9111019c4396225d307c4b5c05e6cd8099843ff6
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35 #include "libiberty.h"
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
200 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
201 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
202 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
203 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
204 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
205
206 static const arm_feature_set arm_arch_any = ARM_ANY;
207 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
210 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
211
212 static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
214 static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216 static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218 static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222 static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
226 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
227 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
228 static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
230 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
233 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
236
237 static int mfloat_abi_opt = -1;
238 /* Record user cpu selection for object attributes. */
239 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
240 /* Must be long enough to hold any of the names in arm_cpus. */
241 static char selected_cpu_name[16];
242
243 /* Return if no cpu was selected on command-line. */
244 static bfd_boolean
245 no_cpu_selected (void)
246 {
247 return selected_cpu.core == arm_arch_none.core
248 && selected_cpu.coproc == arm_arch_none.coproc;
249 }
250
251 #ifdef OBJ_ELF
252 # ifdef EABI_DEFAULT
253 static int meabi_flags = EABI_DEFAULT;
254 # else
255 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
256 # endif
257
258 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
259
260 bfd_boolean
261 arm_is_eabi (void)
262 {
263 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
264 }
265 #endif
266
267 #ifdef OBJ_ELF
268 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
269 symbolS * GOT_symbol;
270 #endif
271
272 /* 0: assemble for ARM,
273 1: assemble for Thumb,
274 2: assemble for Thumb even though target CPU does not support thumb
275 instructions. */
276 static int thumb_mode = 0;
277 /* A value distinct from the possible values for thumb_mode that we
278 can use to record whether thumb_mode has been copied into the
279 tc_frag_data field of a frag. */
280 #define MODE_RECORDED (1 << 4)
281
282 /* Specifies the intrinsic IT insn behavior mode. */
283 enum implicit_it_mode
284 {
285 IMPLICIT_IT_MODE_NEVER = 0x00,
286 IMPLICIT_IT_MODE_ARM = 0x01,
287 IMPLICIT_IT_MODE_THUMB = 0x02,
288 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
289 };
290 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
291
292 /* If unified_syntax is true, we are processing the new unified
293 ARM/Thumb syntax. Important differences from the old ARM mode:
294
295 - Immediate operands do not require a # prefix.
296 - Conditional affixes always appear at the end of the
297 instruction. (For backward compatibility, those instructions
298 that formerly had them in the middle, continue to accept them
299 there.)
300 - The IT instruction may appear, and if it does is validated
301 against subsequent conditional affixes. It does not generate
302 machine code.
303
304 Important differences from the old Thumb mode:
305
306 - Immediate operands do not require a # prefix.
307 - Most of the V6T2 instructions are only available in unified mode.
308 - The .N and .W suffixes are recognized and honored (it is an error
309 if they cannot be honored).
310 - All instructions set the flags if and only if they have an 's' affix.
311 - Conditional affixes may be used. They are validated against
312 preceding IT instructions. Unlike ARM mode, you cannot use a
313 conditional affix except in the scope of an IT instruction. */
314
315 static bfd_boolean unified_syntax = FALSE;
316
317 enum neon_el_type
318 {
319 NT_invtype,
320 NT_untyped,
321 NT_integer,
322 NT_float,
323 NT_poly,
324 NT_signed,
325 NT_unsigned
326 };
327
328 struct neon_type_el
329 {
330 enum neon_el_type type;
331 unsigned size;
332 };
333
334 #define NEON_MAX_TYPE_ELS 4
335
336 struct neon_type
337 {
338 struct neon_type_el el[NEON_MAX_TYPE_ELS];
339 unsigned elems;
340 };
341
342 enum it_instruction_type
343 {
344 OUTSIDE_IT_INSN,
345 INSIDE_IT_INSN,
346 INSIDE_IT_LAST_INSN,
347 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
348 if inside, should be the last one. */
349 NEUTRAL_IT_INSN, /* This could be either inside or outside,
350 i.e. BKPT and NOP. */
351 IT_INSN /* The IT insn has been parsed. */
352 };
353
354 struct arm_it
355 {
356 const char * error;
357 unsigned long instruction;
358 int size;
359 int size_req;
360 int cond;
361 /* "uncond_value" is set to the value in place of the conditional field in
362 unconditional versions of the instruction, or -1 if nothing is
363 appropriate. */
364 int uncond_value;
365 struct neon_type vectype;
366 /* This does not indicate an actual NEON instruction, only that
367 the mnemonic accepts neon-style type suffixes. */
368 int is_neon;
369 /* Set to the opcode if the instruction needs relaxation.
370 Zero if the instruction is not relaxed. */
371 unsigned long relax;
372 struct
373 {
374 bfd_reloc_code_real_type type;
375 expressionS exp;
376 int pc_rel;
377 } reloc;
378
379 enum it_instruction_type it_insn_type;
380
381 struct
382 {
383 unsigned reg;
384 signed int imm;
385 struct neon_type_el vectype;
386 unsigned present : 1; /* Operand present. */
387 unsigned isreg : 1; /* Operand was a register. */
388 unsigned immisreg : 1; /* .imm field is a second register. */
389 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
390 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
391 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
392 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
393 instructions. This allows us to disambiguate ARM <-> vector insns. */
394 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
395 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
396 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
397 unsigned issingle : 1; /* Operand is VFP single-precision register. */
398 unsigned hasreloc : 1; /* Operand has relocation suffix. */
399 unsigned writeback : 1; /* Operand has trailing ! */
400 unsigned preind : 1; /* Preindexed address. */
401 unsigned postind : 1; /* Postindexed address. */
402 unsigned negative : 1; /* Index register was negated. */
403 unsigned shifted : 1; /* Shift applied to operation. */
404 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
405 } operands[6];
406 };
407
408 static struct arm_it inst;
409
410 #define NUM_FLOAT_VALS 8
411
412 const char * fp_const[] =
413 {
414 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
415 };
416
417 /* Number of littlenums required to hold an extended precision number. */
418 #define MAX_LITTLENUMS 6
419
420 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
421
422 #define FAIL (-1)
423 #define SUCCESS (0)
424
425 #define SUFF_S 1
426 #define SUFF_D 2
427 #define SUFF_E 3
428 #define SUFF_P 4
429
430 #define CP_T_X 0x00008000
431 #define CP_T_Y 0x00400000
432
433 #define CONDS_BIT 0x00100000
434 #define LOAD_BIT 0x00100000
435
436 #define DOUBLE_LOAD_FLAG 0x00000001
437
438 struct asm_cond
439 {
440 const char * template_name;
441 unsigned long value;
442 };
443
444 #define COND_ALWAYS 0xE
445
446 struct asm_psr
447 {
448 const char * template_name;
449 unsigned long field;
450 };
451
452 struct asm_barrier_opt
453 {
454 const char * template_name;
455 unsigned long value;
456 };
457
458 /* The bit that distinguishes CPSR and SPSR. */
459 #define SPSR_BIT (1 << 22)
460
461 /* The individual PSR flag bits. */
462 #define PSR_c (1 << 16)
463 #define PSR_x (1 << 17)
464 #define PSR_s (1 << 18)
465 #define PSR_f (1 << 19)
466
467 struct reloc_entry
468 {
469 char * name;
470 bfd_reloc_code_real_type reloc;
471 };
472
473 enum vfp_reg_pos
474 {
475 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
476 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
477 };
478
479 enum vfp_ldstm_type
480 {
481 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
482 };
483
484 /* Bits for DEFINED field in neon_typed_alias. */
485 #define NTA_HASTYPE 1
486 #define NTA_HASINDEX 2
487
488 struct neon_typed_alias
489 {
490 unsigned char defined;
491 unsigned char index;
492 struct neon_type_el eltype;
493 };
494
495 /* ARM register categories. This includes coprocessor numbers and various
496 architecture extensions' registers. */
497 enum arm_reg_type
498 {
499 REG_TYPE_RN,
500 REG_TYPE_CP,
501 REG_TYPE_CN,
502 REG_TYPE_FN,
503 REG_TYPE_VFS,
504 REG_TYPE_VFD,
505 REG_TYPE_NQ,
506 REG_TYPE_VFSD,
507 REG_TYPE_NDQ,
508 REG_TYPE_NSDQ,
509 REG_TYPE_VFC,
510 REG_TYPE_MVF,
511 REG_TYPE_MVD,
512 REG_TYPE_MVFX,
513 REG_TYPE_MVDX,
514 REG_TYPE_MVAX,
515 REG_TYPE_DSPSC,
516 REG_TYPE_MMXWR,
517 REG_TYPE_MMXWC,
518 REG_TYPE_MMXWCG,
519 REG_TYPE_XSCALE,
520 REG_TYPE_RNB
521 };
522
523 /* Structure for a hash table entry for a register.
524 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
525 information which states whether a vector type or index is specified (for a
526 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
527 struct reg_entry
528 {
529 const char * name;
530 unsigned int number;
531 unsigned char type;
532 unsigned char builtin;
533 struct neon_typed_alias * neon;
534 };
535
536 /* Diagnostics used when we don't get a register of the expected type. */
537 const char * const reg_expected_msgs[] =
538 {
539 N_("ARM register expected"),
540 N_("bad or missing co-processor number"),
541 N_("co-processor register expected"),
542 N_("FPA register expected"),
543 N_("VFP single precision register expected"),
544 N_("VFP/Neon double precision register expected"),
545 N_("Neon quad precision register expected"),
546 N_("VFP single or double precision register expected"),
547 N_("Neon double or quad precision register expected"),
548 N_("VFP single, double or Neon quad precision register expected"),
549 N_("VFP system register expected"),
550 N_("Maverick MVF register expected"),
551 N_("Maverick MVD register expected"),
552 N_("Maverick MVFX register expected"),
553 N_("Maverick MVDX register expected"),
554 N_("Maverick MVAX register expected"),
555 N_("Maverick DSPSC register expected"),
556 N_("iWMMXt data register expected"),
557 N_("iWMMXt control register expected"),
558 N_("iWMMXt scalar register expected"),
559 N_("XScale accumulator register expected"),
560 };
561
562 /* Some well known registers that we refer to directly elsewhere. */
563 #define REG_SP 13
564 #define REG_LR 14
565 #define REG_PC 15
566
567 /* ARM instructions take 4bytes in the object file, Thumb instructions
568 take 2: */
569 #define INSN_SIZE 4
570
571 struct asm_opcode
572 {
573 /* Basic string to match. */
574 const char * template_name;
575
576 /* Parameters to instruction. */
577 unsigned int operands[8];
578
579 /* Conditional tag - see opcode_lookup. */
580 unsigned int tag : 4;
581
582 /* Basic instruction code. */
583 unsigned int avalue : 28;
584
585 /* Thumb-format instruction code. */
586 unsigned int tvalue;
587
588 /* Which architecture variant provides this instruction. */
589 const arm_feature_set * avariant;
590 const arm_feature_set * tvariant;
591
592 /* Function to call to encode instruction in ARM format. */
593 void (* aencode) (void);
594
595 /* Function to call to encode instruction in Thumb format. */
596 void (* tencode) (void);
597 };
598
599 /* Defines for various bits that we will want to toggle. */
600 #define INST_IMMEDIATE 0x02000000
601 #define OFFSET_REG 0x02000000
602 #define HWOFFSET_IMM 0x00400000
603 #define SHIFT_BY_REG 0x00000010
604 #define PRE_INDEX 0x01000000
605 #define INDEX_UP 0x00800000
606 #define WRITE_BACK 0x00200000
607 #define LDM_TYPE_2_OR_3 0x00400000
608 #define CPSI_MMOD 0x00020000
609
610 #define LITERAL_MASK 0xf000f000
611 #define OPCODE_MASK 0xfe1fffff
612 #define V4_STR_BIT 0x00000020
613
614 #define T2_SUBS_PC_LR 0xf3de8f00
615
616 #define DATA_OP_SHIFT 21
617
618 #define T2_OPCODE_MASK 0xfe1fffff
619 #define T2_DATA_OP_SHIFT 21
620
621 /* Codes to distinguish the arithmetic instructions. */
622 #define OPCODE_AND 0
623 #define OPCODE_EOR 1
624 #define OPCODE_SUB 2
625 #define OPCODE_RSB 3
626 #define OPCODE_ADD 4
627 #define OPCODE_ADC 5
628 #define OPCODE_SBC 6
629 #define OPCODE_RSC 7
630 #define OPCODE_TST 8
631 #define OPCODE_TEQ 9
632 #define OPCODE_CMP 10
633 #define OPCODE_CMN 11
634 #define OPCODE_ORR 12
635 #define OPCODE_MOV 13
636 #define OPCODE_BIC 14
637 #define OPCODE_MVN 15
638
639 #define T2_OPCODE_AND 0
640 #define T2_OPCODE_BIC 1
641 #define T2_OPCODE_ORR 2
642 #define T2_OPCODE_ORN 3
643 #define T2_OPCODE_EOR 4
644 #define T2_OPCODE_ADD 8
645 #define T2_OPCODE_ADC 10
646 #define T2_OPCODE_SBC 11
647 #define T2_OPCODE_SUB 13
648 #define T2_OPCODE_RSB 14
649
650 #define T_OPCODE_MUL 0x4340
651 #define T_OPCODE_TST 0x4200
652 #define T_OPCODE_CMN 0x42c0
653 #define T_OPCODE_NEG 0x4240
654 #define T_OPCODE_MVN 0x43c0
655
656 #define T_OPCODE_ADD_R3 0x1800
657 #define T_OPCODE_SUB_R3 0x1a00
658 #define T_OPCODE_ADD_HI 0x4400
659 #define T_OPCODE_ADD_ST 0xb000
660 #define T_OPCODE_SUB_ST 0xb080
661 #define T_OPCODE_ADD_SP 0xa800
662 #define T_OPCODE_ADD_PC 0xa000
663 #define T_OPCODE_ADD_I8 0x3000
664 #define T_OPCODE_SUB_I8 0x3800
665 #define T_OPCODE_ADD_I3 0x1c00
666 #define T_OPCODE_SUB_I3 0x1e00
667
668 #define T_OPCODE_ASR_R 0x4100
669 #define T_OPCODE_LSL_R 0x4080
670 #define T_OPCODE_LSR_R 0x40c0
671 #define T_OPCODE_ROR_R 0x41c0
672 #define T_OPCODE_ASR_I 0x1000
673 #define T_OPCODE_LSL_I 0x0000
674 #define T_OPCODE_LSR_I 0x0800
675
676 #define T_OPCODE_MOV_I8 0x2000
677 #define T_OPCODE_CMP_I8 0x2800
678 #define T_OPCODE_CMP_LR 0x4280
679 #define T_OPCODE_MOV_HR 0x4600
680 #define T_OPCODE_CMP_HR 0x4500
681
682 #define T_OPCODE_LDR_PC 0x4800
683 #define T_OPCODE_LDR_SP 0x9800
684 #define T_OPCODE_STR_SP 0x9000
685 #define T_OPCODE_LDR_IW 0x6800
686 #define T_OPCODE_STR_IW 0x6000
687 #define T_OPCODE_LDR_IH 0x8800
688 #define T_OPCODE_STR_IH 0x8000
689 #define T_OPCODE_LDR_IB 0x7800
690 #define T_OPCODE_STR_IB 0x7000
691 #define T_OPCODE_LDR_RW 0x5800
692 #define T_OPCODE_STR_RW 0x5000
693 #define T_OPCODE_LDR_RH 0x5a00
694 #define T_OPCODE_STR_RH 0x5200
695 #define T_OPCODE_LDR_RB 0x5c00
696 #define T_OPCODE_STR_RB 0x5400
697
698 #define T_OPCODE_PUSH 0xb400
699 #define T_OPCODE_POP 0xbc00
700
701 #define T_OPCODE_BRANCH 0xe000
702
703 #define THUMB_SIZE 2 /* Size of thumb instruction. */
704 #define THUMB_PP_PC_LR 0x0100
705 #define THUMB_LOAD_BIT 0x0800
706 #define THUMB2_LOAD_BIT 0x00100000
707
708 #define BAD_ARGS _("bad arguments to instruction")
709 #define BAD_SP _("r13 not allowed here")
710 #define BAD_PC _("r15 not allowed here")
711 #define BAD_COND _("instruction cannot be conditional")
712 #define BAD_OVERLAP _("registers may not be the same")
713 #define BAD_HIREG _("lo register required")
714 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
715 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
716 #define BAD_BRANCH _("branch must be last instruction in IT block")
717 #define BAD_NOT_IT _("instruction not allowed in IT block")
718 #define BAD_FPU _("selected FPU does not support instruction")
719 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
720 #define BAD_IT_COND _("incorrect condition in IT block")
721 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
722 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
723 #define BAD_PC_ADDRESSING \
724 _("cannot use register index with PC-relative addressing")
725 #define BAD_PC_WRITEBACK \
726 _("cannot use writeback with PC-relative addressing")
727 #define BAD_RANGE _("branch out of range")
728
729 static struct hash_control * arm_ops_hsh;
730 static struct hash_control * arm_cond_hsh;
731 static struct hash_control * arm_shift_hsh;
732 static struct hash_control * arm_psr_hsh;
733 static struct hash_control * arm_v7m_psr_hsh;
734 static struct hash_control * arm_reg_hsh;
735 static struct hash_control * arm_reloc_hsh;
736 static struct hash_control * arm_barrier_opt_hsh;
737
738 /* Stuff needed to resolve the label ambiguity
739 As:
740 ...
741 label: <insn>
742 may differ from:
743 ...
744 label:
745 <insn> */
746
747 symbolS * last_label_seen;
748 static int label_is_thumb_function_name = FALSE;
749
750 /* Literal pool structure. Held on a per-section
751 and per-sub-section basis. */
752
753 #define MAX_LITERAL_POOL_SIZE 1024
754 typedef struct literal_pool
755 {
756 expressionS literals [MAX_LITERAL_POOL_SIZE];
757 unsigned int next_free_entry;
758 unsigned int id;
759 symbolS * symbol;
760 segT section;
761 subsegT sub_section;
762 #ifdef OBJ_ELF
763 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
764 #endif
765 struct literal_pool * next;
766 } literal_pool;
767
768 /* Pointer to a linked list of literal pools. */
769 literal_pool * list_of_pools = NULL;
770
771 #ifdef OBJ_ELF
772 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
773 #else
774 static struct current_it now_it;
775 #endif
776
777 static inline int
778 now_it_compatible (int cond)
779 {
780 return (cond & ~1) == (now_it.cc & ~1);
781 }
782
783 static inline int
784 conditional_insn (void)
785 {
786 return inst.cond != COND_ALWAYS;
787 }
788
789 static int in_it_block (void);
790
791 static int handle_it_state (void);
792
793 static void force_automatic_it_block_close (void);
794
795 static void it_fsm_post_encode (void);
796
797 #define set_it_insn_type(type) \
798 do \
799 { \
800 inst.it_insn_type = type; \
801 if (handle_it_state () == FAIL) \
802 return; \
803 } \
804 while (0)
805
806 #define set_it_insn_type_nonvoid(type, failret) \
807 do \
808 { \
809 inst.it_insn_type = type; \
810 if (handle_it_state () == FAIL) \
811 return failret; \
812 } \
813 while(0)
814
815 #define set_it_insn_type_last() \
816 do \
817 { \
818 if (inst.cond == COND_ALWAYS) \
819 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
820 else \
821 set_it_insn_type (INSIDE_IT_LAST_INSN); \
822 } \
823 while (0)
824
825 /* Pure syntax. */
826
827 /* This array holds the chars that always start a comment. If the
828 pre-processor is disabled, these aren't very useful. */
829 const char comment_chars[] = "@";
830
831 /* This array holds the chars that only start a comment at the beginning of
832 a line. If the line seems to have the form '# 123 filename'
833 .line and .file directives will appear in the pre-processed output. */
834 /* Note that input_file.c hand checks for '#' at the beginning of the
835 first line of the input file. This is because the compiler outputs
836 #NO_APP at the beginning of its output. */
837 /* Also note that comments like this one will always work. */
838 const char line_comment_chars[] = "#";
839
840 const char line_separator_chars[] = ";";
841
842 /* Chars that can be used to separate mant
843 from exp in floating point numbers. */
844 const char EXP_CHARS[] = "eE";
845
846 /* Chars that mean this number is a floating point constant. */
847 /* As in 0f12.456 */
848 /* or 0d1.2345e12 */
849
850 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
851
852 /* Prefix characters that indicate the start of an immediate
853 value. */
854 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
855
856 /* Separator character handling. */
857
858 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
859
860 static inline int
861 skip_past_char (char ** str, char c)
862 {
863 if (**str == c)
864 {
865 (*str)++;
866 return SUCCESS;
867 }
868 else
869 return FAIL;
870 }
871
872 #define skip_past_comma(str) skip_past_char (str, ',')
873
874 /* Arithmetic expressions (possibly involving symbols). */
875
876 /* Return TRUE if anything in the expression is a bignum. */
877
878 static int
879 walk_no_bignums (symbolS * sp)
880 {
881 if (symbol_get_value_expression (sp)->X_op == O_big)
882 return 1;
883
884 if (symbol_get_value_expression (sp)->X_add_symbol)
885 {
886 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
887 || (symbol_get_value_expression (sp)->X_op_symbol
888 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
889 }
890
891 return 0;
892 }
893
894 static int in_my_get_expression = 0;
895
896 /* Third argument to my_get_expression. */
897 #define GE_NO_PREFIX 0
898 #define GE_IMM_PREFIX 1
899 #define GE_OPT_PREFIX 2
900 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
901 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
902 #define GE_OPT_PREFIX_BIG 3
903
904 static int
905 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
906 {
907 char * save_in;
908 segT seg;
909
910 /* In unified syntax, all prefixes are optional. */
911 if (unified_syntax)
912 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
913 : GE_OPT_PREFIX;
914
915 switch (prefix_mode)
916 {
917 case GE_NO_PREFIX: break;
918 case GE_IMM_PREFIX:
919 if (!is_immediate_prefix (**str))
920 {
921 inst.error = _("immediate expression requires a # prefix");
922 return FAIL;
923 }
924 (*str)++;
925 break;
926 case GE_OPT_PREFIX:
927 case GE_OPT_PREFIX_BIG:
928 if (is_immediate_prefix (**str))
929 (*str)++;
930 break;
931 default: abort ();
932 }
933
934 memset (ep, 0, sizeof (expressionS));
935
936 save_in = input_line_pointer;
937 input_line_pointer = *str;
938 in_my_get_expression = 1;
939 seg = expression (ep);
940 in_my_get_expression = 0;
941
942 if (ep->X_op == O_illegal || ep->X_op == O_absent)
943 {
944 /* We found a bad or missing expression in md_operand(). */
945 *str = input_line_pointer;
946 input_line_pointer = save_in;
947 if (inst.error == NULL)
948 inst.error = (ep->X_op == O_absent
949 ? _("missing expression") :_("bad expression"));
950 return 1;
951 }
952
953 #ifdef OBJ_AOUT
954 if (seg != absolute_section
955 && seg != text_section
956 && seg != data_section
957 && seg != bss_section
958 && seg != undefined_section)
959 {
960 inst.error = _("bad segment");
961 *str = input_line_pointer;
962 input_line_pointer = save_in;
963 return 1;
964 }
965 #else
966 (void) seg;
967 #endif
968
969 /* Get rid of any bignums now, so that we don't generate an error for which
970 we can't establish a line number later on. Big numbers are never valid
971 in instructions, which is where this routine is always called. */
972 if (prefix_mode != GE_OPT_PREFIX_BIG
973 && (ep->X_op == O_big
974 || (ep->X_add_symbol
975 && (walk_no_bignums (ep->X_add_symbol)
976 || (ep->X_op_symbol
977 && walk_no_bignums (ep->X_op_symbol))))))
978 {
979 inst.error = _("invalid constant");
980 *str = input_line_pointer;
981 input_line_pointer = save_in;
982 return 1;
983 }
984
985 *str = input_line_pointer;
986 input_line_pointer = save_in;
987 return 0;
988 }
989
990 /* Turn a string in input_line_pointer into a floating point constant
991 of type TYPE, and store the appropriate bytes in *LITP. The number
992 of LITTLENUMS emitted is stored in *SIZEP. An error message is
993 returned, or NULL on OK.
994
995 Note that fp constants aren't represent in the normal way on the ARM.
996 In big endian mode, things are as expected. However, in little endian
997 mode fp constants are big-endian word-wise, and little-endian byte-wise
998 within the words. For example, (double) 1.1 in big endian mode is
999 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1000 the byte sequence 99 99 f1 3f 9a 99 99 99.
1001
1002 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1003
1004 char *
1005 md_atof (int type, char * litP, int * sizeP)
1006 {
1007 int prec;
1008 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1009 char *t;
1010 int i;
1011
1012 switch (type)
1013 {
1014 case 'f':
1015 case 'F':
1016 case 's':
1017 case 'S':
1018 prec = 2;
1019 break;
1020
1021 case 'd':
1022 case 'D':
1023 case 'r':
1024 case 'R':
1025 prec = 4;
1026 break;
1027
1028 case 'x':
1029 case 'X':
1030 prec = 5;
1031 break;
1032
1033 case 'p':
1034 case 'P':
1035 prec = 5;
1036 break;
1037
1038 default:
1039 *sizeP = 0;
1040 return _("Unrecognized or unsupported floating point constant");
1041 }
1042
1043 t = atof_ieee (input_line_pointer, type, words);
1044 if (t)
1045 input_line_pointer = t;
1046 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1047
1048 if (target_big_endian)
1049 {
1050 for (i = 0; i < prec; i++)
1051 {
1052 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1053 litP += sizeof (LITTLENUM_TYPE);
1054 }
1055 }
1056 else
1057 {
1058 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1059 for (i = prec - 1; i >= 0; i--)
1060 {
1061 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1062 litP += sizeof (LITTLENUM_TYPE);
1063 }
1064 else
1065 /* For a 4 byte float the order of elements in `words' is 1 0.
1066 For an 8 byte float the order is 1 0 3 2. */
1067 for (i = 0; i < prec; i += 2)
1068 {
1069 md_number_to_chars (litP, (valueT) words[i + 1],
1070 sizeof (LITTLENUM_TYPE));
1071 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1072 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += 2 * sizeof (LITTLENUM_TYPE);
1074 }
1075 }
1076
1077 return NULL;
1078 }
1079
1080 /* We handle all bad expressions here, so that we can report the faulty
1081 instruction in the error message. */
1082 void
1083 md_operand (expressionS * exp)
1084 {
1085 if (in_my_get_expression)
1086 exp->X_op = O_illegal;
1087 }
1088
1089 /* Immediate values. */
1090
1091 /* Generic immediate-value read function for use in directives.
1092 Accepts anything that 'expression' can fold to a constant.
1093 *val receives the number. */
1094 #ifdef OBJ_ELF
1095 static int
1096 immediate_for_directive (int *val)
1097 {
1098 expressionS exp;
1099 exp.X_op = O_illegal;
1100
1101 if (is_immediate_prefix (*input_line_pointer))
1102 {
1103 input_line_pointer++;
1104 expression (&exp);
1105 }
1106
1107 if (exp.X_op != O_constant)
1108 {
1109 as_bad (_("expected #constant"));
1110 ignore_rest_of_line ();
1111 return FAIL;
1112 }
1113 *val = exp.X_add_number;
1114 return SUCCESS;
1115 }
1116 #endif
1117
1118 /* Register parsing. */
1119
1120 /* Generic register parser. CCP points to what should be the
1121 beginning of a register name. If it is indeed a valid register
1122 name, advance CCP over it and return the reg_entry structure;
1123 otherwise return NULL. Does not issue diagnostics. */
1124
1125 static struct reg_entry *
1126 arm_reg_parse_multi (char **ccp)
1127 {
1128 char *start = *ccp;
1129 char *p;
1130 struct reg_entry *reg;
1131
1132 #ifdef REGISTER_PREFIX
1133 if (*start != REGISTER_PREFIX)
1134 return NULL;
1135 start++;
1136 #endif
1137 #ifdef OPTIONAL_REGISTER_PREFIX
1138 if (*start == OPTIONAL_REGISTER_PREFIX)
1139 start++;
1140 #endif
1141
1142 p = start;
1143 if (!ISALPHA (*p) || !is_name_beginner (*p))
1144 return NULL;
1145
1146 do
1147 p++;
1148 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1149
1150 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1151
1152 if (!reg)
1153 return NULL;
1154
1155 *ccp = p;
1156 return reg;
1157 }
1158
1159 static int
1160 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1161 enum arm_reg_type type)
1162 {
1163 /* Alternative syntaxes are accepted for a few register classes. */
1164 switch (type)
1165 {
1166 case REG_TYPE_MVF:
1167 case REG_TYPE_MVD:
1168 case REG_TYPE_MVFX:
1169 case REG_TYPE_MVDX:
1170 /* Generic coprocessor register names are allowed for these. */
1171 if (reg && reg->type == REG_TYPE_CN)
1172 return reg->number;
1173 break;
1174
1175 case REG_TYPE_CP:
1176 /* For backward compatibility, a bare number is valid here. */
1177 {
1178 unsigned long processor = strtoul (start, ccp, 10);
1179 if (*ccp != start && processor <= 15)
1180 return processor;
1181 }
1182
1183 case REG_TYPE_MMXWC:
1184 /* WC includes WCG. ??? I'm not sure this is true for all
1185 instructions that take WC registers. */
1186 if (reg && reg->type == REG_TYPE_MMXWCG)
1187 return reg->number;
1188 break;
1189
1190 default:
1191 break;
1192 }
1193
1194 return FAIL;
1195 }
1196
1197 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1198 return value is the register number or FAIL. */
1199
1200 static int
1201 arm_reg_parse (char **ccp, enum arm_reg_type type)
1202 {
1203 char *start = *ccp;
1204 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1205 int ret;
1206
1207 /* Do not allow a scalar (reg+index) to parse as a register. */
1208 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1209 return FAIL;
1210
1211 if (reg && reg->type == type)
1212 return reg->number;
1213
1214 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1215 return ret;
1216
1217 *ccp = start;
1218 return FAIL;
1219 }
1220
1221 /* Parse a Neon type specifier. *STR should point at the leading '.'
1222 character. Does no verification at this stage that the type fits the opcode
1223 properly. E.g.,
1224
1225 .i32.i32.s16
1226 .s32.f32
1227 .u16
1228
1229 Can all be legally parsed by this function.
1230
1231 Fills in neon_type struct pointer with parsed information, and updates STR
1232 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1233 type, FAIL if not. */
1234
1235 static int
1236 parse_neon_type (struct neon_type *type, char **str)
1237 {
1238 char *ptr = *str;
1239
1240 if (type)
1241 type->elems = 0;
1242
1243 while (type->elems < NEON_MAX_TYPE_ELS)
1244 {
1245 enum neon_el_type thistype = NT_untyped;
1246 unsigned thissize = -1u;
1247
1248 if (*ptr != '.')
1249 break;
1250
1251 ptr++;
1252
1253 /* Just a size without an explicit type. */
1254 if (ISDIGIT (*ptr))
1255 goto parsesize;
1256
1257 switch (TOLOWER (*ptr))
1258 {
1259 case 'i': thistype = NT_integer; break;
1260 case 'f': thistype = NT_float; break;
1261 case 'p': thistype = NT_poly; break;
1262 case 's': thistype = NT_signed; break;
1263 case 'u': thistype = NT_unsigned; break;
1264 case 'd':
1265 thistype = NT_float;
1266 thissize = 64;
1267 ptr++;
1268 goto done;
1269 default:
1270 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1271 return FAIL;
1272 }
1273
1274 ptr++;
1275
1276 /* .f is an abbreviation for .f32. */
1277 if (thistype == NT_float && !ISDIGIT (*ptr))
1278 thissize = 32;
1279 else
1280 {
1281 parsesize:
1282 thissize = strtoul (ptr, &ptr, 10);
1283
1284 if (thissize != 8 && thissize != 16 && thissize != 32
1285 && thissize != 64)
1286 {
1287 as_bad (_("bad size %d in type specifier"), thissize);
1288 return FAIL;
1289 }
1290 }
1291
1292 done:
1293 if (type)
1294 {
1295 type->el[type->elems].type = thistype;
1296 type->el[type->elems].size = thissize;
1297 type->elems++;
1298 }
1299 }
1300
1301 /* Empty/missing type is not a successful parse. */
1302 if (type->elems == 0)
1303 return FAIL;
1304
1305 *str = ptr;
1306
1307 return SUCCESS;
1308 }
1309
1310 /* Errors may be set multiple times during parsing or bit encoding
1311 (particularly in the Neon bits), but usually the earliest error which is set
1312 will be the most meaningful. Avoid overwriting it with later (cascading)
1313 errors by calling this function. */
1314
1315 static void
1316 first_error (const char *err)
1317 {
1318 if (!inst.error)
1319 inst.error = err;
1320 }
1321
1322 /* Parse a single type, e.g. ".s32", leading period included. */
1323 static int
1324 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1325 {
1326 char *str = *ccp;
1327 struct neon_type optype;
1328
1329 if (*str == '.')
1330 {
1331 if (parse_neon_type (&optype, &str) == SUCCESS)
1332 {
1333 if (optype.elems == 1)
1334 *vectype = optype.el[0];
1335 else
1336 {
1337 first_error (_("only one type should be specified for operand"));
1338 return FAIL;
1339 }
1340 }
1341 else
1342 {
1343 first_error (_("vector type expected"));
1344 return FAIL;
1345 }
1346 }
1347 else
1348 return FAIL;
1349
1350 *ccp = str;
1351
1352 return SUCCESS;
1353 }
1354
1355 /* Special meanings for indices (which have a range of 0-7), which will fit into
1356 a 4-bit integer. */
1357
1358 #define NEON_ALL_LANES 15
1359 #define NEON_INTERLEAVE_LANES 14
1360
1361 /* Parse either a register or a scalar, with an optional type. Return the
1362 register number, and optionally fill in the actual type of the register
1363 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1364 type/index information in *TYPEINFO. */
1365
1366 static int
1367 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1368 enum arm_reg_type *rtype,
1369 struct neon_typed_alias *typeinfo)
1370 {
1371 char *str = *ccp;
1372 struct reg_entry *reg = arm_reg_parse_multi (&str);
1373 struct neon_typed_alias atype;
1374 struct neon_type_el parsetype;
1375
1376 atype.defined = 0;
1377 atype.index = -1;
1378 atype.eltype.type = NT_invtype;
1379 atype.eltype.size = -1;
1380
1381 /* Try alternate syntax for some types of register. Note these are mutually
1382 exclusive with the Neon syntax extensions. */
1383 if (reg == NULL)
1384 {
1385 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1386 if (altreg != FAIL)
1387 *ccp = str;
1388 if (typeinfo)
1389 *typeinfo = atype;
1390 return altreg;
1391 }
1392
1393 /* Undo polymorphism when a set of register types may be accepted. */
1394 if ((type == REG_TYPE_NDQ
1395 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1396 || (type == REG_TYPE_VFSD
1397 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1398 || (type == REG_TYPE_NSDQ
1399 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1400 || reg->type == REG_TYPE_NQ))
1401 || (type == REG_TYPE_MMXWC
1402 && (reg->type == REG_TYPE_MMXWCG)))
1403 type = (enum arm_reg_type) reg->type;
1404
1405 if (type != reg->type)
1406 return FAIL;
1407
1408 if (reg->neon)
1409 atype = *reg->neon;
1410
1411 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1412 {
1413 if ((atype.defined & NTA_HASTYPE) != 0)
1414 {
1415 first_error (_("can't redefine type for operand"));
1416 return FAIL;
1417 }
1418 atype.defined |= NTA_HASTYPE;
1419 atype.eltype = parsetype;
1420 }
1421
1422 if (skip_past_char (&str, '[') == SUCCESS)
1423 {
1424 if (type != REG_TYPE_VFD)
1425 {
1426 first_error (_("only D registers may be indexed"));
1427 return FAIL;
1428 }
1429
1430 if ((atype.defined & NTA_HASINDEX) != 0)
1431 {
1432 first_error (_("can't change index for operand"));
1433 return FAIL;
1434 }
1435
1436 atype.defined |= NTA_HASINDEX;
1437
1438 if (skip_past_char (&str, ']') == SUCCESS)
1439 atype.index = NEON_ALL_LANES;
1440 else
1441 {
1442 expressionS exp;
1443
1444 my_get_expression (&exp, &str, GE_NO_PREFIX);
1445
1446 if (exp.X_op != O_constant)
1447 {
1448 first_error (_("constant expression required"));
1449 return FAIL;
1450 }
1451
1452 if (skip_past_char (&str, ']') == FAIL)
1453 return FAIL;
1454
1455 atype.index = exp.X_add_number;
1456 }
1457 }
1458
1459 if (typeinfo)
1460 *typeinfo = atype;
1461
1462 if (rtype)
1463 *rtype = type;
1464
1465 *ccp = str;
1466
1467 return reg->number;
1468 }
1469
1470 /* Like arm_reg_parse, but allow allow the following extra features:
1471 - If RTYPE is non-zero, return the (possibly restricted) type of the
1472 register (e.g. Neon double or quad reg when either has been requested).
1473 - If this is a Neon vector type with additional type information, fill
1474 in the struct pointed to by VECTYPE (if non-NULL).
1475 This function will fault on encountering a scalar. */
1476
1477 static int
1478 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1479 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1480 {
1481 struct neon_typed_alias atype;
1482 char *str = *ccp;
1483 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1484
1485 if (reg == FAIL)
1486 return FAIL;
1487
1488 /* Do not allow regname(... to parse as a register. */
1489 if (*str == '(')
1490 return FAIL;
1491
1492 /* Do not allow a scalar (reg+index) to parse as a register. */
1493 if ((atype.defined & NTA_HASINDEX) != 0)
1494 {
1495 first_error (_("register operand expected, but got scalar"));
1496 return FAIL;
1497 }
1498
1499 if (vectype)
1500 *vectype = atype.eltype;
1501
1502 *ccp = str;
1503
1504 return reg;
1505 }
1506
1507 #define NEON_SCALAR_REG(X) ((X) >> 4)
1508 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1509
1510 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1511 have enough information to be able to do a good job bounds-checking. So, we
1512 just do easy checks here, and do further checks later. */
1513
1514 static int
1515 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1516 {
1517 int reg;
1518 char *str = *ccp;
1519 struct neon_typed_alias atype;
1520
1521 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1522
1523 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1524 return FAIL;
1525
1526 if (atype.index == NEON_ALL_LANES)
1527 {
1528 first_error (_("scalar must have an index"));
1529 return FAIL;
1530 }
1531 else if (atype.index >= 64 / elsize)
1532 {
1533 first_error (_("scalar index out of range"));
1534 return FAIL;
1535 }
1536
1537 if (type)
1538 *type = atype.eltype;
1539
1540 *ccp = str;
1541
1542 return reg * 16 + atype.index;
1543 }
1544
1545 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1546
1547 static long
1548 parse_reg_list (char ** strp)
1549 {
1550 char * str = * strp;
1551 long range = 0;
1552 int another_range;
1553
1554 /* We come back here if we get ranges concatenated by '+' or '|'. */
1555 do
1556 {
1557 another_range = 0;
1558
1559 if (*str == '{')
1560 {
1561 int in_range = 0;
1562 int cur_reg = -1;
1563
1564 str++;
1565 do
1566 {
1567 int reg;
1568
1569 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1570 {
1571 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1572 return FAIL;
1573 }
1574
1575 if (in_range)
1576 {
1577 int i;
1578
1579 if (reg <= cur_reg)
1580 {
1581 first_error (_("bad range in register list"));
1582 return FAIL;
1583 }
1584
1585 for (i = cur_reg + 1; i < reg; i++)
1586 {
1587 if (range & (1 << i))
1588 as_tsktsk
1589 (_("Warning: duplicated register (r%d) in register list"),
1590 i);
1591 else
1592 range |= 1 << i;
1593 }
1594 in_range = 0;
1595 }
1596
1597 if (range & (1 << reg))
1598 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1599 reg);
1600 else if (reg <= cur_reg)
1601 as_tsktsk (_("Warning: register range not in ascending order"));
1602
1603 range |= 1 << reg;
1604 cur_reg = reg;
1605 }
1606 while (skip_past_comma (&str) != FAIL
1607 || (in_range = 1, *str++ == '-'));
1608 str--;
1609
1610 if (*str++ != '}')
1611 {
1612 first_error (_("missing `}'"));
1613 return FAIL;
1614 }
1615 }
1616 else
1617 {
1618 expressionS exp;
1619
1620 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1621 return FAIL;
1622
1623 if (exp.X_op == O_constant)
1624 {
1625 if (exp.X_add_number
1626 != (exp.X_add_number & 0x0000ffff))
1627 {
1628 inst.error = _("invalid register mask");
1629 return FAIL;
1630 }
1631
1632 if ((range & exp.X_add_number) != 0)
1633 {
1634 int regno = range & exp.X_add_number;
1635
1636 regno &= -regno;
1637 regno = (1 << regno) - 1;
1638 as_tsktsk
1639 (_("Warning: duplicated register (r%d) in register list"),
1640 regno);
1641 }
1642
1643 range |= exp.X_add_number;
1644 }
1645 else
1646 {
1647 if (inst.reloc.type != 0)
1648 {
1649 inst.error = _("expression too complex");
1650 return FAIL;
1651 }
1652
1653 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1654 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1655 inst.reloc.pc_rel = 0;
1656 }
1657 }
1658
1659 if (*str == '|' || *str == '+')
1660 {
1661 str++;
1662 another_range = 1;
1663 }
1664 }
1665 while (another_range);
1666
1667 *strp = str;
1668 return range;
1669 }
1670
1671 /* Types of registers in a list. */
1672
1673 enum reg_list_els
1674 {
1675 REGLIST_VFP_S,
1676 REGLIST_VFP_D,
1677 REGLIST_NEON_D
1678 };
1679
1680 /* Parse a VFP register list. If the string is invalid return FAIL.
1681 Otherwise return the number of registers, and set PBASE to the first
1682 register. Parses registers of type ETYPE.
1683 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1684 - Q registers can be used to specify pairs of D registers
1685 - { } can be omitted from around a singleton register list
1686 FIXME: This is not implemented, as it would require backtracking in
1687 some cases, e.g.:
1688 vtbl.8 d3,d4,d5
1689 This could be done (the meaning isn't really ambiguous), but doesn't
1690 fit in well with the current parsing framework.
1691 - 32 D registers may be used (also true for VFPv3).
1692 FIXME: Types are ignored in these register lists, which is probably a
1693 bug. */
1694
1695 static int
1696 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1697 {
1698 char *str = *ccp;
1699 int base_reg;
1700 int new_base;
1701 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1702 int max_regs = 0;
1703 int count = 0;
1704 int warned = 0;
1705 unsigned long mask = 0;
1706 int i;
1707
1708 if (*str != '{')
1709 {
1710 inst.error = _("expecting {");
1711 return FAIL;
1712 }
1713
1714 str++;
1715
1716 switch (etype)
1717 {
1718 case REGLIST_VFP_S:
1719 regtype = REG_TYPE_VFS;
1720 max_regs = 32;
1721 break;
1722
1723 case REGLIST_VFP_D:
1724 regtype = REG_TYPE_VFD;
1725 break;
1726
1727 case REGLIST_NEON_D:
1728 regtype = REG_TYPE_NDQ;
1729 break;
1730 }
1731
1732 if (etype != REGLIST_VFP_S)
1733 {
1734 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1735 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1736 {
1737 max_regs = 32;
1738 if (thumb_mode)
1739 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1740 fpu_vfp_ext_d32);
1741 else
1742 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1743 fpu_vfp_ext_d32);
1744 }
1745 else
1746 max_regs = 16;
1747 }
1748
1749 base_reg = max_regs;
1750
1751 do
1752 {
1753 int setmask = 1, addregs = 1;
1754
1755 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1756
1757 if (new_base == FAIL)
1758 {
1759 first_error (_(reg_expected_msgs[regtype]));
1760 return FAIL;
1761 }
1762
1763 if (new_base >= max_regs)
1764 {
1765 first_error (_("register out of range in list"));
1766 return FAIL;
1767 }
1768
1769 /* Note: a value of 2 * n is returned for the register Q<n>. */
1770 if (regtype == REG_TYPE_NQ)
1771 {
1772 setmask = 3;
1773 addregs = 2;
1774 }
1775
1776 if (new_base < base_reg)
1777 base_reg = new_base;
1778
1779 if (mask & (setmask << new_base))
1780 {
1781 first_error (_("invalid register list"));
1782 return FAIL;
1783 }
1784
1785 if ((mask >> new_base) != 0 && ! warned)
1786 {
1787 as_tsktsk (_("register list not in ascending order"));
1788 warned = 1;
1789 }
1790
1791 mask |= setmask << new_base;
1792 count += addregs;
1793
1794 if (*str == '-') /* We have the start of a range expression */
1795 {
1796 int high_range;
1797
1798 str++;
1799
1800 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1801 == FAIL)
1802 {
1803 inst.error = gettext (reg_expected_msgs[regtype]);
1804 return FAIL;
1805 }
1806
1807 if (high_range >= max_regs)
1808 {
1809 first_error (_("register out of range in list"));
1810 return FAIL;
1811 }
1812
1813 if (regtype == REG_TYPE_NQ)
1814 high_range = high_range + 1;
1815
1816 if (high_range <= new_base)
1817 {
1818 inst.error = _("register range not in ascending order");
1819 return FAIL;
1820 }
1821
1822 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1823 {
1824 if (mask & (setmask << new_base))
1825 {
1826 inst.error = _("invalid register list");
1827 return FAIL;
1828 }
1829
1830 mask |= setmask << new_base;
1831 count += addregs;
1832 }
1833 }
1834 }
1835 while (skip_past_comma (&str) != FAIL);
1836
1837 str++;
1838
1839 /* Sanity check -- should have raised a parse error above. */
1840 if (count == 0 || count > max_regs)
1841 abort ();
1842
1843 *pbase = base_reg;
1844
1845 /* Final test -- the registers must be consecutive. */
1846 mask >>= base_reg;
1847 for (i = 0; i < count; i++)
1848 {
1849 if ((mask & (1u << i)) == 0)
1850 {
1851 inst.error = _("non-contiguous register range");
1852 return FAIL;
1853 }
1854 }
1855
1856 *ccp = str;
1857
1858 return count;
1859 }
1860
1861 /* True if two alias types are the same. */
1862
1863 static bfd_boolean
1864 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1865 {
1866 if (!a && !b)
1867 return TRUE;
1868
1869 if (!a || !b)
1870 return FALSE;
1871
1872 if (a->defined != b->defined)
1873 return FALSE;
1874
1875 if ((a->defined & NTA_HASTYPE) != 0
1876 && (a->eltype.type != b->eltype.type
1877 || a->eltype.size != b->eltype.size))
1878 return FALSE;
1879
1880 if ((a->defined & NTA_HASINDEX) != 0
1881 && (a->index != b->index))
1882 return FALSE;
1883
1884 return TRUE;
1885 }
1886
1887 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1888 The base register is put in *PBASE.
1889 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1890 the return value.
1891 The register stride (minus one) is put in bit 4 of the return value.
1892 Bits [6:5] encode the list length (minus one).
1893 The type of the list elements is put in *ELTYPE, if non-NULL. */
1894
1895 #define NEON_LANE(X) ((X) & 0xf)
1896 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1897 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1898
1899 static int
1900 parse_neon_el_struct_list (char **str, unsigned *pbase,
1901 struct neon_type_el *eltype)
1902 {
1903 char *ptr = *str;
1904 int base_reg = -1;
1905 int reg_incr = -1;
1906 int count = 0;
1907 int lane = -1;
1908 int leading_brace = 0;
1909 enum arm_reg_type rtype = REG_TYPE_NDQ;
1910 const char *const incr_error = _("register stride must be 1 or 2");
1911 const char *const type_error = _("mismatched element/structure types in list");
1912 struct neon_typed_alias firsttype;
1913
1914 if (skip_past_char (&ptr, '{') == SUCCESS)
1915 leading_brace = 1;
1916
1917 do
1918 {
1919 struct neon_typed_alias atype;
1920 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1921
1922 if (getreg == FAIL)
1923 {
1924 first_error (_(reg_expected_msgs[rtype]));
1925 return FAIL;
1926 }
1927
1928 if (base_reg == -1)
1929 {
1930 base_reg = getreg;
1931 if (rtype == REG_TYPE_NQ)
1932 {
1933 reg_incr = 1;
1934 }
1935 firsttype = atype;
1936 }
1937 else if (reg_incr == -1)
1938 {
1939 reg_incr = getreg - base_reg;
1940 if (reg_incr < 1 || reg_incr > 2)
1941 {
1942 first_error (_(incr_error));
1943 return FAIL;
1944 }
1945 }
1946 else if (getreg != base_reg + reg_incr * count)
1947 {
1948 first_error (_(incr_error));
1949 return FAIL;
1950 }
1951
1952 if (! neon_alias_types_same (&atype, &firsttype))
1953 {
1954 first_error (_(type_error));
1955 return FAIL;
1956 }
1957
1958 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1959 modes. */
1960 if (ptr[0] == '-')
1961 {
1962 struct neon_typed_alias htype;
1963 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1964 if (lane == -1)
1965 lane = NEON_INTERLEAVE_LANES;
1966 else if (lane != NEON_INTERLEAVE_LANES)
1967 {
1968 first_error (_(type_error));
1969 return FAIL;
1970 }
1971 if (reg_incr == -1)
1972 reg_incr = 1;
1973 else if (reg_incr != 1)
1974 {
1975 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1976 return FAIL;
1977 }
1978 ptr++;
1979 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1980 if (hireg == FAIL)
1981 {
1982 first_error (_(reg_expected_msgs[rtype]));
1983 return FAIL;
1984 }
1985 if (! neon_alias_types_same (&htype, &firsttype))
1986 {
1987 first_error (_(type_error));
1988 return FAIL;
1989 }
1990 count += hireg + dregs - getreg;
1991 continue;
1992 }
1993
1994 /* If we're using Q registers, we can't use [] or [n] syntax. */
1995 if (rtype == REG_TYPE_NQ)
1996 {
1997 count += 2;
1998 continue;
1999 }
2000
2001 if ((atype.defined & NTA_HASINDEX) != 0)
2002 {
2003 if (lane == -1)
2004 lane = atype.index;
2005 else if (lane != atype.index)
2006 {
2007 first_error (_(type_error));
2008 return FAIL;
2009 }
2010 }
2011 else if (lane == -1)
2012 lane = NEON_INTERLEAVE_LANES;
2013 else if (lane != NEON_INTERLEAVE_LANES)
2014 {
2015 first_error (_(type_error));
2016 return FAIL;
2017 }
2018 count++;
2019 }
2020 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2021
2022 /* No lane set by [x]. We must be interleaving structures. */
2023 if (lane == -1)
2024 lane = NEON_INTERLEAVE_LANES;
2025
2026 /* Sanity check. */
2027 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2028 || (count > 1 && reg_incr == -1))
2029 {
2030 first_error (_("error parsing element/structure list"));
2031 return FAIL;
2032 }
2033
2034 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2035 {
2036 first_error (_("expected }"));
2037 return FAIL;
2038 }
2039
2040 if (reg_incr == -1)
2041 reg_incr = 1;
2042
2043 if (eltype)
2044 *eltype = firsttype.eltype;
2045
2046 *pbase = base_reg;
2047 *str = ptr;
2048
2049 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2050 }
2051
2052 /* Parse an explicit relocation suffix on an expression. This is
2053 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2054 arm_reloc_hsh contains no entries, so this function can only
2055 succeed if there is no () after the word. Returns -1 on error,
2056 BFD_RELOC_UNUSED if there wasn't any suffix. */
2057
2058 static int
2059 parse_reloc (char **str)
2060 {
2061 struct reloc_entry *r;
2062 char *p, *q;
2063
2064 if (**str != '(')
2065 return BFD_RELOC_UNUSED;
2066
2067 p = *str + 1;
2068 q = p;
2069
2070 while (*q && *q != ')' && *q != ',')
2071 q++;
2072 if (*q != ')')
2073 return -1;
2074
2075 if ((r = (struct reloc_entry *)
2076 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2077 return -1;
2078
2079 *str = q + 1;
2080 return r->reloc;
2081 }
2082
2083 /* Directives: register aliases. */
2084
2085 static struct reg_entry *
2086 insert_reg_alias (char *str, unsigned number, int type)
2087 {
2088 struct reg_entry *new_reg;
2089 const char *name;
2090
2091 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2092 {
2093 if (new_reg->builtin)
2094 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2095
2096 /* Only warn about a redefinition if it's not defined as the
2097 same register. */
2098 else if (new_reg->number != number || new_reg->type != type)
2099 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2100
2101 return NULL;
2102 }
2103
2104 name = xstrdup (str);
2105 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2106
2107 new_reg->name = name;
2108 new_reg->number = number;
2109 new_reg->type = type;
2110 new_reg->builtin = FALSE;
2111 new_reg->neon = NULL;
2112
2113 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2114 abort ();
2115
2116 return new_reg;
2117 }
2118
2119 static void
2120 insert_neon_reg_alias (char *str, int number, int type,
2121 struct neon_typed_alias *atype)
2122 {
2123 struct reg_entry *reg = insert_reg_alias (str, number, type);
2124
2125 if (!reg)
2126 {
2127 first_error (_("attempt to redefine typed alias"));
2128 return;
2129 }
2130
2131 if (atype)
2132 {
2133 reg->neon = (struct neon_typed_alias *)
2134 xmalloc (sizeof (struct neon_typed_alias));
2135 *reg->neon = *atype;
2136 }
2137 }
2138
2139 /* Look for the .req directive. This is of the form:
2140
2141 new_register_name .req existing_register_name
2142
2143 If we find one, or if it looks sufficiently like one that we want to
2144 handle any error here, return TRUE. Otherwise return FALSE. */
2145
2146 static bfd_boolean
2147 create_register_alias (char * newname, char *p)
2148 {
2149 struct reg_entry *old;
2150 char *oldname, *nbuf;
2151 size_t nlen;
2152
2153 /* The input scrubber ensures that whitespace after the mnemonic is
2154 collapsed to single spaces. */
2155 oldname = p;
2156 if (strncmp (oldname, " .req ", 6) != 0)
2157 return FALSE;
2158
2159 oldname += 6;
2160 if (*oldname == '\0')
2161 return FALSE;
2162
2163 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2164 if (!old)
2165 {
2166 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2167 return TRUE;
2168 }
2169
2170 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2171 the desired alias name, and p points to its end. If not, then
2172 the desired alias name is in the global original_case_string. */
2173 #ifdef TC_CASE_SENSITIVE
2174 nlen = p - newname;
2175 #else
2176 newname = original_case_string;
2177 nlen = strlen (newname);
2178 #endif
2179
2180 nbuf = (char *) alloca (nlen + 1);
2181 memcpy (nbuf, newname, nlen);
2182 nbuf[nlen] = '\0';
2183
2184 /* Create aliases under the new name as stated; an all-lowercase
2185 version of the new name; and an all-uppercase version of the new
2186 name. */
2187 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2188 {
2189 for (p = nbuf; *p; p++)
2190 *p = TOUPPER (*p);
2191
2192 if (strncmp (nbuf, newname, nlen))
2193 {
2194 /* If this attempt to create an additional alias fails, do not bother
2195 trying to create the all-lower case alias. We will fail and issue
2196 a second, duplicate error message. This situation arises when the
2197 programmer does something like:
2198 foo .req r0
2199 Foo .req r1
2200 The second .req creates the "Foo" alias but then fails to create
2201 the artificial FOO alias because it has already been created by the
2202 first .req. */
2203 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2204 return TRUE;
2205 }
2206
2207 for (p = nbuf; *p; p++)
2208 *p = TOLOWER (*p);
2209
2210 if (strncmp (nbuf, newname, nlen))
2211 insert_reg_alias (nbuf, old->number, old->type);
2212 }
2213
2214 return TRUE;
2215 }
2216
2217 /* Create a Neon typed/indexed register alias using directives, e.g.:
2218 X .dn d5.s32[1]
2219 Y .qn 6.s16
2220 Z .dn d7
2221 T .dn Z[0]
2222 These typed registers can be used instead of the types specified after the
2223 Neon mnemonic, so long as all operands given have types. Types can also be
2224 specified directly, e.g.:
2225 vadd d0.s32, d1.s32, d2.s32 */
2226
2227 static bfd_boolean
2228 create_neon_reg_alias (char *newname, char *p)
2229 {
2230 enum arm_reg_type basetype;
2231 struct reg_entry *basereg;
2232 struct reg_entry mybasereg;
2233 struct neon_type ntype;
2234 struct neon_typed_alias typeinfo;
2235 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2236 int namelen;
2237
2238 typeinfo.defined = 0;
2239 typeinfo.eltype.type = NT_invtype;
2240 typeinfo.eltype.size = -1;
2241 typeinfo.index = -1;
2242
2243 nameend = p;
2244
2245 if (strncmp (p, " .dn ", 5) == 0)
2246 basetype = REG_TYPE_VFD;
2247 else if (strncmp (p, " .qn ", 5) == 0)
2248 basetype = REG_TYPE_NQ;
2249 else
2250 return FALSE;
2251
2252 p += 5;
2253
2254 if (*p == '\0')
2255 return FALSE;
2256
2257 basereg = arm_reg_parse_multi (&p);
2258
2259 if (basereg && basereg->type != basetype)
2260 {
2261 as_bad (_("bad type for register"));
2262 return FALSE;
2263 }
2264
2265 if (basereg == NULL)
2266 {
2267 expressionS exp;
2268 /* Try parsing as an integer. */
2269 my_get_expression (&exp, &p, GE_NO_PREFIX);
2270 if (exp.X_op != O_constant)
2271 {
2272 as_bad (_("expression must be constant"));
2273 return FALSE;
2274 }
2275 basereg = &mybasereg;
2276 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2277 : exp.X_add_number;
2278 basereg->neon = 0;
2279 }
2280
2281 if (basereg->neon)
2282 typeinfo = *basereg->neon;
2283
2284 if (parse_neon_type (&ntype, &p) == SUCCESS)
2285 {
2286 /* We got a type. */
2287 if (typeinfo.defined & NTA_HASTYPE)
2288 {
2289 as_bad (_("can't redefine the type of a register alias"));
2290 return FALSE;
2291 }
2292
2293 typeinfo.defined |= NTA_HASTYPE;
2294 if (ntype.elems != 1)
2295 {
2296 as_bad (_("you must specify a single type only"));
2297 return FALSE;
2298 }
2299 typeinfo.eltype = ntype.el[0];
2300 }
2301
2302 if (skip_past_char (&p, '[') == SUCCESS)
2303 {
2304 expressionS exp;
2305 /* We got a scalar index. */
2306
2307 if (typeinfo.defined & NTA_HASINDEX)
2308 {
2309 as_bad (_("can't redefine the index of a scalar alias"));
2310 return FALSE;
2311 }
2312
2313 my_get_expression (&exp, &p, GE_NO_PREFIX);
2314
2315 if (exp.X_op != O_constant)
2316 {
2317 as_bad (_("scalar index must be constant"));
2318 return FALSE;
2319 }
2320
2321 typeinfo.defined |= NTA_HASINDEX;
2322 typeinfo.index = exp.X_add_number;
2323
2324 if (skip_past_char (&p, ']') == FAIL)
2325 {
2326 as_bad (_("expecting ]"));
2327 return FALSE;
2328 }
2329 }
2330
2331 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2332 the desired alias name, and p points to its end. If not, then
2333 the desired alias name is in the global original_case_string. */
2334 #ifdef TC_CASE_SENSITIVE
2335 namelen = nameend - newname;
2336 #else
2337 newname = original_case_string;
2338 namelen = strlen (newname);
2339 #endif
2340
2341 namebuf = (char *) alloca (namelen + 1);
2342 strncpy (namebuf, newname, namelen);
2343 namebuf[namelen] = '\0';
2344
2345 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2346 typeinfo.defined != 0 ? &typeinfo : NULL);
2347
2348 /* Insert name in all uppercase. */
2349 for (p = namebuf; *p; p++)
2350 *p = TOUPPER (*p);
2351
2352 if (strncmp (namebuf, newname, namelen))
2353 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2354 typeinfo.defined != 0 ? &typeinfo : NULL);
2355
2356 /* Insert name in all lowercase. */
2357 for (p = namebuf; *p; p++)
2358 *p = TOLOWER (*p);
2359
2360 if (strncmp (namebuf, newname, namelen))
2361 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2362 typeinfo.defined != 0 ? &typeinfo : NULL);
2363
2364 return TRUE;
2365 }
2366
2367 /* Should never be called, as .req goes between the alias and the
2368 register name, not at the beginning of the line. */
2369
2370 static void
2371 s_req (int a ATTRIBUTE_UNUSED)
2372 {
2373 as_bad (_("invalid syntax for .req directive"));
2374 }
2375
2376 static void
2377 s_dn (int a ATTRIBUTE_UNUSED)
2378 {
2379 as_bad (_("invalid syntax for .dn directive"));
2380 }
2381
2382 static void
2383 s_qn (int a ATTRIBUTE_UNUSED)
2384 {
2385 as_bad (_("invalid syntax for .qn directive"));
2386 }
2387
2388 /* The .unreq directive deletes an alias which was previously defined
2389 by .req. For example:
2390
2391 my_alias .req r11
2392 .unreq my_alias */
2393
2394 static void
2395 s_unreq (int a ATTRIBUTE_UNUSED)
2396 {
2397 char * name;
2398 char saved_char;
2399
2400 name = input_line_pointer;
2401
2402 while (*input_line_pointer != 0
2403 && *input_line_pointer != ' '
2404 && *input_line_pointer != '\n')
2405 ++input_line_pointer;
2406
2407 saved_char = *input_line_pointer;
2408 *input_line_pointer = 0;
2409
2410 if (!*name)
2411 as_bad (_("invalid syntax for .unreq directive"));
2412 else
2413 {
2414 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2415 name);
2416
2417 if (!reg)
2418 as_bad (_("unknown register alias '%s'"), name);
2419 else if (reg->builtin)
2420 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2421 name);
2422 else
2423 {
2424 char * p;
2425 char * nbuf;
2426
2427 hash_delete (arm_reg_hsh, name, FALSE);
2428 free ((char *) reg->name);
2429 if (reg->neon)
2430 free (reg->neon);
2431 free (reg);
2432
2433 /* Also locate the all upper case and all lower case versions.
2434 Do not complain if we cannot find one or the other as it
2435 was probably deleted above. */
2436
2437 nbuf = strdup (name);
2438 for (p = nbuf; *p; p++)
2439 *p = TOUPPER (*p);
2440 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2441 if (reg)
2442 {
2443 hash_delete (arm_reg_hsh, nbuf, FALSE);
2444 free ((char *) reg->name);
2445 if (reg->neon)
2446 free (reg->neon);
2447 free (reg);
2448 }
2449
2450 for (p = nbuf; *p; p++)
2451 *p = TOLOWER (*p);
2452 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2453 if (reg)
2454 {
2455 hash_delete (arm_reg_hsh, nbuf, FALSE);
2456 free ((char *) reg->name);
2457 if (reg->neon)
2458 free (reg->neon);
2459 free (reg);
2460 }
2461
2462 free (nbuf);
2463 }
2464 }
2465
2466 *input_line_pointer = saved_char;
2467 demand_empty_rest_of_line ();
2468 }
2469
2470 /* Directives: Instruction set selection. */
2471
2472 #ifdef OBJ_ELF
2473 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2474 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2475 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2476 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2477
2478 /* Create a new mapping symbol for the transition to STATE. */
2479
2480 static void
2481 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2482 {
2483 symbolS * symbolP;
2484 const char * symname;
2485 int type;
2486
2487 switch (state)
2488 {
2489 case MAP_DATA:
2490 symname = "$d";
2491 type = BSF_NO_FLAGS;
2492 break;
2493 case MAP_ARM:
2494 symname = "$a";
2495 type = BSF_NO_FLAGS;
2496 break;
2497 case MAP_THUMB:
2498 symname = "$t";
2499 type = BSF_NO_FLAGS;
2500 break;
2501 default:
2502 abort ();
2503 }
2504
2505 symbolP = symbol_new (symname, now_seg, value, frag);
2506 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2507
2508 switch (state)
2509 {
2510 case MAP_ARM:
2511 THUMB_SET_FUNC (symbolP, 0);
2512 ARM_SET_THUMB (symbolP, 0);
2513 ARM_SET_INTERWORK (symbolP, support_interwork);
2514 break;
2515
2516 case MAP_THUMB:
2517 THUMB_SET_FUNC (symbolP, 1);
2518 ARM_SET_THUMB (symbolP, 1);
2519 ARM_SET_INTERWORK (symbolP, support_interwork);
2520 break;
2521
2522 case MAP_DATA:
2523 default:
2524 break;
2525 }
2526
2527 /* Save the mapping symbols for future reference. Also check that
2528 we do not place two mapping symbols at the same offset within a
2529 frag. We'll handle overlap between frags in
2530 check_mapping_symbols.
2531
2532 If .fill or other data filling directive generates zero sized data,
2533 the mapping symbol for the following code will have the same value
2534 as the one generated for the data filling directive. In this case,
2535 we replace the old symbol with the new one at the same address. */
2536 if (value == 0)
2537 {
2538 if (frag->tc_frag_data.first_map != NULL)
2539 {
2540 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2541 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2542 }
2543 frag->tc_frag_data.first_map = symbolP;
2544 }
2545 if (frag->tc_frag_data.last_map != NULL)
2546 {
2547 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2548 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2549 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2550 }
2551 frag->tc_frag_data.last_map = symbolP;
2552 }
2553
2554 /* We must sometimes convert a region marked as code to data during
2555 code alignment, if an odd number of bytes have to be padded. The
2556 code mapping symbol is pushed to an aligned address. */
2557
2558 static void
2559 insert_data_mapping_symbol (enum mstate state,
2560 valueT value, fragS *frag, offsetT bytes)
2561 {
2562 /* If there was already a mapping symbol, remove it. */
2563 if (frag->tc_frag_data.last_map != NULL
2564 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2565 {
2566 symbolS *symp = frag->tc_frag_data.last_map;
2567
2568 if (value == 0)
2569 {
2570 know (frag->tc_frag_data.first_map == symp);
2571 frag->tc_frag_data.first_map = NULL;
2572 }
2573 frag->tc_frag_data.last_map = NULL;
2574 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2575 }
2576
2577 make_mapping_symbol (MAP_DATA, value, frag);
2578 make_mapping_symbol (state, value + bytes, frag);
2579 }
2580
2581 static void mapping_state_2 (enum mstate state, int max_chars);
2582
2583 /* Set the mapping state to STATE. Only call this when about to
2584 emit some STATE bytes to the file. */
2585
2586 void
2587 mapping_state (enum mstate state)
2588 {
2589 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2590
2591 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2592
2593 if (mapstate == state)
2594 /* The mapping symbol has already been emitted.
2595 There is nothing else to do. */
2596 return;
2597
2598 if (state == MAP_ARM || state == MAP_THUMB)
2599 /* PR gas/12931
2600 All ARM instructions require 4-byte alignment.
2601 (Almost) all Thumb instructions require 2-byte alignment.
2602
2603 When emitting instructions into any section, mark the section
2604 appropriately.
2605
2606 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2607 but themselves require 2-byte alignment; this applies to some
2608 PC- relative forms. However, these cases will invovle implicit
2609 literal pool generation or an explicit .align >=2, both of
2610 which will cause the section to me marked with sufficient
2611 alignment. Thus, we don't handle those cases here. */
2612 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2613
2614 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2615 /* This case will be evaluated later in the next else. */
2616 return;
2617 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2618 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2619 {
2620 /* Only add the symbol if the offset is > 0:
2621 if we're at the first frag, check it's size > 0;
2622 if we're not at the first frag, then for sure
2623 the offset is > 0. */
2624 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2625 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2626
2627 if (add_symbol)
2628 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2629 }
2630
2631 mapping_state_2 (state, 0);
2632 #undef TRANSITION
2633 }
2634
2635 /* Same as mapping_state, but MAX_CHARS bytes have already been
2636 allocated. Put the mapping symbol that far back. */
2637
2638 static void
2639 mapping_state_2 (enum mstate state, int max_chars)
2640 {
2641 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2642
2643 if (!SEG_NORMAL (now_seg))
2644 return;
2645
2646 if (mapstate == state)
2647 /* The mapping symbol has already been emitted.
2648 There is nothing else to do. */
2649 return;
2650
2651 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2652 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2653 }
2654 #else
2655 #define mapping_state(x) ((void)0)
2656 #define mapping_state_2(x, y) ((void)0)
2657 #endif
2658
2659 /* Find the real, Thumb encoded start of a Thumb function. */
2660
2661 #ifdef OBJ_COFF
2662 static symbolS *
2663 find_real_start (symbolS * symbolP)
2664 {
2665 char * real_start;
2666 const char * name = S_GET_NAME (symbolP);
2667 symbolS * new_target;
2668
2669 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2670 #define STUB_NAME ".real_start_of"
2671
2672 if (name == NULL)
2673 abort ();
2674
2675 /* The compiler may generate BL instructions to local labels because
2676 it needs to perform a branch to a far away location. These labels
2677 do not have a corresponding ".real_start_of" label. We check
2678 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2679 the ".real_start_of" convention for nonlocal branches. */
2680 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2681 return symbolP;
2682
2683 real_start = ACONCAT ((STUB_NAME, name, NULL));
2684 new_target = symbol_find (real_start);
2685
2686 if (new_target == NULL)
2687 {
2688 as_warn (_("Failed to find real start of function: %s\n"), name);
2689 new_target = symbolP;
2690 }
2691
2692 return new_target;
2693 }
2694 #endif
2695
2696 static void
2697 opcode_select (int width)
2698 {
2699 switch (width)
2700 {
2701 case 16:
2702 if (! thumb_mode)
2703 {
2704 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2705 as_bad (_("selected processor does not support THUMB opcodes"));
2706
2707 thumb_mode = 1;
2708 /* No need to force the alignment, since we will have been
2709 coming from ARM mode, which is word-aligned. */
2710 record_alignment (now_seg, 1);
2711 }
2712 break;
2713
2714 case 32:
2715 if (thumb_mode)
2716 {
2717 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2718 as_bad (_("selected processor does not support ARM opcodes"));
2719
2720 thumb_mode = 0;
2721
2722 if (!need_pass_2)
2723 frag_align (2, 0, 0);
2724
2725 record_alignment (now_seg, 1);
2726 }
2727 break;
2728
2729 default:
2730 as_bad (_("invalid instruction size selected (%d)"), width);
2731 }
2732 }
2733
2734 static void
2735 s_arm (int ignore ATTRIBUTE_UNUSED)
2736 {
2737 opcode_select (32);
2738 demand_empty_rest_of_line ();
2739 }
2740
2741 static void
2742 s_thumb (int ignore ATTRIBUTE_UNUSED)
2743 {
2744 opcode_select (16);
2745 demand_empty_rest_of_line ();
2746 }
2747
2748 static void
2749 s_code (int unused ATTRIBUTE_UNUSED)
2750 {
2751 int temp;
2752
2753 temp = get_absolute_expression ();
2754 switch (temp)
2755 {
2756 case 16:
2757 case 32:
2758 opcode_select (temp);
2759 break;
2760
2761 default:
2762 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2763 }
2764 }
2765
2766 static void
2767 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2768 {
2769 /* If we are not already in thumb mode go into it, EVEN if
2770 the target processor does not support thumb instructions.
2771 This is used by gcc/config/arm/lib1funcs.asm for example
2772 to compile interworking support functions even if the
2773 target processor should not support interworking. */
2774 if (! thumb_mode)
2775 {
2776 thumb_mode = 2;
2777 record_alignment (now_seg, 1);
2778 }
2779
2780 demand_empty_rest_of_line ();
2781 }
2782
2783 static void
2784 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2785 {
2786 s_thumb (0);
2787
2788 /* The following label is the name/address of the start of a Thumb function.
2789 We need to know this for the interworking support. */
2790 label_is_thumb_function_name = TRUE;
2791 }
2792
2793 /* Perform a .set directive, but also mark the alias as
2794 being a thumb function. */
2795
2796 static void
2797 s_thumb_set (int equiv)
2798 {
2799 /* XXX the following is a duplicate of the code for s_set() in read.c
2800 We cannot just call that code as we need to get at the symbol that
2801 is created. */
2802 char * name;
2803 char delim;
2804 char * end_name;
2805 symbolS * symbolP;
2806
2807 /* Especial apologies for the random logic:
2808 This just grew, and could be parsed much more simply!
2809 Dean - in haste. */
2810 name = input_line_pointer;
2811 delim = get_symbol_end ();
2812 end_name = input_line_pointer;
2813 *end_name = delim;
2814
2815 if (*input_line_pointer != ',')
2816 {
2817 *end_name = 0;
2818 as_bad (_("expected comma after name \"%s\""), name);
2819 *end_name = delim;
2820 ignore_rest_of_line ();
2821 return;
2822 }
2823
2824 input_line_pointer++;
2825 *end_name = 0;
2826
2827 if (name[0] == '.' && name[1] == '\0')
2828 {
2829 /* XXX - this should not happen to .thumb_set. */
2830 abort ();
2831 }
2832
2833 if ((symbolP = symbol_find (name)) == NULL
2834 && (symbolP = md_undefined_symbol (name)) == NULL)
2835 {
2836 #ifndef NO_LISTING
2837 /* When doing symbol listings, play games with dummy fragments living
2838 outside the normal fragment chain to record the file and line info
2839 for this symbol. */
2840 if (listing & LISTING_SYMBOLS)
2841 {
2842 extern struct list_info_struct * listing_tail;
2843 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2844
2845 memset (dummy_frag, 0, sizeof (fragS));
2846 dummy_frag->fr_type = rs_fill;
2847 dummy_frag->line = listing_tail;
2848 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2849 dummy_frag->fr_symbol = symbolP;
2850 }
2851 else
2852 #endif
2853 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2854
2855 #ifdef OBJ_COFF
2856 /* "set" symbols are local unless otherwise specified. */
2857 SF_SET_LOCAL (symbolP);
2858 #endif /* OBJ_COFF */
2859 } /* Make a new symbol. */
2860
2861 symbol_table_insert (symbolP);
2862
2863 * end_name = delim;
2864
2865 if (equiv
2866 && S_IS_DEFINED (symbolP)
2867 && S_GET_SEGMENT (symbolP) != reg_section)
2868 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2869
2870 pseudo_set (symbolP);
2871
2872 demand_empty_rest_of_line ();
2873
2874 /* XXX Now we come to the Thumb specific bit of code. */
2875
2876 THUMB_SET_FUNC (symbolP, 1);
2877 ARM_SET_THUMB (symbolP, 1);
2878 #if defined OBJ_ELF || defined OBJ_COFF
2879 ARM_SET_INTERWORK (symbolP, support_interwork);
2880 #endif
2881 }
2882
2883 /* Directives: Mode selection. */
2884
2885 /* .syntax [unified|divided] - choose the new unified syntax
2886 (same for Arm and Thumb encoding, modulo slight differences in what
2887 can be represented) or the old divergent syntax for each mode. */
2888 static void
2889 s_syntax (int unused ATTRIBUTE_UNUSED)
2890 {
2891 char *name, delim;
2892
2893 name = input_line_pointer;
2894 delim = get_symbol_end ();
2895
2896 if (!strcasecmp (name, "unified"))
2897 unified_syntax = TRUE;
2898 else if (!strcasecmp (name, "divided"))
2899 unified_syntax = FALSE;
2900 else
2901 {
2902 as_bad (_("unrecognized syntax mode \"%s\""), name);
2903 return;
2904 }
2905 *input_line_pointer = delim;
2906 demand_empty_rest_of_line ();
2907 }
2908
2909 /* Directives: sectioning and alignment. */
2910
2911 /* Same as s_align_ptwo but align 0 => align 2. */
2912
2913 static void
2914 s_align (int unused ATTRIBUTE_UNUSED)
2915 {
2916 int temp;
2917 bfd_boolean fill_p;
2918 long temp_fill;
2919 long max_alignment = 15;
2920
2921 temp = get_absolute_expression ();
2922 if (temp > max_alignment)
2923 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2924 else if (temp < 0)
2925 {
2926 as_bad (_("alignment negative. 0 assumed."));
2927 temp = 0;
2928 }
2929
2930 if (*input_line_pointer == ',')
2931 {
2932 input_line_pointer++;
2933 temp_fill = get_absolute_expression ();
2934 fill_p = TRUE;
2935 }
2936 else
2937 {
2938 fill_p = FALSE;
2939 temp_fill = 0;
2940 }
2941
2942 if (!temp)
2943 temp = 2;
2944
2945 /* Only make a frag if we HAVE to. */
2946 if (temp && !need_pass_2)
2947 {
2948 if (!fill_p && subseg_text_p (now_seg))
2949 frag_align_code (temp, 0);
2950 else
2951 frag_align (temp, (int) temp_fill, 0);
2952 }
2953 demand_empty_rest_of_line ();
2954
2955 record_alignment (now_seg, temp);
2956 }
2957
2958 static void
2959 s_bss (int ignore ATTRIBUTE_UNUSED)
2960 {
2961 /* We don't support putting frags in the BSS segment, we fake it by
2962 marking in_bss, then looking at s_skip for clues. */
2963 subseg_set (bss_section, 0);
2964 demand_empty_rest_of_line ();
2965
2966 #ifdef md_elf_section_change_hook
2967 md_elf_section_change_hook ();
2968 #endif
2969 }
2970
2971 static void
2972 s_even (int ignore ATTRIBUTE_UNUSED)
2973 {
2974 /* Never make frag if expect extra pass. */
2975 if (!need_pass_2)
2976 frag_align (1, 0, 0);
2977
2978 record_alignment (now_seg, 1);
2979
2980 demand_empty_rest_of_line ();
2981 }
2982
2983 /* Directives: Literal pools. */
2984
2985 static literal_pool *
2986 find_literal_pool (void)
2987 {
2988 literal_pool * pool;
2989
2990 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2991 {
2992 if (pool->section == now_seg
2993 && pool->sub_section == now_subseg)
2994 break;
2995 }
2996
2997 return pool;
2998 }
2999
3000 static literal_pool *
3001 find_or_make_literal_pool (void)
3002 {
3003 /* Next literal pool ID number. */
3004 static unsigned int latest_pool_num = 1;
3005 literal_pool * pool;
3006
3007 pool = find_literal_pool ();
3008
3009 if (pool == NULL)
3010 {
3011 /* Create a new pool. */
3012 pool = (literal_pool *) xmalloc (sizeof (* pool));
3013 if (! pool)
3014 return NULL;
3015
3016 pool->next_free_entry = 0;
3017 pool->section = now_seg;
3018 pool->sub_section = now_subseg;
3019 pool->next = list_of_pools;
3020 pool->symbol = NULL;
3021
3022 /* Add it to the list. */
3023 list_of_pools = pool;
3024 }
3025
3026 /* New pools, and emptied pools, will have a NULL symbol. */
3027 if (pool->symbol == NULL)
3028 {
3029 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3030 (valueT) 0, &zero_address_frag);
3031 pool->id = latest_pool_num ++;
3032 }
3033
3034 /* Done. */
3035 return pool;
3036 }
3037
3038 /* Add the literal in the global 'inst'
3039 structure to the relevant literal pool. */
3040
3041 static int
3042 add_to_lit_pool (void)
3043 {
3044 literal_pool * pool;
3045 unsigned int entry;
3046
3047 pool = find_or_make_literal_pool ();
3048
3049 /* Check if this literal value is already in the pool. */
3050 for (entry = 0; entry < pool->next_free_entry; entry ++)
3051 {
3052 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3053 && (inst.reloc.exp.X_op == O_constant)
3054 && (pool->literals[entry].X_add_number
3055 == inst.reloc.exp.X_add_number)
3056 && (pool->literals[entry].X_unsigned
3057 == inst.reloc.exp.X_unsigned))
3058 break;
3059
3060 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3061 && (inst.reloc.exp.X_op == O_symbol)
3062 && (pool->literals[entry].X_add_number
3063 == inst.reloc.exp.X_add_number)
3064 && (pool->literals[entry].X_add_symbol
3065 == inst.reloc.exp.X_add_symbol)
3066 && (pool->literals[entry].X_op_symbol
3067 == inst.reloc.exp.X_op_symbol))
3068 break;
3069 }
3070
3071 /* Do we need to create a new entry? */
3072 if (entry == pool->next_free_entry)
3073 {
3074 if (entry >= MAX_LITERAL_POOL_SIZE)
3075 {
3076 inst.error = _("literal pool overflow");
3077 return FAIL;
3078 }
3079
3080 pool->literals[entry] = inst.reloc.exp;
3081 #ifdef OBJ_ELF
3082 /* PR ld/12974: Record the location of the first source line to reference
3083 this entry in the literal pool. If it turns out during linking that the
3084 symbol does not exist we will be able to give an accurate line number for
3085 the (first use of the) missing reference. */
3086 if (debug_type == DEBUG_DWARF2)
3087 dwarf2_where (pool->locs + entry);
3088 #endif
3089 pool->next_free_entry += 1;
3090 }
3091
3092 inst.reloc.exp.X_op = O_symbol;
3093 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3094 inst.reloc.exp.X_add_symbol = pool->symbol;
3095
3096 return SUCCESS;
3097 }
3098
3099 /* Can't use symbol_new here, so have to create a symbol and then at
3100 a later date assign it a value. Thats what these functions do. */
3101
3102 static void
3103 symbol_locate (symbolS * symbolP,
3104 const char * name, /* It is copied, the caller can modify. */
3105 segT segment, /* Segment identifier (SEG_<something>). */
3106 valueT valu, /* Symbol value. */
3107 fragS * frag) /* Associated fragment. */
3108 {
3109 unsigned int name_length;
3110 char * preserved_copy_of_name;
3111
3112 name_length = strlen (name) + 1; /* +1 for \0. */
3113 obstack_grow (&notes, name, name_length);
3114 preserved_copy_of_name = (char *) obstack_finish (&notes);
3115
3116 #ifdef tc_canonicalize_symbol_name
3117 preserved_copy_of_name =
3118 tc_canonicalize_symbol_name (preserved_copy_of_name);
3119 #endif
3120
3121 S_SET_NAME (symbolP, preserved_copy_of_name);
3122
3123 S_SET_SEGMENT (symbolP, segment);
3124 S_SET_VALUE (symbolP, valu);
3125 symbol_clear_list_pointers (symbolP);
3126
3127 symbol_set_frag (symbolP, frag);
3128
3129 /* Link to end of symbol chain. */
3130 {
3131 extern int symbol_table_frozen;
3132
3133 if (symbol_table_frozen)
3134 abort ();
3135 }
3136
3137 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3138
3139 obj_symbol_new_hook (symbolP);
3140
3141 #ifdef tc_symbol_new_hook
3142 tc_symbol_new_hook (symbolP);
3143 #endif
3144
3145 #ifdef DEBUG_SYMS
3146 verify_symbol_chain (symbol_rootP, symbol_lastP);
3147 #endif /* DEBUG_SYMS */
3148 }
3149
3150
3151 static void
3152 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3153 {
3154 unsigned int entry;
3155 literal_pool * pool;
3156 char sym_name[20];
3157
3158 pool = find_literal_pool ();
3159 if (pool == NULL
3160 || pool->symbol == NULL
3161 || pool->next_free_entry == 0)
3162 return;
3163
3164 mapping_state (MAP_DATA);
3165
3166 /* Align pool as you have word accesses.
3167 Only make a frag if we have to. */
3168 if (!need_pass_2)
3169 frag_align (2, 0, 0);
3170
3171 record_alignment (now_seg, 2);
3172
3173 sprintf (sym_name, "$$lit_\002%x", pool->id);
3174
3175 symbol_locate (pool->symbol, sym_name, now_seg,
3176 (valueT) frag_now_fix (), frag_now);
3177 symbol_table_insert (pool->symbol);
3178
3179 ARM_SET_THUMB (pool->symbol, thumb_mode);
3180
3181 #if defined OBJ_COFF || defined OBJ_ELF
3182 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3183 #endif
3184
3185 for (entry = 0; entry < pool->next_free_entry; entry ++)
3186 {
3187 #ifdef OBJ_ELF
3188 if (debug_type == DEBUG_DWARF2)
3189 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3190 #endif
3191 /* First output the expression in the instruction to the pool. */
3192 emit_expr (&(pool->literals[entry]), 4); /* .word */
3193 }
3194
3195 /* Mark the pool as empty. */
3196 pool->next_free_entry = 0;
3197 pool->symbol = NULL;
3198 }
3199
3200 #ifdef OBJ_ELF
3201 /* Forward declarations for functions below, in the MD interface
3202 section. */
3203 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3204 static valueT create_unwind_entry (int);
3205 static void start_unwind_section (const segT, int);
3206 static void add_unwind_opcode (valueT, int);
3207 static void flush_pending_unwind (void);
3208
3209 /* Directives: Data. */
3210
3211 static void
3212 s_arm_elf_cons (int nbytes)
3213 {
3214 expressionS exp;
3215
3216 #ifdef md_flush_pending_output
3217 md_flush_pending_output ();
3218 #endif
3219
3220 if (is_it_end_of_statement ())
3221 {
3222 demand_empty_rest_of_line ();
3223 return;
3224 }
3225
3226 #ifdef md_cons_align
3227 md_cons_align (nbytes);
3228 #endif
3229
3230 mapping_state (MAP_DATA);
3231 do
3232 {
3233 int reloc;
3234 char *base = input_line_pointer;
3235
3236 expression (& exp);
3237
3238 if (exp.X_op != O_symbol)
3239 emit_expr (&exp, (unsigned int) nbytes);
3240 else
3241 {
3242 char *before_reloc = input_line_pointer;
3243 reloc = parse_reloc (&input_line_pointer);
3244 if (reloc == -1)
3245 {
3246 as_bad (_("unrecognized relocation suffix"));
3247 ignore_rest_of_line ();
3248 return;
3249 }
3250 else if (reloc == BFD_RELOC_UNUSED)
3251 emit_expr (&exp, (unsigned int) nbytes);
3252 else
3253 {
3254 reloc_howto_type *howto = (reloc_howto_type *)
3255 bfd_reloc_type_lookup (stdoutput,
3256 (bfd_reloc_code_real_type) reloc);
3257 int size = bfd_get_reloc_size (howto);
3258
3259 if (reloc == BFD_RELOC_ARM_PLT32)
3260 {
3261 as_bad (_("(plt) is only valid on branch targets"));
3262 reloc = BFD_RELOC_UNUSED;
3263 size = 0;
3264 }
3265
3266 if (size > nbytes)
3267 as_bad (_("%s relocations do not fit in %d bytes"),
3268 howto->name, nbytes);
3269 else
3270 {
3271 /* We've parsed an expression stopping at O_symbol.
3272 But there may be more expression left now that we
3273 have parsed the relocation marker. Parse it again.
3274 XXX Surely there is a cleaner way to do this. */
3275 char *p = input_line_pointer;
3276 int offset;
3277 char *save_buf = (char *) alloca (input_line_pointer - base);
3278 memcpy (save_buf, base, input_line_pointer - base);
3279 memmove (base + (input_line_pointer - before_reloc),
3280 base, before_reloc - base);
3281
3282 input_line_pointer = base + (input_line_pointer-before_reloc);
3283 expression (&exp);
3284 memcpy (base, save_buf, p - base);
3285
3286 offset = nbytes - size;
3287 p = frag_more ((int) nbytes);
3288 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3289 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3290 }
3291 }
3292 }
3293 }
3294 while (*input_line_pointer++ == ',');
3295
3296 /* Put terminator back into stream. */
3297 input_line_pointer --;
3298 demand_empty_rest_of_line ();
3299 }
3300
3301 /* Emit an expression containing a 32-bit thumb instruction.
3302 Implementation based on put_thumb32_insn. */
3303
3304 static void
3305 emit_thumb32_expr (expressionS * exp)
3306 {
3307 expressionS exp_high = *exp;
3308
3309 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3310 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3311 exp->X_add_number &= 0xffff;
3312 emit_expr (exp, (unsigned int) THUMB_SIZE);
3313 }
3314
3315 /* Guess the instruction size based on the opcode. */
3316
3317 static int
3318 thumb_insn_size (int opcode)
3319 {
3320 if ((unsigned int) opcode < 0xe800u)
3321 return 2;
3322 else if ((unsigned int) opcode >= 0xe8000000u)
3323 return 4;
3324 else
3325 return 0;
3326 }
3327
3328 static bfd_boolean
3329 emit_insn (expressionS *exp, int nbytes)
3330 {
3331 int size = 0;
3332
3333 if (exp->X_op == O_constant)
3334 {
3335 size = nbytes;
3336
3337 if (size == 0)
3338 size = thumb_insn_size (exp->X_add_number);
3339
3340 if (size != 0)
3341 {
3342 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3343 {
3344 as_bad (_(".inst.n operand too big. "\
3345 "Use .inst.w instead"));
3346 size = 0;
3347 }
3348 else
3349 {
3350 if (now_it.state == AUTOMATIC_IT_BLOCK)
3351 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3352 else
3353 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3354
3355 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3356 emit_thumb32_expr (exp);
3357 else
3358 emit_expr (exp, (unsigned int) size);
3359
3360 it_fsm_post_encode ();
3361 }
3362 }
3363 else
3364 as_bad (_("cannot determine Thumb instruction size. " \
3365 "Use .inst.n/.inst.w instead"));
3366 }
3367 else
3368 as_bad (_("constant expression required"));
3369
3370 return (size != 0);
3371 }
3372
3373 /* Like s_arm_elf_cons but do not use md_cons_align and
3374 set the mapping state to MAP_ARM/MAP_THUMB. */
3375
3376 static void
3377 s_arm_elf_inst (int nbytes)
3378 {
3379 if (is_it_end_of_statement ())
3380 {
3381 demand_empty_rest_of_line ();
3382 return;
3383 }
3384
3385 /* Calling mapping_state () here will not change ARM/THUMB,
3386 but will ensure not to be in DATA state. */
3387
3388 if (thumb_mode)
3389 mapping_state (MAP_THUMB);
3390 else
3391 {
3392 if (nbytes != 0)
3393 {
3394 as_bad (_("width suffixes are invalid in ARM mode"));
3395 ignore_rest_of_line ();
3396 return;
3397 }
3398
3399 nbytes = 4;
3400
3401 mapping_state (MAP_ARM);
3402 }
3403
3404 do
3405 {
3406 expressionS exp;
3407
3408 expression (& exp);
3409
3410 if (! emit_insn (& exp, nbytes))
3411 {
3412 ignore_rest_of_line ();
3413 return;
3414 }
3415 }
3416 while (*input_line_pointer++ == ',');
3417
3418 /* Put terminator back into stream. */
3419 input_line_pointer --;
3420 demand_empty_rest_of_line ();
3421 }
3422
3423 /* Parse a .rel31 directive. */
3424
3425 static void
3426 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3427 {
3428 expressionS exp;
3429 char *p;
3430 valueT highbit;
3431
3432 highbit = 0;
3433 if (*input_line_pointer == '1')
3434 highbit = 0x80000000;
3435 else if (*input_line_pointer != '0')
3436 as_bad (_("expected 0 or 1"));
3437
3438 input_line_pointer++;
3439 if (*input_line_pointer != ',')
3440 as_bad (_("missing comma"));
3441 input_line_pointer++;
3442
3443 #ifdef md_flush_pending_output
3444 md_flush_pending_output ();
3445 #endif
3446
3447 #ifdef md_cons_align
3448 md_cons_align (4);
3449 #endif
3450
3451 mapping_state (MAP_DATA);
3452
3453 expression (&exp);
3454
3455 p = frag_more (4);
3456 md_number_to_chars (p, highbit, 4);
3457 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3458 BFD_RELOC_ARM_PREL31);
3459
3460 demand_empty_rest_of_line ();
3461 }
3462
3463 /* Directives: AEABI stack-unwind tables. */
3464
3465 /* Parse an unwind_fnstart directive. Simply records the current location. */
3466
3467 static void
3468 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3469 {
3470 demand_empty_rest_of_line ();
3471 if (unwind.proc_start)
3472 {
3473 as_bad (_("duplicate .fnstart directive"));
3474 return;
3475 }
3476
3477 /* Mark the start of the function. */
3478 unwind.proc_start = expr_build_dot ();
3479
3480 /* Reset the rest of the unwind info. */
3481 unwind.opcode_count = 0;
3482 unwind.table_entry = NULL;
3483 unwind.personality_routine = NULL;
3484 unwind.personality_index = -1;
3485 unwind.frame_size = 0;
3486 unwind.fp_offset = 0;
3487 unwind.fp_reg = REG_SP;
3488 unwind.fp_used = 0;
3489 unwind.sp_restored = 0;
3490 }
3491
3492
3493 /* Parse a handlerdata directive. Creates the exception handling table entry
3494 for the function. */
3495
3496 static void
3497 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3498 {
3499 demand_empty_rest_of_line ();
3500 if (!unwind.proc_start)
3501 as_bad (MISSING_FNSTART);
3502
3503 if (unwind.table_entry)
3504 as_bad (_("duplicate .handlerdata directive"));
3505
3506 create_unwind_entry (1);
3507 }
3508
3509 /* Parse an unwind_fnend directive. Generates the index table entry. */
3510
3511 static void
3512 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3513 {
3514 long where;
3515 char *ptr;
3516 valueT val;
3517 unsigned int marked_pr_dependency;
3518
3519 demand_empty_rest_of_line ();
3520
3521 if (!unwind.proc_start)
3522 {
3523 as_bad (_(".fnend directive without .fnstart"));
3524 return;
3525 }
3526
3527 /* Add eh table entry. */
3528 if (unwind.table_entry == NULL)
3529 val = create_unwind_entry (0);
3530 else
3531 val = 0;
3532
3533 /* Add index table entry. This is two words. */
3534 start_unwind_section (unwind.saved_seg, 1);
3535 frag_align (2, 0, 0);
3536 record_alignment (now_seg, 2);
3537
3538 ptr = frag_more (8);
3539 where = frag_now_fix () - 8;
3540
3541 /* Self relative offset of the function start. */
3542 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3543 BFD_RELOC_ARM_PREL31);
3544
3545 /* Indicate dependency on EHABI-defined personality routines to the
3546 linker, if it hasn't been done already. */
3547 marked_pr_dependency
3548 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3549 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3550 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3551 {
3552 static const char *const name[] =
3553 {
3554 "__aeabi_unwind_cpp_pr0",
3555 "__aeabi_unwind_cpp_pr1",
3556 "__aeabi_unwind_cpp_pr2"
3557 };
3558 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3559 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3560 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3561 |= 1 << unwind.personality_index;
3562 }
3563
3564 if (val)
3565 /* Inline exception table entry. */
3566 md_number_to_chars (ptr + 4, val, 4);
3567 else
3568 /* Self relative offset of the table entry. */
3569 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3570 BFD_RELOC_ARM_PREL31);
3571
3572 /* Restore the original section. */
3573 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3574
3575 unwind.proc_start = NULL;
3576 }
3577
3578
3579 /* Parse an unwind_cantunwind directive. */
3580
3581 static void
3582 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3583 {
3584 demand_empty_rest_of_line ();
3585 if (!unwind.proc_start)
3586 as_bad (MISSING_FNSTART);
3587
3588 if (unwind.personality_routine || unwind.personality_index != -1)
3589 as_bad (_("personality routine specified for cantunwind frame"));
3590
3591 unwind.personality_index = -2;
3592 }
3593
3594
3595 /* Parse a personalityindex directive. */
3596
3597 static void
3598 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3599 {
3600 expressionS exp;
3601
3602 if (!unwind.proc_start)
3603 as_bad (MISSING_FNSTART);
3604
3605 if (unwind.personality_routine || unwind.personality_index != -1)
3606 as_bad (_("duplicate .personalityindex directive"));
3607
3608 expression (&exp);
3609
3610 if (exp.X_op != O_constant
3611 || exp.X_add_number < 0 || exp.X_add_number > 15)
3612 {
3613 as_bad (_("bad personality routine number"));
3614 ignore_rest_of_line ();
3615 return;
3616 }
3617
3618 unwind.personality_index = exp.X_add_number;
3619
3620 demand_empty_rest_of_line ();
3621 }
3622
3623
3624 /* Parse a personality directive. */
3625
3626 static void
3627 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3628 {
3629 char *name, *p, c;
3630
3631 if (!unwind.proc_start)
3632 as_bad (MISSING_FNSTART);
3633
3634 if (unwind.personality_routine || unwind.personality_index != -1)
3635 as_bad (_("duplicate .personality directive"));
3636
3637 name = input_line_pointer;
3638 c = get_symbol_end ();
3639 p = input_line_pointer;
3640 unwind.personality_routine = symbol_find_or_make (name);
3641 *p = c;
3642 demand_empty_rest_of_line ();
3643 }
3644
3645
3646 /* Parse a directive saving core registers. */
3647
3648 static void
3649 s_arm_unwind_save_core (void)
3650 {
3651 valueT op;
3652 long range;
3653 int n;
3654
3655 range = parse_reg_list (&input_line_pointer);
3656 if (range == FAIL)
3657 {
3658 as_bad (_("expected register list"));
3659 ignore_rest_of_line ();
3660 return;
3661 }
3662
3663 demand_empty_rest_of_line ();
3664
3665 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3666 into .unwind_save {..., sp...}. We aren't bothered about the value of
3667 ip because it is clobbered by calls. */
3668 if (unwind.sp_restored && unwind.fp_reg == 12
3669 && (range & 0x3000) == 0x1000)
3670 {
3671 unwind.opcode_count--;
3672 unwind.sp_restored = 0;
3673 range = (range | 0x2000) & ~0x1000;
3674 unwind.pending_offset = 0;
3675 }
3676
3677 /* Pop r4-r15. */
3678 if (range & 0xfff0)
3679 {
3680 /* See if we can use the short opcodes. These pop a block of up to 8
3681 registers starting with r4, plus maybe r14. */
3682 for (n = 0; n < 8; n++)
3683 {
3684 /* Break at the first non-saved register. */
3685 if ((range & (1 << (n + 4))) == 0)
3686 break;
3687 }
3688 /* See if there are any other bits set. */
3689 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3690 {
3691 /* Use the long form. */
3692 op = 0x8000 | ((range >> 4) & 0xfff);
3693 add_unwind_opcode (op, 2);
3694 }
3695 else
3696 {
3697 /* Use the short form. */
3698 if (range & 0x4000)
3699 op = 0xa8; /* Pop r14. */
3700 else
3701 op = 0xa0; /* Do not pop r14. */
3702 op |= (n - 1);
3703 add_unwind_opcode (op, 1);
3704 }
3705 }
3706
3707 /* Pop r0-r3. */
3708 if (range & 0xf)
3709 {
3710 op = 0xb100 | (range & 0xf);
3711 add_unwind_opcode (op, 2);
3712 }
3713
3714 /* Record the number of bytes pushed. */
3715 for (n = 0; n < 16; n++)
3716 {
3717 if (range & (1 << n))
3718 unwind.frame_size += 4;
3719 }
3720 }
3721
3722
3723 /* Parse a directive saving FPA registers. */
3724
3725 static void
3726 s_arm_unwind_save_fpa (int reg)
3727 {
3728 expressionS exp;
3729 int num_regs;
3730 valueT op;
3731
3732 /* Get Number of registers to transfer. */
3733 if (skip_past_comma (&input_line_pointer) != FAIL)
3734 expression (&exp);
3735 else
3736 exp.X_op = O_illegal;
3737
3738 if (exp.X_op != O_constant)
3739 {
3740 as_bad (_("expected , <constant>"));
3741 ignore_rest_of_line ();
3742 return;
3743 }
3744
3745 num_regs = exp.X_add_number;
3746
3747 if (num_regs < 1 || num_regs > 4)
3748 {
3749 as_bad (_("number of registers must be in the range [1:4]"));
3750 ignore_rest_of_line ();
3751 return;
3752 }
3753
3754 demand_empty_rest_of_line ();
3755
3756 if (reg == 4)
3757 {
3758 /* Short form. */
3759 op = 0xb4 | (num_regs - 1);
3760 add_unwind_opcode (op, 1);
3761 }
3762 else
3763 {
3764 /* Long form. */
3765 op = 0xc800 | (reg << 4) | (num_regs - 1);
3766 add_unwind_opcode (op, 2);
3767 }
3768 unwind.frame_size += num_regs * 12;
3769 }
3770
3771
3772 /* Parse a directive saving VFP registers for ARMv6 and above. */
3773
3774 static void
3775 s_arm_unwind_save_vfp_armv6 (void)
3776 {
3777 int count;
3778 unsigned int start;
3779 valueT op;
3780 int num_vfpv3_regs = 0;
3781 int num_regs_below_16;
3782
3783 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3784 if (count == FAIL)
3785 {
3786 as_bad (_("expected register list"));
3787 ignore_rest_of_line ();
3788 return;
3789 }
3790
3791 demand_empty_rest_of_line ();
3792
3793 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3794 than FSTMX/FLDMX-style ones). */
3795
3796 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3797 if (start >= 16)
3798 num_vfpv3_regs = count;
3799 else if (start + count > 16)
3800 num_vfpv3_regs = start + count - 16;
3801
3802 if (num_vfpv3_regs > 0)
3803 {
3804 int start_offset = start > 16 ? start - 16 : 0;
3805 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3806 add_unwind_opcode (op, 2);
3807 }
3808
3809 /* Generate opcode for registers numbered in the range 0 .. 15. */
3810 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3811 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3812 if (num_regs_below_16 > 0)
3813 {
3814 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3815 add_unwind_opcode (op, 2);
3816 }
3817
3818 unwind.frame_size += count * 8;
3819 }
3820
3821
3822 /* Parse a directive saving VFP registers for pre-ARMv6. */
3823
3824 static void
3825 s_arm_unwind_save_vfp (void)
3826 {
3827 int count;
3828 unsigned int reg;
3829 valueT op;
3830
3831 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3832 if (count == FAIL)
3833 {
3834 as_bad (_("expected register list"));
3835 ignore_rest_of_line ();
3836 return;
3837 }
3838
3839 demand_empty_rest_of_line ();
3840
3841 if (reg == 8)
3842 {
3843 /* Short form. */
3844 op = 0xb8 | (count - 1);
3845 add_unwind_opcode (op, 1);
3846 }
3847 else
3848 {
3849 /* Long form. */
3850 op = 0xb300 | (reg << 4) | (count - 1);
3851 add_unwind_opcode (op, 2);
3852 }
3853 unwind.frame_size += count * 8 + 4;
3854 }
3855
3856
3857 /* Parse a directive saving iWMMXt data registers. */
3858
3859 static void
3860 s_arm_unwind_save_mmxwr (void)
3861 {
3862 int reg;
3863 int hi_reg;
3864 int i;
3865 unsigned mask = 0;
3866 valueT op;
3867
3868 if (*input_line_pointer == '{')
3869 input_line_pointer++;
3870
3871 do
3872 {
3873 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3874
3875 if (reg == FAIL)
3876 {
3877 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3878 goto error;
3879 }
3880
3881 if (mask >> reg)
3882 as_tsktsk (_("register list not in ascending order"));
3883 mask |= 1 << reg;
3884
3885 if (*input_line_pointer == '-')
3886 {
3887 input_line_pointer++;
3888 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3889 if (hi_reg == FAIL)
3890 {
3891 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3892 goto error;
3893 }
3894 else if (reg >= hi_reg)
3895 {
3896 as_bad (_("bad register range"));
3897 goto error;
3898 }
3899 for (; reg < hi_reg; reg++)
3900 mask |= 1 << reg;
3901 }
3902 }
3903 while (skip_past_comma (&input_line_pointer) != FAIL);
3904
3905 if (*input_line_pointer == '}')
3906 input_line_pointer++;
3907
3908 demand_empty_rest_of_line ();
3909
3910 /* Generate any deferred opcodes because we're going to be looking at
3911 the list. */
3912 flush_pending_unwind ();
3913
3914 for (i = 0; i < 16; i++)
3915 {
3916 if (mask & (1 << i))
3917 unwind.frame_size += 8;
3918 }
3919
3920 /* Attempt to combine with a previous opcode. We do this because gcc
3921 likes to output separate unwind directives for a single block of
3922 registers. */
3923 if (unwind.opcode_count > 0)
3924 {
3925 i = unwind.opcodes[unwind.opcode_count - 1];
3926 if ((i & 0xf8) == 0xc0)
3927 {
3928 i &= 7;
3929 /* Only merge if the blocks are contiguous. */
3930 if (i < 6)
3931 {
3932 if ((mask & 0xfe00) == (1 << 9))
3933 {
3934 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3935 unwind.opcode_count--;
3936 }
3937 }
3938 else if (i == 6 && unwind.opcode_count >= 2)
3939 {
3940 i = unwind.opcodes[unwind.opcode_count - 2];
3941 reg = i >> 4;
3942 i &= 0xf;
3943
3944 op = 0xffff << (reg - 1);
3945 if (reg > 0
3946 && ((mask & op) == (1u << (reg - 1))))
3947 {
3948 op = (1 << (reg + i + 1)) - 1;
3949 op &= ~((1 << reg) - 1);
3950 mask |= op;
3951 unwind.opcode_count -= 2;
3952 }
3953 }
3954 }
3955 }
3956
3957 hi_reg = 15;
3958 /* We want to generate opcodes in the order the registers have been
3959 saved, ie. descending order. */
3960 for (reg = 15; reg >= -1; reg--)
3961 {
3962 /* Save registers in blocks. */
3963 if (reg < 0
3964 || !(mask & (1 << reg)))
3965 {
3966 /* We found an unsaved reg. Generate opcodes to save the
3967 preceding block. */
3968 if (reg != hi_reg)
3969 {
3970 if (reg == 9)
3971 {
3972 /* Short form. */
3973 op = 0xc0 | (hi_reg - 10);
3974 add_unwind_opcode (op, 1);
3975 }
3976 else
3977 {
3978 /* Long form. */
3979 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3980 add_unwind_opcode (op, 2);
3981 }
3982 }
3983 hi_reg = reg - 1;
3984 }
3985 }
3986
3987 return;
3988 error:
3989 ignore_rest_of_line ();
3990 }
3991
3992 static void
3993 s_arm_unwind_save_mmxwcg (void)
3994 {
3995 int reg;
3996 int hi_reg;
3997 unsigned mask = 0;
3998 valueT op;
3999
4000 if (*input_line_pointer == '{')
4001 input_line_pointer++;
4002
4003 do
4004 {
4005 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4006
4007 if (reg == FAIL)
4008 {
4009 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4010 goto error;
4011 }
4012
4013 reg -= 8;
4014 if (mask >> reg)
4015 as_tsktsk (_("register list not in ascending order"));
4016 mask |= 1 << reg;
4017
4018 if (*input_line_pointer == '-')
4019 {
4020 input_line_pointer++;
4021 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4022 if (hi_reg == FAIL)
4023 {
4024 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4025 goto error;
4026 }
4027 else if (reg >= hi_reg)
4028 {
4029 as_bad (_("bad register range"));
4030 goto error;
4031 }
4032 for (; reg < hi_reg; reg++)
4033 mask |= 1 << reg;
4034 }
4035 }
4036 while (skip_past_comma (&input_line_pointer) != FAIL);
4037
4038 if (*input_line_pointer == '}')
4039 input_line_pointer++;
4040
4041 demand_empty_rest_of_line ();
4042
4043 /* Generate any deferred opcodes because we're going to be looking at
4044 the list. */
4045 flush_pending_unwind ();
4046
4047 for (reg = 0; reg < 16; reg++)
4048 {
4049 if (mask & (1 << reg))
4050 unwind.frame_size += 4;
4051 }
4052 op = 0xc700 | mask;
4053 add_unwind_opcode (op, 2);
4054 return;
4055 error:
4056 ignore_rest_of_line ();
4057 }
4058
4059
4060 /* Parse an unwind_save directive.
4061 If the argument is non-zero, this is a .vsave directive. */
4062
4063 static void
4064 s_arm_unwind_save (int arch_v6)
4065 {
4066 char *peek;
4067 struct reg_entry *reg;
4068 bfd_boolean had_brace = FALSE;
4069
4070 if (!unwind.proc_start)
4071 as_bad (MISSING_FNSTART);
4072
4073 /* Figure out what sort of save we have. */
4074 peek = input_line_pointer;
4075
4076 if (*peek == '{')
4077 {
4078 had_brace = TRUE;
4079 peek++;
4080 }
4081
4082 reg = arm_reg_parse_multi (&peek);
4083
4084 if (!reg)
4085 {
4086 as_bad (_("register expected"));
4087 ignore_rest_of_line ();
4088 return;
4089 }
4090
4091 switch (reg->type)
4092 {
4093 case REG_TYPE_FN:
4094 if (had_brace)
4095 {
4096 as_bad (_("FPA .unwind_save does not take a register list"));
4097 ignore_rest_of_line ();
4098 return;
4099 }
4100 input_line_pointer = peek;
4101 s_arm_unwind_save_fpa (reg->number);
4102 return;
4103
4104 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4105 case REG_TYPE_VFD:
4106 if (arch_v6)
4107 s_arm_unwind_save_vfp_armv6 ();
4108 else
4109 s_arm_unwind_save_vfp ();
4110 return;
4111 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4112 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4113
4114 default:
4115 as_bad (_(".unwind_save does not support this kind of register"));
4116 ignore_rest_of_line ();
4117 }
4118 }
4119
4120
4121 /* Parse an unwind_movsp directive. */
4122
4123 static void
4124 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4125 {
4126 int reg;
4127 valueT op;
4128 int offset;
4129
4130 if (!unwind.proc_start)
4131 as_bad (MISSING_FNSTART);
4132
4133 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4134 if (reg == FAIL)
4135 {
4136 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4137 ignore_rest_of_line ();
4138 return;
4139 }
4140
4141 /* Optional constant. */
4142 if (skip_past_comma (&input_line_pointer) != FAIL)
4143 {
4144 if (immediate_for_directive (&offset) == FAIL)
4145 return;
4146 }
4147 else
4148 offset = 0;
4149
4150 demand_empty_rest_of_line ();
4151
4152 if (reg == REG_SP || reg == REG_PC)
4153 {
4154 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4155 return;
4156 }
4157
4158 if (unwind.fp_reg != REG_SP)
4159 as_bad (_("unexpected .unwind_movsp directive"));
4160
4161 /* Generate opcode to restore the value. */
4162 op = 0x90 | reg;
4163 add_unwind_opcode (op, 1);
4164
4165 /* Record the information for later. */
4166 unwind.fp_reg = reg;
4167 unwind.fp_offset = unwind.frame_size - offset;
4168 unwind.sp_restored = 1;
4169 }
4170
4171 /* Parse an unwind_pad directive. */
4172
4173 static void
4174 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4175 {
4176 int offset;
4177
4178 if (!unwind.proc_start)
4179 as_bad (MISSING_FNSTART);
4180
4181 if (immediate_for_directive (&offset) == FAIL)
4182 return;
4183
4184 if (offset & 3)
4185 {
4186 as_bad (_("stack increment must be multiple of 4"));
4187 ignore_rest_of_line ();
4188 return;
4189 }
4190
4191 /* Don't generate any opcodes, just record the details for later. */
4192 unwind.frame_size += offset;
4193 unwind.pending_offset += offset;
4194
4195 demand_empty_rest_of_line ();
4196 }
4197
4198 /* Parse an unwind_setfp directive. */
4199
4200 static void
4201 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4202 {
4203 int sp_reg;
4204 int fp_reg;
4205 int offset;
4206
4207 if (!unwind.proc_start)
4208 as_bad (MISSING_FNSTART);
4209
4210 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4211 if (skip_past_comma (&input_line_pointer) == FAIL)
4212 sp_reg = FAIL;
4213 else
4214 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4215
4216 if (fp_reg == FAIL || sp_reg == FAIL)
4217 {
4218 as_bad (_("expected <reg>, <reg>"));
4219 ignore_rest_of_line ();
4220 return;
4221 }
4222
4223 /* Optional constant. */
4224 if (skip_past_comma (&input_line_pointer) != FAIL)
4225 {
4226 if (immediate_for_directive (&offset) == FAIL)
4227 return;
4228 }
4229 else
4230 offset = 0;
4231
4232 demand_empty_rest_of_line ();
4233
4234 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4235 {
4236 as_bad (_("register must be either sp or set by a previous"
4237 "unwind_movsp directive"));
4238 return;
4239 }
4240
4241 /* Don't generate any opcodes, just record the information for later. */
4242 unwind.fp_reg = fp_reg;
4243 unwind.fp_used = 1;
4244 if (sp_reg == REG_SP)
4245 unwind.fp_offset = unwind.frame_size - offset;
4246 else
4247 unwind.fp_offset -= offset;
4248 }
4249
4250 /* Parse an unwind_raw directive. */
4251
4252 static void
4253 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4254 {
4255 expressionS exp;
4256 /* This is an arbitrary limit. */
4257 unsigned char op[16];
4258 int count;
4259
4260 if (!unwind.proc_start)
4261 as_bad (MISSING_FNSTART);
4262
4263 expression (&exp);
4264 if (exp.X_op == O_constant
4265 && skip_past_comma (&input_line_pointer) != FAIL)
4266 {
4267 unwind.frame_size += exp.X_add_number;
4268 expression (&exp);
4269 }
4270 else
4271 exp.X_op = O_illegal;
4272
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected <offset>, <opcode>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 count = 0;
4281
4282 /* Parse the opcode. */
4283 for (;;)
4284 {
4285 if (count >= 16)
4286 {
4287 as_bad (_("unwind opcode too long"));
4288 ignore_rest_of_line ();
4289 }
4290 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4291 {
4292 as_bad (_("invalid unwind opcode"));
4293 ignore_rest_of_line ();
4294 return;
4295 }
4296 op[count++] = exp.X_add_number;
4297
4298 /* Parse the next byte. */
4299 if (skip_past_comma (&input_line_pointer) == FAIL)
4300 break;
4301
4302 expression (&exp);
4303 }
4304
4305 /* Add the opcode bytes in reverse order. */
4306 while (count--)
4307 add_unwind_opcode (op[count], 1);
4308
4309 demand_empty_rest_of_line ();
4310 }
4311
4312
4313 /* Parse a .eabi_attribute directive. */
4314
4315 static void
4316 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4317 {
4318 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4319
4320 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4321 attributes_set_explicitly[tag] = 1;
4322 }
4323
4324 /* Emit a tls fix for the symbol. */
4325
4326 static void
4327 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4328 {
4329 char *p;
4330 expressionS exp;
4331 #ifdef md_flush_pending_output
4332 md_flush_pending_output ();
4333 #endif
4334
4335 #ifdef md_cons_align
4336 md_cons_align (4);
4337 #endif
4338
4339 /* Since we're just labelling the code, there's no need to define a
4340 mapping symbol. */
4341 expression (&exp);
4342 p = obstack_next_free (&frchain_now->frch_obstack);
4343 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4344 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4345 : BFD_RELOC_ARM_TLS_DESCSEQ);
4346 }
4347 #endif /* OBJ_ELF */
4348
4349 static void s_arm_arch (int);
4350 static void s_arm_object_arch (int);
4351 static void s_arm_cpu (int);
4352 static void s_arm_fpu (int);
4353 static void s_arm_arch_extension (int);
4354
4355 #ifdef TE_PE
4356
4357 static void
4358 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4359 {
4360 expressionS exp;
4361
4362 do
4363 {
4364 expression (&exp);
4365 if (exp.X_op == O_symbol)
4366 exp.X_op = O_secrel;
4367
4368 emit_expr (&exp, 4);
4369 }
4370 while (*input_line_pointer++ == ',');
4371
4372 input_line_pointer--;
4373 demand_empty_rest_of_line ();
4374 }
4375 #endif /* TE_PE */
4376
4377 /* This table describes all the machine specific pseudo-ops the assembler
4378 has to support. The fields are:
4379 pseudo-op name without dot
4380 function to call to execute this pseudo-op
4381 Integer arg to pass to the function. */
4382
4383 const pseudo_typeS md_pseudo_table[] =
4384 {
4385 /* Never called because '.req' does not start a line. */
4386 { "req", s_req, 0 },
4387 /* Following two are likewise never called. */
4388 { "dn", s_dn, 0 },
4389 { "qn", s_qn, 0 },
4390 { "unreq", s_unreq, 0 },
4391 { "bss", s_bss, 0 },
4392 { "align", s_align, 0 },
4393 { "arm", s_arm, 0 },
4394 { "thumb", s_thumb, 0 },
4395 { "code", s_code, 0 },
4396 { "force_thumb", s_force_thumb, 0 },
4397 { "thumb_func", s_thumb_func, 0 },
4398 { "thumb_set", s_thumb_set, 0 },
4399 { "even", s_even, 0 },
4400 { "ltorg", s_ltorg, 0 },
4401 { "pool", s_ltorg, 0 },
4402 { "syntax", s_syntax, 0 },
4403 { "cpu", s_arm_cpu, 0 },
4404 { "arch", s_arm_arch, 0 },
4405 { "object_arch", s_arm_object_arch, 0 },
4406 { "fpu", s_arm_fpu, 0 },
4407 { "arch_extension", s_arm_arch_extension, 0 },
4408 #ifdef OBJ_ELF
4409 { "word", s_arm_elf_cons, 4 },
4410 { "long", s_arm_elf_cons, 4 },
4411 { "inst.n", s_arm_elf_inst, 2 },
4412 { "inst.w", s_arm_elf_inst, 4 },
4413 { "inst", s_arm_elf_inst, 0 },
4414 { "rel31", s_arm_rel31, 0 },
4415 { "fnstart", s_arm_unwind_fnstart, 0 },
4416 { "fnend", s_arm_unwind_fnend, 0 },
4417 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4418 { "personality", s_arm_unwind_personality, 0 },
4419 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4420 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4421 { "save", s_arm_unwind_save, 0 },
4422 { "vsave", s_arm_unwind_save, 1 },
4423 { "movsp", s_arm_unwind_movsp, 0 },
4424 { "pad", s_arm_unwind_pad, 0 },
4425 { "setfp", s_arm_unwind_setfp, 0 },
4426 { "unwind_raw", s_arm_unwind_raw, 0 },
4427 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4428 { "tlsdescseq", s_arm_tls_descseq, 0 },
4429 #else
4430 { "word", cons, 4},
4431
4432 /* These are used for dwarf. */
4433 {"2byte", cons, 2},
4434 {"4byte", cons, 4},
4435 {"8byte", cons, 8},
4436 /* These are used for dwarf2. */
4437 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4438 { "loc", dwarf2_directive_loc, 0 },
4439 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4440 #endif
4441 { "extend", float_cons, 'x' },
4442 { "ldouble", float_cons, 'x' },
4443 { "packed", float_cons, 'p' },
4444 #ifdef TE_PE
4445 {"secrel32", pe_directive_secrel, 0},
4446 #endif
4447 { 0, 0, 0 }
4448 };
4449 \f
4450 /* Parser functions used exclusively in instruction operands. */
4451
4452 /* Generic immediate-value read function for use in insn parsing.
4453 STR points to the beginning of the immediate (the leading #);
4454 VAL receives the value; if the value is outside [MIN, MAX]
4455 issue an error. PREFIX_OPT is true if the immediate prefix is
4456 optional. */
4457
4458 static int
4459 parse_immediate (char **str, int *val, int min, int max,
4460 bfd_boolean prefix_opt)
4461 {
4462 expressionS exp;
4463 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4464 if (exp.X_op != O_constant)
4465 {
4466 inst.error = _("constant expression required");
4467 return FAIL;
4468 }
4469
4470 if (exp.X_add_number < min || exp.X_add_number > max)
4471 {
4472 inst.error = _("immediate value out of range");
4473 return FAIL;
4474 }
4475
4476 *val = exp.X_add_number;
4477 return SUCCESS;
4478 }
4479
4480 /* Less-generic immediate-value read function with the possibility of loading a
4481 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4482 instructions. Puts the result directly in inst.operands[i]. */
4483
4484 static int
4485 parse_big_immediate (char **str, int i)
4486 {
4487 expressionS exp;
4488 char *ptr = *str;
4489
4490 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4491
4492 if (exp.X_op == O_constant)
4493 {
4494 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4495 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4496 O_constant. We have to be careful not to break compilation for
4497 32-bit X_add_number, though. */
4498 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4499 {
4500 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4501 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4502 inst.operands[i].regisimm = 1;
4503 }
4504 }
4505 else if (exp.X_op == O_big
4506 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4507 {
4508 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4509
4510 /* Bignums have their least significant bits in
4511 generic_bignum[0]. Make sure we put 32 bits in imm and
4512 32 bits in reg, in a (hopefully) portable way. */
4513 gas_assert (parts != 0);
4514
4515 /* Make sure that the number is not too big.
4516 PR 11972: Bignums can now be sign-extended to the
4517 size of a .octa so check that the out of range bits
4518 are all zero or all one. */
4519 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4520 {
4521 LITTLENUM_TYPE m = -1;
4522
4523 if (generic_bignum[parts * 2] != 0
4524 && generic_bignum[parts * 2] != m)
4525 return FAIL;
4526
4527 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4528 if (generic_bignum[j] != generic_bignum[j-1])
4529 return FAIL;
4530 }
4531
4532 inst.operands[i].imm = 0;
4533 for (j = 0; j < parts; j++, idx++)
4534 inst.operands[i].imm |= generic_bignum[idx]
4535 << (LITTLENUM_NUMBER_OF_BITS * j);
4536 inst.operands[i].reg = 0;
4537 for (j = 0; j < parts; j++, idx++)
4538 inst.operands[i].reg |= generic_bignum[idx]
4539 << (LITTLENUM_NUMBER_OF_BITS * j);
4540 inst.operands[i].regisimm = 1;
4541 }
4542 else
4543 return FAIL;
4544
4545 *str = ptr;
4546
4547 return SUCCESS;
4548 }
4549
4550 /* Returns the pseudo-register number of an FPA immediate constant,
4551 or FAIL if there isn't a valid constant here. */
4552
4553 static int
4554 parse_fpa_immediate (char ** str)
4555 {
4556 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4557 char * save_in;
4558 expressionS exp;
4559 int i;
4560 int j;
4561
4562 /* First try and match exact strings, this is to guarantee
4563 that some formats will work even for cross assembly. */
4564
4565 for (i = 0; fp_const[i]; i++)
4566 {
4567 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4568 {
4569 char *start = *str;
4570
4571 *str += strlen (fp_const[i]);
4572 if (is_end_of_line[(unsigned char) **str])
4573 return i + 8;
4574 *str = start;
4575 }
4576 }
4577
4578 /* Just because we didn't get a match doesn't mean that the constant
4579 isn't valid, just that it is in a format that we don't
4580 automatically recognize. Try parsing it with the standard
4581 expression routines. */
4582
4583 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4584
4585 /* Look for a raw floating point number. */
4586 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4587 && is_end_of_line[(unsigned char) *save_in])
4588 {
4589 for (i = 0; i < NUM_FLOAT_VALS; i++)
4590 {
4591 for (j = 0; j < MAX_LITTLENUMS; j++)
4592 {
4593 if (words[j] != fp_values[i][j])
4594 break;
4595 }
4596
4597 if (j == MAX_LITTLENUMS)
4598 {
4599 *str = save_in;
4600 return i + 8;
4601 }
4602 }
4603 }
4604
4605 /* Try and parse a more complex expression, this will probably fail
4606 unless the code uses a floating point prefix (eg "0f"). */
4607 save_in = input_line_pointer;
4608 input_line_pointer = *str;
4609 if (expression (&exp) == absolute_section
4610 && exp.X_op == O_big
4611 && exp.X_add_number < 0)
4612 {
4613 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4614 Ditto for 15. */
4615 if (gen_to_words (words, 5, (long) 15) == 0)
4616 {
4617 for (i = 0; i < NUM_FLOAT_VALS; i++)
4618 {
4619 for (j = 0; j < MAX_LITTLENUMS; j++)
4620 {
4621 if (words[j] != fp_values[i][j])
4622 break;
4623 }
4624
4625 if (j == MAX_LITTLENUMS)
4626 {
4627 *str = input_line_pointer;
4628 input_line_pointer = save_in;
4629 return i + 8;
4630 }
4631 }
4632 }
4633 }
4634
4635 *str = input_line_pointer;
4636 input_line_pointer = save_in;
4637 inst.error = _("invalid FPA immediate expression");
4638 return FAIL;
4639 }
4640
4641 /* Returns 1 if a number has "quarter-precision" float format
4642 0baBbbbbbc defgh000 00000000 00000000. */
4643
4644 static int
4645 is_quarter_float (unsigned imm)
4646 {
4647 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4648 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4649 }
4650
4651 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4652 0baBbbbbbc defgh000 00000000 00000000.
4653 The zero and minus-zero cases need special handling, since they can't be
4654 encoded in the "quarter-precision" float format, but can nonetheless be
4655 loaded as integer constants. */
4656
4657 static unsigned
4658 parse_qfloat_immediate (char **ccp, int *immed)
4659 {
4660 char *str = *ccp;
4661 char *fpnum;
4662 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4663 int found_fpchar = 0;
4664
4665 skip_past_char (&str, '#');
4666
4667 /* We must not accidentally parse an integer as a floating-point number. Make
4668 sure that the value we parse is not an integer by checking for special
4669 characters '.' or 'e'.
4670 FIXME: This is a horrible hack, but doing better is tricky because type
4671 information isn't in a very usable state at parse time. */
4672 fpnum = str;
4673 skip_whitespace (fpnum);
4674
4675 if (strncmp (fpnum, "0x", 2) == 0)
4676 return FAIL;
4677 else
4678 {
4679 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4680 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4681 {
4682 found_fpchar = 1;
4683 break;
4684 }
4685
4686 if (!found_fpchar)
4687 return FAIL;
4688 }
4689
4690 if ((str = atof_ieee (str, 's', words)) != NULL)
4691 {
4692 unsigned fpword = 0;
4693 int i;
4694
4695 /* Our FP word must be 32 bits (single-precision FP). */
4696 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4697 {
4698 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4699 fpword |= words[i];
4700 }
4701
4702 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4703 *immed = fpword;
4704 else
4705 return FAIL;
4706
4707 *ccp = str;
4708
4709 return SUCCESS;
4710 }
4711
4712 return FAIL;
4713 }
4714
4715 /* Shift operands. */
4716 enum shift_kind
4717 {
4718 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4719 };
4720
4721 struct asm_shift_name
4722 {
4723 const char *name;
4724 enum shift_kind kind;
4725 };
4726
4727 /* Third argument to parse_shift. */
4728 enum parse_shift_mode
4729 {
4730 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4731 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4732 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4733 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4734 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4735 };
4736
4737 /* Parse a <shift> specifier on an ARM data processing instruction.
4738 This has three forms:
4739
4740 (LSL|LSR|ASL|ASR|ROR) Rs
4741 (LSL|LSR|ASL|ASR|ROR) #imm
4742 RRX
4743
4744 Note that ASL is assimilated to LSL in the instruction encoding, and
4745 RRX to ROR #0 (which cannot be written as such). */
4746
4747 static int
4748 parse_shift (char **str, int i, enum parse_shift_mode mode)
4749 {
4750 const struct asm_shift_name *shift_name;
4751 enum shift_kind shift;
4752 char *s = *str;
4753 char *p = s;
4754 int reg;
4755
4756 for (p = *str; ISALPHA (*p); p++)
4757 ;
4758
4759 if (p == *str)
4760 {
4761 inst.error = _("shift expression expected");
4762 return FAIL;
4763 }
4764
4765 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4766 p - *str);
4767
4768 if (shift_name == NULL)
4769 {
4770 inst.error = _("shift expression expected");
4771 return FAIL;
4772 }
4773
4774 shift = shift_name->kind;
4775
4776 switch (mode)
4777 {
4778 case NO_SHIFT_RESTRICT:
4779 case SHIFT_IMMEDIATE: break;
4780
4781 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4782 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4783 {
4784 inst.error = _("'LSL' or 'ASR' required");
4785 return FAIL;
4786 }
4787 break;
4788
4789 case SHIFT_LSL_IMMEDIATE:
4790 if (shift != SHIFT_LSL)
4791 {
4792 inst.error = _("'LSL' required");
4793 return FAIL;
4794 }
4795 break;
4796
4797 case SHIFT_ASR_IMMEDIATE:
4798 if (shift != SHIFT_ASR)
4799 {
4800 inst.error = _("'ASR' required");
4801 return FAIL;
4802 }
4803 break;
4804
4805 default: abort ();
4806 }
4807
4808 if (shift != SHIFT_RRX)
4809 {
4810 /* Whitespace can appear here if the next thing is a bare digit. */
4811 skip_whitespace (p);
4812
4813 if (mode == NO_SHIFT_RESTRICT
4814 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4815 {
4816 inst.operands[i].imm = reg;
4817 inst.operands[i].immisreg = 1;
4818 }
4819 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4820 return FAIL;
4821 }
4822 inst.operands[i].shift_kind = shift;
4823 inst.operands[i].shifted = 1;
4824 *str = p;
4825 return SUCCESS;
4826 }
4827
4828 /* Parse a <shifter_operand> for an ARM data processing instruction:
4829
4830 #<immediate>
4831 #<immediate>, <rotate>
4832 <Rm>
4833 <Rm>, <shift>
4834
4835 where <shift> is defined by parse_shift above, and <rotate> is a
4836 multiple of 2 between 0 and 30. Validation of immediate operands
4837 is deferred to md_apply_fix. */
4838
4839 static int
4840 parse_shifter_operand (char **str, int i)
4841 {
4842 int value;
4843 expressionS exp;
4844
4845 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4846 {
4847 inst.operands[i].reg = value;
4848 inst.operands[i].isreg = 1;
4849
4850 /* parse_shift will override this if appropriate */
4851 inst.reloc.exp.X_op = O_constant;
4852 inst.reloc.exp.X_add_number = 0;
4853
4854 if (skip_past_comma (str) == FAIL)
4855 return SUCCESS;
4856
4857 /* Shift operation on register. */
4858 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4859 }
4860
4861 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4862 return FAIL;
4863
4864 if (skip_past_comma (str) == SUCCESS)
4865 {
4866 /* #x, y -- ie explicit rotation by Y. */
4867 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4868 return FAIL;
4869
4870 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4871 {
4872 inst.error = _("constant expression expected");
4873 return FAIL;
4874 }
4875
4876 value = exp.X_add_number;
4877 if (value < 0 || value > 30 || value % 2 != 0)
4878 {
4879 inst.error = _("invalid rotation");
4880 return FAIL;
4881 }
4882 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4883 {
4884 inst.error = _("invalid constant");
4885 return FAIL;
4886 }
4887
4888 /* Encode as specified. */
4889 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4890 return SUCCESS;
4891 }
4892
4893 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4894 inst.reloc.pc_rel = 0;
4895 return SUCCESS;
4896 }
4897
4898 /* Group relocation information. Each entry in the table contains the
4899 textual name of the relocation as may appear in assembler source
4900 and must end with a colon.
4901 Along with this textual name are the relocation codes to be used if
4902 the corresponding instruction is an ALU instruction (ADD or SUB only),
4903 an LDR, an LDRS, or an LDC. */
4904
4905 struct group_reloc_table_entry
4906 {
4907 const char *name;
4908 int alu_code;
4909 int ldr_code;
4910 int ldrs_code;
4911 int ldc_code;
4912 };
4913
4914 typedef enum
4915 {
4916 /* Varieties of non-ALU group relocation. */
4917
4918 GROUP_LDR,
4919 GROUP_LDRS,
4920 GROUP_LDC
4921 } group_reloc_type;
4922
4923 static struct group_reloc_table_entry group_reloc_table[] =
4924 { /* Program counter relative: */
4925 { "pc_g0_nc",
4926 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4927 0, /* LDR */
4928 0, /* LDRS */
4929 0 }, /* LDC */
4930 { "pc_g0",
4931 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4932 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4933 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4934 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4935 { "pc_g1_nc",
4936 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4937 0, /* LDR */
4938 0, /* LDRS */
4939 0 }, /* LDC */
4940 { "pc_g1",
4941 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4942 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4943 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4944 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4945 { "pc_g2",
4946 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4947 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4948 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4949 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4950 /* Section base relative */
4951 { "sb_g0_nc",
4952 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4953 0, /* LDR */
4954 0, /* LDRS */
4955 0 }, /* LDC */
4956 { "sb_g0",
4957 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4958 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4959 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4960 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4961 { "sb_g1_nc",
4962 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4963 0, /* LDR */
4964 0, /* LDRS */
4965 0 }, /* LDC */
4966 { "sb_g1",
4967 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4968 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4969 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4970 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4971 { "sb_g2",
4972 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4973 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4974 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4975 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4976
4977 /* Given the address of a pointer pointing to the textual name of a group
4978 relocation as may appear in assembler source, attempt to find its details
4979 in group_reloc_table. The pointer will be updated to the character after
4980 the trailing colon. On failure, FAIL will be returned; SUCCESS
4981 otherwise. On success, *entry will be updated to point at the relevant
4982 group_reloc_table entry. */
4983
4984 static int
4985 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4986 {
4987 unsigned int i;
4988 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4989 {
4990 int length = strlen (group_reloc_table[i].name);
4991
4992 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4993 && (*str)[length] == ':')
4994 {
4995 *out = &group_reloc_table[i];
4996 *str += (length + 1);
4997 return SUCCESS;
4998 }
4999 }
5000
5001 return FAIL;
5002 }
5003
5004 /* Parse a <shifter_operand> for an ARM data processing instruction
5005 (as for parse_shifter_operand) where group relocations are allowed:
5006
5007 #<immediate>
5008 #<immediate>, <rotate>
5009 #:<group_reloc>:<expression>
5010 <Rm>
5011 <Rm>, <shift>
5012
5013 where <group_reloc> is one of the strings defined in group_reloc_table.
5014 The hashes are optional.
5015
5016 Everything else is as for parse_shifter_operand. */
5017
5018 static parse_operand_result
5019 parse_shifter_operand_group_reloc (char **str, int i)
5020 {
5021 /* Determine if we have the sequence of characters #: or just :
5022 coming next. If we do, then we check for a group relocation.
5023 If we don't, punt the whole lot to parse_shifter_operand. */
5024
5025 if (((*str)[0] == '#' && (*str)[1] == ':')
5026 || (*str)[0] == ':')
5027 {
5028 struct group_reloc_table_entry *entry;
5029
5030 if ((*str)[0] == '#')
5031 (*str) += 2;
5032 else
5033 (*str)++;
5034
5035 /* Try to parse a group relocation. Anything else is an error. */
5036 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5037 {
5038 inst.error = _("unknown group relocation");
5039 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5040 }
5041
5042 /* We now have the group relocation table entry corresponding to
5043 the name in the assembler source. Next, we parse the expression. */
5044 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5045 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5046
5047 /* Record the relocation type (always the ALU variant here). */
5048 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5049 gas_assert (inst.reloc.type != 0);
5050
5051 return PARSE_OPERAND_SUCCESS;
5052 }
5053 else
5054 return parse_shifter_operand (str, i) == SUCCESS
5055 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5056
5057 /* Never reached. */
5058 }
5059
5060 /* Parse a Neon alignment expression. Information is written to
5061 inst.operands[i]. We assume the initial ':' has been skipped.
5062
5063 align .imm = align << 8, .immisalign=1, .preind=0 */
5064 static parse_operand_result
5065 parse_neon_alignment (char **str, int i)
5066 {
5067 char *p = *str;
5068 expressionS exp;
5069
5070 my_get_expression (&exp, &p, GE_NO_PREFIX);
5071
5072 if (exp.X_op != O_constant)
5073 {
5074 inst.error = _("alignment must be constant");
5075 return PARSE_OPERAND_FAIL;
5076 }
5077
5078 inst.operands[i].imm = exp.X_add_number << 8;
5079 inst.operands[i].immisalign = 1;
5080 /* Alignments are not pre-indexes. */
5081 inst.operands[i].preind = 0;
5082
5083 *str = p;
5084 return PARSE_OPERAND_SUCCESS;
5085 }
5086
5087 /* Parse all forms of an ARM address expression. Information is written
5088 to inst.operands[i] and/or inst.reloc.
5089
5090 Preindexed addressing (.preind=1):
5091
5092 [Rn, #offset] .reg=Rn .reloc.exp=offset
5093 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5094 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5095 .shift_kind=shift .reloc.exp=shift_imm
5096
5097 These three may have a trailing ! which causes .writeback to be set also.
5098
5099 Postindexed addressing (.postind=1, .writeback=1):
5100
5101 [Rn], #offset .reg=Rn .reloc.exp=offset
5102 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5103 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5104 .shift_kind=shift .reloc.exp=shift_imm
5105
5106 Unindexed addressing (.preind=0, .postind=0):
5107
5108 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5109
5110 Other:
5111
5112 [Rn]{!} shorthand for [Rn,#0]{!}
5113 =immediate .isreg=0 .reloc.exp=immediate
5114 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5115
5116 It is the caller's responsibility to check for addressing modes not
5117 supported by the instruction, and to set inst.reloc.type. */
5118
5119 static parse_operand_result
5120 parse_address_main (char **str, int i, int group_relocations,
5121 group_reloc_type group_type)
5122 {
5123 char *p = *str;
5124 int reg;
5125
5126 if (skip_past_char (&p, '[') == FAIL)
5127 {
5128 if (skip_past_char (&p, '=') == FAIL)
5129 {
5130 /* Bare address - translate to PC-relative offset. */
5131 inst.reloc.pc_rel = 1;
5132 inst.operands[i].reg = REG_PC;
5133 inst.operands[i].isreg = 1;
5134 inst.operands[i].preind = 1;
5135 }
5136 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5137
5138 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5139 return PARSE_OPERAND_FAIL;
5140
5141 *str = p;
5142 return PARSE_OPERAND_SUCCESS;
5143 }
5144
5145 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5146 {
5147 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5148 return PARSE_OPERAND_FAIL;
5149 }
5150 inst.operands[i].reg = reg;
5151 inst.operands[i].isreg = 1;
5152
5153 if (skip_past_comma (&p) == SUCCESS)
5154 {
5155 inst.operands[i].preind = 1;
5156
5157 if (*p == '+') p++;
5158 else if (*p == '-') p++, inst.operands[i].negative = 1;
5159
5160 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5161 {
5162 inst.operands[i].imm = reg;
5163 inst.operands[i].immisreg = 1;
5164
5165 if (skip_past_comma (&p) == SUCCESS)
5166 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5167 return PARSE_OPERAND_FAIL;
5168 }
5169 else if (skip_past_char (&p, ':') == SUCCESS)
5170 {
5171 /* FIXME: '@' should be used here, but it's filtered out by generic
5172 code before we get to see it here. This may be subject to
5173 change. */
5174 parse_operand_result result = parse_neon_alignment (&p, i);
5175
5176 if (result != PARSE_OPERAND_SUCCESS)
5177 return result;
5178 }
5179 else
5180 {
5181 if (inst.operands[i].negative)
5182 {
5183 inst.operands[i].negative = 0;
5184 p--;
5185 }
5186
5187 if (group_relocations
5188 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5189 {
5190 struct group_reloc_table_entry *entry;
5191
5192 /* Skip over the #: or : sequence. */
5193 if (*p == '#')
5194 p += 2;
5195 else
5196 p++;
5197
5198 /* Try to parse a group relocation. Anything else is an
5199 error. */
5200 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5201 {
5202 inst.error = _("unknown group relocation");
5203 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5204 }
5205
5206 /* We now have the group relocation table entry corresponding to
5207 the name in the assembler source. Next, we parse the
5208 expression. */
5209 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5210 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5211
5212 /* Record the relocation type. */
5213 switch (group_type)
5214 {
5215 case GROUP_LDR:
5216 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5217 break;
5218
5219 case GROUP_LDRS:
5220 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5221 break;
5222
5223 case GROUP_LDC:
5224 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5225 break;
5226
5227 default:
5228 gas_assert (0);
5229 }
5230
5231 if (inst.reloc.type == 0)
5232 {
5233 inst.error = _("this group relocation is not allowed on this instruction");
5234 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5235 }
5236 }
5237 else
5238 {
5239 char *q = p;
5240 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5241 return PARSE_OPERAND_FAIL;
5242 /* If the offset is 0, find out if it's a +0 or -0. */
5243 if (inst.reloc.exp.X_op == O_constant
5244 && inst.reloc.exp.X_add_number == 0)
5245 {
5246 skip_whitespace (q);
5247 if (*q == '#')
5248 {
5249 q++;
5250 skip_whitespace (q);
5251 }
5252 if (*q == '-')
5253 inst.operands[i].negative = 1;
5254 }
5255 }
5256 }
5257 }
5258 else if (skip_past_char (&p, ':') == SUCCESS)
5259 {
5260 /* FIXME: '@' should be used here, but it's filtered out by generic code
5261 before we get to see it here. This may be subject to change. */
5262 parse_operand_result result = parse_neon_alignment (&p, i);
5263
5264 if (result != PARSE_OPERAND_SUCCESS)
5265 return result;
5266 }
5267
5268 if (skip_past_char (&p, ']') == FAIL)
5269 {
5270 inst.error = _("']' expected");
5271 return PARSE_OPERAND_FAIL;
5272 }
5273
5274 if (skip_past_char (&p, '!') == SUCCESS)
5275 inst.operands[i].writeback = 1;
5276
5277 else if (skip_past_comma (&p) == SUCCESS)
5278 {
5279 if (skip_past_char (&p, '{') == SUCCESS)
5280 {
5281 /* [Rn], {expr} - unindexed, with option */
5282 if (parse_immediate (&p, &inst.operands[i].imm,
5283 0, 255, TRUE) == FAIL)
5284 return PARSE_OPERAND_FAIL;
5285
5286 if (skip_past_char (&p, '}') == FAIL)
5287 {
5288 inst.error = _("'}' expected at end of 'option' field");
5289 return PARSE_OPERAND_FAIL;
5290 }
5291 if (inst.operands[i].preind)
5292 {
5293 inst.error = _("cannot combine index with option");
5294 return PARSE_OPERAND_FAIL;
5295 }
5296 *str = p;
5297 return PARSE_OPERAND_SUCCESS;
5298 }
5299 else
5300 {
5301 inst.operands[i].postind = 1;
5302 inst.operands[i].writeback = 1;
5303
5304 if (inst.operands[i].preind)
5305 {
5306 inst.error = _("cannot combine pre- and post-indexing");
5307 return PARSE_OPERAND_FAIL;
5308 }
5309
5310 if (*p == '+') p++;
5311 else if (*p == '-') p++, inst.operands[i].negative = 1;
5312
5313 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5314 {
5315 /* We might be using the immediate for alignment already. If we
5316 are, OR the register number into the low-order bits. */
5317 if (inst.operands[i].immisalign)
5318 inst.operands[i].imm |= reg;
5319 else
5320 inst.operands[i].imm = reg;
5321 inst.operands[i].immisreg = 1;
5322
5323 if (skip_past_comma (&p) == SUCCESS)
5324 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5325 return PARSE_OPERAND_FAIL;
5326 }
5327 else
5328 {
5329 char *q = p;
5330 if (inst.operands[i].negative)
5331 {
5332 inst.operands[i].negative = 0;
5333 p--;
5334 }
5335 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5336 return PARSE_OPERAND_FAIL;
5337 /* If the offset is 0, find out if it's a +0 or -0. */
5338 if (inst.reloc.exp.X_op == O_constant
5339 && inst.reloc.exp.X_add_number == 0)
5340 {
5341 skip_whitespace (q);
5342 if (*q == '#')
5343 {
5344 q++;
5345 skip_whitespace (q);
5346 }
5347 if (*q == '-')
5348 inst.operands[i].negative = 1;
5349 }
5350 }
5351 }
5352 }
5353
5354 /* If at this point neither .preind nor .postind is set, we have a
5355 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5356 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5357 {
5358 inst.operands[i].preind = 1;
5359 inst.reloc.exp.X_op = O_constant;
5360 inst.reloc.exp.X_add_number = 0;
5361 }
5362 *str = p;
5363 return PARSE_OPERAND_SUCCESS;
5364 }
5365
5366 static int
5367 parse_address (char **str, int i)
5368 {
5369 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5370 ? SUCCESS : FAIL;
5371 }
5372
5373 static parse_operand_result
5374 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5375 {
5376 return parse_address_main (str, i, 1, type);
5377 }
5378
5379 /* Parse an operand for a MOVW or MOVT instruction. */
5380 static int
5381 parse_half (char **str)
5382 {
5383 char * p;
5384
5385 p = *str;
5386 skip_past_char (&p, '#');
5387 if (strncasecmp (p, ":lower16:", 9) == 0)
5388 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5389 else if (strncasecmp (p, ":upper16:", 9) == 0)
5390 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5391
5392 if (inst.reloc.type != BFD_RELOC_UNUSED)
5393 {
5394 p += 9;
5395 skip_whitespace (p);
5396 }
5397
5398 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5399 return FAIL;
5400
5401 if (inst.reloc.type == BFD_RELOC_UNUSED)
5402 {
5403 if (inst.reloc.exp.X_op != O_constant)
5404 {
5405 inst.error = _("constant expression expected");
5406 return FAIL;
5407 }
5408 if (inst.reloc.exp.X_add_number < 0
5409 || inst.reloc.exp.X_add_number > 0xffff)
5410 {
5411 inst.error = _("immediate value out of range");
5412 return FAIL;
5413 }
5414 }
5415 *str = p;
5416 return SUCCESS;
5417 }
5418
5419 /* Miscellaneous. */
5420
5421 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5422 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5423 static int
5424 parse_psr (char **str, bfd_boolean lhs)
5425 {
5426 char *p;
5427 unsigned long psr_field;
5428 const struct asm_psr *psr;
5429 char *start;
5430 bfd_boolean is_apsr = FALSE;
5431 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5432
5433 /* PR gas/12698: If the user has specified -march=all then m_profile will
5434 be TRUE, but we want to ignore it in this case as we are building for any
5435 CPU type, including non-m variants. */
5436 if (selected_cpu.core == arm_arch_any.core)
5437 m_profile = FALSE;
5438
5439 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5440 feature for ease of use and backwards compatibility. */
5441 p = *str;
5442 if (strncasecmp (p, "SPSR", 4) == 0)
5443 {
5444 if (m_profile)
5445 goto unsupported_psr;
5446
5447 psr_field = SPSR_BIT;
5448 }
5449 else if (strncasecmp (p, "CPSR", 4) == 0)
5450 {
5451 if (m_profile)
5452 goto unsupported_psr;
5453
5454 psr_field = 0;
5455 }
5456 else if (strncasecmp (p, "APSR", 4) == 0)
5457 {
5458 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5459 and ARMv7-R architecture CPUs. */
5460 is_apsr = TRUE;
5461 psr_field = 0;
5462 }
5463 else if (m_profile)
5464 {
5465 start = p;
5466 do
5467 p++;
5468 while (ISALNUM (*p) || *p == '_');
5469
5470 if (strncasecmp (start, "iapsr", 5) == 0
5471 || strncasecmp (start, "eapsr", 5) == 0
5472 || strncasecmp (start, "xpsr", 4) == 0
5473 || strncasecmp (start, "psr", 3) == 0)
5474 p = start + strcspn (start, "rR") + 1;
5475
5476 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5477 p - start);
5478
5479 if (!psr)
5480 return FAIL;
5481
5482 /* If APSR is being written, a bitfield may be specified. Note that
5483 APSR itself is handled above. */
5484 if (psr->field <= 3)
5485 {
5486 psr_field = psr->field;
5487 is_apsr = TRUE;
5488 goto check_suffix;
5489 }
5490
5491 *str = p;
5492 /* M-profile MSR instructions have the mask field set to "10", except
5493 *PSR variants which modify APSR, which may use a different mask (and
5494 have been handled already). Do that by setting the PSR_f field
5495 here. */
5496 return psr->field | (lhs ? PSR_f : 0);
5497 }
5498 else
5499 goto unsupported_psr;
5500
5501 p += 4;
5502 check_suffix:
5503 if (*p == '_')
5504 {
5505 /* A suffix follows. */
5506 p++;
5507 start = p;
5508
5509 do
5510 p++;
5511 while (ISALNUM (*p) || *p == '_');
5512
5513 if (is_apsr)
5514 {
5515 /* APSR uses a notation for bits, rather than fields. */
5516 unsigned int nzcvq_bits = 0;
5517 unsigned int g_bit = 0;
5518 char *bit;
5519
5520 for (bit = start; bit != p; bit++)
5521 {
5522 switch (TOLOWER (*bit))
5523 {
5524 case 'n':
5525 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5526 break;
5527
5528 case 'z':
5529 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5530 break;
5531
5532 case 'c':
5533 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5534 break;
5535
5536 case 'v':
5537 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5538 break;
5539
5540 case 'q':
5541 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5542 break;
5543
5544 case 'g':
5545 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5546 break;
5547
5548 default:
5549 inst.error = _("unexpected bit specified after APSR");
5550 return FAIL;
5551 }
5552 }
5553
5554 if (nzcvq_bits == 0x1f)
5555 psr_field |= PSR_f;
5556
5557 if (g_bit == 0x1)
5558 {
5559 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5560 {
5561 inst.error = _("selected processor does not "
5562 "support DSP extension");
5563 return FAIL;
5564 }
5565
5566 psr_field |= PSR_s;
5567 }
5568
5569 if ((nzcvq_bits & 0x20) != 0
5570 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5571 || (g_bit & 0x2) != 0)
5572 {
5573 inst.error = _("bad bitmask specified after APSR");
5574 return FAIL;
5575 }
5576 }
5577 else
5578 {
5579 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5580 p - start);
5581 if (!psr)
5582 goto error;
5583
5584 psr_field |= psr->field;
5585 }
5586 }
5587 else
5588 {
5589 if (ISALNUM (*p))
5590 goto error; /* Garbage after "[CS]PSR". */
5591
5592 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5593 is deprecated, but allow it anyway. */
5594 if (is_apsr && lhs)
5595 {
5596 psr_field |= PSR_f;
5597 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5598 "deprecated"));
5599 }
5600 else if (!m_profile)
5601 /* These bits are never right for M-profile devices: don't set them
5602 (only code paths which read/write APSR reach here). */
5603 psr_field |= (PSR_c | PSR_f);
5604 }
5605 *str = p;
5606 return psr_field;
5607
5608 unsupported_psr:
5609 inst.error = _("selected processor does not support requested special "
5610 "purpose register");
5611 return FAIL;
5612
5613 error:
5614 inst.error = _("flag for {c}psr instruction expected");
5615 return FAIL;
5616 }
5617
5618 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5619 value suitable for splatting into the AIF field of the instruction. */
5620
5621 static int
5622 parse_cps_flags (char **str)
5623 {
5624 int val = 0;
5625 int saw_a_flag = 0;
5626 char *s = *str;
5627
5628 for (;;)
5629 switch (*s++)
5630 {
5631 case '\0': case ',':
5632 goto done;
5633
5634 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5635 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5636 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5637
5638 default:
5639 inst.error = _("unrecognized CPS flag");
5640 return FAIL;
5641 }
5642
5643 done:
5644 if (saw_a_flag == 0)
5645 {
5646 inst.error = _("missing CPS flags");
5647 return FAIL;
5648 }
5649
5650 *str = s - 1;
5651 return val;
5652 }
5653
5654 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5655 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5656
5657 static int
5658 parse_endian_specifier (char **str)
5659 {
5660 int little_endian;
5661 char *s = *str;
5662
5663 if (strncasecmp (s, "BE", 2))
5664 little_endian = 0;
5665 else if (strncasecmp (s, "LE", 2))
5666 little_endian = 1;
5667 else
5668 {
5669 inst.error = _("valid endian specifiers are be or le");
5670 return FAIL;
5671 }
5672
5673 if (ISALNUM (s[2]) || s[2] == '_')
5674 {
5675 inst.error = _("valid endian specifiers are be or le");
5676 return FAIL;
5677 }
5678
5679 *str = s + 2;
5680 return little_endian;
5681 }
5682
5683 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5684 value suitable for poking into the rotate field of an sxt or sxta
5685 instruction, or FAIL on error. */
5686
5687 static int
5688 parse_ror (char **str)
5689 {
5690 int rot;
5691 char *s = *str;
5692
5693 if (strncasecmp (s, "ROR", 3) == 0)
5694 s += 3;
5695 else
5696 {
5697 inst.error = _("missing rotation field after comma");
5698 return FAIL;
5699 }
5700
5701 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5702 return FAIL;
5703
5704 switch (rot)
5705 {
5706 case 0: *str = s; return 0x0;
5707 case 8: *str = s; return 0x1;
5708 case 16: *str = s; return 0x2;
5709 case 24: *str = s; return 0x3;
5710
5711 default:
5712 inst.error = _("rotation can only be 0, 8, 16, or 24");
5713 return FAIL;
5714 }
5715 }
5716
5717 /* Parse a conditional code (from conds[] below). The value returned is in the
5718 range 0 .. 14, or FAIL. */
5719 static int
5720 parse_cond (char **str)
5721 {
5722 char *q;
5723 const struct asm_cond *c;
5724 int n;
5725 /* Condition codes are always 2 characters, so matching up to
5726 3 characters is sufficient. */
5727 char cond[3];
5728
5729 q = *str;
5730 n = 0;
5731 while (ISALPHA (*q) && n < 3)
5732 {
5733 cond[n] = TOLOWER (*q);
5734 q++;
5735 n++;
5736 }
5737
5738 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5739 if (!c)
5740 {
5741 inst.error = _("condition required");
5742 return FAIL;
5743 }
5744
5745 *str = q;
5746 return c->value;
5747 }
5748
5749 /* Parse an option for a barrier instruction. Returns the encoding for the
5750 option, or FAIL. */
5751 static int
5752 parse_barrier (char **str)
5753 {
5754 char *p, *q;
5755 const struct asm_barrier_opt *o;
5756
5757 p = q = *str;
5758 while (ISALPHA (*q))
5759 q++;
5760
5761 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5762 q - p);
5763 if (!o)
5764 return FAIL;
5765
5766 *str = q;
5767 return o->value;
5768 }
5769
5770 /* Parse the operands of a table branch instruction. Similar to a memory
5771 operand. */
5772 static int
5773 parse_tb (char **str)
5774 {
5775 char * p = *str;
5776 int reg;
5777
5778 if (skip_past_char (&p, '[') == FAIL)
5779 {
5780 inst.error = _("'[' expected");
5781 return FAIL;
5782 }
5783
5784 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5785 {
5786 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5787 return FAIL;
5788 }
5789 inst.operands[0].reg = reg;
5790
5791 if (skip_past_comma (&p) == FAIL)
5792 {
5793 inst.error = _("',' expected");
5794 return FAIL;
5795 }
5796
5797 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5798 {
5799 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5800 return FAIL;
5801 }
5802 inst.operands[0].imm = reg;
5803
5804 if (skip_past_comma (&p) == SUCCESS)
5805 {
5806 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5807 return FAIL;
5808 if (inst.reloc.exp.X_add_number != 1)
5809 {
5810 inst.error = _("invalid shift");
5811 return FAIL;
5812 }
5813 inst.operands[0].shifted = 1;
5814 }
5815
5816 if (skip_past_char (&p, ']') == FAIL)
5817 {
5818 inst.error = _("']' expected");
5819 return FAIL;
5820 }
5821 *str = p;
5822 return SUCCESS;
5823 }
5824
5825 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5826 information on the types the operands can take and how they are encoded.
5827 Up to four operands may be read; this function handles setting the
5828 ".present" field for each read operand itself.
5829 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5830 else returns FAIL. */
5831
5832 static int
5833 parse_neon_mov (char **str, int *which_operand)
5834 {
5835 int i = *which_operand, val;
5836 enum arm_reg_type rtype;
5837 char *ptr = *str;
5838 struct neon_type_el optype;
5839
5840 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5841 {
5842 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5843 inst.operands[i].reg = val;
5844 inst.operands[i].isscalar = 1;
5845 inst.operands[i].vectype = optype;
5846 inst.operands[i++].present = 1;
5847
5848 if (skip_past_comma (&ptr) == FAIL)
5849 goto wanted_comma;
5850
5851 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5852 goto wanted_arm;
5853
5854 inst.operands[i].reg = val;
5855 inst.operands[i].isreg = 1;
5856 inst.operands[i].present = 1;
5857 }
5858 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5859 != FAIL)
5860 {
5861 /* Cases 0, 1, 2, 3, 5 (D only). */
5862 if (skip_past_comma (&ptr) == FAIL)
5863 goto wanted_comma;
5864
5865 inst.operands[i].reg = val;
5866 inst.operands[i].isreg = 1;
5867 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5868 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5869 inst.operands[i].isvec = 1;
5870 inst.operands[i].vectype = optype;
5871 inst.operands[i++].present = 1;
5872
5873 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5874 {
5875 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5876 Case 13: VMOV <Sd>, <Rm> */
5877 inst.operands[i].reg = val;
5878 inst.operands[i].isreg = 1;
5879 inst.operands[i].present = 1;
5880
5881 if (rtype == REG_TYPE_NQ)
5882 {
5883 first_error (_("can't use Neon quad register here"));
5884 return FAIL;
5885 }
5886 else if (rtype != REG_TYPE_VFS)
5887 {
5888 i++;
5889 if (skip_past_comma (&ptr) == FAIL)
5890 goto wanted_comma;
5891 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5892 goto wanted_arm;
5893 inst.operands[i].reg = val;
5894 inst.operands[i].isreg = 1;
5895 inst.operands[i].present = 1;
5896 }
5897 }
5898 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5899 &optype)) != FAIL)
5900 {
5901 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5902 Case 1: VMOV<c><q> <Dd>, <Dm>
5903 Case 8: VMOV.F32 <Sd>, <Sm>
5904 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5905
5906 inst.operands[i].reg = val;
5907 inst.operands[i].isreg = 1;
5908 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5909 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5910 inst.operands[i].isvec = 1;
5911 inst.operands[i].vectype = optype;
5912 inst.operands[i].present = 1;
5913
5914 if (skip_past_comma (&ptr) == SUCCESS)
5915 {
5916 /* Case 15. */
5917 i++;
5918
5919 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5920 goto wanted_arm;
5921
5922 inst.operands[i].reg = val;
5923 inst.operands[i].isreg = 1;
5924 inst.operands[i++].present = 1;
5925
5926 if (skip_past_comma (&ptr) == FAIL)
5927 goto wanted_comma;
5928
5929 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5930 goto wanted_arm;
5931
5932 inst.operands[i].reg = val;
5933 inst.operands[i].isreg = 1;
5934 inst.operands[i++].present = 1;
5935 }
5936 }
5937 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5938 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5939 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5940 Case 10: VMOV.F32 <Sd>, #<imm>
5941 Case 11: VMOV.F64 <Dd>, #<imm> */
5942 inst.operands[i].immisfloat = 1;
5943 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5944 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5945 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5946 ;
5947 else
5948 {
5949 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5950 return FAIL;
5951 }
5952 }
5953 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5954 {
5955 /* Cases 6, 7. */
5956 inst.operands[i].reg = val;
5957 inst.operands[i].isreg = 1;
5958 inst.operands[i++].present = 1;
5959
5960 if (skip_past_comma (&ptr) == FAIL)
5961 goto wanted_comma;
5962
5963 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5964 {
5965 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5966 inst.operands[i].reg = val;
5967 inst.operands[i].isscalar = 1;
5968 inst.operands[i].present = 1;
5969 inst.operands[i].vectype = optype;
5970 }
5971 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5972 {
5973 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5974 inst.operands[i].reg = val;
5975 inst.operands[i].isreg = 1;
5976 inst.operands[i++].present = 1;
5977
5978 if (skip_past_comma (&ptr) == FAIL)
5979 goto wanted_comma;
5980
5981 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5982 == FAIL)
5983 {
5984 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5985 return FAIL;
5986 }
5987
5988 inst.operands[i].reg = val;
5989 inst.operands[i].isreg = 1;
5990 inst.operands[i].isvec = 1;
5991 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5992 inst.operands[i].vectype = optype;
5993 inst.operands[i].present = 1;
5994
5995 if (rtype == REG_TYPE_VFS)
5996 {
5997 /* Case 14. */
5998 i++;
5999 if (skip_past_comma (&ptr) == FAIL)
6000 goto wanted_comma;
6001 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6002 &optype)) == FAIL)
6003 {
6004 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6005 return FAIL;
6006 }
6007 inst.operands[i].reg = val;
6008 inst.operands[i].isreg = 1;
6009 inst.operands[i].isvec = 1;
6010 inst.operands[i].issingle = 1;
6011 inst.operands[i].vectype = optype;
6012 inst.operands[i].present = 1;
6013 }
6014 }
6015 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6016 != FAIL)
6017 {
6018 /* Case 13. */
6019 inst.operands[i].reg = val;
6020 inst.operands[i].isreg = 1;
6021 inst.operands[i].isvec = 1;
6022 inst.operands[i].issingle = 1;
6023 inst.operands[i].vectype = optype;
6024 inst.operands[i++].present = 1;
6025 }
6026 }
6027 else
6028 {
6029 first_error (_("parse error"));
6030 return FAIL;
6031 }
6032
6033 /* Successfully parsed the operands. Update args. */
6034 *which_operand = i;
6035 *str = ptr;
6036 return SUCCESS;
6037
6038 wanted_comma:
6039 first_error (_("expected comma"));
6040 return FAIL;
6041
6042 wanted_arm:
6043 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6044 return FAIL;
6045 }
6046
6047 /* Use this macro when the operand constraints are different
6048 for ARM and THUMB (e.g. ldrd). */
6049 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6050 ((arm_operand) | ((thumb_operand) << 16))
6051
6052 /* Matcher codes for parse_operands. */
6053 enum operand_parse_code
6054 {
6055 OP_stop, /* end of line */
6056
6057 OP_RR, /* ARM register */
6058 OP_RRnpc, /* ARM register, not r15 */
6059 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6060 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6061 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6062 optional trailing ! */
6063 OP_RRw, /* ARM register, not r15, optional trailing ! */
6064 OP_RCP, /* Coprocessor number */
6065 OP_RCN, /* Coprocessor register */
6066 OP_RF, /* FPA register */
6067 OP_RVS, /* VFP single precision register */
6068 OP_RVD, /* VFP double precision register (0..15) */
6069 OP_RND, /* Neon double precision register (0..31) */
6070 OP_RNQ, /* Neon quad precision register */
6071 OP_RVSD, /* VFP single or double precision register */
6072 OP_RNDQ, /* Neon double or quad precision register */
6073 OP_RNSDQ, /* Neon single, double or quad precision register */
6074 OP_RNSC, /* Neon scalar D[X] */
6075 OP_RVC, /* VFP control register */
6076 OP_RMF, /* Maverick F register */
6077 OP_RMD, /* Maverick D register */
6078 OP_RMFX, /* Maverick FX register */
6079 OP_RMDX, /* Maverick DX register */
6080 OP_RMAX, /* Maverick AX register */
6081 OP_RMDS, /* Maverick DSPSC register */
6082 OP_RIWR, /* iWMMXt wR register */
6083 OP_RIWC, /* iWMMXt wC register */
6084 OP_RIWG, /* iWMMXt wCG register */
6085 OP_RXA, /* XScale accumulator register */
6086
6087 OP_REGLST, /* ARM register list */
6088 OP_VRSLST, /* VFP single-precision register list */
6089 OP_VRDLST, /* VFP double-precision register list */
6090 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6091 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6092 OP_NSTRLST, /* Neon element/structure list */
6093
6094 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6095 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6096 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6097 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6098 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6099 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6100 OP_VMOV, /* Neon VMOV operands. */
6101 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6102 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6103 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6104
6105 OP_I0, /* immediate zero */
6106 OP_I7, /* immediate value 0 .. 7 */
6107 OP_I15, /* 0 .. 15 */
6108 OP_I16, /* 1 .. 16 */
6109 OP_I16z, /* 0 .. 16 */
6110 OP_I31, /* 0 .. 31 */
6111 OP_I31w, /* 0 .. 31, optional trailing ! */
6112 OP_I32, /* 1 .. 32 */
6113 OP_I32z, /* 0 .. 32 */
6114 OP_I63, /* 0 .. 63 */
6115 OP_I63s, /* -64 .. 63 */
6116 OP_I64, /* 1 .. 64 */
6117 OP_I64z, /* 0 .. 64 */
6118 OP_I255, /* 0 .. 255 */
6119
6120 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6121 OP_I7b, /* 0 .. 7 */
6122 OP_I15b, /* 0 .. 15 */
6123 OP_I31b, /* 0 .. 31 */
6124
6125 OP_SH, /* shifter operand */
6126 OP_SHG, /* shifter operand with possible group relocation */
6127 OP_ADDR, /* Memory address expression (any mode) */
6128 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6129 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6130 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6131 OP_EXP, /* arbitrary expression */
6132 OP_EXPi, /* same, with optional immediate prefix */
6133 OP_EXPr, /* same, with optional relocation suffix */
6134 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6135
6136 OP_CPSF, /* CPS flags */
6137 OP_ENDI, /* Endianness specifier */
6138 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6139 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6140 OP_COND, /* conditional code */
6141 OP_TB, /* Table branch. */
6142
6143 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6144
6145 OP_RRnpc_I0, /* ARM register or literal 0 */
6146 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6147 OP_RR_EXi, /* ARM register or expression with imm prefix */
6148 OP_RF_IF, /* FPA register or immediate */
6149 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6150 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6151
6152 /* Optional operands. */
6153 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6154 OP_oI31b, /* 0 .. 31 */
6155 OP_oI32b, /* 1 .. 32 */
6156 OP_oI32z, /* 0 .. 32 */
6157 OP_oIffffb, /* 0 .. 65535 */
6158 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6159
6160 OP_oRR, /* ARM register */
6161 OP_oRRnpc, /* ARM register, not the PC */
6162 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6163 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6164 OP_oRND, /* Optional Neon double precision register */
6165 OP_oRNQ, /* Optional Neon quad precision register */
6166 OP_oRNDQ, /* Optional Neon double or quad precision register */
6167 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6168 OP_oSHll, /* LSL immediate */
6169 OP_oSHar, /* ASR immediate */
6170 OP_oSHllar, /* LSL or ASR immediate */
6171 OP_oROR, /* ROR 0/8/16/24 */
6172 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6173
6174 /* Some pre-defined mixed (ARM/THUMB) operands. */
6175 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6176 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6177 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6178
6179 OP_FIRST_OPTIONAL = OP_oI7b
6180 };
6181
6182 /* Generic instruction operand parser. This does no encoding and no
6183 semantic validation; it merely squirrels values away in the inst
6184 structure. Returns SUCCESS or FAIL depending on whether the
6185 specified grammar matched. */
6186 static int
6187 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6188 {
6189 unsigned const int *upat = pattern;
6190 char *backtrack_pos = 0;
6191 const char *backtrack_error = 0;
6192 int i, val, backtrack_index = 0;
6193 enum arm_reg_type rtype;
6194 parse_operand_result result;
6195 unsigned int op_parse_code;
6196
6197 #define po_char_or_fail(chr) \
6198 do \
6199 { \
6200 if (skip_past_char (&str, chr) == FAIL) \
6201 goto bad_args; \
6202 } \
6203 while (0)
6204
6205 #define po_reg_or_fail(regtype) \
6206 do \
6207 { \
6208 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6209 & inst.operands[i].vectype); \
6210 if (val == FAIL) \
6211 { \
6212 first_error (_(reg_expected_msgs[regtype])); \
6213 goto failure; \
6214 } \
6215 inst.operands[i].reg = val; \
6216 inst.operands[i].isreg = 1; \
6217 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6218 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6219 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6220 || rtype == REG_TYPE_VFD \
6221 || rtype == REG_TYPE_NQ); \
6222 } \
6223 while (0)
6224
6225 #define po_reg_or_goto(regtype, label) \
6226 do \
6227 { \
6228 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6229 & inst.operands[i].vectype); \
6230 if (val == FAIL) \
6231 goto label; \
6232 \
6233 inst.operands[i].reg = val; \
6234 inst.operands[i].isreg = 1; \
6235 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6236 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6237 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6238 || rtype == REG_TYPE_VFD \
6239 || rtype == REG_TYPE_NQ); \
6240 } \
6241 while (0)
6242
6243 #define po_imm_or_fail(min, max, popt) \
6244 do \
6245 { \
6246 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6247 goto failure; \
6248 inst.operands[i].imm = val; \
6249 } \
6250 while (0)
6251
6252 #define po_scalar_or_goto(elsz, label) \
6253 do \
6254 { \
6255 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6256 if (val == FAIL) \
6257 goto label; \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isscalar = 1; \
6260 } \
6261 while (0)
6262
6263 #define po_misc_or_fail(expr) \
6264 do \
6265 { \
6266 if (expr) \
6267 goto failure; \
6268 } \
6269 while (0)
6270
6271 #define po_misc_or_fail_no_backtrack(expr) \
6272 do \
6273 { \
6274 result = expr; \
6275 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6276 backtrack_pos = 0; \
6277 if (result != PARSE_OPERAND_SUCCESS) \
6278 goto failure; \
6279 } \
6280 while (0)
6281
6282 #define po_barrier_or_imm(str) \
6283 do \
6284 { \
6285 val = parse_barrier (&str); \
6286 if (val == FAIL) \
6287 { \
6288 if (ISALPHA (*str)) \
6289 goto failure; \
6290 else \
6291 goto immediate; \
6292 } \
6293 else \
6294 { \
6295 if ((inst.instruction & 0xf0) == 0x60 \
6296 && val != 0xf) \
6297 { \
6298 /* ISB can only take SY as an option. */ \
6299 inst.error = _("invalid barrier type"); \
6300 goto failure; \
6301 } \
6302 } \
6303 } \
6304 while (0)
6305
6306 skip_whitespace (str);
6307
6308 for (i = 0; upat[i] != OP_stop; i++)
6309 {
6310 op_parse_code = upat[i];
6311 if (op_parse_code >= 1<<16)
6312 op_parse_code = thumb ? (op_parse_code >> 16)
6313 : (op_parse_code & ((1<<16)-1));
6314
6315 if (op_parse_code >= OP_FIRST_OPTIONAL)
6316 {
6317 /* Remember where we are in case we need to backtrack. */
6318 gas_assert (!backtrack_pos);
6319 backtrack_pos = str;
6320 backtrack_error = inst.error;
6321 backtrack_index = i;
6322 }
6323
6324 if (i > 0 && (i > 1 || inst.operands[0].present))
6325 po_char_or_fail (',');
6326
6327 switch (op_parse_code)
6328 {
6329 /* Registers */
6330 case OP_oRRnpc:
6331 case OP_oRRnpcsp:
6332 case OP_RRnpc:
6333 case OP_RRnpcsp:
6334 case OP_oRR:
6335 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6336 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6337 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6338 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6339 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6340 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6341 case OP_oRND:
6342 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6343 case OP_RVC:
6344 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6345 break;
6346 /* Also accept generic coprocessor regs for unknown registers. */
6347 coproc_reg:
6348 po_reg_or_fail (REG_TYPE_CN);
6349 break;
6350 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6351 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6352 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6353 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6354 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6355 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6356 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6357 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6358 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6359 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6360 case OP_oRNQ:
6361 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6362 case OP_oRNDQ:
6363 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6364 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6365 case OP_oRNSDQ:
6366 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6367
6368 /* Neon scalar. Using an element size of 8 means that some invalid
6369 scalars are accepted here, so deal with those in later code. */
6370 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6371
6372 case OP_RNDQ_I0:
6373 {
6374 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6375 break;
6376 try_imm0:
6377 po_imm_or_fail (0, 0, TRUE);
6378 }
6379 break;
6380
6381 case OP_RVSD_I0:
6382 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6383 break;
6384
6385 case OP_RR_RNSC:
6386 {
6387 po_scalar_or_goto (8, try_rr);
6388 break;
6389 try_rr:
6390 po_reg_or_fail (REG_TYPE_RN);
6391 }
6392 break;
6393
6394 case OP_RNSDQ_RNSC:
6395 {
6396 po_scalar_or_goto (8, try_nsdq);
6397 break;
6398 try_nsdq:
6399 po_reg_or_fail (REG_TYPE_NSDQ);
6400 }
6401 break;
6402
6403 case OP_RNDQ_RNSC:
6404 {
6405 po_scalar_or_goto (8, try_ndq);
6406 break;
6407 try_ndq:
6408 po_reg_or_fail (REG_TYPE_NDQ);
6409 }
6410 break;
6411
6412 case OP_RND_RNSC:
6413 {
6414 po_scalar_or_goto (8, try_vfd);
6415 break;
6416 try_vfd:
6417 po_reg_or_fail (REG_TYPE_VFD);
6418 }
6419 break;
6420
6421 case OP_VMOV:
6422 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6423 not careful then bad things might happen. */
6424 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6425 break;
6426
6427 case OP_RNDQ_Ibig:
6428 {
6429 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6430 break;
6431 try_immbig:
6432 /* There's a possibility of getting a 64-bit immediate here, so
6433 we need special handling. */
6434 if (parse_big_immediate (&str, i) == FAIL)
6435 {
6436 inst.error = _("immediate value is out of range");
6437 goto failure;
6438 }
6439 }
6440 break;
6441
6442 case OP_RNDQ_I63b:
6443 {
6444 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6445 break;
6446 try_shimm:
6447 po_imm_or_fail (0, 63, TRUE);
6448 }
6449 break;
6450
6451 case OP_RRnpcb:
6452 po_char_or_fail ('[');
6453 po_reg_or_fail (REG_TYPE_RN);
6454 po_char_or_fail (']');
6455 break;
6456
6457 case OP_RRnpctw:
6458 case OP_RRw:
6459 case OP_oRRw:
6460 po_reg_or_fail (REG_TYPE_RN);
6461 if (skip_past_char (&str, '!') == SUCCESS)
6462 inst.operands[i].writeback = 1;
6463 break;
6464
6465 /* Immediates */
6466 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6467 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6468 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6469 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6470 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6471 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6472 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6473 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6474 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6475 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6476 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6477 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6478
6479 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6480 case OP_oI7b:
6481 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6482 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6483 case OP_oI31b:
6484 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6485 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6486 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6487 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6488
6489 /* Immediate variants */
6490 case OP_oI255c:
6491 po_char_or_fail ('{');
6492 po_imm_or_fail (0, 255, TRUE);
6493 po_char_or_fail ('}');
6494 break;
6495
6496 case OP_I31w:
6497 /* The expression parser chokes on a trailing !, so we have
6498 to find it first and zap it. */
6499 {
6500 char *s = str;
6501 while (*s && *s != ',')
6502 s++;
6503 if (s[-1] == '!')
6504 {
6505 s[-1] = '\0';
6506 inst.operands[i].writeback = 1;
6507 }
6508 po_imm_or_fail (0, 31, TRUE);
6509 if (str == s - 1)
6510 str = s;
6511 }
6512 break;
6513
6514 /* Expressions */
6515 case OP_EXPi: EXPi:
6516 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6517 GE_OPT_PREFIX));
6518 break;
6519
6520 case OP_EXP:
6521 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6522 GE_NO_PREFIX));
6523 break;
6524
6525 case OP_EXPr: EXPr:
6526 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6527 GE_NO_PREFIX));
6528 if (inst.reloc.exp.X_op == O_symbol)
6529 {
6530 val = parse_reloc (&str);
6531 if (val == -1)
6532 {
6533 inst.error = _("unrecognized relocation suffix");
6534 goto failure;
6535 }
6536 else if (val != BFD_RELOC_UNUSED)
6537 {
6538 inst.operands[i].imm = val;
6539 inst.operands[i].hasreloc = 1;
6540 }
6541 }
6542 break;
6543
6544 /* Operand for MOVW or MOVT. */
6545 case OP_HALF:
6546 po_misc_or_fail (parse_half (&str));
6547 break;
6548
6549 /* Register or expression. */
6550 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6551 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6552
6553 /* Register or immediate. */
6554 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6555 I0: po_imm_or_fail (0, 0, FALSE); break;
6556
6557 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6558 IF:
6559 if (!is_immediate_prefix (*str))
6560 goto bad_args;
6561 str++;
6562 val = parse_fpa_immediate (&str);
6563 if (val == FAIL)
6564 goto failure;
6565 /* FPA immediates are encoded as registers 8-15.
6566 parse_fpa_immediate has already applied the offset. */
6567 inst.operands[i].reg = val;
6568 inst.operands[i].isreg = 1;
6569 break;
6570
6571 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6572 I32z: po_imm_or_fail (0, 32, FALSE); break;
6573
6574 /* Two kinds of register. */
6575 case OP_RIWR_RIWC:
6576 {
6577 struct reg_entry *rege = arm_reg_parse_multi (&str);
6578 if (!rege
6579 || (rege->type != REG_TYPE_MMXWR
6580 && rege->type != REG_TYPE_MMXWC
6581 && rege->type != REG_TYPE_MMXWCG))
6582 {
6583 inst.error = _("iWMMXt data or control register expected");
6584 goto failure;
6585 }
6586 inst.operands[i].reg = rege->number;
6587 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6588 }
6589 break;
6590
6591 case OP_RIWC_RIWG:
6592 {
6593 struct reg_entry *rege = arm_reg_parse_multi (&str);
6594 if (!rege
6595 || (rege->type != REG_TYPE_MMXWC
6596 && rege->type != REG_TYPE_MMXWCG))
6597 {
6598 inst.error = _("iWMMXt control register expected");
6599 goto failure;
6600 }
6601 inst.operands[i].reg = rege->number;
6602 inst.operands[i].isreg = 1;
6603 }
6604 break;
6605
6606 /* Misc */
6607 case OP_CPSF: val = parse_cps_flags (&str); break;
6608 case OP_ENDI: val = parse_endian_specifier (&str); break;
6609 case OP_oROR: val = parse_ror (&str); break;
6610 case OP_COND: val = parse_cond (&str); break;
6611 case OP_oBARRIER_I15:
6612 po_barrier_or_imm (str); break;
6613 immediate:
6614 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6615 goto failure;
6616 break;
6617
6618 case OP_wPSR:
6619 case OP_rPSR:
6620 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6621 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6622 {
6623 inst.error = _("Banked registers are not available with this "
6624 "architecture.");
6625 goto failure;
6626 }
6627 break;
6628 try_psr:
6629 val = parse_psr (&str, op_parse_code == OP_wPSR);
6630 break;
6631
6632 case OP_APSR_RR:
6633 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6634 break;
6635 try_apsr:
6636 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6637 instruction). */
6638 if (strncasecmp (str, "APSR_", 5) == 0)
6639 {
6640 unsigned found = 0;
6641 str += 5;
6642 while (found < 15)
6643 switch (*str++)
6644 {
6645 case 'c': found = (found & 1) ? 16 : found | 1; break;
6646 case 'n': found = (found & 2) ? 16 : found | 2; break;
6647 case 'z': found = (found & 4) ? 16 : found | 4; break;
6648 case 'v': found = (found & 8) ? 16 : found | 8; break;
6649 default: found = 16;
6650 }
6651 if (found != 15)
6652 goto failure;
6653 inst.operands[i].isvec = 1;
6654 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6655 inst.operands[i].reg = REG_PC;
6656 }
6657 else
6658 goto failure;
6659 break;
6660
6661 case OP_TB:
6662 po_misc_or_fail (parse_tb (&str));
6663 break;
6664
6665 /* Register lists. */
6666 case OP_REGLST:
6667 val = parse_reg_list (&str);
6668 if (*str == '^')
6669 {
6670 inst.operands[1].writeback = 1;
6671 str++;
6672 }
6673 break;
6674
6675 case OP_VRSLST:
6676 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6677 break;
6678
6679 case OP_VRDLST:
6680 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6681 break;
6682
6683 case OP_VRSDLST:
6684 /* Allow Q registers too. */
6685 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6686 REGLIST_NEON_D);
6687 if (val == FAIL)
6688 {
6689 inst.error = NULL;
6690 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6691 REGLIST_VFP_S);
6692 inst.operands[i].issingle = 1;
6693 }
6694 break;
6695
6696 case OP_NRDLST:
6697 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6698 REGLIST_NEON_D);
6699 break;
6700
6701 case OP_NSTRLST:
6702 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6703 &inst.operands[i].vectype);
6704 break;
6705
6706 /* Addressing modes */
6707 case OP_ADDR:
6708 po_misc_or_fail (parse_address (&str, i));
6709 break;
6710
6711 case OP_ADDRGLDR:
6712 po_misc_or_fail_no_backtrack (
6713 parse_address_group_reloc (&str, i, GROUP_LDR));
6714 break;
6715
6716 case OP_ADDRGLDRS:
6717 po_misc_or_fail_no_backtrack (
6718 parse_address_group_reloc (&str, i, GROUP_LDRS));
6719 break;
6720
6721 case OP_ADDRGLDC:
6722 po_misc_or_fail_no_backtrack (
6723 parse_address_group_reloc (&str, i, GROUP_LDC));
6724 break;
6725
6726 case OP_SH:
6727 po_misc_or_fail (parse_shifter_operand (&str, i));
6728 break;
6729
6730 case OP_SHG:
6731 po_misc_or_fail_no_backtrack (
6732 parse_shifter_operand_group_reloc (&str, i));
6733 break;
6734
6735 case OP_oSHll:
6736 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6737 break;
6738
6739 case OP_oSHar:
6740 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6741 break;
6742
6743 case OP_oSHllar:
6744 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6745 break;
6746
6747 default:
6748 as_fatal (_("unhandled operand code %d"), op_parse_code);
6749 }
6750
6751 /* Various value-based sanity checks and shared operations. We
6752 do not signal immediate failures for the register constraints;
6753 this allows a syntax error to take precedence. */
6754 switch (op_parse_code)
6755 {
6756 case OP_oRRnpc:
6757 case OP_RRnpc:
6758 case OP_RRnpcb:
6759 case OP_RRw:
6760 case OP_oRRw:
6761 case OP_RRnpc_I0:
6762 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6763 inst.error = BAD_PC;
6764 break;
6765
6766 case OP_oRRnpcsp:
6767 case OP_RRnpcsp:
6768 if (inst.operands[i].isreg)
6769 {
6770 if (inst.operands[i].reg == REG_PC)
6771 inst.error = BAD_PC;
6772 else if (inst.operands[i].reg == REG_SP)
6773 inst.error = BAD_SP;
6774 }
6775 break;
6776
6777 case OP_RRnpctw:
6778 if (inst.operands[i].isreg
6779 && inst.operands[i].reg == REG_PC
6780 && (inst.operands[i].writeback || thumb))
6781 inst.error = BAD_PC;
6782 break;
6783
6784 case OP_CPSF:
6785 case OP_ENDI:
6786 case OP_oROR:
6787 case OP_wPSR:
6788 case OP_rPSR:
6789 case OP_COND:
6790 case OP_oBARRIER_I15:
6791 case OP_REGLST:
6792 case OP_VRSLST:
6793 case OP_VRDLST:
6794 case OP_VRSDLST:
6795 case OP_NRDLST:
6796 case OP_NSTRLST:
6797 if (val == FAIL)
6798 goto failure;
6799 inst.operands[i].imm = val;
6800 break;
6801
6802 default:
6803 break;
6804 }
6805
6806 /* If we get here, this operand was successfully parsed. */
6807 inst.operands[i].present = 1;
6808 continue;
6809
6810 bad_args:
6811 inst.error = BAD_ARGS;
6812
6813 failure:
6814 if (!backtrack_pos)
6815 {
6816 /* The parse routine should already have set inst.error, but set a
6817 default here just in case. */
6818 if (!inst.error)
6819 inst.error = _("syntax error");
6820 return FAIL;
6821 }
6822
6823 /* Do not backtrack over a trailing optional argument that
6824 absorbed some text. We will only fail again, with the
6825 'garbage following instruction' error message, which is
6826 probably less helpful than the current one. */
6827 if (backtrack_index == i && backtrack_pos != str
6828 && upat[i+1] == OP_stop)
6829 {
6830 if (!inst.error)
6831 inst.error = _("syntax error");
6832 return FAIL;
6833 }
6834
6835 /* Try again, skipping the optional argument at backtrack_pos. */
6836 str = backtrack_pos;
6837 inst.error = backtrack_error;
6838 inst.operands[backtrack_index].present = 0;
6839 i = backtrack_index;
6840 backtrack_pos = 0;
6841 }
6842
6843 /* Check that we have parsed all the arguments. */
6844 if (*str != '\0' && !inst.error)
6845 inst.error = _("garbage following instruction");
6846
6847 return inst.error ? FAIL : SUCCESS;
6848 }
6849
6850 #undef po_char_or_fail
6851 #undef po_reg_or_fail
6852 #undef po_reg_or_goto
6853 #undef po_imm_or_fail
6854 #undef po_scalar_or_fail
6855 #undef po_barrier_or_imm
6856
6857 /* Shorthand macro for instruction encoding functions issuing errors. */
6858 #define constraint(expr, err) \
6859 do \
6860 { \
6861 if (expr) \
6862 { \
6863 inst.error = err; \
6864 return; \
6865 } \
6866 } \
6867 while (0)
6868
6869 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6870 instructions are unpredictable if these registers are used. This
6871 is the BadReg predicate in ARM's Thumb-2 documentation. */
6872 #define reject_bad_reg(reg) \
6873 do \
6874 if (reg == REG_SP || reg == REG_PC) \
6875 { \
6876 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6877 return; \
6878 } \
6879 while (0)
6880
6881 /* If REG is R13 (the stack pointer), warn that its use is
6882 deprecated. */
6883 #define warn_deprecated_sp(reg) \
6884 do \
6885 if (warn_on_deprecated && reg == REG_SP) \
6886 as_warn (_("use of r13 is deprecated")); \
6887 while (0)
6888
6889 /* Functions for operand encoding. ARM, then Thumb. */
6890
6891 #define rotate_left(v, n) (v << n | v >> (32 - n))
6892
6893 /* If VAL can be encoded in the immediate field of an ARM instruction,
6894 return the encoded form. Otherwise, return FAIL. */
6895
6896 static unsigned int
6897 encode_arm_immediate (unsigned int val)
6898 {
6899 unsigned int a, i;
6900
6901 for (i = 0; i < 32; i += 2)
6902 if ((a = rotate_left (val, i)) <= 0xff)
6903 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6904
6905 return FAIL;
6906 }
6907
6908 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6909 return the encoded form. Otherwise, return FAIL. */
6910 static unsigned int
6911 encode_thumb32_immediate (unsigned int val)
6912 {
6913 unsigned int a, i;
6914
6915 if (val <= 0xff)
6916 return val;
6917
6918 for (i = 1; i <= 24; i++)
6919 {
6920 a = val >> i;
6921 if ((val & ~(0xff << i)) == 0)
6922 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6923 }
6924
6925 a = val & 0xff;
6926 if (val == ((a << 16) | a))
6927 return 0x100 | a;
6928 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6929 return 0x300 | a;
6930
6931 a = val & 0xff00;
6932 if (val == ((a << 16) | a))
6933 return 0x200 | (a >> 8);
6934
6935 return FAIL;
6936 }
6937 /* Encode a VFP SP or DP register number into inst.instruction. */
6938
6939 static void
6940 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6941 {
6942 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6943 && reg > 15)
6944 {
6945 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6946 {
6947 if (thumb_mode)
6948 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6949 fpu_vfp_ext_d32);
6950 else
6951 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6952 fpu_vfp_ext_d32);
6953 }
6954 else
6955 {
6956 first_error (_("D register out of range for selected VFP version"));
6957 return;
6958 }
6959 }
6960
6961 switch (pos)
6962 {
6963 case VFP_REG_Sd:
6964 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6965 break;
6966
6967 case VFP_REG_Sn:
6968 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6969 break;
6970
6971 case VFP_REG_Sm:
6972 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6973 break;
6974
6975 case VFP_REG_Dd:
6976 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6977 break;
6978
6979 case VFP_REG_Dn:
6980 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6981 break;
6982
6983 case VFP_REG_Dm:
6984 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6985 break;
6986
6987 default:
6988 abort ();
6989 }
6990 }
6991
6992 /* Encode a <shift> in an ARM-format instruction. The immediate,
6993 if any, is handled by md_apply_fix. */
6994 static void
6995 encode_arm_shift (int i)
6996 {
6997 if (inst.operands[i].shift_kind == SHIFT_RRX)
6998 inst.instruction |= SHIFT_ROR << 5;
6999 else
7000 {
7001 inst.instruction |= inst.operands[i].shift_kind << 5;
7002 if (inst.operands[i].immisreg)
7003 {
7004 inst.instruction |= SHIFT_BY_REG;
7005 inst.instruction |= inst.operands[i].imm << 8;
7006 }
7007 else
7008 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7009 }
7010 }
7011
7012 static void
7013 encode_arm_shifter_operand (int i)
7014 {
7015 if (inst.operands[i].isreg)
7016 {
7017 inst.instruction |= inst.operands[i].reg;
7018 encode_arm_shift (i);
7019 }
7020 else
7021 {
7022 inst.instruction |= INST_IMMEDIATE;
7023 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7024 inst.instruction |= inst.operands[i].imm;
7025 }
7026 }
7027
7028 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7029 static void
7030 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7031 {
7032 gas_assert (inst.operands[i].isreg);
7033 inst.instruction |= inst.operands[i].reg << 16;
7034
7035 if (inst.operands[i].preind)
7036 {
7037 if (is_t)
7038 {
7039 inst.error = _("instruction does not accept preindexed addressing");
7040 return;
7041 }
7042 inst.instruction |= PRE_INDEX;
7043 if (inst.operands[i].writeback)
7044 inst.instruction |= WRITE_BACK;
7045
7046 }
7047 else if (inst.operands[i].postind)
7048 {
7049 gas_assert (inst.operands[i].writeback);
7050 if (is_t)
7051 inst.instruction |= WRITE_BACK;
7052 }
7053 else /* unindexed - only for coprocessor */
7054 {
7055 inst.error = _("instruction does not accept unindexed addressing");
7056 return;
7057 }
7058
7059 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7060 && (((inst.instruction & 0x000f0000) >> 16)
7061 == ((inst.instruction & 0x0000f000) >> 12)))
7062 as_warn ((inst.instruction & LOAD_BIT)
7063 ? _("destination register same as write-back base")
7064 : _("source register same as write-back base"));
7065 }
7066
7067 /* inst.operands[i] was set up by parse_address. Encode it into an
7068 ARM-format mode 2 load or store instruction. If is_t is true,
7069 reject forms that cannot be used with a T instruction (i.e. not
7070 post-indexed). */
7071 static void
7072 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7073 {
7074 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7075
7076 encode_arm_addr_mode_common (i, is_t);
7077
7078 if (inst.operands[i].immisreg)
7079 {
7080 constraint ((inst.operands[i].imm == REG_PC
7081 || (is_pc && inst.operands[i].writeback)),
7082 BAD_PC_ADDRESSING);
7083 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7084 inst.instruction |= inst.operands[i].imm;
7085 if (!inst.operands[i].negative)
7086 inst.instruction |= INDEX_UP;
7087 if (inst.operands[i].shifted)
7088 {
7089 if (inst.operands[i].shift_kind == SHIFT_RRX)
7090 inst.instruction |= SHIFT_ROR << 5;
7091 else
7092 {
7093 inst.instruction |= inst.operands[i].shift_kind << 5;
7094 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7095 }
7096 }
7097 }
7098 else /* immediate offset in inst.reloc */
7099 {
7100 if (is_pc && !inst.reloc.pc_rel)
7101 {
7102 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7103
7104 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7105 cannot use PC in addressing.
7106 PC cannot be used in writeback addressing, either. */
7107 constraint ((is_t || inst.operands[i].writeback),
7108 BAD_PC_ADDRESSING);
7109
7110 /* Use of PC in str is deprecated for ARMv7. */
7111 if (warn_on_deprecated
7112 && !is_load
7113 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7114 as_warn (_("use of PC in this instruction is deprecated"));
7115 }
7116
7117 if (inst.reloc.type == BFD_RELOC_UNUSED)
7118 {
7119 /* Prefer + for zero encoded value. */
7120 if (!inst.operands[i].negative)
7121 inst.instruction |= INDEX_UP;
7122 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7123 }
7124 }
7125 }
7126
7127 /* inst.operands[i] was set up by parse_address. Encode it into an
7128 ARM-format mode 3 load or store instruction. Reject forms that
7129 cannot be used with such instructions. If is_t is true, reject
7130 forms that cannot be used with a T instruction (i.e. not
7131 post-indexed). */
7132 static void
7133 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7134 {
7135 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7136 {
7137 inst.error = _("instruction does not accept scaled register index");
7138 return;
7139 }
7140
7141 encode_arm_addr_mode_common (i, is_t);
7142
7143 if (inst.operands[i].immisreg)
7144 {
7145 constraint ((inst.operands[i].imm == REG_PC
7146 || inst.operands[i].reg == REG_PC),
7147 BAD_PC_ADDRESSING);
7148 inst.instruction |= inst.operands[i].imm;
7149 if (!inst.operands[i].negative)
7150 inst.instruction |= INDEX_UP;
7151 }
7152 else /* immediate offset in inst.reloc */
7153 {
7154 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7155 && inst.operands[i].writeback),
7156 BAD_PC_WRITEBACK);
7157 inst.instruction |= HWOFFSET_IMM;
7158 if (inst.reloc.type == BFD_RELOC_UNUSED)
7159 {
7160 /* Prefer + for zero encoded value. */
7161 if (!inst.operands[i].negative)
7162 inst.instruction |= INDEX_UP;
7163
7164 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7165 }
7166 }
7167 }
7168
7169 /* inst.operands[i] was set up by parse_address. Encode it into an
7170 ARM-format instruction. Reject all forms which cannot be encoded
7171 into a coprocessor load/store instruction. If wb_ok is false,
7172 reject use of writeback; if unind_ok is false, reject use of
7173 unindexed addressing. If reloc_override is not 0, use it instead
7174 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7175 (in which case it is preserved). */
7176
7177 static int
7178 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7179 {
7180 inst.instruction |= inst.operands[i].reg << 16;
7181
7182 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7183
7184 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7185 {
7186 gas_assert (!inst.operands[i].writeback);
7187 if (!unind_ok)
7188 {
7189 inst.error = _("instruction does not support unindexed addressing");
7190 return FAIL;
7191 }
7192 inst.instruction |= inst.operands[i].imm;
7193 inst.instruction |= INDEX_UP;
7194 return SUCCESS;
7195 }
7196
7197 if (inst.operands[i].preind)
7198 inst.instruction |= PRE_INDEX;
7199
7200 if (inst.operands[i].writeback)
7201 {
7202 if (inst.operands[i].reg == REG_PC)
7203 {
7204 inst.error = _("pc may not be used with write-back");
7205 return FAIL;
7206 }
7207 if (!wb_ok)
7208 {
7209 inst.error = _("instruction does not support writeback");
7210 return FAIL;
7211 }
7212 inst.instruction |= WRITE_BACK;
7213 }
7214
7215 if (reloc_override)
7216 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7217 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7218 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7219 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7220 {
7221 if (thumb_mode)
7222 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7223 else
7224 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7225 }
7226
7227 /* Prefer + for zero encoded value. */
7228 if (!inst.operands[i].negative)
7229 inst.instruction |= INDEX_UP;
7230
7231 return SUCCESS;
7232 }
7233
7234 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7235 Determine whether it can be performed with a move instruction; if
7236 it can, convert inst.instruction to that move instruction and
7237 return TRUE; if it can't, convert inst.instruction to a literal-pool
7238 load and return FALSE. If this is not a valid thing to do in the
7239 current context, set inst.error and return TRUE.
7240
7241 inst.operands[i] describes the destination register. */
7242
7243 static bfd_boolean
7244 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7245 {
7246 unsigned long tbit;
7247
7248 if (thumb_p)
7249 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7250 else
7251 tbit = LOAD_BIT;
7252
7253 if ((inst.instruction & tbit) == 0)
7254 {
7255 inst.error = _("invalid pseudo operation");
7256 return TRUE;
7257 }
7258 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7259 {
7260 inst.error = _("constant expression expected");
7261 return TRUE;
7262 }
7263 if (inst.reloc.exp.X_op == O_constant)
7264 {
7265 if (thumb_p)
7266 {
7267 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7268 {
7269 /* This can be done with a mov(1) instruction. */
7270 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7271 inst.instruction |= inst.reloc.exp.X_add_number;
7272 return TRUE;
7273 }
7274 }
7275 else
7276 {
7277 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7278 if (value != FAIL)
7279 {
7280 /* This can be done with a mov instruction. */
7281 inst.instruction &= LITERAL_MASK;
7282 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7283 inst.instruction |= value & 0xfff;
7284 return TRUE;
7285 }
7286
7287 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7288 if (value != FAIL)
7289 {
7290 /* This can be done with a mvn instruction. */
7291 inst.instruction &= LITERAL_MASK;
7292 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7293 inst.instruction |= value & 0xfff;
7294 return TRUE;
7295 }
7296 }
7297 }
7298
7299 if (add_to_lit_pool () == FAIL)
7300 {
7301 inst.error = _("literal pool insertion failed");
7302 return TRUE;
7303 }
7304 inst.operands[1].reg = REG_PC;
7305 inst.operands[1].isreg = 1;
7306 inst.operands[1].preind = 1;
7307 inst.reloc.pc_rel = 1;
7308 inst.reloc.type = (thumb_p
7309 ? BFD_RELOC_ARM_THUMB_OFFSET
7310 : (mode_3
7311 ? BFD_RELOC_ARM_HWLITERAL
7312 : BFD_RELOC_ARM_LITERAL));
7313 return FALSE;
7314 }
7315
7316 /* Functions for instruction encoding, sorted by sub-architecture.
7317 First some generics; their names are taken from the conventional
7318 bit positions for register arguments in ARM format instructions. */
7319
7320 static void
7321 do_noargs (void)
7322 {
7323 }
7324
7325 static void
7326 do_rd (void)
7327 {
7328 inst.instruction |= inst.operands[0].reg << 12;
7329 }
7330
7331 static void
7332 do_rd_rm (void)
7333 {
7334 inst.instruction |= inst.operands[0].reg << 12;
7335 inst.instruction |= inst.operands[1].reg;
7336 }
7337
7338 static void
7339 do_rd_rn (void)
7340 {
7341 inst.instruction |= inst.operands[0].reg << 12;
7342 inst.instruction |= inst.operands[1].reg << 16;
7343 }
7344
7345 static void
7346 do_rn_rd (void)
7347 {
7348 inst.instruction |= inst.operands[0].reg << 16;
7349 inst.instruction |= inst.operands[1].reg << 12;
7350 }
7351
7352 static void
7353 do_rd_rm_rn (void)
7354 {
7355 unsigned Rn = inst.operands[2].reg;
7356 /* Enforce restrictions on SWP instruction. */
7357 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7358 {
7359 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7360 _("Rn must not overlap other operands"));
7361
7362 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7363 if (warn_on_deprecated
7364 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7365 as_warn (_("swp{b} use is deprecated for this architecture"));
7366
7367 }
7368 inst.instruction |= inst.operands[0].reg << 12;
7369 inst.instruction |= inst.operands[1].reg;
7370 inst.instruction |= Rn << 16;
7371 }
7372
7373 static void
7374 do_rd_rn_rm (void)
7375 {
7376 inst.instruction |= inst.operands[0].reg << 12;
7377 inst.instruction |= inst.operands[1].reg << 16;
7378 inst.instruction |= inst.operands[2].reg;
7379 }
7380
7381 static void
7382 do_rm_rd_rn (void)
7383 {
7384 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7385 constraint (((inst.reloc.exp.X_op != O_constant
7386 && inst.reloc.exp.X_op != O_illegal)
7387 || inst.reloc.exp.X_add_number != 0),
7388 BAD_ADDR_MODE);
7389 inst.instruction |= inst.operands[0].reg;
7390 inst.instruction |= inst.operands[1].reg << 12;
7391 inst.instruction |= inst.operands[2].reg << 16;
7392 }
7393
7394 static void
7395 do_imm0 (void)
7396 {
7397 inst.instruction |= inst.operands[0].imm;
7398 }
7399
7400 static void
7401 do_rd_cpaddr (void)
7402 {
7403 inst.instruction |= inst.operands[0].reg << 12;
7404 encode_arm_cp_address (1, TRUE, TRUE, 0);
7405 }
7406
7407 /* ARM instructions, in alphabetical order by function name (except
7408 that wrapper functions appear immediately after the function they
7409 wrap). */
7410
7411 /* This is a pseudo-op of the form "adr rd, label" to be converted
7412 into a relative address of the form "add rd, pc, #label-.-8". */
7413
7414 static void
7415 do_adr (void)
7416 {
7417 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7418
7419 /* Frag hacking will turn this into a sub instruction if the offset turns
7420 out to be negative. */
7421 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7422 inst.reloc.pc_rel = 1;
7423 inst.reloc.exp.X_add_number -= 8;
7424 }
7425
7426 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7427 into a relative address of the form:
7428 add rd, pc, #low(label-.-8)"
7429 add rd, rd, #high(label-.-8)" */
7430
7431 static void
7432 do_adrl (void)
7433 {
7434 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7435
7436 /* Frag hacking will turn this into a sub instruction if the offset turns
7437 out to be negative. */
7438 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7439 inst.reloc.pc_rel = 1;
7440 inst.size = INSN_SIZE * 2;
7441 inst.reloc.exp.X_add_number -= 8;
7442 }
7443
7444 static void
7445 do_arit (void)
7446 {
7447 if (!inst.operands[1].present)
7448 inst.operands[1].reg = inst.operands[0].reg;
7449 inst.instruction |= inst.operands[0].reg << 12;
7450 inst.instruction |= inst.operands[1].reg << 16;
7451 encode_arm_shifter_operand (2);
7452 }
7453
7454 static void
7455 do_barrier (void)
7456 {
7457 if (inst.operands[0].present)
7458 {
7459 constraint ((inst.instruction & 0xf0) != 0x40
7460 && inst.operands[0].imm > 0xf
7461 && inst.operands[0].imm < 0x0,
7462 _("bad barrier type"));
7463 inst.instruction |= inst.operands[0].imm;
7464 }
7465 else
7466 inst.instruction |= 0xf;
7467 }
7468
7469 static void
7470 do_bfc (void)
7471 {
7472 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7473 constraint (msb > 32, _("bit-field extends past end of register"));
7474 /* The instruction encoding stores the LSB and MSB,
7475 not the LSB and width. */
7476 inst.instruction |= inst.operands[0].reg << 12;
7477 inst.instruction |= inst.operands[1].imm << 7;
7478 inst.instruction |= (msb - 1) << 16;
7479 }
7480
7481 static void
7482 do_bfi (void)
7483 {
7484 unsigned int msb;
7485
7486 /* #0 in second position is alternative syntax for bfc, which is
7487 the same instruction but with REG_PC in the Rm field. */
7488 if (!inst.operands[1].isreg)
7489 inst.operands[1].reg = REG_PC;
7490
7491 msb = inst.operands[2].imm + inst.operands[3].imm;
7492 constraint (msb > 32, _("bit-field extends past end of register"));
7493 /* The instruction encoding stores the LSB and MSB,
7494 not the LSB and width. */
7495 inst.instruction |= inst.operands[0].reg << 12;
7496 inst.instruction |= inst.operands[1].reg;
7497 inst.instruction |= inst.operands[2].imm << 7;
7498 inst.instruction |= (msb - 1) << 16;
7499 }
7500
7501 static void
7502 do_bfx (void)
7503 {
7504 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7505 _("bit-field extends past end of register"));
7506 inst.instruction |= inst.operands[0].reg << 12;
7507 inst.instruction |= inst.operands[1].reg;
7508 inst.instruction |= inst.operands[2].imm << 7;
7509 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7510 }
7511
7512 /* ARM V5 breakpoint instruction (argument parse)
7513 BKPT <16 bit unsigned immediate>
7514 Instruction is not conditional.
7515 The bit pattern given in insns[] has the COND_ALWAYS condition,
7516 and it is an error if the caller tried to override that. */
7517
7518 static void
7519 do_bkpt (void)
7520 {
7521 /* Top 12 of 16 bits to bits 19:8. */
7522 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7523
7524 /* Bottom 4 of 16 bits to bits 3:0. */
7525 inst.instruction |= inst.operands[0].imm & 0xf;
7526 }
7527
7528 static void
7529 encode_branch (int default_reloc)
7530 {
7531 if (inst.operands[0].hasreloc)
7532 {
7533 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7534 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7535 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7536 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7537 ? BFD_RELOC_ARM_PLT32
7538 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7539 }
7540 else
7541 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7542 inst.reloc.pc_rel = 1;
7543 }
7544
7545 static void
7546 do_branch (void)
7547 {
7548 #ifdef OBJ_ELF
7549 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7550 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7551 else
7552 #endif
7553 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7554 }
7555
7556 static void
7557 do_bl (void)
7558 {
7559 #ifdef OBJ_ELF
7560 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7561 {
7562 if (inst.cond == COND_ALWAYS)
7563 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7564 else
7565 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7566 }
7567 else
7568 #endif
7569 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7570 }
7571
7572 /* ARM V5 branch-link-exchange instruction (argument parse)
7573 BLX <target_addr> ie BLX(1)
7574 BLX{<condition>} <Rm> ie BLX(2)
7575 Unfortunately, there are two different opcodes for this mnemonic.
7576 So, the insns[].value is not used, and the code here zaps values
7577 into inst.instruction.
7578 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7579
7580 static void
7581 do_blx (void)
7582 {
7583 if (inst.operands[0].isreg)
7584 {
7585 /* Arg is a register; the opcode provided by insns[] is correct.
7586 It is not illegal to do "blx pc", just useless. */
7587 if (inst.operands[0].reg == REG_PC)
7588 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7589
7590 inst.instruction |= inst.operands[0].reg;
7591 }
7592 else
7593 {
7594 /* Arg is an address; this instruction cannot be executed
7595 conditionally, and the opcode must be adjusted.
7596 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7597 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7598 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7599 inst.instruction = 0xfa000000;
7600 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7601 }
7602 }
7603
7604 static void
7605 do_bx (void)
7606 {
7607 bfd_boolean want_reloc;
7608
7609 if (inst.operands[0].reg == REG_PC)
7610 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7611
7612 inst.instruction |= inst.operands[0].reg;
7613 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7614 it is for ARMv4t or earlier. */
7615 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7616 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7617 want_reloc = TRUE;
7618
7619 #ifdef OBJ_ELF
7620 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7621 #endif
7622 want_reloc = FALSE;
7623
7624 if (want_reloc)
7625 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7626 }
7627
7628
7629 /* ARM v5TEJ. Jump to Jazelle code. */
7630
7631 static void
7632 do_bxj (void)
7633 {
7634 if (inst.operands[0].reg == REG_PC)
7635 as_tsktsk (_("use of r15 in bxj is not really useful"));
7636
7637 inst.instruction |= inst.operands[0].reg;
7638 }
7639
7640 /* Co-processor data operation:
7641 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7642 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7643 static void
7644 do_cdp (void)
7645 {
7646 inst.instruction |= inst.operands[0].reg << 8;
7647 inst.instruction |= inst.operands[1].imm << 20;
7648 inst.instruction |= inst.operands[2].reg << 12;
7649 inst.instruction |= inst.operands[3].reg << 16;
7650 inst.instruction |= inst.operands[4].reg;
7651 inst.instruction |= inst.operands[5].imm << 5;
7652 }
7653
7654 static void
7655 do_cmp (void)
7656 {
7657 inst.instruction |= inst.operands[0].reg << 16;
7658 encode_arm_shifter_operand (1);
7659 }
7660
7661 /* Transfer between coprocessor and ARM registers.
7662 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7663 MRC2
7664 MCR{cond}
7665 MCR2
7666
7667 No special properties. */
7668
7669 static void
7670 do_co_reg (void)
7671 {
7672 unsigned Rd;
7673
7674 Rd = inst.operands[2].reg;
7675 if (thumb_mode)
7676 {
7677 if (inst.instruction == 0xee000010
7678 || inst.instruction == 0xfe000010)
7679 /* MCR, MCR2 */
7680 reject_bad_reg (Rd);
7681 else
7682 /* MRC, MRC2 */
7683 constraint (Rd == REG_SP, BAD_SP);
7684 }
7685 else
7686 {
7687 /* MCR */
7688 if (inst.instruction == 0xe000010)
7689 constraint (Rd == REG_PC, BAD_PC);
7690 }
7691
7692
7693 inst.instruction |= inst.operands[0].reg << 8;
7694 inst.instruction |= inst.operands[1].imm << 21;
7695 inst.instruction |= Rd << 12;
7696 inst.instruction |= inst.operands[3].reg << 16;
7697 inst.instruction |= inst.operands[4].reg;
7698 inst.instruction |= inst.operands[5].imm << 5;
7699 }
7700
7701 /* Transfer between coprocessor register and pair of ARM registers.
7702 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7703 MCRR2
7704 MRRC{cond}
7705 MRRC2
7706
7707 Two XScale instructions are special cases of these:
7708
7709 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7710 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7711
7712 Result unpredictable if Rd or Rn is R15. */
7713
7714 static void
7715 do_co_reg2c (void)
7716 {
7717 unsigned Rd, Rn;
7718
7719 Rd = inst.operands[2].reg;
7720 Rn = inst.operands[3].reg;
7721
7722 if (thumb_mode)
7723 {
7724 reject_bad_reg (Rd);
7725 reject_bad_reg (Rn);
7726 }
7727 else
7728 {
7729 constraint (Rd == REG_PC, BAD_PC);
7730 constraint (Rn == REG_PC, BAD_PC);
7731 }
7732
7733 inst.instruction |= inst.operands[0].reg << 8;
7734 inst.instruction |= inst.operands[1].imm << 4;
7735 inst.instruction |= Rd << 12;
7736 inst.instruction |= Rn << 16;
7737 inst.instruction |= inst.operands[4].reg;
7738 }
7739
7740 static void
7741 do_cpsi (void)
7742 {
7743 inst.instruction |= inst.operands[0].imm << 6;
7744 if (inst.operands[1].present)
7745 {
7746 inst.instruction |= CPSI_MMOD;
7747 inst.instruction |= inst.operands[1].imm;
7748 }
7749 }
7750
7751 static void
7752 do_dbg (void)
7753 {
7754 inst.instruction |= inst.operands[0].imm;
7755 }
7756
7757 static void
7758 do_div (void)
7759 {
7760 unsigned Rd, Rn, Rm;
7761
7762 Rd = inst.operands[0].reg;
7763 Rn = (inst.operands[1].present
7764 ? inst.operands[1].reg : Rd);
7765 Rm = inst.operands[2].reg;
7766
7767 constraint ((Rd == REG_PC), BAD_PC);
7768 constraint ((Rn == REG_PC), BAD_PC);
7769 constraint ((Rm == REG_PC), BAD_PC);
7770
7771 inst.instruction |= Rd << 16;
7772 inst.instruction |= Rn << 0;
7773 inst.instruction |= Rm << 8;
7774 }
7775
7776 static void
7777 do_it (void)
7778 {
7779 /* There is no IT instruction in ARM mode. We
7780 process it to do the validation as if in
7781 thumb mode, just in case the code gets
7782 assembled for thumb using the unified syntax. */
7783
7784 inst.size = 0;
7785 if (unified_syntax)
7786 {
7787 set_it_insn_type (IT_INSN);
7788 now_it.mask = (inst.instruction & 0xf) | 0x10;
7789 now_it.cc = inst.operands[0].imm;
7790 }
7791 }
7792
7793 static void
7794 do_ldmstm (void)
7795 {
7796 int base_reg = inst.operands[0].reg;
7797 int range = inst.operands[1].imm;
7798
7799 inst.instruction |= base_reg << 16;
7800 inst.instruction |= range;
7801
7802 if (inst.operands[1].writeback)
7803 inst.instruction |= LDM_TYPE_2_OR_3;
7804
7805 if (inst.operands[0].writeback)
7806 {
7807 inst.instruction |= WRITE_BACK;
7808 /* Check for unpredictable uses of writeback. */
7809 if (inst.instruction & LOAD_BIT)
7810 {
7811 /* Not allowed in LDM type 2. */
7812 if ((inst.instruction & LDM_TYPE_2_OR_3)
7813 && ((range & (1 << REG_PC)) == 0))
7814 as_warn (_("writeback of base register is UNPREDICTABLE"));
7815 /* Only allowed if base reg not in list for other types. */
7816 else if (range & (1 << base_reg))
7817 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7818 }
7819 else /* STM. */
7820 {
7821 /* Not allowed for type 2. */
7822 if (inst.instruction & LDM_TYPE_2_OR_3)
7823 as_warn (_("writeback of base register is UNPREDICTABLE"));
7824 /* Only allowed if base reg not in list, or first in list. */
7825 else if ((range & (1 << base_reg))
7826 && (range & ((1 << base_reg) - 1)))
7827 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7828 }
7829 }
7830 }
7831
7832 /* ARMv5TE load-consecutive (argument parse)
7833 Mode is like LDRH.
7834
7835 LDRccD R, mode
7836 STRccD R, mode. */
7837
7838 static void
7839 do_ldrd (void)
7840 {
7841 constraint (inst.operands[0].reg % 2 != 0,
7842 _("first transfer register must be even"));
7843 constraint (inst.operands[1].present
7844 && inst.operands[1].reg != inst.operands[0].reg + 1,
7845 _("can only transfer two consecutive registers"));
7846 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7847 constraint (!inst.operands[2].isreg, _("'[' expected"));
7848
7849 if (!inst.operands[1].present)
7850 inst.operands[1].reg = inst.operands[0].reg + 1;
7851
7852 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7853 register and the first register written; we have to diagnose
7854 overlap between the base and the second register written here. */
7855
7856 if (inst.operands[2].reg == inst.operands[1].reg
7857 && (inst.operands[2].writeback || inst.operands[2].postind))
7858 as_warn (_("base register written back, and overlaps "
7859 "second transfer register"));
7860
7861 if (!(inst.instruction & V4_STR_BIT))
7862 {
7863 /* For an index-register load, the index register must not overlap the
7864 destination (even if not write-back). */
7865 if (inst.operands[2].immisreg
7866 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7867 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7868 as_warn (_("index register overlaps transfer register"));
7869 }
7870 inst.instruction |= inst.operands[0].reg << 12;
7871 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7872 }
7873
7874 static void
7875 do_ldrex (void)
7876 {
7877 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7878 || inst.operands[1].postind || inst.operands[1].writeback
7879 || inst.operands[1].immisreg || inst.operands[1].shifted
7880 || inst.operands[1].negative
7881 /* This can arise if the programmer has written
7882 strex rN, rM, foo
7883 or if they have mistakenly used a register name as the last
7884 operand, eg:
7885 strex rN, rM, rX
7886 It is very difficult to distinguish between these two cases
7887 because "rX" might actually be a label. ie the register
7888 name has been occluded by a symbol of the same name. So we
7889 just generate a general 'bad addressing mode' type error
7890 message and leave it up to the programmer to discover the
7891 true cause and fix their mistake. */
7892 || (inst.operands[1].reg == REG_PC),
7893 BAD_ADDR_MODE);
7894
7895 constraint (inst.reloc.exp.X_op != O_constant
7896 || inst.reloc.exp.X_add_number != 0,
7897 _("offset must be zero in ARM encoding"));
7898
7899 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7900
7901 inst.instruction |= inst.operands[0].reg << 12;
7902 inst.instruction |= inst.operands[1].reg << 16;
7903 inst.reloc.type = BFD_RELOC_UNUSED;
7904 }
7905
7906 static void
7907 do_ldrexd (void)
7908 {
7909 constraint (inst.operands[0].reg % 2 != 0,
7910 _("even register required"));
7911 constraint (inst.operands[1].present
7912 && inst.operands[1].reg != inst.operands[0].reg + 1,
7913 _("can only load two consecutive registers"));
7914 /* If op 1 were present and equal to PC, this function wouldn't
7915 have been called in the first place. */
7916 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7917
7918 inst.instruction |= inst.operands[0].reg << 12;
7919 inst.instruction |= inst.operands[2].reg << 16;
7920 }
7921
7922 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
7923 which is not a multiple of four is UNPREDICTABLE. */
7924 static void
7925 check_ldr_r15_aligned (void)
7926 {
7927 constraint (!(inst.operands[1].immisreg)
7928 && (inst.operands[0].reg == REG_PC
7929 && inst.operands[1].reg == REG_PC
7930 && (inst.reloc.exp.X_add_number & 0x3)),
7931 _("ldr to register 15 must be 4-byte alligned"));
7932 }
7933
7934 static void
7935 do_ldst (void)
7936 {
7937 inst.instruction |= inst.operands[0].reg << 12;
7938 if (!inst.operands[1].isreg)
7939 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7940 return;
7941 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7942 check_ldr_r15_aligned ();
7943 }
7944
7945 static void
7946 do_ldstt (void)
7947 {
7948 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7949 reject [Rn,...]. */
7950 if (inst.operands[1].preind)
7951 {
7952 constraint (inst.reloc.exp.X_op != O_constant
7953 || inst.reloc.exp.X_add_number != 0,
7954 _("this instruction requires a post-indexed address"));
7955
7956 inst.operands[1].preind = 0;
7957 inst.operands[1].postind = 1;
7958 inst.operands[1].writeback = 1;
7959 }
7960 inst.instruction |= inst.operands[0].reg << 12;
7961 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7962 }
7963
7964 /* Halfword and signed-byte load/store operations. */
7965
7966 static void
7967 do_ldstv4 (void)
7968 {
7969 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7970 inst.instruction |= inst.operands[0].reg << 12;
7971 if (!inst.operands[1].isreg)
7972 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7973 return;
7974 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7975 }
7976
7977 static void
7978 do_ldsttv4 (void)
7979 {
7980 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7981 reject [Rn,...]. */
7982 if (inst.operands[1].preind)
7983 {
7984 constraint (inst.reloc.exp.X_op != O_constant
7985 || inst.reloc.exp.X_add_number != 0,
7986 _("this instruction requires a post-indexed address"));
7987
7988 inst.operands[1].preind = 0;
7989 inst.operands[1].postind = 1;
7990 inst.operands[1].writeback = 1;
7991 }
7992 inst.instruction |= inst.operands[0].reg << 12;
7993 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7994 }
7995
7996 /* Co-processor register load/store.
7997 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7998 static void
7999 do_lstc (void)
8000 {
8001 inst.instruction |= inst.operands[0].reg << 8;
8002 inst.instruction |= inst.operands[1].reg << 12;
8003 encode_arm_cp_address (2, TRUE, TRUE, 0);
8004 }
8005
8006 static void
8007 do_mlas (void)
8008 {
8009 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8010 if (inst.operands[0].reg == inst.operands[1].reg
8011 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8012 && !(inst.instruction & 0x00400000))
8013 as_tsktsk (_("Rd and Rm should be different in mla"));
8014
8015 inst.instruction |= inst.operands[0].reg << 16;
8016 inst.instruction |= inst.operands[1].reg;
8017 inst.instruction |= inst.operands[2].reg << 8;
8018 inst.instruction |= inst.operands[3].reg << 12;
8019 }
8020
8021 static void
8022 do_mov (void)
8023 {
8024 inst.instruction |= inst.operands[0].reg << 12;
8025 encode_arm_shifter_operand (1);
8026 }
8027
8028 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8029 static void
8030 do_mov16 (void)
8031 {
8032 bfd_vma imm;
8033 bfd_boolean top;
8034
8035 top = (inst.instruction & 0x00400000) != 0;
8036 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8037 _(":lower16: not allowed this instruction"));
8038 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8039 _(":upper16: not allowed instruction"));
8040 inst.instruction |= inst.operands[0].reg << 12;
8041 if (inst.reloc.type == BFD_RELOC_UNUSED)
8042 {
8043 imm = inst.reloc.exp.X_add_number;
8044 /* The value is in two pieces: 0:11, 16:19. */
8045 inst.instruction |= (imm & 0x00000fff);
8046 inst.instruction |= (imm & 0x0000f000) << 4;
8047 }
8048 }
8049
8050 static void do_vfp_nsyn_opcode (const char *);
8051
8052 static int
8053 do_vfp_nsyn_mrs (void)
8054 {
8055 if (inst.operands[0].isvec)
8056 {
8057 if (inst.operands[1].reg != 1)
8058 first_error (_("operand 1 must be FPSCR"));
8059 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8060 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8061 do_vfp_nsyn_opcode ("fmstat");
8062 }
8063 else if (inst.operands[1].isvec)
8064 do_vfp_nsyn_opcode ("fmrx");
8065 else
8066 return FAIL;
8067
8068 return SUCCESS;
8069 }
8070
8071 static int
8072 do_vfp_nsyn_msr (void)
8073 {
8074 if (inst.operands[0].isvec)
8075 do_vfp_nsyn_opcode ("fmxr");
8076 else
8077 return FAIL;
8078
8079 return SUCCESS;
8080 }
8081
8082 static void
8083 do_vmrs (void)
8084 {
8085 unsigned Rt = inst.operands[0].reg;
8086
8087 if (thumb_mode && inst.operands[0].reg == REG_SP)
8088 {
8089 inst.error = BAD_SP;
8090 return;
8091 }
8092
8093 /* APSR_ sets isvec. All other refs to PC are illegal. */
8094 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8095 {
8096 inst.error = BAD_PC;
8097 return;
8098 }
8099
8100 if (inst.operands[1].reg != 1)
8101 first_error (_("operand 1 must be FPSCR"));
8102
8103 inst.instruction |= (Rt << 12);
8104 }
8105
8106 static void
8107 do_vmsr (void)
8108 {
8109 unsigned Rt = inst.operands[1].reg;
8110
8111 if (thumb_mode)
8112 reject_bad_reg (Rt);
8113 else if (Rt == REG_PC)
8114 {
8115 inst.error = BAD_PC;
8116 return;
8117 }
8118
8119 if (inst.operands[0].reg != 1)
8120 first_error (_("operand 0 must be FPSCR"));
8121
8122 inst.instruction |= (Rt << 12);
8123 }
8124
8125 static void
8126 do_mrs (void)
8127 {
8128 unsigned br;
8129
8130 if (do_vfp_nsyn_mrs () == SUCCESS)
8131 return;
8132
8133 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8134 inst.instruction |= inst.operands[0].reg << 12;
8135
8136 if (inst.operands[1].isreg)
8137 {
8138 br = inst.operands[1].reg;
8139 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8140 as_bad (_("bad register for mrs"));
8141 }
8142 else
8143 {
8144 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8145 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8146 != (PSR_c|PSR_f),
8147 _("'APSR', 'CPSR' or 'SPSR' expected"));
8148 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8149 }
8150
8151 inst.instruction |= br;
8152 }
8153
8154 /* Two possible forms:
8155 "{C|S}PSR_<field>, Rm",
8156 "{C|S}PSR_f, #expression". */
8157
8158 static void
8159 do_msr (void)
8160 {
8161 if (do_vfp_nsyn_msr () == SUCCESS)
8162 return;
8163
8164 inst.instruction |= inst.operands[0].imm;
8165 if (inst.operands[1].isreg)
8166 inst.instruction |= inst.operands[1].reg;
8167 else
8168 {
8169 inst.instruction |= INST_IMMEDIATE;
8170 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8171 inst.reloc.pc_rel = 0;
8172 }
8173 }
8174
8175 static void
8176 do_mul (void)
8177 {
8178 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8179
8180 if (!inst.operands[2].present)
8181 inst.operands[2].reg = inst.operands[0].reg;
8182 inst.instruction |= inst.operands[0].reg << 16;
8183 inst.instruction |= inst.operands[1].reg;
8184 inst.instruction |= inst.operands[2].reg << 8;
8185
8186 if (inst.operands[0].reg == inst.operands[1].reg
8187 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8188 as_tsktsk (_("Rd and Rm should be different in mul"));
8189 }
8190
8191 /* Long Multiply Parser
8192 UMULL RdLo, RdHi, Rm, Rs
8193 SMULL RdLo, RdHi, Rm, Rs
8194 UMLAL RdLo, RdHi, Rm, Rs
8195 SMLAL RdLo, RdHi, Rm, Rs. */
8196
8197 static void
8198 do_mull (void)
8199 {
8200 inst.instruction |= inst.operands[0].reg << 12;
8201 inst.instruction |= inst.operands[1].reg << 16;
8202 inst.instruction |= inst.operands[2].reg;
8203 inst.instruction |= inst.operands[3].reg << 8;
8204
8205 /* rdhi and rdlo must be different. */
8206 if (inst.operands[0].reg == inst.operands[1].reg)
8207 as_tsktsk (_("rdhi and rdlo must be different"));
8208
8209 /* rdhi, rdlo and rm must all be different before armv6. */
8210 if ((inst.operands[0].reg == inst.operands[2].reg
8211 || inst.operands[1].reg == inst.operands[2].reg)
8212 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8213 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8214 }
8215
8216 static void
8217 do_nop (void)
8218 {
8219 if (inst.operands[0].present
8220 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8221 {
8222 /* Architectural NOP hints are CPSR sets with no bits selected. */
8223 inst.instruction &= 0xf0000000;
8224 inst.instruction |= 0x0320f000;
8225 if (inst.operands[0].present)
8226 inst.instruction |= inst.operands[0].imm;
8227 }
8228 }
8229
8230 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8231 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8232 Condition defaults to COND_ALWAYS.
8233 Error if Rd, Rn or Rm are R15. */
8234
8235 static void
8236 do_pkhbt (void)
8237 {
8238 inst.instruction |= inst.operands[0].reg << 12;
8239 inst.instruction |= inst.operands[1].reg << 16;
8240 inst.instruction |= inst.operands[2].reg;
8241 if (inst.operands[3].present)
8242 encode_arm_shift (3);
8243 }
8244
8245 /* ARM V6 PKHTB (Argument Parse). */
8246
8247 static void
8248 do_pkhtb (void)
8249 {
8250 if (!inst.operands[3].present)
8251 {
8252 /* If the shift specifier is omitted, turn the instruction
8253 into pkhbt rd, rm, rn. */
8254 inst.instruction &= 0xfff00010;
8255 inst.instruction |= inst.operands[0].reg << 12;
8256 inst.instruction |= inst.operands[1].reg;
8257 inst.instruction |= inst.operands[2].reg << 16;
8258 }
8259 else
8260 {
8261 inst.instruction |= inst.operands[0].reg << 12;
8262 inst.instruction |= inst.operands[1].reg << 16;
8263 inst.instruction |= inst.operands[2].reg;
8264 encode_arm_shift (3);
8265 }
8266 }
8267
8268 /* ARMv5TE: Preload-Cache
8269 MP Extensions: Preload for write
8270
8271 PLD(W) <addr_mode>
8272
8273 Syntactically, like LDR with B=1, W=0, L=1. */
8274
8275 static void
8276 do_pld (void)
8277 {
8278 constraint (!inst.operands[0].isreg,
8279 _("'[' expected after PLD mnemonic"));
8280 constraint (inst.operands[0].postind,
8281 _("post-indexed expression used in preload instruction"));
8282 constraint (inst.operands[0].writeback,
8283 _("writeback used in preload instruction"));
8284 constraint (!inst.operands[0].preind,
8285 _("unindexed addressing used in preload instruction"));
8286 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8287 }
8288
8289 /* ARMv7: PLI <addr_mode> */
8290 static void
8291 do_pli (void)
8292 {
8293 constraint (!inst.operands[0].isreg,
8294 _("'[' expected after PLI mnemonic"));
8295 constraint (inst.operands[0].postind,
8296 _("post-indexed expression used in preload instruction"));
8297 constraint (inst.operands[0].writeback,
8298 _("writeback used in preload instruction"));
8299 constraint (!inst.operands[0].preind,
8300 _("unindexed addressing used in preload instruction"));
8301 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8302 inst.instruction &= ~PRE_INDEX;
8303 }
8304
8305 static void
8306 do_push_pop (void)
8307 {
8308 inst.operands[1] = inst.operands[0];
8309 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8310 inst.operands[0].isreg = 1;
8311 inst.operands[0].writeback = 1;
8312 inst.operands[0].reg = REG_SP;
8313 do_ldmstm ();
8314 }
8315
8316 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8317 word at the specified address and the following word
8318 respectively.
8319 Unconditionally executed.
8320 Error if Rn is R15. */
8321
8322 static void
8323 do_rfe (void)
8324 {
8325 inst.instruction |= inst.operands[0].reg << 16;
8326 if (inst.operands[0].writeback)
8327 inst.instruction |= WRITE_BACK;
8328 }
8329
8330 /* ARM V6 ssat (argument parse). */
8331
8332 static void
8333 do_ssat (void)
8334 {
8335 inst.instruction |= inst.operands[0].reg << 12;
8336 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8337 inst.instruction |= inst.operands[2].reg;
8338
8339 if (inst.operands[3].present)
8340 encode_arm_shift (3);
8341 }
8342
8343 /* ARM V6 usat (argument parse). */
8344
8345 static void
8346 do_usat (void)
8347 {
8348 inst.instruction |= inst.operands[0].reg << 12;
8349 inst.instruction |= inst.operands[1].imm << 16;
8350 inst.instruction |= inst.operands[2].reg;
8351
8352 if (inst.operands[3].present)
8353 encode_arm_shift (3);
8354 }
8355
8356 /* ARM V6 ssat16 (argument parse). */
8357
8358 static void
8359 do_ssat16 (void)
8360 {
8361 inst.instruction |= inst.operands[0].reg << 12;
8362 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8363 inst.instruction |= inst.operands[2].reg;
8364 }
8365
8366 static void
8367 do_usat16 (void)
8368 {
8369 inst.instruction |= inst.operands[0].reg << 12;
8370 inst.instruction |= inst.operands[1].imm << 16;
8371 inst.instruction |= inst.operands[2].reg;
8372 }
8373
8374 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8375 preserving the other bits.
8376
8377 setend <endian_specifier>, where <endian_specifier> is either
8378 BE or LE. */
8379
8380 static void
8381 do_setend (void)
8382 {
8383 if (inst.operands[0].imm)
8384 inst.instruction |= 0x200;
8385 }
8386
8387 static void
8388 do_shift (void)
8389 {
8390 unsigned int Rm = (inst.operands[1].present
8391 ? inst.operands[1].reg
8392 : inst.operands[0].reg);
8393
8394 inst.instruction |= inst.operands[0].reg << 12;
8395 inst.instruction |= Rm;
8396 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8397 {
8398 inst.instruction |= inst.operands[2].reg << 8;
8399 inst.instruction |= SHIFT_BY_REG;
8400 /* PR 12854: Error on extraneous shifts. */
8401 constraint (inst.operands[2].shifted,
8402 _("extraneous shift as part of operand to shift insn"));
8403 }
8404 else
8405 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8406 }
8407
8408 static void
8409 do_smc (void)
8410 {
8411 inst.reloc.type = BFD_RELOC_ARM_SMC;
8412 inst.reloc.pc_rel = 0;
8413 }
8414
8415 static void
8416 do_hvc (void)
8417 {
8418 inst.reloc.type = BFD_RELOC_ARM_HVC;
8419 inst.reloc.pc_rel = 0;
8420 }
8421
8422 static void
8423 do_swi (void)
8424 {
8425 inst.reloc.type = BFD_RELOC_ARM_SWI;
8426 inst.reloc.pc_rel = 0;
8427 }
8428
8429 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8430 SMLAxy{cond} Rd,Rm,Rs,Rn
8431 SMLAWy{cond} Rd,Rm,Rs,Rn
8432 Error if any register is R15. */
8433
8434 static void
8435 do_smla (void)
8436 {
8437 inst.instruction |= inst.operands[0].reg << 16;
8438 inst.instruction |= inst.operands[1].reg;
8439 inst.instruction |= inst.operands[2].reg << 8;
8440 inst.instruction |= inst.operands[3].reg << 12;
8441 }
8442
8443 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8444 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8445 Error if any register is R15.
8446 Warning if Rdlo == Rdhi. */
8447
8448 static void
8449 do_smlal (void)
8450 {
8451 inst.instruction |= inst.operands[0].reg << 12;
8452 inst.instruction |= inst.operands[1].reg << 16;
8453 inst.instruction |= inst.operands[2].reg;
8454 inst.instruction |= inst.operands[3].reg << 8;
8455
8456 if (inst.operands[0].reg == inst.operands[1].reg)
8457 as_tsktsk (_("rdhi and rdlo must be different"));
8458 }
8459
8460 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8461 SMULxy{cond} Rd,Rm,Rs
8462 Error if any register is R15. */
8463
8464 static void
8465 do_smul (void)
8466 {
8467 inst.instruction |= inst.operands[0].reg << 16;
8468 inst.instruction |= inst.operands[1].reg;
8469 inst.instruction |= inst.operands[2].reg << 8;
8470 }
8471
8472 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8473 the same for both ARM and Thumb-2. */
8474
8475 static void
8476 do_srs (void)
8477 {
8478 int reg;
8479
8480 if (inst.operands[0].present)
8481 {
8482 reg = inst.operands[0].reg;
8483 constraint (reg != REG_SP, _("SRS base register must be r13"));
8484 }
8485 else
8486 reg = REG_SP;
8487
8488 inst.instruction |= reg << 16;
8489 inst.instruction |= inst.operands[1].imm;
8490 if (inst.operands[0].writeback || inst.operands[1].writeback)
8491 inst.instruction |= WRITE_BACK;
8492 }
8493
8494 /* ARM V6 strex (argument parse). */
8495
8496 static void
8497 do_strex (void)
8498 {
8499 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8500 || inst.operands[2].postind || inst.operands[2].writeback
8501 || inst.operands[2].immisreg || inst.operands[2].shifted
8502 || inst.operands[2].negative
8503 /* See comment in do_ldrex(). */
8504 || (inst.operands[2].reg == REG_PC),
8505 BAD_ADDR_MODE);
8506
8507 constraint (inst.operands[0].reg == inst.operands[1].reg
8508 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8509
8510 constraint (inst.reloc.exp.X_op != O_constant
8511 || inst.reloc.exp.X_add_number != 0,
8512 _("offset must be zero in ARM encoding"));
8513
8514 inst.instruction |= inst.operands[0].reg << 12;
8515 inst.instruction |= inst.operands[1].reg;
8516 inst.instruction |= inst.operands[2].reg << 16;
8517 inst.reloc.type = BFD_RELOC_UNUSED;
8518 }
8519
8520 static void
8521 do_t_strexbh (void)
8522 {
8523 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8524 || inst.operands[2].postind || inst.operands[2].writeback
8525 || inst.operands[2].immisreg || inst.operands[2].shifted
8526 || inst.operands[2].negative,
8527 BAD_ADDR_MODE);
8528
8529 constraint (inst.operands[0].reg == inst.operands[1].reg
8530 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8531
8532 do_rm_rd_rn ();
8533 }
8534
8535 static void
8536 do_strexd (void)
8537 {
8538 constraint (inst.operands[1].reg % 2 != 0,
8539 _("even register required"));
8540 constraint (inst.operands[2].present
8541 && inst.operands[2].reg != inst.operands[1].reg + 1,
8542 _("can only store two consecutive registers"));
8543 /* If op 2 were present and equal to PC, this function wouldn't
8544 have been called in the first place. */
8545 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8546
8547 constraint (inst.operands[0].reg == inst.operands[1].reg
8548 || inst.operands[0].reg == inst.operands[1].reg + 1
8549 || inst.operands[0].reg == inst.operands[3].reg,
8550 BAD_OVERLAP);
8551
8552 inst.instruction |= inst.operands[0].reg << 12;
8553 inst.instruction |= inst.operands[1].reg;
8554 inst.instruction |= inst.operands[3].reg << 16;
8555 }
8556
8557 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8558 extends it to 32-bits, and adds the result to a value in another
8559 register. You can specify a rotation by 0, 8, 16, or 24 bits
8560 before extracting the 16-bit value.
8561 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8562 Condition defaults to COND_ALWAYS.
8563 Error if any register uses R15. */
8564
8565 static void
8566 do_sxtah (void)
8567 {
8568 inst.instruction |= inst.operands[0].reg << 12;
8569 inst.instruction |= inst.operands[1].reg << 16;
8570 inst.instruction |= inst.operands[2].reg;
8571 inst.instruction |= inst.operands[3].imm << 10;
8572 }
8573
8574 /* ARM V6 SXTH.
8575
8576 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8577 Condition defaults to COND_ALWAYS.
8578 Error if any register uses R15. */
8579
8580 static void
8581 do_sxth (void)
8582 {
8583 inst.instruction |= inst.operands[0].reg << 12;
8584 inst.instruction |= inst.operands[1].reg;
8585 inst.instruction |= inst.operands[2].imm << 10;
8586 }
8587 \f
8588 /* VFP instructions. In a logical order: SP variant first, monad
8589 before dyad, arithmetic then move then load/store. */
8590
8591 static void
8592 do_vfp_sp_monadic (void)
8593 {
8594 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8595 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8596 }
8597
8598 static void
8599 do_vfp_sp_dyadic (void)
8600 {
8601 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8602 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8603 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8604 }
8605
8606 static void
8607 do_vfp_sp_compare_z (void)
8608 {
8609 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8610 }
8611
8612 static void
8613 do_vfp_dp_sp_cvt (void)
8614 {
8615 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8616 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8617 }
8618
8619 static void
8620 do_vfp_sp_dp_cvt (void)
8621 {
8622 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8623 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8624 }
8625
8626 static void
8627 do_vfp_reg_from_sp (void)
8628 {
8629 inst.instruction |= inst.operands[0].reg << 12;
8630 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8631 }
8632
8633 static void
8634 do_vfp_reg2_from_sp2 (void)
8635 {
8636 constraint (inst.operands[2].imm != 2,
8637 _("only two consecutive VFP SP registers allowed here"));
8638 inst.instruction |= inst.operands[0].reg << 12;
8639 inst.instruction |= inst.operands[1].reg << 16;
8640 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8641 }
8642
8643 static void
8644 do_vfp_sp_from_reg (void)
8645 {
8646 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8647 inst.instruction |= inst.operands[1].reg << 12;
8648 }
8649
8650 static void
8651 do_vfp_sp2_from_reg2 (void)
8652 {
8653 constraint (inst.operands[0].imm != 2,
8654 _("only two consecutive VFP SP registers allowed here"));
8655 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8656 inst.instruction |= inst.operands[1].reg << 12;
8657 inst.instruction |= inst.operands[2].reg << 16;
8658 }
8659
8660 static void
8661 do_vfp_sp_ldst (void)
8662 {
8663 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8664 encode_arm_cp_address (1, FALSE, TRUE, 0);
8665 }
8666
8667 static void
8668 do_vfp_dp_ldst (void)
8669 {
8670 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8671 encode_arm_cp_address (1, FALSE, TRUE, 0);
8672 }
8673
8674
8675 static void
8676 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8677 {
8678 if (inst.operands[0].writeback)
8679 inst.instruction |= WRITE_BACK;
8680 else
8681 constraint (ldstm_type != VFP_LDSTMIA,
8682 _("this addressing mode requires base-register writeback"));
8683 inst.instruction |= inst.operands[0].reg << 16;
8684 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8685 inst.instruction |= inst.operands[1].imm;
8686 }
8687
8688 static void
8689 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8690 {
8691 int count;
8692
8693 if (inst.operands[0].writeback)
8694 inst.instruction |= WRITE_BACK;
8695 else
8696 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8697 _("this addressing mode requires base-register writeback"));
8698
8699 inst.instruction |= inst.operands[0].reg << 16;
8700 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8701
8702 count = inst.operands[1].imm << 1;
8703 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8704 count += 1;
8705
8706 inst.instruction |= count;
8707 }
8708
8709 static void
8710 do_vfp_sp_ldstmia (void)
8711 {
8712 vfp_sp_ldstm (VFP_LDSTMIA);
8713 }
8714
8715 static void
8716 do_vfp_sp_ldstmdb (void)
8717 {
8718 vfp_sp_ldstm (VFP_LDSTMDB);
8719 }
8720
8721 static void
8722 do_vfp_dp_ldstmia (void)
8723 {
8724 vfp_dp_ldstm (VFP_LDSTMIA);
8725 }
8726
8727 static void
8728 do_vfp_dp_ldstmdb (void)
8729 {
8730 vfp_dp_ldstm (VFP_LDSTMDB);
8731 }
8732
8733 static void
8734 do_vfp_xp_ldstmia (void)
8735 {
8736 vfp_dp_ldstm (VFP_LDSTMIAX);
8737 }
8738
8739 static void
8740 do_vfp_xp_ldstmdb (void)
8741 {
8742 vfp_dp_ldstm (VFP_LDSTMDBX);
8743 }
8744
8745 static void
8746 do_vfp_dp_rd_rm (void)
8747 {
8748 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8749 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8750 }
8751
8752 static void
8753 do_vfp_dp_rn_rd (void)
8754 {
8755 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8756 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8757 }
8758
8759 static void
8760 do_vfp_dp_rd_rn (void)
8761 {
8762 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8763 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8764 }
8765
8766 static void
8767 do_vfp_dp_rd_rn_rm (void)
8768 {
8769 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8770 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8771 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8772 }
8773
8774 static void
8775 do_vfp_dp_rd (void)
8776 {
8777 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8778 }
8779
8780 static void
8781 do_vfp_dp_rm_rd_rn (void)
8782 {
8783 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8784 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8785 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8786 }
8787
8788 /* VFPv3 instructions. */
8789 static void
8790 do_vfp_sp_const (void)
8791 {
8792 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8793 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8794 inst.instruction |= (inst.operands[1].imm & 0x0f);
8795 }
8796
8797 static void
8798 do_vfp_dp_const (void)
8799 {
8800 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8801 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8802 inst.instruction |= (inst.operands[1].imm & 0x0f);
8803 }
8804
8805 static void
8806 vfp_conv (int srcsize)
8807 {
8808 int immbits = srcsize - inst.operands[1].imm;
8809
8810 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
8811 {
8812 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
8813 i.e. immbits must be in range 0 - 16. */
8814 inst.error = _("immediate value out of range, expected range [0, 16]");
8815 return;
8816 }
8817 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
8818 {
8819 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
8820 i.e. immbits must be in range 0 - 31. */
8821 inst.error = _("immediate value out of range, expected range [1, 32]");
8822 return;
8823 }
8824
8825 inst.instruction |= (immbits & 1) << 5;
8826 inst.instruction |= (immbits >> 1);
8827 }
8828
8829 static void
8830 do_vfp_sp_conv_16 (void)
8831 {
8832 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8833 vfp_conv (16);
8834 }
8835
8836 static void
8837 do_vfp_dp_conv_16 (void)
8838 {
8839 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8840 vfp_conv (16);
8841 }
8842
8843 static void
8844 do_vfp_sp_conv_32 (void)
8845 {
8846 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8847 vfp_conv (32);
8848 }
8849
8850 static void
8851 do_vfp_dp_conv_32 (void)
8852 {
8853 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8854 vfp_conv (32);
8855 }
8856 \f
8857 /* FPA instructions. Also in a logical order. */
8858
8859 static void
8860 do_fpa_cmp (void)
8861 {
8862 inst.instruction |= inst.operands[0].reg << 16;
8863 inst.instruction |= inst.operands[1].reg;
8864 }
8865
8866 static void
8867 do_fpa_ldmstm (void)
8868 {
8869 inst.instruction |= inst.operands[0].reg << 12;
8870 switch (inst.operands[1].imm)
8871 {
8872 case 1: inst.instruction |= CP_T_X; break;
8873 case 2: inst.instruction |= CP_T_Y; break;
8874 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8875 case 4: break;
8876 default: abort ();
8877 }
8878
8879 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8880 {
8881 /* The instruction specified "ea" or "fd", so we can only accept
8882 [Rn]{!}. The instruction does not really support stacking or
8883 unstacking, so we have to emulate these by setting appropriate
8884 bits and offsets. */
8885 constraint (inst.reloc.exp.X_op != O_constant
8886 || inst.reloc.exp.X_add_number != 0,
8887 _("this instruction does not support indexing"));
8888
8889 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8890 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8891
8892 if (!(inst.instruction & INDEX_UP))
8893 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8894
8895 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8896 {
8897 inst.operands[2].preind = 0;
8898 inst.operands[2].postind = 1;
8899 }
8900 }
8901
8902 encode_arm_cp_address (2, TRUE, TRUE, 0);
8903 }
8904 \f
8905 /* iWMMXt instructions: strictly in alphabetical order. */
8906
8907 static void
8908 do_iwmmxt_tandorc (void)
8909 {
8910 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8911 }
8912
8913 static void
8914 do_iwmmxt_textrc (void)
8915 {
8916 inst.instruction |= inst.operands[0].reg << 12;
8917 inst.instruction |= inst.operands[1].imm;
8918 }
8919
8920 static void
8921 do_iwmmxt_textrm (void)
8922 {
8923 inst.instruction |= inst.operands[0].reg << 12;
8924 inst.instruction |= inst.operands[1].reg << 16;
8925 inst.instruction |= inst.operands[2].imm;
8926 }
8927
8928 static void
8929 do_iwmmxt_tinsr (void)
8930 {
8931 inst.instruction |= inst.operands[0].reg << 16;
8932 inst.instruction |= inst.operands[1].reg << 12;
8933 inst.instruction |= inst.operands[2].imm;
8934 }
8935
8936 static void
8937 do_iwmmxt_tmia (void)
8938 {
8939 inst.instruction |= inst.operands[0].reg << 5;
8940 inst.instruction |= inst.operands[1].reg;
8941 inst.instruction |= inst.operands[2].reg << 12;
8942 }
8943
8944 static void
8945 do_iwmmxt_waligni (void)
8946 {
8947 inst.instruction |= inst.operands[0].reg << 12;
8948 inst.instruction |= inst.operands[1].reg << 16;
8949 inst.instruction |= inst.operands[2].reg;
8950 inst.instruction |= inst.operands[3].imm << 20;
8951 }
8952
8953 static void
8954 do_iwmmxt_wmerge (void)
8955 {
8956 inst.instruction |= inst.operands[0].reg << 12;
8957 inst.instruction |= inst.operands[1].reg << 16;
8958 inst.instruction |= inst.operands[2].reg;
8959 inst.instruction |= inst.operands[3].imm << 21;
8960 }
8961
8962 static void
8963 do_iwmmxt_wmov (void)
8964 {
8965 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8966 inst.instruction |= inst.operands[0].reg << 12;
8967 inst.instruction |= inst.operands[1].reg << 16;
8968 inst.instruction |= inst.operands[1].reg;
8969 }
8970
8971 static void
8972 do_iwmmxt_wldstbh (void)
8973 {
8974 int reloc;
8975 inst.instruction |= inst.operands[0].reg << 12;
8976 if (thumb_mode)
8977 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8978 else
8979 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8980 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8981 }
8982
8983 static void
8984 do_iwmmxt_wldstw (void)
8985 {
8986 /* RIWR_RIWC clears .isreg for a control register. */
8987 if (!inst.operands[0].isreg)
8988 {
8989 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8990 inst.instruction |= 0xf0000000;
8991 }
8992
8993 inst.instruction |= inst.operands[0].reg << 12;
8994 encode_arm_cp_address (1, TRUE, TRUE, 0);
8995 }
8996
8997 static void
8998 do_iwmmxt_wldstd (void)
8999 {
9000 inst.instruction |= inst.operands[0].reg << 12;
9001 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9002 && inst.operands[1].immisreg)
9003 {
9004 inst.instruction &= ~0x1a000ff;
9005 inst.instruction |= (0xf << 28);
9006 if (inst.operands[1].preind)
9007 inst.instruction |= PRE_INDEX;
9008 if (!inst.operands[1].negative)
9009 inst.instruction |= INDEX_UP;
9010 if (inst.operands[1].writeback)
9011 inst.instruction |= WRITE_BACK;
9012 inst.instruction |= inst.operands[1].reg << 16;
9013 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9014 inst.instruction |= inst.operands[1].imm;
9015 }
9016 else
9017 encode_arm_cp_address (1, TRUE, FALSE, 0);
9018 }
9019
9020 static void
9021 do_iwmmxt_wshufh (void)
9022 {
9023 inst.instruction |= inst.operands[0].reg << 12;
9024 inst.instruction |= inst.operands[1].reg << 16;
9025 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9026 inst.instruction |= (inst.operands[2].imm & 0x0f);
9027 }
9028
9029 static void
9030 do_iwmmxt_wzero (void)
9031 {
9032 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9033 inst.instruction |= inst.operands[0].reg;
9034 inst.instruction |= inst.operands[0].reg << 12;
9035 inst.instruction |= inst.operands[0].reg << 16;
9036 }
9037
9038 static void
9039 do_iwmmxt_wrwrwr_or_imm5 (void)
9040 {
9041 if (inst.operands[2].isreg)
9042 do_rd_rn_rm ();
9043 else {
9044 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9045 _("immediate operand requires iWMMXt2"));
9046 do_rd_rn ();
9047 if (inst.operands[2].imm == 0)
9048 {
9049 switch ((inst.instruction >> 20) & 0xf)
9050 {
9051 case 4:
9052 case 5:
9053 case 6:
9054 case 7:
9055 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9056 inst.operands[2].imm = 16;
9057 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9058 break;
9059 case 8:
9060 case 9:
9061 case 10:
9062 case 11:
9063 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9064 inst.operands[2].imm = 32;
9065 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9066 break;
9067 case 12:
9068 case 13:
9069 case 14:
9070 case 15:
9071 {
9072 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9073 unsigned long wrn;
9074 wrn = (inst.instruction >> 16) & 0xf;
9075 inst.instruction &= 0xff0fff0f;
9076 inst.instruction |= wrn;
9077 /* Bail out here; the instruction is now assembled. */
9078 return;
9079 }
9080 }
9081 }
9082 /* Map 32 -> 0, etc. */
9083 inst.operands[2].imm &= 0x1f;
9084 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9085 }
9086 }
9087 \f
9088 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9089 operations first, then control, shift, and load/store. */
9090
9091 /* Insns like "foo X,Y,Z". */
9092
9093 static void
9094 do_mav_triple (void)
9095 {
9096 inst.instruction |= inst.operands[0].reg << 16;
9097 inst.instruction |= inst.operands[1].reg;
9098 inst.instruction |= inst.operands[2].reg << 12;
9099 }
9100
9101 /* Insns like "foo W,X,Y,Z".
9102 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9103
9104 static void
9105 do_mav_quad (void)
9106 {
9107 inst.instruction |= inst.operands[0].reg << 5;
9108 inst.instruction |= inst.operands[1].reg << 12;
9109 inst.instruction |= inst.operands[2].reg << 16;
9110 inst.instruction |= inst.operands[3].reg;
9111 }
9112
9113 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9114 static void
9115 do_mav_dspsc (void)
9116 {
9117 inst.instruction |= inst.operands[1].reg << 12;
9118 }
9119
9120 /* Maverick shift immediate instructions.
9121 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9122 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9123
9124 static void
9125 do_mav_shift (void)
9126 {
9127 int imm = inst.operands[2].imm;
9128
9129 inst.instruction |= inst.operands[0].reg << 12;
9130 inst.instruction |= inst.operands[1].reg << 16;
9131
9132 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9133 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9134 Bit 4 should be 0. */
9135 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9136
9137 inst.instruction |= imm;
9138 }
9139 \f
9140 /* XScale instructions. Also sorted arithmetic before move. */
9141
9142 /* Xscale multiply-accumulate (argument parse)
9143 MIAcc acc0,Rm,Rs
9144 MIAPHcc acc0,Rm,Rs
9145 MIAxycc acc0,Rm,Rs. */
9146
9147 static void
9148 do_xsc_mia (void)
9149 {
9150 inst.instruction |= inst.operands[1].reg;
9151 inst.instruction |= inst.operands[2].reg << 12;
9152 }
9153
9154 /* Xscale move-accumulator-register (argument parse)
9155
9156 MARcc acc0,RdLo,RdHi. */
9157
9158 static void
9159 do_xsc_mar (void)
9160 {
9161 inst.instruction |= inst.operands[1].reg << 12;
9162 inst.instruction |= inst.operands[2].reg << 16;
9163 }
9164
9165 /* Xscale move-register-accumulator (argument parse)
9166
9167 MRAcc RdLo,RdHi,acc0. */
9168
9169 static void
9170 do_xsc_mra (void)
9171 {
9172 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9173 inst.instruction |= inst.operands[0].reg << 12;
9174 inst.instruction |= inst.operands[1].reg << 16;
9175 }
9176 \f
9177 /* Encoding functions relevant only to Thumb. */
9178
9179 /* inst.operands[i] is a shifted-register operand; encode
9180 it into inst.instruction in the format used by Thumb32. */
9181
9182 static void
9183 encode_thumb32_shifted_operand (int i)
9184 {
9185 unsigned int value = inst.reloc.exp.X_add_number;
9186 unsigned int shift = inst.operands[i].shift_kind;
9187
9188 constraint (inst.operands[i].immisreg,
9189 _("shift by register not allowed in thumb mode"));
9190 inst.instruction |= inst.operands[i].reg;
9191 if (shift == SHIFT_RRX)
9192 inst.instruction |= SHIFT_ROR << 4;
9193 else
9194 {
9195 constraint (inst.reloc.exp.X_op != O_constant,
9196 _("expression too complex"));
9197
9198 constraint (value > 32
9199 || (value == 32 && (shift == SHIFT_LSL
9200 || shift == SHIFT_ROR)),
9201 _("shift expression is too large"));
9202
9203 if (value == 0)
9204 shift = SHIFT_LSL;
9205 else if (value == 32)
9206 value = 0;
9207
9208 inst.instruction |= shift << 4;
9209 inst.instruction |= (value & 0x1c) << 10;
9210 inst.instruction |= (value & 0x03) << 6;
9211 }
9212 }
9213
9214
9215 /* inst.operands[i] was set up by parse_address. Encode it into a
9216 Thumb32 format load or store instruction. Reject forms that cannot
9217 be used with such instructions. If is_t is true, reject forms that
9218 cannot be used with a T instruction; if is_d is true, reject forms
9219 that cannot be used with a D instruction. If it is a store insn,
9220 reject PC in Rn. */
9221
9222 static void
9223 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9224 {
9225 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9226
9227 constraint (!inst.operands[i].isreg,
9228 _("Instruction does not support =N addresses"));
9229
9230 inst.instruction |= inst.operands[i].reg << 16;
9231 if (inst.operands[i].immisreg)
9232 {
9233 constraint (is_pc, BAD_PC_ADDRESSING);
9234 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9235 constraint (inst.operands[i].negative,
9236 _("Thumb does not support negative register indexing"));
9237 constraint (inst.operands[i].postind,
9238 _("Thumb does not support register post-indexing"));
9239 constraint (inst.operands[i].writeback,
9240 _("Thumb does not support register indexing with writeback"));
9241 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9242 _("Thumb supports only LSL in shifted register indexing"));
9243
9244 inst.instruction |= inst.operands[i].imm;
9245 if (inst.operands[i].shifted)
9246 {
9247 constraint (inst.reloc.exp.X_op != O_constant,
9248 _("expression too complex"));
9249 constraint (inst.reloc.exp.X_add_number < 0
9250 || inst.reloc.exp.X_add_number > 3,
9251 _("shift out of range"));
9252 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9253 }
9254 inst.reloc.type = BFD_RELOC_UNUSED;
9255 }
9256 else if (inst.operands[i].preind)
9257 {
9258 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9259 constraint (is_t && inst.operands[i].writeback,
9260 _("cannot use writeback with this instruction"));
9261 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9262 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9263
9264 if (is_d)
9265 {
9266 inst.instruction |= 0x01000000;
9267 if (inst.operands[i].writeback)
9268 inst.instruction |= 0x00200000;
9269 }
9270 else
9271 {
9272 inst.instruction |= 0x00000c00;
9273 if (inst.operands[i].writeback)
9274 inst.instruction |= 0x00000100;
9275 }
9276 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9277 }
9278 else if (inst.operands[i].postind)
9279 {
9280 gas_assert (inst.operands[i].writeback);
9281 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9282 constraint (is_t, _("cannot use post-indexing with this instruction"));
9283
9284 if (is_d)
9285 inst.instruction |= 0x00200000;
9286 else
9287 inst.instruction |= 0x00000900;
9288 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9289 }
9290 else /* unindexed - only for coprocessor */
9291 inst.error = _("instruction does not accept unindexed addressing");
9292 }
9293
9294 /* Table of Thumb instructions which exist in both 16- and 32-bit
9295 encodings (the latter only in post-V6T2 cores). The index is the
9296 value used in the insns table below. When there is more than one
9297 possible 16-bit encoding for the instruction, this table always
9298 holds variant (1).
9299 Also contains several pseudo-instructions used during relaxation. */
9300 #define T16_32_TAB \
9301 X(_adc, 4140, eb400000), \
9302 X(_adcs, 4140, eb500000), \
9303 X(_add, 1c00, eb000000), \
9304 X(_adds, 1c00, eb100000), \
9305 X(_addi, 0000, f1000000), \
9306 X(_addis, 0000, f1100000), \
9307 X(_add_pc,000f, f20f0000), \
9308 X(_add_sp,000d, f10d0000), \
9309 X(_adr, 000f, f20f0000), \
9310 X(_and, 4000, ea000000), \
9311 X(_ands, 4000, ea100000), \
9312 X(_asr, 1000, fa40f000), \
9313 X(_asrs, 1000, fa50f000), \
9314 X(_b, e000, f000b000), \
9315 X(_bcond, d000, f0008000), \
9316 X(_bic, 4380, ea200000), \
9317 X(_bics, 4380, ea300000), \
9318 X(_cmn, 42c0, eb100f00), \
9319 X(_cmp, 2800, ebb00f00), \
9320 X(_cpsie, b660, f3af8400), \
9321 X(_cpsid, b670, f3af8600), \
9322 X(_cpy, 4600, ea4f0000), \
9323 X(_dec_sp,80dd, f1ad0d00), \
9324 X(_eor, 4040, ea800000), \
9325 X(_eors, 4040, ea900000), \
9326 X(_inc_sp,00dd, f10d0d00), \
9327 X(_ldmia, c800, e8900000), \
9328 X(_ldr, 6800, f8500000), \
9329 X(_ldrb, 7800, f8100000), \
9330 X(_ldrh, 8800, f8300000), \
9331 X(_ldrsb, 5600, f9100000), \
9332 X(_ldrsh, 5e00, f9300000), \
9333 X(_ldr_pc,4800, f85f0000), \
9334 X(_ldr_pc2,4800, f85f0000), \
9335 X(_ldr_sp,9800, f85d0000), \
9336 X(_lsl, 0000, fa00f000), \
9337 X(_lsls, 0000, fa10f000), \
9338 X(_lsr, 0800, fa20f000), \
9339 X(_lsrs, 0800, fa30f000), \
9340 X(_mov, 2000, ea4f0000), \
9341 X(_movs, 2000, ea5f0000), \
9342 X(_mul, 4340, fb00f000), \
9343 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9344 X(_mvn, 43c0, ea6f0000), \
9345 X(_mvns, 43c0, ea7f0000), \
9346 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9347 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9348 X(_orr, 4300, ea400000), \
9349 X(_orrs, 4300, ea500000), \
9350 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9351 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9352 X(_rev, ba00, fa90f080), \
9353 X(_rev16, ba40, fa90f090), \
9354 X(_revsh, bac0, fa90f0b0), \
9355 X(_ror, 41c0, fa60f000), \
9356 X(_rors, 41c0, fa70f000), \
9357 X(_sbc, 4180, eb600000), \
9358 X(_sbcs, 4180, eb700000), \
9359 X(_stmia, c000, e8800000), \
9360 X(_str, 6000, f8400000), \
9361 X(_strb, 7000, f8000000), \
9362 X(_strh, 8000, f8200000), \
9363 X(_str_sp,9000, f84d0000), \
9364 X(_sub, 1e00, eba00000), \
9365 X(_subs, 1e00, ebb00000), \
9366 X(_subi, 8000, f1a00000), \
9367 X(_subis, 8000, f1b00000), \
9368 X(_sxtb, b240, fa4ff080), \
9369 X(_sxth, b200, fa0ff080), \
9370 X(_tst, 4200, ea100f00), \
9371 X(_uxtb, b2c0, fa5ff080), \
9372 X(_uxth, b280, fa1ff080), \
9373 X(_nop, bf00, f3af8000), \
9374 X(_yield, bf10, f3af8001), \
9375 X(_wfe, bf20, f3af8002), \
9376 X(_wfi, bf30, f3af8003), \
9377 X(_sev, bf40, f3af8004),
9378
9379 /* To catch errors in encoding functions, the codes are all offset by
9380 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9381 as 16-bit instructions. */
9382 #define X(a,b,c) T_MNEM##a
9383 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9384 #undef X
9385
9386 #define X(a,b,c) 0x##b
9387 static const unsigned short thumb_op16[] = { T16_32_TAB };
9388 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9389 #undef X
9390
9391 #define X(a,b,c) 0x##c
9392 static const unsigned int thumb_op32[] = { T16_32_TAB };
9393 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9394 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9395 #undef X
9396 #undef T16_32_TAB
9397
9398 /* Thumb instruction encoders, in alphabetical order. */
9399
9400 /* ADDW or SUBW. */
9401
9402 static void
9403 do_t_add_sub_w (void)
9404 {
9405 int Rd, Rn;
9406
9407 Rd = inst.operands[0].reg;
9408 Rn = inst.operands[1].reg;
9409
9410 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9411 is the SP-{plus,minus}-immediate form of the instruction. */
9412 if (Rn == REG_SP)
9413 constraint (Rd == REG_PC, BAD_PC);
9414 else
9415 reject_bad_reg (Rd);
9416
9417 inst.instruction |= (Rn << 16) | (Rd << 8);
9418 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9419 }
9420
9421 /* Parse an add or subtract instruction. We get here with inst.instruction
9422 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9423
9424 static void
9425 do_t_add_sub (void)
9426 {
9427 int Rd, Rs, Rn;
9428
9429 Rd = inst.operands[0].reg;
9430 Rs = (inst.operands[1].present
9431 ? inst.operands[1].reg /* Rd, Rs, foo */
9432 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9433
9434 if (Rd == REG_PC)
9435 set_it_insn_type_last ();
9436
9437 if (unified_syntax)
9438 {
9439 bfd_boolean flags;
9440 bfd_boolean narrow;
9441 int opcode;
9442
9443 flags = (inst.instruction == T_MNEM_adds
9444 || inst.instruction == T_MNEM_subs);
9445 if (flags)
9446 narrow = !in_it_block ();
9447 else
9448 narrow = in_it_block ();
9449 if (!inst.operands[2].isreg)
9450 {
9451 int add;
9452
9453 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9454
9455 add = (inst.instruction == T_MNEM_add
9456 || inst.instruction == T_MNEM_adds);
9457 opcode = 0;
9458 if (inst.size_req != 4)
9459 {
9460 /* Attempt to use a narrow opcode, with relaxation if
9461 appropriate. */
9462 if (Rd == REG_SP && Rs == REG_SP && !flags)
9463 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9464 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9465 opcode = T_MNEM_add_sp;
9466 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9467 opcode = T_MNEM_add_pc;
9468 else if (Rd <= 7 && Rs <= 7 && narrow)
9469 {
9470 if (flags)
9471 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9472 else
9473 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9474 }
9475 if (opcode)
9476 {
9477 inst.instruction = THUMB_OP16(opcode);
9478 inst.instruction |= (Rd << 4) | Rs;
9479 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9480 if (inst.size_req != 2)
9481 inst.relax = opcode;
9482 }
9483 else
9484 constraint (inst.size_req == 2, BAD_HIREG);
9485 }
9486 if (inst.size_req == 4
9487 || (inst.size_req != 2 && !opcode))
9488 {
9489 if (Rd == REG_PC)
9490 {
9491 constraint (add, BAD_PC);
9492 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9493 _("only SUBS PC, LR, #const allowed"));
9494 constraint (inst.reloc.exp.X_op != O_constant,
9495 _("expression too complex"));
9496 constraint (inst.reloc.exp.X_add_number < 0
9497 || inst.reloc.exp.X_add_number > 0xff,
9498 _("immediate value out of range"));
9499 inst.instruction = T2_SUBS_PC_LR
9500 | inst.reloc.exp.X_add_number;
9501 inst.reloc.type = BFD_RELOC_UNUSED;
9502 return;
9503 }
9504 else if (Rs == REG_PC)
9505 {
9506 /* Always use addw/subw. */
9507 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9508 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9509 }
9510 else
9511 {
9512 inst.instruction = THUMB_OP32 (inst.instruction);
9513 inst.instruction = (inst.instruction & 0xe1ffffff)
9514 | 0x10000000;
9515 if (flags)
9516 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9517 else
9518 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9519 }
9520 inst.instruction |= Rd << 8;
9521 inst.instruction |= Rs << 16;
9522 }
9523 }
9524 else
9525 {
9526 unsigned int value = inst.reloc.exp.X_add_number;
9527 unsigned int shift = inst.operands[2].shift_kind;
9528
9529 Rn = inst.operands[2].reg;
9530 /* See if we can do this with a 16-bit instruction. */
9531 if (!inst.operands[2].shifted && inst.size_req != 4)
9532 {
9533 if (Rd > 7 || Rs > 7 || Rn > 7)
9534 narrow = FALSE;
9535
9536 if (narrow)
9537 {
9538 inst.instruction = ((inst.instruction == T_MNEM_adds
9539 || inst.instruction == T_MNEM_add)
9540 ? T_OPCODE_ADD_R3
9541 : T_OPCODE_SUB_R3);
9542 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9543 return;
9544 }
9545
9546 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9547 {
9548 /* Thumb-1 cores (except v6-M) require at least one high
9549 register in a narrow non flag setting add. */
9550 if (Rd > 7 || Rn > 7
9551 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9552 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9553 {
9554 if (Rd == Rn)
9555 {
9556 Rn = Rs;
9557 Rs = Rd;
9558 }
9559 inst.instruction = T_OPCODE_ADD_HI;
9560 inst.instruction |= (Rd & 8) << 4;
9561 inst.instruction |= (Rd & 7);
9562 inst.instruction |= Rn << 3;
9563 return;
9564 }
9565 }
9566 }
9567
9568 constraint (Rd == REG_PC, BAD_PC);
9569 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9570 constraint (Rs == REG_PC, BAD_PC);
9571 reject_bad_reg (Rn);
9572
9573 /* If we get here, it can't be done in 16 bits. */
9574 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9575 _("shift must be constant"));
9576 inst.instruction = THUMB_OP32 (inst.instruction);
9577 inst.instruction |= Rd << 8;
9578 inst.instruction |= Rs << 16;
9579 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9580 _("shift value over 3 not allowed in thumb mode"));
9581 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9582 _("only LSL shift allowed in thumb mode"));
9583 encode_thumb32_shifted_operand (2);
9584 }
9585 }
9586 else
9587 {
9588 constraint (inst.instruction == T_MNEM_adds
9589 || inst.instruction == T_MNEM_subs,
9590 BAD_THUMB32);
9591
9592 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9593 {
9594 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9595 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9596 BAD_HIREG);
9597
9598 inst.instruction = (inst.instruction == T_MNEM_add
9599 ? 0x0000 : 0x8000);
9600 inst.instruction |= (Rd << 4) | Rs;
9601 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9602 return;
9603 }
9604
9605 Rn = inst.operands[2].reg;
9606 constraint (inst.operands[2].shifted, _("unshifted register required"));
9607
9608 /* We now have Rd, Rs, and Rn set to registers. */
9609 if (Rd > 7 || Rs > 7 || Rn > 7)
9610 {
9611 /* Can't do this for SUB. */
9612 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9613 inst.instruction = T_OPCODE_ADD_HI;
9614 inst.instruction |= (Rd & 8) << 4;
9615 inst.instruction |= (Rd & 7);
9616 if (Rs == Rd)
9617 inst.instruction |= Rn << 3;
9618 else if (Rn == Rd)
9619 inst.instruction |= Rs << 3;
9620 else
9621 constraint (1, _("dest must overlap one source register"));
9622 }
9623 else
9624 {
9625 inst.instruction = (inst.instruction == T_MNEM_add
9626 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9627 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9628 }
9629 }
9630 }
9631
9632 static void
9633 do_t_adr (void)
9634 {
9635 unsigned Rd;
9636
9637 Rd = inst.operands[0].reg;
9638 reject_bad_reg (Rd);
9639
9640 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9641 {
9642 /* Defer to section relaxation. */
9643 inst.relax = inst.instruction;
9644 inst.instruction = THUMB_OP16 (inst.instruction);
9645 inst.instruction |= Rd << 4;
9646 }
9647 else if (unified_syntax && inst.size_req != 2)
9648 {
9649 /* Generate a 32-bit opcode. */
9650 inst.instruction = THUMB_OP32 (inst.instruction);
9651 inst.instruction |= Rd << 8;
9652 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9653 inst.reloc.pc_rel = 1;
9654 }
9655 else
9656 {
9657 /* Generate a 16-bit opcode. */
9658 inst.instruction = THUMB_OP16 (inst.instruction);
9659 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9660 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9661 inst.reloc.pc_rel = 1;
9662
9663 inst.instruction |= Rd << 4;
9664 }
9665 }
9666
9667 /* Arithmetic instructions for which there is just one 16-bit
9668 instruction encoding, and it allows only two low registers.
9669 For maximal compatibility with ARM syntax, we allow three register
9670 operands even when Thumb-32 instructions are not available, as long
9671 as the first two are identical. For instance, both "sbc r0,r1" and
9672 "sbc r0,r0,r1" are allowed. */
9673 static void
9674 do_t_arit3 (void)
9675 {
9676 int Rd, Rs, Rn;
9677
9678 Rd = inst.operands[0].reg;
9679 Rs = (inst.operands[1].present
9680 ? inst.operands[1].reg /* Rd, Rs, foo */
9681 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9682 Rn = inst.operands[2].reg;
9683
9684 reject_bad_reg (Rd);
9685 reject_bad_reg (Rs);
9686 if (inst.operands[2].isreg)
9687 reject_bad_reg (Rn);
9688
9689 if (unified_syntax)
9690 {
9691 if (!inst.operands[2].isreg)
9692 {
9693 /* For an immediate, we always generate a 32-bit opcode;
9694 section relaxation will shrink it later if possible. */
9695 inst.instruction = THUMB_OP32 (inst.instruction);
9696 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9697 inst.instruction |= Rd << 8;
9698 inst.instruction |= Rs << 16;
9699 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9700 }
9701 else
9702 {
9703 bfd_boolean narrow;
9704
9705 /* See if we can do this with a 16-bit instruction. */
9706 if (THUMB_SETS_FLAGS (inst.instruction))
9707 narrow = !in_it_block ();
9708 else
9709 narrow = in_it_block ();
9710
9711 if (Rd > 7 || Rn > 7 || Rs > 7)
9712 narrow = FALSE;
9713 if (inst.operands[2].shifted)
9714 narrow = FALSE;
9715 if (inst.size_req == 4)
9716 narrow = FALSE;
9717
9718 if (narrow
9719 && Rd == Rs)
9720 {
9721 inst.instruction = THUMB_OP16 (inst.instruction);
9722 inst.instruction |= Rd;
9723 inst.instruction |= Rn << 3;
9724 return;
9725 }
9726
9727 /* If we get here, it can't be done in 16 bits. */
9728 constraint (inst.operands[2].shifted
9729 && inst.operands[2].immisreg,
9730 _("shift must be constant"));
9731 inst.instruction = THUMB_OP32 (inst.instruction);
9732 inst.instruction |= Rd << 8;
9733 inst.instruction |= Rs << 16;
9734 encode_thumb32_shifted_operand (2);
9735 }
9736 }
9737 else
9738 {
9739 /* On its face this is a lie - the instruction does set the
9740 flags. However, the only supported mnemonic in this mode
9741 says it doesn't. */
9742 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9743
9744 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9745 _("unshifted register required"));
9746 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9747 constraint (Rd != Rs,
9748 _("dest and source1 must be the same register"));
9749
9750 inst.instruction = THUMB_OP16 (inst.instruction);
9751 inst.instruction |= Rd;
9752 inst.instruction |= Rn << 3;
9753 }
9754 }
9755
9756 /* Similarly, but for instructions where the arithmetic operation is
9757 commutative, so we can allow either of them to be different from
9758 the destination operand in a 16-bit instruction. For instance, all
9759 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9760 accepted. */
9761 static void
9762 do_t_arit3c (void)
9763 {
9764 int Rd, Rs, Rn;
9765
9766 Rd = inst.operands[0].reg;
9767 Rs = (inst.operands[1].present
9768 ? inst.operands[1].reg /* Rd, Rs, foo */
9769 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9770 Rn = inst.operands[2].reg;
9771
9772 reject_bad_reg (Rd);
9773 reject_bad_reg (Rs);
9774 if (inst.operands[2].isreg)
9775 reject_bad_reg (Rn);
9776
9777 if (unified_syntax)
9778 {
9779 if (!inst.operands[2].isreg)
9780 {
9781 /* For an immediate, we always generate a 32-bit opcode;
9782 section relaxation will shrink it later if possible. */
9783 inst.instruction = THUMB_OP32 (inst.instruction);
9784 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9785 inst.instruction |= Rd << 8;
9786 inst.instruction |= Rs << 16;
9787 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9788 }
9789 else
9790 {
9791 bfd_boolean narrow;
9792
9793 /* See if we can do this with a 16-bit instruction. */
9794 if (THUMB_SETS_FLAGS (inst.instruction))
9795 narrow = !in_it_block ();
9796 else
9797 narrow = in_it_block ();
9798
9799 if (Rd > 7 || Rn > 7 || Rs > 7)
9800 narrow = FALSE;
9801 if (inst.operands[2].shifted)
9802 narrow = FALSE;
9803 if (inst.size_req == 4)
9804 narrow = FALSE;
9805
9806 if (narrow)
9807 {
9808 if (Rd == Rs)
9809 {
9810 inst.instruction = THUMB_OP16 (inst.instruction);
9811 inst.instruction |= Rd;
9812 inst.instruction |= Rn << 3;
9813 return;
9814 }
9815 if (Rd == Rn)
9816 {
9817 inst.instruction = THUMB_OP16 (inst.instruction);
9818 inst.instruction |= Rd;
9819 inst.instruction |= Rs << 3;
9820 return;
9821 }
9822 }
9823
9824 /* If we get here, it can't be done in 16 bits. */
9825 constraint (inst.operands[2].shifted
9826 && inst.operands[2].immisreg,
9827 _("shift must be constant"));
9828 inst.instruction = THUMB_OP32 (inst.instruction);
9829 inst.instruction |= Rd << 8;
9830 inst.instruction |= Rs << 16;
9831 encode_thumb32_shifted_operand (2);
9832 }
9833 }
9834 else
9835 {
9836 /* On its face this is a lie - the instruction does set the
9837 flags. However, the only supported mnemonic in this mode
9838 says it doesn't. */
9839 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9840
9841 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9842 _("unshifted register required"));
9843 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9844
9845 inst.instruction = THUMB_OP16 (inst.instruction);
9846 inst.instruction |= Rd;
9847
9848 if (Rd == Rs)
9849 inst.instruction |= Rn << 3;
9850 else if (Rd == Rn)
9851 inst.instruction |= Rs << 3;
9852 else
9853 constraint (1, _("dest must overlap one source register"));
9854 }
9855 }
9856
9857 static void
9858 do_t_barrier (void)
9859 {
9860 if (inst.operands[0].present)
9861 {
9862 constraint ((inst.instruction & 0xf0) != 0x40
9863 && inst.operands[0].imm > 0xf
9864 && inst.operands[0].imm < 0x0,
9865 _("bad barrier type"));
9866 inst.instruction |= inst.operands[0].imm;
9867 }
9868 else
9869 inst.instruction |= 0xf;
9870 }
9871
9872 static void
9873 do_t_bfc (void)
9874 {
9875 unsigned Rd;
9876 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9877 constraint (msb > 32, _("bit-field extends past end of register"));
9878 /* The instruction encoding stores the LSB and MSB,
9879 not the LSB and width. */
9880 Rd = inst.operands[0].reg;
9881 reject_bad_reg (Rd);
9882 inst.instruction |= Rd << 8;
9883 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9884 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9885 inst.instruction |= msb - 1;
9886 }
9887
9888 static void
9889 do_t_bfi (void)
9890 {
9891 int Rd, Rn;
9892 unsigned int msb;
9893
9894 Rd = inst.operands[0].reg;
9895 reject_bad_reg (Rd);
9896
9897 /* #0 in second position is alternative syntax for bfc, which is
9898 the same instruction but with REG_PC in the Rm field. */
9899 if (!inst.operands[1].isreg)
9900 Rn = REG_PC;
9901 else
9902 {
9903 Rn = inst.operands[1].reg;
9904 reject_bad_reg (Rn);
9905 }
9906
9907 msb = inst.operands[2].imm + inst.operands[3].imm;
9908 constraint (msb > 32, _("bit-field extends past end of register"));
9909 /* The instruction encoding stores the LSB and MSB,
9910 not the LSB and width. */
9911 inst.instruction |= Rd << 8;
9912 inst.instruction |= Rn << 16;
9913 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9914 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9915 inst.instruction |= msb - 1;
9916 }
9917
9918 static void
9919 do_t_bfx (void)
9920 {
9921 unsigned Rd, Rn;
9922
9923 Rd = inst.operands[0].reg;
9924 Rn = inst.operands[1].reg;
9925
9926 reject_bad_reg (Rd);
9927 reject_bad_reg (Rn);
9928
9929 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9930 _("bit-field extends past end of register"));
9931 inst.instruction |= Rd << 8;
9932 inst.instruction |= Rn << 16;
9933 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9934 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9935 inst.instruction |= inst.operands[3].imm - 1;
9936 }
9937
9938 /* ARM V5 Thumb BLX (argument parse)
9939 BLX <target_addr> which is BLX(1)
9940 BLX <Rm> which is BLX(2)
9941 Unfortunately, there are two different opcodes for this mnemonic.
9942 So, the insns[].value is not used, and the code here zaps values
9943 into inst.instruction.
9944
9945 ??? How to take advantage of the additional two bits of displacement
9946 available in Thumb32 mode? Need new relocation? */
9947
9948 static void
9949 do_t_blx (void)
9950 {
9951 set_it_insn_type_last ();
9952
9953 if (inst.operands[0].isreg)
9954 {
9955 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9956 /* We have a register, so this is BLX(2). */
9957 inst.instruction |= inst.operands[0].reg << 3;
9958 }
9959 else
9960 {
9961 /* No register. This must be BLX(1). */
9962 inst.instruction = 0xf000e800;
9963 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
9964 }
9965 }
9966
9967 static void
9968 do_t_branch (void)
9969 {
9970 int opcode;
9971 int cond;
9972 int reloc;
9973
9974 cond = inst.cond;
9975 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9976
9977 if (in_it_block ())
9978 {
9979 /* Conditional branches inside IT blocks are encoded as unconditional
9980 branches. */
9981 cond = COND_ALWAYS;
9982 }
9983 else
9984 cond = inst.cond;
9985
9986 if (cond != COND_ALWAYS)
9987 opcode = T_MNEM_bcond;
9988 else
9989 opcode = inst.instruction;
9990
9991 if (unified_syntax
9992 && (inst.size_req == 4
9993 || (inst.size_req != 2
9994 && (inst.operands[0].hasreloc
9995 || inst.reloc.exp.X_op == O_constant))))
9996 {
9997 inst.instruction = THUMB_OP32(opcode);
9998 if (cond == COND_ALWAYS)
9999 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10000 else
10001 {
10002 gas_assert (cond != 0xF);
10003 inst.instruction |= cond << 22;
10004 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10005 }
10006 }
10007 else
10008 {
10009 inst.instruction = THUMB_OP16(opcode);
10010 if (cond == COND_ALWAYS)
10011 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10012 else
10013 {
10014 inst.instruction |= cond << 8;
10015 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10016 }
10017 /* Allow section relaxation. */
10018 if (unified_syntax && inst.size_req != 2)
10019 inst.relax = opcode;
10020 }
10021 inst.reloc.type = reloc;
10022 inst.reloc.pc_rel = 1;
10023 }
10024
10025 static void
10026 do_t_bkpt (void)
10027 {
10028 constraint (inst.cond != COND_ALWAYS,
10029 _("instruction is always unconditional"));
10030 if (inst.operands[0].present)
10031 {
10032 constraint (inst.operands[0].imm > 255,
10033 _("immediate value out of range"));
10034 inst.instruction |= inst.operands[0].imm;
10035 set_it_insn_type (NEUTRAL_IT_INSN);
10036 }
10037 }
10038
10039 static void
10040 do_t_branch23 (void)
10041 {
10042 set_it_insn_type_last ();
10043 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10044
10045 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10046 this file. We used to simply ignore the PLT reloc type here --
10047 the branch encoding is now needed to deal with TLSCALL relocs.
10048 So if we see a PLT reloc now, put it back to how it used to be to
10049 keep the preexisting behaviour. */
10050 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10051 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10052
10053 #if defined(OBJ_COFF)
10054 /* If the destination of the branch is a defined symbol which does not have
10055 the THUMB_FUNC attribute, then we must be calling a function which has
10056 the (interfacearm) attribute. We look for the Thumb entry point to that
10057 function and change the branch to refer to that function instead. */
10058 if ( inst.reloc.exp.X_op == O_symbol
10059 && inst.reloc.exp.X_add_symbol != NULL
10060 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10061 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10062 inst.reloc.exp.X_add_symbol =
10063 find_real_start (inst.reloc.exp.X_add_symbol);
10064 #endif
10065 }
10066
10067 static void
10068 do_t_bx (void)
10069 {
10070 set_it_insn_type_last ();
10071 inst.instruction |= inst.operands[0].reg << 3;
10072 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10073 should cause the alignment to be checked once it is known. This is
10074 because BX PC only works if the instruction is word aligned. */
10075 }
10076
10077 static void
10078 do_t_bxj (void)
10079 {
10080 int Rm;
10081
10082 set_it_insn_type_last ();
10083 Rm = inst.operands[0].reg;
10084 reject_bad_reg (Rm);
10085 inst.instruction |= Rm << 16;
10086 }
10087
10088 static void
10089 do_t_clz (void)
10090 {
10091 unsigned Rd;
10092 unsigned Rm;
10093
10094 Rd = inst.operands[0].reg;
10095 Rm = inst.operands[1].reg;
10096
10097 reject_bad_reg (Rd);
10098 reject_bad_reg (Rm);
10099
10100 inst.instruction |= Rd << 8;
10101 inst.instruction |= Rm << 16;
10102 inst.instruction |= Rm;
10103 }
10104
10105 static void
10106 do_t_cps (void)
10107 {
10108 set_it_insn_type (OUTSIDE_IT_INSN);
10109 inst.instruction |= inst.operands[0].imm;
10110 }
10111
10112 static void
10113 do_t_cpsi (void)
10114 {
10115 set_it_insn_type (OUTSIDE_IT_INSN);
10116 if (unified_syntax
10117 && (inst.operands[1].present || inst.size_req == 4)
10118 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10119 {
10120 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10121 inst.instruction = 0xf3af8000;
10122 inst.instruction |= imod << 9;
10123 inst.instruction |= inst.operands[0].imm << 5;
10124 if (inst.operands[1].present)
10125 inst.instruction |= 0x100 | inst.operands[1].imm;
10126 }
10127 else
10128 {
10129 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10130 && (inst.operands[0].imm & 4),
10131 _("selected processor does not support 'A' form "
10132 "of this instruction"));
10133 constraint (inst.operands[1].present || inst.size_req == 4,
10134 _("Thumb does not support the 2-argument "
10135 "form of this instruction"));
10136 inst.instruction |= inst.operands[0].imm;
10137 }
10138 }
10139
10140 /* THUMB CPY instruction (argument parse). */
10141
10142 static void
10143 do_t_cpy (void)
10144 {
10145 if (inst.size_req == 4)
10146 {
10147 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10148 inst.instruction |= inst.operands[0].reg << 8;
10149 inst.instruction |= inst.operands[1].reg;
10150 }
10151 else
10152 {
10153 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10154 inst.instruction |= (inst.operands[0].reg & 0x7);
10155 inst.instruction |= inst.operands[1].reg << 3;
10156 }
10157 }
10158
10159 static void
10160 do_t_cbz (void)
10161 {
10162 set_it_insn_type (OUTSIDE_IT_INSN);
10163 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10164 inst.instruction |= inst.operands[0].reg;
10165 inst.reloc.pc_rel = 1;
10166 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10167 }
10168
10169 static void
10170 do_t_dbg (void)
10171 {
10172 inst.instruction |= inst.operands[0].imm;
10173 }
10174
10175 static void
10176 do_t_div (void)
10177 {
10178 unsigned Rd, Rn, Rm;
10179
10180 Rd = inst.operands[0].reg;
10181 Rn = (inst.operands[1].present
10182 ? inst.operands[1].reg : Rd);
10183 Rm = inst.operands[2].reg;
10184
10185 reject_bad_reg (Rd);
10186 reject_bad_reg (Rn);
10187 reject_bad_reg (Rm);
10188
10189 inst.instruction |= Rd << 8;
10190 inst.instruction |= Rn << 16;
10191 inst.instruction |= Rm;
10192 }
10193
10194 static void
10195 do_t_hint (void)
10196 {
10197 if (unified_syntax && inst.size_req == 4)
10198 inst.instruction = THUMB_OP32 (inst.instruction);
10199 else
10200 inst.instruction = THUMB_OP16 (inst.instruction);
10201 }
10202
10203 static void
10204 do_t_it (void)
10205 {
10206 unsigned int cond = inst.operands[0].imm;
10207
10208 set_it_insn_type (IT_INSN);
10209 now_it.mask = (inst.instruction & 0xf) | 0x10;
10210 now_it.cc = cond;
10211
10212 /* If the condition is a negative condition, invert the mask. */
10213 if ((cond & 0x1) == 0x0)
10214 {
10215 unsigned int mask = inst.instruction & 0x000f;
10216
10217 if ((mask & 0x7) == 0)
10218 /* no conversion needed */;
10219 else if ((mask & 0x3) == 0)
10220 mask ^= 0x8;
10221 else if ((mask & 0x1) == 0)
10222 mask ^= 0xC;
10223 else
10224 mask ^= 0xE;
10225
10226 inst.instruction &= 0xfff0;
10227 inst.instruction |= mask;
10228 }
10229
10230 inst.instruction |= cond << 4;
10231 }
10232
10233 /* Helper function used for both push/pop and ldm/stm. */
10234 static void
10235 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10236 {
10237 bfd_boolean load;
10238
10239 load = (inst.instruction & (1 << 20)) != 0;
10240
10241 if (mask & (1 << 13))
10242 inst.error = _("SP not allowed in register list");
10243
10244 if ((mask & (1 << base)) != 0
10245 && writeback)
10246 inst.error = _("having the base register in the register list when "
10247 "using write back is UNPREDICTABLE");
10248
10249 if (load)
10250 {
10251 if (mask & (1 << 15))
10252 {
10253 if (mask & (1 << 14))
10254 inst.error = _("LR and PC should not both be in register list");
10255 else
10256 set_it_insn_type_last ();
10257 }
10258 }
10259 else
10260 {
10261 if (mask & (1 << 15))
10262 inst.error = _("PC not allowed in register list");
10263 }
10264
10265 if ((mask & (mask - 1)) == 0)
10266 {
10267 /* Single register transfers implemented as str/ldr. */
10268 if (writeback)
10269 {
10270 if (inst.instruction & (1 << 23))
10271 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10272 else
10273 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10274 }
10275 else
10276 {
10277 if (inst.instruction & (1 << 23))
10278 inst.instruction = 0x00800000; /* ia -> [base] */
10279 else
10280 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10281 }
10282
10283 inst.instruction |= 0xf8400000;
10284 if (load)
10285 inst.instruction |= 0x00100000;
10286
10287 mask = ffs (mask) - 1;
10288 mask <<= 12;
10289 }
10290 else if (writeback)
10291 inst.instruction |= WRITE_BACK;
10292
10293 inst.instruction |= mask;
10294 inst.instruction |= base << 16;
10295 }
10296
10297 static void
10298 do_t_ldmstm (void)
10299 {
10300 /* This really doesn't seem worth it. */
10301 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10302 _("expression too complex"));
10303 constraint (inst.operands[1].writeback,
10304 _("Thumb load/store multiple does not support {reglist}^"));
10305
10306 if (unified_syntax)
10307 {
10308 bfd_boolean narrow;
10309 unsigned mask;
10310
10311 narrow = FALSE;
10312 /* See if we can use a 16-bit instruction. */
10313 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10314 && inst.size_req != 4
10315 && !(inst.operands[1].imm & ~0xff))
10316 {
10317 mask = 1 << inst.operands[0].reg;
10318
10319 if (inst.operands[0].reg <= 7)
10320 {
10321 if (inst.instruction == T_MNEM_stmia
10322 ? inst.operands[0].writeback
10323 : (inst.operands[0].writeback
10324 == !(inst.operands[1].imm & mask)))
10325 {
10326 if (inst.instruction == T_MNEM_stmia
10327 && (inst.operands[1].imm & mask)
10328 && (inst.operands[1].imm & (mask - 1)))
10329 as_warn (_("value stored for r%d is UNKNOWN"),
10330 inst.operands[0].reg);
10331
10332 inst.instruction = THUMB_OP16 (inst.instruction);
10333 inst.instruction |= inst.operands[0].reg << 8;
10334 inst.instruction |= inst.operands[1].imm;
10335 narrow = TRUE;
10336 }
10337 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10338 {
10339 /* This means 1 register in reg list one of 3 situations:
10340 1. Instruction is stmia, but without writeback.
10341 2. lmdia without writeback, but with Rn not in
10342 reglist.
10343 3. ldmia with writeback, but with Rn in reglist.
10344 Case 3 is UNPREDICTABLE behaviour, so we handle
10345 case 1 and 2 which can be converted into a 16-bit
10346 str or ldr. The SP cases are handled below. */
10347 unsigned long opcode;
10348 /* First, record an error for Case 3. */
10349 if (inst.operands[1].imm & mask
10350 && inst.operands[0].writeback)
10351 inst.error =
10352 _("having the base register in the register list when "
10353 "using write back is UNPREDICTABLE");
10354
10355 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10356 : T_MNEM_ldr);
10357 inst.instruction = THUMB_OP16 (opcode);
10358 inst.instruction |= inst.operands[0].reg << 3;
10359 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10360 narrow = TRUE;
10361 }
10362 }
10363 else if (inst.operands[0] .reg == REG_SP)
10364 {
10365 if (inst.operands[0].writeback)
10366 {
10367 inst.instruction =
10368 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10369 ? T_MNEM_push : T_MNEM_pop);
10370 inst.instruction |= inst.operands[1].imm;
10371 narrow = TRUE;
10372 }
10373 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10374 {
10375 inst.instruction =
10376 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10377 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10378 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10379 narrow = TRUE;
10380 }
10381 }
10382 }
10383
10384 if (!narrow)
10385 {
10386 if (inst.instruction < 0xffff)
10387 inst.instruction = THUMB_OP32 (inst.instruction);
10388
10389 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10390 inst.operands[0].writeback);
10391 }
10392 }
10393 else
10394 {
10395 constraint (inst.operands[0].reg > 7
10396 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10397 constraint (inst.instruction != T_MNEM_ldmia
10398 && inst.instruction != T_MNEM_stmia,
10399 _("Thumb-2 instruction only valid in unified syntax"));
10400 if (inst.instruction == T_MNEM_stmia)
10401 {
10402 if (!inst.operands[0].writeback)
10403 as_warn (_("this instruction will write back the base register"));
10404 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10405 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10406 as_warn (_("value stored for r%d is UNKNOWN"),
10407 inst.operands[0].reg);
10408 }
10409 else
10410 {
10411 if (!inst.operands[0].writeback
10412 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10413 as_warn (_("this instruction will write back the base register"));
10414 else if (inst.operands[0].writeback
10415 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10416 as_warn (_("this instruction will not write back the base register"));
10417 }
10418
10419 inst.instruction = THUMB_OP16 (inst.instruction);
10420 inst.instruction |= inst.operands[0].reg << 8;
10421 inst.instruction |= inst.operands[1].imm;
10422 }
10423 }
10424
10425 static void
10426 do_t_ldrex (void)
10427 {
10428 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10429 || inst.operands[1].postind || inst.operands[1].writeback
10430 || inst.operands[1].immisreg || inst.operands[1].shifted
10431 || inst.operands[1].negative,
10432 BAD_ADDR_MODE);
10433
10434 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10435
10436 inst.instruction |= inst.operands[0].reg << 12;
10437 inst.instruction |= inst.operands[1].reg << 16;
10438 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10439 }
10440
10441 static void
10442 do_t_ldrexd (void)
10443 {
10444 if (!inst.operands[1].present)
10445 {
10446 constraint (inst.operands[0].reg == REG_LR,
10447 _("r14 not allowed as first register "
10448 "when second register is omitted"));
10449 inst.operands[1].reg = inst.operands[0].reg + 1;
10450 }
10451 constraint (inst.operands[0].reg == inst.operands[1].reg,
10452 BAD_OVERLAP);
10453
10454 inst.instruction |= inst.operands[0].reg << 12;
10455 inst.instruction |= inst.operands[1].reg << 8;
10456 inst.instruction |= inst.operands[2].reg << 16;
10457 }
10458
10459 static void
10460 do_t_ldst (void)
10461 {
10462 unsigned long opcode;
10463 int Rn;
10464
10465 if (inst.operands[0].isreg
10466 && !inst.operands[0].preind
10467 && inst.operands[0].reg == REG_PC)
10468 set_it_insn_type_last ();
10469
10470 opcode = inst.instruction;
10471 if (unified_syntax)
10472 {
10473 if (!inst.operands[1].isreg)
10474 {
10475 if (opcode <= 0xffff)
10476 inst.instruction = THUMB_OP32 (opcode);
10477 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10478 return;
10479 }
10480 if (inst.operands[1].isreg
10481 && !inst.operands[1].writeback
10482 && !inst.operands[1].shifted && !inst.operands[1].postind
10483 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10484 && opcode <= 0xffff
10485 && inst.size_req != 4)
10486 {
10487 /* Insn may have a 16-bit form. */
10488 Rn = inst.operands[1].reg;
10489 if (inst.operands[1].immisreg)
10490 {
10491 inst.instruction = THUMB_OP16 (opcode);
10492 /* [Rn, Rik] */
10493 if (Rn <= 7 && inst.operands[1].imm <= 7)
10494 goto op16;
10495 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10496 reject_bad_reg (inst.operands[1].imm);
10497 }
10498 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10499 && opcode != T_MNEM_ldrsb)
10500 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10501 || (Rn == REG_SP && opcode == T_MNEM_str))
10502 {
10503 /* [Rn, #const] */
10504 if (Rn > 7)
10505 {
10506 if (Rn == REG_PC)
10507 {
10508 if (inst.reloc.pc_rel)
10509 opcode = T_MNEM_ldr_pc2;
10510 else
10511 opcode = T_MNEM_ldr_pc;
10512 }
10513 else
10514 {
10515 if (opcode == T_MNEM_ldr)
10516 opcode = T_MNEM_ldr_sp;
10517 else
10518 opcode = T_MNEM_str_sp;
10519 }
10520 inst.instruction = inst.operands[0].reg << 8;
10521 }
10522 else
10523 {
10524 inst.instruction = inst.operands[0].reg;
10525 inst.instruction |= inst.operands[1].reg << 3;
10526 }
10527 inst.instruction |= THUMB_OP16 (opcode);
10528 if (inst.size_req == 2)
10529 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10530 else
10531 inst.relax = opcode;
10532 return;
10533 }
10534 }
10535 /* Definitely a 32-bit variant. */
10536
10537 /* Warning for Erratum 752419. */
10538 if (opcode == T_MNEM_ldr
10539 && inst.operands[0].reg == REG_SP
10540 && inst.operands[1].writeback == 1
10541 && !inst.operands[1].immisreg)
10542 {
10543 if (no_cpu_selected ()
10544 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10545 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10546 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10547 as_warn (_("This instruction may be unpredictable "
10548 "if executed on M-profile cores "
10549 "with interrupts enabled."));
10550 }
10551
10552 /* Do some validations regarding addressing modes. */
10553 if (inst.operands[1].immisreg)
10554 reject_bad_reg (inst.operands[1].imm);
10555
10556 constraint (inst.operands[1].writeback == 1
10557 && inst.operands[0].reg == inst.operands[1].reg,
10558 BAD_OVERLAP);
10559
10560 inst.instruction = THUMB_OP32 (opcode);
10561 inst.instruction |= inst.operands[0].reg << 12;
10562 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10563 check_ldr_r15_aligned ();
10564 return;
10565 }
10566
10567 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10568
10569 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10570 {
10571 /* Only [Rn,Rm] is acceptable. */
10572 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10573 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10574 || inst.operands[1].postind || inst.operands[1].shifted
10575 || inst.operands[1].negative,
10576 _("Thumb does not support this addressing mode"));
10577 inst.instruction = THUMB_OP16 (inst.instruction);
10578 goto op16;
10579 }
10580
10581 inst.instruction = THUMB_OP16 (inst.instruction);
10582 if (!inst.operands[1].isreg)
10583 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10584 return;
10585
10586 constraint (!inst.operands[1].preind
10587 || inst.operands[1].shifted
10588 || inst.operands[1].writeback,
10589 _("Thumb does not support this addressing mode"));
10590 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10591 {
10592 constraint (inst.instruction & 0x0600,
10593 _("byte or halfword not valid for base register"));
10594 constraint (inst.operands[1].reg == REG_PC
10595 && !(inst.instruction & THUMB_LOAD_BIT),
10596 _("r15 based store not allowed"));
10597 constraint (inst.operands[1].immisreg,
10598 _("invalid base register for register offset"));
10599
10600 if (inst.operands[1].reg == REG_PC)
10601 inst.instruction = T_OPCODE_LDR_PC;
10602 else if (inst.instruction & THUMB_LOAD_BIT)
10603 inst.instruction = T_OPCODE_LDR_SP;
10604 else
10605 inst.instruction = T_OPCODE_STR_SP;
10606
10607 inst.instruction |= inst.operands[0].reg << 8;
10608 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10609 return;
10610 }
10611
10612 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10613 if (!inst.operands[1].immisreg)
10614 {
10615 /* Immediate offset. */
10616 inst.instruction |= inst.operands[0].reg;
10617 inst.instruction |= inst.operands[1].reg << 3;
10618 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10619 return;
10620 }
10621
10622 /* Register offset. */
10623 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10624 constraint (inst.operands[1].negative,
10625 _("Thumb does not support this addressing mode"));
10626
10627 op16:
10628 switch (inst.instruction)
10629 {
10630 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10631 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10632 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10633 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10634 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10635 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10636 case 0x5600 /* ldrsb */:
10637 case 0x5e00 /* ldrsh */: break;
10638 default: abort ();
10639 }
10640
10641 inst.instruction |= inst.operands[0].reg;
10642 inst.instruction |= inst.operands[1].reg << 3;
10643 inst.instruction |= inst.operands[1].imm << 6;
10644 }
10645
10646 static void
10647 do_t_ldstd (void)
10648 {
10649 if (!inst.operands[1].present)
10650 {
10651 inst.operands[1].reg = inst.operands[0].reg + 1;
10652 constraint (inst.operands[0].reg == REG_LR,
10653 _("r14 not allowed here"));
10654 }
10655 inst.instruction |= inst.operands[0].reg << 12;
10656 inst.instruction |= inst.operands[1].reg << 8;
10657 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10658 }
10659
10660 static void
10661 do_t_ldstt (void)
10662 {
10663 inst.instruction |= inst.operands[0].reg << 12;
10664 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10665 }
10666
10667 static void
10668 do_t_mla (void)
10669 {
10670 unsigned Rd, Rn, Rm, Ra;
10671
10672 Rd = inst.operands[0].reg;
10673 Rn = inst.operands[1].reg;
10674 Rm = inst.operands[2].reg;
10675 Ra = inst.operands[3].reg;
10676
10677 reject_bad_reg (Rd);
10678 reject_bad_reg (Rn);
10679 reject_bad_reg (Rm);
10680 reject_bad_reg (Ra);
10681
10682 inst.instruction |= Rd << 8;
10683 inst.instruction |= Rn << 16;
10684 inst.instruction |= Rm;
10685 inst.instruction |= Ra << 12;
10686 }
10687
10688 static void
10689 do_t_mlal (void)
10690 {
10691 unsigned RdLo, RdHi, Rn, Rm;
10692
10693 RdLo = inst.operands[0].reg;
10694 RdHi = inst.operands[1].reg;
10695 Rn = inst.operands[2].reg;
10696 Rm = inst.operands[3].reg;
10697
10698 reject_bad_reg (RdLo);
10699 reject_bad_reg (RdHi);
10700 reject_bad_reg (Rn);
10701 reject_bad_reg (Rm);
10702
10703 inst.instruction |= RdLo << 12;
10704 inst.instruction |= RdHi << 8;
10705 inst.instruction |= Rn << 16;
10706 inst.instruction |= Rm;
10707 }
10708
10709 static void
10710 do_t_mov_cmp (void)
10711 {
10712 unsigned Rn, Rm;
10713
10714 Rn = inst.operands[0].reg;
10715 Rm = inst.operands[1].reg;
10716
10717 if (Rn == REG_PC)
10718 set_it_insn_type_last ();
10719
10720 if (unified_syntax)
10721 {
10722 int r0off = (inst.instruction == T_MNEM_mov
10723 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10724 unsigned long opcode;
10725 bfd_boolean narrow;
10726 bfd_boolean low_regs;
10727
10728 low_regs = (Rn <= 7 && Rm <= 7);
10729 opcode = inst.instruction;
10730 if (in_it_block ())
10731 narrow = opcode != T_MNEM_movs;
10732 else
10733 narrow = opcode != T_MNEM_movs || low_regs;
10734 if (inst.size_req == 4
10735 || inst.operands[1].shifted)
10736 narrow = FALSE;
10737
10738 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10739 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10740 && !inst.operands[1].shifted
10741 && Rn == REG_PC
10742 && Rm == REG_LR)
10743 {
10744 inst.instruction = T2_SUBS_PC_LR;
10745 return;
10746 }
10747
10748 if (opcode == T_MNEM_cmp)
10749 {
10750 constraint (Rn == REG_PC, BAD_PC);
10751 if (narrow)
10752 {
10753 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10754 but valid. */
10755 warn_deprecated_sp (Rm);
10756 /* R15 was documented as a valid choice for Rm in ARMv6,
10757 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10758 tools reject R15, so we do too. */
10759 constraint (Rm == REG_PC, BAD_PC);
10760 }
10761 else
10762 reject_bad_reg (Rm);
10763 }
10764 else if (opcode == T_MNEM_mov
10765 || opcode == T_MNEM_movs)
10766 {
10767 if (inst.operands[1].isreg)
10768 {
10769 if (opcode == T_MNEM_movs)
10770 {
10771 reject_bad_reg (Rn);
10772 reject_bad_reg (Rm);
10773 }
10774 else if (narrow)
10775 {
10776 /* This is mov.n. */
10777 if ((Rn == REG_SP || Rn == REG_PC)
10778 && (Rm == REG_SP || Rm == REG_PC))
10779 {
10780 as_warn (_("Use of r%u as a source register is "
10781 "deprecated when r%u is the destination "
10782 "register."), Rm, Rn);
10783 }
10784 }
10785 else
10786 {
10787 /* This is mov.w. */
10788 constraint (Rn == REG_PC, BAD_PC);
10789 constraint (Rm == REG_PC, BAD_PC);
10790 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10791 }
10792 }
10793 else
10794 reject_bad_reg (Rn);
10795 }
10796
10797 if (!inst.operands[1].isreg)
10798 {
10799 /* Immediate operand. */
10800 if (!in_it_block () && opcode == T_MNEM_mov)
10801 narrow = 0;
10802 if (low_regs && narrow)
10803 {
10804 inst.instruction = THUMB_OP16 (opcode);
10805 inst.instruction |= Rn << 8;
10806 if (inst.size_req == 2)
10807 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10808 else
10809 inst.relax = opcode;
10810 }
10811 else
10812 {
10813 inst.instruction = THUMB_OP32 (inst.instruction);
10814 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10815 inst.instruction |= Rn << r0off;
10816 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10817 }
10818 }
10819 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10820 && (inst.instruction == T_MNEM_mov
10821 || inst.instruction == T_MNEM_movs))
10822 {
10823 /* Register shifts are encoded as separate shift instructions. */
10824 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10825
10826 if (in_it_block ())
10827 narrow = !flags;
10828 else
10829 narrow = flags;
10830
10831 if (inst.size_req == 4)
10832 narrow = FALSE;
10833
10834 if (!low_regs || inst.operands[1].imm > 7)
10835 narrow = FALSE;
10836
10837 if (Rn != Rm)
10838 narrow = FALSE;
10839
10840 switch (inst.operands[1].shift_kind)
10841 {
10842 case SHIFT_LSL:
10843 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10844 break;
10845 case SHIFT_ASR:
10846 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10847 break;
10848 case SHIFT_LSR:
10849 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10850 break;
10851 case SHIFT_ROR:
10852 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10853 break;
10854 default:
10855 abort ();
10856 }
10857
10858 inst.instruction = opcode;
10859 if (narrow)
10860 {
10861 inst.instruction |= Rn;
10862 inst.instruction |= inst.operands[1].imm << 3;
10863 }
10864 else
10865 {
10866 if (flags)
10867 inst.instruction |= CONDS_BIT;
10868
10869 inst.instruction |= Rn << 8;
10870 inst.instruction |= Rm << 16;
10871 inst.instruction |= inst.operands[1].imm;
10872 }
10873 }
10874 else if (!narrow)
10875 {
10876 /* Some mov with immediate shift have narrow variants.
10877 Register shifts are handled above. */
10878 if (low_regs && inst.operands[1].shifted
10879 && (inst.instruction == T_MNEM_mov
10880 || inst.instruction == T_MNEM_movs))
10881 {
10882 if (in_it_block ())
10883 narrow = (inst.instruction == T_MNEM_mov);
10884 else
10885 narrow = (inst.instruction == T_MNEM_movs);
10886 }
10887
10888 if (narrow)
10889 {
10890 switch (inst.operands[1].shift_kind)
10891 {
10892 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10893 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10894 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10895 default: narrow = FALSE; break;
10896 }
10897 }
10898
10899 if (narrow)
10900 {
10901 inst.instruction |= Rn;
10902 inst.instruction |= Rm << 3;
10903 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10904 }
10905 else
10906 {
10907 inst.instruction = THUMB_OP32 (inst.instruction);
10908 inst.instruction |= Rn << r0off;
10909 encode_thumb32_shifted_operand (1);
10910 }
10911 }
10912 else
10913 switch (inst.instruction)
10914 {
10915 case T_MNEM_mov:
10916 /* In v4t or v5t a move of two lowregs produces unpredictable
10917 results. Don't allow this. */
10918 if (low_regs)
10919 {
10920 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
10921 "MOV Rd, Rs with two low registers is not "
10922 "permitted on this architecture");
10923 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
10924 arm_ext_v6);
10925 }
10926
10927 inst.instruction = T_OPCODE_MOV_HR;
10928 inst.instruction |= (Rn & 0x8) << 4;
10929 inst.instruction |= (Rn & 0x7);
10930 inst.instruction |= Rm << 3;
10931 break;
10932
10933 case T_MNEM_movs:
10934 /* We know we have low registers at this point.
10935 Generate LSLS Rd, Rs, #0. */
10936 inst.instruction = T_OPCODE_LSL_I;
10937 inst.instruction |= Rn;
10938 inst.instruction |= Rm << 3;
10939 break;
10940
10941 case T_MNEM_cmp:
10942 if (low_regs)
10943 {
10944 inst.instruction = T_OPCODE_CMP_LR;
10945 inst.instruction |= Rn;
10946 inst.instruction |= Rm << 3;
10947 }
10948 else
10949 {
10950 inst.instruction = T_OPCODE_CMP_HR;
10951 inst.instruction |= (Rn & 0x8) << 4;
10952 inst.instruction |= (Rn & 0x7);
10953 inst.instruction |= Rm << 3;
10954 }
10955 break;
10956 }
10957 return;
10958 }
10959
10960 inst.instruction = THUMB_OP16 (inst.instruction);
10961
10962 /* PR 10443: Do not silently ignore shifted operands. */
10963 constraint (inst.operands[1].shifted,
10964 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10965
10966 if (inst.operands[1].isreg)
10967 {
10968 if (Rn < 8 && Rm < 8)
10969 {
10970 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10971 since a MOV instruction produces unpredictable results. */
10972 if (inst.instruction == T_OPCODE_MOV_I8)
10973 inst.instruction = T_OPCODE_ADD_I3;
10974 else
10975 inst.instruction = T_OPCODE_CMP_LR;
10976
10977 inst.instruction |= Rn;
10978 inst.instruction |= Rm << 3;
10979 }
10980 else
10981 {
10982 if (inst.instruction == T_OPCODE_MOV_I8)
10983 inst.instruction = T_OPCODE_MOV_HR;
10984 else
10985 inst.instruction = T_OPCODE_CMP_HR;
10986 do_t_cpy ();
10987 }
10988 }
10989 else
10990 {
10991 constraint (Rn > 7,
10992 _("only lo regs allowed with immediate"));
10993 inst.instruction |= Rn << 8;
10994 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10995 }
10996 }
10997
10998 static void
10999 do_t_mov16 (void)
11000 {
11001 unsigned Rd;
11002 bfd_vma imm;
11003 bfd_boolean top;
11004
11005 top = (inst.instruction & 0x00800000) != 0;
11006 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11007 {
11008 constraint (top, _(":lower16: not allowed this instruction"));
11009 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11010 }
11011 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11012 {
11013 constraint (!top, _(":upper16: not allowed this instruction"));
11014 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11015 }
11016
11017 Rd = inst.operands[0].reg;
11018 reject_bad_reg (Rd);
11019
11020 inst.instruction |= Rd << 8;
11021 if (inst.reloc.type == BFD_RELOC_UNUSED)
11022 {
11023 imm = inst.reloc.exp.X_add_number;
11024 inst.instruction |= (imm & 0xf000) << 4;
11025 inst.instruction |= (imm & 0x0800) << 15;
11026 inst.instruction |= (imm & 0x0700) << 4;
11027 inst.instruction |= (imm & 0x00ff);
11028 }
11029 }
11030
11031 static void
11032 do_t_mvn_tst (void)
11033 {
11034 unsigned Rn, Rm;
11035
11036 Rn = inst.operands[0].reg;
11037 Rm = inst.operands[1].reg;
11038
11039 if (inst.instruction == T_MNEM_cmp
11040 || inst.instruction == T_MNEM_cmn)
11041 constraint (Rn == REG_PC, BAD_PC);
11042 else
11043 reject_bad_reg (Rn);
11044 reject_bad_reg (Rm);
11045
11046 if (unified_syntax)
11047 {
11048 int r0off = (inst.instruction == T_MNEM_mvn
11049 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11050 bfd_boolean narrow;
11051
11052 if (inst.size_req == 4
11053 || inst.instruction > 0xffff
11054 || inst.operands[1].shifted
11055 || Rn > 7 || Rm > 7)
11056 narrow = FALSE;
11057 else if (inst.instruction == T_MNEM_cmn)
11058 narrow = TRUE;
11059 else if (THUMB_SETS_FLAGS (inst.instruction))
11060 narrow = !in_it_block ();
11061 else
11062 narrow = in_it_block ();
11063
11064 if (!inst.operands[1].isreg)
11065 {
11066 /* For an immediate, we always generate a 32-bit opcode;
11067 section relaxation will shrink it later if possible. */
11068 if (inst.instruction < 0xffff)
11069 inst.instruction = THUMB_OP32 (inst.instruction);
11070 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11071 inst.instruction |= Rn << r0off;
11072 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11073 }
11074 else
11075 {
11076 /* See if we can do this with a 16-bit instruction. */
11077 if (narrow)
11078 {
11079 inst.instruction = THUMB_OP16 (inst.instruction);
11080 inst.instruction |= Rn;
11081 inst.instruction |= Rm << 3;
11082 }
11083 else
11084 {
11085 constraint (inst.operands[1].shifted
11086 && inst.operands[1].immisreg,
11087 _("shift must be constant"));
11088 if (inst.instruction < 0xffff)
11089 inst.instruction = THUMB_OP32 (inst.instruction);
11090 inst.instruction |= Rn << r0off;
11091 encode_thumb32_shifted_operand (1);
11092 }
11093 }
11094 }
11095 else
11096 {
11097 constraint (inst.instruction > 0xffff
11098 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11099 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11100 _("unshifted register required"));
11101 constraint (Rn > 7 || Rm > 7,
11102 BAD_HIREG);
11103
11104 inst.instruction = THUMB_OP16 (inst.instruction);
11105 inst.instruction |= Rn;
11106 inst.instruction |= Rm << 3;
11107 }
11108 }
11109
11110 static void
11111 do_t_mrs (void)
11112 {
11113 unsigned Rd;
11114
11115 if (do_vfp_nsyn_mrs () == SUCCESS)
11116 return;
11117
11118 Rd = inst.operands[0].reg;
11119 reject_bad_reg (Rd);
11120 inst.instruction |= Rd << 8;
11121
11122 if (inst.operands[1].isreg)
11123 {
11124 unsigned br = inst.operands[1].reg;
11125 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11126 as_bad (_("bad register for mrs"));
11127
11128 inst.instruction |= br & (0xf << 16);
11129 inst.instruction |= (br & 0x300) >> 4;
11130 inst.instruction |= (br & SPSR_BIT) >> 2;
11131 }
11132 else
11133 {
11134 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11135
11136 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11137 constraint (flags != 0, _("selected processor does not support "
11138 "requested special purpose register"));
11139 else
11140 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11141 devices). */
11142 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11143 _("'APSR', 'CPSR' or 'SPSR' expected"));
11144
11145 inst.instruction |= (flags & SPSR_BIT) >> 2;
11146 inst.instruction |= inst.operands[1].imm & 0xff;
11147 inst.instruction |= 0xf0000;
11148 }
11149 }
11150
11151 static void
11152 do_t_msr (void)
11153 {
11154 int flags;
11155 unsigned Rn;
11156
11157 if (do_vfp_nsyn_msr () == SUCCESS)
11158 return;
11159
11160 constraint (!inst.operands[1].isreg,
11161 _("Thumb encoding does not support an immediate here"));
11162
11163 if (inst.operands[0].isreg)
11164 flags = (int)(inst.operands[0].reg);
11165 else
11166 flags = inst.operands[0].imm;
11167
11168 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11169 {
11170 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11171
11172 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11173 && (bits & ~(PSR_s | PSR_f)) != 0)
11174 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11175 && bits != PSR_f),
11176 _("selected processor does not support requested special "
11177 "purpose register"));
11178 }
11179 else
11180 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11181 "requested special purpose register"));
11182
11183 Rn = inst.operands[1].reg;
11184 reject_bad_reg (Rn);
11185
11186 inst.instruction |= (flags & SPSR_BIT) >> 2;
11187 inst.instruction |= (flags & 0xf0000) >> 8;
11188 inst.instruction |= (flags & 0x300) >> 4;
11189 inst.instruction |= (flags & 0xff);
11190 inst.instruction |= Rn << 16;
11191 }
11192
11193 static void
11194 do_t_mul (void)
11195 {
11196 bfd_boolean narrow;
11197 unsigned Rd, Rn, Rm;
11198
11199 if (!inst.operands[2].present)
11200 inst.operands[2].reg = inst.operands[0].reg;
11201
11202 Rd = inst.operands[0].reg;
11203 Rn = inst.operands[1].reg;
11204 Rm = inst.operands[2].reg;
11205
11206 if (unified_syntax)
11207 {
11208 if (inst.size_req == 4
11209 || (Rd != Rn
11210 && Rd != Rm)
11211 || Rn > 7
11212 || Rm > 7)
11213 narrow = FALSE;
11214 else if (inst.instruction == T_MNEM_muls)
11215 narrow = !in_it_block ();
11216 else
11217 narrow = in_it_block ();
11218 }
11219 else
11220 {
11221 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11222 constraint (Rn > 7 || Rm > 7,
11223 BAD_HIREG);
11224 narrow = TRUE;
11225 }
11226
11227 if (narrow)
11228 {
11229 /* 16-bit MULS/Conditional MUL. */
11230 inst.instruction = THUMB_OP16 (inst.instruction);
11231 inst.instruction |= Rd;
11232
11233 if (Rd == Rn)
11234 inst.instruction |= Rm << 3;
11235 else if (Rd == Rm)
11236 inst.instruction |= Rn << 3;
11237 else
11238 constraint (1, _("dest must overlap one source register"));
11239 }
11240 else
11241 {
11242 constraint (inst.instruction != T_MNEM_mul,
11243 _("Thumb-2 MUL must not set flags"));
11244 /* 32-bit MUL. */
11245 inst.instruction = THUMB_OP32 (inst.instruction);
11246 inst.instruction |= Rd << 8;
11247 inst.instruction |= Rn << 16;
11248 inst.instruction |= Rm << 0;
11249
11250 reject_bad_reg (Rd);
11251 reject_bad_reg (Rn);
11252 reject_bad_reg (Rm);
11253 }
11254 }
11255
11256 static void
11257 do_t_mull (void)
11258 {
11259 unsigned RdLo, RdHi, Rn, Rm;
11260
11261 RdLo = inst.operands[0].reg;
11262 RdHi = inst.operands[1].reg;
11263 Rn = inst.operands[2].reg;
11264 Rm = inst.operands[3].reg;
11265
11266 reject_bad_reg (RdLo);
11267 reject_bad_reg (RdHi);
11268 reject_bad_reg (Rn);
11269 reject_bad_reg (Rm);
11270
11271 inst.instruction |= RdLo << 12;
11272 inst.instruction |= RdHi << 8;
11273 inst.instruction |= Rn << 16;
11274 inst.instruction |= Rm;
11275
11276 if (RdLo == RdHi)
11277 as_tsktsk (_("rdhi and rdlo must be different"));
11278 }
11279
11280 static void
11281 do_t_nop (void)
11282 {
11283 set_it_insn_type (NEUTRAL_IT_INSN);
11284
11285 if (unified_syntax)
11286 {
11287 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11288 {
11289 inst.instruction = THUMB_OP32 (inst.instruction);
11290 inst.instruction |= inst.operands[0].imm;
11291 }
11292 else
11293 {
11294 /* PR9722: Check for Thumb2 availability before
11295 generating a thumb2 nop instruction. */
11296 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11297 {
11298 inst.instruction = THUMB_OP16 (inst.instruction);
11299 inst.instruction |= inst.operands[0].imm << 4;
11300 }
11301 else
11302 inst.instruction = 0x46c0;
11303 }
11304 }
11305 else
11306 {
11307 constraint (inst.operands[0].present,
11308 _("Thumb does not support NOP with hints"));
11309 inst.instruction = 0x46c0;
11310 }
11311 }
11312
11313 static void
11314 do_t_neg (void)
11315 {
11316 if (unified_syntax)
11317 {
11318 bfd_boolean narrow;
11319
11320 if (THUMB_SETS_FLAGS (inst.instruction))
11321 narrow = !in_it_block ();
11322 else
11323 narrow = in_it_block ();
11324 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11325 narrow = FALSE;
11326 if (inst.size_req == 4)
11327 narrow = FALSE;
11328
11329 if (!narrow)
11330 {
11331 inst.instruction = THUMB_OP32 (inst.instruction);
11332 inst.instruction |= inst.operands[0].reg << 8;
11333 inst.instruction |= inst.operands[1].reg << 16;
11334 }
11335 else
11336 {
11337 inst.instruction = THUMB_OP16 (inst.instruction);
11338 inst.instruction |= inst.operands[0].reg;
11339 inst.instruction |= inst.operands[1].reg << 3;
11340 }
11341 }
11342 else
11343 {
11344 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11345 BAD_HIREG);
11346 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11347
11348 inst.instruction = THUMB_OP16 (inst.instruction);
11349 inst.instruction |= inst.operands[0].reg;
11350 inst.instruction |= inst.operands[1].reg << 3;
11351 }
11352 }
11353
11354 static void
11355 do_t_orn (void)
11356 {
11357 unsigned Rd, Rn;
11358
11359 Rd = inst.operands[0].reg;
11360 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11361
11362 reject_bad_reg (Rd);
11363 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11364 reject_bad_reg (Rn);
11365
11366 inst.instruction |= Rd << 8;
11367 inst.instruction |= Rn << 16;
11368
11369 if (!inst.operands[2].isreg)
11370 {
11371 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11372 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11373 }
11374 else
11375 {
11376 unsigned Rm;
11377
11378 Rm = inst.operands[2].reg;
11379 reject_bad_reg (Rm);
11380
11381 constraint (inst.operands[2].shifted
11382 && inst.operands[2].immisreg,
11383 _("shift must be constant"));
11384 encode_thumb32_shifted_operand (2);
11385 }
11386 }
11387
11388 static void
11389 do_t_pkhbt (void)
11390 {
11391 unsigned Rd, Rn, Rm;
11392
11393 Rd = inst.operands[0].reg;
11394 Rn = inst.operands[1].reg;
11395 Rm = inst.operands[2].reg;
11396
11397 reject_bad_reg (Rd);
11398 reject_bad_reg (Rn);
11399 reject_bad_reg (Rm);
11400
11401 inst.instruction |= Rd << 8;
11402 inst.instruction |= Rn << 16;
11403 inst.instruction |= Rm;
11404 if (inst.operands[3].present)
11405 {
11406 unsigned int val = inst.reloc.exp.X_add_number;
11407 constraint (inst.reloc.exp.X_op != O_constant,
11408 _("expression too complex"));
11409 inst.instruction |= (val & 0x1c) << 10;
11410 inst.instruction |= (val & 0x03) << 6;
11411 }
11412 }
11413
11414 static void
11415 do_t_pkhtb (void)
11416 {
11417 if (!inst.operands[3].present)
11418 {
11419 unsigned Rtmp;
11420
11421 inst.instruction &= ~0x00000020;
11422
11423 /* PR 10168. Swap the Rm and Rn registers. */
11424 Rtmp = inst.operands[1].reg;
11425 inst.operands[1].reg = inst.operands[2].reg;
11426 inst.operands[2].reg = Rtmp;
11427 }
11428 do_t_pkhbt ();
11429 }
11430
11431 static void
11432 do_t_pld (void)
11433 {
11434 if (inst.operands[0].immisreg)
11435 reject_bad_reg (inst.operands[0].imm);
11436
11437 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11438 }
11439
11440 static void
11441 do_t_push_pop (void)
11442 {
11443 unsigned mask;
11444
11445 constraint (inst.operands[0].writeback,
11446 _("push/pop do not support {reglist}^"));
11447 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11448 _("expression too complex"));
11449
11450 mask = inst.operands[0].imm;
11451 if ((mask & ~0xff) == 0)
11452 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11453 else if ((inst.instruction == T_MNEM_push
11454 && (mask & ~0xff) == 1 << REG_LR)
11455 || (inst.instruction == T_MNEM_pop
11456 && (mask & ~0xff) == 1 << REG_PC))
11457 {
11458 inst.instruction = THUMB_OP16 (inst.instruction);
11459 inst.instruction |= THUMB_PP_PC_LR;
11460 inst.instruction |= mask & 0xff;
11461 }
11462 else if (unified_syntax)
11463 {
11464 inst.instruction = THUMB_OP32 (inst.instruction);
11465 encode_thumb2_ldmstm (13, mask, TRUE);
11466 }
11467 else
11468 {
11469 inst.error = _("invalid register list to push/pop instruction");
11470 return;
11471 }
11472 }
11473
11474 static void
11475 do_t_rbit (void)
11476 {
11477 unsigned Rd, Rm;
11478
11479 Rd = inst.operands[0].reg;
11480 Rm = inst.operands[1].reg;
11481
11482 reject_bad_reg (Rd);
11483 reject_bad_reg (Rm);
11484
11485 inst.instruction |= Rd << 8;
11486 inst.instruction |= Rm << 16;
11487 inst.instruction |= Rm;
11488 }
11489
11490 static void
11491 do_t_rev (void)
11492 {
11493 unsigned Rd, Rm;
11494
11495 Rd = inst.operands[0].reg;
11496 Rm = inst.operands[1].reg;
11497
11498 reject_bad_reg (Rd);
11499 reject_bad_reg (Rm);
11500
11501 if (Rd <= 7 && Rm <= 7
11502 && inst.size_req != 4)
11503 {
11504 inst.instruction = THUMB_OP16 (inst.instruction);
11505 inst.instruction |= Rd;
11506 inst.instruction |= Rm << 3;
11507 }
11508 else if (unified_syntax)
11509 {
11510 inst.instruction = THUMB_OP32 (inst.instruction);
11511 inst.instruction |= Rd << 8;
11512 inst.instruction |= Rm << 16;
11513 inst.instruction |= Rm;
11514 }
11515 else
11516 inst.error = BAD_HIREG;
11517 }
11518
11519 static void
11520 do_t_rrx (void)
11521 {
11522 unsigned Rd, Rm;
11523
11524 Rd = inst.operands[0].reg;
11525 Rm = inst.operands[1].reg;
11526
11527 reject_bad_reg (Rd);
11528 reject_bad_reg (Rm);
11529
11530 inst.instruction |= Rd << 8;
11531 inst.instruction |= Rm;
11532 }
11533
11534 static void
11535 do_t_rsb (void)
11536 {
11537 unsigned Rd, Rs;
11538
11539 Rd = inst.operands[0].reg;
11540 Rs = (inst.operands[1].present
11541 ? inst.operands[1].reg /* Rd, Rs, foo */
11542 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11543
11544 reject_bad_reg (Rd);
11545 reject_bad_reg (Rs);
11546 if (inst.operands[2].isreg)
11547 reject_bad_reg (inst.operands[2].reg);
11548
11549 inst.instruction |= Rd << 8;
11550 inst.instruction |= Rs << 16;
11551 if (!inst.operands[2].isreg)
11552 {
11553 bfd_boolean narrow;
11554
11555 if ((inst.instruction & 0x00100000) != 0)
11556 narrow = !in_it_block ();
11557 else
11558 narrow = in_it_block ();
11559
11560 if (Rd > 7 || Rs > 7)
11561 narrow = FALSE;
11562
11563 if (inst.size_req == 4 || !unified_syntax)
11564 narrow = FALSE;
11565
11566 if (inst.reloc.exp.X_op != O_constant
11567 || inst.reloc.exp.X_add_number != 0)
11568 narrow = FALSE;
11569
11570 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11571 relaxation, but it doesn't seem worth the hassle. */
11572 if (narrow)
11573 {
11574 inst.reloc.type = BFD_RELOC_UNUSED;
11575 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11576 inst.instruction |= Rs << 3;
11577 inst.instruction |= Rd;
11578 }
11579 else
11580 {
11581 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11582 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11583 }
11584 }
11585 else
11586 encode_thumb32_shifted_operand (2);
11587 }
11588
11589 static void
11590 do_t_setend (void)
11591 {
11592 set_it_insn_type (OUTSIDE_IT_INSN);
11593 if (inst.operands[0].imm)
11594 inst.instruction |= 0x8;
11595 }
11596
11597 static void
11598 do_t_shift (void)
11599 {
11600 if (!inst.operands[1].present)
11601 inst.operands[1].reg = inst.operands[0].reg;
11602
11603 if (unified_syntax)
11604 {
11605 bfd_boolean narrow;
11606 int shift_kind;
11607
11608 switch (inst.instruction)
11609 {
11610 case T_MNEM_asr:
11611 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11612 case T_MNEM_lsl:
11613 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11614 case T_MNEM_lsr:
11615 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11616 case T_MNEM_ror:
11617 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11618 default: abort ();
11619 }
11620
11621 if (THUMB_SETS_FLAGS (inst.instruction))
11622 narrow = !in_it_block ();
11623 else
11624 narrow = in_it_block ();
11625 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11626 narrow = FALSE;
11627 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11628 narrow = FALSE;
11629 if (inst.operands[2].isreg
11630 && (inst.operands[1].reg != inst.operands[0].reg
11631 || inst.operands[2].reg > 7))
11632 narrow = FALSE;
11633 if (inst.size_req == 4)
11634 narrow = FALSE;
11635
11636 reject_bad_reg (inst.operands[0].reg);
11637 reject_bad_reg (inst.operands[1].reg);
11638
11639 if (!narrow)
11640 {
11641 if (inst.operands[2].isreg)
11642 {
11643 reject_bad_reg (inst.operands[2].reg);
11644 inst.instruction = THUMB_OP32 (inst.instruction);
11645 inst.instruction |= inst.operands[0].reg << 8;
11646 inst.instruction |= inst.operands[1].reg << 16;
11647 inst.instruction |= inst.operands[2].reg;
11648
11649 /* PR 12854: Error on extraneous shifts. */
11650 constraint (inst.operands[2].shifted,
11651 _("extraneous shift as part of operand to shift insn"));
11652 }
11653 else
11654 {
11655 inst.operands[1].shifted = 1;
11656 inst.operands[1].shift_kind = shift_kind;
11657 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11658 ? T_MNEM_movs : T_MNEM_mov);
11659 inst.instruction |= inst.operands[0].reg << 8;
11660 encode_thumb32_shifted_operand (1);
11661 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11662 inst.reloc.type = BFD_RELOC_UNUSED;
11663 }
11664 }
11665 else
11666 {
11667 if (inst.operands[2].isreg)
11668 {
11669 switch (shift_kind)
11670 {
11671 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11672 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11673 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11674 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11675 default: abort ();
11676 }
11677
11678 inst.instruction |= inst.operands[0].reg;
11679 inst.instruction |= inst.operands[2].reg << 3;
11680
11681 /* PR 12854: Error on extraneous shifts. */
11682 constraint (inst.operands[2].shifted,
11683 _("extraneous shift as part of operand to shift insn"));
11684 }
11685 else
11686 {
11687 switch (shift_kind)
11688 {
11689 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11690 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11691 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11692 default: abort ();
11693 }
11694 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11695 inst.instruction |= inst.operands[0].reg;
11696 inst.instruction |= inst.operands[1].reg << 3;
11697 }
11698 }
11699 }
11700 else
11701 {
11702 constraint (inst.operands[0].reg > 7
11703 || inst.operands[1].reg > 7, BAD_HIREG);
11704 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11705
11706 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11707 {
11708 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11709 constraint (inst.operands[0].reg != inst.operands[1].reg,
11710 _("source1 and dest must be same register"));
11711
11712 switch (inst.instruction)
11713 {
11714 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11715 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11716 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11717 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11718 default: abort ();
11719 }
11720
11721 inst.instruction |= inst.operands[0].reg;
11722 inst.instruction |= inst.operands[2].reg << 3;
11723
11724 /* PR 12854: Error on extraneous shifts. */
11725 constraint (inst.operands[2].shifted,
11726 _("extraneous shift as part of operand to shift insn"));
11727 }
11728 else
11729 {
11730 switch (inst.instruction)
11731 {
11732 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11733 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11734 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11735 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11736 default: abort ();
11737 }
11738 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11739 inst.instruction |= inst.operands[0].reg;
11740 inst.instruction |= inst.operands[1].reg << 3;
11741 }
11742 }
11743 }
11744
11745 static void
11746 do_t_simd (void)
11747 {
11748 unsigned Rd, Rn, Rm;
11749
11750 Rd = inst.operands[0].reg;
11751 Rn = inst.operands[1].reg;
11752 Rm = inst.operands[2].reg;
11753
11754 reject_bad_reg (Rd);
11755 reject_bad_reg (Rn);
11756 reject_bad_reg (Rm);
11757
11758 inst.instruction |= Rd << 8;
11759 inst.instruction |= Rn << 16;
11760 inst.instruction |= Rm;
11761 }
11762
11763 static void
11764 do_t_simd2 (void)
11765 {
11766 unsigned Rd, Rn, Rm;
11767
11768 Rd = inst.operands[0].reg;
11769 Rm = inst.operands[1].reg;
11770 Rn = inst.operands[2].reg;
11771
11772 reject_bad_reg (Rd);
11773 reject_bad_reg (Rn);
11774 reject_bad_reg (Rm);
11775
11776 inst.instruction |= Rd << 8;
11777 inst.instruction |= Rn << 16;
11778 inst.instruction |= Rm;
11779 }
11780
11781 static void
11782 do_t_smc (void)
11783 {
11784 unsigned int value = inst.reloc.exp.X_add_number;
11785 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11786 _("SMC is not permitted on this architecture"));
11787 constraint (inst.reloc.exp.X_op != O_constant,
11788 _("expression too complex"));
11789 inst.reloc.type = BFD_RELOC_UNUSED;
11790 inst.instruction |= (value & 0xf000) >> 12;
11791 inst.instruction |= (value & 0x0ff0);
11792 inst.instruction |= (value & 0x000f) << 16;
11793 }
11794
11795 static void
11796 do_t_hvc (void)
11797 {
11798 unsigned int value = inst.reloc.exp.X_add_number;
11799
11800 inst.reloc.type = BFD_RELOC_UNUSED;
11801 inst.instruction |= (value & 0x0fff);
11802 inst.instruction |= (value & 0xf000) << 4;
11803 }
11804
11805 static void
11806 do_t_ssat_usat (int bias)
11807 {
11808 unsigned Rd, Rn;
11809
11810 Rd = inst.operands[0].reg;
11811 Rn = inst.operands[2].reg;
11812
11813 reject_bad_reg (Rd);
11814 reject_bad_reg (Rn);
11815
11816 inst.instruction |= Rd << 8;
11817 inst.instruction |= inst.operands[1].imm - bias;
11818 inst.instruction |= Rn << 16;
11819
11820 if (inst.operands[3].present)
11821 {
11822 offsetT shift_amount = inst.reloc.exp.X_add_number;
11823
11824 inst.reloc.type = BFD_RELOC_UNUSED;
11825
11826 constraint (inst.reloc.exp.X_op != O_constant,
11827 _("expression too complex"));
11828
11829 if (shift_amount != 0)
11830 {
11831 constraint (shift_amount > 31,
11832 _("shift expression is too large"));
11833
11834 if (inst.operands[3].shift_kind == SHIFT_ASR)
11835 inst.instruction |= 0x00200000; /* sh bit. */
11836
11837 inst.instruction |= (shift_amount & 0x1c) << 10;
11838 inst.instruction |= (shift_amount & 0x03) << 6;
11839 }
11840 }
11841 }
11842
11843 static void
11844 do_t_ssat (void)
11845 {
11846 do_t_ssat_usat (1);
11847 }
11848
11849 static void
11850 do_t_ssat16 (void)
11851 {
11852 unsigned Rd, Rn;
11853
11854 Rd = inst.operands[0].reg;
11855 Rn = inst.operands[2].reg;
11856
11857 reject_bad_reg (Rd);
11858 reject_bad_reg (Rn);
11859
11860 inst.instruction |= Rd << 8;
11861 inst.instruction |= inst.operands[1].imm - 1;
11862 inst.instruction |= Rn << 16;
11863 }
11864
11865 static void
11866 do_t_strex (void)
11867 {
11868 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11869 || inst.operands[2].postind || inst.operands[2].writeback
11870 || inst.operands[2].immisreg || inst.operands[2].shifted
11871 || inst.operands[2].negative,
11872 BAD_ADDR_MODE);
11873
11874 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11875
11876 inst.instruction |= inst.operands[0].reg << 8;
11877 inst.instruction |= inst.operands[1].reg << 12;
11878 inst.instruction |= inst.operands[2].reg << 16;
11879 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11880 }
11881
11882 static void
11883 do_t_strexd (void)
11884 {
11885 if (!inst.operands[2].present)
11886 inst.operands[2].reg = inst.operands[1].reg + 1;
11887
11888 constraint (inst.operands[0].reg == inst.operands[1].reg
11889 || inst.operands[0].reg == inst.operands[2].reg
11890 || inst.operands[0].reg == inst.operands[3].reg,
11891 BAD_OVERLAP);
11892
11893 inst.instruction |= inst.operands[0].reg;
11894 inst.instruction |= inst.operands[1].reg << 12;
11895 inst.instruction |= inst.operands[2].reg << 8;
11896 inst.instruction |= inst.operands[3].reg << 16;
11897 }
11898
11899 static void
11900 do_t_sxtah (void)
11901 {
11902 unsigned Rd, Rn, Rm;
11903
11904 Rd = inst.operands[0].reg;
11905 Rn = inst.operands[1].reg;
11906 Rm = inst.operands[2].reg;
11907
11908 reject_bad_reg (Rd);
11909 reject_bad_reg (Rn);
11910 reject_bad_reg (Rm);
11911
11912 inst.instruction |= Rd << 8;
11913 inst.instruction |= Rn << 16;
11914 inst.instruction |= Rm;
11915 inst.instruction |= inst.operands[3].imm << 4;
11916 }
11917
11918 static void
11919 do_t_sxth (void)
11920 {
11921 unsigned Rd, Rm;
11922
11923 Rd = inst.operands[0].reg;
11924 Rm = inst.operands[1].reg;
11925
11926 reject_bad_reg (Rd);
11927 reject_bad_reg (Rm);
11928
11929 if (inst.instruction <= 0xffff
11930 && inst.size_req != 4
11931 && Rd <= 7 && Rm <= 7
11932 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11933 {
11934 inst.instruction = THUMB_OP16 (inst.instruction);
11935 inst.instruction |= Rd;
11936 inst.instruction |= Rm << 3;
11937 }
11938 else if (unified_syntax)
11939 {
11940 if (inst.instruction <= 0xffff)
11941 inst.instruction = THUMB_OP32 (inst.instruction);
11942 inst.instruction |= Rd << 8;
11943 inst.instruction |= Rm;
11944 inst.instruction |= inst.operands[2].imm << 4;
11945 }
11946 else
11947 {
11948 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11949 _("Thumb encoding does not support rotation"));
11950 constraint (1, BAD_HIREG);
11951 }
11952 }
11953
11954 static void
11955 do_t_swi (void)
11956 {
11957 /* We have to do the following check manually as ARM_EXT_OS only applies
11958 to ARM_EXT_V6M. */
11959 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11960 {
11961 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
11962 /* This only applies to the v6m howver, not later architectures. */
11963 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
11964 as_bad (_("SVC is not permitted on this architecture"));
11965 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11966 }
11967
11968 inst.reloc.type = BFD_RELOC_ARM_SWI;
11969 }
11970
11971 static void
11972 do_t_tb (void)
11973 {
11974 unsigned Rn, Rm;
11975 int half;
11976
11977 half = (inst.instruction & 0x10) != 0;
11978 set_it_insn_type_last ();
11979 constraint (inst.operands[0].immisreg,
11980 _("instruction requires register index"));
11981
11982 Rn = inst.operands[0].reg;
11983 Rm = inst.operands[0].imm;
11984
11985 constraint (Rn == REG_SP, BAD_SP);
11986 reject_bad_reg (Rm);
11987
11988 constraint (!half && inst.operands[0].shifted,
11989 _("instruction does not allow shifted index"));
11990 inst.instruction |= (Rn << 16) | Rm;
11991 }
11992
11993 static void
11994 do_t_usat (void)
11995 {
11996 do_t_ssat_usat (0);
11997 }
11998
11999 static void
12000 do_t_usat16 (void)
12001 {
12002 unsigned Rd, Rn;
12003
12004 Rd = inst.operands[0].reg;
12005 Rn = inst.operands[2].reg;
12006
12007 reject_bad_reg (Rd);
12008 reject_bad_reg (Rn);
12009
12010 inst.instruction |= Rd << 8;
12011 inst.instruction |= inst.operands[1].imm;
12012 inst.instruction |= Rn << 16;
12013 }
12014
12015 /* Neon instruction encoder helpers. */
12016
12017 /* Encodings for the different types for various Neon opcodes. */
12018
12019 /* An "invalid" code for the following tables. */
12020 #define N_INV -1u
12021
12022 struct neon_tab_entry
12023 {
12024 unsigned integer;
12025 unsigned float_or_poly;
12026 unsigned scalar_or_imm;
12027 };
12028
12029 /* Map overloaded Neon opcodes to their respective encodings. */
12030 #define NEON_ENC_TAB \
12031 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12032 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12033 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12034 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12035 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12036 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12037 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12038 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12039 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12040 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12041 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12042 /* Register variants of the following two instructions are encoded as
12043 vcge / vcgt with the operands reversed. */ \
12044 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12045 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12046 X(vfma, N_INV, 0x0000c10, N_INV), \
12047 X(vfms, N_INV, 0x0200c10, N_INV), \
12048 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12049 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12050 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12051 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12052 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12053 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12054 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12055 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12056 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12057 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12058 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12059 X(vshl, 0x0000400, N_INV, 0x0800510), \
12060 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12061 X(vand, 0x0000110, N_INV, 0x0800030), \
12062 X(vbic, 0x0100110, N_INV, 0x0800030), \
12063 X(veor, 0x1000110, N_INV, N_INV), \
12064 X(vorn, 0x0300110, N_INV, 0x0800010), \
12065 X(vorr, 0x0200110, N_INV, 0x0800010), \
12066 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12067 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12068 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12069 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12070 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12071 X(vst1, 0x0000000, 0x0800000, N_INV), \
12072 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12073 X(vst2, 0x0000100, 0x0800100, N_INV), \
12074 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12075 X(vst3, 0x0000200, 0x0800200, N_INV), \
12076 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12077 X(vst4, 0x0000300, 0x0800300, N_INV), \
12078 X(vmovn, 0x1b20200, N_INV, N_INV), \
12079 X(vtrn, 0x1b20080, N_INV, N_INV), \
12080 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12081 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12082 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12083 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12084 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12085 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12086 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12087 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12088 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12089 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12090 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
12091
12092 enum neon_opc
12093 {
12094 #define X(OPC,I,F,S) N_MNEM_##OPC
12095 NEON_ENC_TAB
12096 #undef X
12097 };
12098
12099 static const struct neon_tab_entry neon_enc_tab[] =
12100 {
12101 #define X(OPC,I,F,S) { (I), (F), (S) }
12102 NEON_ENC_TAB
12103 #undef X
12104 };
12105
12106 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12107 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12108 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12109 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12110 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12111 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12112 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12113 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12114 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12115 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12116 #define NEON_ENC_SINGLE_(X) \
12117 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12118 #define NEON_ENC_DOUBLE_(X) \
12119 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12120
12121 #define NEON_ENCODE(type, inst) \
12122 do \
12123 { \
12124 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12125 inst.is_neon = 1; \
12126 } \
12127 while (0)
12128
12129 #define check_neon_suffixes \
12130 do \
12131 { \
12132 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12133 { \
12134 as_bad (_("invalid neon suffix for non neon instruction")); \
12135 return; \
12136 } \
12137 } \
12138 while (0)
12139
12140 /* Define shapes for instruction operands. The following mnemonic characters
12141 are used in this table:
12142
12143 F - VFP S<n> register
12144 D - Neon D<n> register
12145 Q - Neon Q<n> register
12146 I - Immediate
12147 S - Scalar
12148 R - ARM register
12149 L - D<n> register list
12150
12151 This table is used to generate various data:
12152 - enumerations of the form NS_DDR to be used as arguments to
12153 neon_select_shape.
12154 - a table classifying shapes into single, double, quad, mixed.
12155 - a table used to drive neon_select_shape. */
12156
12157 #define NEON_SHAPE_DEF \
12158 X(3, (D, D, D), DOUBLE), \
12159 X(3, (Q, Q, Q), QUAD), \
12160 X(3, (D, D, I), DOUBLE), \
12161 X(3, (Q, Q, I), QUAD), \
12162 X(3, (D, D, S), DOUBLE), \
12163 X(3, (Q, Q, S), QUAD), \
12164 X(2, (D, D), DOUBLE), \
12165 X(2, (Q, Q), QUAD), \
12166 X(2, (D, S), DOUBLE), \
12167 X(2, (Q, S), QUAD), \
12168 X(2, (D, R), DOUBLE), \
12169 X(2, (Q, R), QUAD), \
12170 X(2, (D, I), DOUBLE), \
12171 X(2, (Q, I), QUAD), \
12172 X(3, (D, L, D), DOUBLE), \
12173 X(2, (D, Q), MIXED), \
12174 X(2, (Q, D), MIXED), \
12175 X(3, (D, Q, I), MIXED), \
12176 X(3, (Q, D, I), MIXED), \
12177 X(3, (Q, D, D), MIXED), \
12178 X(3, (D, Q, Q), MIXED), \
12179 X(3, (Q, Q, D), MIXED), \
12180 X(3, (Q, D, S), MIXED), \
12181 X(3, (D, Q, S), MIXED), \
12182 X(4, (D, D, D, I), DOUBLE), \
12183 X(4, (Q, Q, Q, I), QUAD), \
12184 X(2, (F, F), SINGLE), \
12185 X(3, (F, F, F), SINGLE), \
12186 X(2, (F, I), SINGLE), \
12187 X(2, (F, D), MIXED), \
12188 X(2, (D, F), MIXED), \
12189 X(3, (F, F, I), MIXED), \
12190 X(4, (R, R, F, F), SINGLE), \
12191 X(4, (F, F, R, R), SINGLE), \
12192 X(3, (D, R, R), DOUBLE), \
12193 X(3, (R, R, D), DOUBLE), \
12194 X(2, (S, R), SINGLE), \
12195 X(2, (R, S), SINGLE), \
12196 X(2, (F, R), SINGLE), \
12197 X(2, (R, F), SINGLE)
12198
12199 #define S2(A,B) NS_##A##B
12200 #define S3(A,B,C) NS_##A##B##C
12201 #define S4(A,B,C,D) NS_##A##B##C##D
12202
12203 #define X(N, L, C) S##N L
12204
12205 enum neon_shape
12206 {
12207 NEON_SHAPE_DEF,
12208 NS_NULL
12209 };
12210
12211 #undef X
12212 #undef S2
12213 #undef S3
12214 #undef S4
12215
12216 enum neon_shape_class
12217 {
12218 SC_SINGLE,
12219 SC_DOUBLE,
12220 SC_QUAD,
12221 SC_MIXED
12222 };
12223
12224 #define X(N, L, C) SC_##C
12225
12226 static enum neon_shape_class neon_shape_class[] =
12227 {
12228 NEON_SHAPE_DEF
12229 };
12230
12231 #undef X
12232
12233 enum neon_shape_el
12234 {
12235 SE_F,
12236 SE_D,
12237 SE_Q,
12238 SE_I,
12239 SE_S,
12240 SE_R,
12241 SE_L
12242 };
12243
12244 /* Register widths of above. */
12245 static unsigned neon_shape_el_size[] =
12246 {
12247 32,
12248 64,
12249 128,
12250 0,
12251 32,
12252 32,
12253 0
12254 };
12255
12256 struct neon_shape_info
12257 {
12258 unsigned els;
12259 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12260 };
12261
12262 #define S2(A,B) { SE_##A, SE_##B }
12263 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12264 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12265
12266 #define X(N, L, C) { N, S##N L }
12267
12268 static struct neon_shape_info neon_shape_tab[] =
12269 {
12270 NEON_SHAPE_DEF
12271 };
12272
12273 #undef X
12274 #undef S2
12275 #undef S3
12276 #undef S4
12277
12278 /* Bit masks used in type checking given instructions.
12279 'N_EQK' means the type must be the same as (or based on in some way) the key
12280 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12281 set, various other bits can be set as well in order to modify the meaning of
12282 the type constraint. */
12283
12284 enum neon_type_mask
12285 {
12286 N_S8 = 0x0000001,
12287 N_S16 = 0x0000002,
12288 N_S32 = 0x0000004,
12289 N_S64 = 0x0000008,
12290 N_U8 = 0x0000010,
12291 N_U16 = 0x0000020,
12292 N_U32 = 0x0000040,
12293 N_U64 = 0x0000080,
12294 N_I8 = 0x0000100,
12295 N_I16 = 0x0000200,
12296 N_I32 = 0x0000400,
12297 N_I64 = 0x0000800,
12298 N_8 = 0x0001000,
12299 N_16 = 0x0002000,
12300 N_32 = 0x0004000,
12301 N_64 = 0x0008000,
12302 N_P8 = 0x0010000,
12303 N_P16 = 0x0020000,
12304 N_F16 = 0x0040000,
12305 N_F32 = 0x0080000,
12306 N_F64 = 0x0100000,
12307 N_KEY = 0x1000000, /* Key element (main type specifier). */
12308 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12309 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12310 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12311 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12312 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12313 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12314 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12315 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12316 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12317 N_UTYP = 0,
12318 N_MAX_NONSPECIAL = N_F64
12319 };
12320
12321 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12322
12323 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12324 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12325 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12326 #define N_SUF_32 (N_SU_32 | N_F32)
12327 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12328 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12329
12330 /* Pass this as the first type argument to neon_check_type to ignore types
12331 altogether. */
12332 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12333
12334 /* Select a "shape" for the current instruction (describing register types or
12335 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12336 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12337 function of operand parsing, so this function doesn't need to be called.
12338 Shapes should be listed in order of decreasing length. */
12339
12340 static enum neon_shape
12341 neon_select_shape (enum neon_shape shape, ...)
12342 {
12343 va_list ap;
12344 enum neon_shape first_shape = shape;
12345
12346 /* Fix missing optional operands. FIXME: we don't know at this point how
12347 many arguments we should have, so this makes the assumption that we have
12348 > 1. This is true of all current Neon opcodes, I think, but may not be
12349 true in the future. */
12350 if (!inst.operands[1].present)
12351 inst.operands[1] = inst.operands[0];
12352
12353 va_start (ap, shape);
12354
12355 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12356 {
12357 unsigned j;
12358 int matches = 1;
12359
12360 for (j = 0; j < neon_shape_tab[shape].els; j++)
12361 {
12362 if (!inst.operands[j].present)
12363 {
12364 matches = 0;
12365 break;
12366 }
12367
12368 switch (neon_shape_tab[shape].el[j])
12369 {
12370 case SE_F:
12371 if (!(inst.operands[j].isreg
12372 && inst.operands[j].isvec
12373 && inst.operands[j].issingle
12374 && !inst.operands[j].isquad))
12375 matches = 0;
12376 break;
12377
12378 case SE_D:
12379 if (!(inst.operands[j].isreg
12380 && inst.operands[j].isvec
12381 && !inst.operands[j].isquad
12382 && !inst.operands[j].issingle))
12383 matches = 0;
12384 break;
12385
12386 case SE_R:
12387 if (!(inst.operands[j].isreg
12388 && !inst.operands[j].isvec))
12389 matches = 0;
12390 break;
12391
12392 case SE_Q:
12393 if (!(inst.operands[j].isreg
12394 && inst.operands[j].isvec
12395 && inst.operands[j].isquad
12396 && !inst.operands[j].issingle))
12397 matches = 0;
12398 break;
12399
12400 case SE_I:
12401 if (!(!inst.operands[j].isreg
12402 && !inst.operands[j].isscalar))
12403 matches = 0;
12404 break;
12405
12406 case SE_S:
12407 if (!(!inst.operands[j].isreg
12408 && inst.operands[j].isscalar))
12409 matches = 0;
12410 break;
12411
12412 case SE_L:
12413 break;
12414 }
12415 if (!matches)
12416 break;
12417 }
12418 if (matches)
12419 break;
12420 }
12421
12422 va_end (ap);
12423
12424 if (shape == NS_NULL && first_shape != NS_NULL)
12425 first_error (_("invalid instruction shape"));
12426
12427 return shape;
12428 }
12429
12430 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12431 means the Q bit should be set). */
12432
12433 static int
12434 neon_quad (enum neon_shape shape)
12435 {
12436 return neon_shape_class[shape] == SC_QUAD;
12437 }
12438
12439 static void
12440 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12441 unsigned *g_size)
12442 {
12443 /* Allow modification to be made to types which are constrained to be
12444 based on the key element, based on bits set alongside N_EQK. */
12445 if ((typebits & N_EQK) != 0)
12446 {
12447 if ((typebits & N_HLF) != 0)
12448 *g_size /= 2;
12449 else if ((typebits & N_DBL) != 0)
12450 *g_size *= 2;
12451 if ((typebits & N_SGN) != 0)
12452 *g_type = NT_signed;
12453 else if ((typebits & N_UNS) != 0)
12454 *g_type = NT_unsigned;
12455 else if ((typebits & N_INT) != 0)
12456 *g_type = NT_integer;
12457 else if ((typebits & N_FLT) != 0)
12458 *g_type = NT_float;
12459 else if ((typebits & N_SIZ) != 0)
12460 *g_type = NT_untyped;
12461 }
12462 }
12463
12464 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12465 operand type, i.e. the single type specified in a Neon instruction when it
12466 is the only one given. */
12467
12468 static struct neon_type_el
12469 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12470 {
12471 struct neon_type_el dest = *key;
12472
12473 gas_assert ((thisarg & N_EQK) != 0);
12474
12475 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12476
12477 return dest;
12478 }
12479
12480 /* Convert Neon type and size into compact bitmask representation. */
12481
12482 static enum neon_type_mask
12483 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12484 {
12485 switch (type)
12486 {
12487 case NT_untyped:
12488 switch (size)
12489 {
12490 case 8: return N_8;
12491 case 16: return N_16;
12492 case 32: return N_32;
12493 case 64: return N_64;
12494 default: ;
12495 }
12496 break;
12497
12498 case NT_integer:
12499 switch (size)
12500 {
12501 case 8: return N_I8;
12502 case 16: return N_I16;
12503 case 32: return N_I32;
12504 case 64: return N_I64;
12505 default: ;
12506 }
12507 break;
12508
12509 case NT_float:
12510 switch (size)
12511 {
12512 case 16: return N_F16;
12513 case 32: return N_F32;
12514 case 64: return N_F64;
12515 default: ;
12516 }
12517 break;
12518
12519 case NT_poly:
12520 switch (size)
12521 {
12522 case 8: return N_P8;
12523 case 16: return N_P16;
12524 default: ;
12525 }
12526 break;
12527
12528 case NT_signed:
12529 switch (size)
12530 {
12531 case 8: return N_S8;
12532 case 16: return N_S16;
12533 case 32: return N_S32;
12534 case 64: return N_S64;
12535 default: ;
12536 }
12537 break;
12538
12539 case NT_unsigned:
12540 switch (size)
12541 {
12542 case 8: return N_U8;
12543 case 16: return N_U16;
12544 case 32: return N_U32;
12545 case 64: return N_U64;
12546 default: ;
12547 }
12548 break;
12549
12550 default: ;
12551 }
12552
12553 return N_UTYP;
12554 }
12555
12556 /* Convert compact Neon bitmask type representation to a type and size. Only
12557 handles the case where a single bit is set in the mask. */
12558
12559 static int
12560 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12561 enum neon_type_mask mask)
12562 {
12563 if ((mask & N_EQK) != 0)
12564 return FAIL;
12565
12566 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12567 *size = 8;
12568 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12569 *size = 16;
12570 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12571 *size = 32;
12572 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12573 *size = 64;
12574 else
12575 return FAIL;
12576
12577 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12578 *type = NT_signed;
12579 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12580 *type = NT_unsigned;
12581 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12582 *type = NT_integer;
12583 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12584 *type = NT_untyped;
12585 else if ((mask & (N_P8 | N_P16)) != 0)
12586 *type = NT_poly;
12587 else if ((mask & (N_F32 | N_F64)) != 0)
12588 *type = NT_float;
12589 else
12590 return FAIL;
12591
12592 return SUCCESS;
12593 }
12594
12595 /* Modify a bitmask of allowed types. This is only needed for type
12596 relaxation. */
12597
12598 static unsigned
12599 modify_types_allowed (unsigned allowed, unsigned mods)
12600 {
12601 unsigned size;
12602 enum neon_el_type type;
12603 unsigned destmask;
12604 int i;
12605
12606 destmask = 0;
12607
12608 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12609 {
12610 if (el_type_of_type_chk (&type, &size,
12611 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12612 {
12613 neon_modify_type_size (mods, &type, &size);
12614 destmask |= type_chk_of_el_type (type, size);
12615 }
12616 }
12617
12618 return destmask;
12619 }
12620
12621 /* Check type and return type classification.
12622 The manual states (paraphrase): If one datatype is given, it indicates the
12623 type given in:
12624 - the second operand, if there is one
12625 - the operand, if there is no second operand
12626 - the result, if there are no operands.
12627 This isn't quite good enough though, so we use a concept of a "key" datatype
12628 which is set on a per-instruction basis, which is the one which matters when
12629 only one data type is written.
12630 Note: this function has side-effects (e.g. filling in missing operands). All
12631 Neon instructions should call it before performing bit encoding. */
12632
12633 static struct neon_type_el
12634 neon_check_type (unsigned els, enum neon_shape ns, ...)
12635 {
12636 va_list ap;
12637 unsigned i, pass, key_el = 0;
12638 unsigned types[NEON_MAX_TYPE_ELS];
12639 enum neon_el_type k_type = NT_invtype;
12640 unsigned k_size = -1u;
12641 struct neon_type_el badtype = {NT_invtype, -1};
12642 unsigned key_allowed = 0;
12643
12644 /* Optional registers in Neon instructions are always (not) in operand 1.
12645 Fill in the missing operand here, if it was omitted. */
12646 if (els > 1 && !inst.operands[1].present)
12647 inst.operands[1] = inst.operands[0];
12648
12649 /* Suck up all the varargs. */
12650 va_start (ap, ns);
12651 for (i = 0; i < els; i++)
12652 {
12653 unsigned thisarg = va_arg (ap, unsigned);
12654 if (thisarg == N_IGNORE_TYPE)
12655 {
12656 va_end (ap);
12657 return badtype;
12658 }
12659 types[i] = thisarg;
12660 if ((thisarg & N_KEY) != 0)
12661 key_el = i;
12662 }
12663 va_end (ap);
12664
12665 if (inst.vectype.elems > 0)
12666 for (i = 0; i < els; i++)
12667 if (inst.operands[i].vectype.type != NT_invtype)
12668 {
12669 first_error (_("types specified in both the mnemonic and operands"));
12670 return badtype;
12671 }
12672
12673 /* Duplicate inst.vectype elements here as necessary.
12674 FIXME: No idea if this is exactly the same as the ARM assembler,
12675 particularly when an insn takes one register and one non-register
12676 operand. */
12677 if (inst.vectype.elems == 1 && els > 1)
12678 {
12679 unsigned j;
12680 inst.vectype.elems = els;
12681 inst.vectype.el[key_el] = inst.vectype.el[0];
12682 for (j = 0; j < els; j++)
12683 if (j != key_el)
12684 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12685 types[j]);
12686 }
12687 else if (inst.vectype.elems == 0 && els > 0)
12688 {
12689 unsigned j;
12690 /* No types were given after the mnemonic, so look for types specified
12691 after each operand. We allow some flexibility here; as long as the
12692 "key" operand has a type, we can infer the others. */
12693 for (j = 0; j < els; j++)
12694 if (inst.operands[j].vectype.type != NT_invtype)
12695 inst.vectype.el[j] = inst.operands[j].vectype;
12696
12697 if (inst.operands[key_el].vectype.type != NT_invtype)
12698 {
12699 for (j = 0; j < els; j++)
12700 if (inst.operands[j].vectype.type == NT_invtype)
12701 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12702 types[j]);
12703 }
12704 else
12705 {
12706 first_error (_("operand types can't be inferred"));
12707 return badtype;
12708 }
12709 }
12710 else if (inst.vectype.elems != els)
12711 {
12712 first_error (_("type specifier has the wrong number of parts"));
12713 return badtype;
12714 }
12715
12716 for (pass = 0; pass < 2; pass++)
12717 {
12718 for (i = 0; i < els; i++)
12719 {
12720 unsigned thisarg = types[i];
12721 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12722 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12723 enum neon_el_type g_type = inst.vectype.el[i].type;
12724 unsigned g_size = inst.vectype.el[i].size;
12725
12726 /* Decay more-specific signed & unsigned types to sign-insensitive
12727 integer types if sign-specific variants are unavailable. */
12728 if ((g_type == NT_signed || g_type == NT_unsigned)
12729 && (types_allowed & N_SU_ALL) == 0)
12730 g_type = NT_integer;
12731
12732 /* If only untyped args are allowed, decay any more specific types to
12733 them. Some instructions only care about signs for some element
12734 sizes, so handle that properly. */
12735 if ((g_size == 8 && (types_allowed & N_8) != 0)
12736 || (g_size == 16 && (types_allowed & N_16) != 0)
12737 || (g_size == 32 && (types_allowed & N_32) != 0)
12738 || (g_size == 64 && (types_allowed & N_64) != 0))
12739 g_type = NT_untyped;
12740
12741 if (pass == 0)
12742 {
12743 if ((thisarg & N_KEY) != 0)
12744 {
12745 k_type = g_type;
12746 k_size = g_size;
12747 key_allowed = thisarg & ~N_KEY;
12748 }
12749 }
12750 else
12751 {
12752 if ((thisarg & N_VFP) != 0)
12753 {
12754 enum neon_shape_el regshape;
12755 unsigned regwidth, match;
12756
12757 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12758 if (ns == NS_NULL)
12759 {
12760 first_error (_("invalid instruction shape"));
12761 return badtype;
12762 }
12763 regshape = neon_shape_tab[ns].el[i];
12764 regwidth = neon_shape_el_size[regshape];
12765
12766 /* In VFP mode, operands must match register widths. If we
12767 have a key operand, use its width, else use the width of
12768 the current operand. */
12769 if (k_size != -1u)
12770 match = k_size;
12771 else
12772 match = g_size;
12773
12774 if (regwidth != match)
12775 {
12776 first_error (_("operand size must match register width"));
12777 return badtype;
12778 }
12779 }
12780
12781 if ((thisarg & N_EQK) == 0)
12782 {
12783 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12784
12785 if ((given_type & types_allowed) == 0)
12786 {
12787 first_error (_("bad type in Neon instruction"));
12788 return badtype;
12789 }
12790 }
12791 else
12792 {
12793 enum neon_el_type mod_k_type = k_type;
12794 unsigned mod_k_size = k_size;
12795 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12796 if (g_type != mod_k_type || g_size != mod_k_size)
12797 {
12798 first_error (_("inconsistent types in Neon instruction"));
12799 return badtype;
12800 }
12801 }
12802 }
12803 }
12804 }
12805
12806 return inst.vectype.el[key_el];
12807 }
12808
12809 /* Neon-style VFP instruction forwarding. */
12810
12811 /* Thumb VFP instructions have 0xE in the condition field. */
12812
12813 static void
12814 do_vfp_cond_or_thumb (void)
12815 {
12816 inst.is_neon = 1;
12817
12818 if (thumb_mode)
12819 inst.instruction |= 0xe0000000;
12820 else
12821 inst.instruction |= inst.cond << 28;
12822 }
12823
12824 /* Look up and encode a simple mnemonic, for use as a helper function for the
12825 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12826 etc. It is assumed that operand parsing has already been done, and that the
12827 operands are in the form expected by the given opcode (this isn't necessarily
12828 the same as the form in which they were parsed, hence some massaging must
12829 take place before this function is called).
12830 Checks current arch version against that in the looked-up opcode. */
12831
12832 static void
12833 do_vfp_nsyn_opcode (const char *opname)
12834 {
12835 const struct asm_opcode *opcode;
12836
12837 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12838
12839 if (!opcode)
12840 abort ();
12841
12842 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12843 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12844 _(BAD_FPU));
12845
12846 inst.is_neon = 1;
12847
12848 if (thumb_mode)
12849 {
12850 inst.instruction = opcode->tvalue;
12851 opcode->tencode ();
12852 }
12853 else
12854 {
12855 inst.instruction = (inst.cond << 28) | opcode->avalue;
12856 opcode->aencode ();
12857 }
12858 }
12859
12860 static void
12861 do_vfp_nsyn_add_sub (enum neon_shape rs)
12862 {
12863 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12864
12865 if (rs == NS_FFF)
12866 {
12867 if (is_add)
12868 do_vfp_nsyn_opcode ("fadds");
12869 else
12870 do_vfp_nsyn_opcode ("fsubs");
12871 }
12872 else
12873 {
12874 if (is_add)
12875 do_vfp_nsyn_opcode ("faddd");
12876 else
12877 do_vfp_nsyn_opcode ("fsubd");
12878 }
12879 }
12880
12881 /* Check operand types to see if this is a VFP instruction, and if so call
12882 PFN (). */
12883
12884 static int
12885 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12886 {
12887 enum neon_shape rs;
12888 struct neon_type_el et;
12889
12890 switch (args)
12891 {
12892 case 2:
12893 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12894 et = neon_check_type (2, rs,
12895 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12896 break;
12897
12898 case 3:
12899 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12900 et = neon_check_type (3, rs,
12901 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12902 break;
12903
12904 default:
12905 abort ();
12906 }
12907
12908 if (et.type != NT_invtype)
12909 {
12910 pfn (rs);
12911 return SUCCESS;
12912 }
12913
12914 inst.error = NULL;
12915 return FAIL;
12916 }
12917
12918 static void
12919 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12920 {
12921 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12922
12923 if (rs == NS_FFF)
12924 {
12925 if (is_mla)
12926 do_vfp_nsyn_opcode ("fmacs");
12927 else
12928 do_vfp_nsyn_opcode ("fnmacs");
12929 }
12930 else
12931 {
12932 if (is_mla)
12933 do_vfp_nsyn_opcode ("fmacd");
12934 else
12935 do_vfp_nsyn_opcode ("fnmacd");
12936 }
12937 }
12938
12939 static void
12940 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12941 {
12942 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12943
12944 if (rs == NS_FFF)
12945 {
12946 if (is_fma)
12947 do_vfp_nsyn_opcode ("ffmas");
12948 else
12949 do_vfp_nsyn_opcode ("ffnmas");
12950 }
12951 else
12952 {
12953 if (is_fma)
12954 do_vfp_nsyn_opcode ("ffmad");
12955 else
12956 do_vfp_nsyn_opcode ("ffnmad");
12957 }
12958 }
12959
12960 static void
12961 do_vfp_nsyn_mul (enum neon_shape rs)
12962 {
12963 if (rs == NS_FFF)
12964 do_vfp_nsyn_opcode ("fmuls");
12965 else
12966 do_vfp_nsyn_opcode ("fmuld");
12967 }
12968
12969 static void
12970 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12971 {
12972 int is_neg = (inst.instruction & 0x80) != 0;
12973 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12974
12975 if (rs == NS_FF)
12976 {
12977 if (is_neg)
12978 do_vfp_nsyn_opcode ("fnegs");
12979 else
12980 do_vfp_nsyn_opcode ("fabss");
12981 }
12982 else
12983 {
12984 if (is_neg)
12985 do_vfp_nsyn_opcode ("fnegd");
12986 else
12987 do_vfp_nsyn_opcode ("fabsd");
12988 }
12989 }
12990
12991 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12992 insns belong to Neon, and are handled elsewhere. */
12993
12994 static void
12995 do_vfp_nsyn_ldm_stm (int is_dbmode)
12996 {
12997 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12998 if (is_ldm)
12999 {
13000 if (is_dbmode)
13001 do_vfp_nsyn_opcode ("fldmdbs");
13002 else
13003 do_vfp_nsyn_opcode ("fldmias");
13004 }
13005 else
13006 {
13007 if (is_dbmode)
13008 do_vfp_nsyn_opcode ("fstmdbs");
13009 else
13010 do_vfp_nsyn_opcode ("fstmias");
13011 }
13012 }
13013
13014 static void
13015 do_vfp_nsyn_sqrt (void)
13016 {
13017 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13018 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13019
13020 if (rs == NS_FF)
13021 do_vfp_nsyn_opcode ("fsqrts");
13022 else
13023 do_vfp_nsyn_opcode ("fsqrtd");
13024 }
13025
13026 static void
13027 do_vfp_nsyn_div (void)
13028 {
13029 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13030 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13031 N_F32 | N_F64 | N_KEY | N_VFP);
13032
13033 if (rs == NS_FFF)
13034 do_vfp_nsyn_opcode ("fdivs");
13035 else
13036 do_vfp_nsyn_opcode ("fdivd");
13037 }
13038
13039 static void
13040 do_vfp_nsyn_nmul (void)
13041 {
13042 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13043 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13044 N_F32 | N_F64 | N_KEY | N_VFP);
13045
13046 if (rs == NS_FFF)
13047 {
13048 NEON_ENCODE (SINGLE, inst);
13049 do_vfp_sp_dyadic ();
13050 }
13051 else
13052 {
13053 NEON_ENCODE (DOUBLE, inst);
13054 do_vfp_dp_rd_rn_rm ();
13055 }
13056 do_vfp_cond_or_thumb ();
13057 }
13058
13059 static void
13060 do_vfp_nsyn_cmp (void)
13061 {
13062 if (inst.operands[1].isreg)
13063 {
13064 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13065 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13066
13067 if (rs == NS_FF)
13068 {
13069 NEON_ENCODE (SINGLE, inst);
13070 do_vfp_sp_monadic ();
13071 }
13072 else
13073 {
13074 NEON_ENCODE (DOUBLE, inst);
13075 do_vfp_dp_rd_rm ();
13076 }
13077 }
13078 else
13079 {
13080 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13081 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13082
13083 switch (inst.instruction & 0x0fffffff)
13084 {
13085 case N_MNEM_vcmp:
13086 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13087 break;
13088 case N_MNEM_vcmpe:
13089 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13090 break;
13091 default:
13092 abort ();
13093 }
13094
13095 if (rs == NS_FI)
13096 {
13097 NEON_ENCODE (SINGLE, inst);
13098 do_vfp_sp_compare_z ();
13099 }
13100 else
13101 {
13102 NEON_ENCODE (DOUBLE, inst);
13103 do_vfp_dp_rd ();
13104 }
13105 }
13106 do_vfp_cond_or_thumb ();
13107 }
13108
13109 static void
13110 nsyn_insert_sp (void)
13111 {
13112 inst.operands[1] = inst.operands[0];
13113 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13114 inst.operands[0].reg = REG_SP;
13115 inst.operands[0].isreg = 1;
13116 inst.operands[0].writeback = 1;
13117 inst.operands[0].present = 1;
13118 }
13119
13120 static void
13121 do_vfp_nsyn_push (void)
13122 {
13123 nsyn_insert_sp ();
13124 if (inst.operands[1].issingle)
13125 do_vfp_nsyn_opcode ("fstmdbs");
13126 else
13127 do_vfp_nsyn_opcode ("fstmdbd");
13128 }
13129
13130 static void
13131 do_vfp_nsyn_pop (void)
13132 {
13133 nsyn_insert_sp ();
13134 if (inst.operands[1].issingle)
13135 do_vfp_nsyn_opcode ("fldmias");
13136 else
13137 do_vfp_nsyn_opcode ("fldmiad");
13138 }
13139
13140 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13141 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13142
13143 static void
13144 neon_dp_fixup (struct arm_it* insn)
13145 {
13146 unsigned int i = insn->instruction;
13147 insn->is_neon = 1;
13148
13149 if (thumb_mode)
13150 {
13151 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13152 if (i & (1 << 24))
13153 i |= 1 << 28;
13154
13155 i &= ~(1 << 24);
13156
13157 i |= 0xef000000;
13158 }
13159 else
13160 i |= 0xf2000000;
13161
13162 insn->instruction = i;
13163 }
13164
13165 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13166 (0, 1, 2, 3). */
13167
13168 static unsigned
13169 neon_logbits (unsigned x)
13170 {
13171 return ffs (x) - 4;
13172 }
13173
13174 #define LOW4(R) ((R) & 0xf)
13175 #define HI1(R) (((R) >> 4) & 1)
13176
13177 /* Encode insns with bit pattern:
13178
13179 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13180 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13181
13182 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13183 different meaning for some instruction. */
13184
13185 static void
13186 neon_three_same (int isquad, int ubit, int size)
13187 {
13188 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13189 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13190 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13191 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13192 inst.instruction |= LOW4 (inst.operands[2].reg);
13193 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13194 inst.instruction |= (isquad != 0) << 6;
13195 inst.instruction |= (ubit != 0) << 24;
13196 if (size != -1)
13197 inst.instruction |= neon_logbits (size) << 20;
13198
13199 neon_dp_fixup (&inst);
13200 }
13201
13202 /* Encode instructions of the form:
13203
13204 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13205 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13206
13207 Don't write size if SIZE == -1. */
13208
13209 static void
13210 neon_two_same (int qbit, int ubit, int size)
13211 {
13212 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13213 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13214 inst.instruction |= LOW4 (inst.operands[1].reg);
13215 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13216 inst.instruction |= (qbit != 0) << 6;
13217 inst.instruction |= (ubit != 0) << 24;
13218
13219 if (size != -1)
13220 inst.instruction |= neon_logbits (size) << 18;
13221
13222 neon_dp_fixup (&inst);
13223 }
13224
13225 /* Neon instruction encoders, in approximate order of appearance. */
13226
13227 static void
13228 do_neon_dyadic_i_su (void)
13229 {
13230 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13231 struct neon_type_el et = neon_check_type (3, rs,
13232 N_EQK, N_EQK, N_SU_32 | N_KEY);
13233 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13234 }
13235
13236 static void
13237 do_neon_dyadic_i64_su (void)
13238 {
13239 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13240 struct neon_type_el et = neon_check_type (3, rs,
13241 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13242 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13243 }
13244
13245 static void
13246 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13247 unsigned immbits)
13248 {
13249 unsigned size = et.size >> 3;
13250 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13251 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13252 inst.instruction |= LOW4 (inst.operands[1].reg);
13253 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13254 inst.instruction |= (isquad != 0) << 6;
13255 inst.instruction |= immbits << 16;
13256 inst.instruction |= (size >> 3) << 7;
13257 inst.instruction |= (size & 0x7) << 19;
13258 if (write_ubit)
13259 inst.instruction |= (uval != 0) << 24;
13260
13261 neon_dp_fixup (&inst);
13262 }
13263
13264 static void
13265 do_neon_shl_imm (void)
13266 {
13267 if (!inst.operands[2].isreg)
13268 {
13269 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13270 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13271 NEON_ENCODE (IMMED, inst);
13272 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13273 }
13274 else
13275 {
13276 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13277 struct neon_type_el et = neon_check_type (3, rs,
13278 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13279 unsigned int tmp;
13280
13281 /* VSHL/VQSHL 3-register variants have syntax such as:
13282 vshl.xx Dd, Dm, Dn
13283 whereas other 3-register operations encoded by neon_three_same have
13284 syntax like:
13285 vadd.xx Dd, Dn, Dm
13286 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13287 here. */
13288 tmp = inst.operands[2].reg;
13289 inst.operands[2].reg = inst.operands[1].reg;
13290 inst.operands[1].reg = tmp;
13291 NEON_ENCODE (INTEGER, inst);
13292 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13293 }
13294 }
13295
13296 static void
13297 do_neon_qshl_imm (void)
13298 {
13299 if (!inst.operands[2].isreg)
13300 {
13301 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13302 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13303
13304 NEON_ENCODE (IMMED, inst);
13305 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13306 inst.operands[2].imm);
13307 }
13308 else
13309 {
13310 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13311 struct neon_type_el et = neon_check_type (3, rs,
13312 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13313 unsigned int tmp;
13314
13315 /* See note in do_neon_shl_imm. */
13316 tmp = inst.operands[2].reg;
13317 inst.operands[2].reg = inst.operands[1].reg;
13318 inst.operands[1].reg = tmp;
13319 NEON_ENCODE (INTEGER, inst);
13320 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13321 }
13322 }
13323
13324 static void
13325 do_neon_rshl (void)
13326 {
13327 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13328 struct neon_type_el et = neon_check_type (3, rs,
13329 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13330 unsigned int tmp;
13331
13332 tmp = inst.operands[2].reg;
13333 inst.operands[2].reg = inst.operands[1].reg;
13334 inst.operands[1].reg = tmp;
13335 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13336 }
13337
13338 static int
13339 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13340 {
13341 /* Handle .I8 pseudo-instructions. */
13342 if (size == 8)
13343 {
13344 /* Unfortunately, this will make everything apart from zero out-of-range.
13345 FIXME is this the intended semantics? There doesn't seem much point in
13346 accepting .I8 if so. */
13347 immediate |= immediate << 8;
13348 size = 16;
13349 }
13350
13351 if (size >= 32)
13352 {
13353 if (immediate == (immediate & 0x000000ff))
13354 {
13355 *immbits = immediate;
13356 return 0x1;
13357 }
13358 else if (immediate == (immediate & 0x0000ff00))
13359 {
13360 *immbits = immediate >> 8;
13361 return 0x3;
13362 }
13363 else if (immediate == (immediate & 0x00ff0000))
13364 {
13365 *immbits = immediate >> 16;
13366 return 0x5;
13367 }
13368 else if (immediate == (immediate & 0xff000000))
13369 {
13370 *immbits = immediate >> 24;
13371 return 0x7;
13372 }
13373 if ((immediate & 0xffff) != (immediate >> 16))
13374 goto bad_immediate;
13375 immediate &= 0xffff;
13376 }
13377
13378 if (immediate == (immediate & 0x000000ff))
13379 {
13380 *immbits = immediate;
13381 return 0x9;
13382 }
13383 else if (immediate == (immediate & 0x0000ff00))
13384 {
13385 *immbits = immediate >> 8;
13386 return 0xb;
13387 }
13388
13389 bad_immediate:
13390 first_error (_("immediate value out of range"));
13391 return FAIL;
13392 }
13393
13394 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13395 A, B, C, D. */
13396
13397 static int
13398 neon_bits_same_in_bytes (unsigned imm)
13399 {
13400 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13401 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13402 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13403 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13404 }
13405
13406 /* For immediate of above form, return 0bABCD. */
13407
13408 static unsigned
13409 neon_squash_bits (unsigned imm)
13410 {
13411 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13412 | ((imm & 0x01000000) >> 21);
13413 }
13414
13415 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13416
13417 static unsigned
13418 neon_qfloat_bits (unsigned imm)
13419 {
13420 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13421 }
13422
13423 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13424 the instruction. *OP is passed as the initial value of the op field, and
13425 may be set to a different value depending on the constant (i.e.
13426 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13427 MVN). If the immediate looks like a repeated pattern then also
13428 try smaller element sizes. */
13429
13430 static int
13431 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13432 unsigned *immbits, int *op, int size,
13433 enum neon_el_type type)
13434 {
13435 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13436 float. */
13437 if (type == NT_float && !float_p)
13438 return FAIL;
13439
13440 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13441 {
13442 if (size != 32 || *op == 1)
13443 return FAIL;
13444 *immbits = neon_qfloat_bits (immlo);
13445 return 0xf;
13446 }
13447
13448 if (size == 64)
13449 {
13450 if (neon_bits_same_in_bytes (immhi)
13451 && neon_bits_same_in_bytes (immlo))
13452 {
13453 if (*op == 1)
13454 return FAIL;
13455 *immbits = (neon_squash_bits (immhi) << 4)
13456 | neon_squash_bits (immlo);
13457 *op = 1;
13458 return 0xe;
13459 }
13460
13461 if (immhi != immlo)
13462 return FAIL;
13463 }
13464
13465 if (size >= 32)
13466 {
13467 if (immlo == (immlo & 0x000000ff))
13468 {
13469 *immbits = immlo;
13470 return 0x0;
13471 }
13472 else if (immlo == (immlo & 0x0000ff00))
13473 {
13474 *immbits = immlo >> 8;
13475 return 0x2;
13476 }
13477 else if (immlo == (immlo & 0x00ff0000))
13478 {
13479 *immbits = immlo >> 16;
13480 return 0x4;
13481 }
13482 else if (immlo == (immlo & 0xff000000))
13483 {
13484 *immbits = immlo >> 24;
13485 return 0x6;
13486 }
13487 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13488 {
13489 *immbits = (immlo >> 8) & 0xff;
13490 return 0xc;
13491 }
13492 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13493 {
13494 *immbits = (immlo >> 16) & 0xff;
13495 return 0xd;
13496 }
13497
13498 if ((immlo & 0xffff) != (immlo >> 16))
13499 return FAIL;
13500 immlo &= 0xffff;
13501 }
13502
13503 if (size >= 16)
13504 {
13505 if (immlo == (immlo & 0x000000ff))
13506 {
13507 *immbits = immlo;
13508 return 0x8;
13509 }
13510 else if (immlo == (immlo & 0x0000ff00))
13511 {
13512 *immbits = immlo >> 8;
13513 return 0xa;
13514 }
13515
13516 if ((immlo & 0xff) != (immlo >> 8))
13517 return FAIL;
13518 immlo &= 0xff;
13519 }
13520
13521 if (immlo == (immlo & 0x000000ff))
13522 {
13523 /* Don't allow MVN with 8-bit immediate. */
13524 if (*op == 1)
13525 return FAIL;
13526 *immbits = immlo;
13527 return 0xe;
13528 }
13529
13530 return FAIL;
13531 }
13532
13533 /* Write immediate bits [7:0] to the following locations:
13534
13535 |28/24|23 19|18 16|15 4|3 0|
13536 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13537
13538 This function is used by VMOV/VMVN/VORR/VBIC. */
13539
13540 static void
13541 neon_write_immbits (unsigned immbits)
13542 {
13543 inst.instruction |= immbits & 0xf;
13544 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13545 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13546 }
13547
13548 /* Invert low-order SIZE bits of XHI:XLO. */
13549
13550 static void
13551 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13552 {
13553 unsigned immlo = xlo ? *xlo : 0;
13554 unsigned immhi = xhi ? *xhi : 0;
13555
13556 switch (size)
13557 {
13558 case 8:
13559 immlo = (~immlo) & 0xff;
13560 break;
13561
13562 case 16:
13563 immlo = (~immlo) & 0xffff;
13564 break;
13565
13566 case 64:
13567 immhi = (~immhi) & 0xffffffff;
13568 /* fall through. */
13569
13570 case 32:
13571 immlo = (~immlo) & 0xffffffff;
13572 break;
13573
13574 default:
13575 abort ();
13576 }
13577
13578 if (xlo)
13579 *xlo = immlo;
13580
13581 if (xhi)
13582 *xhi = immhi;
13583 }
13584
13585 static void
13586 do_neon_logic (void)
13587 {
13588 if (inst.operands[2].present && inst.operands[2].isreg)
13589 {
13590 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13591 neon_check_type (3, rs, N_IGNORE_TYPE);
13592 /* U bit and size field were set as part of the bitmask. */
13593 NEON_ENCODE (INTEGER, inst);
13594 neon_three_same (neon_quad (rs), 0, -1);
13595 }
13596 else
13597 {
13598 const int three_ops_form = (inst.operands[2].present
13599 && !inst.operands[2].isreg);
13600 const int immoperand = (three_ops_form ? 2 : 1);
13601 enum neon_shape rs = (three_ops_form
13602 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13603 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13604 struct neon_type_el et = neon_check_type (2, rs,
13605 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13606 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13607 unsigned immbits;
13608 int cmode;
13609
13610 if (et.type == NT_invtype)
13611 return;
13612
13613 if (three_ops_form)
13614 constraint (inst.operands[0].reg != inst.operands[1].reg,
13615 _("first and second operands shall be the same register"));
13616
13617 NEON_ENCODE (IMMED, inst);
13618
13619 immbits = inst.operands[immoperand].imm;
13620 if (et.size == 64)
13621 {
13622 /* .i64 is a pseudo-op, so the immediate must be a repeating
13623 pattern. */
13624 if (immbits != (inst.operands[immoperand].regisimm ?
13625 inst.operands[immoperand].reg : 0))
13626 {
13627 /* Set immbits to an invalid constant. */
13628 immbits = 0xdeadbeef;
13629 }
13630 }
13631
13632 switch (opcode)
13633 {
13634 case N_MNEM_vbic:
13635 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13636 break;
13637
13638 case N_MNEM_vorr:
13639 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13640 break;
13641
13642 case N_MNEM_vand:
13643 /* Pseudo-instruction for VBIC. */
13644 neon_invert_size (&immbits, 0, et.size);
13645 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13646 break;
13647
13648 case N_MNEM_vorn:
13649 /* Pseudo-instruction for VORR. */
13650 neon_invert_size (&immbits, 0, et.size);
13651 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13652 break;
13653
13654 default:
13655 abort ();
13656 }
13657
13658 if (cmode == FAIL)
13659 return;
13660
13661 inst.instruction |= neon_quad (rs) << 6;
13662 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13663 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13664 inst.instruction |= cmode << 8;
13665 neon_write_immbits (immbits);
13666
13667 neon_dp_fixup (&inst);
13668 }
13669 }
13670
13671 static void
13672 do_neon_bitfield (void)
13673 {
13674 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13675 neon_check_type (3, rs, N_IGNORE_TYPE);
13676 neon_three_same (neon_quad (rs), 0, -1);
13677 }
13678
13679 static void
13680 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13681 unsigned destbits)
13682 {
13683 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13684 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13685 types | N_KEY);
13686 if (et.type == NT_float)
13687 {
13688 NEON_ENCODE (FLOAT, inst);
13689 neon_three_same (neon_quad (rs), 0, -1);
13690 }
13691 else
13692 {
13693 NEON_ENCODE (INTEGER, inst);
13694 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13695 }
13696 }
13697
13698 static void
13699 do_neon_dyadic_if_su (void)
13700 {
13701 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13702 }
13703
13704 static void
13705 do_neon_dyadic_if_su_d (void)
13706 {
13707 /* This version only allow D registers, but that constraint is enforced during
13708 operand parsing so we don't need to do anything extra here. */
13709 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13710 }
13711
13712 static void
13713 do_neon_dyadic_if_i_d (void)
13714 {
13715 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13716 affected if we specify unsigned args. */
13717 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13718 }
13719
13720 enum vfp_or_neon_is_neon_bits
13721 {
13722 NEON_CHECK_CC = 1,
13723 NEON_CHECK_ARCH = 2
13724 };
13725
13726 /* Call this function if an instruction which may have belonged to the VFP or
13727 Neon instruction sets, but turned out to be a Neon instruction (due to the
13728 operand types involved, etc.). We have to check and/or fix-up a couple of
13729 things:
13730
13731 - Make sure the user hasn't attempted to make a Neon instruction
13732 conditional.
13733 - Alter the value in the condition code field if necessary.
13734 - Make sure that the arch supports Neon instructions.
13735
13736 Which of these operations take place depends on bits from enum
13737 vfp_or_neon_is_neon_bits.
13738
13739 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13740 current instruction's condition is COND_ALWAYS, the condition field is
13741 changed to inst.uncond_value. This is necessary because instructions shared
13742 between VFP and Neon may be conditional for the VFP variants only, and the
13743 unconditional Neon version must have, e.g., 0xF in the condition field. */
13744
13745 static int
13746 vfp_or_neon_is_neon (unsigned check)
13747 {
13748 /* Conditions are always legal in Thumb mode (IT blocks). */
13749 if (!thumb_mode && (check & NEON_CHECK_CC))
13750 {
13751 if (inst.cond != COND_ALWAYS)
13752 {
13753 first_error (_(BAD_COND));
13754 return FAIL;
13755 }
13756 if (inst.uncond_value != -1)
13757 inst.instruction |= inst.uncond_value << 28;
13758 }
13759
13760 if ((check & NEON_CHECK_ARCH)
13761 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13762 {
13763 first_error (_(BAD_FPU));
13764 return FAIL;
13765 }
13766
13767 return SUCCESS;
13768 }
13769
13770 static void
13771 do_neon_addsub_if_i (void)
13772 {
13773 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13774 return;
13775
13776 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13777 return;
13778
13779 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13780 affected if we specify unsigned args. */
13781 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13782 }
13783
13784 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13785 result to be:
13786 V<op> A,B (A is operand 0, B is operand 2)
13787 to mean:
13788 V<op> A,B,A
13789 not:
13790 V<op> A,B,B
13791 so handle that case specially. */
13792
13793 static void
13794 neon_exchange_operands (void)
13795 {
13796 void *scratch = alloca (sizeof (inst.operands[0]));
13797 if (inst.operands[1].present)
13798 {
13799 /* Swap operands[1] and operands[2]. */
13800 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13801 inst.operands[1] = inst.operands[2];
13802 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13803 }
13804 else
13805 {
13806 inst.operands[1] = inst.operands[2];
13807 inst.operands[2] = inst.operands[0];
13808 }
13809 }
13810
13811 static void
13812 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13813 {
13814 if (inst.operands[2].isreg)
13815 {
13816 if (invert)
13817 neon_exchange_operands ();
13818 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13819 }
13820 else
13821 {
13822 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13823 struct neon_type_el et = neon_check_type (2, rs,
13824 N_EQK | N_SIZ, immtypes | N_KEY);
13825
13826 NEON_ENCODE (IMMED, inst);
13827 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13828 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13829 inst.instruction |= LOW4 (inst.operands[1].reg);
13830 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13831 inst.instruction |= neon_quad (rs) << 6;
13832 inst.instruction |= (et.type == NT_float) << 10;
13833 inst.instruction |= neon_logbits (et.size) << 18;
13834
13835 neon_dp_fixup (&inst);
13836 }
13837 }
13838
13839 static void
13840 do_neon_cmp (void)
13841 {
13842 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13843 }
13844
13845 static void
13846 do_neon_cmp_inv (void)
13847 {
13848 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13849 }
13850
13851 static void
13852 do_neon_ceq (void)
13853 {
13854 neon_compare (N_IF_32, N_IF_32, FALSE);
13855 }
13856
13857 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13858 scalars, which are encoded in 5 bits, M : Rm.
13859 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13860 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13861 index in M. */
13862
13863 static unsigned
13864 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13865 {
13866 unsigned regno = NEON_SCALAR_REG (scalar);
13867 unsigned elno = NEON_SCALAR_INDEX (scalar);
13868
13869 switch (elsize)
13870 {
13871 case 16:
13872 if (regno > 7 || elno > 3)
13873 goto bad_scalar;
13874 return regno | (elno << 3);
13875
13876 case 32:
13877 if (regno > 15 || elno > 1)
13878 goto bad_scalar;
13879 return regno | (elno << 4);
13880
13881 default:
13882 bad_scalar:
13883 first_error (_("scalar out of range for multiply instruction"));
13884 }
13885
13886 return 0;
13887 }
13888
13889 /* Encode multiply / multiply-accumulate scalar instructions. */
13890
13891 static void
13892 neon_mul_mac (struct neon_type_el et, int ubit)
13893 {
13894 unsigned scalar;
13895
13896 /* Give a more helpful error message if we have an invalid type. */
13897 if (et.type == NT_invtype)
13898 return;
13899
13900 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13901 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13902 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13903 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13904 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13905 inst.instruction |= LOW4 (scalar);
13906 inst.instruction |= HI1 (scalar) << 5;
13907 inst.instruction |= (et.type == NT_float) << 8;
13908 inst.instruction |= neon_logbits (et.size) << 20;
13909 inst.instruction |= (ubit != 0) << 24;
13910
13911 neon_dp_fixup (&inst);
13912 }
13913
13914 static void
13915 do_neon_mac_maybe_scalar (void)
13916 {
13917 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13918 return;
13919
13920 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13921 return;
13922
13923 if (inst.operands[2].isscalar)
13924 {
13925 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13926 struct neon_type_el et = neon_check_type (3, rs,
13927 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13928 NEON_ENCODE (SCALAR, inst);
13929 neon_mul_mac (et, neon_quad (rs));
13930 }
13931 else
13932 {
13933 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13934 affected if we specify unsigned args. */
13935 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13936 }
13937 }
13938
13939 static void
13940 do_neon_fmac (void)
13941 {
13942 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13943 return;
13944
13945 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13946 return;
13947
13948 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13949 }
13950
13951 static void
13952 do_neon_tst (void)
13953 {
13954 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13955 struct neon_type_el et = neon_check_type (3, rs,
13956 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13957 neon_three_same (neon_quad (rs), 0, et.size);
13958 }
13959
13960 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13961 same types as the MAC equivalents. The polynomial type for this instruction
13962 is encoded the same as the integer type. */
13963
13964 static void
13965 do_neon_mul (void)
13966 {
13967 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13968 return;
13969
13970 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13971 return;
13972
13973 if (inst.operands[2].isscalar)
13974 do_neon_mac_maybe_scalar ();
13975 else
13976 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13977 }
13978
13979 static void
13980 do_neon_qdmulh (void)
13981 {
13982 if (inst.operands[2].isscalar)
13983 {
13984 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13985 struct neon_type_el et = neon_check_type (3, rs,
13986 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13987 NEON_ENCODE (SCALAR, inst);
13988 neon_mul_mac (et, neon_quad (rs));
13989 }
13990 else
13991 {
13992 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13993 struct neon_type_el et = neon_check_type (3, rs,
13994 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13995 NEON_ENCODE (INTEGER, inst);
13996 /* The U bit (rounding) comes from bit mask. */
13997 neon_three_same (neon_quad (rs), 0, et.size);
13998 }
13999 }
14000
14001 static void
14002 do_neon_fcmp_absolute (void)
14003 {
14004 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14005 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14006 /* Size field comes from bit mask. */
14007 neon_three_same (neon_quad (rs), 1, -1);
14008 }
14009
14010 static void
14011 do_neon_fcmp_absolute_inv (void)
14012 {
14013 neon_exchange_operands ();
14014 do_neon_fcmp_absolute ();
14015 }
14016
14017 static void
14018 do_neon_step (void)
14019 {
14020 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14021 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14022 neon_three_same (neon_quad (rs), 0, -1);
14023 }
14024
14025 static void
14026 do_neon_abs_neg (void)
14027 {
14028 enum neon_shape rs;
14029 struct neon_type_el et;
14030
14031 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14032 return;
14033
14034 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14035 return;
14036
14037 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14038 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14039
14040 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14041 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14042 inst.instruction |= LOW4 (inst.operands[1].reg);
14043 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14044 inst.instruction |= neon_quad (rs) << 6;
14045 inst.instruction |= (et.type == NT_float) << 10;
14046 inst.instruction |= neon_logbits (et.size) << 18;
14047
14048 neon_dp_fixup (&inst);
14049 }
14050
14051 static void
14052 do_neon_sli (void)
14053 {
14054 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14055 struct neon_type_el et = neon_check_type (2, rs,
14056 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14057 int imm = inst.operands[2].imm;
14058 constraint (imm < 0 || (unsigned)imm >= et.size,
14059 _("immediate out of range for insert"));
14060 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14061 }
14062
14063 static void
14064 do_neon_sri (void)
14065 {
14066 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14067 struct neon_type_el et = neon_check_type (2, rs,
14068 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14069 int imm = inst.operands[2].imm;
14070 constraint (imm < 1 || (unsigned)imm > et.size,
14071 _("immediate out of range for insert"));
14072 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14073 }
14074
14075 static void
14076 do_neon_qshlu_imm (void)
14077 {
14078 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14079 struct neon_type_el et = neon_check_type (2, rs,
14080 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14081 int imm = inst.operands[2].imm;
14082 constraint (imm < 0 || (unsigned)imm >= et.size,
14083 _("immediate out of range for shift"));
14084 /* Only encodes the 'U present' variant of the instruction.
14085 In this case, signed types have OP (bit 8) set to 0.
14086 Unsigned types have OP set to 1. */
14087 inst.instruction |= (et.type == NT_unsigned) << 8;
14088 /* The rest of the bits are the same as other immediate shifts. */
14089 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14090 }
14091
14092 static void
14093 do_neon_qmovn (void)
14094 {
14095 struct neon_type_el et = neon_check_type (2, NS_DQ,
14096 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14097 /* Saturating move where operands can be signed or unsigned, and the
14098 destination has the same signedness. */
14099 NEON_ENCODE (INTEGER, inst);
14100 if (et.type == NT_unsigned)
14101 inst.instruction |= 0xc0;
14102 else
14103 inst.instruction |= 0x80;
14104 neon_two_same (0, 1, et.size / 2);
14105 }
14106
14107 static void
14108 do_neon_qmovun (void)
14109 {
14110 struct neon_type_el et = neon_check_type (2, NS_DQ,
14111 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14112 /* Saturating move with unsigned results. Operands must be signed. */
14113 NEON_ENCODE (INTEGER, inst);
14114 neon_two_same (0, 1, et.size / 2);
14115 }
14116
14117 static void
14118 do_neon_rshift_sat_narrow (void)
14119 {
14120 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14121 or unsigned. If operands are unsigned, results must also be unsigned. */
14122 struct neon_type_el et = neon_check_type (2, NS_DQI,
14123 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14124 int imm = inst.operands[2].imm;
14125 /* This gets the bounds check, size encoding and immediate bits calculation
14126 right. */
14127 et.size /= 2;
14128
14129 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14130 VQMOVN.I<size> <Dd>, <Qm>. */
14131 if (imm == 0)
14132 {
14133 inst.operands[2].present = 0;
14134 inst.instruction = N_MNEM_vqmovn;
14135 do_neon_qmovn ();
14136 return;
14137 }
14138
14139 constraint (imm < 1 || (unsigned)imm > et.size,
14140 _("immediate out of range"));
14141 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14142 }
14143
14144 static void
14145 do_neon_rshift_sat_narrow_u (void)
14146 {
14147 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14148 or unsigned. If operands are unsigned, results must also be unsigned. */
14149 struct neon_type_el et = neon_check_type (2, NS_DQI,
14150 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14151 int imm = inst.operands[2].imm;
14152 /* This gets the bounds check, size encoding and immediate bits calculation
14153 right. */
14154 et.size /= 2;
14155
14156 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14157 VQMOVUN.I<size> <Dd>, <Qm>. */
14158 if (imm == 0)
14159 {
14160 inst.operands[2].present = 0;
14161 inst.instruction = N_MNEM_vqmovun;
14162 do_neon_qmovun ();
14163 return;
14164 }
14165
14166 constraint (imm < 1 || (unsigned)imm > et.size,
14167 _("immediate out of range"));
14168 /* FIXME: The manual is kind of unclear about what value U should have in
14169 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14170 must be 1. */
14171 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14172 }
14173
14174 static void
14175 do_neon_movn (void)
14176 {
14177 struct neon_type_el et = neon_check_type (2, NS_DQ,
14178 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14179 NEON_ENCODE (INTEGER, inst);
14180 neon_two_same (0, 1, et.size / 2);
14181 }
14182
14183 static void
14184 do_neon_rshift_narrow (void)
14185 {
14186 struct neon_type_el et = neon_check_type (2, NS_DQI,
14187 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14188 int imm = inst.operands[2].imm;
14189 /* This gets the bounds check, size encoding and immediate bits calculation
14190 right. */
14191 et.size /= 2;
14192
14193 /* If immediate is zero then we are a pseudo-instruction for
14194 VMOVN.I<size> <Dd>, <Qm> */
14195 if (imm == 0)
14196 {
14197 inst.operands[2].present = 0;
14198 inst.instruction = N_MNEM_vmovn;
14199 do_neon_movn ();
14200 return;
14201 }
14202
14203 constraint (imm < 1 || (unsigned)imm > et.size,
14204 _("immediate out of range for narrowing operation"));
14205 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14206 }
14207
14208 static void
14209 do_neon_shll (void)
14210 {
14211 /* FIXME: Type checking when lengthening. */
14212 struct neon_type_el et = neon_check_type (2, NS_QDI,
14213 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14214 unsigned imm = inst.operands[2].imm;
14215
14216 if (imm == et.size)
14217 {
14218 /* Maximum shift variant. */
14219 NEON_ENCODE (INTEGER, inst);
14220 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14221 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14222 inst.instruction |= LOW4 (inst.operands[1].reg);
14223 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14224 inst.instruction |= neon_logbits (et.size) << 18;
14225
14226 neon_dp_fixup (&inst);
14227 }
14228 else
14229 {
14230 /* A more-specific type check for non-max versions. */
14231 et = neon_check_type (2, NS_QDI,
14232 N_EQK | N_DBL, N_SU_32 | N_KEY);
14233 NEON_ENCODE (IMMED, inst);
14234 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14235 }
14236 }
14237
14238 /* Check the various types for the VCVT instruction, and return which version
14239 the current instruction is. */
14240
14241 static int
14242 neon_cvt_flavour (enum neon_shape rs)
14243 {
14244 #define CVT_VAR(C,X,Y) \
14245 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14246 if (et.type != NT_invtype) \
14247 { \
14248 inst.error = NULL; \
14249 return (C); \
14250 }
14251 struct neon_type_el et;
14252 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14253 || rs == NS_FF) ? N_VFP : 0;
14254 /* The instruction versions which take an immediate take one register
14255 argument, which is extended to the width of the full register. Thus the
14256 "source" and "destination" registers must have the same width. Hack that
14257 here by making the size equal to the key (wider, in this case) operand. */
14258 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14259
14260 CVT_VAR (0, N_S32, N_F32);
14261 CVT_VAR (1, N_U32, N_F32);
14262 CVT_VAR (2, N_F32, N_S32);
14263 CVT_VAR (3, N_F32, N_U32);
14264 /* Half-precision conversions. */
14265 CVT_VAR (4, N_F32, N_F16);
14266 CVT_VAR (5, N_F16, N_F32);
14267
14268 whole_reg = N_VFP;
14269
14270 /* VFP instructions. */
14271 CVT_VAR (6, N_F32, N_F64);
14272 CVT_VAR (7, N_F64, N_F32);
14273 CVT_VAR (8, N_S32, N_F64 | key);
14274 CVT_VAR (9, N_U32, N_F64 | key);
14275 CVT_VAR (10, N_F64 | key, N_S32);
14276 CVT_VAR (11, N_F64 | key, N_U32);
14277 /* VFP instructions with bitshift. */
14278 CVT_VAR (12, N_F32 | key, N_S16);
14279 CVT_VAR (13, N_F32 | key, N_U16);
14280 CVT_VAR (14, N_F64 | key, N_S16);
14281 CVT_VAR (15, N_F64 | key, N_U16);
14282 CVT_VAR (16, N_S16, N_F32 | key);
14283 CVT_VAR (17, N_U16, N_F32 | key);
14284 CVT_VAR (18, N_S16, N_F64 | key);
14285 CVT_VAR (19, N_U16, N_F64 | key);
14286
14287 return -1;
14288 #undef CVT_VAR
14289 }
14290
14291 /* Neon-syntax VFP conversions. */
14292
14293 static void
14294 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
14295 {
14296 const char *opname = 0;
14297
14298 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14299 {
14300 /* Conversions with immediate bitshift. */
14301 const char *enc[] =
14302 {
14303 "ftosls",
14304 "ftouls",
14305 "fsltos",
14306 "fultos",
14307 NULL,
14308 NULL,
14309 NULL,
14310 NULL,
14311 "ftosld",
14312 "ftould",
14313 "fsltod",
14314 "fultod",
14315 "fshtos",
14316 "fuhtos",
14317 "fshtod",
14318 "fuhtod",
14319 "ftoshs",
14320 "ftouhs",
14321 "ftoshd",
14322 "ftouhd"
14323 };
14324
14325 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14326 {
14327 opname = enc[flavour];
14328 constraint (inst.operands[0].reg != inst.operands[1].reg,
14329 _("operands 0 and 1 must be the same register"));
14330 inst.operands[1] = inst.operands[2];
14331 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14332 }
14333 }
14334 else
14335 {
14336 /* Conversions without bitshift. */
14337 const char *enc[] =
14338 {
14339 "ftosis",
14340 "ftouis",
14341 "fsitos",
14342 "fuitos",
14343 "NULL",
14344 "NULL",
14345 "fcvtsd",
14346 "fcvtds",
14347 "ftosid",
14348 "ftouid",
14349 "fsitod",
14350 "fuitod"
14351 };
14352
14353 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14354 opname = enc[flavour];
14355 }
14356
14357 if (opname)
14358 do_vfp_nsyn_opcode (opname);
14359 }
14360
14361 static void
14362 do_vfp_nsyn_cvtz (void)
14363 {
14364 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14365 int flavour = neon_cvt_flavour (rs);
14366 const char *enc[] =
14367 {
14368 "ftosizs",
14369 "ftouizs",
14370 NULL,
14371 NULL,
14372 NULL,
14373 NULL,
14374 NULL,
14375 NULL,
14376 "ftosizd",
14377 "ftouizd"
14378 };
14379
14380 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14381 do_vfp_nsyn_opcode (enc[flavour]);
14382 }
14383
14384 static void
14385 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14386 {
14387 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14388 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14389 int flavour = neon_cvt_flavour (rs);
14390
14391 /* PR11109: Handle round-to-zero for VCVT conversions. */
14392 if (round_to_zero
14393 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14394 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14395 && (rs == NS_FD || rs == NS_FF))
14396 {
14397 do_vfp_nsyn_cvtz ();
14398 return;
14399 }
14400
14401 /* VFP rather than Neon conversions. */
14402 if (flavour >= 6)
14403 {
14404 do_vfp_nsyn_cvt (rs, flavour);
14405 return;
14406 }
14407
14408 switch (rs)
14409 {
14410 case NS_DDI:
14411 case NS_QQI:
14412 {
14413 unsigned immbits;
14414 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14415
14416 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14417 return;
14418
14419 /* Fixed-point conversion with #0 immediate is encoded as an
14420 integer conversion. */
14421 if (inst.operands[2].present && inst.operands[2].imm == 0)
14422 goto int_encode;
14423 immbits = 32 - inst.operands[2].imm;
14424 NEON_ENCODE (IMMED, inst);
14425 if (flavour != -1)
14426 inst.instruction |= enctab[flavour];
14427 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14428 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14429 inst.instruction |= LOW4 (inst.operands[1].reg);
14430 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14431 inst.instruction |= neon_quad (rs) << 6;
14432 inst.instruction |= 1 << 21;
14433 inst.instruction |= immbits << 16;
14434
14435 neon_dp_fixup (&inst);
14436 }
14437 break;
14438
14439 case NS_DD:
14440 case NS_QQ:
14441 int_encode:
14442 {
14443 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14444
14445 NEON_ENCODE (INTEGER, inst);
14446
14447 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14448 return;
14449
14450 if (flavour != -1)
14451 inst.instruction |= enctab[flavour];
14452
14453 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14454 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14455 inst.instruction |= LOW4 (inst.operands[1].reg);
14456 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14457 inst.instruction |= neon_quad (rs) << 6;
14458 inst.instruction |= 2 << 18;
14459
14460 neon_dp_fixup (&inst);
14461 }
14462 break;
14463
14464 /* Half-precision conversions for Advanced SIMD -- neon. */
14465 case NS_QD:
14466 case NS_DQ:
14467
14468 if ((rs == NS_DQ)
14469 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14470 {
14471 as_bad (_("operand size must match register width"));
14472 break;
14473 }
14474
14475 if ((rs == NS_QD)
14476 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14477 {
14478 as_bad (_("operand size must match register width"));
14479 break;
14480 }
14481
14482 if (rs == NS_DQ)
14483 inst.instruction = 0x3b60600;
14484 else
14485 inst.instruction = 0x3b60700;
14486
14487 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14488 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14489 inst.instruction |= LOW4 (inst.operands[1].reg);
14490 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14491 neon_dp_fixup (&inst);
14492 break;
14493
14494 default:
14495 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14496 do_vfp_nsyn_cvt (rs, flavour);
14497 }
14498 }
14499
14500 static void
14501 do_neon_cvtr (void)
14502 {
14503 do_neon_cvt_1 (FALSE);
14504 }
14505
14506 static void
14507 do_neon_cvt (void)
14508 {
14509 do_neon_cvt_1 (TRUE);
14510 }
14511
14512 static void
14513 do_neon_cvtb (void)
14514 {
14515 inst.instruction = 0xeb20a40;
14516
14517 /* The sizes are attached to the mnemonic. */
14518 if (inst.vectype.el[0].type != NT_invtype
14519 && inst.vectype.el[0].size == 16)
14520 inst.instruction |= 0x00010000;
14521
14522 /* Programmer's syntax: the sizes are attached to the operands. */
14523 else if (inst.operands[0].vectype.type != NT_invtype
14524 && inst.operands[0].vectype.size == 16)
14525 inst.instruction |= 0x00010000;
14526
14527 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14528 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14529 do_vfp_cond_or_thumb ();
14530 }
14531
14532
14533 static void
14534 do_neon_cvtt (void)
14535 {
14536 do_neon_cvtb ();
14537 inst.instruction |= 0x80;
14538 }
14539
14540 static void
14541 neon_move_immediate (void)
14542 {
14543 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14544 struct neon_type_el et = neon_check_type (2, rs,
14545 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14546 unsigned immlo, immhi = 0, immbits;
14547 int op, cmode, float_p;
14548
14549 constraint (et.type == NT_invtype,
14550 _("operand size must be specified for immediate VMOV"));
14551
14552 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14553 op = (inst.instruction & (1 << 5)) != 0;
14554
14555 immlo = inst.operands[1].imm;
14556 if (inst.operands[1].regisimm)
14557 immhi = inst.operands[1].reg;
14558
14559 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14560 _("immediate has bits set outside the operand size"));
14561
14562 float_p = inst.operands[1].immisfloat;
14563
14564 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14565 et.size, et.type)) == FAIL)
14566 {
14567 /* Invert relevant bits only. */
14568 neon_invert_size (&immlo, &immhi, et.size);
14569 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14570 with one or the other; those cases are caught by
14571 neon_cmode_for_move_imm. */
14572 op = !op;
14573 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14574 &op, et.size, et.type)) == FAIL)
14575 {
14576 first_error (_("immediate out of range"));
14577 return;
14578 }
14579 }
14580
14581 inst.instruction &= ~(1 << 5);
14582 inst.instruction |= op << 5;
14583
14584 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14585 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14586 inst.instruction |= neon_quad (rs) << 6;
14587 inst.instruction |= cmode << 8;
14588
14589 neon_write_immbits (immbits);
14590 }
14591
14592 static void
14593 do_neon_mvn (void)
14594 {
14595 if (inst.operands[1].isreg)
14596 {
14597 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14598
14599 NEON_ENCODE (INTEGER, inst);
14600 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14601 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14602 inst.instruction |= LOW4 (inst.operands[1].reg);
14603 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14604 inst.instruction |= neon_quad (rs) << 6;
14605 }
14606 else
14607 {
14608 NEON_ENCODE (IMMED, inst);
14609 neon_move_immediate ();
14610 }
14611
14612 neon_dp_fixup (&inst);
14613 }
14614
14615 /* Encode instructions of form:
14616
14617 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14618 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14619
14620 static void
14621 neon_mixed_length (struct neon_type_el et, unsigned size)
14622 {
14623 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14624 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14625 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14626 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14627 inst.instruction |= LOW4 (inst.operands[2].reg);
14628 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14629 inst.instruction |= (et.type == NT_unsigned) << 24;
14630 inst.instruction |= neon_logbits (size) << 20;
14631
14632 neon_dp_fixup (&inst);
14633 }
14634
14635 static void
14636 do_neon_dyadic_long (void)
14637 {
14638 /* FIXME: Type checking for lengthening op. */
14639 struct neon_type_el et = neon_check_type (3, NS_QDD,
14640 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14641 neon_mixed_length (et, et.size);
14642 }
14643
14644 static void
14645 do_neon_abal (void)
14646 {
14647 struct neon_type_el et = neon_check_type (3, NS_QDD,
14648 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14649 neon_mixed_length (et, et.size);
14650 }
14651
14652 static void
14653 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14654 {
14655 if (inst.operands[2].isscalar)
14656 {
14657 struct neon_type_el et = neon_check_type (3, NS_QDS,
14658 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14659 NEON_ENCODE (SCALAR, inst);
14660 neon_mul_mac (et, et.type == NT_unsigned);
14661 }
14662 else
14663 {
14664 struct neon_type_el et = neon_check_type (3, NS_QDD,
14665 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14666 NEON_ENCODE (INTEGER, inst);
14667 neon_mixed_length (et, et.size);
14668 }
14669 }
14670
14671 static void
14672 do_neon_mac_maybe_scalar_long (void)
14673 {
14674 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14675 }
14676
14677 static void
14678 do_neon_dyadic_wide (void)
14679 {
14680 struct neon_type_el et = neon_check_type (3, NS_QQD,
14681 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14682 neon_mixed_length (et, et.size);
14683 }
14684
14685 static void
14686 do_neon_dyadic_narrow (void)
14687 {
14688 struct neon_type_el et = neon_check_type (3, NS_QDD,
14689 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14690 /* Operand sign is unimportant, and the U bit is part of the opcode,
14691 so force the operand type to integer. */
14692 et.type = NT_integer;
14693 neon_mixed_length (et, et.size / 2);
14694 }
14695
14696 static void
14697 do_neon_mul_sat_scalar_long (void)
14698 {
14699 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14700 }
14701
14702 static void
14703 do_neon_vmull (void)
14704 {
14705 if (inst.operands[2].isscalar)
14706 do_neon_mac_maybe_scalar_long ();
14707 else
14708 {
14709 struct neon_type_el et = neon_check_type (3, NS_QDD,
14710 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14711 if (et.type == NT_poly)
14712 NEON_ENCODE (POLY, inst);
14713 else
14714 NEON_ENCODE (INTEGER, inst);
14715 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14716 zero. Should be OK as-is. */
14717 neon_mixed_length (et, et.size);
14718 }
14719 }
14720
14721 static void
14722 do_neon_ext (void)
14723 {
14724 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14725 struct neon_type_el et = neon_check_type (3, rs,
14726 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14727 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14728
14729 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14730 _("shift out of range"));
14731 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14732 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14733 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14734 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14735 inst.instruction |= LOW4 (inst.operands[2].reg);
14736 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14737 inst.instruction |= neon_quad (rs) << 6;
14738 inst.instruction |= imm << 8;
14739
14740 neon_dp_fixup (&inst);
14741 }
14742
14743 static void
14744 do_neon_rev (void)
14745 {
14746 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14747 struct neon_type_el et = neon_check_type (2, rs,
14748 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14749 unsigned op = (inst.instruction >> 7) & 3;
14750 /* N (width of reversed regions) is encoded as part of the bitmask. We
14751 extract it here to check the elements to be reversed are smaller.
14752 Otherwise we'd get a reserved instruction. */
14753 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14754 gas_assert (elsize != 0);
14755 constraint (et.size >= elsize,
14756 _("elements must be smaller than reversal region"));
14757 neon_two_same (neon_quad (rs), 1, et.size);
14758 }
14759
14760 static void
14761 do_neon_dup (void)
14762 {
14763 if (inst.operands[1].isscalar)
14764 {
14765 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14766 struct neon_type_el et = neon_check_type (2, rs,
14767 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14768 unsigned sizebits = et.size >> 3;
14769 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14770 int logsize = neon_logbits (et.size);
14771 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14772
14773 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14774 return;
14775
14776 NEON_ENCODE (SCALAR, inst);
14777 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14778 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14779 inst.instruction |= LOW4 (dm);
14780 inst.instruction |= HI1 (dm) << 5;
14781 inst.instruction |= neon_quad (rs) << 6;
14782 inst.instruction |= x << 17;
14783 inst.instruction |= sizebits << 16;
14784
14785 neon_dp_fixup (&inst);
14786 }
14787 else
14788 {
14789 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14790 struct neon_type_el et = neon_check_type (2, rs,
14791 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14792 /* Duplicate ARM register to lanes of vector. */
14793 NEON_ENCODE (ARMREG, inst);
14794 switch (et.size)
14795 {
14796 case 8: inst.instruction |= 0x400000; break;
14797 case 16: inst.instruction |= 0x000020; break;
14798 case 32: inst.instruction |= 0x000000; break;
14799 default: break;
14800 }
14801 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14802 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14803 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14804 inst.instruction |= neon_quad (rs) << 21;
14805 /* The encoding for this instruction is identical for the ARM and Thumb
14806 variants, except for the condition field. */
14807 do_vfp_cond_or_thumb ();
14808 }
14809 }
14810
14811 /* VMOV has particularly many variations. It can be one of:
14812 0. VMOV<c><q> <Qd>, <Qm>
14813 1. VMOV<c><q> <Dd>, <Dm>
14814 (Register operations, which are VORR with Rm = Rn.)
14815 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14816 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14817 (Immediate loads.)
14818 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14819 (ARM register to scalar.)
14820 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14821 (Two ARM registers to vector.)
14822 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14823 (Scalar to ARM register.)
14824 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14825 (Vector to two ARM registers.)
14826 8. VMOV.F32 <Sd>, <Sm>
14827 9. VMOV.F64 <Dd>, <Dm>
14828 (VFP register moves.)
14829 10. VMOV.F32 <Sd>, #imm
14830 11. VMOV.F64 <Dd>, #imm
14831 (VFP float immediate load.)
14832 12. VMOV <Rd>, <Sm>
14833 (VFP single to ARM reg.)
14834 13. VMOV <Sd>, <Rm>
14835 (ARM reg to VFP single.)
14836 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14837 (Two ARM regs to two VFP singles.)
14838 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14839 (Two VFP singles to two ARM regs.)
14840
14841 These cases can be disambiguated using neon_select_shape, except cases 1/9
14842 and 3/11 which depend on the operand type too.
14843
14844 All the encoded bits are hardcoded by this function.
14845
14846 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14847 Cases 5, 7 may be used with VFPv2 and above.
14848
14849 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14850 can specify a type where it doesn't make sense to, and is ignored). */
14851
14852 static void
14853 do_neon_mov (void)
14854 {
14855 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14856 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14857 NS_NULL);
14858 struct neon_type_el et;
14859 const char *ldconst = 0;
14860
14861 switch (rs)
14862 {
14863 case NS_DD: /* case 1/9. */
14864 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14865 /* It is not an error here if no type is given. */
14866 inst.error = NULL;
14867 if (et.type == NT_float && et.size == 64)
14868 {
14869 do_vfp_nsyn_opcode ("fcpyd");
14870 break;
14871 }
14872 /* fall through. */
14873
14874 case NS_QQ: /* case 0/1. */
14875 {
14876 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14877 return;
14878 /* The architecture manual I have doesn't explicitly state which
14879 value the U bit should have for register->register moves, but
14880 the equivalent VORR instruction has U = 0, so do that. */
14881 inst.instruction = 0x0200110;
14882 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14883 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14884 inst.instruction |= LOW4 (inst.operands[1].reg);
14885 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14886 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14887 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14888 inst.instruction |= neon_quad (rs) << 6;
14889
14890 neon_dp_fixup (&inst);
14891 }
14892 break;
14893
14894 case NS_DI: /* case 3/11. */
14895 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14896 inst.error = NULL;
14897 if (et.type == NT_float && et.size == 64)
14898 {
14899 /* case 11 (fconstd). */
14900 ldconst = "fconstd";
14901 goto encode_fconstd;
14902 }
14903 /* fall through. */
14904
14905 case NS_QI: /* case 2/3. */
14906 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14907 return;
14908 inst.instruction = 0x0800010;
14909 neon_move_immediate ();
14910 neon_dp_fixup (&inst);
14911 break;
14912
14913 case NS_SR: /* case 4. */
14914 {
14915 unsigned bcdebits = 0;
14916 int logsize;
14917 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14918 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14919
14920 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14921 logsize = neon_logbits (et.size);
14922
14923 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14924 _(BAD_FPU));
14925 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14926 && et.size != 32, _(BAD_FPU));
14927 constraint (et.type == NT_invtype, _("bad type for scalar"));
14928 constraint (x >= 64 / et.size, _("scalar index out of range"));
14929
14930 switch (et.size)
14931 {
14932 case 8: bcdebits = 0x8; break;
14933 case 16: bcdebits = 0x1; break;
14934 case 32: bcdebits = 0x0; break;
14935 default: ;
14936 }
14937
14938 bcdebits |= x << logsize;
14939
14940 inst.instruction = 0xe000b10;
14941 do_vfp_cond_or_thumb ();
14942 inst.instruction |= LOW4 (dn) << 16;
14943 inst.instruction |= HI1 (dn) << 7;
14944 inst.instruction |= inst.operands[1].reg << 12;
14945 inst.instruction |= (bcdebits & 3) << 5;
14946 inst.instruction |= (bcdebits >> 2) << 21;
14947 }
14948 break;
14949
14950 case NS_DRR: /* case 5 (fmdrr). */
14951 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14952 _(BAD_FPU));
14953
14954 inst.instruction = 0xc400b10;
14955 do_vfp_cond_or_thumb ();
14956 inst.instruction |= LOW4 (inst.operands[0].reg);
14957 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14958 inst.instruction |= inst.operands[1].reg << 12;
14959 inst.instruction |= inst.operands[2].reg << 16;
14960 break;
14961
14962 case NS_RS: /* case 6. */
14963 {
14964 unsigned logsize;
14965 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14966 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14967 unsigned abcdebits = 0;
14968
14969 et = neon_check_type (2, NS_NULL,
14970 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14971 logsize = neon_logbits (et.size);
14972
14973 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14974 _(BAD_FPU));
14975 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14976 && et.size != 32, _(BAD_FPU));
14977 constraint (et.type == NT_invtype, _("bad type for scalar"));
14978 constraint (x >= 64 / et.size, _("scalar index out of range"));
14979
14980 switch (et.size)
14981 {
14982 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14983 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14984 case 32: abcdebits = 0x00; break;
14985 default: ;
14986 }
14987
14988 abcdebits |= x << logsize;
14989 inst.instruction = 0xe100b10;
14990 do_vfp_cond_or_thumb ();
14991 inst.instruction |= LOW4 (dn) << 16;
14992 inst.instruction |= HI1 (dn) << 7;
14993 inst.instruction |= inst.operands[0].reg << 12;
14994 inst.instruction |= (abcdebits & 3) << 5;
14995 inst.instruction |= (abcdebits >> 2) << 21;
14996 }
14997 break;
14998
14999 case NS_RRD: /* case 7 (fmrrd). */
15000 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15001 _(BAD_FPU));
15002
15003 inst.instruction = 0xc500b10;
15004 do_vfp_cond_or_thumb ();
15005 inst.instruction |= inst.operands[0].reg << 12;
15006 inst.instruction |= inst.operands[1].reg << 16;
15007 inst.instruction |= LOW4 (inst.operands[2].reg);
15008 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15009 break;
15010
15011 case NS_FF: /* case 8 (fcpys). */
15012 do_vfp_nsyn_opcode ("fcpys");
15013 break;
15014
15015 case NS_FI: /* case 10 (fconsts). */
15016 ldconst = "fconsts";
15017 encode_fconstd:
15018 if (is_quarter_float (inst.operands[1].imm))
15019 {
15020 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15021 do_vfp_nsyn_opcode (ldconst);
15022 }
15023 else
15024 first_error (_("immediate out of range"));
15025 break;
15026
15027 case NS_RF: /* case 12 (fmrs). */
15028 do_vfp_nsyn_opcode ("fmrs");
15029 break;
15030
15031 case NS_FR: /* case 13 (fmsr). */
15032 do_vfp_nsyn_opcode ("fmsr");
15033 break;
15034
15035 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15036 (one of which is a list), but we have parsed four. Do some fiddling to
15037 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15038 expect. */
15039 case NS_RRFF: /* case 14 (fmrrs). */
15040 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15041 _("VFP registers must be adjacent"));
15042 inst.operands[2].imm = 2;
15043 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15044 do_vfp_nsyn_opcode ("fmrrs");
15045 break;
15046
15047 case NS_FFRR: /* case 15 (fmsrr). */
15048 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15049 _("VFP registers must be adjacent"));
15050 inst.operands[1] = inst.operands[2];
15051 inst.operands[2] = inst.operands[3];
15052 inst.operands[0].imm = 2;
15053 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15054 do_vfp_nsyn_opcode ("fmsrr");
15055 break;
15056
15057 default:
15058 abort ();
15059 }
15060 }
15061
15062 static void
15063 do_neon_rshift_round_imm (void)
15064 {
15065 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15066 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15067 int imm = inst.operands[2].imm;
15068
15069 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15070 if (imm == 0)
15071 {
15072 inst.operands[2].present = 0;
15073 do_neon_mov ();
15074 return;
15075 }
15076
15077 constraint (imm < 1 || (unsigned)imm > et.size,
15078 _("immediate out of range for shift"));
15079 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15080 et.size - imm);
15081 }
15082
15083 static void
15084 do_neon_movl (void)
15085 {
15086 struct neon_type_el et = neon_check_type (2, NS_QD,
15087 N_EQK | N_DBL, N_SU_32 | N_KEY);
15088 unsigned sizebits = et.size >> 3;
15089 inst.instruction |= sizebits << 19;
15090 neon_two_same (0, et.type == NT_unsigned, -1);
15091 }
15092
15093 static void
15094 do_neon_trn (void)
15095 {
15096 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15097 struct neon_type_el et = neon_check_type (2, rs,
15098 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15099 NEON_ENCODE (INTEGER, inst);
15100 neon_two_same (neon_quad (rs), 1, et.size);
15101 }
15102
15103 static void
15104 do_neon_zip_uzp (void)
15105 {
15106 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15107 struct neon_type_el et = neon_check_type (2, rs,
15108 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15109 if (rs == NS_DD && et.size == 32)
15110 {
15111 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15112 inst.instruction = N_MNEM_vtrn;
15113 do_neon_trn ();
15114 return;
15115 }
15116 neon_two_same (neon_quad (rs), 1, et.size);
15117 }
15118
15119 static void
15120 do_neon_sat_abs_neg (void)
15121 {
15122 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15123 struct neon_type_el et = neon_check_type (2, rs,
15124 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15125 neon_two_same (neon_quad (rs), 1, et.size);
15126 }
15127
15128 static void
15129 do_neon_pair_long (void)
15130 {
15131 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15132 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15133 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15134 inst.instruction |= (et.type == NT_unsigned) << 7;
15135 neon_two_same (neon_quad (rs), 1, et.size);
15136 }
15137
15138 static void
15139 do_neon_recip_est (void)
15140 {
15141 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15142 struct neon_type_el et = neon_check_type (2, rs,
15143 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15144 inst.instruction |= (et.type == NT_float) << 8;
15145 neon_two_same (neon_quad (rs), 1, et.size);
15146 }
15147
15148 static void
15149 do_neon_cls (void)
15150 {
15151 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15152 struct neon_type_el et = neon_check_type (2, rs,
15153 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15154 neon_two_same (neon_quad (rs), 1, et.size);
15155 }
15156
15157 static void
15158 do_neon_clz (void)
15159 {
15160 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15161 struct neon_type_el et = neon_check_type (2, rs,
15162 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15163 neon_two_same (neon_quad (rs), 1, et.size);
15164 }
15165
15166 static void
15167 do_neon_cnt (void)
15168 {
15169 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15170 struct neon_type_el et = neon_check_type (2, rs,
15171 N_EQK | N_INT, N_8 | N_KEY);
15172 neon_two_same (neon_quad (rs), 1, et.size);
15173 }
15174
15175 static void
15176 do_neon_swp (void)
15177 {
15178 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15179 neon_two_same (neon_quad (rs), 1, -1);
15180 }
15181
15182 static void
15183 do_neon_tbl_tbx (void)
15184 {
15185 unsigned listlenbits;
15186 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15187
15188 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15189 {
15190 first_error (_("bad list length for table lookup"));
15191 return;
15192 }
15193
15194 listlenbits = inst.operands[1].imm - 1;
15195 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15196 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15197 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15198 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15199 inst.instruction |= LOW4 (inst.operands[2].reg);
15200 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15201 inst.instruction |= listlenbits << 8;
15202
15203 neon_dp_fixup (&inst);
15204 }
15205
15206 static void
15207 do_neon_ldm_stm (void)
15208 {
15209 /* P, U and L bits are part of bitmask. */
15210 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15211 unsigned offsetbits = inst.operands[1].imm * 2;
15212
15213 if (inst.operands[1].issingle)
15214 {
15215 do_vfp_nsyn_ldm_stm (is_dbmode);
15216 return;
15217 }
15218
15219 constraint (is_dbmode && !inst.operands[0].writeback,
15220 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15221
15222 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15223 _("register list must contain at least 1 and at most 16 "
15224 "registers"));
15225
15226 inst.instruction |= inst.operands[0].reg << 16;
15227 inst.instruction |= inst.operands[0].writeback << 21;
15228 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15229 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15230
15231 inst.instruction |= offsetbits;
15232
15233 do_vfp_cond_or_thumb ();
15234 }
15235
15236 static void
15237 do_neon_ldr_str (void)
15238 {
15239 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15240
15241 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15242 And is UNPREDICTABLE in thumb mode. */
15243 if (!is_ldr
15244 && inst.operands[1].reg == REG_PC
15245 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15246 {
15247 if (!thumb_mode && warn_on_deprecated)
15248 as_warn (_("Use of PC here is deprecated"));
15249 else
15250 inst.error = _("Use of PC here is UNPREDICTABLE");
15251 }
15252
15253 if (inst.operands[0].issingle)
15254 {
15255 if (is_ldr)
15256 do_vfp_nsyn_opcode ("flds");
15257 else
15258 do_vfp_nsyn_opcode ("fsts");
15259 }
15260 else
15261 {
15262 if (is_ldr)
15263 do_vfp_nsyn_opcode ("fldd");
15264 else
15265 do_vfp_nsyn_opcode ("fstd");
15266 }
15267 }
15268
15269 /* "interleave" version also handles non-interleaving register VLD1/VST1
15270 instructions. */
15271
15272 static void
15273 do_neon_ld_st_interleave (void)
15274 {
15275 struct neon_type_el et = neon_check_type (1, NS_NULL,
15276 N_8 | N_16 | N_32 | N_64);
15277 unsigned alignbits = 0;
15278 unsigned idx;
15279 /* The bits in this table go:
15280 0: register stride of one (0) or two (1)
15281 1,2: register list length, minus one (1, 2, 3, 4).
15282 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15283 We use -1 for invalid entries. */
15284 const int typetable[] =
15285 {
15286 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15287 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15288 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15289 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15290 };
15291 int typebits;
15292
15293 if (et.type == NT_invtype)
15294 return;
15295
15296 if (inst.operands[1].immisalign)
15297 switch (inst.operands[1].imm >> 8)
15298 {
15299 case 64: alignbits = 1; break;
15300 case 128:
15301 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15302 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15303 goto bad_alignment;
15304 alignbits = 2;
15305 break;
15306 case 256:
15307 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15308 goto bad_alignment;
15309 alignbits = 3;
15310 break;
15311 default:
15312 bad_alignment:
15313 first_error (_("bad alignment"));
15314 return;
15315 }
15316
15317 inst.instruction |= alignbits << 4;
15318 inst.instruction |= neon_logbits (et.size) << 6;
15319
15320 /* Bits [4:6] of the immediate in a list specifier encode register stride
15321 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15322 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15323 up the right value for "type" in a table based on this value and the given
15324 list style, then stick it back. */
15325 idx = ((inst.operands[0].imm >> 4) & 7)
15326 | (((inst.instruction >> 8) & 3) << 3);
15327
15328 typebits = typetable[idx];
15329
15330 constraint (typebits == -1, _("bad list type for instruction"));
15331
15332 inst.instruction &= ~0xf00;
15333 inst.instruction |= typebits << 8;
15334 }
15335
15336 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15337 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15338 otherwise. The variable arguments are a list of pairs of legal (size, align)
15339 values, terminated with -1. */
15340
15341 static int
15342 neon_alignment_bit (int size, int align, int *do_align, ...)
15343 {
15344 va_list ap;
15345 int result = FAIL, thissize, thisalign;
15346
15347 if (!inst.operands[1].immisalign)
15348 {
15349 *do_align = 0;
15350 return SUCCESS;
15351 }
15352
15353 va_start (ap, do_align);
15354
15355 do
15356 {
15357 thissize = va_arg (ap, int);
15358 if (thissize == -1)
15359 break;
15360 thisalign = va_arg (ap, int);
15361
15362 if (size == thissize && align == thisalign)
15363 result = SUCCESS;
15364 }
15365 while (result != SUCCESS);
15366
15367 va_end (ap);
15368
15369 if (result == SUCCESS)
15370 *do_align = 1;
15371 else
15372 first_error (_("unsupported alignment for instruction"));
15373
15374 return result;
15375 }
15376
15377 static void
15378 do_neon_ld_st_lane (void)
15379 {
15380 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15381 int align_good, do_align = 0;
15382 int logsize = neon_logbits (et.size);
15383 int align = inst.operands[1].imm >> 8;
15384 int n = (inst.instruction >> 8) & 3;
15385 int max_el = 64 / et.size;
15386
15387 if (et.type == NT_invtype)
15388 return;
15389
15390 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15391 _("bad list length"));
15392 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15393 _("scalar index out of range"));
15394 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15395 && et.size == 8,
15396 _("stride of 2 unavailable when element size is 8"));
15397
15398 switch (n)
15399 {
15400 case 0: /* VLD1 / VST1. */
15401 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15402 32, 32, -1);
15403 if (align_good == FAIL)
15404 return;
15405 if (do_align)
15406 {
15407 unsigned alignbits = 0;
15408 switch (et.size)
15409 {
15410 case 16: alignbits = 0x1; break;
15411 case 32: alignbits = 0x3; break;
15412 default: ;
15413 }
15414 inst.instruction |= alignbits << 4;
15415 }
15416 break;
15417
15418 case 1: /* VLD2 / VST2. */
15419 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15420 32, 64, -1);
15421 if (align_good == FAIL)
15422 return;
15423 if (do_align)
15424 inst.instruction |= 1 << 4;
15425 break;
15426
15427 case 2: /* VLD3 / VST3. */
15428 constraint (inst.operands[1].immisalign,
15429 _("can't use alignment with this instruction"));
15430 break;
15431
15432 case 3: /* VLD4 / VST4. */
15433 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15434 16, 64, 32, 64, 32, 128, -1);
15435 if (align_good == FAIL)
15436 return;
15437 if (do_align)
15438 {
15439 unsigned alignbits = 0;
15440 switch (et.size)
15441 {
15442 case 8: alignbits = 0x1; break;
15443 case 16: alignbits = 0x1; break;
15444 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15445 default: ;
15446 }
15447 inst.instruction |= alignbits << 4;
15448 }
15449 break;
15450
15451 default: ;
15452 }
15453
15454 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15455 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15456 inst.instruction |= 1 << (4 + logsize);
15457
15458 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15459 inst.instruction |= logsize << 10;
15460 }
15461
15462 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15463
15464 static void
15465 do_neon_ld_dup (void)
15466 {
15467 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15468 int align_good, do_align = 0;
15469
15470 if (et.type == NT_invtype)
15471 return;
15472
15473 switch ((inst.instruction >> 8) & 3)
15474 {
15475 case 0: /* VLD1. */
15476 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15477 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15478 &do_align, 16, 16, 32, 32, -1);
15479 if (align_good == FAIL)
15480 return;
15481 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15482 {
15483 case 1: break;
15484 case 2: inst.instruction |= 1 << 5; break;
15485 default: first_error (_("bad list length")); return;
15486 }
15487 inst.instruction |= neon_logbits (et.size) << 6;
15488 break;
15489
15490 case 1: /* VLD2. */
15491 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15492 &do_align, 8, 16, 16, 32, 32, 64, -1);
15493 if (align_good == FAIL)
15494 return;
15495 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15496 _("bad list length"));
15497 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15498 inst.instruction |= 1 << 5;
15499 inst.instruction |= neon_logbits (et.size) << 6;
15500 break;
15501
15502 case 2: /* VLD3. */
15503 constraint (inst.operands[1].immisalign,
15504 _("can't use alignment with this instruction"));
15505 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15506 _("bad list length"));
15507 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15508 inst.instruction |= 1 << 5;
15509 inst.instruction |= neon_logbits (et.size) << 6;
15510 break;
15511
15512 case 3: /* VLD4. */
15513 {
15514 int align = inst.operands[1].imm >> 8;
15515 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15516 16, 64, 32, 64, 32, 128, -1);
15517 if (align_good == FAIL)
15518 return;
15519 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15520 _("bad list length"));
15521 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15522 inst.instruction |= 1 << 5;
15523 if (et.size == 32 && align == 128)
15524 inst.instruction |= 0x3 << 6;
15525 else
15526 inst.instruction |= neon_logbits (et.size) << 6;
15527 }
15528 break;
15529
15530 default: ;
15531 }
15532
15533 inst.instruction |= do_align << 4;
15534 }
15535
15536 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15537 apart from bits [11:4]. */
15538
15539 static void
15540 do_neon_ldx_stx (void)
15541 {
15542 if (inst.operands[1].isreg)
15543 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15544
15545 switch (NEON_LANE (inst.operands[0].imm))
15546 {
15547 case NEON_INTERLEAVE_LANES:
15548 NEON_ENCODE (INTERLV, inst);
15549 do_neon_ld_st_interleave ();
15550 break;
15551
15552 case NEON_ALL_LANES:
15553 NEON_ENCODE (DUP, inst);
15554 do_neon_ld_dup ();
15555 break;
15556
15557 default:
15558 NEON_ENCODE (LANE, inst);
15559 do_neon_ld_st_lane ();
15560 }
15561
15562 /* L bit comes from bit mask. */
15563 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15564 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15565 inst.instruction |= inst.operands[1].reg << 16;
15566
15567 if (inst.operands[1].postind)
15568 {
15569 int postreg = inst.operands[1].imm & 0xf;
15570 constraint (!inst.operands[1].immisreg,
15571 _("post-index must be a register"));
15572 constraint (postreg == 0xd || postreg == 0xf,
15573 _("bad register for post-index"));
15574 inst.instruction |= postreg;
15575 }
15576 else if (inst.operands[1].writeback)
15577 {
15578 inst.instruction |= 0xd;
15579 }
15580 else
15581 inst.instruction |= 0xf;
15582
15583 if (thumb_mode)
15584 inst.instruction |= 0xf9000000;
15585 else
15586 inst.instruction |= 0xf4000000;
15587 }
15588 \f
15589 /* Overall per-instruction processing. */
15590
15591 /* We need to be able to fix up arbitrary expressions in some statements.
15592 This is so that we can handle symbols that are an arbitrary distance from
15593 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15594 which returns part of an address in a form which will be valid for
15595 a data instruction. We do this by pushing the expression into a symbol
15596 in the expr_section, and creating a fix for that. */
15597
15598 static void
15599 fix_new_arm (fragS * frag,
15600 int where,
15601 short int size,
15602 expressionS * exp,
15603 int pc_rel,
15604 int reloc)
15605 {
15606 fixS * new_fix;
15607
15608 switch (exp->X_op)
15609 {
15610 case O_constant:
15611 if (pc_rel)
15612 {
15613 /* Create an absolute valued symbol, so we have something to
15614 refer to in the object file. Unfortunately for us, gas's
15615 generic expression parsing will already have folded out
15616 any use of .set foo/.type foo %function that may have
15617 been used to set type information of the target location,
15618 that's being specified symbolically. We have to presume
15619 the user knows what they are doing. */
15620 char name[16 + 8];
15621 symbolS *symbol;
15622
15623 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15624
15625 symbol = symbol_find_or_make (name);
15626 S_SET_SEGMENT (symbol, absolute_section);
15627 symbol_set_frag (symbol, &zero_address_frag);
15628 S_SET_VALUE (symbol, exp->X_add_number);
15629 exp->X_op = O_symbol;
15630 exp->X_add_symbol = symbol;
15631 exp->X_add_number = 0;
15632 }
15633 /* FALLTHROUGH */
15634 case O_symbol:
15635 case O_add:
15636 case O_subtract:
15637 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15638 (enum bfd_reloc_code_real) reloc);
15639 break;
15640
15641 default:
15642 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15643 pc_rel, (enum bfd_reloc_code_real) reloc);
15644 break;
15645 }
15646
15647 /* Mark whether the fix is to a THUMB instruction, or an ARM
15648 instruction. */
15649 new_fix->tc_fix_data = thumb_mode;
15650 }
15651
15652 /* Create a frg for an instruction requiring relaxation. */
15653 static void
15654 output_relax_insn (void)
15655 {
15656 char * to;
15657 symbolS *sym;
15658 int offset;
15659
15660 /* The size of the instruction is unknown, so tie the debug info to the
15661 start of the instruction. */
15662 dwarf2_emit_insn (0);
15663
15664 switch (inst.reloc.exp.X_op)
15665 {
15666 case O_symbol:
15667 sym = inst.reloc.exp.X_add_symbol;
15668 offset = inst.reloc.exp.X_add_number;
15669 break;
15670 case O_constant:
15671 sym = NULL;
15672 offset = inst.reloc.exp.X_add_number;
15673 break;
15674 default:
15675 sym = make_expr_symbol (&inst.reloc.exp);
15676 offset = 0;
15677 break;
15678 }
15679 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15680 inst.relax, sym, offset, NULL/*offset, opcode*/);
15681 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15682 }
15683
15684 /* Write a 32-bit thumb instruction to buf. */
15685 static void
15686 put_thumb32_insn (char * buf, unsigned long insn)
15687 {
15688 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15689 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15690 }
15691
15692 static void
15693 output_inst (const char * str)
15694 {
15695 char * to = NULL;
15696
15697 if (inst.error)
15698 {
15699 as_bad ("%s -- `%s'", inst.error, str);
15700 return;
15701 }
15702 if (inst.relax)
15703 {
15704 output_relax_insn ();
15705 return;
15706 }
15707 if (inst.size == 0)
15708 return;
15709
15710 to = frag_more (inst.size);
15711 /* PR 9814: Record the thumb mode into the current frag so that we know
15712 what type of NOP padding to use, if necessary. We override any previous
15713 setting so that if the mode has changed then the NOPS that we use will
15714 match the encoding of the last instruction in the frag. */
15715 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15716
15717 if (thumb_mode && (inst.size > THUMB_SIZE))
15718 {
15719 gas_assert (inst.size == (2 * THUMB_SIZE));
15720 put_thumb32_insn (to, inst.instruction);
15721 }
15722 else if (inst.size > INSN_SIZE)
15723 {
15724 gas_assert (inst.size == (2 * INSN_SIZE));
15725 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15726 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15727 }
15728 else
15729 md_number_to_chars (to, inst.instruction, inst.size);
15730
15731 if (inst.reloc.type != BFD_RELOC_UNUSED)
15732 fix_new_arm (frag_now, to - frag_now->fr_literal,
15733 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15734 inst.reloc.type);
15735
15736 dwarf2_emit_insn (inst.size);
15737 }
15738
15739 static char *
15740 output_it_inst (int cond, int mask, char * to)
15741 {
15742 unsigned long instruction = 0xbf00;
15743
15744 mask &= 0xf;
15745 instruction |= mask;
15746 instruction |= cond << 4;
15747
15748 if (to == NULL)
15749 {
15750 to = frag_more (2);
15751 #ifdef OBJ_ELF
15752 dwarf2_emit_insn (2);
15753 #endif
15754 }
15755
15756 md_number_to_chars (to, instruction, 2);
15757
15758 return to;
15759 }
15760
15761 /* Tag values used in struct asm_opcode's tag field. */
15762 enum opcode_tag
15763 {
15764 OT_unconditional, /* Instruction cannot be conditionalized.
15765 The ARM condition field is still 0xE. */
15766 OT_unconditionalF, /* Instruction cannot be conditionalized
15767 and carries 0xF in its ARM condition field. */
15768 OT_csuffix, /* Instruction takes a conditional suffix. */
15769 OT_csuffixF, /* Some forms of the instruction take a conditional
15770 suffix, others place 0xF where the condition field
15771 would be. */
15772 OT_cinfix3, /* Instruction takes a conditional infix,
15773 beginning at character index 3. (In
15774 unified mode, it becomes a suffix.) */
15775 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15776 tsts, cmps, cmns, and teqs. */
15777 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15778 character index 3, even in unified mode. Used for
15779 legacy instructions where suffix and infix forms
15780 may be ambiguous. */
15781 OT_csuf_or_in3, /* Instruction takes either a conditional
15782 suffix or an infix at character index 3. */
15783 OT_odd_infix_unc, /* This is the unconditional variant of an
15784 instruction that takes a conditional infix
15785 at an unusual position. In unified mode,
15786 this variant will accept a suffix. */
15787 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15788 are the conditional variants of instructions that
15789 take conditional infixes in unusual positions.
15790 The infix appears at character index
15791 (tag - OT_odd_infix_0). These are not accepted
15792 in unified mode. */
15793 };
15794
15795 /* Subroutine of md_assemble, responsible for looking up the primary
15796 opcode from the mnemonic the user wrote. STR points to the
15797 beginning of the mnemonic.
15798
15799 This is not simply a hash table lookup, because of conditional
15800 variants. Most instructions have conditional variants, which are
15801 expressed with a _conditional affix_ to the mnemonic. If we were
15802 to encode each conditional variant as a literal string in the opcode
15803 table, it would have approximately 20,000 entries.
15804
15805 Most mnemonics take this affix as a suffix, and in unified syntax,
15806 'most' is upgraded to 'all'. However, in the divided syntax, some
15807 instructions take the affix as an infix, notably the s-variants of
15808 the arithmetic instructions. Of those instructions, all but six
15809 have the infix appear after the third character of the mnemonic.
15810
15811 Accordingly, the algorithm for looking up primary opcodes given
15812 an identifier is:
15813
15814 1. Look up the identifier in the opcode table.
15815 If we find a match, go to step U.
15816
15817 2. Look up the last two characters of the identifier in the
15818 conditions table. If we find a match, look up the first N-2
15819 characters of the identifier in the opcode table. If we
15820 find a match, go to step CE.
15821
15822 3. Look up the fourth and fifth characters of the identifier in
15823 the conditions table. If we find a match, extract those
15824 characters from the identifier, and look up the remaining
15825 characters in the opcode table. If we find a match, go
15826 to step CM.
15827
15828 4. Fail.
15829
15830 U. Examine the tag field of the opcode structure, in case this is
15831 one of the six instructions with its conditional infix in an
15832 unusual place. If it is, the tag tells us where to find the
15833 infix; look it up in the conditions table and set inst.cond
15834 accordingly. Otherwise, this is an unconditional instruction.
15835 Again set inst.cond accordingly. Return the opcode structure.
15836
15837 CE. Examine the tag field to make sure this is an instruction that
15838 should receive a conditional suffix. If it is not, fail.
15839 Otherwise, set inst.cond from the suffix we already looked up,
15840 and return the opcode structure.
15841
15842 CM. Examine the tag field to make sure this is an instruction that
15843 should receive a conditional infix after the third character.
15844 If it is not, fail. Otherwise, undo the edits to the current
15845 line of input and proceed as for case CE. */
15846
15847 static const struct asm_opcode *
15848 opcode_lookup (char **str)
15849 {
15850 char *end, *base;
15851 char *affix;
15852 const struct asm_opcode *opcode;
15853 const struct asm_cond *cond;
15854 char save[2];
15855
15856 /* Scan up to the end of the mnemonic, which must end in white space,
15857 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15858 for (base = end = *str; *end != '\0'; end++)
15859 if (*end == ' ' || *end == '.')
15860 break;
15861
15862 if (end == base)
15863 return NULL;
15864
15865 /* Handle a possible width suffix and/or Neon type suffix. */
15866 if (end[0] == '.')
15867 {
15868 int offset = 2;
15869
15870 /* The .w and .n suffixes are only valid if the unified syntax is in
15871 use. */
15872 if (unified_syntax && end[1] == 'w')
15873 inst.size_req = 4;
15874 else if (unified_syntax && end[1] == 'n')
15875 inst.size_req = 2;
15876 else
15877 offset = 0;
15878
15879 inst.vectype.elems = 0;
15880
15881 *str = end + offset;
15882
15883 if (end[offset] == '.')
15884 {
15885 /* See if we have a Neon type suffix (possible in either unified or
15886 non-unified ARM syntax mode). */
15887 if (parse_neon_type (&inst.vectype, str) == FAIL)
15888 return NULL;
15889 }
15890 else if (end[offset] != '\0' && end[offset] != ' ')
15891 return NULL;
15892 }
15893 else
15894 *str = end;
15895
15896 /* Look for unaffixed or special-case affixed mnemonic. */
15897 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15898 end - base);
15899 if (opcode)
15900 {
15901 /* step U */
15902 if (opcode->tag < OT_odd_infix_0)
15903 {
15904 inst.cond = COND_ALWAYS;
15905 return opcode;
15906 }
15907
15908 if (warn_on_deprecated && unified_syntax)
15909 as_warn (_("conditional infixes are deprecated in unified syntax"));
15910 affix = base + (opcode->tag - OT_odd_infix_0);
15911 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15912 gas_assert (cond);
15913
15914 inst.cond = cond->value;
15915 return opcode;
15916 }
15917
15918 /* Cannot have a conditional suffix on a mnemonic of less than two
15919 characters. */
15920 if (end - base < 3)
15921 return NULL;
15922
15923 /* Look for suffixed mnemonic. */
15924 affix = end - 2;
15925 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15926 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15927 affix - base);
15928 if (opcode && cond)
15929 {
15930 /* step CE */
15931 switch (opcode->tag)
15932 {
15933 case OT_cinfix3_legacy:
15934 /* Ignore conditional suffixes matched on infix only mnemonics. */
15935 break;
15936
15937 case OT_cinfix3:
15938 case OT_cinfix3_deprecated:
15939 case OT_odd_infix_unc:
15940 if (!unified_syntax)
15941 return 0;
15942 /* else fall through */
15943
15944 case OT_csuffix:
15945 case OT_csuffixF:
15946 case OT_csuf_or_in3:
15947 inst.cond = cond->value;
15948 return opcode;
15949
15950 case OT_unconditional:
15951 case OT_unconditionalF:
15952 if (thumb_mode)
15953 inst.cond = cond->value;
15954 else
15955 {
15956 /* Delayed diagnostic. */
15957 inst.error = BAD_COND;
15958 inst.cond = COND_ALWAYS;
15959 }
15960 return opcode;
15961
15962 default:
15963 return NULL;
15964 }
15965 }
15966
15967 /* Cannot have a usual-position infix on a mnemonic of less than
15968 six characters (five would be a suffix). */
15969 if (end - base < 6)
15970 return NULL;
15971
15972 /* Look for infixed mnemonic in the usual position. */
15973 affix = base + 3;
15974 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15975 if (!cond)
15976 return NULL;
15977
15978 memcpy (save, affix, 2);
15979 memmove (affix, affix + 2, (end - affix) - 2);
15980 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15981 (end - base) - 2);
15982 memmove (affix + 2, affix, (end - affix) - 2);
15983 memcpy (affix, save, 2);
15984
15985 if (opcode
15986 && (opcode->tag == OT_cinfix3
15987 || opcode->tag == OT_cinfix3_deprecated
15988 || opcode->tag == OT_csuf_or_in3
15989 || opcode->tag == OT_cinfix3_legacy))
15990 {
15991 /* Step CM. */
15992 if (warn_on_deprecated && unified_syntax
15993 && (opcode->tag == OT_cinfix3
15994 || opcode->tag == OT_cinfix3_deprecated))
15995 as_warn (_("conditional infixes are deprecated in unified syntax"));
15996
15997 inst.cond = cond->value;
15998 return opcode;
15999 }
16000
16001 return NULL;
16002 }
16003
16004 /* This function generates an initial IT instruction, leaving its block
16005 virtually open for the new instructions. Eventually,
16006 the mask will be updated by now_it_add_mask () each time
16007 a new instruction needs to be included in the IT block.
16008 Finally, the block is closed with close_automatic_it_block ().
16009 The block closure can be requested either from md_assemble (),
16010 a tencode (), or due to a label hook. */
16011
16012 static void
16013 new_automatic_it_block (int cond)
16014 {
16015 now_it.state = AUTOMATIC_IT_BLOCK;
16016 now_it.mask = 0x18;
16017 now_it.cc = cond;
16018 now_it.block_length = 1;
16019 mapping_state (MAP_THUMB);
16020 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16021 }
16022
16023 /* Close an automatic IT block.
16024 See comments in new_automatic_it_block (). */
16025
16026 static void
16027 close_automatic_it_block (void)
16028 {
16029 now_it.mask = 0x10;
16030 now_it.block_length = 0;
16031 }
16032
16033 /* Update the mask of the current automatically-generated IT
16034 instruction. See comments in new_automatic_it_block (). */
16035
16036 static void
16037 now_it_add_mask (int cond)
16038 {
16039 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16040 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16041 | ((bitvalue) << (nbit)))
16042 const int resulting_bit = (cond & 1);
16043
16044 now_it.mask &= 0xf;
16045 now_it.mask = SET_BIT_VALUE (now_it.mask,
16046 resulting_bit,
16047 (5 - now_it.block_length));
16048 now_it.mask = SET_BIT_VALUE (now_it.mask,
16049 1,
16050 ((5 - now_it.block_length) - 1) );
16051 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16052
16053 #undef CLEAR_BIT
16054 #undef SET_BIT_VALUE
16055 }
16056
16057 /* The IT blocks handling machinery is accessed through the these functions:
16058 it_fsm_pre_encode () from md_assemble ()
16059 set_it_insn_type () optional, from the tencode functions
16060 set_it_insn_type_last () ditto
16061 in_it_block () ditto
16062 it_fsm_post_encode () from md_assemble ()
16063 force_automatic_it_block_close () from label habdling functions
16064
16065 Rationale:
16066 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16067 initializing the IT insn type with a generic initial value depending
16068 on the inst.condition.
16069 2) During the tencode function, two things may happen:
16070 a) The tencode function overrides the IT insn type by
16071 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16072 b) The tencode function queries the IT block state by
16073 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16074
16075 Both set_it_insn_type and in_it_block run the internal FSM state
16076 handling function (handle_it_state), because: a) setting the IT insn
16077 type may incur in an invalid state (exiting the function),
16078 and b) querying the state requires the FSM to be updated.
16079 Specifically we want to avoid creating an IT block for conditional
16080 branches, so it_fsm_pre_encode is actually a guess and we can't
16081 determine whether an IT block is required until the tencode () routine
16082 has decided what type of instruction this actually it.
16083 Because of this, if set_it_insn_type and in_it_block have to be used,
16084 set_it_insn_type has to be called first.
16085
16086 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16087 determines the insn IT type depending on the inst.cond code.
16088 When a tencode () routine encodes an instruction that can be
16089 either outside an IT block, or, in the case of being inside, has to be
16090 the last one, set_it_insn_type_last () will determine the proper
16091 IT instruction type based on the inst.cond code. Otherwise,
16092 set_it_insn_type can be called for overriding that logic or
16093 for covering other cases.
16094
16095 Calling handle_it_state () may not transition the IT block state to
16096 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16097 still queried. Instead, if the FSM determines that the state should
16098 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16099 after the tencode () function: that's what it_fsm_post_encode () does.
16100
16101 Since in_it_block () calls the state handling function to get an
16102 updated state, an error may occur (due to invalid insns combination).
16103 In that case, inst.error is set.
16104 Therefore, inst.error has to be checked after the execution of
16105 the tencode () routine.
16106
16107 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16108 any pending state change (if any) that didn't take place in
16109 handle_it_state () as explained above. */
16110
16111 static void
16112 it_fsm_pre_encode (void)
16113 {
16114 if (inst.cond != COND_ALWAYS)
16115 inst.it_insn_type = INSIDE_IT_INSN;
16116 else
16117 inst.it_insn_type = OUTSIDE_IT_INSN;
16118
16119 now_it.state_handled = 0;
16120 }
16121
16122 /* IT state FSM handling function. */
16123
16124 static int
16125 handle_it_state (void)
16126 {
16127 now_it.state_handled = 1;
16128
16129 switch (now_it.state)
16130 {
16131 case OUTSIDE_IT_BLOCK:
16132 switch (inst.it_insn_type)
16133 {
16134 case OUTSIDE_IT_INSN:
16135 break;
16136
16137 case INSIDE_IT_INSN:
16138 case INSIDE_IT_LAST_INSN:
16139 if (thumb_mode == 0)
16140 {
16141 if (unified_syntax
16142 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16143 as_tsktsk (_("Warning: conditional outside an IT block"\
16144 " for Thumb."));
16145 }
16146 else
16147 {
16148 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16149 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16150 {
16151 /* Automatically generate the IT instruction. */
16152 new_automatic_it_block (inst.cond);
16153 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16154 close_automatic_it_block ();
16155 }
16156 else
16157 {
16158 inst.error = BAD_OUT_IT;
16159 return FAIL;
16160 }
16161 }
16162 break;
16163
16164 case IF_INSIDE_IT_LAST_INSN:
16165 case NEUTRAL_IT_INSN:
16166 break;
16167
16168 case IT_INSN:
16169 now_it.state = MANUAL_IT_BLOCK;
16170 now_it.block_length = 0;
16171 break;
16172 }
16173 break;
16174
16175 case AUTOMATIC_IT_BLOCK:
16176 /* Three things may happen now:
16177 a) We should increment current it block size;
16178 b) We should close current it block (closing insn or 4 insns);
16179 c) We should close current it block and start a new one (due
16180 to incompatible conditions or
16181 4 insns-length block reached). */
16182
16183 switch (inst.it_insn_type)
16184 {
16185 case OUTSIDE_IT_INSN:
16186 /* The closure of the block shall happen immediatelly,
16187 so any in_it_block () call reports the block as closed. */
16188 force_automatic_it_block_close ();
16189 break;
16190
16191 case INSIDE_IT_INSN:
16192 case INSIDE_IT_LAST_INSN:
16193 case IF_INSIDE_IT_LAST_INSN:
16194 now_it.block_length++;
16195
16196 if (now_it.block_length > 4
16197 || !now_it_compatible (inst.cond))
16198 {
16199 force_automatic_it_block_close ();
16200 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16201 new_automatic_it_block (inst.cond);
16202 }
16203 else
16204 {
16205 now_it_add_mask (inst.cond);
16206 }
16207
16208 if (now_it.state == AUTOMATIC_IT_BLOCK
16209 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16210 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16211 close_automatic_it_block ();
16212 break;
16213
16214 case NEUTRAL_IT_INSN:
16215 now_it.block_length++;
16216
16217 if (now_it.block_length > 4)
16218 force_automatic_it_block_close ();
16219 else
16220 now_it_add_mask (now_it.cc & 1);
16221 break;
16222
16223 case IT_INSN:
16224 close_automatic_it_block ();
16225 now_it.state = MANUAL_IT_BLOCK;
16226 break;
16227 }
16228 break;
16229
16230 case MANUAL_IT_BLOCK:
16231 {
16232 /* Check conditional suffixes. */
16233 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16234 int is_last;
16235 now_it.mask <<= 1;
16236 now_it.mask &= 0x1f;
16237 is_last = (now_it.mask == 0x10);
16238
16239 switch (inst.it_insn_type)
16240 {
16241 case OUTSIDE_IT_INSN:
16242 inst.error = BAD_NOT_IT;
16243 return FAIL;
16244
16245 case INSIDE_IT_INSN:
16246 if (cond != inst.cond)
16247 {
16248 inst.error = BAD_IT_COND;
16249 return FAIL;
16250 }
16251 break;
16252
16253 case INSIDE_IT_LAST_INSN:
16254 case IF_INSIDE_IT_LAST_INSN:
16255 if (cond != inst.cond)
16256 {
16257 inst.error = BAD_IT_COND;
16258 return FAIL;
16259 }
16260 if (!is_last)
16261 {
16262 inst.error = BAD_BRANCH;
16263 return FAIL;
16264 }
16265 break;
16266
16267 case NEUTRAL_IT_INSN:
16268 /* The BKPT instruction is unconditional even in an IT block. */
16269 break;
16270
16271 case IT_INSN:
16272 inst.error = BAD_IT_IT;
16273 return FAIL;
16274 }
16275 }
16276 break;
16277 }
16278
16279 return SUCCESS;
16280 }
16281
16282 static void
16283 it_fsm_post_encode (void)
16284 {
16285 int is_last;
16286
16287 if (!now_it.state_handled)
16288 handle_it_state ();
16289
16290 is_last = (now_it.mask == 0x10);
16291 if (is_last)
16292 {
16293 now_it.state = OUTSIDE_IT_BLOCK;
16294 now_it.mask = 0;
16295 }
16296 }
16297
16298 static void
16299 force_automatic_it_block_close (void)
16300 {
16301 if (now_it.state == AUTOMATIC_IT_BLOCK)
16302 {
16303 close_automatic_it_block ();
16304 now_it.state = OUTSIDE_IT_BLOCK;
16305 now_it.mask = 0;
16306 }
16307 }
16308
16309 static int
16310 in_it_block (void)
16311 {
16312 if (!now_it.state_handled)
16313 handle_it_state ();
16314
16315 return now_it.state != OUTSIDE_IT_BLOCK;
16316 }
16317
16318 void
16319 md_assemble (char *str)
16320 {
16321 char *p = str;
16322 const struct asm_opcode * opcode;
16323
16324 /* Align the previous label if needed. */
16325 if (last_label_seen != NULL)
16326 {
16327 symbol_set_frag (last_label_seen, frag_now);
16328 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16329 S_SET_SEGMENT (last_label_seen, now_seg);
16330 }
16331
16332 memset (&inst, '\0', sizeof (inst));
16333 inst.reloc.type = BFD_RELOC_UNUSED;
16334
16335 opcode = opcode_lookup (&p);
16336 if (!opcode)
16337 {
16338 /* It wasn't an instruction, but it might be a register alias of
16339 the form alias .req reg, or a Neon .dn/.qn directive. */
16340 if (! create_register_alias (str, p)
16341 && ! create_neon_reg_alias (str, p))
16342 as_bad (_("bad instruction `%s'"), str);
16343
16344 return;
16345 }
16346
16347 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16348 as_warn (_("s suffix on comparison instruction is deprecated"));
16349
16350 /* The value which unconditional instructions should have in place of the
16351 condition field. */
16352 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16353
16354 if (thumb_mode)
16355 {
16356 arm_feature_set variant;
16357
16358 variant = cpu_variant;
16359 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16360 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16361 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16362 /* Check that this instruction is supported for this CPU. */
16363 if (!opcode->tvariant
16364 || (thumb_mode == 1
16365 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16366 {
16367 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16368 return;
16369 }
16370 if (inst.cond != COND_ALWAYS && !unified_syntax
16371 && opcode->tencode != do_t_branch)
16372 {
16373 as_bad (_("Thumb does not support conditional execution"));
16374 return;
16375 }
16376
16377 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16378 {
16379 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16380 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16381 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16382 {
16383 /* Two things are addressed here.
16384 1) Implicit require narrow instructions on Thumb-1.
16385 This avoids relaxation accidentally introducing Thumb-2
16386 instructions.
16387 2) Reject wide instructions in non Thumb-2 cores. */
16388 if (inst.size_req == 0)
16389 inst.size_req = 2;
16390 else if (inst.size_req == 4)
16391 {
16392 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16393 return;
16394 }
16395 }
16396 }
16397
16398 inst.instruction = opcode->tvalue;
16399
16400 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16401 {
16402 /* Prepare the it_insn_type for those encodings that don't set
16403 it. */
16404 it_fsm_pre_encode ();
16405
16406 opcode->tencode ();
16407
16408 it_fsm_post_encode ();
16409 }
16410
16411 if (!(inst.error || inst.relax))
16412 {
16413 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16414 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16415 if (inst.size_req && inst.size_req != inst.size)
16416 {
16417 as_bad (_("cannot honor width suffix -- `%s'"), str);
16418 return;
16419 }
16420 }
16421
16422 /* Something has gone badly wrong if we try to relax a fixed size
16423 instruction. */
16424 gas_assert (inst.size_req == 0 || !inst.relax);
16425
16426 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16427 *opcode->tvariant);
16428 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16429 set those bits when Thumb-2 32-bit instructions are seen. ie.
16430 anything other than bl/blx and v6-M instructions.
16431 This is overly pessimistic for relaxable instructions. */
16432 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16433 || inst.relax)
16434 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16435 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16436 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16437 arm_ext_v6t2);
16438
16439 check_neon_suffixes;
16440
16441 if (!inst.error)
16442 {
16443 mapping_state (MAP_THUMB);
16444 }
16445 }
16446 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16447 {
16448 bfd_boolean is_bx;
16449
16450 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16451 is_bx = (opcode->aencode == do_bx);
16452
16453 /* Check that this instruction is supported for this CPU. */
16454 if (!(is_bx && fix_v4bx)
16455 && !(opcode->avariant &&
16456 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16457 {
16458 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16459 return;
16460 }
16461 if (inst.size_req)
16462 {
16463 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16464 return;
16465 }
16466
16467 inst.instruction = opcode->avalue;
16468 if (opcode->tag == OT_unconditionalF)
16469 inst.instruction |= 0xF << 28;
16470 else
16471 inst.instruction |= inst.cond << 28;
16472 inst.size = INSN_SIZE;
16473 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16474 {
16475 it_fsm_pre_encode ();
16476 opcode->aencode ();
16477 it_fsm_post_encode ();
16478 }
16479 /* Arm mode bx is marked as both v4T and v5 because it's still required
16480 on a hypothetical non-thumb v5 core. */
16481 if (is_bx)
16482 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16483 else
16484 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16485 *opcode->avariant);
16486
16487 check_neon_suffixes;
16488
16489 if (!inst.error)
16490 {
16491 mapping_state (MAP_ARM);
16492 }
16493 }
16494 else
16495 {
16496 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16497 "-- `%s'"), str);
16498 return;
16499 }
16500 output_inst (str);
16501 }
16502
16503 static void
16504 check_it_blocks_finished (void)
16505 {
16506 #ifdef OBJ_ELF
16507 asection *sect;
16508
16509 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16510 if (seg_info (sect)->tc_segment_info_data.current_it.state
16511 == MANUAL_IT_BLOCK)
16512 {
16513 as_warn (_("section '%s' finished with an open IT block."),
16514 sect->name);
16515 }
16516 #else
16517 if (now_it.state == MANUAL_IT_BLOCK)
16518 as_warn (_("file finished with an open IT block."));
16519 #endif
16520 }
16521
16522 /* Various frobbings of labels and their addresses. */
16523
16524 void
16525 arm_start_line_hook (void)
16526 {
16527 last_label_seen = NULL;
16528 }
16529
16530 void
16531 arm_frob_label (symbolS * sym)
16532 {
16533 last_label_seen = sym;
16534
16535 ARM_SET_THUMB (sym, thumb_mode);
16536
16537 #if defined OBJ_COFF || defined OBJ_ELF
16538 ARM_SET_INTERWORK (sym, support_interwork);
16539 #endif
16540
16541 force_automatic_it_block_close ();
16542
16543 /* Note - do not allow local symbols (.Lxxx) to be labelled
16544 as Thumb functions. This is because these labels, whilst
16545 they exist inside Thumb code, are not the entry points for
16546 possible ARM->Thumb calls. Also, these labels can be used
16547 as part of a computed goto or switch statement. eg gcc
16548 can generate code that looks like this:
16549
16550 ldr r2, [pc, .Laaa]
16551 lsl r3, r3, #2
16552 ldr r2, [r3, r2]
16553 mov pc, r2
16554
16555 .Lbbb: .word .Lxxx
16556 .Lccc: .word .Lyyy
16557 ..etc...
16558 .Laaa: .word Lbbb
16559
16560 The first instruction loads the address of the jump table.
16561 The second instruction converts a table index into a byte offset.
16562 The third instruction gets the jump address out of the table.
16563 The fourth instruction performs the jump.
16564
16565 If the address stored at .Laaa is that of a symbol which has the
16566 Thumb_Func bit set, then the linker will arrange for this address
16567 to have the bottom bit set, which in turn would mean that the
16568 address computation performed by the third instruction would end
16569 up with the bottom bit set. Since the ARM is capable of unaligned
16570 word loads, the instruction would then load the incorrect address
16571 out of the jump table, and chaos would ensue. */
16572 if (label_is_thumb_function_name
16573 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16574 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16575 {
16576 /* When the address of a Thumb function is taken the bottom
16577 bit of that address should be set. This will allow
16578 interworking between Arm and Thumb functions to work
16579 correctly. */
16580
16581 THUMB_SET_FUNC (sym, 1);
16582
16583 label_is_thumb_function_name = FALSE;
16584 }
16585
16586 dwarf2_emit_label (sym);
16587 }
16588
16589 bfd_boolean
16590 arm_data_in_code (void)
16591 {
16592 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16593 {
16594 *input_line_pointer = '/';
16595 input_line_pointer += 5;
16596 *input_line_pointer = 0;
16597 return TRUE;
16598 }
16599
16600 return FALSE;
16601 }
16602
16603 char *
16604 arm_canonicalize_symbol_name (char * name)
16605 {
16606 int len;
16607
16608 if (thumb_mode && (len = strlen (name)) > 5
16609 && streq (name + len - 5, "/data"))
16610 *(name + len - 5) = 0;
16611
16612 return name;
16613 }
16614 \f
16615 /* Table of all register names defined by default. The user can
16616 define additional names with .req. Note that all register names
16617 should appear in both upper and lowercase variants. Some registers
16618 also have mixed-case names. */
16619
16620 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16621 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16622 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16623 #define REGSET(p,t) \
16624 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16625 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16626 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16627 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16628 #define REGSETH(p,t) \
16629 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16630 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16631 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16632 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16633 #define REGSET2(p,t) \
16634 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16635 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16636 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16637 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16638 #define SPLRBANK(base,bank,t) \
16639 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16640 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16641 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16642 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16643 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16644 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16645
16646 static const struct reg_entry reg_names[] =
16647 {
16648 /* ARM integer registers. */
16649 REGSET(r, RN), REGSET(R, RN),
16650
16651 /* ATPCS synonyms. */
16652 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16653 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16654 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16655
16656 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16657 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16658 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16659
16660 /* Well-known aliases. */
16661 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16662 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16663
16664 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16665 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16666
16667 /* Coprocessor numbers. */
16668 REGSET(p, CP), REGSET(P, CP),
16669
16670 /* Coprocessor register numbers. The "cr" variants are for backward
16671 compatibility. */
16672 REGSET(c, CN), REGSET(C, CN),
16673 REGSET(cr, CN), REGSET(CR, CN),
16674
16675 /* ARM banked registers. */
16676 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16677 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16678 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16679 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16680 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16681 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16682 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16683
16684 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16685 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16686 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16687 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16688 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16689 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16690 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16691 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16692
16693 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16694 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16695 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16696 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16697 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16698 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16699 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16700 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16701 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16702
16703 /* FPA registers. */
16704 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16705 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16706
16707 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16708 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16709
16710 /* VFP SP registers. */
16711 REGSET(s,VFS), REGSET(S,VFS),
16712 REGSETH(s,VFS), REGSETH(S,VFS),
16713
16714 /* VFP DP Registers. */
16715 REGSET(d,VFD), REGSET(D,VFD),
16716 /* Extra Neon DP registers. */
16717 REGSETH(d,VFD), REGSETH(D,VFD),
16718
16719 /* Neon QP registers. */
16720 REGSET2(q,NQ), REGSET2(Q,NQ),
16721
16722 /* VFP control registers. */
16723 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16724 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16725 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16726 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16727 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16728 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16729
16730 /* Maverick DSP coprocessor registers. */
16731 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16732 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16733
16734 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16735 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16736 REGDEF(dspsc,0,DSPSC),
16737
16738 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16739 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16740 REGDEF(DSPSC,0,DSPSC),
16741
16742 /* iWMMXt data registers - p0, c0-15. */
16743 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16744
16745 /* iWMMXt control registers - p1, c0-3. */
16746 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16747 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16748 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16749 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16750
16751 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16752 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16753 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16754 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16755 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16756
16757 /* XScale accumulator registers. */
16758 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16759 };
16760 #undef REGDEF
16761 #undef REGNUM
16762 #undef REGSET
16763
16764 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16765 within psr_required_here. */
16766 static const struct asm_psr psrs[] =
16767 {
16768 /* Backward compatibility notation. Note that "all" is no longer
16769 truly all possible PSR bits. */
16770 {"all", PSR_c | PSR_f},
16771 {"flg", PSR_f},
16772 {"ctl", PSR_c},
16773
16774 /* Individual flags. */
16775 {"f", PSR_f},
16776 {"c", PSR_c},
16777 {"x", PSR_x},
16778 {"s", PSR_s},
16779
16780 /* Combinations of flags. */
16781 {"fs", PSR_f | PSR_s},
16782 {"fx", PSR_f | PSR_x},
16783 {"fc", PSR_f | PSR_c},
16784 {"sf", PSR_s | PSR_f},
16785 {"sx", PSR_s | PSR_x},
16786 {"sc", PSR_s | PSR_c},
16787 {"xf", PSR_x | PSR_f},
16788 {"xs", PSR_x | PSR_s},
16789 {"xc", PSR_x | PSR_c},
16790 {"cf", PSR_c | PSR_f},
16791 {"cs", PSR_c | PSR_s},
16792 {"cx", PSR_c | PSR_x},
16793 {"fsx", PSR_f | PSR_s | PSR_x},
16794 {"fsc", PSR_f | PSR_s | PSR_c},
16795 {"fxs", PSR_f | PSR_x | PSR_s},
16796 {"fxc", PSR_f | PSR_x | PSR_c},
16797 {"fcs", PSR_f | PSR_c | PSR_s},
16798 {"fcx", PSR_f | PSR_c | PSR_x},
16799 {"sfx", PSR_s | PSR_f | PSR_x},
16800 {"sfc", PSR_s | PSR_f | PSR_c},
16801 {"sxf", PSR_s | PSR_x | PSR_f},
16802 {"sxc", PSR_s | PSR_x | PSR_c},
16803 {"scf", PSR_s | PSR_c | PSR_f},
16804 {"scx", PSR_s | PSR_c | PSR_x},
16805 {"xfs", PSR_x | PSR_f | PSR_s},
16806 {"xfc", PSR_x | PSR_f | PSR_c},
16807 {"xsf", PSR_x | PSR_s | PSR_f},
16808 {"xsc", PSR_x | PSR_s | PSR_c},
16809 {"xcf", PSR_x | PSR_c | PSR_f},
16810 {"xcs", PSR_x | PSR_c | PSR_s},
16811 {"cfs", PSR_c | PSR_f | PSR_s},
16812 {"cfx", PSR_c | PSR_f | PSR_x},
16813 {"csf", PSR_c | PSR_s | PSR_f},
16814 {"csx", PSR_c | PSR_s | PSR_x},
16815 {"cxf", PSR_c | PSR_x | PSR_f},
16816 {"cxs", PSR_c | PSR_x | PSR_s},
16817 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16818 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16819 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16820 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16821 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16822 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16823 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16824 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16825 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16826 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16827 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16828 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16829 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16830 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16831 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16832 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16833 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16834 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16835 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16836 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16837 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16838 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16839 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16840 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16841 };
16842
16843 /* Table of V7M psr names. */
16844 static const struct asm_psr v7m_psrs[] =
16845 {
16846 {"apsr", 0 }, {"APSR", 0 },
16847 {"iapsr", 1 }, {"IAPSR", 1 },
16848 {"eapsr", 2 }, {"EAPSR", 2 },
16849 {"psr", 3 }, {"PSR", 3 },
16850 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16851 {"ipsr", 5 }, {"IPSR", 5 },
16852 {"epsr", 6 }, {"EPSR", 6 },
16853 {"iepsr", 7 }, {"IEPSR", 7 },
16854 {"msp", 8 }, {"MSP", 8 },
16855 {"psp", 9 }, {"PSP", 9 },
16856 {"primask", 16}, {"PRIMASK", 16},
16857 {"basepri", 17}, {"BASEPRI", 17},
16858 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16859 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
16860 {"faultmask", 19}, {"FAULTMASK", 19},
16861 {"control", 20}, {"CONTROL", 20}
16862 };
16863
16864 /* Table of all shift-in-operand names. */
16865 static const struct asm_shift_name shift_names [] =
16866 {
16867 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16868 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16869 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16870 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16871 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16872 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16873 };
16874
16875 /* Table of all explicit relocation names. */
16876 #ifdef OBJ_ELF
16877 static struct reloc_entry reloc_names[] =
16878 {
16879 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16880 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16881 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16882 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16883 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16884 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16885 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16886 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16887 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16888 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16889 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16890 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16891 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16892 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16893 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16894 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16895 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16896 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
16897 };
16898 #endif
16899
16900 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16901 static const struct asm_cond conds[] =
16902 {
16903 {"eq", 0x0},
16904 {"ne", 0x1},
16905 {"cs", 0x2}, {"hs", 0x2},
16906 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16907 {"mi", 0x4},
16908 {"pl", 0x5},
16909 {"vs", 0x6},
16910 {"vc", 0x7},
16911 {"hi", 0x8},
16912 {"ls", 0x9},
16913 {"ge", 0xa},
16914 {"lt", 0xb},
16915 {"gt", 0xc},
16916 {"le", 0xd},
16917 {"al", 0xe}
16918 };
16919
16920 static struct asm_barrier_opt barrier_opt_names[] =
16921 {
16922 { "sy", 0xf }, { "SY", 0xf },
16923 { "un", 0x7 }, { "UN", 0x7 },
16924 { "st", 0xe }, { "ST", 0xe },
16925 { "unst", 0x6 }, { "UNST", 0x6 },
16926 { "ish", 0xb }, { "ISH", 0xb },
16927 { "sh", 0xb }, { "SH", 0xb },
16928 { "ishst", 0xa }, { "ISHST", 0xa },
16929 { "shst", 0xa }, { "SHST", 0xa },
16930 { "nsh", 0x7 }, { "NSH", 0x7 },
16931 { "nshst", 0x6 }, { "NSHST", 0x6 },
16932 { "osh", 0x3 }, { "OSH", 0x3 },
16933 { "oshst", 0x2 }, { "OSHST", 0x2 }
16934 };
16935
16936 /* Table of ARM-format instructions. */
16937
16938 /* Macros for gluing together operand strings. N.B. In all cases
16939 other than OPS0, the trailing OP_stop comes from default
16940 zero-initialization of the unspecified elements of the array. */
16941 #define OPS0() { OP_stop, }
16942 #define OPS1(a) { OP_##a, }
16943 #define OPS2(a,b) { OP_##a,OP_##b, }
16944 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16945 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16946 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16947 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16948
16949 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16950 This is useful when mixing operands for ARM and THUMB, i.e. using the
16951 MIX_ARM_THUMB_OPERANDS macro.
16952 In order to use these macros, prefix the number of operands with _
16953 e.g. _3. */
16954 #define OPS_1(a) { a, }
16955 #define OPS_2(a,b) { a,b, }
16956 #define OPS_3(a,b,c) { a,b,c, }
16957 #define OPS_4(a,b,c,d) { a,b,c,d, }
16958 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16959 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16960
16961 /* These macros abstract out the exact format of the mnemonic table and
16962 save some repeated characters. */
16963
16964 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16965 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16966 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16967 THUMB_VARIANT, do_##ae, do_##te }
16968
16969 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16970 a T_MNEM_xyz enumerator. */
16971 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16972 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16973 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16974 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16975
16976 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16977 infix after the third character. */
16978 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16979 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16980 THUMB_VARIANT, do_##ae, do_##te }
16981 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16982 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16983 THUMB_VARIANT, do_##ae, do_##te }
16984 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16985 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16986 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16987 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16988 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16989 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16990 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16991 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16992
16993 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16994 appear in the condition table. */
16995 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16996 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16997 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16998
16999 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
17000 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17001 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17002 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17003 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17004 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17005 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17006 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17007 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17008 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17009 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17010 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17011 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17012 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17013 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17014 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17015 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17016 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17017 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17018 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
17019
17020 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
17021 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17022 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
17023 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
17024
17025 /* Mnemonic that cannot be conditionalized. The ARM condition-code
17026 field is still 0xE. Many of the Thumb variants can be executed
17027 conditionally, so this is checked separately. */
17028 #define TUE(mnem, op, top, nops, ops, ae, te) \
17029 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17030 THUMB_VARIANT, do_##ae, do_##te }
17031
17032 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17033 condition code field. */
17034 #define TUF(mnem, op, top, nops, ops, ae, te) \
17035 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17036 THUMB_VARIANT, do_##ae, do_##te }
17037
17038 /* ARM-only variants of all the above. */
17039 #define CE(mnem, op, nops, ops, ae) \
17040 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17041
17042 #define C3(mnem, op, nops, ops, ae) \
17043 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17044
17045 /* Legacy mnemonics that always have conditional infix after the third
17046 character. */
17047 #define CL(mnem, op, nops, ops, ae) \
17048 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17049 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17050
17051 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17052 #define cCE(mnem, op, nops, ops, ae) \
17053 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17054
17055 /* Legacy coprocessor instructions where conditional infix and conditional
17056 suffix are ambiguous. For consistency this includes all FPA instructions,
17057 not just the potentially ambiguous ones. */
17058 #define cCL(mnem, op, nops, ops, ae) \
17059 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17060 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17061
17062 /* Coprocessor, takes either a suffix or a position-3 infix
17063 (for an FPA corner case). */
17064 #define C3E(mnem, op, nops, ops, ae) \
17065 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17066 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17067
17068 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17069 { m1 #m2 m3, OPS##nops ops, \
17070 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17071 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17072
17073 #define CM(m1, m2, op, nops, ops, ae) \
17074 xCM_ (m1, , m2, op, nops, ops, ae), \
17075 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17076 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17077 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17078 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17079 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17080 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17081 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17082 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17083 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17084 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17085 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17086 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17087 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17088 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17089 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17090 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17091 xCM_ (m1, le, m2, op, nops, ops, ae), \
17092 xCM_ (m1, al, m2, op, nops, ops, ae)
17093
17094 #define UE(mnem, op, nops, ops, ae) \
17095 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17096
17097 #define UF(mnem, op, nops, ops, ae) \
17098 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17099
17100 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17101 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17102 use the same encoding function for each. */
17103 #define NUF(mnem, op, nops, ops, enc) \
17104 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17105 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17106
17107 /* Neon data processing, version which indirects through neon_enc_tab for
17108 the various overloaded versions of opcodes. */
17109 #define nUF(mnem, op, nops, ops, enc) \
17110 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17111 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17112
17113 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17114 version. */
17115 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17116 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17117 THUMB_VARIANT, do_##enc, do_##enc }
17118
17119 #define NCE(mnem, op, nops, ops, enc) \
17120 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17121
17122 #define NCEF(mnem, op, nops, ops, enc) \
17123 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17124
17125 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17126 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17127 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17128 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17129
17130 #define nCE(mnem, op, nops, ops, enc) \
17131 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17132
17133 #define nCEF(mnem, op, nops, ops, enc) \
17134 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17135
17136 #define do_0 0
17137
17138 static const struct asm_opcode insns[] =
17139 {
17140 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17141 #define THUMB_VARIANT &arm_ext_v4t
17142 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17143 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17144 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17145 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17146 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17147 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17148 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17149 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17150 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17151 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17152 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17153 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17154 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17155 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17156 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17157 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17158
17159 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17160 for setting PSR flag bits. They are obsolete in V6 and do not
17161 have Thumb equivalents. */
17162 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17163 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17164 CL("tstp", 110f000, 2, (RR, SH), cmp),
17165 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17166 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17167 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17168 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17169 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17170 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17171
17172 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17173 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17174 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17175 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17176
17177 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17178 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17179 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17180 OP_RRnpc),
17181 OP_ADDRGLDR),ldst, t_ldst),
17182 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17183
17184 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17185 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17186 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17187 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17188 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17189 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17190
17191 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17192 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17193 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17194 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17195
17196 /* Pseudo ops. */
17197 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17198 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17199 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17200
17201 /* Thumb-compatibility pseudo ops. */
17202 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17203 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17204 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17205 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17206 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17207 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17208 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17209 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17210 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17211 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17212 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17213 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17214
17215 /* These may simplify to neg. */
17216 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17217 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17218
17219 #undef THUMB_VARIANT
17220 #define THUMB_VARIANT & arm_ext_v6
17221
17222 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17223
17224 /* V1 instructions with no Thumb analogue prior to V6T2. */
17225 #undef THUMB_VARIANT
17226 #define THUMB_VARIANT & arm_ext_v6t2
17227
17228 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17229 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17230 CL("teqp", 130f000, 2, (RR, SH), cmp),
17231
17232 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17233 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17234 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17235 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17236
17237 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17238 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17239
17240 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17241 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17242
17243 /* V1 instructions with no Thumb analogue at all. */
17244 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17245 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17246
17247 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17248 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17249 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17250 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17251 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17252 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17253 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17254 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17255
17256 #undef ARM_VARIANT
17257 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17258 #undef THUMB_VARIANT
17259 #define THUMB_VARIANT & arm_ext_v4t
17260
17261 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17262 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17263
17264 #undef THUMB_VARIANT
17265 #define THUMB_VARIANT & arm_ext_v6t2
17266
17267 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17268 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17269
17270 /* Generic coprocessor instructions. */
17271 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17272 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17273 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17274 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17275 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17276 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17277 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17278
17279 #undef ARM_VARIANT
17280 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17281
17282 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17283 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17284
17285 #undef ARM_VARIANT
17286 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17287 #undef THUMB_VARIANT
17288 #define THUMB_VARIANT & arm_ext_msr
17289
17290 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17291 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17292
17293 #undef ARM_VARIANT
17294 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17295 #undef THUMB_VARIANT
17296 #define THUMB_VARIANT & arm_ext_v6t2
17297
17298 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17299 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17300 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17301 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17302 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17303 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17304 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17305 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17306
17307 #undef ARM_VARIANT
17308 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17309 #undef THUMB_VARIANT
17310 #define THUMB_VARIANT & arm_ext_v4t
17311
17312 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17313 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17314 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17315 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17316 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17317 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17318
17319 #undef ARM_VARIANT
17320 #define ARM_VARIANT & arm_ext_v4t_5
17321
17322 /* ARM Architecture 4T. */
17323 /* Note: bx (and blx) are required on V5, even if the processor does
17324 not support Thumb. */
17325 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17326
17327 #undef ARM_VARIANT
17328 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17329 #undef THUMB_VARIANT
17330 #define THUMB_VARIANT & arm_ext_v5t
17331
17332 /* Note: blx has 2 variants; the .value coded here is for
17333 BLX(2). Only this variant has conditional execution. */
17334 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17335 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17336
17337 #undef THUMB_VARIANT
17338 #define THUMB_VARIANT & arm_ext_v6t2
17339
17340 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17341 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17342 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17343 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17344 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17345 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17346 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17347 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17348
17349 #undef ARM_VARIANT
17350 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17351 #undef THUMB_VARIANT
17352 #define THUMB_VARIANT &arm_ext_v5exp
17353
17354 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17355 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17356 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17357 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17358
17359 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17360 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17361
17362 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17363 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17364 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17365 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17366
17367 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17368 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17369 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17370 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17371
17372 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17373 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17374
17375 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17376 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17377 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17378 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17379
17380 #undef ARM_VARIANT
17381 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17382 #undef THUMB_VARIANT
17383 #define THUMB_VARIANT &arm_ext_v6t2
17384
17385 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17386 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17387 ldrd, t_ldstd),
17388 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17389 ADDRGLDRS), ldrd, t_ldstd),
17390
17391 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17392 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17393
17394 #undef ARM_VARIANT
17395 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17396
17397 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17398
17399 #undef ARM_VARIANT
17400 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17401 #undef THUMB_VARIANT
17402 #define THUMB_VARIANT & arm_ext_v6
17403
17404 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17405 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17406 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17407 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17408 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17409 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17410 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17411 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17412 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17413 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17414
17415 #undef THUMB_VARIANT
17416 #define THUMB_VARIANT & arm_ext_v6t2
17417
17418 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17419 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17420 strex, t_strex),
17421 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17422 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17423
17424 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17425 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17426
17427 /* ARM V6 not included in V7M. */
17428 #undef THUMB_VARIANT
17429 #define THUMB_VARIANT & arm_ext_v6_notm
17430 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17431 UF(rfeib, 9900a00, 1, (RRw), rfe),
17432 UF(rfeda, 8100a00, 1, (RRw), rfe),
17433 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17434 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17435 UF(rfefa, 9900a00, 1, (RRw), rfe),
17436 UF(rfeea, 8100a00, 1, (RRw), rfe),
17437 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17438 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17439 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17440 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17441 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17442
17443 /* ARM V6 not included in V7M (eg. integer SIMD). */
17444 #undef THUMB_VARIANT
17445 #define THUMB_VARIANT & arm_ext_v6_dsp
17446 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17447 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17448 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17449 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17450 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17451 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17452 /* Old name for QASX. */
17453 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17454 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17455 /* Old name for QSAX. */
17456 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17457 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17458 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17459 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17460 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17461 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17462 /* Old name for SASX. */
17463 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17464 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17465 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17466 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17467 /* Old name for SHASX. */
17468 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17469 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17470 /* Old name for SHSAX. */
17471 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17472 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17473 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17474 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17475 /* Old name for SSAX. */
17476 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17477 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17478 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17479 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17480 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17481 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17482 /* Old name for UASX. */
17483 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17484 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17485 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17486 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17487 /* Old name for UHASX. */
17488 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17489 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17490 /* Old name for UHSAX. */
17491 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17492 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17493 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17494 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17495 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17496 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17497 /* Old name for UQASX. */
17498 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17499 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17500 /* Old name for UQSAX. */
17501 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17502 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17503 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17504 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17505 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17506 /* Old name for USAX. */
17507 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17508 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17509 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17510 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17511 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17512 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17513 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17514 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17515 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17516 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17517 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17518 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17519 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17520 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17521 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17522 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17523 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17524 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17525 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17526 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17527 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17528 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17529 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17530 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17531 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17532 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17533 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17534 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17535 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17536 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17537 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17538 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17539 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17540 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17541
17542 #undef ARM_VARIANT
17543 #define ARM_VARIANT & arm_ext_v6k
17544 #undef THUMB_VARIANT
17545 #define THUMB_VARIANT & arm_ext_v6k
17546
17547 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17548 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17549 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17550 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17551
17552 #undef THUMB_VARIANT
17553 #define THUMB_VARIANT & arm_ext_v6_notm
17554 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17555 ldrexd, t_ldrexd),
17556 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17557 RRnpcb), strexd, t_strexd),
17558
17559 #undef THUMB_VARIANT
17560 #define THUMB_VARIANT & arm_ext_v6t2
17561 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17562 rd_rn, rd_rn),
17563 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17564 rd_rn, rd_rn),
17565 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17566 strex, t_strexbh),
17567 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17568 strex, t_strexbh),
17569 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17570
17571 #undef ARM_VARIANT
17572 #define ARM_VARIANT & arm_ext_sec
17573 #undef THUMB_VARIANT
17574 #define THUMB_VARIANT & arm_ext_sec
17575
17576 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17577
17578 #undef ARM_VARIANT
17579 #define ARM_VARIANT & arm_ext_virt
17580 #undef THUMB_VARIANT
17581 #define THUMB_VARIANT & arm_ext_virt
17582
17583 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17584 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17585
17586 #undef ARM_VARIANT
17587 #define ARM_VARIANT & arm_ext_v6t2
17588 #undef THUMB_VARIANT
17589 #define THUMB_VARIANT & arm_ext_v6t2
17590
17591 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17592 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17593 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17594 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17595
17596 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17597 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17598 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17599 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17600
17601 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17602 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17603 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17604 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17605
17606 /* Thumb-only instructions. */
17607 #undef ARM_VARIANT
17608 #define ARM_VARIANT NULL
17609 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17610 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17611
17612 /* ARM does not really have an IT instruction, so always allow it.
17613 The opcode is copied from Thumb in order to allow warnings in
17614 -mimplicit-it=[never | arm] modes. */
17615 #undef ARM_VARIANT
17616 #define ARM_VARIANT & arm_ext_v1
17617
17618 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17619 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17620 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17621 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17622 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17623 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17624 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17625 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17626 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17627 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17628 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17629 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17630 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17631 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17632 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17633 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17634 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17635 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17636
17637 /* Thumb2 only instructions. */
17638 #undef ARM_VARIANT
17639 #define ARM_VARIANT NULL
17640
17641 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17642 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17643 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17644 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17645 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17646 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17647
17648 /* Hardware division instructions. */
17649 #undef ARM_VARIANT
17650 #define ARM_VARIANT & arm_ext_adiv
17651 #undef THUMB_VARIANT
17652 #define THUMB_VARIANT & arm_ext_div
17653
17654 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17655 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17656
17657 /* ARM V6M/V7 instructions. */
17658 #undef ARM_VARIANT
17659 #define ARM_VARIANT & arm_ext_barrier
17660 #undef THUMB_VARIANT
17661 #define THUMB_VARIANT & arm_ext_barrier
17662
17663 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17664 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17665 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17666
17667 /* ARM V7 instructions. */
17668 #undef ARM_VARIANT
17669 #define ARM_VARIANT & arm_ext_v7
17670 #undef THUMB_VARIANT
17671 #define THUMB_VARIANT & arm_ext_v7
17672
17673 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17674 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17675
17676 #undef ARM_VARIANT
17677 #define ARM_VARIANT & arm_ext_mp
17678 #undef THUMB_VARIANT
17679 #define THUMB_VARIANT & arm_ext_mp
17680
17681 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17682
17683 #undef ARM_VARIANT
17684 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17685
17686 cCE("wfs", e200110, 1, (RR), rd),
17687 cCE("rfs", e300110, 1, (RR), rd),
17688 cCE("wfc", e400110, 1, (RR), rd),
17689 cCE("rfc", e500110, 1, (RR), rd),
17690
17691 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17692 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17693 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17694 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17695
17696 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17697 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17698 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17699 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17700
17701 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17702 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17703 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17704 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17705 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17706 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17707 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17708 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17709 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17710 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17711 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17712 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17713
17714 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17715 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17716 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17717 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17718 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17719 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17720 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17721 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17722 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17723 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17724 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17725 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17726
17727 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17728 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17729 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17730 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17731 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17732 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17733 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17734 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17735 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17736 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17737 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17738 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17739
17740 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17741 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17742 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17743 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17744 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17745 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17746 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17747 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17748 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17749 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17750 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17751 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17752
17753 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17754 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17755 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17756 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17757 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17758 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17759 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17760 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17761 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17762 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17763 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17764 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17765
17766 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17767 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17768 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17769 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17770 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17771 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17772 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17773 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17774 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17775 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17776 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17777 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17778
17779 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17780 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17781 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17782 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17783 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17784 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17785 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17786 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17787 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17788 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17789 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17790 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17791
17792 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17793 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17794 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17795 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17796 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17797 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17798 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17799 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17800 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17801 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17802 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17803 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17804
17805 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17806 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17807 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17808 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17809 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17810 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17811 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17812 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17813 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17814 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17815 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17816 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17817
17818 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17819 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17820 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17821 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17822 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17823 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17824 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17825 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17826 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17827 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17828 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17829 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17830
17831 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17832 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17833 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17834 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17835 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17836 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17837 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17838 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17839 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17840 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17841 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17842 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17843
17844 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17845 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17846 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17847 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17848 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17849 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17850 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17851 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17852 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17853 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17854 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17855 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17856
17857 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17858 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17859 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17860 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17861 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17862 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17863 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17864 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17865 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17866 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17867 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17868 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17869
17870 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17871 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17872 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17873 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17874 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17875 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17876 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17877 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17878 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17879 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17880 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17881 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17882
17883 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17884 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17885 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17886 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17887 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17888 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17889 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17890 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17891 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17892 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17893 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17894 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17895
17896 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17897 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17898 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17899 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17900 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17901 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17902 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17903 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17904 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17905 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17906 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17907 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17908
17909 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17910 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17911 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17912 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17913 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17914 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17915 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17916 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17917 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17918 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17919 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17920 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17921
17922 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17923 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17924 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17925 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17926 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17927 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17928 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17929 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17930 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17931 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17932 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17933 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17934
17935 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17936 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17937 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17938 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17939 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17940 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17941 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17942 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17943 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17944 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17945 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17946 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17947
17948 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17949 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17950 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17951 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17952 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17953 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17954 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17955 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17956 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17957 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17958 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17959 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17960
17961 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17962 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17963 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17964 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17965 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17966 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17967 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17968 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17969 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17970 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17971 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17972 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17973
17974 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17975 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17976 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17977 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17978 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17979 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17980 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17981 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17982 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17983 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17984 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17985 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17986
17987 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17988 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17989 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17990 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17991 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17992 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17993 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17994 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17995 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17996 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17997 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17998 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17999
18000 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18001 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18002 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18003 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18004 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18005 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18006 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18007 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18008 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18009 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18010 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18011 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18012
18013 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18014 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18015 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18016 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18017 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18018 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18019 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18020 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18021 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18022 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18023 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18024 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18025
18026 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18027 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18028 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18029 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18030 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18031 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18032 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18033 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18034 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18035 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18036 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18037 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18038
18039 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18040 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18041 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18042 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18043 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18044 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18045 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18046 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18047 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18048 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18049 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18050 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18051
18052 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18053 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18054 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18055 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18056 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18057 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18058 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18059 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18060 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18061 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18062 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18063 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18064
18065 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18066 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18067 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18068 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18069 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18070 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18071 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18072 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18073 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18074 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18075 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18076 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18077
18078 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18079 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18080 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18081 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18082
18083 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18084 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18085 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18086 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18087 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18088 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18089 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18090 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18091 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18092 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18093 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18094 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
18095
18096 /* The implementation of the FIX instruction is broken on some
18097 assemblers, in that it accepts a precision specifier as well as a
18098 rounding specifier, despite the fact that this is meaningless.
18099 To be more compatible, we accept it as well, though of course it
18100 does not set any bits. */
18101 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18102 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18103 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18104 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18105 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18106 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18107 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18108 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18109 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18110 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18111 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18112 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18113 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
18114
18115 /* Instructions that were new with the real FPA, call them V2. */
18116 #undef ARM_VARIANT
18117 #define ARM_VARIANT & fpu_fpa_ext_v2
18118
18119 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18120 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18121 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18122 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18123 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18124 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18125
18126 #undef ARM_VARIANT
18127 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18128
18129 /* Moves and type conversions. */
18130 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18131 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18132 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18133 cCE("fmstat", ef1fa10, 0, (), noargs),
18134 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
18135 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
18136 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18137 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18138 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18139 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18140 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18141 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18142 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18143 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
18144
18145 /* Memory operations. */
18146 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18147 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18148 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18149 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18150 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18151 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18152 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18153 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18154 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18155 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18156 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18157 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18158 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18159 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18160 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18161 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18162 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18163 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18164
18165 /* Monadic operations. */
18166 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18167 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18168 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
18169
18170 /* Dyadic operations. */
18171 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18172 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18173 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18174 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18175 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18176 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18177 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18178 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18179 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18180
18181 /* Comparisons. */
18182 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18183 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18184 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18185 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18186
18187 /* Double precision load/store are still present on single precision
18188 implementations. */
18189 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18190 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18191 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18192 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18193 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18194 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18195 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18196 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18197 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18198 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18199
18200 #undef ARM_VARIANT
18201 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18202
18203 /* Moves and type conversions. */
18204 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18205 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18206 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18207 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18208 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18209 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18210 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18211 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18212 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18213 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18214 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18215 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18216 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18217
18218 /* Monadic operations. */
18219 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18220 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18221 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18222
18223 /* Dyadic operations. */
18224 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18225 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18226 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18227 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18228 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18229 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18230 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18231 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18232 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18233
18234 /* Comparisons. */
18235 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18236 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18237 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18238 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18239
18240 #undef ARM_VARIANT
18241 #define ARM_VARIANT & fpu_vfp_ext_v2
18242
18243 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18244 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18245 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18246 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18247
18248 /* Instructions which may belong to either the Neon or VFP instruction sets.
18249 Individual encoder functions perform additional architecture checks. */
18250 #undef ARM_VARIANT
18251 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18252 #undef THUMB_VARIANT
18253 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18254
18255 /* These mnemonics are unique to VFP. */
18256 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18257 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18258 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18259 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18260 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18261 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18262 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18263 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18264 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18265 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18266
18267 /* Mnemonics shared by Neon and VFP. */
18268 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18269 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18270 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18271
18272 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18273 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18274
18275 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18276 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18277
18278 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18279 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18280 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18281 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18282 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18283 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18284 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18285 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18286
18287 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
18288 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18289 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18290 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18291
18292
18293 /* NOTE: All VMOV encoding is special-cased! */
18294 NCE(vmov, 0, 1, (VMOV), neon_mov),
18295 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18296
18297 #undef THUMB_VARIANT
18298 #define THUMB_VARIANT & fpu_neon_ext_v1
18299 #undef ARM_VARIANT
18300 #define ARM_VARIANT & fpu_neon_ext_v1
18301
18302 /* Data processing with three registers of the same length. */
18303 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18304 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18305 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18306 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18307 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18308 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18309 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18310 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18311 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18312 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18313 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18314 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18315 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18316 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18317 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18318 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18319 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18320 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18321 /* If not immediate, fall back to neon_dyadic_i64_su.
18322 shl_imm should accept I8 I16 I32 I64,
18323 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18324 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18325 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18326 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18327 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
18328 /* Logic ops, types optional & ignored. */
18329 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18330 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18331 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18332 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18333 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18334 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18335 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18336 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18337 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18338 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18339 /* Bitfield ops, untyped. */
18340 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18341 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18342 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18343 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18344 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18345 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18346 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18347 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18348 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18349 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18350 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18351 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18352 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18353 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18354 back to neon_dyadic_if_su. */
18355 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18356 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18357 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18358 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18359 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18360 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18361 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18362 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18363 /* Comparison. Type I8 I16 I32 F32. */
18364 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18365 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18366 /* As above, D registers only. */
18367 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18368 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18369 /* Int and float variants, signedness unimportant. */
18370 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18371 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18372 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18373 /* Add/sub take types I8 I16 I32 I64 F32. */
18374 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18375 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18376 /* vtst takes sizes 8, 16, 32. */
18377 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18378 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18379 /* VMUL takes I8 I16 I32 F32 P8. */
18380 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18381 /* VQD{R}MULH takes S16 S32. */
18382 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18383 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18384 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18385 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18386 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18387 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18388 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18389 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18390 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18391 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18392 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18393 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18394 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18395 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18396 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18397 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18398
18399 /* Two address, int/float. Types S8 S16 S32 F32. */
18400 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18401 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18402
18403 /* Data processing with two registers and a shift amount. */
18404 /* Right shifts, and variants with rounding.
18405 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18406 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18407 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18408 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18409 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18410 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18411 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18412 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18413 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18414 /* Shift and insert. Sizes accepted 8 16 32 64. */
18415 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18416 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18417 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18418 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18419 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18420 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18421 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18422 /* Right shift immediate, saturating & narrowing, with rounding variants.
18423 Types accepted S16 S32 S64 U16 U32 U64. */
18424 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18425 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18426 /* As above, unsigned. Types accepted S16 S32 S64. */
18427 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18428 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18429 /* Right shift narrowing. Types accepted I16 I32 I64. */
18430 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18431 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18432 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18433 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18434 /* CVT with optional immediate for fixed-point variant. */
18435 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18436
18437 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18438 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18439
18440 /* Data processing, three registers of different lengths. */
18441 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18442 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18443 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18444 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18445 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18446 /* If not scalar, fall back to neon_dyadic_long.
18447 Vector types as above, scalar types S16 S32 U16 U32. */
18448 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18449 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18450 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18451 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18452 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18453 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18454 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18455 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18456 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18457 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18458 /* Saturating doubling multiplies. Types S16 S32. */
18459 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18460 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18461 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18462 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18463 S16 S32 U16 U32. */
18464 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18465
18466 /* Extract. Size 8. */
18467 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18468 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18469
18470 /* Two registers, miscellaneous. */
18471 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18472 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18473 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18474 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18475 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18476 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18477 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18478 /* Vector replicate. Sizes 8 16 32. */
18479 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18480 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18481 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18482 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18483 /* VMOVN. Types I16 I32 I64. */
18484 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18485 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18486 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18487 /* VQMOVUN. Types S16 S32 S64. */
18488 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18489 /* VZIP / VUZP. Sizes 8 16 32. */
18490 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18491 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18492 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18493 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18494 /* VQABS / VQNEG. Types S8 S16 S32. */
18495 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18496 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18497 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18498 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18499 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18500 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18501 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18502 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18503 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18504 /* Reciprocal estimates. Types U32 F32. */
18505 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18506 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18507 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18508 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18509 /* VCLS. Types S8 S16 S32. */
18510 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18511 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18512 /* VCLZ. Types I8 I16 I32. */
18513 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18514 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18515 /* VCNT. Size 8. */
18516 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18517 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18518 /* Two address, untyped. */
18519 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18520 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18521 /* VTRN. Sizes 8 16 32. */
18522 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18523 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18524
18525 /* Table lookup. Size 8. */
18526 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18527 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18528
18529 #undef THUMB_VARIANT
18530 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18531 #undef ARM_VARIANT
18532 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18533
18534 /* Neon element/structure load/store. */
18535 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18536 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18537 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18538 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18539 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18540 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18541 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18542 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18543
18544 #undef THUMB_VARIANT
18545 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18546 #undef ARM_VARIANT
18547 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18548 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18549 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18550 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18551 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18552 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18553 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18554 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18555 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18556 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18557
18558 #undef THUMB_VARIANT
18559 #define THUMB_VARIANT & fpu_vfp_ext_v3
18560 #undef ARM_VARIANT
18561 #define ARM_VARIANT & fpu_vfp_ext_v3
18562
18563 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18564 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18565 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18566 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18567 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18568 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18569 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18570 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18571 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18572
18573 #undef ARM_VARIANT
18574 #define ARM_VARIANT &fpu_vfp_ext_fma
18575 #undef THUMB_VARIANT
18576 #define THUMB_VARIANT &fpu_vfp_ext_fma
18577 /* Mnemonics shared by Neon and VFP. These are included in the
18578 VFP FMA variant; NEON and VFP FMA always includes the NEON
18579 FMA instructions. */
18580 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18581 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18582 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18583 the v form should always be used. */
18584 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18585 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18586 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18587 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18588 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18589 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18590
18591 #undef THUMB_VARIANT
18592 #undef ARM_VARIANT
18593 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18594
18595 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18596 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18597 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18598 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18599 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18600 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18601 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18602 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18603
18604 #undef ARM_VARIANT
18605 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18606
18607 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18608 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18609 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18610 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18611 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18612 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18613 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18614 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18615 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18616 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18617 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18618 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18619 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18620 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18621 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18622 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18623 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18624 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18625 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18626 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18627 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18628 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18629 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18630 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18631 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18632 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18633 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18634 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18635 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18636 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18637 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18638 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18639 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18640 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18641 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18642 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18643 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18644 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18645 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18646 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18647 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18648 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18649 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18650 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18651 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18652 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18653 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18654 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18655 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18656 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18657 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18658 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18659 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18660 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18661 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18662 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18663 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18664 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18665 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18666 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18667 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18668 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18669 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18670 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18671 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18672 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18673 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18674 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18675 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18676 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18677 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18678 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18679 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18680 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18681 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18682 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18683 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18684 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18685 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18686 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18687 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18688 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18689 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18690 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18691 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18692 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18693 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18694 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18695 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18696 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18697 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18698 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18699 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18700 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18701 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18702 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18703 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18704 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18705 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18706 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18707 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18708 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18709 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18710 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18711 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18712 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18713 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18714 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18715 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18716 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18717 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18718 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18719 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18720 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18721 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18722 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18723 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18724 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18725 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18726 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18727 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18728 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18729 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18730 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18731 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18732 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18733 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18734 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18735 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18736 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18737 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18738 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18739 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18740 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18741 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18742 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18743 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18744 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18745 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18746 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18747 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18748 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18749 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18750 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18751 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18752 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18753 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18754 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18755 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18756 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18757 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18758 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18759 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18760 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18761 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18762 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18763 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18764 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18765 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18766 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18767 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18768 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
18769
18770 #undef ARM_VARIANT
18771 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18772
18773 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18774 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18775 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18776 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18777 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18778 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18779 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18780 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18781 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18782 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18783 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18784 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18785 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18786 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18787 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18788 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18789 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18790 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18791 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18792 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18793 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18794 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18795 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18796 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18797 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18798 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18799 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18800 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18801 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18802 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18803 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18804 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18805 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18806 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18807 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18808 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18809 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18810 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18811 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18812 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18813 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18814 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18815 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18816 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18817 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18818 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18819 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18820 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18821 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18822 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18823 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18824 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18825 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18826 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18827 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18828 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18829 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18830
18831 #undef ARM_VARIANT
18832 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18833
18834 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18835 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18836 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18837 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18838 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18839 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18840 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18841 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18842 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18843 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18844 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18845 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18846 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18847 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18848 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18849 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18850 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18851 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18852 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18853 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18854 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18855 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18856 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18857 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18858 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18859 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18860 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18861 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18862 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18863 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18864 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18865 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18866 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18867 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18868 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18869 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18870 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18871 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18872 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18873 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18874 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18875 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18876 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18877 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18878 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18879 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18880 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18881 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18882 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18883 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18884 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18885 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18886 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18887 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18888 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18889 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18890 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18891 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18892 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18893 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18894 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18895 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18896 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18897 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18898 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18899 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18900 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18901 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18902 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18903 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18904 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18905 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18906 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18907 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18908 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18909 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18910 };
18911 #undef ARM_VARIANT
18912 #undef THUMB_VARIANT
18913 #undef TCE
18914 #undef TCM
18915 #undef TUE
18916 #undef TUF
18917 #undef TCC
18918 #undef cCE
18919 #undef cCL
18920 #undef C3E
18921 #undef CE
18922 #undef CM
18923 #undef UE
18924 #undef UF
18925 #undef UT
18926 #undef NUF
18927 #undef nUF
18928 #undef NCE
18929 #undef nCE
18930 #undef OPS0
18931 #undef OPS1
18932 #undef OPS2
18933 #undef OPS3
18934 #undef OPS4
18935 #undef OPS5
18936 #undef OPS6
18937 #undef do_0
18938 \f
18939 /* MD interface: bits in the object file. */
18940
18941 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18942 for use in the a.out file, and stores them in the array pointed to by buf.
18943 This knows about the endian-ness of the target machine and does
18944 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18945 2 (short) and 4 (long) Floating numbers are put out as a series of
18946 LITTLENUMS (shorts, here at least). */
18947
18948 void
18949 md_number_to_chars (char * buf, valueT val, int n)
18950 {
18951 if (target_big_endian)
18952 number_to_chars_bigendian (buf, val, n);
18953 else
18954 number_to_chars_littleendian (buf, val, n);
18955 }
18956
18957 static valueT
18958 md_chars_to_number (char * buf, int n)
18959 {
18960 valueT result = 0;
18961 unsigned char * where = (unsigned char *) buf;
18962
18963 if (target_big_endian)
18964 {
18965 while (n--)
18966 {
18967 result <<= 8;
18968 result |= (*where++ & 255);
18969 }
18970 }
18971 else
18972 {
18973 while (n--)
18974 {
18975 result <<= 8;
18976 result |= (where[n] & 255);
18977 }
18978 }
18979
18980 return result;
18981 }
18982
18983 /* MD interface: Sections. */
18984
18985 /* Estimate the size of a frag before relaxing. Assume everything fits in
18986 2 bytes. */
18987
18988 int
18989 md_estimate_size_before_relax (fragS * fragp,
18990 segT segtype ATTRIBUTE_UNUSED)
18991 {
18992 fragp->fr_var = 2;
18993 return 2;
18994 }
18995
18996 /* Convert a machine dependent frag. */
18997
18998 void
18999 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19000 {
19001 unsigned long insn;
19002 unsigned long old_op;
19003 char *buf;
19004 expressionS exp;
19005 fixS *fixp;
19006 int reloc_type;
19007 int pc_rel;
19008 int opcode;
19009
19010 buf = fragp->fr_literal + fragp->fr_fix;
19011
19012 old_op = bfd_get_16(abfd, buf);
19013 if (fragp->fr_symbol)
19014 {
19015 exp.X_op = O_symbol;
19016 exp.X_add_symbol = fragp->fr_symbol;
19017 }
19018 else
19019 {
19020 exp.X_op = O_constant;
19021 }
19022 exp.X_add_number = fragp->fr_offset;
19023 opcode = fragp->fr_subtype;
19024 switch (opcode)
19025 {
19026 case T_MNEM_ldr_pc:
19027 case T_MNEM_ldr_pc2:
19028 case T_MNEM_ldr_sp:
19029 case T_MNEM_str_sp:
19030 case T_MNEM_ldr:
19031 case T_MNEM_ldrb:
19032 case T_MNEM_ldrh:
19033 case T_MNEM_str:
19034 case T_MNEM_strb:
19035 case T_MNEM_strh:
19036 if (fragp->fr_var == 4)
19037 {
19038 insn = THUMB_OP32 (opcode);
19039 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19040 {
19041 insn |= (old_op & 0x700) << 4;
19042 }
19043 else
19044 {
19045 insn |= (old_op & 7) << 12;
19046 insn |= (old_op & 0x38) << 13;
19047 }
19048 insn |= 0x00000c00;
19049 put_thumb32_insn (buf, insn);
19050 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19051 }
19052 else
19053 {
19054 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19055 }
19056 pc_rel = (opcode == T_MNEM_ldr_pc2);
19057 break;
19058 case T_MNEM_adr:
19059 if (fragp->fr_var == 4)
19060 {
19061 insn = THUMB_OP32 (opcode);
19062 insn |= (old_op & 0xf0) << 4;
19063 put_thumb32_insn (buf, insn);
19064 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19065 }
19066 else
19067 {
19068 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19069 exp.X_add_number -= 4;
19070 }
19071 pc_rel = 1;
19072 break;
19073 case T_MNEM_mov:
19074 case T_MNEM_movs:
19075 case T_MNEM_cmp:
19076 case T_MNEM_cmn:
19077 if (fragp->fr_var == 4)
19078 {
19079 int r0off = (opcode == T_MNEM_mov
19080 || opcode == T_MNEM_movs) ? 0 : 8;
19081 insn = THUMB_OP32 (opcode);
19082 insn = (insn & 0xe1ffffff) | 0x10000000;
19083 insn |= (old_op & 0x700) << r0off;
19084 put_thumb32_insn (buf, insn);
19085 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19086 }
19087 else
19088 {
19089 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19090 }
19091 pc_rel = 0;
19092 break;
19093 case T_MNEM_b:
19094 if (fragp->fr_var == 4)
19095 {
19096 insn = THUMB_OP32(opcode);
19097 put_thumb32_insn (buf, insn);
19098 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19099 }
19100 else
19101 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19102 pc_rel = 1;
19103 break;
19104 case T_MNEM_bcond:
19105 if (fragp->fr_var == 4)
19106 {
19107 insn = THUMB_OP32(opcode);
19108 insn |= (old_op & 0xf00) << 14;
19109 put_thumb32_insn (buf, insn);
19110 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19111 }
19112 else
19113 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19114 pc_rel = 1;
19115 break;
19116 case T_MNEM_add_sp:
19117 case T_MNEM_add_pc:
19118 case T_MNEM_inc_sp:
19119 case T_MNEM_dec_sp:
19120 if (fragp->fr_var == 4)
19121 {
19122 /* ??? Choose between add and addw. */
19123 insn = THUMB_OP32 (opcode);
19124 insn |= (old_op & 0xf0) << 4;
19125 put_thumb32_insn (buf, insn);
19126 if (opcode == T_MNEM_add_pc)
19127 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19128 else
19129 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19130 }
19131 else
19132 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19133 pc_rel = 0;
19134 break;
19135
19136 case T_MNEM_addi:
19137 case T_MNEM_addis:
19138 case T_MNEM_subi:
19139 case T_MNEM_subis:
19140 if (fragp->fr_var == 4)
19141 {
19142 insn = THUMB_OP32 (opcode);
19143 insn |= (old_op & 0xf0) << 4;
19144 insn |= (old_op & 0xf) << 16;
19145 put_thumb32_insn (buf, insn);
19146 if (insn & (1 << 20))
19147 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19148 else
19149 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19150 }
19151 else
19152 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19153 pc_rel = 0;
19154 break;
19155 default:
19156 abort ();
19157 }
19158 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
19159 (enum bfd_reloc_code_real) reloc_type);
19160 fixp->fx_file = fragp->fr_file;
19161 fixp->fx_line = fragp->fr_line;
19162 fragp->fr_fix += fragp->fr_var;
19163 }
19164
19165 /* Return the size of a relaxable immediate operand instruction.
19166 SHIFT and SIZE specify the form of the allowable immediate. */
19167 static int
19168 relax_immediate (fragS *fragp, int size, int shift)
19169 {
19170 offsetT offset;
19171 offsetT mask;
19172 offsetT low;
19173
19174 /* ??? Should be able to do better than this. */
19175 if (fragp->fr_symbol)
19176 return 4;
19177
19178 low = (1 << shift) - 1;
19179 mask = (1 << (shift + size)) - (1 << shift);
19180 offset = fragp->fr_offset;
19181 /* Force misaligned offsets to 32-bit variant. */
19182 if (offset & low)
19183 return 4;
19184 if (offset & ~mask)
19185 return 4;
19186 return 2;
19187 }
19188
19189 /* Get the address of a symbol during relaxation. */
19190 static addressT
19191 relaxed_symbol_addr (fragS *fragp, long stretch)
19192 {
19193 fragS *sym_frag;
19194 addressT addr;
19195 symbolS *sym;
19196
19197 sym = fragp->fr_symbol;
19198 sym_frag = symbol_get_frag (sym);
19199 know (S_GET_SEGMENT (sym) != absolute_section
19200 || sym_frag == &zero_address_frag);
19201 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19202
19203 /* If frag has yet to be reached on this pass, assume it will
19204 move by STRETCH just as we did. If this is not so, it will
19205 be because some frag between grows, and that will force
19206 another pass. */
19207
19208 if (stretch != 0
19209 && sym_frag->relax_marker != fragp->relax_marker)
19210 {
19211 fragS *f;
19212
19213 /* Adjust stretch for any alignment frag. Note that if have
19214 been expanding the earlier code, the symbol may be
19215 defined in what appears to be an earlier frag. FIXME:
19216 This doesn't handle the fr_subtype field, which specifies
19217 a maximum number of bytes to skip when doing an
19218 alignment. */
19219 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19220 {
19221 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19222 {
19223 if (stretch < 0)
19224 stretch = - ((- stretch)
19225 & ~ ((1 << (int) f->fr_offset) - 1));
19226 else
19227 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19228 if (stretch == 0)
19229 break;
19230 }
19231 }
19232 if (f != NULL)
19233 addr += stretch;
19234 }
19235
19236 return addr;
19237 }
19238
19239 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19240 load. */
19241 static int
19242 relax_adr (fragS *fragp, asection *sec, long stretch)
19243 {
19244 addressT addr;
19245 offsetT val;
19246
19247 /* Assume worst case for symbols not known to be in the same section. */
19248 if (fragp->fr_symbol == NULL
19249 || !S_IS_DEFINED (fragp->fr_symbol)
19250 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19251 || S_IS_WEAK (fragp->fr_symbol))
19252 return 4;
19253
19254 val = relaxed_symbol_addr (fragp, stretch);
19255 addr = fragp->fr_address + fragp->fr_fix;
19256 addr = (addr + 4) & ~3;
19257 /* Force misaligned targets to 32-bit variant. */
19258 if (val & 3)
19259 return 4;
19260 val -= addr;
19261 if (val < 0 || val > 1020)
19262 return 4;
19263 return 2;
19264 }
19265
19266 /* Return the size of a relaxable add/sub immediate instruction. */
19267 static int
19268 relax_addsub (fragS *fragp, asection *sec)
19269 {
19270 char *buf;
19271 int op;
19272
19273 buf = fragp->fr_literal + fragp->fr_fix;
19274 op = bfd_get_16(sec->owner, buf);
19275 if ((op & 0xf) == ((op >> 4) & 0xf))
19276 return relax_immediate (fragp, 8, 0);
19277 else
19278 return relax_immediate (fragp, 3, 0);
19279 }
19280
19281
19282 /* Return the size of a relaxable branch instruction. BITS is the
19283 size of the offset field in the narrow instruction. */
19284
19285 static int
19286 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19287 {
19288 addressT addr;
19289 offsetT val;
19290 offsetT limit;
19291
19292 /* Assume worst case for symbols not known to be in the same section. */
19293 if (!S_IS_DEFINED (fragp->fr_symbol)
19294 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19295 || S_IS_WEAK (fragp->fr_symbol))
19296 return 4;
19297
19298 #ifdef OBJ_ELF
19299 if (S_IS_DEFINED (fragp->fr_symbol)
19300 && ARM_IS_FUNC (fragp->fr_symbol))
19301 return 4;
19302
19303 /* PR 12532. Global symbols with default visibility might
19304 be preempted, so do not relax relocations to them. */
19305 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19306 && (! S_IS_LOCAL (fragp->fr_symbol)))
19307 return 4;
19308 #endif
19309
19310 val = relaxed_symbol_addr (fragp, stretch);
19311 addr = fragp->fr_address + fragp->fr_fix + 4;
19312 val -= addr;
19313
19314 /* Offset is a signed value *2 */
19315 limit = 1 << bits;
19316 if (val >= limit || val < -limit)
19317 return 4;
19318 return 2;
19319 }
19320
19321
19322 /* Relax a machine dependent frag. This returns the amount by which
19323 the current size of the frag should change. */
19324
19325 int
19326 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
19327 {
19328 int oldsize;
19329 int newsize;
19330
19331 oldsize = fragp->fr_var;
19332 switch (fragp->fr_subtype)
19333 {
19334 case T_MNEM_ldr_pc2:
19335 newsize = relax_adr (fragp, sec, stretch);
19336 break;
19337 case T_MNEM_ldr_pc:
19338 case T_MNEM_ldr_sp:
19339 case T_MNEM_str_sp:
19340 newsize = relax_immediate (fragp, 8, 2);
19341 break;
19342 case T_MNEM_ldr:
19343 case T_MNEM_str:
19344 newsize = relax_immediate (fragp, 5, 2);
19345 break;
19346 case T_MNEM_ldrh:
19347 case T_MNEM_strh:
19348 newsize = relax_immediate (fragp, 5, 1);
19349 break;
19350 case T_MNEM_ldrb:
19351 case T_MNEM_strb:
19352 newsize = relax_immediate (fragp, 5, 0);
19353 break;
19354 case T_MNEM_adr:
19355 newsize = relax_adr (fragp, sec, stretch);
19356 break;
19357 case T_MNEM_mov:
19358 case T_MNEM_movs:
19359 case T_MNEM_cmp:
19360 case T_MNEM_cmn:
19361 newsize = relax_immediate (fragp, 8, 0);
19362 break;
19363 case T_MNEM_b:
19364 newsize = relax_branch (fragp, sec, 11, stretch);
19365 break;
19366 case T_MNEM_bcond:
19367 newsize = relax_branch (fragp, sec, 8, stretch);
19368 break;
19369 case T_MNEM_add_sp:
19370 case T_MNEM_add_pc:
19371 newsize = relax_immediate (fragp, 8, 2);
19372 break;
19373 case T_MNEM_inc_sp:
19374 case T_MNEM_dec_sp:
19375 newsize = relax_immediate (fragp, 7, 2);
19376 break;
19377 case T_MNEM_addi:
19378 case T_MNEM_addis:
19379 case T_MNEM_subi:
19380 case T_MNEM_subis:
19381 newsize = relax_addsub (fragp, sec);
19382 break;
19383 default:
19384 abort ();
19385 }
19386
19387 fragp->fr_var = newsize;
19388 /* Freeze wide instructions that are at or before the same location as
19389 in the previous pass. This avoids infinite loops.
19390 Don't freeze them unconditionally because targets may be artificially
19391 misaligned by the expansion of preceding frags. */
19392 if (stretch <= 0 && newsize > 2)
19393 {
19394 md_convert_frag (sec->owner, sec, fragp);
19395 frag_wane (fragp);
19396 }
19397
19398 return newsize - oldsize;
19399 }
19400
19401 /* Round up a section size to the appropriate boundary. */
19402
19403 valueT
19404 md_section_align (segT segment ATTRIBUTE_UNUSED,
19405 valueT size)
19406 {
19407 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19408 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19409 {
19410 /* For a.out, force the section size to be aligned. If we don't do
19411 this, BFD will align it for us, but it will not write out the
19412 final bytes of the section. This may be a bug in BFD, but it is
19413 easier to fix it here since that is how the other a.out targets
19414 work. */
19415 int align;
19416
19417 align = bfd_get_section_alignment (stdoutput, segment);
19418 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19419 }
19420 #endif
19421
19422 return size;
19423 }
19424
19425 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19426 of an rs_align_code fragment. */
19427
19428 void
19429 arm_handle_align (fragS * fragP)
19430 {
19431 static char const arm_noop[2][2][4] =
19432 {
19433 { /* ARMv1 */
19434 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19435 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19436 },
19437 { /* ARMv6k */
19438 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19439 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19440 },
19441 };
19442 static char const thumb_noop[2][2][2] =
19443 {
19444 { /* Thumb-1 */
19445 {0xc0, 0x46}, /* LE */
19446 {0x46, 0xc0}, /* BE */
19447 },
19448 { /* Thumb-2 */
19449 {0x00, 0xbf}, /* LE */
19450 {0xbf, 0x00} /* BE */
19451 }
19452 };
19453 static char const wide_thumb_noop[2][4] =
19454 { /* Wide Thumb-2 */
19455 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19456 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19457 };
19458
19459 unsigned bytes, fix, noop_size;
19460 char * p;
19461 const char * noop;
19462 const char *narrow_noop = NULL;
19463 #ifdef OBJ_ELF
19464 enum mstate state;
19465 #endif
19466
19467 if (fragP->fr_type != rs_align_code)
19468 return;
19469
19470 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19471 p = fragP->fr_literal + fragP->fr_fix;
19472 fix = 0;
19473
19474 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19475 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19476
19477 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19478
19479 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19480 {
19481 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19482 {
19483 narrow_noop = thumb_noop[1][target_big_endian];
19484 noop = wide_thumb_noop[target_big_endian];
19485 }
19486 else
19487 noop = thumb_noop[0][target_big_endian];
19488 noop_size = 2;
19489 #ifdef OBJ_ELF
19490 state = MAP_THUMB;
19491 #endif
19492 }
19493 else
19494 {
19495 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19496 [target_big_endian];
19497 noop_size = 4;
19498 #ifdef OBJ_ELF
19499 state = MAP_ARM;
19500 #endif
19501 }
19502
19503 fragP->fr_var = noop_size;
19504
19505 if (bytes & (noop_size - 1))
19506 {
19507 fix = bytes & (noop_size - 1);
19508 #ifdef OBJ_ELF
19509 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19510 #endif
19511 memset (p, 0, fix);
19512 p += fix;
19513 bytes -= fix;
19514 }
19515
19516 if (narrow_noop)
19517 {
19518 if (bytes & noop_size)
19519 {
19520 /* Insert a narrow noop. */
19521 memcpy (p, narrow_noop, noop_size);
19522 p += noop_size;
19523 bytes -= noop_size;
19524 fix += noop_size;
19525 }
19526
19527 /* Use wide noops for the remainder */
19528 noop_size = 4;
19529 }
19530
19531 while (bytes >= noop_size)
19532 {
19533 memcpy (p, noop, noop_size);
19534 p += noop_size;
19535 bytes -= noop_size;
19536 fix += noop_size;
19537 }
19538
19539 fragP->fr_fix += fix;
19540 }
19541
19542 /* Called from md_do_align. Used to create an alignment
19543 frag in a code section. */
19544
19545 void
19546 arm_frag_align_code (int n, int max)
19547 {
19548 char * p;
19549
19550 /* We assume that there will never be a requirement
19551 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19552 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19553 {
19554 char err_msg[128];
19555
19556 sprintf (err_msg,
19557 _("alignments greater than %d bytes not supported in .text sections."),
19558 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19559 as_fatal ("%s", err_msg);
19560 }
19561
19562 p = frag_var (rs_align_code,
19563 MAX_MEM_FOR_RS_ALIGN_CODE,
19564 1,
19565 (relax_substateT) max,
19566 (symbolS *) NULL,
19567 (offsetT) n,
19568 (char *) NULL);
19569 *p = 0;
19570 }
19571
19572 /* Perform target specific initialisation of a frag.
19573 Note - despite the name this initialisation is not done when the frag
19574 is created, but only when its type is assigned. A frag can be created
19575 and used a long time before its type is set, so beware of assuming that
19576 this initialisationis performed first. */
19577
19578 #ifndef OBJ_ELF
19579 void
19580 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19581 {
19582 /* Record whether this frag is in an ARM or a THUMB area. */
19583 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19584 }
19585
19586 #else /* OBJ_ELF is defined. */
19587 void
19588 arm_init_frag (fragS * fragP, int max_chars)
19589 {
19590 /* If the current ARM vs THUMB mode has not already
19591 been recorded into this frag then do so now. */
19592 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19593 {
19594 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19595
19596 /* Record a mapping symbol for alignment frags. We will delete this
19597 later if the alignment ends up empty. */
19598 switch (fragP->fr_type)
19599 {
19600 case rs_align:
19601 case rs_align_test:
19602 case rs_fill:
19603 mapping_state_2 (MAP_DATA, max_chars);
19604 break;
19605 case rs_align_code:
19606 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19607 break;
19608 default:
19609 break;
19610 }
19611 }
19612 }
19613
19614 /* When we change sections we need to issue a new mapping symbol. */
19615
19616 void
19617 arm_elf_change_section (void)
19618 {
19619 /* Link an unlinked unwind index table section to the .text section. */
19620 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19621 && elf_linked_to_section (now_seg) == NULL)
19622 elf_linked_to_section (now_seg) = text_section;
19623 }
19624
19625 int
19626 arm_elf_section_type (const char * str, size_t len)
19627 {
19628 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19629 return SHT_ARM_EXIDX;
19630
19631 return -1;
19632 }
19633 \f
19634 /* Code to deal with unwinding tables. */
19635
19636 static void add_unwind_adjustsp (offsetT);
19637
19638 /* Generate any deferred unwind frame offset. */
19639
19640 static void
19641 flush_pending_unwind (void)
19642 {
19643 offsetT offset;
19644
19645 offset = unwind.pending_offset;
19646 unwind.pending_offset = 0;
19647 if (offset != 0)
19648 add_unwind_adjustsp (offset);
19649 }
19650
19651 /* Add an opcode to this list for this function. Two-byte opcodes should
19652 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19653 order. */
19654
19655 static void
19656 add_unwind_opcode (valueT op, int length)
19657 {
19658 /* Add any deferred stack adjustment. */
19659 if (unwind.pending_offset)
19660 flush_pending_unwind ();
19661
19662 unwind.sp_restored = 0;
19663
19664 if (unwind.opcode_count + length > unwind.opcode_alloc)
19665 {
19666 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19667 if (unwind.opcodes)
19668 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19669 unwind.opcode_alloc);
19670 else
19671 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19672 }
19673 while (length > 0)
19674 {
19675 length--;
19676 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19677 op >>= 8;
19678 unwind.opcode_count++;
19679 }
19680 }
19681
19682 /* Add unwind opcodes to adjust the stack pointer. */
19683
19684 static void
19685 add_unwind_adjustsp (offsetT offset)
19686 {
19687 valueT op;
19688
19689 if (offset > 0x200)
19690 {
19691 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19692 char bytes[5];
19693 int n;
19694 valueT o;
19695
19696 /* Long form: 0xb2, uleb128. */
19697 /* This might not fit in a word so add the individual bytes,
19698 remembering the list is built in reverse order. */
19699 o = (valueT) ((offset - 0x204) >> 2);
19700 if (o == 0)
19701 add_unwind_opcode (0, 1);
19702
19703 /* Calculate the uleb128 encoding of the offset. */
19704 n = 0;
19705 while (o)
19706 {
19707 bytes[n] = o & 0x7f;
19708 o >>= 7;
19709 if (o)
19710 bytes[n] |= 0x80;
19711 n++;
19712 }
19713 /* Add the insn. */
19714 for (; n; n--)
19715 add_unwind_opcode (bytes[n - 1], 1);
19716 add_unwind_opcode (0xb2, 1);
19717 }
19718 else if (offset > 0x100)
19719 {
19720 /* Two short opcodes. */
19721 add_unwind_opcode (0x3f, 1);
19722 op = (offset - 0x104) >> 2;
19723 add_unwind_opcode (op, 1);
19724 }
19725 else if (offset > 0)
19726 {
19727 /* Short opcode. */
19728 op = (offset - 4) >> 2;
19729 add_unwind_opcode (op, 1);
19730 }
19731 else if (offset < 0)
19732 {
19733 offset = -offset;
19734 while (offset > 0x100)
19735 {
19736 add_unwind_opcode (0x7f, 1);
19737 offset -= 0x100;
19738 }
19739 op = ((offset - 4) >> 2) | 0x40;
19740 add_unwind_opcode (op, 1);
19741 }
19742 }
19743
19744 /* Finish the list of unwind opcodes for this function. */
19745 static void
19746 finish_unwind_opcodes (void)
19747 {
19748 valueT op;
19749
19750 if (unwind.fp_used)
19751 {
19752 /* Adjust sp as necessary. */
19753 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19754 flush_pending_unwind ();
19755
19756 /* After restoring sp from the frame pointer. */
19757 op = 0x90 | unwind.fp_reg;
19758 add_unwind_opcode (op, 1);
19759 }
19760 else
19761 flush_pending_unwind ();
19762 }
19763
19764
19765 /* Start an exception table entry. If idx is nonzero this is an index table
19766 entry. */
19767
19768 static void
19769 start_unwind_section (const segT text_seg, int idx)
19770 {
19771 const char * text_name;
19772 const char * prefix;
19773 const char * prefix_once;
19774 const char * group_name;
19775 size_t prefix_len;
19776 size_t text_len;
19777 char * sec_name;
19778 size_t sec_name_len;
19779 int type;
19780 int flags;
19781 int linkonce;
19782
19783 if (idx)
19784 {
19785 prefix = ELF_STRING_ARM_unwind;
19786 prefix_once = ELF_STRING_ARM_unwind_once;
19787 type = SHT_ARM_EXIDX;
19788 }
19789 else
19790 {
19791 prefix = ELF_STRING_ARM_unwind_info;
19792 prefix_once = ELF_STRING_ARM_unwind_info_once;
19793 type = SHT_PROGBITS;
19794 }
19795
19796 text_name = segment_name (text_seg);
19797 if (streq (text_name, ".text"))
19798 text_name = "";
19799
19800 if (strncmp (text_name, ".gnu.linkonce.t.",
19801 strlen (".gnu.linkonce.t.")) == 0)
19802 {
19803 prefix = prefix_once;
19804 text_name += strlen (".gnu.linkonce.t.");
19805 }
19806
19807 prefix_len = strlen (prefix);
19808 text_len = strlen (text_name);
19809 sec_name_len = prefix_len + text_len;
19810 sec_name = (char *) xmalloc (sec_name_len + 1);
19811 memcpy (sec_name, prefix, prefix_len);
19812 memcpy (sec_name + prefix_len, text_name, text_len);
19813 sec_name[prefix_len + text_len] = '\0';
19814
19815 flags = SHF_ALLOC;
19816 linkonce = 0;
19817 group_name = 0;
19818
19819 /* Handle COMDAT group. */
19820 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
19821 {
19822 group_name = elf_group_name (text_seg);
19823 if (group_name == NULL)
19824 {
19825 as_bad (_("Group section `%s' has no group signature"),
19826 segment_name (text_seg));
19827 ignore_rest_of_line ();
19828 return;
19829 }
19830 flags |= SHF_GROUP;
19831 linkonce = 1;
19832 }
19833
19834 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
19835
19836 /* Set the section link for index tables. */
19837 if (idx)
19838 elf_linked_to_section (now_seg) = text_seg;
19839 }
19840
19841
19842 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19843 personality routine data. Returns zero, or the index table value for
19844 and inline entry. */
19845
19846 static valueT
19847 create_unwind_entry (int have_data)
19848 {
19849 int size;
19850 addressT where;
19851 char *ptr;
19852 /* The current word of data. */
19853 valueT data;
19854 /* The number of bytes left in this word. */
19855 int n;
19856
19857 finish_unwind_opcodes ();
19858
19859 /* Remember the current text section. */
19860 unwind.saved_seg = now_seg;
19861 unwind.saved_subseg = now_subseg;
19862
19863 start_unwind_section (now_seg, 0);
19864
19865 if (unwind.personality_routine == NULL)
19866 {
19867 if (unwind.personality_index == -2)
19868 {
19869 if (have_data)
19870 as_bad (_("handlerdata in cantunwind frame"));
19871 return 1; /* EXIDX_CANTUNWIND. */
19872 }
19873
19874 /* Use a default personality routine if none is specified. */
19875 if (unwind.personality_index == -1)
19876 {
19877 if (unwind.opcode_count > 3)
19878 unwind.personality_index = 1;
19879 else
19880 unwind.personality_index = 0;
19881 }
19882
19883 /* Space for the personality routine entry. */
19884 if (unwind.personality_index == 0)
19885 {
19886 if (unwind.opcode_count > 3)
19887 as_bad (_("too many unwind opcodes for personality routine 0"));
19888
19889 if (!have_data)
19890 {
19891 /* All the data is inline in the index table. */
19892 data = 0x80;
19893 n = 3;
19894 while (unwind.opcode_count > 0)
19895 {
19896 unwind.opcode_count--;
19897 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19898 n--;
19899 }
19900
19901 /* Pad with "finish" opcodes. */
19902 while (n--)
19903 data = (data << 8) | 0xb0;
19904
19905 return data;
19906 }
19907 size = 0;
19908 }
19909 else
19910 /* We get two opcodes "free" in the first word. */
19911 size = unwind.opcode_count - 2;
19912 }
19913 else
19914 /* An extra byte is required for the opcode count. */
19915 size = unwind.opcode_count + 1;
19916
19917 size = (size + 3) >> 2;
19918 if (size > 0xff)
19919 as_bad (_("too many unwind opcodes"));
19920
19921 frag_align (2, 0, 0);
19922 record_alignment (now_seg, 2);
19923 unwind.table_entry = expr_build_dot ();
19924
19925 /* Allocate the table entry. */
19926 ptr = frag_more ((size << 2) + 4);
19927 where = frag_now_fix () - ((size << 2) + 4);
19928
19929 switch (unwind.personality_index)
19930 {
19931 case -1:
19932 /* ??? Should this be a PLT generating relocation? */
19933 /* Custom personality routine. */
19934 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19935 BFD_RELOC_ARM_PREL31);
19936
19937 where += 4;
19938 ptr += 4;
19939
19940 /* Set the first byte to the number of additional words. */
19941 data = size - 1;
19942 n = 3;
19943 break;
19944
19945 /* ABI defined personality routines. */
19946 case 0:
19947 /* Three opcodes bytes are packed into the first word. */
19948 data = 0x80;
19949 n = 3;
19950 break;
19951
19952 case 1:
19953 case 2:
19954 /* The size and first two opcode bytes go in the first word. */
19955 data = ((0x80 + unwind.personality_index) << 8) | size;
19956 n = 2;
19957 break;
19958
19959 default:
19960 /* Should never happen. */
19961 abort ();
19962 }
19963
19964 /* Pack the opcodes into words (MSB first), reversing the list at the same
19965 time. */
19966 while (unwind.opcode_count > 0)
19967 {
19968 if (n == 0)
19969 {
19970 md_number_to_chars (ptr, data, 4);
19971 ptr += 4;
19972 n = 4;
19973 data = 0;
19974 }
19975 unwind.opcode_count--;
19976 n--;
19977 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19978 }
19979
19980 /* Finish off the last word. */
19981 if (n < 4)
19982 {
19983 /* Pad with "finish" opcodes. */
19984 while (n--)
19985 data = (data << 8) | 0xb0;
19986
19987 md_number_to_chars (ptr, data, 4);
19988 }
19989
19990 if (!have_data)
19991 {
19992 /* Add an empty descriptor if there is no user-specified data. */
19993 ptr = frag_more (4);
19994 md_number_to_chars (ptr, 0, 4);
19995 }
19996
19997 return 0;
19998 }
19999
20000
20001 /* Initialize the DWARF-2 unwind information for this procedure. */
20002
20003 void
20004 tc_arm_frame_initial_instructions (void)
20005 {
20006 cfi_add_CFA_def_cfa (REG_SP, 0);
20007 }
20008 #endif /* OBJ_ELF */
20009
20010 /* Convert REGNAME to a DWARF-2 register number. */
20011
20012 int
20013 tc_arm_regname_to_dw2regnum (char *regname)
20014 {
20015 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
20016
20017 if (reg == FAIL)
20018 return -1;
20019
20020 return reg;
20021 }
20022
20023 #ifdef TE_PE
20024 void
20025 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
20026 {
20027 expressionS exp;
20028
20029 exp.X_op = O_secrel;
20030 exp.X_add_symbol = symbol;
20031 exp.X_add_number = 0;
20032 emit_expr (&exp, size);
20033 }
20034 #endif
20035
20036 /* MD interface: Symbol and relocation handling. */
20037
20038 /* Return the address within the segment that a PC-relative fixup is
20039 relative to. For ARM, PC-relative fixups applied to instructions
20040 are generally relative to the location of the fixup plus 8 bytes.
20041 Thumb branches are offset by 4, and Thumb loads relative to PC
20042 require special handling. */
20043
20044 long
20045 md_pcrel_from_section (fixS * fixP, segT seg)
20046 {
20047 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20048
20049 /* If this is pc-relative and we are going to emit a relocation
20050 then we just want to put out any pipeline compensation that the linker
20051 will need. Otherwise we want to use the calculated base.
20052 For WinCE we skip the bias for externals as well, since this
20053 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20054 if (fixP->fx_pcrel
20055 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
20056 || (arm_force_relocation (fixP)
20057 #ifdef TE_WINCE
20058 && !S_IS_EXTERNAL (fixP->fx_addsy)
20059 #endif
20060 )))
20061 base = 0;
20062
20063
20064 switch (fixP->fx_r_type)
20065 {
20066 /* PC relative addressing on the Thumb is slightly odd as the
20067 bottom two bits of the PC are forced to zero for the
20068 calculation. This happens *after* application of the
20069 pipeline offset. However, Thumb adrl already adjusts for
20070 this, so we need not do it again. */
20071 case BFD_RELOC_ARM_THUMB_ADD:
20072 return base & ~3;
20073
20074 case BFD_RELOC_ARM_THUMB_OFFSET:
20075 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20076 case BFD_RELOC_ARM_T32_ADD_PC12:
20077 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20078 return (base + 4) & ~3;
20079
20080 /* Thumb branches are simply offset by +4. */
20081 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20082 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20083 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20084 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20085 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20086 return base + 4;
20087
20088 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20089 if (fixP->fx_addsy
20090 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20091 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20092 && ARM_IS_FUNC (fixP->fx_addsy)
20093 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20094 base = fixP->fx_where + fixP->fx_frag->fr_address;
20095 return base + 4;
20096
20097 /* BLX is like branches above, but forces the low two bits of PC to
20098 zero. */
20099 case BFD_RELOC_THUMB_PCREL_BLX:
20100 if (fixP->fx_addsy
20101 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20102 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20103 && THUMB_IS_FUNC (fixP->fx_addsy)
20104 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20105 base = fixP->fx_where + fixP->fx_frag->fr_address;
20106 return (base + 4) & ~3;
20107
20108 /* ARM mode branches are offset by +8. However, the Windows CE
20109 loader expects the relocation not to take this into account. */
20110 case BFD_RELOC_ARM_PCREL_BLX:
20111 if (fixP->fx_addsy
20112 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20113 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20114 && ARM_IS_FUNC (fixP->fx_addsy)
20115 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20116 base = fixP->fx_where + fixP->fx_frag->fr_address;
20117 return base + 8;
20118
20119 case BFD_RELOC_ARM_PCREL_CALL:
20120 if (fixP->fx_addsy
20121 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20122 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20123 && THUMB_IS_FUNC (fixP->fx_addsy)
20124 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20125 base = fixP->fx_where + fixP->fx_frag->fr_address;
20126 return base + 8;
20127
20128 case BFD_RELOC_ARM_PCREL_BRANCH:
20129 case BFD_RELOC_ARM_PCREL_JUMP:
20130 case BFD_RELOC_ARM_PLT32:
20131 #ifdef TE_WINCE
20132 /* When handling fixups immediately, because we have already
20133 discovered the value of a symbol, or the address of the frag involved
20134 we must account for the offset by +8, as the OS loader will never see the reloc.
20135 see fixup_segment() in write.c
20136 The S_IS_EXTERNAL test handles the case of global symbols.
20137 Those need the calculated base, not just the pipe compensation the linker will need. */
20138 if (fixP->fx_pcrel
20139 && fixP->fx_addsy != NULL
20140 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20141 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20142 return base + 8;
20143 return base;
20144 #else
20145 return base + 8;
20146 #endif
20147
20148
20149 /* ARM mode loads relative to PC are also offset by +8. Unlike
20150 branches, the Windows CE loader *does* expect the relocation
20151 to take this into account. */
20152 case BFD_RELOC_ARM_OFFSET_IMM:
20153 case BFD_RELOC_ARM_OFFSET_IMM8:
20154 case BFD_RELOC_ARM_HWLITERAL:
20155 case BFD_RELOC_ARM_LITERAL:
20156 case BFD_RELOC_ARM_CP_OFF_IMM:
20157 return base + 8;
20158
20159
20160 /* Other PC-relative relocations are un-offset. */
20161 default:
20162 return base;
20163 }
20164 }
20165
20166 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20167 Otherwise we have no need to default values of symbols. */
20168
20169 symbolS *
20170 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
20171 {
20172 #ifdef OBJ_ELF
20173 if (name[0] == '_' && name[1] == 'G'
20174 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20175 {
20176 if (!GOT_symbol)
20177 {
20178 if (symbol_find (name))
20179 as_bad (_("GOT already in the symbol table"));
20180
20181 GOT_symbol = symbol_new (name, undefined_section,
20182 (valueT) 0, & zero_address_frag);
20183 }
20184
20185 return GOT_symbol;
20186 }
20187 #endif
20188
20189 return NULL;
20190 }
20191
20192 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20193 computed as two separate immediate values, added together. We
20194 already know that this value cannot be computed by just one ARM
20195 instruction. */
20196
20197 static unsigned int
20198 validate_immediate_twopart (unsigned int val,
20199 unsigned int * highpart)
20200 {
20201 unsigned int a;
20202 unsigned int i;
20203
20204 for (i = 0; i < 32; i += 2)
20205 if (((a = rotate_left (val, i)) & 0xff) != 0)
20206 {
20207 if (a & 0xff00)
20208 {
20209 if (a & ~ 0xffff)
20210 continue;
20211 * highpart = (a >> 8) | ((i + 24) << 7);
20212 }
20213 else if (a & 0xff0000)
20214 {
20215 if (a & 0xff000000)
20216 continue;
20217 * highpart = (a >> 16) | ((i + 16) << 7);
20218 }
20219 else
20220 {
20221 gas_assert (a & 0xff000000);
20222 * highpart = (a >> 24) | ((i + 8) << 7);
20223 }
20224
20225 return (a & 0xff) | (i << 7);
20226 }
20227
20228 return FAIL;
20229 }
20230
20231 static int
20232 validate_offset_imm (unsigned int val, int hwse)
20233 {
20234 if ((hwse && val > 255) || val > 4095)
20235 return FAIL;
20236 return val;
20237 }
20238
20239 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20240 negative immediate constant by altering the instruction. A bit of
20241 a hack really.
20242 MOV <-> MVN
20243 AND <-> BIC
20244 ADC <-> SBC
20245 by inverting the second operand, and
20246 ADD <-> SUB
20247 CMP <-> CMN
20248 by negating the second operand. */
20249
20250 static int
20251 negate_data_op (unsigned long * instruction,
20252 unsigned long value)
20253 {
20254 int op, new_inst;
20255 unsigned long negated, inverted;
20256
20257 negated = encode_arm_immediate (-value);
20258 inverted = encode_arm_immediate (~value);
20259
20260 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20261 switch (op)
20262 {
20263 /* First negates. */
20264 case OPCODE_SUB: /* ADD <-> SUB */
20265 new_inst = OPCODE_ADD;
20266 value = negated;
20267 break;
20268
20269 case OPCODE_ADD:
20270 new_inst = OPCODE_SUB;
20271 value = negated;
20272 break;
20273
20274 case OPCODE_CMP: /* CMP <-> CMN */
20275 new_inst = OPCODE_CMN;
20276 value = negated;
20277 break;
20278
20279 case OPCODE_CMN:
20280 new_inst = OPCODE_CMP;
20281 value = negated;
20282 break;
20283
20284 /* Now Inverted ops. */
20285 case OPCODE_MOV: /* MOV <-> MVN */
20286 new_inst = OPCODE_MVN;
20287 value = inverted;
20288 break;
20289
20290 case OPCODE_MVN:
20291 new_inst = OPCODE_MOV;
20292 value = inverted;
20293 break;
20294
20295 case OPCODE_AND: /* AND <-> BIC */
20296 new_inst = OPCODE_BIC;
20297 value = inverted;
20298 break;
20299
20300 case OPCODE_BIC:
20301 new_inst = OPCODE_AND;
20302 value = inverted;
20303 break;
20304
20305 case OPCODE_ADC: /* ADC <-> SBC */
20306 new_inst = OPCODE_SBC;
20307 value = inverted;
20308 break;
20309
20310 case OPCODE_SBC:
20311 new_inst = OPCODE_ADC;
20312 value = inverted;
20313 break;
20314
20315 /* We cannot do anything. */
20316 default:
20317 return FAIL;
20318 }
20319
20320 if (value == (unsigned) FAIL)
20321 return FAIL;
20322
20323 *instruction &= OPCODE_MASK;
20324 *instruction |= new_inst << DATA_OP_SHIFT;
20325 return value;
20326 }
20327
20328 /* Like negate_data_op, but for Thumb-2. */
20329
20330 static unsigned int
20331 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
20332 {
20333 int op, new_inst;
20334 int rd;
20335 unsigned int negated, inverted;
20336
20337 negated = encode_thumb32_immediate (-value);
20338 inverted = encode_thumb32_immediate (~value);
20339
20340 rd = (*instruction >> 8) & 0xf;
20341 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20342 switch (op)
20343 {
20344 /* ADD <-> SUB. Includes CMP <-> CMN. */
20345 case T2_OPCODE_SUB:
20346 new_inst = T2_OPCODE_ADD;
20347 value = negated;
20348 break;
20349
20350 case T2_OPCODE_ADD:
20351 new_inst = T2_OPCODE_SUB;
20352 value = negated;
20353 break;
20354
20355 /* ORR <-> ORN. Includes MOV <-> MVN. */
20356 case T2_OPCODE_ORR:
20357 new_inst = T2_OPCODE_ORN;
20358 value = inverted;
20359 break;
20360
20361 case T2_OPCODE_ORN:
20362 new_inst = T2_OPCODE_ORR;
20363 value = inverted;
20364 break;
20365
20366 /* AND <-> BIC. TST has no inverted equivalent. */
20367 case T2_OPCODE_AND:
20368 new_inst = T2_OPCODE_BIC;
20369 if (rd == 15)
20370 value = FAIL;
20371 else
20372 value = inverted;
20373 break;
20374
20375 case T2_OPCODE_BIC:
20376 new_inst = T2_OPCODE_AND;
20377 value = inverted;
20378 break;
20379
20380 /* ADC <-> SBC */
20381 case T2_OPCODE_ADC:
20382 new_inst = T2_OPCODE_SBC;
20383 value = inverted;
20384 break;
20385
20386 case T2_OPCODE_SBC:
20387 new_inst = T2_OPCODE_ADC;
20388 value = inverted;
20389 break;
20390
20391 /* We cannot do anything. */
20392 default:
20393 return FAIL;
20394 }
20395
20396 if (value == (unsigned int)FAIL)
20397 return FAIL;
20398
20399 *instruction &= T2_OPCODE_MASK;
20400 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20401 return value;
20402 }
20403
20404 /* Read a 32-bit thumb instruction from buf. */
20405 static unsigned long
20406 get_thumb32_insn (char * buf)
20407 {
20408 unsigned long insn;
20409 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20410 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20411
20412 return insn;
20413 }
20414
20415
20416 /* We usually want to set the low bit on the address of thumb function
20417 symbols. In particular .word foo - . should have the low bit set.
20418 Generic code tries to fold the difference of two symbols to
20419 a constant. Prevent this and force a relocation when the first symbols
20420 is a thumb function. */
20421
20422 bfd_boolean
20423 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20424 {
20425 if (op == O_subtract
20426 && l->X_op == O_symbol
20427 && r->X_op == O_symbol
20428 && THUMB_IS_FUNC (l->X_add_symbol))
20429 {
20430 l->X_op = O_subtract;
20431 l->X_op_symbol = r->X_add_symbol;
20432 l->X_add_number -= r->X_add_number;
20433 return TRUE;
20434 }
20435
20436 /* Process as normal. */
20437 return FALSE;
20438 }
20439
20440 /* Encode Thumb2 unconditional branches and calls. The encoding
20441 for the 2 are identical for the immediate values. */
20442
20443 static void
20444 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20445 {
20446 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20447 offsetT newval;
20448 offsetT newval2;
20449 addressT S, I1, I2, lo, hi;
20450
20451 S = (value >> 24) & 0x01;
20452 I1 = (value >> 23) & 0x01;
20453 I2 = (value >> 22) & 0x01;
20454 hi = (value >> 12) & 0x3ff;
20455 lo = (value >> 1) & 0x7ff;
20456 newval = md_chars_to_number (buf, THUMB_SIZE);
20457 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20458 newval |= (S << 10) | hi;
20459 newval2 &= ~T2I1I2MASK;
20460 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20461 md_number_to_chars (buf, newval, THUMB_SIZE);
20462 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20463 }
20464
20465 void
20466 md_apply_fix (fixS * fixP,
20467 valueT * valP,
20468 segT seg)
20469 {
20470 offsetT value = * valP;
20471 offsetT newval;
20472 unsigned int newimm;
20473 unsigned long temp;
20474 int sign;
20475 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20476
20477 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20478
20479 /* Note whether this will delete the relocation. */
20480
20481 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20482 fixP->fx_done = 1;
20483
20484 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20485 consistency with the behaviour on 32-bit hosts. Remember value
20486 for emit_reloc. */
20487 value &= 0xffffffff;
20488 value ^= 0x80000000;
20489 value -= 0x80000000;
20490
20491 *valP = value;
20492 fixP->fx_addnumber = value;
20493
20494 /* Same treatment for fixP->fx_offset. */
20495 fixP->fx_offset &= 0xffffffff;
20496 fixP->fx_offset ^= 0x80000000;
20497 fixP->fx_offset -= 0x80000000;
20498
20499 switch (fixP->fx_r_type)
20500 {
20501 case BFD_RELOC_NONE:
20502 /* This will need to go in the object file. */
20503 fixP->fx_done = 0;
20504 break;
20505
20506 case BFD_RELOC_ARM_IMMEDIATE:
20507 /* We claim that this fixup has been processed here,
20508 even if in fact we generate an error because we do
20509 not have a reloc for it, so tc_gen_reloc will reject it. */
20510 fixP->fx_done = 1;
20511
20512 if (fixP->fx_addsy)
20513 {
20514 const char *msg = 0;
20515
20516 if (! S_IS_DEFINED (fixP->fx_addsy))
20517 msg = _("undefined symbol %s used as an immediate value");
20518 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20519 msg = _("symbol %s is in a different section");
20520 else if (S_IS_WEAK (fixP->fx_addsy))
20521 msg = _("symbol %s is weak and may be overridden later");
20522
20523 if (msg)
20524 {
20525 as_bad_where (fixP->fx_file, fixP->fx_line,
20526 msg, S_GET_NAME (fixP->fx_addsy));
20527 break;
20528 }
20529 }
20530
20531 newimm = encode_arm_immediate (value);
20532 temp = md_chars_to_number (buf, INSN_SIZE);
20533
20534 /* If the instruction will fail, see if we can fix things up by
20535 changing the opcode. */
20536 if (newimm == (unsigned int) FAIL
20537 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
20538 {
20539 as_bad_where (fixP->fx_file, fixP->fx_line,
20540 _("invalid constant (%lx) after fixup"),
20541 (unsigned long) value);
20542 break;
20543 }
20544
20545 newimm |= (temp & 0xfffff000);
20546 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20547 break;
20548
20549 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20550 {
20551 unsigned int highpart = 0;
20552 unsigned int newinsn = 0xe1a00000; /* nop. */
20553
20554 if (fixP->fx_addsy)
20555 {
20556 const char *msg = 0;
20557
20558 if (! S_IS_DEFINED (fixP->fx_addsy))
20559 msg = _("undefined symbol %s used as an immediate value");
20560 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20561 msg = _("symbol %s is in a different section");
20562 else if (S_IS_WEAK (fixP->fx_addsy))
20563 msg = _("symbol %s is weak and may be overridden later");
20564
20565 if (msg)
20566 {
20567 as_bad_where (fixP->fx_file, fixP->fx_line,
20568 msg, S_GET_NAME (fixP->fx_addsy));
20569 break;
20570 }
20571 }
20572
20573 newimm = encode_arm_immediate (value);
20574 temp = md_chars_to_number (buf, INSN_SIZE);
20575
20576 /* If the instruction will fail, see if we can fix things up by
20577 changing the opcode. */
20578 if (newimm == (unsigned int) FAIL
20579 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20580 {
20581 /* No ? OK - try using two ADD instructions to generate
20582 the value. */
20583 newimm = validate_immediate_twopart (value, & highpart);
20584
20585 /* Yes - then make sure that the second instruction is
20586 also an add. */
20587 if (newimm != (unsigned int) FAIL)
20588 newinsn = temp;
20589 /* Still No ? Try using a negated value. */
20590 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20591 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20592 /* Otherwise - give up. */
20593 else
20594 {
20595 as_bad_where (fixP->fx_file, fixP->fx_line,
20596 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20597 (long) value);
20598 break;
20599 }
20600
20601 /* Replace the first operand in the 2nd instruction (which
20602 is the PC) with the destination register. We have
20603 already added in the PC in the first instruction and we
20604 do not want to do it again. */
20605 newinsn &= ~ 0xf0000;
20606 newinsn |= ((newinsn & 0x0f000) << 4);
20607 }
20608
20609 newimm |= (temp & 0xfffff000);
20610 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20611
20612 highpart |= (newinsn & 0xfffff000);
20613 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20614 }
20615 break;
20616
20617 case BFD_RELOC_ARM_OFFSET_IMM:
20618 if (!fixP->fx_done && seg->use_rela_p)
20619 value = 0;
20620
20621 case BFD_RELOC_ARM_LITERAL:
20622 sign = value > 0;
20623
20624 if (value < 0)
20625 value = - value;
20626
20627 if (validate_offset_imm (value, 0) == FAIL)
20628 {
20629 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20630 as_bad_where (fixP->fx_file, fixP->fx_line,
20631 _("invalid literal constant: pool needs to be closer"));
20632 else
20633 as_bad_where (fixP->fx_file, fixP->fx_line,
20634 _("bad immediate value for offset (%ld)"),
20635 (long) value);
20636 break;
20637 }
20638
20639 newval = md_chars_to_number (buf, INSN_SIZE);
20640 if (value == 0)
20641 newval &= 0xfffff000;
20642 else
20643 {
20644 newval &= 0xff7ff000;
20645 newval |= value | (sign ? INDEX_UP : 0);
20646 }
20647 md_number_to_chars (buf, newval, INSN_SIZE);
20648 break;
20649
20650 case BFD_RELOC_ARM_OFFSET_IMM8:
20651 case BFD_RELOC_ARM_HWLITERAL:
20652 sign = value > 0;
20653
20654 if (value < 0)
20655 value = - value;
20656
20657 if (validate_offset_imm (value, 1) == FAIL)
20658 {
20659 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20660 as_bad_where (fixP->fx_file, fixP->fx_line,
20661 _("invalid literal constant: pool needs to be closer"));
20662 else
20663 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20664 (long) value);
20665 break;
20666 }
20667
20668 newval = md_chars_to_number (buf, INSN_SIZE);
20669 if (value == 0)
20670 newval &= 0xfffff0f0;
20671 else
20672 {
20673 newval &= 0xff7ff0f0;
20674 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20675 }
20676 md_number_to_chars (buf, newval, INSN_SIZE);
20677 break;
20678
20679 case BFD_RELOC_ARM_T32_OFFSET_U8:
20680 if (value < 0 || value > 1020 || value % 4 != 0)
20681 as_bad_where (fixP->fx_file, fixP->fx_line,
20682 _("bad immediate value for offset (%ld)"), (long) value);
20683 value /= 4;
20684
20685 newval = md_chars_to_number (buf+2, THUMB_SIZE);
20686 newval |= value;
20687 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20688 break;
20689
20690 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20691 /* This is a complicated relocation used for all varieties of Thumb32
20692 load/store instruction with immediate offset:
20693
20694 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20695 *4, optional writeback(W)
20696 (doubleword load/store)
20697
20698 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20699 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20700 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20701 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20702 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20703
20704 Uppercase letters indicate bits that are already encoded at
20705 this point. Lowercase letters are our problem. For the
20706 second block of instructions, the secondary opcode nybble
20707 (bits 8..11) is present, and bit 23 is zero, even if this is
20708 a PC-relative operation. */
20709 newval = md_chars_to_number (buf, THUMB_SIZE);
20710 newval <<= 16;
20711 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
20712
20713 if ((newval & 0xf0000000) == 0xe0000000)
20714 {
20715 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20716 if (value >= 0)
20717 newval |= (1 << 23);
20718 else
20719 value = -value;
20720 if (value % 4 != 0)
20721 {
20722 as_bad_where (fixP->fx_file, fixP->fx_line,
20723 _("offset not a multiple of 4"));
20724 break;
20725 }
20726 value /= 4;
20727 if (value > 0xff)
20728 {
20729 as_bad_where (fixP->fx_file, fixP->fx_line,
20730 _("offset out of range"));
20731 break;
20732 }
20733 newval &= ~0xff;
20734 }
20735 else if ((newval & 0x000f0000) == 0x000f0000)
20736 {
20737 /* PC-relative, 12-bit offset. */
20738 if (value >= 0)
20739 newval |= (1 << 23);
20740 else
20741 value = -value;
20742 if (value > 0xfff)
20743 {
20744 as_bad_where (fixP->fx_file, fixP->fx_line,
20745 _("offset out of range"));
20746 break;
20747 }
20748 newval &= ~0xfff;
20749 }
20750 else if ((newval & 0x00000100) == 0x00000100)
20751 {
20752 /* Writeback: 8-bit, +/- offset. */
20753 if (value >= 0)
20754 newval |= (1 << 9);
20755 else
20756 value = -value;
20757 if (value > 0xff)
20758 {
20759 as_bad_where (fixP->fx_file, fixP->fx_line,
20760 _("offset out of range"));
20761 break;
20762 }
20763 newval &= ~0xff;
20764 }
20765 else if ((newval & 0x00000f00) == 0x00000e00)
20766 {
20767 /* T-instruction: positive 8-bit offset. */
20768 if (value < 0 || value > 0xff)
20769 {
20770 as_bad_where (fixP->fx_file, fixP->fx_line,
20771 _("offset out of range"));
20772 break;
20773 }
20774 newval &= ~0xff;
20775 newval |= value;
20776 }
20777 else
20778 {
20779 /* Positive 12-bit or negative 8-bit offset. */
20780 int limit;
20781 if (value >= 0)
20782 {
20783 newval |= (1 << 23);
20784 limit = 0xfff;
20785 }
20786 else
20787 {
20788 value = -value;
20789 limit = 0xff;
20790 }
20791 if (value > limit)
20792 {
20793 as_bad_where (fixP->fx_file, fixP->fx_line,
20794 _("offset out of range"));
20795 break;
20796 }
20797 newval &= ~limit;
20798 }
20799
20800 newval |= value;
20801 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20802 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20803 break;
20804
20805 case BFD_RELOC_ARM_SHIFT_IMM:
20806 newval = md_chars_to_number (buf, INSN_SIZE);
20807 if (((unsigned long) value) > 32
20808 || (value == 32
20809 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20810 {
20811 as_bad_where (fixP->fx_file, fixP->fx_line,
20812 _("shift expression is too large"));
20813 break;
20814 }
20815
20816 if (value == 0)
20817 /* Shifts of zero must be done as lsl. */
20818 newval &= ~0x60;
20819 else if (value == 32)
20820 value = 0;
20821 newval &= 0xfffff07f;
20822 newval |= (value & 0x1f) << 7;
20823 md_number_to_chars (buf, newval, INSN_SIZE);
20824 break;
20825
20826 case BFD_RELOC_ARM_T32_IMMEDIATE:
20827 case BFD_RELOC_ARM_T32_ADD_IMM:
20828 case BFD_RELOC_ARM_T32_IMM12:
20829 case BFD_RELOC_ARM_T32_ADD_PC12:
20830 /* We claim that this fixup has been processed here,
20831 even if in fact we generate an error because we do
20832 not have a reloc for it, so tc_gen_reloc will reject it. */
20833 fixP->fx_done = 1;
20834
20835 if (fixP->fx_addsy
20836 && ! S_IS_DEFINED (fixP->fx_addsy))
20837 {
20838 as_bad_where (fixP->fx_file, fixP->fx_line,
20839 _("undefined symbol %s used as an immediate value"),
20840 S_GET_NAME (fixP->fx_addsy));
20841 break;
20842 }
20843
20844 newval = md_chars_to_number (buf, THUMB_SIZE);
20845 newval <<= 16;
20846 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
20847
20848 newimm = FAIL;
20849 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20850 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20851 {
20852 newimm = encode_thumb32_immediate (value);
20853 if (newimm == (unsigned int) FAIL)
20854 newimm = thumb32_negate_data_op (&newval, value);
20855 }
20856 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20857 && newimm == (unsigned int) FAIL)
20858 {
20859 /* Turn add/sum into addw/subw. */
20860 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20861 newval = (newval & 0xfeffffff) | 0x02000000;
20862 /* No flat 12-bit imm encoding for addsw/subsw. */
20863 if ((newval & 0x00100000) == 0)
20864 {
20865 /* 12 bit immediate for addw/subw. */
20866 if (value < 0)
20867 {
20868 value = -value;
20869 newval ^= 0x00a00000;
20870 }
20871 if (value > 0xfff)
20872 newimm = (unsigned int) FAIL;
20873 else
20874 newimm = value;
20875 }
20876 }
20877
20878 if (newimm == (unsigned int)FAIL)
20879 {
20880 as_bad_where (fixP->fx_file, fixP->fx_line,
20881 _("invalid constant (%lx) after fixup"),
20882 (unsigned long) value);
20883 break;
20884 }
20885
20886 newval |= (newimm & 0x800) << 15;
20887 newval |= (newimm & 0x700) << 4;
20888 newval |= (newimm & 0x0ff);
20889
20890 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20891 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20892 break;
20893
20894 case BFD_RELOC_ARM_SMC:
20895 if (((unsigned long) value) > 0xffff)
20896 as_bad_where (fixP->fx_file, fixP->fx_line,
20897 _("invalid smc expression"));
20898 newval = md_chars_to_number (buf, INSN_SIZE);
20899 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20900 md_number_to_chars (buf, newval, INSN_SIZE);
20901 break;
20902
20903 case BFD_RELOC_ARM_HVC:
20904 if (((unsigned long) value) > 0xffff)
20905 as_bad_where (fixP->fx_file, fixP->fx_line,
20906 _("invalid hvc expression"));
20907 newval = md_chars_to_number (buf, INSN_SIZE);
20908 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20909 md_number_to_chars (buf, newval, INSN_SIZE);
20910 break;
20911
20912 case BFD_RELOC_ARM_SWI:
20913 if (fixP->tc_fix_data != 0)
20914 {
20915 if (((unsigned long) value) > 0xff)
20916 as_bad_where (fixP->fx_file, fixP->fx_line,
20917 _("invalid swi expression"));
20918 newval = md_chars_to_number (buf, THUMB_SIZE);
20919 newval |= value;
20920 md_number_to_chars (buf, newval, THUMB_SIZE);
20921 }
20922 else
20923 {
20924 if (((unsigned long) value) > 0x00ffffff)
20925 as_bad_where (fixP->fx_file, fixP->fx_line,
20926 _("invalid swi expression"));
20927 newval = md_chars_to_number (buf, INSN_SIZE);
20928 newval |= value;
20929 md_number_to_chars (buf, newval, INSN_SIZE);
20930 }
20931 break;
20932
20933 case BFD_RELOC_ARM_MULTI:
20934 if (((unsigned long) value) > 0xffff)
20935 as_bad_where (fixP->fx_file, fixP->fx_line,
20936 _("invalid expression in load/store multiple"));
20937 newval = value | md_chars_to_number (buf, INSN_SIZE);
20938 md_number_to_chars (buf, newval, INSN_SIZE);
20939 break;
20940
20941 #ifdef OBJ_ELF
20942 case BFD_RELOC_ARM_PCREL_CALL:
20943
20944 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20945 && fixP->fx_addsy
20946 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20947 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20948 && THUMB_IS_FUNC (fixP->fx_addsy))
20949 /* Flip the bl to blx. This is a simple flip
20950 bit here because we generate PCREL_CALL for
20951 unconditional bls. */
20952 {
20953 newval = md_chars_to_number (buf, INSN_SIZE);
20954 newval = newval | 0x10000000;
20955 md_number_to_chars (buf, newval, INSN_SIZE);
20956 temp = 1;
20957 fixP->fx_done = 1;
20958 }
20959 else
20960 temp = 3;
20961 goto arm_branch_common;
20962
20963 case BFD_RELOC_ARM_PCREL_JUMP:
20964 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20965 && fixP->fx_addsy
20966 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20967 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20968 && THUMB_IS_FUNC (fixP->fx_addsy))
20969 {
20970 /* This would map to a bl<cond>, b<cond>,
20971 b<always> to a Thumb function. We
20972 need to force a relocation for this particular
20973 case. */
20974 newval = md_chars_to_number (buf, INSN_SIZE);
20975 fixP->fx_done = 0;
20976 }
20977
20978 case BFD_RELOC_ARM_PLT32:
20979 #endif
20980 case BFD_RELOC_ARM_PCREL_BRANCH:
20981 temp = 3;
20982 goto arm_branch_common;
20983
20984 case BFD_RELOC_ARM_PCREL_BLX:
20985
20986 temp = 1;
20987 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20988 && fixP->fx_addsy
20989 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20990 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20991 && ARM_IS_FUNC (fixP->fx_addsy))
20992 {
20993 /* Flip the blx to a bl and warn. */
20994 const char *name = S_GET_NAME (fixP->fx_addsy);
20995 newval = 0xeb000000;
20996 as_warn_where (fixP->fx_file, fixP->fx_line,
20997 _("blx to '%s' an ARM ISA state function changed to bl"),
20998 name);
20999 md_number_to_chars (buf, newval, INSN_SIZE);
21000 temp = 3;
21001 fixP->fx_done = 1;
21002 }
21003
21004 #ifdef OBJ_ELF
21005 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21006 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21007 #endif
21008
21009 arm_branch_common:
21010 /* We are going to store value (shifted right by two) in the
21011 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21012 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21013 also be be clear. */
21014 if (value & temp)
21015 as_bad_where (fixP->fx_file, fixP->fx_line,
21016 _("misaligned branch destination"));
21017 if ((value & (offsetT)0xfe000000) != (offsetT)0
21018 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
21019 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21020
21021 if (fixP->fx_done || !seg->use_rela_p)
21022 {
21023 newval = md_chars_to_number (buf, INSN_SIZE);
21024 newval |= (value >> 2) & 0x00ffffff;
21025 /* Set the H bit on BLX instructions. */
21026 if (temp == 1)
21027 {
21028 if (value & 2)
21029 newval |= 0x01000000;
21030 else
21031 newval &= ~0x01000000;
21032 }
21033 md_number_to_chars (buf, newval, INSN_SIZE);
21034 }
21035 break;
21036
21037 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21038 /* CBZ can only branch forward. */
21039
21040 /* Attempts to use CBZ to branch to the next instruction
21041 (which, strictly speaking, are prohibited) will be turned into
21042 no-ops.
21043
21044 FIXME: It may be better to remove the instruction completely and
21045 perform relaxation. */
21046 if (value == -2)
21047 {
21048 newval = md_chars_to_number (buf, THUMB_SIZE);
21049 newval = 0xbf00; /* NOP encoding T1 */
21050 md_number_to_chars (buf, newval, THUMB_SIZE);
21051 }
21052 else
21053 {
21054 if (value & ~0x7e)
21055 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21056
21057 if (fixP->fx_done || !seg->use_rela_p)
21058 {
21059 newval = md_chars_to_number (buf, THUMB_SIZE);
21060 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21061 md_number_to_chars (buf, newval, THUMB_SIZE);
21062 }
21063 }
21064 break;
21065
21066 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
21067 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
21068 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21069
21070 if (fixP->fx_done || !seg->use_rela_p)
21071 {
21072 newval = md_chars_to_number (buf, THUMB_SIZE);
21073 newval |= (value & 0x1ff) >> 1;
21074 md_number_to_chars (buf, newval, THUMB_SIZE);
21075 }
21076 break;
21077
21078 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
21079 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
21080 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21081
21082 if (fixP->fx_done || !seg->use_rela_p)
21083 {
21084 newval = md_chars_to_number (buf, THUMB_SIZE);
21085 newval |= (value & 0xfff) >> 1;
21086 md_number_to_chars (buf, newval, THUMB_SIZE);
21087 }
21088 break;
21089
21090 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21091 if (fixP->fx_addsy
21092 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21093 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21094 && ARM_IS_FUNC (fixP->fx_addsy)
21095 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21096 {
21097 /* Force a relocation for a branch 20 bits wide. */
21098 fixP->fx_done = 0;
21099 }
21100 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
21101 as_bad_where (fixP->fx_file, fixP->fx_line,
21102 _("conditional branch out of range"));
21103
21104 if (fixP->fx_done || !seg->use_rela_p)
21105 {
21106 offsetT newval2;
21107 addressT S, J1, J2, lo, hi;
21108
21109 S = (value & 0x00100000) >> 20;
21110 J2 = (value & 0x00080000) >> 19;
21111 J1 = (value & 0x00040000) >> 18;
21112 hi = (value & 0x0003f000) >> 12;
21113 lo = (value & 0x00000ffe) >> 1;
21114
21115 newval = md_chars_to_number (buf, THUMB_SIZE);
21116 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21117 newval |= (S << 10) | hi;
21118 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21119 md_number_to_chars (buf, newval, THUMB_SIZE);
21120 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21121 }
21122 break;
21123
21124 case BFD_RELOC_THUMB_PCREL_BLX:
21125 /* If there is a blx from a thumb state function to
21126 another thumb function flip this to a bl and warn
21127 about it. */
21128
21129 if (fixP->fx_addsy
21130 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21131 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21132 && THUMB_IS_FUNC (fixP->fx_addsy))
21133 {
21134 const char *name = S_GET_NAME (fixP->fx_addsy);
21135 as_warn_where (fixP->fx_file, fixP->fx_line,
21136 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21137 name);
21138 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21139 newval = newval | 0x1000;
21140 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21141 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21142 fixP->fx_done = 1;
21143 }
21144
21145
21146 goto thumb_bl_common;
21147
21148 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21149 /* A bl from Thumb state ISA to an internal ARM state function
21150 is converted to a blx. */
21151 if (fixP->fx_addsy
21152 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21153 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21154 && ARM_IS_FUNC (fixP->fx_addsy)
21155 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21156 {
21157 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21158 newval = newval & ~0x1000;
21159 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21160 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21161 fixP->fx_done = 1;
21162 }
21163
21164 thumb_bl_common:
21165
21166 #ifdef OBJ_ELF
21167 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
21168 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21169 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21170 #endif
21171
21172 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21173 /* For a BLX instruction, make sure that the relocation is rounded up
21174 to a word boundary. This follows the semantics of the instruction
21175 which specifies that bit 1 of the target address will come from bit
21176 1 of the base address. */
21177 value = (value + 1) & ~ 1;
21178
21179 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21180 {
21181 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21182 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21183 else if ((value & ~0x1ffffff)
21184 && ((value & ~0x1ffffff) != ~0x1ffffff))
21185 as_bad_where (fixP->fx_file, fixP->fx_line,
21186 _("Thumb2 branch out of range"));
21187 }
21188
21189 if (fixP->fx_done || !seg->use_rela_p)
21190 encode_thumb2_b_bl_offset (buf, value);
21191
21192 break;
21193
21194 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21195 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21196 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21197
21198 if (fixP->fx_done || !seg->use_rela_p)
21199 encode_thumb2_b_bl_offset (buf, value);
21200
21201 break;
21202
21203 case BFD_RELOC_8:
21204 if (fixP->fx_done || !seg->use_rela_p)
21205 md_number_to_chars (buf, value, 1);
21206 break;
21207
21208 case BFD_RELOC_16:
21209 if (fixP->fx_done || !seg->use_rela_p)
21210 md_number_to_chars (buf, value, 2);
21211 break;
21212
21213 #ifdef OBJ_ELF
21214 case BFD_RELOC_ARM_TLS_CALL:
21215 case BFD_RELOC_ARM_THM_TLS_CALL:
21216 case BFD_RELOC_ARM_TLS_DESCSEQ:
21217 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21218 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21219 break;
21220
21221 case BFD_RELOC_ARM_TLS_GOTDESC:
21222 case BFD_RELOC_ARM_TLS_GD32:
21223 case BFD_RELOC_ARM_TLS_LE32:
21224 case BFD_RELOC_ARM_TLS_IE32:
21225 case BFD_RELOC_ARM_TLS_LDM32:
21226 case BFD_RELOC_ARM_TLS_LDO32:
21227 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21228 /* fall through */
21229
21230 case BFD_RELOC_ARM_GOT32:
21231 case BFD_RELOC_ARM_GOTOFF:
21232 if (fixP->fx_done || !seg->use_rela_p)
21233 md_number_to_chars (buf, 0, 4);
21234 break;
21235
21236 case BFD_RELOC_ARM_GOT_PREL:
21237 if (fixP->fx_done || !seg->use_rela_p)
21238 md_number_to_chars (buf, value, 4);
21239 break;
21240
21241 case BFD_RELOC_ARM_TARGET2:
21242 /* TARGET2 is not partial-inplace, so we need to write the
21243 addend here for REL targets, because it won't be written out
21244 during reloc processing later. */
21245 if (fixP->fx_done || !seg->use_rela_p)
21246 md_number_to_chars (buf, fixP->fx_offset, 4);
21247 break;
21248 #endif
21249
21250 case BFD_RELOC_RVA:
21251 case BFD_RELOC_32:
21252 case BFD_RELOC_ARM_TARGET1:
21253 case BFD_RELOC_ARM_ROSEGREL32:
21254 case BFD_RELOC_ARM_SBREL32:
21255 case BFD_RELOC_32_PCREL:
21256 #ifdef TE_PE
21257 case BFD_RELOC_32_SECREL:
21258 #endif
21259 if (fixP->fx_done || !seg->use_rela_p)
21260 #ifdef TE_WINCE
21261 /* For WinCE we only do this for pcrel fixups. */
21262 if (fixP->fx_done || fixP->fx_pcrel)
21263 #endif
21264 md_number_to_chars (buf, value, 4);
21265 break;
21266
21267 #ifdef OBJ_ELF
21268 case BFD_RELOC_ARM_PREL31:
21269 if (fixP->fx_done || !seg->use_rela_p)
21270 {
21271 newval = md_chars_to_number (buf, 4) & 0x80000000;
21272 if ((value ^ (value >> 1)) & 0x40000000)
21273 {
21274 as_bad_where (fixP->fx_file, fixP->fx_line,
21275 _("rel31 relocation overflow"));
21276 }
21277 newval |= value & 0x7fffffff;
21278 md_number_to_chars (buf, newval, 4);
21279 }
21280 break;
21281 #endif
21282
21283 case BFD_RELOC_ARM_CP_OFF_IMM:
21284 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21285 if (value < -1023 || value > 1023 || (value & 3))
21286 as_bad_where (fixP->fx_file, fixP->fx_line,
21287 _("co-processor offset out of range"));
21288 cp_off_common:
21289 sign = value > 0;
21290 if (value < 0)
21291 value = -value;
21292 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21293 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21294 newval = md_chars_to_number (buf, INSN_SIZE);
21295 else
21296 newval = get_thumb32_insn (buf);
21297 if (value == 0)
21298 newval &= 0xffffff00;
21299 else
21300 {
21301 newval &= 0xff7fff00;
21302 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21303 }
21304 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21305 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21306 md_number_to_chars (buf, newval, INSN_SIZE);
21307 else
21308 put_thumb32_insn (buf, newval);
21309 break;
21310
21311 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
21312 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
21313 if (value < -255 || value > 255)
21314 as_bad_where (fixP->fx_file, fixP->fx_line,
21315 _("co-processor offset out of range"));
21316 value *= 4;
21317 goto cp_off_common;
21318
21319 case BFD_RELOC_ARM_THUMB_OFFSET:
21320 newval = md_chars_to_number (buf, THUMB_SIZE);
21321 /* Exactly what ranges, and where the offset is inserted depends
21322 on the type of instruction, we can establish this from the
21323 top 4 bits. */
21324 switch (newval >> 12)
21325 {
21326 case 4: /* PC load. */
21327 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21328 forced to zero for these loads; md_pcrel_from has already
21329 compensated for this. */
21330 if (value & 3)
21331 as_bad_where (fixP->fx_file, fixP->fx_line,
21332 _("invalid offset, target not word aligned (0x%08lX)"),
21333 (((unsigned long) fixP->fx_frag->fr_address
21334 + (unsigned long) fixP->fx_where) & ~3)
21335 + (unsigned long) value);
21336
21337 if (value & ~0x3fc)
21338 as_bad_where (fixP->fx_file, fixP->fx_line,
21339 _("invalid offset, value too big (0x%08lX)"),
21340 (long) value);
21341
21342 newval |= value >> 2;
21343 break;
21344
21345 case 9: /* SP load/store. */
21346 if (value & ~0x3fc)
21347 as_bad_where (fixP->fx_file, fixP->fx_line,
21348 _("invalid offset, value too big (0x%08lX)"),
21349 (long) value);
21350 newval |= value >> 2;
21351 break;
21352
21353 case 6: /* Word load/store. */
21354 if (value & ~0x7c)
21355 as_bad_where (fixP->fx_file, fixP->fx_line,
21356 _("invalid offset, value too big (0x%08lX)"),
21357 (long) value);
21358 newval |= value << 4; /* 6 - 2. */
21359 break;
21360
21361 case 7: /* Byte load/store. */
21362 if (value & ~0x1f)
21363 as_bad_where (fixP->fx_file, fixP->fx_line,
21364 _("invalid offset, value too big (0x%08lX)"),
21365 (long) value);
21366 newval |= value << 6;
21367 break;
21368
21369 case 8: /* Halfword load/store. */
21370 if (value & ~0x3e)
21371 as_bad_where (fixP->fx_file, fixP->fx_line,
21372 _("invalid offset, value too big (0x%08lX)"),
21373 (long) value);
21374 newval |= value << 5; /* 6 - 1. */
21375 break;
21376
21377 default:
21378 as_bad_where (fixP->fx_file, fixP->fx_line,
21379 "Unable to process relocation for thumb opcode: %lx",
21380 (unsigned long) newval);
21381 break;
21382 }
21383 md_number_to_chars (buf, newval, THUMB_SIZE);
21384 break;
21385
21386 case BFD_RELOC_ARM_THUMB_ADD:
21387 /* This is a complicated relocation, since we use it for all of
21388 the following immediate relocations:
21389
21390 3bit ADD/SUB
21391 8bit ADD/SUB
21392 9bit ADD/SUB SP word-aligned
21393 10bit ADD PC/SP word-aligned
21394
21395 The type of instruction being processed is encoded in the
21396 instruction field:
21397
21398 0x8000 SUB
21399 0x00F0 Rd
21400 0x000F Rs
21401 */
21402 newval = md_chars_to_number (buf, THUMB_SIZE);
21403 {
21404 int rd = (newval >> 4) & 0xf;
21405 int rs = newval & 0xf;
21406 int subtract = !!(newval & 0x8000);
21407
21408 /* Check for HI regs, only very restricted cases allowed:
21409 Adjusting SP, and using PC or SP to get an address. */
21410 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21411 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21412 as_bad_where (fixP->fx_file, fixP->fx_line,
21413 _("invalid Hi register with immediate"));
21414
21415 /* If value is negative, choose the opposite instruction. */
21416 if (value < 0)
21417 {
21418 value = -value;
21419 subtract = !subtract;
21420 if (value < 0)
21421 as_bad_where (fixP->fx_file, fixP->fx_line,
21422 _("immediate value out of range"));
21423 }
21424
21425 if (rd == REG_SP)
21426 {
21427 if (value & ~0x1fc)
21428 as_bad_where (fixP->fx_file, fixP->fx_line,
21429 _("invalid immediate for stack address calculation"));
21430 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21431 newval |= value >> 2;
21432 }
21433 else if (rs == REG_PC || rs == REG_SP)
21434 {
21435 if (subtract || value & ~0x3fc)
21436 as_bad_where (fixP->fx_file, fixP->fx_line,
21437 _("invalid immediate for address calculation (value = 0x%08lX)"),
21438 (unsigned long) value);
21439 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21440 newval |= rd << 8;
21441 newval |= value >> 2;
21442 }
21443 else if (rs == rd)
21444 {
21445 if (value & ~0xff)
21446 as_bad_where (fixP->fx_file, fixP->fx_line,
21447 _("immediate value out of range"));
21448 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21449 newval |= (rd << 8) | value;
21450 }
21451 else
21452 {
21453 if (value & ~0x7)
21454 as_bad_where (fixP->fx_file, fixP->fx_line,
21455 _("immediate value out of range"));
21456 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21457 newval |= rd | (rs << 3) | (value << 6);
21458 }
21459 }
21460 md_number_to_chars (buf, newval, THUMB_SIZE);
21461 break;
21462
21463 case BFD_RELOC_ARM_THUMB_IMM:
21464 newval = md_chars_to_number (buf, THUMB_SIZE);
21465 if (value < 0 || value > 255)
21466 as_bad_where (fixP->fx_file, fixP->fx_line,
21467 _("invalid immediate: %ld is out of range"),
21468 (long) value);
21469 newval |= value;
21470 md_number_to_chars (buf, newval, THUMB_SIZE);
21471 break;
21472
21473 case BFD_RELOC_ARM_THUMB_SHIFT:
21474 /* 5bit shift value (0..32). LSL cannot take 32. */
21475 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21476 temp = newval & 0xf800;
21477 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21478 as_bad_where (fixP->fx_file, fixP->fx_line,
21479 _("invalid shift value: %ld"), (long) value);
21480 /* Shifts of zero must be encoded as LSL. */
21481 if (value == 0)
21482 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21483 /* Shifts of 32 are encoded as zero. */
21484 else if (value == 32)
21485 value = 0;
21486 newval |= value << 6;
21487 md_number_to_chars (buf, newval, THUMB_SIZE);
21488 break;
21489
21490 case BFD_RELOC_VTABLE_INHERIT:
21491 case BFD_RELOC_VTABLE_ENTRY:
21492 fixP->fx_done = 0;
21493 return;
21494
21495 case BFD_RELOC_ARM_MOVW:
21496 case BFD_RELOC_ARM_MOVT:
21497 case BFD_RELOC_ARM_THUMB_MOVW:
21498 case BFD_RELOC_ARM_THUMB_MOVT:
21499 if (fixP->fx_done || !seg->use_rela_p)
21500 {
21501 /* REL format relocations are limited to a 16-bit addend. */
21502 if (!fixP->fx_done)
21503 {
21504 if (value < -0x8000 || value > 0x7fff)
21505 as_bad_where (fixP->fx_file, fixP->fx_line,
21506 _("offset out of range"));
21507 }
21508 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21509 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21510 {
21511 value >>= 16;
21512 }
21513
21514 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21515 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21516 {
21517 newval = get_thumb32_insn (buf);
21518 newval &= 0xfbf08f00;
21519 newval |= (value & 0xf000) << 4;
21520 newval |= (value & 0x0800) << 15;
21521 newval |= (value & 0x0700) << 4;
21522 newval |= (value & 0x00ff);
21523 put_thumb32_insn (buf, newval);
21524 }
21525 else
21526 {
21527 newval = md_chars_to_number (buf, 4);
21528 newval &= 0xfff0f000;
21529 newval |= value & 0x0fff;
21530 newval |= (value & 0xf000) << 4;
21531 md_number_to_chars (buf, newval, 4);
21532 }
21533 }
21534 return;
21535
21536 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21537 case BFD_RELOC_ARM_ALU_PC_G0:
21538 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21539 case BFD_RELOC_ARM_ALU_PC_G1:
21540 case BFD_RELOC_ARM_ALU_PC_G2:
21541 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21542 case BFD_RELOC_ARM_ALU_SB_G0:
21543 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21544 case BFD_RELOC_ARM_ALU_SB_G1:
21545 case BFD_RELOC_ARM_ALU_SB_G2:
21546 gas_assert (!fixP->fx_done);
21547 if (!seg->use_rela_p)
21548 {
21549 bfd_vma insn;
21550 bfd_vma encoded_addend;
21551 bfd_vma addend_abs = abs (value);
21552
21553 /* Check that the absolute value of the addend can be
21554 expressed as an 8-bit constant plus a rotation. */
21555 encoded_addend = encode_arm_immediate (addend_abs);
21556 if (encoded_addend == (unsigned int) FAIL)
21557 as_bad_where (fixP->fx_file, fixP->fx_line,
21558 _("the offset 0x%08lX is not representable"),
21559 (unsigned long) addend_abs);
21560
21561 /* Extract the instruction. */
21562 insn = md_chars_to_number (buf, INSN_SIZE);
21563
21564 /* If the addend is positive, use an ADD instruction.
21565 Otherwise use a SUB. Take care not to destroy the S bit. */
21566 insn &= 0xff1fffff;
21567 if (value < 0)
21568 insn |= 1 << 22;
21569 else
21570 insn |= 1 << 23;
21571
21572 /* Place the encoded addend into the first 12 bits of the
21573 instruction. */
21574 insn &= 0xfffff000;
21575 insn |= encoded_addend;
21576
21577 /* Update the instruction. */
21578 md_number_to_chars (buf, insn, INSN_SIZE);
21579 }
21580 break;
21581
21582 case BFD_RELOC_ARM_LDR_PC_G0:
21583 case BFD_RELOC_ARM_LDR_PC_G1:
21584 case BFD_RELOC_ARM_LDR_PC_G2:
21585 case BFD_RELOC_ARM_LDR_SB_G0:
21586 case BFD_RELOC_ARM_LDR_SB_G1:
21587 case BFD_RELOC_ARM_LDR_SB_G2:
21588 gas_assert (!fixP->fx_done);
21589 if (!seg->use_rela_p)
21590 {
21591 bfd_vma insn;
21592 bfd_vma addend_abs = abs (value);
21593
21594 /* Check that the absolute value of the addend can be
21595 encoded in 12 bits. */
21596 if (addend_abs >= 0x1000)
21597 as_bad_where (fixP->fx_file, fixP->fx_line,
21598 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21599 (unsigned long) addend_abs);
21600
21601 /* Extract the instruction. */
21602 insn = md_chars_to_number (buf, INSN_SIZE);
21603
21604 /* If the addend is negative, clear bit 23 of the instruction.
21605 Otherwise set it. */
21606 if (value < 0)
21607 insn &= ~(1 << 23);
21608 else
21609 insn |= 1 << 23;
21610
21611 /* Place the absolute value of the addend into the first 12 bits
21612 of the instruction. */
21613 insn &= 0xfffff000;
21614 insn |= addend_abs;
21615
21616 /* Update the instruction. */
21617 md_number_to_chars (buf, insn, INSN_SIZE);
21618 }
21619 break;
21620
21621 case BFD_RELOC_ARM_LDRS_PC_G0:
21622 case BFD_RELOC_ARM_LDRS_PC_G1:
21623 case BFD_RELOC_ARM_LDRS_PC_G2:
21624 case BFD_RELOC_ARM_LDRS_SB_G0:
21625 case BFD_RELOC_ARM_LDRS_SB_G1:
21626 case BFD_RELOC_ARM_LDRS_SB_G2:
21627 gas_assert (!fixP->fx_done);
21628 if (!seg->use_rela_p)
21629 {
21630 bfd_vma insn;
21631 bfd_vma addend_abs = abs (value);
21632
21633 /* Check that the absolute value of the addend can be
21634 encoded in 8 bits. */
21635 if (addend_abs >= 0x100)
21636 as_bad_where (fixP->fx_file, fixP->fx_line,
21637 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21638 (unsigned long) addend_abs);
21639
21640 /* Extract the instruction. */
21641 insn = md_chars_to_number (buf, INSN_SIZE);
21642
21643 /* If the addend is negative, clear bit 23 of the instruction.
21644 Otherwise set it. */
21645 if (value < 0)
21646 insn &= ~(1 << 23);
21647 else
21648 insn |= 1 << 23;
21649
21650 /* Place the first four bits of the absolute value of the addend
21651 into the first 4 bits of the instruction, and the remaining
21652 four into bits 8 .. 11. */
21653 insn &= 0xfffff0f0;
21654 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
21655
21656 /* Update the instruction. */
21657 md_number_to_chars (buf, insn, INSN_SIZE);
21658 }
21659 break;
21660
21661 case BFD_RELOC_ARM_LDC_PC_G0:
21662 case BFD_RELOC_ARM_LDC_PC_G1:
21663 case BFD_RELOC_ARM_LDC_PC_G2:
21664 case BFD_RELOC_ARM_LDC_SB_G0:
21665 case BFD_RELOC_ARM_LDC_SB_G1:
21666 case BFD_RELOC_ARM_LDC_SB_G2:
21667 gas_assert (!fixP->fx_done);
21668 if (!seg->use_rela_p)
21669 {
21670 bfd_vma insn;
21671 bfd_vma addend_abs = abs (value);
21672
21673 /* Check that the absolute value of the addend is a multiple of
21674 four and, when divided by four, fits in 8 bits. */
21675 if (addend_abs & 0x3)
21676 as_bad_where (fixP->fx_file, fixP->fx_line,
21677 _("bad offset 0x%08lX (must be word-aligned)"),
21678 (unsigned long) addend_abs);
21679
21680 if ((addend_abs >> 2) > 0xff)
21681 as_bad_where (fixP->fx_file, fixP->fx_line,
21682 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
21683 (unsigned long) addend_abs);
21684
21685 /* Extract the instruction. */
21686 insn = md_chars_to_number (buf, INSN_SIZE);
21687
21688 /* If the addend is negative, clear bit 23 of the instruction.
21689 Otherwise set it. */
21690 if (value < 0)
21691 insn &= ~(1 << 23);
21692 else
21693 insn |= 1 << 23;
21694
21695 /* Place the addend (divided by four) into the first eight
21696 bits of the instruction. */
21697 insn &= 0xfffffff0;
21698 insn |= addend_abs >> 2;
21699
21700 /* Update the instruction. */
21701 md_number_to_chars (buf, insn, INSN_SIZE);
21702 }
21703 break;
21704
21705 case BFD_RELOC_ARM_V4BX:
21706 /* This will need to go in the object file. */
21707 fixP->fx_done = 0;
21708 break;
21709
21710 case BFD_RELOC_UNUSED:
21711 default:
21712 as_bad_where (fixP->fx_file, fixP->fx_line,
21713 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21714 }
21715 }
21716
21717 /* Translate internal representation of relocation info to BFD target
21718 format. */
21719
21720 arelent *
21721 tc_gen_reloc (asection *section, fixS *fixp)
21722 {
21723 arelent * reloc;
21724 bfd_reloc_code_real_type code;
21725
21726 reloc = (arelent *) xmalloc (sizeof (arelent));
21727
21728 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
21729 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21730 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
21731
21732 if (fixp->fx_pcrel)
21733 {
21734 if (section->use_rela_p)
21735 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21736 else
21737 fixp->fx_offset = reloc->address;
21738 }
21739 reloc->addend = fixp->fx_offset;
21740
21741 switch (fixp->fx_r_type)
21742 {
21743 case BFD_RELOC_8:
21744 if (fixp->fx_pcrel)
21745 {
21746 code = BFD_RELOC_8_PCREL;
21747 break;
21748 }
21749
21750 case BFD_RELOC_16:
21751 if (fixp->fx_pcrel)
21752 {
21753 code = BFD_RELOC_16_PCREL;
21754 break;
21755 }
21756
21757 case BFD_RELOC_32:
21758 if (fixp->fx_pcrel)
21759 {
21760 code = BFD_RELOC_32_PCREL;
21761 break;
21762 }
21763
21764 case BFD_RELOC_ARM_MOVW:
21765 if (fixp->fx_pcrel)
21766 {
21767 code = BFD_RELOC_ARM_MOVW_PCREL;
21768 break;
21769 }
21770
21771 case BFD_RELOC_ARM_MOVT:
21772 if (fixp->fx_pcrel)
21773 {
21774 code = BFD_RELOC_ARM_MOVT_PCREL;
21775 break;
21776 }
21777
21778 case BFD_RELOC_ARM_THUMB_MOVW:
21779 if (fixp->fx_pcrel)
21780 {
21781 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21782 break;
21783 }
21784
21785 case BFD_RELOC_ARM_THUMB_MOVT:
21786 if (fixp->fx_pcrel)
21787 {
21788 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21789 break;
21790 }
21791
21792 case BFD_RELOC_NONE:
21793 case BFD_RELOC_ARM_PCREL_BRANCH:
21794 case BFD_RELOC_ARM_PCREL_BLX:
21795 case BFD_RELOC_RVA:
21796 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21797 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21798 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21799 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21800 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21801 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21802 case BFD_RELOC_VTABLE_ENTRY:
21803 case BFD_RELOC_VTABLE_INHERIT:
21804 #ifdef TE_PE
21805 case BFD_RELOC_32_SECREL:
21806 #endif
21807 code = fixp->fx_r_type;
21808 break;
21809
21810 case BFD_RELOC_THUMB_PCREL_BLX:
21811 #ifdef OBJ_ELF
21812 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21813 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21814 else
21815 #endif
21816 code = BFD_RELOC_THUMB_PCREL_BLX;
21817 break;
21818
21819 case BFD_RELOC_ARM_LITERAL:
21820 case BFD_RELOC_ARM_HWLITERAL:
21821 /* If this is called then the a literal has
21822 been referenced across a section boundary. */
21823 as_bad_where (fixp->fx_file, fixp->fx_line,
21824 _("literal referenced across section boundary"));
21825 return NULL;
21826
21827 #ifdef OBJ_ELF
21828 case BFD_RELOC_ARM_TLS_CALL:
21829 case BFD_RELOC_ARM_THM_TLS_CALL:
21830 case BFD_RELOC_ARM_TLS_DESCSEQ:
21831 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21832 case BFD_RELOC_ARM_GOT32:
21833 case BFD_RELOC_ARM_GOTOFF:
21834 case BFD_RELOC_ARM_GOT_PREL:
21835 case BFD_RELOC_ARM_PLT32:
21836 case BFD_RELOC_ARM_TARGET1:
21837 case BFD_RELOC_ARM_ROSEGREL32:
21838 case BFD_RELOC_ARM_SBREL32:
21839 case BFD_RELOC_ARM_PREL31:
21840 case BFD_RELOC_ARM_TARGET2:
21841 case BFD_RELOC_ARM_TLS_LE32:
21842 case BFD_RELOC_ARM_TLS_LDO32:
21843 case BFD_RELOC_ARM_PCREL_CALL:
21844 case BFD_RELOC_ARM_PCREL_JUMP:
21845 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21846 case BFD_RELOC_ARM_ALU_PC_G0:
21847 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21848 case BFD_RELOC_ARM_ALU_PC_G1:
21849 case BFD_RELOC_ARM_ALU_PC_G2:
21850 case BFD_RELOC_ARM_LDR_PC_G0:
21851 case BFD_RELOC_ARM_LDR_PC_G1:
21852 case BFD_RELOC_ARM_LDR_PC_G2:
21853 case BFD_RELOC_ARM_LDRS_PC_G0:
21854 case BFD_RELOC_ARM_LDRS_PC_G1:
21855 case BFD_RELOC_ARM_LDRS_PC_G2:
21856 case BFD_RELOC_ARM_LDC_PC_G0:
21857 case BFD_RELOC_ARM_LDC_PC_G1:
21858 case BFD_RELOC_ARM_LDC_PC_G2:
21859 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21860 case BFD_RELOC_ARM_ALU_SB_G0:
21861 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21862 case BFD_RELOC_ARM_ALU_SB_G1:
21863 case BFD_RELOC_ARM_ALU_SB_G2:
21864 case BFD_RELOC_ARM_LDR_SB_G0:
21865 case BFD_RELOC_ARM_LDR_SB_G1:
21866 case BFD_RELOC_ARM_LDR_SB_G2:
21867 case BFD_RELOC_ARM_LDRS_SB_G0:
21868 case BFD_RELOC_ARM_LDRS_SB_G1:
21869 case BFD_RELOC_ARM_LDRS_SB_G2:
21870 case BFD_RELOC_ARM_LDC_SB_G0:
21871 case BFD_RELOC_ARM_LDC_SB_G1:
21872 case BFD_RELOC_ARM_LDC_SB_G2:
21873 case BFD_RELOC_ARM_V4BX:
21874 code = fixp->fx_r_type;
21875 break;
21876
21877 case BFD_RELOC_ARM_TLS_GOTDESC:
21878 case BFD_RELOC_ARM_TLS_GD32:
21879 case BFD_RELOC_ARM_TLS_IE32:
21880 case BFD_RELOC_ARM_TLS_LDM32:
21881 /* BFD will include the symbol's address in the addend.
21882 But we don't want that, so subtract it out again here. */
21883 if (!S_IS_COMMON (fixp->fx_addsy))
21884 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21885 code = fixp->fx_r_type;
21886 break;
21887 #endif
21888
21889 case BFD_RELOC_ARM_IMMEDIATE:
21890 as_bad_where (fixp->fx_file, fixp->fx_line,
21891 _("internal relocation (type: IMMEDIATE) not fixed up"));
21892 return NULL;
21893
21894 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21895 as_bad_where (fixp->fx_file, fixp->fx_line,
21896 _("ADRL used for a symbol not defined in the same file"));
21897 return NULL;
21898
21899 case BFD_RELOC_ARM_OFFSET_IMM:
21900 if (section->use_rela_p)
21901 {
21902 code = fixp->fx_r_type;
21903 break;
21904 }
21905
21906 if (fixp->fx_addsy != NULL
21907 && !S_IS_DEFINED (fixp->fx_addsy)
21908 && S_IS_LOCAL (fixp->fx_addsy))
21909 {
21910 as_bad_where (fixp->fx_file, fixp->fx_line,
21911 _("undefined local label `%s'"),
21912 S_GET_NAME (fixp->fx_addsy));
21913 return NULL;
21914 }
21915
21916 as_bad_where (fixp->fx_file, fixp->fx_line,
21917 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21918 return NULL;
21919
21920 default:
21921 {
21922 char * type;
21923
21924 switch (fixp->fx_r_type)
21925 {
21926 case BFD_RELOC_NONE: type = "NONE"; break;
21927 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21928 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21929 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21930 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21931 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21932 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21933 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
21934 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21935 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21936 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21937 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21938 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21939 default: type = _("<unknown>"); break;
21940 }
21941 as_bad_where (fixp->fx_file, fixp->fx_line,
21942 _("cannot represent %s relocation in this object file format"),
21943 type);
21944 return NULL;
21945 }
21946 }
21947
21948 #ifdef OBJ_ELF
21949 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21950 && GOT_symbol
21951 && fixp->fx_addsy == GOT_symbol)
21952 {
21953 code = BFD_RELOC_ARM_GOTPC;
21954 reloc->addend = fixp->fx_offset = reloc->address;
21955 }
21956 #endif
21957
21958 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21959
21960 if (reloc->howto == NULL)
21961 {
21962 as_bad_where (fixp->fx_file, fixp->fx_line,
21963 _("cannot represent %s relocation in this object file format"),
21964 bfd_get_reloc_code_name (code));
21965 return NULL;
21966 }
21967
21968 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21969 vtable entry to be used in the relocation's section offset. */
21970 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21971 reloc->address = fixp->fx_offset;
21972
21973 return reloc;
21974 }
21975
21976 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21977
21978 void
21979 cons_fix_new_arm (fragS * frag,
21980 int where,
21981 int size,
21982 expressionS * exp)
21983 {
21984 bfd_reloc_code_real_type type;
21985 int pcrel = 0;
21986
21987 /* Pick a reloc.
21988 FIXME: @@ Should look at CPU word size. */
21989 switch (size)
21990 {
21991 case 1:
21992 type = BFD_RELOC_8;
21993 break;
21994 case 2:
21995 type = BFD_RELOC_16;
21996 break;
21997 case 4:
21998 default:
21999 type = BFD_RELOC_32;
22000 break;
22001 case 8:
22002 type = BFD_RELOC_64;
22003 break;
22004 }
22005
22006 #ifdef TE_PE
22007 if (exp->X_op == O_secrel)
22008 {
22009 exp->X_op = O_symbol;
22010 type = BFD_RELOC_32_SECREL;
22011 }
22012 #endif
22013
22014 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22015 }
22016
22017 #if defined (OBJ_COFF)
22018 void
22019 arm_validate_fix (fixS * fixP)
22020 {
22021 /* If the destination of the branch is a defined symbol which does not have
22022 the THUMB_FUNC attribute, then we must be calling a function which has
22023 the (interfacearm) attribute. We look for the Thumb entry point to that
22024 function and change the branch to refer to that function instead. */
22025 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22026 && fixP->fx_addsy != NULL
22027 && S_IS_DEFINED (fixP->fx_addsy)
22028 && ! THUMB_IS_FUNC (fixP->fx_addsy))
22029 {
22030 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
22031 }
22032 }
22033 #endif
22034
22035
22036 int
22037 arm_force_relocation (struct fix * fixp)
22038 {
22039 #if defined (OBJ_COFF) && defined (TE_PE)
22040 if (fixp->fx_r_type == BFD_RELOC_RVA)
22041 return 1;
22042 #endif
22043
22044 /* In case we have a call or a branch to a function in ARM ISA mode from
22045 a thumb function or vice-versa force the relocation. These relocations
22046 are cleared off for some cores that might have blx and simple transformations
22047 are possible. */
22048
22049 #ifdef OBJ_ELF
22050 switch (fixp->fx_r_type)
22051 {
22052 case BFD_RELOC_ARM_PCREL_JUMP:
22053 case BFD_RELOC_ARM_PCREL_CALL:
22054 case BFD_RELOC_THUMB_PCREL_BLX:
22055 if (THUMB_IS_FUNC (fixp->fx_addsy))
22056 return 1;
22057 break;
22058
22059 case BFD_RELOC_ARM_PCREL_BLX:
22060 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22061 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22062 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22063 if (ARM_IS_FUNC (fixp->fx_addsy))
22064 return 1;
22065 break;
22066
22067 default:
22068 break;
22069 }
22070 #endif
22071
22072 /* Resolve these relocations even if the symbol is extern or weak.
22073 Technically this is probably wrong due to symbol preemption.
22074 In practice these relocations do not have enough range to be useful
22075 at dynamic link time, and some code (e.g. in the Linux kernel)
22076 expects these references to be resolved. */
22077 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22078 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
22079 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
22080 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
22081 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22082 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22083 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
22084 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
22085 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22086 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
22087 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22088 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22089 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22090 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
22091 return 0;
22092
22093 /* Always leave these relocations for the linker. */
22094 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22095 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22096 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22097 return 1;
22098
22099 /* Always generate relocations against function symbols. */
22100 if (fixp->fx_r_type == BFD_RELOC_32
22101 && fixp->fx_addsy
22102 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22103 return 1;
22104
22105 return generic_force_reloc (fixp);
22106 }
22107
22108 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22109 /* Relocations against function names must be left unadjusted,
22110 so that the linker can use this information to generate interworking
22111 stubs. The MIPS version of this function
22112 also prevents relocations that are mips-16 specific, but I do not
22113 know why it does this.
22114
22115 FIXME:
22116 There is one other problem that ought to be addressed here, but
22117 which currently is not: Taking the address of a label (rather
22118 than a function) and then later jumping to that address. Such
22119 addresses also ought to have their bottom bit set (assuming that
22120 they reside in Thumb code), but at the moment they will not. */
22121
22122 bfd_boolean
22123 arm_fix_adjustable (fixS * fixP)
22124 {
22125 if (fixP->fx_addsy == NULL)
22126 return 1;
22127
22128 /* Preserve relocations against symbols with function type. */
22129 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
22130 return FALSE;
22131
22132 if (THUMB_IS_FUNC (fixP->fx_addsy)
22133 && fixP->fx_subsy == NULL)
22134 return FALSE;
22135
22136 /* We need the symbol name for the VTABLE entries. */
22137 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22138 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22139 return FALSE;
22140
22141 /* Don't allow symbols to be discarded on GOT related relocs. */
22142 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22143 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22144 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22145 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22146 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22147 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22148 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22149 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
22150 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22151 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22152 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22153 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22154 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
22155 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
22156 return FALSE;
22157
22158 /* Similarly for group relocations. */
22159 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22160 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22161 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22162 return FALSE;
22163
22164 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22165 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22166 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22167 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22168 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22169 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22170 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22171 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22172 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
22173 return FALSE;
22174
22175 return TRUE;
22176 }
22177 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22178
22179 #ifdef OBJ_ELF
22180
22181 const char *
22182 elf32_arm_target_format (void)
22183 {
22184 #ifdef TE_SYMBIAN
22185 return (target_big_endian
22186 ? "elf32-bigarm-symbian"
22187 : "elf32-littlearm-symbian");
22188 #elif defined (TE_VXWORKS)
22189 return (target_big_endian
22190 ? "elf32-bigarm-vxworks"
22191 : "elf32-littlearm-vxworks");
22192 #else
22193 if (target_big_endian)
22194 return "elf32-bigarm";
22195 else
22196 return "elf32-littlearm";
22197 #endif
22198 }
22199
22200 void
22201 armelf_frob_symbol (symbolS * symp,
22202 int * puntp)
22203 {
22204 elf_frob_symbol (symp, puntp);
22205 }
22206 #endif
22207
22208 /* MD interface: Finalization. */
22209
22210 void
22211 arm_cleanup (void)
22212 {
22213 literal_pool * pool;
22214
22215 /* Ensure that all the IT blocks are properly closed. */
22216 check_it_blocks_finished ();
22217
22218 for (pool = list_of_pools; pool; pool = pool->next)
22219 {
22220 /* Put it at the end of the relevant section. */
22221 subseg_set (pool->section, pool->sub_section);
22222 #ifdef OBJ_ELF
22223 arm_elf_change_section ();
22224 #endif
22225 s_ltorg (0);
22226 }
22227 }
22228
22229 #ifdef OBJ_ELF
22230 /* Remove any excess mapping symbols generated for alignment frags in
22231 SEC. We may have created a mapping symbol before a zero byte
22232 alignment; remove it if there's a mapping symbol after the
22233 alignment. */
22234 static void
22235 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22236 void *dummy ATTRIBUTE_UNUSED)
22237 {
22238 segment_info_type *seginfo = seg_info (sec);
22239 fragS *fragp;
22240
22241 if (seginfo == NULL || seginfo->frchainP == NULL)
22242 return;
22243
22244 for (fragp = seginfo->frchainP->frch_root;
22245 fragp != NULL;
22246 fragp = fragp->fr_next)
22247 {
22248 symbolS *sym = fragp->tc_frag_data.last_map;
22249 fragS *next = fragp->fr_next;
22250
22251 /* Variable-sized frags have been converted to fixed size by
22252 this point. But if this was variable-sized to start with,
22253 there will be a fixed-size frag after it. So don't handle
22254 next == NULL. */
22255 if (sym == NULL || next == NULL)
22256 continue;
22257
22258 if (S_GET_VALUE (sym) < next->fr_address)
22259 /* Not at the end of this frag. */
22260 continue;
22261 know (S_GET_VALUE (sym) == next->fr_address);
22262
22263 do
22264 {
22265 if (next->tc_frag_data.first_map != NULL)
22266 {
22267 /* Next frag starts with a mapping symbol. Discard this
22268 one. */
22269 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22270 break;
22271 }
22272
22273 if (next->fr_next == NULL)
22274 {
22275 /* This mapping symbol is at the end of the section. Discard
22276 it. */
22277 know (next->fr_fix == 0 && next->fr_var == 0);
22278 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22279 break;
22280 }
22281
22282 /* As long as we have empty frags without any mapping symbols,
22283 keep looking. */
22284 /* If the next frag is non-empty and does not start with a
22285 mapping symbol, then this mapping symbol is required. */
22286 if (next->fr_address != next->fr_next->fr_address)
22287 break;
22288
22289 next = next->fr_next;
22290 }
22291 while (next != NULL);
22292 }
22293 }
22294 #endif
22295
22296 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22297 ARM ones. */
22298
22299 void
22300 arm_adjust_symtab (void)
22301 {
22302 #ifdef OBJ_COFF
22303 symbolS * sym;
22304
22305 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22306 {
22307 if (ARM_IS_THUMB (sym))
22308 {
22309 if (THUMB_IS_FUNC (sym))
22310 {
22311 /* Mark the symbol as a Thumb function. */
22312 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22313 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22314 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
22315
22316 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22317 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22318 else
22319 as_bad (_("%s: unexpected function type: %d"),
22320 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22321 }
22322 else switch (S_GET_STORAGE_CLASS (sym))
22323 {
22324 case C_EXT:
22325 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22326 break;
22327 case C_STAT:
22328 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22329 break;
22330 case C_LABEL:
22331 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22332 break;
22333 default:
22334 /* Do nothing. */
22335 break;
22336 }
22337 }
22338
22339 if (ARM_IS_INTERWORK (sym))
22340 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
22341 }
22342 #endif
22343 #ifdef OBJ_ELF
22344 symbolS * sym;
22345 char bind;
22346
22347 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22348 {
22349 if (ARM_IS_THUMB (sym))
22350 {
22351 elf_symbol_type * elf_sym;
22352
22353 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22354 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22355
22356 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22357 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22358 {
22359 /* If it's a .thumb_func, declare it as so,
22360 otherwise tag label as .code 16. */
22361 if (THUMB_IS_FUNC (sym))
22362 elf_sym->internal_elf_sym.st_target_internal
22363 = ST_BRANCH_TO_THUMB;
22364 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22365 elf_sym->internal_elf_sym.st_info =
22366 ELF_ST_INFO (bind, STT_ARM_16BIT);
22367 }
22368 }
22369 }
22370
22371 /* Remove any overlapping mapping symbols generated by alignment frags. */
22372 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22373 /* Now do generic ELF adjustments. */
22374 elf_adjust_symtab ();
22375 #endif
22376 }
22377
22378 /* MD interface: Initialization. */
22379
22380 static void
22381 set_constant_flonums (void)
22382 {
22383 int i;
22384
22385 for (i = 0; i < NUM_FLOAT_VALS; i++)
22386 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22387 abort ();
22388 }
22389
22390 /* Auto-select Thumb mode if it's the only available instruction set for the
22391 given architecture. */
22392
22393 static void
22394 autoselect_thumb_from_cpu_variant (void)
22395 {
22396 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22397 opcode_select (16);
22398 }
22399
22400 void
22401 md_begin (void)
22402 {
22403 unsigned mach;
22404 unsigned int i;
22405
22406 if ( (arm_ops_hsh = hash_new ()) == NULL
22407 || (arm_cond_hsh = hash_new ()) == NULL
22408 || (arm_shift_hsh = hash_new ()) == NULL
22409 || (arm_psr_hsh = hash_new ()) == NULL
22410 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22411 || (arm_reg_hsh = hash_new ()) == NULL
22412 || (arm_reloc_hsh = hash_new ()) == NULL
22413 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22414 as_fatal (_("virtual memory exhausted"));
22415
22416 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22417 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22418 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22419 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22420 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22421 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22422 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22423 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22424 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22425 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22426 (void *) (v7m_psrs + i));
22427 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22428 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22429 for (i = 0;
22430 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22431 i++)
22432 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22433 (void *) (barrier_opt_names + i));
22434 #ifdef OBJ_ELF
22435 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
22436 {
22437 struct reloc_entry * entry = reloc_names + i;
22438
22439 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
22440 /* This makes encode_branch() use the EABI versions of this relocation. */
22441 entry->reloc = BFD_RELOC_UNUSED;
22442
22443 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
22444 }
22445 #endif
22446
22447 set_constant_flonums ();
22448
22449 /* Set the cpu variant based on the command-line options. We prefer
22450 -mcpu= over -march= if both are set (as for GCC); and we prefer
22451 -mfpu= over any other way of setting the floating point unit.
22452 Use of legacy options with new options are faulted. */
22453 if (legacy_cpu)
22454 {
22455 if (mcpu_cpu_opt || march_cpu_opt)
22456 as_bad (_("use of old and new-style options to set CPU type"));
22457
22458 mcpu_cpu_opt = legacy_cpu;
22459 }
22460 else if (!mcpu_cpu_opt)
22461 mcpu_cpu_opt = march_cpu_opt;
22462
22463 if (legacy_fpu)
22464 {
22465 if (mfpu_opt)
22466 as_bad (_("use of old and new-style options to set FPU type"));
22467
22468 mfpu_opt = legacy_fpu;
22469 }
22470 else if (!mfpu_opt)
22471 {
22472 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22473 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22474 /* Some environments specify a default FPU. If they don't, infer it
22475 from the processor. */
22476 if (mcpu_fpu_opt)
22477 mfpu_opt = mcpu_fpu_opt;
22478 else
22479 mfpu_opt = march_fpu_opt;
22480 #else
22481 mfpu_opt = &fpu_default;
22482 #endif
22483 }
22484
22485 if (!mfpu_opt)
22486 {
22487 if (mcpu_cpu_opt != NULL)
22488 mfpu_opt = &fpu_default;
22489 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22490 mfpu_opt = &fpu_arch_vfp_v2;
22491 else
22492 mfpu_opt = &fpu_arch_fpa;
22493 }
22494
22495 #ifdef CPU_DEFAULT
22496 if (!mcpu_cpu_opt)
22497 {
22498 mcpu_cpu_opt = &cpu_default;
22499 selected_cpu = cpu_default;
22500 }
22501 #else
22502 if (mcpu_cpu_opt)
22503 selected_cpu = *mcpu_cpu_opt;
22504 else
22505 mcpu_cpu_opt = &arm_arch_any;
22506 #endif
22507
22508 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22509
22510 autoselect_thumb_from_cpu_variant ();
22511
22512 arm_arch_used = thumb_arch_used = arm_arch_none;
22513
22514 #if defined OBJ_COFF || defined OBJ_ELF
22515 {
22516 unsigned int flags = 0;
22517
22518 #if defined OBJ_ELF
22519 flags = meabi_flags;
22520
22521 switch (meabi_flags)
22522 {
22523 case EF_ARM_EABI_UNKNOWN:
22524 #endif
22525 /* Set the flags in the private structure. */
22526 if (uses_apcs_26) flags |= F_APCS26;
22527 if (support_interwork) flags |= F_INTERWORK;
22528 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22529 if (pic_code) flags |= F_PIC;
22530 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22531 flags |= F_SOFT_FLOAT;
22532
22533 switch (mfloat_abi_opt)
22534 {
22535 case ARM_FLOAT_ABI_SOFT:
22536 case ARM_FLOAT_ABI_SOFTFP:
22537 flags |= F_SOFT_FLOAT;
22538 break;
22539
22540 case ARM_FLOAT_ABI_HARD:
22541 if (flags & F_SOFT_FLOAT)
22542 as_bad (_("hard-float conflicts with specified fpu"));
22543 break;
22544 }
22545
22546 /* Using pure-endian doubles (even if soft-float). */
22547 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22548 flags |= F_VFP_FLOAT;
22549
22550 #if defined OBJ_ELF
22551 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22552 flags |= EF_ARM_MAVERICK_FLOAT;
22553 break;
22554
22555 case EF_ARM_EABI_VER4:
22556 case EF_ARM_EABI_VER5:
22557 /* No additional flags to set. */
22558 break;
22559
22560 default:
22561 abort ();
22562 }
22563 #endif
22564 bfd_set_private_flags (stdoutput, flags);
22565
22566 /* We have run out flags in the COFF header to encode the
22567 status of ATPCS support, so instead we create a dummy,
22568 empty, debug section called .arm.atpcs. */
22569 if (atpcs)
22570 {
22571 asection * sec;
22572
22573 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22574
22575 if (sec != NULL)
22576 {
22577 bfd_set_section_flags
22578 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22579 bfd_set_section_size (stdoutput, sec, 0);
22580 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22581 }
22582 }
22583 }
22584 #endif
22585
22586 /* Record the CPU type as well. */
22587 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22588 mach = bfd_mach_arm_iWMMXt2;
22589 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22590 mach = bfd_mach_arm_iWMMXt;
22591 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22592 mach = bfd_mach_arm_XScale;
22593 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22594 mach = bfd_mach_arm_ep9312;
22595 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
22596 mach = bfd_mach_arm_5TE;
22597 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
22598 {
22599 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22600 mach = bfd_mach_arm_5T;
22601 else
22602 mach = bfd_mach_arm_5;
22603 }
22604 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
22605 {
22606 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22607 mach = bfd_mach_arm_4T;
22608 else
22609 mach = bfd_mach_arm_4;
22610 }
22611 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
22612 mach = bfd_mach_arm_3M;
22613 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22614 mach = bfd_mach_arm_3;
22615 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22616 mach = bfd_mach_arm_2a;
22617 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22618 mach = bfd_mach_arm_2;
22619 else
22620 mach = bfd_mach_arm_unknown;
22621
22622 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22623 }
22624
22625 /* Command line processing. */
22626
22627 /* md_parse_option
22628 Invocation line includes a switch not recognized by the base assembler.
22629 See if it's a processor-specific option.
22630
22631 This routine is somewhat complicated by the need for backwards
22632 compatibility (since older releases of gcc can't be changed).
22633 The new options try to make the interface as compatible as
22634 possible with GCC.
22635
22636 New options (supported) are:
22637
22638 -mcpu=<cpu name> Assemble for selected processor
22639 -march=<architecture name> Assemble for selected architecture
22640 -mfpu=<fpu architecture> Assemble for selected FPU.
22641 -EB/-mbig-endian Big-endian
22642 -EL/-mlittle-endian Little-endian
22643 -k Generate PIC code
22644 -mthumb Start in Thumb mode
22645 -mthumb-interwork Code supports ARM/Thumb interworking
22646
22647 -m[no-]warn-deprecated Warn about deprecated features
22648
22649 For now we will also provide support for:
22650
22651 -mapcs-32 32-bit Program counter
22652 -mapcs-26 26-bit Program counter
22653 -macps-float Floats passed in FP registers
22654 -mapcs-reentrant Reentrant code
22655 -matpcs
22656 (sometime these will probably be replaced with -mapcs=<list of options>
22657 and -matpcs=<list of options>)
22658
22659 The remaining options are only supported for back-wards compatibility.
22660 Cpu variants, the arm part is optional:
22661 -m[arm]1 Currently not supported.
22662 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22663 -m[arm]3 Arm 3 processor
22664 -m[arm]6[xx], Arm 6 processors
22665 -m[arm]7[xx][t][[d]m] Arm 7 processors
22666 -m[arm]8[10] Arm 8 processors
22667 -m[arm]9[20][tdmi] Arm 9 processors
22668 -mstrongarm[110[0]] StrongARM processors
22669 -mxscale XScale processors
22670 -m[arm]v[2345[t[e]]] Arm architectures
22671 -mall All (except the ARM1)
22672 FP variants:
22673 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22674 -mfpe-old (No float load/store multiples)
22675 -mvfpxd VFP Single precision
22676 -mvfp All VFP
22677 -mno-fpu Disable all floating point instructions
22678
22679 The following CPU names are recognized:
22680 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22681 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22682 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22683 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22684 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22685 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22686 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
22687
22688 */
22689
22690 const char * md_shortopts = "m:k";
22691
22692 #ifdef ARM_BI_ENDIAN
22693 #define OPTION_EB (OPTION_MD_BASE + 0)
22694 #define OPTION_EL (OPTION_MD_BASE + 1)
22695 #else
22696 #if TARGET_BYTES_BIG_ENDIAN
22697 #define OPTION_EB (OPTION_MD_BASE + 0)
22698 #else
22699 #define OPTION_EL (OPTION_MD_BASE + 1)
22700 #endif
22701 #endif
22702 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
22703
22704 struct option md_longopts[] =
22705 {
22706 #ifdef OPTION_EB
22707 {"EB", no_argument, NULL, OPTION_EB},
22708 #endif
22709 #ifdef OPTION_EL
22710 {"EL", no_argument, NULL, OPTION_EL},
22711 #endif
22712 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
22713 {NULL, no_argument, NULL, 0}
22714 };
22715
22716 size_t md_longopts_size = sizeof (md_longopts);
22717
22718 struct arm_option_table
22719 {
22720 char *option; /* Option name to match. */
22721 char *help; /* Help information. */
22722 int *var; /* Variable to change. */
22723 int value; /* What to change it to. */
22724 char *deprecated; /* If non-null, print this message. */
22725 };
22726
22727 struct arm_option_table arm_opts[] =
22728 {
22729 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22730 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22731 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22732 &support_interwork, 1, NULL},
22733 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22734 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22735 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22736 1, NULL},
22737 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22738 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22739 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22740 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22741 NULL},
22742
22743 /* These are recognized by the assembler, but have no affect on code. */
22744 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22745 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
22746
22747 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22748 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22749 &warn_on_deprecated, 0, NULL},
22750 {NULL, NULL, NULL, 0, NULL}
22751 };
22752
22753 struct arm_legacy_option_table
22754 {
22755 char *option; /* Option name to match. */
22756 const arm_feature_set **var; /* Variable to change. */
22757 const arm_feature_set value; /* What to change it to. */
22758 char *deprecated; /* If non-null, print this message. */
22759 };
22760
22761 const struct arm_legacy_option_table arm_legacy_opts[] =
22762 {
22763 /* DON'T add any new processors to this list -- we want the whole list
22764 to go away... Add them to the processors table instead. */
22765 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22766 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22767 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22768 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22769 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22770 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22771 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22772 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22773 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22774 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22775 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22776 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22777 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22778 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22779 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22780 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22781 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22782 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22783 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22784 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22785 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22786 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22787 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22788 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22789 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22790 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22791 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22792 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22793 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22794 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22795 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22796 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22797 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22798 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22799 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22800 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22801 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22802 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22803 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22804 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22805 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22806 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22807 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22808 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22809 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22810 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22811 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22812 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22813 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22814 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22815 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22816 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22817 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22818 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22819 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22820 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22821 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22822 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22823 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22824 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22825 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22826 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22827 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22828 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22829 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22830 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22831 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22832 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22833 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22834 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
22835 N_("use -mcpu=strongarm110")},
22836 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
22837 N_("use -mcpu=strongarm1100")},
22838 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
22839 N_("use -mcpu=strongarm1110")},
22840 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22841 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22842 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
22843
22844 /* Architecture variants -- don't add any more to this list either. */
22845 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22846 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22847 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22848 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22849 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22850 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22851 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22852 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22853 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22854 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22855 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22856 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22857 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22858 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22859 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22860 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22861 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22862 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22863
22864 /* Floating point variants -- don't add any more to this list either. */
22865 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22866 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22867 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22868 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
22869 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22870
22871 {NULL, NULL, ARM_ARCH_NONE, NULL}
22872 };
22873
22874 struct arm_cpu_option_table
22875 {
22876 char *name;
22877 size_t name_len;
22878 const arm_feature_set value;
22879 /* For some CPUs we assume an FPU unless the user explicitly sets
22880 -mfpu=... */
22881 const arm_feature_set default_fpu;
22882 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22883 case. */
22884 const char *canonical_name;
22885 };
22886
22887 /* This list should, at a minimum, contain all the cpu names
22888 recognized by GCC. */
22889 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
22890 static const struct arm_cpu_option_table arm_cpus[] =
22891 {
22892 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
22893 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
22894 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
22895 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
22896 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
22897 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22898 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22899 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22900 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22901 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22902 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22903 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
22904 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22905 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
22906 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22907 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
22908 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22909 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22910 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22911 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22912 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22913 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22914 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22915 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22916 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22917 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22918 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22919 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
22920 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22921 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22922 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22923 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22924 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22925 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22926 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22927 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22928 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22929 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22930 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22931 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
22932 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22933 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22934 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22935 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
22936 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22937 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
22938 /* For V5 or later processors we default to using VFP; but the user
22939 should really set the FPU type explicitly. */
22940 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
22941 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22942 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
22943 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
22944 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
22945 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
22946 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
22947 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22948 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
22949 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
22950 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22951 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22952 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
22953 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
22954 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22955 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
22956 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
22957 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22958 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22959 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
22960 "ARM1026EJ-S"),
22961 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
22962 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22963 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22964 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22965 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22966 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
22967 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
22968 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
22969 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
22970 "ARM1136JF-S"),
22971 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
22972 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
22973 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
22974 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
22975 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
22976 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
22977 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
22978 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
22979 FPU_NONE, "Cortex-A5"),
22980 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22981 FPU_ARCH_NEON_VFP_V4,
22982 "Cortex-A7"),
22983 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
22984 ARM_FEATURE (0, FPU_VFP_V3
22985 | FPU_NEON_EXT_V1),
22986 "Cortex-A8"),
22987 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
22988 ARM_FEATURE (0, FPU_VFP_V3
22989 | FPU_NEON_EXT_V1),
22990 "Cortex-A9"),
22991 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22992 FPU_ARCH_NEON_VFP_V4,
22993 "Cortex-A15"),
22994 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
22995 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22996 "Cortex-R4F"),
22997 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
22998 FPU_NONE, "Cortex-R5"),
22999 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23000 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23001 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23002 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
23003 /* ??? XSCALE is really an architecture. */
23004 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23005 /* ??? iwmmxt is not a processor. */
23006 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23007 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23008 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23009 /* Maverick */
23010 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23011 FPU_ARCH_MAVERICK,
23012 "ARM920T"),
23013 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
23014 };
23015 #undef ARM_CPU_OPT
23016
23017 struct arm_arch_option_table
23018 {
23019 char *name;
23020 size_t name_len;
23021 const arm_feature_set value;
23022 const arm_feature_set default_fpu;
23023 };
23024
23025 /* This list should, at a minimum, contain all the architecture names
23026 recognized by GCC. */
23027 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
23028 static const struct arm_arch_option_table arm_archs[] =
23029 {
23030 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23031 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23032 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23033 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23034 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23035 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23036 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23037 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23038 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23039 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23040 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23041 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23042 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23043 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23044 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23045 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23046 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23047 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23048 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23049 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23050 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23051 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23052 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23053 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23054 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23055 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23056 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23057 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23058 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
23059 /* The official spelling of the ARMv7 profile variants is the dashed form.
23060 Accept the non-dashed form for compatibility with old toolchains. */
23061 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23062 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23063 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23064 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23065 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23066 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23067 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
23068 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23069 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23070 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23071 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23072 };
23073 #undef ARM_ARCH_OPT
23074
23075 /* ISA extensions in the co-processor and main instruction set space. */
23076 struct arm_option_extension_value_table
23077 {
23078 char *name;
23079 size_t name_len;
23080 const arm_feature_set value;
23081 const arm_feature_set allowed_archs;
23082 };
23083
23084 /* The following table must be in alphabetical order with a NULL last entry.
23085 */
23086 #define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
23087 static const struct arm_option_extension_value_table arm_extensions[] =
23088 {
23089 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23090 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23091 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23092 ARM_EXT_OPT ("iwmmxt2",
23093 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23094 ARM_EXT_OPT ("maverick",
23095 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23096 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23097 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23098 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23099 ARM_FEATURE (ARM_EXT_V6M, 0)),
23100 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23101 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23102 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23103 | ARM_EXT_DIV, 0),
23104 ARM_FEATURE (ARM_EXT_V7A, 0)),
23105 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23106 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23107 };
23108 #undef ARM_EXT_OPT
23109
23110 /* ISA floating-point and Advanced SIMD extensions. */
23111 struct arm_option_fpu_value_table
23112 {
23113 char *name;
23114 const arm_feature_set value;
23115 };
23116
23117 /* This list should, at a minimum, contain all the fpu names
23118 recognized by GCC. */
23119 static const struct arm_option_fpu_value_table arm_fpus[] =
23120 {
23121 {"softfpa", FPU_NONE},
23122 {"fpe", FPU_ARCH_FPE},
23123 {"fpe2", FPU_ARCH_FPE},
23124 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23125 {"fpa", FPU_ARCH_FPA},
23126 {"fpa10", FPU_ARCH_FPA},
23127 {"fpa11", FPU_ARCH_FPA},
23128 {"arm7500fe", FPU_ARCH_FPA},
23129 {"softvfp", FPU_ARCH_VFP},
23130 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23131 {"vfp", FPU_ARCH_VFP_V2},
23132 {"vfp9", FPU_ARCH_VFP_V2},
23133 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
23134 {"vfp10", FPU_ARCH_VFP_V2},
23135 {"vfp10-r0", FPU_ARCH_VFP_V1},
23136 {"vfpxd", FPU_ARCH_VFP_V1xD},
23137 {"vfpv2", FPU_ARCH_VFP_V2},
23138 {"vfpv3", FPU_ARCH_VFP_V3},
23139 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
23140 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
23141 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23142 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23143 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
23144 {"arm1020t", FPU_ARCH_VFP_V1},
23145 {"arm1020e", FPU_ARCH_VFP_V2},
23146 {"arm1136jfs", FPU_ARCH_VFP_V2},
23147 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23148 {"maverick", FPU_ARCH_MAVERICK},
23149 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
23150 {"neon-fp16", FPU_ARCH_NEON_FP16},
23151 {"vfpv4", FPU_ARCH_VFP_V4},
23152 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
23153 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
23154 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
23155 {NULL, ARM_ARCH_NONE}
23156 };
23157
23158 struct arm_option_value_table
23159 {
23160 char *name;
23161 long value;
23162 };
23163
23164 static const struct arm_option_value_table arm_float_abis[] =
23165 {
23166 {"hard", ARM_FLOAT_ABI_HARD},
23167 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23168 {"soft", ARM_FLOAT_ABI_SOFT},
23169 {NULL, 0}
23170 };
23171
23172 #ifdef OBJ_ELF
23173 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23174 static const struct arm_option_value_table arm_eabis[] =
23175 {
23176 {"gnu", EF_ARM_EABI_UNKNOWN},
23177 {"4", EF_ARM_EABI_VER4},
23178 {"5", EF_ARM_EABI_VER5},
23179 {NULL, 0}
23180 };
23181 #endif
23182
23183 struct arm_long_option_table
23184 {
23185 char * option; /* Substring to match. */
23186 char * help; /* Help information. */
23187 int (* func) (char * subopt); /* Function to decode sub-option. */
23188 char * deprecated; /* If non-null, print this message. */
23189 };
23190
23191 static bfd_boolean
23192 arm_parse_extension (char *str, const arm_feature_set **opt_p)
23193 {
23194 arm_feature_set *ext_set = (arm_feature_set *)
23195 xmalloc (sizeof (arm_feature_set));
23196
23197 /* We insist on extensions being specified in alphabetical order, and with
23198 extensions being added before being removed. We achieve this by having
23199 the global ARM_EXTENSIONS table in alphabetical order, and using the
23200 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23201 or removing it (0) and only allowing it to change in the order
23202 -1 -> 1 -> 0. */
23203 const struct arm_option_extension_value_table * opt = NULL;
23204 int adding_value = -1;
23205
23206 /* Copy the feature set, so that we can modify it. */
23207 *ext_set = **opt_p;
23208 *opt_p = ext_set;
23209
23210 while (str != NULL && *str != 0)
23211 {
23212 char *ext;
23213 size_t len;
23214
23215 if (*str != '+')
23216 {
23217 as_bad (_("invalid architectural extension"));
23218 return FALSE;
23219 }
23220
23221 str++;
23222 ext = strchr (str, '+');
23223
23224 if (ext != NULL)
23225 len = ext - str;
23226 else
23227 len = strlen (str);
23228
23229 if (len >= 2 && strncmp (str, "no", 2) == 0)
23230 {
23231 if (adding_value != 0)
23232 {
23233 adding_value = 0;
23234 opt = arm_extensions;
23235 }
23236
23237 len -= 2;
23238 str += 2;
23239 }
23240 else if (len > 0)
23241 {
23242 if (adding_value == -1)
23243 {
23244 adding_value = 1;
23245 opt = arm_extensions;
23246 }
23247 else if (adding_value != 1)
23248 {
23249 as_bad (_("must specify extensions to add before specifying "
23250 "those to remove"));
23251 return FALSE;
23252 }
23253 }
23254
23255 if (len == 0)
23256 {
23257 as_bad (_("missing architectural extension"));
23258 return FALSE;
23259 }
23260
23261 gas_assert (adding_value != -1);
23262 gas_assert (opt != NULL);
23263
23264 /* Scan over the options table trying to find an exact match. */
23265 for (; opt->name != NULL; opt++)
23266 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23267 {
23268 /* Check we can apply the extension to this architecture. */
23269 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23270 {
23271 as_bad (_("extension does not apply to the base architecture"));
23272 return FALSE;
23273 }
23274
23275 /* Add or remove the extension. */
23276 if (adding_value)
23277 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23278 else
23279 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23280
23281 break;
23282 }
23283
23284 if (opt->name == NULL)
23285 {
23286 /* Did we fail to find an extension because it wasn't specified in
23287 alphabetical order, or because it does not exist? */
23288
23289 for (opt = arm_extensions; opt->name != NULL; opt++)
23290 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23291 break;
23292
23293 if (opt->name == NULL)
23294 as_bad (_("unknown architectural extension `%s'"), str);
23295 else
23296 as_bad (_("architectural extensions must be specified in "
23297 "alphabetical order"));
23298
23299 return FALSE;
23300 }
23301 else
23302 {
23303 /* We should skip the extension we've just matched the next time
23304 round. */
23305 opt++;
23306 }
23307
23308 str = ext;
23309 };
23310
23311 return TRUE;
23312 }
23313
23314 static bfd_boolean
23315 arm_parse_cpu (char *str)
23316 {
23317 const struct arm_cpu_option_table *opt;
23318 char *ext = strchr (str, '+');
23319 size_t len;
23320
23321 if (ext != NULL)
23322 len = ext - str;
23323 else
23324 len = strlen (str);
23325
23326 if (len == 0)
23327 {
23328 as_bad (_("missing cpu name `%s'"), str);
23329 return FALSE;
23330 }
23331
23332 for (opt = arm_cpus; opt->name != NULL; opt++)
23333 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23334 {
23335 mcpu_cpu_opt = &opt->value;
23336 mcpu_fpu_opt = &opt->default_fpu;
23337 if (opt->canonical_name)
23338 strcpy (selected_cpu_name, opt->canonical_name);
23339 else
23340 {
23341 size_t i;
23342
23343 for (i = 0; i < len; i++)
23344 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23345 selected_cpu_name[i] = 0;
23346 }
23347
23348 if (ext != NULL)
23349 return arm_parse_extension (ext, &mcpu_cpu_opt);
23350
23351 return TRUE;
23352 }
23353
23354 as_bad (_("unknown cpu `%s'"), str);
23355 return FALSE;
23356 }
23357
23358 static bfd_boolean
23359 arm_parse_arch (char *str)
23360 {
23361 const struct arm_arch_option_table *opt;
23362 char *ext = strchr (str, '+');
23363 size_t len;
23364
23365 if (ext != NULL)
23366 len = ext - str;
23367 else
23368 len = strlen (str);
23369
23370 if (len == 0)
23371 {
23372 as_bad (_("missing architecture name `%s'"), str);
23373 return FALSE;
23374 }
23375
23376 for (opt = arm_archs; opt->name != NULL; opt++)
23377 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23378 {
23379 march_cpu_opt = &opt->value;
23380 march_fpu_opt = &opt->default_fpu;
23381 strcpy (selected_cpu_name, opt->name);
23382
23383 if (ext != NULL)
23384 return arm_parse_extension (ext, &march_cpu_opt);
23385
23386 return TRUE;
23387 }
23388
23389 as_bad (_("unknown architecture `%s'\n"), str);
23390 return FALSE;
23391 }
23392
23393 static bfd_boolean
23394 arm_parse_fpu (char * str)
23395 {
23396 const struct arm_option_fpu_value_table * opt;
23397
23398 for (opt = arm_fpus; opt->name != NULL; opt++)
23399 if (streq (opt->name, str))
23400 {
23401 mfpu_opt = &opt->value;
23402 return TRUE;
23403 }
23404
23405 as_bad (_("unknown floating point format `%s'\n"), str);
23406 return FALSE;
23407 }
23408
23409 static bfd_boolean
23410 arm_parse_float_abi (char * str)
23411 {
23412 const struct arm_option_value_table * opt;
23413
23414 for (opt = arm_float_abis; opt->name != NULL; opt++)
23415 if (streq (opt->name, str))
23416 {
23417 mfloat_abi_opt = opt->value;
23418 return TRUE;
23419 }
23420
23421 as_bad (_("unknown floating point abi `%s'\n"), str);
23422 return FALSE;
23423 }
23424
23425 #ifdef OBJ_ELF
23426 static bfd_boolean
23427 arm_parse_eabi (char * str)
23428 {
23429 const struct arm_option_value_table *opt;
23430
23431 for (opt = arm_eabis; opt->name != NULL; opt++)
23432 if (streq (opt->name, str))
23433 {
23434 meabi_flags = opt->value;
23435 return TRUE;
23436 }
23437 as_bad (_("unknown EABI `%s'\n"), str);
23438 return FALSE;
23439 }
23440 #endif
23441
23442 static bfd_boolean
23443 arm_parse_it_mode (char * str)
23444 {
23445 bfd_boolean ret = TRUE;
23446
23447 if (streq ("arm", str))
23448 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23449 else if (streq ("thumb", str))
23450 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23451 else if (streq ("always", str))
23452 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23453 else if (streq ("never", str))
23454 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23455 else
23456 {
23457 as_bad (_("unknown implicit IT mode `%s', should be "\
23458 "arm, thumb, always, or never."), str);
23459 ret = FALSE;
23460 }
23461
23462 return ret;
23463 }
23464
23465 struct arm_long_option_table arm_long_opts[] =
23466 {
23467 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23468 arm_parse_cpu, NULL},
23469 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23470 arm_parse_arch, NULL},
23471 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23472 arm_parse_fpu, NULL},
23473 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23474 arm_parse_float_abi, NULL},
23475 #ifdef OBJ_ELF
23476 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23477 arm_parse_eabi, NULL},
23478 #endif
23479 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23480 arm_parse_it_mode, NULL},
23481 {NULL, NULL, 0, NULL}
23482 };
23483
23484 int
23485 md_parse_option (int c, char * arg)
23486 {
23487 struct arm_option_table *opt;
23488 const struct arm_legacy_option_table *fopt;
23489 struct arm_long_option_table *lopt;
23490
23491 switch (c)
23492 {
23493 #ifdef OPTION_EB
23494 case OPTION_EB:
23495 target_big_endian = 1;
23496 break;
23497 #endif
23498
23499 #ifdef OPTION_EL
23500 case OPTION_EL:
23501 target_big_endian = 0;
23502 break;
23503 #endif
23504
23505 case OPTION_FIX_V4BX:
23506 fix_v4bx = TRUE;
23507 break;
23508
23509 case 'a':
23510 /* Listing option. Just ignore these, we don't support additional
23511 ones. */
23512 return 0;
23513
23514 default:
23515 for (opt = arm_opts; opt->option != NULL; opt++)
23516 {
23517 if (c == opt->option[0]
23518 && ((arg == NULL && opt->option[1] == 0)
23519 || streq (arg, opt->option + 1)))
23520 {
23521 /* If the option is deprecated, tell the user. */
23522 if (warn_on_deprecated && opt->deprecated != NULL)
23523 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23524 arg ? arg : "", _(opt->deprecated));
23525
23526 if (opt->var != NULL)
23527 *opt->var = opt->value;
23528
23529 return 1;
23530 }
23531 }
23532
23533 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23534 {
23535 if (c == fopt->option[0]
23536 && ((arg == NULL && fopt->option[1] == 0)
23537 || streq (arg, fopt->option + 1)))
23538 {
23539 /* If the option is deprecated, tell the user. */
23540 if (warn_on_deprecated && fopt->deprecated != NULL)
23541 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23542 arg ? arg : "", _(fopt->deprecated));
23543
23544 if (fopt->var != NULL)
23545 *fopt->var = &fopt->value;
23546
23547 return 1;
23548 }
23549 }
23550
23551 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23552 {
23553 /* These options are expected to have an argument. */
23554 if (c == lopt->option[0]
23555 && arg != NULL
23556 && strncmp (arg, lopt->option + 1,
23557 strlen (lopt->option + 1)) == 0)
23558 {
23559 /* If the option is deprecated, tell the user. */
23560 if (warn_on_deprecated && lopt->deprecated != NULL)
23561 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23562 _(lopt->deprecated));
23563
23564 /* Call the sup-option parser. */
23565 return lopt->func (arg + strlen (lopt->option) - 1);
23566 }
23567 }
23568
23569 return 0;
23570 }
23571
23572 return 1;
23573 }
23574
23575 void
23576 md_show_usage (FILE * fp)
23577 {
23578 struct arm_option_table *opt;
23579 struct arm_long_option_table *lopt;
23580
23581 fprintf (fp, _(" ARM-specific assembler options:\n"));
23582
23583 for (opt = arm_opts; opt->option != NULL; opt++)
23584 if (opt->help != NULL)
23585 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
23586
23587 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23588 if (lopt->help != NULL)
23589 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
23590
23591 #ifdef OPTION_EB
23592 fprintf (fp, _("\
23593 -EB assemble code for a big-endian cpu\n"));
23594 #endif
23595
23596 #ifdef OPTION_EL
23597 fprintf (fp, _("\
23598 -EL assemble code for a little-endian cpu\n"));
23599 #endif
23600
23601 fprintf (fp, _("\
23602 --fix-v4bx Allow BX in ARMv4 code\n"));
23603 }
23604
23605
23606 #ifdef OBJ_ELF
23607 typedef struct
23608 {
23609 int val;
23610 arm_feature_set flags;
23611 } cpu_arch_ver_table;
23612
23613 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23614 least features first. */
23615 static const cpu_arch_ver_table cpu_arch_ver[] =
23616 {
23617 {1, ARM_ARCH_V4},
23618 {2, ARM_ARCH_V4T},
23619 {3, ARM_ARCH_V5},
23620 {3, ARM_ARCH_V5T},
23621 {4, ARM_ARCH_V5TE},
23622 {5, ARM_ARCH_V5TEJ},
23623 {6, ARM_ARCH_V6},
23624 {9, ARM_ARCH_V6K},
23625 {7, ARM_ARCH_V6Z},
23626 {11, ARM_ARCH_V6M},
23627 {12, ARM_ARCH_V6SM},
23628 {8, ARM_ARCH_V6T2},
23629 {10, ARM_ARCH_V7A},
23630 {10, ARM_ARCH_V7R},
23631 {10, ARM_ARCH_V7M},
23632 {0, ARM_ARCH_NONE}
23633 };
23634
23635 /* Set an attribute if it has not already been set by the user. */
23636 static void
23637 aeabi_set_attribute_int (int tag, int value)
23638 {
23639 if (tag < 1
23640 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23641 || !attributes_set_explicitly[tag])
23642 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23643 }
23644
23645 static void
23646 aeabi_set_attribute_string (int tag, const char *value)
23647 {
23648 if (tag < 1
23649 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23650 || !attributes_set_explicitly[tag])
23651 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23652 }
23653
23654 /* Set the public EABI object attributes. */
23655 static void
23656 aeabi_set_public_attributes (void)
23657 {
23658 int arch;
23659 int virt_sec = 0;
23660 arm_feature_set flags;
23661 arm_feature_set tmp;
23662 const cpu_arch_ver_table *p;
23663
23664 /* Choose the architecture based on the capabilities of the requested cpu
23665 (if any) and/or the instructions actually used. */
23666 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23667 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23668 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
23669 /*Allow the user to override the reported architecture. */
23670 if (object_arch)
23671 {
23672 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23673 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23674 }
23675
23676 /* We need to make sure that the attributes do not identify us as v6S-M
23677 when the only v6S-M feature in use is the Operating System Extensions. */
23678 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23679 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23680 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23681
23682 tmp = flags;
23683 arch = 0;
23684 for (p = cpu_arch_ver; p->val; p++)
23685 {
23686 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23687 {
23688 arch = p->val;
23689 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23690 }
23691 }
23692
23693 /* The table lookup above finds the last architecture to contribute
23694 a new feature. Unfortunately, Tag13 is a subset of the union of
23695 v6T2 and v7-M, so it is never seen as contributing a new feature.
23696 We can not search for the last entry which is entirely used,
23697 because if no CPU is specified we build up only those flags
23698 actually used. Perhaps we should separate out the specified
23699 and implicit cases. Avoid taking this path for -march=all by
23700 checking for contradictory v7-A / v7-M features. */
23701 if (arch == 10
23702 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23703 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23704 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23705 arch = 13;
23706
23707 /* Tag_CPU_name. */
23708 if (selected_cpu_name[0])
23709 {
23710 char *q;
23711
23712 q = selected_cpu_name;
23713 if (strncmp (q, "armv", 4) == 0)
23714 {
23715 int i;
23716
23717 q += 4;
23718 for (i = 0; q[i]; i++)
23719 q[i] = TOUPPER (q[i]);
23720 }
23721 aeabi_set_attribute_string (Tag_CPU_name, q);
23722 }
23723
23724 /* Tag_CPU_arch. */
23725 aeabi_set_attribute_int (Tag_CPU_arch, arch);
23726
23727 /* Tag_CPU_arch_profile. */
23728 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
23729 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
23730 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
23731 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
23732 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
23733 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
23734
23735 /* Tag_ARM_ISA_use. */
23736 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23737 || arch == 0)
23738 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
23739
23740 /* Tag_THUMB_ISA_use. */
23741 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23742 || arch == 0)
23743 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23744 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
23745
23746 /* Tag_VFP_arch. */
23747 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23748 aeabi_set_attribute_int (Tag_VFP_arch,
23749 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23750 ? 5 : 6);
23751 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
23752 aeabi_set_attribute_int (Tag_VFP_arch, 3);
23753 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
23754 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23755 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23756 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23757 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23758 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23759 aeabi_set_attribute_int (Tag_VFP_arch, 1);
23760
23761 /* Tag_ABI_HardFP_use. */
23762 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23763 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23764 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23765
23766 /* Tag_WMMX_arch. */
23767 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23768 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23769 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23770 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
23771
23772 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
23773 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
23774 aeabi_set_attribute_int
23775 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23776 ? 2 : 1));
23777
23778 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
23779 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
23780 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
23781
23782 /* Tag_DIV_use. */
23783 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23784 aeabi_set_attribute_int (Tag_DIV_use, 2);
23785 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
23786 aeabi_set_attribute_int (Tag_DIV_use, 0);
23787 else
23788 aeabi_set_attribute_int (Tag_DIV_use, 1);
23789
23790 /* Tag_MP_extension_use. */
23791 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23792 aeabi_set_attribute_int (Tag_MPextension_use, 1);
23793
23794 /* Tag Virtualization_use. */
23795 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
23796 virt_sec |= 1;
23797 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23798 virt_sec |= 2;
23799 if (virt_sec != 0)
23800 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
23801 }
23802
23803 /* Add the default contents for the .ARM.attributes section. */
23804 void
23805 arm_md_end (void)
23806 {
23807 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23808 return;
23809
23810 aeabi_set_public_attributes ();
23811 }
23812 #endif /* OBJ_ELF */
23813
23814
23815 /* Parse a .cpu directive. */
23816
23817 static void
23818 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23819 {
23820 const struct arm_cpu_option_table *opt;
23821 char *name;
23822 char saved_char;
23823
23824 name = input_line_pointer;
23825 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23826 input_line_pointer++;
23827 saved_char = *input_line_pointer;
23828 *input_line_pointer = 0;
23829
23830 /* Skip the first "all" entry. */
23831 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23832 if (streq (opt->name, name))
23833 {
23834 mcpu_cpu_opt = &opt->value;
23835 selected_cpu = opt->value;
23836 if (opt->canonical_name)
23837 strcpy (selected_cpu_name, opt->canonical_name);
23838 else
23839 {
23840 int i;
23841 for (i = 0; opt->name[i]; i++)
23842 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23843
23844 selected_cpu_name[i] = 0;
23845 }
23846 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23847 *input_line_pointer = saved_char;
23848 demand_empty_rest_of_line ();
23849 return;
23850 }
23851 as_bad (_("unknown cpu `%s'"), name);
23852 *input_line_pointer = saved_char;
23853 ignore_rest_of_line ();
23854 }
23855
23856
23857 /* Parse a .arch directive. */
23858
23859 static void
23860 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23861 {
23862 const struct arm_arch_option_table *opt;
23863 char saved_char;
23864 char *name;
23865
23866 name = input_line_pointer;
23867 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23868 input_line_pointer++;
23869 saved_char = *input_line_pointer;
23870 *input_line_pointer = 0;
23871
23872 /* Skip the first "all" entry. */
23873 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23874 if (streq (opt->name, name))
23875 {
23876 mcpu_cpu_opt = &opt->value;
23877 selected_cpu = opt->value;
23878 strcpy (selected_cpu_name, opt->name);
23879 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23880 *input_line_pointer = saved_char;
23881 demand_empty_rest_of_line ();
23882 return;
23883 }
23884
23885 as_bad (_("unknown architecture `%s'\n"), name);
23886 *input_line_pointer = saved_char;
23887 ignore_rest_of_line ();
23888 }
23889
23890
23891 /* Parse a .object_arch directive. */
23892
23893 static void
23894 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23895 {
23896 const struct arm_arch_option_table *opt;
23897 char saved_char;
23898 char *name;
23899
23900 name = input_line_pointer;
23901 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23902 input_line_pointer++;
23903 saved_char = *input_line_pointer;
23904 *input_line_pointer = 0;
23905
23906 /* Skip the first "all" entry. */
23907 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23908 if (streq (opt->name, name))
23909 {
23910 object_arch = &opt->value;
23911 *input_line_pointer = saved_char;
23912 demand_empty_rest_of_line ();
23913 return;
23914 }
23915
23916 as_bad (_("unknown architecture `%s'\n"), name);
23917 *input_line_pointer = saved_char;
23918 ignore_rest_of_line ();
23919 }
23920
23921 /* Parse a .arch_extension directive. */
23922
23923 static void
23924 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23925 {
23926 const struct arm_option_extension_value_table *opt;
23927 char saved_char;
23928 char *name;
23929 int adding_value = 1;
23930
23931 name = input_line_pointer;
23932 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23933 input_line_pointer++;
23934 saved_char = *input_line_pointer;
23935 *input_line_pointer = 0;
23936
23937 if (strlen (name) >= 2
23938 && strncmp (name, "no", 2) == 0)
23939 {
23940 adding_value = 0;
23941 name += 2;
23942 }
23943
23944 for (opt = arm_extensions; opt->name != NULL; opt++)
23945 if (streq (opt->name, name))
23946 {
23947 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23948 {
23949 as_bad (_("architectural extension `%s' is not allowed for the "
23950 "current base architecture"), name);
23951 break;
23952 }
23953
23954 if (adding_value)
23955 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23956 else
23957 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23958
23959 mcpu_cpu_opt = &selected_cpu;
23960 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23961 *input_line_pointer = saved_char;
23962 demand_empty_rest_of_line ();
23963 return;
23964 }
23965
23966 if (opt->name == NULL)
23967 as_bad (_("unknown architecture `%s'\n"), name);
23968
23969 *input_line_pointer = saved_char;
23970 ignore_rest_of_line ();
23971 }
23972
23973 /* Parse a .fpu directive. */
23974
23975 static void
23976 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23977 {
23978 const struct arm_option_fpu_value_table *opt;
23979 char saved_char;
23980 char *name;
23981
23982 name = input_line_pointer;
23983 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23984 input_line_pointer++;
23985 saved_char = *input_line_pointer;
23986 *input_line_pointer = 0;
23987
23988 for (opt = arm_fpus; opt->name != NULL; opt++)
23989 if (streq (opt->name, name))
23990 {
23991 mfpu_opt = &opt->value;
23992 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23993 *input_line_pointer = saved_char;
23994 demand_empty_rest_of_line ();
23995 return;
23996 }
23997
23998 as_bad (_("unknown floating point format `%s'\n"), name);
23999 *input_line_pointer = saved_char;
24000 ignore_rest_of_line ();
24001 }
24002
24003 /* Copy symbol information. */
24004
24005 void
24006 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24007 {
24008 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24009 }
24010
24011 #ifdef OBJ_ELF
24012 /* Given a symbolic attribute NAME, return the proper integer value.
24013 Returns -1 if the attribute is not known. */
24014
24015 int
24016 arm_convert_symbolic_attribute (const char *name)
24017 {
24018 static const struct
24019 {
24020 const char * name;
24021 const int tag;
24022 }
24023 attribute_table[] =
24024 {
24025 /* When you modify this table you should
24026 also modify the list in doc/c-arm.texi. */
24027 #define T(tag) {#tag, tag}
24028 T (Tag_CPU_raw_name),
24029 T (Tag_CPU_name),
24030 T (Tag_CPU_arch),
24031 T (Tag_CPU_arch_profile),
24032 T (Tag_ARM_ISA_use),
24033 T (Tag_THUMB_ISA_use),
24034 T (Tag_FP_arch),
24035 T (Tag_VFP_arch),
24036 T (Tag_WMMX_arch),
24037 T (Tag_Advanced_SIMD_arch),
24038 T (Tag_PCS_config),
24039 T (Tag_ABI_PCS_R9_use),
24040 T (Tag_ABI_PCS_RW_data),
24041 T (Tag_ABI_PCS_RO_data),
24042 T (Tag_ABI_PCS_GOT_use),
24043 T (Tag_ABI_PCS_wchar_t),
24044 T (Tag_ABI_FP_rounding),
24045 T (Tag_ABI_FP_denormal),
24046 T (Tag_ABI_FP_exceptions),
24047 T (Tag_ABI_FP_user_exceptions),
24048 T (Tag_ABI_FP_number_model),
24049 T (Tag_ABI_align_needed),
24050 T (Tag_ABI_align8_needed),
24051 T (Tag_ABI_align_preserved),
24052 T (Tag_ABI_align8_preserved),
24053 T (Tag_ABI_enum_size),
24054 T (Tag_ABI_HardFP_use),
24055 T (Tag_ABI_VFP_args),
24056 T (Tag_ABI_WMMX_args),
24057 T (Tag_ABI_optimization_goals),
24058 T (Tag_ABI_FP_optimization_goals),
24059 T (Tag_compatibility),
24060 T (Tag_CPU_unaligned_access),
24061 T (Tag_FP_HP_extension),
24062 T (Tag_VFP_HP_extension),
24063 T (Tag_ABI_FP_16bit_format),
24064 T (Tag_MPextension_use),
24065 T (Tag_DIV_use),
24066 T (Tag_nodefaults),
24067 T (Tag_also_compatible_with),
24068 T (Tag_conformance),
24069 T (Tag_T2EE_use),
24070 T (Tag_Virtualization_use),
24071 /* We deliberately do not include Tag_MPextension_use_legacy. */
24072 #undef T
24073 };
24074 unsigned int i;
24075
24076 if (name == NULL)
24077 return -1;
24078
24079 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
24080 if (streq (name, attribute_table[i].name))
24081 return attribute_table[i].tag;
24082
24083 return -1;
24084 }
24085
24086
24087 /* Apply sym value for relocations only in the case that
24088 they are for local symbols and you have the respective
24089 architectural feature for blx and simple switches. */
24090 int
24091 arm_apply_sym_value (struct fix * fixP)
24092 {
24093 if (fixP->fx_addsy
24094 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
24095 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
24096 {
24097 switch (fixP->fx_r_type)
24098 {
24099 case BFD_RELOC_ARM_PCREL_BLX:
24100 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24101 if (ARM_IS_FUNC (fixP->fx_addsy))
24102 return 1;
24103 break;
24104
24105 case BFD_RELOC_ARM_PCREL_CALL:
24106 case BFD_RELOC_THUMB_PCREL_BLX:
24107 if (THUMB_IS_FUNC (fixP->fx_addsy))
24108 return 1;
24109 break;
24110
24111 default:
24112 break;
24113 }
24114
24115 }
24116 return 0;
24117 }
24118 #endif /* OBJ_ELF */
This page took 0.692068 seconds and 4 git commands to generate.