd_reloc_code_real) reloc);
17026 break;
17027
17028 default:
17029 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
17030 pc_rel, (enum bfd_reloc_code_real) reloc);
17031 break;
17032 }
17033
17034 /* Mark whether the fix is to a THUMB instruction, or an ARM
17035 instruction. */
17036 new_fix->tc_fix_data = thumb_mode;
17037 }
17038
17039 /* Create a frg for an instruction requiring relaxation. */
17040 static void
17041 output_relax_insn (void)
17042 {
17043 char * to;
17044 symbolS *sym;
17045 int offset;
17046
17047 /* The size of the instruction is unknown, so tie the debug info to the
17048 start of the instruction. */
17049 dwarf2_emit_insn (0);
17050
17051 switch (inst.reloc.exp.X_op)
17052 {
17053 case O_symbol:
17054 sym = inst.reloc.exp.X_add_symbol;
17055 offset = inst.reloc.exp.X_add_number;
17056 break;
17057 case O_constant:
17058 sym = NULL;
17059 offset = inst.reloc.exp.X_add_number;
17060 break;
17061 default:
17062 sym = make_expr_symbol (&inst.reloc.exp);
17063 offset = 0;
17064 break;
17065 }
17066 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
17067 inst.relax, sym, offset, NULL/*offset, opcode*/);
17068 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
17069 }
17070
17071 /* Write a 32-bit thumb instruction to buf. */
17072 static void
17073 put_thumb32_insn (char * buf, unsigned long insn)
17074 {
17075 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
17076 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
17077 }
17078
17079 static void
17080 output_inst (const char * str)
17081 {
17082 char * to = NULL;
17083
17084 if (inst.error)
17085 {
17086 as_bad ("%s -- `%s'", inst.error, str);
17087 return;
17088 }
17089 if (inst.relax)
17090 {
17091 output_relax_insn ();
17092 return;
17093 }
17094 if (inst.size == 0)
17095 return;
17096
17097 to = frag_more (inst.size);
17098 /* PR 9814: Record the thumb mode into the current frag so that we know
17099 what type of NOP padding to use, if necessary. We override any previous
17100 setting so that if the mode has changed then the NOPS that we use will
17101 match the encoding of the last instruction in the frag. */
17102 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
17103
17104 if (thumb_mode && (inst.size > THUMB_SIZE))
17105 {
17106 gas_assert (inst.size == (2 * THUMB_SIZE));
17107 put_thumb32_insn (to, inst.instruction);
17108 }
17109 else if (inst.size > INSN_SIZE)
17110 {
17111 gas_assert (inst.size == (2 * INSN_SIZE));
17112 md_number_to_chars (to, inst.instruction, INSN_SIZE);
17113 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
17114 }
17115 else
17116 md_number_to_chars (to, inst.instruction, inst.size);
17117
17118 if (inst.reloc.type != BFD_RELOC_UNUSED)
17119 fix_new_arm (frag_now, to - frag_now->fr_literal,
17120 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
17121 inst.reloc.type);
17122
17123 dwarf2_emit_insn (inst.size);
17124 }
17125
17126 static char *
17127 output_it_inst (int cond, int mask, char * to)
17128 {
17129 unsigned long instruction = 0xbf00;
17130
17131 mask &= 0xf;
17132 instruction |= mask;
17133 instruction |= cond << 4;
17134
17135 if (to == NULL)
17136 {
17137 to = frag_more (2);
17138 #ifdef OBJ_ELF
17139 dwarf2_emit_insn (2);
17140 #endif
17141 }
17142
17143 md_number_to_chars (to, instruction, 2);
17144
17145 return to;
17146 }
17147
17148 /* Tag values used in struct asm_opcode's tag field. */
17149 enum opcode_tag
17150 {
17151 OT_unconditional, /* Instruction cannot be conditionalized.
17152 The ARM condition field is still 0xE. */
17153 OT_unconditionalF, /* Instruction cannot be conditionalized
17154 and carries 0xF in its ARM condition field. */
17155 OT_csuffix, /* Instruction takes a conditional suffix. */
17156 OT_csuffixF, /* Some forms of the instruction take a conditional
17157 suffix, others place 0xF where the condition field
17158 would be. */
17159 OT_cinfix3, /* Instruction takes a conditional infix,
17160 beginning at character index 3. (In
17161 unified mode, it becomes a suffix.) */
17162 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
17163 tsts, cmps, cmns, and teqs. */
17164 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
17165 character index 3, even in unified mode. Used for
17166 legacy instructions where suffix and infix forms
17167 may be ambiguous. */
17168 OT_csuf_or_in3, /* Instruction takes either a conditional
17169 suffix or an infix at character index 3. */
17170 OT_odd_infix_unc, /* This is the unconditional variant of an
17171 instruction that takes a conditional infix
17172 at an unusual position. In unified mode,
17173 this variant will accept a suffix. */
17174 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
17175 are the conditional variants of instructions that
17176 take conditional infixes in unusual positions.
17177 The infix appears at character index
17178 (tag - OT_odd_infix_0). These are not accepted
17179 in unified mode. */
17180 };
17181
17182 /* Subroutine of md_assemble, responsible for looking up the primary
17183 opcode from the mnemonic the user wrote. STR points to the
17184 beginning of the mnemonic.
17185
17186 This is not simply a hash table lookup, because of conditional
17187 variants. Most instructions have conditional variants, which are
17188 expressed with a _conditional affix_ to the mnemonic. If we were
17189 to encode each conditional variant as a literal string in the opcode
17190 table, it would have approximately 20,000 entries.
17191
17192 Most mnemonics take this affix as a suffix, and in unified syntax,
17193 'most' is upgraded to 'all'. However, in the divided syntax, some
17194 instructions take the affix as an infix, notably the s-variants of
17195 the arithmetic instructions. Of those instructions, all but six
17196 have the infix appear after the third character of the mnemonic.
17197
17198 Accordingly, the algorithm for looking up primary opcodes given
17199 an identifier is:
17200
17201 1. Look up the identifier in the opcode table.
17202 If we find a match, go to step U.
17203
17204 2. Look up the last two characters of the identifier in the
17205 conditions table. If we find a match, look up the first N-2
17206 characters of the identifier in the opcode table. If we
17207 find a match, go to step CE.
17208
17209 3. Look up the fourth and fifth characters of the identifier in
17210 the conditions table. If we find a match, extract those
17211 characters from the identifier, and look up the remaining
17212 characters in the opcode table. If we find a match, go
17213 to step CM.
17214
17215 4. Fail.
17216
17217 U. Examine the tag field of the opcode structure, in case this is
17218 one of the six instructions with its conditional infix in an
17219 unusual place. If it is, the tag tells us where to find the
17220 infix; look it up in the conditions table and set inst.cond
17221 accordingly. Otherwise, this is an unconditional instruction.
17222 Again set inst.cond accordingly. Return the opcode structure.
17223
17224 CE. Examine the tag field to make sure this is an instruction that
17225 should receive a conditional suffix. If it is not, fail.
17226 Otherwise, set inst.cond from the suffix we already looked up,
17227 and return the opcode structure.
17228
17229 CM. Examine the tag field to make sure this is an instruction that
17230 should receive a conditional infix after the third character.
17231 If it is not, fail. Otherwise, undo the edits to the current
17232 line of input and proceed as for case CE. */
17233
17234 static const struct asm_opcode *
17235 opcode_lookup (char **str)
17236 {
17237 char *end, *base;
17238 char *affix;
17239 const struct asm_opcode *opcode;
17240 const struct asm_cond *cond;
17241 char save[2];
17242
17243 /* Scan up to the end of the mnemonic, which must end in white space,
17244 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
17245 for (base = end = *str; *end != '\0'; end++)
17246 if (*end == ' ' || *end == '.')
17247 break;
17248
17249 if (end == base)
17250 return NULL;
17251
17252 /* Handle a possible width suffix and/or Neon type suffix. */
17253 if (end[0] == '.')
17254 {
17255 int offset = 2;
17256
17257 /* The .w and .n suffixes are only valid if the unified syntax is in
17258 use. */
17259 if (unified_syntax && end[1] == 'w')
17260 inst.size_req = 4;
17261 else if (unified_syntax && end[1] == 'n')
17262 inst.size_req = 2;
17263 else
17264 offset = 0;
17265
17266 inst.vectype.elems = 0;
17267
17268 *str = end + offset;
17269
17270 if (end[offset] == '.')
17271 {
17272 /* See if we have a Neon type suffix (possible in either unified or
17273 non-unified ARM syntax mode). */
17274 if (parse_neon_type (&inst.vectype, str) == FAIL)
17275 return NULL;
17276 }
17277 else if (end[offset] != '\0' && end[offset] != ' ')
17278 return NULL;
17279 }
17280 else
17281 *str = end;
17282
17283 /* Look for unaffixed or special-case affixed mnemonic. */
17284 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17285 end - base);
17286 if (opcode)
17287 {
17288 /* step U */
17289 if (opcode->tag < OT_odd_infix_0)
17290 {
17291 inst.cond = COND_ALWAYS;
17292 return opcode;
17293 }
17294
17295 if (warn_on_deprecated && unified_syntax)
17296 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
17297 affix = base + (opcode->tag - OT_odd_infix_0);
17298 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17299 gas_assert (cond);
17300
17301 inst.cond = cond->value;
17302 return opcode;
17303 }
17304
17305 /* Cannot have a conditional suffix on a mnemonic of less than two
17306 characters. */
17307 if (end - base < 3)
17308 return NULL;
17309
17310 /* Look for suffixed mnemonic. */
17311 affix = end - 2;
17312 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17313 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17314 affix - base);
17315 if (opcode && cond)
17316 {
17317 /* step CE */
17318 switch (opcode->tag)
17319 {
17320 case OT_cinfix3_legacy:
17321 /* Ignore conditional suffixes matched on infix only mnemonics. */
17322 break;
17323
17324 case OT_cinfix3:
17325 case OT_cinfix3_deprecated:
17326 case OT_odd_infix_unc:
17327 if (!unified_syntax)
17328 return 0;
17329 /* else fall through */
17330
17331 case OT_csuffix:
17332 case OT_csuffixF:
17333 case OT_csuf_or_in3:
17334 inst.cond = cond->value;
17335 return opcode;
17336
17337 case OT_unconditional:
17338 case OT_unconditionalF:
17339 if (thumb_mode)
17340 inst.cond = cond->value;
17341 else
17342 {
17343 /* Delayed diagnostic. */
17344 inst.error = BAD_COND;
17345 inst.cond = COND_ALWAYS;
17346 }
17347 return opcode;
17348
17349 default:
17350 return NULL;
17351 }
17352 }
17353
17354 /* Cannot have a usual-position infix on a mnemonic of less than
17355 six characters (five would be a suffix). */
17356 if (end - base < 6)
17357 return NULL;
17358
17359 /* Look for infixed mnemonic in the usual position. */
17360 affix = base + 3;
17361 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17362 if (!cond)
17363 return NULL;
17364
17365 memcpy (save, affix, 2);
17366 memmove (affix, affix + 2, (end - affix) - 2);
17367 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17368 (end - base) - 2);
17369 memmove (affix + 2, affix, (end - affix) - 2);
17370 memcpy (affix, save, 2);
17371
17372 if (opcode
17373 && (opcode->tag == OT_cinfix3
17374 || opcode->tag == OT_cinfix3_deprecated
17375 || opcode->tag == OT_csuf_or_in3
17376 || opcode->tag == OT_cinfix3_legacy))
17377 {
17378 /* Step CM. */
17379 if (warn_on_deprecated && unified_syntax
17380 && (opcode->tag == OT_cinfix3
17381 || opcode->tag == OT_cinfix3_deprecated))
17382 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
17383
17384 inst.cond = cond->value;
17385 return opcode;
17386 }
17387
17388 return NULL;
17389 }
17390
17391 /* This function generates an initial IT instruction, leaving its block
17392 virtually open for the new instructions. Eventually,
17393 the mask will be updated by now_it_add_mask () each time
17394 a new instruction needs to be included in the IT block.
17395 Finally, the block is closed with close_automatic_it_block ().
17396 The block closure can be requested either from md_assemble (),
17397 a tencode (), or due to a label hook. */
17398
17399 static void
17400 new_automatic_it_block (int cond)
17401 {
17402 now_it.state = AUTOMATIC_IT_BLOCK;
17403 now_it.mask = 0x18;
17404 now_it.cc = cond;
17405 now_it.block_length = 1;
17406 mapping_state (MAP_THUMB);
17407 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
17408 now_it.warn_deprecated = FALSE;
17409 now_it.insn_cond = TRUE;
17410 }
17411
17412 /* Close an automatic IT block.
17413 See comments in new_automatic_it_block (). */
17414
17415 static void
17416 close_automatic_it_block (void)
17417 {
17418 now_it.mask = 0x10;
17419 now_it.block_length = 0;
17420 }
17421
17422 /* Update the mask of the current automatically-generated IT
17423 instruction. See comments in new_automatic_it_block (). */
17424
17425 static void
17426 now_it_add_mask (int cond)
17427 {
17428 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
17429 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
17430 | ((bitvalue) << (nbit)))
17431 const int resulting_bit = (cond & 1);
17432
17433 now_it.mask &= 0xf;
17434 now_it.mask = SET_BIT_VALUE (now_it.mask,
17435 resulting_bit,
17436 (5 - now_it.block_length));
17437 now_it.mask = SET_BIT_VALUE (now_it.mask,
17438 1,
17439 ((5 - now_it.block_length) - 1) );
17440 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
17441
17442 #undef CLEAR_BIT
17443 #undef SET_BIT_VALUE
17444 }
17445
17446 /* The IT blocks handling machinery is accessed through the these functions:
17447 it_fsm_pre_encode () from md_assemble ()
17448 set_it_insn_type () optional, from the tencode functions
17449 set_it_insn_type_last () ditto
17450 in_it_block () ditto
17451 it_fsm_post_encode () from md_assemble ()
17452 force_automatic_it_block_close () from label habdling functions
17453
17454 Rationale:
17455 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
17456 initializing the IT insn type with a generic initial value depending
17457 on the inst.condition.
17458 2) During the tencode function, two things may happen:
17459 a) The tencode function overrides the IT insn type by
17460 calling either set_it_insn_type (type) or set_it_insn_type_last ().
17461 b) The tencode function queries the IT block state by
17462 calling in_it_block () (i.e. to determine narrow/not narrow mode).
17463
17464 Both set_it_insn_type and in_it_block run the internal FSM state
17465 handling function (handle_it_state), because: a) setting the IT insn
17466 type may incur in an invalid state (exiting the function),
17467 and b) querying the state requires the FSM to be updated.
17468 Specifically we want to avoid creating an IT block for conditional
17469 branches, so it_fsm_pre_encode is actually a guess and we can't
17470 determine whether an IT block is required until the tencode () routine
17471 has decided what type of instruction this actually it.
17472 Because of this, if set_it_insn_type and in_it_block have to be used,
17473 set_it_insn_type has to be called first.
17474
17475 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
17476 determines the insn IT type depending on the inst.cond code.
17477 When a tencode () routine encodes an instruction that can be
17478 either outside an IT block, or, in the case of being inside, has to be
17479 the last one, set_it_insn_type_last () will determine the proper
17480 IT instruction type based on the inst.cond code. Otherwise,
17481 set_it_insn_type can be called for overriding that logic or
17482 for covering other cases.
17483
17484 Calling handle_it_state () may not transition the IT block state to
17485 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
17486 still queried. Instead, if the FSM determines that the state should
17487 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
17488 after the tencode () function: that's what it_fsm_post_encode () does.
17489
17490 Since in_it_block () calls the state handling function to get an
17491 updated state, an error may occur (due to invalid insns combination).
17492 In that case, inst.error is set.
17493 Therefore, inst.error has to be checked after the execution of
17494 the tencode () routine.
17495
17496 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
17497 any pending state change (if any) that didn't take place in
17498 handle_it_state () as explained above. */
17499
17500 static void
17501 it_fsm_pre_encode (void)
17502 {
17503 if (inst.cond != COND_ALWAYS)
17504 inst.it_insn_type = INSIDE_IT_INSN;
17505 else
17506 inst.it_insn_type = OUTSIDE_IT_INSN;
17507
17508 now_it.state_handled = 0;
17509 }
17510
17511 /* IT state FSM handling function. */
17512
17513 static int
17514 handle_it_state (void)
17515 {
17516 now_it.state_handled = 1;
17517 now_it.insn_cond = FALSE;
17518
17519 switch (now_it.state)
17520 {
17521 case OUTSIDE_IT_BLOCK:
17522 switch (inst.it_insn_type)
17523 {
17524 case OUTSIDE_IT_INSN:
17525 break;
17526
17527 case INSIDE_IT_INSN:
17528 case INSIDE_IT_LAST_INSN:
17529 if (thumb_mode == 0)
17530 {
17531 if (unified_syntax
17532 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
17533 as_tsktsk (_("Warning: conditional outside an IT block"\
17534 " for Thumb."));
17535 }
17536 else
17537 {
17538 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
17539 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
17540 {
17541 /* Automatically generate the IT instruction. */
17542 new_automatic_it_block (inst.cond);
17543 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
17544 close_automatic_it_block ();
17545 }
17546 else
17547 {
17548 inst.error = BAD_OUT_IT;
17549 return FAIL;
17550 }
17551 }
17552 break;
17553
17554 case IF_INSIDE_IT_LAST_INSN:
17555 case NEUTRAL_IT_INSN:
17556 break;
17557
17558 case IT_INSN:
17559 now_it.state = MANUAL_IT_BLOCK;
17560 now_it.block_length = 0;
17561 break;
17562 }
17563 break;
17564
17565 case AUTOMATIC_IT_BLOCK:
17566 /* Three things may happen now:
17567 a) We should increment current it block size;
17568 b) We should close current it block (closing insn or 4 insns);
17569 c) We should close current it block and start a new one (due
17570 to incompatible conditions or
17571 4 insns-length block reached). */
17572
17573 switch (inst.it_insn_type)
17574 {
17575 case OUTSIDE_IT_INSN:
17576 /* The closure of the block shall happen immediatelly,
17577 so any in_it_block () call reports the block as closed. */
17578 force_automatic_it_block_close ();
17579 break;
17580
17581 case INSIDE_IT_INSN:
17582 case INSIDE_IT_LAST_INSN:
17583 case IF_INSIDE_IT_LAST_INSN:
17584 now_it.block_length++;
17585
17586 if (now_it.block_length > 4
17587 || !now_it_compatible (inst.cond))
17588 {
17589 force_automatic_it_block_close ();
17590 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
17591 new_automatic_it_block (inst.cond);
17592 }
17593 else
17594 {
17595 now_it.insn_cond = TRUE;
17596 now_it_add_mask (inst.cond);
17597 }
17598
17599 if (now_it.state == AUTOMATIC_IT_BLOCK
17600 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
17601 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
17602 close_automatic_it_block ();
17603 break;
17604
17605 case NEUTRAL_IT_INSN:
17606 now_it.block_length++;
17607 now_it.insn_cond = TRUE;
17608
17609 if (now_it.block_length > 4)
17610 force_automatic_it_block_close ();
17611 else
17612 now_it_add_mask (now_it.cc & 1);
17613 break;
17614
17615 case IT_INSN:
17616 close_automatic_it_block ();
17617 now_it.state = MANUAL_IT_BLOCK;
17618 break;
17619 }
17620 break;
17621
17622 case MANUAL_IT_BLOCK:
17623 {
17624 /* Check conditional suffixes. */
17625 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
17626 int is_last;
17627 now_it.mask <<= 1;
17628 now_it.mask &= 0x1f;
17629 is_last = (now_it.mask == 0x10);
17630 now_it.insn_cond = TRUE;
17631
17632 switch (inst.it_insn_type)
17633 {
17634 case OUTSIDE_IT_INSN:
17635 inst.error = BAD_NOT_IT;
17636 return FAIL;
17637
17638 case INSIDE_IT_INSN:
17639 if (cond != inst.cond)
17640 {
17641 inst.error = BAD_IT_COND;
17642 return FAIL;
17643 }
17644 break;
17645
17646 case INSIDE_IT_LAST_INSN:
17647 case IF_INSIDE_IT_LAST_INSN:
17648 if (cond != inst.cond)
17649 {
17650 inst.error = BAD_IT_COND;
17651 return FAIL;
17652 }
17653 if (!is_last)
17654 {
17655 inst.error = BAD_BRANCH;
17656 return FAIL;
17657 }
17658 break;
17659
17660 case NEUTRAL_IT_INSN:
17661 /* The BKPT instruction is unconditional even in an IT block. */
17662 break;
17663
17664 case IT_INSN:
17665 inst.error = BAD_IT_IT;
17666 return FAIL;
17667 }
17668 }
17669 break;
17670 }
17671
17672 return SUCCESS;
17673 }
17674
17675 struct depr_insn_mask
17676 {
17677 unsigned long pattern;
17678 unsigned long mask;
17679 const char* description;
17680 };
17681
17682 /* List of 16-bit instruction patterns deprecated in an IT block in
17683 ARMv8. */
17684 static const struct depr_insn_mask depr_it_insns[] = {
17685 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
17686 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
17687 { 0xa000, 0xb800, N_("ADR") },
17688 { 0x4800, 0xf800, N_("Literal loads") },
17689 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
17690 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
17691 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
17692 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
17693 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
17694 { 0, 0, NULL }
17695 };
17696
17697 static void
17698 it_fsm_post_encode (void)
17699 {
17700 int is_last;
17701
17702 if (!now_it.state_handled)
17703 handle_it_state ();
17704
17705 if (now_it.insn_cond
17706 && !now_it.warn_deprecated
17707 && warn_on_deprecated
17708 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
17709 {
17710 if (inst.instruction >= 0x10000)
17711 {
17712 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
17713 "deprecated in ARMv8"));
17714 now_it.warn_deprecated = TRUE;
17715 }
17716 else
17717 {
17718 const struct depr_insn_mask *p = depr_it_insns;
17719
17720 while (p->mask != 0)
17721 {
17722 if ((inst.instruction & p->mask) == p->pattern)
17723 {
17724 as_tsktsk (_("IT blocks containing 16-bit Thumb instructions "
17725 "of the following class are deprecated in ARMv8: "
17726 "%s"), p->description);
17727 now_it.warn_deprecated = TRUE;
17728 break;
17729 }
17730
17731 ++p;
17732 }
17733 }
17734
17735 if (now_it.block_length > 1)
17736 {
17737 as_tsktsk (_("IT blocks containing more than one conditional "
17738 "instruction are deprecated in ARMv8"));
17739 now_it.warn_deprecated = TRUE;
17740 }
17741 }
17742
17743 is_last = (now_it.mask == 0x10);
17744 if (is_last)
17745 {
17746 now_it.state = OUTSIDE_IT_BLOCK;
17747 now_it.mask = 0;
17748 }
17749 }
17750
17751 static void
17752 force_automatic_it_block_close (void)
17753 {
17754 if (now_it.state == AUTOMATIC_IT_BLOCK)
17755 {
17756 close_automatic_it_block ();
17757 now_it.state = OUTSIDE_IT_BLOCK;
17758 now_it.mask = 0;
17759 }
17760 }
17761
17762 static int
17763 in_it_block (void)
17764 {
17765 if (!now_it.state_handled)
17766 handle_it_state ();
17767
17768 return now_it.state != OUTSIDE_IT_BLOCK;
17769 }
17770
17771 void
17772 md_assemble (char *str)
17773 {
17774 char *p = str;
17775 const struct asm_opcode * opcode;
17776
17777 /* Align the previous label if needed. */
17778 if (last_label_seen != NULL)
17779 {
17780 symbol_set_frag (last_label_seen, frag_now);
17781 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
17782 S_SET_SEGMENT (last_label_seen, now_seg);
17783 }
17784
17785 memset (&inst, '\0', sizeof (inst));
17786 inst.reloc.type = BFD_RELOC_UNUSED;
17787
17788 opcode = opcode_lookup (&p);
17789 if (!opcode)
17790 {
17791 /* It wasn't an instruction, but it might be a register alias of
17792 the form alias .req reg, or a Neon .dn/.qn directive. */
17793 if (! create_register_alias (str, p)
17794 && ! create_neon_reg_alias (str, p))
17795 as_bad (_("bad instruction `%s'"), str);
17796
17797 return;
17798 }
17799
17800 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
17801 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
17802
17803 /* The value which unconditional instructions should have in place of the
17804 condition field. */
17805 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
17806
17807 if (thumb_mode)
17808 {
17809 arm_feature_set variant;
17810
17811 variant = cpu_variant;
17812 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
17813 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
17814 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
17815 /* Check that this instruction is supported for this CPU. */
17816 if (!opcode->tvariant
17817 || (thumb_mode == 1
17818 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
17819 {
17820 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
17821 return;
17822 }
17823 if (inst.cond != COND_ALWAYS && !unified_syntax
17824 && opcode->tencode != do_t_branch)
17825 {
17826 as_bad (_("Thumb does not support conditional execution"));
17827 return;
17828 }
17829
17830 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
17831 {
17832 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
17833 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
17834 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
17835 {
17836 /* Two things are addressed here.
17837 1) Implicit require narrow instructions on Thumb-1.
17838 This avoids relaxation accidentally introducing Thumb-2
17839 instructions.
17840 2) Reject wide instructions in non Thumb-2 cores. */
17841 if (inst.size_req == 0)
17842 inst.size_req = 2;
17843 else if (inst.size_req == 4)
17844 {
17845 as_bad (_("selected processor does not support `%s' in Thumb-2 mode"), str);
17846 return;
17847 }
17848 }
17849 }
17850
17851 inst.instruction = opcode->tvalue;
17852
17853 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
17854 {
17855 /* Prepare the it_insn_type for those encodings that don't set
17856 it. */
17857 it_fsm_pre_encode ();
17858
17859 opcode->tencode ();
17860
17861 it_fsm_post_encode ();
17862 }
17863
17864 if (!(inst.error || inst.relax))
17865 {
17866 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
17867 inst.size = (inst.instruction > 0xffff ? 4 : 2);
17868 if (inst.size_req && inst.size_req != inst.size)
17869 {
17870 as_bad (_("cannot honor width suffix -- `%s'"), str);
17871 return;
17872 }
17873 }
17874
17875 /* Something has gone badly wrong if we try to relax a fixed size
17876 instruction. */
17877 gas_assert (inst.size_req == 0 || !inst.relax);
17878
17879 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17880 *opcode->tvariant);
17881 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
17882 set those bits when Thumb-2 32-bit instructions are seen. ie.
17883 anything other than bl/blx and v6-M instructions.
17884 The impact of relaxable instructions will be considered later after we
17885 finish all relaxation. */
17886 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
17887 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
17888 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
17889 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17890 arm_ext_v6t2);
17891
17892 check_neon_suffixes;
17893
17894 if (!inst.error)
17895 {
17896 mapping_state (MAP_THUMB);
17897 }
17898 }
17899 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
17900 {
17901 bfd_boolean is_bx;
17902
17903 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
17904 is_bx = (opcode->aencode == do_bx);
17905
17906 /* Check that this instruction is supported for this CPU. */
17907 if (!(is_bx && fix_v4bx)
17908 && !(opcode->avariant &&
17909 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
17910 {
17911 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
17912 return;
17913 }
17914 if (inst.size_req)
17915 {
17916 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
17917 return;
17918 }
17919
17920 inst.instruction = opcode->avalue;
17921 if (opcode->tag == OT_unconditionalF)
17922 inst.instruction |= 0xFU << 28;
17923 else
17924 inst.instruction |= inst.cond << 28;
17925 inst.size = INSN_SIZE;
17926 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
17927 {
17928 it_fsm_pre_encode ();
17929 opcode->aencode ();
17930 it_fsm_post_encode ();
17931 }
17932 /* Arm mode bx is marked as both v4T and v5 because it's still required
17933 on a hypothetical non-thumb v5 core. */
17934 if (is_bx)
17935 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
17936 else
17937 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
17938 *opcode->avariant);
17939
17940 check_neon_suffixes;
17941
17942 if (!inst.error)
17943 {
17944 mapping_state (MAP_ARM);
17945 }
17946 }
17947 else
17948 {
17949 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
17950 "-- `%s'"), str);
17951 return;
17952 }
17953 output_inst (str);
17954 }
17955
17956 static void
17957 check_it_blocks_finished (void)
17958 {
17959 #ifdef OBJ_ELF
17960 asection *sect;
17961
17962 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
17963 if (seg_info (sect)->tc_segment_info_data.current_it.state
17964 == MANUAL_IT_BLOCK)
17965 {
17966 as_warn (_("section '%s' finished with an open IT block."),
17967 sect->name);
17968 }
17969 #else
17970 if (now_it.state == MANUAL_IT_BLOCK)
17971 as_warn (_("file finished with an open IT block."));
17972 #endif
17973 }
17974
17975 /* Various frobbings of labels and their addresses. */
17976
17977 void
17978 arm_start_line_hook (void)
17979 {
17980 last_label_seen = NULL;
17981 }
17982
17983 void
17984 arm_frob_label (symbolS * sym)
17985 {
17986 last_label_seen = sym;
17987
17988 ARM_SET_THUMB (sym, thumb_mode);
17989
17990 #if defined OBJ_COFF || defined OBJ_ELF
17991 ARM_SET_INTERWORK (sym, support_interwork);
17992 #endif
17993
17994 force_automatic_it_block_close ();
17995
17996 /* Note - do not allow local symbols (.Lxxx) to be labelled
17997 as Thumb functions. This is because these labels, whilst
17998 they exist inside Thumb code, are not the entry points for
17999 possible ARM->Thumb calls. Also, these labels can be used
18000 as part of a computed goto or switch statement. eg gcc
18001 can generate code that looks like this:
18002
18003 ldr r2, [pc, .Laaa]
18004 lsl r3, r3, #2
18005 ldr r2, [r3, r2]
18006 mov pc, r2
18007
18008 .Lbbb: .word .Lxxx
18009 .Lccc: .word .Lyyy
18010 ..etc...
18011 .Laaa: .word Lbbb
18012
18013 The first instruction loads the address of the jump table.
18014 The second instruction converts a table index into a byte offset.
18015 The third instruction gets the jump address out of the table.
18016 The fourth instruction performs the jump.
18017
18018 If the address stored at .Laaa is that of a symbol which has the
18019 Thumb_Func bit set, then the linker will arrange for this address
18020 to have the bottom bit set, which in turn would mean that the
18021 address computation performed by the third instruction would end
18022 up with the bottom bit set. Since the ARM is capable of unaligned
18023 word loads, the instruction would then load the incorrect address
18024 out of the jump table, and chaos would ensue. */
18025 if (label_is_thumb_function_name
18026 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
18027 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
18028 {
18029 /* When the address of a Thumb function is taken the bottom
18030 bit of that address should be set. This will allow
18031 interworking between Arm and Thumb functions to work
18032 correctly. */
18033
18034 THUMB_SET_FUNC (sym, 1);
18035
18036 label_is_thumb_function_name = FALSE;
18037 }
18038
18039 dwarf2_emit_label (sym);
18040 }
18041
18042 bfd_boolean
18043 arm_data_in_code (void)
18044 {
18045 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
18046 {
18047 *input_line_pointer = '/';
18048 input_line_pointer += 5;
18049 *input_line_pointer = 0;
18050 return TRUE;
18051 }
18052
18053 return FALSE;
18054 }
18055
18056 char *
18057 arm_canonicalize_symbol_name (char * name)
18058 {
18059 int len;
18060
18061 if (thumb_mode && (len = strlen (name)) > 5
18062 && streq (name + len - 5, "/data"))
18063 *(name + len - 5) = 0;
18064
18065 return name;
18066 }
18067 \f
18068 /* Table of all register names defined by default. The user can
18069 define additional names with .req. Note that all register names
18070 should appear in both upper and lowercase variants. Some registers
18071 also have mixed-case names. */
18072
18073 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
18074 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
18075 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
18076 #define REGSET(p,t) \
18077 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
18078 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
18079 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
18080 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
18081 #define REGSETH(p,t) \
18082 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
18083 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
18084 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
18085 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
18086 #define REGSET2(p,t) \
18087 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
18088 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
18089 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
18090 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
18091 #define SPLRBANK(base,bank,t) \
18092 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
18093 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
18094 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
18095 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
18096 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
18097 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
18098
18099 static const struct reg_entry reg_names[] =
18100 {
18101 /* ARM integer registers. */
18102 REGSET(r, RN), REGSET(R, RN),
18103
18104 /* ATPCS synonyms. */
18105 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
18106 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
18107 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
18108
18109 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
18110 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
18111 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
18112
18113 /* Well-known aliases. */
18114 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
18115 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
18116
18117 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
18118 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
18119
18120 /* Coprocessor numbers. */
18121 REGSET(p, CP), REGSET(P, CP),
18122
18123 /* Coprocessor register numbers. The "cr" variants are for backward
18124 compatibility. */
18125 REGSET(c, CN), REGSET(C, CN),
18126 REGSET(cr, CN), REGSET(CR, CN),
18127
18128 /* ARM banked registers. */
18129 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
18130 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
18131 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
18132 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
18133 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
18134 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
18135 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
18136
18137 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
18138 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
18139 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
18140 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
18141 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
18142 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
18143 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
18144 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
18145
18146 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
18147 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
18148 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
18149 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
18150 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
18151 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
18152 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
18153 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
18154 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
18155
18156 /* FPA registers. */
18157 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
18158 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
18159
18160 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
18161 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
18162
18163 /* VFP SP registers. */
18164 REGSET(s,VFS), REGSET(S,VFS),
18165 REGSETH(s,VFS), REGSETH(S,VFS),
18166
18167 /* VFP DP Registers. */
18168 REGSET(d,VFD), REGSET(D,VFD),
18169 /* Extra Neon DP registers. */
18170 REGSETH(d,VFD), REGSETH(D,VFD),
18171
18172 /* Neon QP registers. */
18173 REGSET2(q,NQ), REGSET2(Q,NQ),
18174
18175 /* VFP control registers. */
18176 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
18177 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
18178 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
18179 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
18180 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
18181 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
18182
18183 /* Maverick DSP coprocessor registers. */
18184 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
18185 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
18186
18187 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
18188 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
18189 REGDEF(dspsc,0,DSPSC),
18190
18191 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
18192 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
18193 REGDEF(DSPSC,0,DSPSC),
18194
18195 /* iWMMXt data registers - p0, c0-15. */
18196 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
18197
18198 /* iWMMXt control registers - p1, c0-3. */
18199 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
18200 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
18201 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
18202 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
18203
18204 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
18205 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
18206 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
18207 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
18208 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
18209
18210 /* XScale accumulator registers. */
18211 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
18212 };
18213 #undef REGDEF
18214 #undef REGNUM
18215 #undef REGSET
18216
18217 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
18218 within psr_required_here. */
18219 static const struct asm_psr psrs[] =
18220 {
18221 /* Backward compatibility notation. Note that "all" is no longer
18222 truly all possible PSR bits. */
18223 {"all", PSR_c | PSR_f},
18224 {"flg", PSR_f},
18225 {"ctl", PSR_c},
18226
18227 /* Individual flags. */
18228 {"f", PSR_f},
18229 {"c", PSR_c},
18230 {"x", PSR_x},
18231 {"s", PSR_s},
18232
18233 /* Combinations of flags. */
18234 {"fs", PSR_f | PSR_s},
18235 {"fx", PSR_f | PSR_x},
18236 {"fc", PSR_f | PSR_c},
18237 {"sf", PSR_s | PSR_f},
18238 {"sx", PSR_s | PSR_x},
18239 {"sc", PSR_s | PSR_c},
18240 {"xf", PSR_x | PSR_f},
18241 {"xs", PSR_x | PSR_s},
18242 {"xc", PSR_x | PSR_c},
18243 {"cf", PSR_c | PSR_f},
18244 {"cs", PSR_c | PSR_s},
18245 {"cx", PSR_c | PSR_x},
18246 {"fsx", PSR_f | PSR_s | PSR_x},
18247 {"fsc", PSR_f | PSR_s | PSR_c},
18248 {"fxs", PSR_f | PSR_x | PSR_s},
18249 {"fxc", PSR_f | PSR_x | PSR_c},
18250 {"fcs", PSR_f | PSR_c | PSR_s},
18251 {"fcx", PSR_f | PSR_c | PSR_x},
18252 {"sfx", PSR_s | PSR_f | PSR_x},
18253 {"sfc", PSR_s | PSR_f | PSR_c},
18254 {"sxf", PSR_s | PSR_x | PSR_f},
18255 {"sxc", PSR_s | PSR_x | PSR_c},
18256 {"scf", PSR_s | PSR_c | PSR_f},
18257 {"scx", PSR_s | PSR_c | PSR_x},
18258 {"xfs", PSR_x | PSR_f | PSR_s},
18259 {"xfc", PSR_x | PSR_f | PSR_c},
18260 {"xsf", PSR_x | PSR_s | PSR_f},
18261 {"xsc", PSR_x | PSR_s | PSR_c},
18262 {"xcf", PSR_x | PSR_c | PSR_f},
18263 {"xcs", PSR_x | PSR_c | PSR_s},
18264 {"cfs", PSR_c | PSR_f | PSR_s},
18265 {"cfx", PSR_c | PSR_f | PSR_x},
18266 {"csf", PSR_c | PSR_s | PSR_f},
18267 {"csx", PSR_c | PSR_s | PSR_x},
18268 {"cxf", PSR_c | PSR_x | PSR_f},
18269 {"cxs", PSR_c | PSR_x | PSR_s},
18270 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
18271 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
18272 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
18273 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
18274 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
18275 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
18276 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
18277 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
18278 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
18279 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
18280 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
18281 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
18282 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
18283 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
18284 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
18285 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
18286 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
18287 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
18288 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
18289 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
18290 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
18291 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
18292 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
18293 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
18294 };
18295
18296 /* Table of V7M psr names. */
18297 static const struct asm_psr v7m_psrs[] =
18298 {
18299 {"apsr", 0 }, {"APSR", 0 },
18300 {"iapsr", 1 }, {"IAPSR", 1 },
18301 {"eapsr", 2 }, {"EAPSR", 2 },
18302 {"psr", 3 }, {"PSR", 3 },
18303 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
18304 {"ipsr", 5 }, {"IPSR", 5 },
18305 {"epsr", 6 }, {"EPSR", 6 },
18306 {"iepsr", 7 }, {"IEPSR", 7 },
18307 {"msp", 8 }, {"MSP", 8 },
18308 {"psp", 9 }, {"PSP", 9 },
18309 {"primask", 16}, {"PRIMASK", 16},
18310 {"basepri", 17}, {"BASEPRI", 17},
18311 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
18312 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
18313 {"faultmask", 19}, {"FAULTMASK", 19},
18314 {"control", 20}, {"CONTROL", 20}
18315 };
18316
18317 /* Table of all shift-in-operand names. */
18318 static const struct asm_shift_name shift_names [] =
18319 {
18320 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
18321 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
18322 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
18323 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
18324 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
18325 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
18326 };
18327
18328 /* Table of all explicit relocation names. */
18329 #ifdef OBJ_ELF
18330 static struct reloc_entry reloc_names[] =
18331 {
18332 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
18333 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
18334 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
18335 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
18336 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
18337 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
18338 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
18339 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
18340 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
18341 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
18342 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
18343 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
18344 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
18345 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
18346 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
18347 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
18348 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
18349 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
18350 };
18351 #endif
18352
18353 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
18354 static const struct asm_cond conds[] =
18355 {
18356 {"eq", 0x0},
18357 {"ne", 0x1},
18358 {"cs", 0x2}, {"hs", 0x2},
18359 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
18360 {"mi", 0x4},
18361 {"pl", 0x5},
18362 {"vs", 0x6},
18363 {"vc", 0x7},
18364 {"hi", 0x8},
18365 {"ls", 0x9},
18366 {"ge", 0xa},
18367 {"lt", 0xb},
18368 {"gt", 0xc},
18369 {"le", 0xd},
18370 {"al", 0xe}
18371 };
18372
18373 #define UL_BARRIER(L,U,CODE,FEAT) \
18374 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
18375 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
18376
18377 static struct asm_barrier_opt barrier_opt_names[] =
18378 {
18379 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
18380 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
18381 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
18382 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
18383 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
18384 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
18385 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
18386 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
18387 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
18388 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
18389 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
18390 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
18391 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
18392 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
18393 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
18394 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
18395 };
18396
18397 #undef UL_BARRIER
18398
18399 /* Table of ARM-format instructions. */
18400
18401 /* Macros for gluing together operand strings. N.B. In all cases
18402 other than OPS0, the trailing OP_stop comes from default
18403 zero-initialization of the unspecified elements of the array. */
18404 #define OPS0() { OP_stop, }
18405 #define OPS1(a) { OP_##a, }
18406 #define OPS2(a,b) { OP_##a,OP_##b, }
18407 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
18408 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
18409 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
18410 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
18411
18412 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
18413 This is useful when mixing operands for ARM and THUMB, i.e. using the
18414 MIX_ARM_THUMB_OPERANDS macro.
18415 In order to use these macros, prefix the number of operands with _
18416 e.g. _3. */
18417 #define OPS_1(a) { a, }
18418 #define OPS_2(a,b) { a,b, }
18419 #define OPS_3(a,b,c) { a,b,c, }
18420 #define OPS_4(a,b,c,d) { a,b,c,d, }
18421 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
18422 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
18423
18424 /* These macros abstract out the exact format of the mnemonic table and
18425 save some repeated characters. */
18426
18427 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
18428 #define TxCE(mnem, op, top, nops, ops, ae, te) \
18429 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
18430 THUMB_VARIANT, do_##ae, do_##te }
18431
18432 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
18433 a T_MNEM_xyz enumerator. */
18434 #define TCE(mnem, aop, top, nops, ops, ae, te) \
18435 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
18436 #define tCE(mnem, aop, top, nops, ops, ae, te) \
18437 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18438
18439 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
18440 infix after the third character. */
18441 #define TxC3(mnem, op, top, nops, ops, ae, te) \
18442 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
18443 THUMB_VARIANT, do_##ae, do_##te }
18444 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
18445 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
18446 THUMB_VARIANT, do_##ae, do_##te }
18447 #define TC3(mnem, aop, top, nops, ops, ae, te) \
18448 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
18449 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
18450 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
18451 #define tC3(mnem, aop, top, nops, ops, ae, te) \
18452 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18453 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
18454 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18455
18456 /* Mnemonic that cannot be conditionalized. The ARM condition-code
18457 field is still 0xE. Many of the Thumb variants can be executed
18458 conditionally, so this is checked separately. */
18459 #define TUE(mnem, op, top, nops, ops, ae, te) \
18460 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
18461 THUMB_VARIANT, do_##ae, do_##te }
18462
18463 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
18464 Used by mnemonics that have very minimal differences in the encoding for
18465 ARM and Thumb variants and can be handled in a common function. */
18466 #define TUEc(mnem, op, top, nops, ops, en) \
18467 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
18468 THUMB_VARIANT, do_##en, do_##en }
18469
18470 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
18471 condition code field. */
18472 #define TUF(mnem, op, top, nops, ops, ae, te) \
18473 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
18474 THUMB_VARIANT, do_##ae, do_##te }
18475
18476 /* ARM-only variants of all the above. */
18477 #define CE(mnem, op, nops, ops, ae) \
18478 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18479
18480 #define C3(mnem, op, nops, ops, ae) \
18481 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18482
18483 /* Legacy mnemonics that always have conditional infix after the third
18484 character. */
18485 #define CL(mnem, op, nops, ops, ae) \
18486 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
18487 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18488
18489 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
18490 #define cCE(mnem, op, nops, ops, ae) \
18491 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18492
18493 /* Legacy coprocessor instructions where conditional infix and conditional
18494 suffix are ambiguous. For consistency this includes all FPA instructions,
18495 not just the potentially ambiguous ones. */
18496 #define cCL(mnem, op, nops, ops, ae) \
18497 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
18498 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18499
18500 /* Coprocessor, takes either a suffix or a position-3 infix
18501 (for an FPA corner case). */
18502 #define C3E(mnem, op, nops, ops, ae) \
18503 { mnem, OPS##nops ops, OT_csuf_or_in3, \
18504 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18505
18506 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
18507 { m1 #m2 m3, OPS##nops ops, \
18508 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
18509 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18510
18511 #define CM(m1, m2, op, nops, ops, ae) \
18512 xCM_ (m1, , m2, op, nops, ops, ae), \
18513 xCM_ (m1, eq, m2, op, nops, ops, ae), \
18514 xCM_ (m1, ne, m2, op, nops, ops, ae), \
18515 xCM_ (m1, cs, m2, op, nops, ops, ae), \
18516 xCM_ (m1, hs, m2, op, nops, ops, ae), \
18517 xCM_ (m1, cc, m2, op, nops, ops, ae), \
18518 xCM_ (m1, ul, m2, op, nops, ops, ae), \
18519 xCM_ (m1, lo, m2, op, nops, ops, ae), \
18520 xCM_ (m1, mi, m2, op, nops, ops, ae), \
18521 xCM_ (m1, pl, m2, op, nops, ops, ae), \
18522 xCM_ (m1, vs, m2, op, nops, ops, ae), \
18523 xCM_ (m1, vc, m2, op, nops, ops, ae), \
18524 xCM_ (m1, hi, m2, op, nops, ops, ae), \
18525 xCM_ (m1, ls, m2, op, nops, ops, ae), \
18526 xCM_ (m1, ge, m2, op, nops, ops, ae), \
18527 xCM_ (m1, lt, m2, op, nops, ops, ae), \
18528 xCM_ (m1, gt, m2, op, nops, ops, ae), \
18529 xCM_ (m1, le, m2, op, nops, ops, ae), \
18530 xCM_ (m1, al, m2, op, nops, ops, ae)
18531
18532 #define UE(mnem, op, nops, ops, ae) \
18533 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
18534
18535 #define UF(mnem, op, nops, ops, ae) \
18536 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
18537
18538 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
18539 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
18540 use the same encoding function for each. */
18541 #define NUF(mnem, op, nops, ops, enc) \
18542 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
18543 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
18544
18545 /* Neon data processing, version which indirects through neon_enc_tab for
18546 the various overloaded versions of opcodes. */
18547 #define nUF(mnem, op, nops, ops, enc) \
18548 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
18549 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
18550
18551 /* Neon insn with conditional suffix for the ARM version, non-overloaded
18552 version. */
18553 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
18554 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
18555 THUMB_VARIANT, do_##enc, do_##enc }
18556
18557 #define NCE(mnem, op, nops, ops, enc) \
18558 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
18559
18560 #define NCEF(mnem, op, nops, ops, enc) \
18561 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
18562
18563 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
18564 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
18565 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
18566 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
18567
18568 #define nCE(mnem, op, nops, ops, enc) \
18569 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
18570
18571 #define nCEF(mnem, op, nops, ops, enc) \
18572 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
18573
18574 #define do_0 0
18575
18576 static const struct asm_opcode insns[] =
18577 {
18578 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
18579 #define THUMB_VARIANT & arm_ext_v4t
18580 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
18581 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
18582 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
18583 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
18584 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
18585 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
18586 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
18587 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
18588 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
18589 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
18590 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
18591 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
18592 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
18593 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
18594 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
18595 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
18596
18597 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
18598 for setting PSR flag bits. They are obsolete in V6 and do not
18599 have Thumb equivalents. */
18600 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
18601 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
18602 CL("tstp", 110f000, 2, (RR, SH), cmp),
18603 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
18604 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
18605 CL("cmpp", 150f000, 2, (RR, SH), cmp),
18606 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
18607 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
18608 CL("cmnp", 170f000, 2, (RR, SH), cmp),
18609
18610 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
18611 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
18612 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
18613 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
18614
18615 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
18616 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
18617 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
18618 OP_RRnpc),
18619 OP_ADDRGLDR),ldst, t_ldst),
18620 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
18621
18622 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18623 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18624 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18625 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18626 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18627 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18628
18629 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
18630 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
18631 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
18632 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
18633
18634 /* Pseudo ops. */
18635 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
18636 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
18637 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
18638 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
18639
18640 /* Thumb-compatibility pseudo ops. */
18641 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
18642 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
18643 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
18644 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
18645 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
18646 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
18647 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
18648 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
18649 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
18650 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
18651 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
18652 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
18653
18654 /* These may simplify to neg. */
18655 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
18656 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
18657
18658 #undef THUMB_VARIANT
18659 #define THUMB_VARIANT & arm_ext_v6
18660
18661 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
18662
18663 /* V1 instructions with no Thumb analogue prior to V6T2. */
18664 #undef THUMB_VARIANT
18665 #define THUMB_VARIANT & arm_ext_v6t2
18666
18667 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
18668 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
18669 CL("teqp", 130f000, 2, (RR, SH), cmp),
18670
18671 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18672 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18673 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
18674 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18675
18676 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18677 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18678
18679 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18680 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18681
18682 /* V1 instructions with no Thumb analogue at all. */
18683 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
18684 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
18685
18686 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
18687 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
18688 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
18689 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
18690 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
18691 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
18692 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
18693 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
18694
18695 #undef ARM_VARIANT
18696 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
18697 #undef THUMB_VARIANT
18698 #define THUMB_VARIANT & arm_ext_v4t
18699
18700 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
18701 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
18702
18703 #undef THUMB_VARIANT
18704 #define THUMB_VARIANT & arm_ext_v6t2
18705
18706 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
18707 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
18708
18709 /* Generic coprocessor instructions. */
18710 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
18711 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18712 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18713 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18714 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18715 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18716 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
18717
18718 #undef ARM_VARIANT
18719 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
18720
18721 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
18722 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
18723
18724 #undef ARM_VARIANT
18725 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
18726 #undef THUMB_VARIANT
18727 #define THUMB_VARIANT & arm_ext_msr
18728
18729 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
18730 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
18731
18732 #undef ARM_VARIANT
18733 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
18734 #undef THUMB_VARIANT
18735 #define THUMB_VARIANT & arm_ext_v6t2
18736
18737 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18738 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18739 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18740 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18741 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18742 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18743 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18744 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18745
18746 #undef ARM_VARIANT
18747 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
18748 #undef THUMB_VARIANT
18749 #define THUMB_VARIANT & arm_ext_v4t
18750
18751 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18752 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18753 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18754 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18755 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18756 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18757
18758 #undef ARM_VARIANT
18759 #define ARM_VARIANT & arm_ext_v4t_5
18760
18761 /* ARM Architecture 4T. */
18762 /* Note: bx (and blx) are required on V5, even if the processor does
18763 not support Thumb. */
18764 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
18765
18766 #undef ARM_VARIANT
18767 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
18768 #undef THUMB_VARIANT
18769 #define THUMB_VARIANT & arm_ext_v5t
18770
18771 /* Note: blx has 2 variants; the .value coded here is for
18772 BLX(2). Only this variant has conditional execution. */
18773 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
18774 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
18775
18776 #undef THUMB_VARIANT
18777 #define THUMB_VARIANT & arm_ext_v6t2
18778
18779 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
18780 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18781 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18782 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18783 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18784 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
18785 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18786 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18787
18788 #undef ARM_VARIANT
18789 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
18790 #undef THUMB_VARIANT
18791 #define THUMB_VARIANT & arm_ext_v5exp
18792
18793 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18794 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18795 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18796 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18797
18798 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18799 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18800
18801 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18802 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18803 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18804 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18805
18806 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18807 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18808 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18809 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18810
18811 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18812 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18813
18814 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18815 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18816 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18817 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18818
18819 #undef ARM_VARIANT
18820 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
18821 #undef THUMB_VARIANT
18822 #define THUMB_VARIANT & arm_ext_v6t2
18823
18824 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
18825 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
18826 ldrd, t_ldstd),
18827 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
18828 ADDRGLDRS), ldrd, t_ldstd),
18829
18830 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18831 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18832
18833 #undef ARM_VARIANT
18834 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
18835
18836 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
18837
18838 #undef ARM_VARIANT
18839 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
18840 #undef THUMB_VARIANT
18841 #define THUMB_VARIANT & arm_ext_v6
18842
18843 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
18844 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
18845 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18846 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18847 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18848 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18849 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18850 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18851 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18852 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
18853
18854 #undef THUMB_VARIANT
18855 #define THUMB_VARIANT & arm_ext_v6t2
18856
18857 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
18858 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18859 strex, t_strex),
18860 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18861 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18862
18863 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
18864 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
18865
18866 /* ARM V6 not included in V7M. */
18867 #undef THUMB_VARIANT
18868 #define THUMB_VARIANT & arm_ext_v6_notm
18869 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18870 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18871 UF(rfeib, 9900a00, 1, (RRw), rfe),
18872 UF(rfeda, 8100a00, 1, (RRw), rfe),
18873 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18874 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18875 UF(rfefa, 8100a00, 1, (RRw), rfe),
18876 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18877 UF(rfeed, 9900a00, 1, (RRw), rfe),
18878 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18879 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18880 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18881 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
18882 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
18883 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
18884 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
18885 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
18886 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
18887 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
18888
18889 /* ARM V6 not included in V7M (eg. integer SIMD). */
18890 #undef THUMB_VARIANT
18891 #define THUMB_VARIANT & arm_ext_v6_dsp
18892 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
18893 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
18894 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18895 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18896 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18897 /* Old name for QASX. */
18898 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18899 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18900 /* Old name for QSAX. */
18901 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18902 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18903 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18904 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18905 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18906 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18907 /* Old name for SASX. */
18908 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18909 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18910 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18911 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18912 /* Old name for SHASX. */
18913 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18914 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18915 /* Old name for SHSAX. */
18916 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18917 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18918 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18919 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18920 /* Old name for SSAX. */
18921 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18922 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18923 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18924 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18925 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18926 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18927 /* Old name for UASX. */
18928 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18929 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18930 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18931 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18932 /* Old name for UHASX. */
18933 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18934 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18935 /* Old name for UHSAX. */
18936 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18937 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18938 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18939 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18940 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18941 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18942 /* Old name for UQASX. */
18943 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18944 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18945 /* Old name for UQSAX. */
18946 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18947 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18948 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18949 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18950 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18951 /* Old name for USAX. */
18952 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18953 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18954 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18955 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18956 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18957 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18958 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18959 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18960 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18961 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18962 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18963 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18964 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18965 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18966 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18967 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18968 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18969 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18970 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18971 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18972 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18973 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18974 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18975 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18976 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18977 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18978 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18979 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18980 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18981 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
18982 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
18983 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18984 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18985 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
18986
18987 #undef ARM_VARIANT
18988 #define ARM_VARIANT & arm_ext_v6k
18989 #undef THUMB_VARIANT
18990 #define THUMB_VARIANT & arm_ext_v6k
18991
18992 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
18993 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
18994 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
18995 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
18996
18997 #undef THUMB_VARIANT
18998 #define THUMB_VARIANT & arm_ext_v6_notm
18999 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
19000 ldrexd, t_ldrexd),
19001 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
19002 RRnpcb), strexd, t_strexd),
19003
19004 #undef THUMB_VARIANT
19005 #define THUMB_VARIANT & arm_ext_v6t2
19006 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
19007 rd_rn, rd_rn),
19008 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
19009 rd_rn, rd_rn),
19010 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19011 strex, t_strexbh),
19012 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19013 strex, t_strexbh),
19014 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
19015
19016 #undef ARM_VARIANT
19017 #define ARM_VARIANT & arm_ext_sec
19018 #undef THUMB_VARIANT
19019 #define THUMB_VARIANT & arm_ext_sec
19020
19021 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
19022
19023 #undef ARM_VARIANT
19024 #define ARM_VARIANT & arm_ext_virt
19025 #undef THUMB_VARIANT
19026 #define THUMB_VARIANT & arm_ext_virt
19027
19028 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
19029 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
19030
19031 #undef ARM_VARIANT
19032 #define ARM_VARIANT & arm_ext_pan
19033 #undef THUMB_VARIANT
19034 #define THUMB_VARIANT & arm_ext_pan
19035
19036 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
19037
19038 #undef ARM_VARIANT
19039 #define ARM_VARIANT & arm_ext_v6t2
19040 #undef THUMB_VARIANT
19041 #define THUMB_VARIANT & arm_ext_v6t2
19042
19043 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
19044 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
19045 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
19046 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
19047
19048 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
19049 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
19050 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
19051 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
19052
19053 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19054 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19055 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19056 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19057
19058 /* Thumb-only instructions. */
19059 #undef ARM_VARIANT
19060 #define ARM_VARIANT NULL
19061 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
19062 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
19063
19064 /* ARM does not really have an IT instruction, so always allow it.
19065 The opcode is copied from Thumb in order to allow warnings in
19066 -mimplicit-it=[never | arm] modes. */
19067 #undef ARM_VARIANT
19068 #define ARM_VARIANT & arm_ext_v1
19069
19070 TUE("it", bf08, bf08, 1, (COND), it, t_it),
19071 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
19072 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
19073 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
19074 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
19075 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
19076 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
19077 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
19078 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
19079 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
19080 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
19081 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
19082 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
19083 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
19084 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
19085 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
19086 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
19087 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
19088
19089 /* Thumb2 only instructions. */
19090 #undef ARM_VARIANT
19091 #define ARM_VARIANT NULL
19092
19093 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
19094 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
19095 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
19096 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
19097 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
19098 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
19099
19100 /* Hardware division instructions. */
19101 #undef ARM_VARIANT
19102 #define ARM_VARIANT & arm_ext_adiv
19103 #undef THUMB_VARIANT
19104 #define THUMB_VARIANT & arm_ext_div
19105
19106 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
19107 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
19108
19109 /* ARM V6M/V7 instructions. */
19110 #undef ARM_VARIANT
19111 #define ARM_VARIANT & arm_ext_barrier
19112 #undef THUMB_VARIANT
19113 #define THUMB_VARIANT & arm_ext_barrier
19114
19115 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
19116 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
19117 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
19118
19119 /* ARM V7 instructions. */
19120 #undef ARM_VARIANT
19121 #define ARM_VARIANT & arm_ext_v7
19122 #undef THUMB_VARIANT
19123 #define THUMB_VARIANT & arm_ext_v7
19124
19125 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
19126 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
19127
19128 #undef ARM_VARIANT
19129 #define ARM_VARIANT & arm_ext_mp
19130 #undef THUMB_VARIANT
19131 #define THUMB_VARIANT & arm_ext_mp
19132
19133 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
19134
19135 /* AArchv8 instructions. */
19136 #undef ARM_VARIANT
19137 #define ARM_VARIANT & arm_ext_v8
19138 #undef THUMB_VARIANT
19139 #define THUMB_VARIANT & arm_ext_v8
19140
19141 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
19142 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
19143 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19144 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
19145 ldrexd, t_ldrexd),
19146 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
19147 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19148 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
19149 stlex, t_stlex),
19150 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
19151 strexd, t_strexd),
19152 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
19153 stlex, t_stlex),
19154 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
19155 stlex, t_stlex),
19156 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19157 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19158 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19159 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19160 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19161 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19162
19163 /* ARMv8 T32 only. */
19164 #undef ARM_VARIANT
19165 #define ARM_VARIANT NULL
19166 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
19167 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
19168 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
19169
19170 /* FP for ARMv8. */
19171 #undef ARM_VARIANT
19172 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
19173 #undef THUMB_VARIANT
19174 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
19175
19176 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
19177 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
19178 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
19179 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
19180 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
19181 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
19182 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
19183 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
19184 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
19185 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
19186 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
19187 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
19188 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
19189 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
19190 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
19191 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
19192 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
19193
19194 /* Crypto v1 extensions. */
19195 #undef ARM_VARIANT
19196 #define ARM_VARIANT & fpu_crypto_ext_armv8
19197 #undef THUMB_VARIANT
19198 #define THUMB_VARIANT & fpu_crypto_ext_armv8
19199
19200 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
19201 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
19202 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
19203 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
19204 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
19205 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
19206 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
19207 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
19208 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
19209 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
19210 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
19211 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
19212 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
19213 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
19214
19215 #undef ARM_VARIANT
19216 #define ARM_VARIANT & crc_ext_armv8
19217 #undef THUMB_VARIANT
19218 #define THUMB_VARIANT & crc_ext_armv8
19219 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
19220 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
19221 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
19222 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
19223 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
19224 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
19225
19226 #undef ARM_VARIANT
19227 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
19228 #undef THUMB_VARIANT
19229 #define THUMB_VARIANT NULL
19230
19231 cCE("wfs", e200110, 1, (RR), rd),
19232 cCE("rfs", e300110, 1, (RR), rd),
19233 cCE("wfc", e400110, 1, (RR), rd),
19234 cCE("rfc", e500110, 1, (RR), rd),
19235
19236 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
19237 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
19238 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
19239 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
19240
19241 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
19242 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
19243 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
19244 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
19245
19246 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
19247 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
19248 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
19249 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
19250 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
19251 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
19252 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
19253 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
19254 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
19255 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
19256 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
19257 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
19258
19259 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
19260 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
19261 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
19262 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
19263 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
19264 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
19265 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
19266 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
19267 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
19268 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
19269 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
19270 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
19271
19272 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
19273 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
19274 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
19275 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
19276 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
19277 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
19278 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
19279 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
19280 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
19281 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
19282 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
19283 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
19284
19285 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
19286 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
19287 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
19288 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
19289 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
19290 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
19291 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
19292 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
19293 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
19294 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
19295 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
19296 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
19297
19298 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
19299 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
19300 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
19301 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
19302 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
19303 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
19304 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
19305 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
19306 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
19307 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
19308 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
19309 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
19310
19311 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
19312 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
19313 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
19314 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
19315 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
19316 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
19317 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
19318 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
19319 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
19320 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
19321 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
19322 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
19323
19324 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
19325 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
19326 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
19327 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
19328 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
19329 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
19330 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
19331 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
19332 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
19333 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
19334 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
19335 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
19336
19337 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
19338 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
19339 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
19340 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
19341 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
19342 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
19343 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
19344 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
19345 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
19346 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
19347 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
19348 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
19349
19350 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
19351 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
19352 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
19353 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
19354 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
19355 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
19356 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
19357 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
19358 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
19359 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
19360 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
19361 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
19362
19363 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
19364 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
19365 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
19366 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
19367 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
19368 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
19369 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
19370 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
19371 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
19372 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
19373 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
19374 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
19375
19376 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
19377 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
19378 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
19379 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
19380 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
19381 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
19382 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
19383 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
19384 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
19385 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
19386 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
19387 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
19388
19389 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
19390 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
19391 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
19392 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
19393 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
19394 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
19395 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
19396 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
19397 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
19398 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
19399 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
19400 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
19401
19402 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
19403 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
19404 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
19405 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
19406 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
19407 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
19408 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
19409 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
19410 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
19411 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
19412 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
19413 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
19414
19415 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
19416 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
19417 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
19418 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
19419 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
19420 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
19421 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
19422 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
19423 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
19424 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
19425 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
19426 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
19427
19428 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
19429 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
19430 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
19431 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
19432 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
19433 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
19434 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
19435 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
19436 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
19437 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
19438 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
19439 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
19440
19441 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
19442 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
19443 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
19444 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
19445 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
19446 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
19447 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
19448 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
19449 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
19450 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
19451 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
19452 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
19453
19454 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
19455 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
19456 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
19457 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
19458 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
19459 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19460 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19461 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19462 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
19463 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
19464 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
19465 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
19466
19467 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
19468 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
19469 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
19470 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
19471 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
19472 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19473 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19474 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19475 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
19476 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
19477 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
19478 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
19479
19480 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
19481 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
19482 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
19483 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
19484 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
19485 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19486 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19487 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19488 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
19489 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
19490 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
19491 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
19492
19493 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
19494 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
19495 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
19496 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
19497 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
19498 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19499 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19500 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19501 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
19502 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
19503 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
19504 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
19505
19506 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
19507 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
19508 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
19509 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
19510 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
19511 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19512 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19513 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19514 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
19515 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
19516 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
19517 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
19518
19519 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
19520 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
19521 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
19522 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
19523 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
19524 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19525 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19526 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19527 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
19528 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
19529 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
19530 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
19531
19532 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
19533 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
19534 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
19535 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
19536 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
19537 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19538 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19539 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19540 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
19541 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
19542 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
19543 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
19544
19545 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
19546 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
19547 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
19548 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
19549 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
19550 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19551 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19552 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19553 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
19554 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
19555 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
19556 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
19557
19558 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
19559 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
19560 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
19561 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
19562 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
19563 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19564 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19565 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19566 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
19567 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
19568 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
19569 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
19570
19571 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
19572 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
19573 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
19574 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
19575 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
19576 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19577 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19578 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19579 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
19580 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
19581 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
19582 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
19583
19584 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
19585 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
19586 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
19587 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
19588 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
19589 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19590 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19591 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19592 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
19593 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
19594 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
19595 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
19596
19597 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
19598 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
19599 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
19600 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
19601 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
19602 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19603 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19604 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19605 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
19606 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
19607 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
19608 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
19609
19610 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
19611 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
19612 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
19613 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
19614 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
19615 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19616 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19617 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19618 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
19619 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
19620 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
19621 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
19622
19623 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
19624 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
19625 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
19626 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
19627
19628 cCL("flts", e000110, 2, (RF, RR), rn_rd),
19629 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
19630 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
19631 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
19632 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
19633 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
19634 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
19635 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
19636 cCL("flte", e080110, 2, (RF, RR), rn_rd),
19637 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
19638 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
19639 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
19640
19641 /* The implementation of the FIX instruction is broken on some
19642 assemblers, in that it accepts a precision specifier as well as a
19643 rounding specifier, despite the fact that this is meaningless.
19644 To be more compatible, we accept it as well, though of course it
19645 does not set any bits. */
19646 cCE("fix", e100110, 2, (RR, RF), rd_rm),
19647 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
19648 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
19649 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
19650 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
19651 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
19652 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
19653 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
19654 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
19655 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
19656 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
19657 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
19658 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
19659
19660 /* Instructions that were new with the real FPA, call them V2. */
19661 #undef ARM_VARIANT
19662 #define ARM_VARIANT & fpu_fpa_ext_v2
19663
19664 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19665 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19666 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19667 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19668 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19669 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
19670
19671 #undef ARM_VARIANT
19672 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
19673
19674 /* Moves and type conversions. */
19675 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
19676 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
19677 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
19678 cCE("fmstat", ef1fa10, 0, (), noargs),
19679 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
19680 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
19681 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
19682 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
19683 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
19684 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
19685 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
19686 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
19687 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
19688 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
19689
19690 /* Memory operations. */
19691 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
19692 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
19693 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19694 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19695 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19696 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19697 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19698 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19699 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19700 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19701 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19702 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19703 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19704 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19705 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19706 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19707 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19708 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19709
19710 /* Monadic operations. */
19711 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
19712 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
19713 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
19714
19715 /* Dyadic operations. */
19716 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19717 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19718 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19719 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19720 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19721 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19722 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19723 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19724 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19725
19726 /* Comparisons. */
19727 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
19728 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
19729 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
19730 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
19731
19732 /* Double precision load/store are still present on single precision
19733 implementations. */
19734 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
19735 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
19736 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19737 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19738 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19739 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19740 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19741 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19742 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19743 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19744
19745 #undef ARM_VARIANT
19746 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
19747
19748 /* Moves and type conversions. */
19749 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19750 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
19751 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19752 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
19753 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
19754 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
19755 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
19756 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
19757 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
19758 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
19759 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19760 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
19761 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19762
19763 /* Monadic operations. */
19764 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19765 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19766 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19767
19768 /* Dyadic operations. */
19769 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19770 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19771 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19772 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19773 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19774 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19775 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19776 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19777 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19778
19779 /* Comparisons. */
19780 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19781 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
19782 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19783 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
19784
19785 #undef ARM_VARIANT
19786 #define ARM_VARIANT & fpu_vfp_ext_v2
19787
19788 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
19789 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
19790 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
19791 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
19792
19793 /* Instructions which may belong to either the Neon or VFP instruction sets.
19794 Individual encoder functions perform additional architecture checks. */
19795 #undef ARM_VARIANT
19796 #define ARM_VARIANT & fpu_vfp_ext_v1xd
19797 #undef THUMB_VARIANT
19798 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
19799
19800 /* These mnemonics are unique to VFP. */
19801 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
19802 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
19803 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19804 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19805 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19806 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
19807 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
19808 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
19809 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
19810 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
19811
19812 /* Mnemonics shared by Neon and VFP. */
19813 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
19814 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
19815 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
19816
19817 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
19818 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
19819
19820 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19821 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19822
19823 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19824 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19825 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19826 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19827 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19828 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19829 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
19830 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
19831
19832 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
19833 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
19834 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
19835 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
19836
19837
19838 /* NOTE: All VMOV encoding is special-cased! */
19839 NCE(vmov, 0, 1, (VMOV), neon_mov),
19840 NCE(vmovq, 0, 1, (VMOV), neon_mov),
19841
19842 #undef THUMB_VARIANT
19843 #define THUMB_VARIANT & fpu_neon_ext_v1
19844 #undef ARM_VARIANT
19845 #define ARM_VARIANT & fpu_neon_ext_v1
19846
19847 /* Data processing with three registers of the same length. */
19848 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
19849 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
19850 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
19851 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19852 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19853 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19854 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19855 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19856 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19857 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
19858 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19859 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
19860 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19861 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
19862 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19863 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
19864 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19865 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
19866 /* If not immediate, fall back to neon_dyadic_i64_su.
19867 shl_imm should accept I8 I16 I32 I64,
19868 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
19869 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
19870 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
19871 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
19872 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
19873 /* Logic ops, types optional & ignored. */
19874 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19875 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19876 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19877 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19878 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19879 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19880 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19881 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19882 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
19883 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
19884 /* Bitfield ops, untyped. */
19885 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19886 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19887 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19888 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19889 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19890 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19891 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
19892 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19893 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19894 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19895 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19896 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19897 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19898 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
19899 back to neon_dyadic_if_su. */
19900 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19901 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19902 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19903 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19904 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19905 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19906 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19907 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19908 /* Comparison. Type I8 I16 I32 F32. */
19909 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
19910 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
19911 /* As above, D registers only. */
19912 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19913 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19914 /* Int and float variants, signedness unimportant. */
19915 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19916 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19917 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
19918 /* Add/sub take types I8 I16 I32 I64 F32. */
19919 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19920 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19921 /* vtst takes sizes 8, 16, 32. */
19922 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
19923 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
19924 /* VMUL takes I8 I16 I32 F32 P8. */
19925 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
19926 /* VQD{R}MULH takes S16 S32. */
19927 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19928 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19929 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19930 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19931 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19932 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19933 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19934 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19935 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19936 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19937 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19938 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19939 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19940 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19941 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19942 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19943 /* ARM v8.1 extension. */
19944 nUF(vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19945 nUF(vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19946 nUF(vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19947 nUF(vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19948
19949 /* Two address, int/float. Types S8 S16 S32 F32. */
19950 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
19951 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
19952
19953 /* Data processing with two registers and a shift amount. */
19954 /* Right shifts, and variants with rounding.
19955 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
19956 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19957 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19958 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19959 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19960 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19961 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19962 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19963 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19964 /* Shift and insert. Sizes accepted 8 16 32 64. */
19965 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
19966 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
19967 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
19968 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
19969 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
19970 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
19971 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
19972 /* Right shift immediate, saturating & narrowing, with rounding variants.
19973 Types accepted S16 S32 S64 U16 U32 U64. */
19974 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19975 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19976 /* As above, unsigned. Types accepted S16 S32 S64. */
19977 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19978 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19979 /* Right shift narrowing. Types accepted I16 I32 I64. */
19980 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19981 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19982 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
19983 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
19984 /* CVT with optional immediate for fixed-point variant. */
19985 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
19986
19987 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
19988 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
19989
19990 /* Data processing, three registers of different lengths. */
19991 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
19992 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
19993 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
19994 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
19995 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
19996 /* If not scalar, fall back to neon_dyadic_long.
19997 Vector types as above, scalar types S16 S32 U16 U32. */
19998 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
19999 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
20000 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
20001 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20002 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20003 /* Dyadic, narrowing insns. Types I16 I32 I64. */
20004 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20005 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20006 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20007 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20008 /* Saturating doubling multiplies. Types S16 S32. */
20009 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20010 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20011 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20012 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
20013 S16 S32 U16 U32. */
20014 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
20015
20016 /* Extract. Size 8. */
20017 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
20018 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
20019
20020 /* Two registers, miscellaneous. */
20021 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
20022 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
20023 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
20024 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
20025 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
20026 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
20027 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
20028 /* Vector replicate. Sizes 8 16 32. */
20029 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
20030 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
20031 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
20032 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
20033 /* VMOVN. Types I16 I32 I64. */
20034 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
20035 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
20036 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
20037 /* VQMOVUN. Types S16 S32 S64. */
20038 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
20039 /* VZIP / VUZP. Sizes 8 16 32. */
20040 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
20041 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
20042 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
20043 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
20044 /* VQABS / VQNEG. Types S8 S16 S32. */
20045 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
20046 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
20047 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
20048 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
20049 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
20050 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
20051 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
20052 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
20053 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
20054 /* Reciprocal estimates. Types U32 F32. */
20055 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
20056 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
20057 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
20058 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
20059 /* VCLS. Types S8 S16 S32. */
20060 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
20061 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
20062 /* VCLZ. Types I8 I16 I32. */
20063 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
20064 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
20065 /* VCNT. Size 8. */
20066 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
20067 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
20068 /* Two address, untyped. */
20069 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
20070 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
20071 /* VTRN. Sizes 8 16 32. */
20072 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
20073 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
20074
20075 /* Table lookup. Size 8. */
20076 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
20077 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
20078
20079 #undef THUMB_VARIANT
20080 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
20081 #undef ARM_VARIANT
20082 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
20083
20084 /* Neon element/structure load/store. */
20085 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
20086 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
20087 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
20088 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
20089 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
20090 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
20091 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
20092 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
20093
20094 #undef THUMB_VARIANT
20095 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
20096 #undef ARM_VARIANT
20097 #define ARM_VARIANT & fpu_vfp_ext_v3xd
20098 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
20099 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20100 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20101 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20102 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20103 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20104 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20105 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20106 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20107
20108 #undef THUMB_VARIANT
20109 #define THUMB_VARIANT & fpu_vfp_ext_v3
20110 #undef ARM_VARIANT
20111 #define ARM_VARIANT & fpu_vfp_ext_v3
20112
20113 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
20114 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20115 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20116 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20117 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20118 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20119 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20120 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20121 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20122
20123 #undef ARM_VARIANT
20124 #define ARM_VARIANT & fpu_vfp_ext_fma
20125 #undef THUMB_VARIANT
20126 #define THUMB_VARIANT & fpu_vfp_ext_fma
20127 /* Mnemonics shared by Neon and VFP. These are included in the
20128 VFP FMA variant; NEON and VFP FMA always includes the NEON
20129 FMA instructions. */
20130 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
20131 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
20132 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
20133 the v form should always be used. */
20134 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20135 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20136 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20137 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20138 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20139 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20140
20141 #undef THUMB_VARIANT
20142 #undef ARM_VARIANT
20143 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
20144
20145 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20146 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20147 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20148 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20149 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20150 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20151 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
20152 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
20153
20154 #undef ARM_VARIANT
20155 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
20156
20157 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
20158 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
20159 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
20160 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
20161 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
20162 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
20163 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
20164 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
20165 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
20166 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20167 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20168 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20169 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20170 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20171 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20172 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20173 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20174 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20175 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
20176 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
20177 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20178 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20179 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20180 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20181 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20182 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20183 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
20184 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
20185 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
20186 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
20187 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
20188 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
20189 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
20190 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
20191 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
20192 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
20193 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
20194 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20195 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20196 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20197 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20198 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20199 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20200 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20201 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20202 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20203 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
20204 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20205 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20206 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20207 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20208 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20209 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20210 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20211 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20212 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20213 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20214 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20215 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20216 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20217 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20218 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20219 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20220 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20221 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20222 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20223 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20224 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20225 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
20226 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
20227 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20228 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20229 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20230 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20231 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20232 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20233 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20234 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20235 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20236 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20237 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20238 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20239 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20240 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20241 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20242 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20243 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20244 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20245 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
20246 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20247 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20248 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20249 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20250 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20251 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20252 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20253 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20254 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20255 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20256 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20257 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20258 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20259 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20260 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20261 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20262 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20263 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20264 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20265 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20266 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20267 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
20268 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20269 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20270 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20271 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20272 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20273 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20274 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20275 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20276 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20277 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20278 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20279 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20280 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20281 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20282 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20283 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20284 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20285 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20286 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20287 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20288 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
20289 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
20290 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20291 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20292 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20293 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20294 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20295 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20296 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20297 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20298 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20299 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
20300 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
20301 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
20302 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
20303 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
20304 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
20305 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20306 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20307 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20308 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
20309 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
20310 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
20311 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
20312 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
20313 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
20314 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20315 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20316 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20317 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20318 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
20319
20320 #undef ARM_VARIANT
20321 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
20322
20323 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
20324 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
20325 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
20326 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
20327 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
20328 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
20329 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20330 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20331 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20332 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20333 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20334 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20335 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20336 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20337 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20338 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20339 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20340 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20341 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20342 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20343 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
20344 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20345 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20346 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20347 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20348 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20349 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20350 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20351 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20352 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20353 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20354 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20355 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20356 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20357 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20358 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20359 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20360 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20361 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20362 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20363 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20364 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20365 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20366 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20367 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20368 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20369 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20370 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20371 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20372 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20373 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20374 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20375 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20376 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20377 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20378 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20379 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20380
20381 #undef ARM_VARIANT
20382 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
20383
20384 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
20385 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
20386 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
20387 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
20388 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
20389 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
20390 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
20391 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
20392 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
20393 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
20394 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
20395 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
20396 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
20397 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
20398 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
20399 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
20400 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
20401 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
20402 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
20403 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
20404 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
20405 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
20406 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
20407 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
20408 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
20409 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
20410 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
20411 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
20412 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
20413 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
20414 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
20415 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
20416 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
20417 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
20418 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
20419 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
20420 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
20421 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
20422 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
20423 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
20424 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
20425 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
20426 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
20427 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
20428 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
20429 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
20430 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
20431 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
20432 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
20433 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
20434 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
20435 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
20436 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
20437 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
20438 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
20439 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
20440 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
20441 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
20442 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
20443 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
20444 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
20445 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
20446 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
20447 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
20448 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20449 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20450 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20451 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20452 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20453 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20454 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20455 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20456 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
20457 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
20458 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
20459 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
20460 };
20461 #undef ARM_VARIANT
20462 #undef THUMB_VARIANT
20463 #undef TCE
20464 #undef TUE
20465 #undef TUF
20466 #undef TCC
20467 #undef cCE
20468 #undef cCL
20469 #undef C3E
20470 #undef CE
20471 #undef CM
20472 #undef UE
20473 #undef UF
20474 #undef UT
20475 #undef NUF
20476 #undef nUF
20477 #undef NCE
20478 #undef nCE
20479 #undef OPS0
20480 #undef OPS1
20481 #undef OPS2
20482 #undef OPS3
20483 #undef OPS4
20484 #undef OPS5
20485 #undef OPS6
20486 #undef do_0
20487 \f
20488 /* MD interface: bits in the object file. */
20489
20490 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
20491 for use in the a.out file, and stores them in the array pointed to by buf.
20492 This knows about the endian-ness of the target machine and does
20493 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
20494 2 (short) and 4 (long) Floating numbers are put out as a series of
20495 LITTLENUMS (shorts, here at least). */
20496
20497 void
20498 md_number_to_chars (char * buf, valueT val, int n)
20499 {
20500 if (target_big_endian)
20501 number_to_chars_bigendian (buf, val, n);
20502 else
20503 number_to_chars_littleendian (buf, val, n);
20504 }
20505
20506 static valueT
20507 md_chars_to_number (char * buf, int n)
20508 {
20509 valueT result = 0;
20510 unsigned char * where = (unsigned char *) buf;
20511
20512 if (target_big_endian)
20513 {
20514 while (n--)
20515 {
20516 result <<= 8;
20517 result |= (*where++ & 255);
20518 }
20519 }
20520 else
20521 {
20522 while (n--)
20523 {
20524 result <<= 8;
20525 result |= (where[n] & 255);
20526 }
20527 }
20528
20529 return result;
20530 }
20531
20532 /* MD interface: Sections. */
20533
20534 /* Calculate the maximum variable size (i.e., excluding fr_fix)
20535 that an rs_machine_dependent frag may reach. */
20536
20537 unsigned int
20538 arm_frag_max_var (fragS *fragp)
20539 {
20540 /* We only use rs_machine_dependent for variable-size Thumb instructions,
20541 which are either THUMB_SIZE (2) or INSN_SIZE (4).
20542
20543 Note that we generate relaxable instructions even for cases that don't
20544 really need it, like an immediate that's a trivial constant. So we're
20545 overestimating the instruction size for some of those cases. Rather
20546 than putting more intelligence here, it would probably be better to
20547 avoid generating a relaxation frag in the first place when it can be
20548 determined up front that a short instruction will suffice. */
20549
20550 gas_assert (fragp->fr_type == rs_machine_dependent);
20551 return INSN_SIZE;
20552 }
20553
20554 /* Estimate the size of a frag before relaxing. Assume everything fits in
20555 2 bytes. */
20556
20557 int
20558 md_estimate_size_before_relax (fragS * fragp,
20559 segT segtype ATTRIBUTE_UNUSED)
20560 {
20561 fragp->fr_var = 2;
20562 return 2;
20563 }
20564
20565 /* Convert a machine dependent frag. */
20566
20567 void
20568 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
20569 {
20570 unsigned long insn;
20571 unsigned long old_op;
20572 char *buf;
20573 expressionS exp;
20574 fixS *fixp;
20575 int reloc_type;
20576 int pc_rel;
20577 int opcode;
20578
20579 buf = fragp->fr_literal + fragp->fr_fix;
20580
20581 old_op = bfd_get_16(abfd, buf);
20582 if (fragp->fr_symbol)
20583 {
20584 exp.X_op = O_symbol;
20585 exp.X_add_symbol = fragp->fr_symbol;
20586 }
20587 else
20588 {
20589 exp.X_op = O_constant;
20590 }
20591 exp.X_add_number = fragp->fr_offset;
20592 opcode = fragp->fr_subtype;
20593 switch (opcode)
20594 {
20595 case T_MNEM_ldr_pc:
20596 case T_MNEM_ldr_pc2:
20597 case T_MNEM_ldr_sp:
20598 case T_MNEM_str_sp:
20599 case T_MNEM_ldr:
20600 case T_MNEM_ldrb:
20601 case T_MNEM_ldrh:
20602 case T_MNEM_str:
20603 case T_MNEM_strb:
20604 case T_MNEM_strh:
20605 if (fragp->fr_var == 4)
20606 {
20607 insn = THUMB_OP32 (opcode);
20608 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
20609 {
20610 insn |= (old_op & 0x700) << 4;
20611 }
20612 else
20613 {
20614 insn |= (old_op & 7) << 12;
20615 insn |= (old_op & 0x38) << 13;
20616 }
20617 insn |= 0x00000c00;
20618 put_thumb32_insn (buf, insn);
20619 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
20620 }
20621 else
20622 {
20623 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
20624 }
20625 pc_rel = (opcode == T_MNEM_ldr_pc2);
20626 break;
20627 case T_MNEM_adr:
20628 if (fragp->fr_var == 4)
20629 {
20630 insn = THUMB_OP32 (opcode);
20631 insn |= (old_op & 0xf0) << 4;
20632 put_thumb32_insn (buf, insn);
20633 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
20634 }
20635 else
20636 {
20637 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20638 exp.X_add_number -= 4;
20639 }
20640 pc_rel = 1;
20641 break;
20642 case T_MNEM_mov:
20643 case T_MNEM_movs:
20644 case T_MNEM_cmp:
20645 case T_MNEM_cmn:
20646 if (fragp->fr_var == 4)
20647 {
20648 int r0off = (opcode == T_MNEM_mov
20649 || opcode == T_MNEM_movs) ? 0 : 8;
20650 insn = THUMB_OP32 (opcode);
20651 insn = (insn & 0xe1ffffff) | 0x10000000;
20652 insn |= (old_op & 0x700) << r0off;
20653 put_thumb32_insn (buf, insn);
20654 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
20655 }
20656 else
20657 {
20658 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
20659 }
20660 pc_rel = 0;
20661 break;
20662 case T_MNEM_b:
20663 if (fragp->fr_var == 4)
20664 {
20665 insn = THUMB_OP32(opcode);
20666 put_thumb32_insn (buf, insn);
20667 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
20668 }
20669 else
20670 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
20671 pc_rel = 1;
20672 break;
20673 case T_MNEM_bcond:
20674 if (fragp->fr_var == 4)
20675 {
20676 insn = THUMB_OP32(opcode);
20677 insn |= (old_op & 0xf00) << 14;
20678 put_thumb32_insn (buf, insn);
20679 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
20680 }
20681 else
20682 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
20683 pc_rel = 1;
20684 break;
20685 case T_MNEM_add_sp:
20686 case T_MNEM_add_pc:
20687 case T_MNEM_inc_sp:
20688 case T_MNEM_dec_sp:
20689 if (fragp->fr_var == 4)
20690 {
20691 /* ??? Choose between add and addw. */
20692 insn = THUMB_OP32 (opcode);
20693 insn |= (old_op & 0xf0) << 4;
20694 put_thumb32_insn (buf, insn);
20695 if (opcode == T_MNEM_add_pc)
20696 reloc_type = BFD_RELOC_ARM_T32_IMM12;
20697 else
20698 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
20699 }
20700 else
20701 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20702 pc_rel = 0;
20703 break;
20704
20705 case T_MNEM_addi:
20706 case T_MNEM_addis:
20707 case T_MNEM_subi:
20708 case T_MNEM_subis:
20709 if (fragp->fr_var == 4)
20710 {
20711 insn = THUMB_OP32 (opcode);
20712 insn |= (old_op & 0xf0) << 4;
20713 insn |= (old_op & 0xf) << 16;
20714 put_thumb32_insn (buf, insn);
20715 if (insn & (1 << 20))
20716 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
20717 else
20718 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
20719 }
20720 else
20721 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20722 pc_rel = 0;
20723 break;
20724 default:
20725 abort ();
20726 }
20727 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
20728 (enum bfd_reloc_code_real) reloc_type);
20729 fixp->fx_file = fragp->fr_file;
20730 fixp->fx_line = fragp->fr_line;
20731 fragp->fr_fix += fragp->fr_var;
20732
20733 /* Set whether we use thumb-2 ISA based on final relaxation results. */
20734 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
20735 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
20736 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
20737 }
20738
20739 /* Return the size of a relaxable immediate operand instruction.
20740 SHIFT and SIZE specify the form of the allowable immediate. */
20741 static int
20742 relax_immediate (fragS *fragp, int size, int shift)
20743 {
20744 offsetT offset;
20745 offsetT mask;
20746 offsetT low;
20747
20748 /* ??? Should be able to do better than this. */
20749 if (fragp->fr_symbol)
20750 return 4;
20751
20752 low = (1 << shift) - 1;
20753 mask = (1 << (shift + size)) - (1 << shift);
20754 offset = fragp->fr_offset;
20755 /* Force misaligned offsets to 32-bit variant. */
20756 if (offset & low)
20757 return 4;
20758 if (offset & ~mask)
20759 return 4;
20760 return 2;
20761 }
20762
20763 /* Get the address of a symbol during relaxation. */
20764 static addressT
20765 relaxed_symbol_addr (fragS *fragp, long stretch)
20766 {
20767 fragS *sym_frag;
20768 addressT addr;
20769 symbolS *sym;
20770
20771 sym = fragp->fr_symbol;
20772 sym_frag = symbol_get_frag (sym);
20773 know (S_GET_SEGMENT (sym) != absolute_section
20774 || sym_frag == &zero_address_frag);
20775 addr = S_GET_VALUE (sym) + fragp->fr_offset;
20776
20777 /* If frag has yet to be reached on this pass, assume it will
20778 move by STRETCH just as we did. If this is not so, it will
20779 be because some frag between grows, and that will force
20780 another pass. */
20781
20782 if (stretch != 0
20783 && sym_frag->relax_marker != fragp->relax_marker)
20784 {
20785 fragS *f;
20786
20787 /* Adjust stretch for any alignment frag. Note that if have
20788 been expanding the earlier code, the symbol may be
20789 defined in what appears to be an earlier frag. FIXME:
20790 This doesn't handle the fr_subtype field, which specifies
20791 a maximum number of bytes to skip when doing an
20792 alignment. */
20793 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
20794 {
20795 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
20796 {
20797 if (stretch < 0)
20798 stretch = - ((- stretch)
20799 & ~ ((1 << (int) f->fr_offset) - 1));
20800 else
20801 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
20802 if (stretch == 0)
20803 break;
20804 }
20805 }
20806 if (f != NULL)
20807 addr += stretch;
20808 }
20809
20810 return addr;
20811 }
20812
20813 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
20814 load. */
20815 static int
20816 relax_adr (fragS *fragp, asection *sec, long stretch)
20817 {
20818 addressT addr;
20819 offsetT val;
20820
20821 /* Assume worst case for symbols not known to be in the same section. */
20822 if (fragp->fr_symbol == NULL
20823 || !S_IS_DEFINED (fragp->fr_symbol)
20824 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20825 || S_IS_WEAK (fragp->fr_symbol))
20826 return 4;
20827
20828 val = relaxed_symbol_addr (fragp, stretch);
20829 addr = fragp->fr_address + fragp->fr_fix;
20830 addr = (addr + 4) & ~3;
20831 /* Force misaligned targets to 32-bit variant. */
20832 if (val & 3)
20833 return 4;
20834 val -= addr;
20835 if (val < 0 || val > 1020)
20836 return 4;
20837 return 2;
20838 }
20839
20840 /* Return the size of a relaxable add/sub immediate instruction. */
20841 static int
20842 relax_addsub (fragS *fragp, asection *sec)
20843 {
20844 char *buf;
20845 int op;
20846
20847 buf = fragp->fr_literal + fragp->fr_fix;
20848 op = bfd_get_16(sec->owner, buf);
20849 if ((op & 0xf) == ((op >> 4) & 0xf))
20850 return relax_immediate (fragp, 8, 0);
20851 else
20852 return relax_immediate (fragp, 3, 0);
20853 }
20854
20855 /* Return TRUE iff the definition of symbol S could be pre-empted
20856 (overridden) at link or load time. */
20857 static bfd_boolean
20858 symbol_preemptible (symbolS *s)
20859 {
20860 /* Weak symbols can always be pre-empted. */
20861 if (S_IS_WEAK (s))
20862 return TRUE;
20863
20864 /* Non-global symbols cannot be pre-empted. */
20865 if (! S_IS_EXTERNAL (s))
20866 return FALSE;
20867
20868 #ifdef OBJ_ELF
20869 /* In ELF, a global symbol can be marked protected, or private. In that
20870 case it can't be pre-empted (other definitions in the same link unit
20871 would violate the ODR). */
20872 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
20873 return FALSE;
20874 #endif
20875
20876 /* Other global symbols might be pre-empted. */
20877 return TRUE;
20878 }
20879
20880 /* Return the size of a relaxable branch instruction. BITS is the
20881 size of the offset field in the narrow instruction. */
20882
20883 static int
20884 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
20885 {
20886 addressT addr;
20887 offsetT val;
20888 offsetT limit;
20889
20890 /* Assume worst case for symbols not known to be in the same section. */
20891 if (!S_IS_DEFINED (fragp->fr_symbol)
20892 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20893 || S_IS_WEAK (fragp->fr_symbol))
20894 return 4;
20895
20896 #ifdef OBJ_ELF
20897 /* A branch to a function in ARM state will require interworking. */
20898 if (S_IS_DEFINED (fragp->fr_symbol)
20899 && ARM_IS_FUNC (fragp->fr_symbol))
20900 return 4;
20901 #endif
20902
20903 if (symbol_preemptible (fragp->fr_symbol))
20904 return 4;
20905
20906 val = relaxed_symbol_addr (fragp, stretch);
20907 addr = fragp->fr_address + fragp->fr_fix + 4;
20908 val -= addr;
20909
20910 /* Offset is a signed value *2 */
20911 limit = 1 << bits;
20912 if (val >= limit || val < -limit)
20913 return 4;
20914 return 2;
20915 }
20916
20917
20918 /* Relax a machine dependent frag. This returns the amount by which
20919 the current size of the frag should change. */
20920
20921 int
20922 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
20923 {
20924 int oldsize;
20925 int newsize;
20926
20927 oldsize = fragp->fr_var;
20928 switch (fragp->fr_subtype)
20929 {
20930 case T_MNEM_ldr_pc2:
20931 newsize = relax_adr (fragp, sec, stretch);
20932 break;
20933 case T_MNEM_ldr_pc:
20934 case T_MNEM_ldr_sp:
20935 case T_MNEM_str_sp:
20936 newsize = relax_immediate (fragp, 8, 2);
20937 break;
20938 case T_MNEM_ldr:
20939 case T_MNEM_str:
20940 newsize = relax_immediate (fragp, 5, 2);
20941 break;
20942 case T_MNEM_ldrh:
20943 case T_MNEM_strh:
20944 newsize = relax_immediate (fragp, 5, 1);
20945 break;
20946 case T_MNEM_ldrb:
20947 case T_MNEM_strb:
20948 newsize = relax_immediate (fragp, 5, 0);
20949 break;
20950 case T_MNEM_adr:
20951 newsize = relax_adr (fragp, sec, stretch);
20952 break;
20953 case T_MNEM_mov:
20954 case T_MNEM_movs:
20955 case T_MNEM_cmp:
20956 case T_MNEM_cmn:
20957 newsize = relax_immediate (fragp, 8, 0);
20958 break;
20959 case T_MNEM_b:
20960 newsize = relax_branch (fragp, sec, 11, stretch);
20961 break;
20962 case T_MNEM_bcond:
20963 newsize = relax_branch (fragp, sec, 8, stretch);
20964 break;
20965 case T_MNEM_add_sp:
20966 case T_MNEM_add_pc:
20967 newsize = relax_immediate (fragp, 8, 2);
20968 break;
20969 case T_MNEM_inc_sp:
20970 case T_MNEM_dec_sp:
20971 newsize = relax_immediate (fragp, 7, 2);
20972 break;
20973 case T_MNEM_addi:
20974 case T_MNEM_addis:
20975 case T_MNEM_subi:
20976 case T_MNEM_subis:
20977 newsize = relax_addsub (fragp, sec);
20978 break;
20979 default:
20980 abort ();
20981 }
20982
20983 fragp->fr_var = newsize;
20984 /* Freeze wide instructions that are at or before the same location as
20985 in the previous pass. This avoids infinite loops.
20986 Don't freeze them unconditionally because targets may be artificially
20987 misaligned by the expansion of preceding frags. */
20988 if (stretch <= 0 && newsize > 2)
20989 {
20990 md_convert_frag (sec->owner, sec, fragp);
20991 frag_wane (fragp);
20992 }
20993
20994 return newsize - oldsize;
20995 }
20996
20997 /* Round up a section size to the appropriate boundary. */
20998
20999 valueT
21000 md_section_align (segT segment ATTRIBUTE_UNUSED,
21001 valueT size)
21002 {
21003 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
21004 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
21005 {
21006 /* For a.out, force the section size to be aligned. If we don't do
21007 this, BFD will align it for us, but it will not write out the
21008 final bytes of the section. This may be a bug in BFD, but it is
21009 easier to fix it here since that is how the other a.out targets
21010 work. */
21011 int align;
21012
21013 align = bfd_get_section_alignment (stdoutput, segment);
21014 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
21015 }
21016 #endif
21017
21018 return size;
21019 }
21020
21021 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
21022 of an rs_align_code fragment. */
21023
21024 void
21025 arm_handle_align (fragS * fragP)
21026 {
21027 static char const arm_noop[2][2][4] =
21028 {
21029 { /* ARMv1 */
21030 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
21031 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
21032 },
21033 { /* ARMv6k */
21034 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
21035 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
21036 },
21037 };
21038 static char const thumb_noop[2][2][2] =
21039 {
21040 { /* Thumb-1 */
21041 {0xc0, 0x46}, /* LE */
21042 {0x46, 0xc0}, /* BE */
21043 },
21044 { /* Thumb-2 */
21045 {0x00, 0xbf}, /* LE */
21046 {0xbf, 0x00} /* BE */
21047 }
21048 };
21049 static char const wide_thumb_noop[2][4] =
21050 { /* Wide Thumb-2 */
21051 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
21052 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
21053 };
21054
21055 unsigned bytes, fix, noop_size;
21056 char * p;
21057 const char * noop;
21058 const char *narrow_noop = NULL;
21059 #ifdef OBJ_ELF
21060 enum mstate state;
21061 #endif
21062
21063 if (fragP->fr_type != rs_align_code)
21064 return;
21065
21066 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
21067 p = fragP->fr_literal + fragP->fr_fix;
21068 fix = 0;
21069
21070 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
21071 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
21072
21073 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
21074
21075 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
21076 {
21077 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
21078 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
21079 {
21080 narrow_noop = thumb_noop[1][target_big_endian];
21081 noop = wide_thumb_noop[target_big_endian];
21082 }
21083 else
21084 noop = thumb_noop[0][target_big_endian];
21085 noop_size = 2;
21086 #ifdef OBJ_ELF
21087 state = MAP_THUMB;
21088 #endif
21089 }
21090 else
21091 {
21092 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
21093 ? selected_cpu : arm_arch_none,
21094 arm_ext_v6k) != 0]
21095 [target_big_endian];
21096 noop_size = 4;
21097 #ifdef OBJ_ELF
21098 state = MAP_ARM;
21099 #endif
21100 }
21101
21102 fragP->fr_var = noop_size;
21103
21104 if (bytes & (noop_size - 1))
21105 {
21106 fix = bytes & (noop_size - 1);
21107 #ifdef OBJ_ELF
21108 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
21109 #endif
21110 memset (p, 0, fix);
21111 p += fix;
21112 bytes -= fix;
21113 }
21114
21115 if (narrow_noop)
21116 {
21117 if (bytes & noop_size)
21118 {
21119 /* Insert a narrow noop. */
21120 memcpy (p, narrow_noop, noop_size);
21121 p += noop_size;
21122 bytes -= noop_size;
21123 fix += noop_size;
21124 }
21125
21126 /* Use wide noops for the remainder */
21127 noop_size = 4;
21128 }
21129
21130 while (bytes >= noop_size)
21131 {
21132 memcpy (p, noop, noop_size);
21133 p += noop_size;
21134 bytes -= noop_size;
21135 fix += noop_size;
21136 }
21137
21138 fragP->fr_fix += fix;
21139 }
21140
21141 /* Called from md_do_align. Used to create an alignment
21142 frag in a code section. */
21143
21144 void
21145 arm_frag_align_code (int n, int max)
21146 {
21147 char * p;
21148
21149 /* We assume that there will never be a requirement
21150 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
21151 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
21152 {
21153 char err_msg[128];
21154
21155 sprintf (err_msg,
21156 _("alignments greater than %d bytes not supported in .text sections."),
21157 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
21158 as_fatal ("%s", err_msg);
21159 }
21160
21161 p = frag_var (rs_align_code,
21162 MAX_MEM_FOR_RS_ALIGN_CODE,
21163 1,
21164 (relax_substateT) max,
21165 (symbolS *) NULL,
21166 (offsetT) n,
21167 (char *) NULL);
21168 *p = 0;
21169 }
21170
21171 /* Perform target specific initialisation of a frag.
21172 Note - despite the name this initialisation is not done when the frag
21173 is created, but only when its type is assigned. A frag can be created
21174 and used a long time before its type is set, so beware of assuming that
21175 this initialisationis performed first. */
21176
21177 #ifndef OBJ_ELF
21178 void
21179 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
21180 {
21181 /* Record whether this frag is in an ARM or a THUMB area. */
21182 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21183 }
21184
21185 #else /* OBJ_ELF is defined. */
21186 void
21187 arm_init_frag (fragS * fragP, int max_chars)
21188 {
21189 int frag_thumb_mode;
21190
21191 /* If the current ARM vs THUMB mode has not already
21192 been recorded into this frag then do so now. */
21193 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
21194 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21195
21196 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
21197
21198 /* Record a mapping symbol for alignment frags. We will delete this
21199 later if the alignment ends up empty. */
21200 switch (fragP->fr_type)
21201 {
21202 case rs_align:
21203 case rs_align_test:
21204 case rs_fill:
21205 mapping_state_2 (MAP_DATA, max_chars);
21206 break;
21207 case rs_align_code:
21208 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
21209 break;
21210 default:
21211 break;
21212 }
21213 }
21214
21215 /* When we change sections we need to issue a new mapping symbol. */
21216
21217 void
21218 arm_elf_change_section (void)
21219 {
21220 /* Link an unlinked unwind index table section to the .text section. */
21221 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
21222 && elf_linked_to_section (now_seg) == NULL)
21223 elf_linked_to_section (now_seg) = text_section;
21224 }
21225
21226 int
21227 arm_elf_section_type (const char * str, size_t len)
21228 {
21229 if (len == 5 && strncmp (str, "exidx", 5) == 0)
21230 return SHT_ARM_EXIDX;
21231
21232 return -1;
21233 }
21234 \f
21235 /* Code to deal with unwinding tables. */
21236
21237 static void add_unwind_adjustsp (offsetT);
21238
21239 /* Generate any deferred unwind frame offset. */
21240
21241 static void
21242 flush_pending_unwind (void)
21243 {
21244 offsetT offset;
21245
21246 offset = unwind.pending_offset;
21247 unwind.pending_offset = 0;
21248 if (offset != 0)
21249 add_unwind_adjustsp (offset);
21250 }
21251
21252 /* Add an opcode to this list for this function. Two-byte opcodes should
21253 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
21254 order. */
21255
21256 static void
21257 add_unwind_opcode (valueT op, int length)
21258 {
21259 /* Add any deferred stack adjustment. */
21260 if (unwind.pending_offset)
21261 flush_pending_unwind ();
21262
21263 unwind.sp_restored = 0;
21264
21265 if (unwind.opcode_count + length > unwind.opcode_alloc)
21266 {
21267 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
21268 if (unwind.opcodes)
21269 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
21270 unwind.opcode_alloc);
21271 else
21272 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
21273 }
21274 while (length > 0)
21275 {
21276 length--;
21277 unwind.opcodes[unwind.opcode_count] = op & 0xff;
21278 op >>= 8;
21279 unwind.opcode_count++;
21280 }
21281 }
21282
21283 /* Add unwind opcodes to adjust the stack pointer. */
21284
21285 static void
21286 add_unwind_adjustsp (offsetT offset)
21287 {
21288 valueT op;
21289
21290 if (offset > 0x200)
21291 {
21292 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
21293 char bytes[5];
21294 int n;
21295 valueT o;
21296
21297 /* Long form: 0xb2, uleb128. */
21298 /* This might not fit in a word so add the individual bytes,
21299 remembering the list is built in reverse order. */
21300 o = (valueT) ((offset - 0x204) >> 2);
21301 if (o == 0)
21302 add_unwind_opcode (0, 1);
21303
21304 /* Calculate the uleb128 encoding of the offset. */
21305 n = 0;
21306 while (o)
21307 {
21308 bytes[n] = o & 0x7f;
21309 o >>= 7;
21310 if (o)
21311 bytes[n] |= 0x80;
21312 n++;
21313 }
21314 /* Add the insn. */
21315 for (; n; n--)
21316 add_unwind_opcode (bytes[n - 1], 1);
21317 add_unwind_opcode (0xb2, 1);
21318 }
21319 else if (offset > 0x100)
21320 {
21321 /* Two short opcodes. */
21322 add_unwind_opcode (0x3f, 1);
21323 op = (offset - 0x104) >> 2;
21324 add_unwind_opcode (op, 1);
21325 }
21326 else if (offset > 0)
21327 {
21328 /* Short opcode. */
21329 op = (offset - 4) >> 2;
21330 add_unwind_opcode (op, 1);
21331 }
21332 else if (offset < 0)
21333 {
21334 offset = -offset;
21335 while (offset > 0x100)
21336 {
21337 add_unwind_opcode (0x7f, 1);
21338 offset -= 0x100;
21339 }
21340 op = ((offset - 4) >> 2) | 0x40;
21341 add_unwind_opcode (op, 1);
21342 }
21343 }
21344
21345 /* Finish the list of unwind opcodes for this function. */
21346 static void
21347 finish_unwind_opcodes (void)
21348 {
21349 valueT op;
21350
21351 if (unwind.fp_used)
21352 {
21353 /* Adjust sp as necessary. */
21354 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
21355 flush_pending_unwind ();
21356
21357 /* After restoring sp from the frame pointer. */
21358 op = 0x90 | unwind.fp_reg;
21359 add_unwind_opcode (op, 1);
21360 }
21361 else
21362 flush_pending_unwind ();
21363 }
21364
21365
21366 /* Start an exception table entry. If idx is nonzero this is an index table
21367 entry. */
21368
21369 static void
21370 start_unwind_section (const segT text_seg, int idx)
21371 {
21372 const char * text_name;
21373 const char * prefix;
21374 const char * prefix_once;
21375 const char * group_name;
21376 size_t prefix_len;
21377 size_t text_len;
21378 char * sec_name;
21379 size_t sec_name_len;
21380 int type;
21381 int flags;
21382 int linkonce;
21383
21384 if (idx)
21385 {
21386 prefix = ELF_STRING_ARM_unwind;
21387 prefix_once = ELF_STRING_ARM_unwind_once;
21388 type = SHT_ARM_EXIDX;
21389 }
21390 else
21391 {
21392 prefix = ELF_STRING_ARM_unwind_info;
21393 prefix_once = ELF_STRING_ARM_unwind_info_once;
21394 type = SHT_PROGBITS;
21395 }
21396
21397 text_name = segment_name (text_seg);
21398 if (streq (text_name, ".text"))
21399 text_name = "";
21400
21401 if (strncmp (text_name, ".gnu.linkonce.t.",
21402 strlen (".gnu.linkonce.t.")) == 0)
21403 {
21404 prefix = prefix_once;
21405 text_name += strlen (".gnu.linkonce.t.");
21406 }
21407
21408 prefix_len = strlen (prefix);
21409 text_len = strlen (text_name);
21410 sec_name_len = prefix_len + text_len;
21411 sec_name = (char *) xmalloc (sec_name_len + 1);
21412 memcpy (sec_name, prefix, prefix_len);
21413 memcpy (sec_name + prefix_len, text_name, text_len);
21414 sec_name[prefix_len + text_len] = '\0';
21415
21416 flags = SHF_ALLOC;
21417 linkonce = 0;
21418 group_name = 0;
21419
21420 /* Handle COMDAT group. */
21421 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
21422 {
21423 group_name = elf_group_name (text_seg);
21424 if (group_name == NULL)
21425 {
21426 as_bad (_("Group section `%s' has no group signature"),
21427 segment_name (text_seg));
21428 ignore_rest_of_line ();
21429 return;
21430 }
21431 flags |= SHF_GROUP;
21432 linkonce = 1;
21433 }
21434
21435 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
21436
21437 /* Set the section link for index tables. */
21438 if (idx)
21439 elf_linked_to_section (now_seg) = text_seg;
21440 }
21441
21442
21443 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
21444 personality routine data. Returns zero, or the index table value for
21445 an inline entry. */
21446
21447 static valueT
21448 create_unwind_entry (int have_data)
21449 {
21450 int size;
21451 addressT where;
21452 char *ptr;
21453 /* The current word of data. */
21454 valueT data;
21455 /* The number of bytes left in this word. */
21456 int n;
21457
21458 finish_unwind_opcodes ();
21459
21460 /* Remember the current text section. */
21461 unwind.saved_seg = now_seg;
21462 unwind.saved_subseg = now_subseg;
21463
21464 start_unwind_section (now_seg, 0);
21465
21466 if (unwind.personality_routine == NULL)
21467 {
21468 if (unwind.personality_index == -2)
21469 {
21470 if (have_data)
21471 as_bad (_("handlerdata in cantunwind frame"));
21472 return 1; /* EXIDX_CANTUNWIND. */
21473 }
21474
21475 /* Use a default personality routine if none is specified. */
21476 if (unwind.personality_index == -1)
21477 {
21478 if (unwind.opcode_count > 3)
21479 unwind.personality_index = 1;
21480 else
21481 unwind.personality_index = 0;
21482 }
21483
21484 /* Space for the personality routine entry. */
21485 if (unwind.personality_index == 0)
21486 {
21487 if (unwind.opcode_count > 3)
21488 as_bad (_("too many unwind opcodes for personality routine 0"));
21489
21490 if (!have_data)
21491 {
21492 /* All the data is inline in the index table. */
21493 data = 0x80;
21494 n = 3;
21495 while (unwind.opcode_count > 0)
21496 {
21497 unwind.opcode_count--;
21498 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
21499 n--;
21500 }
21501
21502 /* Pad with "finish" opcodes. */
21503 while (n--)
21504 data = (data << 8) | 0xb0;
21505
21506 return data;
21507 }
21508 size = 0;
21509 }
21510 else
21511 /* We get two opcodes "free" in the first word. */
21512 size = unwind.opcode_count - 2;
21513 }
21514 else
21515 {
21516 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
21517 if (unwind.personality_index != -1)
21518 {
21519 as_bad (_("attempt to recreate an unwind entry"));
21520 return 1;
21521 }
21522
21523 /* An extra byte is required for the opcode count. */
21524 size = unwind.opcode_count + 1;
21525 }
21526
21527 size = (size + 3) >> 2;
21528 if (size > 0xff)
21529 as_bad (_("too many unwind opcodes"));
21530
21531 frag_align (2, 0, 0);
21532 record_alignment (now_seg, 2);
21533 unwind.table_entry = expr_build_dot ();
21534
21535 /* Allocate the table entry. */
21536 ptr = frag_more ((size << 2) + 4);
21537 /* PR 13449: Zero the table entries in case some of them are not used. */
21538 memset (ptr, 0, (size << 2) + 4);
21539 where = frag_now_fix () - ((size << 2) + 4);
21540
21541 switch (unwind.personality_index)
21542 {
21543 case -1:
21544 /* ??? Should this be a PLT generating relocation? */
21545 /* Custom personality routine. */
21546 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
21547 BFD_RELOC_ARM_PREL31);
21548
21549 where += 4;
21550 ptr += 4;
21551
21552 /* Set the first byte to the number of additional words. */
21553 data = size > 0 ? size - 1 : 0;
21554 n = 3;
21555 break;
21556
21557 /* ABI defined personality routines. */
21558 case 0:
21559 /* Three opcodes bytes are packed into the first word. */
21560 data = 0x80;
21561 n = 3;
21562 break;
21563
21564 case 1:
21565 case 2:
21566 /* The size and first two opcode bytes go in the first word. */
21567 data = ((0x80 + unwind.personality_index) << 8) | size;
21568 n = 2;
21569 break;
21570
21571 default:
21572 /* Should never happen. */
21573 abort ();
21574 }
21575
21576 /* Pack the opcodes into words (MSB first), reversing the list at the same
21577 time. */
21578 while (unwind.opcode_count > 0)
21579 {
21580 if (n == 0)
21581 {
21582 md_number_to_chars (ptr, data, 4);
21583 ptr += 4;
21584 n = 4;
21585 data = 0;
21586 }
21587 unwind.opcode_count--;
21588 n--;
21589 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
21590 }
21591
21592 /* Finish off the last word. */
21593 if (n < 4)
21594 {
21595 /* Pad with "finish" opcodes. */
21596 while (n--)
21597 data = (data << 8) | 0xb0;
21598
21599 md_number_to_chars (ptr, data, 4);
21600 }
21601
21602 if (!have_data)
21603 {
21604 /* Add an empty descriptor if there is no user-specified data. */
21605 ptr = frag_more (4);
21606 md_number_to_chars (ptr, 0, 4);
21607 }
21608
21609 return 0;
21610 }
21611
21612
21613 /* Initialize the DWARF-2 unwind information for this procedure. */
21614
21615 void
21616 tc_arm_frame_initial_instructions (void)
21617 {
21618 cfi_add_CFA_def_cfa (REG_SP, 0);
21619 }
21620 #endif /* OBJ_ELF */
21621
21622 /* Convert REGNAME to a DWARF-2 register number. */
21623
21624 int
21625 tc_arm_regname_to_dw2regnum (char *regname)
21626 {
21627 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
21628 if (reg != FAIL)
21629 return reg;
21630
21631 /* PR 16694: Allow VFP registers as well. */
21632 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
21633 if (reg != FAIL)
21634 return 64 + reg;
21635
21636 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
21637 if (reg != FAIL)
21638 return reg + 256;
21639
21640 return -1;
21641 }
21642
21643 #ifdef TE_PE
21644 void
21645 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
21646 {
21647 expressionS exp;
21648
21649 exp.X_op = O_secrel;
21650 exp.X_add_symbol = symbol;
21651 exp.X_add_number = 0;
21652 emit_expr (&exp, size);
21653 }
21654 #endif
21655
21656 /* MD interface: Symbol and relocation handling. */
21657
21658 /* Return the address within the segment that a PC-relative fixup is
21659 relative to. For ARM, PC-relative fixups applied to instructions
21660 are generally relative to the location of the fixup plus 8 bytes.
21661 Thumb branches are offset by 4, and Thumb loads relative to PC
21662 require special handling. */
21663
21664 long
21665 md_pcrel_from_section (fixS * fixP, segT seg)
21666 {
21667 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
21668
21669 /* If this is pc-relative and we are going to emit a relocation
21670 then we just want to put out any pipeline compensation that the linker
21671 will need. Otherwise we want to use the calculated base.
21672 For WinCE we skip the bias for externals as well, since this
21673 is how the MS ARM-CE assembler behaves and we want to be compatible. */
21674 if (fixP->fx_pcrel
21675 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
21676 || (arm_force_relocation (fixP)
21677 #ifdef TE_WINCE
21678 && !S_IS_EXTERNAL (fixP->fx_addsy)
21679 #endif
21680 )))
21681 base = 0;
21682
21683
21684 switch (fixP->fx_r_type)
21685 {
21686 /* PC relative addressing on the Thumb is slightly odd as the
21687 bottom two bits of the PC are forced to zero for the
21688 calculation. This happens *after* application of the
21689 pipeline offset. However, Thumb adrl already adjusts for
21690 this, so we need not do it again. */
21691 case BFD_RELOC_ARM_THUMB_ADD:
21692 return base & ~3;
21693
21694 case BFD_RELOC_ARM_THUMB_OFFSET:
21695 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21696 case BFD_RELOC_ARM_T32_ADD_PC12:
21697 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21698 return (base + 4) & ~3;
21699
21700 /* Thumb branches are simply offset by +4. */
21701 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21702 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21703 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21704 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21705 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21706 return base + 4;
21707
21708 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21709 if (fixP->fx_addsy
21710 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21711 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21712 && ARM_IS_FUNC (fixP->fx_addsy)
21713 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21714 base = fixP->fx_where + fixP->fx_frag->fr_address;
21715 return base + 4;
21716
21717 /* BLX is like branches above, but forces the low two bits of PC to
21718 zero. */
21719 case BFD_RELOC_THUMB_PCREL_BLX:
21720 if (fixP->fx_addsy
21721 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21722 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21723 && THUMB_IS_FUNC (fixP->fx_addsy)
21724 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21725 base = fixP->fx_where + fixP->fx_frag->fr_address;
21726 return (base + 4) & ~3;
21727
21728 /* ARM mode branches are offset by +8. However, the Windows CE
21729 loader expects the relocation not to take this into account. */
21730 case BFD_RELOC_ARM_PCREL_BLX:
21731 if (fixP->fx_addsy
21732 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21733 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21734 && ARM_IS_FUNC (fixP->fx_addsy)
21735 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21736 base = fixP->fx_where + fixP->fx_frag->fr_address;
21737 return base + 8;
21738
21739 case BFD_RELOC_ARM_PCREL_CALL:
21740 if (fixP->fx_addsy
21741 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21742 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21743 && THUMB_IS_FUNC (fixP->fx_addsy)
21744 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21745 base = fixP->fx_where + fixP->fx_frag->fr_address;
21746 return base + 8;
21747
21748 case BFD_RELOC_ARM_PCREL_BRANCH:
21749 case BFD_RELOC_ARM_PCREL_JUMP:
21750 case BFD_RELOC_ARM_PLT32:
21751 #ifdef TE_WINCE
21752 /* When handling fixups immediately, because we have already
21753 discovered the value of a symbol, or the address of the frag involved
21754 we must account for the offset by +8, as the OS loader will never see the reloc.
21755 see fixup_segment() in write.c
21756 The S_IS_EXTERNAL test handles the case of global symbols.
21757 Those need the calculated base, not just the pipe compensation the linker will need. */
21758 if (fixP->fx_pcrel
21759 && fixP->fx_addsy != NULL
21760 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21761 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
21762 return base + 8;
21763 return base;
21764 #else
21765 return base + 8;
21766 #endif
21767
21768
21769 /* ARM mode loads relative to PC are also offset by +8. Unlike
21770 branches, the Windows CE loader *does* expect the relocation
21771 to take this into account. */
21772 case BFD_RELOC_ARM_OFFSET_IMM:
21773 case BFD_RELOC_ARM_OFFSET_IMM8:
21774 case BFD_RELOC_ARM_HWLITERAL:
21775 case BFD_RELOC_ARM_LITERAL:
21776 case BFD_RELOC_ARM_CP_OFF_IMM:
21777 return base + 8;
21778
21779
21780 /* Other PC-relative relocations are un-offset. */
21781 default:
21782 return base;
21783 }
21784 }
21785
21786 static bfd_boolean flag_warn_syms = TRUE;
21787
21788 bfd_boolean
21789 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
21790 {
21791 /* PR 18347 - Warn if the user attempts to create a symbol with the same
21792 name as an ARM instruction. Whilst strictly speaking it is allowed, it
21793 does mean that the resulting code might be very confusing to the reader.
21794 Also this warning can be triggered if the user omits an operand before
21795 an immediate address, eg:
21796
21797 LDR =foo
21798
21799 GAS treats this as an assignment of the value of the symbol foo to a
21800 symbol LDR, and so (without this code) it will not issue any kind of
21801 warning or error message.
21802
21803 Note - ARM instructions are case-insensitive but the strings in the hash
21804 table are all stored in lower case, so we must first ensure that name is
21805 lower case too. */
21806 if (flag_warn_syms && arm_ops_hsh)
21807 {
21808 char * nbuf = strdup (name);
21809 char * p;
21810
21811 for (p = nbuf; *p; p++)
21812 *p = TOLOWER (*p);
21813 if (hash_find (arm_ops_hsh, nbuf) != NULL)
21814 {
21815 static struct hash_control * already_warned = NULL;
21816
21817 if (already_warned == NULL)
21818 already_warned = hash_new ();
21819 /* Only warn about the symbol once. To keep the code
21820 simple we let hash_insert do the lookup for us. */
21821 if (hash_insert (already_warned, name, NULL) == NULL)
21822 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
21823 }
21824 else
21825 free (nbuf);
21826 }
21827
21828 return FALSE;
21829 }
21830
21831 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
21832 Otherwise we have no need to default values of symbols. */
21833
21834 symbolS *
21835 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
21836 {
21837 #ifdef OBJ_ELF
21838 if (name[0] == '_' && name[1] == 'G'
21839 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
21840 {
21841 if (!GOT_symbol)
21842 {
21843 if (symbol_find (name))
21844 as_bad (_("GOT already in the symbol table"));
21845
21846 GOT_symbol = symbol_new (name, undefined_section,
21847 (valueT) 0, & zero_address_frag);
21848 }
21849
21850 return GOT_symbol;
21851 }
21852 #endif
21853
21854 return NULL;
21855 }
21856
21857 /* Subroutine of md_apply_fix. Check to see if an immediate can be
21858 computed as two separate immediate values, added together. We
21859 already know that this value cannot be computed by just one ARM
21860 instruction. */
21861
21862 static unsigned int
21863 validate_immediate_twopart (unsigned int val,
21864 unsigned int * highpart)
21865 {
21866 unsigned int a;
21867 unsigned int i;
21868
21869 for (i = 0; i < 32; i += 2)
21870 if (((a = rotate_left (val, i)) & 0xff) != 0)
21871 {
21872 if (a & 0xff00)
21873 {
21874 if (a & ~ 0xffff)
21875 continue;
21876 * highpart = (a >> 8) | ((i + 24) << 7);
21877 }
21878 else if (a & 0xff0000)
21879 {
21880 if (a & 0xff000000)
21881 continue;
21882 * highpart = (a >> 16) | ((i + 16) << 7);
21883 }
21884 else
21885 {
21886 gas_assert (a & 0xff000000);
21887 * highpart = (a >> 24) | ((i + 8) << 7);
21888 }
21889
21890 return (a & 0xff) | (i << 7);
21891 }
21892
21893 return FAIL;
21894 }
21895
21896 static int
21897 validate_offset_imm (unsigned int val, int hwse)
21898 {
21899 if ((hwse && val > 255) || val > 4095)
21900 return FAIL;
21901 return val;
21902 }
21903
21904 /* Subroutine of md_apply_fix. Do those data_ops which can take a
21905 negative immediate constant by altering the instruction. A bit of
21906 a hack really.
21907 MOV <-> MVN
21908 AND <-> BIC
21909 ADC <-> SBC
21910 by inverting the second operand, and
21911 ADD <-> SUB
21912 CMP <-> CMN
21913 by negating the second operand. */
21914
21915 static int
21916 negate_data_op (unsigned long * instruction,
21917 unsigned long value)
21918 {
21919 int op, new_inst;
21920 unsigned long negated, inverted;
21921
21922 negated = encode_arm_immediate (-value);
21923 inverted = encode_arm_immediate (~value);
21924
21925 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
21926 switch (op)
21927 {
21928 /* First negates. */
21929 case OPCODE_SUB: /* ADD <-> SUB */
21930 new_inst = OPCODE_ADD;
21931 value = negated;
21932 break;
21933
21934 case OPCODE_ADD:
21935 new_inst = OPCODE_SUB;
21936 value = negated;
21937 break;
21938
21939 case OPCODE_CMP: /* CMP <-> CMN */
21940 new_inst = OPCODE_CMN;
21941 value = negated;
21942 break;
21943
21944 case OPCODE_CMN:
21945 new_inst = OPCODE_CMP;
21946 value = negated;
21947 break;
21948
21949 /* Now Inverted ops. */
21950 case OPCODE_MOV: /* MOV <-> MVN */
21951 new_inst = OPCODE_MVN;
21952 value = inverted;
21953 break;
21954
21955 case OPCODE_MVN:
21956 new_inst = OPCODE_MOV;
21957 value = inverted;
21958 break;
21959
21960 case OPCODE_AND: /* AND <-> BIC */
21961 new_inst = OPCODE_BIC;
21962 value = inverted;
21963 break;
21964
21965 case OPCODE_BIC:
21966 new_inst = OPCODE_AND;
21967 value = inverted;
21968 break;
21969
21970 case OPCODE_ADC: /* ADC <-> SBC */
21971 new_inst = OPCODE_SBC;
21972 value = inverted;
21973 break;
21974
21975 case OPCODE_SBC:
21976 new_inst = OPCODE_ADC;
21977 value = inverted;
21978 break;
21979
21980 /* We cannot do anything. */
21981 default:
21982 return FAIL;
21983 }
21984
21985 if (value == (unsigned) FAIL)
21986 return FAIL;
21987
21988 *instruction &= OPCODE_MASK;
21989 *instruction |= new_inst << DATA_OP_SHIFT;
21990 return value;
21991 }
21992
21993 /* Like negate_data_op, but for Thumb-2. */
21994
21995 static unsigned int
21996 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
21997 {
21998 int op, new_inst;
21999 int rd;
22000 unsigned int negated, inverted;
22001
22002 negated = encode_thumb32_immediate (-value);
22003 inverted = encode_thumb32_immediate (~value);
22004
22005 rd = (*instruction >> 8) & 0xf;
22006 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
22007 switch (op)
22008 {
22009 /* ADD <-> SUB. Includes CMP <-> CMN. */
22010 case T2_OPCODE_SUB:
22011 new_inst = T2_OPCODE_ADD;
22012 value = negated;
22013 break;
22014
22015 case T2_OPCODE_ADD:
22016 new_inst = T2_OPCODE_SUB;
22017 value = negated;
22018 break;
22019
22020 /* ORR <-> ORN. Includes MOV <-> MVN. */
22021 case T2_OPCODE_ORR:
22022 new_inst = T2_OPCODE_ORN;
22023 value = inverted;
22024 break;
22025
22026 case T2_OPCODE_ORN:
22027 new_inst = T2_OPCODE_ORR;
22028 value = inverted;
22029 break;
22030
22031 /* AND <-> BIC. TST has no inverted equivalent. */
22032 case T2_OPCODE_AND:
22033 new_inst = T2_OPCODE_BIC;
22034 if (rd == 15)
22035 value = FAIL;
22036 else
22037 value = inverted;
22038 break;
22039
22040 case T2_OPCODE_BIC:
22041 new_inst = T2_OPCODE_AND;
22042 value = inverted;
22043 break;
22044
22045 /* ADC <-> SBC */
22046 case T2_OPCODE_ADC:
22047 new_inst = T2_OPCODE_SBC;
22048 value = inverted;
22049 break;
22050
22051 case T2_OPCODE_SBC:
22052 new_inst = T2_OPCODE_ADC;
22053 value = inverted;
22054 break;
22055
22056 /* We cannot do anything. */
22057 default:
22058 return FAIL;
22059 }
22060
22061 if (value == (unsigned int)FAIL)
22062 return FAIL;
22063
22064 *instruction &= T2_OPCODE_MASK;
22065 *instruction |= new_inst << T2_DATA_OP_SHIFT;
22066 return value;
22067 }
22068
22069 /* Read a 32-bit thumb instruction from buf. */
22070 static unsigned long
22071 get_thumb32_insn (char * buf)
22072 {
22073 unsigned long insn;
22074 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
22075 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22076
22077 return insn;
22078 }
22079
22080
22081 /* We usually want to set the low bit on the address of thumb function
22082 symbols. In particular .word foo - . should have the low bit set.
22083 Generic code tries to fold the difference of two symbols to
22084 a constant. Prevent this and force a relocation when the first symbols
22085 is a thumb function. */
22086
22087 bfd_boolean
22088 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
22089 {
22090 if (op == O_subtract
22091 && l->X_op == O_symbol
22092 && r->X_op == O_symbol
22093 && THUMB_IS_FUNC (l->X_add_symbol))
22094 {
22095 l->X_op = O_subtract;
22096 l->X_op_symbol = r->X_add_symbol;
22097 l->X_add_number -= r->X_add_number;
22098 return TRUE;
22099 }
22100
22101 /* Process as normal. */
22102 return FALSE;
22103 }
22104
22105 /* Encode Thumb2 unconditional branches and calls. The encoding
22106 for the 2 are identical for the immediate values. */
22107
22108 static void
22109 encode_thumb2_b_bl_offset (char * buf, offsetT value)
22110 {
22111 #define T2I1I2MASK ((1 << 13) | (1 << 11))
22112 offsetT newval;
22113 offsetT newval2;
22114 addressT S, I1, I2, lo, hi;
22115
22116 S = (value >> 24) & 0x01;
22117 I1 = (value >> 23) & 0x01;
22118 I2 = (value >> 22) & 0x01;
22119 hi = (value >> 12) & 0x3ff;
22120 lo = (value >> 1) & 0x7ff;
22121 newval = md_chars_to_number (buf, THUMB_SIZE);
22122 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22123 newval |= (S << 10) | hi;
22124 newval2 &= ~T2I1I2MASK;
22125 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
22126 md_number_to_chars (buf, newval, THUMB_SIZE);
22127 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
22128 }
22129
22130 void
22131 md_apply_fix (fixS * fixP,
22132 valueT * valP,
22133 segT seg)
22134 {
22135 offsetT value = * valP;
22136 offsetT newval;
22137 unsigned int newimm;
22138 unsigned long temp;
22139 int sign;
22140 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
22141
22142 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
22143
22144 /* Note whether this will delete the relocation. */
22145
22146 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
22147 fixP->fx_done = 1;
22148
22149 /* On a 64-bit host, silently truncate 'value' to 32 bits for
22150 consistency with the behaviour on 32-bit hosts. Remember value
22151 for emit_reloc. */
22152 value &= 0xffffffff;
22153 value ^= 0x80000000;
22154 value -= 0x80000000;
22155
22156 *valP = value;
22157 fixP->fx_addnumber = value;
22158
22159 /* Same treatment for fixP->fx_offset. */
22160 fixP->fx_offset &= 0xffffffff;
22161 fixP->fx_offset ^= 0x80000000;
22162 fixP->fx_offset -= 0x80000000;
22163
22164 switch (fixP->fx_r_type)
22165 {
22166 case BFD_RELOC_NONE:
22167 /* This will need to go in the object file. */
22168 fixP->fx_done = 0;
22169 break;
22170
22171 case BFD_RELOC_ARM_IMMEDIATE:
22172 /* We claim that this fixup has been processed here,
22173 even if in fact we generate an error because we do
22174 not have a reloc for it, so tc_gen_reloc will reject it. */
22175 fixP->fx_done = 1;
22176
22177 if (fixP->fx_addsy)
22178 {
22179 const char *msg = 0;
22180
22181 if (! S_IS_DEFINED (fixP->fx_addsy))
22182 msg = _("undefined symbol %s used as an immediate value");
22183 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
22184 msg = _("symbol %s is in a different section");
22185 else if (S_IS_WEAK (fixP->fx_addsy))
22186 msg = _("symbol %s is weak and may be overridden later");
22187
22188 if (msg)
22189 {
22190 as_bad_where (fixP->fx_file, fixP->fx_line,
22191 msg, S_GET_NAME (fixP->fx_addsy));
22192 break;
22193 }
22194 }
22195
22196 temp = md_chars_to_number (buf, INSN_SIZE);
22197
22198 /* If the offset is negative, we should use encoding A2 for ADR. */
22199 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
22200 newimm = negate_data_op (&temp, value);
22201 else
22202 {
22203 newimm = encode_arm_immediate (value);
22204
22205 /* If the instruction will fail, see if we can fix things up by
22206 changing the opcode. */
22207 if (newimm == (unsigned int) FAIL)
22208 newimm = negate_data_op (&temp, value);
22209 }
22210
22211 if (newimm == (unsigned int) FAIL)
22212 {
22213 as_bad_where (fixP->fx_file, fixP->fx_line,
22214 _("invalid constant (%lx) after fixup"),
22215 (unsigned long) value);
22216 break;
22217 }
22218
22219 newimm |= (temp & 0xfffff000);
22220 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
22221 break;
22222
22223 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22224 {
22225 unsigned int highpart = 0;
22226 unsigned int newinsn = 0xe1a00000; /* nop. */
22227
22228 if (fixP->fx_addsy)
22229 {
22230 const char *msg = 0;
22231
22232 if (! S_IS_DEFINED (fixP->fx_addsy))
22233 msg = _("undefined symbol %s used as an immediate value");
22234 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
22235 msg = _("symbol %s is in a different section");
22236 else if (S_IS_WEAK (fixP->fx_addsy))
22237 msg = _("symbol %s is weak and may be overridden later");
22238
22239 if (msg)
22240 {
22241 as_bad_where (fixP->fx_file, fixP->fx_line,
22242 msg, S_GET_NAME (fixP->fx_addsy));
22243 break;
22244 }
22245 }
22246
22247 newimm = encode_arm_immediate (value);
22248 temp = md_chars_to_number (buf, INSN_SIZE);
22249
22250 /* If the instruction will fail, see if we can fix things up by
22251 changing the opcode. */
22252 if (newimm == (unsigned int) FAIL
22253 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
22254 {
22255 /* No ? OK - try using two ADD instructions to generate
22256 the value. */
22257 newimm = validate_immediate_twopart (value, & highpart);
22258
22259 /* Yes - then make sure that the second instruction is
22260 also an add. */
22261 if (newimm != (unsigned int) FAIL)
22262 newinsn = temp;
22263 /* Still No ? Try using a negated value. */
22264 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
22265 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
22266 /* Otherwise - give up. */
22267 else
22268 {
22269 as_bad_where (fixP->fx_file, fixP->fx_line,
22270 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
22271 (long) value);
22272 break;
22273 }
22274
22275 /* Replace the first operand in the 2nd instruction (which
22276 is the PC) with the destination register. We have
22277 already added in the PC in the first instruction and we
22278 do not want to do it again. */
22279 newinsn &= ~ 0xf0000;
22280 newinsn |= ((newinsn & 0x0f000) << 4);
22281 }
22282
22283 newimm |= (temp & 0xfffff000);
22284 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
22285
22286 highpart |= (newinsn & 0xfffff000);
22287 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
22288 }
22289 break;
22290
22291 case BFD_RELOC_ARM_OFFSET_IMM:
22292 if (!fixP->fx_done && seg->use_rela_p)
22293 value = 0;
22294
22295 case BFD_RELOC_ARM_LITERAL:
22296 sign = value > 0;
22297
22298 if (value < 0)
22299 value = - value;
22300
22301 if (validate_offset_imm (value, 0) == FAIL)
22302 {
22303 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
22304 as_bad_where (fixP->fx_file, fixP->fx_line,
22305 _("invalid literal constant: pool needs to be closer"));
22306 else
22307 as_bad_where (fixP->fx_file, fixP->fx_line,
22308 _("bad immediate value for offset (%ld)"),
22309 (long) value);
22310 break;
22311 }
22312
22313 newval = md_chars_to_number (buf, INSN_SIZE);
22314 if (value == 0)
22315 newval &= 0xfffff000;
22316 else
22317 {
22318 newval &= 0xff7ff000;
22319 newval |= value | (sign ? INDEX_UP : 0);
22320 }
22321 md_number_to_chars (buf, newval, INSN_SIZE);
22322 break;
22323
22324 case BFD_RELOC_ARM_OFFSET_IMM8:
22325 case BFD_RELOC_ARM_HWLITERAL:
22326 sign = value > 0;
22327
22328 if (value < 0)
22329 value = - value;
22330
22331 if (validate_offset_imm (value, 1) == FAIL)
22332 {
22333 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
22334 as_bad_where (fixP->fx_file, fixP->fx_line,
22335 _("invalid literal constant: pool needs to be closer"));
22336 else
22337 as_bad_where (fixP->fx_file, fixP->fx_line,
22338 _("bad immediate value for 8-bit offset (%ld)"),
22339 (long) value);
22340 break;
22341 }
22342
22343 newval = md_chars_to_number (buf, INSN_SIZE);
22344 if (value == 0)
22345 newval &= 0xfffff0f0;
22346 else
22347 {
22348 newval &= 0xff7ff0f0;
22349 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
22350 }
22351 md_number_to_chars (buf, newval, INSN_SIZE);
22352 break;
22353
22354 case BFD_RELOC_ARM_T32_OFFSET_U8:
22355 if (value < 0 || value > 1020 || value % 4 != 0)
22356 as_bad_where (fixP->fx_file, fixP->fx_line,
22357 _("bad immediate value for offset (%ld)"), (long) value);
22358 value /= 4;
22359
22360 newval = md_chars_to_number (buf+2, THUMB_SIZE);
22361 newval |= value;
22362 md_number_to_chars (buf+2, newval, THUMB_SIZE);
22363 break;
22364
22365 case BFD_RELOC_ARM_T32_OFFSET_IMM:
22366 /* This is a complicated relocation used for all varieties of Thumb32
22367 load/store instruction with immediate offset:
22368
22369 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
22370 *4, optional writeback(W)
22371 (doubleword load/store)
22372
22373 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
22374 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
22375 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
22376 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
22377 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
22378
22379 Uppercase letters indicate bits that are already encoded at
22380 this point. Lowercase letters are our problem. For the
22381 second block of instructions, the secondary opcode nybble
22382 (bits 8..11) is present, and bit 23 is zero, even if this is
22383 a PC-relative operation. */
22384 newval = md_chars_to_number (buf, THUMB_SIZE);
22385 newval <<= 16;
22386 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
22387
22388 if ((newval & 0xf0000000) == 0xe0000000)
22389 {
22390 /* Doubleword load/store: 8-bit offset, scaled by 4. */
22391 if (value >= 0)
22392 newval |= (1 << 23);
22393 else
22394 value = -value;
22395 if (value % 4 != 0)
22396 {
22397 as_bad_where (fixP->fx_file, fixP->fx_line,
22398 _("offset not a multiple of 4"));
22399 break;
22400 }
22401 value /= 4;
22402 if (value > 0xff)
22403 {
22404 as_bad_where (fixP->fx_file, fixP->fx_line,
22405 _("offset out of range"));
22406 break;
22407 }
22408 newval &= ~0xff;
22409 }
22410 else if ((newval & 0x000f0000) == 0x000f0000)
22411 {
22412 /* PC-relative, 12-bit offset. */
22413 if (value >= 0)
22414 newval |= (1 << 23);
22415 else
22416 value = -value;
22417 if (value > 0xfff)
22418 {
22419 as_bad_where (fixP->fx_file, fixP->fx_line,
22420 _("offset out of range"));
22421 break;
22422 }
22423 newval &= ~0xfff;
22424 }
22425 else if ((newval & 0x00000100) == 0x00000100)
22426 {
22427 /* Writeback: 8-bit, +/- offset. */
22428 if (value >= 0)
22429 newval |= (1 << 9);
22430 else
22431 value = -value;
22432 if (value > 0xff)
22433 {
22434 as_bad_where (fixP->fx_file, fixP->fx_line,
22435 _("offset out of range"));
22436 break;
22437 }
22438 newval &= ~0xff;
22439 }
22440 else if ((newval & 0x00000f00) == 0x00000e00)
22441 {
22442 /* T-instruction: positive 8-bit offset. */
22443 if (value < 0 || value > 0xff)
22444 {
22445 as_bad_where (fixP->fx_file, fixP->fx_line,
22446 _("offset out of range"));
22447 break;
22448 }
22449 newval &= ~0xff;
22450 newval |= value;
22451 }
22452 else
22453 {
22454 /* Positive 12-bit or negative 8-bit offset. */
22455 int limit;
22456 if (value >= 0)
22457 {
22458 newval |= (1 << 23);
22459 limit = 0xfff;
22460 }
22461 else
22462 {
22463 value = -value;
22464 limit = 0xff;
22465 }
22466 if (value > limit)
22467 {
22468 as_bad_where (fixP->fx_file, fixP->fx_line,
22469 _("offset out of range"));
22470 break;
22471 }
22472 newval &= ~limit;
22473 }
22474
22475 newval |= value;
22476 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
22477 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
22478 break;
22479
22480 case BFD_RELOC_ARM_SHIFT_IMM:
22481 newval = md_chars_to_number (buf, INSN_SIZE);
22482 if (((unsigned long) value) > 32
22483 || (value == 32
22484 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
22485 {
22486 as_bad_where (fixP->fx_file, fixP->fx_line,
22487 _("shift expression is too large"));
22488 break;
22489 }
22490
22491 if (value == 0)
22492 /* Shifts of zero must be done as lsl. */
22493 newval &= ~0x60;
22494 else if (value == 32)
22495 value = 0;
22496 newval &= 0xfffff07f;
22497 newval |= (value & 0x1f) << 7;
22498 md_number_to_chars (buf, newval, INSN_SIZE);
22499 break;
22500
22501 case BFD_RELOC_ARM_T32_IMMEDIATE:
22502 case BFD_RELOC_ARM_T32_ADD_IMM:
22503 case BFD_RELOC_ARM_T32_IMM12:
22504 case BFD_RELOC_ARM_T32_ADD_PC12:
22505 /* We claim that this fixup has been processed here,
22506 even if in fact we generate an error because we do
22507 not have a reloc for it, so tc_gen_reloc will reject it. */
22508 fixP->fx_done = 1;
22509
22510 if (fixP->fx_addsy
22511 && ! S_IS_DEFINED (fixP->fx_addsy))
22512 {
22513 as_bad_where (fixP->fx_file, fixP->fx_line,
22514 _("undefined symbol %s used as an immediate value"),
22515 S_GET_NAME (fixP->fx_addsy));
22516 break;
22517 }
22518
22519 newval = md_chars_to_number (buf, THUMB_SIZE);
22520 newval <<= 16;
22521 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
22522
22523 newimm = FAIL;
22524 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22525 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
22526 {
22527 newimm = encode_thumb32_immediate (value);
22528 if (newimm == (unsigned int) FAIL)
22529 newimm = thumb32_negate_data_op (&newval, value);
22530 }
22531 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
22532 && newimm == (unsigned int) FAIL)
22533 {
22534 /* Turn add/sum into addw/subw. */
22535 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
22536 newval = (newval & 0xfeffffff) | 0x02000000;
22537 /* No flat 12-bit imm encoding for addsw/subsw. */
22538 if ((newval & 0x00100000) == 0)
22539 {
22540 /* 12 bit immediate for addw/subw. */
22541 if (value < 0)
22542 {
22543 value = -value;
22544 newval ^= 0x00a00000;
22545 }
22546 if (value > 0xfff)
22547 newimm = (unsigned int) FAIL;
22548 else
22549 newimm = value;
22550 }
22551 }
22552
22553 if (newimm == (unsigned int)FAIL)
22554 {
22555 as_bad_where (fixP->fx_file, fixP->fx_line,
22556 _("invalid constant (%lx) after fixup"),
22557 (unsigned long) value);
22558 break;
22559 }
22560
22561 newval |= (newimm & 0x800) << 15;
22562 newval |= (newimm & 0x700) << 4;
22563 newval |= (newimm & 0x0ff);
22564
22565 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
22566 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
22567 break;
22568
22569 case BFD_RELOC_ARM_SMC:
22570 if (((unsigned long) value) > 0xffff)
22571 as_bad_where (fixP->fx_file, fixP->fx_line,
22572 _("invalid smc expression"));
22573 newval = md_chars_to_number (buf, INSN_SIZE);
22574 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
22575 md_number_to_chars (buf, newval, INSN_SIZE);
22576 break;
22577
22578 case BFD_RELOC_ARM_HVC:
22579 if (((unsigned long) value) > 0xffff)
22580 as_bad_where (fixP->fx_file, fixP->fx_line,
22581 _("invalid hvc expression"));
22582 newval = md_chars_to_number (buf, INSN_SIZE);
22583 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
22584 md_number_to_chars (buf, newval, INSN_SIZE);
22585 break;
22586
22587 case BFD_RELOC_ARM_SWI:
22588 if (fixP->tc_fix_data != 0)
22589 {
22590 if (((unsigned long) value) > 0xff)
22591 as_bad_where (fixP->fx_file, fixP->fx_line,
22592 _("invalid swi expression"));
22593 newval = md_chars_to_number (buf, THUMB_SIZE);
22594 newval |= value;
22595 md_number_to_chars (buf, newval, THUMB_SIZE);
22596 }
22597 else
22598 {
22599 if (((unsigned long) value) > 0x00ffffff)
22600 as_bad_where (fixP->fx_file, fixP->fx_line,
22601 _("invalid swi expression"));
22602 newval = md_chars_to_number (buf, INSN_SIZE);
22603 newval |= value;
22604 md_number_to_chars (buf, newval, INSN_SIZE);
22605 }
22606 break;
22607
22608 case BFD_RELOC_ARM_MULTI:
22609 if (((unsigned long) value) > 0xffff)
22610 as_bad_where (fixP->fx_file, fixP->fx_line,
22611 _("invalid expression in load/store multiple"));
22612 newval = value | md_chars_to_number (buf, INSN_SIZE);
22613 md_number_to_chars (buf, newval, INSN_SIZE);
22614 break;
22615
22616 #ifdef OBJ_ELF
22617 case BFD_RELOC_ARM_PCREL_CALL:
22618
22619 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22620 && fixP->fx_addsy
22621 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22622 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22623 && THUMB_IS_FUNC (fixP->fx_addsy))
22624 /* Flip the bl to blx. This is a simple flip
22625 bit here because we generate PCREL_CALL for
22626 unconditional bls. */
22627 {
22628 newval = md_chars_to_number (buf, INSN_SIZE);
22629 newval = newval | 0x10000000;
22630 md_number_to_chars (buf, newval, INSN_SIZE);
22631 temp = 1;
22632 fixP->fx_done = 1;
22633 }
22634 else
22635 temp = 3;
22636 goto arm_branch_common;
22637
22638 case BFD_RELOC_ARM_PCREL_JUMP:
22639 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22640 && fixP->fx_addsy
22641 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22642 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22643 && THUMB_IS_FUNC (fixP->fx_addsy))
22644 {
22645 /* This would map to a bl<cond>, b<cond>,
22646 b<always> to a Thumb function. We
22647 need to force a relocation for this particular
22648 case. */
22649 newval = md_chars_to_number (buf, INSN_SIZE);
22650 fixP->fx_done = 0;
22651 }
22652
22653 case BFD_RELOC_ARM_PLT32:
22654 #endif
22655 case BFD_RELOC_ARM_PCREL_BRANCH:
22656 temp = 3;
22657 goto arm_branch_common;
22658
22659 case BFD_RELOC_ARM_PCREL_BLX:
22660
22661 temp = 1;
22662 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22663 && fixP->fx_addsy
22664 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22665 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22666 && ARM_IS_FUNC (fixP->fx_addsy))
22667 {
22668 /* Flip the blx to a bl and warn. */
22669 const char *name = S_GET_NAME (fixP->fx_addsy);
22670 newval = 0xeb000000;
22671 as_warn_where (fixP->fx_file, fixP->fx_line,
22672 _("blx to '%s' an ARM ISA state function changed to bl"),
22673 name);
22674 md_number_to_chars (buf, newval, INSN_SIZE);
22675 temp = 3;
22676 fixP->fx_done = 1;
22677 }
22678
22679 #ifdef OBJ_ELF
22680 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22681 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
22682 #endif
22683
22684 arm_branch_common:
22685 /* We are going to store value (shifted right by two) in the
22686 instruction, in a 24 bit, signed field. Bits 26 through 32 either
22687 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
22688 also be be clear. */
22689 if (value & temp)
22690 as_bad_where (fixP->fx_file, fixP->fx_line,
22691 _("misaligned branch destination"));
22692 if ((value & (offsetT)0xfe000000) != (offsetT)0
22693 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
22694 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22695
22696 if (fixP->fx_done || !seg->use_rela_p)
22697 {
22698 newval = md_chars_to_number (buf, INSN_SIZE);
22699 newval |= (value >> 2) & 0x00ffffff;
22700 /* Set the H bit on BLX instructions. */
22701 if (temp == 1)
22702 {
22703 if (value & 2)
22704 newval |= 0x01000000;
22705 else
22706 newval &= ~0x01000000;
22707 }
22708 md_number_to_chars (buf, newval, INSN_SIZE);
22709 }
22710 break;
22711
22712 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
22713 /* CBZ can only branch forward. */
22714
22715 /* Attempts to use CBZ to branch to the next instruction
22716 (which, strictly speaking, are prohibited) will be turned into
22717 no-ops.
22718
22719 FIXME: It may be better to remove the instruction completely and
22720 perform relaxation. */
22721 if (value == -2)
22722 {
22723 newval = md_chars_to_number (buf, THUMB_SIZE);
22724 newval = 0xbf00; /* NOP encoding T1 */
22725 md_number_to_chars (buf, newval, THUMB_SIZE);
22726 }
22727 else
22728 {
22729 if (value & ~0x7e)
22730 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22731
22732 if (fixP->fx_done || !seg->use_rela_p)
22733 {
22734 newval = md_chars_to_number (buf, THUMB_SIZE);
22735 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
22736 md_number_to_chars (buf, newval, THUMB_SIZE);
22737 }
22738 }
22739 break;
22740
22741 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
22742 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
22743 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22744
22745 if (fixP->fx_done || !seg->use_rela_p)
22746 {
22747 newval = md_chars_to_number (buf, THUMB_SIZE);
22748 newval |= (value & 0x1ff) >> 1;
22749 md_number_to_chars (buf, newval, THUMB_SIZE);
22750 }
22751 break;
22752
22753 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
22754 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
22755 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22756
22757 if (fixP->fx_done || !seg->use_rela_p)
22758 {
22759 newval = md_chars_to_number (buf, THUMB_SIZE);
22760 newval |= (value & 0xfff) >> 1;
22761 md_number_to_chars (buf, newval, THUMB_SIZE);
22762 }
22763 break;
22764
22765 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22766 if (fixP->fx_addsy
22767 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22768 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22769 && ARM_IS_FUNC (fixP->fx_addsy)
22770 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22771 {
22772 /* Force a relocation for a branch 20 bits wide. */
22773 fixP->fx_done = 0;
22774 }
22775 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
22776 as_bad_where (fixP->fx_file, fixP->fx_line,
22777 _("conditional branch out of range"));
22778
22779 if (fixP->fx_done || !seg->use_rela_p)
22780 {
22781 offsetT newval2;
22782 addressT S, J1, J2, lo, hi;
22783
22784 S = (value & 0x00100000) >> 20;
22785 J2 = (value & 0x00080000) >> 19;
22786 J1 = (value & 0x00040000) >> 18;
22787 hi = (value & 0x0003f000) >> 12;
22788 lo = (value & 0x00000ffe) >> 1;
22789
22790 newval = md_chars_to_number (buf, THUMB_SIZE);
22791 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22792 newval |= (S << 10) | hi;
22793 newval2 |= (J1 << 13) | (J2 << 11) | lo;
22794 md_number_to_chars (buf, newval, THUMB_SIZE);
22795 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
22796 }
22797 break;
22798
22799 case BFD_RELOC_THUMB_PCREL_BLX:
22800 /* If there is a blx from a thumb state function to
22801 another thumb function flip this to a bl and warn
22802 about it. */
22803
22804 if (fixP->fx_addsy
22805 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22806 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22807 && THUMB_IS_FUNC (fixP->fx_addsy))
22808 {
22809 const char *name = S_GET_NAME (fixP->fx_addsy);
22810 as_warn_where (fixP->fx_file, fixP->fx_line,
22811 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
22812 name);
22813 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22814 newval = newval | 0x1000;
22815 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
22816 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
22817 fixP->fx_done = 1;
22818 }
22819
22820
22821 goto thumb_bl_common;
22822
22823 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22824 /* A bl from Thumb state ISA to an internal ARM state function
22825 is converted to a blx. */
22826 if (fixP->fx_addsy
22827 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22828 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22829 && ARM_IS_FUNC (fixP->fx_addsy)
22830 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22831 {
22832 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22833 newval = newval & ~0x1000;
22834 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
22835 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
22836 fixP->fx_done = 1;
22837 }
22838
22839 thumb_bl_common:
22840
22841 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
22842 /* For a BLX instruction, make sure that the relocation is rounded up
22843 to a word boundary. This follows the semantics of the instruction
22844 which specifies that bit 1 of the target address will come from bit
22845 1 of the base address. */
22846 value = (value + 3) & ~ 3;
22847
22848 #ifdef OBJ_ELF
22849 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
22850 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
22851 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
22852 #endif
22853
22854 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
22855 {
22856 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
22857 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22858 else if ((value & ~0x1ffffff)
22859 && ((value & ~0x1ffffff) != ~0x1ffffff))
22860 as_bad_where (fixP->fx_file, fixP->fx_line,
22861 _("Thumb2 branch out of range"));
22862 }
22863
22864 if (fixP->fx_done || !seg->use_rela_p)
22865 encode_thumb2_b_bl_offset (buf, value);
22866
22867 break;
22868
22869 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22870 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
22871 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22872
22873 if (fixP->fx_done || !seg->use_rela_p)
22874 encode_thumb2_b_bl_offset (buf, value);
22875
22876 break;
22877
22878 case BFD_RELOC_8:
22879 if (fixP->fx_done || !seg->use_rela_p)
22880 *buf = value;
22881 break;
22882
22883 case BFD_RELOC_16:
22884 if (fixP->fx_done || !seg->use_rela_p)
22885 md_number_to_chars (buf, value, 2);
22886 break;
22887
22888 #ifdef OBJ_ELF
22889 case BFD_RELOC_ARM_TLS_CALL:
22890 case BFD_RELOC_ARM_THM_TLS_CALL:
22891 case BFD_RELOC_ARM_TLS_DESCSEQ:
22892 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22893 case BFD_RELOC_ARM_TLS_GOTDESC:
22894 case BFD_RELOC_ARM_TLS_GD32:
22895 case BFD_RELOC_ARM_TLS_LE32:
22896 case BFD_RELOC_ARM_TLS_IE32:
22897 case BFD_RELOC_ARM_TLS_LDM32:
22898 case BFD_RELOC_ARM_TLS_LDO32:
22899 S_SET_THREAD_LOCAL (fixP->fx_addsy);
22900 break;
22901
22902 case BFD_RELOC_ARM_GOT32:
22903 case BFD_RELOC_ARM_GOTOFF:
22904 break;
22905
22906 case BFD_RELOC_ARM_GOT_PREL:
22907 if (fixP->fx_done || !seg->use_rela_p)
22908 md_number_to_chars (buf, value, 4);
22909 break;
22910
22911 case BFD_RELOC_ARM_TARGET2:
22912 /* TARGET2 is not partial-inplace, so we need to write the
22913 addend here for REL targets, because it won't be written out
22914 during reloc processing later. */
22915 if (fixP->fx_done || !seg->use_rela_p)
22916 md_number_to_chars (buf, fixP->fx_offset, 4);
22917 break;
22918 #endif
22919
22920 case BFD_RELOC_RVA:
22921 case BFD_RELOC_32:
22922 case BFD_RELOC_ARM_TARGET1:
22923 case BFD_RELOC_ARM_ROSEGREL32:
22924 case BFD_RELOC_ARM_SBREL32:
22925 case BFD_RELOC_32_PCREL:
22926 #ifdef TE_PE
22927 case BFD_RELOC_32_SECREL:
22928 #endif
22929 if (fixP->fx_done || !seg->use_rela_p)
22930 #ifdef TE_WINCE
22931 /* For WinCE we only do this for pcrel fixups. */
22932 if (fixP->fx_done || fixP->fx_pcrel)
22933 #endif
22934 md_number_to_chars (buf, value, 4);
22935 break;
22936
22937 #ifdef OBJ_ELF
22938 case BFD_RELOC_ARM_PREL31:
22939 if (fixP->fx_done || !seg->use_rela_p)
22940 {
22941 newval = md_chars_to_number (buf, 4) & 0x80000000;
22942 if ((value ^ (value >> 1)) & 0x40000000)
22943 {
22944 as_bad_where (fixP->fx_file, fixP->fx_line,
22945 _("rel31 relocation overflow"));
22946 }
22947 newval |= value & 0x7fffffff;
22948 md_number_to_chars (buf, newval, 4);
22949 }
22950 break;
22951 #endif
22952
22953 case BFD_RELOC_ARM_CP_OFF_IMM:
22954 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
22955 if (value < -1023 || value > 1023 || (value & 3))
22956 as_bad_where (fixP->fx_file, fixP->fx_line,
22957 _("co-processor offset out of range"));
22958 cp_off_common:
22959 sign = value > 0;
22960 if (value < 0)
22961 value = -value;
22962 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22963 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22964 newval = md_chars_to_number (buf, INSN_SIZE);
22965 else
22966 newval = get_thumb32_insn (buf);
22967 if (value == 0)
22968 newval &= 0xffffff00;
22969 else
22970 {
22971 newval &= 0xff7fff00;
22972 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
22973 }
22974 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22975 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22976 md_number_to_chars (buf, newval, INSN_SIZE);
22977 else
22978 put_thumb32_insn (buf, newval);
22979 break;
22980
22981 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
22982 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
22983 if (value < -255 || value > 255)
22984 as_bad_where (fixP->fx_file, fixP->fx_line,
22985 _("co-processor offset out of range"));
22986 value *= 4;
22987 goto cp_off_common;
22988
22989 case BFD_RELOC_ARM_THUMB_OFFSET:
22990 newval = md_chars_to_number (buf, THUMB_SIZE);
22991 /* Exactly what ranges, and where the offset is inserted depends
22992 on the type of instruction, we can establish this from the
22993 top 4 bits. */
22994 switch (newval >> 12)
22995 {
22996 case 4: /* PC load. */
22997 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
22998 forced to zero for these loads; md_pcrel_from has already
22999 compensated for this. */
23000 if (value & 3)
23001 as_bad_where (fixP->fx_file, fixP->fx_line,
23002 _("invalid offset, target not word aligned (0x%08lX)"),
23003 (((unsigned long) fixP->fx_frag->fr_address
23004 + (unsigned long) fixP->fx_where) & ~3)
23005 + (unsigned long) value);
23006
23007 if (value & ~0x3fc)
23008 as_bad_where (fixP->fx_file, fixP->fx_line,
23009 _("invalid offset, value too big (0x%08lX)"),
23010 (long) value);
23011
23012 newval |= value >> 2;
23013 break;
23014
23015 case 9: /* SP load/store. */
23016 if (value & ~0x3fc)
23017 as_bad_where (fixP->fx_file, fixP->fx_line,
23018 _("invalid offset, value too big (0x%08lX)"),
23019 (long) value);
23020 newval |= value >> 2;
23021 break;
23022
23023 case 6: /* Word load/store. */
23024 if (value & ~0x7c)
23025 as_bad_where (fixP->fx_file, fixP->fx_line,
23026 _("invalid offset, value too big (0x%08lX)"),
23027 (long) value);
23028 newval |= value << 4; /* 6 - 2. */
23029 break;
23030
23031 case 7: /* Byte load/store. */
23032 if (value & ~0x1f)
23033 as_bad_where (fixP->fx_file, fixP->fx_line,
23034 _("invalid offset, value too big (0x%08lX)"),
23035 (long) value);
23036 newval |= value << 6;
23037 break;
23038
23039 case 8: /* Halfword load/store. */
23040 if (value & ~0x3e)
23041 as_bad_where (fixP->fx_file, fixP->fx_line,
23042 _("invalid offset, value too big (0x%08lX)"),
23043 (long) value);
23044 newval |= value << 5; /* 6 - 1. */
23045 break;
23046
23047 default:
23048 as_bad_where (fixP->fx_file, fixP->fx_line,
23049 "Unable to process relocation for thumb opcode: %lx",
23050 (unsigned long) newval);
23051 break;
23052 }
23053 md_number_to_chars (buf, newval, THUMB_SIZE);
23054 break;
23055
23056 case BFD_RELOC_ARM_THUMB_ADD:
23057 /* This is a complicated relocation, since we use it for all of
23058 the following immediate relocations:
23059
23060 3bit ADD/SUB
23061 8bit ADD/SUB
23062 9bit ADD/SUB SP word-aligned
23063 10bit ADD PC/SP word-aligned
23064
23065 The type of instruction being processed is encoded in the
23066 instruction field:
23067
23068 0x8000 SUB
23069 0x00F0 Rd
23070 0x000F Rs
23071 */
23072 newval = md_chars_to_number (buf, THUMB_SIZE);
23073 {
23074 int rd = (newval >> 4) & 0xf;
23075 int rs = newval & 0xf;
23076 int subtract = !!(newval & 0x8000);
23077
23078 /* Check for HI regs, only very restricted cases allowed:
23079 Adjusting SP, and using PC or SP to get an address. */
23080 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
23081 || (rs > 7 && rs != REG_SP && rs != REG_PC))
23082 as_bad_where (fixP->fx_file, fixP->fx_line,
23083 _("invalid Hi register with immediate"));
23084
23085 /* If value is negative, choose the opposite instruction. */
23086 if (value < 0)
23087 {
23088 value = -value;
23089 subtract = !subtract;
23090 if (value < 0)
23091 as_bad_where (fixP->fx_file, fixP->fx_line,
23092 _("immediate value out of range"));
23093 }
23094
23095 if (rd == REG_SP)
23096 {
23097 if (value & ~0x1fc)
23098 as_bad_where (fixP->fx_file, fixP->fx_line,
23099 _("invalid immediate for stack address calculation"));
23100 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
23101 newval |= value >> 2;
23102 }
23103 else if (rs == REG_PC || rs == REG_SP)
23104 {
23105 /* PR gas/18541. If the addition is for a defined symbol
23106 within range of an ADR instruction then accept it. */
23107 if (subtract
23108 && value == 4
23109 && fixP->fx_addsy != NULL)
23110 {
23111 subtract = 0;
23112
23113 if (! S_IS_DEFINED (fixP->fx_addsy)
23114 || S_GET_SEGMENT (fixP->fx_addsy) != seg
23115 || S_IS_WEAK (fixP->fx_addsy))
23116 {
23117 as_bad_where (fixP->fx_file, fixP->fx_line,
23118 _("address calculation needs a strongly defined nearby symbol"));
23119 }
23120 else
23121 {
23122 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
23123
23124 /* Round up to the next 4-byte boundary. */
23125 if (v & 3)
23126 v = (v + 3) & ~ 3;
23127 else
23128 v += 4;
23129 v = S_GET_VALUE (fixP->fx_addsy) - v;
23130
23131 if (v & ~0x3fc)
23132 {
23133 as_bad_where (fixP->fx_file, fixP->fx_line,
23134 _("symbol too far away"));
23135 }
23136 else
23137 {
23138 fixP->fx_done = 1;
23139 value = v;
23140 }
23141 }
23142 }
23143
23144 if (subtract || value & ~0x3fc)
23145 as_bad_where (fixP->fx_file, fixP->fx_line,
23146 _("invalid immediate for address calculation (value = 0x%08lX)"),
23147 (unsigned long) (subtract ? - value : value));
23148 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
23149 newval |= rd << 8;
23150 newval |= value >> 2;
23151 }
23152 else if (rs == rd)
23153 {
23154 if (value & ~0xff)
23155 as_bad_where (fixP->fx_file, fixP->fx_line,
23156 _("immediate value out of range"));
23157 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
23158 newval |= (rd << 8) | value;
23159 }
23160 else
23161 {
23162 if (value & ~0x7)
23163 as_bad_where (fixP->fx_file, fixP->fx_line,
23164 _("immediate value out of range"));
23165 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
23166 newval |= rd | (rs << 3) | (value << 6);
23167 }
23168 }
23169 md_number_to_chars (buf, newval, THUMB_SIZE);
23170 break;
23171
23172 case BFD_RELOC_ARM_THUMB_IMM:
23173 newval = md_chars_to_number (buf, THUMB_SIZE);
23174 if (value < 0 || value > 255)
23175 as_bad_where (fixP->fx_file, fixP->fx_line,
23176 _("invalid immediate: %ld is out of range"),
23177 (long) value);
23178 newval |= value;
23179 md_number_to_chars (buf, newval, THUMB_SIZE);
23180 break;
23181
23182 case BFD_RELOC_ARM_THUMB_SHIFT:
23183 /* 5bit shift value (0..32). LSL cannot take 32. */
23184 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
23185 temp = newval & 0xf800;
23186 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
23187 as_bad_where (fixP->fx_file, fixP->fx_line,
23188 _("invalid shift value: %ld"), (long) value);
23189 /* Shifts of zero must be encoded as LSL. */
23190 if (value == 0)
23191 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
23192 /* Shifts of 32 are encoded as zero. */
23193 else if (value == 32)
23194 value = 0;
23195 newval |= value << 6;
23196 md_number_to_chars (buf, newval, THUMB_SIZE);
23197 break;
23198
23199 case BFD_RELOC_VTABLE_INHERIT:
23200 case BFD_RELOC_VTABLE_ENTRY:
23201 fixP->fx_done = 0;
23202 return;
23203
23204 case BFD_RELOC_ARM_MOVW:
23205 case BFD_RELOC_ARM_MOVT:
23206 case BFD_RELOC_ARM_THUMB_MOVW:
23207 case BFD_RELOC_ARM_THUMB_MOVT:
23208 if (fixP->fx_done || !seg->use_rela_p)
23209 {
23210 /* REL format relocations are limited to a 16-bit addend. */
23211 if (!fixP->fx_done)
23212 {
23213 if (value < -0x8000 || value > 0x7fff)
23214 as_bad_where (fixP->fx_file, fixP->fx_line,
23215 _("offset out of range"));
23216 }
23217 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
23218 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
23219 {
23220 value >>= 16;
23221 }
23222
23223 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
23224 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
23225 {
23226 newval = get_thumb32_insn (buf);
23227 newval &= 0xfbf08f00;
23228 newval |= (value & 0xf000) << 4;
23229 newval |= (value & 0x0800) << 15;
23230 newval |= (value & 0x0700) << 4;
23231 newval |= (value & 0x00ff);
23232 put_thumb32_insn (buf, newval);
23233 }
23234 else
23235 {
23236 newval = md_chars_to_number (buf, 4);
23237 newval &= 0xfff0f000;
23238 newval |= value & 0x0fff;
23239 newval |= (value & 0xf000) << 4;
23240 md_number_to_chars (buf, newval, 4);
23241 }
23242 }
23243 return;
23244
23245 case BFD_RELOC_ARM_ALU_PC_G0_NC:
23246 case BFD_RELOC_ARM_ALU_PC_G0:
23247 case BFD_RELOC_ARM_ALU_PC_G1_NC:
23248 case BFD_RELOC_ARM_ALU_PC_G1:
23249 case BFD_RELOC_ARM_ALU_PC_G2:
23250 case BFD_RELOC_ARM_ALU_SB_G0_NC:
23251 case BFD_RELOC_ARM_ALU_SB_G0:
23252 case BFD_RELOC_ARM_ALU_SB_G1_NC:
23253 case BFD_RELOC_ARM_ALU_SB_G1:
23254 case BFD_RELOC_ARM_ALU_SB_G2:
23255 gas_assert (!fixP->fx_done);
23256 if (!seg->use_rela_p)
23257 {
23258 bfd_vma insn;
23259 bfd_vma encoded_addend;
23260 bfd_vma addend_abs = abs (value);
23261
23262 /* Check that the absolute value of the addend can be
23263 expressed as an 8-bit constant plus a rotation. */
23264 encoded_addend = encode_arm_immediate (addend_abs);
23265 if (encoded_addend == (unsigned int) FAIL)
23266 as_bad_where (fixP->fx_file, fixP->fx_line,
23267 _("the offset 0x%08lX is not representable"),
23268 (unsigned long) addend_abs);
23269
23270 /* Extract the instruction. */
23271 insn = md_chars_to_number (buf, INSN_SIZE);
23272
23273 /* If the addend is positive, use an ADD instruction.
23274 Otherwise use a SUB. Take care not to destroy the S bit. */
23275 insn &= 0xff1fffff;
23276 if (value < 0)
23277 insn |= 1 << 22;
23278 else
23279 insn |= 1 << 23;
23280
23281 /* Place the encoded addend into the first 12 bits of the
23282 instruction. */
23283 insn &= 0xfffff000;
23284 insn |= encoded_addend;
23285
23286 /* Update the instruction. */
23287 md_number_to_chars (buf, insn, INSN_SIZE);
23288 }
23289 break;
23290
23291 case BFD_RELOC_ARM_LDR_PC_G0:
23292 case BFD_RELOC_ARM_LDR_PC_G1:
23293 case BFD_RELOC_ARM_LDR_PC_G2:
23294 case BFD_RELOC_ARM_LDR_SB_G0:
23295 case BFD_RELOC_ARM_LDR_SB_G1:
23296 case BFD_RELOC_ARM_LDR_SB_G2:
23297 gas_assert (!fixP->fx_done);
23298 if (!seg->use_rela_p)
23299 {
23300 bfd_vma insn;
23301 bfd_vma addend_abs = abs (value);
23302
23303 /* Check that the absolute value of the addend can be
23304 encoded in 12 bits. */
23305 if (addend_abs >= 0x1000)
23306 as_bad_where (fixP->fx_file, fixP->fx_line,
23307 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
23308 (unsigned long) addend_abs);
23309
23310 /* Extract the instruction. */
23311 insn = md_chars_to_number (buf, INSN_SIZE);
23312
23313 /* If the addend is negative, clear bit 23 of the instruction.
23314 Otherwise set it. */
23315 if (value < 0)
23316 insn &= ~(1 << 23);
23317 else
23318 insn |= 1 << 23;
23319
23320 /* Place the absolute value of the addend into the first 12 bits
23321 of the instruction. */
23322 insn &= 0xfffff000;
23323 insn |= addend_abs;
23324
23325 /* Update the instruction. */
23326 md_number_to_chars (buf, insn, INSN_SIZE);
23327 }
23328 break;
23329
23330 case BFD_RELOC_ARM_LDRS_PC_G0:
23331 case BFD_RELOC_ARM_LDRS_PC_G1:
23332 case BFD_RELOC_ARM_LDRS_PC_G2:
23333 case BFD_RELOC_ARM_LDRS_SB_G0:
23334 case BFD_RELOC_ARM_LDRS_SB_G1:
23335 case BFD_RELOC_ARM_LDRS_SB_G2:
23336 gas_assert (!fixP->fx_done);
23337 if (!seg->use_rela_p)
23338 {
23339 bfd_vma insn;
23340 bfd_vma addend_abs = abs (value);
23341
23342 /* Check that the absolute value of the addend can be
23343 encoded in 8 bits. */
23344 if (addend_abs >= 0x100)
23345 as_bad_where (fixP->fx_file, fixP->fx_line,
23346 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
23347 (unsigned long) addend_abs);
23348
23349 /* Extract the instruction. */
23350 insn = md_chars_to_number (buf, INSN_SIZE);
23351
23352 /* If the addend is negative, clear bit 23 of the instruction.
23353 Otherwise set it. */
23354 if (value < 0)
23355 insn &= ~(1 << 23);
23356 else
23357 insn |= 1 << 23;
23358
23359 /* Place the first four bits of the absolute value of the addend
23360 into the first 4 bits of the instruction, and the remaining
23361 four into bits 8 .. 11. */
23362 insn &= 0xfffff0f0;
23363 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
23364
23365 /* Update the instruction. */
23366 md_number_to_chars (buf, insn, INSN_SIZE);
23367 }
23368 break;
23369
23370 case BFD_RELOC_ARM_LDC_PC_G0:
23371 case BFD_RELOC_ARM_LDC_PC_G1:
23372 case BFD_RELOC_ARM_LDC_PC_G2:
23373 case BFD_RELOC_ARM_LDC_SB_G0:
23374 case BFD_RELOC_ARM_LDC_SB_G1:
23375 case BFD_RELOC_ARM_LDC_SB_G2:
23376 gas_assert (!fixP->fx_done);
23377 if (!seg->use_rela_p)
23378 {
23379 bfd_vma insn;
23380 bfd_vma addend_abs = abs (value);
23381
23382 /* Check that the absolute value of the addend is a multiple of
23383 four and, when divided by four, fits in 8 bits. */
23384 if (addend_abs & 0x3)
23385 as_bad_where (fixP->fx_file, fixP->fx_line,
23386 _("bad offset 0x%08lX (must be word-aligned)"),
23387 (unsigned long) addend_abs);
23388
23389 if ((addend_abs >> 2) > 0xff)
23390 as_bad_where (fixP->fx_file, fixP->fx_line,
23391 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
23392 (unsigned long) addend_abs);
23393
23394 /* Extract the instruction. */
23395 insn = md_chars_to_number (buf, INSN_SIZE);
23396
23397 /* If the addend is negative, clear bit 23 of the instruction.
23398 Otherwise set it. */
23399 if (value < 0)
23400 insn &= ~(1 << 23);
23401 else
23402 insn |= 1 << 23;
23403
23404 /* Place the addend (divided by four) into the first eight
23405 bits of the instruction. */
23406 insn &= 0xfffffff0;
23407 insn |= addend_abs >> 2;
23408
23409 /* Update the instruction. */
23410 md_number_to_chars (buf, insn, INSN_SIZE);
23411 }
23412 break;
23413
23414 case BFD_RELOC_ARM_V4BX:
23415 /* This will need to go in the object file. */
23416 fixP->fx_done = 0;
23417 break;
23418
23419 case BFD_RELOC_UNUSED:
23420 default:
23421 as_bad_where (fixP->fx_file, fixP->fx_line,
23422 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
23423 }
23424 }
23425
23426 /* Translate internal representation of relocation info to BFD target
23427 format. */
23428
23429 arelent *
23430 tc_gen_reloc (asection *section, fixS *fixp)
23431 {
23432 arelent * reloc;
23433 bfd_reloc_code_real_type code;
23434
23435 reloc = (arelent *) xmalloc (sizeof (arelent));
23436
23437 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
23438 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
23439 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
23440
23441 if (fixp->fx_pcrel)
23442 {
23443 if (section->use_rela_p)
23444 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
23445 else
23446 fixp->fx_offset = reloc->address;
23447 }
23448 reloc->addend = fixp->fx_offset;
23449
23450 switch (fixp->fx_r_type)
23451 {
23452 case BFD_RELOC_8:
23453 if (fixp->fx_pcrel)
23454 {
23455 code = BFD_RELOC_8_PCREL;
23456 break;
23457 }
23458
23459 case BFD_RELOC_16:
23460 if (fixp->fx_pcrel)
23461 {
23462 code = BFD_RELOC_16_PCREL;
23463 break;
23464 }
23465
23466 case BFD_RELOC_32:
23467 if (fixp->fx_pcrel)
23468 {
23469 code = BFD_RELOC_32_PCREL;
23470 break;
23471 }
23472
23473 case BFD_RELOC_ARM_MOVW:
23474 if (fixp->fx_pcrel)
23475 {
23476 code = BFD_RELOC_ARM_MOVW_PCREL;
23477 break;
23478 }
23479
23480 case BFD_RELOC_ARM_MOVT:
23481 if (fixp->fx_pcrel)
23482 {
23483 code = BFD_RELOC_ARM_MOVT_PCREL;
23484 break;
23485 }
23486
23487 case BFD_RELOC_ARM_THUMB_MOVW:
23488 if (fixp->fx_pcrel)
23489 {
23490 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
23491 break;
23492 }
23493
23494 case BFD_RELOC_ARM_THUMB_MOVT:
23495 if (fixp->fx_pcrel)
23496 {
23497 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
23498 break;
23499 }
23500
23501 case BFD_RELOC_NONE:
23502 case BFD_RELOC_ARM_PCREL_BRANCH:
23503 case BFD_RELOC_ARM_PCREL_BLX:
23504 case BFD_RELOC_RVA:
23505 case BFD_RELOC_THUMB_PCREL_BRANCH7:
23506 case BFD_RELOC_THUMB_PCREL_BRANCH9:
23507 case BFD_RELOC_THUMB_PCREL_BRANCH12:
23508 case BFD_RELOC_THUMB_PCREL_BRANCH20:
23509 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23510 case BFD_RELOC_THUMB_PCREL_BRANCH25:
23511 case BFD_RELOC_VTABLE_ENTRY:
23512 case BFD_RELOC_VTABLE_INHERIT:
23513 #ifdef TE_PE
23514 case BFD_RELOC_32_SECREL:
23515 #endif
23516 code = fixp->fx_r_type;
23517 break;
23518
23519 case BFD_RELOC_THUMB_PCREL_BLX:
23520 #ifdef OBJ_ELF
23521 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
23522 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
23523 else
23524 #endif
23525 code = BFD_RELOC_THUMB_PCREL_BLX;
23526 break;
23527
23528 case BFD_RELOC_ARM_LITERAL:
23529 case BFD_RELOC_ARM_HWLITERAL:
23530 /* If this is called then the a literal has
23531 been referenced across a section boundary. */
23532 as_bad_where (fixp->fx_file, fixp->fx_line,
23533 _("literal referenced across section boundary"));
23534 return NULL;
23535
23536 #ifdef OBJ_ELF
23537 case BFD_RELOC_ARM_TLS_CALL:
23538 case BFD_RELOC_ARM_THM_TLS_CALL:
23539 case BFD_RELOC_ARM_TLS_DESCSEQ:
23540 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
23541 case BFD_RELOC_ARM_GOT32:
23542 case BFD_RELOC_ARM_GOTOFF:
23543 case BFD_RELOC_ARM_GOT_PREL:
23544 case BFD_RELOC_ARM_PLT32:
23545 case BFD_RELOC_ARM_TARGET1:
23546 case BFD_RELOC_ARM_ROSEGREL32:
23547 case BFD_RELOC_ARM_SBREL32:
23548 case BFD_RELOC_ARM_PREL31:
23549 case BFD_RELOC_ARM_TARGET2:
23550 case BFD_RELOC_ARM_TLS_LDO32:
23551 case BFD_RELOC_ARM_PCREL_CALL:
23552 case BFD_RELOC_ARM_PCREL_JUMP:
23553 case BFD_RELOC_ARM_ALU_PC_G0_NC:
23554 case BFD_RELOC_ARM_ALU_PC_G0:
23555 case BFD_RELOC_ARM_ALU_PC_G1_NC:
23556 case BFD_RELOC_ARM_ALU_PC_G1:
23557 case BFD_RELOC_ARM_ALU_PC_G2:
23558 case BFD_RELOC_ARM_LDR_PC_G0:
23559 case BFD_RELOC_ARM_LDR_PC_G1:
23560 case BFD_RELOC_ARM_LDR_PC_G2:
23561 case BFD_RELOC_ARM_LDRS_PC_G0:
23562 case BFD_RELOC_ARM_LDRS_PC_G1:
23563 case BFD_RELOC_ARM_LDRS_PC_G2:
23564 case BFD_RELOC_ARM_LDC_PC_G0:
23565 case BFD_RELOC_ARM_LDC_PC_G1:
23566 case BFD_RELOC_ARM_LDC_PC_G2:
23567 case BFD_RELOC_ARM_ALU_SB_G0_NC:
23568 case BFD_RELOC_ARM_ALU_SB_G0:
23569 case BFD_RELOC_ARM_ALU_SB_G1_NC:
23570 case BFD_RELOC_ARM_ALU_SB_G1:
23571 case BFD_RELOC_ARM_ALU_SB_G2:
23572 case BFD_RELOC_ARM_LDR_SB_G0:
23573 case BFD_RELOC_ARM_LDR_SB_G1:
23574 case BFD_RELOC_ARM_LDR_SB_G2:
23575 case BFD_RELOC_ARM_LDRS_SB_G0:
23576 case BFD_RELOC_ARM_LDRS_SB_G1:
23577 case BFD_RELOC_ARM_LDRS_SB_G2:
23578 case BFD_RELOC_ARM_LDC_SB_G0:
23579 case BFD_RELOC_ARM_LDC_SB_G1:
23580 case BFD_RELOC_ARM_LDC_SB_G2:
23581 case BFD_RELOC_ARM_V4BX:
23582 code = fixp->fx_r_type;
23583 break;
23584
23585 case BFD_RELOC_ARM_TLS_GOTDESC:
23586 case BFD_RELOC_ARM_TLS_GD32:
23587 case BFD_RELOC_ARM_TLS_LE32:
23588 case BFD_RELOC_ARM_TLS_IE32:
23589 case BFD_RELOC_ARM_TLS_LDM32:
23590 /* BFD will include the symbol's address in the addend.
23591 But we don't want that, so subtract it out again here. */
23592 if (!S_IS_COMMON (fixp->fx_addsy))
23593 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
23594 code = fixp->fx_r_type;
23595 break;
23596 #endif
23597
23598 case BFD_RELOC_ARM_IMMEDIATE:
23599 as_bad_where (fixp->fx_file, fixp->fx_line,
23600 _("internal relocation (type: IMMEDIATE) not fixed up"));
23601 return NULL;
23602
23603 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23604 as_bad_where (fixp->fx_file, fixp->fx_line,
23605 _("ADRL used for a symbol not defined in the same file"));
23606 return NULL;
23607
23608 case BFD_RELOC_ARM_OFFSET_IMM:
23609 if (section->use_rela_p)
23610 {
23611 code = fixp->fx_r_type;
23612 break;
23613 }
23614
23615 if (fixp->fx_addsy != NULL
23616 && !S_IS_DEFINED (fixp->fx_addsy)
23617 && S_IS_LOCAL (fixp->fx_addsy))
23618 {
23619 as_bad_where (fixp->fx_file, fixp->fx_line,
23620 _("undefined local label `%s'"),
23621 S_GET_NAME (fixp->fx_addsy));
23622 return NULL;
23623 }
23624
23625 as_bad_where (fixp->fx_file, fixp->fx_line,
23626 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
23627 return NULL;
23628
23629 default:
23630 {
23631 char * type;
23632
23633 switch (fixp->fx_r_type)
23634 {
23635 case BFD_RELOC_NONE: type = "NONE"; break;
23636 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
23637 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
23638 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
23639 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
23640 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
23641 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
23642 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
23643 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
23644 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
23645 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
23646 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
23647 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
23648 default: type = _("<unknown>"); break;
23649 }
23650 as_bad_where (fixp->fx_file, fixp->fx_line,
23651 _("cannot represent %s relocation in this object file format"),
23652 type);
23653 return NULL;
23654 }
23655 }
23656
23657 #ifdef OBJ_ELF
23658 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
23659 && GOT_symbol
23660 && fixp->fx_addsy == GOT_symbol)
23661 {
23662 code = BFD_RELOC_ARM_GOTPC;
23663 reloc->addend = fixp->fx_offset = reloc->address;
23664 }
23665 #endif
23666
23667 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
23668
23669 if (reloc->howto == NULL)
23670 {
23671 as_bad_where (fixp->fx_file, fixp->fx_line,
23672 _("cannot represent %s relocation in this object file format"),
23673 bfd_get_reloc_code_name (code));
23674 return NULL;
23675 }
23676
23677 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
23678 vtable entry to be used in the relocation's section offset. */
23679 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
23680 reloc->address = fixp->fx_offset;
23681
23682 return reloc;
23683 }
23684
23685 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
23686
23687 void
23688 cons_fix_new_arm (fragS * frag,
23689 int where,
23690 int size,
23691 expressionS * exp,
23692 bfd_reloc_code_real_type reloc)
23693 {
23694 int pcrel = 0;
23695
23696 /* Pick a reloc.
23697 FIXME: @@ Should look at CPU word size. */
23698 switch (size)
23699 {
23700 case 1:
23701 reloc = BFD_RELOC_8;
23702 break;
23703 case 2:
23704 reloc = BFD_RELOC_16;
23705 break;
23706 case 4:
23707 default:
23708 reloc = BFD_RELOC_32;
23709 break;
23710 case 8:
23711 reloc = BFD_RELOC_64;
23712 break;
23713 }
23714
23715 #ifdef TE_PE
23716 if (exp->X_op == O_secrel)
23717 {
23718 exp->X_op = O_symbol;
23719 reloc = BFD_RELOC_32_SECREL;
23720 }
23721 #endif
23722
23723 fix_new_exp (frag, where, size, exp, pcrel, reloc);
23724 }
23725
23726 #if defined (OBJ_COFF)
23727 void
23728 arm_validate_fix (fixS * fixP)
23729 {
23730 /* If the destination of the branch is a defined symbol which does not have
23731 the THUMB_FUNC attribute, then we must be calling a function which has
23732 the (interfacearm) attribute. We look for the Thumb entry point to that
23733 function and change the branch to refer to that function instead. */
23734 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
23735 && fixP->fx_addsy != NULL
23736 && S_IS_DEFINED (fixP->fx_addsy)
23737 && ! THUMB_IS_FUNC (fixP->fx_addsy))
23738 {
23739 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
23740 }
23741 }
23742 #endif
23743
23744
23745 int
23746 arm_force_relocation (struct fix * fixp)
23747 {
23748 #if defined (OBJ_COFF) && defined (TE_PE)
23749 if (fixp->fx_r_type == BFD_RELOC_RVA)
23750 return 1;
23751 #endif
23752
23753 /* In case we have a call or a branch to a function in ARM ISA mode from
23754 a thumb function or vice-versa force the relocation. These relocations
23755 are cleared off for some cores that might have blx and simple transformations
23756 are possible. */
23757
23758 #ifdef OBJ_ELF
23759 switch (fixp->fx_r_type)
23760 {
23761 case BFD_RELOC_ARM_PCREL_JUMP:
23762 case BFD_RELOC_ARM_PCREL_CALL:
23763 case BFD_RELOC_THUMB_PCREL_BLX:
23764 if (THUMB_IS_FUNC (fixp->fx_addsy))
23765 return 1;
23766 break;
23767
23768 case BFD_RELOC_ARM_PCREL_BLX:
23769 case BFD_RELOC_THUMB_PCREL_BRANCH25:
23770 case BFD_RELOC_THUMB_PCREL_BRANCH20:
23771 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23772 if (ARM_IS_FUNC (fixp->fx_addsy))
23773 return 1;
23774 break;
23775
23776 default:
23777 break;
23778 }
23779 #endif
23780
23781 /* Resolve these relocations even if the symbol is extern or weak.
23782 Technically this is probably wrong due to symbol preemption.
23783 In practice these relocations do not have enough range to be useful
23784 at dynamic link time, and some code (e.g. in the Linux kernel)
23785 expects these references to be resolved. */
23786 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
23787 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
23788 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
23789 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
23790 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23791 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
23792 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
23793 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
23794 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23795 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
23796 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
23797 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
23798 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
23799 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
23800 return 0;
23801
23802 /* Always leave these relocations for the linker. */
23803 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
23804 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
23805 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
23806 return 1;
23807
23808 /* Always generate relocations against function symbols. */
23809 if (fixp->fx_r_type == BFD_RELOC_32
23810 && fixp->fx_addsy
23811 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
23812 return 1;
23813
23814 return generic_force_reloc (fixp);
23815 }
23816
23817 #if defined (OBJ_ELF) || defined (OBJ_COFF)
23818 /* Relocations against function names must be left unadjusted,
23819 so that the linker can use this information to generate interworking
23820 stubs. The MIPS version of this function
23821 also prevents relocations that are mips-16 specific, but I do not
23822 know why it does this.
23823
23824 FIXME:
23825 There is one other problem that ought to be addressed here, but
23826 which currently is not: Taking the address of a label (rather
23827 than a function) and then later jumping to that address. Such
23828 addresses also ought to have their bottom bit set (assuming that
23829 they reside in Thumb code), but at the moment they will not. */
23830
23831 bfd_boolean
23832 arm_fix_adjustable (fixS * fixP)
23833 {
23834 if (fixP->fx_addsy == NULL)
23835 return 1;
23836
23837 /* Preserve relocations against symbols with function type. */
23838 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
23839 return FALSE;
23840
23841 if (THUMB_IS_FUNC (fixP->fx_addsy)
23842 && fixP->fx_subsy == NULL)
23843 return FALSE;
23844
23845 /* We need the symbol name for the VTABLE entries. */
23846 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
23847 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
23848 return FALSE;
23849
23850 /* Don't allow symbols to be discarded on GOT related relocs. */
23851 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
23852 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
23853 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
23854 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
23855 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
23856 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
23857 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
23858 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
23859 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
23860 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
23861 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
23862 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
23863 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
23864 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
23865 return FALSE;
23866
23867 /* Similarly for group relocations. */
23868 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
23869 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
23870 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
23871 return FALSE;
23872
23873 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
23874 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
23875 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
23876 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
23877 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
23878 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
23879 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
23880 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
23881 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
23882 return FALSE;
23883
23884 return TRUE;
23885 }
23886 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
23887
23888 #ifdef OBJ_ELF
23889
23890 const char *
23891 elf32_arm_target_format (void)
23892 {
23893 #ifdef TE_SYMBIAN
23894 return (target_big_endian
23895 ? "elf32-bigarm-symbian"
23896 : "elf32-littlearm-symbian");
23897 #elif defined (TE_VXWORKS)
23898 return (target_big_endian
23899 ? "elf32-bigarm-vxworks"
23900 : "elf32-littlearm-vxworks");
23901 #elif defined (TE_NACL)
23902 return (target_big_endian
23903 ? "elf32-bigarm-nacl"
23904 : "elf32-littlearm-nacl");
23905 #else
23906 if (target_big_endian)
23907 return "elf32-bigarm";
23908 else
23909 return "elf32-littlearm";
23910 #endif
23911 }
23912
23913 void
23914 armelf_frob_symbol (symbolS * symp,
23915 int * puntp)
23916 {
23917 elf_frob_symbol (symp, puntp);
23918 }
23919 #endif
23920
23921 /* MD interface: Finalization. */
23922
23923 void
23924 arm_cleanup (void)
23925 {
23926 literal_pool * pool;
23927
23928 /* Ensure that all the IT blocks are properly closed. */
23929 check_it_blocks_finished ();
23930
23931 for (pool = list_of_pools; pool; pool = pool->next)
23932 {
23933 /* Put it at the end of the relevant section. */
23934 subseg_set (pool->section, pool->sub_section);
23935 #ifdef OBJ_ELF
23936 arm_elf_change_section ();
23937 #endif
23938 s_ltorg (0);
23939 }
23940 }
23941
23942 #ifdef OBJ_ELF
23943 /* Remove any excess mapping symbols generated for alignment frags in
23944 SEC. We may have created a mapping symbol before a zero byte
23945 alignment; remove it if there's a mapping symbol after the
23946 alignment. */
23947 static void
23948 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
23949 void *dummy ATTRIBUTE_UNUSED)
23950 {
23951 segment_info_type *seginfo = seg_info (sec);
23952 fragS *fragp;
23953
23954 if (seginfo == NULL || seginfo->frchainP == NULL)
23955 return;
23956
23957 for (fragp = seginfo->frchainP->frch_root;
23958 fragp != NULL;
23959 fragp = fragp->fr_next)
23960 {
23961 symbolS *sym = fragp->tc_frag_data.last_map;
23962 fragS *next = fragp->fr_next;
23963
23964 /* Variable-sized frags have been converted to fixed size by
23965 this point. But if this was variable-sized to start with,
23966 there will be a fixed-size frag after it. So don't handle
23967 next == NULL. */
23968 if (sym == NULL || next == NULL)
23969 continue;
23970
23971 if (S_GET_VALUE (sym) < next->fr_address)
23972 /* Not at the end of this frag. */
23973 continue;
23974 know (S_GET_VALUE (sym) == next->fr_address);
23975
23976 do
23977 {
23978 if (next->tc_frag_data.first_map != NULL)
23979 {
23980 /* Next frag starts with a mapping symbol. Discard this
23981 one. */
23982 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
23983 break;
23984 }
23985
23986 if (next->fr_next == NULL)
23987 {
23988 /* This mapping symbol is at the end of the section. Discard
23989 it. */
23990 know (next->fr_fix == 0 && next->fr_var == 0);
23991 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
23992 break;
23993 }
23994
23995 /* As long as we have empty frags without any mapping symbols,
23996 keep looking. */
23997 /* If the next frag is non-empty and does not start with a
23998 mapping symbol, then this mapping symbol is required. */
23999 if (next->fr_address != next->fr_next->fr_address)
24000 break;
24001
24002 next = next->fr_next;
24003 }
24004 while (next != NULL);
24005 }
24006 }
24007 #endif
24008
24009 /* Adjust the symbol table. This marks Thumb symbols as distinct from
24010 ARM ones. */
24011
24012 void
24013 arm_adjust_symtab (void)
24014 {
24015 #ifdef OBJ_COFF
24016 symbolS * sym;
24017
24018 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
24019 {
24020 if (ARM_IS_THUMB (sym))
24021 {
24022 if (THUMB_IS_FUNC (sym))
24023 {
24024 /* Mark the symbol as a Thumb function. */
24025 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
24026 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
24027 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
24028
24029 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
24030 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
24031 else
24032 as_bad (_("%s: unexpected function type: %d"),
24033 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
24034 }
24035 else switch (S_GET_STORAGE_CLASS (sym))
24036 {
24037 case C_EXT:
24038 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
24039 break;
24040 case C_STAT:
24041 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
24042 break;
24043 case C_LABEL:
24044 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
24045 break;
24046 default:
24047 /* Do nothing. */
24048 break;
24049 }
24050 }
24051
24052 if (ARM_IS_INTERWORK (sym))
24053 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
24054 }
24055 #endif
24056 #ifdef OBJ_ELF
24057 symbolS * sym;
24058 char bind;
24059
24060 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
24061 {
24062 if (ARM_IS_THUMB (sym))
24063 {
24064 elf_symbol_type * elf_sym;
24065
24066 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
24067 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
24068
24069 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
24070 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
24071 {
24072 /* If it's a .thumb_func, declare it as so,
24073 otherwise tag label as .code 16. */
24074 if (THUMB_IS_FUNC (sym))
24075 elf_sym->internal_elf_sym.st_target_internal
24076 = ST_BRANCH_TO_THUMB;
24077 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24078 elf_sym->internal_elf_sym.st_info =
24079 ELF_ST_INFO (bind, STT_ARM_16BIT);
24080 }
24081 }
24082 }
24083
24084 /* Remove any overlapping mapping symbols generated by alignment frags. */
24085 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
24086 /* Now do generic ELF adjustments. */
24087 elf_adjust_symtab ();
24088 #endif
24089 }
24090
24091 /* MD interface: Initialization. */
24092
24093 static void
24094 set_constant_flonums (void)
24095 {
24096 int i;
24097
24098 for (i = 0; i < NUM_FLOAT_VALS; i++)
24099 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
24100 abort ();
24101 }
24102
24103 /* Auto-select Thumb mode if it's the only available instruction set for the
24104 given architecture. */
24105
24106 static void
24107 autoselect_thumb_from_cpu_variant (void)
24108 {
24109 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
24110 opcode_select (16);
24111 }
24112
24113 void
24114 md_begin (void)
24115 {
24116 unsigned mach;
24117 unsigned int i;
24118
24119 if ( (arm_ops_hsh = hash_new ()) == NULL
24120 || (arm_cond_hsh = hash_new ()) == NULL
24121 || (arm_shift_hsh = hash_new ()) == NULL
24122 || (arm_psr_hsh = hash_new ()) == NULL
24123 || (arm_v7m_psr_hsh = hash_new ()) == NULL
24124 || (arm_reg_hsh = hash_new ()) == NULL
24125 || (arm_reloc_hsh = hash_new ()) == NULL
24126 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
24127 as_fatal (_("virtual memory exhausted"));
24128
24129 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
24130 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
24131 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
24132 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
24133 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
24134 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
24135 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
24136 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
24137 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
24138 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
24139 (void *) (v7m_psrs + i));
24140 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
24141 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
24142 for (i = 0;
24143 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
24144 i++)
24145 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
24146 (void *) (barrier_opt_names + i));
24147 #ifdef OBJ_ELF
24148 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
24149 {
24150 struct reloc_entry * entry = reloc_names + i;
24151
24152 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
24153 /* This makes encode_branch() use the EABI versions of this relocation. */
24154 entry->reloc = BFD_RELOC_UNUSED;
24155
24156 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
24157 }
24158 #endif
24159
24160 set_constant_flonums ();
24161
24162 /* Set the cpu variant based on the command-line options. We prefer
24163 -mcpu= over -march= if both are set (as for GCC); and we prefer
24164 -mfpu= over any other way of setting the floating point unit.
24165 Use of legacy options with new options are faulted. */
24166 if (legacy_cpu)
24167 {
24168 if (mcpu_cpu_opt || march_cpu_opt)
24169 as_bad (_("use of old and new-style options to set CPU type"));
24170
24171 mcpu_cpu_opt = legacy_cpu;
24172 }
24173 else if (!mcpu_cpu_opt)
24174 mcpu_cpu_opt = march_cpu_opt;
24175
24176 if (legacy_fpu)
24177 {
24178 if (mfpu_opt)
24179 as_bad (_("use of old and new-style options to set FPU type"));
24180
24181 mfpu_opt = legacy_fpu;
24182 }
24183 else if (!mfpu_opt)
24184 {
24185 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
24186 || defined (TE_NetBSD) || defined (TE_VXWORKS))
24187 /* Some environments specify a default FPU. If they don't, infer it
24188 from the processor. */
24189 if (mcpu_fpu_opt)
24190 mfpu_opt = mcpu_fpu_opt;
24191 else
24192 mfpu_opt = march_fpu_opt;
24193 #else
24194 mfpu_opt = &fpu_default;
24195 #endif
24196 }
24197
24198 if (!mfpu_opt)
24199 {
24200 if (mcpu_cpu_opt != NULL)
24201 mfpu_opt = &fpu_default;
24202 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
24203 mfpu_opt = &fpu_arch_vfp_v2;
24204 else
24205 mfpu_opt = &fpu_arch_fpa;
24206 }
24207
24208 #ifdef CPU_DEFAULT
24209 if (!mcpu_cpu_opt)
24210 {
24211 mcpu_cpu_opt = &cpu_default;
24212 selected_cpu = cpu_default;
24213 }
24214 else if (no_cpu_selected ())
24215 selected_cpu = cpu_default;
24216 #else
24217 if (mcpu_cpu_opt)
24218 selected_cpu = *mcpu_cpu_opt;
24219 else
24220 mcpu_cpu_opt = &arm_arch_any;
24221 #endif
24222
24223 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24224
24225 autoselect_thumb_from_cpu_variant ();
24226
24227 arm_arch_used = thumb_arch_used = arm_arch_none;
24228
24229 #if defined OBJ_COFF || defined OBJ_ELF
24230 {
24231 unsigned int flags = 0;
24232
24233 #if defined OBJ_ELF
24234 flags = meabi_flags;
24235
24236 switch (meabi_flags)
24237 {
24238 case EF_ARM_EABI_UNKNOWN:
24239 #endif
24240 /* Set the flags in the private structure. */
24241 if (uses_apcs_26) flags |= F_APCS26;
24242 if (support_interwork) flags |= F_INTERWORK;
24243 if (uses_apcs_float) flags |= F_APCS_FLOAT;
24244 if (pic_code) flags |= F_PIC;
24245 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
24246 flags |= F_SOFT_FLOAT;
24247
24248 switch (mfloat_abi_opt)
24249 {
24250 case ARM_FLOAT_ABI_SOFT:
24251 case ARM_FLOAT_ABI_SOFTFP:
24252 flags |= F_SOFT_FLOAT;
24253 break;
24254
24255 case ARM_FLOAT_ABI_HARD:
24256 if (flags & F_SOFT_FLOAT)
24257 as_bad (_("hard-float conflicts with specified fpu"));
24258 break;
24259 }
24260
24261 /* Using pure-endian doubles (even if soft-float). */
24262 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
24263 flags |= F_VFP_FLOAT;
24264
24265 #if defined OBJ_ELF
24266 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
24267 flags |= EF_ARM_MAVERICK_FLOAT;
24268 break;
24269
24270 case EF_ARM_EABI_VER4:
24271 case EF_ARM_EABI_VER5:
24272 /* No additional flags to set. */
24273 break;
24274
24275 default:
24276 abort ();
24277 }
24278 #endif
24279 bfd_set_private_flags (stdoutput, flags);
24280
24281 /* We have run out flags in the COFF header to encode the
24282 status of ATPCS support, so instead we create a dummy,
24283 empty, debug section called .arm.atpcs. */
24284 if (atpcs)
24285 {
24286 asection * sec;
24287
24288 sec = bfd_make_section (stdoutput, ".arm.atpcs");
24289
24290 if (sec != NULL)
24291 {
24292 bfd_set_section_flags
24293 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
24294 bfd_set_section_size (stdoutput, sec, 0);
24295 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
24296 }
24297 }
24298 }
24299 #endif
24300
24301 /* Record the CPU type as well. */
24302 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
24303 mach = bfd_mach_arm_iWMMXt2;
24304 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
24305 mach = bfd_mach_arm_iWMMXt;
24306 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
24307 mach = bfd_mach_arm_XScale;
24308 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
24309 mach = bfd_mach_arm_ep9312;
24310 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
24311 mach = bfd_mach_arm_5TE;
24312 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
24313 {
24314 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
24315 mach = bfd_mach_arm_5T;
24316 else
24317 mach = bfd_mach_arm_5;
24318 }
24319 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
24320 {
24321 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
24322 mach = bfd_mach_arm_4T;
24323 else
24324 mach = bfd_mach_arm_4;
24325 }
24326 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
24327 mach = bfd_mach_arm_3M;
24328 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
24329 mach = bfd_mach_arm_3;
24330 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
24331 mach = bfd_mach_arm_2a;
24332 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
24333 mach = bfd_mach_arm_2;
24334 else
24335 mach = bfd_mach_arm_unknown;
24336
24337 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
24338 }
24339
24340 /* Command line processing. */
24341
24342 /* md_parse_option
24343 Invocation line includes a switch not recognized by the base assembler.
24344 See if it's a processor-specific option.
24345
24346 This routine is somewhat complicated by the need for backwards
24347 compatibility (since older releases of gcc can't be changed).
24348 The new options try to make the interface as compatible as
24349 possible with GCC.
24350
24351 New options (supported) are:
24352
24353 -mcpu=<cpu name> Assemble for selected processor
24354 -march=<architecture name> Assemble for selected architecture
24355 -mfpu=<fpu architecture> Assemble for selected FPU.
24356 -EB/-mbig-endian Big-endian
24357 -EL/-mlittle-endian Little-endian
24358 -k Generate PIC code
24359 -mthumb Start in Thumb mode
24360 -mthumb-interwork Code supports ARM/Thumb interworking
24361
24362 -m[no-]warn-deprecated Warn about deprecated features
24363 -m[no-]warn-syms Warn when symbols match instructions
24364
24365 For now we will also provide support for:
24366
24367 -mapcs-32 32-bit Program counter
24368 -mapcs-26 26-bit Program counter
24369 -macps-float Floats passed in FP registers
24370 -mapcs-reentrant Reentrant code
24371 -matpcs
24372 (sometime these will probably be replaced with -mapcs=<list of options>
24373 and -matpcs=<list of options>)
24374
24375 The remaining options are only supported for back-wards compatibility.
24376 Cpu variants, the arm part is optional:
24377 -m[arm]1 Currently not supported.
24378 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
24379 -m[arm]3 Arm 3 processor
24380 -m[arm]6[xx], Arm 6 processors
24381 -m[arm]7[xx][t][[d]m] Arm 7 processors
24382 -m[arm]8[10] Arm 8 processors
24383 -m[arm]9[20][tdmi] Arm 9 processors
24384 -mstrongarm[110[0]] StrongARM processors
24385 -mxscale XScale processors
24386 -m[arm]v[2345[t[e]]] Arm architectures
24387 -mall All (except the ARM1)
24388 FP variants:
24389 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
24390 -mfpe-old (No float load/store multiples)
24391 -mvfpxd VFP Single precision
24392 -mvfp All VFP
24393 -mno-fpu Disable all floating point instructions
24394
24395 The following CPU names are recognized:
24396 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
24397 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
24398 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
24399 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
24400 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
24401 arm10t arm10e, arm1020t, arm1020e, arm10200e,
24402 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
24403
24404 */
24405
24406 const char * md_shortopts = "m:k";
24407
24408 #ifdef ARM_BI_ENDIAN
24409 #define OPTION_EB (OPTION_MD_BASE + 0)
24410 #define OPTION_EL (OPTION_MD_BASE + 1)
24411 #else
24412 #if TARGET_BYTES_BIG_ENDIAN
24413 #define OPTION_EB (OPTION_MD_BASE + 0)
24414 #else
24415 #define OPTION_EL (OPTION_MD_BASE + 1)
24416 #endif
24417 #endif
24418 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
24419
24420 struct option md_longopts[] =
24421 {
24422 #ifdef OPTION_EB
24423 {"EB", no_argument, NULL, OPTION_EB},
24424 #endif
24425 #ifdef OPTION_EL
24426 {"EL", no_argument, NULL, OPTION_EL},
24427 #endif
24428 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
24429 {NULL, no_argument, NULL, 0}
24430 };
24431
24432
24433 size_t md_longopts_size = sizeof (md_longopts);
24434
24435 struct arm_option_table
24436 {
24437 char *option; /* Option name to match. */
24438 char *help; /* Help information. */
24439 int *var; /* Variable to change. */
24440 int value; /* What to change it to. */
24441 char *deprecated; /* If non-null, print this message. */
24442 };
24443
24444 struct arm_option_table arm_opts[] =
24445 {
24446 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
24447 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
24448 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
24449 &support_interwork, 1, NULL},
24450 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
24451 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
24452 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
24453 1, NULL},
24454 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
24455 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
24456 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
24457 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
24458 NULL},
24459
24460 /* These are recognized by the assembler, but have no affect on code. */
24461 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
24462 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
24463
24464 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
24465 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
24466 &warn_on_deprecated, 0, NULL},
24467 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
24468 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
24469 {NULL, NULL, NULL, 0, NULL}
24470 };
24471
24472 struct arm_legacy_option_table
24473 {
24474 char *option; /* Option name to match. */
24475 const arm_feature_set **var; /* Variable to change. */
24476 const arm_feature_set value; /* What to change it to. */
24477 char *deprecated; /* If non-null, print this message. */
24478 };
24479
24480 const struct arm_legacy_option_table arm_legacy_opts[] =
24481 {
24482 /* DON'T add any new processors to this list -- we want the whole list
24483 to go away... Add them to the processors table instead. */
24484 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
24485 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
24486 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
24487 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
24488 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
24489 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
24490 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
24491 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
24492 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
24493 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
24494 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
24495 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
24496 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
24497 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
24498 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
24499 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
24500 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
24501 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
24502 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
24503 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
24504 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
24505 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
24506 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
24507 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
24508 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
24509 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
24510 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
24511 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
24512 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
24513 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
24514 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
24515 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
24516 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
24517 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
24518 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
24519 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
24520 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
24521 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
24522 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
24523 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
24524 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
24525 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
24526 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
24527 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
24528 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
24529 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
24530 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
24531 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
24532 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
24533 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
24534 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
24535 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
24536 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
24537 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
24538 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
24539 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
24540 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
24541 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
24542 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
24543 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
24544 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
24545 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
24546 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
24547 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
24548 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
24549 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
24550 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
24551 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
24552 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
24553 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
24554 N_("use -mcpu=strongarm110")},
24555 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
24556 N_("use -mcpu=strongarm1100")},
24557 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
24558 N_("use -mcpu=strongarm1110")},
24559 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
24560 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
24561 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
24562
24563 /* Architecture variants -- don't add any more to this list either. */
24564 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
24565 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
24566 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
24567 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
24568 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
24569 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
24570 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
24571 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
24572 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
24573 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
24574 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
24575 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
24576 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
24577 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
24578 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
24579 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
24580 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
24581 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
24582
24583 /* Floating point variants -- don't add any more to this list either. */
24584 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
24585 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
24586 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
24587 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
24588 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
24589
24590 {NULL, NULL, ARM_ARCH_NONE, NULL}
24591 };
24592
24593 struct arm_cpu_option_table
24594 {
24595 char *name;
24596 size_t name_len;
24597 const arm_feature_set value;
24598 /* For some CPUs we assume an FPU unless the user explicitly sets
24599 -mfpu=... */
24600 const arm_feature_set default_fpu;
24601 /* The canonical name of the CPU, or NULL to use NAME converted to upper
24602 case. */
24603 const char *canonical_name;
24604 };
24605
24606 /* This list should, at a minimum, contain all the cpu names
24607 recognized by GCC. */
24608 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
24609 static const struct arm_cpu_option_table arm_cpus[] =
24610 {
24611 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
24612 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
24613 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
24614 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
24615 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
24616 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24617 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24618 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24619 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24620 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24621 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24622 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
24623 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24624 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
24625 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24626 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
24627 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24628 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24629 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24630 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24631 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24632 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24633 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24634 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24635 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24636 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24637 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24638 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
24639 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24640 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24641 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24642 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24643 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24644 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24645 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24646 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24647 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24648 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24649 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24650 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
24651 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24652 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24653 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24654 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
24655 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24656 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
24657 /* For V5 or later processors we default to using VFP; but the user
24658 should really set the FPU type explicitly. */
24659 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
24660 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24661 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
24662 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
24663 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
24664 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
24665 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
24666 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24667 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
24668 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
24669 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24670 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24671 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
24672 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
24673 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24674 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
24675 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
24676 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24677 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24678 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
24679 "ARM1026EJ-S"),
24680 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
24681 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24682 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24683 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24684 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24685 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
24686 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
24687 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
24688 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
24689 "ARM1136JF-S"),
24690 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
24691 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
24692 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
24693 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
24694 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
24695 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6KZ, FPU_NONE, NULL),
24696 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6KZ, FPU_ARCH_VFP_V2, NULL),
24697 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
24698 FPU_NONE, "Cortex-A5"),
24699 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24700 "Cortex-A7"),
24701 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
24702 ARM_FEATURE_COPROC (FPU_VFP_V3
24703 | FPU_NEON_EXT_V1),
24704 "Cortex-A8"),
24705 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
24706 ARM_FEATURE_COPROC (FPU_VFP_V3
24707 | FPU_NEON_EXT_V1),
24708 "Cortex-A9"),
24709 ARM_CPU_OPT ("cortex-a12", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24710 "Cortex-A12"),
24711 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24712 "Cortex-A15"),
24713 ARM_CPU_OPT ("cortex-a17", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
24714 "Cortex-A17"),
24715 ARM_CPU_OPT ("cortex-a35", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24716 "Cortex-A35"),
24717 ARM_CPU_OPT ("cortex-a53", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24718 "Cortex-A53"),
24719 ARM_CPU_OPT ("cortex-a57", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24720 "Cortex-A57"),
24721 ARM_CPU_OPT ("cortex-a72", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24722 "Cortex-A72"),
24723 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
24724 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
24725 "Cortex-R4F"),
24726 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
24727 FPU_NONE, "Cortex-R5"),
24728 ARM_CPU_OPT ("cortex-r7", ARM_ARCH_V7R_IDIV,
24729 FPU_ARCH_VFP_V3D16,
24730 "Cortex-R7"),
24731 ARM_CPU_OPT ("cortex-m7", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M7"),
24732 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
24733 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
24734 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
24735 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
24736 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
24737 ARM_CPU_OPT ("exynos-m1", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24738 "Samsung " \
24739 "Exynos M1"),
24740 ARM_CPU_OPT ("qdf24xx", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24741 "Qualcomm "
24742 "QDF24XX"),
24743
24744 /* ??? XSCALE is really an architecture. */
24745 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
24746 /* ??? iwmmxt is not a processor. */
24747 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
24748 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
24749 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
24750 /* Maverick */
24751 ARM_CPU_OPT ("ep9312", ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
24752 FPU_ARCH_MAVERICK, "ARM920T"),
24753 /* Marvell processors. */
24754 ARM_CPU_OPT ("marvell-pj4", ARM_FEATURE_CORE_LOW (ARM_AEXT_V7A | ARM_EXT_MP
24755 | ARM_EXT_SEC),
24756 FPU_ARCH_VFP_V3D16, NULL),
24757 ARM_CPU_OPT ("marvell-whitney", ARM_FEATURE_CORE_LOW (ARM_AEXT_V7A | ARM_EXT_MP
24758 | ARM_EXT_SEC),
24759 FPU_ARCH_NEON_VFP_V4, NULL),
24760 /* APM X-Gene family. */
24761 ARM_CPU_OPT ("xgene1", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24762 "APM X-Gene 1"),
24763 ARM_CPU_OPT ("xgene2", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24764 "APM X-Gene 2"),
24765
24766 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
24767 };
24768 #undef ARM_CPU_OPT
24769
24770 struct arm_arch_option_table
24771 {
24772 char *name;
24773 size_t name_len;
24774 const arm_feature_set value;
24775 const arm_feature_set default_fpu;
24776 };
24777
24778 /* This list should, at a minimum, contain all the architecture names
24779 recognized by GCC. */
24780 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
24781 static const struct arm_arch_option_table arm_archs[] =
24782 {
24783 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
24784 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
24785 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
24786 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
24787 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
24788 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
24789 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
24790 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
24791 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
24792 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
24793 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
24794 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
24795 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
24796 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
24797 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
24798 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
24799 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
24800 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
24801 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
24802 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
24803 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
24804 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
24805 kept to preserve existing behaviour. */
24806 ARM_ARCH_OPT ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
24807 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
24808 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
24809 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
24810 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
24811 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
24812 kept to preserve existing behaviour. */
24813 ARM_ARCH_OPT ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
24814 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
24815 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
24816 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
24817 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
24818 /* The official spelling of the ARMv7 profile variants is the dashed form.
24819 Accept the non-dashed form for compatibility with old toolchains. */
24820 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
24821 ARM_ARCH_OPT ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP),
24822 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
24823 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
24824 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
24825 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
24826 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
24827 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
24828 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
24829 ARM_ARCH_OPT ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP),
24830 ARM_ARCH_OPT ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP),
24831 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
24832 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
24833 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
24834 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
24835 };
24836 #undef ARM_ARCH_OPT
24837
24838 /* ISA extensions in the co-processor and main instruction set space. */
24839 struct arm_option_extension_value_table
24840 {
24841 char *name;
24842 size_t name_len;
24843 const arm_feature_set merge_value;
24844 const arm_feature_set clear_value;
24845 const arm_feature_set allowed_archs;
24846 };
24847
24848 /* The following table must be in alphabetical order with a NULL last entry.
24849 */
24850 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, AA }
24851 static const struct arm_option_extension_value_table arm_extensions[] =
24852 {
24853 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
24854 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
24855 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24856 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
24857 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
24858 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
24859 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
24860 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
24861 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
24862 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A | ARM_EXT_V7R)),
24863 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
24864 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ANY),
24865 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
24866 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ANY),
24867 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
24868 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ANY),
24869 ARM_EXT_OPT ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
24870 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
24871 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A | ARM_EXT_V7R)),
24872 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
24873 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
24874 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
24875 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
24876 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
24877 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
24878 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
24879 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
24880 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
24881 ARM_EXT_OPT ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
24882 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
24883 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V7A)),
24884 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
24885 | ARM_EXT_DIV),
24886 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
24887 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
24888 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8,
24889 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
24890 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
24891 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
24892 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ANY),
24893 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE }
24894 };
24895 #undef ARM_EXT_OPT
24896
24897 /* ISA floating-point and Advanced SIMD extensions. */
24898 struct arm_option_fpu_value_table
24899 {
24900 char *name;
24901 const arm_feature_set value;
24902 };
24903
24904 /* This list should, at a minimum, contain all the fpu names
24905 recognized by GCC. */
24906 static const struct arm_option_fpu_value_table arm_fpus[] =
24907 {
24908 {"softfpa", FPU_NONE},
24909 {"fpe", FPU_ARCH_FPE},
24910 {"fpe2", FPU_ARCH_FPE},
24911 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
24912 {"fpa", FPU_ARCH_FPA},
24913 {"fpa10", FPU_ARCH_FPA},
24914 {"fpa11", FPU_ARCH_FPA},
24915 {"arm7500fe", FPU_ARCH_FPA},
24916 {"softvfp", FPU_ARCH_VFP},
24917 {"softvfp+vfp", FPU_ARCH_VFP_V2},
24918 {"vfp", FPU_ARCH_VFP_V2},
24919 {"vfp9", FPU_ARCH_VFP_V2},
24920 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
24921 {"vfp10", FPU_ARCH_VFP_V2},
24922 {"vfp10-r0", FPU_ARCH_VFP_V1},
24923 {"vfpxd", FPU_ARCH_VFP_V1xD},
24924 {"vfpv2", FPU_ARCH_VFP_V2},
24925 {"vfpv3", FPU_ARCH_VFP_V3},
24926 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
24927 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
24928 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
24929 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
24930 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
24931 {"arm1020t", FPU_ARCH_VFP_V1},
24932 {"arm1020e", FPU_ARCH_VFP_V2},
24933 {"arm1136jfs", FPU_ARCH_VFP_V2},
24934 {"arm1136jf-s", FPU_ARCH_VFP_V2},
24935 {"maverick", FPU_ARCH_MAVERICK},
24936 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
24937 {"neon-fp16", FPU_ARCH_NEON_FP16},
24938 {"vfpv4", FPU_ARCH_VFP_V4},
24939 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
24940 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
24941 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
24942 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
24943 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
24944 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
24945 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
24946 {"crypto-neon-fp-armv8",
24947 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
24948 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
24949 {"crypto-neon-fp-armv8.1",
24950 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
24951 {NULL, ARM_ARCH_NONE}
24952 };
24953
24954 struct arm_option_value_table
24955 {
24956 char *name;
24957 long value;
24958 };
24959
24960 static const struct arm_option_value_table arm_float_abis[] =
24961 {
24962 {"hard", ARM_FLOAT_ABI_HARD},
24963 {"softfp", ARM_FLOAT_ABI_SOFTFP},
24964 {"soft", ARM_FLOAT_ABI_SOFT},
24965 {NULL, 0}
24966 };
24967
24968 #ifdef OBJ_ELF
24969 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
24970 static const struct arm_option_value_table arm_eabis[] =
24971 {
24972 {"gnu", EF_ARM_EABI_UNKNOWN},
24973 {"4", EF_ARM_EABI_VER4},
24974 {"5", EF_ARM_EABI_VER5},
24975 {NULL, 0}
24976 };
24977 #endif
24978
24979 struct arm_long_option_table
24980 {
24981 char * option; /* Substring to match. */
24982 char * help; /* Help information. */
24983 int (* func) (char * subopt); /* Function to decode sub-option. */
24984 char * deprecated; /* If non-null, print this message. */
24985 };
24986
24987 static bfd_boolean
24988 arm_parse_extension (char *str, const arm_feature_set **opt_p)
24989 {
24990 arm_feature_set *ext_set = (arm_feature_set *)
24991 xmalloc (sizeof (arm_feature_set));
24992
24993 /* We insist on extensions being specified in alphabetical order, and with
24994 extensions being added before being removed. We achieve this by having
24995 the global ARM_EXTENSIONS table in alphabetical order, and using the
24996 ADDING_VALUE variable to indicate whether we are adding an extension (1)
24997 or removing it (0) and only allowing it to change in the order
24998 -1 -> 1 -> 0. */
24999 const struct arm_option_extension_value_table * opt = NULL;
25000 int adding_value = -1;
25001
25002 /* Copy the feature set, so that we can modify it. */
25003 *ext_set = **opt_p;
25004 *opt_p = ext_set;
25005
25006 while (str != NULL && *str != 0)
25007 {
25008 char *ext;
25009 size_t len;
25010
25011 if (*str != '+')
25012 {
25013 as_bad (_("invalid architectural extension"));
25014 return FALSE;
25015 }
25016
25017 str++;
25018 ext = strchr (str, '+');
25019
25020 if (ext != NULL)
25021 len = ext - str;
25022 else
25023 len = strlen (str);
25024
25025 if (len >= 2 && strncmp (str, "no", 2) == 0)
25026 {
25027 if (adding_value != 0)
25028 {
25029 adding_value = 0;
25030 opt = arm_extensions;
25031 }
25032
25033 len -= 2;
25034 str += 2;
25035 }
25036 else if (len > 0)
25037 {
25038 if (adding_value == -1)
25039 {
25040 adding_value = 1;
25041 opt = arm_extensions;
25042 }
25043 else if (adding_value != 1)
25044 {
25045 as_bad (_("must specify extensions to add before specifying "
25046 "those to remove"));
25047 return FALSE;
25048 }
25049 }
25050
25051 if (len == 0)
25052 {
25053 as_bad (_("missing architectural extension"));
25054 return FALSE;
25055 }
25056
25057 gas_assert (adding_value != -1);
25058 gas_assert (opt != NULL);
25059
25060 /* Scan over the options table trying to find an exact match. */
25061 for (; opt->name != NULL; opt++)
25062 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
25063 {
25064 /* Check we can apply the extension to this architecture. */
25065 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
25066 {
25067 as_bad (_("extension does not apply to the base architecture"));
25068 return FALSE;
25069 }
25070
25071 /* Add or remove the extension. */
25072 if (adding_value)
25073 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
25074 else
25075 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
25076
25077 break;
25078 }
25079
25080 if (opt->name == NULL)
25081 {
25082 /* Did we fail to find an extension because it wasn't specified in
25083 alphabetical order, or because it does not exist? */
25084
25085 for (opt = arm_extensions; opt->name != NULL; opt++)
25086 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
25087 break;
25088
25089 if (opt->name == NULL)
25090 as_bad (_("unknown architectural extension `%s'"), str);
25091 else
25092 as_bad (_("architectural extensions must be specified in "
25093 "alphabetical order"));
25094
25095 return FALSE;
25096 }
25097 else
25098 {
25099 /* We should skip the extension we've just matched the next time
25100 round. */
25101 opt++;
25102 }
25103
25104 str = ext;
25105 };
25106
25107 return TRUE;
25108 }
25109
25110 static bfd_boolean
25111 arm_parse_cpu (char *str)
25112 {
25113 const struct arm_cpu_option_table *opt;
25114 char *ext = strchr (str, '+');
25115 size_t len;
25116
25117 if (ext != NULL)
25118 len = ext - str;
25119 else
25120 len = strlen (str);
25121
25122 if (len == 0)
25123 {
25124 as_bad (_("missing cpu name `%s'"), str);
25125 return FALSE;
25126 }
25127
25128 for (opt = arm_cpus; opt->name != NULL; opt++)
25129 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
25130 {
25131 mcpu_cpu_opt = &opt->value;
25132 mcpu_fpu_opt = &opt->default_fpu;
25133 if (opt->canonical_name)
25134 {
25135 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
25136 strcpy (selected_cpu_name, opt->canonical_name);
25137 }
25138 else
25139 {
25140 size_t i;
25141
25142 if (len >= sizeof selected_cpu_name)
25143 len = (sizeof selected_cpu_name) - 1;
25144
25145 for (i = 0; i < len; i++)
25146 selected_cpu_name[i] = TOUPPER (opt->name[i]);
25147 selected_cpu_name[i] = 0;
25148 }
25149
25150 if (ext != NULL)
25151 return arm_parse_extension (ext, &mcpu_cpu_opt);
25152
25153 return TRUE;
25154 }
25155
25156 as_bad (_("unknown cpu `%s'"), str);
25157 return FALSE;
25158 }
25159
25160 static bfd_boolean
25161 arm_parse_arch (char *str)
25162 {
25163 const struct arm_arch_option_table *opt;
25164 char *ext = strchr (str, '+');
25165 size_t len;
25166
25167 if (ext != NULL)
25168 len = ext - str;
25169 else
25170 len = strlen (str);
25171
25172 if (len == 0)
25173 {
25174 as_bad (_("missing architecture name `%s'"), str);
25175 return FALSE;
25176 }
25177
25178 for (opt = arm_archs; opt->name != NULL; opt++)
25179 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
25180 {
25181 march_cpu_opt = &opt->value;
25182 march_fpu_opt = &opt->default_fpu;
25183 strcpy (selected_cpu_name, opt->name);
25184
25185 if (ext != NULL)
25186 return arm_parse_extension (ext, &march_cpu_opt);
25187
25188 return TRUE;
25189 }
25190
25191 as_bad (_("unknown architecture `%s'\n"), str);
25192 return FALSE;
25193 }
25194
25195 static bfd_boolean
25196 arm_parse_fpu (char * str)
25197 {
25198 const struct arm_option_fpu_value_table * opt;
25199
25200 for (opt = arm_fpus; opt->name != NULL; opt++)
25201 if (streq (opt->name, str))
25202 {
25203 mfpu_opt = &opt->value;
25204 return TRUE;
25205 }
25206
25207 as_bad (_("unknown floating point format `%s'\n"), str);
25208 return FALSE;
25209 }
25210
25211 static bfd_boolean
25212 arm_parse_float_abi (char * str)
25213 {
25214 const struct arm_option_value_table * opt;
25215
25216 for (opt = arm_float_abis; opt->name != NULL; opt++)
25217 if (streq (opt->name, str))
25218 {
25219 mfloat_abi_opt = opt->value;
25220 return TRUE;
25221 }
25222
25223 as_bad (_("unknown floating point abi `%s'\n"), str);
25224 return FALSE;
25225 }
25226
25227 #ifdef OBJ_ELF
25228 static bfd_boolean
25229 arm_parse_eabi (char * str)
25230 {
25231 const struct arm_option_value_table *opt;
25232
25233 for (opt = arm_eabis; opt->name != NULL; opt++)
25234 if (streq (opt->name, str))
25235 {
25236 meabi_flags = opt->value;
25237 return TRUE;
25238 }
25239 as_bad (_("unknown EABI `%s'\n"), str);
25240 return FALSE;
25241 }
25242 #endif
25243
25244 static bfd_boolean
25245 arm_parse_it_mode (char * str)
25246 {
25247 bfd_boolean ret = TRUE;
25248
25249 if (streq ("arm", str))
25250 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
25251 else if (streq ("thumb", str))
25252 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
25253 else if (streq ("always", str))
25254 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
25255 else if (streq ("never", str))
25256 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
25257 else
25258 {
25259 as_bad (_("unknown implicit IT mode `%s', should be "\
25260 "arm, thumb, always, or never."), str);
25261 ret = FALSE;
25262 }
25263
25264 return ret;
25265 }
25266
25267 static bfd_boolean
25268 arm_ccs_mode (char * unused ATTRIBUTE_UNUSED)
25269 {
25270 codecomposer_syntax = TRUE;
25271 arm_comment_chars[0] = ';';
25272 arm_line_separator_chars[0] = 0;
25273 return TRUE;
25274 }
25275
25276 struct arm_long_option_table arm_long_opts[] =
25277 {
25278 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
25279 arm_parse_cpu, NULL},
25280 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
25281 arm_parse_arch, NULL},
25282 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
25283 arm_parse_fpu, NULL},
25284 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
25285 arm_parse_float_abi, NULL},
25286 #ifdef OBJ_ELF
25287 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
25288 arm_parse_eabi, NULL},
25289 #endif
25290 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
25291 arm_parse_it_mode, NULL},
25292 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
25293 arm_ccs_mode, NULL},
25294 {NULL, NULL, 0, NULL}
25295 };
25296
25297 int
25298 md_parse_option (int c, char * arg)
25299 {
25300 struct arm_option_table *opt;
25301 const struct arm_legacy_option_table *fopt;
25302 struct arm_long_option_table *lopt;
25303
25304 switch (c)
25305 {
25306 #ifdef OPTION_EB
25307 case OPTION_EB:
25308 target_big_endian = 1;
25309 break;
25310 #endif
25311
25312 #ifdef OPTION_EL
25313 case OPTION_EL:
25314 target_big_endian = 0;
25315 break;
25316 #endif
25317
25318 case OPTION_FIX_V4BX:
25319 fix_v4bx = TRUE;
25320 break;
25321
25322 case 'a':
25323 /* Listing option. Just ignore these, we don't support additional
25324 ones. */
25325 return 0;
25326
25327 default:
25328 for (opt = arm_opts; opt->option != NULL; opt++)
25329 {
25330 if (c == opt->option[0]
25331 && ((arg == NULL && opt->option[1] == 0)
25332 || streq (arg, opt->option + 1)))
25333 {
25334 /* If the option is deprecated, tell the user. */
25335 if (warn_on_deprecated && opt->deprecated != NULL)
25336 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
25337 arg ? arg : "", _(opt->deprecated));
25338
25339 if (opt->var != NULL)
25340 *opt->var = opt->value;
25341
25342 return 1;
25343 }
25344 }
25345
25346 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
25347 {
25348 if (c == fopt->option[0]
25349 && ((arg == NULL && fopt->option[1] == 0)
25350 || streq (arg, fopt->option + 1)))
25351 {
25352 /* If the option is deprecated, tell the user. */
25353 if (warn_on_deprecated && fopt->deprecated != NULL)
25354 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
25355 arg ? arg : "", _(fopt->deprecated));
25356
25357 if (fopt->var != NULL)
25358 *fopt->var = &fopt->value;
25359
25360 return 1;
25361 }
25362 }
25363
25364 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
25365 {
25366 /* These options are expected to have an argument. */
25367 if (c == lopt->option[0]
25368 && arg != NULL
25369 && strncmp (arg, lopt->option + 1,
25370 strlen (lopt->option + 1)) == 0)
25371 {
25372 /* If the option is deprecated, tell the user. */
25373 if (warn_on_deprecated && lopt->deprecated != NULL)
25374 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
25375 _(lopt->deprecated));
25376
25377 /* Call the sup-option parser. */
25378 return lopt->func (arg + strlen (lopt->option) - 1);
25379 }
25380 }
25381
25382 return 0;
25383 }
25384
25385 return 1;
25386 }
25387
25388 void
25389 md_show_usage (FILE * fp)
25390 {
25391 struct arm_option_table *opt;
25392 struct arm_long_option_table *lopt;
25393
25394 fprintf (fp, _(" ARM-specific assembler options:\n"));
25395
25396 for (opt = arm_opts; opt->option != NULL; opt++)
25397 if (opt->help != NULL)
25398 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
25399
25400 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
25401 if (lopt->help != NULL)
25402 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
25403
25404 #ifdef OPTION_EB
25405 fprintf (fp, _("\
25406 -EB assemble code for a big-endian cpu\n"));
25407 #endif
25408
25409 #ifdef OPTION_EL
25410 fprintf (fp, _("\
25411 -EL assemble code for a little-endian cpu\n"));
25412 #endif
25413
25414 fprintf (fp, _("\
25415 --fix-v4bx Allow BX in ARMv4 code\n"));
25416 }
25417
25418
25419 #ifdef OBJ_ELF
25420 typedef struct
25421 {
25422 int val;
25423 arm_feature_set flags;
25424 } cpu_arch_ver_table;
25425
25426 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
25427 least features first. */
25428 static const cpu_arch_ver_table cpu_arch_ver[] =
25429 {
25430 {1, ARM_ARCH_V4},
25431 {2, ARM_ARCH_V4T},
25432 {3, ARM_ARCH_V5},
25433 {3, ARM_ARCH_V5T},
25434 {4, ARM_ARCH_V5TE},
25435 {5, ARM_ARCH_V5TEJ},
25436 {6, ARM_ARCH_V6},
25437 {9, ARM_ARCH_V6K},
25438 {7, ARM_ARCH_V6Z},
25439 {11, ARM_ARCH_V6M},
25440 {12, ARM_ARCH_V6SM},
25441 {8, ARM_ARCH_V6T2},
25442 {10, ARM_ARCH_V7VE},
25443 {10, ARM_ARCH_V7R},
25444 {10, ARM_ARCH_V7M},
25445 {14, ARM_ARCH_V8A},
25446 {0, ARM_ARCH_NONE}
25447 };
25448
25449 /* Set an attribute if it has not already been set by the user. */
25450 static void
25451 aeabi_set_attribute_int (int tag, int value)
25452 {
25453 if (tag < 1
25454 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
25455 || !attributes_set_explicitly[tag])
25456 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
25457 }
25458
25459 static void
25460 aeabi_set_attribute_string (int tag, const char *value)
25461 {
25462 if (tag < 1
25463 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
25464 || !attributes_set_explicitly[tag])
25465 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
25466 }
25467
25468 /* Set the public EABI object attributes. */
25469 void
25470 aeabi_set_public_attributes (void)
25471 {
25472 int arch;
25473 char profile;
25474 int virt_sec = 0;
25475 int fp16_optional = 0;
25476 arm_feature_set flags;
25477 arm_feature_set tmp;
25478 const cpu_arch_ver_table *p;
25479
25480 /* Choose the architecture based on the capabilities of the requested cpu
25481 (if any) and/or the instructions actually used. */
25482 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
25483 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
25484 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
25485
25486 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
25487 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
25488
25489 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
25490 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
25491
25492 selected_cpu = flags;
25493
25494 /* Allow the user to override the reported architecture. */
25495 if (object_arch)
25496 {
25497 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
25498 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
25499 }
25500
25501 /* We need to make sure that the attributes do not identify us as v6S-M
25502 when the only v6S-M feature in use is the Operating System Extensions. */
25503 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
25504 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
25505 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
25506
25507 tmp = flags;
25508 arch = 0;
25509 for (p = cpu_arch_ver; p->val; p++)
25510 {
25511 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
25512 {
25513 arch = p->val;
25514 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
25515 }
25516 }
25517
25518 /* The table lookup above finds the last architecture to contribute
25519 a new feature. Unfortunately, Tag13 is a subset of the union of
25520 v6T2 and v7-M, so it is never seen as contributing a new feature.
25521 We can not search for the last entry which is entirely used,
25522 because if no CPU is specified we build up only those flags
25523 actually used. Perhaps we should separate out the specified
25524 and implicit cases. Avoid taking this path for -march=all by
25525 checking for contradictory v7-A / v7-M features. */
25526 if (arch == 10
25527 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
25528 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
25529 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
25530 arch = 13;
25531
25532 /* Tag_CPU_name. */
25533 if (selected_cpu_name[0])
25534 {
25535 char *q;
25536
25537 q = selected_cpu_name;
25538 if (strncmp (q, "armv", 4) == 0)
25539 {
25540 int i;
25541
25542 q += 4;
25543 for (i = 0; q[i]; i++)
25544 q[i] = TOUPPER (q[i]);
25545 }
25546 aeabi_set_attribute_string (Tag_CPU_name, q);
25547 }
25548
25549 /* Tag_CPU_arch. */
25550 aeabi_set_attribute_int (Tag_CPU_arch, arch);
25551
25552 /* Tag_CPU_arch_profile. */
25553 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
25554 profile = 'A';
25555 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
25556 profile = 'R';
25557 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
25558 profile = 'M';
25559 else
25560 profile = '\0';
25561
25562 if (profile != '\0')
25563 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
25564
25565 /* Tag_ARM_ISA_use. */
25566 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
25567 || arch == 0)
25568 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
25569
25570 /* Tag_THUMB_ISA_use. */
25571 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
25572 || arch == 0)
25573 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
25574 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
25575
25576 /* Tag_VFP_arch. */
25577 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
25578 aeabi_set_attribute_int (Tag_VFP_arch,
25579 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
25580 ? 7 : 8);
25581 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
25582 aeabi_set_attribute_int (Tag_VFP_arch,
25583 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
25584 ? 5 : 6);
25585 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
25586 {
25587 fp16_optional = 1;
25588 aeabi_set_attribute_int (Tag_VFP_arch, 3);
25589 }
25590 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
25591 {
25592 aeabi_set_attribute_int (Tag_VFP_arch, 4);
25593 fp16_optional = 1;
25594 }
25595 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
25596 aeabi_set_attribute_int (Tag_VFP_arch, 2);
25597 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
25598 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
25599 aeabi_set_attribute_int (Tag_VFP_arch, 1);
25600
25601 /* Tag_ABI_HardFP_use. */
25602 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
25603 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
25604 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
25605
25606 /* Tag_WMMX_arch. */
25607 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
25608 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
25609 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
25610 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
25611
25612 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
25613 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
25614 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
25615 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
25616 {
25617 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
25618 {
25619 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
25620 }
25621 else
25622 {
25623 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
25624 fp16_optional = 1;
25625 }
25626 }
25627
25628 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
25629 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
25630 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
25631
25632 /* Tag_DIV_use.
25633
25634 We set Tag_DIV_use to two when integer divide instructions have been used
25635 in ARM state, or when Thumb integer divide instructions have been used,
25636 but we have no architecture profile set, nor have we any ARM instructions.
25637
25638 For ARMv8 we set the tag to 0 as integer divide is implied by the base
25639 architecture.
25640
25641 For new architectures we will have to check these tests. */
25642 gas_assert (arch <= TAG_CPU_ARCH_V8);
25643 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
25644 aeabi_set_attribute_int (Tag_DIV_use, 0);
25645 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
25646 || (profile == '\0'
25647 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
25648 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
25649 aeabi_set_attribute_int (Tag_DIV_use, 2);
25650
25651 /* Tag_MP_extension_use. */
25652 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
25653 aeabi_set_attribute_int (Tag_MPextension_use, 1);
25654
25655 /* Tag Virtualization_use. */
25656 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
25657 virt_sec |= 1;
25658 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
25659 virt_sec |= 2;
25660 if (virt_sec != 0)
25661 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
25662 }
25663
25664 /* Add the default contents for the .ARM.attributes section. */
25665 void
25666 arm_md_end (void)
25667 {
25668 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
25669 return;
25670
25671 aeabi_set_public_attributes ();
25672 }
25673 #endif /* OBJ_ELF */
25674
25675
25676 /* Parse a .cpu directive. */
25677
25678 static void
25679 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
25680 {
25681 const struct arm_cpu_option_table *opt;
25682 char *name;
25683 char saved_char;
25684
25685 name = input_line_pointer;
25686 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25687 input_line_pointer++;
25688 saved_char = *input_line_pointer;
25689 *input_line_pointer = 0;
25690
25691 /* Skip the first "all" entry. */
25692 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
25693 if (streq (opt->name, name))
25694 {
25695 mcpu_cpu_opt = &opt->value;
25696 selected_cpu = opt->value;
25697 if (opt->canonical_name)
25698 strcpy (selected_cpu_name, opt->canonical_name);
25699 else
25700 {
25701 int i;
25702 for (i = 0; opt->name[i]; i++)
25703 selected_cpu_name[i] = TOUPPER (opt->name[i]);
25704
25705 selected_cpu_name[i] = 0;
25706 }
25707 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25708 *input_line_pointer = saved_char;
25709 demand_empty_rest_of_line ();
25710 return;
25711 }
25712 as_bad (_("unknown cpu `%s'"), name);
25713 *input_line_pointer = saved_char;
25714 ignore_rest_of_line ();
25715 }
25716
25717
25718 /* Parse a .arch directive. */
25719
25720 static void
25721 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
25722 {
25723 const struct arm_arch_option_table *opt;
25724 char saved_char;
25725 char *name;
25726
25727 name = input_line_pointer;
25728 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25729 input_line_pointer++;
25730 saved_char = *input_line_pointer;
25731 *input_line_pointer = 0;
25732
25733 /* Skip the first "all" entry. */
25734 for (opt = arm_archs + 1; opt->name != NULL; opt++)
25735 if (streq (opt->name, name))
25736 {
25737 mcpu_cpu_opt = &opt->value;
25738 selected_cpu = opt->value;
25739 strcpy (selected_cpu_name, opt->name);
25740 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25741 *input_line_pointer = saved_char;
25742 demand_empty_rest_of_line ();
25743 return;
25744 }
25745
25746 as_bad (_("unknown architecture `%s'\n"), name);
25747 *input_line_pointer = saved_char;
25748 ignore_rest_of_line ();
25749 }
25750
25751
25752 /* Parse a .object_arch directive. */
25753
25754 static void
25755 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
25756 {
25757 const struct arm_arch_option_table *opt;
25758 char saved_char;
25759 char *name;
25760
25761 name = input_line_pointer;
25762 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25763 input_line_pointer++;
25764 saved_char = *input_line_pointer;
25765 *input_line_pointer = 0;
25766
25767 /* Skip the first "all" entry. */
25768 for (opt = arm_archs + 1; opt->name != NULL; opt++)
25769 if (streq (opt->name, name))
25770 {
25771 object_arch = &opt->value;
25772 *input_line_pointer = saved_char;
25773 demand_empty_rest_of_line ();
25774 return;
25775 }
25776
25777 as_bad (_("unknown architecture `%s'\n"), name);
25778 *input_line_pointer = saved_char;
25779 ignore_rest_of_line ();
25780 }
25781
25782 /* Parse a .arch_extension directive. */
25783
25784 static void
25785 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
25786 {
25787 const struct arm_option_extension_value_table *opt;
25788 char saved_char;
25789 char *name;
25790 int adding_value = 1;
25791
25792 name = input_line_pointer;
25793 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25794 input_line_pointer++;
25795 saved_char = *input_line_pointer;
25796 *input_line_pointer = 0;
25797
25798 if (strlen (name) >= 2
25799 && strncmp (name, "no", 2) == 0)
25800 {
25801 adding_value = 0;
25802 name += 2;
25803 }
25804
25805 for (opt = arm_extensions; opt->name != NULL; opt++)
25806 if (streq (opt->name, name))
25807 {
25808 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
25809 {
25810 as_bad (_("architectural extension `%s' is not allowed for the "
25811 "current base architecture"), name);
25812 break;
25813 }
25814
25815 if (adding_value)
25816 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu,
25817 opt->merge_value);
25818 else
25819 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->clear_value);
25820
25821 mcpu_cpu_opt = &selected_cpu;
25822 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25823 *input_line_pointer = saved_char;
25824 demand_empty_rest_of_line ();
25825 return;
25826 }
25827
25828 if (opt->name == NULL)
25829 as_bad (_("unknown architecture extension `%s'\n"), name);
25830
25831 *input_line_pointer = saved_char;
25832 ignore_rest_of_line ();
25833 }
25834
25835 /* Parse a .fpu directive. */
25836
25837 static void
25838 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
25839 {
25840 const struct arm_option_fpu_value_table *opt;
25841 char saved_char;
25842 char *name;
25843
25844 name = input_line_pointer;
25845 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
25846 input_line_pointer++;
25847 saved_char = *input_line_pointer;
25848 *input_line_pointer = 0;
25849
25850 for (opt = arm_fpus; opt->name != NULL; opt++)
25851 if (streq (opt->name, name))
25852 {
25853 mfpu_opt = &opt->value;
25854 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
25855 *input_line_pointer = saved_char;
25856 demand_empty_rest_of_line ();
25857 return;
25858 }
25859
25860 as_bad (_("unknown floating point format `%s'\n"), name);
25861 *input_line_pointer = saved_char;
25862 ignore_rest_of_line ();
25863 }
25864
25865 /* Copy symbol information. */
25866
25867 void
25868 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
25869 {
25870 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
25871 }
25872
25873 #ifdef OBJ_ELF
25874 /* Given a symbolic attribute NAME, return the proper integer value.
25875 Returns -1 if the attribute is not known. */
25876
25877 int
25878 arm_convert_symbolic_attribute (const char *name)
25879 {
25880 static const struct
25881 {
25882 const char * name;
25883 const int tag;
25884 }
25885 attribute_table[] =
25886 {
25887 /* When you modify this table you should
25888 also modify the list in doc/c-arm.texi. */
25889 #define T(tag) {#tag, tag}
25890 T (Tag_CPU_raw_name),
25891 T (Tag_CPU_name),
25892 T (Tag_CPU_arch),
25893 T (Tag_CPU_arch_profile),
25894 T (Tag_ARM_ISA_use),
25895 T (Tag_THUMB_ISA_use),
25896 T (Tag_FP_arch),
25897 T (Tag_VFP_arch),
25898 T (Tag_WMMX_arch),
25899 T (Tag_Advanced_SIMD_arch),
25900 T (Tag_PCS_config),
25901 T (Tag_ABI_PCS_R9_use),
25902 T (Tag_ABI_PCS_RW_data),
25903 T (Tag_ABI_PCS_RO_data),
25904 T (Tag_ABI_PCS_GOT_use),
25905 T (Tag_ABI_PCS_wchar_t),
25906 T (Tag_ABI_FP_rounding),
25907 T (Tag_ABI_FP_denormal),
25908 T (Tag_ABI_FP_exceptions),
25909 T (Tag_ABI_FP_user_exceptions),
25910 T (Tag_ABI_FP_number_model),
25911 T (Tag_ABI_align_needed),
25912 T (Tag_ABI_align8_needed),
25913 T (Tag_ABI_align_preserved),
25914 T (Tag_ABI_align8_preserved),
25915 T (Tag_ABI_enum_size),
25916 T (Tag_ABI_HardFP_use),
25917 T (Tag_ABI_VFP_args),
25918 T (Tag_ABI_WMMX_args),
25919 T (Tag_ABI_optimization_goals),
25920 T (Tag_ABI_FP_optimization_goals),
25921 T (Tag_compatibility),
25922 T (Tag_CPU_unaligned_access),
25923 T (Tag_FP_HP_extension),
25924 T (Tag_VFP_HP_extension),
25925 T (Tag_ABI_FP_16bit_format),
25926 T (Tag_MPextension_use),
25927 T (Tag_DIV_use),
25928 T (Tag_nodefaults),
25929 T (Tag_also_compatible_with),
25930 T (Tag_conformance),
25931 T (Tag_T2EE_use),
25932 T (Tag_Virtualization_use),
25933 /* We deliberately do not include Tag_MPextension_use_legacy. */
25934 #undef T
25935 };
25936 unsigned int i;
25937
25938 if (name == NULL)
25939 return -1;
25940
25941 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
25942 if (streq (name, attribute_table[i].name))
25943 return attribute_table[i].tag;
25944
25945 return -1;
25946 }
25947
25948
25949 /* Apply sym value for relocations only in the case that they are for
25950 local symbols in the same segment as the fixup and you have the
25951 respective architectural feature for blx and simple switches. */
25952 int
25953 arm_apply_sym_value (struct fix * fixP, segT this_seg)
25954 {
25955 if (fixP->fx_addsy
25956 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
25957 /* PR 17444: If the local symbol is in a different section then a reloc
25958 will always be generated for it, so applying the symbol value now
25959 will result in a double offset being stored in the relocation. */
25960 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
25961 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
25962 {
25963 switch (fixP->fx_r_type)
25964 {
25965 case BFD_RELOC_ARM_PCREL_BLX:
25966 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25967 if (ARM_IS_FUNC (fixP->fx_addsy))
25968 return 1;
25969 break;
25970
25971 case BFD_RELOC_ARM_PCREL_CALL:
25972 case BFD_RELOC_THUMB_PCREL_BLX:
25973 if (THUMB_IS_FUNC (fixP->fx_addsy))
25974 return 1;
25975 break;
25976
25977 default:
25978 break;
25979 }
25980
25981 }
25982 return 0;
25983 }
25984 #endif /* OBJ_ELF */
This page took 0.927652 seconds and 4 git commands to generate.