99fd6303d7c32b3655be6f89a9df19ab619c8b01
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2016 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 #endif /* OBJ_ELF */
79
80 /* Results from operand parsing worker functions. */
81
82 typedef enum
83 {
84 PARSE_OPERAND_SUCCESS,
85 PARSE_OPERAND_FAIL,
86 PARSE_OPERAND_FAIL_NO_BACKTRACK
87 } parse_operand_result;
88
89 enum arm_float_abi
90 {
91 ARM_FLOAT_ABI_HARD,
92 ARM_FLOAT_ABI_SOFTFP,
93 ARM_FLOAT_ABI_SOFT
94 };
95
96 /* Types of processor to assemble for. */
97 #ifndef CPU_DEFAULT
98 /* The code that was here used to select a default CPU depending on compiler
99 pre-defines which were only present when doing native builds, thus
100 changing gas' default behaviour depending upon the build host.
101
102 If you have a target that requires a default CPU option then the you
103 should define CPU_DEFAULT here. */
104 #endif
105
106 #ifndef FPU_DEFAULT
107 # ifdef TE_LINUX
108 # define FPU_DEFAULT FPU_ARCH_FPA
109 # elif defined (TE_NetBSD)
110 # ifdef OBJ_ELF
111 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
112 # else
113 /* Legacy a.out format. */
114 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
115 # endif
116 # elif defined (TE_VXWORKS)
117 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
118 # else
119 /* For backwards compatibility, default to FPA. */
120 # define FPU_DEFAULT FPU_ARCH_FPA
121 # endif
122 #endif /* ifndef FPU_DEFAULT */
123
124 #define streq(a, b) (strcmp (a, b) == 0)
125
126 static arm_feature_set cpu_variant;
127 static arm_feature_set arm_arch_used;
128 static arm_feature_set thumb_arch_used;
129
130 /* Flags stored in private area of BFD structure. */
131 static int uses_apcs_26 = FALSE;
132 static int atpcs = FALSE;
133 static int support_interwork = FALSE;
134 static int uses_apcs_float = FALSE;
135 static int pic_code = FALSE;
136 static int fix_v4bx = FALSE;
137 /* Warn on using deprecated features. */
138 static int warn_on_deprecated = TRUE;
139
140 /* Understand CodeComposer Studio assembly syntax. */
141 bfd_boolean codecomposer_syntax = FALSE;
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE_CORE_LOW (ARM_EXT_V6M);
189 static const arm_feature_set arm_ext_v6_notm =
190 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
191 static const arm_feature_set arm_ext_v6_dsp =
192 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
193 static const arm_feature_set arm_ext_barrier =
194 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
195 static const arm_feature_set arm_ext_msr =
196 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
197 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
198 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
199 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
200 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
201 static const arm_feature_set arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
202 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
203 static const arm_feature_set arm_ext_m =
204 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, ARM_EXT2_V8M);
205 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
206 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
207 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
208 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
209 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
210 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
211 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
212 static const arm_feature_set arm_ext_v6t2_v8m =
213 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
214 /* Instructions shared between ARMv8-A and ARMv8-M. */
215 static const arm_feature_set arm_ext_atomics =
216 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
217 static const arm_feature_set arm_ext_v8_2 =
218 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
219 /* FP16 instructions. */
220 static const arm_feature_set arm_ext_fp16 =
221 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
222
223 static const arm_feature_set arm_arch_any = ARM_ANY;
224 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1, -1);
225 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
226 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
227 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
228
229 static const arm_feature_set arm_cext_iwmmxt2 =
230 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
231 static const arm_feature_set arm_cext_iwmmxt =
232 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
233 static const arm_feature_set arm_cext_xscale =
234 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
235 static const arm_feature_set arm_cext_maverick =
236 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
237 static const arm_feature_set fpu_fpa_ext_v1 =
238 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
239 static const arm_feature_set fpu_fpa_ext_v2 =
240 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
241 static const arm_feature_set fpu_vfp_ext_v1xd =
242 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
243 static const arm_feature_set fpu_vfp_ext_v1 =
244 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
245 static const arm_feature_set fpu_vfp_ext_v2 =
246 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
247 static const arm_feature_set fpu_vfp_ext_v3xd =
248 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
249 static const arm_feature_set fpu_vfp_ext_v3 =
250 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
251 static const arm_feature_set fpu_vfp_ext_d32 =
252 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
253 static const arm_feature_set fpu_neon_ext_v1 =
254 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
255 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
256 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
257 static const arm_feature_set fpu_vfp_fp16 =
258 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
259 static const arm_feature_set fpu_neon_ext_fma =
260 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
261 static const arm_feature_set fpu_vfp_ext_fma =
262 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
263 static const arm_feature_set fpu_vfp_ext_armv8 =
264 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
265 static const arm_feature_set fpu_vfp_ext_armv8xd =
266 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
267 static const arm_feature_set fpu_neon_ext_armv8 =
268 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
269 static const arm_feature_set fpu_crypto_ext_armv8 =
270 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
271 static const arm_feature_set crc_ext_armv8 =
272 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
273 static const arm_feature_set fpu_neon_ext_v8_1 =
274 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
275
276 static int mfloat_abi_opt = -1;
277 /* Record user cpu selection for object attributes. */
278 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
279 /* Must be long enough to hold any of the names in arm_cpus. */
280 static char selected_cpu_name[20];
281
282 extern FLONUM_TYPE generic_floating_point_number;
283
284 /* Return if no cpu was selected on command-line. */
285 static bfd_boolean
286 no_cpu_selected (void)
287 {
288 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
289 }
290
291 #ifdef OBJ_ELF
292 # ifdef EABI_DEFAULT
293 static int meabi_flags = EABI_DEFAULT;
294 # else
295 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
296 # endif
297
298 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
299
300 bfd_boolean
301 arm_is_eabi (void)
302 {
303 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
304 }
305 #endif
306
307 #ifdef OBJ_ELF
308 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
309 symbolS * GOT_symbol;
310 #endif
311
312 /* 0: assemble for ARM,
313 1: assemble for Thumb,
314 2: assemble for Thumb even though target CPU does not support thumb
315 instructions. */
316 static int thumb_mode = 0;
317 /* A value distinct from the possible values for thumb_mode that we
318 can use to record whether thumb_mode has been copied into the
319 tc_frag_data field of a frag. */
320 #define MODE_RECORDED (1 << 4)
321
322 /* Specifies the intrinsic IT insn behavior mode. */
323 enum implicit_it_mode
324 {
325 IMPLICIT_IT_MODE_NEVER = 0x00,
326 IMPLICIT_IT_MODE_ARM = 0x01,
327 IMPLICIT_IT_MODE_THUMB = 0x02,
328 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
329 };
330 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
331
332 /* If unified_syntax is true, we are processing the new unified
333 ARM/Thumb syntax. Important differences from the old ARM mode:
334
335 - Immediate operands do not require a # prefix.
336 - Conditional affixes always appear at the end of the
337 instruction. (For backward compatibility, those instructions
338 that formerly had them in the middle, continue to accept them
339 there.)
340 - The IT instruction may appear, and if it does is validated
341 against subsequent conditional affixes. It does not generate
342 machine code.
343
344 Important differences from the old Thumb mode:
345
346 - Immediate operands do not require a # prefix.
347 - Most of the V6T2 instructions are only available in unified mode.
348 - The .N and .W suffixes are recognized and honored (it is an error
349 if they cannot be honored).
350 - All instructions set the flags if and only if they have an 's' affix.
351 - Conditional affixes may be used. They are validated against
352 preceding IT instructions. Unlike ARM mode, you cannot use a
353 conditional affix except in the scope of an IT instruction. */
354
355 static bfd_boolean unified_syntax = FALSE;
356
357 /* An immediate operand can start with #, and ld*, st*, pld operands
358 can contain [ and ]. We need to tell APP not to elide whitespace
359 before a [, which can appear as the first operand for pld.
360 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
361 const char arm_symbol_chars[] = "#[]{}";
362
363 enum neon_el_type
364 {
365 NT_invtype,
366 NT_untyped,
367 NT_integer,
368 NT_float,
369 NT_poly,
370 NT_signed,
371 NT_unsigned
372 };
373
374 struct neon_type_el
375 {
376 enum neon_el_type type;
377 unsigned size;
378 };
379
380 #define NEON_MAX_TYPE_ELS 4
381
382 struct neon_type
383 {
384 struct neon_type_el el[NEON_MAX_TYPE_ELS];
385 unsigned elems;
386 };
387
388 enum it_instruction_type
389 {
390 OUTSIDE_IT_INSN,
391 INSIDE_IT_INSN,
392 INSIDE_IT_LAST_INSN,
393 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
394 if inside, should be the last one. */
395 NEUTRAL_IT_INSN, /* This could be either inside or outside,
396 i.e. BKPT and NOP. */
397 IT_INSN /* The IT insn has been parsed. */
398 };
399
400 /* The maximum number of operands we need. */
401 #define ARM_IT_MAX_OPERANDS 6
402
403 struct arm_it
404 {
405 const char * error;
406 unsigned long instruction;
407 int size;
408 int size_req;
409 int cond;
410 /* "uncond_value" is set to the value in place of the conditional field in
411 unconditional versions of the instruction, or -1 if nothing is
412 appropriate. */
413 int uncond_value;
414 struct neon_type vectype;
415 /* This does not indicate an actual NEON instruction, only that
416 the mnemonic accepts neon-style type suffixes. */
417 int is_neon;
418 /* Set to the opcode if the instruction needs relaxation.
419 Zero if the instruction is not relaxed. */
420 unsigned long relax;
421 struct
422 {
423 bfd_reloc_code_real_type type;
424 expressionS exp;
425 int pc_rel;
426 } reloc;
427
428 enum it_instruction_type it_insn_type;
429
430 struct
431 {
432 unsigned reg;
433 signed int imm;
434 struct neon_type_el vectype;
435 unsigned present : 1; /* Operand present. */
436 unsigned isreg : 1; /* Operand was a register. */
437 unsigned immisreg : 1; /* .imm field is a second register. */
438 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
439 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
440 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
441 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
442 instructions. This allows us to disambiguate ARM <-> vector insns. */
443 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
444 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
445 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
446 unsigned issingle : 1; /* Operand is VFP single-precision register. */
447 unsigned hasreloc : 1; /* Operand has relocation suffix. */
448 unsigned writeback : 1; /* Operand has trailing ! */
449 unsigned preind : 1; /* Preindexed address. */
450 unsigned postind : 1; /* Postindexed address. */
451 unsigned negative : 1; /* Index register was negated. */
452 unsigned shifted : 1; /* Shift applied to operation. */
453 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
454 } operands[ARM_IT_MAX_OPERANDS];
455 };
456
457 static struct arm_it inst;
458
459 #define NUM_FLOAT_VALS 8
460
461 const char * fp_const[] =
462 {
463 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
464 };
465
466 /* Number of littlenums required to hold an extended precision number. */
467 #define MAX_LITTLENUMS 6
468
469 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
470
471 #define FAIL (-1)
472 #define SUCCESS (0)
473
474 #define SUFF_S 1
475 #define SUFF_D 2
476 #define SUFF_E 3
477 #define SUFF_P 4
478
479 #define CP_T_X 0x00008000
480 #define CP_T_Y 0x00400000
481
482 #define CONDS_BIT 0x00100000
483 #define LOAD_BIT 0x00100000
484
485 #define DOUBLE_LOAD_FLAG 0x00000001
486
487 struct asm_cond
488 {
489 const char * template_name;
490 unsigned long value;
491 };
492
493 #define COND_ALWAYS 0xE
494
495 struct asm_psr
496 {
497 const char * template_name;
498 unsigned long field;
499 };
500
501 struct asm_barrier_opt
502 {
503 const char * template_name;
504 unsigned long value;
505 const arm_feature_set arch;
506 };
507
508 /* The bit that distinguishes CPSR and SPSR. */
509 #define SPSR_BIT (1 << 22)
510
511 /* The individual PSR flag bits. */
512 #define PSR_c (1 << 16)
513 #define PSR_x (1 << 17)
514 #define PSR_s (1 << 18)
515 #define PSR_f (1 << 19)
516
517 struct reloc_entry
518 {
519 const char * name;
520 bfd_reloc_code_real_type reloc;
521 };
522
523 enum vfp_reg_pos
524 {
525 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
526 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
527 };
528
529 enum vfp_ldstm_type
530 {
531 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
532 };
533
534 /* Bits for DEFINED field in neon_typed_alias. */
535 #define NTA_HASTYPE 1
536 #define NTA_HASINDEX 2
537
538 struct neon_typed_alias
539 {
540 unsigned char defined;
541 unsigned char index;
542 struct neon_type_el eltype;
543 };
544
545 /* ARM register categories. This includes coprocessor numbers and various
546 architecture extensions' registers. */
547 enum arm_reg_type
548 {
549 REG_TYPE_RN,
550 REG_TYPE_CP,
551 REG_TYPE_CN,
552 REG_TYPE_FN,
553 REG_TYPE_VFS,
554 REG_TYPE_VFD,
555 REG_TYPE_NQ,
556 REG_TYPE_VFSD,
557 REG_TYPE_NDQ,
558 REG_TYPE_NSDQ,
559 REG_TYPE_VFC,
560 REG_TYPE_MVF,
561 REG_TYPE_MVD,
562 REG_TYPE_MVFX,
563 REG_TYPE_MVDX,
564 REG_TYPE_MVAX,
565 REG_TYPE_DSPSC,
566 REG_TYPE_MMXWR,
567 REG_TYPE_MMXWC,
568 REG_TYPE_MMXWCG,
569 REG_TYPE_XSCALE,
570 REG_TYPE_RNB
571 };
572
573 /* Structure for a hash table entry for a register.
574 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
575 information which states whether a vector type or index is specified (for a
576 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
577 struct reg_entry
578 {
579 const char * name;
580 unsigned int number;
581 unsigned char type;
582 unsigned char builtin;
583 struct neon_typed_alias * neon;
584 };
585
586 /* Diagnostics used when we don't get a register of the expected type. */
587 const char * const reg_expected_msgs[] =
588 {
589 N_("ARM register expected"),
590 N_("bad or missing co-processor number"),
591 N_("co-processor register expected"),
592 N_("FPA register expected"),
593 N_("VFP single precision register expected"),
594 N_("VFP/Neon double precision register expected"),
595 N_("Neon quad precision register expected"),
596 N_("VFP single or double precision register expected"),
597 N_("Neon double or quad precision register expected"),
598 N_("VFP single, double or Neon quad precision register expected"),
599 N_("VFP system register expected"),
600 N_("Maverick MVF register expected"),
601 N_("Maverick MVD register expected"),
602 N_("Maverick MVFX register expected"),
603 N_("Maverick MVDX register expected"),
604 N_("Maverick MVAX register expected"),
605 N_("Maverick DSPSC register expected"),
606 N_("iWMMXt data register expected"),
607 N_("iWMMXt control register expected"),
608 N_("iWMMXt scalar register expected"),
609 N_("XScale accumulator register expected"),
610 };
611
612 /* Some well known registers that we refer to directly elsewhere. */
613 #define REG_R12 12
614 #define REG_SP 13
615 #define REG_LR 14
616 #define REG_PC 15
617
618 /* ARM instructions take 4bytes in the object file, Thumb instructions
619 take 2: */
620 #define INSN_SIZE 4
621
622 struct asm_opcode
623 {
624 /* Basic string to match. */
625 const char * template_name;
626
627 /* Parameters to instruction. */
628 unsigned int operands[8];
629
630 /* Conditional tag - see opcode_lookup. */
631 unsigned int tag : 4;
632
633 /* Basic instruction code. */
634 unsigned int avalue : 28;
635
636 /* Thumb-format instruction code. */
637 unsigned int tvalue;
638
639 /* Which architecture variant provides this instruction. */
640 const arm_feature_set * avariant;
641 const arm_feature_set * tvariant;
642
643 /* Function to call to encode instruction in ARM format. */
644 void (* aencode) (void);
645
646 /* Function to call to encode instruction in Thumb format. */
647 void (* tencode) (void);
648 };
649
650 /* Defines for various bits that we will want to toggle. */
651 #define INST_IMMEDIATE 0x02000000
652 #define OFFSET_REG 0x02000000
653 #define HWOFFSET_IMM 0x00400000
654 #define SHIFT_BY_REG 0x00000010
655 #define PRE_INDEX 0x01000000
656 #define INDEX_UP 0x00800000
657 #define WRITE_BACK 0x00200000
658 #define LDM_TYPE_2_OR_3 0x00400000
659 #define CPSI_MMOD 0x00020000
660
661 #define LITERAL_MASK 0xf000f000
662 #define OPCODE_MASK 0xfe1fffff
663 #define V4_STR_BIT 0x00000020
664 #define VLDR_VMOV_SAME 0x0040f000
665
666 #define T2_SUBS_PC_LR 0xf3de8f00
667
668 #define DATA_OP_SHIFT 21
669
670 #define T2_OPCODE_MASK 0xfe1fffff
671 #define T2_DATA_OP_SHIFT 21
672
673 #define A_COND_MASK 0xf0000000
674 #define A_PUSH_POP_OP_MASK 0x0fff0000
675
676 /* Opcodes for pushing/poping registers to/from the stack. */
677 #define A1_OPCODE_PUSH 0x092d0000
678 #define A2_OPCODE_PUSH 0x052d0004
679 #define A2_OPCODE_POP 0x049d0004
680
681 /* Codes to distinguish the arithmetic instructions. */
682 #define OPCODE_AND 0
683 #define OPCODE_EOR 1
684 #define OPCODE_SUB 2
685 #define OPCODE_RSB 3
686 #define OPCODE_ADD 4
687 #define OPCODE_ADC 5
688 #define OPCODE_SBC 6
689 #define OPCODE_RSC 7
690 #define OPCODE_TST 8
691 #define OPCODE_TEQ 9
692 #define OPCODE_CMP 10
693 #define OPCODE_CMN 11
694 #define OPCODE_ORR 12
695 #define OPCODE_MOV 13
696 #define OPCODE_BIC 14
697 #define OPCODE_MVN 15
698
699 #define T2_OPCODE_AND 0
700 #define T2_OPCODE_BIC 1
701 #define T2_OPCODE_ORR 2
702 #define T2_OPCODE_ORN 3
703 #define T2_OPCODE_EOR 4
704 #define T2_OPCODE_ADD 8
705 #define T2_OPCODE_ADC 10
706 #define T2_OPCODE_SBC 11
707 #define T2_OPCODE_SUB 13
708 #define T2_OPCODE_RSB 14
709
710 #define T_OPCODE_MUL 0x4340
711 #define T_OPCODE_TST 0x4200
712 #define T_OPCODE_CMN 0x42c0
713 #define T_OPCODE_NEG 0x4240
714 #define T_OPCODE_MVN 0x43c0
715
716 #define T_OPCODE_ADD_R3 0x1800
717 #define T_OPCODE_SUB_R3 0x1a00
718 #define T_OPCODE_ADD_HI 0x4400
719 #define T_OPCODE_ADD_ST 0xb000
720 #define T_OPCODE_SUB_ST 0xb080
721 #define T_OPCODE_ADD_SP 0xa800
722 #define T_OPCODE_ADD_PC 0xa000
723 #define T_OPCODE_ADD_I8 0x3000
724 #define T_OPCODE_SUB_I8 0x3800
725 #define T_OPCODE_ADD_I3 0x1c00
726 #define T_OPCODE_SUB_I3 0x1e00
727
728 #define T_OPCODE_ASR_R 0x4100
729 #define T_OPCODE_LSL_R 0x4080
730 #define T_OPCODE_LSR_R 0x40c0
731 #define T_OPCODE_ROR_R 0x41c0
732 #define T_OPCODE_ASR_I 0x1000
733 #define T_OPCODE_LSL_I 0x0000
734 #define T_OPCODE_LSR_I 0x0800
735
736 #define T_OPCODE_MOV_I8 0x2000
737 #define T_OPCODE_CMP_I8 0x2800
738 #define T_OPCODE_CMP_LR 0x4280
739 #define T_OPCODE_MOV_HR 0x4600
740 #define T_OPCODE_CMP_HR 0x4500
741
742 #define T_OPCODE_LDR_PC 0x4800
743 #define T_OPCODE_LDR_SP 0x9800
744 #define T_OPCODE_STR_SP 0x9000
745 #define T_OPCODE_LDR_IW 0x6800
746 #define T_OPCODE_STR_IW 0x6000
747 #define T_OPCODE_LDR_IH 0x8800
748 #define T_OPCODE_STR_IH 0x8000
749 #define T_OPCODE_LDR_IB 0x7800
750 #define T_OPCODE_STR_IB 0x7000
751 #define T_OPCODE_LDR_RW 0x5800
752 #define T_OPCODE_STR_RW 0x5000
753 #define T_OPCODE_LDR_RH 0x5a00
754 #define T_OPCODE_STR_RH 0x5200
755 #define T_OPCODE_LDR_RB 0x5c00
756 #define T_OPCODE_STR_RB 0x5400
757
758 #define T_OPCODE_PUSH 0xb400
759 #define T_OPCODE_POP 0xbc00
760
761 #define T_OPCODE_BRANCH 0xe000
762
763 #define THUMB_SIZE 2 /* Size of thumb instruction. */
764 #define THUMB_PP_PC_LR 0x0100
765 #define THUMB_LOAD_BIT 0x0800
766 #define THUMB2_LOAD_BIT 0x00100000
767
768 #define BAD_ARGS _("bad arguments to instruction")
769 #define BAD_SP _("r13 not allowed here")
770 #define BAD_PC _("r15 not allowed here")
771 #define BAD_COND _("instruction cannot be conditional")
772 #define BAD_OVERLAP _("registers may not be the same")
773 #define BAD_HIREG _("lo register required")
774 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
775 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
776 #define BAD_BRANCH _("branch must be last instruction in IT block")
777 #define BAD_NOT_IT _("instruction not allowed in IT block")
778 #define BAD_FPU _("selected FPU does not support instruction")
779 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
780 #define BAD_IT_COND _("incorrect condition in IT block")
781 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
782 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
783 #define BAD_PC_ADDRESSING \
784 _("cannot use register index with PC-relative addressing")
785 #define BAD_PC_WRITEBACK \
786 _("cannot use writeback with PC-relative addressing")
787 #define BAD_RANGE _("branch out of range")
788 #define BAD_FP16 _("selected processor does not support fp16 instruction")
789 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
790 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
791
792 static struct hash_control * arm_ops_hsh;
793 static struct hash_control * arm_cond_hsh;
794 static struct hash_control * arm_shift_hsh;
795 static struct hash_control * arm_psr_hsh;
796 static struct hash_control * arm_v7m_psr_hsh;
797 static struct hash_control * arm_reg_hsh;
798 static struct hash_control * arm_reloc_hsh;
799 static struct hash_control * arm_barrier_opt_hsh;
800
801 /* Stuff needed to resolve the label ambiguity
802 As:
803 ...
804 label: <insn>
805 may differ from:
806 ...
807 label:
808 <insn> */
809
810 symbolS * last_label_seen;
811 static int label_is_thumb_function_name = FALSE;
812
813 /* Literal pool structure. Held on a per-section
814 and per-sub-section basis. */
815
816 #define MAX_LITERAL_POOL_SIZE 1024
817 typedef struct literal_pool
818 {
819 expressionS literals [MAX_LITERAL_POOL_SIZE];
820 unsigned int next_free_entry;
821 unsigned int id;
822 symbolS * symbol;
823 segT section;
824 subsegT sub_section;
825 #ifdef OBJ_ELF
826 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
827 #endif
828 struct literal_pool * next;
829 unsigned int alignment;
830 } literal_pool;
831
832 /* Pointer to a linked list of literal pools. */
833 literal_pool * list_of_pools = NULL;
834
835 typedef enum asmfunc_states
836 {
837 OUTSIDE_ASMFUNC,
838 WAITING_ASMFUNC_NAME,
839 WAITING_ENDASMFUNC
840 } asmfunc_states;
841
842 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
843
844 #ifdef OBJ_ELF
845 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
846 #else
847 static struct current_it now_it;
848 #endif
849
850 static inline int
851 now_it_compatible (int cond)
852 {
853 return (cond & ~1) == (now_it.cc & ~1);
854 }
855
856 static inline int
857 conditional_insn (void)
858 {
859 return inst.cond != COND_ALWAYS;
860 }
861
862 static int in_it_block (void);
863
864 static int handle_it_state (void);
865
866 static void force_automatic_it_block_close (void);
867
868 static void it_fsm_post_encode (void);
869
870 #define set_it_insn_type(type) \
871 do \
872 { \
873 inst.it_insn_type = type; \
874 if (handle_it_state () == FAIL) \
875 return; \
876 } \
877 while (0)
878
879 #define set_it_insn_type_nonvoid(type, failret) \
880 do \
881 { \
882 inst.it_insn_type = type; \
883 if (handle_it_state () == FAIL) \
884 return failret; \
885 } \
886 while(0)
887
888 #define set_it_insn_type_last() \
889 do \
890 { \
891 if (inst.cond == COND_ALWAYS) \
892 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
893 else \
894 set_it_insn_type (INSIDE_IT_LAST_INSN); \
895 } \
896 while (0)
897
898 /* Pure syntax. */
899
900 /* This array holds the chars that always start a comment. If the
901 pre-processor is disabled, these aren't very useful. */
902 char arm_comment_chars[] = "@";
903
904 /* This array holds the chars that only start a comment at the beginning of
905 a line. If the line seems to have the form '# 123 filename'
906 .line and .file directives will appear in the pre-processed output. */
907 /* Note that input_file.c hand checks for '#' at the beginning of the
908 first line of the input file. This is because the compiler outputs
909 #NO_APP at the beginning of its output. */
910 /* Also note that comments like this one will always work. */
911 const char line_comment_chars[] = "#";
912
913 char arm_line_separator_chars[] = ";";
914
915 /* Chars that can be used to separate mant
916 from exp in floating point numbers. */
917 const char EXP_CHARS[] = "eE";
918
919 /* Chars that mean this number is a floating point constant. */
920 /* As in 0f12.456 */
921 /* or 0d1.2345e12 */
922
923 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
924
925 /* Prefix characters that indicate the start of an immediate
926 value. */
927 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
928
929 /* Separator character handling. */
930
931 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
932
933 static inline int
934 skip_past_char (char ** str, char c)
935 {
936 /* PR gas/14987: Allow for whitespace before the expected character. */
937 skip_whitespace (*str);
938
939 if (**str == c)
940 {
941 (*str)++;
942 return SUCCESS;
943 }
944 else
945 return FAIL;
946 }
947
948 #define skip_past_comma(str) skip_past_char (str, ',')
949
950 /* Arithmetic expressions (possibly involving symbols). */
951
952 /* Return TRUE if anything in the expression is a bignum. */
953
954 static int
955 walk_no_bignums (symbolS * sp)
956 {
957 if (symbol_get_value_expression (sp)->X_op == O_big)
958 return 1;
959
960 if (symbol_get_value_expression (sp)->X_add_symbol)
961 {
962 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
963 || (symbol_get_value_expression (sp)->X_op_symbol
964 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
965 }
966
967 return 0;
968 }
969
970 static int in_my_get_expression = 0;
971
972 /* Third argument to my_get_expression. */
973 #define GE_NO_PREFIX 0
974 #define GE_IMM_PREFIX 1
975 #define GE_OPT_PREFIX 2
976 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
977 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
978 #define GE_OPT_PREFIX_BIG 3
979
980 static int
981 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
982 {
983 char * save_in;
984 segT seg;
985
986 /* In unified syntax, all prefixes are optional. */
987 if (unified_syntax)
988 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
989 : GE_OPT_PREFIX;
990
991 switch (prefix_mode)
992 {
993 case GE_NO_PREFIX: break;
994 case GE_IMM_PREFIX:
995 if (!is_immediate_prefix (**str))
996 {
997 inst.error = _("immediate expression requires a # prefix");
998 return FAIL;
999 }
1000 (*str)++;
1001 break;
1002 case GE_OPT_PREFIX:
1003 case GE_OPT_PREFIX_BIG:
1004 if (is_immediate_prefix (**str))
1005 (*str)++;
1006 break;
1007 default: abort ();
1008 }
1009
1010 memset (ep, 0, sizeof (expressionS));
1011
1012 save_in = input_line_pointer;
1013 input_line_pointer = *str;
1014 in_my_get_expression = 1;
1015 seg = expression (ep);
1016 in_my_get_expression = 0;
1017
1018 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1019 {
1020 /* We found a bad or missing expression in md_operand(). */
1021 *str = input_line_pointer;
1022 input_line_pointer = save_in;
1023 if (inst.error == NULL)
1024 inst.error = (ep->X_op == O_absent
1025 ? _("missing expression") :_("bad expression"));
1026 return 1;
1027 }
1028
1029 #ifdef OBJ_AOUT
1030 if (seg != absolute_section
1031 && seg != text_section
1032 && seg != data_section
1033 && seg != bss_section
1034 && seg != undefined_section)
1035 {
1036 inst.error = _("bad segment");
1037 *str = input_line_pointer;
1038 input_line_pointer = save_in;
1039 return 1;
1040 }
1041 #else
1042 (void) seg;
1043 #endif
1044
1045 /* Get rid of any bignums now, so that we don't generate an error for which
1046 we can't establish a line number later on. Big numbers are never valid
1047 in instructions, which is where this routine is always called. */
1048 if (prefix_mode != GE_OPT_PREFIX_BIG
1049 && (ep->X_op == O_big
1050 || (ep->X_add_symbol
1051 && (walk_no_bignums (ep->X_add_symbol)
1052 || (ep->X_op_symbol
1053 && walk_no_bignums (ep->X_op_symbol))))))
1054 {
1055 inst.error = _("invalid constant");
1056 *str = input_line_pointer;
1057 input_line_pointer = save_in;
1058 return 1;
1059 }
1060
1061 *str = input_line_pointer;
1062 input_line_pointer = save_in;
1063 return 0;
1064 }
1065
1066 /* Turn a string in input_line_pointer into a floating point constant
1067 of type TYPE, and store the appropriate bytes in *LITP. The number
1068 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1069 returned, or NULL on OK.
1070
1071 Note that fp constants aren't represent in the normal way on the ARM.
1072 In big endian mode, things are as expected. However, in little endian
1073 mode fp constants are big-endian word-wise, and little-endian byte-wise
1074 within the words. For example, (double) 1.1 in big endian mode is
1075 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1076 the byte sequence 99 99 f1 3f 9a 99 99 99.
1077
1078 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1079
1080 const char *
1081 md_atof (int type, char * litP, int * sizeP)
1082 {
1083 int prec;
1084 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1085 char *t;
1086 int i;
1087
1088 switch (type)
1089 {
1090 case 'f':
1091 case 'F':
1092 case 's':
1093 case 'S':
1094 prec = 2;
1095 break;
1096
1097 case 'd':
1098 case 'D':
1099 case 'r':
1100 case 'R':
1101 prec = 4;
1102 break;
1103
1104 case 'x':
1105 case 'X':
1106 prec = 5;
1107 break;
1108
1109 case 'p':
1110 case 'P':
1111 prec = 5;
1112 break;
1113
1114 default:
1115 *sizeP = 0;
1116 return _("Unrecognized or unsupported floating point constant");
1117 }
1118
1119 t = atof_ieee (input_line_pointer, type, words);
1120 if (t)
1121 input_line_pointer = t;
1122 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1123
1124 if (target_big_endian)
1125 {
1126 for (i = 0; i < prec; i++)
1127 {
1128 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1129 litP += sizeof (LITTLENUM_TYPE);
1130 }
1131 }
1132 else
1133 {
1134 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1135 for (i = prec - 1; i >= 0; i--)
1136 {
1137 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1138 litP += sizeof (LITTLENUM_TYPE);
1139 }
1140 else
1141 /* For a 4 byte float the order of elements in `words' is 1 0.
1142 For an 8 byte float the order is 1 0 3 2. */
1143 for (i = 0; i < prec; i += 2)
1144 {
1145 md_number_to_chars (litP, (valueT) words[i + 1],
1146 sizeof (LITTLENUM_TYPE));
1147 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1148 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1149 litP += 2 * sizeof (LITTLENUM_TYPE);
1150 }
1151 }
1152
1153 return NULL;
1154 }
1155
1156 /* We handle all bad expressions here, so that we can report the faulty
1157 instruction in the error message. */
1158 void
1159 md_operand (expressionS * exp)
1160 {
1161 if (in_my_get_expression)
1162 exp->X_op = O_illegal;
1163 }
1164
1165 /* Immediate values. */
1166
1167 /* Generic immediate-value read function for use in directives.
1168 Accepts anything that 'expression' can fold to a constant.
1169 *val receives the number. */
1170 #ifdef OBJ_ELF
1171 static int
1172 immediate_for_directive (int *val)
1173 {
1174 expressionS exp;
1175 exp.X_op = O_illegal;
1176
1177 if (is_immediate_prefix (*input_line_pointer))
1178 {
1179 input_line_pointer++;
1180 expression (&exp);
1181 }
1182
1183 if (exp.X_op != O_constant)
1184 {
1185 as_bad (_("expected #constant"));
1186 ignore_rest_of_line ();
1187 return FAIL;
1188 }
1189 *val = exp.X_add_number;
1190 return SUCCESS;
1191 }
1192 #endif
1193
1194 /* Register parsing. */
1195
1196 /* Generic register parser. CCP points to what should be the
1197 beginning of a register name. If it is indeed a valid register
1198 name, advance CCP over it and return the reg_entry structure;
1199 otherwise return NULL. Does not issue diagnostics. */
1200
1201 static struct reg_entry *
1202 arm_reg_parse_multi (char **ccp)
1203 {
1204 char *start = *ccp;
1205 char *p;
1206 struct reg_entry *reg;
1207
1208 skip_whitespace (start);
1209
1210 #ifdef REGISTER_PREFIX
1211 if (*start != REGISTER_PREFIX)
1212 return NULL;
1213 start++;
1214 #endif
1215 #ifdef OPTIONAL_REGISTER_PREFIX
1216 if (*start == OPTIONAL_REGISTER_PREFIX)
1217 start++;
1218 #endif
1219
1220 p = start;
1221 if (!ISALPHA (*p) || !is_name_beginner (*p))
1222 return NULL;
1223
1224 do
1225 p++;
1226 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1227
1228 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1229
1230 if (!reg)
1231 return NULL;
1232
1233 *ccp = p;
1234 return reg;
1235 }
1236
1237 static int
1238 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1239 enum arm_reg_type type)
1240 {
1241 /* Alternative syntaxes are accepted for a few register classes. */
1242 switch (type)
1243 {
1244 case REG_TYPE_MVF:
1245 case REG_TYPE_MVD:
1246 case REG_TYPE_MVFX:
1247 case REG_TYPE_MVDX:
1248 /* Generic coprocessor register names are allowed for these. */
1249 if (reg && reg->type == REG_TYPE_CN)
1250 return reg->number;
1251 break;
1252
1253 case REG_TYPE_CP:
1254 /* For backward compatibility, a bare number is valid here. */
1255 {
1256 unsigned long processor = strtoul (start, ccp, 10);
1257 if (*ccp != start && processor <= 15)
1258 return processor;
1259 }
1260
1261 case REG_TYPE_MMXWC:
1262 /* WC includes WCG. ??? I'm not sure this is true for all
1263 instructions that take WC registers. */
1264 if (reg && reg->type == REG_TYPE_MMXWCG)
1265 return reg->number;
1266 break;
1267
1268 default:
1269 break;
1270 }
1271
1272 return FAIL;
1273 }
1274
1275 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1276 return value is the register number or FAIL. */
1277
1278 static int
1279 arm_reg_parse (char **ccp, enum arm_reg_type type)
1280 {
1281 char *start = *ccp;
1282 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1283 int ret;
1284
1285 /* Do not allow a scalar (reg+index) to parse as a register. */
1286 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1287 return FAIL;
1288
1289 if (reg && reg->type == type)
1290 return reg->number;
1291
1292 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1293 return ret;
1294
1295 *ccp = start;
1296 return FAIL;
1297 }
1298
1299 /* Parse a Neon type specifier. *STR should point at the leading '.'
1300 character. Does no verification at this stage that the type fits the opcode
1301 properly. E.g.,
1302
1303 .i32.i32.s16
1304 .s32.f32
1305 .u16
1306
1307 Can all be legally parsed by this function.
1308
1309 Fills in neon_type struct pointer with parsed information, and updates STR
1310 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1311 type, FAIL if not. */
1312
1313 static int
1314 parse_neon_type (struct neon_type *type, char **str)
1315 {
1316 char *ptr = *str;
1317
1318 if (type)
1319 type->elems = 0;
1320
1321 while (type->elems < NEON_MAX_TYPE_ELS)
1322 {
1323 enum neon_el_type thistype = NT_untyped;
1324 unsigned thissize = -1u;
1325
1326 if (*ptr != '.')
1327 break;
1328
1329 ptr++;
1330
1331 /* Just a size without an explicit type. */
1332 if (ISDIGIT (*ptr))
1333 goto parsesize;
1334
1335 switch (TOLOWER (*ptr))
1336 {
1337 case 'i': thistype = NT_integer; break;
1338 case 'f': thistype = NT_float; break;
1339 case 'p': thistype = NT_poly; break;
1340 case 's': thistype = NT_signed; break;
1341 case 'u': thistype = NT_unsigned; break;
1342 case 'd':
1343 thistype = NT_float;
1344 thissize = 64;
1345 ptr++;
1346 goto done;
1347 default:
1348 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1349 return FAIL;
1350 }
1351
1352 ptr++;
1353
1354 /* .f is an abbreviation for .f32. */
1355 if (thistype == NT_float && !ISDIGIT (*ptr))
1356 thissize = 32;
1357 else
1358 {
1359 parsesize:
1360 thissize = strtoul (ptr, &ptr, 10);
1361
1362 if (thissize != 8 && thissize != 16 && thissize != 32
1363 && thissize != 64)
1364 {
1365 as_bad (_("bad size %d in type specifier"), thissize);
1366 return FAIL;
1367 }
1368 }
1369
1370 done:
1371 if (type)
1372 {
1373 type->el[type->elems].type = thistype;
1374 type->el[type->elems].size = thissize;
1375 type->elems++;
1376 }
1377 }
1378
1379 /* Empty/missing type is not a successful parse. */
1380 if (type->elems == 0)
1381 return FAIL;
1382
1383 *str = ptr;
1384
1385 return SUCCESS;
1386 }
1387
1388 /* Errors may be set multiple times during parsing or bit encoding
1389 (particularly in the Neon bits), but usually the earliest error which is set
1390 will be the most meaningful. Avoid overwriting it with later (cascading)
1391 errors by calling this function. */
1392
1393 static void
1394 first_error (const char *err)
1395 {
1396 if (!inst.error)
1397 inst.error = err;
1398 }
1399
1400 /* Parse a single type, e.g. ".s32", leading period included. */
1401 static int
1402 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1403 {
1404 char *str = *ccp;
1405 struct neon_type optype;
1406
1407 if (*str == '.')
1408 {
1409 if (parse_neon_type (&optype, &str) == SUCCESS)
1410 {
1411 if (optype.elems == 1)
1412 *vectype = optype.el[0];
1413 else
1414 {
1415 first_error (_("only one type should be specified for operand"));
1416 return FAIL;
1417 }
1418 }
1419 else
1420 {
1421 first_error (_("vector type expected"));
1422 return FAIL;
1423 }
1424 }
1425 else
1426 return FAIL;
1427
1428 *ccp = str;
1429
1430 return SUCCESS;
1431 }
1432
1433 /* Special meanings for indices (which have a range of 0-7), which will fit into
1434 a 4-bit integer. */
1435
1436 #define NEON_ALL_LANES 15
1437 #define NEON_INTERLEAVE_LANES 14
1438
1439 /* Parse either a register or a scalar, with an optional type. Return the
1440 register number, and optionally fill in the actual type of the register
1441 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1442 type/index information in *TYPEINFO. */
1443
1444 static int
1445 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1446 enum arm_reg_type *rtype,
1447 struct neon_typed_alias *typeinfo)
1448 {
1449 char *str = *ccp;
1450 struct reg_entry *reg = arm_reg_parse_multi (&str);
1451 struct neon_typed_alias atype;
1452 struct neon_type_el parsetype;
1453
1454 atype.defined = 0;
1455 atype.index = -1;
1456 atype.eltype.type = NT_invtype;
1457 atype.eltype.size = -1;
1458
1459 /* Try alternate syntax for some types of register. Note these are mutually
1460 exclusive with the Neon syntax extensions. */
1461 if (reg == NULL)
1462 {
1463 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1464 if (altreg != FAIL)
1465 *ccp = str;
1466 if (typeinfo)
1467 *typeinfo = atype;
1468 return altreg;
1469 }
1470
1471 /* Undo polymorphism when a set of register types may be accepted. */
1472 if ((type == REG_TYPE_NDQ
1473 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1474 || (type == REG_TYPE_VFSD
1475 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1476 || (type == REG_TYPE_NSDQ
1477 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1478 || reg->type == REG_TYPE_NQ))
1479 || (type == REG_TYPE_MMXWC
1480 && (reg->type == REG_TYPE_MMXWCG)))
1481 type = (enum arm_reg_type) reg->type;
1482
1483 if (type != reg->type)
1484 return FAIL;
1485
1486 if (reg->neon)
1487 atype = *reg->neon;
1488
1489 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1490 {
1491 if ((atype.defined & NTA_HASTYPE) != 0)
1492 {
1493 first_error (_("can't redefine type for operand"));
1494 return FAIL;
1495 }
1496 atype.defined |= NTA_HASTYPE;
1497 atype.eltype = parsetype;
1498 }
1499
1500 if (skip_past_char (&str, '[') == SUCCESS)
1501 {
1502 if (type != REG_TYPE_VFD)
1503 {
1504 first_error (_("only D registers may be indexed"));
1505 return FAIL;
1506 }
1507
1508 if ((atype.defined & NTA_HASINDEX) != 0)
1509 {
1510 first_error (_("can't change index for operand"));
1511 return FAIL;
1512 }
1513
1514 atype.defined |= NTA_HASINDEX;
1515
1516 if (skip_past_char (&str, ']') == SUCCESS)
1517 atype.index = NEON_ALL_LANES;
1518 else
1519 {
1520 expressionS exp;
1521
1522 my_get_expression (&exp, &str, GE_NO_PREFIX);
1523
1524 if (exp.X_op != O_constant)
1525 {
1526 first_error (_("constant expression required"));
1527 return FAIL;
1528 }
1529
1530 if (skip_past_char (&str, ']') == FAIL)
1531 return FAIL;
1532
1533 atype.index = exp.X_add_number;
1534 }
1535 }
1536
1537 if (typeinfo)
1538 *typeinfo = atype;
1539
1540 if (rtype)
1541 *rtype = type;
1542
1543 *ccp = str;
1544
1545 return reg->number;
1546 }
1547
1548 /* Like arm_reg_parse, but allow allow the following extra features:
1549 - If RTYPE is non-zero, return the (possibly restricted) type of the
1550 register (e.g. Neon double or quad reg when either has been requested).
1551 - If this is a Neon vector type with additional type information, fill
1552 in the struct pointed to by VECTYPE (if non-NULL).
1553 This function will fault on encountering a scalar. */
1554
1555 static int
1556 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1557 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1558 {
1559 struct neon_typed_alias atype;
1560 char *str = *ccp;
1561 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1562
1563 if (reg == FAIL)
1564 return FAIL;
1565
1566 /* Do not allow regname(... to parse as a register. */
1567 if (*str == '(')
1568 return FAIL;
1569
1570 /* Do not allow a scalar (reg+index) to parse as a register. */
1571 if ((atype.defined & NTA_HASINDEX) != 0)
1572 {
1573 first_error (_("register operand expected, but got scalar"));
1574 return FAIL;
1575 }
1576
1577 if (vectype)
1578 *vectype = atype.eltype;
1579
1580 *ccp = str;
1581
1582 return reg;
1583 }
1584
1585 #define NEON_SCALAR_REG(X) ((X) >> 4)
1586 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1587
1588 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1589 have enough information to be able to do a good job bounds-checking. So, we
1590 just do easy checks here, and do further checks later. */
1591
1592 static int
1593 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1594 {
1595 int reg;
1596 char *str = *ccp;
1597 struct neon_typed_alias atype;
1598
1599 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1600
1601 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1602 return FAIL;
1603
1604 if (atype.index == NEON_ALL_LANES)
1605 {
1606 first_error (_("scalar must have an index"));
1607 return FAIL;
1608 }
1609 else if (atype.index >= 64 / elsize)
1610 {
1611 first_error (_("scalar index out of range"));
1612 return FAIL;
1613 }
1614
1615 if (type)
1616 *type = atype.eltype;
1617
1618 *ccp = str;
1619
1620 return reg * 16 + atype.index;
1621 }
1622
1623 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1624
1625 static long
1626 parse_reg_list (char ** strp)
1627 {
1628 char * str = * strp;
1629 long range = 0;
1630 int another_range;
1631
1632 /* We come back here if we get ranges concatenated by '+' or '|'. */
1633 do
1634 {
1635 skip_whitespace (str);
1636
1637 another_range = 0;
1638
1639 if (*str == '{')
1640 {
1641 int in_range = 0;
1642 int cur_reg = -1;
1643
1644 str++;
1645 do
1646 {
1647 int reg;
1648
1649 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1650 {
1651 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1652 return FAIL;
1653 }
1654
1655 if (in_range)
1656 {
1657 int i;
1658
1659 if (reg <= cur_reg)
1660 {
1661 first_error (_("bad range in register list"));
1662 return FAIL;
1663 }
1664
1665 for (i = cur_reg + 1; i < reg; i++)
1666 {
1667 if (range & (1 << i))
1668 as_tsktsk
1669 (_("Warning: duplicated register (r%d) in register list"),
1670 i);
1671 else
1672 range |= 1 << i;
1673 }
1674 in_range = 0;
1675 }
1676
1677 if (range & (1 << reg))
1678 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1679 reg);
1680 else if (reg <= cur_reg)
1681 as_tsktsk (_("Warning: register range not in ascending order"));
1682
1683 range |= 1 << reg;
1684 cur_reg = reg;
1685 }
1686 while (skip_past_comma (&str) != FAIL
1687 || (in_range = 1, *str++ == '-'));
1688 str--;
1689
1690 if (skip_past_char (&str, '}') == FAIL)
1691 {
1692 first_error (_("missing `}'"));
1693 return FAIL;
1694 }
1695 }
1696 else
1697 {
1698 expressionS exp;
1699
1700 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1701 return FAIL;
1702
1703 if (exp.X_op == O_constant)
1704 {
1705 if (exp.X_add_number
1706 != (exp.X_add_number & 0x0000ffff))
1707 {
1708 inst.error = _("invalid register mask");
1709 return FAIL;
1710 }
1711
1712 if ((range & exp.X_add_number) != 0)
1713 {
1714 int regno = range & exp.X_add_number;
1715
1716 regno &= -regno;
1717 regno = (1 << regno) - 1;
1718 as_tsktsk
1719 (_("Warning: duplicated register (r%d) in register list"),
1720 regno);
1721 }
1722
1723 range |= exp.X_add_number;
1724 }
1725 else
1726 {
1727 if (inst.reloc.type != 0)
1728 {
1729 inst.error = _("expression too complex");
1730 return FAIL;
1731 }
1732
1733 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1734 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1735 inst.reloc.pc_rel = 0;
1736 }
1737 }
1738
1739 if (*str == '|' || *str == '+')
1740 {
1741 str++;
1742 another_range = 1;
1743 }
1744 }
1745 while (another_range);
1746
1747 *strp = str;
1748 return range;
1749 }
1750
1751 /* Types of registers in a list. */
1752
1753 enum reg_list_els
1754 {
1755 REGLIST_VFP_S,
1756 REGLIST_VFP_D,
1757 REGLIST_NEON_D
1758 };
1759
1760 /* Parse a VFP register list. If the string is invalid return FAIL.
1761 Otherwise return the number of registers, and set PBASE to the first
1762 register. Parses registers of type ETYPE.
1763 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1764 - Q registers can be used to specify pairs of D registers
1765 - { } can be omitted from around a singleton register list
1766 FIXME: This is not implemented, as it would require backtracking in
1767 some cases, e.g.:
1768 vtbl.8 d3,d4,d5
1769 This could be done (the meaning isn't really ambiguous), but doesn't
1770 fit in well with the current parsing framework.
1771 - 32 D registers may be used (also true for VFPv3).
1772 FIXME: Types are ignored in these register lists, which is probably a
1773 bug. */
1774
1775 static int
1776 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1777 {
1778 char *str = *ccp;
1779 int base_reg;
1780 int new_base;
1781 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1782 int max_regs = 0;
1783 int count = 0;
1784 int warned = 0;
1785 unsigned long mask = 0;
1786 int i;
1787
1788 if (skip_past_char (&str, '{') == FAIL)
1789 {
1790 inst.error = _("expecting {");
1791 return FAIL;
1792 }
1793
1794 switch (etype)
1795 {
1796 case REGLIST_VFP_S:
1797 regtype = REG_TYPE_VFS;
1798 max_regs = 32;
1799 break;
1800
1801 case REGLIST_VFP_D:
1802 regtype = REG_TYPE_VFD;
1803 break;
1804
1805 case REGLIST_NEON_D:
1806 regtype = REG_TYPE_NDQ;
1807 break;
1808 }
1809
1810 if (etype != REGLIST_VFP_S)
1811 {
1812 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1813 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1814 {
1815 max_regs = 32;
1816 if (thumb_mode)
1817 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1818 fpu_vfp_ext_d32);
1819 else
1820 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1821 fpu_vfp_ext_d32);
1822 }
1823 else
1824 max_regs = 16;
1825 }
1826
1827 base_reg = max_regs;
1828
1829 do
1830 {
1831 int setmask = 1, addregs = 1;
1832
1833 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1834
1835 if (new_base == FAIL)
1836 {
1837 first_error (_(reg_expected_msgs[regtype]));
1838 return FAIL;
1839 }
1840
1841 if (new_base >= max_regs)
1842 {
1843 first_error (_("register out of range in list"));
1844 return FAIL;
1845 }
1846
1847 /* Note: a value of 2 * n is returned for the register Q<n>. */
1848 if (regtype == REG_TYPE_NQ)
1849 {
1850 setmask = 3;
1851 addregs = 2;
1852 }
1853
1854 if (new_base < base_reg)
1855 base_reg = new_base;
1856
1857 if (mask & (setmask << new_base))
1858 {
1859 first_error (_("invalid register list"));
1860 return FAIL;
1861 }
1862
1863 if ((mask >> new_base) != 0 && ! warned)
1864 {
1865 as_tsktsk (_("register list not in ascending order"));
1866 warned = 1;
1867 }
1868
1869 mask |= setmask << new_base;
1870 count += addregs;
1871
1872 if (*str == '-') /* We have the start of a range expression */
1873 {
1874 int high_range;
1875
1876 str++;
1877
1878 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1879 == FAIL)
1880 {
1881 inst.error = gettext (reg_expected_msgs[regtype]);
1882 return FAIL;
1883 }
1884
1885 if (high_range >= max_regs)
1886 {
1887 first_error (_("register out of range in list"));
1888 return FAIL;
1889 }
1890
1891 if (regtype == REG_TYPE_NQ)
1892 high_range = high_range + 1;
1893
1894 if (high_range <= new_base)
1895 {
1896 inst.error = _("register range not in ascending order");
1897 return FAIL;
1898 }
1899
1900 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1901 {
1902 if (mask & (setmask << new_base))
1903 {
1904 inst.error = _("invalid register list");
1905 return FAIL;
1906 }
1907
1908 mask |= setmask << new_base;
1909 count += addregs;
1910 }
1911 }
1912 }
1913 while (skip_past_comma (&str) != FAIL);
1914
1915 str++;
1916
1917 /* Sanity check -- should have raised a parse error above. */
1918 if (count == 0 || count > max_regs)
1919 abort ();
1920
1921 *pbase = base_reg;
1922
1923 /* Final test -- the registers must be consecutive. */
1924 mask >>= base_reg;
1925 for (i = 0; i < count; i++)
1926 {
1927 if ((mask & (1u << i)) == 0)
1928 {
1929 inst.error = _("non-contiguous register range");
1930 return FAIL;
1931 }
1932 }
1933
1934 *ccp = str;
1935
1936 return count;
1937 }
1938
1939 /* True if two alias types are the same. */
1940
1941 static bfd_boolean
1942 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1943 {
1944 if (!a && !b)
1945 return TRUE;
1946
1947 if (!a || !b)
1948 return FALSE;
1949
1950 if (a->defined != b->defined)
1951 return FALSE;
1952
1953 if ((a->defined & NTA_HASTYPE) != 0
1954 && (a->eltype.type != b->eltype.type
1955 || a->eltype.size != b->eltype.size))
1956 return FALSE;
1957
1958 if ((a->defined & NTA_HASINDEX) != 0
1959 && (a->index != b->index))
1960 return FALSE;
1961
1962 return TRUE;
1963 }
1964
1965 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1966 The base register is put in *PBASE.
1967 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1968 the return value.
1969 The register stride (minus one) is put in bit 4 of the return value.
1970 Bits [6:5] encode the list length (minus one).
1971 The type of the list elements is put in *ELTYPE, if non-NULL. */
1972
1973 #define NEON_LANE(X) ((X) & 0xf)
1974 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1975 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1976
1977 static int
1978 parse_neon_el_struct_list (char **str, unsigned *pbase,
1979 struct neon_type_el *eltype)
1980 {
1981 char *ptr = *str;
1982 int base_reg = -1;
1983 int reg_incr = -1;
1984 int count = 0;
1985 int lane = -1;
1986 int leading_brace = 0;
1987 enum arm_reg_type rtype = REG_TYPE_NDQ;
1988 const char *const incr_error = _("register stride must be 1 or 2");
1989 const char *const type_error = _("mismatched element/structure types in list");
1990 struct neon_typed_alias firsttype;
1991
1992 if (skip_past_char (&ptr, '{') == SUCCESS)
1993 leading_brace = 1;
1994
1995 do
1996 {
1997 struct neon_typed_alias atype;
1998 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1999
2000 if (getreg == FAIL)
2001 {
2002 first_error (_(reg_expected_msgs[rtype]));
2003 return FAIL;
2004 }
2005
2006 if (base_reg == -1)
2007 {
2008 base_reg = getreg;
2009 if (rtype == REG_TYPE_NQ)
2010 {
2011 reg_incr = 1;
2012 }
2013 firsttype = atype;
2014 }
2015 else if (reg_incr == -1)
2016 {
2017 reg_incr = getreg - base_reg;
2018 if (reg_incr < 1 || reg_incr > 2)
2019 {
2020 first_error (_(incr_error));
2021 return FAIL;
2022 }
2023 }
2024 else if (getreg != base_reg + reg_incr * count)
2025 {
2026 first_error (_(incr_error));
2027 return FAIL;
2028 }
2029
2030 if (! neon_alias_types_same (&atype, &firsttype))
2031 {
2032 first_error (_(type_error));
2033 return FAIL;
2034 }
2035
2036 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2037 modes. */
2038 if (ptr[0] == '-')
2039 {
2040 struct neon_typed_alias htype;
2041 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2042 if (lane == -1)
2043 lane = NEON_INTERLEAVE_LANES;
2044 else if (lane != NEON_INTERLEAVE_LANES)
2045 {
2046 first_error (_(type_error));
2047 return FAIL;
2048 }
2049 if (reg_incr == -1)
2050 reg_incr = 1;
2051 else if (reg_incr != 1)
2052 {
2053 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2054 return FAIL;
2055 }
2056 ptr++;
2057 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2058 if (hireg == FAIL)
2059 {
2060 first_error (_(reg_expected_msgs[rtype]));
2061 return FAIL;
2062 }
2063 if (! neon_alias_types_same (&htype, &firsttype))
2064 {
2065 first_error (_(type_error));
2066 return FAIL;
2067 }
2068 count += hireg + dregs - getreg;
2069 continue;
2070 }
2071
2072 /* If we're using Q registers, we can't use [] or [n] syntax. */
2073 if (rtype == REG_TYPE_NQ)
2074 {
2075 count += 2;
2076 continue;
2077 }
2078
2079 if ((atype.defined & NTA_HASINDEX) != 0)
2080 {
2081 if (lane == -1)
2082 lane = atype.index;
2083 else if (lane != atype.index)
2084 {
2085 first_error (_(type_error));
2086 return FAIL;
2087 }
2088 }
2089 else if (lane == -1)
2090 lane = NEON_INTERLEAVE_LANES;
2091 else if (lane != NEON_INTERLEAVE_LANES)
2092 {
2093 first_error (_(type_error));
2094 return FAIL;
2095 }
2096 count++;
2097 }
2098 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2099
2100 /* No lane set by [x]. We must be interleaving structures. */
2101 if (lane == -1)
2102 lane = NEON_INTERLEAVE_LANES;
2103
2104 /* Sanity check. */
2105 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2106 || (count > 1 && reg_incr == -1))
2107 {
2108 first_error (_("error parsing element/structure list"));
2109 return FAIL;
2110 }
2111
2112 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2113 {
2114 first_error (_("expected }"));
2115 return FAIL;
2116 }
2117
2118 if (reg_incr == -1)
2119 reg_incr = 1;
2120
2121 if (eltype)
2122 *eltype = firsttype.eltype;
2123
2124 *pbase = base_reg;
2125 *str = ptr;
2126
2127 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2128 }
2129
2130 /* Parse an explicit relocation suffix on an expression. This is
2131 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2132 arm_reloc_hsh contains no entries, so this function can only
2133 succeed if there is no () after the word. Returns -1 on error,
2134 BFD_RELOC_UNUSED if there wasn't any suffix. */
2135
2136 static int
2137 parse_reloc (char **str)
2138 {
2139 struct reloc_entry *r;
2140 char *p, *q;
2141
2142 if (**str != '(')
2143 return BFD_RELOC_UNUSED;
2144
2145 p = *str + 1;
2146 q = p;
2147
2148 while (*q && *q != ')' && *q != ',')
2149 q++;
2150 if (*q != ')')
2151 return -1;
2152
2153 if ((r = (struct reloc_entry *)
2154 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2155 return -1;
2156
2157 *str = q + 1;
2158 return r->reloc;
2159 }
2160
2161 /* Directives: register aliases. */
2162
2163 static struct reg_entry *
2164 insert_reg_alias (char *str, unsigned number, int type)
2165 {
2166 struct reg_entry *new_reg;
2167 const char *name;
2168
2169 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2170 {
2171 if (new_reg->builtin)
2172 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2173
2174 /* Only warn about a redefinition if it's not defined as the
2175 same register. */
2176 else if (new_reg->number != number || new_reg->type != type)
2177 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2178
2179 return NULL;
2180 }
2181
2182 name = xstrdup (str);
2183 new_reg = XNEW (struct reg_entry);
2184
2185 new_reg->name = name;
2186 new_reg->number = number;
2187 new_reg->type = type;
2188 new_reg->builtin = FALSE;
2189 new_reg->neon = NULL;
2190
2191 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2192 abort ();
2193
2194 return new_reg;
2195 }
2196
2197 static void
2198 insert_neon_reg_alias (char *str, int number, int type,
2199 struct neon_typed_alias *atype)
2200 {
2201 struct reg_entry *reg = insert_reg_alias (str, number, type);
2202
2203 if (!reg)
2204 {
2205 first_error (_("attempt to redefine typed alias"));
2206 return;
2207 }
2208
2209 if (atype)
2210 {
2211 reg->neon = XNEW (struct neon_typed_alias);
2212 *reg->neon = *atype;
2213 }
2214 }
2215
2216 /* Look for the .req directive. This is of the form:
2217
2218 new_register_name .req existing_register_name
2219
2220 If we find one, or if it looks sufficiently like one that we want to
2221 handle any error here, return TRUE. Otherwise return FALSE. */
2222
2223 static bfd_boolean
2224 create_register_alias (char * newname, char *p)
2225 {
2226 struct reg_entry *old;
2227 char *oldname, *nbuf;
2228 size_t nlen;
2229
2230 /* The input scrubber ensures that whitespace after the mnemonic is
2231 collapsed to single spaces. */
2232 oldname = p;
2233 if (strncmp (oldname, " .req ", 6) != 0)
2234 return FALSE;
2235
2236 oldname += 6;
2237 if (*oldname == '\0')
2238 return FALSE;
2239
2240 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2241 if (!old)
2242 {
2243 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2244 return TRUE;
2245 }
2246
2247 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2248 the desired alias name, and p points to its end. If not, then
2249 the desired alias name is in the global original_case_string. */
2250 #ifdef TC_CASE_SENSITIVE
2251 nlen = p - newname;
2252 #else
2253 newname = original_case_string;
2254 nlen = strlen (newname);
2255 #endif
2256
2257 nbuf = xmalloc (nlen + 1);
2258 memcpy (nbuf, newname, nlen);
2259 nbuf[nlen] = '\0';
2260
2261 /* Create aliases under the new name as stated; an all-lowercase
2262 version of the new name; and an all-uppercase version of the new
2263 name. */
2264 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2265 {
2266 for (p = nbuf; *p; p++)
2267 *p = TOUPPER (*p);
2268
2269 if (strncmp (nbuf, newname, nlen))
2270 {
2271 /* If this attempt to create an additional alias fails, do not bother
2272 trying to create the all-lower case alias. We will fail and issue
2273 a second, duplicate error message. This situation arises when the
2274 programmer does something like:
2275 foo .req r0
2276 Foo .req r1
2277 The second .req creates the "Foo" alias but then fails to create
2278 the artificial FOO alias because it has already been created by the
2279 first .req. */
2280 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2281 {
2282 free (nbuf);
2283 return TRUE;
2284 }
2285 }
2286
2287 for (p = nbuf; *p; p++)
2288 *p = TOLOWER (*p);
2289
2290 if (strncmp (nbuf, newname, nlen))
2291 insert_reg_alias (nbuf, old->number, old->type);
2292 }
2293
2294 free (nbuf);
2295 return TRUE;
2296 }
2297
2298 /* Create a Neon typed/indexed register alias using directives, e.g.:
2299 X .dn d5.s32[1]
2300 Y .qn 6.s16
2301 Z .dn d7
2302 T .dn Z[0]
2303 These typed registers can be used instead of the types specified after the
2304 Neon mnemonic, so long as all operands given have types. Types can also be
2305 specified directly, e.g.:
2306 vadd d0.s32, d1.s32, d2.s32 */
2307
2308 static bfd_boolean
2309 create_neon_reg_alias (char *newname, char *p)
2310 {
2311 enum arm_reg_type basetype;
2312 struct reg_entry *basereg;
2313 struct reg_entry mybasereg;
2314 struct neon_type ntype;
2315 struct neon_typed_alias typeinfo;
2316 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2317 int namelen;
2318
2319 typeinfo.defined = 0;
2320 typeinfo.eltype.type = NT_invtype;
2321 typeinfo.eltype.size = -1;
2322 typeinfo.index = -1;
2323
2324 nameend = p;
2325
2326 if (strncmp (p, " .dn ", 5) == 0)
2327 basetype = REG_TYPE_VFD;
2328 else if (strncmp (p, " .qn ", 5) == 0)
2329 basetype = REG_TYPE_NQ;
2330 else
2331 return FALSE;
2332
2333 p += 5;
2334
2335 if (*p == '\0')
2336 return FALSE;
2337
2338 basereg = arm_reg_parse_multi (&p);
2339
2340 if (basereg && basereg->type != basetype)
2341 {
2342 as_bad (_("bad type for register"));
2343 return FALSE;
2344 }
2345
2346 if (basereg == NULL)
2347 {
2348 expressionS exp;
2349 /* Try parsing as an integer. */
2350 my_get_expression (&exp, &p, GE_NO_PREFIX);
2351 if (exp.X_op != O_constant)
2352 {
2353 as_bad (_("expression must be constant"));
2354 return FALSE;
2355 }
2356 basereg = &mybasereg;
2357 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2358 : exp.X_add_number;
2359 basereg->neon = 0;
2360 }
2361
2362 if (basereg->neon)
2363 typeinfo = *basereg->neon;
2364
2365 if (parse_neon_type (&ntype, &p) == SUCCESS)
2366 {
2367 /* We got a type. */
2368 if (typeinfo.defined & NTA_HASTYPE)
2369 {
2370 as_bad (_("can't redefine the type of a register alias"));
2371 return FALSE;
2372 }
2373
2374 typeinfo.defined |= NTA_HASTYPE;
2375 if (ntype.elems != 1)
2376 {
2377 as_bad (_("you must specify a single type only"));
2378 return FALSE;
2379 }
2380 typeinfo.eltype = ntype.el[0];
2381 }
2382
2383 if (skip_past_char (&p, '[') == SUCCESS)
2384 {
2385 expressionS exp;
2386 /* We got a scalar index. */
2387
2388 if (typeinfo.defined & NTA_HASINDEX)
2389 {
2390 as_bad (_("can't redefine the index of a scalar alias"));
2391 return FALSE;
2392 }
2393
2394 my_get_expression (&exp, &p, GE_NO_PREFIX);
2395
2396 if (exp.X_op != O_constant)
2397 {
2398 as_bad (_("scalar index must be constant"));
2399 return FALSE;
2400 }
2401
2402 typeinfo.defined |= NTA_HASINDEX;
2403 typeinfo.index = exp.X_add_number;
2404
2405 if (skip_past_char (&p, ']') == FAIL)
2406 {
2407 as_bad (_("expecting ]"));
2408 return FALSE;
2409 }
2410 }
2411
2412 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2413 the desired alias name, and p points to its end. If not, then
2414 the desired alias name is in the global original_case_string. */
2415 #ifdef TC_CASE_SENSITIVE
2416 namelen = nameend - newname;
2417 #else
2418 newname = original_case_string;
2419 namelen = strlen (newname);
2420 #endif
2421
2422 namebuf = xmalloc (namelen + 1);
2423 strncpy (namebuf, newname, namelen);
2424 namebuf[namelen] = '\0';
2425
2426 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2427 typeinfo.defined != 0 ? &typeinfo : NULL);
2428
2429 /* Insert name in all uppercase. */
2430 for (p = namebuf; *p; p++)
2431 *p = TOUPPER (*p);
2432
2433 if (strncmp (namebuf, newname, namelen))
2434 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2435 typeinfo.defined != 0 ? &typeinfo : NULL);
2436
2437 /* Insert name in all lowercase. */
2438 for (p = namebuf; *p; p++)
2439 *p = TOLOWER (*p);
2440
2441 if (strncmp (namebuf, newname, namelen))
2442 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2443 typeinfo.defined != 0 ? &typeinfo : NULL);
2444
2445 free (namebuf);
2446 return TRUE;
2447 }
2448
2449 /* Should never be called, as .req goes between the alias and the
2450 register name, not at the beginning of the line. */
2451
2452 static void
2453 s_req (int a ATTRIBUTE_UNUSED)
2454 {
2455 as_bad (_("invalid syntax for .req directive"));
2456 }
2457
2458 static void
2459 s_dn (int a ATTRIBUTE_UNUSED)
2460 {
2461 as_bad (_("invalid syntax for .dn directive"));
2462 }
2463
2464 static void
2465 s_qn (int a ATTRIBUTE_UNUSED)
2466 {
2467 as_bad (_("invalid syntax for .qn directive"));
2468 }
2469
2470 /* The .unreq directive deletes an alias which was previously defined
2471 by .req. For example:
2472
2473 my_alias .req r11
2474 .unreq my_alias */
2475
2476 static void
2477 s_unreq (int a ATTRIBUTE_UNUSED)
2478 {
2479 char * name;
2480 char saved_char;
2481
2482 name = input_line_pointer;
2483
2484 while (*input_line_pointer != 0
2485 && *input_line_pointer != ' '
2486 && *input_line_pointer != '\n')
2487 ++input_line_pointer;
2488
2489 saved_char = *input_line_pointer;
2490 *input_line_pointer = 0;
2491
2492 if (!*name)
2493 as_bad (_("invalid syntax for .unreq directive"));
2494 else
2495 {
2496 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2497 name);
2498
2499 if (!reg)
2500 as_bad (_("unknown register alias '%s'"), name);
2501 else if (reg->builtin)
2502 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2503 name);
2504 else
2505 {
2506 char * p;
2507 char * nbuf;
2508
2509 hash_delete (arm_reg_hsh, name, FALSE);
2510 free ((char *) reg->name);
2511 if (reg->neon)
2512 free (reg->neon);
2513 free (reg);
2514
2515 /* Also locate the all upper case and all lower case versions.
2516 Do not complain if we cannot find one or the other as it
2517 was probably deleted above. */
2518
2519 nbuf = strdup (name);
2520 for (p = nbuf; *p; p++)
2521 *p = TOUPPER (*p);
2522 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2523 if (reg)
2524 {
2525 hash_delete (arm_reg_hsh, nbuf, FALSE);
2526 free ((char *) reg->name);
2527 if (reg->neon)
2528 free (reg->neon);
2529 free (reg);
2530 }
2531
2532 for (p = nbuf; *p; p++)
2533 *p = TOLOWER (*p);
2534 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2535 if (reg)
2536 {
2537 hash_delete (arm_reg_hsh, nbuf, FALSE);
2538 free ((char *) reg->name);
2539 if (reg->neon)
2540 free (reg->neon);
2541 free (reg);
2542 }
2543
2544 free (nbuf);
2545 }
2546 }
2547
2548 *input_line_pointer = saved_char;
2549 demand_empty_rest_of_line ();
2550 }
2551
2552 /* Directives: Instruction set selection. */
2553
2554 #ifdef OBJ_ELF
2555 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2556 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2557 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2558 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2559
2560 /* Create a new mapping symbol for the transition to STATE. */
2561
2562 static void
2563 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2564 {
2565 symbolS * symbolP;
2566 const char * symname;
2567 int type;
2568
2569 switch (state)
2570 {
2571 case MAP_DATA:
2572 symname = "$d";
2573 type = BSF_NO_FLAGS;
2574 break;
2575 case MAP_ARM:
2576 symname = "$a";
2577 type = BSF_NO_FLAGS;
2578 break;
2579 case MAP_THUMB:
2580 symname = "$t";
2581 type = BSF_NO_FLAGS;
2582 break;
2583 default:
2584 abort ();
2585 }
2586
2587 symbolP = symbol_new (symname, now_seg, value, frag);
2588 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2589
2590 switch (state)
2591 {
2592 case MAP_ARM:
2593 THUMB_SET_FUNC (symbolP, 0);
2594 ARM_SET_THUMB (symbolP, 0);
2595 ARM_SET_INTERWORK (symbolP, support_interwork);
2596 break;
2597
2598 case MAP_THUMB:
2599 THUMB_SET_FUNC (symbolP, 1);
2600 ARM_SET_THUMB (symbolP, 1);
2601 ARM_SET_INTERWORK (symbolP, support_interwork);
2602 break;
2603
2604 case MAP_DATA:
2605 default:
2606 break;
2607 }
2608
2609 /* Save the mapping symbols for future reference. Also check that
2610 we do not place two mapping symbols at the same offset within a
2611 frag. We'll handle overlap between frags in
2612 check_mapping_symbols.
2613
2614 If .fill or other data filling directive generates zero sized data,
2615 the mapping symbol for the following code will have the same value
2616 as the one generated for the data filling directive. In this case,
2617 we replace the old symbol with the new one at the same address. */
2618 if (value == 0)
2619 {
2620 if (frag->tc_frag_data.first_map != NULL)
2621 {
2622 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2623 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2624 }
2625 frag->tc_frag_data.first_map = symbolP;
2626 }
2627 if (frag->tc_frag_data.last_map != NULL)
2628 {
2629 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2630 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2631 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2632 }
2633 frag->tc_frag_data.last_map = symbolP;
2634 }
2635
2636 /* We must sometimes convert a region marked as code to data during
2637 code alignment, if an odd number of bytes have to be padded. The
2638 code mapping symbol is pushed to an aligned address. */
2639
2640 static void
2641 insert_data_mapping_symbol (enum mstate state,
2642 valueT value, fragS *frag, offsetT bytes)
2643 {
2644 /* If there was already a mapping symbol, remove it. */
2645 if (frag->tc_frag_data.last_map != NULL
2646 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2647 {
2648 symbolS *symp = frag->tc_frag_data.last_map;
2649
2650 if (value == 0)
2651 {
2652 know (frag->tc_frag_data.first_map == symp);
2653 frag->tc_frag_data.first_map = NULL;
2654 }
2655 frag->tc_frag_data.last_map = NULL;
2656 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2657 }
2658
2659 make_mapping_symbol (MAP_DATA, value, frag);
2660 make_mapping_symbol (state, value + bytes, frag);
2661 }
2662
2663 static void mapping_state_2 (enum mstate state, int max_chars);
2664
2665 /* Set the mapping state to STATE. Only call this when about to
2666 emit some STATE bytes to the file. */
2667
2668 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2669 void
2670 mapping_state (enum mstate state)
2671 {
2672 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2673
2674 if (mapstate == state)
2675 /* The mapping symbol has already been emitted.
2676 There is nothing else to do. */
2677 return;
2678
2679 if (state == MAP_ARM || state == MAP_THUMB)
2680 /* PR gas/12931
2681 All ARM instructions require 4-byte alignment.
2682 (Almost) all Thumb instructions require 2-byte alignment.
2683
2684 When emitting instructions into any section, mark the section
2685 appropriately.
2686
2687 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2688 but themselves require 2-byte alignment; this applies to some
2689 PC- relative forms. However, these cases will invovle implicit
2690 literal pool generation or an explicit .align >=2, both of
2691 which will cause the section to me marked with sufficient
2692 alignment. Thus, we don't handle those cases here. */
2693 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2694
2695 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2696 /* This case will be evaluated later. */
2697 return;
2698
2699 mapping_state_2 (state, 0);
2700 }
2701
2702 /* Same as mapping_state, but MAX_CHARS bytes have already been
2703 allocated. Put the mapping symbol that far back. */
2704
2705 static void
2706 mapping_state_2 (enum mstate state, int max_chars)
2707 {
2708 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2709
2710 if (!SEG_NORMAL (now_seg))
2711 return;
2712
2713 if (mapstate == state)
2714 /* The mapping symbol has already been emitted.
2715 There is nothing else to do. */
2716 return;
2717
2718 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2719 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2720 {
2721 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2722 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2723
2724 if (add_symbol)
2725 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2726 }
2727
2728 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2729 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2730 }
2731 #undef TRANSITION
2732 #else
2733 #define mapping_state(x) ((void)0)
2734 #define mapping_state_2(x, y) ((void)0)
2735 #endif
2736
2737 /* Find the real, Thumb encoded start of a Thumb function. */
2738
2739 #ifdef OBJ_COFF
2740 static symbolS *
2741 find_real_start (symbolS * symbolP)
2742 {
2743 char * real_start;
2744 const char * name = S_GET_NAME (symbolP);
2745 symbolS * new_target;
2746
2747 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2748 #define STUB_NAME ".real_start_of"
2749
2750 if (name == NULL)
2751 abort ();
2752
2753 /* The compiler may generate BL instructions to local labels because
2754 it needs to perform a branch to a far away location. These labels
2755 do not have a corresponding ".real_start_of" label. We check
2756 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2757 the ".real_start_of" convention for nonlocal branches. */
2758 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2759 return symbolP;
2760
2761 real_start = concat (STUB_NAME, name, NULL);
2762 new_target = symbol_find (real_start);
2763 free (real_start);
2764
2765 if (new_target == NULL)
2766 {
2767 as_warn (_("Failed to find real start of function: %s\n"), name);
2768 new_target = symbolP;
2769 }
2770
2771 return new_target;
2772 }
2773 #endif
2774
2775 static void
2776 opcode_select (int width)
2777 {
2778 switch (width)
2779 {
2780 case 16:
2781 if (! thumb_mode)
2782 {
2783 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2784 as_bad (_("selected processor does not support THUMB opcodes"));
2785
2786 thumb_mode = 1;
2787 /* No need to force the alignment, since we will have been
2788 coming from ARM mode, which is word-aligned. */
2789 record_alignment (now_seg, 1);
2790 }
2791 break;
2792
2793 case 32:
2794 if (thumb_mode)
2795 {
2796 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2797 as_bad (_("selected processor does not support ARM opcodes"));
2798
2799 thumb_mode = 0;
2800
2801 if (!need_pass_2)
2802 frag_align (2, 0, 0);
2803
2804 record_alignment (now_seg, 1);
2805 }
2806 break;
2807
2808 default:
2809 as_bad (_("invalid instruction size selected (%d)"), width);
2810 }
2811 }
2812
2813 static void
2814 s_arm (int ignore ATTRIBUTE_UNUSED)
2815 {
2816 opcode_select (32);
2817 demand_empty_rest_of_line ();
2818 }
2819
2820 static void
2821 s_thumb (int ignore ATTRIBUTE_UNUSED)
2822 {
2823 opcode_select (16);
2824 demand_empty_rest_of_line ();
2825 }
2826
2827 static void
2828 s_code (int unused ATTRIBUTE_UNUSED)
2829 {
2830 int temp;
2831
2832 temp = get_absolute_expression ();
2833 switch (temp)
2834 {
2835 case 16:
2836 case 32:
2837 opcode_select (temp);
2838 break;
2839
2840 default:
2841 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2842 }
2843 }
2844
2845 static void
2846 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2847 {
2848 /* If we are not already in thumb mode go into it, EVEN if
2849 the target processor does not support thumb instructions.
2850 This is used by gcc/config/arm/lib1funcs.asm for example
2851 to compile interworking support functions even if the
2852 target processor should not support interworking. */
2853 if (! thumb_mode)
2854 {
2855 thumb_mode = 2;
2856 record_alignment (now_seg, 1);
2857 }
2858
2859 demand_empty_rest_of_line ();
2860 }
2861
2862 static void
2863 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2864 {
2865 s_thumb (0);
2866
2867 /* The following label is the name/address of the start of a Thumb function.
2868 We need to know this for the interworking support. */
2869 label_is_thumb_function_name = TRUE;
2870 }
2871
2872 /* Perform a .set directive, but also mark the alias as
2873 being a thumb function. */
2874
2875 static void
2876 s_thumb_set (int equiv)
2877 {
2878 /* XXX the following is a duplicate of the code for s_set() in read.c
2879 We cannot just call that code as we need to get at the symbol that
2880 is created. */
2881 char * name;
2882 char delim;
2883 char * end_name;
2884 symbolS * symbolP;
2885
2886 /* Especial apologies for the random logic:
2887 This just grew, and could be parsed much more simply!
2888 Dean - in haste. */
2889 delim = get_symbol_name (& name);
2890 end_name = input_line_pointer;
2891 (void) restore_line_pointer (delim);
2892
2893 if (*input_line_pointer != ',')
2894 {
2895 *end_name = 0;
2896 as_bad (_("expected comma after name \"%s\""), name);
2897 *end_name = delim;
2898 ignore_rest_of_line ();
2899 return;
2900 }
2901
2902 input_line_pointer++;
2903 *end_name = 0;
2904
2905 if (name[0] == '.' && name[1] == '\0')
2906 {
2907 /* XXX - this should not happen to .thumb_set. */
2908 abort ();
2909 }
2910
2911 if ((symbolP = symbol_find (name)) == NULL
2912 && (symbolP = md_undefined_symbol (name)) == NULL)
2913 {
2914 #ifndef NO_LISTING
2915 /* When doing symbol listings, play games with dummy fragments living
2916 outside the normal fragment chain to record the file and line info
2917 for this symbol. */
2918 if (listing & LISTING_SYMBOLS)
2919 {
2920 extern struct list_info_struct * listing_tail;
2921 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2922
2923 memset (dummy_frag, 0, sizeof (fragS));
2924 dummy_frag->fr_type = rs_fill;
2925 dummy_frag->line = listing_tail;
2926 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2927 dummy_frag->fr_symbol = symbolP;
2928 }
2929 else
2930 #endif
2931 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2932
2933 #ifdef OBJ_COFF
2934 /* "set" symbols are local unless otherwise specified. */
2935 SF_SET_LOCAL (symbolP);
2936 #endif /* OBJ_COFF */
2937 } /* Make a new symbol. */
2938
2939 symbol_table_insert (symbolP);
2940
2941 * end_name = delim;
2942
2943 if (equiv
2944 && S_IS_DEFINED (symbolP)
2945 && S_GET_SEGMENT (symbolP) != reg_section)
2946 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2947
2948 pseudo_set (symbolP);
2949
2950 demand_empty_rest_of_line ();
2951
2952 /* XXX Now we come to the Thumb specific bit of code. */
2953
2954 THUMB_SET_FUNC (symbolP, 1);
2955 ARM_SET_THUMB (symbolP, 1);
2956 #if defined OBJ_ELF || defined OBJ_COFF
2957 ARM_SET_INTERWORK (symbolP, support_interwork);
2958 #endif
2959 }
2960
2961 /* Directives: Mode selection. */
2962
2963 /* .syntax [unified|divided] - choose the new unified syntax
2964 (same for Arm and Thumb encoding, modulo slight differences in what
2965 can be represented) or the old divergent syntax for each mode. */
2966 static void
2967 s_syntax (int unused ATTRIBUTE_UNUSED)
2968 {
2969 char *name, delim;
2970
2971 delim = get_symbol_name (& name);
2972
2973 if (!strcasecmp (name, "unified"))
2974 unified_syntax = TRUE;
2975 else if (!strcasecmp (name, "divided"))
2976 unified_syntax = FALSE;
2977 else
2978 {
2979 as_bad (_("unrecognized syntax mode \"%s\""), name);
2980 return;
2981 }
2982 (void) restore_line_pointer (delim);
2983 demand_empty_rest_of_line ();
2984 }
2985
2986 /* Directives: sectioning and alignment. */
2987
2988 static void
2989 s_bss (int ignore ATTRIBUTE_UNUSED)
2990 {
2991 /* We don't support putting frags in the BSS segment, we fake it by
2992 marking in_bss, then looking at s_skip for clues. */
2993 subseg_set (bss_section, 0);
2994 demand_empty_rest_of_line ();
2995
2996 #ifdef md_elf_section_change_hook
2997 md_elf_section_change_hook ();
2998 #endif
2999 }
3000
3001 static void
3002 s_even (int ignore ATTRIBUTE_UNUSED)
3003 {
3004 /* Never make frag if expect extra pass. */
3005 if (!need_pass_2)
3006 frag_align (1, 0, 0);
3007
3008 record_alignment (now_seg, 1);
3009
3010 demand_empty_rest_of_line ();
3011 }
3012
3013 /* Directives: CodeComposer Studio. */
3014
3015 /* .ref (for CodeComposer Studio syntax only). */
3016 static void
3017 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3018 {
3019 if (codecomposer_syntax)
3020 ignore_rest_of_line ();
3021 else
3022 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3023 }
3024
3025 /* If name is not NULL, then it is used for marking the beginning of a
3026 function, wherease if it is NULL then it means the function end. */
3027 static void
3028 asmfunc_debug (const char * name)
3029 {
3030 static const char * last_name = NULL;
3031
3032 if (name != NULL)
3033 {
3034 gas_assert (last_name == NULL);
3035 last_name = name;
3036
3037 if (debug_type == DEBUG_STABS)
3038 stabs_generate_asm_func (name, name);
3039 }
3040 else
3041 {
3042 gas_assert (last_name != NULL);
3043
3044 if (debug_type == DEBUG_STABS)
3045 stabs_generate_asm_endfunc (last_name, last_name);
3046
3047 last_name = NULL;
3048 }
3049 }
3050
3051 static void
3052 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3053 {
3054 if (codecomposer_syntax)
3055 {
3056 switch (asmfunc_state)
3057 {
3058 case OUTSIDE_ASMFUNC:
3059 asmfunc_state = WAITING_ASMFUNC_NAME;
3060 break;
3061
3062 case WAITING_ASMFUNC_NAME:
3063 as_bad (_(".asmfunc repeated."));
3064 break;
3065
3066 case WAITING_ENDASMFUNC:
3067 as_bad (_(".asmfunc without function."));
3068 break;
3069 }
3070 demand_empty_rest_of_line ();
3071 }
3072 else
3073 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3074 }
3075
3076 static void
3077 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3078 {
3079 if (codecomposer_syntax)
3080 {
3081 switch (asmfunc_state)
3082 {
3083 case OUTSIDE_ASMFUNC:
3084 as_bad (_(".endasmfunc without a .asmfunc."));
3085 break;
3086
3087 case WAITING_ASMFUNC_NAME:
3088 as_bad (_(".endasmfunc without function."));
3089 break;
3090
3091 case WAITING_ENDASMFUNC:
3092 asmfunc_state = OUTSIDE_ASMFUNC;
3093 asmfunc_debug (NULL);
3094 break;
3095 }
3096 demand_empty_rest_of_line ();
3097 }
3098 else
3099 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3100 }
3101
3102 static void
3103 s_ccs_def (int name)
3104 {
3105 if (codecomposer_syntax)
3106 s_globl (name);
3107 else
3108 as_bad (_(".def pseudo-op only available with -mccs flag."));
3109 }
3110
3111 /* Directives: Literal pools. */
3112
3113 static literal_pool *
3114 find_literal_pool (void)
3115 {
3116 literal_pool * pool;
3117
3118 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3119 {
3120 if (pool->section == now_seg
3121 && pool->sub_section == now_subseg)
3122 break;
3123 }
3124
3125 return pool;
3126 }
3127
3128 static literal_pool *
3129 find_or_make_literal_pool (void)
3130 {
3131 /* Next literal pool ID number. */
3132 static unsigned int latest_pool_num = 1;
3133 literal_pool * pool;
3134
3135 pool = find_literal_pool ();
3136
3137 if (pool == NULL)
3138 {
3139 /* Create a new pool. */
3140 pool = XNEW (literal_pool);
3141 if (! pool)
3142 return NULL;
3143
3144 pool->next_free_entry = 0;
3145 pool->section = now_seg;
3146 pool->sub_section = now_subseg;
3147 pool->next = list_of_pools;
3148 pool->symbol = NULL;
3149 pool->alignment = 2;
3150
3151 /* Add it to the list. */
3152 list_of_pools = pool;
3153 }
3154
3155 /* New pools, and emptied pools, will have a NULL symbol. */
3156 if (pool->symbol == NULL)
3157 {
3158 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3159 (valueT) 0, &zero_address_frag);
3160 pool->id = latest_pool_num ++;
3161 }
3162
3163 /* Done. */
3164 return pool;
3165 }
3166
3167 /* Add the literal in the global 'inst'
3168 structure to the relevant literal pool. */
3169
3170 static int
3171 add_to_lit_pool (unsigned int nbytes)
3172 {
3173 #define PADDING_SLOT 0x1
3174 #define LIT_ENTRY_SIZE_MASK 0xFF
3175 literal_pool * pool;
3176 unsigned int entry, pool_size = 0;
3177 bfd_boolean padding_slot_p = FALSE;
3178 unsigned imm1 = 0;
3179 unsigned imm2 = 0;
3180
3181 if (nbytes == 8)
3182 {
3183 imm1 = inst.operands[1].imm;
3184 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3185 : inst.reloc.exp.X_unsigned ? 0
3186 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3187 if (target_big_endian)
3188 {
3189 imm1 = imm2;
3190 imm2 = inst.operands[1].imm;
3191 }
3192 }
3193
3194 pool = find_or_make_literal_pool ();
3195
3196 /* Check if this literal value is already in the pool. */
3197 for (entry = 0; entry < pool->next_free_entry; entry ++)
3198 {
3199 if (nbytes == 4)
3200 {
3201 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3202 && (inst.reloc.exp.X_op == O_constant)
3203 && (pool->literals[entry].X_add_number
3204 == inst.reloc.exp.X_add_number)
3205 && (pool->literals[entry].X_md == nbytes)
3206 && (pool->literals[entry].X_unsigned
3207 == inst.reloc.exp.X_unsigned))
3208 break;
3209
3210 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3211 && (inst.reloc.exp.X_op == O_symbol)
3212 && (pool->literals[entry].X_add_number
3213 == inst.reloc.exp.X_add_number)
3214 && (pool->literals[entry].X_add_symbol
3215 == inst.reloc.exp.X_add_symbol)
3216 && (pool->literals[entry].X_op_symbol
3217 == inst.reloc.exp.X_op_symbol)
3218 && (pool->literals[entry].X_md == nbytes))
3219 break;
3220 }
3221 else if ((nbytes == 8)
3222 && !(pool_size & 0x7)
3223 && ((entry + 1) != pool->next_free_entry)
3224 && (pool->literals[entry].X_op == O_constant)
3225 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3226 && (pool->literals[entry].X_unsigned
3227 == inst.reloc.exp.X_unsigned)
3228 && (pool->literals[entry + 1].X_op == O_constant)
3229 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3230 && (pool->literals[entry + 1].X_unsigned
3231 == inst.reloc.exp.X_unsigned))
3232 break;
3233
3234 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3235 if (padding_slot_p && (nbytes == 4))
3236 break;
3237
3238 pool_size += 4;
3239 }
3240
3241 /* Do we need to create a new entry? */
3242 if (entry == pool->next_free_entry)
3243 {
3244 if (entry >= MAX_LITERAL_POOL_SIZE)
3245 {
3246 inst.error = _("literal pool overflow");
3247 return FAIL;
3248 }
3249
3250 if (nbytes == 8)
3251 {
3252 /* For 8-byte entries, we align to an 8-byte boundary,
3253 and split it into two 4-byte entries, because on 32-bit
3254 host, 8-byte constants are treated as big num, thus
3255 saved in "generic_bignum" which will be overwritten
3256 by later assignments.
3257
3258 We also need to make sure there is enough space for
3259 the split.
3260
3261 We also check to make sure the literal operand is a
3262 constant number. */
3263 if (!(inst.reloc.exp.X_op == O_constant
3264 || inst.reloc.exp.X_op == O_big))
3265 {
3266 inst.error = _("invalid type for literal pool");
3267 return FAIL;
3268 }
3269 else if (pool_size & 0x7)
3270 {
3271 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3272 {
3273 inst.error = _("literal pool overflow");
3274 return FAIL;
3275 }
3276
3277 pool->literals[entry] = inst.reloc.exp;
3278 pool->literals[entry].X_add_number = 0;
3279 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3280 pool->next_free_entry += 1;
3281 pool_size += 4;
3282 }
3283 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3284 {
3285 inst.error = _("literal pool overflow");
3286 return FAIL;
3287 }
3288
3289 pool->literals[entry] = inst.reloc.exp;
3290 pool->literals[entry].X_op = O_constant;
3291 pool->literals[entry].X_add_number = imm1;
3292 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3293 pool->literals[entry++].X_md = 4;
3294 pool->literals[entry] = inst.reloc.exp;
3295 pool->literals[entry].X_op = O_constant;
3296 pool->literals[entry].X_add_number = imm2;
3297 pool->literals[entry].X_unsigned = inst.reloc.exp.X_unsigned;
3298 pool->literals[entry].X_md = 4;
3299 pool->alignment = 3;
3300 pool->next_free_entry += 1;
3301 }
3302 else
3303 {
3304 pool->literals[entry] = inst.reloc.exp;
3305 pool->literals[entry].X_md = 4;
3306 }
3307
3308 #ifdef OBJ_ELF
3309 /* PR ld/12974: Record the location of the first source line to reference
3310 this entry in the literal pool. If it turns out during linking that the
3311 symbol does not exist we will be able to give an accurate line number for
3312 the (first use of the) missing reference. */
3313 if (debug_type == DEBUG_DWARF2)
3314 dwarf2_where (pool->locs + entry);
3315 #endif
3316 pool->next_free_entry += 1;
3317 }
3318 else if (padding_slot_p)
3319 {
3320 pool->literals[entry] = inst.reloc.exp;
3321 pool->literals[entry].X_md = nbytes;
3322 }
3323
3324 inst.reloc.exp.X_op = O_symbol;
3325 inst.reloc.exp.X_add_number = pool_size;
3326 inst.reloc.exp.X_add_symbol = pool->symbol;
3327
3328 return SUCCESS;
3329 }
3330
3331 bfd_boolean
3332 tc_start_label_without_colon (void)
3333 {
3334 bfd_boolean ret = TRUE;
3335
3336 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3337 {
3338 const char *label = input_line_pointer;
3339
3340 while (!is_end_of_line[(int) label[-1]])
3341 --label;
3342
3343 if (*label == '.')
3344 {
3345 as_bad (_("Invalid label '%s'"), label);
3346 ret = FALSE;
3347 }
3348
3349 asmfunc_debug (label);
3350
3351 asmfunc_state = WAITING_ENDASMFUNC;
3352 }
3353
3354 return ret;
3355 }
3356
3357 /* Can't use symbol_new here, so have to create a symbol and then at
3358 a later date assign it a value. Thats what these functions do. */
3359
3360 static void
3361 symbol_locate (symbolS * symbolP,
3362 const char * name, /* It is copied, the caller can modify. */
3363 segT segment, /* Segment identifier (SEG_<something>). */
3364 valueT valu, /* Symbol value. */
3365 fragS * frag) /* Associated fragment. */
3366 {
3367 size_t name_length;
3368 char * preserved_copy_of_name;
3369
3370 name_length = strlen (name) + 1; /* +1 for \0. */
3371 obstack_grow (&notes, name, name_length);
3372 preserved_copy_of_name = (char *) obstack_finish (&notes);
3373
3374 #ifdef tc_canonicalize_symbol_name
3375 preserved_copy_of_name =
3376 tc_canonicalize_symbol_name (preserved_copy_of_name);
3377 #endif
3378
3379 S_SET_NAME (symbolP, preserved_copy_of_name);
3380
3381 S_SET_SEGMENT (symbolP, segment);
3382 S_SET_VALUE (symbolP, valu);
3383 symbol_clear_list_pointers (symbolP);
3384
3385 symbol_set_frag (symbolP, frag);
3386
3387 /* Link to end of symbol chain. */
3388 {
3389 extern int symbol_table_frozen;
3390
3391 if (symbol_table_frozen)
3392 abort ();
3393 }
3394
3395 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3396
3397 obj_symbol_new_hook (symbolP);
3398
3399 #ifdef tc_symbol_new_hook
3400 tc_symbol_new_hook (symbolP);
3401 #endif
3402
3403 #ifdef DEBUG_SYMS
3404 verify_symbol_chain (symbol_rootP, symbol_lastP);
3405 #endif /* DEBUG_SYMS */
3406 }
3407
3408 static void
3409 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3410 {
3411 unsigned int entry;
3412 literal_pool * pool;
3413 char sym_name[20];
3414
3415 pool = find_literal_pool ();
3416 if (pool == NULL
3417 || pool->symbol == NULL
3418 || pool->next_free_entry == 0)
3419 return;
3420
3421 /* Align pool as you have word accesses.
3422 Only make a frag if we have to. */
3423 if (!need_pass_2)
3424 frag_align (pool->alignment, 0, 0);
3425
3426 record_alignment (now_seg, 2);
3427
3428 #ifdef OBJ_ELF
3429 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3430 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3431 #endif
3432 sprintf (sym_name, "$$lit_\002%x", pool->id);
3433
3434 symbol_locate (pool->symbol, sym_name, now_seg,
3435 (valueT) frag_now_fix (), frag_now);
3436 symbol_table_insert (pool->symbol);
3437
3438 ARM_SET_THUMB (pool->symbol, thumb_mode);
3439
3440 #if defined OBJ_COFF || defined OBJ_ELF
3441 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3442 #endif
3443
3444 for (entry = 0; entry < pool->next_free_entry; entry ++)
3445 {
3446 #ifdef OBJ_ELF
3447 if (debug_type == DEBUG_DWARF2)
3448 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3449 #endif
3450 /* First output the expression in the instruction to the pool. */
3451 emit_expr (&(pool->literals[entry]),
3452 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3453 }
3454
3455 /* Mark the pool as empty. */
3456 pool->next_free_entry = 0;
3457 pool->symbol = NULL;
3458 }
3459
3460 #ifdef OBJ_ELF
3461 /* Forward declarations for functions below, in the MD interface
3462 section. */
3463 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3464 static valueT create_unwind_entry (int);
3465 static void start_unwind_section (const segT, int);
3466 static void add_unwind_opcode (valueT, int);
3467 static void flush_pending_unwind (void);
3468
3469 /* Directives: Data. */
3470
3471 static void
3472 s_arm_elf_cons (int nbytes)
3473 {
3474 expressionS exp;
3475
3476 #ifdef md_flush_pending_output
3477 md_flush_pending_output ();
3478 #endif
3479
3480 if (is_it_end_of_statement ())
3481 {
3482 demand_empty_rest_of_line ();
3483 return;
3484 }
3485
3486 #ifdef md_cons_align
3487 md_cons_align (nbytes);
3488 #endif
3489
3490 mapping_state (MAP_DATA);
3491 do
3492 {
3493 int reloc;
3494 char *base = input_line_pointer;
3495
3496 expression (& exp);
3497
3498 if (exp.X_op != O_symbol)
3499 emit_expr (&exp, (unsigned int) nbytes);
3500 else
3501 {
3502 char *before_reloc = input_line_pointer;
3503 reloc = parse_reloc (&input_line_pointer);
3504 if (reloc == -1)
3505 {
3506 as_bad (_("unrecognized relocation suffix"));
3507 ignore_rest_of_line ();
3508 return;
3509 }
3510 else if (reloc == BFD_RELOC_UNUSED)
3511 emit_expr (&exp, (unsigned int) nbytes);
3512 else
3513 {
3514 reloc_howto_type *howto = (reloc_howto_type *)
3515 bfd_reloc_type_lookup (stdoutput,
3516 (bfd_reloc_code_real_type) reloc);
3517 int size = bfd_get_reloc_size (howto);
3518
3519 if (reloc == BFD_RELOC_ARM_PLT32)
3520 {
3521 as_bad (_("(plt) is only valid on branch targets"));
3522 reloc = BFD_RELOC_UNUSED;
3523 size = 0;
3524 }
3525
3526 if (size > nbytes)
3527 as_bad (_("%s relocations do not fit in %d bytes"),
3528 howto->name, nbytes);
3529 else
3530 {
3531 /* We've parsed an expression stopping at O_symbol.
3532 But there may be more expression left now that we
3533 have parsed the relocation marker. Parse it again.
3534 XXX Surely there is a cleaner way to do this. */
3535 char *p = input_line_pointer;
3536 int offset;
3537 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3538
3539 memcpy (save_buf, base, input_line_pointer - base);
3540 memmove (base + (input_line_pointer - before_reloc),
3541 base, before_reloc - base);
3542
3543 input_line_pointer = base + (input_line_pointer-before_reloc);
3544 expression (&exp);
3545 memcpy (base, save_buf, p - base);
3546
3547 offset = nbytes - size;
3548 p = frag_more (nbytes);
3549 memset (p, 0, nbytes);
3550 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3551 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3552 free (save_buf);
3553 }
3554 }
3555 }
3556 }
3557 while (*input_line_pointer++ == ',');
3558
3559 /* Put terminator back into stream. */
3560 input_line_pointer --;
3561 demand_empty_rest_of_line ();
3562 }
3563
3564 /* Emit an expression containing a 32-bit thumb instruction.
3565 Implementation based on put_thumb32_insn. */
3566
3567 static void
3568 emit_thumb32_expr (expressionS * exp)
3569 {
3570 expressionS exp_high = *exp;
3571
3572 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3573 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3574 exp->X_add_number &= 0xffff;
3575 emit_expr (exp, (unsigned int) THUMB_SIZE);
3576 }
3577
3578 /* Guess the instruction size based on the opcode. */
3579
3580 static int
3581 thumb_insn_size (int opcode)
3582 {
3583 if ((unsigned int) opcode < 0xe800u)
3584 return 2;
3585 else if ((unsigned int) opcode >= 0xe8000000u)
3586 return 4;
3587 else
3588 return 0;
3589 }
3590
3591 static bfd_boolean
3592 emit_insn (expressionS *exp, int nbytes)
3593 {
3594 int size = 0;
3595
3596 if (exp->X_op == O_constant)
3597 {
3598 size = nbytes;
3599
3600 if (size == 0)
3601 size = thumb_insn_size (exp->X_add_number);
3602
3603 if (size != 0)
3604 {
3605 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3606 {
3607 as_bad (_(".inst.n operand too big. "\
3608 "Use .inst.w instead"));
3609 size = 0;
3610 }
3611 else
3612 {
3613 if (now_it.state == AUTOMATIC_IT_BLOCK)
3614 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3615 else
3616 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3617
3618 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3619 emit_thumb32_expr (exp);
3620 else
3621 emit_expr (exp, (unsigned int) size);
3622
3623 it_fsm_post_encode ();
3624 }
3625 }
3626 else
3627 as_bad (_("cannot determine Thumb instruction size. " \
3628 "Use .inst.n/.inst.w instead"));
3629 }
3630 else
3631 as_bad (_("constant expression required"));
3632
3633 return (size != 0);
3634 }
3635
3636 /* Like s_arm_elf_cons but do not use md_cons_align and
3637 set the mapping state to MAP_ARM/MAP_THUMB. */
3638
3639 static void
3640 s_arm_elf_inst (int nbytes)
3641 {
3642 if (is_it_end_of_statement ())
3643 {
3644 demand_empty_rest_of_line ();
3645 return;
3646 }
3647
3648 /* Calling mapping_state () here will not change ARM/THUMB,
3649 but will ensure not to be in DATA state. */
3650
3651 if (thumb_mode)
3652 mapping_state (MAP_THUMB);
3653 else
3654 {
3655 if (nbytes != 0)
3656 {
3657 as_bad (_("width suffixes are invalid in ARM mode"));
3658 ignore_rest_of_line ();
3659 return;
3660 }
3661
3662 nbytes = 4;
3663
3664 mapping_state (MAP_ARM);
3665 }
3666
3667 do
3668 {
3669 expressionS exp;
3670
3671 expression (& exp);
3672
3673 if (! emit_insn (& exp, nbytes))
3674 {
3675 ignore_rest_of_line ();
3676 return;
3677 }
3678 }
3679 while (*input_line_pointer++ == ',');
3680
3681 /* Put terminator back into stream. */
3682 input_line_pointer --;
3683 demand_empty_rest_of_line ();
3684 }
3685
3686 /* Parse a .rel31 directive. */
3687
3688 static void
3689 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3690 {
3691 expressionS exp;
3692 char *p;
3693 valueT highbit;
3694
3695 highbit = 0;
3696 if (*input_line_pointer == '1')
3697 highbit = 0x80000000;
3698 else if (*input_line_pointer != '0')
3699 as_bad (_("expected 0 or 1"));
3700
3701 input_line_pointer++;
3702 if (*input_line_pointer != ',')
3703 as_bad (_("missing comma"));
3704 input_line_pointer++;
3705
3706 #ifdef md_flush_pending_output
3707 md_flush_pending_output ();
3708 #endif
3709
3710 #ifdef md_cons_align
3711 md_cons_align (4);
3712 #endif
3713
3714 mapping_state (MAP_DATA);
3715
3716 expression (&exp);
3717
3718 p = frag_more (4);
3719 md_number_to_chars (p, highbit, 4);
3720 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3721 BFD_RELOC_ARM_PREL31);
3722
3723 demand_empty_rest_of_line ();
3724 }
3725
3726 /* Directives: AEABI stack-unwind tables. */
3727
3728 /* Parse an unwind_fnstart directive. Simply records the current location. */
3729
3730 static void
3731 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3732 {
3733 demand_empty_rest_of_line ();
3734 if (unwind.proc_start)
3735 {
3736 as_bad (_("duplicate .fnstart directive"));
3737 return;
3738 }
3739
3740 /* Mark the start of the function. */
3741 unwind.proc_start = expr_build_dot ();
3742
3743 /* Reset the rest of the unwind info. */
3744 unwind.opcode_count = 0;
3745 unwind.table_entry = NULL;
3746 unwind.personality_routine = NULL;
3747 unwind.personality_index = -1;
3748 unwind.frame_size = 0;
3749 unwind.fp_offset = 0;
3750 unwind.fp_reg = REG_SP;
3751 unwind.fp_used = 0;
3752 unwind.sp_restored = 0;
3753 }
3754
3755
3756 /* Parse a handlerdata directive. Creates the exception handling table entry
3757 for the function. */
3758
3759 static void
3760 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3761 {
3762 demand_empty_rest_of_line ();
3763 if (!unwind.proc_start)
3764 as_bad (MISSING_FNSTART);
3765
3766 if (unwind.table_entry)
3767 as_bad (_("duplicate .handlerdata directive"));
3768
3769 create_unwind_entry (1);
3770 }
3771
3772 /* Parse an unwind_fnend directive. Generates the index table entry. */
3773
3774 static void
3775 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3776 {
3777 long where;
3778 char *ptr;
3779 valueT val;
3780 unsigned int marked_pr_dependency;
3781
3782 demand_empty_rest_of_line ();
3783
3784 if (!unwind.proc_start)
3785 {
3786 as_bad (_(".fnend directive without .fnstart"));
3787 return;
3788 }
3789
3790 /* Add eh table entry. */
3791 if (unwind.table_entry == NULL)
3792 val = create_unwind_entry (0);
3793 else
3794 val = 0;
3795
3796 /* Add index table entry. This is two words. */
3797 start_unwind_section (unwind.saved_seg, 1);
3798 frag_align (2, 0, 0);
3799 record_alignment (now_seg, 2);
3800
3801 ptr = frag_more (8);
3802 memset (ptr, 0, 8);
3803 where = frag_now_fix () - 8;
3804
3805 /* Self relative offset of the function start. */
3806 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3807 BFD_RELOC_ARM_PREL31);
3808
3809 /* Indicate dependency on EHABI-defined personality routines to the
3810 linker, if it hasn't been done already. */
3811 marked_pr_dependency
3812 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3813 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3814 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3815 {
3816 static const char *const name[] =
3817 {
3818 "__aeabi_unwind_cpp_pr0",
3819 "__aeabi_unwind_cpp_pr1",
3820 "__aeabi_unwind_cpp_pr2"
3821 };
3822 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3823 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3824 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3825 |= 1 << unwind.personality_index;
3826 }
3827
3828 if (val)
3829 /* Inline exception table entry. */
3830 md_number_to_chars (ptr + 4, val, 4);
3831 else
3832 /* Self relative offset of the table entry. */
3833 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3834 BFD_RELOC_ARM_PREL31);
3835
3836 /* Restore the original section. */
3837 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3838
3839 unwind.proc_start = NULL;
3840 }
3841
3842
3843 /* Parse an unwind_cantunwind directive. */
3844
3845 static void
3846 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3847 {
3848 demand_empty_rest_of_line ();
3849 if (!unwind.proc_start)
3850 as_bad (MISSING_FNSTART);
3851
3852 if (unwind.personality_routine || unwind.personality_index != -1)
3853 as_bad (_("personality routine specified for cantunwind frame"));
3854
3855 unwind.personality_index = -2;
3856 }
3857
3858
3859 /* Parse a personalityindex directive. */
3860
3861 static void
3862 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3863 {
3864 expressionS exp;
3865
3866 if (!unwind.proc_start)
3867 as_bad (MISSING_FNSTART);
3868
3869 if (unwind.personality_routine || unwind.personality_index != -1)
3870 as_bad (_("duplicate .personalityindex directive"));
3871
3872 expression (&exp);
3873
3874 if (exp.X_op != O_constant
3875 || exp.X_add_number < 0 || exp.X_add_number > 15)
3876 {
3877 as_bad (_("bad personality routine number"));
3878 ignore_rest_of_line ();
3879 return;
3880 }
3881
3882 unwind.personality_index = exp.X_add_number;
3883
3884 demand_empty_rest_of_line ();
3885 }
3886
3887
3888 /* Parse a personality directive. */
3889
3890 static void
3891 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3892 {
3893 char *name, *p, c;
3894
3895 if (!unwind.proc_start)
3896 as_bad (MISSING_FNSTART);
3897
3898 if (unwind.personality_routine || unwind.personality_index != -1)
3899 as_bad (_("duplicate .personality directive"));
3900
3901 c = get_symbol_name (& name);
3902 p = input_line_pointer;
3903 if (c == '"')
3904 ++ input_line_pointer;
3905 unwind.personality_routine = symbol_find_or_make (name);
3906 *p = c;
3907 demand_empty_rest_of_line ();
3908 }
3909
3910
3911 /* Parse a directive saving core registers. */
3912
3913 static void
3914 s_arm_unwind_save_core (void)
3915 {
3916 valueT op;
3917 long range;
3918 int n;
3919
3920 range = parse_reg_list (&input_line_pointer);
3921 if (range == FAIL)
3922 {
3923 as_bad (_("expected register list"));
3924 ignore_rest_of_line ();
3925 return;
3926 }
3927
3928 demand_empty_rest_of_line ();
3929
3930 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3931 into .unwind_save {..., sp...}. We aren't bothered about the value of
3932 ip because it is clobbered by calls. */
3933 if (unwind.sp_restored && unwind.fp_reg == 12
3934 && (range & 0x3000) == 0x1000)
3935 {
3936 unwind.opcode_count--;
3937 unwind.sp_restored = 0;
3938 range = (range | 0x2000) & ~0x1000;
3939 unwind.pending_offset = 0;
3940 }
3941
3942 /* Pop r4-r15. */
3943 if (range & 0xfff0)
3944 {
3945 /* See if we can use the short opcodes. These pop a block of up to 8
3946 registers starting with r4, plus maybe r14. */
3947 for (n = 0; n < 8; n++)
3948 {
3949 /* Break at the first non-saved register. */
3950 if ((range & (1 << (n + 4))) == 0)
3951 break;
3952 }
3953 /* See if there are any other bits set. */
3954 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3955 {
3956 /* Use the long form. */
3957 op = 0x8000 | ((range >> 4) & 0xfff);
3958 add_unwind_opcode (op, 2);
3959 }
3960 else
3961 {
3962 /* Use the short form. */
3963 if (range & 0x4000)
3964 op = 0xa8; /* Pop r14. */
3965 else
3966 op = 0xa0; /* Do not pop r14. */
3967 op |= (n - 1);
3968 add_unwind_opcode (op, 1);
3969 }
3970 }
3971
3972 /* Pop r0-r3. */
3973 if (range & 0xf)
3974 {
3975 op = 0xb100 | (range & 0xf);
3976 add_unwind_opcode (op, 2);
3977 }
3978
3979 /* Record the number of bytes pushed. */
3980 for (n = 0; n < 16; n++)
3981 {
3982 if (range & (1 << n))
3983 unwind.frame_size += 4;
3984 }
3985 }
3986
3987
3988 /* Parse a directive saving FPA registers. */
3989
3990 static void
3991 s_arm_unwind_save_fpa (int reg)
3992 {
3993 expressionS exp;
3994 int num_regs;
3995 valueT op;
3996
3997 /* Get Number of registers to transfer. */
3998 if (skip_past_comma (&input_line_pointer) != FAIL)
3999 expression (&exp);
4000 else
4001 exp.X_op = O_illegal;
4002
4003 if (exp.X_op != O_constant)
4004 {
4005 as_bad (_("expected , <constant>"));
4006 ignore_rest_of_line ();
4007 return;
4008 }
4009
4010 num_regs = exp.X_add_number;
4011
4012 if (num_regs < 1 || num_regs > 4)
4013 {
4014 as_bad (_("number of registers must be in the range [1:4]"));
4015 ignore_rest_of_line ();
4016 return;
4017 }
4018
4019 demand_empty_rest_of_line ();
4020
4021 if (reg == 4)
4022 {
4023 /* Short form. */
4024 op = 0xb4 | (num_regs - 1);
4025 add_unwind_opcode (op, 1);
4026 }
4027 else
4028 {
4029 /* Long form. */
4030 op = 0xc800 | (reg << 4) | (num_regs - 1);
4031 add_unwind_opcode (op, 2);
4032 }
4033 unwind.frame_size += num_regs * 12;
4034 }
4035
4036
4037 /* Parse a directive saving VFP registers for ARMv6 and above. */
4038
4039 static void
4040 s_arm_unwind_save_vfp_armv6 (void)
4041 {
4042 int count;
4043 unsigned int start;
4044 valueT op;
4045 int num_vfpv3_regs = 0;
4046 int num_regs_below_16;
4047
4048 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4049 if (count == FAIL)
4050 {
4051 as_bad (_("expected register list"));
4052 ignore_rest_of_line ();
4053 return;
4054 }
4055
4056 demand_empty_rest_of_line ();
4057
4058 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4059 than FSTMX/FLDMX-style ones). */
4060
4061 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4062 if (start >= 16)
4063 num_vfpv3_regs = count;
4064 else if (start + count > 16)
4065 num_vfpv3_regs = start + count - 16;
4066
4067 if (num_vfpv3_regs > 0)
4068 {
4069 int start_offset = start > 16 ? start - 16 : 0;
4070 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4071 add_unwind_opcode (op, 2);
4072 }
4073
4074 /* Generate opcode for registers numbered in the range 0 .. 15. */
4075 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4076 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4077 if (num_regs_below_16 > 0)
4078 {
4079 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4080 add_unwind_opcode (op, 2);
4081 }
4082
4083 unwind.frame_size += count * 8;
4084 }
4085
4086
4087 /* Parse a directive saving VFP registers for pre-ARMv6. */
4088
4089 static void
4090 s_arm_unwind_save_vfp (void)
4091 {
4092 int count;
4093 unsigned int reg;
4094 valueT op;
4095
4096 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
4097 if (count == FAIL)
4098 {
4099 as_bad (_("expected register list"));
4100 ignore_rest_of_line ();
4101 return;
4102 }
4103
4104 demand_empty_rest_of_line ();
4105
4106 if (reg == 8)
4107 {
4108 /* Short form. */
4109 op = 0xb8 | (count - 1);
4110 add_unwind_opcode (op, 1);
4111 }
4112 else
4113 {
4114 /* Long form. */
4115 op = 0xb300 | (reg << 4) | (count - 1);
4116 add_unwind_opcode (op, 2);
4117 }
4118 unwind.frame_size += count * 8 + 4;
4119 }
4120
4121
4122 /* Parse a directive saving iWMMXt data registers. */
4123
4124 static void
4125 s_arm_unwind_save_mmxwr (void)
4126 {
4127 int reg;
4128 int hi_reg;
4129 int i;
4130 unsigned mask = 0;
4131 valueT op;
4132
4133 if (*input_line_pointer == '{')
4134 input_line_pointer++;
4135
4136 do
4137 {
4138 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4139
4140 if (reg == FAIL)
4141 {
4142 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4143 goto error;
4144 }
4145
4146 if (mask >> reg)
4147 as_tsktsk (_("register list not in ascending order"));
4148 mask |= 1 << reg;
4149
4150 if (*input_line_pointer == '-')
4151 {
4152 input_line_pointer++;
4153 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4154 if (hi_reg == FAIL)
4155 {
4156 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4157 goto error;
4158 }
4159 else if (reg >= hi_reg)
4160 {
4161 as_bad (_("bad register range"));
4162 goto error;
4163 }
4164 for (; reg < hi_reg; reg++)
4165 mask |= 1 << reg;
4166 }
4167 }
4168 while (skip_past_comma (&input_line_pointer) != FAIL);
4169
4170 skip_past_char (&input_line_pointer, '}');
4171
4172 demand_empty_rest_of_line ();
4173
4174 /* Generate any deferred opcodes because we're going to be looking at
4175 the list. */
4176 flush_pending_unwind ();
4177
4178 for (i = 0; i < 16; i++)
4179 {
4180 if (mask & (1 << i))
4181 unwind.frame_size += 8;
4182 }
4183
4184 /* Attempt to combine with a previous opcode. We do this because gcc
4185 likes to output separate unwind directives for a single block of
4186 registers. */
4187 if (unwind.opcode_count > 0)
4188 {
4189 i = unwind.opcodes[unwind.opcode_count - 1];
4190 if ((i & 0xf8) == 0xc0)
4191 {
4192 i &= 7;
4193 /* Only merge if the blocks are contiguous. */
4194 if (i < 6)
4195 {
4196 if ((mask & 0xfe00) == (1 << 9))
4197 {
4198 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4199 unwind.opcode_count--;
4200 }
4201 }
4202 else if (i == 6 && unwind.opcode_count >= 2)
4203 {
4204 i = unwind.opcodes[unwind.opcode_count - 2];
4205 reg = i >> 4;
4206 i &= 0xf;
4207
4208 op = 0xffff << (reg - 1);
4209 if (reg > 0
4210 && ((mask & op) == (1u << (reg - 1))))
4211 {
4212 op = (1 << (reg + i + 1)) - 1;
4213 op &= ~((1 << reg) - 1);
4214 mask |= op;
4215 unwind.opcode_count -= 2;
4216 }
4217 }
4218 }
4219 }
4220
4221 hi_reg = 15;
4222 /* We want to generate opcodes in the order the registers have been
4223 saved, ie. descending order. */
4224 for (reg = 15; reg >= -1; reg--)
4225 {
4226 /* Save registers in blocks. */
4227 if (reg < 0
4228 || !(mask & (1 << reg)))
4229 {
4230 /* We found an unsaved reg. Generate opcodes to save the
4231 preceding block. */
4232 if (reg != hi_reg)
4233 {
4234 if (reg == 9)
4235 {
4236 /* Short form. */
4237 op = 0xc0 | (hi_reg - 10);
4238 add_unwind_opcode (op, 1);
4239 }
4240 else
4241 {
4242 /* Long form. */
4243 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4244 add_unwind_opcode (op, 2);
4245 }
4246 }
4247 hi_reg = reg - 1;
4248 }
4249 }
4250
4251 return;
4252 error:
4253 ignore_rest_of_line ();
4254 }
4255
4256 static void
4257 s_arm_unwind_save_mmxwcg (void)
4258 {
4259 int reg;
4260 int hi_reg;
4261 unsigned mask = 0;
4262 valueT op;
4263
4264 if (*input_line_pointer == '{')
4265 input_line_pointer++;
4266
4267 skip_whitespace (input_line_pointer);
4268
4269 do
4270 {
4271 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4272
4273 if (reg == FAIL)
4274 {
4275 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4276 goto error;
4277 }
4278
4279 reg -= 8;
4280 if (mask >> reg)
4281 as_tsktsk (_("register list not in ascending order"));
4282 mask |= 1 << reg;
4283
4284 if (*input_line_pointer == '-')
4285 {
4286 input_line_pointer++;
4287 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4288 if (hi_reg == FAIL)
4289 {
4290 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4291 goto error;
4292 }
4293 else if (reg >= hi_reg)
4294 {
4295 as_bad (_("bad register range"));
4296 goto error;
4297 }
4298 for (; reg < hi_reg; reg++)
4299 mask |= 1 << reg;
4300 }
4301 }
4302 while (skip_past_comma (&input_line_pointer) != FAIL);
4303
4304 skip_past_char (&input_line_pointer, '}');
4305
4306 demand_empty_rest_of_line ();
4307
4308 /* Generate any deferred opcodes because we're going to be looking at
4309 the list. */
4310 flush_pending_unwind ();
4311
4312 for (reg = 0; reg < 16; reg++)
4313 {
4314 if (mask & (1 << reg))
4315 unwind.frame_size += 4;
4316 }
4317 op = 0xc700 | mask;
4318 add_unwind_opcode (op, 2);
4319 return;
4320 error:
4321 ignore_rest_of_line ();
4322 }
4323
4324
4325 /* Parse an unwind_save directive.
4326 If the argument is non-zero, this is a .vsave directive. */
4327
4328 static void
4329 s_arm_unwind_save (int arch_v6)
4330 {
4331 char *peek;
4332 struct reg_entry *reg;
4333 bfd_boolean had_brace = FALSE;
4334
4335 if (!unwind.proc_start)
4336 as_bad (MISSING_FNSTART);
4337
4338 /* Figure out what sort of save we have. */
4339 peek = input_line_pointer;
4340
4341 if (*peek == '{')
4342 {
4343 had_brace = TRUE;
4344 peek++;
4345 }
4346
4347 reg = arm_reg_parse_multi (&peek);
4348
4349 if (!reg)
4350 {
4351 as_bad (_("register expected"));
4352 ignore_rest_of_line ();
4353 return;
4354 }
4355
4356 switch (reg->type)
4357 {
4358 case REG_TYPE_FN:
4359 if (had_brace)
4360 {
4361 as_bad (_("FPA .unwind_save does not take a register list"));
4362 ignore_rest_of_line ();
4363 return;
4364 }
4365 input_line_pointer = peek;
4366 s_arm_unwind_save_fpa (reg->number);
4367 return;
4368
4369 case REG_TYPE_RN:
4370 s_arm_unwind_save_core ();
4371 return;
4372
4373 case REG_TYPE_VFD:
4374 if (arch_v6)
4375 s_arm_unwind_save_vfp_armv6 ();
4376 else
4377 s_arm_unwind_save_vfp ();
4378 return;
4379
4380 case REG_TYPE_MMXWR:
4381 s_arm_unwind_save_mmxwr ();
4382 return;
4383
4384 case REG_TYPE_MMXWCG:
4385 s_arm_unwind_save_mmxwcg ();
4386 return;
4387
4388 default:
4389 as_bad (_(".unwind_save does not support this kind of register"));
4390 ignore_rest_of_line ();
4391 }
4392 }
4393
4394
4395 /* Parse an unwind_movsp directive. */
4396
4397 static void
4398 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4399 {
4400 int reg;
4401 valueT op;
4402 int offset;
4403
4404 if (!unwind.proc_start)
4405 as_bad (MISSING_FNSTART);
4406
4407 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4408 if (reg == FAIL)
4409 {
4410 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4411 ignore_rest_of_line ();
4412 return;
4413 }
4414
4415 /* Optional constant. */
4416 if (skip_past_comma (&input_line_pointer) != FAIL)
4417 {
4418 if (immediate_for_directive (&offset) == FAIL)
4419 return;
4420 }
4421 else
4422 offset = 0;
4423
4424 demand_empty_rest_of_line ();
4425
4426 if (reg == REG_SP || reg == REG_PC)
4427 {
4428 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4429 return;
4430 }
4431
4432 if (unwind.fp_reg != REG_SP)
4433 as_bad (_("unexpected .unwind_movsp directive"));
4434
4435 /* Generate opcode to restore the value. */
4436 op = 0x90 | reg;
4437 add_unwind_opcode (op, 1);
4438
4439 /* Record the information for later. */
4440 unwind.fp_reg = reg;
4441 unwind.fp_offset = unwind.frame_size - offset;
4442 unwind.sp_restored = 1;
4443 }
4444
4445 /* Parse an unwind_pad directive. */
4446
4447 static void
4448 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4449 {
4450 int offset;
4451
4452 if (!unwind.proc_start)
4453 as_bad (MISSING_FNSTART);
4454
4455 if (immediate_for_directive (&offset) == FAIL)
4456 return;
4457
4458 if (offset & 3)
4459 {
4460 as_bad (_("stack increment must be multiple of 4"));
4461 ignore_rest_of_line ();
4462 return;
4463 }
4464
4465 /* Don't generate any opcodes, just record the details for later. */
4466 unwind.frame_size += offset;
4467 unwind.pending_offset += offset;
4468
4469 demand_empty_rest_of_line ();
4470 }
4471
4472 /* Parse an unwind_setfp directive. */
4473
4474 static void
4475 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4476 {
4477 int sp_reg;
4478 int fp_reg;
4479 int offset;
4480
4481 if (!unwind.proc_start)
4482 as_bad (MISSING_FNSTART);
4483
4484 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4485 if (skip_past_comma (&input_line_pointer) == FAIL)
4486 sp_reg = FAIL;
4487 else
4488 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4489
4490 if (fp_reg == FAIL || sp_reg == FAIL)
4491 {
4492 as_bad (_("expected <reg>, <reg>"));
4493 ignore_rest_of_line ();
4494 return;
4495 }
4496
4497 /* Optional constant. */
4498 if (skip_past_comma (&input_line_pointer) != FAIL)
4499 {
4500 if (immediate_for_directive (&offset) == FAIL)
4501 return;
4502 }
4503 else
4504 offset = 0;
4505
4506 demand_empty_rest_of_line ();
4507
4508 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4509 {
4510 as_bad (_("register must be either sp or set by a previous"
4511 "unwind_movsp directive"));
4512 return;
4513 }
4514
4515 /* Don't generate any opcodes, just record the information for later. */
4516 unwind.fp_reg = fp_reg;
4517 unwind.fp_used = 1;
4518 if (sp_reg == REG_SP)
4519 unwind.fp_offset = unwind.frame_size - offset;
4520 else
4521 unwind.fp_offset -= offset;
4522 }
4523
4524 /* Parse an unwind_raw directive. */
4525
4526 static void
4527 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4528 {
4529 expressionS exp;
4530 /* This is an arbitrary limit. */
4531 unsigned char op[16];
4532 int count;
4533
4534 if (!unwind.proc_start)
4535 as_bad (MISSING_FNSTART);
4536
4537 expression (&exp);
4538 if (exp.X_op == O_constant
4539 && skip_past_comma (&input_line_pointer) != FAIL)
4540 {
4541 unwind.frame_size += exp.X_add_number;
4542 expression (&exp);
4543 }
4544 else
4545 exp.X_op = O_illegal;
4546
4547 if (exp.X_op != O_constant)
4548 {
4549 as_bad (_("expected <offset>, <opcode>"));
4550 ignore_rest_of_line ();
4551 return;
4552 }
4553
4554 count = 0;
4555
4556 /* Parse the opcode. */
4557 for (;;)
4558 {
4559 if (count >= 16)
4560 {
4561 as_bad (_("unwind opcode too long"));
4562 ignore_rest_of_line ();
4563 }
4564 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4565 {
4566 as_bad (_("invalid unwind opcode"));
4567 ignore_rest_of_line ();
4568 return;
4569 }
4570 op[count++] = exp.X_add_number;
4571
4572 /* Parse the next byte. */
4573 if (skip_past_comma (&input_line_pointer) == FAIL)
4574 break;
4575
4576 expression (&exp);
4577 }
4578
4579 /* Add the opcode bytes in reverse order. */
4580 while (count--)
4581 add_unwind_opcode (op[count], 1);
4582
4583 demand_empty_rest_of_line ();
4584 }
4585
4586
4587 /* Parse a .eabi_attribute directive. */
4588
4589 static void
4590 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4591 {
4592 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4593
4594 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4595 attributes_set_explicitly[tag] = 1;
4596 }
4597
4598 /* Emit a tls fix for the symbol. */
4599
4600 static void
4601 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4602 {
4603 char *p;
4604 expressionS exp;
4605 #ifdef md_flush_pending_output
4606 md_flush_pending_output ();
4607 #endif
4608
4609 #ifdef md_cons_align
4610 md_cons_align (4);
4611 #endif
4612
4613 /* Since we're just labelling the code, there's no need to define a
4614 mapping symbol. */
4615 expression (&exp);
4616 p = obstack_next_free (&frchain_now->frch_obstack);
4617 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4618 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4619 : BFD_RELOC_ARM_TLS_DESCSEQ);
4620 }
4621 #endif /* OBJ_ELF */
4622
4623 static void s_arm_arch (int);
4624 static void s_arm_object_arch (int);
4625 static void s_arm_cpu (int);
4626 static void s_arm_fpu (int);
4627 static void s_arm_arch_extension (int);
4628
4629 #ifdef TE_PE
4630
4631 static void
4632 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4633 {
4634 expressionS exp;
4635
4636 do
4637 {
4638 expression (&exp);
4639 if (exp.X_op == O_symbol)
4640 exp.X_op = O_secrel;
4641
4642 emit_expr (&exp, 4);
4643 }
4644 while (*input_line_pointer++ == ',');
4645
4646 input_line_pointer--;
4647 demand_empty_rest_of_line ();
4648 }
4649 #endif /* TE_PE */
4650
4651 /* This table describes all the machine specific pseudo-ops the assembler
4652 has to support. The fields are:
4653 pseudo-op name without dot
4654 function to call to execute this pseudo-op
4655 Integer arg to pass to the function. */
4656
4657 const pseudo_typeS md_pseudo_table[] =
4658 {
4659 /* Never called because '.req' does not start a line. */
4660 { "req", s_req, 0 },
4661 /* Following two are likewise never called. */
4662 { "dn", s_dn, 0 },
4663 { "qn", s_qn, 0 },
4664 { "unreq", s_unreq, 0 },
4665 { "bss", s_bss, 0 },
4666 { "align", s_align_ptwo, 2 },
4667 { "arm", s_arm, 0 },
4668 { "thumb", s_thumb, 0 },
4669 { "code", s_code, 0 },
4670 { "force_thumb", s_force_thumb, 0 },
4671 { "thumb_func", s_thumb_func, 0 },
4672 { "thumb_set", s_thumb_set, 0 },
4673 { "even", s_even, 0 },
4674 { "ltorg", s_ltorg, 0 },
4675 { "pool", s_ltorg, 0 },
4676 { "syntax", s_syntax, 0 },
4677 { "cpu", s_arm_cpu, 0 },
4678 { "arch", s_arm_arch, 0 },
4679 { "object_arch", s_arm_object_arch, 0 },
4680 { "fpu", s_arm_fpu, 0 },
4681 { "arch_extension", s_arm_arch_extension, 0 },
4682 #ifdef OBJ_ELF
4683 { "word", s_arm_elf_cons, 4 },
4684 { "long", s_arm_elf_cons, 4 },
4685 { "inst.n", s_arm_elf_inst, 2 },
4686 { "inst.w", s_arm_elf_inst, 4 },
4687 { "inst", s_arm_elf_inst, 0 },
4688 { "rel31", s_arm_rel31, 0 },
4689 { "fnstart", s_arm_unwind_fnstart, 0 },
4690 { "fnend", s_arm_unwind_fnend, 0 },
4691 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4692 { "personality", s_arm_unwind_personality, 0 },
4693 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4694 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4695 { "save", s_arm_unwind_save, 0 },
4696 { "vsave", s_arm_unwind_save, 1 },
4697 { "movsp", s_arm_unwind_movsp, 0 },
4698 { "pad", s_arm_unwind_pad, 0 },
4699 { "setfp", s_arm_unwind_setfp, 0 },
4700 { "unwind_raw", s_arm_unwind_raw, 0 },
4701 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4702 { "tlsdescseq", s_arm_tls_descseq, 0 },
4703 #else
4704 { "word", cons, 4},
4705
4706 /* These are used for dwarf. */
4707 {"2byte", cons, 2},
4708 {"4byte", cons, 4},
4709 {"8byte", cons, 8},
4710 /* These are used for dwarf2. */
4711 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4712 { "loc", dwarf2_directive_loc, 0 },
4713 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4714 #endif
4715 { "extend", float_cons, 'x' },
4716 { "ldouble", float_cons, 'x' },
4717 { "packed", float_cons, 'p' },
4718 #ifdef TE_PE
4719 {"secrel32", pe_directive_secrel, 0},
4720 #endif
4721
4722 /* These are for compatibility with CodeComposer Studio. */
4723 {"ref", s_ccs_ref, 0},
4724 {"def", s_ccs_def, 0},
4725 {"asmfunc", s_ccs_asmfunc, 0},
4726 {"endasmfunc", s_ccs_endasmfunc, 0},
4727
4728 { 0, 0, 0 }
4729 };
4730 \f
4731 /* Parser functions used exclusively in instruction operands. */
4732
4733 /* Generic immediate-value read function for use in insn parsing.
4734 STR points to the beginning of the immediate (the leading #);
4735 VAL receives the value; if the value is outside [MIN, MAX]
4736 issue an error. PREFIX_OPT is true if the immediate prefix is
4737 optional. */
4738
4739 static int
4740 parse_immediate (char **str, int *val, int min, int max,
4741 bfd_boolean prefix_opt)
4742 {
4743 expressionS exp;
4744 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4745 if (exp.X_op != O_constant)
4746 {
4747 inst.error = _("constant expression required");
4748 return FAIL;
4749 }
4750
4751 if (exp.X_add_number < min || exp.X_add_number > max)
4752 {
4753 inst.error = _("immediate value out of range");
4754 return FAIL;
4755 }
4756
4757 *val = exp.X_add_number;
4758 return SUCCESS;
4759 }
4760
4761 /* Less-generic immediate-value read function with the possibility of loading a
4762 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4763 instructions. Puts the result directly in inst.operands[i]. */
4764
4765 static int
4766 parse_big_immediate (char **str, int i, expressionS *in_exp,
4767 bfd_boolean allow_symbol_p)
4768 {
4769 expressionS exp;
4770 expressionS *exp_p = in_exp ? in_exp : &exp;
4771 char *ptr = *str;
4772
4773 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
4774
4775 if (exp_p->X_op == O_constant)
4776 {
4777 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
4778 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4779 O_constant. We have to be careful not to break compilation for
4780 32-bit X_add_number, though. */
4781 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4782 {
4783 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4784 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4785 & 0xffffffff);
4786 inst.operands[i].regisimm = 1;
4787 }
4788 }
4789 else if (exp_p->X_op == O_big
4790 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
4791 {
4792 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4793
4794 /* Bignums have their least significant bits in
4795 generic_bignum[0]. Make sure we put 32 bits in imm and
4796 32 bits in reg, in a (hopefully) portable way. */
4797 gas_assert (parts != 0);
4798
4799 /* Make sure that the number is not too big.
4800 PR 11972: Bignums can now be sign-extended to the
4801 size of a .octa so check that the out of range bits
4802 are all zero or all one. */
4803 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
4804 {
4805 LITTLENUM_TYPE m = -1;
4806
4807 if (generic_bignum[parts * 2] != 0
4808 && generic_bignum[parts * 2] != m)
4809 return FAIL;
4810
4811 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
4812 if (generic_bignum[j] != generic_bignum[j-1])
4813 return FAIL;
4814 }
4815
4816 inst.operands[i].imm = 0;
4817 for (j = 0; j < parts; j++, idx++)
4818 inst.operands[i].imm |= generic_bignum[idx]
4819 << (LITTLENUM_NUMBER_OF_BITS * j);
4820 inst.operands[i].reg = 0;
4821 for (j = 0; j < parts; j++, idx++)
4822 inst.operands[i].reg |= generic_bignum[idx]
4823 << (LITTLENUM_NUMBER_OF_BITS * j);
4824 inst.operands[i].regisimm = 1;
4825 }
4826 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
4827 return FAIL;
4828
4829 *str = ptr;
4830
4831 return SUCCESS;
4832 }
4833
4834 /* Returns the pseudo-register number of an FPA immediate constant,
4835 or FAIL if there isn't a valid constant here. */
4836
4837 static int
4838 parse_fpa_immediate (char ** str)
4839 {
4840 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4841 char * save_in;
4842 expressionS exp;
4843 int i;
4844 int j;
4845
4846 /* First try and match exact strings, this is to guarantee
4847 that some formats will work even for cross assembly. */
4848
4849 for (i = 0; fp_const[i]; i++)
4850 {
4851 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4852 {
4853 char *start = *str;
4854
4855 *str += strlen (fp_const[i]);
4856 if (is_end_of_line[(unsigned char) **str])
4857 return i + 8;
4858 *str = start;
4859 }
4860 }
4861
4862 /* Just because we didn't get a match doesn't mean that the constant
4863 isn't valid, just that it is in a format that we don't
4864 automatically recognize. Try parsing it with the standard
4865 expression routines. */
4866
4867 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4868
4869 /* Look for a raw floating point number. */
4870 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4871 && is_end_of_line[(unsigned char) *save_in])
4872 {
4873 for (i = 0; i < NUM_FLOAT_VALS; i++)
4874 {
4875 for (j = 0; j < MAX_LITTLENUMS; j++)
4876 {
4877 if (words[j] != fp_values[i][j])
4878 break;
4879 }
4880
4881 if (j == MAX_LITTLENUMS)
4882 {
4883 *str = save_in;
4884 return i + 8;
4885 }
4886 }
4887 }
4888
4889 /* Try and parse a more complex expression, this will probably fail
4890 unless the code uses a floating point prefix (eg "0f"). */
4891 save_in = input_line_pointer;
4892 input_line_pointer = *str;
4893 if (expression (&exp) == absolute_section
4894 && exp.X_op == O_big
4895 && exp.X_add_number < 0)
4896 {
4897 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4898 Ditto for 15. */
4899 #define X_PRECISION 5
4900 #define E_PRECISION 15L
4901 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
4902 {
4903 for (i = 0; i < NUM_FLOAT_VALS; i++)
4904 {
4905 for (j = 0; j < MAX_LITTLENUMS; j++)
4906 {
4907 if (words[j] != fp_values[i][j])
4908 break;
4909 }
4910
4911 if (j == MAX_LITTLENUMS)
4912 {
4913 *str = input_line_pointer;
4914 input_line_pointer = save_in;
4915 return i + 8;
4916 }
4917 }
4918 }
4919 }
4920
4921 *str = input_line_pointer;
4922 input_line_pointer = save_in;
4923 inst.error = _("invalid FPA immediate expression");
4924 return FAIL;
4925 }
4926
4927 /* Returns 1 if a number has "quarter-precision" float format
4928 0baBbbbbbc defgh000 00000000 00000000. */
4929
4930 static int
4931 is_quarter_float (unsigned imm)
4932 {
4933 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4934 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4935 }
4936
4937
4938 /* Detect the presence of a floating point or integer zero constant,
4939 i.e. #0.0 or #0. */
4940
4941 static bfd_boolean
4942 parse_ifimm_zero (char **in)
4943 {
4944 int error_code;
4945
4946 if (!is_immediate_prefix (**in))
4947 return FALSE;
4948
4949 ++*in;
4950
4951 /* Accept #0x0 as a synonym for #0. */
4952 if (strncmp (*in, "0x", 2) == 0)
4953 {
4954 int val;
4955 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
4956 return FALSE;
4957 return TRUE;
4958 }
4959
4960 error_code = atof_generic (in, ".", EXP_CHARS,
4961 &generic_floating_point_number);
4962
4963 if (!error_code
4964 && generic_floating_point_number.sign == '+'
4965 && (generic_floating_point_number.low
4966 > generic_floating_point_number.leader))
4967 return TRUE;
4968
4969 return FALSE;
4970 }
4971
4972 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4973 0baBbbbbbc defgh000 00000000 00000000.
4974 The zero and minus-zero cases need special handling, since they can't be
4975 encoded in the "quarter-precision" float format, but can nonetheless be
4976 loaded as integer constants. */
4977
4978 static unsigned
4979 parse_qfloat_immediate (char **ccp, int *immed)
4980 {
4981 char *str = *ccp;
4982 char *fpnum;
4983 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4984 int found_fpchar = 0;
4985
4986 skip_past_char (&str, '#');
4987
4988 /* We must not accidentally parse an integer as a floating-point number. Make
4989 sure that the value we parse is not an integer by checking for special
4990 characters '.' or 'e'.
4991 FIXME: This is a horrible hack, but doing better is tricky because type
4992 information isn't in a very usable state at parse time. */
4993 fpnum = str;
4994 skip_whitespace (fpnum);
4995
4996 if (strncmp (fpnum, "0x", 2) == 0)
4997 return FAIL;
4998 else
4999 {
5000 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5001 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5002 {
5003 found_fpchar = 1;
5004 break;
5005 }
5006
5007 if (!found_fpchar)
5008 return FAIL;
5009 }
5010
5011 if ((str = atof_ieee (str, 's', words)) != NULL)
5012 {
5013 unsigned fpword = 0;
5014 int i;
5015
5016 /* Our FP word must be 32 bits (single-precision FP). */
5017 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5018 {
5019 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5020 fpword |= words[i];
5021 }
5022
5023 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5024 *immed = fpword;
5025 else
5026 return FAIL;
5027
5028 *ccp = str;
5029
5030 return SUCCESS;
5031 }
5032
5033 return FAIL;
5034 }
5035
5036 /* Shift operands. */
5037 enum shift_kind
5038 {
5039 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5040 };
5041
5042 struct asm_shift_name
5043 {
5044 const char *name;
5045 enum shift_kind kind;
5046 };
5047
5048 /* Third argument to parse_shift. */
5049 enum parse_shift_mode
5050 {
5051 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5052 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5053 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5054 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5055 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5056 };
5057
5058 /* Parse a <shift> specifier on an ARM data processing instruction.
5059 This has three forms:
5060
5061 (LSL|LSR|ASL|ASR|ROR) Rs
5062 (LSL|LSR|ASL|ASR|ROR) #imm
5063 RRX
5064
5065 Note that ASL is assimilated to LSL in the instruction encoding, and
5066 RRX to ROR #0 (which cannot be written as such). */
5067
5068 static int
5069 parse_shift (char **str, int i, enum parse_shift_mode mode)
5070 {
5071 const struct asm_shift_name *shift_name;
5072 enum shift_kind shift;
5073 char *s = *str;
5074 char *p = s;
5075 int reg;
5076
5077 for (p = *str; ISALPHA (*p); p++)
5078 ;
5079
5080 if (p == *str)
5081 {
5082 inst.error = _("shift expression expected");
5083 return FAIL;
5084 }
5085
5086 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5087 p - *str);
5088
5089 if (shift_name == NULL)
5090 {
5091 inst.error = _("shift expression expected");
5092 return FAIL;
5093 }
5094
5095 shift = shift_name->kind;
5096
5097 switch (mode)
5098 {
5099 case NO_SHIFT_RESTRICT:
5100 case SHIFT_IMMEDIATE: break;
5101
5102 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5103 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5104 {
5105 inst.error = _("'LSL' or 'ASR' required");
5106 return FAIL;
5107 }
5108 break;
5109
5110 case SHIFT_LSL_IMMEDIATE:
5111 if (shift != SHIFT_LSL)
5112 {
5113 inst.error = _("'LSL' required");
5114 return FAIL;
5115 }
5116 break;
5117
5118 case SHIFT_ASR_IMMEDIATE:
5119 if (shift != SHIFT_ASR)
5120 {
5121 inst.error = _("'ASR' required");
5122 return FAIL;
5123 }
5124 break;
5125
5126 default: abort ();
5127 }
5128
5129 if (shift != SHIFT_RRX)
5130 {
5131 /* Whitespace can appear here if the next thing is a bare digit. */
5132 skip_whitespace (p);
5133
5134 if (mode == NO_SHIFT_RESTRICT
5135 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5136 {
5137 inst.operands[i].imm = reg;
5138 inst.operands[i].immisreg = 1;
5139 }
5140 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5141 return FAIL;
5142 }
5143 inst.operands[i].shift_kind = shift;
5144 inst.operands[i].shifted = 1;
5145 *str = p;
5146 return SUCCESS;
5147 }
5148
5149 /* Parse a <shifter_operand> for an ARM data processing instruction:
5150
5151 #<immediate>
5152 #<immediate>, <rotate>
5153 <Rm>
5154 <Rm>, <shift>
5155
5156 where <shift> is defined by parse_shift above, and <rotate> is a
5157 multiple of 2 between 0 and 30. Validation of immediate operands
5158 is deferred to md_apply_fix. */
5159
5160 static int
5161 parse_shifter_operand (char **str, int i)
5162 {
5163 int value;
5164 expressionS exp;
5165
5166 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5167 {
5168 inst.operands[i].reg = value;
5169 inst.operands[i].isreg = 1;
5170
5171 /* parse_shift will override this if appropriate */
5172 inst.reloc.exp.X_op = O_constant;
5173 inst.reloc.exp.X_add_number = 0;
5174
5175 if (skip_past_comma (str) == FAIL)
5176 return SUCCESS;
5177
5178 /* Shift operation on register. */
5179 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5180 }
5181
5182 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
5183 return FAIL;
5184
5185 if (skip_past_comma (str) == SUCCESS)
5186 {
5187 /* #x, y -- ie explicit rotation by Y. */
5188 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5189 return FAIL;
5190
5191 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
5192 {
5193 inst.error = _("constant expression expected");
5194 return FAIL;
5195 }
5196
5197 value = exp.X_add_number;
5198 if (value < 0 || value > 30 || value % 2 != 0)
5199 {
5200 inst.error = _("invalid rotation");
5201 return FAIL;
5202 }
5203 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
5204 {
5205 inst.error = _("invalid constant");
5206 return FAIL;
5207 }
5208
5209 /* Encode as specified. */
5210 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
5211 return SUCCESS;
5212 }
5213
5214 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
5215 inst.reloc.pc_rel = 0;
5216 return SUCCESS;
5217 }
5218
5219 /* Group relocation information. Each entry in the table contains the
5220 textual name of the relocation as may appear in assembler source
5221 and must end with a colon.
5222 Along with this textual name are the relocation codes to be used if
5223 the corresponding instruction is an ALU instruction (ADD or SUB only),
5224 an LDR, an LDRS, or an LDC. */
5225
5226 struct group_reloc_table_entry
5227 {
5228 const char *name;
5229 int alu_code;
5230 int ldr_code;
5231 int ldrs_code;
5232 int ldc_code;
5233 };
5234
5235 typedef enum
5236 {
5237 /* Varieties of non-ALU group relocation. */
5238
5239 GROUP_LDR,
5240 GROUP_LDRS,
5241 GROUP_LDC
5242 } group_reloc_type;
5243
5244 static struct group_reloc_table_entry group_reloc_table[] =
5245 { /* Program counter relative: */
5246 { "pc_g0_nc",
5247 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5248 0, /* LDR */
5249 0, /* LDRS */
5250 0 }, /* LDC */
5251 { "pc_g0",
5252 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5253 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5254 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5255 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5256 { "pc_g1_nc",
5257 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5258 0, /* LDR */
5259 0, /* LDRS */
5260 0 }, /* LDC */
5261 { "pc_g1",
5262 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5263 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5264 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5265 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5266 { "pc_g2",
5267 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5268 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5269 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5270 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5271 /* Section base relative */
5272 { "sb_g0_nc",
5273 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5274 0, /* LDR */
5275 0, /* LDRS */
5276 0 }, /* LDC */
5277 { "sb_g0",
5278 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5279 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5280 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5281 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5282 { "sb_g1_nc",
5283 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5284 0, /* LDR */
5285 0, /* LDRS */
5286 0 }, /* LDC */
5287 { "sb_g1",
5288 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5289 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5290 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5291 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5292 { "sb_g2",
5293 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5294 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5295 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5296 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5297 /* Absolute thumb alu relocations. */
5298 { "lower0_7",
5299 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5300 0, /* LDR. */
5301 0, /* LDRS. */
5302 0 }, /* LDC. */
5303 { "lower8_15",
5304 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5305 0, /* LDR. */
5306 0, /* LDRS. */
5307 0 }, /* LDC. */
5308 { "upper0_7",
5309 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5310 0, /* LDR. */
5311 0, /* LDRS. */
5312 0 }, /* LDC. */
5313 { "upper8_15",
5314 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5315 0, /* LDR. */
5316 0, /* LDRS. */
5317 0 } }; /* LDC. */
5318
5319 /* Given the address of a pointer pointing to the textual name of a group
5320 relocation as may appear in assembler source, attempt to find its details
5321 in group_reloc_table. The pointer will be updated to the character after
5322 the trailing colon. On failure, FAIL will be returned; SUCCESS
5323 otherwise. On success, *entry will be updated to point at the relevant
5324 group_reloc_table entry. */
5325
5326 static int
5327 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5328 {
5329 unsigned int i;
5330 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5331 {
5332 int length = strlen (group_reloc_table[i].name);
5333
5334 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5335 && (*str)[length] == ':')
5336 {
5337 *out = &group_reloc_table[i];
5338 *str += (length + 1);
5339 return SUCCESS;
5340 }
5341 }
5342
5343 return FAIL;
5344 }
5345
5346 /* Parse a <shifter_operand> for an ARM data processing instruction
5347 (as for parse_shifter_operand) where group relocations are allowed:
5348
5349 #<immediate>
5350 #<immediate>, <rotate>
5351 #:<group_reloc>:<expression>
5352 <Rm>
5353 <Rm>, <shift>
5354
5355 where <group_reloc> is one of the strings defined in group_reloc_table.
5356 The hashes are optional.
5357
5358 Everything else is as for parse_shifter_operand. */
5359
5360 static parse_operand_result
5361 parse_shifter_operand_group_reloc (char **str, int i)
5362 {
5363 /* Determine if we have the sequence of characters #: or just :
5364 coming next. If we do, then we check for a group relocation.
5365 If we don't, punt the whole lot to parse_shifter_operand. */
5366
5367 if (((*str)[0] == '#' && (*str)[1] == ':')
5368 || (*str)[0] == ':')
5369 {
5370 struct group_reloc_table_entry *entry;
5371
5372 if ((*str)[0] == '#')
5373 (*str) += 2;
5374 else
5375 (*str)++;
5376
5377 /* Try to parse a group relocation. Anything else is an error. */
5378 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5379 {
5380 inst.error = _("unknown group relocation");
5381 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5382 }
5383
5384 /* We now have the group relocation table entry corresponding to
5385 the name in the assembler source. Next, we parse the expression. */
5386 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5387 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5388
5389 /* Record the relocation type (always the ALU variant here). */
5390 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5391 gas_assert (inst.reloc.type != 0);
5392
5393 return PARSE_OPERAND_SUCCESS;
5394 }
5395 else
5396 return parse_shifter_operand (str, i) == SUCCESS
5397 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5398
5399 /* Never reached. */
5400 }
5401
5402 /* Parse a Neon alignment expression. Information is written to
5403 inst.operands[i]. We assume the initial ':' has been skipped.
5404
5405 align .imm = align << 8, .immisalign=1, .preind=0 */
5406 static parse_operand_result
5407 parse_neon_alignment (char **str, int i)
5408 {
5409 char *p = *str;
5410 expressionS exp;
5411
5412 my_get_expression (&exp, &p, GE_NO_PREFIX);
5413
5414 if (exp.X_op != O_constant)
5415 {
5416 inst.error = _("alignment must be constant");
5417 return PARSE_OPERAND_FAIL;
5418 }
5419
5420 inst.operands[i].imm = exp.X_add_number << 8;
5421 inst.operands[i].immisalign = 1;
5422 /* Alignments are not pre-indexes. */
5423 inst.operands[i].preind = 0;
5424
5425 *str = p;
5426 return PARSE_OPERAND_SUCCESS;
5427 }
5428
5429 /* Parse all forms of an ARM address expression. Information is written
5430 to inst.operands[i] and/or inst.reloc.
5431
5432 Preindexed addressing (.preind=1):
5433
5434 [Rn, #offset] .reg=Rn .reloc.exp=offset
5435 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5436 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5437 .shift_kind=shift .reloc.exp=shift_imm
5438
5439 These three may have a trailing ! which causes .writeback to be set also.
5440
5441 Postindexed addressing (.postind=1, .writeback=1):
5442
5443 [Rn], #offset .reg=Rn .reloc.exp=offset
5444 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5445 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5446 .shift_kind=shift .reloc.exp=shift_imm
5447
5448 Unindexed addressing (.preind=0, .postind=0):
5449
5450 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5451
5452 Other:
5453
5454 [Rn]{!} shorthand for [Rn,#0]{!}
5455 =immediate .isreg=0 .reloc.exp=immediate
5456 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5457
5458 It is the caller's responsibility to check for addressing modes not
5459 supported by the instruction, and to set inst.reloc.type. */
5460
5461 static parse_operand_result
5462 parse_address_main (char **str, int i, int group_relocations,
5463 group_reloc_type group_type)
5464 {
5465 char *p = *str;
5466 int reg;
5467
5468 if (skip_past_char (&p, '[') == FAIL)
5469 {
5470 if (skip_past_char (&p, '=') == FAIL)
5471 {
5472 /* Bare address - translate to PC-relative offset. */
5473 inst.reloc.pc_rel = 1;
5474 inst.operands[i].reg = REG_PC;
5475 inst.operands[i].isreg = 1;
5476 inst.operands[i].preind = 1;
5477
5478 if (my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX_BIG))
5479 return PARSE_OPERAND_FAIL;
5480 }
5481 else if (parse_big_immediate (&p, i, &inst.reloc.exp,
5482 /*allow_symbol_p=*/TRUE))
5483 return PARSE_OPERAND_FAIL;
5484
5485 *str = p;
5486 return PARSE_OPERAND_SUCCESS;
5487 }
5488
5489 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5490 skip_whitespace (p);
5491
5492 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5493 {
5494 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5495 return PARSE_OPERAND_FAIL;
5496 }
5497 inst.operands[i].reg = reg;
5498 inst.operands[i].isreg = 1;
5499
5500 if (skip_past_comma (&p) == SUCCESS)
5501 {
5502 inst.operands[i].preind = 1;
5503
5504 if (*p == '+') p++;
5505 else if (*p == '-') p++, inst.operands[i].negative = 1;
5506
5507 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5508 {
5509 inst.operands[i].imm = reg;
5510 inst.operands[i].immisreg = 1;
5511
5512 if (skip_past_comma (&p) == SUCCESS)
5513 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5514 return PARSE_OPERAND_FAIL;
5515 }
5516 else if (skip_past_char (&p, ':') == SUCCESS)
5517 {
5518 /* FIXME: '@' should be used here, but it's filtered out by generic
5519 code before we get to see it here. This may be subject to
5520 change. */
5521 parse_operand_result result = parse_neon_alignment (&p, i);
5522
5523 if (result != PARSE_OPERAND_SUCCESS)
5524 return result;
5525 }
5526 else
5527 {
5528 if (inst.operands[i].negative)
5529 {
5530 inst.operands[i].negative = 0;
5531 p--;
5532 }
5533
5534 if (group_relocations
5535 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5536 {
5537 struct group_reloc_table_entry *entry;
5538
5539 /* Skip over the #: or : sequence. */
5540 if (*p == '#')
5541 p += 2;
5542 else
5543 p++;
5544
5545 /* Try to parse a group relocation. Anything else is an
5546 error. */
5547 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5548 {
5549 inst.error = _("unknown group relocation");
5550 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5551 }
5552
5553 /* We now have the group relocation table entry corresponding to
5554 the name in the assembler source. Next, we parse the
5555 expression. */
5556 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5557 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5558
5559 /* Record the relocation type. */
5560 switch (group_type)
5561 {
5562 case GROUP_LDR:
5563 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5564 break;
5565
5566 case GROUP_LDRS:
5567 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5568 break;
5569
5570 case GROUP_LDC:
5571 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5572 break;
5573
5574 default:
5575 gas_assert (0);
5576 }
5577
5578 if (inst.reloc.type == 0)
5579 {
5580 inst.error = _("this group relocation is not allowed on this instruction");
5581 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5582 }
5583 }
5584 else
5585 {
5586 char *q = p;
5587 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5588 return PARSE_OPERAND_FAIL;
5589 /* If the offset is 0, find out if it's a +0 or -0. */
5590 if (inst.reloc.exp.X_op == O_constant
5591 && inst.reloc.exp.X_add_number == 0)
5592 {
5593 skip_whitespace (q);
5594 if (*q == '#')
5595 {
5596 q++;
5597 skip_whitespace (q);
5598 }
5599 if (*q == '-')
5600 inst.operands[i].negative = 1;
5601 }
5602 }
5603 }
5604 }
5605 else if (skip_past_char (&p, ':') == SUCCESS)
5606 {
5607 /* FIXME: '@' should be used here, but it's filtered out by generic code
5608 before we get to see it here. This may be subject to change. */
5609 parse_operand_result result = parse_neon_alignment (&p, i);
5610
5611 if (result != PARSE_OPERAND_SUCCESS)
5612 return result;
5613 }
5614
5615 if (skip_past_char (&p, ']') == FAIL)
5616 {
5617 inst.error = _("']' expected");
5618 return PARSE_OPERAND_FAIL;
5619 }
5620
5621 if (skip_past_char (&p, '!') == SUCCESS)
5622 inst.operands[i].writeback = 1;
5623
5624 else if (skip_past_comma (&p) == SUCCESS)
5625 {
5626 if (skip_past_char (&p, '{') == SUCCESS)
5627 {
5628 /* [Rn], {expr} - unindexed, with option */
5629 if (parse_immediate (&p, &inst.operands[i].imm,
5630 0, 255, TRUE) == FAIL)
5631 return PARSE_OPERAND_FAIL;
5632
5633 if (skip_past_char (&p, '}') == FAIL)
5634 {
5635 inst.error = _("'}' expected at end of 'option' field");
5636 return PARSE_OPERAND_FAIL;
5637 }
5638 if (inst.operands[i].preind)
5639 {
5640 inst.error = _("cannot combine index with option");
5641 return PARSE_OPERAND_FAIL;
5642 }
5643 *str = p;
5644 return PARSE_OPERAND_SUCCESS;
5645 }
5646 else
5647 {
5648 inst.operands[i].postind = 1;
5649 inst.operands[i].writeback = 1;
5650
5651 if (inst.operands[i].preind)
5652 {
5653 inst.error = _("cannot combine pre- and post-indexing");
5654 return PARSE_OPERAND_FAIL;
5655 }
5656
5657 if (*p == '+') p++;
5658 else if (*p == '-') p++, inst.operands[i].negative = 1;
5659
5660 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5661 {
5662 /* We might be using the immediate for alignment already. If we
5663 are, OR the register number into the low-order bits. */
5664 if (inst.operands[i].immisalign)
5665 inst.operands[i].imm |= reg;
5666 else
5667 inst.operands[i].imm = reg;
5668 inst.operands[i].immisreg = 1;
5669
5670 if (skip_past_comma (&p) == SUCCESS)
5671 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5672 return PARSE_OPERAND_FAIL;
5673 }
5674 else
5675 {
5676 char *q = p;
5677 if (inst.operands[i].negative)
5678 {
5679 inst.operands[i].negative = 0;
5680 p--;
5681 }
5682 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5683 return PARSE_OPERAND_FAIL;
5684 /* If the offset is 0, find out if it's a +0 or -0. */
5685 if (inst.reloc.exp.X_op == O_constant
5686 && inst.reloc.exp.X_add_number == 0)
5687 {
5688 skip_whitespace (q);
5689 if (*q == '#')
5690 {
5691 q++;
5692 skip_whitespace (q);
5693 }
5694 if (*q == '-')
5695 inst.operands[i].negative = 1;
5696 }
5697 }
5698 }
5699 }
5700
5701 /* If at this point neither .preind nor .postind is set, we have a
5702 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5703 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5704 {
5705 inst.operands[i].preind = 1;
5706 inst.reloc.exp.X_op = O_constant;
5707 inst.reloc.exp.X_add_number = 0;
5708 }
5709 *str = p;
5710 return PARSE_OPERAND_SUCCESS;
5711 }
5712
5713 static int
5714 parse_address (char **str, int i)
5715 {
5716 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5717 ? SUCCESS : FAIL;
5718 }
5719
5720 static parse_operand_result
5721 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5722 {
5723 return parse_address_main (str, i, 1, type);
5724 }
5725
5726 /* Parse an operand for a MOVW or MOVT instruction. */
5727 static int
5728 parse_half (char **str)
5729 {
5730 char * p;
5731
5732 p = *str;
5733 skip_past_char (&p, '#');
5734 if (strncasecmp (p, ":lower16:", 9) == 0)
5735 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5736 else if (strncasecmp (p, ":upper16:", 9) == 0)
5737 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5738
5739 if (inst.reloc.type != BFD_RELOC_UNUSED)
5740 {
5741 p += 9;
5742 skip_whitespace (p);
5743 }
5744
5745 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5746 return FAIL;
5747
5748 if (inst.reloc.type == BFD_RELOC_UNUSED)
5749 {
5750 if (inst.reloc.exp.X_op != O_constant)
5751 {
5752 inst.error = _("constant expression expected");
5753 return FAIL;
5754 }
5755 if (inst.reloc.exp.X_add_number < 0
5756 || inst.reloc.exp.X_add_number > 0xffff)
5757 {
5758 inst.error = _("immediate value out of range");
5759 return FAIL;
5760 }
5761 }
5762 *str = p;
5763 return SUCCESS;
5764 }
5765
5766 /* Miscellaneous. */
5767
5768 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5769 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5770 static int
5771 parse_psr (char **str, bfd_boolean lhs)
5772 {
5773 char *p;
5774 unsigned long psr_field;
5775 const struct asm_psr *psr;
5776 char *start;
5777 bfd_boolean is_apsr = FALSE;
5778 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5779
5780 /* PR gas/12698: If the user has specified -march=all then m_profile will
5781 be TRUE, but we want to ignore it in this case as we are building for any
5782 CPU type, including non-m variants. */
5783 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
5784 m_profile = FALSE;
5785
5786 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5787 feature for ease of use and backwards compatibility. */
5788 p = *str;
5789 if (strncasecmp (p, "SPSR", 4) == 0)
5790 {
5791 if (m_profile)
5792 goto unsupported_psr;
5793
5794 psr_field = SPSR_BIT;
5795 }
5796 else if (strncasecmp (p, "CPSR", 4) == 0)
5797 {
5798 if (m_profile)
5799 goto unsupported_psr;
5800
5801 psr_field = 0;
5802 }
5803 else if (strncasecmp (p, "APSR", 4) == 0)
5804 {
5805 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5806 and ARMv7-R architecture CPUs. */
5807 is_apsr = TRUE;
5808 psr_field = 0;
5809 }
5810 else if (m_profile)
5811 {
5812 start = p;
5813 do
5814 p++;
5815 while (ISALNUM (*p) || *p == '_');
5816
5817 if (strncasecmp (start, "iapsr", 5) == 0
5818 || strncasecmp (start, "eapsr", 5) == 0
5819 || strncasecmp (start, "xpsr", 4) == 0
5820 || strncasecmp (start, "psr", 3) == 0)
5821 p = start + strcspn (start, "rR") + 1;
5822
5823 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5824 p - start);
5825
5826 if (!psr)
5827 return FAIL;
5828
5829 /* If APSR is being written, a bitfield may be specified. Note that
5830 APSR itself is handled above. */
5831 if (psr->field <= 3)
5832 {
5833 psr_field = psr->field;
5834 is_apsr = TRUE;
5835 goto check_suffix;
5836 }
5837
5838 *str = p;
5839 /* M-profile MSR instructions have the mask field set to "10", except
5840 *PSR variants which modify APSR, which may use a different mask (and
5841 have been handled already). Do that by setting the PSR_f field
5842 here. */
5843 return psr->field | (lhs ? PSR_f : 0);
5844 }
5845 else
5846 goto unsupported_psr;
5847
5848 p += 4;
5849 check_suffix:
5850 if (*p == '_')
5851 {
5852 /* A suffix follows. */
5853 p++;
5854 start = p;
5855
5856 do
5857 p++;
5858 while (ISALNUM (*p) || *p == '_');
5859
5860 if (is_apsr)
5861 {
5862 /* APSR uses a notation for bits, rather than fields. */
5863 unsigned int nzcvq_bits = 0;
5864 unsigned int g_bit = 0;
5865 char *bit;
5866
5867 for (bit = start; bit != p; bit++)
5868 {
5869 switch (TOLOWER (*bit))
5870 {
5871 case 'n':
5872 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5873 break;
5874
5875 case 'z':
5876 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5877 break;
5878
5879 case 'c':
5880 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5881 break;
5882
5883 case 'v':
5884 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5885 break;
5886
5887 case 'q':
5888 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5889 break;
5890
5891 case 'g':
5892 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5893 break;
5894
5895 default:
5896 inst.error = _("unexpected bit specified after APSR");
5897 return FAIL;
5898 }
5899 }
5900
5901 if (nzcvq_bits == 0x1f)
5902 psr_field |= PSR_f;
5903
5904 if (g_bit == 0x1)
5905 {
5906 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5907 {
5908 inst.error = _("selected processor does not "
5909 "support DSP extension");
5910 return FAIL;
5911 }
5912
5913 psr_field |= PSR_s;
5914 }
5915
5916 if ((nzcvq_bits & 0x20) != 0
5917 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5918 || (g_bit & 0x2) != 0)
5919 {
5920 inst.error = _("bad bitmask specified after APSR");
5921 return FAIL;
5922 }
5923 }
5924 else
5925 {
5926 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5927 p - start);
5928 if (!psr)
5929 goto error;
5930
5931 psr_field |= psr->field;
5932 }
5933 }
5934 else
5935 {
5936 if (ISALNUM (*p))
5937 goto error; /* Garbage after "[CS]PSR". */
5938
5939 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5940 is deprecated, but allow it anyway. */
5941 if (is_apsr && lhs)
5942 {
5943 psr_field |= PSR_f;
5944 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5945 "deprecated"));
5946 }
5947 else if (!m_profile)
5948 /* These bits are never right for M-profile devices: don't set them
5949 (only code paths which read/write APSR reach here). */
5950 psr_field |= (PSR_c | PSR_f);
5951 }
5952 *str = p;
5953 return psr_field;
5954
5955 unsupported_psr:
5956 inst.error = _("selected processor does not support requested special "
5957 "purpose register");
5958 return FAIL;
5959
5960 error:
5961 inst.error = _("flag for {c}psr instruction expected");
5962 return FAIL;
5963 }
5964
5965 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5966 value suitable for splatting into the AIF field of the instruction. */
5967
5968 static int
5969 parse_cps_flags (char **str)
5970 {
5971 int val = 0;
5972 int saw_a_flag = 0;
5973 char *s = *str;
5974
5975 for (;;)
5976 switch (*s++)
5977 {
5978 case '\0': case ',':
5979 goto done;
5980
5981 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5982 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5983 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5984
5985 default:
5986 inst.error = _("unrecognized CPS flag");
5987 return FAIL;
5988 }
5989
5990 done:
5991 if (saw_a_flag == 0)
5992 {
5993 inst.error = _("missing CPS flags");
5994 return FAIL;
5995 }
5996
5997 *str = s - 1;
5998 return val;
5999 }
6000
6001 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6002 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6003
6004 static int
6005 parse_endian_specifier (char **str)
6006 {
6007 int little_endian;
6008 char *s = *str;
6009
6010 if (strncasecmp (s, "BE", 2))
6011 little_endian = 0;
6012 else if (strncasecmp (s, "LE", 2))
6013 little_endian = 1;
6014 else
6015 {
6016 inst.error = _("valid endian specifiers are be or le");
6017 return FAIL;
6018 }
6019
6020 if (ISALNUM (s[2]) || s[2] == '_')
6021 {
6022 inst.error = _("valid endian specifiers are be or le");
6023 return FAIL;
6024 }
6025
6026 *str = s + 2;
6027 return little_endian;
6028 }
6029
6030 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6031 value suitable for poking into the rotate field of an sxt or sxta
6032 instruction, or FAIL on error. */
6033
6034 static int
6035 parse_ror (char **str)
6036 {
6037 int rot;
6038 char *s = *str;
6039
6040 if (strncasecmp (s, "ROR", 3) == 0)
6041 s += 3;
6042 else
6043 {
6044 inst.error = _("missing rotation field after comma");
6045 return FAIL;
6046 }
6047
6048 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6049 return FAIL;
6050
6051 switch (rot)
6052 {
6053 case 0: *str = s; return 0x0;
6054 case 8: *str = s; return 0x1;
6055 case 16: *str = s; return 0x2;
6056 case 24: *str = s; return 0x3;
6057
6058 default:
6059 inst.error = _("rotation can only be 0, 8, 16, or 24");
6060 return FAIL;
6061 }
6062 }
6063
6064 /* Parse a conditional code (from conds[] below). The value returned is in the
6065 range 0 .. 14, or FAIL. */
6066 static int
6067 parse_cond (char **str)
6068 {
6069 char *q;
6070 const struct asm_cond *c;
6071 int n;
6072 /* Condition codes are always 2 characters, so matching up to
6073 3 characters is sufficient. */
6074 char cond[3];
6075
6076 q = *str;
6077 n = 0;
6078 while (ISALPHA (*q) && n < 3)
6079 {
6080 cond[n] = TOLOWER (*q);
6081 q++;
6082 n++;
6083 }
6084
6085 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6086 if (!c)
6087 {
6088 inst.error = _("condition required");
6089 return FAIL;
6090 }
6091
6092 *str = q;
6093 return c->value;
6094 }
6095
6096 /* Record a use of the given feature. */
6097 static void
6098 record_feature_use (const arm_feature_set *feature)
6099 {
6100 if (thumb_mode)
6101 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6102 else
6103 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6104 }
6105
6106 /* If the given feature available in the selected CPU, mark it as used.
6107 Returns TRUE iff feature is available. */
6108 static bfd_boolean
6109 mark_feature_used (const arm_feature_set *feature)
6110 {
6111 /* Ensure the option is valid on the current architecture. */
6112 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6113 return FALSE;
6114
6115 /* Add the appropriate architecture feature for the barrier option used.
6116 */
6117 record_feature_use (feature);
6118
6119 return TRUE;
6120 }
6121
6122 /* Parse an option for a barrier instruction. Returns the encoding for the
6123 option, or FAIL. */
6124 static int
6125 parse_barrier (char **str)
6126 {
6127 char *p, *q;
6128 const struct asm_barrier_opt *o;
6129
6130 p = q = *str;
6131 while (ISALPHA (*q))
6132 q++;
6133
6134 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6135 q - p);
6136 if (!o)
6137 return FAIL;
6138
6139 if (!mark_feature_used (&o->arch))
6140 return FAIL;
6141
6142 *str = q;
6143 return o->value;
6144 }
6145
6146 /* Parse the operands of a table branch instruction. Similar to a memory
6147 operand. */
6148 static int
6149 parse_tb (char **str)
6150 {
6151 char * p = *str;
6152 int reg;
6153
6154 if (skip_past_char (&p, '[') == FAIL)
6155 {
6156 inst.error = _("'[' expected");
6157 return FAIL;
6158 }
6159
6160 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6161 {
6162 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6163 return FAIL;
6164 }
6165 inst.operands[0].reg = reg;
6166
6167 if (skip_past_comma (&p) == FAIL)
6168 {
6169 inst.error = _("',' expected");
6170 return FAIL;
6171 }
6172
6173 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6174 {
6175 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6176 return FAIL;
6177 }
6178 inst.operands[0].imm = reg;
6179
6180 if (skip_past_comma (&p) == SUCCESS)
6181 {
6182 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6183 return FAIL;
6184 if (inst.reloc.exp.X_add_number != 1)
6185 {
6186 inst.error = _("invalid shift");
6187 return FAIL;
6188 }
6189 inst.operands[0].shifted = 1;
6190 }
6191
6192 if (skip_past_char (&p, ']') == FAIL)
6193 {
6194 inst.error = _("']' expected");
6195 return FAIL;
6196 }
6197 *str = p;
6198 return SUCCESS;
6199 }
6200
6201 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6202 information on the types the operands can take and how they are encoded.
6203 Up to four operands may be read; this function handles setting the
6204 ".present" field for each read operand itself.
6205 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6206 else returns FAIL. */
6207
6208 static int
6209 parse_neon_mov (char **str, int *which_operand)
6210 {
6211 int i = *which_operand, val;
6212 enum arm_reg_type rtype;
6213 char *ptr = *str;
6214 struct neon_type_el optype;
6215
6216 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6217 {
6218 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6219 inst.operands[i].reg = val;
6220 inst.operands[i].isscalar = 1;
6221 inst.operands[i].vectype = optype;
6222 inst.operands[i++].present = 1;
6223
6224 if (skip_past_comma (&ptr) == FAIL)
6225 goto wanted_comma;
6226
6227 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6228 goto wanted_arm;
6229
6230 inst.operands[i].reg = val;
6231 inst.operands[i].isreg = 1;
6232 inst.operands[i].present = 1;
6233 }
6234 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6235 != FAIL)
6236 {
6237 /* Cases 0, 1, 2, 3, 5 (D only). */
6238 if (skip_past_comma (&ptr) == FAIL)
6239 goto wanted_comma;
6240
6241 inst.operands[i].reg = val;
6242 inst.operands[i].isreg = 1;
6243 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6244 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6245 inst.operands[i].isvec = 1;
6246 inst.operands[i].vectype = optype;
6247 inst.operands[i++].present = 1;
6248
6249 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6250 {
6251 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6252 Case 13: VMOV <Sd>, <Rm> */
6253 inst.operands[i].reg = val;
6254 inst.operands[i].isreg = 1;
6255 inst.operands[i].present = 1;
6256
6257 if (rtype == REG_TYPE_NQ)
6258 {
6259 first_error (_("can't use Neon quad register here"));
6260 return FAIL;
6261 }
6262 else if (rtype != REG_TYPE_VFS)
6263 {
6264 i++;
6265 if (skip_past_comma (&ptr) == FAIL)
6266 goto wanted_comma;
6267 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6268 goto wanted_arm;
6269 inst.operands[i].reg = val;
6270 inst.operands[i].isreg = 1;
6271 inst.operands[i].present = 1;
6272 }
6273 }
6274 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6275 &optype)) != FAIL)
6276 {
6277 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6278 Case 1: VMOV<c><q> <Dd>, <Dm>
6279 Case 8: VMOV.F32 <Sd>, <Sm>
6280 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6281
6282 inst.operands[i].reg = val;
6283 inst.operands[i].isreg = 1;
6284 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6285 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6286 inst.operands[i].isvec = 1;
6287 inst.operands[i].vectype = optype;
6288 inst.operands[i].present = 1;
6289
6290 if (skip_past_comma (&ptr) == SUCCESS)
6291 {
6292 /* Case 15. */
6293 i++;
6294
6295 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6296 goto wanted_arm;
6297
6298 inst.operands[i].reg = val;
6299 inst.operands[i].isreg = 1;
6300 inst.operands[i++].present = 1;
6301
6302 if (skip_past_comma (&ptr) == FAIL)
6303 goto wanted_comma;
6304
6305 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6306 goto wanted_arm;
6307
6308 inst.operands[i].reg = val;
6309 inst.operands[i].isreg = 1;
6310 inst.operands[i].present = 1;
6311 }
6312 }
6313 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6314 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6315 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6316 Case 10: VMOV.F32 <Sd>, #<imm>
6317 Case 11: VMOV.F64 <Dd>, #<imm> */
6318 inst.operands[i].immisfloat = 1;
6319 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6320 == SUCCESS)
6321 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6322 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6323 ;
6324 else
6325 {
6326 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6327 return FAIL;
6328 }
6329 }
6330 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6331 {
6332 /* Cases 6, 7. */
6333 inst.operands[i].reg = val;
6334 inst.operands[i].isreg = 1;
6335 inst.operands[i++].present = 1;
6336
6337 if (skip_past_comma (&ptr) == FAIL)
6338 goto wanted_comma;
6339
6340 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6341 {
6342 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6343 inst.operands[i].reg = val;
6344 inst.operands[i].isscalar = 1;
6345 inst.operands[i].present = 1;
6346 inst.operands[i].vectype = optype;
6347 }
6348 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6349 {
6350 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6351 inst.operands[i].reg = val;
6352 inst.operands[i].isreg = 1;
6353 inst.operands[i++].present = 1;
6354
6355 if (skip_past_comma (&ptr) == FAIL)
6356 goto wanted_comma;
6357
6358 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6359 == FAIL)
6360 {
6361 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6362 return FAIL;
6363 }
6364
6365 inst.operands[i].reg = val;
6366 inst.operands[i].isreg = 1;
6367 inst.operands[i].isvec = 1;
6368 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6369 inst.operands[i].vectype = optype;
6370 inst.operands[i].present = 1;
6371
6372 if (rtype == REG_TYPE_VFS)
6373 {
6374 /* Case 14. */
6375 i++;
6376 if (skip_past_comma (&ptr) == FAIL)
6377 goto wanted_comma;
6378 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6379 &optype)) == FAIL)
6380 {
6381 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6382 return FAIL;
6383 }
6384 inst.operands[i].reg = val;
6385 inst.operands[i].isreg = 1;
6386 inst.operands[i].isvec = 1;
6387 inst.operands[i].issingle = 1;
6388 inst.operands[i].vectype = optype;
6389 inst.operands[i].present = 1;
6390 }
6391 }
6392 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6393 != FAIL)
6394 {
6395 /* Case 13. */
6396 inst.operands[i].reg = val;
6397 inst.operands[i].isreg = 1;
6398 inst.operands[i].isvec = 1;
6399 inst.operands[i].issingle = 1;
6400 inst.operands[i].vectype = optype;
6401 inst.operands[i].present = 1;
6402 }
6403 }
6404 else
6405 {
6406 first_error (_("parse error"));
6407 return FAIL;
6408 }
6409
6410 /* Successfully parsed the operands. Update args. */
6411 *which_operand = i;
6412 *str = ptr;
6413 return SUCCESS;
6414
6415 wanted_comma:
6416 first_error (_("expected comma"));
6417 return FAIL;
6418
6419 wanted_arm:
6420 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6421 return FAIL;
6422 }
6423
6424 /* Use this macro when the operand constraints are different
6425 for ARM and THUMB (e.g. ldrd). */
6426 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6427 ((arm_operand) | ((thumb_operand) << 16))
6428
6429 /* Matcher codes for parse_operands. */
6430 enum operand_parse_code
6431 {
6432 OP_stop, /* end of line */
6433
6434 OP_RR, /* ARM register */
6435 OP_RRnpc, /* ARM register, not r15 */
6436 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6437 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6438 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6439 optional trailing ! */
6440 OP_RRw, /* ARM register, not r15, optional trailing ! */
6441 OP_RCP, /* Coprocessor number */
6442 OP_RCN, /* Coprocessor register */
6443 OP_RF, /* FPA register */
6444 OP_RVS, /* VFP single precision register */
6445 OP_RVD, /* VFP double precision register (0..15) */
6446 OP_RND, /* Neon double precision register (0..31) */
6447 OP_RNQ, /* Neon quad precision register */
6448 OP_RVSD, /* VFP single or double precision register */
6449 OP_RNDQ, /* Neon double or quad precision register */
6450 OP_RNSDQ, /* Neon single, double or quad precision register */
6451 OP_RNSC, /* Neon scalar D[X] */
6452 OP_RVC, /* VFP control register */
6453 OP_RMF, /* Maverick F register */
6454 OP_RMD, /* Maverick D register */
6455 OP_RMFX, /* Maverick FX register */
6456 OP_RMDX, /* Maverick DX register */
6457 OP_RMAX, /* Maverick AX register */
6458 OP_RMDS, /* Maverick DSPSC register */
6459 OP_RIWR, /* iWMMXt wR register */
6460 OP_RIWC, /* iWMMXt wC register */
6461 OP_RIWG, /* iWMMXt wCG register */
6462 OP_RXA, /* XScale accumulator register */
6463
6464 OP_REGLST, /* ARM register list */
6465 OP_VRSLST, /* VFP single-precision register list */
6466 OP_VRDLST, /* VFP double-precision register list */
6467 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6468 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6469 OP_NSTRLST, /* Neon element/structure list */
6470
6471 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6472 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6473 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6474 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6475 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6476 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6477 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6478 OP_VMOV, /* Neon VMOV operands. */
6479 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6480 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6481 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6482
6483 OP_I0, /* immediate zero */
6484 OP_I7, /* immediate value 0 .. 7 */
6485 OP_I15, /* 0 .. 15 */
6486 OP_I16, /* 1 .. 16 */
6487 OP_I16z, /* 0 .. 16 */
6488 OP_I31, /* 0 .. 31 */
6489 OP_I31w, /* 0 .. 31, optional trailing ! */
6490 OP_I32, /* 1 .. 32 */
6491 OP_I32z, /* 0 .. 32 */
6492 OP_I63, /* 0 .. 63 */
6493 OP_I63s, /* -64 .. 63 */
6494 OP_I64, /* 1 .. 64 */
6495 OP_I64z, /* 0 .. 64 */
6496 OP_I255, /* 0 .. 255 */
6497
6498 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6499 OP_I7b, /* 0 .. 7 */
6500 OP_I15b, /* 0 .. 15 */
6501 OP_I31b, /* 0 .. 31 */
6502
6503 OP_SH, /* shifter operand */
6504 OP_SHG, /* shifter operand with possible group relocation */
6505 OP_ADDR, /* Memory address expression (any mode) */
6506 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6507 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6508 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6509 OP_EXP, /* arbitrary expression */
6510 OP_EXPi, /* same, with optional immediate prefix */
6511 OP_EXPr, /* same, with optional relocation suffix */
6512 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6513
6514 OP_CPSF, /* CPS flags */
6515 OP_ENDI, /* Endianness specifier */
6516 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6517 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6518 OP_COND, /* conditional code */
6519 OP_TB, /* Table branch. */
6520
6521 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6522
6523 OP_RRnpc_I0, /* ARM register or literal 0 */
6524 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6525 OP_RR_EXi, /* ARM register or expression with imm prefix */
6526 OP_RF_IF, /* FPA register or immediate */
6527 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6528 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6529
6530 /* Optional operands. */
6531 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6532 OP_oI31b, /* 0 .. 31 */
6533 OP_oI32b, /* 1 .. 32 */
6534 OP_oI32z, /* 0 .. 32 */
6535 OP_oIffffb, /* 0 .. 65535 */
6536 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6537
6538 OP_oRR, /* ARM register */
6539 OP_oRRnpc, /* ARM register, not the PC */
6540 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6541 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6542 OP_oRND, /* Optional Neon double precision register */
6543 OP_oRNQ, /* Optional Neon quad precision register */
6544 OP_oRNDQ, /* Optional Neon double or quad precision register */
6545 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6546 OP_oSHll, /* LSL immediate */
6547 OP_oSHar, /* ASR immediate */
6548 OP_oSHllar, /* LSL or ASR immediate */
6549 OP_oROR, /* ROR 0/8/16/24 */
6550 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6551
6552 /* Some pre-defined mixed (ARM/THUMB) operands. */
6553 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6554 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6555 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6556
6557 OP_FIRST_OPTIONAL = OP_oI7b
6558 };
6559
6560 /* Generic instruction operand parser. This does no encoding and no
6561 semantic validation; it merely squirrels values away in the inst
6562 structure. Returns SUCCESS or FAIL depending on whether the
6563 specified grammar matched. */
6564 static int
6565 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6566 {
6567 unsigned const int *upat = pattern;
6568 char *backtrack_pos = 0;
6569 const char *backtrack_error = 0;
6570 int i, val = 0, backtrack_index = 0;
6571 enum arm_reg_type rtype;
6572 parse_operand_result result;
6573 unsigned int op_parse_code;
6574
6575 #define po_char_or_fail(chr) \
6576 do \
6577 { \
6578 if (skip_past_char (&str, chr) == FAIL) \
6579 goto bad_args; \
6580 } \
6581 while (0)
6582
6583 #define po_reg_or_fail(regtype) \
6584 do \
6585 { \
6586 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6587 & inst.operands[i].vectype); \
6588 if (val == FAIL) \
6589 { \
6590 first_error (_(reg_expected_msgs[regtype])); \
6591 goto failure; \
6592 } \
6593 inst.operands[i].reg = val; \
6594 inst.operands[i].isreg = 1; \
6595 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6596 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6597 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6598 || rtype == REG_TYPE_VFD \
6599 || rtype == REG_TYPE_NQ); \
6600 } \
6601 while (0)
6602
6603 #define po_reg_or_goto(regtype, label) \
6604 do \
6605 { \
6606 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6607 & inst.operands[i].vectype); \
6608 if (val == FAIL) \
6609 goto label; \
6610 \
6611 inst.operands[i].reg = val; \
6612 inst.operands[i].isreg = 1; \
6613 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6614 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6615 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6616 || rtype == REG_TYPE_VFD \
6617 || rtype == REG_TYPE_NQ); \
6618 } \
6619 while (0)
6620
6621 #define po_imm_or_fail(min, max, popt) \
6622 do \
6623 { \
6624 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6625 goto failure; \
6626 inst.operands[i].imm = val; \
6627 } \
6628 while (0)
6629
6630 #define po_scalar_or_goto(elsz, label) \
6631 do \
6632 { \
6633 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6634 if (val == FAIL) \
6635 goto label; \
6636 inst.operands[i].reg = val; \
6637 inst.operands[i].isscalar = 1; \
6638 } \
6639 while (0)
6640
6641 #define po_misc_or_fail(expr) \
6642 do \
6643 { \
6644 if (expr) \
6645 goto failure; \
6646 } \
6647 while (0)
6648
6649 #define po_misc_or_fail_no_backtrack(expr) \
6650 do \
6651 { \
6652 result = expr; \
6653 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6654 backtrack_pos = 0; \
6655 if (result != PARSE_OPERAND_SUCCESS) \
6656 goto failure; \
6657 } \
6658 while (0)
6659
6660 #define po_barrier_or_imm(str) \
6661 do \
6662 { \
6663 val = parse_barrier (&str); \
6664 if (val == FAIL && ! ISALPHA (*str)) \
6665 goto immediate; \
6666 if (val == FAIL \
6667 /* ISB can only take SY as an option. */ \
6668 || ((inst.instruction & 0xf0) == 0x60 \
6669 && val != 0xf)) \
6670 { \
6671 inst.error = _("invalid barrier type"); \
6672 backtrack_pos = 0; \
6673 goto failure; \
6674 } \
6675 } \
6676 while (0)
6677
6678 skip_whitespace (str);
6679
6680 for (i = 0; upat[i] != OP_stop; i++)
6681 {
6682 op_parse_code = upat[i];
6683 if (op_parse_code >= 1<<16)
6684 op_parse_code = thumb ? (op_parse_code >> 16)
6685 : (op_parse_code & ((1<<16)-1));
6686
6687 if (op_parse_code >= OP_FIRST_OPTIONAL)
6688 {
6689 /* Remember where we are in case we need to backtrack. */
6690 gas_assert (!backtrack_pos);
6691 backtrack_pos = str;
6692 backtrack_error = inst.error;
6693 backtrack_index = i;
6694 }
6695
6696 if (i > 0 && (i > 1 || inst.operands[0].present))
6697 po_char_or_fail (',');
6698
6699 switch (op_parse_code)
6700 {
6701 /* Registers */
6702 case OP_oRRnpc:
6703 case OP_oRRnpcsp:
6704 case OP_RRnpc:
6705 case OP_RRnpcsp:
6706 case OP_oRR:
6707 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6708 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6709 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6710 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6711 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6712 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6713 case OP_oRND:
6714 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6715 case OP_RVC:
6716 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6717 break;
6718 /* Also accept generic coprocessor regs for unknown registers. */
6719 coproc_reg:
6720 po_reg_or_fail (REG_TYPE_CN);
6721 break;
6722 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6723 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6724 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6725 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6726 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6727 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6728 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6729 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6730 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6731 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6732 case OP_oRNQ:
6733 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6734 case OP_oRNDQ:
6735 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6736 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6737 case OP_oRNSDQ:
6738 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6739
6740 /* Neon scalar. Using an element size of 8 means that some invalid
6741 scalars are accepted here, so deal with those in later code. */
6742 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6743
6744 case OP_RNDQ_I0:
6745 {
6746 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6747 break;
6748 try_imm0:
6749 po_imm_or_fail (0, 0, TRUE);
6750 }
6751 break;
6752
6753 case OP_RVSD_I0:
6754 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6755 break;
6756
6757 case OP_RSVD_FI0:
6758 {
6759 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6760 break;
6761 try_ifimm0:
6762 if (parse_ifimm_zero (&str))
6763 inst.operands[i].imm = 0;
6764 else
6765 {
6766 inst.error
6767 = _("only floating point zero is allowed as immediate value");
6768 goto failure;
6769 }
6770 }
6771 break;
6772
6773 case OP_RR_RNSC:
6774 {
6775 po_scalar_or_goto (8, try_rr);
6776 break;
6777 try_rr:
6778 po_reg_or_fail (REG_TYPE_RN);
6779 }
6780 break;
6781
6782 case OP_RNSDQ_RNSC:
6783 {
6784 po_scalar_or_goto (8, try_nsdq);
6785 break;
6786 try_nsdq:
6787 po_reg_or_fail (REG_TYPE_NSDQ);
6788 }
6789 break;
6790
6791 case OP_RNDQ_RNSC:
6792 {
6793 po_scalar_or_goto (8, try_ndq);
6794 break;
6795 try_ndq:
6796 po_reg_or_fail (REG_TYPE_NDQ);
6797 }
6798 break;
6799
6800 case OP_RND_RNSC:
6801 {
6802 po_scalar_or_goto (8, try_vfd);
6803 break;
6804 try_vfd:
6805 po_reg_or_fail (REG_TYPE_VFD);
6806 }
6807 break;
6808
6809 case OP_VMOV:
6810 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6811 not careful then bad things might happen. */
6812 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6813 break;
6814
6815 case OP_RNDQ_Ibig:
6816 {
6817 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6818 break;
6819 try_immbig:
6820 /* There's a possibility of getting a 64-bit immediate here, so
6821 we need special handling. */
6822 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6823 == FAIL)
6824 {
6825 inst.error = _("immediate value is out of range");
6826 goto failure;
6827 }
6828 }
6829 break;
6830
6831 case OP_RNDQ_I63b:
6832 {
6833 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6834 break;
6835 try_shimm:
6836 po_imm_or_fail (0, 63, TRUE);
6837 }
6838 break;
6839
6840 case OP_RRnpcb:
6841 po_char_or_fail ('[');
6842 po_reg_or_fail (REG_TYPE_RN);
6843 po_char_or_fail (']');
6844 break;
6845
6846 case OP_RRnpctw:
6847 case OP_RRw:
6848 case OP_oRRw:
6849 po_reg_or_fail (REG_TYPE_RN);
6850 if (skip_past_char (&str, '!') == SUCCESS)
6851 inst.operands[i].writeback = 1;
6852 break;
6853
6854 /* Immediates */
6855 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6856 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6857 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6858 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6859 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6860 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6861 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6862 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6863 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6864 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6865 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6866 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6867
6868 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6869 case OP_oI7b:
6870 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6871 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6872 case OP_oI31b:
6873 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6874 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6875 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6876 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6877
6878 /* Immediate variants */
6879 case OP_oI255c:
6880 po_char_or_fail ('{');
6881 po_imm_or_fail (0, 255, TRUE);
6882 po_char_or_fail ('}');
6883 break;
6884
6885 case OP_I31w:
6886 /* The expression parser chokes on a trailing !, so we have
6887 to find it first and zap it. */
6888 {
6889 char *s = str;
6890 while (*s && *s != ',')
6891 s++;
6892 if (s[-1] == '!')
6893 {
6894 s[-1] = '\0';
6895 inst.operands[i].writeback = 1;
6896 }
6897 po_imm_or_fail (0, 31, TRUE);
6898 if (str == s - 1)
6899 str = s;
6900 }
6901 break;
6902
6903 /* Expressions */
6904 case OP_EXPi: EXPi:
6905 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6906 GE_OPT_PREFIX));
6907 break;
6908
6909 case OP_EXP:
6910 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6911 GE_NO_PREFIX));
6912 break;
6913
6914 case OP_EXPr: EXPr:
6915 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6916 GE_NO_PREFIX));
6917 if (inst.reloc.exp.X_op == O_symbol)
6918 {
6919 val = parse_reloc (&str);
6920 if (val == -1)
6921 {
6922 inst.error = _("unrecognized relocation suffix");
6923 goto failure;
6924 }
6925 else if (val != BFD_RELOC_UNUSED)
6926 {
6927 inst.operands[i].imm = val;
6928 inst.operands[i].hasreloc = 1;
6929 }
6930 }
6931 break;
6932
6933 /* Operand for MOVW or MOVT. */
6934 case OP_HALF:
6935 po_misc_or_fail (parse_half (&str));
6936 break;
6937
6938 /* Register or expression. */
6939 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6940 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6941
6942 /* Register or immediate. */
6943 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6944 I0: po_imm_or_fail (0, 0, FALSE); break;
6945
6946 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6947 IF:
6948 if (!is_immediate_prefix (*str))
6949 goto bad_args;
6950 str++;
6951 val = parse_fpa_immediate (&str);
6952 if (val == FAIL)
6953 goto failure;
6954 /* FPA immediates are encoded as registers 8-15.
6955 parse_fpa_immediate has already applied the offset. */
6956 inst.operands[i].reg = val;
6957 inst.operands[i].isreg = 1;
6958 break;
6959
6960 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6961 I32z: po_imm_or_fail (0, 32, FALSE); break;
6962
6963 /* Two kinds of register. */
6964 case OP_RIWR_RIWC:
6965 {
6966 struct reg_entry *rege = arm_reg_parse_multi (&str);
6967 if (!rege
6968 || (rege->type != REG_TYPE_MMXWR
6969 && rege->type != REG_TYPE_MMXWC
6970 && rege->type != REG_TYPE_MMXWCG))
6971 {
6972 inst.error = _("iWMMXt data or control register expected");
6973 goto failure;
6974 }
6975 inst.operands[i].reg = rege->number;
6976 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6977 }
6978 break;
6979
6980 case OP_RIWC_RIWG:
6981 {
6982 struct reg_entry *rege = arm_reg_parse_multi (&str);
6983 if (!rege
6984 || (rege->type != REG_TYPE_MMXWC
6985 && rege->type != REG_TYPE_MMXWCG))
6986 {
6987 inst.error = _("iWMMXt control register expected");
6988 goto failure;
6989 }
6990 inst.operands[i].reg = rege->number;
6991 inst.operands[i].isreg = 1;
6992 }
6993 break;
6994
6995 /* Misc */
6996 case OP_CPSF: val = parse_cps_flags (&str); break;
6997 case OP_ENDI: val = parse_endian_specifier (&str); break;
6998 case OP_oROR: val = parse_ror (&str); break;
6999 case OP_COND: val = parse_cond (&str); break;
7000 case OP_oBARRIER_I15:
7001 po_barrier_or_imm (str); break;
7002 immediate:
7003 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7004 goto failure;
7005 break;
7006
7007 case OP_wPSR:
7008 case OP_rPSR:
7009 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7010 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7011 {
7012 inst.error = _("Banked registers are not available with this "
7013 "architecture.");
7014 goto failure;
7015 }
7016 break;
7017 try_psr:
7018 val = parse_psr (&str, op_parse_code == OP_wPSR);
7019 break;
7020
7021 case OP_APSR_RR:
7022 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7023 break;
7024 try_apsr:
7025 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7026 instruction). */
7027 if (strncasecmp (str, "APSR_", 5) == 0)
7028 {
7029 unsigned found = 0;
7030 str += 5;
7031 while (found < 15)
7032 switch (*str++)
7033 {
7034 case 'c': found = (found & 1) ? 16 : found | 1; break;
7035 case 'n': found = (found & 2) ? 16 : found | 2; break;
7036 case 'z': found = (found & 4) ? 16 : found | 4; break;
7037 case 'v': found = (found & 8) ? 16 : found | 8; break;
7038 default: found = 16;
7039 }
7040 if (found != 15)
7041 goto failure;
7042 inst.operands[i].isvec = 1;
7043 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7044 inst.operands[i].reg = REG_PC;
7045 }
7046 else
7047 goto failure;
7048 break;
7049
7050 case OP_TB:
7051 po_misc_or_fail (parse_tb (&str));
7052 break;
7053
7054 /* Register lists. */
7055 case OP_REGLST:
7056 val = parse_reg_list (&str);
7057 if (*str == '^')
7058 {
7059 inst.operands[i].writeback = 1;
7060 str++;
7061 }
7062 break;
7063
7064 case OP_VRSLST:
7065 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
7066 break;
7067
7068 case OP_VRDLST:
7069 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
7070 break;
7071
7072 case OP_VRSDLST:
7073 /* Allow Q registers too. */
7074 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7075 REGLIST_NEON_D);
7076 if (val == FAIL)
7077 {
7078 inst.error = NULL;
7079 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7080 REGLIST_VFP_S);
7081 inst.operands[i].issingle = 1;
7082 }
7083 break;
7084
7085 case OP_NRDLST:
7086 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7087 REGLIST_NEON_D);
7088 break;
7089
7090 case OP_NSTRLST:
7091 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7092 &inst.operands[i].vectype);
7093 break;
7094
7095 /* Addressing modes */
7096 case OP_ADDR:
7097 po_misc_or_fail (parse_address (&str, i));
7098 break;
7099
7100 case OP_ADDRGLDR:
7101 po_misc_or_fail_no_backtrack (
7102 parse_address_group_reloc (&str, i, GROUP_LDR));
7103 break;
7104
7105 case OP_ADDRGLDRS:
7106 po_misc_or_fail_no_backtrack (
7107 parse_address_group_reloc (&str, i, GROUP_LDRS));
7108 break;
7109
7110 case OP_ADDRGLDC:
7111 po_misc_or_fail_no_backtrack (
7112 parse_address_group_reloc (&str, i, GROUP_LDC));
7113 break;
7114
7115 case OP_SH:
7116 po_misc_or_fail (parse_shifter_operand (&str, i));
7117 break;
7118
7119 case OP_SHG:
7120 po_misc_or_fail_no_backtrack (
7121 parse_shifter_operand_group_reloc (&str, i));
7122 break;
7123
7124 case OP_oSHll:
7125 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7126 break;
7127
7128 case OP_oSHar:
7129 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7130 break;
7131
7132 case OP_oSHllar:
7133 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7134 break;
7135
7136 default:
7137 as_fatal (_("unhandled operand code %d"), op_parse_code);
7138 }
7139
7140 /* Various value-based sanity checks and shared operations. We
7141 do not signal immediate failures for the register constraints;
7142 this allows a syntax error to take precedence. */
7143 switch (op_parse_code)
7144 {
7145 case OP_oRRnpc:
7146 case OP_RRnpc:
7147 case OP_RRnpcb:
7148 case OP_RRw:
7149 case OP_oRRw:
7150 case OP_RRnpc_I0:
7151 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7152 inst.error = BAD_PC;
7153 break;
7154
7155 case OP_oRRnpcsp:
7156 case OP_RRnpcsp:
7157 if (inst.operands[i].isreg)
7158 {
7159 if (inst.operands[i].reg == REG_PC)
7160 inst.error = BAD_PC;
7161 else if (inst.operands[i].reg == REG_SP)
7162 inst.error = BAD_SP;
7163 }
7164 break;
7165
7166 case OP_RRnpctw:
7167 if (inst.operands[i].isreg
7168 && inst.operands[i].reg == REG_PC
7169 && (inst.operands[i].writeback || thumb))
7170 inst.error = BAD_PC;
7171 break;
7172
7173 case OP_CPSF:
7174 case OP_ENDI:
7175 case OP_oROR:
7176 case OP_wPSR:
7177 case OP_rPSR:
7178 case OP_COND:
7179 case OP_oBARRIER_I15:
7180 case OP_REGLST:
7181 case OP_VRSLST:
7182 case OP_VRDLST:
7183 case OP_VRSDLST:
7184 case OP_NRDLST:
7185 case OP_NSTRLST:
7186 if (val == FAIL)
7187 goto failure;
7188 inst.operands[i].imm = val;
7189 break;
7190
7191 default:
7192 break;
7193 }
7194
7195 /* If we get here, this operand was successfully parsed. */
7196 inst.operands[i].present = 1;
7197 continue;
7198
7199 bad_args:
7200 inst.error = BAD_ARGS;
7201
7202 failure:
7203 if (!backtrack_pos)
7204 {
7205 /* The parse routine should already have set inst.error, but set a
7206 default here just in case. */
7207 if (!inst.error)
7208 inst.error = _("syntax error");
7209 return FAIL;
7210 }
7211
7212 /* Do not backtrack over a trailing optional argument that
7213 absorbed some text. We will only fail again, with the
7214 'garbage following instruction' error message, which is
7215 probably less helpful than the current one. */
7216 if (backtrack_index == i && backtrack_pos != str
7217 && upat[i+1] == OP_stop)
7218 {
7219 if (!inst.error)
7220 inst.error = _("syntax error");
7221 return FAIL;
7222 }
7223
7224 /* Try again, skipping the optional argument at backtrack_pos. */
7225 str = backtrack_pos;
7226 inst.error = backtrack_error;
7227 inst.operands[backtrack_index].present = 0;
7228 i = backtrack_index;
7229 backtrack_pos = 0;
7230 }
7231
7232 /* Check that we have parsed all the arguments. */
7233 if (*str != '\0' && !inst.error)
7234 inst.error = _("garbage following instruction");
7235
7236 return inst.error ? FAIL : SUCCESS;
7237 }
7238
7239 #undef po_char_or_fail
7240 #undef po_reg_or_fail
7241 #undef po_reg_or_goto
7242 #undef po_imm_or_fail
7243 #undef po_scalar_or_fail
7244 #undef po_barrier_or_imm
7245
7246 /* Shorthand macro for instruction encoding functions issuing errors. */
7247 #define constraint(expr, err) \
7248 do \
7249 { \
7250 if (expr) \
7251 { \
7252 inst.error = err; \
7253 return; \
7254 } \
7255 } \
7256 while (0)
7257
7258 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7259 instructions are unpredictable if these registers are used. This
7260 is the BadReg predicate in ARM's Thumb-2 documentation. */
7261 #define reject_bad_reg(reg) \
7262 do \
7263 if (reg == REG_SP || reg == REG_PC) \
7264 { \
7265 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
7266 return; \
7267 } \
7268 while (0)
7269
7270 /* If REG is R13 (the stack pointer), warn that its use is
7271 deprecated. */
7272 #define warn_deprecated_sp(reg) \
7273 do \
7274 if (warn_on_deprecated && reg == REG_SP) \
7275 as_tsktsk (_("use of r13 is deprecated")); \
7276 while (0)
7277
7278 /* Functions for operand encoding. ARM, then Thumb. */
7279
7280 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7281
7282 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7283
7284 The only binary encoding difference is the Coprocessor number. Coprocessor
7285 9 is used for half-precision calculations or conversions. The format of the
7286 instruction is the same as the equivalent Coprocessor 10 instuction that
7287 exists for Single-Precision operation. */
7288
7289 static void
7290 do_scalar_fp16_v82_encode (void)
7291 {
7292 if (inst.cond != COND_ALWAYS)
7293 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7294 " the behaviour is UNPREDICTABLE"));
7295 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7296 _(BAD_FP16));
7297
7298 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7299 mark_feature_used (&arm_ext_fp16);
7300 }
7301
7302 /* If VAL can be encoded in the immediate field of an ARM instruction,
7303 return the encoded form. Otherwise, return FAIL. */
7304
7305 static unsigned int
7306 encode_arm_immediate (unsigned int val)
7307 {
7308 unsigned int a, i;
7309
7310 if (val <= 0xff)
7311 return val;
7312
7313 for (i = 2; i < 32; i += 2)
7314 if ((a = rotate_left (val, i)) <= 0xff)
7315 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7316
7317 return FAIL;
7318 }
7319
7320 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7321 return the encoded form. Otherwise, return FAIL. */
7322 static unsigned int
7323 encode_thumb32_immediate (unsigned int val)
7324 {
7325 unsigned int a, i;
7326
7327 if (val <= 0xff)
7328 return val;
7329
7330 for (i = 1; i <= 24; i++)
7331 {
7332 a = val >> i;
7333 if ((val & ~(0xff << i)) == 0)
7334 return ((val >> i) & 0x7f) | ((32 - i) << 7);
7335 }
7336
7337 a = val & 0xff;
7338 if (val == ((a << 16) | a))
7339 return 0x100 | a;
7340 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7341 return 0x300 | a;
7342
7343 a = val & 0xff00;
7344 if (val == ((a << 16) | a))
7345 return 0x200 | (a >> 8);
7346
7347 return FAIL;
7348 }
7349 /* Encode a VFP SP or DP register number into inst.instruction. */
7350
7351 static void
7352 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7353 {
7354 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7355 && reg > 15)
7356 {
7357 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
7358 {
7359 if (thumb_mode)
7360 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7361 fpu_vfp_ext_d32);
7362 else
7363 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7364 fpu_vfp_ext_d32);
7365 }
7366 else
7367 {
7368 first_error (_("D register out of range for selected VFP version"));
7369 return;
7370 }
7371 }
7372
7373 switch (pos)
7374 {
7375 case VFP_REG_Sd:
7376 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7377 break;
7378
7379 case VFP_REG_Sn:
7380 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7381 break;
7382
7383 case VFP_REG_Sm:
7384 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7385 break;
7386
7387 case VFP_REG_Dd:
7388 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7389 break;
7390
7391 case VFP_REG_Dn:
7392 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7393 break;
7394
7395 case VFP_REG_Dm:
7396 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7397 break;
7398
7399 default:
7400 abort ();
7401 }
7402 }
7403
7404 /* Encode a <shift> in an ARM-format instruction. The immediate,
7405 if any, is handled by md_apply_fix. */
7406 static void
7407 encode_arm_shift (int i)
7408 {
7409 if (inst.operands[i].shift_kind == SHIFT_RRX)
7410 inst.instruction |= SHIFT_ROR << 5;
7411 else
7412 {
7413 inst.instruction |= inst.operands[i].shift_kind << 5;
7414 if (inst.operands[i].immisreg)
7415 {
7416 inst.instruction |= SHIFT_BY_REG;
7417 inst.instruction |= inst.operands[i].imm << 8;
7418 }
7419 else
7420 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7421 }
7422 }
7423
7424 static void
7425 encode_arm_shifter_operand (int i)
7426 {
7427 if (inst.operands[i].isreg)
7428 {
7429 inst.instruction |= inst.operands[i].reg;
7430 encode_arm_shift (i);
7431 }
7432 else
7433 {
7434 inst.instruction |= INST_IMMEDIATE;
7435 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7436 inst.instruction |= inst.operands[i].imm;
7437 }
7438 }
7439
7440 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7441 static void
7442 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7443 {
7444 /* PR 14260:
7445 Generate an error if the operand is not a register. */
7446 constraint (!inst.operands[i].isreg,
7447 _("Instruction does not support =N addresses"));
7448
7449 inst.instruction |= inst.operands[i].reg << 16;
7450
7451 if (inst.operands[i].preind)
7452 {
7453 if (is_t)
7454 {
7455 inst.error = _("instruction does not accept preindexed addressing");
7456 return;
7457 }
7458 inst.instruction |= PRE_INDEX;
7459 if (inst.operands[i].writeback)
7460 inst.instruction |= WRITE_BACK;
7461
7462 }
7463 else if (inst.operands[i].postind)
7464 {
7465 gas_assert (inst.operands[i].writeback);
7466 if (is_t)
7467 inst.instruction |= WRITE_BACK;
7468 }
7469 else /* unindexed - only for coprocessor */
7470 {
7471 inst.error = _("instruction does not accept unindexed addressing");
7472 return;
7473 }
7474
7475 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7476 && (((inst.instruction & 0x000f0000) >> 16)
7477 == ((inst.instruction & 0x0000f000) >> 12)))
7478 as_warn ((inst.instruction & LOAD_BIT)
7479 ? _("destination register same as write-back base")
7480 : _("source register same as write-back base"));
7481 }
7482
7483 /* inst.operands[i] was set up by parse_address. Encode it into an
7484 ARM-format mode 2 load or store instruction. If is_t is true,
7485 reject forms that cannot be used with a T instruction (i.e. not
7486 post-indexed). */
7487 static void
7488 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7489 {
7490 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7491
7492 encode_arm_addr_mode_common (i, is_t);
7493
7494 if (inst.operands[i].immisreg)
7495 {
7496 constraint ((inst.operands[i].imm == REG_PC
7497 || (is_pc && inst.operands[i].writeback)),
7498 BAD_PC_ADDRESSING);
7499 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7500 inst.instruction |= inst.operands[i].imm;
7501 if (!inst.operands[i].negative)
7502 inst.instruction |= INDEX_UP;
7503 if (inst.operands[i].shifted)
7504 {
7505 if (inst.operands[i].shift_kind == SHIFT_RRX)
7506 inst.instruction |= SHIFT_ROR << 5;
7507 else
7508 {
7509 inst.instruction |= inst.operands[i].shift_kind << 5;
7510 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7511 }
7512 }
7513 }
7514 else /* immediate offset in inst.reloc */
7515 {
7516 if (is_pc && !inst.reloc.pc_rel)
7517 {
7518 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7519
7520 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7521 cannot use PC in addressing.
7522 PC cannot be used in writeback addressing, either. */
7523 constraint ((is_t || inst.operands[i].writeback),
7524 BAD_PC_ADDRESSING);
7525
7526 /* Use of PC in str is deprecated for ARMv7. */
7527 if (warn_on_deprecated
7528 && !is_load
7529 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7530 as_tsktsk (_("use of PC in this instruction is deprecated"));
7531 }
7532
7533 if (inst.reloc.type == BFD_RELOC_UNUSED)
7534 {
7535 /* Prefer + for zero encoded value. */
7536 if (!inst.operands[i].negative)
7537 inst.instruction |= INDEX_UP;
7538 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7539 }
7540 }
7541 }
7542
7543 /* inst.operands[i] was set up by parse_address. Encode it into an
7544 ARM-format mode 3 load or store instruction. Reject forms that
7545 cannot be used with such instructions. If is_t is true, reject
7546 forms that cannot be used with a T instruction (i.e. not
7547 post-indexed). */
7548 static void
7549 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7550 {
7551 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7552 {
7553 inst.error = _("instruction does not accept scaled register index");
7554 return;
7555 }
7556
7557 encode_arm_addr_mode_common (i, is_t);
7558
7559 if (inst.operands[i].immisreg)
7560 {
7561 constraint ((inst.operands[i].imm == REG_PC
7562 || (is_t && inst.operands[i].reg == REG_PC)),
7563 BAD_PC_ADDRESSING);
7564 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7565 BAD_PC_WRITEBACK);
7566 inst.instruction |= inst.operands[i].imm;
7567 if (!inst.operands[i].negative)
7568 inst.instruction |= INDEX_UP;
7569 }
7570 else /* immediate offset in inst.reloc */
7571 {
7572 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7573 && inst.operands[i].writeback),
7574 BAD_PC_WRITEBACK);
7575 inst.instruction |= HWOFFSET_IMM;
7576 if (inst.reloc.type == BFD_RELOC_UNUSED)
7577 {
7578 /* Prefer + for zero encoded value. */
7579 if (!inst.operands[i].negative)
7580 inst.instruction |= INDEX_UP;
7581
7582 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7583 }
7584 }
7585 }
7586
7587 /* Write immediate bits [7:0] to the following locations:
7588
7589 |28/24|23 19|18 16|15 4|3 0|
7590 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7591
7592 This function is used by VMOV/VMVN/VORR/VBIC. */
7593
7594 static void
7595 neon_write_immbits (unsigned immbits)
7596 {
7597 inst.instruction |= immbits & 0xf;
7598 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7599 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7600 }
7601
7602 /* Invert low-order SIZE bits of XHI:XLO. */
7603
7604 static void
7605 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7606 {
7607 unsigned immlo = xlo ? *xlo : 0;
7608 unsigned immhi = xhi ? *xhi : 0;
7609
7610 switch (size)
7611 {
7612 case 8:
7613 immlo = (~immlo) & 0xff;
7614 break;
7615
7616 case 16:
7617 immlo = (~immlo) & 0xffff;
7618 break;
7619
7620 case 64:
7621 immhi = (~immhi) & 0xffffffff;
7622 /* fall through. */
7623
7624 case 32:
7625 immlo = (~immlo) & 0xffffffff;
7626 break;
7627
7628 default:
7629 abort ();
7630 }
7631
7632 if (xlo)
7633 *xlo = immlo;
7634
7635 if (xhi)
7636 *xhi = immhi;
7637 }
7638
7639 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7640 A, B, C, D. */
7641
7642 static int
7643 neon_bits_same_in_bytes (unsigned imm)
7644 {
7645 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7646 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7647 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7648 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7649 }
7650
7651 /* For immediate of above form, return 0bABCD. */
7652
7653 static unsigned
7654 neon_squash_bits (unsigned imm)
7655 {
7656 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7657 | ((imm & 0x01000000) >> 21);
7658 }
7659
7660 /* Compress quarter-float representation to 0b...000 abcdefgh. */
7661
7662 static unsigned
7663 neon_qfloat_bits (unsigned imm)
7664 {
7665 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7666 }
7667
7668 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7669 the instruction. *OP is passed as the initial value of the op field, and
7670 may be set to a different value depending on the constant (i.e.
7671 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7672 MVN). If the immediate looks like a repeated pattern then also
7673 try smaller element sizes. */
7674
7675 static int
7676 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7677 unsigned *immbits, int *op, int size,
7678 enum neon_el_type type)
7679 {
7680 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7681 float. */
7682 if (type == NT_float && !float_p)
7683 return FAIL;
7684
7685 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
7686 {
7687 if (size != 32 || *op == 1)
7688 return FAIL;
7689 *immbits = neon_qfloat_bits (immlo);
7690 return 0xf;
7691 }
7692
7693 if (size == 64)
7694 {
7695 if (neon_bits_same_in_bytes (immhi)
7696 && neon_bits_same_in_bytes (immlo))
7697 {
7698 if (*op == 1)
7699 return FAIL;
7700 *immbits = (neon_squash_bits (immhi) << 4)
7701 | neon_squash_bits (immlo);
7702 *op = 1;
7703 return 0xe;
7704 }
7705
7706 if (immhi != immlo)
7707 return FAIL;
7708 }
7709
7710 if (size >= 32)
7711 {
7712 if (immlo == (immlo & 0x000000ff))
7713 {
7714 *immbits = immlo;
7715 return 0x0;
7716 }
7717 else if (immlo == (immlo & 0x0000ff00))
7718 {
7719 *immbits = immlo >> 8;
7720 return 0x2;
7721 }
7722 else if (immlo == (immlo & 0x00ff0000))
7723 {
7724 *immbits = immlo >> 16;
7725 return 0x4;
7726 }
7727 else if (immlo == (immlo & 0xff000000))
7728 {
7729 *immbits = immlo >> 24;
7730 return 0x6;
7731 }
7732 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7733 {
7734 *immbits = (immlo >> 8) & 0xff;
7735 return 0xc;
7736 }
7737 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7738 {
7739 *immbits = (immlo >> 16) & 0xff;
7740 return 0xd;
7741 }
7742
7743 if ((immlo & 0xffff) != (immlo >> 16))
7744 return FAIL;
7745 immlo &= 0xffff;
7746 }
7747
7748 if (size >= 16)
7749 {
7750 if (immlo == (immlo & 0x000000ff))
7751 {
7752 *immbits = immlo;
7753 return 0x8;
7754 }
7755 else if (immlo == (immlo & 0x0000ff00))
7756 {
7757 *immbits = immlo >> 8;
7758 return 0xa;
7759 }
7760
7761 if ((immlo & 0xff) != (immlo >> 8))
7762 return FAIL;
7763 immlo &= 0xff;
7764 }
7765
7766 if (immlo == (immlo & 0x000000ff))
7767 {
7768 /* Don't allow MVN with 8-bit immediate. */
7769 if (*op == 1)
7770 return FAIL;
7771 *immbits = immlo;
7772 return 0xe;
7773 }
7774
7775 return FAIL;
7776 }
7777
7778 #if defined BFD_HOST_64_BIT
7779 /* Returns TRUE if double precision value V may be cast
7780 to single precision without loss of accuracy. */
7781
7782 static bfd_boolean
7783 is_double_a_single (bfd_int64_t v)
7784 {
7785 int exp = (int)((v >> 52) & 0x7FF);
7786 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7787
7788 return (exp == 0 || exp == 0x7FF
7789 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7790 && (mantissa & 0x1FFFFFFFl) == 0;
7791 }
7792
7793 /* Returns a double precision value casted to single precision
7794 (ignoring the least significant bits in exponent and mantissa). */
7795
7796 static int
7797 double_to_single (bfd_int64_t v)
7798 {
7799 int sign = (int) ((v >> 63) & 1l);
7800 int exp = (int) ((v >> 52) & 0x7FF);
7801 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7802
7803 if (exp == 0x7FF)
7804 exp = 0xFF;
7805 else
7806 {
7807 exp = exp - 1023 + 127;
7808 if (exp >= 0xFF)
7809 {
7810 /* Infinity. */
7811 exp = 0x7F;
7812 mantissa = 0;
7813 }
7814 else if (exp < 0)
7815 {
7816 /* No denormalized numbers. */
7817 exp = 0;
7818 mantissa = 0;
7819 }
7820 }
7821 mantissa >>= 29;
7822 return (sign << 31) | (exp << 23) | mantissa;
7823 }
7824 #endif /* BFD_HOST_64_BIT */
7825
7826 enum lit_type
7827 {
7828 CONST_THUMB,
7829 CONST_ARM,
7830 CONST_VEC
7831 };
7832
7833 static void do_vfp_nsyn_opcode (const char *);
7834
7835 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7836 Determine whether it can be performed with a move instruction; if
7837 it can, convert inst.instruction to that move instruction and
7838 return TRUE; if it can't, convert inst.instruction to a literal-pool
7839 load and return FALSE. If this is not a valid thing to do in the
7840 current context, set inst.error and return TRUE.
7841
7842 inst.operands[i] describes the destination register. */
7843
7844 static bfd_boolean
7845 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
7846 {
7847 unsigned long tbit;
7848 bfd_boolean thumb_p = (t == CONST_THUMB);
7849 bfd_boolean arm_p = (t == CONST_ARM);
7850
7851 if (thumb_p)
7852 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7853 else
7854 tbit = LOAD_BIT;
7855
7856 if ((inst.instruction & tbit) == 0)
7857 {
7858 inst.error = _("invalid pseudo operation");
7859 return TRUE;
7860 }
7861
7862 if (inst.reloc.exp.X_op != O_constant
7863 && inst.reloc.exp.X_op != O_symbol
7864 && inst.reloc.exp.X_op != O_big)
7865 {
7866 inst.error = _("constant expression expected");
7867 return TRUE;
7868 }
7869
7870 if (inst.reloc.exp.X_op == O_constant
7871 || inst.reloc.exp.X_op == O_big)
7872 {
7873 #if defined BFD_HOST_64_BIT
7874 bfd_int64_t v;
7875 #else
7876 offsetT v;
7877 #endif
7878 if (inst.reloc.exp.X_op == O_big)
7879 {
7880 LITTLENUM_TYPE w[X_PRECISION];
7881 LITTLENUM_TYPE * l;
7882
7883 if (inst.reloc.exp.X_add_number == -1)
7884 {
7885 gen_to_words (w, X_PRECISION, E_PRECISION);
7886 l = w;
7887 /* FIXME: Should we check words w[2..5] ? */
7888 }
7889 else
7890 l = generic_bignum;
7891
7892 #if defined BFD_HOST_64_BIT
7893 v =
7894 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
7895 << LITTLENUM_NUMBER_OF_BITS)
7896 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
7897 << LITTLENUM_NUMBER_OF_BITS)
7898 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
7899 << LITTLENUM_NUMBER_OF_BITS)
7900 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
7901 #else
7902 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
7903 | (l[0] & LITTLENUM_MASK);
7904 #endif
7905 }
7906 else
7907 v = inst.reloc.exp.X_add_number;
7908
7909 if (!inst.operands[i].issingle)
7910 {
7911 if (thumb_p)
7912 {
7913 /* This can be encoded only for a low register. */
7914 if ((v & ~0xFF) == 0 && (inst.operands[i].reg < 8))
7915 {
7916 /* This can be done with a mov(1) instruction. */
7917 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7918 inst.instruction |= v;
7919 return TRUE;
7920 }
7921
7922 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
7923 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
7924 {
7925 /* Check if on thumb2 it can be done with a mov.w, mvn or
7926 movw instruction. */
7927 unsigned int newimm;
7928 bfd_boolean isNegated;
7929
7930 newimm = encode_thumb32_immediate (v);
7931 if (newimm != (unsigned int) FAIL)
7932 isNegated = FALSE;
7933 else
7934 {
7935 newimm = encode_thumb32_immediate (~v);
7936 if (newimm != (unsigned int) FAIL)
7937 isNegated = TRUE;
7938 }
7939
7940 /* The number can be loaded with a mov.w or mvn
7941 instruction. */
7942 if (newimm != (unsigned int) FAIL
7943 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
7944 {
7945 inst.instruction = (0xf04f0000 /* MOV.W. */
7946 | (inst.operands[i].reg << 8));
7947 /* Change to MOVN. */
7948 inst.instruction |= (isNegated ? 0x200000 : 0);
7949 inst.instruction |= (newimm & 0x800) << 15;
7950 inst.instruction |= (newimm & 0x700) << 4;
7951 inst.instruction |= (newimm & 0x0ff);
7952 return TRUE;
7953 }
7954 /* The number can be loaded with a movw instruction. */
7955 else if ((v & ~0xFFFF) == 0
7956 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
7957 {
7958 int imm = v & 0xFFFF;
7959
7960 inst.instruction = 0xf2400000; /* MOVW. */
7961 inst.instruction |= (inst.operands[i].reg << 8);
7962 inst.instruction |= (imm & 0xf000) << 4;
7963 inst.instruction |= (imm & 0x0800) << 15;
7964 inst.instruction |= (imm & 0x0700) << 4;
7965 inst.instruction |= (imm & 0x00ff);
7966 return TRUE;
7967 }
7968 }
7969 }
7970 else if (arm_p)
7971 {
7972 int value = encode_arm_immediate (v);
7973
7974 if (value != FAIL)
7975 {
7976 /* This can be done with a mov instruction. */
7977 inst.instruction &= LITERAL_MASK;
7978 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7979 inst.instruction |= value & 0xfff;
7980 return TRUE;
7981 }
7982
7983 value = encode_arm_immediate (~ v);
7984 if (value != FAIL)
7985 {
7986 /* This can be done with a mvn instruction. */
7987 inst.instruction &= LITERAL_MASK;
7988 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7989 inst.instruction |= value & 0xfff;
7990 return TRUE;
7991 }
7992 }
7993 else if (t == CONST_VEC)
7994 {
7995 int op = 0;
7996 unsigned immbits = 0;
7997 unsigned immlo = inst.operands[1].imm;
7998 unsigned immhi = inst.operands[1].regisimm
7999 ? inst.operands[1].reg
8000 : inst.reloc.exp.X_unsigned
8001 ? 0
8002 : ((bfd_int64_t)((int) immlo)) >> 32;
8003 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8004 &op, 64, NT_invtype);
8005
8006 if (cmode == FAIL)
8007 {
8008 neon_invert_size (&immlo, &immhi, 64);
8009 op = !op;
8010 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8011 &op, 64, NT_invtype);
8012 }
8013
8014 if (cmode != FAIL)
8015 {
8016 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8017 | (1 << 23)
8018 | (cmode << 8)
8019 | (op << 5)
8020 | (1 << 4);
8021
8022 /* Fill other bits in vmov encoding for both thumb and arm. */
8023 if (thumb_mode)
8024 inst.instruction |= (0x7U << 29) | (0xF << 24);
8025 else
8026 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8027 neon_write_immbits (immbits);
8028 return TRUE;
8029 }
8030 }
8031 }
8032
8033 if (t == CONST_VEC)
8034 {
8035 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8036 if (inst.operands[i].issingle
8037 && is_quarter_float (inst.operands[1].imm)
8038 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8039 {
8040 inst.operands[1].imm =
8041 neon_qfloat_bits (v);
8042 do_vfp_nsyn_opcode ("fconsts");
8043 return TRUE;
8044 }
8045
8046 /* If our host does not support a 64-bit type then we cannot perform
8047 the following optimization. This mean that there will be a
8048 discrepancy between the output produced by an assembler built for
8049 a 32-bit-only host and the output produced from a 64-bit host, but
8050 this cannot be helped. */
8051 #if defined BFD_HOST_64_BIT
8052 else if (!inst.operands[1].issingle
8053 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8054 {
8055 if (is_double_a_single (v)
8056 && is_quarter_float (double_to_single (v)))
8057 {
8058 inst.operands[1].imm =
8059 neon_qfloat_bits (double_to_single (v));
8060 do_vfp_nsyn_opcode ("fconstd");
8061 return TRUE;
8062 }
8063 }
8064 #endif
8065 }
8066 }
8067
8068 if (add_to_lit_pool ((!inst.operands[i].isvec
8069 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8070 return TRUE;
8071
8072 inst.operands[1].reg = REG_PC;
8073 inst.operands[1].isreg = 1;
8074 inst.operands[1].preind = 1;
8075 inst.reloc.pc_rel = 1;
8076 inst.reloc.type = (thumb_p
8077 ? BFD_RELOC_ARM_THUMB_OFFSET
8078 : (mode_3
8079 ? BFD_RELOC_ARM_HWLITERAL
8080 : BFD_RELOC_ARM_LITERAL));
8081 return FALSE;
8082 }
8083
8084 /* inst.operands[i] was set up by parse_address. Encode it into an
8085 ARM-format instruction. Reject all forms which cannot be encoded
8086 into a coprocessor load/store instruction. If wb_ok is false,
8087 reject use of writeback; if unind_ok is false, reject use of
8088 unindexed addressing. If reloc_override is not 0, use it instead
8089 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8090 (in which case it is preserved). */
8091
8092 static int
8093 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8094 {
8095 if (!inst.operands[i].isreg)
8096 {
8097 /* PR 18256 */
8098 if (! inst.operands[0].isvec)
8099 {
8100 inst.error = _("invalid co-processor operand");
8101 return FAIL;
8102 }
8103 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8104 return SUCCESS;
8105 }
8106
8107 inst.instruction |= inst.operands[i].reg << 16;
8108
8109 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8110
8111 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8112 {
8113 gas_assert (!inst.operands[i].writeback);
8114 if (!unind_ok)
8115 {
8116 inst.error = _("instruction does not support unindexed addressing");
8117 return FAIL;
8118 }
8119 inst.instruction |= inst.operands[i].imm;
8120 inst.instruction |= INDEX_UP;
8121 return SUCCESS;
8122 }
8123
8124 if (inst.operands[i].preind)
8125 inst.instruction |= PRE_INDEX;
8126
8127 if (inst.operands[i].writeback)
8128 {
8129 if (inst.operands[i].reg == REG_PC)
8130 {
8131 inst.error = _("pc may not be used with write-back");
8132 return FAIL;
8133 }
8134 if (!wb_ok)
8135 {
8136 inst.error = _("instruction does not support writeback");
8137 return FAIL;
8138 }
8139 inst.instruction |= WRITE_BACK;
8140 }
8141
8142 if (reloc_override)
8143 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
8144 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
8145 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
8146 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
8147 {
8148 if (thumb_mode)
8149 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8150 else
8151 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
8152 }
8153
8154 /* Prefer + for zero encoded value. */
8155 if (!inst.operands[i].negative)
8156 inst.instruction |= INDEX_UP;
8157
8158 return SUCCESS;
8159 }
8160
8161 /* Functions for instruction encoding, sorted by sub-architecture.
8162 First some generics; their names are taken from the conventional
8163 bit positions for register arguments in ARM format instructions. */
8164
8165 static void
8166 do_noargs (void)
8167 {
8168 }
8169
8170 static void
8171 do_rd (void)
8172 {
8173 inst.instruction |= inst.operands[0].reg << 12;
8174 }
8175
8176 static void
8177 do_rd_rm (void)
8178 {
8179 inst.instruction |= inst.operands[0].reg << 12;
8180 inst.instruction |= inst.operands[1].reg;
8181 }
8182
8183 static void
8184 do_rm_rn (void)
8185 {
8186 inst.instruction |= inst.operands[0].reg;
8187 inst.instruction |= inst.operands[1].reg << 16;
8188 }
8189
8190 static void
8191 do_rd_rn (void)
8192 {
8193 inst.instruction |= inst.operands[0].reg << 12;
8194 inst.instruction |= inst.operands[1].reg << 16;
8195 }
8196
8197 static void
8198 do_rn_rd (void)
8199 {
8200 inst.instruction |= inst.operands[0].reg << 16;
8201 inst.instruction |= inst.operands[1].reg << 12;
8202 }
8203
8204 static void
8205 do_tt (void)
8206 {
8207 inst.instruction |= inst.operands[0].reg << 8;
8208 inst.instruction |= inst.operands[1].reg << 16;
8209 }
8210
8211 static bfd_boolean
8212 check_obsolete (const arm_feature_set *feature, const char *msg)
8213 {
8214 if (ARM_CPU_IS_ANY (cpu_variant))
8215 {
8216 as_tsktsk ("%s", msg);
8217 return TRUE;
8218 }
8219 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8220 {
8221 as_bad ("%s", msg);
8222 return TRUE;
8223 }
8224
8225 return FALSE;
8226 }
8227
8228 static void
8229 do_rd_rm_rn (void)
8230 {
8231 unsigned Rn = inst.operands[2].reg;
8232 /* Enforce restrictions on SWP instruction. */
8233 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8234 {
8235 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8236 _("Rn must not overlap other operands"));
8237
8238 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8239 */
8240 if (!check_obsolete (&arm_ext_v8,
8241 _("swp{b} use is obsoleted for ARMv8 and later"))
8242 && warn_on_deprecated
8243 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8244 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8245 }
8246
8247 inst.instruction |= inst.operands[0].reg << 12;
8248 inst.instruction |= inst.operands[1].reg;
8249 inst.instruction |= Rn << 16;
8250 }
8251
8252 static void
8253 do_rd_rn_rm (void)
8254 {
8255 inst.instruction |= inst.operands[0].reg << 12;
8256 inst.instruction |= inst.operands[1].reg << 16;
8257 inst.instruction |= inst.operands[2].reg;
8258 }
8259
8260 static void
8261 do_rm_rd_rn (void)
8262 {
8263 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8264 constraint (((inst.reloc.exp.X_op != O_constant
8265 && inst.reloc.exp.X_op != O_illegal)
8266 || inst.reloc.exp.X_add_number != 0),
8267 BAD_ADDR_MODE);
8268 inst.instruction |= inst.operands[0].reg;
8269 inst.instruction |= inst.operands[1].reg << 12;
8270 inst.instruction |= inst.operands[2].reg << 16;
8271 }
8272
8273 static void
8274 do_imm0 (void)
8275 {
8276 inst.instruction |= inst.operands[0].imm;
8277 }
8278
8279 static void
8280 do_rd_cpaddr (void)
8281 {
8282 inst.instruction |= inst.operands[0].reg << 12;
8283 encode_arm_cp_address (1, TRUE, TRUE, 0);
8284 }
8285
8286 /* ARM instructions, in alphabetical order by function name (except
8287 that wrapper functions appear immediately after the function they
8288 wrap). */
8289
8290 /* This is a pseudo-op of the form "adr rd, label" to be converted
8291 into a relative address of the form "add rd, pc, #label-.-8". */
8292
8293 static void
8294 do_adr (void)
8295 {
8296 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8297
8298 /* Frag hacking will turn this into a sub instruction if the offset turns
8299 out to be negative. */
8300 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8301 inst.reloc.pc_rel = 1;
8302 inst.reloc.exp.X_add_number -= 8;
8303 }
8304
8305 /* This is a pseudo-op of the form "adrl rd, label" to be converted
8306 into a relative address of the form:
8307 add rd, pc, #low(label-.-8)"
8308 add rd, rd, #high(label-.-8)" */
8309
8310 static void
8311 do_adrl (void)
8312 {
8313 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8314
8315 /* Frag hacking will turn this into a sub instruction if the offset turns
8316 out to be negative. */
8317 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
8318 inst.reloc.pc_rel = 1;
8319 inst.size = INSN_SIZE * 2;
8320 inst.reloc.exp.X_add_number -= 8;
8321 }
8322
8323 static void
8324 do_arit (void)
8325 {
8326 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
8327 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
8328 THUMB1_RELOC_ONLY);
8329 if (!inst.operands[1].present)
8330 inst.operands[1].reg = inst.operands[0].reg;
8331 inst.instruction |= inst.operands[0].reg << 12;
8332 inst.instruction |= inst.operands[1].reg << 16;
8333 encode_arm_shifter_operand (2);
8334 }
8335
8336 static void
8337 do_barrier (void)
8338 {
8339 if (inst.operands[0].present)
8340 inst.instruction |= inst.operands[0].imm;
8341 else
8342 inst.instruction |= 0xf;
8343 }
8344
8345 static void
8346 do_bfc (void)
8347 {
8348 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8349 constraint (msb > 32, _("bit-field extends past end of register"));
8350 /* The instruction encoding stores the LSB and MSB,
8351 not the LSB and width. */
8352 inst.instruction |= inst.operands[0].reg << 12;
8353 inst.instruction |= inst.operands[1].imm << 7;
8354 inst.instruction |= (msb - 1) << 16;
8355 }
8356
8357 static void
8358 do_bfi (void)
8359 {
8360 unsigned int msb;
8361
8362 /* #0 in second position is alternative syntax for bfc, which is
8363 the same instruction but with REG_PC in the Rm field. */
8364 if (!inst.operands[1].isreg)
8365 inst.operands[1].reg = REG_PC;
8366
8367 msb = inst.operands[2].imm + inst.operands[3].imm;
8368 constraint (msb > 32, _("bit-field extends past end of register"));
8369 /* The instruction encoding stores the LSB and MSB,
8370 not the LSB and width. */
8371 inst.instruction |= inst.operands[0].reg << 12;
8372 inst.instruction |= inst.operands[1].reg;
8373 inst.instruction |= inst.operands[2].imm << 7;
8374 inst.instruction |= (msb - 1) << 16;
8375 }
8376
8377 static void
8378 do_bfx (void)
8379 {
8380 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8381 _("bit-field extends past end of register"));
8382 inst.instruction |= inst.operands[0].reg << 12;
8383 inst.instruction |= inst.operands[1].reg;
8384 inst.instruction |= inst.operands[2].imm << 7;
8385 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8386 }
8387
8388 /* ARM V5 breakpoint instruction (argument parse)
8389 BKPT <16 bit unsigned immediate>
8390 Instruction is not conditional.
8391 The bit pattern given in insns[] has the COND_ALWAYS condition,
8392 and it is an error if the caller tried to override that. */
8393
8394 static void
8395 do_bkpt (void)
8396 {
8397 /* Top 12 of 16 bits to bits 19:8. */
8398 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
8399
8400 /* Bottom 4 of 16 bits to bits 3:0. */
8401 inst.instruction |= inst.operands[0].imm & 0xf;
8402 }
8403
8404 static void
8405 encode_branch (int default_reloc)
8406 {
8407 if (inst.operands[0].hasreloc)
8408 {
8409 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8410 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8411 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
8412 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
8413 ? BFD_RELOC_ARM_PLT32
8414 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
8415 }
8416 else
8417 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
8418 inst.reloc.pc_rel = 1;
8419 }
8420
8421 static void
8422 do_branch (void)
8423 {
8424 #ifdef OBJ_ELF
8425 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8426 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8427 else
8428 #endif
8429 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8430 }
8431
8432 static void
8433 do_bl (void)
8434 {
8435 #ifdef OBJ_ELF
8436 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8437 {
8438 if (inst.cond == COND_ALWAYS)
8439 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8440 else
8441 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8442 }
8443 else
8444 #endif
8445 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8446 }
8447
8448 /* ARM V5 branch-link-exchange instruction (argument parse)
8449 BLX <target_addr> ie BLX(1)
8450 BLX{<condition>} <Rm> ie BLX(2)
8451 Unfortunately, there are two different opcodes for this mnemonic.
8452 So, the insns[].value is not used, and the code here zaps values
8453 into inst.instruction.
8454 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
8455
8456 static void
8457 do_blx (void)
8458 {
8459 if (inst.operands[0].isreg)
8460 {
8461 /* Arg is a register; the opcode provided by insns[] is correct.
8462 It is not illegal to do "blx pc", just useless. */
8463 if (inst.operands[0].reg == REG_PC)
8464 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
8465
8466 inst.instruction |= inst.operands[0].reg;
8467 }
8468 else
8469 {
8470 /* Arg is an address; this instruction cannot be executed
8471 conditionally, and the opcode must be adjusted.
8472 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8473 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
8474 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8475 inst.instruction = 0xfa000000;
8476 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
8477 }
8478 }
8479
8480 static void
8481 do_bx (void)
8482 {
8483 bfd_boolean want_reloc;
8484
8485 if (inst.operands[0].reg == REG_PC)
8486 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
8487
8488 inst.instruction |= inst.operands[0].reg;
8489 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8490 it is for ARMv4t or earlier. */
8491 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
8492 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
8493 want_reloc = TRUE;
8494
8495 #ifdef OBJ_ELF
8496 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
8497 #endif
8498 want_reloc = FALSE;
8499
8500 if (want_reloc)
8501 inst.reloc.type = BFD_RELOC_ARM_V4BX;
8502 }
8503
8504
8505 /* ARM v5TEJ. Jump to Jazelle code. */
8506
8507 static void
8508 do_bxj (void)
8509 {
8510 if (inst.operands[0].reg == REG_PC)
8511 as_tsktsk (_("use of r15 in bxj is not really useful"));
8512
8513 inst.instruction |= inst.operands[0].reg;
8514 }
8515
8516 /* Co-processor data operation:
8517 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8518 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8519 static void
8520 do_cdp (void)
8521 {
8522 inst.instruction |= inst.operands[0].reg << 8;
8523 inst.instruction |= inst.operands[1].imm << 20;
8524 inst.instruction |= inst.operands[2].reg << 12;
8525 inst.instruction |= inst.operands[3].reg << 16;
8526 inst.instruction |= inst.operands[4].reg;
8527 inst.instruction |= inst.operands[5].imm << 5;
8528 }
8529
8530 static void
8531 do_cmp (void)
8532 {
8533 inst.instruction |= inst.operands[0].reg << 16;
8534 encode_arm_shifter_operand (1);
8535 }
8536
8537 /* Transfer between coprocessor and ARM registers.
8538 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8539 MRC2
8540 MCR{cond}
8541 MCR2
8542
8543 No special properties. */
8544
8545 struct deprecated_coproc_regs_s
8546 {
8547 unsigned cp;
8548 int opc1;
8549 unsigned crn;
8550 unsigned crm;
8551 int opc2;
8552 arm_feature_set deprecated;
8553 arm_feature_set obsoleted;
8554 const char *dep_msg;
8555 const char *obs_msg;
8556 };
8557
8558 #define DEPR_ACCESS_V8 \
8559 N_("This coprocessor register access is deprecated in ARMv8")
8560
8561 /* Table of all deprecated coprocessor registers. */
8562 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8563 {
8564 {15, 0, 7, 10, 5, /* CP15DMB. */
8565 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8566 DEPR_ACCESS_V8, NULL},
8567 {15, 0, 7, 10, 4, /* CP15DSB. */
8568 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8569 DEPR_ACCESS_V8, NULL},
8570 {15, 0, 7, 5, 4, /* CP15ISB. */
8571 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8572 DEPR_ACCESS_V8, NULL},
8573 {14, 6, 1, 0, 0, /* TEEHBR. */
8574 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8575 DEPR_ACCESS_V8, NULL},
8576 {14, 6, 0, 0, 0, /* TEECR. */
8577 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8578 DEPR_ACCESS_V8, NULL},
8579 };
8580
8581 #undef DEPR_ACCESS_V8
8582
8583 static const size_t deprecated_coproc_reg_count =
8584 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8585
8586 static void
8587 do_co_reg (void)
8588 {
8589 unsigned Rd;
8590 size_t i;
8591
8592 Rd = inst.operands[2].reg;
8593 if (thumb_mode)
8594 {
8595 if (inst.instruction == 0xee000010
8596 || inst.instruction == 0xfe000010)
8597 /* MCR, MCR2 */
8598 reject_bad_reg (Rd);
8599 else
8600 /* MRC, MRC2 */
8601 constraint (Rd == REG_SP, BAD_SP);
8602 }
8603 else
8604 {
8605 /* MCR */
8606 if (inst.instruction == 0xe000010)
8607 constraint (Rd == REG_PC, BAD_PC);
8608 }
8609
8610 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8611 {
8612 const struct deprecated_coproc_regs_s *r =
8613 deprecated_coproc_regs + i;
8614
8615 if (inst.operands[0].reg == r->cp
8616 && inst.operands[1].imm == r->opc1
8617 && inst.operands[3].reg == r->crn
8618 && inst.operands[4].reg == r->crm
8619 && inst.operands[5].imm == r->opc2)
8620 {
8621 if (! ARM_CPU_IS_ANY (cpu_variant)
8622 && warn_on_deprecated
8623 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
8624 as_tsktsk ("%s", r->dep_msg);
8625 }
8626 }
8627
8628 inst.instruction |= inst.operands[0].reg << 8;
8629 inst.instruction |= inst.operands[1].imm << 21;
8630 inst.instruction |= Rd << 12;
8631 inst.instruction |= inst.operands[3].reg << 16;
8632 inst.instruction |= inst.operands[4].reg;
8633 inst.instruction |= inst.operands[5].imm << 5;
8634 }
8635
8636 /* Transfer between coprocessor register and pair of ARM registers.
8637 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8638 MCRR2
8639 MRRC{cond}
8640 MRRC2
8641
8642 Two XScale instructions are special cases of these:
8643
8644 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8645 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
8646
8647 Result unpredictable if Rd or Rn is R15. */
8648
8649 static void
8650 do_co_reg2c (void)
8651 {
8652 unsigned Rd, Rn;
8653
8654 Rd = inst.operands[2].reg;
8655 Rn = inst.operands[3].reg;
8656
8657 if (thumb_mode)
8658 {
8659 reject_bad_reg (Rd);
8660 reject_bad_reg (Rn);
8661 }
8662 else
8663 {
8664 constraint (Rd == REG_PC, BAD_PC);
8665 constraint (Rn == REG_PC, BAD_PC);
8666 }
8667
8668 inst.instruction |= inst.operands[0].reg << 8;
8669 inst.instruction |= inst.operands[1].imm << 4;
8670 inst.instruction |= Rd << 12;
8671 inst.instruction |= Rn << 16;
8672 inst.instruction |= inst.operands[4].reg;
8673 }
8674
8675 static void
8676 do_cpsi (void)
8677 {
8678 inst.instruction |= inst.operands[0].imm << 6;
8679 if (inst.operands[1].present)
8680 {
8681 inst.instruction |= CPSI_MMOD;
8682 inst.instruction |= inst.operands[1].imm;
8683 }
8684 }
8685
8686 static void
8687 do_dbg (void)
8688 {
8689 inst.instruction |= inst.operands[0].imm;
8690 }
8691
8692 static void
8693 do_div (void)
8694 {
8695 unsigned Rd, Rn, Rm;
8696
8697 Rd = inst.operands[0].reg;
8698 Rn = (inst.operands[1].present
8699 ? inst.operands[1].reg : Rd);
8700 Rm = inst.operands[2].reg;
8701
8702 constraint ((Rd == REG_PC), BAD_PC);
8703 constraint ((Rn == REG_PC), BAD_PC);
8704 constraint ((Rm == REG_PC), BAD_PC);
8705
8706 inst.instruction |= Rd << 16;
8707 inst.instruction |= Rn << 0;
8708 inst.instruction |= Rm << 8;
8709 }
8710
8711 static void
8712 do_it (void)
8713 {
8714 /* There is no IT instruction in ARM mode. We
8715 process it to do the validation as if in
8716 thumb mode, just in case the code gets
8717 assembled for thumb using the unified syntax. */
8718
8719 inst.size = 0;
8720 if (unified_syntax)
8721 {
8722 set_it_insn_type (IT_INSN);
8723 now_it.mask = (inst.instruction & 0xf) | 0x10;
8724 now_it.cc = inst.operands[0].imm;
8725 }
8726 }
8727
8728 /* If there is only one register in the register list,
8729 then return its register number. Otherwise return -1. */
8730 static int
8731 only_one_reg_in_list (int range)
8732 {
8733 int i = ffs (range) - 1;
8734 return (i > 15 || range != (1 << i)) ? -1 : i;
8735 }
8736
8737 static void
8738 encode_ldmstm(int from_push_pop_mnem)
8739 {
8740 int base_reg = inst.operands[0].reg;
8741 int range = inst.operands[1].imm;
8742 int one_reg;
8743
8744 inst.instruction |= base_reg << 16;
8745 inst.instruction |= range;
8746
8747 if (inst.operands[1].writeback)
8748 inst.instruction |= LDM_TYPE_2_OR_3;
8749
8750 if (inst.operands[0].writeback)
8751 {
8752 inst.instruction |= WRITE_BACK;
8753 /* Check for unpredictable uses of writeback. */
8754 if (inst.instruction & LOAD_BIT)
8755 {
8756 /* Not allowed in LDM type 2. */
8757 if ((inst.instruction & LDM_TYPE_2_OR_3)
8758 && ((range & (1 << REG_PC)) == 0))
8759 as_warn (_("writeback of base register is UNPREDICTABLE"));
8760 /* Only allowed if base reg not in list for other types. */
8761 else if (range & (1 << base_reg))
8762 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8763 }
8764 else /* STM. */
8765 {
8766 /* Not allowed for type 2. */
8767 if (inst.instruction & LDM_TYPE_2_OR_3)
8768 as_warn (_("writeback of base register is UNPREDICTABLE"));
8769 /* Only allowed if base reg not in list, or first in list. */
8770 else if ((range & (1 << base_reg))
8771 && (range & ((1 << base_reg) - 1)))
8772 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
8773 }
8774 }
8775
8776 /* If PUSH/POP has only one register, then use the A2 encoding. */
8777 one_reg = only_one_reg_in_list (range);
8778 if (from_push_pop_mnem && one_reg >= 0)
8779 {
8780 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8781
8782 inst.instruction &= A_COND_MASK;
8783 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8784 inst.instruction |= one_reg << 12;
8785 }
8786 }
8787
8788 static void
8789 do_ldmstm (void)
8790 {
8791 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
8792 }
8793
8794 /* ARMv5TE load-consecutive (argument parse)
8795 Mode is like LDRH.
8796
8797 LDRccD R, mode
8798 STRccD R, mode. */
8799
8800 static void
8801 do_ldrd (void)
8802 {
8803 constraint (inst.operands[0].reg % 2 != 0,
8804 _("first transfer register must be even"));
8805 constraint (inst.operands[1].present
8806 && inst.operands[1].reg != inst.operands[0].reg + 1,
8807 _("can only transfer two consecutive registers"));
8808 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8809 constraint (!inst.operands[2].isreg, _("'[' expected"));
8810
8811 if (!inst.operands[1].present)
8812 inst.operands[1].reg = inst.operands[0].reg + 1;
8813
8814 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8815 register and the first register written; we have to diagnose
8816 overlap between the base and the second register written here. */
8817
8818 if (inst.operands[2].reg == inst.operands[1].reg
8819 && (inst.operands[2].writeback || inst.operands[2].postind))
8820 as_warn (_("base register written back, and overlaps "
8821 "second transfer register"));
8822
8823 if (!(inst.instruction & V4_STR_BIT))
8824 {
8825 /* For an index-register load, the index register must not overlap the
8826 destination (even if not write-back). */
8827 if (inst.operands[2].immisreg
8828 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8829 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8830 as_warn (_("index register overlaps transfer register"));
8831 }
8832 inst.instruction |= inst.operands[0].reg << 12;
8833 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8834 }
8835
8836 static void
8837 do_ldrex (void)
8838 {
8839 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8840 || inst.operands[1].postind || inst.operands[1].writeback
8841 || inst.operands[1].immisreg || inst.operands[1].shifted
8842 || inst.operands[1].negative
8843 /* This can arise if the programmer has written
8844 strex rN, rM, foo
8845 or if they have mistakenly used a register name as the last
8846 operand, eg:
8847 strex rN, rM, rX
8848 It is very difficult to distinguish between these two cases
8849 because "rX" might actually be a label. ie the register
8850 name has been occluded by a symbol of the same name. So we
8851 just generate a general 'bad addressing mode' type error
8852 message and leave it up to the programmer to discover the
8853 true cause and fix their mistake. */
8854 || (inst.operands[1].reg == REG_PC),
8855 BAD_ADDR_MODE);
8856
8857 constraint (inst.reloc.exp.X_op != O_constant
8858 || inst.reloc.exp.X_add_number != 0,
8859 _("offset must be zero in ARM encoding"));
8860
8861 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8862
8863 inst.instruction |= inst.operands[0].reg << 12;
8864 inst.instruction |= inst.operands[1].reg << 16;
8865 inst.reloc.type = BFD_RELOC_UNUSED;
8866 }
8867
8868 static void
8869 do_ldrexd (void)
8870 {
8871 constraint (inst.operands[0].reg % 2 != 0,
8872 _("even register required"));
8873 constraint (inst.operands[1].present
8874 && inst.operands[1].reg != inst.operands[0].reg + 1,
8875 _("can only load two consecutive registers"));
8876 /* If op 1 were present and equal to PC, this function wouldn't
8877 have been called in the first place. */
8878 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8879
8880 inst.instruction |= inst.operands[0].reg << 12;
8881 inst.instruction |= inst.operands[2].reg << 16;
8882 }
8883
8884 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8885 which is not a multiple of four is UNPREDICTABLE. */
8886 static void
8887 check_ldr_r15_aligned (void)
8888 {
8889 constraint (!(inst.operands[1].immisreg)
8890 && (inst.operands[0].reg == REG_PC
8891 && inst.operands[1].reg == REG_PC
8892 && (inst.reloc.exp.X_add_number & 0x3)),
8893 _("ldr to register 15 must be 4-byte alligned"));
8894 }
8895
8896 static void
8897 do_ldst (void)
8898 {
8899 inst.instruction |= inst.operands[0].reg << 12;
8900 if (!inst.operands[1].isreg)
8901 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
8902 return;
8903 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8904 check_ldr_r15_aligned ();
8905 }
8906
8907 static void
8908 do_ldstt (void)
8909 {
8910 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8911 reject [Rn,...]. */
8912 if (inst.operands[1].preind)
8913 {
8914 constraint (inst.reloc.exp.X_op != O_constant
8915 || inst.reloc.exp.X_add_number != 0,
8916 _("this instruction requires a post-indexed address"));
8917
8918 inst.operands[1].preind = 0;
8919 inst.operands[1].postind = 1;
8920 inst.operands[1].writeback = 1;
8921 }
8922 inst.instruction |= inst.operands[0].reg << 12;
8923 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8924 }
8925
8926 /* Halfword and signed-byte load/store operations. */
8927
8928 static void
8929 do_ldstv4 (void)
8930 {
8931 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8932 inst.instruction |= inst.operands[0].reg << 12;
8933 if (!inst.operands[1].isreg)
8934 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
8935 return;
8936 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8937 }
8938
8939 static void
8940 do_ldsttv4 (void)
8941 {
8942 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8943 reject [Rn,...]. */
8944 if (inst.operands[1].preind)
8945 {
8946 constraint (inst.reloc.exp.X_op != O_constant
8947 || inst.reloc.exp.X_add_number != 0,
8948 _("this instruction requires a post-indexed address"));
8949
8950 inst.operands[1].preind = 0;
8951 inst.operands[1].postind = 1;
8952 inst.operands[1].writeback = 1;
8953 }
8954 inst.instruction |= inst.operands[0].reg << 12;
8955 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8956 }
8957
8958 /* Co-processor register load/store.
8959 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8960 static void
8961 do_lstc (void)
8962 {
8963 inst.instruction |= inst.operands[0].reg << 8;
8964 inst.instruction |= inst.operands[1].reg << 12;
8965 encode_arm_cp_address (2, TRUE, TRUE, 0);
8966 }
8967
8968 static void
8969 do_mlas (void)
8970 {
8971 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8972 if (inst.operands[0].reg == inst.operands[1].reg
8973 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8974 && !(inst.instruction & 0x00400000))
8975 as_tsktsk (_("Rd and Rm should be different in mla"));
8976
8977 inst.instruction |= inst.operands[0].reg << 16;
8978 inst.instruction |= inst.operands[1].reg;
8979 inst.instruction |= inst.operands[2].reg << 8;
8980 inst.instruction |= inst.operands[3].reg << 12;
8981 }
8982
8983 static void
8984 do_mov (void)
8985 {
8986 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
8987 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
8988 THUMB1_RELOC_ONLY);
8989 inst.instruction |= inst.operands[0].reg << 12;
8990 encode_arm_shifter_operand (1);
8991 }
8992
8993 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8994 static void
8995 do_mov16 (void)
8996 {
8997 bfd_vma imm;
8998 bfd_boolean top;
8999
9000 top = (inst.instruction & 0x00400000) != 0;
9001 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
9002 _(":lower16: not allowed this instruction"));
9003 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
9004 _(":upper16: not allowed instruction"));
9005 inst.instruction |= inst.operands[0].reg << 12;
9006 if (inst.reloc.type == BFD_RELOC_UNUSED)
9007 {
9008 imm = inst.reloc.exp.X_add_number;
9009 /* The value is in two pieces: 0:11, 16:19. */
9010 inst.instruction |= (imm & 0x00000fff);
9011 inst.instruction |= (imm & 0x0000f000) << 4;
9012 }
9013 }
9014
9015 static int
9016 do_vfp_nsyn_mrs (void)
9017 {
9018 if (inst.operands[0].isvec)
9019 {
9020 if (inst.operands[1].reg != 1)
9021 first_error (_("operand 1 must be FPSCR"));
9022 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9023 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9024 do_vfp_nsyn_opcode ("fmstat");
9025 }
9026 else if (inst.operands[1].isvec)
9027 do_vfp_nsyn_opcode ("fmrx");
9028 else
9029 return FAIL;
9030
9031 return SUCCESS;
9032 }
9033
9034 static int
9035 do_vfp_nsyn_msr (void)
9036 {
9037 if (inst.operands[0].isvec)
9038 do_vfp_nsyn_opcode ("fmxr");
9039 else
9040 return FAIL;
9041
9042 return SUCCESS;
9043 }
9044
9045 static void
9046 do_vmrs (void)
9047 {
9048 unsigned Rt = inst.operands[0].reg;
9049
9050 if (thumb_mode && Rt == REG_SP)
9051 {
9052 inst.error = BAD_SP;
9053 return;
9054 }
9055
9056 /* APSR_ sets isvec. All other refs to PC are illegal. */
9057 if (!inst.operands[0].isvec && Rt == REG_PC)
9058 {
9059 inst.error = BAD_PC;
9060 return;
9061 }
9062
9063 /* If we get through parsing the register name, we just insert the number
9064 generated into the instruction without further validation. */
9065 inst.instruction |= (inst.operands[1].reg << 16);
9066 inst.instruction |= (Rt << 12);
9067 }
9068
9069 static void
9070 do_vmsr (void)
9071 {
9072 unsigned Rt = inst.operands[1].reg;
9073
9074 if (thumb_mode)
9075 reject_bad_reg (Rt);
9076 else if (Rt == REG_PC)
9077 {
9078 inst.error = BAD_PC;
9079 return;
9080 }
9081
9082 /* If we get through parsing the register name, we just insert the number
9083 generated into the instruction without further validation. */
9084 inst.instruction |= (inst.operands[0].reg << 16);
9085 inst.instruction |= (Rt << 12);
9086 }
9087
9088 static void
9089 do_mrs (void)
9090 {
9091 unsigned br;
9092
9093 if (do_vfp_nsyn_mrs () == SUCCESS)
9094 return;
9095
9096 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9097 inst.instruction |= inst.operands[0].reg << 12;
9098
9099 if (inst.operands[1].isreg)
9100 {
9101 br = inst.operands[1].reg;
9102 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
9103 as_bad (_("bad register for mrs"));
9104 }
9105 else
9106 {
9107 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9108 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9109 != (PSR_c|PSR_f),
9110 _("'APSR', 'CPSR' or 'SPSR' expected"));
9111 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9112 }
9113
9114 inst.instruction |= br;
9115 }
9116
9117 /* Two possible forms:
9118 "{C|S}PSR_<field>, Rm",
9119 "{C|S}PSR_f, #expression". */
9120
9121 static void
9122 do_msr (void)
9123 {
9124 if (do_vfp_nsyn_msr () == SUCCESS)
9125 return;
9126
9127 inst.instruction |= inst.operands[0].imm;
9128 if (inst.operands[1].isreg)
9129 inst.instruction |= inst.operands[1].reg;
9130 else
9131 {
9132 inst.instruction |= INST_IMMEDIATE;
9133 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
9134 inst.reloc.pc_rel = 0;
9135 }
9136 }
9137
9138 static void
9139 do_mul (void)
9140 {
9141 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9142
9143 if (!inst.operands[2].present)
9144 inst.operands[2].reg = inst.operands[0].reg;
9145 inst.instruction |= inst.operands[0].reg << 16;
9146 inst.instruction |= inst.operands[1].reg;
9147 inst.instruction |= inst.operands[2].reg << 8;
9148
9149 if (inst.operands[0].reg == inst.operands[1].reg
9150 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9151 as_tsktsk (_("Rd and Rm should be different in mul"));
9152 }
9153
9154 /* Long Multiply Parser
9155 UMULL RdLo, RdHi, Rm, Rs
9156 SMULL RdLo, RdHi, Rm, Rs
9157 UMLAL RdLo, RdHi, Rm, Rs
9158 SMLAL RdLo, RdHi, Rm, Rs. */
9159
9160 static void
9161 do_mull (void)
9162 {
9163 inst.instruction |= inst.operands[0].reg << 12;
9164 inst.instruction |= inst.operands[1].reg << 16;
9165 inst.instruction |= inst.operands[2].reg;
9166 inst.instruction |= inst.operands[3].reg << 8;
9167
9168 /* rdhi and rdlo must be different. */
9169 if (inst.operands[0].reg == inst.operands[1].reg)
9170 as_tsktsk (_("rdhi and rdlo must be different"));
9171
9172 /* rdhi, rdlo and rm must all be different before armv6. */
9173 if ((inst.operands[0].reg == inst.operands[2].reg
9174 || inst.operands[1].reg == inst.operands[2].reg)
9175 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9176 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9177 }
9178
9179 static void
9180 do_nop (void)
9181 {
9182 if (inst.operands[0].present
9183 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9184 {
9185 /* Architectural NOP hints are CPSR sets with no bits selected. */
9186 inst.instruction &= 0xf0000000;
9187 inst.instruction |= 0x0320f000;
9188 if (inst.operands[0].present)
9189 inst.instruction |= inst.operands[0].imm;
9190 }
9191 }
9192
9193 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9194 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9195 Condition defaults to COND_ALWAYS.
9196 Error if Rd, Rn or Rm are R15. */
9197
9198 static void
9199 do_pkhbt (void)
9200 {
9201 inst.instruction |= inst.operands[0].reg << 12;
9202 inst.instruction |= inst.operands[1].reg << 16;
9203 inst.instruction |= inst.operands[2].reg;
9204 if (inst.operands[3].present)
9205 encode_arm_shift (3);
9206 }
9207
9208 /* ARM V6 PKHTB (Argument Parse). */
9209
9210 static void
9211 do_pkhtb (void)
9212 {
9213 if (!inst.operands[3].present)
9214 {
9215 /* If the shift specifier is omitted, turn the instruction
9216 into pkhbt rd, rm, rn. */
9217 inst.instruction &= 0xfff00010;
9218 inst.instruction |= inst.operands[0].reg << 12;
9219 inst.instruction |= inst.operands[1].reg;
9220 inst.instruction |= inst.operands[2].reg << 16;
9221 }
9222 else
9223 {
9224 inst.instruction |= inst.operands[0].reg << 12;
9225 inst.instruction |= inst.operands[1].reg << 16;
9226 inst.instruction |= inst.operands[2].reg;
9227 encode_arm_shift (3);
9228 }
9229 }
9230
9231 /* ARMv5TE: Preload-Cache
9232 MP Extensions: Preload for write
9233
9234 PLD(W) <addr_mode>
9235
9236 Syntactically, like LDR with B=1, W=0, L=1. */
9237
9238 static void
9239 do_pld (void)
9240 {
9241 constraint (!inst.operands[0].isreg,
9242 _("'[' expected after PLD mnemonic"));
9243 constraint (inst.operands[0].postind,
9244 _("post-indexed expression used in preload instruction"));
9245 constraint (inst.operands[0].writeback,
9246 _("writeback used in preload instruction"));
9247 constraint (!inst.operands[0].preind,
9248 _("unindexed addressing used in preload instruction"));
9249 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9250 }
9251
9252 /* ARMv7: PLI <addr_mode> */
9253 static void
9254 do_pli (void)
9255 {
9256 constraint (!inst.operands[0].isreg,
9257 _("'[' expected after PLI mnemonic"));
9258 constraint (inst.operands[0].postind,
9259 _("post-indexed expression used in preload instruction"));
9260 constraint (inst.operands[0].writeback,
9261 _("writeback used in preload instruction"));
9262 constraint (!inst.operands[0].preind,
9263 _("unindexed addressing used in preload instruction"));
9264 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9265 inst.instruction &= ~PRE_INDEX;
9266 }
9267
9268 static void
9269 do_push_pop (void)
9270 {
9271 constraint (inst.operands[0].writeback,
9272 _("push/pop do not support {reglist}^"));
9273 inst.operands[1] = inst.operands[0];
9274 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9275 inst.operands[0].isreg = 1;
9276 inst.operands[0].writeback = 1;
9277 inst.operands[0].reg = REG_SP;
9278 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
9279 }
9280
9281 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9282 word at the specified address and the following word
9283 respectively.
9284 Unconditionally executed.
9285 Error if Rn is R15. */
9286
9287 static void
9288 do_rfe (void)
9289 {
9290 inst.instruction |= inst.operands[0].reg << 16;
9291 if (inst.operands[0].writeback)
9292 inst.instruction |= WRITE_BACK;
9293 }
9294
9295 /* ARM V6 ssat (argument parse). */
9296
9297 static void
9298 do_ssat (void)
9299 {
9300 inst.instruction |= inst.operands[0].reg << 12;
9301 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9302 inst.instruction |= inst.operands[2].reg;
9303
9304 if (inst.operands[3].present)
9305 encode_arm_shift (3);
9306 }
9307
9308 /* ARM V6 usat (argument parse). */
9309
9310 static void
9311 do_usat (void)
9312 {
9313 inst.instruction |= inst.operands[0].reg << 12;
9314 inst.instruction |= inst.operands[1].imm << 16;
9315 inst.instruction |= inst.operands[2].reg;
9316
9317 if (inst.operands[3].present)
9318 encode_arm_shift (3);
9319 }
9320
9321 /* ARM V6 ssat16 (argument parse). */
9322
9323 static void
9324 do_ssat16 (void)
9325 {
9326 inst.instruction |= inst.operands[0].reg << 12;
9327 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9328 inst.instruction |= inst.operands[2].reg;
9329 }
9330
9331 static void
9332 do_usat16 (void)
9333 {
9334 inst.instruction |= inst.operands[0].reg << 12;
9335 inst.instruction |= inst.operands[1].imm << 16;
9336 inst.instruction |= inst.operands[2].reg;
9337 }
9338
9339 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9340 preserving the other bits.
9341
9342 setend <endian_specifier>, where <endian_specifier> is either
9343 BE or LE. */
9344
9345 static void
9346 do_setend (void)
9347 {
9348 if (warn_on_deprecated
9349 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9350 as_tsktsk (_("setend use is deprecated for ARMv8"));
9351
9352 if (inst.operands[0].imm)
9353 inst.instruction |= 0x200;
9354 }
9355
9356 static void
9357 do_shift (void)
9358 {
9359 unsigned int Rm = (inst.operands[1].present
9360 ? inst.operands[1].reg
9361 : inst.operands[0].reg);
9362
9363 inst.instruction |= inst.operands[0].reg << 12;
9364 inst.instruction |= Rm;
9365 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
9366 {
9367 inst.instruction |= inst.operands[2].reg << 8;
9368 inst.instruction |= SHIFT_BY_REG;
9369 /* PR 12854: Error on extraneous shifts. */
9370 constraint (inst.operands[2].shifted,
9371 _("extraneous shift as part of operand to shift insn"));
9372 }
9373 else
9374 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
9375 }
9376
9377 static void
9378 do_smc (void)
9379 {
9380 inst.reloc.type = BFD_RELOC_ARM_SMC;
9381 inst.reloc.pc_rel = 0;
9382 }
9383
9384 static void
9385 do_hvc (void)
9386 {
9387 inst.reloc.type = BFD_RELOC_ARM_HVC;
9388 inst.reloc.pc_rel = 0;
9389 }
9390
9391 static void
9392 do_swi (void)
9393 {
9394 inst.reloc.type = BFD_RELOC_ARM_SWI;
9395 inst.reloc.pc_rel = 0;
9396 }
9397
9398 static void
9399 do_setpan (void)
9400 {
9401 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9402 _("selected processor does not support SETPAN instruction"));
9403
9404 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9405 }
9406
9407 static void
9408 do_t_setpan (void)
9409 {
9410 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9411 _("selected processor does not support SETPAN instruction"));
9412
9413 inst.instruction |= (inst.operands[0].imm << 3);
9414 }
9415
9416 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9417 SMLAxy{cond} Rd,Rm,Rs,Rn
9418 SMLAWy{cond} Rd,Rm,Rs,Rn
9419 Error if any register is R15. */
9420
9421 static void
9422 do_smla (void)
9423 {
9424 inst.instruction |= inst.operands[0].reg << 16;
9425 inst.instruction |= inst.operands[1].reg;
9426 inst.instruction |= inst.operands[2].reg << 8;
9427 inst.instruction |= inst.operands[3].reg << 12;
9428 }
9429
9430 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9431 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9432 Error if any register is R15.
9433 Warning if Rdlo == Rdhi. */
9434
9435 static void
9436 do_smlal (void)
9437 {
9438 inst.instruction |= inst.operands[0].reg << 12;
9439 inst.instruction |= inst.operands[1].reg << 16;
9440 inst.instruction |= inst.operands[2].reg;
9441 inst.instruction |= inst.operands[3].reg << 8;
9442
9443 if (inst.operands[0].reg == inst.operands[1].reg)
9444 as_tsktsk (_("rdhi and rdlo must be different"));
9445 }
9446
9447 /* ARM V5E (El Segundo) signed-multiply (argument parse)
9448 SMULxy{cond} Rd,Rm,Rs
9449 Error if any register is R15. */
9450
9451 static void
9452 do_smul (void)
9453 {
9454 inst.instruction |= inst.operands[0].reg << 16;
9455 inst.instruction |= inst.operands[1].reg;
9456 inst.instruction |= inst.operands[2].reg << 8;
9457 }
9458
9459 /* ARM V6 srs (argument parse). The variable fields in the encoding are
9460 the same for both ARM and Thumb-2. */
9461
9462 static void
9463 do_srs (void)
9464 {
9465 int reg;
9466
9467 if (inst.operands[0].present)
9468 {
9469 reg = inst.operands[0].reg;
9470 constraint (reg != REG_SP, _("SRS base register must be r13"));
9471 }
9472 else
9473 reg = REG_SP;
9474
9475 inst.instruction |= reg << 16;
9476 inst.instruction |= inst.operands[1].imm;
9477 if (inst.operands[0].writeback || inst.operands[1].writeback)
9478 inst.instruction |= WRITE_BACK;
9479 }
9480
9481 /* ARM V6 strex (argument parse). */
9482
9483 static void
9484 do_strex (void)
9485 {
9486 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9487 || inst.operands[2].postind || inst.operands[2].writeback
9488 || inst.operands[2].immisreg || inst.operands[2].shifted
9489 || inst.operands[2].negative
9490 /* See comment in do_ldrex(). */
9491 || (inst.operands[2].reg == REG_PC),
9492 BAD_ADDR_MODE);
9493
9494 constraint (inst.operands[0].reg == inst.operands[1].reg
9495 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9496
9497 constraint (inst.reloc.exp.X_op != O_constant
9498 || inst.reloc.exp.X_add_number != 0,
9499 _("offset must be zero in ARM encoding"));
9500
9501 inst.instruction |= inst.operands[0].reg << 12;
9502 inst.instruction |= inst.operands[1].reg;
9503 inst.instruction |= inst.operands[2].reg << 16;
9504 inst.reloc.type = BFD_RELOC_UNUSED;
9505 }
9506
9507 static void
9508 do_t_strexbh (void)
9509 {
9510 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9511 || inst.operands[2].postind || inst.operands[2].writeback
9512 || inst.operands[2].immisreg || inst.operands[2].shifted
9513 || inst.operands[2].negative,
9514 BAD_ADDR_MODE);
9515
9516 constraint (inst.operands[0].reg == inst.operands[1].reg
9517 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9518
9519 do_rm_rd_rn ();
9520 }
9521
9522 static void
9523 do_strexd (void)
9524 {
9525 constraint (inst.operands[1].reg % 2 != 0,
9526 _("even register required"));
9527 constraint (inst.operands[2].present
9528 && inst.operands[2].reg != inst.operands[1].reg + 1,
9529 _("can only store two consecutive registers"));
9530 /* If op 2 were present and equal to PC, this function wouldn't
9531 have been called in the first place. */
9532 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
9533
9534 constraint (inst.operands[0].reg == inst.operands[1].reg
9535 || inst.operands[0].reg == inst.operands[1].reg + 1
9536 || inst.operands[0].reg == inst.operands[3].reg,
9537 BAD_OVERLAP);
9538
9539 inst.instruction |= inst.operands[0].reg << 12;
9540 inst.instruction |= inst.operands[1].reg;
9541 inst.instruction |= inst.operands[3].reg << 16;
9542 }
9543
9544 /* ARM V8 STRL. */
9545 static void
9546 do_stlex (void)
9547 {
9548 constraint (inst.operands[0].reg == inst.operands[1].reg
9549 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9550
9551 do_rd_rm_rn ();
9552 }
9553
9554 static void
9555 do_t_stlex (void)
9556 {
9557 constraint (inst.operands[0].reg == inst.operands[1].reg
9558 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9559
9560 do_rm_rd_rn ();
9561 }
9562
9563 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9564 extends it to 32-bits, and adds the result to a value in another
9565 register. You can specify a rotation by 0, 8, 16, or 24 bits
9566 before extracting the 16-bit value.
9567 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9568 Condition defaults to COND_ALWAYS.
9569 Error if any register uses R15. */
9570
9571 static void
9572 do_sxtah (void)
9573 {
9574 inst.instruction |= inst.operands[0].reg << 12;
9575 inst.instruction |= inst.operands[1].reg << 16;
9576 inst.instruction |= inst.operands[2].reg;
9577 inst.instruction |= inst.operands[3].imm << 10;
9578 }
9579
9580 /* ARM V6 SXTH.
9581
9582 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9583 Condition defaults to COND_ALWAYS.
9584 Error if any register uses R15. */
9585
9586 static void
9587 do_sxth (void)
9588 {
9589 inst.instruction |= inst.operands[0].reg << 12;
9590 inst.instruction |= inst.operands[1].reg;
9591 inst.instruction |= inst.operands[2].imm << 10;
9592 }
9593 \f
9594 /* VFP instructions. In a logical order: SP variant first, monad
9595 before dyad, arithmetic then move then load/store. */
9596
9597 static void
9598 do_vfp_sp_monadic (void)
9599 {
9600 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9601 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9602 }
9603
9604 static void
9605 do_vfp_sp_dyadic (void)
9606 {
9607 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9608 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9609 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9610 }
9611
9612 static void
9613 do_vfp_sp_compare_z (void)
9614 {
9615 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9616 }
9617
9618 static void
9619 do_vfp_dp_sp_cvt (void)
9620 {
9621 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9622 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9623 }
9624
9625 static void
9626 do_vfp_sp_dp_cvt (void)
9627 {
9628 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9629 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9630 }
9631
9632 static void
9633 do_vfp_reg_from_sp (void)
9634 {
9635 inst.instruction |= inst.operands[0].reg << 12;
9636 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9637 }
9638
9639 static void
9640 do_vfp_reg2_from_sp2 (void)
9641 {
9642 constraint (inst.operands[2].imm != 2,
9643 _("only two consecutive VFP SP registers allowed here"));
9644 inst.instruction |= inst.operands[0].reg << 12;
9645 inst.instruction |= inst.operands[1].reg << 16;
9646 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9647 }
9648
9649 static void
9650 do_vfp_sp_from_reg (void)
9651 {
9652 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
9653 inst.instruction |= inst.operands[1].reg << 12;
9654 }
9655
9656 static void
9657 do_vfp_sp2_from_reg2 (void)
9658 {
9659 constraint (inst.operands[0].imm != 2,
9660 _("only two consecutive VFP SP registers allowed here"));
9661 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
9662 inst.instruction |= inst.operands[1].reg << 12;
9663 inst.instruction |= inst.operands[2].reg << 16;
9664 }
9665
9666 static void
9667 do_vfp_sp_ldst (void)
9668 {
9669 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9670 encode_arm_cp_address (1, FALSE, TRUE, 0);
9671 }
9672
9673 static void
9674 do_vfp_dp_ldst (void)
9675 {
9676 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9677 encode_arm_cp_address (1, FALSE, TRUE, 0);
9678 }
9679
9680
9681 static void
9682 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
9683 {
9684 if (inst.operands[0].writeback)
9685 inst.instruction |= WRITE_BACK;
9686 else
9687 constraint (ldstm_type != VFP_LDSTMIA,
9688 _("this addressing mode requires base-register writeback"));
9689 inst.instruction |= inst.operands[0].reg << 16;
9690 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
9691 inst.instruction |= inst.operands[1].imm;
9692 }
9693
9694 static void
9695 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
9696 {
9697 int count;
9698
9699 if (inst.operands[0].writeback)
9700 inst.instruction |= WRITE_BACK;
9701 else
9702 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9703 _("this addressing mode requires base-register writeback"));
9704
9705 inst.instruction |= inst.operands[0].reg << 16;
9706 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9707
9708 count = inst.operands[1].imm << 1;
9709 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9710 count += 1;
9711
9712 inst.instruction |= count;
9713 }
9714
9715 static void
9716 do_vfp_sp_ldstmia (void)
9717 {
9718 vfp_sp_ldstm (VFP_LDSTMIA);
9719 }
9720
9721 static void
9722 do_vfp_sp_ldstmdb (void)
9723 {
9724 vfp_sp_ldstm (VFP_LDSTMDB);
9725 }
9726
9727 static void
9728 do_vfp_dp_ldstmia (void)
9729 {
9730 vfp_dp_ldstm (VFP_LDSTMIA);
9731 }
9732
9733 static void
9734 do_vfp_dp_ldstmdb (void)
9735 {
9736 vfp_dp_ldstm (VFP_LDSTMDB);
9737 }
9738
9739 static void
9740 do_vfp_xp_ldstmia (void)
9741 {
9742 vfp_dp_ldstm (VFP_LDSTMIAX);
9743 }
9744
9745 static void
9746 do_vfp_xp_ldstmdb (void)
9747 {
9748 vfp_dp_ldstm (VFP_LDSTMDBX);
9749 }
9750
9751 static void
9752 do_vfp_dp_rd_rm (void)
9753 {
9754 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9755 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9756 }
9757
9758 static void
9759 do_vfp_dp_rn_rd (void)
9760 {
9761 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9762 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9763 }
9764
9765 static void
9766 do_vfp_dp_rd_rn (void)
9767 {
9768 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9769 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9770 }
9771
9772 static void
9773 do_vfp_dp_rd_rn_rm (void)
9774 {
9775 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9776 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9777 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9778 }
9779
9780 static void
9781 do_vfp_dp_rd (void)
9782 {
9783 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9784 }
9785
9786 static void
9787 do_vfp_dp_rm_rd_rn (void)
9788 {
9789 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9790 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9791 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9792 }
9793
9794 /* VFPv3 instructions. */
9795 static void
9796 do_vfp_sp_const (void)
9797 {
9798 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9799 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9800 inst.instruction |= (inst.operands[1].imm & 0x0f);
9801 }
9802
9803 static void
9804 do_vfp_dp_const (void)
9805 {
9806 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9807 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9808 inst.instruction |= (inst.operands[1].imm & 0x0f);
9809 }
9810
9811 static void
9812 vfp_conv (int srcsize)
9813 {
9814 int immbits = srcsize - inst.operands[1].imm;
9815
9816 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9817 {
9818 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9819 i.e. immbits must be in range 0 - 16. */
9820 inst.error = _("immediate value out of range, expected range [0, 16]");
9821 return;
9822 }
9823 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9824 {
9825 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9826 i.e. immbits must be in range 0 - 31. */
9827 inst.error = _("immediate value out of range, expected range [1, 32]");
9828 return;
9829 }
9830
9831 inst.instruction |= (immbits & 1) << 5;
9832 inst.instruction |= (immbits >> 1);
9833 }
9834
9835 static void
9836 do_vfp_sp_conv_16 (void)
9837 {
9838 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9839 vfp_conv (16);
9840 }
9841
9842 static void
9843 do_vfp_dp_conv_16 (void)
9844 {
9845 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9846 vfp_conv (16);
9847 }
9848
9849 static void
9850 do_vfp_sp_conv_32 (void)
9851 {
9852 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9853 vfp_conv (32);
9854 }
9855
9856 static void
9857 do_vfp_dp_conv_32 (void)
9858 {
9859 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9860 vfp_conv (32);
9861 }
9862 \f
9863 /* FPA instructions. Also in a logical order. */
9864
9865 static void
9866 do_fpa_cmp (void)
9867 {
9868 inst.instruction |= inst.operands[0].reg << 16;
9869 inst.instruction |= inst.operands[1].reg;
9870 }
9871
9872 static void
9873 do_fpa_ldmstm (void)
9874 {
9875 inst.instruction |= inst.operands[0].reg << 12;
9876 switch (inst.operands[1].imm)
9877 {
9878 case 1: inst.instruction |= CP_T_X; break;
9879 case 2: inst.instruction |= CP_T_Y; break;
9880 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9881 case 4: break;
9882 default: abort ();
9883 }
9884
9885 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9886 {
9887 /* The instruction specified "ea" or "fd", so we can only accept
9888 [Rn]{!}. The instruction does not really support stacking or
9889 unstacking, so we have to emulate these by setting appropriate
9890 bits and offsets. */
9891 constraint (inst.reloc.exp.X_op != O_constant
9892 || inst.reloc.exp.X_add_number != 0,
9893 _("this instruction does not support indexing"));
9894
9895 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9896 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9897
9898 if (!(inst.instruction & INDEX_UP))
9899 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9900
9901 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9902 {
9903 inst.operands[2].preind = 0;
9904 inst.operands[2].postind = 1;
9905 }
9906 }
9907
9908 encode_arm_cp_address (2, TRUE, TRUE, 0);
9909 }
9910 \f
9911 /* iWMMXt instructions: strictly in alphabetical order. */
9912
9913 static void
9914 do_iwmmxt_tandorc (void)
9915 {
9916 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9917 }
9918
9919 static void
9920 do_iwmmxt_textrc (void)
9921 {
9922 inst.instruction |= inst.operands[0].reg << 12;
9923 inst.instruction |= inst.operands[1].imm;
9924 }
9925
9926 static void
9927 do_iwmmxt_textrm (void)
9928 {
9929 inst.instruction |= inst.operands[0].reg << 12;
9930 inst.instruction |= inst.operands[1].reg << 16;
9931 inst.instruction |= inst.operands[2].imm;
9932 }
9933
9934 static void
9935 do_iwmmxt_tinsr (void)
9936 {
9937 inst.instruction |= inst.operands[0].reg << 16;
9938 inst.instruction |= inst.operands[1].reg << 12;
9939 inst.instruction |= inst.operands[2].imm;
9940 }
9941
9942 static void
9943 do_iwmmxt_tmia (void)
9944 {
9945 inst.instruction |= inst.operands[0].reg << 5;
9946 inst.instruction |= inst.operands[1].reg;
9947 inst.instruction |= inst.operands[2].reg << 12;
9948 }
9949
9950 static void
9951 do_iwmmxt_waligni (void)
9952 {
9953 inst.instruction |= inst.operands[0].reg << 12;
9954 inst.instruction |= inst.operands[1].reg << 16;
9955 inst.instruction |= inst.operands[2].reg;
9956 inst.instruction |= inst.operands[3].imm << 20;
9957 }
9958
9959 static void
9960 do_iwmmxt_wmerge (void)
9961 {
9962 inst.instruction |= inst.operands[0].reg << 12;
9963 inst.instruction |= inst.operands[1].reg << 16;
9964 inst.instruction |= inst.operands[2].reg;
9965 inst.instruction |= inst.operands[3].imm << 21;
9966 }
9967
9968 static void
9969 do_iwmmxt_wmov (void)
9970 {
9971 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9972 inst.instruction |= inst.operands[0].reg << 12;
9973 inst.instruction |= inst.operands[1].reg << 16;
9974 inst.instruction |= inst.operands[1].reg;
9975 }
9976
9977 static void
9978 do_iwmmxt_wldstbh (void)
9979 {
9980 int reloc;
9981 inst.instruction |= inst.operands[0].reg << 12;
9982 if (thumb_mode)
9983 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9984 else
9985 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9986 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9987 }
9988
9989 static void
9990 do_iwmmxt_wldstw (void)
9991 {
9992 /* RIWR_RIWC clears .isreg for a control register. */
9993 if (!inst.operands[0].isreg)
9994 {
9995 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9996 inst.instruction |= 0xf0000000;
9997 }
9998
9999 inst.instruction |= inst.operands[0].reg << 12;
10000 encode_arm_cp_address (1, TRUE, TRUE, 0);
10001 }
10002
10003 static void
10004 do_iwmmxt_wldstd (void)
10005 {
10006 inst.instruction |= inst.operands[0].reg << 12;
10007 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10008 && inst.operands[1].immisreg)
10009 {
10010 inst.instruction &= ~0x1a000ff;
10011 inst.instruction |= (0xfU << 28);
10012 if (inst.operands[1].preind)
10013 inst.instruction |= PRE_INDEX;
10014 if (!inst.operands[1].negative)
10015 inst.instruction |= INDEX_UP;
10016 if (inst.operands[1].writeback)
10017 inst.instruction |= WRITE_BACK;
10018 inst.instruction |= inst.operands[1].reg << 16;
10019 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10020 inst.instruction |= inst.operands[1].imm;
10021 }
10022 else
10023 encode_arm_cp_address (1, TRUE, FALSE, 0);
10024 }
10025
10026 static void
10027 do_iwmmxt_wshufh (void)
10028 {
10029 inst.instruction |= inst.operands[0].reg << 12;
10030 inst.instruction |= inst.operands[1].reg << 16;
10031 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10032 inst.instruction |= (inst.operands[2].imm & 0x0f);
10033 }
10034
10035 static void
10036 do_iwmmxt_wzero (void)
10037 {
10038 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10039 inst.instruction |= inst.operands[0].reg;
10040 inst.instruction |= inst.operands[0].reg << 12;
10041 inst.instruction |= inst.operands[0].reg << 16;
10042 }
10043
10044 static void
10045 do_iwmmxt_wrwrwr_or_imm5 (void)
10046 {
10047 if (inst.operands[2].isreg)
10048 do_rd_rn_rm ();
10049 else {
10050 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10051 _("immediate operand requires iWMMXt2"));
10052 do_rd_rn ();
10053 if (inst.operands[2].imm == 0)
10054 {
10055 switch ((inst.instruction >> 20) & 0xf)
10056 {
10057 case 4:
10058 case 5:
10059 case 6:
10060 case 7:
10061 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10062 inst.operands[2].imm = 16;
10063 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10064 break;
10065 case 8:
10066 case 9:
10067 case 10:
10068 case 11:
10069 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10070 inst.operands[2].imm = 32;
10071 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10072 break;
10073 case 12:
10074 case 13:
10075 case 14:
10076 case 15:
10077 {
10078 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10079 unsigned long wrn;
10080 wrn = (inst.instruction >> 16) & 0xf;
10081 inst.instruction &= 0xff0fff0f;
10082 inst.instruction |= wrn;
10083 /* Bail out here; the instruction is now assembled. */
10084 return;
10085 }
10086 }
10087 }
10088 /* Map 32 -> 0, etc. */
10089 inst.operands[2].imm &= 0x1f;
10090 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10091 }
10092 }
10093 \f
10094 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10095 operations first, then control, shift, and load/store. */
10096
10097 /* Insns like "foo X,Y,Z". */
10098
10099 static void
10100 do_mav_triple (void)
10101 {
10102 inst.instruction |= inst.operands[0].reg << 16;
10103 inst.instruction |= inst.operands[1].reg;
10104 inst.instruction |= inst.operands[2].reg << 12;
10105 }
10106
10107 /* Insns like "foo W,X,Y,Z".
10108 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10109
10110 static void
10111 do_mav_quad (void)
10112 {
10113 inst.instruction |= inst.operands[0].reg << 5;
10114 inst.instruction |= inst.operands[1].reg << 12;
10115 inst.instruction |= inst.operands[2].reg << 16;
10116 inst.instruction |= inst.operands[3].reg;
10117 }
10118
10119 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10120 static void
10121 do_mav_dspsc (void)
10122 {
10123 inst.instruction |= inst.operands[1].reg << 12;
10124 }
10125
10126 /* Maverick shift immediate instructions.
10127 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10128 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10129
10130 static void
10131 do_mav_shift (void)
10132 {
10133 int imm = inst.operands[2].imm;
10134
10135 inst.instruction |= inst.operands[0].reg << 12;
10136 inst.instruction |= inst.operands[1].reg << 16;
10137
10138 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10139 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10140 Bit 4 should be 0. */
10141 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10142
10143 inst.instruction |= imm;
10144 }
10145 \f
10146 /* XScale instructions. Also sorted arithmetic before move. */
10147
10148 /* Xscale multiply-accumulate (argument parse)
10149 MIAcc acc0,Rm,Rs
10150 MIAPHcc acc0,Rm,Rs
10151 MIAxycc acc0,Rm,Rs. */
10152
10153 static void
10154 do_xsc_mia (void)
10155 {
10156 inst.instruction |= inst.operands[1].reg;
10157 inst.instruction |= inst.operands[2].reg << 12;
10158 }
10159
10160 /* Xscale move-accumulator-register (argument parse)
10161
10162 MARcc acc0,RdLo,RdHi. */
10163
10164 static void
10165 do_xsc_mar (void)
10166 {
10167 inst.instruction |= inst.operands[1].reg << 12;
10168 inst.instruction |= inst.operands[2].reg << 16;
10169 }
10170
10171 /* Xscale move-register-accumulator (argument parse)
10172
10173 MRAcc RdLo,RdHi,acc0. */
10174
10175 static void
10176 do_xsc_mra (void)
10177 {
10178 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10179 inst.instruction |= inst.operands[0].reg << 12;
10180 inst.instruction |= inst.operands[1].reg << 16;
10181 }
10182 \f
10183 /* Encoding functions relevant only to Thumb. */
10184
10185 /* inst.operands[i] is a shifted-register operand; encode
10186 it into inst.instruction in the format used by Thumb32. */
10187
10188 static void
10189 encode_thumb32_shifted_operand (int i)
10190 {
10191 unsigned int value = inst.reloc.exp.X_add_number;
10192 unsigned int shift = inst.operands[i].shift_kind;
10193
10194 constraint (inst.operands[i].immisreg,
10195 _("shift by register not allowed in thumb mode"));
10196 inst.instruction |= inst.operands[i].reg;
10197 if (shift == SHIFT_RRX)
10198 inst.instruction |= SHIFT_ROR << 4;
10199 else
10200 {
10201 constraint (inst.reloc.exp.X_op != O_constant,
10202 _("expression too complex"));
10203
10204 constraint (value > 32
10205 || (value == 32 && (shift == SHIFT_LSL
10206 || shift == SHIFT_ROR)),
10207 _("shift expression is too large"));
10208
10209 if (value == 0)
10210 shift = SHIFT_LSL;
10211 else if (value == 32)
10212 value = 0;
10213
10214 inst.instruction |= shift << 4;
10215 inst.instruction |= (value & 0x1c) << 10;
10216 inst.instruction |= (value & 0x03) << 6;
10217 }
10218 }
10219
10220
10221 /* inst.operands[i] was set up by parse_address. Encode it into a
10222 Thumb32 format load or store instruction. Reject forms that cannot
10223 be used with such instructions. If is_t is true, reject forms that
10224 cannot be used with a T instruction; if is_d is true, reject forms
10225 that cannot be used with a D instruction. If it is a store insn,
10226 reject PC in Rn. */
10227
10228 static void
10229 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10230 {
10231 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
10232
10233 constraint (!inst.operands[i].isreg,
10234 _("Instruction does not support =N addresses"));
10235
10236 inst.instruction |= inst.operands[i].reg << 16;
10237 if (inst.operands[i].immisreg)
10238 {
10239 constraint (is_pc, BAD_PC_ADDRESSING);
10240 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10241 constraint (inst.operands[i].negative,
10242 _("Thumb does not support negative register indexing"));
10243 constraint (inst.operands[i].postind,
10244 _("Thumb does not support register post-indexing"));
10245 constraint (inst.operands[i].writeback,
10246 _("Thumb does not support register indexing with writeback"));
10247 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10248 _("Thumb supports only LSL in shifted register indexing"));
10249
10250 inst.instruction |= inst.operands[i].imm;
10251 if (inst.operands[i].shifted)
10252 {
10253 constraint (inst.reloc.exp.X_op != O_constant,
10254 _("expression too complex"));
10255 constraint (inst.reloc.exp.X_add_number < 0
10256 || inst.reloc.exp.X_add_number > 3,
10257 _("shift out of range"));
10258 inst.instruction |= inst.reloc.exp.X_add_number << 4;
10259 }
10260 inst.reloc.type = BFD_RELOC_UNUSED;
10261 }
10262 else if (inst.operands[i].preind)
10263 {
10264 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
10265 constraint (is_t && inst.operands[i].writeback,
10266 _("cannot use writeback with this instruction"));
10267 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10268 BAD_PC_ADDRESSING);
10269
10270 if (is_d)
10271 {
10272 inst.instruction |= 0x01000000;
10273 if (inst.operands[i].writeback)
10274 inst.instruction |= 0x00200000;
10275 }
10276 else
10277 {
10278 inst.instruction |= 0x00000c00;
10279 if (inst.operands[i].writeback)
10280 inst.instruction |= 0x00000100;
10281 }
10282 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10283 }
10284 else if (inst.operands[i].postind)
10285 {
10286 gas_assert (inst.operands[i].writeback);
10287 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10288 constraint (is_t, _("cannot use post-indexing with this instruction"));
10289
10290 if (is_d)
10291 inst.instruction |= 0x00200000;
10292 else
10293 inst.instruction |= 0x00000900;
10294 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10295 }
10296 else /* unindexed - only for coprocessor */
10297 inst.error = _("instruction does not accept unindexed addressing");
10298 }
10299
10300 /* Table of Thumb instructions which exist in both 16- and 32-bit
10301 encodings (the latter only in post-V6T2 cores). The index is the
10302 value used in the insns table below. When there is more than one
10303 possible 16-bit encoding for the instruction, this table always
10304 holds variant (1).
10305 Also contains several pseudo-instructions used during relaxation. */
10306 #define T16_32_TAB \
10307 X(_adc, 4140, eb400000), \
10308 X(_adcs, 4140, eb500000), \
10309 X(_add, 1c00, eb000000), \
10310 X(_adds, 1c00, eb100000), \
10311 X(_addi, 0000, f1000000), \
10312 X(_addis, 0000, f1100000), \
10313 X(_add_pc,000f, f20f0000), \
10314 X(_add_sp,000d, f10d0000), \
10315 X(_adr, 000f, f20f0000), \
10316 X(_and, 4000, ea000000), \
10317 X(_ands, 4000, ea100000), \
10318 X(_asr, 1000, fa40f000), \
10319 X(_asrs, 1000, fa50f000), \
10320 X(_b, e000, f000b000), \
10321 X(_bcond, d000, f0008000), \
10322 X(_bic, 4380, ea200000), \
10323 X(_bics, 4380, ea300000), \
10324 X(_cmn, 42c0, eb100f00), \
10325 X(_cmp, 2800, ebb00f00), \
10326 X(_cpsie, b660, f3af8400), \
10327 X(_cpsid, b670, f3af8600), \
10328 X(_cpy, 4600, ea4f0000), \
10329 X(_dec_sp,80dd, f1ad0d00), \
10330 X(_eor, 4040, ea800000), \
10331 X(_eors, 4040, ea900000), \
10332 X(_inc_sp,00dd, f10d0d00), \
10333 X(_ldmia, c800, e8900000), \
10334 X(_ldr, 6800, f8500000), \
10335 X(_ldrb, 7800, f8100000), \
10336 X(_ldrh, 8800, f8300000), \
10337 X(_ldrsb, 5600, f9100000), \
10338 X(_ldrsh, 5e00, f9300000), \
10339 X(_ldr_pc,4800, f85f0000), \
10340 X(_ldr_pc2,4800, f85f0000), \
10341 X(_ldr_sp,9800, f85d0000), \
10342 X(_lsl, 0000, fa00f000), \
10343 X(_lsls, 0000, fa10f000), \
10344 X(_lsr, 0800, fa20f000), \
10345 X(_lsrs, 0800, fa30f000), \
10346 X(_mov, 2000, ea4f0000), \
10347 X(_movs, 2000, ea5f0000), \
10348 X(_mul, 4340, fb00f000), \
10349 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10350 X(_mvn, 43c0, ea6f0000), \
10351 X(_mvns, 43c0, ea7f0000), \
10352 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10353 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10354 X(_orr, 4300, ea400000), \
10355 X(_orrs, 4300, ea500000), \
10356 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10357 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10358 X(_rev, ba00, fa90f080), \
10359 X(_rev16, ba40, fa90f090), \
10360 X(_revsh, bac0, fa90f0b0), \
10361 X(_ror, 41c0, fa60f000), \
10362 X(_rors, 41c0, fa70f000), \
10363 X(_sbc, 4180, eb600000), \
10364 X(_sbcs, 4180, eb700000), \
10365 X(_stmia, c000, e8800000), \
10366 X(_str, 6000, f8400000), \
10367 X(_strb, 7000, f8000000), \
10368 X(_strh, 8000, f8200000), \
10369 X(_str_sp,9000, f84d0000), \
10370 X(_sub, 1e00, eba00000), \
10371 X(_subs, 1e00, ebb00000), \
10372 X(_subi, 8000, f1a00000), \
10373 X(_subis, 8000, f1b00000), \
10374 X(_sxtb, b240, fa4ff080), \
10375 X(_sxth, b200, fa0ff080), \
10376 X(_tst, 4200, ea100f00), \
10377 X(_uxtb, b2c0, fa5ff080), \
10378 X(_uxth, b280, fa1ff080), \
10379 X(_nop, bf00, f3af8000), \
10380 X(_yield, bf10, f3af8001), \
10381 X(_wfe, bf20, f3af8002), \
10382 X(_wfi, bf30, f3af8003), \
10383 X(_sev, bf40, f3af8004), \
10384 X(_sevl, bf50, f3af8005), \
10385 X(_udf, de00, f7f0a000)
10386
10387 /* To catch errors in encoding functions, the codes are all offset by
10388 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10389 as 16-bit instructions. */
10390 #define X(a,b,c) T_MNEM##a
10391 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10392 #undef X
10393
10394 #define X(a,b,c) 0x##b
10395 static const unsigned short thumb_op16[] = { T16_32_TAB };
10396 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10397 #undef X
10398
10399 #define X(a,b,c) 0x##c
10400 static const unsigned int thumb_op32[] = { T16_32_TAB };
10401 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10402 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
10403 #undef X
10404 #undef T16_32_TAB
10405
10406 /* Thumb instruction encoders, in alphabetical order. */
10407
10408 /* ADDW or SUBW. */
10409
10410 static void
10411 do_t_add_sub_w (void)
10412 {
10413 int Rd, Rn;
10414
10415 Rd = inst.operands[0].reg;
10416 Rn = inst.operands[1].reg;
10417
10418 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10419 is the SP-{plus,minus}-immediate form of the instruction. */
10420 if (Rn == REG_SP)
10421 constraint (Rd == REG_PC, BAD_PC);
10422 else
10423 reject_bad_reg (Rd);
10424
10425 inst.instruction |= (Rn << 16) | (Rd << 8);
10426 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10427 }
10428
10429 /* Parse an add or subtract instruction. We get here with inst.instruction
10430 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
10431
10432 static void
10433 do_t_add_sub (void)
10434 {
10435 int Rd, Rs, Rn;
10436
10437 Rd = inst.operands[0].reg;
10438 Rs = (inst.operands[1].present
10439 ? inst.operands[1].reg /* Rd, Rs, foo */
10440 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10441
10442 if (Rd == REG_PC)
10443 set_it_insn_type_last ();
10444
10445 if (unified_syntax)
10446 {
10447 bfd_boolean flags;
10448 bfd_boolean narrow;
10449 int opcode;
10450
10451 flags = (inst.instruction == T_MNEM_adds
10452 || inst.instruction == T_MNEM_subs);
10453 if (flags)
10454 narrow = !in_it_block ();
10455 else
10456 narrow = in_it_block ();
10457 if (!inst.operands[2].isreg)
10458 {
10459 int add;
10460
10461 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10462
10463 add = (inst.instruction == T_MNEM_add
10464 || inst.instruction == T_MNEM_adds);
10465 opcode = 0;
10466 if (inst.size_req != 4)
10467 {
10468 /* Attempt to use a narrow opcode, with relaxation if
10469 appropriate. */
10470 if (Rd == REG_SP && Rs == REG_SP && !flags)
10471 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10472 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10473 opcode = T_MNEM_add_sp;
10474 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10475 opcode = T_MNEM_add_pc;
10476 else if (Rd <= 7 && Rs <= 7 && narrow)
10477 {
10478 if (flags)
10479 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10480 else
10481 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10482 }
10483 if (opcode)
10484 {
10485 inst.instruction = THUMB_OP16(opcode);
10486 inst.instruction |= (Rd << 4) | Rs;
10487 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10488 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
10489 {
10490 if (inst.size_req == 2)
10491 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10492 else
10493 inst.relax = opcode;
10494 }
10495 }
10496 else
10497 constraint (inst.size_req == 2, BAD_HIREG);
10498 }
10499 if (inst.size_req == 4
10500 || (inst.size_req != 2 && !opcode))
10501 {
10502 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10503 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
10504 THUMB1_RELOC_ONLY);
10505 if (Rd == REG_PC)
10506 {
10507 constraint (add, BAD_PC);
10508 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10509 _("only SUBS PC, LR, #const allowed"));
10510 constraint (inst.reloc.exp.X_op != O_constant,
10511 _("expression too complex"));
10512 constraint (inst.reloc.exp.X_add_number < 0
10513 || inst.reloc.exp.X_add_number > 0xff,
10514 _("immediate value out of range"));
10515 inst.instruction = T2_SUBS_PC_LR
10516 | inst.reloc.exp.X_add_number;
10517 inst.reloc.type = BFD_RELOC_UNUSED;
10518 return;
10519 }
10520 else if (Rs == REG_PC)
10521 {
10522 /* Always use addw/subw. */
10523 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
10524 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
10525 }
10526 else
10527 {
10528 inst.instruction = THUMB_OP32 (inst.instruction);
10529 inst.instruction = (inst.instruction & 0xe1ffffff)
10530 | 0x10000000;
10531 if (flags)
10532 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10533 else
10534 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
10535 }
10536 inst.instruction |= Rd << 8;
10537 inst.instruction |= Rs << 16;
10538 }
10539 }
10540 else
10541 {
10542 unsigned int value = inst.reloc.exp.X_add_number;
10543 unsigned int shift = inst.operands[2].shift_kind;
10544
10545 Rn = inst.operands[2].reg;
10546 /* See if we can do this with a 16-bit instruction. */
10547 if (!inst.operands[2].shifted && inst.size_req != 4)
10548 {
10549 if (Rd > 7 || Rs > 7 || Rn > 7)
10550 narrow = FALSE;
10551
10552 if (narrow)
10553 {
10554 inst.instruction = ((inst.instruction == T_MNEM_adds
10555 || inst.instruction == T_MNEM_add)
10556 ? T_OPCODE_ADD_R3
10557 : T_OPCODE_SUB_R3);
10558 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10559 return;
10560 }
10561
10562 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
10563 {
10564 /* Thumb-1 cores (except v6-M) require at least one high
10565 register in a narrow non flag setting add. */
10566 if (Rd > 7 || Rn > 7
10567 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10568 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
10569 {
10570 if (Rd == Rn)
10571 {
10572 Rn = Rs;
10573 Rs = Rd;
10574 }
10575 inst.instruction = T_OPCODE_ADD_HI;
10576 inst.instruction |= (Rd & 8) << 4;
10577 inst.instruction |= (Rd & 7);
10578 inst.instruction |= Rn << 3;
10579 return;
10580 }
10581 }
10582 }
10583
10584 constraint (Rd == REG_PC, BAD_PC);
10585 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10586 constraint (Rs == REG_PC, BAD_PC);
10587 reject_bad_reg (Rn);
10588
10589 /* If we get here, it can't be done in 16 bits. */
10590 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10591 _("shift must be constant"));
10592 inst.instruction = THUMB_OP32 (inst.instruction);
10593 inst.instruction |= Rd << 8;
10594 inst.instruction |= Rs << 16;
10595 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10596 _("shift value over 3 not allowed in thumb mode"));
10597 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10598 _("only LSL shift allowed in thumb mode"));
10599 encode_thumb32_shifted_operand (2);
10600 }
10601 }
10602 else
10603 {
10604 constraint (inst.instruction == T_MNEM_adds
10605 || inst.instruction == T_MNEM_subs,
10606 BAD_THUMB32);
10607
10608 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
10609 {
10610 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10611 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10612 BAD_HIREG);
10613
10614 inst.instruction = (inst.instruction == T_MNEM_add
10615 ? 0x0000 : 0x8000);
10616 inst.instruction |= (Rd << 4) | Rs;
10617 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10618 return;
10619 }
10620
10621 Rn = inst.operands[2].reg;
10622 constraint (inst.operands[2].shifted, _("unshifted register required"));
10623
10624 /* We now have Rd, Rs, and Rn set to registers. */
10625 if (Rd > 7 || Rs > 7 || Rn > 7)
10626 {
10627 /* Can't do this for SUB. */
10628 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10629 inst.instruction = T_OPCODE_ADD_HI;
10630 inst.instruction |= (Rd & 8) << 4;
10631 inst.instruction |= (Rd & 7);
10632 if (Rs == Rd)
10633 inst.instruction |= Rn << 3;
10634 else if (Rn == Rd)
10635 inst.instruction |= Rs << 3;
10636 else
10637 constraint (1, _("dest must overlap one source register"));
10638 }
10639 else
10640 {
10641 inst.instruction = (inst.instruction == T_MNEM_add
10642 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10643 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10644 }
10645 }
10646 }
10647
10648 static void
10649 do_t_adr (void)
10650 {
10651 unsigned Rd;
10652
10653 Rd = inst.operands[0].reg;
10654 reject_bad_reg (Rd);
10655
10656 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
10657 {
10658 /* Defer to section relaxation. */
10659 inst.relax = inst.instruction;
10660 inst.instruction = THUMB_OP16 (inst.instruction);
10661 inst.instruction |= Rd << 4;
10662 }
10663 else if (unified_syntax && inst.size_req != 2)
10664 {
10665 /* Generate a 32-bit opcode. */
10666 inst.instruction = THUMB_OP32 (inst.instruction);
10667 inst.instruction |= Rd << 8;
10668 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
10669 inst.reloc.pc_rel = 1;
10670 }
10671 else
10672 {
10673 /* Generate a 16-bit opcode. */
10674 inst.instruction = THUMB_OP16 (inst.instruction);
10675 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
10676 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
10677 inst.reloc.pc_rel = 1;
10678
10679 inst.instruction |= Rd << 4;
10680 }
10681 }
10682
10683 /* Arithmetic instructions for which there is just one 16-bit
10684 instruction encoding, and it allows only two low registers.
10685 For maximal compatibility with ARM syntax, we allow three register
10686 operands even when Thumb-32 instructions are not available, as long
10687 as the first two are identical. For instance, both "sbc r0,r1" and
10688 "sbc r0,r0,r1" are allowed. */
10689 static void
10690 do_t_arit3 (void)
10691 {
10692 int Rd, Rs, Rn;
10693
10694 Rd = inst.operands[0].reg;
10695 Rs = (inst.operands[1].present
10696 ? inst.operands[1].reg /* Rd, Rs, foo */
10697 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10698 Rn = inst.operands[2].reg;
10699
10700 reject_bad_reg (Rd);
10701 reject_bad_reg (Rs);
10702 if (inst.operands[2].isreg)
10703 reject_bad_reg (Rn);
10704
10705 if (unified_syntax)
10706 {
10707 if (!inst.operands[2].isreg)
10708 {
10709 /* For an immediate, we always generate a 32-bit opcode;
10710 section relaxation will shrink it later if possible. */
10711 inst.instruction = THUMB_OP32 (inst.instruction);
10712 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10713 inst.instruction |= Rd << 8;
10714 inst.instruction |= Rs << 16;
10715 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10716 }
10717 else
10718 {
10719 bfd_boolean narrow;
10720
10721 /* See if we can do this with a 16-bit instruction. */
10722 if (THUMB_SETS_FLAGS (inst.instruction))
10723 narrow = !in_it_block ();
10724 else
10725 narrow = in_it_block ();
10726
10727 if (Rd > 7 || Rn > 7 || Rs > 7)
10728 narrow = FALSE;
10729 if (inst.operands[2].shifted)
10730 narrow = FALSE;
10731 if (inst.size_req == 4)
10732 narrow = FALSE;
10733
10734 if (narrow
10735 && Rd == Rs)
10736 {
10737 inst.instruction = THUMB_OP16 (inst.instruction);
10738 inst.instruction |= Rd;
10739 inst.instruction |= Rn << 3;
10740 return;
10741 }
10742
10743 /* If we get here, it can't be done in 16 bits. */
10744 constraint (inst.operands[2].shifted
10745 && inst.operands[2].immisreg,
10746 _("shift must be constant"));
10747 inst.instruction = THUMB_OP32 (inst.instruction);
10748 inst.instruction |= Rd << 8;
10749 inst.instruction |= Rs << 16;
10750 encode_thumb32_shifted_operand (2);
10751 }
10752 }
10753 else
10754 {
10755 /* On its face this is a lie - the instruction does set the
10756 flags. However, the only supported mnemonic in this mode
10757 says it doesn't. */
10758 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10759
10760 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10761 _("unshifted register required"));
10762 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10763 constraint (Rd != Rs,
10764 _("dest and source1 must be the same register"));
10765
10766 inst.instruction = THUMB_OP16 (inst.instruction);
10767 inst.instruction |= Rd;
10768 inst.instruction |= Rn << 3;
10769 }
10770 }
10771
10772 /* Similarly, but for instructions where the arithmetic operation is
10773 commutative, so we can allow either of them to be different from
10774 the destination operand in a 16-bit instruction. For instance, all
10775 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10776 accepted. */
10777 static void
10778 do_t_arit3c (void)
10779 {
10780 int Rd, Rs, Rn;
10781
10782 Rd = inst.operands[0].reg;
10783 Rs = (inst.operands[1].present
10784 ? inst.operands[1].reg /* Rd, Rs, foo */
10785 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10786 Rn = inst.operands[2].reg;
10787
10788 reject_bad_reg (Rd);
10789 reject_bad_reg (Rs);
10790 if (inst.operands[2].isreg)
10791 reject_bad_reg (Rn);
10792
10793 if (unified_syntax)
10794 {
10795 if (!inst.operands[2].isreg)
10796 {
10797 /* For an immediate, we always generate a 32-bit opcode;
10798 section relaxation will shrink it later if possible. */
10799 inst.instruction = THUMB_OP32 (inst.instruction);
10800 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10801 inst.instruction |= Rd << 8;
10802 inst.instruction |= Rs << 16;
10803 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10804 }
10805 else
10806 {
10807 bfd_boolean narrow;
10808
10809 /* See if we can do this with a 16-bit instruction. */
10810 if (THUMB_SETS_FLAGS (inst.instruction))
10811 narrow = !in_it_block ();
10812 else
10813 narrow = in_it_block ();
10814
10815 if (Rd > 7 || Rn > 7 || Rs > 7)
10816 narrow = FALSE;
10817 if (inst.operands[2].shifted)
10818 narrow = FALSE;
10819 if (inst.size_req == 4)
10820 narrow = FALSE;
10821
10822 if (narrow)
10823 {
10824 if (Rd == Rs)
10825 {
10826 inst.instruction = THUMB_OP16 (inst.instruction);
10827 inst.instruction |= Rd;
10828 inst.instruction |= Rn << 3;
10829 return;
10830 }
10831 if (Rd == Rn)
10832 {
10833 inst.instruction = THUMB_OP16 (inst.instruction);
10834 inst.instruction |= Rd;
10835 inst.instruction |= Rs << 3;
10836 return;
10837 }
10838 }
10839
10840 /* If we get here, it can't be done in 16 bits. */
10841 constraint (inst.operands[2].shifted
10842 && inst.operands[2].immisreg,
10843 _("shift must be constant"));
10844 inst.instruction = THUMB_OP32 (inst.instruction);
10845 inst.instruction |= Rd << 8;
10846 inst.instruction |= Rs << 16;
10847 encode_thumb32_shifted_operand (2);
10848 }
10849 }
10850 else
10851 {
10852 /* On its face this is a lie - the instruction does set the
10853 flags. However, the only supported mnemonic in this mode
10854 says it doesn't. */
10855 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10856
10857 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10858 _("unshifted register required"));
10859 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10860
10861 inst.instruction = THUMB_OP16 (inst.instruction);
10862 inst.instruction |= Rd;
10863
10864 if (Rd == Rs)
10865 inst.instruction |= Rn << 3;
10866 else if (Rd == Rn)
10867 inst.instruction |= Rs << 3;
10868 else
10869 constraint (1, _("dest must overlap one source register"));
10870 }
10871 }
10872
10873 static void
10874 do_t_bfc (void)
10875 {
10876 unsigned Rd;
10877 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10878 constraint (msb > 32, _("bit-field extends past end of register"));
10879 /* The instruction encoding stores the LSB and MSB,
10880 not the LSB and width. */
10881 Rd = inst.operands[0].reg;
10882 reject_bad_reg (Rd);
10883 inst.instruction |= Rd << 8;
10884 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10885 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10886 inst.instruction |= msb - 1;
10887 }
10888
10889 static void
10890 do_t_bfi (void)
10891 {
10892 int Rd, Rn;
10893 unsigned int msb;
10894
10895 Rd = inst.operands[0].reg;
10896 reject_bad_reg (Rd);
10897
10898 /* #0 in second position is alternative syntax for bfc, which is
10899 the same instruction but with REG_PC in the Rm field. */
10900 if (!inst.operands[1].isreg)
10901 Rn = REG_PC;
10902 else
10903 {
10904 Rn = inst.operands[1].reg;
10905 reject_bad_reg (Rn);
10906 }
10907
10908 msb = inst.operands[2].imm + inst.operands[3].imm;
10909 constraint (msb > 32, _("bit-field extends past end of register"));
10910 /* The instruction encoding stores the LSB and MSB,
10911 not the LSB and width. */
10912 inst.instruction |= Rd << 8;
10913 inst.instruction |= Rn << 16;
10914 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10915 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10916 inst.instruction |= msb - 1;
10917 }
10918
10919 static void
10920 do_t_bfx (void)
10921 {
10922 unsigned Rd, Rn;
10923
10924 Rd = inst.operands[0].reg;
10925 Rn = inst.operands[1].reg;
10926
10927 reject_bad_reg (Rd);
10928 reject_bad_reg (Rn);
10929
10930 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10931 _("bit-field extends past end of register"));
10932 inst.instruction |= Rd << 8;
10933 inst.instruction |= Rn << 16;
10934 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10935 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10936 inst.instruction |= inst.operands[3].imm - 1;
10937 }
10938
10939 /* ARM V5 Thumb BLX (argument parse)
10940 BLX <target_addr> which is BLX(1)
10941 BLX <Rm> which is BLX(2)
10942 Unfortunately, there are two different opcodes for this mnemonic.
10943 So, the insns[].value is not used, and the code here zaps values
10944 into inst.instruction.
10945
10946 ??? How to take advantage of the additional two bits of displacement
10947 available in Thumb32 mode? Need new relocation? */
10948
10949 static void
10950 do_t_blx (void)
10951 {
10952 set_it_insn_type_last ();
10953
10954 if (inst.operands[0].isreg)
10955 {
10956 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10957 /* We have a register, so this is BLX(2). */
10958 inst.instruction |= inst.operands[0].reg << 3;
10959 }
10960 else
10961 {
10962 /* No register. This must be BLX(1). */
10963 inst.instruction = 0xf000e800;
10964 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10965 }
10966 }
10967
10968 static void
10969 do_t_branch (void)
10970 {
10971 int opcode;
10972 int cond;
10973 bfd_reloc_code_real_type reloc;
10974
10975 cond = inst.cond;
10976 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10977
10978 if (in_it_block ())
10979 {
10980 /* Conditional branches inside IT blocks are encoded as unconditional
10981 branches. */
10982 cond = COND_ALWAYS;
10983 }
10984 else
10985 cond = inst.cond;
10986
10987 if (cond != COND_ALWAYS)
10988 opcode = T_MNEM_bcond;
10989 else
10990 opcode = inst.instruction;
10991
10992 if (unified_syntax
10993 && (inst.size_req == 4
10994 || (inst.size_req != 2
10995 && (inst.operands[0].hasreloc
10996 || inst.reloc.exp.X_op == O_constant))))
10997 {
10998 inst.instruction = THUMB_OP32(opcode);
10999 if (cond == COND_ALWAYS)
11000 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11001 else
11002 {
11003 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11004 _("selected architecture does not support "
11005 "wide conditional branch instruction"));
11006
11007 gas_assert (cond != 0xF);
11008 inst.instruction |= cond << 22;
11009 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11010 }
11011 }
11012 else
11013 {
11014 inst.instruction = THUMB_OP16(opcode);
11015 if (cond == COND_ALWAYS)
11016 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11017 else
11018 {
11019 inst.instruction |= cond << 8;
11020 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11021 }
11022 /* Allow section relaxation. */
11023 if (unified_syntax && inst.size_req != 2)
11024 inst.relax = opcode;
11025 }
11026 inst.reloc.type = reloc;
11027 inst.reloc.pc_rel = 1;
11028 }
11029
11030 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11031 between the two is the maximum immediate allowed - which is passed in
11032 RANGE. */
11033 static void
11034 do_t_bkpt_hlt1 (int range)
11035 {
11036 constraint (inst.cond != COND_ALWAYS,
11037 _("instruction is always unconditional"));
11038 if (inst.operands[0].present)
11039 {
11040 constraint (inst.operands[0].imm > range,
11041 _("immediate value out of range"));
11042 inst.instruction |= inst.operands[0].imm;
11043 }
11044
11045 set_it_insn_type (NEUTRAL_IT_INSN);
11046 }
11047
11048 static void
11049 do_t_hlt (void)
11050 {
11051 do_t_bkpt_hlt1 (63);
11052 }
11053
11054 static void
11055 do_t_bkpt (void)
11056 {
11057 do_t_bkpt_hlt1 (255);
11058 }
11059
11060 static void
11061 do_t_branch23 (void)
11062 {
11063 set_it_insn_type_last ();
11064 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11065
11066 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11067 this file. We used to simply ignore the PLT reloc type here --
11068 the branch encoding is now needed to deal with TLSCALL relocs.
11069 So if we see a PLT reloc now, put it back to how it used to be to
11070 keep the preexisting behaviour. */
11071 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
11072 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11073
11074 #if defined(OBJ_COFF)
11075 /* If the destination of the branch is a defined symbol which does not have
11076 the THUMB_FUNC attribute, then we must be calling a function which has
11077 the (interfacearm) attribute. We look for the Thumb entry point to that
11078 function and change the branch to refer to that function instead. */
11079 if ( inst.reloc.exp.X_op == O_symbol
11080 && inst.reloc.exp.X_add_symbol != NULL
11081 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
11082 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
11083 inst.reloc.exp.X_add_symbol =
11084 find_real_start (inst.reloc.exp.X_add_symbol);
11085 #endif
11086 }
11087
11088 static void
11089 do_t_bx (void)
11090 {
11091 set_it_insn_type_last ();
11092 inst.instruction |= inst.operands[0].reg << 3;
11093 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11094 should cause the alignment to be checked once it is known. This is
11095 because BX PC only works if the instruction is word aligned. */
11096 }
11097
11098 static void
11099 do_t_bxj (void)
11100 {
11101 int Rm;
11102
11103 set_it_insn_type_last ();
11104 Rm = inst.operands[0].reg;
11105 reject_bad_reg (Rm);
11106 inst.instruction |= Rm << 16;
11107 }
11108
11109 static void
11110 do_t_clz (void)
11111 {
11112 unsigned Rd;
11113 unsigned Rm;
11114
11115 Rd = inst.operands[0].reg;
11116 Rm = inst.operands[1].reg;
11117
11118 reject_bad_reg (Rd);
11119 reject_bad_reg (Rm);
11120
11121 inst.instruction |= Rd << 8;
11122 inst.instruction |= Rm << 16;
11123 inst.instruction |= Rm;
11124 }
11125
11126 static void
11127 do_t_cps (void)
11128 {
11129 set_it_insn_type (OUTSIDE_IT_INSN);
11130 inst.instruction |= inst.operands[0].imm;
11131 }
11132
11133 static void
11134 do_t_cpsi (void)
11135 {
11136 set_it_insn_type (OUTSIDE_IT_INSN);
11137 if (unified_syntax
11138 && (inst.operands[1].present || inst.size_req == 4)
11139 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11140 {
11141 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11142 inst.instruction = 0xf3af8000;
11143 inst.instruction |= imod << 9;
11144 inst.instruction |= inst.operands[0].imm << 5;
11145 if (inst.operands[1].present)
11146 inst.instruction |= 0x100 | inst.operands[1].imm;
11147 }
11148 else
11149 {
11150 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11151 && (inst.operands[0].imm & 4),
11152 _("selected processor does not support 'A' form "
11153 "of this instruction"));
11154 constraint (inst.operands[1].present || inst.size_req == 4,
11155 _("Thumb does not support the 2-argument "
11156 "form of this instruction"));
11157 inst.instruction |= inst.operands[0].imm;
11158 }
11159 }
11160
11161 /* THUMB CPY instruction (argument parse). */
11162
11163 static void
11164 do_t_cpy (void)
11165 {
11166 if (inst.size_req == 4)
11167 {
11168 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11169 inst.instruction |= inst.operands[0].reg << 8;
11170 inst.instruction |= inst.operands[1].reg;
11171 }
11172 else
11173 {
11174 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11175 inst.instruction |= (inst.operands[0].reg & 0x7);
11176 inst.instruction |= inst.operands[1].reg << 3;
11177 }
11178 }
11179
11180 static void
11181 do_t_cbz (void)
11182 {
11183 set_it_insn_type (OUTSIDE_IT_INSN);
11184 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11185 inst.instruction |= inst.operands[0].reg;
11186 inst.reloc.pc_rel = 1;
11187 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11188 }
11189
11190 static void
11191 do_t_dbg (void)
11192 {
11193 inst.instruction |= inst.operands[0].imm;
11194 }
11195
11196 static void
11197 do_t_div (void)
11198 {
11199 unsigned Rd, Rn, Rm;
11200
11201 Rd = inst.operands[0].reg;
11202 Rn = (inst.operands[1].present
11203 ? inst.operands[1].reg : Rd);
11204 Rm = inst.operands[2].reg;
11205
11206 reject_bad_reg (Rd);
11207 reject_bad_reg (Rn);
11208 reject_bad_reg (Rm);
11209
11210 inst.instruction |= Rd << 8;
11211 inst.instruction |= Rn << 16;
11212 inst.instruction |= Rm;
11213 }
11214
11215 static void
11216 do_t_hint (void)
11217 {
11218 if (unified_syntax && inst.size_req == 4)
11219 inst.instruction = THUMB_OP32 (inst.instruction);
11220 else
11221 inst.instruction = THUMB_OP16 (inst.instruction);
11222 }
11223
11224 static void
11225 do_t_it (void)
11226 {
11227 unsigned int cond = inst.operands[0].imm;
11228
11229 set_it_insn_type (IT_INSN);
11230 now_it.mask = (inst.instruction & 0xf) | 0x10;
11231 now_it.cc = cond;
11232 now_it.warn_deprecated = FALSE;
11233
11234 /* If the condition is a negative condition, invert the mask. */
11235 if ((cond & 0x1) == 0x0)
11236 {
11237 unsigned int mask = inst.instruction & 0x000f;
11238
11239 if ((mask & 0x7) == 0)
11240 {
11241 /* No conversion needed. */
11242 now_it.block_length = 1;
11243 }
11244 else if ((mask & 0x3) == 0)
11245 {
11246 mask ^= 0x8;
11247 now_it.block_length = 2;
11248 }
11249 else if ((mask & 0x1) == 0)
11250 {
11251 mask ^= 0xC;
11252 now_it.block_length = 3;
11253 }
11254 else
11255 {
11256 mask ^= 0xE;
11257 now_it.block_length = 4;
11258 }
11259
11260 inst.instruction &= 0xfff0;
11261 inst.instruction |= mask;
11262 }
11263
11264 inst.instruction |= cond << 4;
11265 }
11266
11267 /* Helper function used for both push/pop and ldm/stm. */
11268 static void
11269 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11270 {
11271 bfd_boolean load;
11272
11273 load = (inst.instruction & (1 << 20)) != 0;
11274
11275 if (mask & (1 << 13))
11276 inst.error = _("SP not allowed in register list");
11277
11278 if ((mask & (1 << base)) != 0
11279 && writeback)
11280 inst.error = _("having the base register in the register list when "
11281 "using write back is UNPREDICTABLE");
11282
11283 if (load)
11284 {
11285 if (mask & (1 << 15))
11286 {
11287 if (mask & (1 << 14))
11288 inst.error = _("LR and PC should not both be in register list");
11289 else
11290 set_it_insn_type_last ();
11291 }
11292 }
11293 else
11294 {
11295 if (mask & (1 << 15))
11296 inst.error = _("PC not allowed in register list");
11297 }
11298
11299 if ((mask & (mask - 1)) == 0)
11300 {
11301 /* Single register transfers implemented as str/ldr. */
11302 if (writeback)
11303 {
11304 if (inst.instruction & (1 << 23))
11305 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11306 else
11307 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11308 }
11309 else
11310 {
11311 if (inst.instruction & (1 << 23))
11312 inst.instruction = 0x00800000; /* ia -> [base] */
11313 else
11314 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11315 }
11316
11317 inst.instruction |= 0xf8400000;
11318 if (load)
11319 inst.instruction |= 0x00100000;
11320
11321 mask = ffs (mask) - 1;
11322 mask <<= 12;
11323 }
11324 else if (writeback)
11325 inst.instruction |= WRITE_BACK;
11326
11327 inst.instruction |= mask;
11328 inst.instruction |= base << 16;
11329 }
11330
11331 static void
11332 do_t_ldmstm (void)
11333 {
11334 /* This really doesn't seem worth it. */
11335 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11336 _("expression too complex"));
11337 constraint (inst.operands[1].writeback,
11338 _("Thumb load/store multiple does not support {reglist}^"));
11339
11340 if (unified_syntax)
11341 {
11342 bfd_boolean narrow;
11343 unsigned mask;
11344
11345 narrow = FALSE;
11346 /* See if we can use a 16-bit instruction. */
11347 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11348 && inst.size_req != 4
11349 && !(inst.operands[1].imm & ~0xff))
11350 {
11351 mask = 1 << inst.operands[0].reg;
11352
11353 if (inst.operands[0].reg <= 7)
11354 {
11355 if (inst.instruction == T_MNEM_stmia
11356 ? inst.operands[0].writeback
11357 : (inst.operands[0].writeback
11358 == !(inst.operands[1].imm & mask)))
11359 {
11360 if (inst.instruction == T_MNEM_stmia
11361 && (inst.operands[1].imm & mask)
11362 && (inst.operands[1].imm & (mask - 1)))
11363 as_warn (_("value stored for r%d is UNKNOWN"),
11364 inst.operands[0].reg);
11365
11366 inst.instruction = THUMB_OP16 (inst.instruction);
11367 inst.instruction |= inst.operands[0].reg << 8;
11368 inst.instruction |= inst.operands[1].imm;
11369 narrow = TRUE;
11370 }
11371 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11372 {
11373 /* This means 1 register in reg list one of 3 situations:
11374 1. Instruction is stmia, but without writeback.
11375 2. lmdia without writeback, but with Rn not in
11376 reglist.
11377 3. ldmia with writeback, but with Rn in reglist.
11378 Case 3 is UNPREDICTABLE behaviour, so we handle
11379 case 1 and 2 which can be converted into a 16-bit
11380 str or ldr. The SP cases are handled below. */
11381 unsigned long opcode;
11382 /* First, record an error for Case 3. */
11383 if (inst.operands[1].imm & mask
11384 && inst.operands[0].writeback)
11385 inst.error =
11386 _("having the base register in the register list when "
11387 "using write back is UNPREDICTABLE");
11388
11389 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
11390 : T_MNEM_ldr);
11391 inst.instruction = THUMB_OP16 (opcode);
11392 inst.instruction |= inst.operands[0].reg << 3;
11393 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11394 narrow = TRUE;
11395 }
11396 }
11397 else if (inst.operands[0] .reg == REG_SP)
11398 {
11399 if (inst.operands[0].writeback)
11400 {
11401 inst.instruction =
11402 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11403 ? T_MNEM_push : T_MNEM_pop);
11404 inst.instruction |= inst.operands[1].imm;
11405 narrow = TRUE;
11406 }
11407 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11408 {
11409 inst.instruction =
11410 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11411 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
11412 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
11413 narrow = TRUE;
11414 }
11415 }
11416 }
11417
11418 if (!narrow)
11419 {
11420 if (inst.instruction < 0xffff)
11421 inst.instruction = THUMB_OP32 (inst.instruction);
11422
11423 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11424 inst.operands[0].writeback);
11425 }
11426 }
11427 else
11428 {
11429 constraint (inst.operands[0].reg > 7
11430 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
11431 constraint (inst.instruction != T_MNEM_ldmia
11432 && inst.instruction != T_MNEM_stmia,
11433 _("Thumb-2 instruction only valid in unified syntax"));
11434 if (inst.instruction == T_MNEM_stmia)
11435 {
11436 if (!inst.operands[0].writeback)
11437 as_warn (_("this instruction will write back the base register"));
11438 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11439 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
11440 as_warn (_("value stored for r%d is UNKNOWN"),
11441 inst.operands[0].reg);
11442 }
11443 else
11444 {
11445 if (!inst.operands[0].writeback
11446 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11447 as_warn (_("this instruction will write back the base register"));
11448 else if (inst.operands[0].writeback
11449 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11450 as_warn (_("this instruction will not write back the base register"));
11451 }
11452
11453 inst.instruction = THUMB_OP16 (inst.instruction);
11454 inst.instruction |= inst.operands[0].reg << 8;
11455 inst.instruction |= inst.operands[1].imm;
11456 }
11457 }
11458
11459 static void
11460 do_t_ldrex (void)
11461 {
11462 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11463 || inst.operands[1].postind || inst.operands[1].writeback
11464 || inst.operands[1].immisreg || inst.operands[1].shifted
11465 || inst.operands[1].negative,
11466 BAD_ADDR_MODE);
11467
11468 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11469
11470 inst.instruction |= inst.operands[0].reg << 12;
11471 inst.instruction |= inst.operands[1].reg << 16;
11472 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11473 }
11474
11475 static void
11476 do_t_ldrexd (void)
11477 {
11478 if (!inst.operands[1].present)
11479 {
11480 constraint (inst.operands[0].reg == REG_LR,
11481 _("r14 not allowed as first register "
11482 "when second register is omitted"));
11483 inst.operands[1].reg = inst.operands[0].reg + 1;
11484 }
11485 constraint (inst.operands[0].reg == inst.operands[1].reg,
11486 BAD_OVERLAP);
11487
11488 inst.instruction |= inst.operands[0].reg << 12;
11489 inst.instruction |= inst.operands[1].reg << 8;
11490 inst.instruction |= inst.operands[2].reg << 16;
11491 }
11492
11493 static void
11494 do_t_ldst (void)
11495 {
11496 unsigned long opcode;
11497 int Rn;
11498
11499 if (inst.operands[0].isreg
11500 && !inst.operands[0].preind
11501 && inst.operands[0].reg == REG_PC)
11502 set_it_insn_type_last ();
11503
11504 opcode = inst.instruction;
11505 if (unified_syntax)
11506 {
11507 if (!inst.operands[1].isreg)
11508 {
11509 if (opcode <= 0xffff)
11510 inst.instruction = THUMB_OP32 (opcode);
11511 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11512 return;
11513 }
11514 if (inst.operands[1].isreg
11515 && !inst.operands[1].writeback
11516 && !inst.operands[1].shifted && !inst.operands[1].postind
11517 && !inst.operands[1].negative && inst.operands[0].reg <= 7
11518 && opcode <= 0xffff
11519 && inst.size_req != 4)
11520 {
11521 /* Insn may have a 16-bit form. */
11522 Rn = inst.operands[1].reg;
11523 if (inst.operands[1].immisreg)
11524 {
11525 inst.instruction = THUMB_OP16 (opcode);
11526 /* [Rn, Rik] */
11527 if (Rn <= 7 && inst.operands[1].imm <= 7)
11528 goto op16;
11529 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11530 reject_bad_reg (inst.operands[1].imm);
11531 }
11532 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11533 && opcode != T_MNEM_ldrsb)
11534 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11535 || (Rn == REG_SP && opcode == T_MNEM_str))
11536 {
11537 /* [Rn, #const] */
11538 if (Rn > 7)
11539 {
11540 if (Rn == REG_PC)
11541 {
11542 if (inst.reloc.pc_rel)
11543 opcode = T_MNEM_ldr_pc2;
11544 else
11545 opcode = T_MNEM_ldr_pc;
11546 }
11547 else
11548 {
11549 if (opcode == T_MNEM_ldr)
11550 opcode = T_MNEM_ldr_sp;
11551 else
11552 opcode = T_MNEM_str_sp;
11553 }
11554 inst.instruction = inst.operands[0].reg << 8;
11555 }
11556 else
11557 {
11558 inst.instruction = inst.operands[0].reg;
11559 inst.instruction |= inst.operands[1].reg << 3;
11560 }
11561 inst.instruction |= THUMB_OP16 (opcode);
11562 if (inst.size_req == 2)
11563 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11564 else
11565 inst.relax = opcode;
11566 return;
11567 }
11568 }
11569 /* Definitely a 32-bit variant. */
11570
11571 /* Warning for Erratum 752419. */
11572 if (opcode == T_MNEM_ldr
11573 && inst.operands[0].reg == REG_SP
11574 && inst.operands[1].writeback == 1
11575 && !inst.operands[1].immisreg)
11576 {
11577 if (no_cpu_selected ()
11578 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
11579 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11580 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
11581 as_warn (_("This instruction may be unpredictable "
11582 "if executed on M-profile cores "
11583 "with interrupts enabled."));
11584 }
11585
11586 /* Do some validations regarding addressing modes. */
11587 if (inst.operands[1].immisreg)
11588 reject_bad_reg (inst.operands[1].imm);
11589
11590 constraint (inst.operands[1].writeback == 1
11591 && inst.operands[0].reg == inst.operands[1].reg,
11592 BAD_OVERLAP);
11593
11594 inst.instruction = THUMB_OP32 (opcode);
11595 inst.instruction |= inst.operands[0].reg << 12;
11596 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
11597 check_ldr_r15_aligned ();
11598 return;
11599 }
11600
11601 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11602
11603 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
11604 {
11605 /* Only [Rn,Rm] is acceptable. */
11606 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11607 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11608 || inst.operands[1].postind || inst.operands[1].shifted
11609 || inst.operands[1].negative,
11610 _("Thumb does not support this addressing mode"));
11611 inst.instruction = THUMB_OP16 (inst.instruction);
11612 goto op16;
11613 }
11614
11615 inst.instruction = THUMB_OP16 (inst.instruction);
11616 if (!inst.operands[1].isreg)
11617 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11618 return;
11619
11620 constraint (!inst.operands[1].preind
11621 || inst.operands[1].shifted
11622 || inst.operands[1].writeback,
11623 _("Thumb does not support this addressing mode"));
11624 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
11625 {
11626 constraint (inst.instruction & 0x0600,
11627 _("byte or halfword not valid for base register"));
11628 constraint (inst.operands[1].reg == REG_PC
11629 && !(inst.instruction & THUMB_LOAD_BIT),
11630 _("r15 based store not allowed"));
11631 constraint (inst.operands[1].immisreg,
11632 _("invalid base register for register offset"));
11633
11634 if (inst.operands[1].reg == REG_PC)
11635 inst.instruction = T_OPCODE_LDR_PC;
11636 else if (inst.instruction & THUMB_LOAD_BIT)
11637 inst.instruction = T_OPCODE_LDR_SP;
11638 else
11639 inst.instruction = T_OPCODE_STR_SP;
11640
11641 inst.instruction |= inst.operands[0].reg << 8;
11642 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11643 return;
11644 }
11645
11646 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11647 if (!inst.operands[1].immisreg)
11648 {
11649 /* Immediate offset. */
11650 inst.instruction |= inst.operands[0].reg;
11651 inst.instruction |= inst.operands[1].reg << 3;
11652 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
11653 return;
11654 }
11655
11656 /* Register offset. */
11657 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11658 constraint (inst.operands[1].negative,
11659 _("Thumb does not support this addressing mode"));
11660
11661 op16:
11662 switch (inst.instruction)
11663 {
11664 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11665 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11666 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11667 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11668 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11669 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11670 case 0x5600 /* ldrsb */:
11671 case 0x5e00 /* ldrsh */: break;
11672 default: abort ();
11673 }
11674
11675 inst.instruction |= inst.operands[0].reg;
11676 inst.instruction |= inst.operands[1].reg << 3;
11677 inst.instruction |= inst.operands[1].imm << 6;
11678 }
11679
11680 static void
11681 do_t_ldstd (void)
11682 {
11683 if (!inst.operands[1].present)
11684 {
11685 inst.operands[1].reg = inst.operands[0].reg + 1;
11686 constraint (inst.operands[0].reg == REG_LR,
11687 _("r14 not allowed here"));
11688 constraint (inst.operands[0].reg == REG_R12,
11689 _("r12 not allowed here"));
11690 }
11691
11692 if (inst.operands[2].writeback
11693 && (inst.operands[0].reg == inst.operands[2].reg
11694 || inst.operands[1].reg == inst.operands[2].reg))
11695 as_warn (_("base register written back, and overlaps "
11696 "one of transfer registers"));
11697
11698 inst.instruction |= inst.operands[0].reg << 12;
11699 inst.instruction |= inst.operands[1].reg << 8;
11700 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
11701 }
11702
11703 static void
11704 do_t_ldstt (void)
11705 {
11706 inst.instruction |= inst.operands[0].reg << 12;
11707 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11708 }
11709
11710 static void
11711 do_t_mla (void)
11712 {
11713 unsigned Rd, Rn, Rm, Ra;
11714
11715 Rd = inst.operands[0].reg;
11716 Rn = inst.operands[1].reg;
11717 Rm = inst.operands[2].reg;
11718 Ra = inst.operands[3].reg;
11719
11720 reject_bad_reg (Rd);
11721 reject_bad_reg (Rn);
11722 reject_bad_reg (Rm);
11723 reject_bad_reg (Ra);
11724
11725 inst.instruction |= Rd << 8;
11726 inst.instruction |= Rn << 16;
11727 inst.instruction |= Rm;
11728 inst.instruction |= Ra << 12;
11729 }
11730
11731 static void
11732 do_t_mlal (void)
11733 {
11734 unsigned RdLo, RdHi, Rn, Rm;
11735
11736 RdLo = inst.operands[0].reg;
11737 RdHi = inst.operands[1].reg;
11738 Rn = inst.operands[2].reg;
11739 Rm = inst.operands[3].reg;
11740
11741 reject_bad_reg (RdLo);
11742 reject_bad_reg (RdHi);
11743 reject_bad_reg (Rn);
11744 reject_bad_reg (Rm);
11745
11746 inst.instruction |= RdLo << 12;
11747 inst.instruction |= RdHi << 8;
11748 inst.instruction |= Rn << 16;
11749 inst.instruction |= Rm;
11750 }
11751
11752 static void
11753 do_t_mov_cmp (void)
11754 {
11755 unsigned Rn, Rm;
11756
11757 Rn = inst.operands[0].reg;
11758 Rm = inst.operands[1].reg;
11759
11760 if (Rn == REG_PC)
11761 set_it_insn_type_last ();
11762
11763 if (unified_syntax)
11764 {
11765 int r0off = (inst.instruction == T_MNEM_mov
11766 || inst.instruction == T_MNEM_movs) ? 8 : 16;
11767 unsigned long opcode;
11768 bfd_boolean narrow;
11769 bfd_boolean low_regs;
11770
11771 low_regs = (Rn <= 7 && Rm <= 7);
11772 opcode = inst.instruction;
11773 if (in_it_block ())
11774 narrow = opcode != T_MNEM_movs;
11775 else
11776 narrow = opcode != T_MNEM_movs || low_regs;
11777 if (inst.size_req == 4
11778 || inst.operands[1].shifted)
11779 narrow = FALSE;
11780
11781 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11782 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11783 && !inst.operands[1].shifted
11784 && Rn == REG_PC
11785 && Rm == REG_LR)
11786 {
11787 inst.instruction = T2_SUBS_PC_LR;
11788 return;
11789 }
11790
11791 if (opcode == T_MNEM_cmp)
11792 {
11793 constraint (Rn == REG_PC, BAD_PC);
11794 if (narrow)
11795 {
11796 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
11797 but valid. */
11798 warn_deprecated_sp (Rm);
11799 /* R15 was documented as a valid choice for Rm in ARMv6,
11800 but as UNPREDICTABLE in ARMv7. ARM's proprietary
11801 tools reject R15, so we do too. */
11802 constraint (Rm == REG_PC, BAD_PC);
11803 }
11804 else
11805 reject_bad_reg (Rm);
11806 }
11807 else if (opcode == T_MNEM_mov
11808 || opcode == T_MNEM_movs)
11809 {
11810 if (inst.operands[1].isreg)
11811 {
11812 if (opcode == T_MNEM_movs)
11813 {
11814 reject_bad_reg (Rn);
11815 reject_bad_reg (Rm);
11816 }
11817 else if (narrow)
11818 {
11819 /* This is mov.n. */
11820 if ((Rn == REG_SP || Rn == REG_PC)
11821 && (Rm == REG_SP || Rm == REG_PC))
11822 {
11823 as_tsktsk (_("Use of r%u as a source register is "
11824 "deprecated when r%u is the destination "
11825 "register."), Rm, Rn);
11826 }
11827 }
11828 else
11829 {
11830 /* This is mov.w. */
11831 constraint (Rn == REG_PC, BAD_PC);
11832 constraint (Rm == REG_PC, BAD_PC);
11833 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11834 }
11835 }
11836 else
11837 reject_bad_reg (Rn);
11838 }
11839
11840 if (!inst.operands[1].isreg)
11841 {
11842 /* Immediate operand. */
11843 if (!in_it_block () && opcode == T_MNEM_mov)
11844 narrow = 0;
11845 if (low_regs && narrow)
11846 {
11847 inst.instruction = THUMB_OP16 (opcode);
11848 inst.instruction |= Rn << 8;
11849 if (inst.reloc.type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11850 || inst.reloc.type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
11851 {
11852 if (inst.size_req == 2)
11853 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11854 else
11855 inst.relax = opcode;
11856 }
11857 }
11858 else
11859 {
11860 constraint (inst.reloc.type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11861 && inst.reloc.type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
11862 THUMB1_RELOC_ONLY);
11863
11864 inst.instruction = THUMB_OP32 (inst.instruction);
11865 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11866 inst.instruction |= Rn << r0off;
11867 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11868 }
11869 }
11870 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11871 && (inst.instruction == T_MNEM_mov
11872 || inst.instruction == T_MNEM_movs))
11873 {
11874 /* Register shifts are encoded as separate shift instructions. */
11875 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11876
11877 if (in_it_block ())
11878 narrow = !flags;
11879 else
11880 narrow = flags;
11881
11882 if (inst.size_req == 4)
11883 narrow = FALSE;
11884
11885 if (!low_regs || inst.operands[1].imm > 7)
11886 narrow = FALSE;
11887
11888 if (Rn != Rm)
11889 narrow = FALSE;
11890
11891 switch (inst.operands[1].shift_kind)
11892 {
11893 case SHIFT_LSL:
11894 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11895 break;
11896 case SHIFT_ASR:
11897 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11898 break;
11899 case SHIFT_LSR:
11900 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11901 break;
11902 case SHIFT_ROR:
11903 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11904 break;
11905 default:
11906 abort ();
11907 }
11908
11909 inst.instruction = opcode;
11910 if (narrow)
11911 {
11912 inst.instruction |= Rn;
11913 inst.instruction |= inst.operands[1].imm << 3;
11914 }
11915 else
11916 {
11917 if (flags)
11918 inst.instruction |= CONDS_BIT;
11919
11920 inst.instruction |= Rn << 8;
11921 inst.instruction |= Rm << 16;
11922 inst.instruction |= inst.operands[1].imm;
11923 }
11924 }
11925 else if (!narrow)
11926 {
11927 /* Some mov with immediate shift have narrow variants.
11928 Register shifts are handled above. */
11929 if (low_regs && inst.operands[1].shifted
11930 && (inst.instruction == T_MNEM_mov
11931 || inst.instruction == T_MNEM_movs))
11932 {
11933 if (in_it_block ())
11934 narrow = (inst.instruction == T_MNEM_mov);
11935 else
11936 narrow = (inst.instruction == T_MNEM_movs);
11937 }
11938
11939 if (narrow)
11940 {
11941 switch (inst.operands[1].shift_kind)
11942 {
11943 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11944 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11945 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11946 default: narrow = FALSE; break;
11947 }
11948 }
11949
11950 if (narrow)
11951 {
11952 inst.instruction |= Rn;
11953 inst.instruction |= Rm << 3;
11954 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11955 }
11956 else
11957 {
11958 inst.instruction = THUMB_OP32 (inst.instruction);
11959 inst.instruction |= Rn << r0off;
11960 encode_thumb32_shifted_operand (1);
11961 }
11962 }
11963 else
11964 switch (inst.instruction)
11965 {
11966 case T_MNEM_mov:
11967 /* In v4t or v5t a move of two lowregs produces unpredictable
11968 results. Don't allow this. */
11969 if (low_regs)
11970 {
11971 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11972 "MOV Rd, Rs with two low registers is not "
11973 "permitted on this architecture");
11974 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11975 arm_ext_v6);
11976 }
11977
11978 inst.instruction = T_OPCODE_MOV_HR;
11979 inst.instruction |= (Rn & 0x8) << 4;
11980 inst.instruction |= (Rn & 0x7);
11981 inst.instruction |= Rm << 3;
11982 break;
11983
11984 case T_MNEM_movs:
11985 /* We know we have low registers at this point.
11986 Generate LSLS Rd, Rs, #0. */
11987 inst.instruction = T_OPCODE_LSL_I;
11988 inst.instruction |= Rn;
11989 inst.instruction |= Rm << 3;
11990 break;
11991
11992 case T_MNEM_cmp:
11993 if (low_regs)
11994 {
11995 inst.instruction = T_OPCODE_CMP_LR;
11996 inst.instruction |= Rn;
11997 inst.instruction |= Rm << 3;
11998 }
11999 else
12000 {
12001 inst.instruction = T_OPCODE_CMP_HR;
12002 inst.instruction |= (Rn & 0x8) << 4;
12003 inst.instruction |= (Rn & 0x7);
12004 inst.instruction |= Rm << 3;
12005 }
12006 break;
12007 }
12008 return;
12009 }
12010
12011 inst.instruction = THUMB_OP16 (inst.instruction);
12012
12013 /* PR 10443: Do not silently ignore shifted operands. */
12014 constraint (inst.operands[1].shifted,
12015 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12016
12017 if (inst.operands[1].isreg)
12018 {
12019 if (Rn < 8 && Rm < 8)
12020 {
12021 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12022 since a MOV instruction produces unpredictable results. */
12023 if (inst.instruction == T_OPCODE_MOV_I8)
12024 inst.instruction = T_OPCODE_ADD_I3;
12025 else
12026 inst.instruction = T_OPCODE_CMP_LR;
12027
12028 inst.instruction |= Rn;
12029 inst.instruction |= Rm << 3;
12030 }
12031 else
12032 {
12033 if (inst.instruction == T_OPCODE_MOV_I8)
12034 inst.instruction = T_OPCODE_MOV_HR;
12035 else
12036 inst.instruction = T_OPCODE_CMP_HR;
12037 do_t_cpy ();
12038 }
12039 }
12040 else
12041 {
12042 constraint (Rn > 7,
12043 _("only lo regs allowed with immediate"));
12044 inst.instruction |= Rn << 8;
12045 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
12046 }
12047 }
12048
12049 static void
12050 do_t_mov16 (void)
12051 {
12052 unsigned Rd;
12053 bfd_vma imm;
12054 bfd_boolean top;
12055
12056 top = (inst.instruction & 0x00800000) != 0;
12057 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
12058 {
12059 constraint (top, _(":lower16: not allowed this instruction"));
12060 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
12061 }
12062 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
12063 {
12064 constraint (!top, _(":upper16: not allowed this instruction"));
12065 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
12066 }
12067
12068 Rd = inst.operands[0].reg;
12069 reject_bad_reg (Rd);
12070
12071 inst.instruction |= Rd << 8;
12072 if (inst.reloc.type == BFD_RELOC_UNUSED)
12073 {
12074 imm = inst.reloc.exp.X_add_number;
12075 inst.instruction |= (imm & 0xf000) << 4;
12076 inst.instruction |= (imm & 0x0800) << 15;
12077 inst.instruction |= (imm & 0x0700) << 4;
12078 inst.instruction |= (imm & 0x00ff);
12079 }
12080 }
12081
12082 static void
12083 do_t_mvn_tst (void)
12084 {
12085 unsigned Rn, Rm;
12086
12087 Rn = inst.operands[0].reg;
12088 Rm = inst.operands[1].reg;
12089
12090 if (inst.instruction == T_MNEM_cmp
12091 || inst.instruction == T_MNEM_cmn)
12092 constraint (Rn == REG_PC, BAD_PC);
12093 else
12094 reject_bad_reg (Rn);
12095 reject_bad_reg (Rm);
12096
12097 if (unified_syntax)
12098 {
12099 int r0off = (inst.instruction == T_MNEM_mvn
12100 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12101 bfd_boolean narrow;
12102
12103 if (inst.size_req == 4
12104 || inst.instruction > 0xffff
12105 || inst.operands[1].shifted
12106 || Rn > 7 || Rm > 7)
12107 narrow = FALSE;
12108 else if (inst.instruction == T_MNEM_cmn
12109 || inst.instruction == T_MNEM_tst)
12110 narrow = TRUE;
12111 else if (THUMB_SETS_FLAGS (inst.instruction))
12112 narrow = !in_it_block ();
12113 else
12114 narrow = in_it_block ();
12115
12116 if (!inst.operands[1].isreg)
12117 {
12118 /* For an immediate, we always generate a 32-bit opcode;
12119 section relaxation will shrink it later if possible. */
12120 if (inst.instruction < 0xffff)
12121 inst.instruction = THUMB_OP32 (inst.instruction);
12122 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12123 inst.instruction |= Rn << r0off;
12124 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12125 }
12126 else
12127 {
12128 /* See if we can do this with a 16-bit instruction. */
12129 if (narrow)
12130 {
12131 inst.instruction = THUMB_OP16 (inst.instruction);
12132 inst.instruction |= Rn;
12133 inst.instruction |= Rm << 3;
12134 }
12135 else
12136 {
12137 constraint (inst.operands[1].shifted
12138 && inst.operands[1].immisreg,
12139 _("shift must be constant"));
12140 if (inst.instruction < 0xffff)
12141 inst.instruction = THUMB_OP32 (inst.instruction);
12142 inst.instruction |= Rn << r0off;
12143 encode_thumb32_shifted_operand (1);
12144 }
12145 }
12146 }
12147 else
12148 {
12149 constraint (inst.instruction > 0xffff
12150 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12151 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12152 _("unshifted register required"));
12153 constraint (Rn > 7 || Rm > 7,
12154 BAD_HIREG);
12155
12156 inst.instruction = THUMB_OP16 (inst.instruction);
12157 inst.instruction |= Rn;
12158 inst.instruction |= Rm << 3;
12159 }
12160 }
12161
12162 static void
12163 do_t_mrs (void)
12164 {
12165 unsigned Rd;
12166
12167 if (do_vfp_nsyn_mrs () == SUCCESS)
12168 return;
12169
12170 Rd = inst.operands[0].reg;
12171 reject_bad_reg (Rd);
12172 inst.instruction |= Rd << 8;
12173
12174 if (inst.operands[1].isreg)
12175 {
12176 unsigned br = inst.operands[1].reg;
12177 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12178 as_bad (_("bad register for mrs"));
12179
12180 inst.instruction |= br & (0xf << 16);
12181 inst.instruction |= (br & 0x300) >> 4;
12182 inst.instruction |= (br & SPSR_BIT) >> 2;
12183 }
12184 else
12185 {
12186 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12187
12188 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12189 {
12190 /* PR gas/12698: The constraint is only applied for m_profile.
12191 If the user has specified -march=all, we want to ignore it as
12192 we are building for any CPU type, including non-m variants. */
12193 bfd_boolean m_profile =
12194 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12195 constraint ((flags != 0) && m_profile, _("selected processor does "
12196 "not support requested special purpose register"));
12197 }
12198 else
12199 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12200 devices). */
12201 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12202 _("'APSR', 'CPSR' or 'SPSR' expected"));
12203
12204 inst.instruction |= (flags & SPSR_BIT) >> 2;
12205 inst.instruction |= inst.operands[1].imm & 0xff;
12206 inst.instruction |= 0xf0000;
12207 }
12208 }
12209
12210 static void
12211 do_t_msr (void)
12212 {
12213 int flags;
12214 unsigned Rn;
12215
12216 if (do_vfp_nsyn_msr () == SUCCESS)
12217 return;
12218
12219 constraint (!inst.operands[1].isreg,
12220 _("Thumb encoding does not support an immediate here"));
12221
12222 if (inst.operands[0].isreg)
12223 flags = (int)(inst.operands[0].reg);
12224 else
12225 flags = inst.operands[0].imm;
12226
12227 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12228 {
12229 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12230
12231 /* PR gas/12698: The constraint is only applied for m_profile.
12232 If the user has specified -march=all, we want to ignore it as
12233 we are building for any CPU type, including non-m variants. */
12234 bfd_boolean m_profile =
12235 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12236 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12237 && (bits & ~(PSR_s | PSR_f)) != 0)
12238 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12239 && bits != PSR_f)) && m_profile,
12240 _("selected processor does not support requested special "
12241 "purpose register"));
12242 }
12243 else
12244 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12245 "requested special purpose register"));
12246
12247 Rn = inst.operands[1].reg;
12248 reject_bad_reg (Rn);
12249
12250 inst.instruction |= (flags & SPSR_BIT) >> 2;
12251 inst.instruction |= (flags & 0xf0000) >> 8;
12252 inst.instruction |= (flags & 0x300) >> 4;
12253 inst.instruction |= (flags & 0xff);
12254 inst.instruction |= Rn << 16;
12255 }
12256
12257 static void
12258 do_t_mul (void)
12259 {
12260 bfd_boolean narrow;
12261 unsigned Rd, Rn, Rm;
12262
12263 if (!inst.operands[2].present)
12264 inst.operands[2].reg = inst.operands[0].reg;
12265
12266 Rd = inst.operands[0].reg;
12267 Rn = inst.operands[1].reg;
12268 Rm = inst.operands[2].reg;
12269
12270 if (unified_syntax)
12271 {
12272 if (inst.size_req == 4
12273 || (Rd != Rn
12274 && Rd != Rm)
12275 || Rn > 7
12276 || Rm > 7)
12277 narrow = FALSE;
12278 else if (inst.instruction == T_MNEM_muls)
12279 narrow = !in_it_block ();
12280 else
12281 narrow = in_it_block ();
12282 }
12283 else
12284 {
12285 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
12286 constraint (Rn > 7 || Rm > 7,
12287 BAD_HIREG);
12288 narrow = TRUE;
12289 }
12290
12291 if (narrow)
12292 {
12293 /* 16-bit MULS/Conditional MUL. */
12294 inst.instruction = THUMB_OP16 (inst.instruction);
12295 inst.instruction |= Rd;
12296
12297 if (Rd == Rn)
12298 inst.instruction |= Rm << 3;
12299 else if (Rd == Rm)
12300 inst.instruction |= Rn << 3;
12301 else
12302 constraint (1, _("dest must overlap one source register"));
12303 }
12304 else
12305 {
12306 constraint (inst.instruction != T_MNEM_mul,
12307 _("Thumb-2 MUL must not set flags"));
12308 /* 32-bit MUL. */
12309 inst.instruction = THUMB_OP32 (inst.instruction);
12310 inst.instruction |= Rd << 8;
12311 inst.instruction |= Rn << 16;
12312 inst.instruction |= Rm << 0;
12313
12314 reject_bad_reg (Rd);
12315 reject_bad_reg (Rn);
12316 reject_bad_reg (Rm);
12317 }
12318 }
12319
12320 static void
12321 do_t_mull (void)
12322 {
12323 unsigned RdLo, RdHi, Rn, Rm;
12324
12325 RdLo = inst.operands[0].reg;
12326 RdHi = inst.operands[1].reg;
12327 Rn = inst.operands[2].reg;
12328 Rm = inst.operands[3].reg;
12329
12330 reject_bad_reg (RdLo);
12331 reject_bad_reg (RdHi);
12332 reject_bad_reg (Rn);
12333 reject_bad_reg (Rm);
12334
12335 inst.instruction |= RdLo << 12;
12336 inst.instruction |= RdHi << 8;
12337 inst.instruction |= Rn << 16;
12338 inst.instruction |= Rm;
12339
12340 if (RdLo == RdHi)
12341 as_tsktsk (_("rdhi and rdlo must be different"));
12342 }
12343
12344 static void
12345 do_t_nop (void)
12346 {
12347 set_it_insn_type (NEUTRAL_IT_INSN);
12348
12349 if (unified_syntax)
12350 {
12351 if (inst.size_req == 4 || inst.operands[0].imm > 15)
12352 {
12353 inst.instruction = THUMB_OP32 (inst.instruction);
12354 inst.instruction |= inst.operands[0].imm;
12355 }
12356 else
12357 {
12358 /* PR9722: Check for Thumb2 availability before
12359 generating a thumb2 nop instruction. */
12360 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
12361 {
12362 inst.instruction = THUMB_OP16 (inst.instruction);
12363 inst.instruction |= inst.operands[0].imm << 4;
12364 }
12365 else
12366 inst.instruction = 0x46c0;
12367 }
12368 }
12369 else
12370 {
12371 constraint (inst.operands[0].present,
12372 _("Thumb does not support NOP with hints"));
12373 inst.instruction = 0x46c0;
12374 }
12375 }
12376
12377 static void
12378 do_t_neg (void)
12379 {
12380 if (unified_syntax)
12381 {
12382 bfd_boolean narrow;
12383
12384 if (THUMB_SETS_FLAGS (inst.instruction))
12385 narrow = !in_it_block ();
12386 else
12387 narrow = in_it_block ();
12388 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12389 narrow = FALSE;
12390 if (inst.size_req == 4)
12391 narrow = FALSE;
12392
12393 if (!narrow)
12394 {
12395 inst.instruction = THUMB_OP32 (inst.instruction);
12396 inst.instruction |= inst.operands[0].reg << 8;
12397 inst.instruction |= inst.operands[1].reg << 16;
12398 }
12399 else
12400 {
12401 inst.instruction = THUMB_OP16 (inst.instruction);
12402 inst.instruction |= inst.operands[0].reg;
12403 inst.instruction |= inst.operands[1].reg << 3;
12404 }
12405 }
12406 else
12407 {
12408 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12409 BAD_HIREG);
12410 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12411
12412 inst.instruction = THUMB_OP16 (inst.instruction);
12413 inst.instruction |= inst.operands[0].reg;
12414 inst.instruction |= inst.operands[1].reg << 3;
12415 }
12416 }
12417
12418 static void
12419 do_t_orn (void)
12420 {
12421 unsigned Rd, Rn;
12422
12423 Rd = inst.operands[0].reg;
12424 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12425
12426 reject_bad_reg (Rd);
12427 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12428 reject_bad_reg (Rn);
12429
12430 inst.instruction |= Rd << 8;
12431 inst.instruction |= Rn << 16;
12432
12433 if (!inst.operands[2].isreg)
12434 {
12435 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12436 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12437 }
12438 else
12439 {
12440 unsigned Rm;
12441
12442 Rm = inst.operands[2].reg;
12443 reject_bad_reg (Rm);
12444
12445 constraint (inst.operands[2].shifted
12446 && inst.operands[2].immisreg,
12447 _("shift must be constant"));
12448 encode_thumb32_shifted_operand (2);
12449 }
12450 }
12451
12452 static void
12453 do_t_pkhbt (void)
12454 {
12455 unsigned Rd, Rn, Rm;
12456
12457 Rd = inst.operands[0].reg;
12458 Rn = inst.operands[1].reg;
12459 Rm = inst.operands[2].reg;
12460
12461 reject_bad_reg (Rd);
12462 reject_bad_reg (Rn);
12463 reject_bad_reg (Rm);
12464
12465 inst.instruction |= Rd << 8;
12466 inst.instruction |= Rn << 16;
12467 inst.instruction |= Rm;
12468 if (inst.operands[3].present)
12469 {
12470 unsigned int val = inst.reloc.exp.X_add_number;
12471 constraint (inst.reloc.exp.X_op != O_constant,
12472 _("expression too complex"));
12473 inst.instruction |= (val & 0x1c) << 10;
12474 inst.instruction |= (val & 0x03) << 6;
12475 }
12476 }
12477
12478 static void
12479 do_t_pkhtb (void)
12480 {
12481 if (!inst.operands[3].present)
12482 {
12483 unsigned Rtmp;
12484
12485 inst.instruction &= ~0x00000020;
12486
12487 /* PR 10168. Swap the Rm and Rn registers. */
12488 Rtmp = inst.operands[1].reg;
12489 inst.operands[1].reg = inst.operands[2].reg;
12490 inst.operands[2].reg = Rtmp;
12491 }
12492 do_t_pkhbt ();
12493 }
12494
12495 static void
12496 do_t_pld (void)
12497 {
12498 if (inst.operands[0].immisreg)
12499 reject_bad_reg (inst.operands[0].imm);
12500
12501 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12502 }
12503
12504 static void
12505 do_t_push_pop (void)
12506 {
12507 unsigned mask;
12508
12509 constraint (inst.operands[0].writeback,
12510 _("push/pop do not support {reglist}^"));
12511 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
12512 _("expression too complex"));
12513
12514 mask = inst.operands[0].imm;
12515 if (inst.size_req != 4 && (mask & ~0xff) == 0)
12516 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
12517 else if (inst.size_req != 4
12518 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
12519 ? REG_LR : REG_PC)))
12520 {
12521 inst.instruction = THUMB_OP16 (inst.instruction);
12522 inst.instruction |= THUMB_PP_PC_LR;
12523 inst.instruction |= mask & 0xff;
12524 }
12525 else if (unified_syntax)
12526 {
12527 inst.instruction = THUMB_OP32 (inst.instruction);
12528 encode_thumb2_ldmstm (13, mask, TRUE);
12529 }
12530 else
12531 {
12532 inst.error = _("invalid register list to push/pop instruction");
12533 return;
12534 }
12535 }
12536
12537 static void
12538 do_t_rbit (void)
12539 {
12540 unsigned Rd, Rm;
12541
12542 Rd = inst.operands[0].reg;
12543 Rm = inst.operands[1].reg;
12544
12545 reject_bad_reg (Rd);
12546 reject_bad_reg (Rm);
12547
12548 inst.instruction |= Rd << 8;
12549 inst.instruction |= Rm << 16;
12550 inst.instruction |= Rm;
12551 }
12552
12553 static void
12554 do_t_rev (void)
12555 {
12556 unsigned Rd, Rm;
12557
12558 Rd = inst.operands[0].reg;
12559 Rm = inst.operands[1].reg;
12560
12561 reject_bad_reg (Rd);
12562 reject_bad_reg (Rm);
12563
12564 if (Rd <= 7 && Rm <= 7
12565 && inst.size_req != 4)
12566 {
12567 inst.instruction = THUMB_OP16 (inst.instruction);
12568 inst.instruction |= Rd;
12569 inst.instruction |= Rm << 3;
12570 }
12571 else if (unified_syntax)
12572 {
12573 inst.instruction = THUMB_OP32 (inst.instruction);
12574 inst.instruction |= Rd << 8;
12575 inst.instruction |= Rm << 16;
12576 inst.instruction |= Rm;
12577 }
12578 else
12579 inst.error = BAD_HIREG;
12580 }
12581
12582 static void
12583 do_t_rrx (void)
12584 {
12585 unsigned Rd, Rm;
12586
12587 Rd = inst.operands[0].reg;
12588 Rm = inst.operands[1].reg;
12589
12590 reject_bad_reg (Rd);
12591 reject_bad_reg (Rm);
12592
12593 inst.instruction |= Rd << 8;
12594 inst.instruction |= Rm;
12595 }
12596
12597 static void
12598 do_t_rsb (void)
12599 {
12600 unsigned Rd, Rs;
12601
12602 Rd = inst.operands[0].reg;
12603 Rs = (inst.operands[1].present
12604 ? inst.operands[1].reg /* Rd, Rs, foo */
12605 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
12606
12607 reject_bad_reg (Rd);
12608 reject_bad_reg (Rs);
12609 if (inst.operands[2].isreg)
12610 reject_bad_reg (inst.operands[2].reg);
12611
12612 inst.instruction |= Rd << 8;
12613 inst.instruction |= Rs << 16;
12614 if (!inst.operands[2].isreg)
12615 {
12616 bfd_boolean narrow;
12617
12618 if ((inst.instruction & 0x00100000) != 0)
12619 narrow = !in_it_block ();
12620 else
12621 narrow = in_it_block ();
12622
12623 if (Rd > 7 || Rs > 7)
12624 narrow = FALSE;
12625
12626 if (inst.size_req == 4 || !unified_syntax)
12627 narrow = FALSE;
12628
12629 if (inst.reloc.exp.X_op != O_constant
12630 || inst.reloc.exp.X_add_number != 0)
12631 narrow = FALSE;
12632
12633 /* Turn rsb #0 into 16-bit neg. We should probably do this via
12634 relaxation, but it doesn't seem worth the hassle. */
12635 if (narrow)
12636 {
12637 inst.reloc.type = BFD_RELOC_UNUSED;
12638 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12639 inst.instruction |= Rs << 3;
12640 inst.instruction |= Rd;
12641 }
12642 else
12643 {
12644 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12645 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
12646 }
12647 }
12648 else
12649 encode_thumb32_shifted_operand (2);
12650 }
12651
12652 static void
12653 do_t_setend (void)
12654 {
12655 if (warn_on_deprecated
12656 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12657 as_tsktsk (_("setend use is deprecated for ARMv8"));
12658
12659 set_it_insn_type (OUTSIDE_IT_INSN);
12660 if (inst.operands[0].imm)
12661 inst.instruction |= 0x8;
12662 }
12663
12664 static void
12665 do_t_shift (void)
12666 {
12667 if (!inst.operands[1].present)
12668 inst.operands[1].reg = inst.operands[0].reg;
12669
12670 if (unified_syntax)
12671 {
12672 bfd_boolean narrow;
12673 int shift_kind;
12674
12675 switch (inst.instruction)
12676 {
12677 case T_MNEM_asr:
12678 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12679 case T_MNEM_lsl:
12680 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12681 case T_MNEM_lsr:
12682 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12683 case T_MNEM_ror:
12684 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12685 default: abort ();
12686 }
12687
12688 if (THUMB_SETS_FLAGS (inst.instruction))
12689 narrow = !in_it_block ();
12690 else
12691 narrow = in_it_block ();
12692 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12693 narrow = FALSE;
12694 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12695 narrow = FALSE;
12696 if (inst.operands[2].isreg
12697 && (inst.operands[1].reg != inst.operands[0].reg
12698 || inst.operands[2].reg > 7))
12699 narrow = FALSE;
12700 if (inst.size_req == 4)
12701 narrow = FALSE;
12702
12703 reject_bad_reg (inst.operands[0].reg);
12704 reject_bad_reg (inst.operands[1].reg);
12705
12706 if (!narrow)
12707 {
12708 if (inst.operands[2].isreg)
12709 {
12710 reject_bad_reg (inst.operands[2].reg);
12711 inst.instruction = THUMB_OP32 (inst.instruction);
12712 inst.instruction |= inst.operands[0].reg << 8;
12713 inst.instruction |= inst.operands[1].reg << 16;
12714 inst.instruction |= inst.operands[2].reg;
12715
12716 /* PR 12854: Error on extraneous shifts. */
12717 constraint (inst.operands[2].shifted,
12718 _("extraneous shift as part of operand to shift insn"));
12719 }
12720 else
12721 {
12722 inst.operands[1].shifted = 1;
12723 inst.operands[1].shift_kind = shift_kind;
12724 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12725 ? T_MNEM_movs : T_MNEM_mov);
12726 inst.instruction |= inst.operands[0].reg << 8;
12727 encode_thumb32_shifted_operand (1);
12728 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
12729 inst.reloc.type = BFD_RELOC_UNUSED;
12730 }
12731 }
12732 else
12733 {
12734 if (inst.operands[2].isreg)
12735 {
12736 switch (shift_kind)
12737 {
12738 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12739 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12740 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12741 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
12742 default: abort ();
12743 }
12744
12745 inst.instruction |= inst.operands[0].reg;
12746 inst.instruction |= inst.operands[2].reg << 3;
12747
12748 /* PR 12854: Error on extraneous shifts. */
12749 constraint (inst.operands[2].shifted,
12750 _("extraneous shift as part of operand to shift insn"));
12751 }
12752 else
12753 {
12754 switch (shift_kind)
12755 {
12756 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12757 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12758 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12759 default: abort ();
12760 }
12761 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12762 inst.instruction |= inst.operands[0].reg;
12763 inst.instruction |= inst.operands[1].reg << 3;
12764 }
12765 }
12766 }
12767 else
12768 {
12769 constraint (inst.operands[0].reg > 7
12770 || inst.operands[1].reg > 7, BAD_HIREG);
12771 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12772
12773 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12774 {
12775 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12776 constraint (inst.operands[0].reg != inst.operands[1].reg,
12777 _("source1 and dest must be same register"));
12778
12779 switch (inst.instruction)
12780 {
12781 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12782 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12783 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12784 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12785 default: abort ();
12786 }
12787
12788 inst.instruction |= inst.operands[0].reg;
12789 inst.instruction |= inst.operands[2].reg << 3;
12790
12791 /* PR 12854: Error on extraneous shifts. */
12792 constraint (inst.operands[2].shifted,
12793 _("extraneous shift as part of operand to shift insn"));
12794 }
12795 else
12796 {
12797 switch (inst.instruction)
12798 {
12799 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
12800 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
12801 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
12802 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
12803 default: abort ();
12804 }
12805 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
12806 inst.instruction |= inst.operands[0].reg;
12807 inst.instruction |= inst.operands[1].reg << 3;
12808 }
12809 }
12810 }
12811
12812 static void
12813 do_t_simd (void)
12814 {
12815 unsigned Rd, Rn, Rm;
12816
12817 Rd = inst.operands[0].reg;
12818 Rn = inst.operands[1].reg;
12819 Rm = inst.operands[2].reg;
12820
12821 reject_bad_reg (Rd);
12822 reject_bad_reg (Rn);
12823 reject_bad_reg (Rm);
12824
12825 inst.instruction |= Rd << 8;
12826 inst.instruction |= Rn << 16;
12827 inst.instruction |= Rm;
12828 }
12829
12830 static void
12831 do_t_simd2 (void)
12832 {
12833 unsigned Rd, Rn, Rm;
12834
12835 Rd = inst.operands[0].reg;
12836 Rm = inst.operands[1].reg;
12837 Rn = inst.operands[2].reg;
12838
12839 reject_bad_reg (Rd);
12840 reject_bad_reg (Rn);
12841 reject_bad_reg (Rm);
12842
12843 inst.instruction |= Rd << 8;
12844 inst.instruction |= Rn << 16;
12845 inst.instruction |= Rm;
12846 }
12847
12848 static void
12849 do_t_smc (void)
12850 {
12851 unsigned int value = inst.reloc.exp.X_add_number;
12852 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12853 _("SMC is not permitted on this architecture"));
12854 constraint (inst.reloc.exp.X_op != O_constant,
12855 _("expression too complex"));
12856 inst.reloc.type = BFD_RELOC_UNUSED;
12857 inst.instruction |= (value & 0xf000) >> 12;
12858 inst.instruction |= (value & 0x0ff0);
12859 inst.instruction |= (value & 0x000f) << 16;
12860 /* PR gas/15623: SMC instructions must be last in an IT block. */
12861 set_it_insn_type_last ();
12862 }
12863
12864 static void
12865 do_t_hvc (void)
12866 {
12867 unsigned int value = inst.reloc.exp.X_add_number;
12868
12869 inst.reloc.type = BFD_RELOC_UNUSED;
12870 inst.instruction |= (value & 0x0fff);
12871 inst.instruction |= (value & 0xf000) << 4;
12872 }
12873
12874 static void
12875 do_t_ssat_usat (int bias)
12876 {
12877 unsigned Rd, Rn;
12878
12879 Rd = inst.operands[0].reg;
12880 Rn = inst.operands[2].reg;
12881
12882 reject_bad_reg (Rd);
12883 reject_bad_reg (Rn);
12884
12885 inst.instruction |= Rd << 8;
12886 inst.instruction |= inst.operands[1].imm - bias;
12887 inst.instruction |= Rn << 16;
12888
12889 if (inst.operands[3].present)
12890 {
12891 offsetT shift_amount = inst.reloc.exp.X_add_number;
12892
12893 inst.reloc.type = BFD_RELOC_UNUSED;
12894
12895 constraint (inst.reloc.exp.X_op != O_constant,
12896 _("expression too complex"));
12897
12898 if (shift_amount != 0)
12899 {
12900 constraint (shift_amount > 31,
12901 _("shift expression is too large"));
12902
12903 if (inst.operands[3].shift_kind == SHIFT_ASR)
12904 inst.instruction |= 0x00200000; /* sh bit. */
12905
12906 inst.instruction |= (shift_amount & 0x1c) << 10;
12907 inst.instruction |= (shift_amount & 0x03) << 6;
12908 }
12909 }
12910 }
12911
12912 static void
12913 do_t_ssat (void)
12914 {
12915 do_t_ssat_usat (1);
12916 }
12917
12918 static void
12919 do_t_ssat16 (void)
12920 {
12921 unsigned Rd, Rn;
12922
12923 Rd = inst.operands[0].reg;
12924 Rn = inst.operands[2].reg;
12925
12926 reject_bad_reg (Rd);
12927 reject_bad_reg (Rn);
12928
12929 inst.instruction |= Rd << 8;
12930 inst.instruction |= inst.operands[1].imm - 1;
12931 inst.instruction |= Rn << 16;
12932 }
12933
12934 static void
12935 do_t_strex (void)
12936 {
12937 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12938 || inst.operands[2].postind || inst.operands[2].writeback
12939 || inst.operands[2].immisreg || inst.operands[2].shifted
12940 || inst.operands[2].negative,
12941 BAD_ADDR_MODE);
12942
12943 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12944
12945 inst.instruction |= inst.operands[0].reg << 8;
12946 inst.instruction |= inst.operands[1].reg << 12;
12947 inst.instruction |= inst.operands[2].reg << 16;
12948 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12949 }
12950
12951 static void
12952 do_t_strexd (void)
12953 {
12954 if (!inst.operands[2].present)
12955 inst.operands[2].reg = inst.operands[1].reg + 1;
12956
12957 constraint (inst.operands[0].reg == inst.operands[1].reg
12958 || inst.operands[0].reg == inst.operands[2].reg
12959 || inst.operands[0].reg == inst.operands[3].reg,
12960 BAD_OVERLAP);
12961
12962 inst.instruction |= inst.operands[0].reg;
12963 inst.instruction |= inst.operands[1].reg << 12;
12964 inst.instruction |= inst.operands[2].reg << 8;
12965 inst.instruction |= inst.operands[3].reg << 16;
12966 }
12967
12968 static void
12969 do_t_sxtah (void)
12970 {
12971 unsigned Rd, Rn, Rm;
12972
12973 Rd = inst.operands[0].reg;
12974 Rn = inst.operands[1].reg;
12975 Rm = inst.operands[2].reg;
12976
12977 reject_bad_reg (Rd);
12978 reject_bad_reg (Rn);
12979 reject_bad_reg (Rm);
12980
12981 inst.instruction |= Rd << 8;
12982 inst.instruction |= Rn << 16;
12983 inst.instruction |= Rm;
12984 inst.instruction |= inst.operands[3].imm << 4;
12985 }
12986
12987 static void
12988 do_t_sxth (void)
12989 {
12990 unsigned Rd, Rm;
12991
12992 Rd = inst.operands[0].reg;
12993 Rm = inst.operands[1].reg;
12994
12995 reject_bad_reg (Rd);
12996 reject_bad_reg (Rm);
12997
12998 if (inst.instruction <= 0xffff
12999 && inst.size_req != 4
13000 && Rd <= 7 && Rm <= 7
13001 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13002 {
13003 inst.instruction = THUMB_OP16 (inst.instruction);
13004 inst.instruction |= Rd;
13005 inst.instruction |= Rm << 3;
13006 }
13007 else if (unified_syntax)
13008 {
13009 if (inst.instruction <= 0xffff)
13010 inst.instruction = THUMB_OP32 (inst.instruction);
13011 inst.instruction |= Rd << 8;
13012 inst.instruction |= Rm;
13013 inst.instruction |= inst.operands[2].imm << 4;
13014 }
13015 else
13016 {
13017 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13018 _("Thumb encoding does not support rotation"));
13019 constraint (1, BAD_HIREG);
13020 }
13021 }
13022
13023 static void
13024 do_t_swi (void)
13025 {
13026 /* We have to do the following check manually as ARM_EXT_OS only applies
13027 to ARM_EXT_V6M. */
13028 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
13029 {
13030 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
13031 /* This only applies to the v6m howver, not later architectures. */
13032 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
13033 as_bad (_("SVC is not permitted on this architecture"));
13034 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
13035 }
13036
13037 inst.reloc.type = BFD_RELOC_ARM_SWI;
13038 }
13039
13040 static void
13041 do_t_tb (void)
13042 {
13043 unsigned Rn, Rm;
13044 int half;
13045
13046 half = (inst.instruction & 0x10) != 0;
13047 set_it_insn_type_last ();
13048 constraint (inst.operands[0].immisreg,
13049 _("instruction requires register index"));
13050
13051 Rn = inst.operands[0].reg;
13052 Rm = inst.operands[0].imm;
13053
13054 constraint (Rn == REG_SP, BAD_SP);
13055 reject_bad_reg (Rm);
13056
13057 constraint (!half && inst.operands[0].shifted,
13058 _("instruction does not allow shifted index"));
13059 inst.instruction |= (Rn << 16) | Rm;
13060 }
13061
13062 static void
13063 do_t_udf (void)
13064 {
13065 if (!inst.operands[0].present)
13066 inst.operands[0].imm = 0;
13067
13068 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13069 {
13070 constraint (inst.size_req == 2,
13071 _("immediate value out of range"));
13072 inst.instruction = THUMB_OP32 (inst.instruction);
13073 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13074 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13075 }
13076 else
13077 {
13078 inst.instruction = THUMB_OP16 (inst.instruction);
13079 inst.instruction |= inst.operands[0].imm;
13080 }
13081
13082 set_it_insn_type (NEUTRAL_IT_INSN);
13083 }
13084
13085
13086 static void
13087 do_t_usat (void)
13088 {
13089 do_t_ssat_usat (0);
13090 }
13091
13092 static void
13093 do_t_usat16 (void)
13094 {
13095 unsigned Rd, Rn;
13096
13097 Rd = inst.operands[0].reg;
13098 Rn = inst.operands[2].reg;
13099
13100 reject_bad_reg (Rd);
13101 reject_bad_reg (Rn);
13102
13103 inst.instruction |= Rd << 8;
13104 inst.instruction |= inst.operands[1].imm;
13105 inst.instruction |= Rn << 16;
13106 }
13107
13108 /* Neon instruction encoder helpers. */
13109
13110 /* Encodings for the different types for various Neon opcodes. */
13111
13112 /* An "invalid" code for the following tables. */
13113 #define N_INV -1u
13114
13115 struct neon_tab_entry
13116 {
13117 unsigned integer;
13118 unsigned float_or_poly;
13119 unsigned scalar_or_imm;
13120 };
13121
13122 /* Map overloaded Neon opcodes to their respective encodings. */
13123 #define NEON_ENC_TAB \
13124 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13125 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13126 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13127 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13128 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13129 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13130 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13131 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13132 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13133 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13134 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13135 /* Register variants of the following two instructions are encoded as
13136 vcge / vcgt with the operands reversed. */ \
13137 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13138 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
13139 X(vfma, N_INV, 0x0000c10, N_INV), \
13140 X(vfms, N_INV, 0x0200c10, N_INV), \
13141 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13142 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13143 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13144 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13145 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13146 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13147 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13148 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13149 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13150 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13151 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
13152 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13153 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
13154 X(vshl, 0x0000400, N_INV, 0x0800510), \
13155 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13156 X(vand, 0x0000110, N_INV, 0x0800030), \
13157 X(vbic, 0x0100110, N_INV, 0x0800030), \
13158 X(veor, 0x1000110, N_INV, N_INV), \
13159 X(vorn, 0x0300110, N_INV, 0x0800010), \
13160 X(vorr, 0x0200110, N_INV, 0x0800010), \
13161 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13162 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13163 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13164 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13165 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13166 X(vst1, 0x0000000, 0x0800000, N_INV), \
13167 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13168 X(vst2, 0x0000100, 0x0800100, N_INV), \
13169 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13170 X(vst3, 0x0000200, 0x0800200, N_INV), \
13171 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13172 X(vst4, 0x0000300, 0x0800300, N_INV), \
13173 X(vmovn, 0x1b20200, N_INV, N_INV), \
13174 X(vtrn, 0x1b20080, N_INV, N_INV), \
13175 X(vqmovn, 0x1b20200, N_INV, N_INV), \
13176 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13177 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
13178 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13179 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
13180 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13181 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
13182 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13183 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13184 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
13185 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13186 X(vseleq, 0xe000a00, N_INV, N_INV), \
13187 X(vselvs, 0xe100a00, N_INV, N_INV), \
13188 X(vselge, 0xe200a00, N_INV, N_INV), \
13189 X(vselgt, 0xe300a00, N_INV, N_INV), \
13190 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
13191 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
13192 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13193 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
13194 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
13195 X(aes, 0x3b00300, N_INV, N_INV), \
13196 X(sha3op, 0x2000c00, N_INV, N_INV), \
13197 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13198 X(sha2op, 0x3ba0380, N_INV, N_INV)
13199
13200 enum neon_opc
13201 {
13202 #define X(OPC,I,F,S) N_MNEM_##OPC
13203 NEON_ENC_TAB
13204 #undef X
13205 };
13206
13207 static const struct neon_tab_entry neon_enc_tab[] =
13208 {
13209 #define X(OPC,I,F,S) { (I), (F), (S) }
13210 NEON_ENC_TAB
13211 #undef X
13212 };
13213
13214 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
13215 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13216 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13217 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13218 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13219 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13220 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13221 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13222 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13223 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13224 #define NEON_ENC_SINGLE_(X) \
13225 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
13226 #define NEON_ENC_DOUBLE_(X) \
13227 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
13228 #define NEON_ENC_FPV8_(X) \
13229 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
13230
13231 #define NEON_ENCODE(type, inst) \
13232 do \
13233 { \
13234 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13235 inst.is_neon = 1; \
13236 } \
13237 while (0)
13238
13239 #define check_neon_suffixes \
13240 do \
13241 { \
13242 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13243 { \
13244 as_bad (_("invalid neon suffix for non neon instruction")); \
13245 return; \
13246 } \
13247 } \
13248 while (0)
13249
13250 /* Define shapes for instruction operands. The following mnemonic characters
13251 are used in this table:
13252
13253 F - VFP S<n> register
13254 D - Neon D<n> register
13255 Q - Neon Q<n> register
13256 I - Immediate
13257 S - Scalar
13258 R - ARM register
13259 L - D<n> register list
13260
13261 This table is used to generate various data:
13262 - enumerations of the form NS_DDR to be used as arguments to
13263 neon_select_shape.
13264 - a table classifying shapes into single, double, quad, mixed.
13265 - a table used to drive neon_select_shape. */
13266
13267 #define NEON_SHAPE_DEF \
13268 X(3, (D, D, D), DOUBLE), \
13269 X(3, (Q, Q, Q), QUAD), \
13270 X(3, (D, D, I), DOUBLE), \
13271 X(3, (Q, Q, I), QUAD), \
13272 X(3, (D, D, S), DOUBLE), \
13273 X(3, (Q, Q, S), QUAD), \
13274 X(2, (D, D), DOUBLE), \
13275 X(2, (Q, Q), QUAD), \
13276 X(2, (D, S), DOUBLE), \
13277 X(2, (Q, S), QUAD), \
13278 X(2, (D, R), DOUBLE), \
13279 X(2, (Q, R), QUAD), \
13280 X(2, (D, I), DOUBLE), \
13281 X(2, (Q, I), QUAD), \
13282 X(3, (D, L, D), DOUBLE), \
13283 X(2, (D, Q), MIXED), \
13284 X(2, (Q, D), MIXED), \
13285 X(3, (D, Q, I), MIXED), \
13286 X(3, (Q, D, I), MIXED), \
13287 X(3, (Q, D, D), MIXED), \
13288 X(3, (D, Q, Q), MIXED), \
13289 X(3, (Q, Q, D), MIXED), \
13290 X(3, (Q, D, S), MIXED), \
13291 X(3, (D, Q, S), MIXED), \
13292 X(4, (D, D, D, I), DOUBLE), \
13293 X(4, (Q, Q, Q, I), QUAD), \
13294 X(2, (F, F), SINGLE), \
13295 X(3, (F, F, F), SINGLE), \
13296 X(2, (F, I), SINGLE), \
13297 X(2, (F, D), MIXED), \
13298 X(2, (D, F), MIXED), \
13299 X(3, (F, F, I), MIXED), \
13300 X(4, (R, R, F, F), SINGLE), \
13301 X(4, (F, F, R, R), SINGLE), \
13302 X(3, (D, R, R), DOUBLE), \
13303 X(3, (R, R, D), DOUBLE), \
13304 X(2, (S, R), SINGLE), \
13305 X(2, (R, S), SINGLE), \
13306 X(2, (F, R), SINGLE), \
13307 X(2, (R, F), SINGLE), \
13308 /* Half float shape supported so far. */\
13309 X (2, (H, D), MIXED), \
13310 X (2, (D, H), MIXED), \
13311 X (2, (H, F), MIXED), \
13312 X (2, (F, H), MIXED), \
13313 X (2, (H, H), HALF), \
13314 X (2, (H, R), HALF), \
13315 X (2, (R, H), HALF), \
13316 X (2, (H, I), HALF), \
13317 X (3, (H, H, H), HALF), \
13318 X (3, (H, F, I), MIXED), \
13319 X (3, (F, H, I), MIXED)
13320
13321 #define S2(A,B) NS_##A##B
13322 #define S3(A,B,C) NS_##A##B##C
13323 #define S4(A,B,C,D) NS_##A##B##C##D
13324
13325 #define X(N, L, C) S##N L
13326
13327 enum neon_shape
13328 {
13329 NEON_SHAPE_DEF,
13330 NS_NULL
13331 };
13332
13333 #undef X
13334 #undef S2
13335 #undef S3
13336 #undef S4
13337
13338 enum neon_shape_class
13339 {
13340 SC_HALF,
13341 SC_SINGLE,
13342 SC_DOUBLE,
13343 SC_QUAD,
13344 SC_MIXED
13345 };
13346
13347 #define X(N, L, C) SC_##C
13348
13349 static enum neon_shape_class neon_shape_class[] =
13350 {
13351 NEON_SHAPE_DEF
13352 };
13353
13354 #undef X
13355
13356 enum neon_shape_el
13357 {
13358 SE_H,
13359 SE_F,
13360 SE_D,
13361 SE_Q,
13362 SE_I,
13363 SE_S,
13364 SE_R,
13365 SE_L
13366 };
13367
13368 /* Register widths of above. */
13369 static unsigned neon_shape_el_size[] =
13370 {
13371 16,
13372 32,
13373 64,
13374 128,
13375 0,
13376 32,
13377 32,
13378 0
13379 };
13380
13381 struct neon_shape_info
13382 {
13383 unsigned els;
13384 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13385 };
13386
13387 #define S2(A,B) { SE_##A, SE_##B }
13388 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13389 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13390
13391 #define X(N, L, C) { N, S##N L }
13392
13393 static struct neon_shape_info neon_shape_tab[] =
13394 {
13395 NEON_SHAPE_DEF
13396 };
13397
13398 #undef X
13399 #undef S2
13400 #undef S3
13401 #undef S4
13402
13403 /* Bit masks used in type checking given instructions.
13404 'N_EQK' means the type must be the same as (or based on in some way) the key
13405 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13406 set, various other bits can be set as well in order to modify the meaning of
13407 the type constraint. */
13408
13409 enum neon_type_mask
13410 {
13411 N_S8 = 0x0000001,
13412 N_S16 = 0x0000002,
13413 N_S32 = 0x0000004,
13414 N_S64 = 0x0000008,
13415 N_U8 = 0x0000010,
13416 N_U16 = 0x0000020,
13417 N_U32 = 0x0000040,
13418 N_U64 = 0x0000080,
13419 N_I8 = 0x0000100,
13420 N_I16 = 0x0000200,
13421 N_I32 = 0x0000400,
13422 N_I64 = 0x0000800,
13423 N_8 = 0x0001000,
13424 N_16 = 0x0002000,
13425 N_32 = 0x0004000,
13426 N_64 = 0x0008000,
13427 N_P8 = 0x0010000,
13428 N_P16 = 0x0020000,
13429 N_F16 = 0x0040000,
13430 N_F32 = 0x0080000,
13431 N_F64 = 0x0100000,
13432 N_P64 = 0x0200000,
13433 N_KEY = 0x1000000, /* Key element (main type specifier). */
13434 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
13435 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
13436 N_UNT = 0x8000000, /* Must be explicitly untyped. */
13437 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13438 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13439 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13440 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13441 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13442 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13443 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
13444 N_UTYP = 0,
13445 N_MAX_NONSPECIAL = N_P64
13446 };
13447
13448 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13449
13450 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13451 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13452 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
13453 #define N_S_32 (N_S8 | N_S16 | N_S32)
13454 #define N_F_16_32 (N_F16 | N_F32)
13455 #define N_SUF_32 (N_SU_32 | N_F_16_32)
13456 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
13457 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
13458 #define N_F_ALL (N_F16 | N_F32 | N_F64)
13459
13460 /* Pass this as the first type argument to neon_check_type to ignore types
13461 altogether. */
13462 #define N_IGNORE_TYPE (N_KEY | N_EQK)
13463
13464 /* Select a "shape" for the current instruction (describing register types or
13465 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13466 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13467 function of operand parsing, so this function doesn't need to be called.
13468 Shapes should be listed in order of decreasing length. */
13469
13470 static enum neon_shape
13471 neon_select_shape (enum neon_shape shape, ...)
13472 {
13473 va_list ap;
13474 enum neon_shape first_shape = shape;
13475
13476 /* Fix missing optional operands. FIXME: we don't know at this point how
13477 many arguments we should have, so this makes the assumption that we have
13478 > 1. This is true of all current Neon opcodes, I think, but may not be
13479 true in the future. */
13480 if (!inst.operands[1].present)
13481 inst.operands[1] = inst.operands[0];
13482
13483 va_start (ap, shape);
13484
13485 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
13486 {
13487 unsigned j;
13488 int matches = 1;
13489
13490 for (j = 0; j < neon_shape_tab[shape].els; j++)
13491 {
13492 if (!inst.operands[j].present)
13493 {
13494 matches = 0;
13495 break;
13496 }
13497
13498 switch (neon_shape_tab[shape].el[j])
13499 {
13500 /* If a .f16, .16, .u16, .s16 type specifier is given over
13501 a VFP single precision register operand, it's essentially
13502 means only half of the register is used.
13503
13504 If the type specifier is given after the mnemonics, the
13505 information is stored in inst.vectype. If the type specifier
13506 is given after register operand, the information is stored
13507 in inst.operands[].vectype.
13508
13509 When there is only one type specifier, and all the register
13510 operands are the same type of hardware register, the type
13511 specifier applies to all register operands.
13512
13513 If no type specifier is given, the shape is inferred from
13514 operand information.
13515
13516 for example:
13517 vadd.f16 s0, s1, s2: NS_HHH
13518 vabs.f16 s0, s1: NS_HH
13519 vmov.f16 s0, r1: NS_HR
13520 vmov.f16 r0, s1: NS_RH
13521 vcvt.f16 r0, s1: NS_RH
13522 vcvt.f16.s32 s2, s2, #29: NS_HFI
13523 vcvt.f16.s32 s2, s2: NS_HF
13524 */
13525 case SE_H:
13526 if (!(inst.operands[j].isreg
13527 && inst.operands[j].isvec
13528 && inst.operands[j].issingle
13529 && !inst.operands[j].isquad
13530 && ((inst.vectype.elems == 1
13531 && inst.vectype.el[0].size == 16)
13532 || (inst.vectype.elems > 1
13533 && inst.vectype.el[j].size == 16)
13534 || (inst.vectype.elems == 0
13535 && inst.operands[j].vectype.type != NT_invtype
13536 && inst.operands[j].vectype.size == 16))))
13537 matches = 0;
13538 break;
13539
13540 case SE_F:
13541 if (!(inst.operands[j].isreg
13542 && inst.operands[j].isvec
13543 && inst.operands[j].issingle
13544 && !inst.operands[j].isquad
13545 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
13546 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
13547 || (inst.vectype.elems == 0
13548 && (inst.operands[j].vectype.size == 32
13549 || inst.operands[j].vectype.type == NT_invtype)))))
13550 matches = 0;
13551 break;
13552
13553 case SE_D:
13554 if (!(inst.operands[j].isreg
13555 && inst.operands[j].isvec
13556 && !inst.operands[j].isquad
13557 && !inst.operands[j].issingle))
13558 matches = 0;
13559 break;
13560
13561 case SE_R:
13562 if (!(inst.operands[j].isreg
13563 && !inst.operands[j].isvec))
13564 matches = 0;
13565 break;
13566
13567 case SE_Q:
13568 if (!(inst.operands[j].isreg
13569 && inst.operands[j].isvec
13570 && inst.operands[j].isquad
13571 && !inst.operands[j].issingle))
13572 matches = 0;
13573 break;
13574
13575 case SE_I:
13576 if (!(!inst.operands[j].isreg
13577 && !inst.operands[j].isscalar))
13578 matches = 0;
13579 break;
13580
13581 case SE_S:
13582 if (!(!inst.operands[j].isreg
13583 && inst.operands[j].isscalar))
13584 matches = 0;
13585 break;
13586
13587 case SE_L:
13588 break;
13589 }
13590 if (!matches)
13591 break;
13592 }
13593 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13594 /* We've matched all the entries in the shape table, and we don't
13595 have any left over operands which have not been matched. */
13596 break;
13597 }
13598
13599 va_end (ap);
13600
13601 if (shape == NS_NULL && first_shape != NS_NULL)
13602 first_error (_("invalid instruction shape"));
13603
13604 return shape;
13605 }
13606
13607 /* True if SHAPE is predominantly a quadword operation (most of the time, this
13608 means the Q bit should be set). */
13609
13610 static int
13611 neon_quad (enum neon_shape shape)
13612 {
13613 return neon_shape_class[shape] == SC_QUAD;
13614 }
13615
13616 static void
13617 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
13618 unsigned *g_size)
13619 {
13620 /* Allow modification to be made to types which are constrained to be
13621 based on the key element, based on bits set alongside N_EQK. */
13622 if ((typebits & N_EQK) != 0)
13623 {
13624 if ((typebits & N_HLF) != 0)
13625 *g_size /= 2;
13626 else if ((typebits & N_DBL) != 0)
13627 *g_size *= 2;
13628 if ((typebits & N_SGN) != 0)
13629 *g_type = NT_signed;
13630 else if ((typebits & N_UNS) != 0)
13631 *g_type = NT_unsigned;
13632 else if ((typebits & N_INT) != 0)
13633 *g_type = NT_integer;
13634 else if ((typebits & N_FLT) != 0)
13635 *g_type = NT_float;
13636 else if ((typebits & N_SIZ) != 0)
13637 *g_type = NT_untyped;
13638 }
13639 }
13640
13641 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13642 operand type, i.e. the single type specified in a Neon instruction when it
13643 is the only one given. */
13644
13645 static struct neon_type_el
13646 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13647 {
13648 struct neon_type_el dest = *key;
13649
13650 gas_assert ((thisarg & N_EQK) != 0);
13651
13652 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13653
13654 return dest;
13655 }
13656
13657 /* Convert Neon type and size into compact bitmask representation. */
13658
13659 static enum neon_type_mask
13660 type_chk_of_el_type (enum neon_el_type type, unsigned size)
13661 {
13662 switch (type)
13663 {
13664 case NT_untyped:
13665 switch (size)
13666 {
13667 case 8: return N_8;
13668 case 16: return N_16;
13669 case 32: return N_32;
13670 case 64: return N_64;
13671 default: ;
13672 }
13673 break;
13674
13675 case NT_integer:
13676 switch (size)
13677 {
13678 case 8: return N_I8;
13679 case 16: return N_I16;
13680 case 32: return N_I32;
13681 case 64: return N_I64;
13682 default: ;
13683 }
13684 break;
13685
13686 case NT_float:
13687 switch (size)
13688 {
13689 case 16: return N_F16;
13690 case 32: return N_F32;
13691 case 64: return N_F64;
13692 default: ;
13693 }
13694 break;
13695
13696 case NT_poly:
13697 switch (size)
13698 {
13699 case 8: return N_P8;
13700 case 16: return N_P16;
13701 case 64: return N_P64;
13702 default: ;
13703 }
13704 break;
13705
13706 case NT_signed:
13707 switch (size)
13708 {
13709 case 8: return N_S8;
13710 case 16: return N_S16;
13711 case 32: return N_S32;
13712 case 64: return N_S64;
13713 default: ;
13714 }
13715 break;
13716
13717 case NT_unsigned:
13718 switch (size)
13719 {
13720 case 8: return N_U8;
13721 case 16: return N_U16;
13722 case 32: return N_U32;
13723 case 64: return N_U64;
13724 default: ;
13725 }
13726 break;
13727
13728 default: ;
13729 }
13730
13731 return N_UTYP;
13732 }
13733
13734 /* Convert compact Neon bitmask type representation to a type and size. Only
13735 handles the case where a single bit is set in the mask. */
13736
13737 static int
13738 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
13739 enum neon_type_mask mask)
13740 {
13741 if ((mask & N_EQK) != 0)
13742 return FAIL;
13743
13744 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
13745 *size = 8;
13746 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
13747 *size = 16;
13748 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
13749 *size = 32;
13750 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
13751 *size = 64;
13752 else
13753 return FAIL;
13754
13755 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
13756 *type = NT_signed;
13757 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
13758 *type = NT_unsigned;
13759 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
13760 *type = NT_integer;
13761 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
13762 *type = NT_untyped;
13763 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
13764 *type = NT_poly;
13765 else if ((mask & (N_F_ALL)) != 0)
13766 *type = NT_float;
13767 else
13768 return FAIL;
13769
13770 return SUCCESS;
13771 }
13772
13773 /* Modify a bitmask of allowed types. This is only needed for type
13774 relaxation. */
13775
13776 static unsigned
13777 modify_types_allowed (unsigned allowed, unsigned mods)
13778 {
13779 unsigned size;
13780 enum neon_el_type type;
13781 unsigned destmask;
13782 int i;
13783
13784 destmask = 0;
13785
13786 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
13787 {
13788 if (el_type_of_type_chk (&type, &size,
13789 (enum neon_type_mask) (allowed & i)) == SUCCESS)
13790 {
13791 neon_modify_type_size (mods, &type, &size);
13792 destmask |= type_chk_of_el_type (type, size);
13793 }
13794 }
13795
13796 return destmask;
13797 }
13798
13799 /* Check type and return type classification.
13800 The manual states (paraphrase): If one datatype is given, it indicates the
13801 type given in:
13802 - the second operand, if there is one
13803 - the operand, if there is no second operand
13804 - the result, if there are no operands.
13805 This isn't quite good enough though, so we use a concept of a "key" datatype
13806 which is set on a per-instruction basis, which is the one which matters when
13807 only one data type is written.
13808 Note: this function has side-effects (e.g. filling in missing operands). All
13809 Neon instructions should call it before performing bit encoding. */
13810
13811 static struct neon_type_el
13812 neon_check_type (unsigned els, enum neon_shape ns, ...)
13813 {
13814 va_list ap;
13815 unsigned i, pass, key_el = 0;
13816 unsigned types[NEON_MAX_TYPE_ELS];
13817 enum neon_el_type k_type = NT_invtype;
13818 unsigned k_size = -1u;
13819 struct neon_type_el badtype = {NT_invtype, -1};
13820 unsigned key_allowed = 0;
13821
13822 /* Optional registers in Neon instructions are always (not) in operand 1.
13823 Fill in the missing operand here, if it was omitted. */
13824 if (els > 1 && !inst.operands[1].present)
13825 inst.operands[1] = inst.operands[0];
13826
13827 /* Suck up all the varargs. */
13828 va_start (ap, ns);
13829 for (i = 0; i < els; i++)
13830 {
13831 unsigned thisarg = va_arg (ap, unsigned);
13832 if (thisarg == N_IGNORE_TYPE)
13833 {
13834 va_end (ap);
13835 return badtype;
13836 }
13837 types[i] = thisarg;
13838 if ((thisarg & N_KEY) != 0)
13839 key_el = i;
13840 }
13841 va_end (ap);
13842
13843 if (inst.vectype.elems > 0)
13844 for (i = 0; i < els; i++)
13845 if (inst.operands[i].vectype.type != NT_invtype)
13846 {
13847 first_error (_("types specified in both the mnemonic and operands"));
13848 return badtype;
13849 }
13850
13851 /* Duplicate inst.vectype elements here as necessary.
13852 FIXME: No idea if this is exactly the same as the ARM assembler,
13853 particularly when an insn takes one register and one non-register
13854 operand. */
13855 if (inst.vectype.elems == 1 && els > 1)
13856 {
13857 unsigned j;
13858 inst.vectype.elems = els;
13859 inst.vectype.el[key_el] = inst.vectype.el[0];
13860 for (j = 0; j < els; j++)
13861 if (j != key_el)
13862 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13863 types[j]);
13864 }
13865 else if (inst.vectype.elems == 0 && els > 0)
13866 {
13867 unsigned j;
13868 /* No types were given after the mnemonic, so look for types specified
13869 after each operand. We allow some flexibility here; as long as the
13870 "key" operand has a type, we can infer the others. */
13871 for (j = 0; j < els; j++)
13872 if (inst.operands[j].vectype.type != NT_invtype)
13873 inst.vectype.el[j] = inst.operands[j].vectype;
13874
13875 if (inst.operands[key_el].vectype.type != NT_invtype)
13876 {
13877 for (j = 0; j < els; j++)
13878 if (inst.operands[j].vectype.type == NT_invtype)
13879 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
13880 types[j]);
13881 }
13882 else
13883 {
13884 first_error (_("operand types can't be inferred"));
13885 return badtype;
13886 }
13887 }
13888 else if (inst.vectype.elems != els)
13889 {
13890 first_error (_("type specifier has the wrong number of parts"));
13891 return badtype;
13892 }
13893
13894 for (pass = 0; pass < 2; pass++)
13895 {
13896 for (i = 0; i < els; i++)
13897 {
13898 unsigned thisarg = types[i];
13899 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
13900 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
13901 enum neon_el_type g_type = inst.vectype.el[i].type;
13902 unsigned g_size = inst.vectype.el[i].size;
13903
13904 /* Decay more-specific signed & unsigned types to sign-insensitive
13905 integer types if sign-specific variants are unavailable. */
13906 if ((g_type == NT_signed || g_type == NT_unsigned)
13907 && (types_allowed & N_SU_ALL) == 0)
13908 g_type = NT_integer;
13909
13910 /* If only untyped args are allowed, decay any more specific types to
13911 them. Some instructions only care about signs for some element
13912 sizes, so handle that properly. */
13913 if (((types_allowed & N_UNT) == 0)
13914 && ((g_size == 8 && (types_allowed & N_8) != 0)
13915 || (g_size == 16 && (types_allowed & N_16) != 0)
13916 || (g_size == 32 && (types_allowed & N_32) != 0)
13917 || (g_size == 64 && (types_allowed & N_64) != 0)))
13918 g_type = NT_untyped;
13919
13920 if (pass == 0)
13921 {
13922 if ((thisarg & N_KEY) != 0)
13923 {
13924 k_type = g_type;
13925 k_size = g_size;
13926 key_allowed = thisarg & ~N_KEY;
13927
13928 /* Check architecture constraint on FP16 extension. */
13929 if (k_size == 16
13930 && k_type == NT_float
13931 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
13932 {
13933 inst.error = _(BAD_FP16);
13934 return badtype;
13935 }
13936 }
13937 }
13938 else
13939 {
13940 if ((thisarg & N_VFP) != 0)
13941 {
13942 enum neon_shape_el regshape;
13943 unsigned regwidth, match;
13944
13945 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13946 if (ns == NS_NULL)
13947 {
13948 first_error (_("invalid instruction shape"));
13949 return badtype;
13950 }
13951 regshape = neon_shape_tab[ns].el[i];
13952 regwidth = neon_shape_el_size[regshape];
13953
13954 /* In VFP mode, operands must match register widths. If we
13955 have a key operand, use its width, else use the width of
13956 the current operand. */
13957 if (k_size != -1u)
13958 match = k_size;
13959 else
13960 match = g_size;
13961
13962 /* FP16 will use a single precision register. */
13963 if (regwidth == 32 && match == 16)
13964 {
13965 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
13966 match = regwidth;
13967 else
13968 {
13969 inst.error = _(BAD_FP16);
13970 return badtype;
13971 }
13972 }
13973
13974 if (regwidth != match)
13975 {
13976 first_error (_("operand size must match register width"));
13977 return badtype;
13978 }
13979 }
13980
13981 if ((thisarg & N_EQK) == 0)
13982 {
13983 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13984
13985 if ((given_type & types_allowed) == 0)
13986 {
13987 first_error (_("bad type in Neon instruction"));
13988 return badtype;
13989 }
13990 }
13991 else
13992 {
13993 enum neon_el_type mod_k_type = k_type;
13994 unsigned mod_k_size = k_size;
13995 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13996 if (g_type != mod_k_type || g_size != mod_k_size)
13997 {
13998 first_error (_("inconsistent types in Neon instruction"));
13999 return badtype;
14000 }
14001 }
14002 }
14003 }
14004 }
14005
14006 return inst.vectype.el[key_el];
14007 }
14008
14009 /* Neon-style VFP instruction forwarding. */
14010
14011 /* Thumb VFP instructions have 0xE in the condition field. */
14012
14013 static void
14014 do_vfp_cond_or_thumb (void)
14015 {
14016 inst.is_neon = 1;
14017
14018 if (thumb_mode)
14019 inst.instruction |= 0xe0000000;
14020 else
14021 inst.instruction |= inst.cond << 28;
14022 }
14023
14024 /* Look up and encode a simple mnemonic, for use as a helper function for the
14025 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
14026 etc. It is assumed that operand parsing has already been done, and that the
14027 operands are in the form expected by the given opcode (this isn't necessarily
14028 the same as the form in which they were parsed, hence some massaging must
14029 take place before this function is called).
14030 Checks current arch version against that in the looked-up opcode. */
14031
14032 static void
14033 do_vfp_nsyn_opcode (const char *opname)
14034 {
14035 const struct asm_opcode *opcode;
14036
14037 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
14038
14039 if (!opcode)
14040 abort ();
14041
14042 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
14043 thumb_mode ? *opcode->tvariant : *opcode->avariant),
14044 _(BAD_FPU));
14045
14046 inst.is_neon = 1;
14047
14048 if (thumb_mode)
14049 {
14050 inst.instruction = opcode->tvalue;
14051 opcode->tencode ();
14052 }
14053 else
14054 {
14055 inst.instruction = (inst.cond << 28) | opcode->avalue;
14056 opcode->aencode ();
14057 }
14058 }
14059
14060 static void
14061 do_vfp_nsyn_add_sub (enum neon_shape rs)
14062 {
14063 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
14064
14065 if (rs == NS_FFF || rs == NS_HHH)
14066 {
14067 if (is_add)
14068 do_vfp_nsyn_opcode ("fadds");
14069 else
14070 do_vfp_nsyn_opcode ("fsubs");
14071
14072 /* ARMv8.2 fp16 instruction. */
14073 if (rs == NS_HHH)
14074 do_scalar_fp16_v82_encode ();
14075 }
14076 else
14077 {
14078 if (is_add)
14079 do_vfp_nsyn_opcode ("faddd");
14080 else
14081 do_vfp_nsyn_opcode ("fsubd");
14082 }
14083 }
14084
14085 /* Check operand types to see if this is a VFP instruction, and if so call
14086 PFN (). */
14087
14088 static int
14089 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
14090 {
14091 enum neon_shape rs;
14092 struct neon_type_el et;
14093
14094 switch (args)
14095 {
14096 case 2:
14097 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14098 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14099 break;
14100
14101 case 3:
14102 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14103 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14104 N_F_ALL | N_KEY | N_VFP);
14105 break;
14106
14107 default:
14108 abort ();
14109 }
14110
14111 if (et.type != NT_invtype)
14112 {
14113 pfn (rs);
14114 return SUCCESS;
14115 }
14116
14117 inst.error = NULL;
14118 return FAIL;
14119 }
14120
14121 static void
14122 do_vfp_nsyn_mla_mls (enum neon_shape rs)
14123 {
14124 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
14125
14126 if (rs == NS_FFF || rs == NS_HHH)
14127 {
14128 if (is_mla)
14129 do_vfp_nsyn_opcode ("fmacs");
14130 else
14131 do_vfp_nsyn_opcode ("fnmacs");
14132
14133 /* ARMv8.2 fp16 instruction. */
14134 if (rs == NS_HHH)
14135 do_scalar_fp16_v82_encode ();
14136 }
14137 else
14138 {
14139 if (is_mla)
14140 do_vfp_nsyn_opcode ("fmacd");
14141 else
14142 do_vfp_nsyn_opcode ("fnmacd");
14143 }
14144 }
14145
14146 static void
14147 do_vfp_nsyn_fma_fms (enum neon_shape rs)
14148 {
14149 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
14150
14151 if (rs == NS_FFF || rs == NS_HHH)
14152 {
14153 if (is_fma)
14154 do_vfp_nsyn_opcode ("ffmas");
14155 else
14156 do_vfp_nsyn_opcode ("ffnmas");
14157
14158 /* ARMv8.2 fp16 instruction. */
14159 if (rs == NS_HHH)
14160 do_scalar_fp16_v82_encode ();
14161 }
14162 else
14163 {
14164 if (is_fma)
14165 do_vfp_nsyn_opcode ("ffmad");
14166 else
14167 do_vfp_nsyn_opcode ("ffnmad");
14168 }
14169 }
14170
14171 static void
14172 do_vfp_nsyn_mul (enum neon_shape rs)
14173 {
14174 if (rs == NS_FFF || rs == NS_HHH)
14175 {
14176 do_vfp_nsyn_opcode ("fmuls");
14177
14178 /* ARMv8.2 fp16 instruction. */
14179 if (rs == NS_HHH)
14180 do_scalar_fp16_v82_encode ();
14181 }
14182 else
14183 do_vfp_nsyn_opcode ("fmuld");
14184 }
14185
14186 static void
14187 do_vfp_nsyn_abs_neg (enum neon_shape rs)
14188 {
14189 int is_neg = (inst.instruction & 0x80) != 0;
14190 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
14191
14192 if (rs == NS_FF || rs == NS_HH)
14193 {
14194 if (is_neg)
14195 do_vfp_nsyn_opcode ("fnegs");
14196 else
14197 do_vfp_nsyn_opcode ("fabss");
14198
14199 /* ARMv8.2 fp16 instruction. */
14200 if (rs == NS_HH)
14201 do_scalar_fp16_v82_encode ();
14202 }
14203 else
14204 {
14205 if (is_neg)
14206 do_vfp_nsyn_opcode ("fnegd");
14207 else
14208 do_vfp_nsyn_opcode ("fabsd");
14209 }
14210 }
14211
14212 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
14213 insns belong to Neon, and are handled elsewhere. */
14214
14215 static void
14216 do_vfp_nsyn_ldm_stm (int is_dbmode)
14217 {
14218 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14219 if (is_ldm)
14220 {
14221 if (is_dbmode)
14222 do_vfp_nsyn_opcode ("fldmdbs");
14223 else
14224 do_vfp_nsyn_opcode ("fldmias");
14225 }
14226 else
14227 {
14228 if (is_dbmode)
14229 do_vfp_nsyn_opcode ("fstmdbs");
14230 else
14231 do_vfp_nsyn_opcode ("fstmias");
14232 }
14233 }
14234
14235 static void
14236 do_vfp_nsyn_sqrt (void)
14237 {
14238 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14239 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14240
14241 if (rs == NS_FF || rs == NS_HH)
14242 {
14243 do_vfp_nsyn_opcode ("fsqrts");
14244
14245 /* ARMv8.2 fp16 instruction. */
14246 if (rs == NS_HH)
14247 do_scalar_fp16_v82_encode ();
14248 }
14249 else
14250 do_vfp_nsyn_opcode ("fsqrtd");
14251 }
14252
14253 static void
14254 do_vfp_nsyn_div (void)
14255 {
14256 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14257 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14258 N_F_ALL | N_KEY | N_VFP);
14259
14260 if (rs == NS_FFF || rs == NS_HHH)
14261 {
14262 do_vfp_nsyn_opcode ("fdivs");
14263
14264 /* ARMv8.2 fp16 instruction. */
14265 if (rs == NS_HHH)
14266 do_scalar_fp16_v82_encode ();
14267 }
14268 else
14269 do_vfp_nsyn_opcode ("fdivd");
14270 }
14271
14272 static void
14273 do_vfp_nsyn_nmul (void)
14274 {
14275 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14276 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14277 N_F_ALL | N_KEY | N_VFP);
14278
14279 if (rs == NS_FFF || rs == NS_HHH)
14280 {
14281 NEON_ENCODE (SINGLE, inst);
14282 do_vfp_sp_dyadic ();
14283
14284 /* ARMv8.2 fp16 instruction. */
14285 if (rs == NS_HHH)
14286 do_scalar_fp16_v82_encode ();
14287 }
14288 else
14289 {
14290 NEON_ENCODE (DOUBLE, inst);
14291 do_vfp_dp_rd_rn_rm ();
14292 }
14293 do_vfp_cond_or_thumb ();
14294
14295 }
14296
14297 static void
14298 do_vfp_nsyn_cmp (void)
14299 {
14300 enum neon_shape rs;
14301 if (inst.operands[1].isreg)
14302 {
14303 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14304 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14305
14306 if (rs == NS_FF || rs == NS_HH)
14307 {
14308 NEON_ENCODE (SINGLE, inst);
14309 do_vfp_sp_monadic ();
14310 }
14311 else
14312 {
14313 NEON_ENCODE (DOUBLE, inst);
14314 do_vfp_dp_rd_rm ();
14315 }
14316 }
14317 else
14318 {
14319 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
14320 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
14321
14322 switch (inst.instruction & 0x0fffffff)
14323 {
14324 case N_MNEM_vcmp:
14325 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14326 break;
14327 case N_MNEM_vcmpe:
14328 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14329 break;
14330 default:
14331 abort ();
14332 }
14333
14334 if (rs == NS_FI || rs == NS_HI)
14335 {
14336 NEON_ENCODE (SINGLE, inst);
14337 do_vfp_sp_compare_z ();
14338 }
14339 else
14340 {
14341 NEON_ENCODE (DOUBLE, inst);
14342 do_vfp_dp_rd ();
14343 }
14344 }
14345 do_vfp_cond_or_thumb ();
14346
14347 /* ARMv8.2 fp16 instruction. */
14348 if (rs == NS_HI || rs == NS_HH)
14349 do_scalar_fp16_v82_encode ();
14350 }
14351
14352 static void
14353 nsyn_insert_sp (void)
14354 {
14355 inst.operands[1] = inst.operands[0];
14356 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
14357 inst.operands[0].reg = REG_SP;
14358 inst.operands[0].isreg = 1;
14359 inst.operands[0].writeback = 1;
14360 inst.operands[0].present = 1;
14361 }
14362
14363 static void
14364 do_vfp_nsyn_push (void)
14365 {
14366 nsyn_insert_sp ();
14367 if (inst.operands[1].issingle)
14368 do_vfp_nsyn_opcode ("fstmdbs");
14369 else
14370 do_vfp_nsyn_opcode ("fstmdbd");
14371 }
14372
14373 static void
14374 do_vfp_nsyn_pop (void)
14375 {
14376 nsyn_insert_sp ();
14377 if (inst.operands[1].issingle)
14378 do_vfp_nsyn_opcode ("fldmias");
14379 else
14380 do_vfp_nsyn_opcode ("fldmiad");
14381 }
14382
14383 /* Fix up Neon data-processing instructions, ORing in the correct bits for
14384 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14385
14386 static void
14387 neon_dp_fixup (struct arm_it* insn)
14388 {
14389 unsigned int i = insn->instruction;
14390 insn->is_neon = 1;
14391
14392 if (thumb_mode)
14393 {
14394 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14395 if (i & (1 << 24))
14396 i |= 1 << 28;
14397
14398 i &= ~(1 << 24);
14399
14400 i |= 0xef000000;
14401 }
14402 else
14403 i |= 0xf2000000;
14404
14405 insn->instruction = i;
14406 }
14407
14408 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14409 (0, 1, 2, 3). */
14410
14411 static unsigned
14412 neon_logbits (unsigned x)
14413 {
14414 return ffs (x) - 4;
14415 }
14416
14417 #define LOW4(R) ((R) & 0xf)
14418 #define HI1(R) (((R) >> 4) & 1)
14419
14420 /* Encode insns with bit pattern:
14421
14422 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14423 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
14424
14425 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14426 different meaning for some instruction. */
14427
14428 static void
14429 neon_three_same (int isquad, int ubit, int size)
14430 {
14431 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14432 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14433 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14434 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14435 inst.instruction |= LOW4 (inst.operands[2].reg);
14436 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14437 inst.instruction |= (isquad != 0) << 6;
14438 inst.instruction |= (ubit != 0) << 24;
14439 if (size != -1)
14440 inst.instruction |= neon_logbits (size) << 20;
14441
14442 neon_dp_fixup (&inst);
14443 }
14444
14445 /* Encode instructions of the form:
14446
14447 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14448 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
14449
14450 Don't write size if SIZE == -1. */
14451
14452 static void
14453 neon_two_same (int qbit, int ubit, int size)
14454 {
14455 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14456 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14457 inst.instruction |= LOW4 (inst.operands[1].reg);
14458 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14459 inst.instruction |= (qbit != 0) << 6;
14460 inst.instruction |= (ubit != 0) << 24;
14461
14462 if (size != -1)
14463 inst.instruction |= neon_logbits (size) << 18;
14464
14465 neon_dp_fixup (&inst);
14466 }
14467
14468 /* Neon instruction encoders, in approximate order of appearance. */
14469
14470 static void
14471 do_neon_dyadic_i_su (void)
14472 {
14473 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14474 struct neon_type_el et = neon_check_type (3, rs,
14475 N_EQK, N_EQK, N_SU_32 | N_KEY);
14476 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14477 }
14478
14479 static void
14480 do_neon_dyadic_i64_su (void)
14481 {
14482 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14483 struct neon_type_el et = neon_check_type (3, rs,
14484 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14485 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14486 }
14487
14488 static void
14489 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
14490 unsigned immbits)
14491 {
14492 unsigned size = et.size >> 3;
14493 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14494 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14495 inst.instruction |= LOW4 (inst.operands[1].reg);
14496 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14497 inst.instruction |= (isquad != 0) << 6;
14498 inst.instruction |= immbits << 16;
14499 inst.instruction |= (size >> 3) << 7;
14500 inst.instruction |= (size & 0x7) << 19;
14501 if (write_ubit)
14502 inst.instruction |= (uval != 0) << 24;
14503
14504 neon_dp_fixup (&inst);
14505 }
14506
14507 static void
14508 do_neon_shl_imm (void)
14509 {
14510 if (!inst.operands[2].isreg)
14511 {
14512 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14513 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
14514 int imm = inst.operands[2].imm;
14515
14516 constraint (imm < 0 || (unsigned)imm >= et.size,
14517 _("immediate out of range for shift"));
14518 NEON_ENCODE (IMMED, inst);
14519 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14520 }
14521 else
14522 {
14523 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14524 struct neon_type_el et = neon_check_type (3, rs,
14525 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14526 unsigned int tmp;
14527
14528 /* VSHL/VQSHL 3-register variants have syntax such as:
14529 vshl.xx Dd, Dm, Dn
14530 whereas other 3-register operations encoded by neon_three_same have
14531 syntax like:
14532 vadd.xx Dd, Dn, Dm
14533 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14534 here. */
14535 tmp = inst.operands[2].reg;
14536 inst.operands[2].reg = inst.operands[1].reg;
14537 inst.operands[1].reg = tmp;
14538 NEON_ENCODE (INTEGER, inst);
14539 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14540 }
14541 }
14542
14543 static void
14544 do_neon_qshl_imm (void)
14545 {
14546 if (!inst.operands[2].isreg)
14547 {
14548 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14549 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14550 int imm = inst.operands[2].imm;
14551
14552 constraint (imm < 0 || (unsigned)imm >= et.size,
14553 _("immediate out of range for shift"));
14554 NEON_ENCODE (IMMED, inst);
14555 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
14556 }
14557 else
14558 {
14559 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14560 struct neon_type_el et = neon_check_type (3, rs,
14561 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14562 unsigned int tmp;
14563
14564 /* See note in do_neon_shl_imm. */
14565 tmp = inst.operands[2].reg;
14566 inst.operands[2].reg = inst.operands[1].reg;
14567 inst.operands[1].reg = tmp;
14568 NEON_ENCODE (INTEGER, inst);
14569 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14570 }
14571 }
14572
14573 static void
14574 do_neon_rshl (void)
14575 {
14576 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14577 struct neon_type_el et = neon_check_type (3, rs,
14578 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14579 unsigned int tmp;
14580
14581 tmp = inst.operands[2].reg;
14582 inst.operands[2].reg = inst.operands[1].reg;
14583 inst.operands[1].reg = tmp;
14584 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14585 }
14586
14587 static int
14588 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14589 {
14590 /* Handle .I8 pseudo-instructions. */
14591 if (size == 8)
14592 {
14593 /* Unfortunately, this will make everything apart from zero out-of-range.
14594 FIXME is this the intended semantics? There doesn't seem much point in
14595 accepting .I8 if so. */
14596 immediate |= immediate << 8;
14597 size = 16;
14598 }
14599
14600 if (size >= 32)
14601 {
14602 if (immediate == (immediate & 0x000000ff))
14603 {
14604 *immbits = immediate;
14605 return 0x1;
14606 }
14607 else if (immediate == (immediate & 0x0000ff00))
14608 {
14609 *immbits = immediate >> 8;
14610 return 0x3;
14611 }
14612 else if (immediate == (immediate & 0x00ff0000))
14613 {
14614 *immbits = immediate >> 16;
14615 return 0x5;
14616 }
14617 else if (immediate == (immediate & 0xff000000))
14618 {
14619 *immbits = immediate >> 24;
14620 return 0x7;
14621 }
14622 if ((immediate & 0xffff) != (immediate >> 16))
14623 goto bad_immediate;
14624 immediate &= 0xffff;
14625 }
14626
14627 if (immediate == (immediate & 0x000000ff))
14628 {
14629 *immbits = immediate;
14630 return 0x9;
14631 }
14632 else if (immediate == (immediate & 0x0000ff00))
14633 {
14634 *immbits = immediate >> 8;
14635 return 0xb;
14636 }
14637
14638 bad_immediate:
14639 first_error (_("immediate value out of range"));
14640 return FAIL;
14641 }
14642
14643 static void
14644 do_neon_logic (void)
14645 {
14646 if (inst.operands[2].present && inst.operands[2].isreg)
14647 {
14648 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14649 neon_check_type (3, rs, N_IGNORE_TYPE);
14650 /* U bit and size field were set as part of the bitmask. */
14651 NEON_ENCODE (INTEGER, inst);
14652 neon_three_same (neon_quad (rs), 0, -1);
14653 }
14654 else
14655 {
14656 const int three_ops_form = (inst.operands[2].present
14657 && !inst.operands[2].isreg);
14658 const int immoperand = (three_ops_form ? 2 : 1);
14659 enum neon_shape rs = (three_ops_form
14660 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14661 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
14662 struct neon_type_el et = neon_check_type (2, rs,
14663 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14664 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
14665 unsigned immbits;
14666 int cmode;
14667
14668 if (et.type == NT_invtype)
14669 return;
14670
14671 if (three_ops_form)
14672 constraint (inst.operands[0].reg != inst.operands[1].reg,
14673 _("first and second operands shall be the same register"));
14674
14675 NEON_ENCODE (IMMED, inst);
14676
14677 immbits = inst.operands[immoperand].imm;
14678 if (et.size == 64)
14679 {
14680 /* .i64 is a pseudo-op, so the immediate must be a repeating
14681 pattern. */
14682 if (immbits != (inst.operands[immoperand].regisimm ?
14683 inst.operands[immoperand].reg : 0))
14684 {
14685 /* Set immbits to an invalid constant. */
14686 immbits = 0xdeadbeef;
14687 }
14688 }
14689
14690 switch (opcode)
14691 {
14692 case N_MNEM_vbic:
14693 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14694 break;
14695
14696 case N_MNEM_vorr:
14697 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14698 break;
14699
14700 case N_MNEM_vand:
14701 /* Pseudo-instruction for VBIC. */
14702 neon_invert_size (&immbits, 0, et.size);
14703 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14704 break;
14705
14706 case N_MNEM_vorn:
14707 /* Pseudo-instruction for VORR. */
14708 neon_invert_size (&immbits, 0, et.size);
14709 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14710 break;
14711
14712 default:
14713 abort ();
14714 }
14715
14716 if (cmode == FAIL)
14717 return;
14718
14719 inst.instruction |= neon_quad (rs) << 6;
14720 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14721 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14722 inst.instruction |= cmode << 8;
14723 neon_write_immbits (immbits);
14724
14725 neon_dp_fixup (&inst);
14726 }
14727 }
14728
14729 static void
14730 do_neon_bitfield (void)
14731 {
14732 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14733 neon_check_type (3, rs, N_IGNORE_TYPE);
14734 neon_three_same (neon_quad (rs), 0, -1);
14735 }
14736
14737 static void
14738 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
14739 unsigned destbits)
14740 {
14741 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14742 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
14743 types | N_KEY);
14744 if (et.type == NT_float)
14745 {
14746 NEON_ENCODE (FLOAT, inst);
14747 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
14748 }
14749 else
14750 {
14751 NEON_ENCODE (INTEGER, inst);
14752 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
14753 }
14754 }
14755
14756 static void
14757 do_neon_dyadic_if_su (void)
14758 {
14759 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14760 }
14761
14762 static void
14763 do_neon_dyadic_if_su_d (void)
14764 {
14765 /* This version only allow D registers, but that constraint is enforced during
14766 operand parsing so we don't need to do anything extra here. */
14767 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
14768 }
14769
14770 static void
14771 do_neon_dyadic_if_i_d (void)
14772 {
14773 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14774 affected if we specify unsigned args. */
14775 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14776 }
14777
14778 enum vfp_or_neon_is_neon_bits
14779 {
14780 NEON_CHECK_CC = 1,
14781 NEON_CHECK_ARCH = 2,
14782 NEON_CHECK_ARCH8 = 4
14783 };
14784
14785 /* Call this function if an instruction which may have belonged to the VFP or
14786 Neon instruction sets, but turned out to be a Neon instruction (due to the
14787 operand types involved, etc.). We have to check and/or fix-up a couple of
14788 things:
14789
14790 - Make sure the user hasn't attempted to make a Neon instruction
14791 conditional.
14792 - Alter the value in the condition code field if necessary.
14793 - Make sure that the arch supports Neon instructions.
14794
14795 Which of these operations take place depends on bits from enum
14796 vfp_or_neon_is_neon_bits.
14797
14798 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14799 current instruction's condition is COND_ALWAYS, the condition field is
14800 changed to inst.uncond_value. This is necessary because instructions shared
14801 between VFP and Neon may be conditional for the VFP variants only, and the
14802 unconditional Neon version must have, e.g., 0xF in the condition field. */
14803
14804 static int
14805 vfp_or_neon_is_neon (unsigned check)
14806 {
14807 /* Conditions are always legal in Thumb mode (IT blocks). */
14808 if (!thumb_mode && (check & NEON_CHECK_CC))
14809 {
14810 if (inst.cond != COND_ALWAYS)
14811 {
14812 first_error (_(BAD_COND));
14813 return FAIL;
14814 }
14815 if (inst.uncond_value != -1)
14816 inst.instruction |= inst.uncond_value << 28;
14817 }
14818
14819 if ((check & NEON_CHECK_ARCH)
14820 && !mark_feature_used (&fpu_neon_ext_v1))
14821 {
14822 first_error (_(BAD_FPU));
14823 return FAIL;
14824 }
14825
14826 if ((check & NEON_CHECK_ARCH8)
14827 && !mark_feature_used (&fpu_neon_ext_armv8))
14828 {
14829 first_error (_(BAD_FPU));
14830 return FAIL;
14831 }
14832
14833 return SUCCESS;
14834 }
14835
14836 static void
14837 do_neon_addsub_if_i (void)
14838 {
14839 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14840 return;
14841
14842 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14843 return;
14844
14845 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14846 affected if we specify unsigned args. */
14847 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
14848 }
14849
14850 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14851 result to be:
14852 V<op> A,B (A is operand 0, B is operand 2)
14853 to mean:
14854 V<op> A,B,A
14855 not:
14856 V<op> A,B,B
14857 so handle that case specially. */
14858
14859 static void
14860 neon_exchange_operands (void)
14861 {
14862 if (inst.operands[1].present)
14863 {
14864 void *scratch = xmalloc (sizeof (inst.operands[0]));
14865
14866 /* Swap operands[1] and operands[2]. */
14867 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14868 inst.operands[1] = inst.operands[2];
14869 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14870 free (scratch);
14871 }
14872 else
14873 {
14874 inst.operands[1] = inst.operands[2];
14875 inst.operands[2] = inst.operands[0];
14876 }
14877 }
14878
14879 static void
14880 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14881 {
14882 if (inst.operands[2].isreg)
14883 {
14884 if (invert)
14885 neon_exchange_operands ();
14886 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14887 }
14888 else
14889 {
14890 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14891 struct neon_type_el et = neon_check_type (2, rs,
14892 N_EQK | N_SIZ, immtypes | N_KEY);
14893
14894 NEON_ENCODE (IMMED, inst);
14895 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14896 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14897 inst.instruction |= LOW4 (inst.operands[1].reg);
14898 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14899 inst.instruction |= neon_quad (rs) << 6;
14900 inst.instruction |= (et.type == NT_float) << 10;
14901 inst.instruction |= neon_logbits (et.size) << 18;
14902
14903 neon_dp_fixup (&inst);
14904 }
14905 }
14906
14907 static void
14908 do_neon_cmp (void)
14909 {
14910 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
14911 }
14912
14913 static void
14914 do_neon_cmp_inv (void)
14915 {
14916 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
14917 }
14918
14919 static void
14920 do_neon_ceq (void)
14921 {
14922 neon_compare (N_IF_32, N_IF_32, FALSE);
14923 }
14924
14925 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14926 scalars, which are encoded in 5 bits, M : Rm.
14927 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14928 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14929 index in M. */
14930
14931 static unsigned
14932 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14933 {
14934 unsigned regno = NEON_SCALAR_REG (scalar);
14935 unsigned elno = NEON_SCALAR_INDEX (scalar);
14936
14937 switch (elsize)
14938 {
14939 case 16:
14940 if (regno > 7 || elno > 3)
14941 goto bad_scalar;
14942 return regno | (elno << 3);
14943
14944 case 32:
14945 if (regno > 15 || elno > 1)
14946 goto bad_scalar;
14947 return regno | (elno << 4);
14948
14949 default:
14950 bad_scalar:
14951 first_error (_("scalar out of range for multiply instruction"));
14952 }
14953
14954 return 0;
14955 }
14956
14957 /* Encode multiply / multiply-accumulate scalar instructions. */
14958
14959 static void
14960 neon_mul_mac (struct neon_type_el et, int ubit)
14961 {
14962 unsigned scalar;
14963
14964 /* Give a more helpful error message if we have an invalid type. */
14965 if (et.type == NT_invtype)
14966 return;
14967
14968 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14969 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14970 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14971 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14972 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14973 inst.instruction |= LOW4 (scalar);
14974 inst.instruction |= HI1 (scalar) << 5;
14975 inst.instruction |= (et.type == NT_float) << 8;
14976 inst.instruction |= neon_logbits (et.size) << 20;
14977 inst.instruction |= (ubit != 0) << 24;
14978
14979 neon_dp_fixup (&inst);
14980 }
14981
14982 static void
14983 do_neon_mac_maybe_scalar (void)
14984 {
14985 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14986 return;
14987
14988 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14989 return;
14990
14991 if (inst.operands[2].isscalar)
14992 {
14993 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14994 struct neon_type_el et = neon_check_type (3, rs,
14995 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14996 NEON_ENCODE (SCALAR, inst);
14997 neon_mul_mac (et, neon_quad (rs));
14998 }
14999 else
15000 {
15001 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15002 affected if we specify unsigned args. */
15003 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15004 }
15005 }
15006
15007 static void
15008 do_neon_fmac (void)
15009 {
15010 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
15011 return;
15012
15013 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15014 return;
15015
15016 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15017 }
15018
15019 static void
15020 do_neon_tst (void)
15021 {
15022 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15023 struct neon_type_el et = neon_check_type (3, rs,
15024 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
15025 neon_three_same (neon_quad (rs), 0, et.size);
15026 }
15027
15028 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
15029 same types as the MAC equivalents. The polynomial type for this instruction
15030 is encoded the same as the integer type. */
15031
15032 static void
15033 do_neon_mul (void)
15034 {
15035 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
15036 return;
15037
15038 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15039 return;
15040
15041 if (inst.operands[2].isscalar)
15042 do_neon_mac_maybe_scalar ();
15043 else
15044 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
15045 }
15046
15047 static void
15048 do_neon_qdmulh (void)
15049 {
15050 if (inst.operands[2].isscalar)
15051 {
15052 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15053 struct neon_type_el et = neon_check_type (3, rs,
15054 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15055 NEON_ENCODE (SCALAR, inst);
15056 neon_mul_mac (et, neon_quad (rs));
15057 }
15058 else
15059 {
15060 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15061 struct neon_type_el et = neon_check_type (3, rs,
15062 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15063 NEON_ENCODE (INTEGER, inst);
15064 /* The U bit (rounding) comes from bit mask. */
15065 neon_three_same (neon_quad (rs), 0, et.size);
15066 }
15067 }
15068
15069 static void
15070 do_neon_qrdmlah (void)
15071 {
15072 /* Check we're on the correct architecture. */
15073 if (!mark_feature_used (&fpu_neon_ext_armv8))
15074 inst.error =
15075 _("instruction form not available on this architecture.");
15076 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
15077 {
15078 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
15079 record_feature_use (&fpu_neon_ext_v8_1);
15080 }
15081
15082 if (inst.operands[2].isscalar)
15083 {
15084 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15085 struct neon_type_el et = neon_check_type (3, rs,
15086 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15087 NEON_ENCODE (SCALAR, inst);
15088 neon_mul_mac (et, neon_quad (rs));
15089 }
15090 else
15091 {
15092 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15093 struct neon_type_el et = neon_check_type (3, rs,
15094 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15095 NEON_ENCODE (INTEGER, inst);
15096 /* The U bit (rounding) comes from bit mask. */
15097 neon_three_same (neon_quad (rs), 0, et.size);
15098 }
15099 }
15100
15101 static void
15102 do_neon_fcmp_absolute (void)
15103 {
15104 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15105 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15106 N_F_16_32 | N_KEY);
15107 /* Size field comes from bit mask. */
15108 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
15109 }
15110
15111 static void
15112 do_neon_fcmp_absolute_inv (void)
15113 {
15114 neon_exchange_operands ();
15115 do_neon_fcmp_absolute ();
15116 }
15117
15118 static void
15119 do_neon_step (void)
15120 {
15121 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15122 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15123 N_F_16_32 | N_KEY);
15124 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
15125 }
15126
15127 static void
15128 do_neon_abs_neg (void)
15129 {
15130 enum neon_shape rs;
15131 struct neon_type_el et;
15132
15133 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
15134 return;
15135
15136 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15137 return;
15138
15139 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15140 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
15141
15142 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15143 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15144 inst.instruction |= LOW4 (inst.operands[1].reg);
15145 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15146 inst.instruction |= neon_quad (rs) << 6;
15147 inst.instruction |= (et.type == NT_float) << 10;
15148 inst.instruction |= neon_logbits (et.size) << 18;
15149
15150 neon_dp_fixup (&inst);
15151 }
15152
15153 static void
15154 do_neon_sli (void)
15155 {
15156 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15157 struct neon_type_el et = neon_check_type (2, rs,
15158 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15159 int imm = inst.operands[2].imm;
15160 constraint (imm < 0 || (unsigned)imm >= et.size,
15161 _("immediate out of range for insert"));
15162 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15163 }
15164
15165 static void
15166 do_neon_sri (void)
15167 {
15168 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15169 struct neon_type_el et = neon_check_type (2, rs,
15170 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15171 int imm = inst.operands[2].imm;
15172 constraint (imm < 1 || (unsigned)imm > et.size,
15173 _("immediate out of range for insert"));
15174 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
15175 }
15176
15177 static void
15178 do_neon_qshlu_imm (void)
15179 {
15180 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15181 struct neon_type_el et = neon_check_type (2, rs,
15182 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
15183 int imm = inst.operands[2].imm;
15184 constraint (imm < 0 || (unsigned)imm >= et.size,
15185 _("immediate out of range for shift"));
15186 /* Only encodes the 'U present' variant of the instruction.
15187 In this case, signed types have OP (bit 8) set to 0.
15188 Unsigned types have OP set to 1. */
15189 inst.instruction |= (et.type == NT_unsigned) << 8;
15190 /* The rest of the bits are the same as other immediate shifts. */
15191 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15192 }
15193
15194 static void
15195 do_neon_qmovn (void)
15196 {
15197 struct neon_type_el et = neon_check_type (2, NS_DQ,
15198 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15199 /* Saturating move where operands can be signed or unsigned, and the
15200 destination has the same signedness. */
15201 NEON_ENCODE (INTEGER, inst);
15202 if (et.type == NT_unsigned)
15203 inst.instruction |= 0xc0;
15204 else
15205 inst.instruction |= 0x80;
15206 neon_two_same (0, 1, et.size / 2);
15207 }
15208
15209 static void
15210 do_neon_qmovun (void)
15211 {
15212 struct neon_type_el et = neon_check_type (2, NS_DQ,
15213 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15214 /* Saturating move with unsigned results. Operands must be signed. */
15215 NEON_ENCODE (INTEGER, inst);
15216 neon_two_same (0, 1, et.size / 2);
15217 }
15218
15219 static void
15220 do_neon_rshift_sat_narrow (void)
15221 {
15222 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15223 or unsigned. If operands are unsigned, results must also be unsigned. */
15224 struct neon_type_el et = neon_check_type (2, NS_DQI,
15225 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15226 int imm = inst.operands[2].imm;
15227 /* This gets the bounds check, size encoding and immediate bits calculation
15228 right. */
15229 et.size /= 2;
15230
15231 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
15232 VQMOVN.I<size> <Dd>, <Qm>. */
15233 if (imm == 0)
15234 {
15235 inst.operands[2].present = 0;
15236 inst.instruction = N_MNEM_vqmovn;
15237 do_neon_qmovn ();
15238 return;
15239 }
15240
15241 constraint (imm < 1 || (unsigned)imm > et.size,
15242 _("immediate out of range"));
15243 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
15244 }
15245
15246 static void
15247 do_neon_rshift_sat_narrow_u (void)
15248 {
15249 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15250 or unsigned. If operands are unsigned, results must also be unsigned. */
15251 struct neon_type_el et = neon_check_type (2, NS_DQI,
15252 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15253 int imm = inst.operands[2].imm;
15254 /* This gets the bounds check, size encoding and immediate bits calculation
15255 right. */
15256 et.size /= 2;
15257
15258 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
15259 VQMOVUN.I<size> <Dd>, <Qm>. */
15260 if (imm == 0)
15261 {
15262 inst.operands[2].present = 0;
15263 inst.instruction = N_MNEM_vqmovun;
15264 do_neon_qmovun ();
15265 return;
15266 }
15267
15268 constraint (imm < 1 || (unsigned)imm > et.size,
15269 _("immediate out of range"));
15270 /* FIXME: The manual is kind of unclear about what value U should have in
15271 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
15272 must be 1. */
15273 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15274 }
15275
15276 static void
15277 do_neon_movn (void)
15278 {
15279 struct neon_type_el et = neon_check_type (2, NS_DQ,
15280 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15281 NEON_ENCODE (INTEGER, inst);
15282 neon_two_same (0, 1, et.size / 2);
15283 }
15284
15285 static void
15286 do_neon_rshift_narrow (void)
15287 {
15288 struct neon_type_el et = neon_check_type (2, NS_DQI,
15289 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15290 int imm = inst.operands[2].imm;
15291 /* This gets the bounds check, size encoding and immediate bits calculation
15292 right. */
15293 et.size /= 2;
15294
15295 /* If immediate is zero then we are a pseudo-instruction for
15296 VMOVN.I<size> <Dd>, <Qm> */
15297 if (imm == 0)
15298 {
15299 inst.operands[2].present = 0;
15300 inst.instruction = N_MNEM_vmovn;
15301 do_neon_movn ();
15302 return;
15303 }
15304
15305 constraint (imm < 1 || (unsigned)imm > et.size,
15306 _("immediate out of range for narrowing operation"));
15307 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15308 }
15309
15310 static void
15311 do_neon_shll (void)
15312 {
15313 /* FIXME: Type checking when lengthening. */
15314 struct neon_type_el et = neon_check_type (2, NS_QDI,
15315 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15316 unsigned imm = inst.operands[2].imm;
15317
15318 if (imm == et.size)
15319 {
15320 /* Maximum shift variant. */
15321 NEON_ENCODE (INTEGER, inst);
15322 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15323 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15324 inst.instruction |= LOW4 (inst.operands[1].reg);
15325 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15326 inst.instruction |= neon_logbits (et.size) << 18;
15327
15328 neon_dp_fixup (&inst);
15329 }
15330 else
15331 {
15332 /* A more-specific type check for non-max versions. */
15333 et = neon_check_type (2, NS_QDI,
15334 N_EQK | N_DBL, N_SU_32 | N_KEY);
15335 NEON_ENCODE (IMMED, inst);
15336 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15337 }
15338 }
15339
15340 /* Check the various types for the VCVT instruction, and return which version
15341 the current instruction is. */
15342
15343 #define CVT_FLAVOUR_VAR \
15344 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15345 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15346 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15347 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15348 /* Half-precision conversions. */ \
15349 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15350 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15351 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
15352 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
15353 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15354 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
15355 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
15356 Compared with single/double precision variants, only the co-processor \
15357 field is different, so the encoding flow is reused here. */ \
15358 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
15359 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
15360 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
15361 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
15362 /* VFP instructions. */ \
15363 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15364 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15365 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15366 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15367 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15368 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15369 /* VFP instructions with bitshift. */ \
15370 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15371 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15372 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15373 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15374 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15375 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15376 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15377 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15378
15379 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15380 neon_cvt_flavour_##C,
15381
15382 /* The different types of conversions we can do. */
15383 enum neon_cvt_flavour
15384 {
15385 CVT_FLAVOUR_VAR
15386 neon_cvt_flavour_invalid,
15387 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15388 };
15389
15390 #undef CVT_VAR
15391
15392 static enum neon_cvt_flavour
15393 get_neon_cvt_flavour (enum neon_shape rs)
15394 {
15395 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15396 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15397 if (et.type != NT_invtype) \
15398 { \
15399 inst.error = NULL; \
15400 return (neon_cvt_flavour_##C); \
15401 }
15402
15403 struct neon_type_el et;
15404 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
15405 || rs == NS_FF) ? N_VFP : 0;
15406 /* The instruction versions which take an immediate take one register
15407 argument, which is extended to the width of the full register. Thus the
15408 "source" and "destination" registers must have the same width. Hack that
15409 here by making the size equal to the key (wider, in this case) operand. */
15410 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
15411
15412 CVT_FLAVOUR_VAR;
15413
15414 return neon_cvt_flavour_invalid;
15415 #undef CVT_VAR
15416 }
15417
15418 enum neon_cvt_mode
15419 {
15420 neon_cvt_mode_a,
15421 neon_cvt_mode_n,
15422 neon_cvt_mode_p,
15423 neon_cvt_mode_m,
15424 neon_cvt_mode_z,
15425 neon_cvt_mode_x,
15426 neon_cvt_mode_r
15427 };
15428
15429 /* Neon-syntax VFP conversions. */
15430
15431 static void
15432 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
15433 {
15434 const char *opname = 0;
15435
15436 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
15437 || rs == NS_FHI || rs == NS_HFI)
15438 {
15439 /* Conversions with immediate bitshift. */
15440 const char *enc[] =
15441 {
15442 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15443 CVT_FLAVOUR_VAR
15444 NULL
15445 #undef CVT_VAR
15446 };
15447
15448 if (flavour < (int) ARRAY_SIZE (enc))
15449 {
15450 opname = enc[flavour];
15451 constraint (inst.operands[0].reg != inst.operands[1].reg,
15452 _("operands 0 and 1 must be the same register"));
15453 inst.operands[1] = inst.operands[2];
15454 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15455 }
15456 }
15457 else
15458 {
15459 /* Conversions without bitshift. */
15460 const char *enc[] =
15461 {
15462 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15463 CVT_FLAVOUR_VAR
15464 NULL
15465 #undef CVT_VAR
15466 };
15467
15468 if (flavour < (int) ARRAY_SIZE (enc))
15469 opname = enc[flavour];
15470 }
15471
15472 if (opname)
15473 do_vfp_nsyn_opcode (opname);
15474
15475 /* ARMv8.2 fp16 VCVT instruction. */
15476 if (flavour == neon_cvt_flavour_s32_f16
15477 || flavour == neon_cvt_flavour_u32_f16
15478 || flavour == neon_cvt_flavour_f16_u32
15479 || flavour == neon_cvt_flavour_f16_s32)
15480 do_scalar_fp16_v82_encode ();
15481 }
15482
15483 static void
15484 do_vfp_nsyn_cvtz (void)
15485 {
15486 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
15487 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15488 const char *enc[] =
15489 {
15490 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15491 CVT_FLAVOUR_VAR
15492 NULL
15493 #undef CVT_VAR
15494 };
15495
15496 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
15497 do_vfp_nsyn_opcode (enc[flavour]);
15498 }
15499
15500 static void
15501 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
15502 enum neon_cvt_mode mode)
15503 {
15504 int sz, op;
15505 int rm;
15506
15507 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15508 D register operands. */
15509 if (flavour == neon_cvt_flavour_s32_f64
15510 || flavour == neon_cvt_flavour_u32_f64)
15511 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15512 _(BAD_FPU));
15513
15514 if (flavour == neon_cvt_flavour_s32_f16
15515 || flavour == neon_cvt_flavour_u32_f16)
15516 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
15517 _(BAD_FP16));
15518
15519 set_it_insn_type (OUTSIDE_IT_INSN);
15520
15521 switch (flavour)
15522 {
15523 case neon_cvt_flavour_s32_f64:
15524 sz = 1;
15525 op = 1;
15526 break;
15527 case neon_cvt_flavour_s32_f32:
15528 sz = 0;
15529 op = 1;
15530 break;
15531 case neon_cvt_flavour_s32_f16:
15532 sz = 0;
15533 op = 1;
15534 break;
15535 case neon_cvt_flavour_u32_f64:
15536 sz = 1;
15537 op = 0;
15538 break;
15539 case neon_cvt_flavour_u32_f32:
15540 sz = 0;
15541 op = 0;
15542 break;
15543 case neon_cvt_flavour_u32_f16:
15544 sz = 0;
15545 op = 0;
15546 break;
15547 default:
15548 first_error (_("invalid instruction shape"));
15549 return;
15550 }
15551
15552 switch (mode)
15553 {
15554 case neon_cvt_mode_a: rm = 0; break;
15555 case neon_cvt_mode_n: rm = 1; break;
15556 case neon_cvt_mode_p: rm = 2; break;
15557 case neon_cvt_mode_m: rm = 3; break;
15558 default: first_error (_("invalid rounding mode")); return;
15559 }
15560
15561 NEON_ENCODE (FPV8, inst);
15562 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15563 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15564 inst.instruction |= sz << 8;
15565
15566 /* ARMv8.2 fp16 VCVT instruction. */
15567 if (flavour == neon_cvt_flavour_s32_f16
15568 ||flavour == neon_cvt_flavour_u32_f16)
15569 do_scalar_fp16_v82_encode ();
15570 inst.instruction |= op << 7;
15571 inst.instruction |= rm << 16;
15572 inst.instruction |= 0xf0000000;
15573 inst.is_neon = TRUE;
15574 }
15575
15576 static void
15577 do_neon_cvt_1 (enum neon_cvt_mode mode)
15578 {
15579 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
15580 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
15581 NS_FH, NS_HF, NS_FHI, NS_HFI,
15582 NS_NULL);
15583 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15584
15585 if (flavour == neon_cvt_flavour_invalid)
15586 return;
15587
15588 /* PR11109: Handle round-to-zero for VCVT conversions. */
15589 if (mode == neon_cvt_mode_z
15590 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
15591 && (flavour == neon_cvt_flavour_s16_f16
15592 || flavour == neon_cvt_flavour_u16_f16
15593 || flavour == neon_cvt_flavour_s32_f32
15594 || flavour == neon_cvt_flavour_u32_f32
15595 || flavour == neon_cvt_flavour_s32_f64
15596 || flavour == neon_cvt_flavour_u32_f64)
15597 && (rs == NS_FD || rs == NS_FF))
15598 {
15599 do_vfp_nsyn_cvtz ();
15600 return;
15601 }
15602
15603 /* ARMv8.2 fp16 VCVT conversions. */
15604 if (mode == neon_cvt_mode_z
15605 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
15606 && (flavour == neon_cvt_flavour_s32_f16
15607 || flavour == neon_cvt_flavour_u32_f16)
15608 && (rs == NS_FH))
15609 {
15610 do_vfp_nsyn_cvtz ();
15611 do_scalar_fp16_v82_encode ();
15612 return;
15613 }
15614
15615 /* VFP rather than Neon conversions. */
15616 if (flavour >= neon_cvt_flavour_first_fp)
15617 {
15618 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15619 do_vfp_nsyn_cvt (rs, flavour);
15620 else
15621 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15622
15623 return;
15624 }
15625
15626 switch (rs)
15627 {
15628 case NS_DDI:
15629 case NS_QQI:
15630 {
15631 unsigned immbits;
15632 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
15633 0x0000100, 0x1000100, 0x0, 0x1000000};
15634
15635 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15636 return;
15637
15638 /* Fixed-point conversion with #0 immediate is encoded as an
15639 integer conversion. */
15640 if (inst.operands[2].present && inst.operands[2].imm == 0)
15641 goto int_encode;
15642 NEON_ENCODE (IMMED, inst);
15643 if (flavour != neon_cvt_flavour_invalid)
15644 inst.instruction |= enctab[flavour];
15645 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15646 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15647 inst.instruction |= LOW4 (inst.operands[1].reg);
15648 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15649 inst.instruction |= neon_quad (rs) << 6;
15650 inst.instruction |= 1 << 21;
15651 if (flavour < neon_cvt_flavour_s16_f16)
15652 {
15653 inst.instruction |= 1 << 21;
15654 immbits = 32 - inst.operands[2].imm;
15655 inst.instruction |= immbits << 16;
15656 }
15657 else
15658 {
15659 inst.instruction |= 3 << 20;
15660 immbits = 16 - inst.operands[2].imm;
15661 inst.instruction |= immbits << 16;
15662 inst.instruction &= ~(1 << 9);
15663 }
15664
15665 neon_dp_fixup (&inst);
15666 }
15667 break;
15668
15669 case NS_DD:
15670 case NS_QQ:
15671 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15672 {
15673 NEON_ENCODE (FLOAT, inst);
15674 set_it_insn_type (OUTSIDE_IT_INSN);
15675
15676 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15677 return;
15678
15679 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15680 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15681 inst.instruction |= LOW4 (inst.operands[1].reg);
15682 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15683 inst.instruction |= neon_quad (rs) << 6;
15684 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
15685 || flavour == neon_cvt_flavour_u32_f32) << 7;
15686 inst.instruction |= mode << 8;
15687 if (flavour == neon_cvt_flavour_u16_f16
15688 || flavour == neon_cvt_flavour_s16_f16)
15689 /* Mask off the original size bits and reencode them. */
15690 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
15691
15692 if (thumb_mode)
15693 inst.instruction |= 0xfc000000;
15694 else
15695 inst.instruction |= 0xf0000000;
15696 }
15697 else
15698 {
15699 int_encode:
15700 {
15701 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
15702 0x100, 0x180, 0x0, 0x080};
15703
15704 NEON_ENCODE (INTEGER, inst);
15705
15706 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15707 return;
15708
15709 if (flavour != neon_cvt_flavour_invalid)
15710 inst.instruction |= enctab[flavour];
15711
15712 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15713 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15714 inst.instruction |= LOW4 (inst.operands[1].reg);
15715 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15716 inst.instruction |= neon_quad (rs) << 6;
15717 if (flavour >= neon_cvt_flavour_s16_f16
15718 && flavour <= neon_cvt_flavour_f16_u16)
15719 /* Half precision. */
15720 inst.instruction |= 1 << 18;
15721 else
15722 inst.instruction |= 2 << 18;
15723
15724 neon_dp_fixup (&inst);
15725 }
15726 }
15727 break;
15728
15729 /* Half-precision conversions for Advanced SIMD -- neon. */
15730 case NS_QD:
15731 case NS_DQ:
15732
15733 if ((rs == NS_DQ)
15734 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
15735 {
15736 as_bad (_("operand size must match register width"));
15737 break;
15738 }
15739
15740 if ((rs == NS_QD)
15741 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
15742 {
15743 as_bad (_("operand size must match register width"));
15744 break;
15745 }
15746
15747 if (rs == NS_DQ)
15748 inst.instruction = 0x3b60600;
15749 else
15750 inst.instruction = 0x3b60700;
15751
15752 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15753 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15754 inst.instruction |= LOW4 (inst.operands[1].reg);
15755 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15756 neon_dp_fixup (&inst);
15757 break;
15758
15759 default:
15760 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
15761 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15762 do_vfp_nsyn_cvt (rs, flavour);
15763 else
15764 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15765 }
15766 }
15767
15768 static void
15769 do_neon_cvtr (void)
15770 {
15771 do_neon_cvt_1 (neon_cvt_mode_x);
15772 }
15773
15774 static void
15775 do_neon_cvt (void)
15776 {
15777 do_neon_cvt_1 (neon_cvt_mode_z);
15778 }
15779
15780 static void
15781 do_neon_cvta (void)
15782 {
15783 do_neon_cvt_1 (neon_cvt_mode_a);
15784 }
15785
15786 static void
15787 do_neon_cvtn (void)
15788 {
15789 do_neon_cvt_1 (neon_cvt_mode_n);
15790 }
15791
15792 static void
15793 do_neon_cvtp (void)
15794 {
15795 do_neon_cvt_1 (neon_cvt_mode_p);
15796 }
15797
15798 static void
15799 do_neon_cvtm (void)
15800 {
15801 do_neon_cvt_1 (neon_cvt_mode_m);
15802 }
15803
15804 static void
15805 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
15806 {
15807 if (is_double)
15808 mark_feature_used (&fpu_vfp_ext_armv8);
15809
15810 encode_arm_vfp_reg (inst.operands[0].reg,
15811 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
15812 encode_arm_vfp_reg (inst.operands[1].reg,
15813 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
15814 inst.instruction |= to ? 0x10000 : 0;
15815 inst.instruction |= t ? 0x80 : 0;
15816 inst.instruction |= is_double ? 0x100 : 0;
15817 do_vfp_cond_or_thumb ();
15818 }
15819
15820 static void
15821 do_neon_cvttb_1 (bfd_boolean t)
15822 {
15823 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
15824 NS_DF, NS_DH, NS_NULL);
15825
15826 if (rs == NS_NULL)
15827 return;
15828 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
15829 {
15830 inst.error = NULL;
15831 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
15832 }
15833 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
15834 {
15835 inst.error = NULL;
15836 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
15837 }
15838 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
15839 {
15840 /* The VCVTB and VCVTT instructions with D-register operands
15841 don't work for SP only targets. */
15842 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15843 _(BAD_FPU));
15844
15845 inst.error = NULL;
15846 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
15847 }
15848 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
15849 {
15850 /* The VCVTB and VCVTT instructions with D-register operands
15851 don't work for SP only targets. */
15852 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15853 _(BAD_FPU));
15854
15855 inst.error = NULL;
15856 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
15857 }
15858 else
15859 return;
15860 }
15861
15862 static void
15863 do_neon_cvtb (void)
15864 {
15865 do_neon_cvttb_1 (FALSE);
15866 }
15867
15868
15869 static void
15870 do_neon_cvtt (void)
15871 {
15872 do_neon_cvttb_1 (TRUE);
15873 }
15874
15875 static void
15876 neon_move_immediate (void)
15877 {
15878 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
15879 struct neon_type_el et = neon_check_type (2, rs,
15880 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
15881 unsigned immlo, immhi = 0, immbits;
15882 int op, cmode, float_p;
15883
15884 constraint (et.type == NT_invtype,
15885 _("operand size must be specified for immediate VMOV"));
15886
15887 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
15888 op = (inst.instruction & (1 << 5)) != 0;
15889
15890 immlo = inst.operands[1].imm;
15891 if (inst.operands[1].regisimm)
15892 immhi = inst.operands[1].reg;
15893
15894 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
15895 _("immediate has bits set outside the operand size"));
15896
15897 float_p = inst.operands[1].immisfloat;
15898
15899 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
15900 et.size, et.type)) == FAIL)
15901 {
15902 /* Invert relevant bits only. */
15903 neon_invert_size (&immlo, &immhi, et.size);
15904 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
15905 with one or the other; those cases are caught by
15906 neon_cmode_for_move_imm. */
15907 op = !op;
15908 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
15909 &op, et.size, et.type)) == FAIL)
15910 {
15911 first_error (_("immediate out of range"));
15912 return;
15913 }
15914 }
15915
15916 inst.instruction &= ~(1 << 5);
15917 inst.instruction |= op << 5;
15918
15919 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15920 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15921 inst.instruction |= neon_quad (rs) << 6;
15922 inst.instruction |= cmode << 8;
15923
15924 neon_write_immbits (immbits);
15925 }
15926
15927 static void
15928 do_neon_mvn (void)
15929 {
15930 if (inst.operands[1].isreg)
15931 {
15932 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15933
15934 NEON_ENCODE (INTEGER, inst);
15935 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15936 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15937 inst.instruction |= LOW4 (inst.operands[1].reg);
15938 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15939 inst.instruction |= neon_quad (rs) << 6;
15940 }
15941 else
15942 {
15943 NEON_ENCODE (IMMED, inst);
15944 neon_move_immediate ();
15945 }
15946
15947 neon_dp_fixup (&inst);
15948 }
15949
15950 /* Encode instructions of form:
15951
15952 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15953 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
15954
15955 static void
15956 neon_mixed_length (struct neon_type_el et, unsigned size)
15957 {
15958 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15959 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15960 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15961 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15962 inst.instruction |= LOW4 (inst.operands[2].reg);
15963 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15964 inst.instruction |= (et.type == NT_unsigned) << 24;
15965 inst.instruction |= neon_logbits (size) << 20;
15966
15967 neon_dp_fixup (&inst);
15968 }
15969
15970 static void
15971 do_neon_dyadic_long (void)
15972 {
15973 /* FIXME: Type checking for lengthening op. */
15974 struct neon_type_el et = neon_check_type (3, NS_QDD,
15975 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
15976 neon_mixed_length (et, et.size);
15977 }
15978
15979 static void
15980 do_neon_abal (void)
15981 {
15982 struct neon_type_el et = neon_check_type (3, NS_QDD,
15983 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
15984 neon_mixed_length (et, et.size);
15985 }
15986
15987 static void
15988 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
15989 {
15990 if (inst.operands[2].isscalar)
15991 {
15992 struct neon_type_el et = neon_check_type (3, NS_QDS,
15993 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
15994 NEON_ENCODE (SCALAR, inst);
15995 neon_mul_mac (et, et.type == NT_unsigned);
15996 }
15997 else
15998 {
15999 struct neon_type_el et = neon_check_type (3, NS_QDD,
16000 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
16001 NEON_ENCODE (INTEGER, inst);
16002 neon_mixed_length (et, et.size);
16003 }
16004 }
16005
16006 static void
16007 do_neon_mac_maybe_scalar_long (void)
16008 {
16009 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
16010 }
16011
16012 static void
16013 do_neon_dyadic_wide (void)
16014 {
16015 struct neon_type_el et = neon_check_type (3, NS_QQD,
16016 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
16017 neon_mixed_length (et, et.size);
16018 }
16019
16020 static void
16021 do_neon_dyadic_narrow (void)
16022 {
16023 struct neon_type_el et = neon_check_type (3, NS_QDD,
16024 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
16025 /* Operand sign is unimportant, and the U bit is part of the opcode,
16026 so force the operand type to integer. */
16027 et.type = NT_integer;
16028 neon_mixed_length (et, et.size / 2);
16029 }
16030
16031 static void
16032 do_neon_mul_sat_scalar_long (void)
16033 {
16034 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
16035 }
16036
16037 static void
16038 do_neon_vmull (void)
16039 {
16040 if (inst.operands[2].isscalar)
16041 do_neon_mac_maybe_scalar_long ();
16042 else
16043 {
16044 struct neon_type_el et = neon_check_type (3, NS_QDD,
16045 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
16046
16047 if (et.type == NT_poly)
16048 NEON_ENCODE (POLY, inst);
16049 else
16050 NEON_ENCODE (INTEGER, inst);
16051
16052 /* For polynomial encoding the U bit must be zero, and the size must
16053 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
16054 obviously, as 0b10). */
16055 if (et.size == 64)
16056 {
16057 /* Check we're on the correct architecture. */
16058 if (!mark_feature_used (&fpu_crypto_ext_armv8))
16059 inst.error =
16060 _("Instruction form not available on this architecture.");
16061
16062 et.size = 32;
16063 }
16064
16065 neon_mixed_length (et, et.size);
16066 }
16067 }
16068
16069 static void
16070 do_neon_ext (void)
16071 {
16072 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
16073 struct neon_type_el et = neon_check_type (3, rs,
16074 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16075 unsigned imm = (inst.operands[3].imm * et.size) / 8;
16076
16077 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
16078 _("shift out of range"));
16079 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16080 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16081 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16082 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16083 inst.instruction |= LOW4 (inst.operands[2].reg);
16084 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16085 inst.instruction |= neon_quad (rs) << 6;
16086 inst.instruction |= imm << 8;
16087
16088 neon_dp_fixup (&inst);
16089 }
16090
16091 static void
16092 do_neon_rev (void)
16093 {
16094 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16095 struct neon_type_el et = neon_check_type (2, rs,
16096 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16097 unsigned op = (inst.instruction >> 7) & 3;
16098 /* N (width of reversed regions) is encoded as part of the bitmask. We
16099 extract it here to check the elements to be reversed are smaller.
16100 Otherwise we'd get a reserved instruction. */
16101 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
16102 gas_assert (elsize != 0);
16103 constraint (et.size >= elsize,
16104 _("elements must be smaller than reversal region"));
16105 neon_two_same (neon_quad (rs), 1, et.size);
16106 }
16107
16108 static void
16109 do_neon_dup (void)
16110 {
16111 if (inst.operands[1].isscalar)
16112 {
16113 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
16114 struct neon_type_el et = neon_check_type (2, rs,
16115 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16116 unsigned sizebits = et.size >> 3;
16117 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
16118 int logsize = neon_logbits (et.size);
16119 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
16120
16121 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
16122 return;
16123
16124 NEON_ENCODE (SCALAR, inst);
16125 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16126 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16127 inst.instruction |= LOW4 (dm);
16128 inst.instruction |= HI1 (dm) << 5;
16129 inst.instruction |= neon_quad (rs) << 6;
16130 inst.instruction |= x << 17;
16131 inst.instruction |= sizebits << 16;
16132
16133 neon_dp_fixup (&inst);
16134 }
16135 else
16136 {
16137 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
16138 struct neon_type_el et = neon_check_type (2, rs,
16139 N_8 | N_16 | N_32 | N_KEY, N_EQK);
16140 /* Duplicate ARM register to lanes of vector. */
16141 NEON_ENCODE (ARMREG, inst);
16142 switch (et.size)
16143 {
16144 case 8: inst.instruction |= 0x400000; break;
16145 case 16: inst.instruction |= 0x000020; break;
16146 case 32: inst.instruction |= 0x000000; break;
16147 default: break;
16148 }
16149 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16150 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
16151 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
16152 inst.instruction |= neon_quad (rs) << 21;
16153 /* The encoding for this instruction is identical for the ARM and Thumb
16154 variants, except for the condition field. */
16155 do_vfp_cond_or_thumb ();
16156 }
16157 }
16158
16159 /* VMOV has particularly many variations. It can be one of:
16160 0. VMOV<c><q> <Qd>, <Qm>
16161 1. VMOV<c><q> <Dd>, <Dm>
16162 (Register operations, which are VORR with Rm = Rn.)
16163 2. VMOV<c><q>.<dt> <Qd>, #<imm>
16164 3. VMOV<c><q>.<dt> <Dd>, #<imm>
16165 (Immediate loads.)
16166 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
16167 (ARM register to scalar.)
16168 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
16169 (Two ARM registers to vector.)
16170 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
16171 (Scalar to ARM register.)
16172 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
16173 (Vector to two ARM registers.)
16174 8. VMOV.F32 <Sd>, <Sm>
16175 9. VMOV.F64 <Dd>, <Dm>
16176 (VFP register moves.)
16177 10. VMOV.F32 <Sd>, #imm
16178 11. VMOV.F64 <Dd>, #imm
16179 (VFP float immediate load.)
16180 12. VMOV <Rd>, <Sm>
16181 (VFP single to ARM reg.)
16182 13. VMOV <Sd>, <Rm>
16183 (ARM reg to VFP single.)
16184 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
16185 (Two ARM regs to two VFP singles.)
16186 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
16187 (Two VFP singles to two ARM regs.)
16188
16189 These cases can be disambiguated using neon_select_shape, except cases 1/9
16190 and 3/11 which depend on the operand type too.
16191
16192 All the encoded bits are hardcoded by this function.
16193
16194 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
16195 Cases 5, 7 may be used with VFPv2 and above.
16196
16197 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
16198 can specify a type where it doesn't make sense to, and is ignored). */
16199
16200 static void
16201 do_neon_mov (void)
16202 {
16203 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
16204 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR,
16205 NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
16206 NS_HR, NS_RH, NS_HI, NS_NULL);
16207 struct neon_type_el et;
16208 const char *ldconst = 0;
16209
16210 switch (rs)
16211 {
16212 case NS_DD: /* case 1/9. */
16213 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16214 /* It is not an error here if no type is given. */
16215 inst.error = NULL;
16216 if (et.type == NT_float && et.size == 64)
16217 {
16218 do_vfp_nsyn_opcode ("fcpyd");
16219 break;
16220 }
16221 /* fall through. */
16222
16223 case NS_QQ: /* case 0/1. */
16224 {
16225 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16226 return;
16227 /* The architecture manual I have doesn't explicitly state which
16228 value the U bit should have for register->register moves, but
16229 the equivalent VORR instruction has U = 0, so do that. */
16230 inst.instruction = 0x0200110;
16231 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16232 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16233 inst.instruction |= LOW4 (inst.operands[1].reg);
16234 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16235 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16236 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16237 inst.instruction |= neon_quad (rs) << 6;
16238
16239 neon_dp_fixup (&inst);
16240 }
16241 break;
16242
16243 case NS_DI: /* case 3/11. */
16244 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16245 inst.error = NULL;
16246 if (et.type == NT_float && et.size == 64)
16247 {
16248 /* case 11 (fconstd). */
16249 ldconst = "fconstd";
16250 goto encode_fconstd;
16251 }
16252 /* fall through. */
16253
16254 case NS_QI: /* case 2/3. */
16255 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16256 return;
16257 inst.instruction = 0x0800010;
16258 neon_move_immediate ();
16259 neon_dp_fixup (&inst);
16260 break;
16261
16262 case NS_SR: /* case 4. */
16263 {
16264 unsigned bcdebits = 0;
16265 int logsize;
16266 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
16267 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
16268
16269 /* .<size> is optional here, defaulting to .32. */
16270 if (inst.vectype.elems == 0
16271 && inst.operands[0].vectype.type == NT_invtype
16272 && inst.operands[1].vectype.type == NT_invtype)
16273 {
16274 inst.vectype.el[0].type = NT_untyped;
16275 inst.vectype.el[0].size = 32;
16276 inst.vectype.elems = 1;
16277 }
16278
16279 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
16280 logsize = neon_logbits (et.size);
16281
16282 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16283 _(BAD_FPU));
16284 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16285 && et.size != 32, _(BAD_FPU));
16286 constraint (et.type == NT_invtype, _("bad type for scalar"));
16287 constraint (x >= 64 / et.size, _("scalar index out of range"));
16288
16289 switch (et.size)
16290 {
16291 case 8: bcdebits = 0x8; break;
16292 case 16: bcdebits = 0x1; break;
16293 case 32: bcdebits = 0x0; break;
16294 default: ;
16295 }
16296
16297 bcdebits |= x << logsize;
16298
16299 inst.instruction = 0xe000b10;
16300 do_vfp_cond_or_thumb ();
16301 inst.instruction |= LOW4 (dn) << 16;
16302 inst.instruction |= HI1 (dn) << 7;
16303 inst.instruction |= inst.operands[1].reg << 12;
16304 inst.instruction |= (bcdebits & 3) << 5;
16305 inst.instruction |= (bcdebits >> 2) << 21;
16306 }
16307 break;
16308
16309 case NS_DRR: /* case 5 (fmdrr). */
16310 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16311 _(BAD_FPU));
16312
16313 inst.instruction = 0xc400b10;
16314 do_vfp_cond_or_thumb ();
16315 inst.instruction |= LOW4 (inst.operands[0].reg);
16316 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
16317 inst.instruction |= inst.operands[1].reg << 12;
16318 inst.instruction |= inst.operands[2].reg << 16;
16319 break;
16320
16321 case NS_RS: /* case 6. */
16322 {
16323 unsigned logsize;
16324 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
16325 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
16326 unsigned abcdebits = 0;
16327
16328 /* .<dt> is optional here, defaulting to .32. */
16329 if (inst.vectype.elems == 0
16330 && inst.operands[0].vectype.type == NT_invtype
16331 && inst.operands[1].vectype.type == NT_invtype)
16332 {
16333 inst.vectype.el[0].type = NT_untyped;
16334 inst.vectype.el[0].size = 32;
16335 inst.vectype.elems = 1;
16336 }
16337
16338 et = neon_check_type (2, NS_NULL,
16339 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
16340 logsize = neon_logbits (et.size);
16341
16342 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16343 _(BAD_FPU));
16344 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16345 && et.size != 32, _(BAD_FPU));
16346 constraint (et.type == NT_invtype, _("bad type for scalar"));
16347 constraint (x >= 64 / et.size, _("scalar index out of range"));
16348
16349 switch (et.size)
16350 {
16351 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
16352 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
16353 case 32: abcdebits = 0x00; break;
16354 default: ;
16355 }
16356
16357 abcdebits |= x << logsize;
16358 inst.instruction = 0xe100b10;
16359 do_vfp_cond_or_thumb ();
16360 inst.instruction |= LOW4 (dn) << 16;
16361 inst.instruction |= HI1 (dn) << 7;
16362 inst.instruction |= inst.operands[0].reg << 12;
16363 inst.instruction |= (abcdebits & 3) << 5;
16364 inst.instruction |= (abcdebits >> 2) << 21;
16365 }
16366 break;
16367
16368 case NS_RRD: /* case 7 (fmrrd). */
16369 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16370 _(BAD_FPU));
16371
16372 inst.instruction = 0xc500b10;
16373 do_vfp_cond_or_thumb ();
16374 inst.instruction |= inst.operands[0].reg << 12;
16375 inst.instruction |= inst.operands[1].reg << 16;
16376 inst.instruction |= LOW4 (inst.operands[2].reg);
16377 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16378 break;
16379
16380 case NS_FF: /* case 8 (fcpys). */
16381 do_vfp_nsyn_opcode ("fcpys");
16382 break;
16383
16384 case NS_HI:
16385 case NS_FI: /* case 10 (fconsts). */
16386 ldconst = "fconsts";
16387 encode_fconstd:
16388 if (is_quarter_float (inst.operands[1].imm))
16389 {
16390 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16391 do_vfp_nsyn_opcode (ldconst);
16392
16393 /* ARMv8.2 fp16 vmov.f16 instruction. */
16394 if (rs == NS_HI)
16395 do_scalar_fp16_v82_encode ();
16396 }
16397 else
16398 first_error (_("immediate out of range"));
16399 break;
16400
16401 case NS_RH:
16402 case NS_RF: /* case 12 (fmrs). */
16403 do_vfp_nsyn_opcode ("fmrs");
16404 /* ARMv8.2 fp16 vmov.f16 instruction. */
16405 if (rs == NS_RH)
16406 do_scalar_fp16_v82_encode ();
16407 break;
16408
16409 case NS_HR:
16410 case NS_FR: /* case 13 (fmsr). */
16411 do_vfp_nsyn_opcode ("fmsr");
16412 /* ARMv8.2 fp16 vmov.f16 instruction. */
16413 if (rs == NS_HR)
16414 do_scalar_fp16_v82_encode ();
16415 break;
16416
16417 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16418 (one of which is a list), but we have parsed four. Do some fiddling to
16419 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16420 expect. */
16421 case NS_RRFF: /* case 14 (fmrrs). */
16422 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
16423 _("VFP registers must be adjacent"));
16424 inst.operands[2].imm = 2;
16425 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16426 do_vfp_nsyn_opcode ("fmrrs");
16427 break;
16428
16429 case NS_FFRR: /* case 15 (fmsrr). */
16430 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
16431 _("VFP registers must be adjacent"));
16432 inst.operands[1] = inst.operands[2];
16433 inst.operands[2] = inst.operands[3];
16434 inst.operands[0].imm = 2;
16435 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16436 do_vfp_nsyn_opcode ("fmsrr");
16437 break;
16438
16439 case NS_NULL:
16440 /* neon_select_shape has determined that the instruction
16441 shape is wrong and has already set the error message. */
16442 break;
16443
16444 default:
16445 abort ();
16446 }
16447 }
16448
16449 static void
16450 do_neon_rshift_round_imm (void)
16451 {
16452 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16453 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16454 int imm = inst.operands[2].imm;
16455
16456 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16457 if (imm == 0)
16458 {
16459 inst.operands[2].present = 0;
16460 do_neon_mov ();
16461 return;
16462 }
16463
16464 constraint (imm < 1 || (unsigned)imm > et.size,
16465 _("immediate out of range for shift"));
16466 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
16467 et.size - imm);
16468 }
16469
16470 static void
16471 do_neon_movhf (void)
16472 {
16473 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
16474 constraint (rs != NS_HH, _("invalid suffix"));
16475
16476 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16477 _(BAD_FPU));
16478
16479 do_vfp_sp_monadic ();
16480
16481 inst.is_neon = 1;
16482 inst.instruction |= 0xf0000000;
16483 }
16484
16485 static void
16486 do_neon_movl (void)
16487 {
16488 struct neon_type_el et = neon_check_type (2, NS_QD,
16489 N_EQK | N_DBL, N_SU_32 | N_KEY);
16490 unsigned sizebits = et.size >> 3;
16491 inst.instruction |= sizebits << 19;
16492 neon_two_same (0, et.type == NT_unsigned, -1);
16493 }
16494
16495 static void
16496 do_neon_trn (void)
16497 {
16498 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16499 struct neon_type_el et = neon_check_type (2, rs,
16500 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16501 NEON_ENCODE (INTEGER, inst);
16502 neon_two_same (neon_quad (rs), 1, et.size);
16503 }
16504
16505 static void
16506 do_neon_zip_uzp (void)
16507 {
16508 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16509 struct neon_type_el et = neon_check_type (2, rs,
16510 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16511 if (rs == NS_DD && et.size == 32)
16512 {
16513 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
16514 inst.instruction = N_MNEM_vtrn;
16515 do_neon_trn ();
16516 return;
16517 }
16518 neon_two_same (neon_quad (rs), 1, et.size);
16519 }
16520
16521 static void
16522 do_neon_sat_abs_neg (void)
16523 {
16524 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16525 struct neon_type_el et = neon_check_type (2, rs,
16526 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16527 neon_two_same (neon_quad (rs), 1, et.size);
16528 }
16529
16530 static void
16531 do_neon_pair_long (void)
16532 {
16533 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16534 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16535 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
16536 inst.instruction |= (et.type == NT_unsigned) << 7;
16537 neon_two_same (neon_quad (rs), 1, et.size);
16538 }
16539
16540 static void
16541 do_neon_recip_est (void)
16542 {
16543 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16544 struct neon_type_el et = neon_check_type (2, rs,
16545 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
16546 inst.instruction |= (et.type == NT_float) << 8;
16547 neon_two_same (neon_quad (rs), 1, et.size);
16548 }
16549
16550 static void
16551 do_neon_cls (void)
16552 {
16553 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16554 struct neon_type_el et = neon_check_type (2, rs,
16555 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16556 neon_two_same (neon_quad (rs), 1, et.size);
16557 }
16558
16559 static void
16560 do_neon_clz (void)
16561 {
16562 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16563 struct neon_type_el et = neon_check_type (2, rs,
16564 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
16565 neon_two_same (neon_quad (rs), 1, et.size);
16566 }
16567
16568 static void
16569 do_neon_cnt (void)
16570 {
16571 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16572 struct neon_type_el et = neon_check_type (2, rs,
16573 N_EQK | N_INT, N_8 | N_KEY);
16574 neon_two_same (neon_quad (rs), 1, et.size);
16575 }
16576
16577 static void
16578 do_neon_swp (void)
16579 {
16580 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16581 neon_two_same (neon_quad (rs), 1, -1);
16582 }
16583
16584 static void
16585 do_neon_tbl_tbx (void)
16586 {
16587 unsigned listlenbits;
16588 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
16589
16590 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
16591 {
16592 first_error (_("bad list length for table lookup"));
16593 return;
16594 }
16595
16596 listlenbits = inst.operands[1].imm - 1;
16597 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16598 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16599 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16600 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16601 inst.instruction |= LOW4 (inst.operands[2].reg);
16602 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16603 inst.instruction |= listlenbits << 8;
16604
16605 neon_dp_fixup (&inst);
16606 }
16607
16608 static void
16609 do_neon_ldm_stm (void)
16610 {
16611 /* P, U and L bits are part of bitmask. */
16612 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
16613 unsigned offsetbits = inst.operands[1].imm * 2;
16614
16615 if (inst.operands[1].issingle)
16616 {
16617 do_vfp_nsyn_ldm_stm (is_dbmode);
16618 return;
16619 }
16620
16621 constraint (is_dbmode && !inst.operands[0].writeback,
16622 _("writeback (!) must be used for VLDMDB and VSTMDB"));
16623
16624 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16625 _("register list must contain at least 1 and at most 16 "
16626 "registers"));
16627
16628 inst.instruction |= inst.operands[0].reg << 16;
16629 inst.instruction |= inst.operands[0].writeback << 21;
16630 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16631 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
16632
16633 inst.instruction |= offsetbits;
16634
16635 do_vfp_cond_or_thumb ();
16636 }
16637
16638 static void
16639 do_neon_ldr_str (void)
16640 {
16641 int is_ldr = (inst.instruction & (1 << 20)) != 0;
16642
16643 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
16644 And is UNPREDICTABLE in thumb mode. */
16645 if (!is_ldr
16646 && inst.operands[1].reg == REG_PC
16647 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
16648 {
16649 if (thumb_mode)
16650 inst.error = _("Use of PC here is UNPREDICTABLE");
16651 else if (warn_on_deprecated)
16652 as_tsktsk (_("Use of PC here is deprecated"));
16653 }
16654
16655 if (inst.operands[0].issingle)
16656 {
16657 if (is_ldr)
16658 do_vfp_nsyn_opcode ("flds");
16659 else
16660 do_vfp_nsyn_opcode ("fsts");
16661
16662 /* ARMv8.2 vldr.16/vstr.16 instruction. */
16663 if (inst.vectype.el[0].size == 16)
16664 do_scalar_fp16_v82_encode ();
16665 }
16666 else
16667 {
16668 if (is_ldr)
16669 do_vfp_nsyn_opcode ("fldd");
16670 else
16671 do_vfp_nsyn_opcode ("fstd");
16672 }
16673 }
16674
16675 /* "interleave" version also handles non-interleaving register VLD1/VST1
16676 instructions. */
16677
16678 static void
16679 do_neon_ld_st_interleave (void)
16680 {
16681 struct neon_type_el et = neon_check_type (1, NS_NULL,
16682 N_8 | N_16 | N_32 | N_64);
16683 unsigned alignbits = 0;
16684 unsigned idx;
16685 /* The bits in this table go:
16686 0: register stride of one (0) or two (1)
16687 1,2: register list length, minus one (1, 2, 3, 4).
16688 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
16689 We use -1 for invalid entries. */
16690 const int typetable[] =
16691 {
16692 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
16693 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
16694 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
16695 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
16696 };
16697 int typebits;
16698
16699 if (et.type == NT_invtype)
16700 return;
16701
16702 if (inst.operands[1].immisalign)
16703 switch (inst.operands[1].imm >> 8)
16704 {
16705 case 64: alignbits = 1; break;
16706 case 128:
16707 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
16708 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
16709 goto bad_alignment;
16710 alignbits = 2;
16711 break;
16712 case 256:
16713 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
16714 goto bad_alignment;
16715 alignbits = 3;
16716 break;
16717 default:
16718 bad_alignment:
16719 first_error (_("bad alignment"));
16720 return;
16721 }
16722
16723 inst.instruction |= alignbits << 4;
16724 inst.instruction |= neon_logbits (et.size) << 6;
16725
16726 /* Bits [4:6] of the immediate in a list specifier encode register stride
16727 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
16728 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
16729 up the right value for "type" in a table based on this value and the given
16730 list style, then stick it back. */
16731 idx = ((inst.operands[0].imm >> 4) & 7)
16732 | (((inst.instruction >> 8) & 3) << 3);
16733
16734 typebits = typetable[idx];
16735
16736 constraint (typebits == -1, _("bad list type for instruction"));
16737 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
16738 _("bad element type for instruction"));
16739
16740 inst.instruction &= ~0xf00;
16741 inst.instruction |= typebits << 8;
16742 }
16743
16744 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
16745 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
16746 otherwise. The variable arguments are a list of pairs of legal (size, align)
16747 values, terminated with -1. */
16748
16749 static int
16750 neon_alignment_bit (int size, int align, int *do_alignment, ...)
16751 {
16752 va_list ap;
16753 int result = FAIL, thissize, thisalign;
16754
16755 if (!inst.operands[1].immisalign)
16756 {
16757 *do_alignment = 0;
16758 return SUCCESS;
16759 }
16760
16761 va_start (ap, do_alignment);
16762
16763 do
16764 {
16765 thissize = va_arg (ap, int);
16766 if (thissize == -1)
16767 break;
16768 thisalign = va_arg (ap, int);
16769
16770 if (size == thissize && align == thisalign)
16771 result = SUCCESS;
16772 }
16773 while (result != SUCCESS);
16774
16775 va_end (ap);
16776
16777 if (result == SUCCESS)
16778 *do_alignment = 1;
16779 else
16780 first_error (_("unsupported alignment for instruction"));
16781
16782 return result;
16783 }
16784
16785 static void
16786 do_neon_ld_st_lane (void)
16787 {
16788 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
16789 int align_good, do_alignment = 0;
16790 int logsize = neon_logbits (et.size);
16791 int align = inst.operands[1].imm >> 8;
16792 int n = (inst.instruction >> 8) & 3;
16793 int max_el = 64 / et.size;
16794
16795 if (et.type == NT_invtype)
16796 return;
16797
16798 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
16799 _("bad list length"));
16800 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
16801 _("scalar index out of range"));
16802 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
16803 && et.size == 8,
16804 _("stride of 2 unavailable when element size is 8"));
16805
16806 switch (n)
16807 {
16808 case 0: /* VLD1 / VST1. */
16809 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
16810 32, 32, -1);
16811 if (align_good == FAIL)
16812 return;
16813 if (do_alignment)
16814 {
16815 unsigned alignbits = 0;
16816 switch (et.size)
16817 {
16818 case 16: alignbits = 0x1; break;
16819 case 32: alignbits = 0x3; break;
16820 default: ;
16821 }
16822 inst.instruction |= alignbits << 4;
16823 }
16824 break;
16825
16826 case 1: /* VLD2 / VST2. */
16827 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
16828 16, 32, 32, 64, -1);
16829 if (align_good == FAIL)
16830 return;
16831 if (do_alignment)
16832 inst.instruction |= 1 << 4;
16833 break;
16834
16835 case 2: /* VLD3 / VST3. */
16836 constraint (inst.operands[1].immisalign,
16837 _("can't use alignment with this instruction"));
16838 break;
16839
16840 case 3: /* VLD4 / VST4. */
16841 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
16842 16, 64, 32, 64, 32, 128, -1);
16843 if (align_good == FAIL)
16844 return;
16845 if (do_alignment)
16846 {
16847 unsigned alignbits = 0;
16848 switch (et.size)
16849 {
16850 case 8: alignbits = 0x1; break;
16851 case 16: alignbits = 0x1; break;
16852 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
16853 default: ;
16854 }
16855 inst.instruction |= alignbits << 4;
16856 }
16857 break;
16858
16859 default: ;
16860 }
16861
16862 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
16863 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16864 inst.instruction |= 1 << (4 + logsize);
16865
16866 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
16867 inst.instruction |= logsize << 10;
16868 }
16869
16870 /* Encode single n-element structure to all lanes VLD<n> instructions. */
16871
16872 static void
16873 do_neon_ld_dup (void)
16874 {
16875 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
16876 int align_good, do_alignment = 0;
16877
16878 if (et.type == NT_invtype)
16879 return;
16880
16881 switch ((inst.instruction >> 8) & 3)
16882 {
16883 case 0: /* VLD1. */
16884 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
16885 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
16886 &do_alignment, 16, 16, 32, 32, -1);
16887 if (align_good == FAIL)
16888 return;
16889 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
16890 {
16891 case 1: break;
16892 case 2: inst.instruction |= 1 << 5; break;
16893 default: first_error (_("bad list length")); return;
16894 }
16895 inst.instruction |= neon_logbits (et.size) << 6;
16896 break;
16897
16898 case 1: /* VLD2. */
16899 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
16900 &do_alignment, 8, 16, 16, 32, 32, 64,
16901 -1);
16902 if (align_good == FAIL)
16903 return;
16904 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
16905 _("bad list length"));
16906 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16907 inst.instruction |= 1 << 5;
16908 inst.instruction |= neon_logbits (et.size) << 6;
16909 break;
16910
16911 case 2: /* VLD3. */
16912 constraint (inst.operands[1].immisalign,
16913 _("can't use alignment with this instruction"));
16914 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
16915 _("bad list length"));
16916 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16917 inst.instruction |= 1 << 5;
16918 inst.instruction |= neon_logbits (et.size) << 6;
16919 break;
16920
16921 case 3: /* VLD4. */
16922 {
16923 int align = inst.operands[1].imm >> 8;
16924 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
16925 16, 64, 32, 64, 32, 128, -1);
16926 if (align_good == FAIL)
16927 return;
16928 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
16929 _("bad list length"));
16930 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
16931 inst.instruction |= 1 << 5;
16932 if (et.size == 32 && align == 128)
16933 inst.instruction |= 0x3 << 6;
16934 else
16935 inst.instruction |= neon_logbits (et.size) << 6;
16936 }
16937 break;
16938
16939 default: ;
16940 }
16941
16942 inst.instruction |= do_alignment << 4;
16943 }
16944
16945 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
16946 apart from bits [11:4]. */
16947
16948 static void
16949 do_neon_ldx_stx (void)
16950 {
16951 if (inst.operands[1].isreg)
16952 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16953
16954 switch (NEON_LANE (inst.operands[0].imm))
16955 {
16956 case NEON_INTERLEAVE_LANES:
16957 NEON_ENCODE (INTERLV, inst);
16958 do_neon_ld_st_interleave ();
16959 break;
16960
16961 case NEON_ALL_LANES:
16962 NEON_ENCODE (DUP, inst);
16963 if (inst.instruction == N_INV)
16964 {
16965 first_error ("only loads support such operands");
16966 break;
16967 }
16968 do_neon_ld_dup ();
16969 break;
16970
16971 default:
16972 NEON_ENCODE (LANE, inst);
16973 do_neon_ld_st_lane ();
16974 }
16975
16976 /* L bit comes from bit mask. */
16977 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16978 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16979 inst.instruction |= inst.operands[1].reg << 16;
16980
16981 if (inst.operands[1].postind)
16982 {
16983 int postreg = inst.operands[1].imm & 0xf;
16984 constraint (!inst.operands[1].immisreg,
16985 _("post-index must be a register"));
16986 constraint (postreg == 0xd || postreg == 0xf,
16987 _("bad register for post-index"));
16988 inst.instruction |= postreg;
16989 }
16990 else
16991 {
16992 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16993 constraint (inst.reloc.exp.X_op != O_constant
16994 || inst.reloc.exp.X_add_number != 0,
16995 BAD_ADDR_MODE);
16996
16997 if (inst.operands[1].writeback)
16998 {
16999 inst.instruction |= 0xd;
17000 }
17001 else
17002 inst.instruction |= 0xf;
17003 }
17004
17005 if (thumb_mode)
17006 inst.instruction |= 0xf9000000;
17007 else
17008 inst.instruction |= 0xf4000000;
17009 }
17010
17011 /* FP v8. */
17012 static void
17013 do_vfp_nsyn_fpv8 (enum neon_shape rs)
17014 {
17015 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17016 D register operands. */
17017 if (neon_shape_class[rs] == SC_DOUBLE)
17018 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17019 _(BAD_FPU));
17020
17021 NEON_ENCODE (FPV8, inst);
17022
17023 if (rs == NS_FFF || rs == NS_HHH)
17024 {
17025 do_vfp_sp_dyadic ();
17026
17027 /* ARMv8.2 fp16 instruction. */
17028 if (rs == NS_HHH)
17029 do_scalar_fp16_v82_encode ();
17030 }
17031 else
17032 do_vfp_dp_rd_rn_rm ();
17033
17034 if (rs == NS_DDD)
17035 inst.instruction |= 0x100;
17036
17037 inst.instruction |= 0xf0000000;
17038 }
17039
17040 static void
17041 do_vsel (void)
17042 {
17043 set_it_insn_type (OUTSIDE_IT_INSN);
17044
17045 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
17046 first_error (_("invalid instruction shape"));
17047 }
17048
17049 static void
17050 do_vmaxnm (void)
17051 {
17052 set_it_insn_type (OUTSIDE_IT_INSN);
17053
17054 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
17055 return;
17056
17057 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17058 return;
17059
17060 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
17061 }
17062
17063 static void
17064 do_vrint_1 (enum neon_cvt_mode mode)
17065 {
17066 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
17067 struct neon_type_el et;
17068
17069 if (rs == NS_NULL)
17070 return;
17071
17072 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17073 D register operands. */
17074 if (neon_shape_class[rs] == SC_DOUBLE)
17075 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17076 _(BAD_FPU));
17077
17078 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
17079 | N_VFP);
17080 if (et.type != NT_invtype)
17081 {
17082 /* VFP encodings. */
17083 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17084 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
17085 set_it_insn_type (OUTSIDE_IT_INSN);
17086
17087 NEON_ENCODE (FPV8, inst);
17088 if (rs == NS_FF || rs == NS_HH)
17089 do_vfp_sp_monadic ();
17090 else
17091 do_vfp_dp_rd_rm ();
17092
17093 switch (mode)
17094 {
17095 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
17096 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
17097 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
17098 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
17099 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
17100 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
17101 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
17102 default: abort ();
17103 }
17104
17105 inst.instruction |= (rs == NS_DD) << 8;
17106 do_vfp_cond_or_thumb ();
17107
17108 /* ARMv8.2 fp16 vrint instruction. */
17109 if (rs == NS_HH)
17110 do_scalar_fp16_v82_encode ();
17111 }
17112 else
17113 {
17114 /* Neon encodings (or something broken...). */
17115 inst.error = NULL;
17116 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
17117
17118 if (et.type == NT_invtype)
17119 return;
17120
17121 set_it_insn_type (OUTSIDE_IT_INSN);
17122 NEON_ENCODE (FLOAT, inst);
17123
17124 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17125 return;
17126
17127 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17128 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17129 inst.instruction |= LOW4 (inst.operands[1].reg);
17130 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17131 inst.instruction |= neon_quad (rs) << 6;
17132 /* Mask off the original size bits and reencode them. */
17133 inst.instruction = ((inst.instruction & 0xfff3ffff)
17134 | neon_logbits (et.size) << 18);
17135
17136 switch (mode)
17137 {
17138 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
17139 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
17140 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
17141 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
17142 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
17143 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
17144 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
17145 default: abort ();
17146 }
17147
17148 if (thumb_mode)
17149 inst.instruction |= 0xfc000000;
17150 else
17151 inst.instruction |= 0xf0000000;
17152 }
17153 }
17154
17155 static void
17156 do_vrintx (void)
17157 {
17158 do_vrint_1 (neon_cvt_mode_x);
17159 }
17160
17161 static void
17162 do_vrintz (void)
17163 {
17164 do_vrint_1 (neon_cvt_mode_z);
17165 }
17166
17167 static void
17168 do_vrintr (void)
17169 {
17170 do_vrint_1 (neon_cvt_mode_r);
17171 }
17172
17173 static void
17174 do_vrinta (void)
17175 {
17176 do_vrint_1 (neon_cvt_mode_a);
17177 }
17178
17179 static void
17180 do_vrintn (void)
17181 {
17182 do_vrint_1 (neon_cvt_mode_n);
17183 }
17184
17185 static void
17186 do_vrintp (void)
17187 {
17188 do_vrint_1 (neon_cvt_mode_p);
17189 }
17190
17191 static void
17192 do_vrintm (void)
17193 {
17194 do_vrint_1 (neon_cvt_mode_m);
17195 }
17196
17197 /* Crypto v1 instructions. */
17198 static void
17199 do_crypto_2op_1 (unsigned elttype, int op)
17200 {
17201 set_it_insn_type (OUTSIDE_IT_INSN);
17202
17203 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
17204 == NT_invtype)
17205 return;
17206
17207 inst.error = NULL;
17208
17209 NEON_ENCODE (INTEGER, inst);
17210 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17211 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17212 inst.instruction |= LOW4 (inst.operands[1].reg);
17213 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17214 if (op != -1)
17215 inst.instruction |= op << 6;
17216
17217 if (thumb_mode)
17218 inst.instruction |= 0xfc000000;
17219 else
17220 inst.instruction |= 0xf0000000;
17221 }
17222
17223 static void
17224 do_crypto_3op_1 (int u, int op)
17225 {
17226 set_it_insn_type (OUTSIDE_IT_INSN);
17227
17228 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
17229 N_32 | N_UNT | N_KEY).type == NT_invtype)
17230 return;
17231
17232 inst.error = NULL;
17233
17234 NEON_ENCODE (INTEGER, inst);
17235 neon_three_same (1, u, 8 << op);
17236 }
17237
17238 static void
17239 do_aese (void)
17240 {
17241 do_crypto_2op_1 (N_8, 0);
17242 }
17243
17244 static void
17245 do_aesd (void)
17246 {
17247 do_crypto_2op_1 (N_8, 1);
17248 }
17249
17250 static void
17251 do_aesmc (void)
17252 {
17253 do_crypto_2op_1 (N_8, 2);
17254 }
17255
17256 static void
17257 do_aesimc (void)
17258 {
17259 do_crypto_2op_1 (N_8, 3);
17260 }
17261
17262 static void
17263 do_sha1c (void)
17264 {
17265 do_crypto_3op_1 (0, 0);
17266 }
17267
17268 static void
17269 do_sha1p (void)
17270 {
17271 do_crypto_3op_1 (0, 1);
17272 }
17273
17274 static void
17275 do_sha1m (void)
17276 {
17277 do_crypto_3op_1 (0, 2);
17278 }
17279
17280 static void
17281 do_sha1su0 (void)
17282 {
17283 do_crypto_3op_1 (0, 3);
17284 }
17285
17286 static void
17287 do_sha256h (void)
17288 {
17289 do_crypto_3op_1 (1, 0);
17290 }
17291
17292 static void
17293 do_sha256h2 (void)
17294 {
17295 do_crypto_3op_1 (1, 1);
17296 }
17297
17298 static void
17299 do_sha256su1 (void)
17300 {
17301 do_crypto_3op_1 (1, 2);
17302 }
17303
17304 static void
17305 do_sha1h (void)
17306 {
17307 do_crypto_2op_1 (N_32, -1);
17308 }
17309
17310 static void
17311 do_sha1su1 (void)
17312 {
17313 do_crypto_2op_1 (N_32, 0);
17314 }
17315
17316 static void
17317 do_sha256su0 (void)
17318 {
17319 do_crypto_2op_1 (N_32, 1);
17320 }
17321
17322 static void
17323 do_crc32_1 (unsigned int poly, unsigned int sz)
17324 {
17325 unsigned int Rd = inst.operands[0].reg;
17326 unsigned int Rn = inst.operands[1].reg;
17327 unsigned int Rm = inst.operands[2].reg;
17328
17329 set_it_insn_type (OUTSIDE_IT_INSN);
17330 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
17331 inst.instruction |= LOW4 (Rn) << 16;
17332 inst.instruction |= LOW4 (Rm);
17333 inst.instruction |= sz << (thumb_mode ? 4 : 21);
17334 inst.instruction |= poly << (thumb_mode ? 20 : 9);
17335
17336 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
17337 as_warn (UNPRED_REG ("r15"));
17338 if (thumb_mode && (Rd == REG_SP || Rn == REG_SP || Rm == REG_SP))
17339 as_warn (UNPRED_REG ("r13"));
17340 }
17341
17342 static void
17343 do_crc32b (void)
17344 {
17345 do_crc32_1 (0, 0);
17346 }
17347
17348 static void
17349 do_crc32h (void)
17350 {
17351 do_crc32_1 (0, 1);
17352 }
17353
17354 static void
17355 do_crc32w (void)
17356 {
17357 do_crc32_1 (0, 2);
17358 }
17359
17360 static void
17361 do_crc32cb (void)
17362 {
17363 do_crc32_1 (1, 0);
17364 }
17365
17366 static void
17367 do_crc32ch (void)
17368 {
17369 do_crc32_1 (1, 1);
17370 }
17371
17372 static void
17373 do_crc32cw (void)
17374 {
17375 do_crc32_1 (1, 2);
17376 }
17377
17378 \f
17379 /* Overall per-instruction processing. */
17380
17381 /* We need to be able to fix up arbitrary expressions in some statements.
17382 This is so that we can handle symbols that are an arbitrary distance from
17383 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
17384 which returns part of an address in a form which will be valid for
17385 a data instruction. We do this by pushing the expression into a symbol
17386 in the expr_section, and creating a fix for that. */
17387
17388 static void
17389 fix_new_arm (fragS * frag,
17390 int where,
17391 short int size,
17392 expressionS * exp,
17393 int pc_rel,
17394 int reloc)
17395 {
17396 fixS * new_fix;
17397
17398 switch (exp->X_op)
17399 {
17400 case O_constant:
17401 if (pc_rel)
17402 {
17403 /* Create an absolute valued symbol, so we have something to
17404 refer to in the object file. Unfortunately for us, gas's
17405 generic expression parsing will already have folded out
17406 any use of .set foo/.type foo %function that may have
17407 been used to set type information of the target location,
17408 that's being specified symbolically. We have to presume
17409 the user knows what they are doing. */
17410 char name[16 + 8];
17411 symbolS *symbol;
17412
17413 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
17414
17415 symbol = symbol_find_or_make (name);
17416 S_SET_SEGMENT (symbol, absolute_section);
17417 symbol_set_frag (symbol, &zero_address_frag);
17418 S_SET_VALUE (symbol, exp->X_add_number);
17419 exp->X_op = O_symbol;
17420 exp->X_add_symbol = symbol;
17421 exp->X_add_number = 0;
17422 }
17423 /* FALLTHROUGH */
17424 case O_symbol:
17425 case O_add:
17426 case O_subtract:
17427 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
17428 (enum bfd_reloc_code_real) reloc);
17429 break;
17430
17431 default:
17432 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
17433 pc_rel, (enum bfd_reloc_code_real) reloc);
17434 break;
17435 }
17436
17437 /* Mark whether the fix is to a THUMB instruction, or an ARM
17438 instruction. */
17439 new_fix->tc_fix_data = thumb_mode;
17440 }
17441
17442 /* Create a frg for an instruction requiring relaxation. */
17443 static void
17444 output_relax_insn (void)
17445 {
17446 char * to;
17447 symbolS *sym;
17448 int offset;
17449
17450 /* The size of the instruction is unknown, so tie the debug info to the
17451 start of the instruction. */
17452 dwarf2_emit_insn (0);
17453
17454 switch (inst.reloc.exp.X_op)
17455 {
17456 case O_symbol:
17457 sym = inst.reloc.exp.X_add_symbol;
17458 offset = inst.reloc.exp.X_add_number;
17459 break;
17460 case O_constant:
17461 sym = NULL;
17462 offset = inst.reloc.exp.X_add_number;
17463 break;
17464 default:
17465 sym = make_expr_symbol (&inst.reloc.exp);
17466 offset = 0;
17467 break;
17468 }
17469 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
17470 inst.relax, sym, offset, NULL/*offset, opcode*/);
17471 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
17472 }
17473
17474 /* Write a 32-bit thumb instruction to buf. */
17475 static void
17476 put_thumb32_insn (char * buf, unsigned long insn)
17477 {
17478 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
17479 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
17480 }
17481
17482 static void
17483 output_inst (const char * str)
17484 {
17485 char * to = NULL;
17486
17487 if (inst.error)
17488 {
17489 as_bad ("%s -- `%s'", inst.error, str);
17490 return;
17491 }
17492 if (inst.relax)
17493 {
17494 output_relax_insn ();
17495 return;
17496 }
17497 if (inst.size == 0)
17498 return;
17499
17500 to = frag_more (inst.size);
17501 /* PR 9814: Record the thumb mode into the current frag so that we know
17502 what type of NOP padding to use, if necessary. We override any previous
17503 setting so that if the mode has changed then the NOPS that we use will
17504 match the encoding of the last instruction in the frag. */
17505 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
17506
17507 if (thumb_mode && (inst.size > THUMB_SIZE))
17508 {
17509 gas_assert (inst.size == (2 * THUMB_SIZE));
17510 put_thumb32_insn (to, inst.instruction);
17511 }
17512 else if (inst.size > INSN_SIZE)
17513 {
17514 gas_assert (inst.size == (2 * INSN_SIZE));
17515 md_number_to_chars (to, inst.instruction, INSN_SIZE);
17516 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
17517 }
17518 else
17519 md_number_to_chars (to, inst.instruction, inst.size);
17520
17521 if (inst.reloc.type != BFD_RELOC_UNUSED)
17522 fix_new_arm (frag_now, to - frag_now->fr_literal,
17523 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
17524 inst.reloc.type);
17525
17526 dwarf2_emit_insn (inst.size);
17527 }
17528
17529 static char *
17530 output_it_inst (int cond, int mask, char * to)
17531 {
17532 unsigned long instruction = 0xbf00;
17533
17534 mask &= 0xf;
17535 instruction |= mask;
17536 instruction |= cond << 4;
17537
17538 if (to == NULL)
17539 {
17540 to = frag_more (2);
17541 #ifdef OBJ_ELF
17542 dwarf2_emit_insn (2);
17543 #endif
17544 }
17545
17546 md_number_to_chars (to, instruction, 2);
17547
17548 return to;
17549 }
17550
17551 /* Tag values used in struct asm_opcode's tag field. */
17552 enum opcode_tag
17553 {
17554 OT_unconditional, /* Instruction cannot be conditionalized.
17555 The ARM condition field is still 0xE. */
17556 OT_unconditionalF, /* Instruction cannot be conditionalized
17557 and carries 0xF in its ARM condition field. */
17558 OT_csuffix, /* Instruction takes a conditional suffix. */
17559 OT_csuffixF, /* Some forms of the instruction take a conditional
17560 suffix, others place 0xF where the condition field
17561 would be. */
17562 OT_cinfix3, /* Instruction takes a conditional infix,
17563 beginning at character index 3. (In
17564 unified mode, it becomes a suffix.) */
17565 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
17566 tsts, cmps, cmns, and teqs. */
17567 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
17568 character index 3, even in unified mode. Used for
17569 legacy instructions where suffix and infix forms
17570 may be ambiguous. */
17571 OT_csuf_or_in3, /* Instruction takes either a conditional
17572 suffix or an infix at character index 3. */
17573 OT_odd_infix_unc, /* This is the unconditional variant of an
17574 instruction that takes a conditional infix
17575 at an unusual position. In unified mode,
17576 this variant will accept a suffix. */
17577 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
17578 are the conditional variants of instructions that
17579 take conditional infixes in unusual positions.
17580 The infix appears at character index
17581 (tag - OT_odd_infix_0). These are not accepted
17582 in unified mode. */
17583 };
17584
17585 /* Subroutine of md_assemble, responsible for looking up the primary
17586 opcode from the mnemonic the user wrote. STR points to the
17587 beginning of the mnemonic.
17588
17589 This is not simply a hash table lookup, because of conditional
17590 variants. Most instructions have conditional variants, which are
17591 expressed with a _conditional affix_ to the mnemonic. If we were
17592 to encode each conditional variant as a literal string in the opcode
17593 table, it would have approximately 20,000 entries.
17594
17595 Most mnemonics take this affix as a suffix, and in unified syntax,
17596 'most' is upgraded to 'all'. However, in the divided syntax, some
17597 instructions take the affix as an infix, notably the s-variants of
17598 the arithmetic instructions. Of those instructions, all but six
17599 have the infix appear after the third character of the mnemonic.
17600
17601 Accordingly, the algorithm for looking up primary opcodes given
17602 an identifier is:
17603
17604 1. Look up the identifier in the opcode table.
17605 If we find a match, go to step U.
17606
17607 2. Look up the last two characters of the identifier in the
17608 conditions table. If we find a match, look up the first N-2
17609 characters of the identifier in the opcode table. If we
17610 find a match, go to step CE.
17611
17612 3. Look up the fourth and fifth characters of the identifier in
17613 the conditions table. If we find a match, extract those
17614 characters from the identifier, and look up the remaining
17615 characters in the opcode table. If we find a match, go
17616 to step CM.
17617
17618 4. Fail.
17619
17620 U. Examine the tag field of the opcode structure, in case this is
17621 one of the six instructions with its conditional infix in an
17622 unusual place. If it is, the tag tells us where to find the
17623 infix; look it up in the conditions table and set inst.cond
17624 accordingly. Otherwise, this is an unconditional instruction.
17625 Again set inst.cond accordingly. Return the opcode structure.
17626
17627 CE. Examine the tag field to make sure this is an instruction that
17628 should receive a conditional suffix. If it is not, fail.
17629 Otherwise, set inst.cond from the suffix we already looked up,
17630 and return the opcode structure.
17631
17632 CM. Examine the tag field to make sure this is an instruction that
17633 should receive a conditional infix after the third character.
17634 If it is not, fail. Otherwise, undo the edits to the current
17635 line of input and proceed as for case CE. */
17636
17637 static const struct asm_opcode *
17638 opcode_lookup (char **str)
17639 {
17640 char *end, *base;
17641 char *affix;
17642 const struct asm_opcode *opcode;
17643 const struct asm_cond *cond;
17644 char save[2];
17645
17646 /* Scan up to the end of the mnemonic, which must end in white space,
17647 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
17648 for (base = end = *str; *end != '\0'; end++)
17649 if (*end == ' ' || *end == '.')
17650 break;
17651
17652 if (end == base)
17653 return NULL;
17654
17655 /* Handle a possible width suffix and/or Neon type suffix. */
17656 if (end[0] == '.')
17657 {
17658 int offset = 2;
17659
17660 /* The .w and .n suffixes are only valid if the unified syntax is in
17661 use. */
17662 if (unified_syntax && end[1] == 'w')
17663 inst.size_req = 4;
17664 else if (unified_syntax && end[1] == 'n')
17665 inst.size_req = 2;
17666 else
17667 offset = 0;
17668
17669 inst.vectype.elems = 0;
17670
17671 *str = end + offset;
17672
17673 if (end[offset] == '.')
17674 {
17675 /* See if we have a Neon type suffix (possible in either unified or
17676 non-unified ARM syntax mode). */
17677 if (parse_neon_type (&inst.vectype, str) == FAIL)
17678 return NULL;
17679 }
17680 else if (end[offset] != '\0' && end[offset] != ' ')
17681 return NULL;
17682 }
17683 else
17684 *str = end;
17685
17686 /* Look for unaffixed or special-case affixed mnemonic. */
17687 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17688 end - base);
17689 if (opcode)
17690 {
17691 /* step U */
17692 if (opcode->tag < OT_odd_infix_0)
17693 {
17694 inst.cond = COND_ALWAYS;
17695 return opcode;
17696 }
17697
17698 if (warn_on_deprecated && unified_syntax)
17699 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
17700 affix = base + (opcode->tag - OT_odd_infix_0);
17701 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17702 gas_assert (cond);
17703
17704 inst.cond = cond->value;
17705 return opcode;
17706 }
17707
17708 /* Cannot have a conditional suffix on a mnemonic of less than two
17709 characters. */
17710 if (end - base < 3)
17711 return NULL;
17712
17713 /* Look for suffixed mnemonic. */
17714 affix = end - 2;
17715 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17716 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17717 affix - base);
17718 if (opcode && cond)
17719 {
17720 /* step CE */
17721 switch (opcode->tag)
17722 {
17723 case OT_cinfix3_legacy:
17724 /* Ignore conditional suffixes matched on infix only mnemonics. */
17725 break;
17726
17727 case OT_cinfix3:
17728 case OT_cinfix3_deprecated:
17729 case OT_odd_infix_unc:
17730 if (!unified_syntax)
17731 return 0;
17732 /* else fall through */
17733
17734 case OT_csuffix:
17735 case OT_csuffixF:
17736 case OT_csuf_or_in3:
17737 inst.cond = cond->value;
17738 return opcode;
17739
17740 case OT_unconditional:
17741 case OT_unconditionalF:
17742 if (thumb_mode)
17743 inst.cond = cond->value;
17744 else
17745 {
17746 /* Delayed diagnostic. */
17747 inst.error = BAD_COND;
17748 inst.cond = COND_ALWAYS;
17749 }
17750 return opcode;
17751
17752 default:
17753 return NULL;
17754 }
17755 }
17756
17757 /* Cannot have a usual-position infix on a mnemonic of less than
17758 six characters (five would be a suffix). */
17759 if (end - base < 6)
17760 return NULL;
17761
17762 /* Look for infixed mnemonic in the usual position. */
17763 affix = base + 3;
17764 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
17765 if (!cond)
17766 return NULL;
17767
17768 memcpy (save, affix, 2);
17769 memmove (affix, affix + 2, (end - affix) - 2);
17770 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
17771 (end - base) - 2);
17772 memmove (affix + 2, affix, (end - affix) - 2);
17773 memcpy (affix, save, 2);
17774
17775 if (opcode
17776 && (opcode->tag == OT_cinfix3
17777 || opcode->tag == OT_cinfix3_deprecated
17778 || opcode->tag == OT_csuf_or_in3
17779 || opcode->tag == OT_cinfix3_legacy))
17780 {
17781 /* Step CM. */
17782 if (warn_on_deprecated && unified_syntax
17783 && (opcode->tag == OT_cinfix3
17784 || opcode->tag == OT_cinfix3_deprecated))
17785 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
17786
17787 inst.cond = cond->value;
17788 return opcode;
17789 }
17790
17791 return NULL;
17792 }
17793
17794 /* This function generates an initial IT instruction, leaving its block
17795 virtually open for the new instructions. Eventually,
17796 the mask will be updated by now_it_add_mask () each time
17797 a new instruction needs to be included in the IT block.
17798 Finally, the block is closed with close_automatic_it_block ().
17799 The block closure can be requested either from md_assemble (),
17800 a tencode (), or due to a label hook. */
17801
17802 static void
17803 new_automatic_it_block (int cond)
17804 {
17805 now_it.state = AUTOMATIC_IT_BLOCK;
17806 now_it.mask = 0x18;
17807 now_it.cc = cond;
17808 now_it.block_length = 1;
17809 mapping_state (MAP_THUMB);
17810 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
17811 now_it.warn_deprecated = FALSE;
17812 now_it.insn_cond = TRUE;
17813 }
17814
17815 /* Close an automatic IT block.
17816 See comments in new_automatic_it_block (). */
17817
17818 static void
17819 close_automatic_it_block (void)
17820 {
17821 now_it.mask = 0x10;
17822 now_it.block_length = 0;
17823 }
17824
17825 /* Update the mask of the current automatically-generated IT
17826 instruction. See comments in new_automatic_it_block (). */
17827
17828 static void
17829 now_it_add_mask (int cond)
17830 {
17831 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
17832 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
17833 | ((bitvalue) << (nbit)))
17834 const int resulting_bit = (cond & 1);
17835
17836 now_it.mask &= 0xf;
17837 now_it.mask = SET_BIT_VALUE (now_it.mask,
17838 resulting_bit,
17839 (5 - now_it.block_length));
17840 now_it.mask = SET_BIT_VALUE (now_it.mask,
17841 1,
17842 ((5 - now_it.block_length) - 1) );
17843 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
17844
17845 #undef CLEAR_BIT
17846 #undef SET_BIT_VALUE
17847 }
17848
17849 /* The IT blocks handling machinery is accessed through the these functions:
17850 it_fsm_pre_encode () from md_assemble ()
17851 set_it_insn_type () optional, from the tencode functions
17852 set_it_insn_type_last () ditto
17853 in_it_block () ditto
17854 it_fsm_post_encode () from md_assemble ()
17855 force_automatic_it_block_close () from label habdling functions
17856
17857 Rationale:
17858 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
17859 initializing the IT insn type with a generic initial value depending
17860 on the inst.condition.
17861 2) During the tencode function, two things may happen:
17862 a) The tencode function overrides the IT insn type by
17863 calling either set_it_insn_type (type) or set_it_insn_type_last ().
17864 b) The tencode function queries the IT block state by
17865 calling in_it_block () (i.e. to determine narrow/not narrow mode).
17866
17867 Both set_it_insn_type and in_it_block run the internal FSM state
17868 handling function (handle_it_state), because: a) setting the IT insn
17869 type may incur in an invalid state (exiting the function),
17870 and b) querying the state requires the FSM to be updated.
17871 Specifically we want to avoid creating an IT block for conditional
17872 branches, so it_fsm_pre_encode is actually a guess and we can't
17873 determine whether an IT block is required until the tencode () routine
17874 has decided what type of instruction this actually it.
17875 Because of this, if set_it_insn_type and in_it_block have to be used,
17876 set_it_insn_type has to be called first.
17877
17878 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
17879 determines the insn IT type depending on the inst.cond code.
17880 When a tencode () routine encodes an instruction that can be
17881 either outside an IT block, or, in the case of being inside, has to be
17882 the last one, set_it_insn_type_last () will determine the proper
17883 IT instruction type based on the inst.cond code. Otherwise,
17884 set_it_insn_type can be called for overriding that logic or
17885 for covering other cases.
17886
17887 Calling handle_it_state () may not transition the IT block state to
17888 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
17889 still queried. Instead, if the FSM determines that the state should
17890 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
17891 after the tencode () function: that's what it_fsm_post_encode () does.
17892
17893 Since in_it_block () calls the state handling function to get an
17894 updated state, an error may occur (due to invalid insns combination).
17895 In that case, inst.error is set.
17896 Therefore, inst.error has to be checked after the execution of
17897 the tencode () routine.
17898
17899 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
17900 any pending state change (if any) that didn't take place in
17901 handle_it_state () as explained above. */
17902
17903 static void
17904 it_fsm_pre_encode (void)
17905 {
17906 if (inst.cond != COND_ALWAYS)
17907 inst.it_insn_type = INSIDE_IT_INSN;
17908 else
17909 inst.it_insn_type = OUTSIDE_IT_INSN;
17910
17911 now_it.state_handled = 0;
17912 }
17913
17914 /* IT state FSM handling function. */
17915
17916 static int
17917 handle_it_state (void)
17918 {
17919 now_it.state_handled = 1;
17920 now_it.insn_cond = FALSE;
17921
17922 switch (now_it.state)
17923 {
17924 case OUTSIDE_IT_BLOCK:
17925 switch (inst.it_insn_type)
17926 {
17927 case OUTSIDE_IT_INSN:
17928 break;
17929
17930 case INSIDE_IT_INSN:
17931 case INSIDE_IT_LAST_INSN:
17932 if (thumb_mode == 0)
17933 {
17934 if (unified_syntax
17935 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
17936 as_tsktsk (_("Warning: conditional outside an IT block"\
17937 " for Thumb."));
17938 }
17939 else
17940 {
17941 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
17942 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
17943 {
17944 /* Automatically generate the IT instruction. */
17945 new_automatic_it_block (inst.cond);
17946 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
17947 close_automatic_it_block ();
17948 }
17949 else
17950 {
17951 inst.error = BAD_OUT_IT;
17952 return FAIL;
17953 }
17954 }
17955 break;
17956
17957 case IF_INSIDE_IT_LAST_INSN:
17958 case NEUTRAL_IT_INSN:
17959 break;
17960
17961 case IT_INSN:
17962 now_it.state = MANUAL_IT_BLOCK;
17963 now_it.block_length = 0;
17964 break;
17965 }
17966 break;
17967
17968 case AUTOMATIC_IT_BLOCK:
17969 /* Three things may happen now:
17970 a) We should increment current it block size;
17971 b) We should close current it block (closing insn or 4 insns);
17972 c) We should close current it block and start a new one (due
17973 to incompatible conditions or
17974 4 insns-length block reached). */
17975
17976 switch (inst.it_insn_type)
17977 {
17978 case OUTSIDE_IT_INSN:
17979 /* The closure of the block shall happen immediatelly,
17980 so any in_it_block () call reports the block as closed. */
17981 force_automatic_it_block_close ();
17982 break;
17983
17984 case INSIDE_IT_INSN:
17985 case INSIDE_IT_LAST_INSN:
17986 case IF_INSIDE_IT_LAST_INSN:
17987 now_it.block_length++;
17988
17989 if (now_it.block_length > 4
17990 || !now_it_compatible (inst.cond))
17991 {
17992 force_automatic_it_block_close ();
17993 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
17994 new_automatic_it_block (inst.cond);
17995 }
17996 else
17997 {
17998 now_it.insn_cond = TRUE;
17999 now_it_add_mask (inst.cond);
18000 }
18001
18002 if (now_it.state == AUTOMATIC_IT_BLOCK
18003 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
18004 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
18005 close_automatic_it_block ();
18006 break;
18007
18008 case NEUTRAL_IT_INSN:
18009 now_it.block_length++;
18010 now_it.insn_cond = TRUE;
18011
18012 if (now_it.block_length > 4)
18013 force_automatic_it_block_close ();
18014 else
18015 now_it_add_mask (now_it.cc & 1);
18016 break;
18017
18018 case IT_INSN:
18019 close_automatic_it_block ();
18020 now_it.state = MANUAL_IT_BLOCK;
18021 break;
18022 }
18023 break;
18024
18025 case MANUAL_IT_BLOCK:
18026 {
18027 /* Check conditional suffixes. */
18028 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
18029 int is_last;
18030 now_it.mask <<= 1;
18031 now_it.mask &= 0x1f;
18032 is_last = (now_it.mask == 0x10);
18033 now_it.insn_cond = TRUE;
18034
18035 switch (inst.it_insn_type)
18036 {
18037 case OUTSIDE_IT_INSN:
18038 inst.error = BAD_NOT_IT;
18039 return FAIL;
18040
18041 case INSIDE_IT_INSN:
18042 if (cond != inst.cond)
18043 {
18044 inst.error = BAD_IT_COND;
18045 return FAIL;
18046 }
18047 break;
18048
18049 case INSIDE_IT_LAST_INSN:
18050 case IF_INSIDE_IT_LAST_INSN:
18051 if (cond != inst.cond)
18052 {
18053 inst.error = BAD_IT_COND;
18054 return FAIL;
18055 }
18056 if (!is_last)
18057 {
18058 inst.error = BAD_BRANCH;
18059 return FAIL;
18060 }
18061 break;
18062
18063 case NEUTRAL_IT_INSN:
18064 /* The BKPT instruction is unconditional even in an IT block. */
18065 break;
18066
18067 case IT_INSN:
18068 inst.error = BAD_IT_IT;
18069 return FAIL;
18070 }
18071 }
18072 break;
18073 }
18074
18075 return SUCCESS;
18076 }
18077
18078 struct depr_insn_mask
18079 {
18080 unsigned long pattern;
18081 unsigned long mask;
18082 const char* description;
18083 };
18084
18085 /* List of 16-bit instruction patterns deprecated in an IT block in
18086 ARMv8. */
18087 static const struct depr_insn_mask depr_it_insns[] = {
18088 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
18089 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
18090 { 0xa000, 0xb800, N_("ADR") },
18091 { 0x4800, 0xf800, N_("Literal loads") },
18092 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
18093 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
18094 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
18095 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
18096 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
18097 { 0, 0, NULL }
18098 };
18099
18100 static void
18101 it_fsm_post_encode (void)
18102 {
18103 int is_last;
18104
18105 if (!now_it.state_handled)
18106 handle_it_state ();
18107
18108 if (now_it.insn_cond
18109 && !now_it.warn_deprecated
18110 && warn_on_deprecated
18111 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
18112 {
18113 if (inst.instruction >= 0x10000)
18114 {
18115 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
18116 "deprecated in ARMv8"));
18117 now_it.warn_deprecated = TRUE;
18118 }
18119 else
18120 {
18121 const struct depr_insn_mask *p = depr_it_insns;
18122
18123 while (p->mask != 0)
18124 {
18125 if ((inst.instruction & p->mask) == p->pattern)
18126 {
18127 as_tsktsk (_("IT blocks containing 16-bit Thumb instructions "
18128 "of the following class are deprecated in ARMv8: "
18129 "%s"), p->description);
18130 now_it.warn_deprecated = TRUE;
18131 break;
18132 }
18133
18134 ++p;
18135 }
18136 }
18137
18138 if (now_it.block_length > 1)
18139 {
18140 as_tsktsk (_("IT blocks containing more than one conditional "
18141 "instruction are deprecated in ARMv8"));
18142 now_it.warn_deprecated = TRUE;
18143 }
18144 }
18145
18146 is_last = (now_it.mask == 0x10);
18147 if (is_last)
18148 {
18149 now_it.state = OUTSIDE_IT_BLOCK;
18150 now_it.mask = 0;
18151 }
18152 }
18153
18154 static void
18155 force_automatic_it_block_close (void)
18156 {
18157 if (now_it.state == AUTOMATIC_IT_BLOCK)
18158 {
18159 close_automatic_it_block ();
18160 now_it.state = OUTSIDE_IT_BLOCK;
18161 now_it.mask = 0;
18162 }
18163 }
18164
18165 static int
18166 in_it_block (void)
18167 {
18168 if (!now_it.state_handled)
18169 handle_it_state ();
18170
18171 return now_it.state != OUTSIDE_IT_BLOCK;
18172 }
18173
18174 /* Whether OPCODE only has T32 encoding. Since this function is only used by
18175 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
18176 here, hence the "known" in the function name. */
18177
18178 static bfd_boolean
18179 known_t32_only_insn (const struct asm_opcode *opcode)
18180 {
18181 /* Original Thumb-1 wide instruction. */
18182 if (opcode->tencode == do_t_blx
18183 || opcode->tencode == do_t_branch23
18184 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
18185 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
18186 return TRUE;
18187
18188 /* Wide-only instruction added to ARMv8-M. */
18189 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m)
18190 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
18191 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
18192 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
18193 return TRUE;
18194
18195 return FALSE;
18196 }
18197
18198 /* Whether wide instruction variant can be used if available for a valid OPCODE
18199 in ARCH. */
18200
18201 static bfd_boolean
18202 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
18203 {
18204 if (known_t32_only_insn (opcode))
18205 return TRUE;
18206
18207 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
18208 of variant T3 of B.W is checked in do_t_branch. */
18209 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18210 && opcode->tencode == do_t_branch)
18211 return TRUE;
18212
18213 /* Wide instruction variants of all instructions with narrow *and* wide
18214 variants become available with ARMv6t2. Other opcodes are either
18215 narrow-only or wide-only and are thus available if OPCODE is valid. */
18216 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
18217 return TRUE;
18218
18219 /* OPCODE with narrow only instruction variant or wide variant not
18220 available. */
18221 return FALSE;
18222 }
18223
18224 void
18225 md_assemble (char *str)
18226 {
18227 char *p = str;
18228 const struct asm_opcode * opcode;
18229
18230 /* Align the previous label if needed. */
18231 if (last_label_seen != NULL)
18232 {
18233 symbol_set_frag (last_label_seen, frag_now);
18234 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
18235 S_SET_SEGMENT (last_label_seen, now_seg);
18236 }
18237
18238 memset (&inst, '\0', sizeof (inst));
18239 inst.reloc.type = BFD_RELOC_UNUSED;
18240
18241 opcode = opcode_lookup (&p);
18242 if (!opcode)
18243 {
18244 /* It wasn't an instruction, but it might be a register alias of
18245 the form alias .req reg, or a Neon .dn/.qn directive. */
18246 if (! create_register_alias (str, p)
18247 && ! create_neon_reg_alias (str, p))
18248 as_bad (_("bad instruction `%s'"), str);
18249
18250 return;
18251 }
18252
18253 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
18254 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
18255
18256 /* The value which unconditional instructions should have in place of the
18257 condition field. */
18258 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
18259
18260 if (thumb_mode)
18261 {
18262 arm_feature_set variant;
18263
18264 variant = cpu_variant;
18265 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
18266 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
18267 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
18268 /* Check that this instruction is supported for this CPU. */
18269 if (!opcode->tvariant
18270 || (thumb_mode == 1
18271 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
18272 {
18273 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
18274 return;
18275 }
18276 if (inst.cond != COND_ALWAYS && !unified_syntax
18277 && opcode->tencode != do_t_branch)
18278 {
18279 as_bad (_("Thumb does not support conditional execution"));
18280 return;
18281 }
18282
18283 /* Two things are addressed here:
18284 1) Implicit require narrow instructions on Thumb-1.
18285 This avoids relaxation accidentally introducing Thumb-2
18286 instructions.
18287 2) Reject wide instructions in non Thumb-2 cores.
18288
18289 Only instructions with narrow and wide variants need to be handled
18290 but selecting all non wide-only instructions is easier. */
18291 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
18292 && !t32_insn_ok (variant, opcode))
18293 {
18294 if (inst.size_req == 0)
18295 inst.size_req = 2;
18296 else if (inst.size_req == 4)
18297 {
18298 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
18299 as_bad (_("selected processor does not support 32bit wide "
18300 "variant of instruction `%s'"), str);
18301 else
18302 as_bad (_("selected processor does not support `%s' in "
18303 "Thumb-2 mode"), str);
18304 return;
18305 }
18306 }
18307
18308 inst.instruction = opcode->tvalue;
18309
18310 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
18311 {
18312 /* Prepare the it_insn_type for those encodings that don't set
18313 it. */
18314 it_fsm_pre_encode ();
18315
18316 opcode->tencode ();
18317
18318 it_fsm_post_encode ();
18319 }
18320
18321 if (!(inst.error || inst.relax))
18322 {
18323 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
18324 inst.size = (inst.instruction > 0xffff ? 4 : 2);
18325 if (inst.size_req && inst.size_req != inst.size)
18326 {
18327 as_bad (_("cannot honor width suffix -- `%s'"), str);
18328 return;
18329 }
18330 }
18331
18332 /* Something has gone badly wrong if we try to relax a fixed size
18333 instruction. */
18334 gas_assert (inst.size_req == 0 || !inst.relax);
18335
18336 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18337 *opcode->tvariant);
18338 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
18339 set those bits when Thumb-2 32-bit instructions are seen. The impact
18340 of relaxable instructions will be considered later after we finish all
18341 relaxation. */
18342 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
18343 variant = arm_arch_none;
18344 else
18345 variant = cpu_variant;
18346 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
18347 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18348 arm_ext_v6t2);
18349
18350 check_neon_suffixes;
18351
18352 if (!inst.error)
18353 {
18354 mapping_state (MAP_THUMB);
18355 }
18356 }
18357 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
18358 {
18359 bfd_boolean is_bx;
18360
18361 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
18362 is_bx = (opcode->aencode == do_bx);
18363
18364 /* Check that this instruction is supported for this CPU. */
18365 if (!(is_bx && fix_v4bx)
18366 && !(opcode->avariant &&
18367 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
18368 {
18369 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
18370 return;
18371 }
18372 if (inst.size_req)
18373 {
18374 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
18375 return;
18376 }
18377
18378 inst.instruction = opcode->avalue;
18379 if (opcode->tag == OT_unconditionalF)
18380 inst.instruction |= 0xFU << 28;
18381 else
18382 inst.instruction |= inst.cond << 28;
18383 inst.size = INSN_SIZE;
18384 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
18385 {
18386 it_fsm_pre_encode ();
18387 opcode->aencode ();
18388 it_fsm_post_encode ();
18389 }
18390 /* Arm mode bx is marked as both v4T and v5 because it's still required
18391 on a hypothetical non-thumb v5 core. */
18392 if (is_bx)
18393 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
18394 else
18395 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
18396 *opcode->avariant);
18397
18398 check_neon_suffixes;
18399
18400 if (!inst.error)
18401 {
18402 mapping_state (MAP_ARM);
18403 }
18404 }
18405 else
18406 {
18407 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
18408 "-- `%s'"), str);
18409 return;
18410 }
18411 output_inst (str);
18412 }
18413
18414 static void
18415 check_it_blocks_finished (void)
18416 {
18417 #ifdef OBJ_ELF
18418 asection *sect;
18419
18420 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
18421 if (seg_info (sect)->tc_segment_info_data.current_it.state
18422 == MANUAL_IT_BLOCK)
18423 {
18424 as_warn (_("section '%s' finished with an open IT block."),
18425 sect->name);
18426 }
18427 #else
18428 if (now_it.state == MANUAL_IT_BLOCK)
18429 as_warn (_("file finished with an open IT block."));
18430 #endif
18431 }
18432
18433 /* Various frobbings of labels and their addresses. */
18434
18435 void
18436 arm_start_line_hook (void)
18437 {
18438 last_label_seen = NULL;
18439 }
18440
18441 void
18442 arm_frob_label (symbolS * sym)
18443 {
18444 last_label_seen = sym;
18445
18446 ARM_SET_THUMB (sym, thumb_mode);
18447
18448 #if defined OBJ_COFF || defined OBJ_ELF
18449 ARM_SET_INTERWORK (sym, support_interwork);
18450 #endif
18451
18452 force_automatic_it_block_close ();
18453
18454 /* Note - do not allow local symbols (.Lxxx) to be labelled
18455 as Thumb functions. This is because these labels, whilst
18456 they exist inside Thumb code, are not the entry points for
18457 possible ARM->Thumb calls. Also, these labels can be used
18458 as part of a computed goto or switch statement. eg gcc
18459 can generate code that looks like this:
18460
18461 ldr r2, [pc, .Laaa]
18462 lsl r3, r3, #2
18463 ldr r2, [r3, r2]
18464 mov pc, r2
18465
18466 .Lbbb: .word .Lxxx
18467 .Lccc: .word .Lyyy
18468 ..etc...
18469 .Laaa: .word Lbbb
18470
18471 The first instruction loads the address of the jump table.
18472 The second instruction converts a table index into a byte offset.
18473 The third instruction gets the jump address out of the table.
18474 The fourth instruction performs the jump.
18475
18476 If the address stored at .Laaa is that of a symbol which has the
18477 Thumb_Func bit set, then the linker will arrange for this address
18478 to have the bottom bit set, which in turn would mean that the
18479 address computation performed by the third instruction would end
18480 up with the bottom bit set. Since the ARM is capable of unaligned
18481 word loads, the instruction would then load the incorrect address
18482 out of the jump table, and chaos would ensue. */
18483 if (label_is_thumb_function_name
18484 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
18485 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
18486 {
18487 /* When the address of a Thumb function is taken the bottom
18488 bit of that address should be set. This will allow
18489 interworking between Arm and Thumb functions to work
18490 correctly. */
18491
18492 THUMB_SET_FUNC (sym, 1);
18493
18494 label_is_thumb_function_name = FALSE;
18495 }
18496
18497 dwarf2_emit_label (sym);
18498 }
18499
18500 bfd_boolean
18501 arm_data_in_code (void)
18502 {
18503 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
18504 {
18505 *input_line_pointer = '/';
18506 input_line_pointer += 5;
18507 *input_line_pointer = 0;
18508 return TRUE;
18509 }
18510
18511 return FALSE;
18512 }
18513
18514 char *
18515 arm_canonicalize_symbol_name (char * name)
18516 {
18517 int len;
18518
18519 if (thumb_mode && (len = strlen (name)) > 5
18520 && streq (name + len - 5, "/data"))
18521 *(name + len - 5) = 0;
18522
18523 return name;
18524 }
18525 \f
18526 /* Table of all register names defined by default. The user can
18527 define additional names with .req. Note that all register names
18528 should appear in both upper and lowercase variants. Some registers
18529 also have mixed-case names. */
18530
18531 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
18532 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
18533 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
18534 #define REGSET(p,t) \
18535 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
18536 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
18537 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
18538 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
18539 #define REGSETH(p,t) \
18540 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
18541 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
18542 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
18543 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
18544 #define REGSET2(p,t) \
18545 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
18546 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
18547 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
18548 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
18549 #define SPLRBANK(base,bank,t) \
18550 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
18551 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
18552 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
18553 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
18554 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
18555 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
18556
18557 static const struct reg_entry reg_names[] =
18558 {
18559 /* ARM integer registers. */
18560 REGSET(r, RN), REGSET(R, RN),
18561
18562 /* ATPCS synonyms. */
18563 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
18564 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
18565 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
18566
18567 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
18568 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
18569 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
18570
18571 /* Well-known aliases. */
18572 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
18573 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
18574
18575 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
18576 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
18577
18578 /* Coprocessor numbers. */
18579 REGSET(p, CP), REGSET(P, CP),
18580
18581 /* Coprocessor register numbers. The "cr" variants are for backward
18582 compatibility. */
18583 REGSET(c, CN), REGSET(C, CN),
18584 REGSET(cr, CN), REGSET(CR, CN),
18585
18586 /* ARM banked registers. */
18587 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
18588 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
18589 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
18590 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
18591 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
18592 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
18593 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
18594
18595 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
18596 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
18597 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
18598 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
18599 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
18600 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
18601 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
18602 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
18603
18604 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
18605 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
18606 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
18607 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
18608 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
18609 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
18610 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
18611 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
18612 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
18613
18614 /* FPA registers. */
18615 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
18616 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
18617
18618 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
18619 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
18620
18621 /* VFP SP registers. */
18622 REGSET(s,VFS), REGSET(S,VFS),
18623 REGSETH(s,VFS), REGSETH(S,VFS),
18624
18625 /* VFP DP Registers. */
18626 REGSET(d,VFD), REGSET(D,VFD),
18627 /* Extra Neon DP registers. */
18628 REGSETH(d,VFD), REGSETH(D,VFD),
18629
18630 /* Neon QP registers. */
18631 REGSET2(q,NQ), REGSET2(Q,NQ),
18632
18633 /* VFP control registers. */
18634 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
18635 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
18636 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
18637 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
18638 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
18639 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
18640
18641 /* Maverick DSP coprocessor registers. */
18642 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
18643 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
18644
18645 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
18646 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
18647 REGDEF(dspsc,0,DSPSC),
18648
18649 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
18650 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
18651 REGDEF(DSPSC,0,DSPSC),
18652
18653 /* iWMMXt data registers - p0, c0-15. */
18654 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
18655
18656 /* iWMMXt control registers - p1, c0-3. */
18657 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
18658 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
18659 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
18660 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
18661
18662 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
18663 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
18664 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
18665 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
18666 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
18667
18668 /* XScale accumulator registers. */
18669 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
18670 };
18671 #undef REGDEF
18672 #undef REGNUM
18673 #undef REGSET
18674
18675 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
18676 within psr_required_here. */
18677 static const struct asm_psr psrs[] =
18678 {
18679 /* Backward compatibility notation. Note that "all" is no longer
18680 truly all possible PSR bits. */
18681 {"all", PSR_c | PSR_f},
18682 {"flg", PSR_f},
18683 {"ctl", PSR_c},
18684
18685 /* Individual flags. */
18686 {"f", PSR_f},
18687 {"c", PSR_c},
18688 {"x", PSR_x},
18689 {"s", PSR_s},
18690
18691 /* Combinations of flags. */
18692 {"fs", PSR_f | PSR_s},
18693 {"fx", PSR_f | PSR_x},
18694 {"fc", PSR_f | PSR_c},
18695 {"sf", PSR_s | PSR_f},
18696 {"sx", PSR_s | PSR_x},
18697 {"sc", PSR_s | PSR_c},
18698 {"xf", PSR_x | PSR_f},
18699 {"xs", PSR_x | PSR_s},
18700 {"xc", PSR_x | PSR_c},
18701 {"cf", PSR_c | PSR_f},
18702 {"cs", PSR_c | PSR_s},
18703 {"cx", PSR_c | PSR_x},
18704 {"fsx", PSR_f | PSR_s | PSR_x},
18705 {"fsc", PSR_f | PSR_s | PSR_c},
18706 {"fxs", PSR_f | PSR_x | PSR_s},
18707 {"fxc", PSR_f | PSR_x | PSR_c},
18708 {"fcs", PSR_f | PSR_c | PSR_s},
18709 {"fcx", PSR_f | PSR_c | PSR_x},
18710 {"sfx", PSR_s | PSR_f | PSR_x},
18711 {"sfc", PSR_s | PSR_f | PSR_c},
18712 {"sxf", PSR_s | PSR_x | PSR_f},
18713 {"sxc", PSR_s | PSR_x | PSR_c},
18714 {"scf", PSR_s | PSR_c | PSR_f},
18715 {"scx", PSR_s | PSR_c | PSR_x},
18716 {"xfs", PSR_x | PSR_f | PSR_s},
18717 {"xfc", PSR_x | PSR_f | PSR_c},
18718 {"xsf", PSR_x | PSR_s | PSR_f},
18719 {"xsc", PSR_x | PSR_s | PSR_c},
18720 {"xcf", PSR_x | PSR_c | PSR_f},
18721 {"xcs", PSR_x | PSR_c | PSR_s},
18722 {"cfs", PSR_c | PSR_f | PSR_s},
18723 {"cfx", PSR_c | PSR_f | PSR_x},
18724 {"csf", PSR_c | PSR_s | PSR_f},
18725 {"csx", PSR_c | PSR_s | PSR_x},
18726 {"cxf", PSR_c | PSR_x | PSR_f},
18727 {"cxs", PSR_c | PSR_x | PSR_s},
18728 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
18729 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
18730 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
18731 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
18732 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
18733 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
18734 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
18735 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
18736 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
18737 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
18738 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
18739 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
18740 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
18741 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
18742 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
18743 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
18744 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
18745 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
18746 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
18747 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
18748 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
18749 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
18750 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
18751 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
18752 };
18753
18754 /* Table of V7M psr names. */
18755 static const struct asm_psr v7m_psrs[] =
18756 {
18757 {"apsr", 0 }, {"APSR", 0 },
18758 {"iapsr", 1 }, {"IAPSR", 1 },
18759 {"eapsr", 2 }, {"EAPSR", 2 },
18760 {"psr", 3 }, {"PSR", 3 },
18761 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
18762 {"ipsr", 5 }, {"IPSR", 5 },
18763 {"epsr", 6 }, {"EPSR", 6 },
18764 {"iepsr", 7 }, {"IEPSR", 7 },
18765 {"msp", 8 }, {"MSP", 8 },
18766 {"psp", 9 }, {"PSP", 9 },
18767 {"primask", 16}, {"PRIMASK", 16},
18768 {"basepri", 17}, {"BASEPRI", 17},
18769 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
18770 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
18771 {"faultmask", 19}, {"FAULTMASK", 19},
18772 {"control", 20}, {"CONTROL", 20}
18773 };
18774
18775 /* Table of all shift-in-operand names. */
18776 static const struct asm_shift_name shift_names [] =
18777 {
18778 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
18779 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
18780 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
18781 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
18782 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
18783 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
18784 };
18785
18786 /* Table of all explicit relocation names. */
18787 #ifdef OBJ_ELF
18788 static struct reloc_entry reloc_names[] =
18789 {
18790 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
18791 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
18792 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
18793 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
18794 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
18795 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
18796 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
18797 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
18798 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
18799 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
18800 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
18801 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
18802 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
18803 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
18804 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
18805 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
18806 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
18807 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
18808 };
18809 #endif
18810
18811 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
18812 static const struct asm_cond conds[] =
18813 {
18814 {"eq", 0x0},
18815 {"ne", 0x1},
18816 {"cs", 0x2}, {"hs", 0x2},
18817 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
18818 {"mi", 0x4},
18819 {"pl", 0x5},
18820 {"vs", 0x6},
18821 {"vc", 0x7},
18822 {"hi", 0x8},
18823 {"ls", 0x9},
18824 {"ge", 0xa},
18825 {"lt", 0xb},
18826 {"gt", 0xc},
18827 {"le", 0xd},
18828 {"al", 0xe}
18829 };
18830
18831 #define UL_BARRIER(L,U,CODE,FEAT) \
18832 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
18833 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
18834
18835 static struct asm_barrier_opt barrier_opt_names[] =
18836 {
18837 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
18838 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
18839 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
18840 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
18841 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
18842 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
18843 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
18844 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
18845 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
18846 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
18847 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
18848 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
18849 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
18850 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
18851 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
18852 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
18853 };
18854
18855 #undef UL_BARRIER
18856
18857 /* Table of ARM-format instructions. */
18858
18859 /* Macros for gluing together operand strings. N.B. In all cases
18860 other than OPS0, the trailing OP_stop comes from default
18861 zero-initialization of the unspecified elements of the array. */
18862 #define OPS0() { OP_stop, }
18863 #define OPS1(a) { OP_##a, }
18864 #define OPS2(a,b) { OP_##a,OP_##b, }
18865 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
18866 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
18867 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
18868 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
18869
18870 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
18871 This is useful when mixing operands for ARM and THUMB, i.e. using the
18872 MIX_ARM_THUMB_OPERANDS macro.
18873 In order to use these macros, prefix the number of operands with _
18874 e.g. _3. */
18875 #define OPS_1(a) { a, }
18876 #define OPS_2(a,b) { a,b, }
18877 #define OPS_3(a,b,c) { a,b,c, }
18878 #define OPS_4(a,b,c,d) { a,b,c,d, }
18879 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
18880 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
18881
18882 /* These macros abstract out the exact format of the mnemonic table and
18883 save some repeated characters. */
18884
18885 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
18886 #define TxCE(mnem, op, top, nops, ops, ae, te) \
18887 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
18888 THUMB_VARIANT, do_##ae, do_##te }
18889
18890 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
18891 a T_MNEM_xyz enumerator. */
18892 #define TCE(mnem, aop, top, nops, ops, ae, te) \
18893 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
18894 #define tCE(mnem, aop, top, nops, ops, ae, te) \
18895 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18896
18897 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
18898 infix after the third character. */
18899 #define TxC3(mnem, op, top, nops, ops, ae, te) \
18900 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
18901 THUMB_VARIANT, do_##ae, do_##te }
18902 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
18903 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
18904 THUMB_VARIANT, do_##ae, do_##te }
18905 #define TC3(mnem, aop, top, nops, ops, ae, te) \
18906 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
18907 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
18908 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
18909 #define tC3(mnem, aop, top, nops, ops, ae, te) \
18910 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18911 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
18912 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
18913
18914 /* Mnemonic that cannot be conditionalized. The ARM condition-code
18915 field is still 0xE. Many of the Thumb variants can be executed
18916 conditionally, so this is checked separately. */
18917 #define TUE(mnem, op, top, nops, ops, ae, te) \
18918 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
18919 THUMB_VARIANT, do_##ae, do_##te }
18920
18921 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
18922 Used by mnemonics that have very minimal differences in the encoding for
18923 ARM and Thumb variants and can be handled in a common function. */
18924 #define TUEc(mnem, op, top, nops, ops, en) \
18925 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
18926 THUMB_VARIANT, do_##en, do_##en }
18927
18928 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
18929 condition code field. */
18930 #define TUF(mnem, op, top, nops, ops, ae, te) \
18931 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
18932 THUMB_VARIANT, do_##ae, do_##te }
18933
18934 /* ARM-only variants of all the above. */
18935 #define CE(mnem, op, nops, ops, ae) \
18936 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18937
18938 #define C3(mnem, op, nops, ops, ae) \
18939 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18940
18941 /* Legacy mnemonics that always have conditional infix after the third
18942 character. */
18943 #define CL(mnem, op, nops, ops, ae) \
18944 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
18945 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18946
18947 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
18948 #define cCE(mnem, op, nops, ops, ae) \
18949 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18950
18951 /* Legacy coprocessor instructions where conditional infix and conditional
18952 suffix are ambiguous. For consistency this includes all FPA instructions,
18953 not just the potentially ambiguous ones. */
18954 #define cCL(mnem, op, nops, ops, ae) \
18955 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
18956 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18957
18958 /* Coprocessor, takes either a suffix or a position-3 infix
18959 (for an FPA corner case). */
18960 #define C3E(mnem, op, nops, ops, ae) \
18961 { mnem, OPS##nops ops, OT_csuf_or_in3, \
18962 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
18963
18964 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
18965 { m1 #m2 m3, OPS##nops ops, \
18966 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
18967 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
18968
18969 #define CM(m1, m2, op, nops, ops, ae) \
18970 xCM_ (m1, , m2, op, nops, ops, ae), \
18971 xCM_ (m1, eq, m2, op, nops, ops, ae), \
18972 xCM_ (m1, ne, m2, op, nops, ops, ae), \
18973 xCM_ (m1, cs, m2, op, nops, ops, ae), \
18974 xCM_ (m1, hs, m2, op, nops, ops, ae), \
18975 xCM_ (m1, cc, m2, op, nops, ops, ae), \
18976 xCM_ (m1, ul, m2, op, nops, ops, ae), \
18977 xCM_ (m1, lo, m2, op, nops, ops, ae), \
18978 xCM_ (m1, mi, m2, op, nops, ops, ae), \
18979 xCM_ (m1, pl, m2, op, nops, ops, ae), \
18980 xCM_ (m1, vs, m2, op, nops, ops, ae), \
18981 xCM_ (m1, vc, m2, op, nops, ops, ae), \
18982 xCM_ (m1, hi, m2, op, nops, ops, ae), \
18983 xCM_ (m1, ls, m2, op, nops, ops, ae), \
18984 xCM_ (m1, ge, m2, op, nops, ops, ae), \
18985 xCM_ (m1, lt, m2, op, nops, ops, ae), \
18986 xCM_ (m1, gt, m2, op, nops, ops, ae), \
18987 xCM_ (m1, le, m2, op, nops, ops, ae), \
18988 xCM_ (m1, al, m2, op, nops, ops, ae)
18989
18990 #define UE(mnem, op, nops, ops, ae) \
18991 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
18992
18993 #define UF(mnem, op, nops, ops, ae) \
18994 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
18995
18996 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
18997 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
18998 use the same encoding function for each. */
18999 #define NUF(mnem, op, nops, ops, enc) \
19000 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
19001 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19002
19003 /* Neon data processing, version which indirects through neon_enc_tab for
19004 the various overloaded versions of opcodes. */
19005 #define nUF(mnem, op, nops, ops, enc) \
19006 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
19007 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19008
19009 /* Neon insn with conditional suffix for the ARM version, non-overloaded
19010 version. */
19011 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
19012 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
19013 THUMB_VARIANT, do_##enc, do_##enc }
19014
19015 #define NCE(mnem, op, nops, ops, enc) \
19016 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
19017
19018 #define NCEF(mnem, op, nops, ops, enc) \
19019 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
19020
19021 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
19022 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
19023 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
19024 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19025
19026 #define nCE(mnem, op, nops, ops, enc) \
19027 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
19028
19029 #define nCEF(mnem, op, nops, ops, enc) \
19030 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
19031
19032 #define do_0 0
19033
19034 static const struct asm_opcode insns[] =
19035 {
19036 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
19037 #define THUMB_VARIANT & arm_ext_v4t
19038 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
19039 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
19040 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
19041 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
19042 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
19043 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
19044 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
19045 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
19046 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
19047 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
19048 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
19049 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
19050 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
19051 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
19052 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
19053 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
19054
19055 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
19056 for setting PSR flag bits. They are obsolete in V6 and do not
19057 have Thumb equivalents. */
19058 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19059 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19060 CL("tstp", 110f000, 2, (RR, SH), cmp),
19061 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19062 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19063 CL("cmpp", 150f000, 2, (RR, SH), cmp),
19064 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19065 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19066 CL("cmnp", 170f000, 2, (RR, SH), cmp),
19067
19068 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
19069 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
19070 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
19071 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
19072
19073 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
19074 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19075 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
19076 OP_RRnpc),
19077 OP_ADDRGLDR),ldst, t_ldst),
19078 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19079
19080 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19081 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19082 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19083 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19084 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19085 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19086
19087 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
19088 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
19089 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
19090 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
19091
19092 /* Pseudo ops. */
19093 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
19094 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
19095 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
19096 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
19097
19098 /* Thumb-compatibility pseudo ops. */
19099 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
19100 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
19101 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
19102 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
19103 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
19104 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
19105 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
19106 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
19107 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
19108 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
19109 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
19110 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
19111
19112 /* These may simplify to neg. */
19113 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
19114 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
19115
19116 #undef THUMB_VARIANT
19117 #define THUMB_VARIANT & arm_ext_v6
19118
19119 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
19120
19121 /* V1 instructions with no Thumb analogue prior to V6T2. */
19122 #undef THUMB_VARIANT
19123 #define THUMB_VARIANT & arm_ext_v6t2
19124
19125 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19126 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19127 CL("teqp", 130f000, 2, (RR, SH), cmp),
19128
19129 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19130 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19131 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
19132 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19133
19134 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19135 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19136
19137 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19138 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19139
19140 /* V1 instructions with no Thumb analogue at all. */
19141 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
19142 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
19143
19144 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
19145 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
19146 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
19147 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
19148 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
19149 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
19150 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
19151 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
19152
19153 #undef ARM_VARIANT
19154 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
19155 #undef THUMB_VARIANT
19156 #define THUMB_VARIANT & arm_ext_v4t
19157
19158 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19159 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19160
19161 #undef THUMB_VARIANT
19162 #define THUMB_VARIANT & arm_ext_v6t2
19163
19164 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
19165 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
19166
19167 /* Generic coprocessor instructions. */
19168 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19169 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19170 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19171 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19172 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19173 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19174 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
19175
19176 #undef ARM_VARIANT
19177 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
19178
19179 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19180 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19181
19182 #undef ARM_VARIANT
19183 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
19184 #undef THUMB_VARIANT
19185 #define THUMB_VARIANT & arm_ext_msr
19186
19187 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
19188 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
19189
19190 #undef ARM_VARIANT
19191 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
19192 #undef THUMB_VARIANT
19193 #define THUMB_VARIANT & arm_ext_v6t2
19194
19195 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19196 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19197 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19198 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19199 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19200 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19201 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19202 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19203
19204 #undef ARM_VARIANT
19205 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
19206 #undef THUMB_VARIANT
19207 #define THUMB_VARIANT & arm_ext_v4t
19208
19209 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19210 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19211 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19212 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19213 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19214 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19215
19216 #undef ARM_VARIANT
19217 #define ARM_VARIANT & arm_ext_v4t_5
19218
19219 /* ARM Architecture 4T. */
19220 /* Note: bx (and blx) are required on V5, even if the processor does
19221 not support Thumb. */
19222 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
19223
19224 #undef ARM_VARIANT
19225 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
19226 #undef THUMB_VARIANT
19227 #define THUMB_VARIANT & arm_ext_v5t
19228
19229 /* Note: blx has 2 variants; the .value coded here is for
19230 BLX(2). Only this variant has conditional execution. */
19231 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
19232 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
19233
19234 #undef THUMB_VARIANT
19235 #define THUMB_VARIANT & arm_ext_v6t2
19236
19237 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
19238 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19239 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19240 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19241 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19242 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19243 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19244 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19245
19246 #undef ARM_VARIANT
19247 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
19248 #undef THUMB_VARIANT
19249 #define THUMB_VARIANT & arm_ext_v5exp
19250
19251 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19252 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19253 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19254 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19255
19256 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19257 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19258
19259 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19260 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19261 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19262 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19263
19264 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19265 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19266 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19267 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19268
19269 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19270 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19271
19272 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19273 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19274 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19275 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19276
19277 #undef ARM_VARIANT
19278 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
19279 #undef THUMB_VARIANT
19280 #define THUMB_VARIANT & arm_ext_v6t2
19281
19282 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
19283 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
19284 ldrd, t_ldstd),
19285 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
19286 ADDRGLDRS), ldrd, t_ldstd),
19287
19288 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19289 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19290
19291 #undef ARM_VARIANT
19292 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
19293
19294 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
19295
19296 #undef ARM_VARIANT
19297 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
19298 #undef THUMB_VARIANT
19299 #define THUMB_VARIANT & arm_ext_v6
19300
19301 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
19302 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
19303 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19304 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19305 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19306 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19307 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19308 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19309 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19310 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
19311
19312 #undef THUMB_VARIANT
19313 #define THUMB_VARIANT & arm_ext_v6t2_v8m
19314
19315 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
19316 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19317 strex, t_strex),
19318 #undef THUMB_VARIANT
19319 #define THUMB_VARIANT & arm_ext_v6t2
19320
19321 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19322 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19323
19324 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
19325 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
19326
19327 /* ARM V6 not included in V7M. */
19328 #undef THUMB_VARIANT
19329 #define THUMB_VARIANT & arm_ext_v6_notm
19330 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19331 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19332 UF(rfeib, 9900a00, 1, (RRw), rfe),
19333 UF(rfeda, 8100a00, 1, (RRw), rfe),
19334 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19335 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19336 UF(rfefa, 8100a00, 1, (RRw), rfe),
19337 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19338 UF(rfeed, 9900a00, 1, (RRw), rfe),
19339 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19340 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19341 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
19342 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
19343 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
19344 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
19345 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
19346 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
19347 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
19348 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
19349
19350 /* ARM V6 not included in V7M (eg. integer SIMD). */
19351 #undef THUMB_VARIANT
19352 #define THUMB_VARIANT & arm_ext_v6_dsp
19353 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
19354 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
19355 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19356 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19357 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19358 /* Old name for QASX. */
19359 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19360 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19361 /* Old name for QSAX. */
19362 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19363 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19364 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19365 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19366 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19367 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19368 /* Old name for SASX. */
19369 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19370 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19371 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19372 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19373 /* Old name for SHASX. */
19374 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19375 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19376 /* Old name for SHSAX. */
19377 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19378 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19379 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19380 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19381 /* Old name for SSAX. */
19382 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19383 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19384 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19385 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19386 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19387 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19388 /* Old name for UASX. */
19389 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19390 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19391 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19392 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19393 /* Old name for UHASX. */
19394 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19395 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19396 /* Old name for UHSAX. */
19397 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19398 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19399 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19400 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19401 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19402 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19403 /* Old name for UQASX. */
19404 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19405 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19406 /* Old name for UQSAX. */
19407 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19408 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19409 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19410 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19411 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19412 /* Old name for USAX. */
19413 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19414 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19415 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19416 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19417 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19418 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19419 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19420 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19421 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
19422 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19423 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
19424 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19425 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19426 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19427 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19428 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19429 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19430 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19431 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
19432 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19433 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19434 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19435 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19436 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19437 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19438 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19439 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19440 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19441 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19442 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
19443 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
19444 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19445 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
19446 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
19447
19448 #undef ARM_VARIANT
19449 #define ARM_VARIANT & arm_ext_v6k
19450 #undef THUMB_VARIANT
19451 #define THUMB_VARIANT & arm_ext_v6k
19452
19453 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
19454 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
19455 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
19456 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
19457
19458 #undef THUMB_VARIANT
19459 #define THUMB_VARIANT & arm_ext_v6_notm
19460 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
19461 ldrexd, t_ldrexd),
19462 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
19463 RRnpcb), strexd, t_strexd),
19464
19465 #undef THUMB_VARIANT
19466 #define THUMB_VARIANT & arm_ext_v6t2_v8m
19467 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
19468 rd_rn, rd_rn),
19469 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
19470 rd_rn, rd_rn),
19471 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19472 strex, t_strexbh),
19473 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19474 strex, t_strexbh),
19475 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
19476
19477 #undef ARM_VARIANT
19478 #define ARM_VARIANT & arm_ext_sec
19479 #undef THUMB_VARIANT
19480 #define THUMB_VARIANT & arm_ext_sec
19481
19482 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
19483
19484 #undef ARM_VARIANT
19485 #define ARM_VARIANT & arm_ext_virt
19486 #undef THUMB_VARIANT
19487 #define THUMB_VARIANT & arm_ext_virt
19488
19489 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
19490 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
19491
19492 #undef ARM_VARIANT
19493 #define ARM_VARIANT & arm_ext_pan
19494 #undef THUMB_VARIANT
19495 #define THUMB_VARIANT & arm_ext_pan
19496
19497 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
19498
19499 #undef ARM_VARIANT
19500 #define ARM_VARIANT & arm_ext_v6t2
19501 #undef THUMB_VARIANT
19502 #define THUMB_VARIANT & arm_ext_v6t2
19503
19504 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
19505 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
19506 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
19507 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
19508
19509 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
19510 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
19511
19512 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19513 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19514 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19515 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
19516
19517 #undef THUMB_VARIANT
19518 #define THUMB_VARIANT & arm_ext_v6t2_v8m
19519 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
19520 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
19521
19522 /* Thumb-only instructions. */
19523 #undef ARM_VARIANT
19524 #define ARM_VARIANT NULL
19525 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
19526 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
19527
19528 /* ARM does not really have an IT instruction, so always allow it.
19529 The opcode is copied from Thumb in order to allow warnings in
19530 -mimplicit-it=[never | arm] modes. */
19531 #undef ARM_VARIANT
19532 #define ARM_VARIANT & arm_ext_v1
19533 #undef THUMB_VARIANT
19534 #define THUMB_VARIANT & arm_ext_v6t2
19535
19536 TUE("it", bf08, bf08, 1, (COND), it, t_it),
19537 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
19538 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
19539 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
19540 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
19541 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
19542 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
19543 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
19544 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
19545 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
19546 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
19547 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
19548 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
19549 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
19550 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
19551 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
19552 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
19553 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
19554
19555 /* Thumb2 only instructions. */
19556 #undef ARM_VARIANT
19557 #define ARM_VARIANT NULL
19558
19559 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
19560 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
19561 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
19562 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
19563 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
19564 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
19565
19566 /* Hardware division instructions. */
19567 #undef ARM_VARIANT
19568 #define ARM_VARIANT & arm_ext_adiv
19569 #undef THUMB_VARIANT
19570 #define THUMB_VARIANT & arm_ext_div
19571
19572 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
19573 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
19574
19575 /* ARM V6M/V7 instructions. */
19576 #undef ARM_VARIANT
19577 #define ARM_VARIANT & arm_ext_barrier
19578 #undef THUMB_VARIANT
19579 #define THUMB_VARIANT & arm_ext_barrier
19580
19581 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
19582 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
19583 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
19584
19585 /* ARM V7 instructions. */
19586 #undef ARM_VARIANT
19587 #define ARM_VARIANT & arm_ext_v7
19588 #undef THUMB_VARIANT
19589 #define THUMB_VARIANT & arm_ext_v7
19590
19591 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
19592 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
19593
19594 #undef ARM_VARIANT
19595 #define ARM_VARIANT & arm_ext_mp
19596 #undef THUMB_VARIANT
19597 #define THUMB_VARIANT & arm_ext_mp
19598
19599 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
19600
19601 /* AArchv8 instructions. */
19602 #undef ARM_VARIANT
19603 #define ARM_VARIANT & arm_ext_v8
19604
19605 /* Instructions shared between armv8-a and armv8-m. */
19606 #undef THUMB_VARIANT
19607 #define THUMB_VARIANT & arm_ext_atomics
19608
19609 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19610 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19611 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19612 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19613 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19614 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
19615 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19616 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
19617 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
19618 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
19619 stlex, t_stlex),
19620 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
19621 stlex, t_stlex),
19622 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
19623 stlex, t_stlex),
19624 #undef THUMB_VARIANT
19625 #define THUMB_VARIANT & arm_ext_v8
19626
19627 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
19628 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
19629 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
19630 ldrexd, t_ldrexd),
19631 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
19632 strexd, t_strexd),
19633 /* ARMv8 T32 only. */
19634 #undef ARM_VARIANT
19635 #define ARM_VARIANT NULL
19636 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
19637 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
19638 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
19639
19640 /* FP for ARMv8. */
19641 #undef ARM_VARIANT
19642 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
19643 #undef THUMB_VARIANT
19644 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
19645
19646 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
19647 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
19648 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
19649 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
19650 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
19651 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
19652 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
19653 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
19654 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
19655 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
19656 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
19657 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
19658 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
19659 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
19660 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
19661 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
19662 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
19663
19664 /* Crypto v1 extensions. */
19665 #undef ARM_VARIANT
19666 #define ARM_VARIANT & fpu_crypto_ext_armv8
19667 #undef THUMB_VARIANT
19668 #define THUMB_VARIANT & fpu_crypto_ext_armv8
19669
19670 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
19671 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
19672 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
19673 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
19674 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
19675 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
19676 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
19677 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
19678 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
19679 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
19680 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
19681 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
19682 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
19683 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
19684
19685 #undef ARM_VARIANT
19686 #define ARM_VARIANT & crc_ext_armv8
19687 #undef THUMB_VARIANT
19688 #define THUMB_VARIANT & crc_ext_armv8
19689 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
19690 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
19691 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
19692 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
19693 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
19694 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
19695
19696 /* ARMv8.2 RAS extension. */
19697 #undef ARM_VARIANT
19698 #define ARM_VARIANT & arm_ext_v8_2
19699 #undef THUMB_VARIANT
19700 #define THUMB_VARIANT & arm_ext_v8_2
19701 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
19702
19703 #undef ARM_VARIANT
19704 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
19705 #undef THUMB_VARIANT
19706 #define THUMB_VARIANT NULL
19707
19708 cCE("wfs", e200110, 1, (RR), rd),
19709 cCE("rfs", e300110, 1, (RR), rd),
19710 cCE("wfc", e400110, 1, (RR), rd),
19711 cCE("rfc", e500110, 1, (RR), rd),
19712
19713 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
19714 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
19715 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
19716 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
19717
19718 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
19719 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
19720 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
19721 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
19722
19723 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
19724 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
19725 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
19726 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
19727 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
19728 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
19729 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
19730 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
19731 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
19732 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
19733 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
19734 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
19735
19736 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
19737 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
19738 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
19739 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
19740 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
19741 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
19742 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
19743 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
19744 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
19745 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
19746 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
19747 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
19748
19749 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
19750 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
19751 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
19752 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
19753 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
19754 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
19755 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
19756 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
19757 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
19758 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
19759 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
19760 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
19761
19762 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
19763 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
19764 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
19765 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
19766 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
19767 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
19768 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
19769 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
19770 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
19771 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
19772 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
19773 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
19774
19775 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
19776 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
19777 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
19778 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
19779 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
19780 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
19781 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
19782 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
19783 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
19784 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
19785 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
19786 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
19787
19788 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
19789 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
19790 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
19791 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
19792 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
19793 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
19794 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
19795 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
19796 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
19797 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
19798 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
19799 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
19800
19801 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
19802 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
19803 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
19804 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
19805 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
19806 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
19807 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
19808 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
19809 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
19810 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
19811 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
19812 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
19813
19814 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
19815 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
19816 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
19817 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
19818 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
19819 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
19820 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
19821 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
19822 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
19823 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
19824 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
19825 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
19826
19827 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
19828 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
19829 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
19830 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
19831 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
19832 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
19833 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
19834 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
19835 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
19836 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
19837 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
19838 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
19839
19840 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
19841 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
19842 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
19843 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
19844 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
19845 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
19846 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
19847 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
19848 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
19849 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
19850 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
19851 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
19852
19853 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
19854 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
19855 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
19856 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
19857 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
19858 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
19859 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
19860 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
19861 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
19862 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
19863 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
19864 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
19865
19866 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
19867 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
19868 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
19869 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
19870 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
19871 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
19872 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
19873 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
19874 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
19875 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
19876 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
19877 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
19878
19879 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
19880 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
19881 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
19882 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
19883 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
19884 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
19885 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
19886 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
19887 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
19888 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
19889 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
19890 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
19891
19892 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
19893 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
19894 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
19895 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
19896 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
19897 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
19898 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
19899 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
19900 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
19901 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
19902 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
19903 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
19904
19905 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
19906 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
19907 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
19908 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
19909 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
19910 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
19911 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
19912 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
19913 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
19914 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
19915 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
19916 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
19917
19918 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
19919 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
19920 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
19921 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
19922 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
19923 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
19924 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
19925 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
19926 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
19927 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
19928 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
19929 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
19930
19931 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
19932 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
19933 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
19934 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
19935 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
19936 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19937 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19938 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19939 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
19940 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
19941 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
19942 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
19943
19944 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
19945 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
19946 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
19947 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
19948 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
19949 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19950 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19951 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19952 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
19953 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
19954 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
19955 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
19956
19957 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
19958 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
19959 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
19960 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
19961 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
19962 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19963 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19964 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19965 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
19966 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
19967 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
19968 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
19969
19970 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
19971 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
19972 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
19973 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
19974 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
19975 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19976 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19977 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19978 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
19979 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
19980 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
19981 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
19982
19983 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
19984 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
19985 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
19986 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
19987 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
19988 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
19989 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
19990 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
19991 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
19992 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
19993 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
19994 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
19995
19996 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
19997 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
19998 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
19999 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
20000 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
20001 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20002 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20003 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20004 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
20005 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
20006 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
20007 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
20008
20009 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
20010 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
20011 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
20012 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
20013 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
20014 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20015 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20016 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20017 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
20018 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
20019 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
20020 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
20021
20022 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
20023 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
20024 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
20025 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
20026 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
20027 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20028 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20029 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20030 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
20031 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
20032 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
20033 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
20034
20035 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
20036 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
20037 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
20038 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
20039 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
20040 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20041 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20042 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20043 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
20044 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
20045 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
20046 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
20047
20048 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
20049 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
20050 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
20051 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
20052 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
20053 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20054 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20055 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20056 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
20057 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
20058 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
20059 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
20060
20061 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20062 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20063 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20064 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20065 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20066 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20067 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20068 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20069 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20070 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20071 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20072 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20073
20074 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20075 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20076 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20077 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20078 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20079 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20080 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20081 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20082 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20083 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20084 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20085 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20086
20087 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20088 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20089 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20090 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20091 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20092 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20093 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20094 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20095 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20096 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20097 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20098 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20099
20100 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
20101 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
20102 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
20103 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
20104
20105 cCL("flts", e000110, 2, (RF, RR), rn_rd),
20106 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
20107 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
20108 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
20109 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
20110 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
20111 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
20112 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
20113 cCL("flte", e080110, 2, (RF, RR), rn_rd),
20114 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
20115 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
20116 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
20117
20118 /* The implementation of the FIX instruction is broken on some
20119 assemblers, in that it accepts a precision specifier as well as a
20120 rounding specifier, despite the fact that this is meaningless.
20121 To be more compatible, we accept it as well, though of course it
20122 does not set any bits. */
20123 cCE("fix", e100110, 2, (RR, RF), rd_rm),
20124 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
20125 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
20126 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
20127 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
20128 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
20129 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
20130 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
20131 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
20132 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
20133 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
20134 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
20135 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
20136
20137 /* Instructions that were new with the real FPA, call them V2. */
20138 #undef ARM_VARIANT
20139 #define ARM_VARIANT & fpu_fpa_ext_v2
20140
20141 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20142 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20143 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20144 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20145 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20146 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20147
20148 #undef ARM_VARIANT
20149 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
20150
20151 /* Moves and type conversions. */
20152 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
20153 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
20154 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
20155 cCE("fmstat", ef1fa10, 0, (), noargs),
20156 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
20157 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
20158 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
20159 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
20160 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
20161 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20162 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
20163 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20164 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
20165 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
20166
20167 /* Memory operations. */
20168 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20169 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20170 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20171 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20172 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20173 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20174 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20175 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20176 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20177 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20178 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20179 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20180 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20181 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20182 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20183 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20184 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20185 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20186
20187 /* Monadic operations. */
20188 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
20189 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
20190 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
20191
20192 /* Dyadic operations. */
20193 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20194 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20195 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20196 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20197 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20198 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20199 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20200 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20201 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20202
20203 /* Comparisons. */
20204 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
20205 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
20206 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
20207 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
20208
20209 /* Double precision load/store are still present on single precision
20210 implementations. */
20211 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20212 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20213 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20214 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20215 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20216 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20217 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20218 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20219 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20220 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20221
20222 #undef ARM_VARIANT
20223 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
20224
20225 /* Moves and type conversions. */
20226 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20227 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20228 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20229 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
20230 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
20231 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
20232 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
20233 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20234 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
20235 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20236 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20237 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20238 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20239
20240 /* Monadic operations. */
20241 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20242 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20243 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20244
20245 /* Dyadic operations. */
20246 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20247 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20248 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20249 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20250 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20251 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20252 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20253 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20254 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20255
20256 /* Comparisons. */
20257 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20258 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
20259 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20260 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
20261
20262 #undef ARM_VARIANT
20263 #define ARM_VARIANT & fpu_vfp_ext_v2
20264
20265 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
20266 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
20267 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
20268 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
20269
20270 /* Instructions which may belong to either the Neon or VFP instruction sets.
20271 Individual encoder functions perform additional architecture checks. */
20272 #undef ARM_VARIANT
20273 #define ARM_VARIANT & fpu_vfp_ext_v1xd
20274 #undef THUMB_VARIANT
20275 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
20276
20277 /* These mnemonics are unique to VFP. */
20278 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
20279 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
20280 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20281 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20282 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20283 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20284 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20285 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
20286 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
20287 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
20288
20289 /* Mnemonics shared by Neon and VFP. */
20290 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
20291 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20292 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20293
20294 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20295 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20296
20297 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20298 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20299
20300 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20301 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20302 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20303 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20304 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20305 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
20306 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
20307 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
20308
20309 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
20310 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
20311 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
20312 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
20313
20314
20315 /* NOTE: All VMOV encoding is special-cased! */
20316 NCE(vmov, 0, 1, (VMOV), neon_mov),
20317 NCE(vmovq, 0, 1, (VMOV), neon_mov),
20318
20319 #undef ARM_VARIANT
20320 #define ARM_VARIANT & arm_ext_fp16
20321 #undef THUMB_VARIANT
20322 #define THUMB_VARIANT & arm_ext_fp16
20323 /* New instructions added from v8.2, allowing the extraction and insertion of
20324 the upper 16 bits of a 32-bit vector register. */
20325 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
20326 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
20327
20328 #undef THUMB_VARIANT
20329 #define THUMB_VARIANT & fpu_neon_ext_v1
20330 #undef ARM_VARIANT
20331 #define ARM_VARIANT & fpu_neon_ext_v1
20332
20333 /* Data processing with three registers of the same length. */
20334 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
20335 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
20336 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
20337 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20338 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20339 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20340 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20341 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
20342 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
20343 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
20344 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20345 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
20346 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
20347 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
20348 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20349 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
20350 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
20351 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
20352 /* If not immediate, fall back to neon_dyadic_i64_su.
20353 shl_imm should accept I8 I16 I32 I64,
20354 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
20355 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
20356 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
20357 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
20358 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
20359 /* Logic ops, types optional & ignored. */
20360 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20361 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20362 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20363 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20364 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20365 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20366 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
20367 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
20368 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
20369 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
20370 /* Bitfield ops, untyped. */
20371 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20372 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20373 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20374 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20375 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
20376 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
20377 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
20378 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20379 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20380 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20381 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20382 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
20383 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
20384 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
20385 back to neon_dyadic_if_su. */
20386 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20387 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20388 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
20389 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
20390 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20391 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
20392 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
20393 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
20394 /* Comparison. Type I8 I16 I32 F32. */
20395 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
20396 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
20397 /* As above, D registers only. */
20398 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
20399 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
20400 /* Int and float variants, signedness unimportant. */
20401 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20402 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
20403 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
20404 /* Add/sub take types I8 I16 I32 I64 F32. */
20405 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
20406 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
20407 /* vtst takes sizes 8, 16, 32. */
20408 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
20409 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
20410 /* VMUL takes I8 I16 I32 F32 P8. */
20411 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
20412 /* VQD{R}MULH takes S16 S32. */
20413 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20414 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
20415 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
20416 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
20417 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20418 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
20419 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
20420 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
20421 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
20422 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
20423 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
20424 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
20425 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
20426 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
20427 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
20428 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
20429 /* ARM v8.1 extension. */
20430 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
20431 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
20432 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
20433 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
20434
20435 /* Two address, int/float. Types S8 S16 S32 F32. */
20436 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
20437 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
20438
20439 /* Data processing with two registers and a shift amount. */
20440 /* Right shifts, and variants with rounding.
20441 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
20442 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
20443 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
20444 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
20445 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
20446 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
20447 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
20448 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
20449 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
20450 /* Shift and insert. Sizes accepted 8 16 32 64. */
20451 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
20452 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
20453 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
20454 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
20455 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
20456 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
20457 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
20458 /* Right shift immediate, saturating & narrowing, with rounding variants.
20459 Types accepted S16 S32 S64 U16 U32 U64. */
20460 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
20461 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
20462 /* As above, unsigned. Types accepted S16 S32 S64. */
20463 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
20464 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
20465 /* Right shift narrowing. Types accepted I16 I32 I64. */
20466 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
20467 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
20468 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
20469 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
20470 /* CVT with optional immediate for fixed-point variant. */
20471 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
20472
20473 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
20474 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
20475
20476 /* Data processing, three registers of different lengths. */
20477 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
20478 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
20479 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
20480 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
20481 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
20482 /* If not scalar, fall back to neon_dyadic_long.
20483 Vector types as above, scalar types S16 S32 U16 U32. */
20484 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
20485 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
20486 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
20487 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20488 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
20489 /* Dyadic, narrowing insns. Types I16 I32 I64. */
20490 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20491 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20492 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20493 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
20494 /* Saturating doubling multiplies. Types S16 S32. */
20495 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20496 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20497 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
20498 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
20499 S16 S32 U16 U32. */
20500 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
20501
20502 /* Extract. Size 8. */
20503 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
20504 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
20505
20506 /* Two registers, miscellaneous. */
20507 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
20508 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
20509 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
20510 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
20511 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
20512 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
20513 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
20514 /* Vector replicate. Sizes 8 16 32. */
20515 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
20516 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
20517 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
20518 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
20519 /* VMOVN. Types I16 I32 I64. */
20520 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
20521 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
20522 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
20523 /* VQMOVUN. Types S16 S32 S64. */
20524 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
20525 /* VZIP / VUZP. Sizes 8 16 32. */
20526 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
20527 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
20528 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
20529 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
20530 /* VQABS / VQNEG. Types S8 S16 S32. */
20531 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
20532 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
20533 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
20534 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
20535 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
20536 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
20537 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
20538 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
20539 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
20540 /* Reciprocal estimates. Types U32 F16 F32. */
20541 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
20542 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
20543 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
20544 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
20545 /* VCLS. Types S8 S16 S32. */
20546 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
20547 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
20548 /* VCLZ. Types I8 I16 I32. */
20549 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
20550 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
20551 /* VCNT. Size 8. */
20552 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
20553 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
20554 /* Two address, untyped. */
20555 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
20556 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
20557 /* VTRN. Sizes 8 16 32. */
20558 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
20559 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
20560
20561 /* Table lookup. Size 8. */
20562 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
20563 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
20564
20565 #undef THUMB_VARIANT
20566 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
20567 #undef ARM_VARIANT
20568 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
20569
20570 /* Neon element/structure load/store. */
20571 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
20572 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
20573 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
20574 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
20575 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
20576 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
20577 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
20578 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
20579
20580 #undef THUMB_VARIANT
20581 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
20582 #undef ARM_VARIANT
20583 #define ARM_VARIANT & fpu_vfp_ext_v3xd
20584 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
20585 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20586 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20587 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20588 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20589 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20590 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20591 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
20592 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
20593
20594 #undef THUMB_VARIANT
20595 #define THUMB_VARIANT & fpu_vfp_ext_v3
20596 #undef ARM_VARIANT
20597 #define ARM_VARIANT & fpu_vfp_ext_v3
20598
20599 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
20600 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20601 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20602 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20603 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20604 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20605 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20606 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
20607 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
20608
20609 #undef ARM_VARIANT
20610 #define ARM_VARIANT & fpu_vfp_ext_fma
20611 #undef THUMB_VARIANT
20612 #define THUMB_VARIANT & fpu_vfp_ext_fma
20613 /* Mnemonics shared by Neon and VFP. These are included in the
20614 VFP FMA variant; NEON and VFP FMA always includes the NEON
20615 FMA instructions. */
20616 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
20617 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
20618 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
20619 the v form should always be used. */
20620 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20621 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20622 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20623 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20624 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20625 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20626
20627 #undef THUMB_VARIANT
20628 #undef ARM_VARIANT
20629 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
20630
20631 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20632 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20633 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20634 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20635 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20636 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
20637 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
20638 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
20639
20640 #undef ARM_VARIANT
20641 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
20642
20643 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
20644 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
20645 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
20646 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
20647 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
20648 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
20649 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
20650 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
20651 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
20652 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20653 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20654 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
20655 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20656 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20657 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
20658 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20659 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20660 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
20661 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
20662 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
20663 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20664 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20665 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20666 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20667 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20668 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
20669 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
20670 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
20671 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
20672 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
20673 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
20674 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
20675 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
20676 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
20677 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
20678 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
20679 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
20680 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20681 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20682 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20683 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20684 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20685 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20686 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20687 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20688 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20689 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
20690 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20691 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20692 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20693 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20694 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20695 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20696 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20697 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20698 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20699 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20700 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20701 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20702 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20703 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20704 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20705 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20706 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20707 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20708 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20709 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20710 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20711 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
20712 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
20713 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20714 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20715 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20716 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20717 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20718 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20719 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20720 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20721 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20722 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20723 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20724 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20725 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20726 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20727 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20728 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20729 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20730 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20731 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
20732 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20733 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20734 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20735 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20736 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20737 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20738 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20739 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20740 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20741 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20742 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20743 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20744 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20745 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20746 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20747 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20748 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20749 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20750 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20751 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20752 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20753 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
20754 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20755 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20756 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20757 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20758 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20759 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20760 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20761 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20762 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20763 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20764 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20765 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20766 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20767 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20768 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20769 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20770 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
20771 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
20772 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20773 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
20774 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
20775 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
20776 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20777 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20778 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20779 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20780 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20781 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20782 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20783 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20784 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20785 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
20786 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
20787 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
20788 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
20789 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
20790 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
20791 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20792 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20793 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20794 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
20795 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
20796 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
20797 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
20798 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
20799 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
20800 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20801 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20802 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20803 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20804 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
20805
20806 #undef ARM_VARIANT
20807 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
20808
20809 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
20810 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
20811 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
20812 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
20813 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
20814 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
20815 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20816 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20817 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20818 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20819 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20820 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20821 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20822 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20823 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20824 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20825 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20826 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20827 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20828 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20829 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
20830 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20831 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20832 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20833 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20834 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20835 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20836 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20837 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20838 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20839 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20840 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20841 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20842 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20843 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20844 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20845 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20846 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20847 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20848 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20849 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20850 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20851 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20852 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20853 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20854 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20855 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20856 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20857 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20858 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20859 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20860 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20861 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20862 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20863 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20864 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20865 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
20866
20867 #undef ARM_VARIANT
20868 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
20869
20870 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
20871 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
20872 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
20873 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
20874 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
20875 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
20876 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
20877 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
20878 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
20879 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
20880 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
20881 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
20882 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
20883 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
20884 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
20885 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
20886 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
20887 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
20888 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
20889 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
20890 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
20891 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
20892 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
20893 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
20894 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
20895 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
20896 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
20897 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
20898 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
20899 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
20900 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
20901 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
20902 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
20903 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
20904 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
20905 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
20906 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
20907 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
20908 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
20909 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
20910 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
20911 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
20912 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
20913 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
20914 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
20915 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
20916 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
20917 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
20918 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
20919 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
20920 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
20921 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
20922 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
20923 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
20924 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
20925 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
20926 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
20927 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
20928 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
20929 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
20930 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
20931 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
20932 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
20933 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
20934 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20935 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20936 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20937 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20938 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20939 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
20940 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20941 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
20942 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
20943 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
20944 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
20945 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
20946
20947 #undef ARM_VARIANT
20948 #define ARM_VARIANT NULL
20949 #undef THUMB_VARIANT
20950 #define THUMB_VARIANT & arm_ext_v8m
20951 TUE("tt", 0, e840f000, 2, (RRnpc, RRnpc), 0, tt),
20952 TUE("ttt", 0, e840f040, 2, (RRnpc, RRnpc), 0, tt),
20953 };
20954 #undef ARM_VARIANT
20955 #undef THUMB_VARIANT
20956 #undef TCE
20957 #undef TUE
20958 #undef TUF
20959 #undef TCC
20960 #undef cCE
20961 #undef cCL
20962 #undef C3E
20963 #undef CE
20964 #undef CM
20965 #undef UE
20966 #undef UF
20967 #undef UT
20968 #undef NUF
20969 #undef nUF
20970 #undef NCE
20971 #undef nCE
20972 #undef OPS0
20973 #undef OPS1
20974 #undef OPS2
20975 #undef OPS3
20976 #undef OPS4
20977 #undef OPS5
20978 #undef OPS6
20979 #undef do_0
20980 \f
20981 /* MD interface: bits in the object file. */
20982
20983 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
20984 for use in the a.out file, and stores them in the array pointed to by buf.
20985 This knows about the endian-ness of the target machine and does
20986 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
20987 2 (short) and 4 (long) Floating numbers are put out as a series of
20988 LITTLENUMS (shorts, here at least). */
20989
20990 void
20991 md_number_to_chars (char * buf, valueT val, int n)
20992 {
20993 if (target_big_endian)
20994 number_to_chars_bigendian (buf, val, n);
20995 else
20996 number_to_chars_littleendian (buf, val, n);
20997 }
20998
20999 static valueT
21000 md_chars_to_number (char * buf, int n)
21001 {
21002 valueT result = 0;
21003 unsigned char * where = (unsigned char *) buf;
21004
21005 if (target_big_endian)
21006 {
21007 while (n--)
21008 {
21009 result <<= 8;
21010 result |= (*where++ & 255);
21011 }
21012 }
21013 else
21014 {
21015 while (n--)
21016 {
21017 result <<= 8;
21018 result |= (where[n] & 255);
21019 }
21020 }
21021
21022 return result;
21023 }
21024
21025 /* MD interface: Sections. */
21026
21027 /* Calculate the maximum variable size (i.e., excluding fr_fix)
21028 that an rs_machine_dependent frag may reach. */
21029
21030 unsigned int
21031 arm_frag_max_var (fragS *fragp)
21032 {
21033 /* We only use rs_machine_dependent for variable-size Thumb instructions,
21034 which are either THUMB_SIZE (2) or INSN_SIZE (4).
21035
21036 Note that we generate relaxable instructions even for cases that don't
21037 really need it, like an immediate that's a trivial constant. So we're
21038 overestimating the instruction size for some of those cases. Rather
21039 than putting more intelligence here, it would probably be better to
21040 avoid generating a relaxation frag in the first place when it can be
21041 determined up front that a short instruction will suffice. */
21042
21043 gas_assert (fragp->fr_type == rs_machine_dependent);
21044 return INSN_SIZE;
21045 }
21046
21047 /* Estimate the size of a frag before relaxing. Assume everything fits in
21048 2 bytes. */
21049
21050 int
21051 md_estimate_size_before_relax (fragS * fragp,
21052 segT segtype ATTRIBUTE_UNUSED)
21053 {
21054 fragp->fr_var = 2;
21055 return 2;
21056 }
21057
21058 /* Convert a machine dependent frag. */
21059
21060 void
21061 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
21062 {
21063 unsigned long insn;
21064 unsigned long old_op;
21065 char *buf;
21066 expressionS exp;
21067 fixS *fixp;
21068 int reloc_type;
21069 int pc_rel;
21070 int opcode;
21071
21072 buf = fragp->fr_literal + fragp->fr_fix;
21073
21074 old_op = bfd_get_16(abfd, buf);
21075 if (fragp->fr_symbol)
21076 {
21077 exp.X_op = O_symbol;
21078 exp.X_add_symbol = fragp->fr_symbol;
21079 }
21080 else
21081 {
21082 exp.X_op = O_constant;
21083 }
21084 exp.X_add_number = fragp->fr_offset;
21085 opcode = fragp->fr_subtype;
21086 switch (opcode)
21087 {
21088 case T_MNEM_ldr_pc:
21089 case T_MNEM_ldr_pc2:
21090 case T_MNEM_ldr_sp:
21091 case T_MNEM_str_sp:
21092 case T_MNEM_ldr:
21093 case T_MNEM_ldrb:
21094 case T_MNEM_ldrh:
21095 case T_MNEM_str:
21096 case T_MNEM_strb:
21097 case T_MNEM_strh:
21098 if (fragp->fr_var == 4)
21099 {
21100 insn = THUMB_OP32 (opcode);
21101 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
21102 {
21103 insn |= (old_op & 0x700) << 4;
21104 }
21105 else
21106 {
21107 insn |= (old_op & 7) << 12;
21108 insn |= (old_op & 0x38) << 13;
21109 }
21110 insn |= 0x00000c00;
21111 put_thumb32_insn (buf, insn);
21112 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
21113 }
21114 else
21115 {
21116 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
21117 }
21118 pc_rel = (opcode == T_MNEM_ldr_pc2);
21119 break;
21120 case T_MNEM_adr:
21121 if (fragp->fr_var == 4)
21122 {
21123 insn = THUMB_OP32 (opcode);
21124 insn |= (old_op & 0xf0) << 4;
21125 put_thumb32_insn (buf, insn);
21126 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
21127 }
21128 else
21129 {
21130 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21131 exp.X_add_number -= 4;
21132 }
21133 pc_rel = 1;
21134 break;
21135 case T_MNEM_mov:
21136 case T_MNEM_movs:
21137 case T_MNEM_cmp:
21138 case T_MNEM_cmn:
21139 if (fragp->fr_var == 4)
21140 {
21141 int r0off = (opcode == T_MNEM_mov
21142 || opcode == T_MNEM_movs) ? 0 : 8;
21143 insn = THUMB_OP32 (opcode);
21144 insn = (insn & 0xe1ffffff) | 0x10000000;
21145 insn |= (old_op & 0x700) << r0off;
21146 put_thumb32_insn (buf, insn);
21147 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21148 }
21149 else
21150 {
21151 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
21152 }
21153 pc_rel = 0;
21154 break;
21155 case T_MNEM_b:
21156 if (fragp->fr_var == 4)
21157 {
21158 insn = THUMB_OP32(opcode);
21159 put_thumb32_insn (buf, insn);
21160 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
21161 }
21162 else
21163 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
21164 pc_rel = 1;
21165 break;
21166 case T_MNEM_bcond:
21167 if (fragp->fr_var == 4)
21168 {
21169 insn = THUMB_OP32(opcode);
21170 insn |= (old_op & 0xf00) << 14;
21171 put_thumb32_insn (buf, insn);
21172 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
21173 }
21174 else
21175 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
21176 pc_rel = 1;
21177 break;
21178 case T_MNEM_add_sp:
21179 case T_MNEM_add_pc:
21180 case T_MNEM_inc_sp:
21181 case T_MNEM_dec_sp:
21182 if (fragp->fr_var == 4)
21183 {
21184 /* ??? Choose between add and addw. */
21185 insn = THUMB_OP32 (opcode);
21186 insn |= (old_op & 0xf0) << 4;
21187 put_thumb32_insn (buf, insn);
21188 if (opcode == T_MNEM_add_pc)
21189 reloc_type = BFD_RELOC_ARM_T32_IMM12;
21190 else
21191 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21192 }
21193 else
21194 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21195 pc_rel = 0;
21196 break;
21197
21198 case T_MNEM_addi:
21199 case T_MNEM_addis:
21200 case T_MNEM_subi:
21201 case T_MNEM_subis:
21202 if (fragp->fr_var == 4)
21203 {
21204 insn = THUMB_OP32 (opcode);
21205 insn |= (old_op & 0xf0) << 4;
21206 insn |= (old_op & 0xf) << 16;
21207 put_thumb32_insn (buf, insn);
21208 if (insn & (1 << 20))
21209 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21210 else
21211 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21212 }
21213 else
21214 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21215 pc_rel = 0;
21216 break;
21217 default:
21218 abort ();
21219 }
21220 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21221 (enum bfd_reloc_code_real) reloc_type);
21222 fixp->fx_file = fragp->fr_file;
21223 fixp->fx_line = fragp->fr_line;
21224 fragp->fr_fix += fragp->fr_var;
21225
21226 /* Set whether we use thumb-2 ISA based on final relaxation results. */
21227 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
21228 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
21229 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
21230 }
21231
21232 /* Return the size of a relaxable immediate operand instruction.
21233 SHIFT and SIZE specify the form of the allowable immediate. */
21234 static int
21235 relax_immediate (fragS *fragp, int size, int shift)
21236 {
21237 offsetT offset;
21238 offsetT mask;
21239 offsetT low;
21240
21241 /* ??? Should be able to do better than this. */
21242 if (fragp->fr_symbol)
21243 return 4;
21244
21245 low = (1 << shift) - 1;
21246 mask = (1 << (shift + size)) - (1 << shift);
21247 offset = fragp->fr_offset;
21248 /* Force misaligned offsets to 32-bit variant. */
21249 if (offset & low)
21250 return 4;
21251 if (offset & ~mask)
21252 return 4;
21253 return 2;
21254 }
21255
21256 /* Get the address of a symbol during relaxation. */
21257 static addressT
21258 relaxed_symbol_addr (fragS *fragp, long stretch)
21259 {
21260 fragS *sym_frag;
21261 addressT addr;
21262 symbolS *sym;
21263
21264 sym = fragp->fr_symbol;
21265 sym_frag = symbol_get_frag (sym);
21266 know (S_GET_SEGMENT (sym) != absolute_section
21267 || sym_frag == &zero_address_frag);
21268 addr = S_GET_VALUE (sym) + fragp->fr_offset;
21269
21270 /* If frag has yet to be reached on this pass, assume it will
21271 move by STRETCH just as we did. If this is not so, it will
21272 be because some frag between grows, and that will force
21273 another pass. */
21274
21275 if (stretch != 0
21276 && sym_frag->relax_marker != fragp->relax_marker)
21277 {
21278 fragS *f;
21279
21280 /* Adjust stretch for any alignment frag. Note that if have
21281 been expanding the earlier code, the symbol may be
21282 defined in what appears to be an earlier frag. FIXME:
21283 This doesn't handle the fr_subtype field, which specifies
21284 a maximum number of bytes to skip when doing an
21285 alignment. */
21286 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
21287 {
21288 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
21289 {
21290 if (stretch < 0)
21291 stretch = - ((- stretch)
21292 & ~ ((1 << (int) f->fr_offset) - 1));
21293 else
21294 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
21295 if (stretch == 0)
21296 break;
21297 }
21298 }
21299 if (f != NULL)
21300 addr += stretch;
21301 }
21302
21303 return addr;
21304 }
21305
21306 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
21307 load. */
21308 static int
21309 relax_adr (fragS *fragp, asection *sec, long stretch)
21310 {
21311 addressT addr;
21312 offsetT val;
21313
21314 /* Assume worst case for symbols not known to be in the same section. */
21315 if (fragp->fr_symbol == NULL
21316 || !S_IS_DEFINED (fragp->fr_symbol)
21317 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21318 || S_IS_WEAK (fragp->fr_symbol))
21319 return 4;
21320
21321 val = relaxed_symbol_addr (fragp, stretch);
21322 addr = fragp->fr_address + fragp->fr_fix;
21323 addr = (addr + 4) & ~3;
21324 /* Force misaligned targets to 32-bit variant. */
21325 if (val & 3)
21326 return 4;
21327 val -= addr;
21328 if (val < 0 || val > 1020)
21329 return 4;
21330 return 2;
21331 }
21332
21333 /* Return the size of a relaxable add/sub immediate instruction. */
21334 static int
21335 relax_addsub (fragS *fragp, asection *sec)
21336 {
21337 char *buf;
21338 int op;
21339
21340 buf = fragp->fr_literal + fragp->fr_fix;
21341 op = bfd_get_16(sec->owner, buf);
21342 if ((op & 0xf) == ((op >> 4) & 0xf))
21343 return relax_immediate (fragp, 8, 0);
21344 else
21345 return relax_immediate (fragp, 3, 0);
21346 }
21347
21348 /* Return TRUE iff the definition of symbol S could be pre-empted
21349 (overridden) at link or load time. */
21350 static bfd_boolean
21351 symbol_preemptible (symbolS *s)
21352 {
21353 /* Weak symbols can always be pre-empted. */
21354 if (S_IS_WEAK (s))
21355 return TRUE;
21356
21357 /* Non-global symbols cannot be pre-empted. */
21358 if (! S_IS_EXTERNAL (s))
21359 return FALSE;
21360
21361 #ifdef OBJ_ELF
21362 /* In ELF, a global symbol can be marked protected, or private. In that
21363 case it can't be pre-empted (other definitions in the same link unit
21364 would violate the ODR). */
21365 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
21366 return FALSE;
21367 #endif
21368
21369 /* Other global symbols might be pre-empted. */
21370 return TRUE;
21371 }
21372
21373 /* Return the size of a relaxable branch instruction. BITS is the
21374 size of the offset field in the narrow instruction. */
21375
21376 static int
21377 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
21378 {
21379 addressT addr;
21380 offsetT val;
21381 offsetT limit;
21382
21383 /* Assume worst case for symbols not known to be in the same section. */
21384 if (!S_IS_DEFINED (fragp->fr_symbol)
21385 || sec != S_GET_SEGMENT (fragp->fr_symbol)
21386 || S_IS_WEAK (fragp->fr_symbol))
21387 return 4;
21388
21389 #ifdef OBJ_ELF
21390 /* A branch to a function in ARM state will require interworking. */
21391 if (S_IS_DEFINED (fragp->fr_symbol)
21392 && ARM_IS_FUNC (fragp->fr_symbol))
21393 return 4;
21394 #endif
21395
21396 if (symbol_preemptible (fragp->fr_symbol))
21397 return 4;
21398
21399 val = relaxed_symbol_addr (fragp, stretch);
21400 addr = fragp->fr_address + fragp->fr_fix + 4;
21401 val -= addr;
21402
21403 /* Offset is a signed value *2 */
21404 limit = 1 << bits;
21405 if (val >= limit || val < -limit)
21406 return 4;
21407 return 2;
21408 }
21409
21410
21411 /* Relax a machine dependent frag. This returns the amount by which
21412 the current size of the frag should change. */
21413
21414 int
21415 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
21416 {
21417 int oldsize;
21418 int newsize;
21419
21420 oldsize = fragp->fr_var;
21421 switch (fragp->fr_subtype)
21422 {
21423 case T_MNEM_ldr_pc2:
21424 newsize = relax_adr (fragp, sec, stretch);
21425 break;
21426 case T_MNEM_ldr_pc:
21427 case T_MNEM_ldr_sp:
21428 case T_MNEM_str_sp:
21429 newsize = relax_immediate (fragp, 8, 2);
21430 break;
21431 case T_MNEM_ldr:
21432 case T_MNEM_str:
21433 newsize = relax_immediate (fragp, 5, 2);
21434 break;
21435 case T_MNEM_ldrh:
21436 case T_MNEM_strh:
21437 newsize = relax_immediate (fragp, 5, 1);
21438 break;
21439 case T_MNEM_ldrb:
21440 case T_MNEM_strb:
21441 newsize = relax_immediate (fragp, 5, 0);
21442 break;
21443 case T_MNEM_adr:
21444 newsize = relax_adr (fragp, sec, stretch);
21445 break;
21446 case T_MNEM_mov:
21447 case T_MNEM_movs:
21448 case T_MNEM_cmp:
21449 case T_MNEM_cmn:
21450 newsize = relax_immediate (fragp, 8, 0);
21451 break;
21452 case T_MNEM_b:
21453 newsize = relax_branch (fragp, sec, 11, stretch);
21454 break;
21455 case T_MNEM_bcond:
21456 newsize = relax_branch (fragp, sec, 8, stretch);
21457 break;
21458 case T_MNEM_add_sp:
21459 case T_MNEM_add_pc:
21460 newsize = relax_immediate (fragp, 8, 2);
21461 break;
21462 case T_MNEM_inc_sp:
21463 case T_MNEM_dec_sp:
21464 newsize = relax_immediate (fragp, 7, 2);
21465 break;
21466 case T_MNEM_addi:
21467 case T_MNEM_addis:
21468 case T_MNEM_subi:
21469 case T_MNEM_subis:
21470 newsize = relax_addsub (fragp, sec);
21471 break;
21472 default:
21473 abort ();
21474 }
21475
21476 fragp->fr_var = newsize;
21477 /* Freeze wide instructions that are at or before the same location as
21478 in the previous pass. This avoids infinite loops.
21479 Don't freeze them unconditionally because targets may be artificially
21480 misaligned by the expansion of preceding frags. */
21481 if (stretch <= 0 && newsize > 2)
21482 {
21483 md_convert_frag (sec->owner, sec, fragp);
21484 frag_wane (fragp);
21485 }
21486
21487 return newsize - oldsize;
21488 }
21489
21490 /* Round up a section size to the appropriate boundary. */
21491
21492 valueT
21493 md_section_align (segT segment ATTRIBUTE_UNUSED,
21494 valueT size)
21495 {
21496 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
21497 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
21498 {
21499 /* For a.out, force the section size to be aligned. If we don't do
21500 this, BFD will align it for us, but it will not write out the
21501 final bytes of the section. This may be a bug in BFD, but it is
21502 easier to fix it here since that is how the other a.out targets
21503 work. */
21504 int align;
21505
21506 align = bfd_get_section_alignment (stdoutput, segment);
21507 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
21508 }
21509 #endif
21510
21511 return size;
21512 }
21513
21514 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
21515 of an rs_align_code fragment. */
21516
21517 void
21518 arm_handle_align (fragS * fragP)
21519 {
21520 static unsigned char const arm_noop[2][2][4] =
21521 {
21522 { /* ARMv1 */
21523 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
21524 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
21525 },
21526 { /* ARMv6k */
21527 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
21528 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
21529 },
21530 };
21531 static unsigned char const thumb_noop[2][2][2] =
21532 {
21533 { /* Thumb-1 */
21534 {0xc0, 0x46}, /* LE */
21535 {0x46, 0xc0}, /* BE */
21536 },
21537 { /* Thumb-2 */
21538 {0x00, 0xbf}, /* LE */
21539 {0xbf, 0x00} /* BE */
21540 }
21541 };
21542 static unsigned char const wide_thumb_noop[2][4] =
21543 { /* Wide Thumb-2 */
21544 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
21545 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
21546 };
21547
21548 unsigned bytes, fix, noop_size;
21549 char * p;
21550 const unsigned char * noop;
21551 const unsigned char *narrow_noop = NULL;
21552 #ifdef OBJ_ELF
21553 enum mstate state;
21554 #endif
21555
21556 if (fragP->fr_type != rs_align_code)
21557 return;
21558
21559 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
21560 p = fragP->fr_literal + fragP->fr_fix;
21561 fix = 0;
21562
21563 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
21564 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
21565
21566 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
21567
21568 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
21569 {
21570 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
21571 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
21572 {
21573 narrow_noop = thumb_noop[1][target_big_endian];
21574 noop = wide_thumb_noop[target_big_endian];
21575 }
21576 else
21577 noop = thumb_noop[0][target_big_endian];
21578 noop_size = 2;
21579 #ifdef OBJ_ELF
21580 state = MAP_THUMB;
21581 #endif
21582 }
21583 else
21584 {
21585 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
21586 ? selected_cpu : arm_arch_none,
21587 arm_ext_v6k) != 0]
21588 [target_big_endian];
21589 noop_size = 4;
21590 #ifdef OBJ_ELF
21591 state = MAP_ARM;
21592 #endif
21593 }
21594
21595 fragP->fr_var = noop_size;
21596
21597 if (bytes & (noop_size - 1))
21598 {
21599 fix = bytes & (noop_size - 1);
21600 #ifdef OBJ_ELF
21601 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
21602 #endif
21603 memset (p, 0, fix);
21604 p += fix;
21605 bytes -= fix;
21606 }
21607
21608 if (narrow_noop)
21609 {
21610 if (bytes & noop_size)
21611 {
21612 /* Insert a narrow noop. */
21613 memcpy (p, narrow_noop, noop_size);
21614 p += noop_size;
21615 bytes -= noop_size;
21616 fix += noop_size;
21617 }
21618
21619 /* Use wide noops for the remainder */
21620 noop_size = 4;
21621 }
21622
21623 while (bytes >= noop_size)
21624 {
21625 memcpy (p, noop, noop_size);
21626 p += noop_size;
21627 bytes -= noop_size;
21628 fix += noop_size;
21629 }
21630
21631 fragP->fr_fix += fix;
21632 }
21633
21634 /* Called from md_do_align. Used to create an alignment
21635 frag in a code section. */
21636
21637 void
21638 arm_frag_align_code (int n, int max)
21639 {
21640 char * p;
21641
21642 /* We assume that there will never be a requirement
21643 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
21644 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
21645 {
21646 char err_msg[128];
21647
21648 sprintf (err_msg,
21649 _("alignments greater than %d bytes not supported in .text sections."),
21650 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
21651 as_fatal ("%s", err_msg);
21652 }
21653
21654 p = frag_var (rs_align_code,
21655 MAX_MEM_FOR_RS_ALIGN_CODE,
21656 1,
21657 (relax_substateT) max,
21658 (symbolS *) NULL,
21659 (offsetT) n,
21660 (char *) NULL);
21661 *p = 0;
21662 }
21663
21664 /* Perform target specific initialisation of a frag.
21665 Note - despite the name this initialisation is not done when the frag
21666 is created, but only when its type is assigned. A frag can be created
21667 and used a long time before its type is set, so beware of assuming that
21668 this initialisationis performed first. */
21669
21670 #ifndef OBJ_ELF
21671 void
21672 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
21673 {
21674 /* Record whether this frag is in an ARM or a THUMB area. */
21675 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21676 }
21677
21678 #else /* OBJ_ELF is defined. */
21679 void
21680 arm_init_frag (fragS * fragP, int max_chars)
21681 {
21682 int frag_thumb_mode;
21683
21684 /* If the current ARM vs THUMB mode has not already
21685 been recorded into this frag then do so now. */
21686 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
21687 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21688
21689 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
21690
21691 /* Record a mapping symbol for alignment frags. We will delete this
21692 later if the alignment ends up empty. */
21693 switch (fragP->fr_type)
21694 {
21695 case rs_align:
21696 case rs_align_test:
21697 case rs_fill:
21698 mapping_state_2 (MAP_DATA, max_chars);
21699 break;
21700 case rs_align_code:
21701 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
21702 break;
21703 default:
21704 break;
21705 }
21706 }
21707
21708 /* When we change sections we need to issue a new mapping symbol. */
21709
21710 void
21711 arm_elf_change_section (void)
21712 {
21713 /* Link an unlinked unwind index table section to the .text section. */
21714 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
21715 && elf_linked_to_section (now_seg) == NULL)
21716 elf_linked_to_section (now_seg) = text_section;
21717 }
21718
21719 int
21720 arm_elf_section_type (const char * str, size_t len)
21721 {
21722 if (len == 5 && strncmp (str, "exidx", 5) == 0)
21723 return SHT_ARM_EXIDX;
21724
21725 return -1;
21726 }
21727 \f
21728 /* Code to deal with unwinding tables. */
21729
21730 static void add_unwind_adjustsp (offsetT);
21731
21732 /* Generate any deferred unwind frame offset. */
21733
21734 static void
21735 flush_pending_unwind (void)
21736 {
21737 offsetT offset;
21738
21739 offset = unwind.pending_offset;
21740 unwind.pending_offset = 0;
21741 if (offset != 0)
21742 add_unwind_adjustsp (offset);
21743 }
21744
21745 /* Add an opcode to this list for this function. Two-byte opcodes should
21746 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
21747 order. */
21748
21749 static void
21750 add_unwind_opcode (valueT op, int length)
21751 {
21752 /* Add any deferred stack adjustment. */
21753 if (unwind.pending_offset)
21754 flush_pending_unwind ();
21755
21756 unwind.sp_restored = 0;
21757
21758 if (unwind.opcode_count + length > unwind.opcode_alloc)
21759 {
21760 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
21761 if (unwind.opcodes)
21762 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
21763 unwind.opcode_alloc);
21764 else
21765 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
21766 }
21767 while (length > 0)
21768 {
21769 length--;
21770 unwind.opcodes[unwind.opcode_count] = op & 0xff;
21771 op >>= 8;
21772 unwind.opcode_count++;
21773 }
21774 }
21775
21776 /* Add unwind opcodes to adjust the stack pointer. */
21777
21778 static void
21779 add_unwind_adjustsp (offsetT offset)
21780 {
21781 valueT op;
21782
21783 if (offset > 0x200)
21784 {
21785 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
21786 char bytes[5];
21787 int n;
21788 valueT o;
21789
21790 /* Long form: 0xb2, uleb128. */
21791 /* This might not fit in a word so add the individual bytes,
21792 remembering the list is built in reverse order. */
21793 o = (valueT) ((offset - 0x204) >> 2);
21794 if (o == 0)
21795 add_unwind_opcode (0, 1);
21796
21797 /* Calculate the uleb128 encoding of the offset. */
21798 n = 0;
21799 while (o)
21800 {
21801 bytes[n] = o & 0x7f;
21802 o >>= 7;
21803 if (o)
21804 bytes[n] |= 0x80;
21805 n++;
21806 }
21807 /* Add the insn. */
21808 for (; n; n--)
21809 add_unwind_opcode (bytes[n - 1], 1);
21810 add_unwind_opcode (0xb2, 1);
21811 }
21812 else if (offset > 0x100)
21813 {
21814 /* Two short opcodes. */
21815 add_unwind_opcode (0x3f, 1);
21816 op = (offset - 0x104) >> 2;
21817 add_unwind_opcode (op, 1);
21818 }
21819 else if (offset > 0)
21820 {
21821 /* Short opcode. */
21822 op = (offset - 4) >> 2;
21823 add_unwind_opcode (op, 1);
21824 }
21825 else if (offset < 0)
21826 {
21827 offset = -offset;
21828 while (offset > 0x100)
21829 {
21830 add_unwind_opcode (0x7f, 1);
21831 offset -= 0x100;
21832 }
21833 op = ((offset - 4) >> 2) | 0x40;
21834 add_unwind_opcode (op, 1);
21835 }
21836 }
21837
21838 /* Finish the list of unwind opcodes for this function. */
21839 static void
21840 finish_unwind_opcodes (void)
21841 {
21842 valueT op;
21843
21844 if (unwind.fp_used)
21845 {
21846 /* Adjust sp as necessary. */
21847 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
21848 flush_pending_unwind ();
21849
21850 /* After restoring sp from the frame pointer. */
21851 op = 0x90 | unwind.fp_reg;
21852 add_unwind_opcode (op, 1);
21853 }
21854 else
21855 flush_pending_unwind ();
21856 }
21857
21858
21859 /* Start an exception table entry. If idx is nonzero this is an index table
21860 entry. */
21861
21862 static void
21863 start_unwind_section (const segT text_seg, int idx)
21864 {
21865 const char * text_name;
21866 const char * prefix;
21867 const char * prefix_once;
21868 const char * group_name;
21869 size_t prefix_len;
21870 size_t text_len;
21871 char * sec_name;
21872 size_t sec_name_len;
21873 int type;
21874 int flags;
21875 int linkonce;
21876
21877 if (idx)
21878 {
21879 prefix = ELF_STRING_ARM_unwind;
21880 prefix_once = ELF_STRING_ARM_unwind_once;
21881 type = SHT_ARM_EXIDX;
21882 }
21883 else
21884 {
21885 prefix = ELF_STRING_ARM_unwind_info;
21886 prefix_once = ELF_STRING_ARM_unwind_info_once;
21887 type = SHT_PROGBITS;
21888 }
21889
21890 text_name = segment_name (text_seg);
21891 if (streq (text_name, ".text"))
21892 text_name = "";
21893
21894 if (strncmp (text_name, ".gnu.linkonce.t.",
21895 strlen (".gnu.linkonce.t.")) == 0)
21896 {
21897 prefix = prefix_once;
21898 text_name += strlen (".gnu.linkonce.t.");
21899 }
21900
21901 prefix_len = strlen (prefix);
21902 text_len = strlen (text_name);
21903 sec_name_len = prefix_len + text_len;
21904 sec_name = (char *) xmalloc (sec_name_len + 1);
21905 memcpy (sec_name, prefix, prefix_len);
21906 memcpy (sec_name + prefix_len, text_name, text_len);
21907 sec_name[prefix_len + text_len] = '\0';
21908
21909 flags = SHF_ALLOC;
21910 linkonce = 0;
21911 group_name = 0;
21912
21913 /* Handle COMDAT group. */
21914 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
21915 {
21916 group_name = elf_group_name (text_seg);
21917 if (group_name == NULL)
21918 {
21919 as_bad (_("Group section `%s' has no group signature"),
21920 segment_name (text_seg));
21921 ignore_rest_of_line ();
21922 return;
21923 }
21924 flags |= SHF_GROUP;
21925 linkonce = 1;
21926 }
21927
21928 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
21929
21930 /* Set the section link for index tables. */
21931 if (idx)
21932 elf_linked_to_section (now_seg) = text_seg;
21933 }
21934
21935
21936 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
21937 personality routine data. Returns zero, or the index table value for
21938 an inline entry. */
21939
21940 static valueT
21941 create_unwind_entry (int have_data)
21942 {
21943 int size;
21944 addressT where;
21945 char *ptr;
21946 /* The current word of data. */
21947 valueT data;
21948 /* The number of bytes left in this word. */
21949 int n;
21950
21951 finish_unwind_opcodes ();
21952
21953 /* Remember the current text section. */
21954 unwind.saved_seg = now_seg;
21955 unwind.saved_subseg = now_subseg;
21956
21957 start_unwind_section (now_seg, 0);
21958
21959 if (unwind.personality_routine == NULL)
21960 {
21961 if (unwind.personality_index == -2)
21962 {
21963 if (have_data)
21964 as_bad (_("handlerdata in cantunwind frame"));
21965 return 1; /* EXIDX_CANTUNWIND. */
21966 }
21967
21968 /* Use a default personality routine if none is specified. */
21969 if (unwind.personality_index == -1)
21970 {
21971 if (unwind.opcode_count > 3)
21972 unwind.personality_index = 1;
21973 else
21974 unwind.personality_index = 0;
21975 }
21976
21977 /* Space for the personality routine entry. */
21978 if (unwind.personality_index == 0)
21979 {
21980 if (unwind.opcode_count > 3)
21981 as_bad (_("too many unwind opcodes for personality routine 0"));
21982
21983 if (!have_data)
21984 {
21985 /* All the data is inline in the index table. */
21986 data = 0x80;
21987 n = 3;
21988 while (unwind.opcode_count > 0)
21989 {
21990 unwind.opcode_count--;
21991 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
21992 n--;
21993 }
21994
21995 /* Pad with "finish" opcodes. */
21996 while (n--)
21997 data = (data << 8) | 0xb0;
21998
21999 return data;
22000 }
22001 size = 0;
22002 }
22003 else
22004 /* We get two opcodes "free" in the first word. */
22005 size = unwind.opcode_count - 2;
22006 }
22007 else
22008 {
22009 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
22010 if (unwind.personality_index != -1)
22011 {
22012 as_bad (_("attempt to recreate an unwind entry"));
22013 return 1;
22014 }
22015
22016 /* An extra byte is required for the opcode count. */
22017 size = unwind.opcode_count + 1;
22018 }
22019
22020 size = (size + 3) >> 2;
22021 if (size > 0xff)
22022 as_bad (_("too many unwind opcodes"));
22023
22024 frag_align (2, 0, 0);
22025 record_alignment (now_seg, 2);
22026 unwind.table_entry = expr_build_dot ();
22027
22028 /* Allocate the table entry. */
22029 ptr = frag_more ((size << 2) + 4);
22030 /* PR 13449: Zero the table entries in case some of them are not used. */
22031 memset (ptr, 0, (size << 2) + 4);
22032 where = frag_now_fix () - ((size << 2) + 4);
22033
22034 switch (unwind.personality_index)
22035 {
22036 case -1:
22037 /* ??? Should this be a PLT generating relocation? */
22038 /* Custom personality routine. */
22039 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
22040 BFD_RELOC_ARM_PREL31);
22041
22042 where += 4;
22043 ptr += 4;
22044
22045 /* Set the first byte to the number of additional words. */
22046 data = size > 0 ? size - 1 : 0;
22047 n = 3;
22048 break;
22049
22050 /* ABI defined personality routines. */
22051 case 0:
22052 /* Three opcodes bytes are packed into the first word. */
22053 data = 0x80;
22054 n = 3;
22055 break;
22056
22057 case 1:
22058 case 2:
22059 /* The size and first two opcode bytes go in the first word. */
22060 data = ((0x80 + unwind.personality_index) << 8) | size;
22061 n = 2;
22062 break;
22063
22064 default:
22065 /* Should never happen. */
22066 abort ();
22067 }
22068
22069 /* Pack the opcodes into words (MSB first), reversing the list at the same
22070 time. */
22071 while (unwind.opcode_count > 0)
22072 {
22073 if (n == 0)
22074 {
22075 md_number_to_chars (ptr, data, 4);
22076 ptr += 4;
22077 n = 4;
22078 data = 0;
22079 }
22080 unwind.opcode_count--;
22081 n--;
22082 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22083 }
22084
22085 /* Finish off the last word. */
22086 if (n < 4)
22087 {
22088 /* Pad with "finish" opcodes. */
22089 while (n--)
22090 data = (data << 8) | 0xb0;
22091
22092 md_number_to_chars (ptr, data, 4);
22093 }
22094
22095 if (!have_data)
22096 {
22097 /* Add an empty descriptor if there is no user-specified data. */
22098 ptr = frag_more (4);
22099 md_number_to_chars (ptr, 0, 4);
22100 }
22101
22102 return 0;
22103 }
22104
22105
22106 /* Initialize the DWARF-2 unwind information for this procedure. */
22107
22108 void
22109 tc_arm_frame_initial_instructions (void)
22110 {
22111 cfi_add_CFA_def_cfa (REG_SP, 0);
22112 }
22113 #endif /* OBJ_ELF */
22114
22115 /* Convert REGNAME to a DWARF-2 register number. */
22116
22117 int
22118 tc_arm_regname_to_dw2regnum (char *regname)
22119 {
22120 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
22121 if (reg != FAIL)
22122 return reg;
22123
22124 /* PR 16694: Allow VFP registers as well. */
22125 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
22126 if (reg != FAIL)
22127 return 64 + reg;
22128
22129 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
22130 if (reg != FAIL)
22131 return reg + 256;
22132
22133 return -1;
22134 }
22135
22136 #ifdef TE_PE
22137 void
22138 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
22139 {
22140 expressionS exp;
22141
22142 exp.X_op = O_secrel;
22143 exp.X_add_symbol = symbol;
22144 exp.X_add_number = 0;
22145 emit_expr (&exp, size);
22146 }
22147 #endif
22148
22149 /* MD interface: Symbol and relocation handling. */
22150
22151 /* Return the address within the segment that a PC-relative fixup is
22152 relative to. For ARM, PC-relative fixups applied to instructions
22153 are generally relative to the location of the fixup plus 8 bytes.
22154 Thumb branches are offset by 4, and Thumb loads relative to PC
22155 require special handling. */
22156
22157 long
22158 md_pcrel_from_section (fixS * fixP, segT seg)
22159 {
22160 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
22161
22162 /* If this is pc-relative and we are going to emit a relocation
22163 then we just want to put out any pipeline compensation that the linker
22164 will need. Otherwise we want to use the calculated base.
22165 For WinCE we skip the bias for externals as well, since this
22166 is how the MS ARM-CE assembler behaves and we want to be compatible. */
22167 if (fixP->fx_pcrel
22168 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
22169 || (arm_force_relocation (fixP)
22170 #ifdef TE_WINCE
22171 && !S_IS_EXTERNAL (fixP->fx_addsy)
22172 #endif
22173 )))
22174 base = 0;
22175
22176
22177 switch (fixP->fx_r_type)
22178 {
22179 /* PC relative addressing on the Thumb is slightly odd as the
22180 bottom two bits of the PC are forced to zero for the
22181 calculation. This happens *after* application of the
22182 pipeline offset. However, Thumb adrl already adjusts for
22183 this, so we need not do it again. */
22184 case BFD_RELOC_ARM_THUMB_ADD:
22185 return base & ~3;
22186
22187 case BFD_RELOC_ARM_THUMB_OFFSET:
22188 case BFD_RELOC_ARM_T32_OFFSET_IMM:
22189 case BFD_RELOC_ARM_T32_ADD_PC12:
22190 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
22191 return (base + 4) & ~3;
22192
22193 /* Thumb branches are simply offset by +4. */
22194 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22195 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22196 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22197 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22198 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22199 return base + 4;
22200
22201 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22202 if (fixP->fx_addsy
22203 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22204 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22205 && ARM_IS_FUNC (fixP->fx_addsy)
22206 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22207 base = fixP->fx_where + fixP->fx_frag->fr_address;
22208 return base + 4;
22209
22210 /* BLX is like branches above, but forces the low two bits of PC to
22211 zero. */
22212 case BFD_RELOC_THUMB_PCREL_BLX:
22213 if (fixP->fx_addsy
22214 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22215 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22216 && THUMB_IS_FUNC (fixP->fx_addsy)
22217 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22218 base = fixP->fx_where + fixP->fx_frag->fr_address;
22219 return (base + 4) & ~3;
22220
22221 /* ARM mode branches are offset by +8. However, the Windows CE
22222 loader expects the relocation not to take this into account. */
22223 case BFD_RELOC_ARM_PCREL_BLX:
22224 if (fixP->fx_addsy
22225 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22226 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22227 && ARM_IS_FUNC (fixP->fx_addsy)
22228 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22229 base = fixP->fx_where + fixP->fx_frag->fr_address;
22230 return base + 8;
22231
22232 case BFD_RELOC_ARM_PCREL_CALL:
22233 if (fixP->fx_addsy
22234 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22235 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22236 && THUMB_IS_FUNC (fixP->fx_addsy)
22237 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22238 base = fixP->fx_where + fixP->fx_frag->fr_address;
22239 return base + 8;
22240
22241 case BFD_RELOC_ARM_PCREL_BRANCH:
22242 case BFD_RELOC_ARM_PCREL_JUMP:
22243 case BFD_RELOC_ARM_PLT32:
22244 #ifdef TE_WINCE
22245 /* When handling fixups immediately, because we have already
22246 discovered the value of a symbol, or the address of the frag involved
22247 we must account for the offset by +8, as the OS loader will never see the reloc.
22248 see fixup_segment() in write.c
22249 The S_IS_EXTERNAL test handles the case of global symbols.
22250 Those need the calculated base, not just the pipe compensation the linker will need. */
22251 if (fixP->fx_pcrel
22252 && fixP->fx_addsy != NULL
22253 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22254 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
22255 return base + 8;
22256 return base;
22257 #else
22258 return base + 8;
22259 #endif
22260
22261
22262 /* ARM mode loads relative to PC are also offset by +8. Unlike
22263 branches, the Windows CE loader *does* expect the relocation
22264 to take this into account. */
22265 case BFD_RELOC_ARM_OFFSET_IMM:
22266 case BFD_RELOC_ARM_OFFSET_IMM8:
22267 case BFD_RELOC_ARM_HWLITERAL:
22268 case BFD_RELOC_ARM_LITERAL:
22269 case BFD_RELOC_ARM_CP_OFF_IMM:
22270 return base + 8;
22271
22272
22273 /* Other PC-relative relocations are un-offset. */
22274 default:
22275 return base;
22276 }
22277 }
22278
22279 static bfd_boolean flag_warn_syms = TRUE;
22280
22281 bfd_boolean
22282 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
22283 {
22284 /* PR 18347 - Warn if the user attempts to create a symbol with the same
22285 name as an ARM instruction. Whilst strictly speaking it is allowed, it
22286 does mean that the resulting code might be very confusing to the reader.
22287 Also this warning can be triggered if the user omits an operand before
22288 an immediate address, eg:
22289
22290 LDR =foo
22291
22292 GAS treats this as an assignment of the value of the symbol foo to a
22293 symbol LDR, and so (without this code) it will not issue any kind of
22294 warning or error message.
22295
22296 Note - ARM instructions are case-insensitive but the strings in the hash
22297 table are all stored in lower case, so we must first ensure that name is
22298 lower case too. */
22299 if (flag_warn_syms && arm_ops_hsh)
22300 {
22301 char * nbuf = strdup (name);
22302 char * p;
22303
22304 for (p = nbuf; *p; p++)
22305 *p = TOLOWER (*p);
22306 if (hash_find (arm_ops_hsh, nbuf) != NULL)
22307 {
22308 static struct hash_control * already_warned = NULL;
22309
22310 if (already_warned == NULL)
22311 already_warned = hash_new ();
22312 /* Only warn about the symbol once. To keep the code
22313 simple we let hash_insert do the lookup for us. */
22314 if (hash_insert (already_warned, name, NULL) == NULL)
22315 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
22316 }
22317 else
22318 free (nbuf);
22319 }
22320
22321 return FALSE;
22322 }
22323
22324 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
22325 Otherwise we have no need to default values of symbols. */
22326
22327 symbolS *
22328 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
22329 {
22330 #ifdef OBJ_ELF
22331 if (name[0] == '_' && name[1] == 'G'
22332 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
22333 {
22334 if (!GOT_symbol)
22335 {
22336 if (symbol_find (name))
22337 as_bad (_("GOT already in the symbol table"));
22338
22339 GOT_symbol = symbol_new (name, undefined_section,
22340 (valueT) 0, & zero_address_frag);
22341 }
22342
22343 return GOT_symbol;
22344 }
22345 #endif
22346
22347 return NULL;
22348 }
22349
22350 /* Subroutine of md_apply_fix. Check to see if an immediate can be
22351 computed as two separate immediate values, added together. We
22352 already know that this value cannot be computed by just one ARM
22353 instruction. */
22354
22355 static unsigned int
22356 validate_immediate_twopart (unsigned int val,
22357 unsigned int * highpart)
22358 {
22359 unsigned int a;
22360 unsigned int i;
22361
22362 for (i = 0; i < 32; i += 2)
22363 if (((a = rotate_left (val, i)) & 0xff) != 0)
22364 {
22365 if (a & 0xff00)
22366 {
22367 if (a & ~ 0xffff)
22368 continue;
22369 * highpart = (a >> 8) | ((i + 24) << 7);
22370 }
22371 else if (a & 0xff0000)
22372 {
22373 if (a & 0xff000000)
22374 continue;
22375 * highpart = (a >> 16) | ((i + 16) << 7);
22376 }
22377 else
22378 {
22379 gas_assert (a & 0xff000000);
22380 * highpart = (a >> 24) | ((i + 8) << 7);
22381 }
22382
22383 return (a & 0xff) | (i << 7);
22384 }
22385
22386 return FAIL;
22387 }
22388
22389 static int
22390 validate_offset_imm (unsigned int val, int hwse)
22391 {
22392 if ((hwse && val > 255) || val > 4095)
22393 return FAIL;
22394 return val;
22395 }
22396
22397 /* Subroutine of md_apply_fix. Do those data_ops which can take a
22398 negative immediate constant by altering the instruction. A bit of
22399 a hack really.
22400 MOV <-> MVN
22401 AND <-> BIC
22402 ADC <-> SBC
22403 by inverting the second operand, and
22404 ADD <-> SUB
22405 CMP <-> CMN
22406 by negating the second operand. */
22407
22408 static int
22409 negate_data_op (unsigned long * instruction,
22410 unsigned long value)
22411 {
22412 int op, new_inst;
22413 unsigned long negated, inverted;
22414
22415 negated = encode_arm_immediate (-value);
22416 inverted = encode_arm_immediate (~value);
22417
22418 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
22419 switch (op)
22420 {
22421 /* First negates. */
22422 case OPCODE_SUB: /* ADD <-> SUB */
22423 new_inst = OPCODE_ADD;
22424 value = negated;
22425 break;
22426
22427 case OPCODE_ADD:
22428 new_inst = OPCODE_SUB;
22429 value = negated;
22430 break;
22431
22432 case OPCODE_CMP: /* CMP <-> CMN */
22433 new_inst = OPCODE_CMN;
22434 value = negated;
22435 break;
22436
22437 case OPCODE_CMN:
22438 new_inst = OPCODE_CMP;
22439 value = negated;
22440 break;
22441
22442 /* Now Inverted ops. */
22443 case OPCODE_MOV: /* MOV <-> MVN */
22444 new_inst = OPCODE_MVN;
22445 value = inverted;
22446 break;
22447
22448 case OPCODE_MVN:
22449 new_inst = OPCODE_MOV;
22450 value = inverted;
22451 break;
22452
22453 case OPCODE_AND: /* AND <-> BIC */
22454 new_inst = OPCODE_BIC;
22455 value = inverted;
22456 break;
22457
22458 case OPCODE_BIC:
22459 new_inst = OPCODE_AND;
22460 value = inverted;
22461 break;
22462
22463 case OPCODE_ADC: /* ADC <-> SBC */
22464 new_inst = OPCODE_SBC;
22465 value = inverted;
22466 break;
22467
22468 case OPCODE_SBC:
22469 new_inst = OPCODE_ADC;
22470 value = inverted;
22471 break;
22472
22473 /* We cannot do anything. */
22474 default:
22475 return FAIL;
22476 }
22477
22478 if (value == (unsigned) FAIL)
22479 return FAIL;
22480
22481 *instruction &= OPCODE_MASK;
22482 *instruction |= new_inst << DATA_OP_SHIFT;
22483 return value;
22484 }
22485
22486 /* Like negate_data_op, but for Thumb-2. */
22487
22488 static unsigned int
22489 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
22490 {
22491 int op, new_inst;
22492 int rd;
22493 unsigned int negated, inverted;
22494
22495 negated = encode_thumb32_immediate (-value);
22496 inverted = encode_thumb32_immediate (~value);
22497
22498 rd = (*instruction >> 8) & 0xf;
22499 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
22500 switch (op)
22501 {
22502 /* ADD <-> SUB. Includes CMP <-> CMN. */
22503 case T2_OPCODE_SUB:
22504 new_inst = T2_OPCODE_ADD;
22505 value = negated;
22506 break;
22507
22508 case T2_OPCODE_ADD:
22509 new_inst = T2_OPCODE_SUB;
22510 value = negated;
22511 break;
22512
22513 /* ORR <-> ORN. Includes MOV <-> MVN. */
22514 case T2_OPCODE_ORR:
22515 new_inst = T2_OPCODE_ORN;
22516 value = inverted;
22517 break;
22518
22519 case T2_OPCODE_ORN:
22520 new_inst = T2_OPCODE_ORR;
22521 value = inverted;
22522 break;
22523
22524 /* AND <-> BIC. TST has no inverted equivalent. */
22525 case T2_OPCODE_AND:
22526 new_inst = T2_OPCODE_BIC;
22527 if (rd == 15)
22528 value = FAIL;
22529 else
22530 value = inverted;
22531 break;
22532
22533 case T2_OPCODE_BIC:
22534 new_inst = T2_OPCODE_AND;
22535 value = inverted;
22536 break;
22537
22538 /* ADC <-> SBC */
22539 case T2_OPCODE_ADC:
22540 new_inst = T2_OPCODE_SBC;
22541 value = inverted;
22542 break;
22543
22544 case T2_OPCODE_SBC:
22545 new_inst = T2_OPCODE_ADC;
22546 value = inverted;
22547 break;
22548
22549 /* We cannot do anything. */
22550 default:
22551 return FAIL;
22552 }
22553
22554 if (value == (unsigned int)FAIL)
22555 return FAIL;
22556
22557 *instruction &= T2_OPCODE_MASK;
22558 *instruction |= new_inst << T2_DATA_OP_SHIFT;
22559 return value;
22560 }
22561
22562 /* Read a 32-bit thumb instruction from buf. */
22563 static unsigned long
22564 get_thumb32_insn (char * buf)
22565 {
22566 unsigned long insn;
22567 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
22568 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22569
22570 return insn;
22571 }
22572
22573
22574 /* We usually want to set the low bit on the address of thumb function
22575 symbols. In particular .word foo - . should have the low bit set.
22576 Generic code tries to fold the difference of two symbols to
22577 a constant. Prevent this and force a relocation when the first symbols
22578 is a thumb function. */
22579
22580 bfd_boolean
22581 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
22582 {
22583 if (op == O_subtract
22584 && l->X_op == O_symbol
22585 && r->X_op == O_symbol
22586 && THUMB_IS_FUNC (l->X_add_symbol))
22587 {
22588 l->X_op = O_subtract;
22589 l->X_op_symbol = r->X_add_symbol;
22590 l->X_add_number -= r->X_add_number;
22591 return TRUE;
22592 }
22593
22594 /* Process as normal. */
22595 return FALSE;
22596 }
22597
22598 /* Encode Thumb2 unconditional branches and calls. The encoding
22599 for the 2 are identical for the immediate values. */
22600
22601 static void
22602 encode_thumb2_b_bl_offset (char * buf, offsetT value)
22603 {
22604 #define T2I1I2MASK ((1 << 13) | (1 << 11))
22605 offsetT newval;
22606 offsetT newval2;
22607 addressT S, I1, I2, lo, hi;
22608
22609 S = (value >> 24) & 0x01;
22610 I1 = (value >> 23) & 0x01;
22611 I2 = (value >> 22) & 0x01;
22612 hi = (value >> 12) & 0x3ff;
22613 lo = (value >> 1) & 0x7ff;
22614 newval = md_chars_to_number (buf, THUMB_SIZE);
22615 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22616 newval |= (S << 10) | hi;
22617 newval2 &= ~T2I1I2MASK;
22618 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
22619 md_number_to_chars (buf, newval, THUMB_SIZE);
22620 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
22621 }
22622
22623 void
22624 md_apply_fix (fixS * fixP,
22625 valueT * valP,
22626 segT seg)
22627 {
22628 offsetT value = * valP;
22629 offsetT newval;
22630 unsigned int newimm;
22631 unsigned long temp;
22632 int sign;
22633 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
22634
22635 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
22636
22637 /* Note whether this will delete the relocation. */
22638
22639 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
22640 fixP->fx_done = 1;
22641
22642 /* On a 64-bit host, silently truncate 'value' to 32 bits for
22643 consistency with the behaviour on 32-bit hosts. Remember value
22644 for emit_reloc. */
22645 value &= 0xffffffff;
22646 value ^= 0x80000000;
22647 value -= 0x80000000;
22648
22649 *valP = value;
22650 fixP->fx_addnumber = value;
22651
22652 /* Same treatment for fixP->fx_offset. */
22653 fixP->fx_offset &= 0xffffffff;
22654 fixP->fx_offset ^= 0x80000000;
22655 fixP->fx_offset -= 0x80000000;
22656
22657 switch (fixP->fx_r_type)
22658 {
22659 case BFD_RELOC_NONE:
22660 /* This will need to go in the object file. */
22661 fixP->fx_done = 0;
22662 break;
22663
22664 case BFD_RELOC_ARM_IMMEDIATE:
22665 /* We claim that this fixup has been processed here,
22666 even if in fact we generate an error because we do
22667 not have a reloc for it, so tc_gen_reloc will reject it. */
22668 fixP->fx_done = 1;
22669
22670 if (fixP->fx_addsy)
22671 {
22672 const char *msg = 0;
22673
22674 if (! S_IS_DEFINED (fixP->fx_addsy))
22675 msg = _("undefined symbol %s used as an immediate value");
22676 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
22677 msg = _("symbol %s is in a different section");
22678 else if (S_IS_WEAK (fixP->fx_addsy))
22679 msg = _("symbol %s is weak and may be overridden later");
22680
22681 if (msg)
22682 {
22683 as_bad_where (fixP->fx_file, fixP->fx_line,
22684 msg, S_GET_NAME (fixP->fx_addsy));
22685 break;
22686 }
22687 }
22688
22689 temp = md_chars_to_number (buf, INSN_SIZE);
22690
22691 /* If the offset is negative, we should use encoding A2 for ADR. */
22692 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
22693 newimm = negate_data_op (&temp, value);
22694 else
22695 {
22696 newimm = encode_arm_immediate (value);
22697
22698 /* If the instruction will fail, see if we can fix things up by
22699 changing the opcode. */
22700 if (newimm == (unsigned int) FAIL)
22701 newimm = negate_data_op (&temp, value);
22702 }
22703
22704 if (newimm == (unsigned int) FAIL)
22705 {
22706 as_bad_where (fixP->fx_file, fixP->fx_line,
22707 _("invalid constant (%lx) after fixup"),
22708 (unsigned long) value);
22709 break;
22710 }
22711
22712 newimm |= (temp & 0xfffff000);
22713 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
22714 break;
22715
22716 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22717 {
22718 unsigned int highpart = 0;
22719 unsigned int newinsn = 0xe1a00000; /* nop. */
22720
22721 if (fixP->fx_addsy)
22722 {
22723 const char *msg = 0;
22724
22725 if (! S_IS_DEFINED (fixP->fx_addsy))
22726 msg = _("undefined symbol %s used as an immediate value");
22727 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
22728 msg = _("symbol %s is in a different section");
22729 else if (S_IS_WEAK (fixP->fx_addsy))
22730 msg = _("symbol %s is weak and may be overridden later");
22731
22732 if (msg)
22733 {
22734 as_bad_where (fixP->fx_file, fixP->fx_line,
22735 msg, S_GET_NAME (fixP->fx_addsy));
22736 break;
22737 }
22738 }
22739
22740 newimm = encode_arm_immediate (value);
22741 temp = md_chars_to_number (buf, INSN_SIZE);
22742
22743 /* If the instruction will fail, see if we can fix things up by
22744 changing the opcode. */
22745 if (newimm == (unsigned int) FAIL
22746 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
22747 {
22748 /* No ? OK - try using two ADD instructions to generate
22749 the value. */
22750 newimm = validate_immediate_twopart (value, & highpart);
22751
22752 /* Yes - then make sure that the second instruction is
22753 also an add. */
22754 if (newimm != (unsigned int) FAIL)
22755 newinsn = temp;
22756 /* Still No ? Try using a negated value. */
22757 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
22758 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
22759 /* Otherwise - give up. */
22760 else
22761 {
22762 as_bad_where (fixP->fx_file, fixP->fx_line,
22763 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
22764 (long) value);
22765 break;
22766 }
22767
22768 /* Replace the first operand in the 2nd instruction (which
22769 is the PC) with the destination register. We have
22770 already added in the PC in the first instruction and we
22771 do not want to do it again. */
22772 newinsn &= ~ 0xf0000;
22773 newinsn |= ((newinsn & 0x0f000) << 4);
22774 }
22775
22776 newimm |= (temp & 0xfffff000);
22777 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
22778
22779 highpart |= (newinsn & 0xfffff000);
22780 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
22781 }
22782 break;
22783
22784 case BFD_RELOC_ARM_OFFSET_IMM:
22785 if (!fixP->fx_done && seg->use_rela_p)
22786 value = 0;
22787
22788 case BFD_RELOC_ARM_LITERAL:
22789 sign = value > 0;
22790
22791 if (value < 0)
22792 value = - value;
22793
22794 if (validate_offset_imm (value, 0) == FAIL)
22795 {
22796 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
22797 as_bad_where (fixP->fx_file, fixP->fx_line,
22798 _("invalid literal constant: pool needs to be closer"));
22799 else
22800 as_bad_where (fixP->fx_file, fixP->fx_line,
22801 _("bad immediate value for offset (%ld)"),
22802 (long) value);
22803 break;
22804 }
22805
22806 newval = md_chars_to_number (buf, INSN_SIZE);
22807 if (value == 0)
22808 newval &= 0xfffff000;
22809 else
22810 {
22811 newval &= 0xff7ff000;
22812 newval |= value | (sign ? INDEX_UP : 0);
22813 }
22814 md_number_to_chars (buf, newval, INSN_SIZE);
22815 break;
22816
22817 case BFD_RELOC_ARM_OFFSET_IMM8:
22818 case BFD_RELOC_ARM_HWLITERAL:
22819 sign = value > 0;
22820
22821 if (value < 0)
22822 value = - value;
22823
22824 if (validate_offset_imm (value, 1) == FAIL)
22825 {
22826 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
22827 as_bad_where (fixP->fx_file, fixP->fx_line,
22828 _("invalid literal constant: pool needs to be closer"));
22829 else
22830 as_bad_where (fixP->fx_file, fixP->fx_line,
22831 _("bad immediate value for 8-bit offset (%ld)"),
22832 (long) value);
22833 break;
22834 }
22835
22836 newval = md_chars_to_number (buf, INSN_SIZE);
22837 if (value == 0)
22838 newval &= 0xfffff0f0;
22839 else
22840 {
22841 newval &= 0xff7ff0f0;
22842 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
22843 }
22844 md_number_to_chars (buf, newval, INSN_SIZE);
22845 break;
22846
22847 case BFD_RELOC_ARM_T32_OFFSET_U8:
22848 if (value < 0 || value > 1020 || value % 4 != 0)
22849 as_bad_where (fixP->fx_file, fixP->fx_line,
22850 _("bad immediate value for offset (%ld)"), (long) value);
22851 value /= 4;
22852
22853 newval = md_chars_to_number (buf+2, THUMB_SIZE);
22854 newval |= value;
22855 md_number_to_chars (buf+2, newval, THUMB_SIZE);
22856 break;
22857
22858 case BFD_RELOC_ARM_T32_OFFSET_IMM:
22859 /* This is a complicated relocation used for all varieties of Thumb32
22860 load/store instruction with immediate offset:
22861
22862 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
22863 *4, optional writeback(W)
22864 (doubleword load/store)
22865
22866 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
22867 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
22868 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
22869 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
22870 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
22871
22872 Uppercase letters indicate bits that are already encoded at
22873 this point. Lowercase letters are our problem. For the
22874 second block of instructions, the secondary opcode nybble
22875 (bits 8..11) is present, and bit 23 is zero, even if this is
22876 a PC-relative operation. */
22877 newval = md_chars_to_number (buf, THUMB_SIZE);
22878 newval <<= 16;
22879 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
22880
22881 if ((newval & 0xf0000000) == 0xe0000000)
22882 {
22883 /* Doubleword load/store: 8-bit offset, scaled by 4. */
22884 if (value >= 0)
22885 newval |= (1 << 23);
22886 else
22887 value = -value;
22888 if (value % 4 != 0)
22889 {
22890 as_bad_where (fixP->fx_file, fixP->fx_line,
22891 _("offset not a multiple of 4"));
22892 break;
22893 }
22894 value /= 4;
22895 if (value > 0xff)
22896 {
22897 as_bad_where (fixP->fx_file, fixP->fx_line,
22898 _("offset out of range"));
22899 break;
22900 }
22901 newval &= ~0xff;
22902 }
22903 else if ((newval & 0x000f0000) == 0x000f0000)
22904 {
22905 /* PC-relative, 12-bit offset. */
22906 if (value >= 0)
22907 newval |= (1 << 23);
22908 else
22909 value = -value;
22910 if (value > 0xfff)
22911 {
22912 as_bad_where (fixP->fx_file, fixP->fx_line,
22913 _("offset out of range"));
22914 break;
22915 }
22916 newval &= ~0xfff;
22917 }
22918 else if ((newval & 0x00000100) == 0x00000100)
22919 {
22920 /* Writeback: 8-bit, +/- offset. */
22921 if (value >= 0)
22922 newval |= (1 << 9);
22923 else
22924 value = -value;
22925 if (value > 0xff)
22926 {
22927 as_bad_where (fixP->fx_file, fixP->fx_line,
22928 _("offset out of range"));
22929 break;
22930 }
22931 newval &= ~0xff;
22932 }
22933 else if ((newval & 0x00000f00) == 0x00000e00)
22934 {
22935 /* T-instruction: positive 8-bit offset. */
22936 if (value < 0 || value > 0xff)
22937 {
22938 as_bad_where (fixP->fx_file, fixP->fx_line,
22939 _("offset out of range"));
22940 break;
22941 }
22942 newval &= ~0xff;
22943 newval |= value;
22944 }
22945 else
22946 {
22947 /* Positive 12-bit or negative 8-bit offset. */
22948 int limit;
22949 if (value >= 0)
22950 {
22951 newval |= (1 << 23);
22952 limit = 0xfff;
22953 }
22954 else
22955 {
22956 value = -value;
22957 limit = 0xff;
22958 }
22959 if (value > limit)
22960 {
22961 as_bad_where (fixP->fx_file, fixP->fx_line,
22962 _("offset out of range"));
22963 break;
22964 }
22965 newval &= ~limit;
22966 }
22967
22968 newval |= value;
22969 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
22970 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
22971 break;
22972
22973 case BFD_RELOC_ARM_SHIFT_IMM:
22974 newval = md_chars_to_number (buf, INSN_SIZE);
22975 if (((unsigned long) value) > 32
22976 || (value == 32
22977 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
22978 {
22979 as_bad_where (fixP->fx_file, fixP->fx_line,
22980 _("shift expression is too large"));
22981 break;
22982 }
22983
22984 if (value == 0)
22985 /* Shifts of zero must be done as lsl. */
22986 newval &= ~0x60;
22987 else if (value == 32)
22988 value = 0;
22989 newval &= 0xfffff07f;
22990 newval |= (value & 0x1f) << 7;
22991 md_number_to_chars (buf, newval, INSN_SIZE);
22992 break;
22993
22994 case BFD_RELOC_ARM_T32_IMMEDIATE:
22995 case BFD_RELOC_ARM_T32_ADD_IMM:
22996 case BFD_RELOC_ARM_T32_IMM12:
22997 case BFD_RELOC_ARM_T32_ADD_PC12:
22998 /* We claim that this fixup has been processed here,
22999 even if in fact we generate an error because we do
23000 not have a reloc for it, so tc_gen_reloc will reject it. */
23001 fixP->fx_done = 1;
23002
23003 if (fixP->fx_addsy
23004 && ! S_IS_DEFINED (fixP->fx_addsy))
23005 {
23006 as_bad_where (fixP->fx_file, fixP->fx_line,
23007 _("undefined symbol %s used as an immediate value"),
23008 S_GET_NAME (fixP->fx_addsy));
23009 break;
23010 }
23011
23012 newval = md_chars_to_number (buf, THUMB_SIZE);
23013 newval <<= 16;
23014 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
23015
23016 newimm = FAIL;
23017 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23018 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23019 {
23020 newimm = encode_thumb32_immediate (value);
23021 if (newimm == (unsigned int) FAIL)
23022 newimm = thumb32_negate_data_op (&newval, value);
23023 }
23024 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
23025 && newimm == (unsigned int) FAIL)
23026 {
23027 /* Turn add/sum into addw/subw. */
23028 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23029 newval = (newval & 0xfeffffff) | 0x02000000;
23030 /* No flat 12-bit imm encoding for addsw/subsw. */
23031 if ((newval & 0x00100000) == 0)
23032 {
23033 /* 12 bit immediate for addw/subw. */
23034 if (value < 0)
23035 {
23036 value = -value;
23037 newval ^= 0x00a00000;
23038 }
23039 if (value > 0xfff)
23040 newimm = (unsigned int) FAIL;
23041 else
23042 newimm = value;
23043 }
23044 }
23045
23046 if (newimm == (unsigned int)FAIL)
23047 {
23048 as_bad_where (fixP->fx_file, fixP->fx_line,
23049 _("invalid constant (%lx) after fixup"),
23050 (unsigned long) value);
23051 break;
23052 }
23053
23054 newval |= (newimm & 0x800) << 15;
23055 newval |= (newimm & 0x700) << 4;
23056 newval |= (newimm & 0x0ff);
23057
23058 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
23059 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
23060 break;
23061
23062 case BFD_RELOC_ARM_SMC:
23063 if (((unsigned long) value) > 0xffff)
23064 as_bad_where (fixP->fx_file, fixP->fx_line,
23065 _("invalid smc expression"));
23066 newval = md_chars_to_number (buf, INSN_SIZE);
23067 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23068 md_number_to_chars (buf, newval, INSN_SIZE);
23069 break;
23070
23071 case BFD_RELOC_ARM_HVC:
23072 if (((unsigned long) value) > 0xffff)
23073 as_bad_where (fixP->fx_file, fixP->fx_line,
23074 _("invalid hvc expression"));
23075 newval = md_chars_to_number (buf, INSN_SIZE);
23076 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23077 md_number_to_chars (buf, newval, INSN_SIZE);
23078 break;
23079
23080 case BFD_RELOC_ARM_SWI:
23081 if (fixP->tc_fix_data != 0)
23082 {
23083 if (((unsigned long) value) > 0xff)
23084 as_bad_where (fixP->fx_file, fixP->fx_line,
23085 _("invalid swi expression"));
23086 newval = md_chars_to_number (buf, THUMB_SIZE);
23087 newval |= value;
23088 md_number_to_chars (buf, newval, THUMB_SIZE);
23089 }
23090 else
23091 {
23092 if (((unsigned long) value) > 0x00ffffff)
23093 as_bad_where (fixP->fx_file, fixP->fx_line,
23094 _("invalid swi expression"));
23095 newval = md_chars_to_number (buf, INSN_SIZE);
23096 newval |= value;
23097 md_number_to_chars (buf, newval, INSN_SIZE);
23098 }
23099 break;
23100
23101 case BFD_RELOC_ARM_MULTI:
23102 if (((unsigned long) value) > 0xffff)
23103 as_bad_where (fixP->fx_file, fixP->fx_line,
23104 _("invalid expression in load/store multiple"));
23105 newval = value | md_chars_to_number (buf, INSN_SIZE);
23106 md_number_to_chars (buf, newval, INSN_SIZE);
23107 break;
23108
23109 #ifdef OBJ_ELF
23110 case BFD_RELOC_ARM_PCREL_CALL:
23111
23112 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23113 && fixP->fx_addsy
23114 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23115 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23116 && THUMB_IS_FUNC (fixP->fx_addsy))
23117 /* Flip the bl to blx. This is a simple flip
23118 bit here because we generate PCREL_CALL for
23119 unconditional bls. */
23120 {
23121 newval = md_chars_to_number (buf, INSN_SIZE);
23122 newval = newval | 0x10000000;
23123 md_number_to_chars (buf, newval, INSN_SIZE);
23124 temp = 1;
23125 fixP->fx_done = 1;
23126 }
23127 else
23128 temp = 3;
23129 goto arm_branch_common;
23130
23131 case BFD_RELOC_ARM_PCREL_JUMP:
23132 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23133 && fixP->fx_addsy
23134 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23135 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23136 && THUMB_IS_FUNC (fixP->fx_addsy))
23137 {
23138 /* This would map to a bl<cond>, b<cond>,
23139 b<always> to a Thumb function. We
23140 need to force a relocation for this particular
23141 case. */
23142 newval = md_chars_to_number (buf, INSN_SIZE);
23143 fixP->fx_done = 0;
23144 }
23145
23146 case BFD_RELOC_ARM_PLT32:
23147 #endif
23148 case BFD_RELOC_ARM_PCREL_BRANCH:
23149 temp = 3;
23150 goto arm_branch_common;
23151
23152 case BFD_RELOC_ARM_PCREL_BLX:
23153
23154 temp = 1;
23155 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23156 && fixP->fx_addsy
23157 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23158 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23159 && ARM_IS_FUNC (fixP->fx_addsy))
23160 {
23161 /* Flip the blx to a bl and warn. */
23162 const char *name = S_GET_NAME (fixP->fx_addsy);
23163 newval = 0xeb000000;
23164 as_warn_where (fixP->fx_file, fixP->fx_line,
23165 _("blx to '%s' an ARM ISA state function changed to bl"),
23166 name);
23167 md_number_to_chars (buf, newval, INSN_SIZE);
23168 temp = 3;
23169 fixP->fx_done = 1;
23170 }
23171
23172 #ifdef OBJ_ELF
23173 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
23174 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
23175 #endif
23176
23177 arm_branch_common:
23178 /* We are going to store value (shifted right by two) in the
23179 instruction, in a 24 bit, signed field. Bits 26 through 32 either
23180 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
23181 also be be clear. */
23182 if (value & temp)
23183 as_bad_where (fixP->fx_file, fixP->fx_line,
23184 _("misaligned branch destination"));
23185 if ((value & (offsetT)0xfe000000) != (offsetT)0
23186 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
23187 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23188
23189 if (fixP->fx_done || !seg->use_rela_p)
23190 {
23191 newval = md_chars_to_number (buf, INSN_SIZE);
23192 newval |= (value >> 2) & 0x00ffffff;
23193 /* Set the H bit on BLX instructions. */
23194 if (temp == 1)
23195 {
23196 if (value & 2)
23197 newval |= 0x01000000;
23198 else
23199 newval &= ~0x01000000;
23200 }
23201 md_number_to_chars (buf, newval, INSN_SIZE);
23202 }
23203 break;
23204
23205 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
23206 /* CBZ can only branch forward. */
23207
23208 /* Attempts to use CBZ to branch to the next instruction
23209 (which, strictly speaking, are prohibited) will be turned into
23210 no-ops.
23211
23212 FIXME: It may be better to remove the instruction completely and
23213 perform relaxation. */
23214 if (value == -2)
23215 {
23216 newval = md_chars_to_number (buf, THUMB_SIZE);
23217 newval = 0xbf00; /* NOP encoding T1 */
23218 md_number_to_chars (buf, newval, THUMB_SIZE);
23219 }
23220 else
23221 {
23222 if (value & ~0x7e)
23223 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23224
23225 if (fixP->fx_done || !seg->use_rela_p)
23226 {
23227 newval = md_chars_to_number (buf, THUMB_SIZE);
23228 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
23229 md_number_to_chars (buf, newval, THUMB_SIZE);
23230 }
23231 }
23232 break;
23233
23234 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
23235 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
23236 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23237
23238 if (fixP->fx_done || !seg->use_rela_p)
23239 {
23240 newval = md_chars_to_number (buf, THUMB_SIZE);
23241 newval |= (value & 0x1ff) >> 1;
23242 md_number_to_chars (buf, newval, THUMB_SIZE);
23243 }
23244 break;
23245
23246 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
23247 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
23248 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23249
23250 if (fixP->fx_done || !seg->use_rela_p)
23251 {
23252 newval = md_chars_to_number (buf, THUMB_SIZE);
23253 newval |= (value & 0xfff) >> 1;
23254 md_number_to_chars (buf, newval, THUMB_SIZE);
23255 }
23256 break;
23257
23258 case BFD_RELOC_THUMB_PCREL_BRANCH20:
23259 if (fixP->fx_addsy
23260 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23261 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23262 && ARM_IS_FUNC (fixP->fx_addsy)
23263 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23264 {
23265 /* Force a relocation for a branch 20 bits wide. */
23266 fixP->fx_done = 0;
23267 }
23268 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
23269 as_bad_where (fixP->fx_file, fixP->fx_line,
23270 _("conditional branch out of range"));
23271
23272 if (fixP->fx_done || !seg->use_rela_p)
23273 {
23274 offsetT newval2;
23275 addressT S, J1, J2, lo, hi;
23276
23277 S = (value & 0x00100000) >> 20;
23278 J2 = (value & 0x00080000) >> 19;
23279 J1 = (value & 0x00040000) >> 18;
23280 hi = (value & 0x0003f000) >> 12;
23281 lo = (value & 0x00000ffe) >> 1;
23282
23283 newval = md_chars_to_number (buf, THUMB_SIZE);
23284 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23285 newval |= (S << 10) | hi;
23286 newval2 |= (J1 << 13) | (J2 << 11) | lo;
23287 md_number_to_chars (buf, newval, THUMB_SIZE);
23288 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23289 }
23290 break;
23291
23292 case BFD_RELOC_THUMB_PCREL_BLX:
23293 /* If there is a blx from a thumb state function to
23294 another thumb function flip this to a bl and warn
23295 about it. */
23296
23297 if (fixP->fx_addsy
23298 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23299 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23300 && THUMB_IS_FUNC (fixP->fx_addsy))
23301 {
23302 const char *name = S_GET_NAME (fixP->fx_addsy);
23303 as_warn_where (fixP->fx_file, fixP->fx_line,
23304 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
23305 name);
23306 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23307 newval = newval | 0x1000;
23308 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23309 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23310 fixP->fx_done = 1;
23311 }
23312
23313
23314 goto thumb_bl_common;
23315
23316 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23317 /* A bl from Thumb state ISA to an internal ARM state function
23318 is converted to a blx. */
23319 if (fixP->fx_addsy
23320 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23321 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23322 && ARM_IS_FUNC (fixP->fx_addsy)
23323 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
23324 {
23325 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23326 newval = newval & ~0x1000;
23327 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
23328 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
23329 fixP->fx_done = 1;
23330 }
23331
23332 thumb_bl_common:
23333
23334 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23335 /* For a BLX instruction, make sure that the relocation is rounded up
23336 to a word boundary. This follows the semantics of the instruction
23337 which specifies that bit 1 of the target address will come from bit
23338 1 of the base address. */
23339 value = (value + 3) & ~ 3;
23340
23341 #ifdef OBJ_ELF
23342 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
23343 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
23344 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
23345 #endif
23346
23347 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
23348 {
23349 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
23350 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23351 else if ((value & ~0x1ffffff)
23352 && ((value & ~0x1ffffff) != ~0x1ffffff))
23353 as_bad_where (fixP->fx_file, fixP->fx_line,
23354 _("Thumb2 branch out of range"));
23355 }
23356
23357 if (fixP->fx_done || !seg->use_rela_p)
23358 encode_thumb2_b_bl_offset (buf, value);
23359
23360 break;
23361
23362 case BFD_RELOC_THUMB_PCREL_BRANCH25:
23363 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
23364 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23365
23366 if (fixP->fx_done || !seg->use_rela_p)
23367 encode_thumb2_b_bl_offset (buf, value);
23368
23369 break;
23370
23371 case BFD_RELOC_8:
23372 if (fixP->fx_done || !seg->use_rela_p)
23373 *buf = value;
23374 break;
23375
23376 case BFD_RELOC_16:
23377 if (fixP->fx_done || !seg->use_rela_p)
23378 md_number_to_chars (buf, value, 2);
23379 break;
23380
23381 #ifdef OBJ_ELF
23382 case BFD_RELOC_ARM_TLS_CALL:
23383 case BFD_RELOC_ARM_THM_TLS_CALL:
23384 case BFD_RELOC_ARM_TLS_DESCSEQ:
23385 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
23386 case BFD_RELOC_ARM_TLS_GOTDESC:
23387 case BFD_RELOC_ARM_TLS_GD32:
23388 case BFD_RELOC_ARM_TLS_LE32:
23389 case BFD_RELOC_ARM_TLS_IE32:
23390 case BFD_RELOC_ARM_TLS_LDM32:
23391 case BFD_RELOC_ARM_TLS_LDO32:
23392 S_SET_THREAD_LOCAL (fixP->fx_addsy);
23393 break;
23394
23395 case BFD_RELOC_ARM_GOT32:
23396 case BFD_RELOC_ARM_GOTOFF:
23397 break;
23398
23399 case BFD_RELOC_ARM_GOT_PREL:
23400 if (fixP->fx_done || !seg->use_rela_p)
23401 md_number_to_chars (buf, value, 4);
23402 break;
23403
23404 case BFD_RELOC_ARM_TARGET2:
23405 /* TARGET2 is not partial-inplace, so we need to write the
23406 addend here for REL targets, because it won't be written out
23407 during reloc processing later. */
23408 if (fixP->fx_done || !seg->use_rela_p)
23409 md_number_to_chars (buf, fixP->fx_offset, 4);
23410 break;
23411 #endif
23412
23413 case BFD_RELOC_RVA:
23414 case BFD_RELOC_32:
23415 case BFD_RELOC_ARM_TARGET1:
23416 case BFD_RELOC_ARM_ROSEGREL32:
23417 case BFD_RELOC_ARM_SBREL32:
23418 case BFD_RELOC_32_PCREL:
23419 #ifdef TE_PE
23420 case BFD_RELOC_32_SECREL:
23421 #endif
23422 if (fixP->fx_done || !seg->use_rela_p)
23423 #ifdef TE_WINCE
23424 /* For WinCE we only do this for pcrel fixups. */
23425 if (fixP->fx_done || fixP->fx_pcrel)
23426 #endif
23427 md_number_to_chars (buf, value, 4);
23428 break;
23429
23430 #ifdef OBJ_ELF
23431 case BFD_RELOC_ARM_PREL31:
23432 if (fixP->fx_done || !seg->use_rela_p)
23433 {
23434 newval = md_chars_to_number (buf, 4) & 0x80000000;
23435 if ((value ^ (value >> 1)) & 0x40000000)
23436 {
23437 as_bad_where (fixP->fx_file, fixP->fx_line,
23438 _("rel31 relocation overflow"));
23439 }
23440 newval |= value & 0x7fffffff;
23441 md_number_to_chars (buf, newval, 4);
23442 }
23443 break;
23444 #endif
23445
23446 case BFD_RELOC_ARM_CP_OFF_IMM:
23447 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
23448 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
23449 newval = md_chars_to_number (buf, INSN_SIZE);
23450 else
23451 newval = get_thumb32_insn (buf);
23452 if ((newval & 0x0f200f00) == 0x0d000900)
23453 {
23454 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
23455 has permitted values that are multiples of 2, in the range 0
23456 to 510. */
23457 if (value < -510 || value > 510 || (value & 1))
23458 as_bad_where (fixP->fx_file, fixP->fx_line,
23459 _("co-processor offset out of range"));
23460 }
23461 else if (value < -1023 || value > 1023 || (value & 3))
23462 as_bad_where (fixP->fx_file, fixP->fx_line,
23463 _("co-processor offset out of range"));
23464 cp_off_common:
23465 sign = value > 0;
23466 if (value < 0)
23467 value = -value;
23468 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23469 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
23470 newval = md_chars_to_number (buf, INSN_SIZE);
23471 else
23472 newval = get_thumb32_insn (buf);
23473 if (value == 0)
23474 newval &= 0xffffff00;
23475 else
23476 {
23477 newval &= 0xff7fff00;
23478 if ((newval & 0x0f200f00) == 0x0d000900)
23479 {
23480 /* This is a fp16 vstr/vldr.
23481
23482 It requires the immediate offset in the instruction is shifted
23483 left by 1 to be a half-word offset.
23484
23485 Here, left shift by 1 first, and later right shift by 2
23486 should get the right offset. */
23487 value <<= 1;
23488 }
23489 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
23490 }
23491 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
23492 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
23493 md_number_to_chars (buf, newval, INSN_SIZE);
23494 else
23495 put_thumb32_insn (buf, newval);
23496 break;
23497
23498 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
23499 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
23500 if (value < -255 || value > 255)
23501 as_bad_where (fixP->fx_file, fixP->fx_line,
23502 _("co-processor offset out of range"));
23503 value *= 4;
23504 goto cp_off_common;
23505
23506 case BFD_RELOC_ARM_THUMB_OFFSET:
23507 newval = md_chars_to_number (buf, THUMB_SIZE);
23508 /* Exactly what ranges, and where the offset is inserted depends
23509 on the type of instruction, we can establish this from the
23510 top 4 bits. */
23511 switch (newval >> 12)
23512 {
23513 case 4: /* PC load. */
23514 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
23515 forced to zero for these loads; md_pcrel_from has already
23516 compensated for this. */
23517 if (value & 3)
23518 as_bad_where (fixP->fx_file, fixP->fx_line,
23519 _("invalid offset, target not word aligned (0x%08lX)"),
23520 (((unsigned long) fixP->fx_frag->fr_address
23521 + (unsigned long) fixP->fx_where) & ~3)
23522 + (unsigned long) value);
23523
23524 if (value & ~0x3fc)
23525 as_bad_where (fixP->fx_file, fixP->fx_line,
23526 _("invalid offset, value too big (0x%08lX)"),
23527 (long) value);
23528
23529 newval |= value >> 2;
23530 break;
23531
23532 case 9: /* SP load/store. */
23533 if (value & ~0x3fc)
23534 as_bad_where (fixP->fx_file, fixP->fx_line,
23535 _("invalid offset, value too big (0x%08lX)"),
23536 (long) value);
23537 newval |= value >> 2;
23538 break;
23539
23540 case 6: /* Word load/store. */
23541 if (value & ~0x7c)
23542 as_bad_where (fixP->fx_file, fixP->fx_line,
23543 _("invalid offset, value too big (0x%08lX)"),
23544 (long) value);
23545 newval |= value << 4; /* 6 - 2. */
23546 break;
23547
23548 case 7: /* Byte load/store. */
23549 if (value & ~0x1f)
23550 as_bad_where (fixP->fx_file, fixP->fx_line,
23551 _("invalid offset, value too big (0x%08lX)"),
23552 (long) value);
23553 newval |= value << 6;
23554 break;
23555
23556 case 8: /* Halfword load/store. */
23557 if (value & ~0x3e)
23558 as_bad_where (fixP->fx_file, fixP->fx_line,
23559 _("invalid offset, value too big (0x%08lX)"),
23560 (long) value);
23561 newval |= value << 5; /* 6 - 1. */
23562 break;
23563
23564 default:
23565 as_bad_where (fixP->fx_file, fixP->fx_line,
23566 "Unable to process relocation for thumb opcode: %lx",
23567 (unsigned long) newval);
23568 break;
23569 }
23570 md_number_to_chars (buf, newval, THUMB_SIZE);
23571 break;
23572
23573 case BFD_RELOC_ARM_THUMB_ADD:
23574 /* This is a complicated relocation, since we use it for all of
23575 the following immediate relocations:
23576
23577 3bit ADD/SUB
23578 8bit ADD/SUB
23579 9bit ADD/SUB SP word-aligned
23580 10bit ADD PC/SP word-aligned
23581
23582 The type of instruction being processed is encoded in the
23583 instruction field:
23584
23585 0x8000 SUB
23586 0x00F0 Rd
23587 0x000F Rs
23588 */
23589 newval = md_chars_to_number (buf, THUMB_SIZE);
23590 {
23591 int rd = (newval >> 4) & 0xf;
23592 int rs = newval & 0xf;
23593 int subtract = !!(newval & 0x8000);
23594
23595 /* Check for HI regs, only very restricted cases allowed:
23596 Adjusting SP, and using PC or SP to get an address. */
23597 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
23598 || (rs > 7 && rs != REG_SP && rs != REG_PC))
23599 as_bad_where (fixP->fx_file, fixP->fx_line,
23600 _("invalid Hi register with immediate"));
23601
23602 /* If value is negative, choose the opposite instruction. */
23603 if (value < 0)
23604 {
23605 value = -value;
23606 subtract = !subtract;
23607 if (value < 0)
23608 as_bad_where (fixP->fx_file, fixP->fx_line,
23609 _("immediate value out of range"));
23610 }
23611
23612 if (rd == REG_SP)
23613 {
23614 if (value & ~0x1fc)
23615 as_bad_where (fixP->fx_file, fixP->fx_line,
23616 _("invalid immediate for stack address calculation"));
23617 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
23618 newval |= value >> 2;
23619 }
23620 else if (rs == REG_PC || rs == REG_SP)
23621 {
23622 /* PR gas/18541. If the addition is for a defined symbol
23623 within range of an ADR instruction then accept it. */
23624 if (subtract
23625 && value == 4
23626 && fixP->fx_addsy != NULL)
23627 {
23628 subtract = 0;
23629
23630 if (! S_IS_DEFINED (fixP->fx_addsy)
23631 || S_GET_SEGMENT (fixP->fx_addsy) != seg
23632 || S_IS_WEAK (fixP->fx_addsy))
23633 {
23634 as_bad_where (fixP->fx_file, fixP->fx_line,
23635 _("address calculation needs a strongly defined nearby symbol"));
23636 }
23637 else
23638 {
23639 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
23640
23641 /* Round up to the next 4-byte boundary. */
23642 if (v & 3)
23643 v = (v + 3) & ~ 3;
23644 else
23645 v += 4;
23646 v = S_GET_VALUE (fixP->fx_addsy) - v;
23647
23648 if (v & ~0x3fc)
23649 {
23650 as_bad_where (fixP->fx_file, fixP->fx_line,
23651 _("symbol too far away"));
23652 }
23653 else
23654 {
23655 fixP->fx_done = 1;
23656 value = v;
23657 }
23658 }
23659 }
23660
23661 if (subtract || value & ~0x3fc)
23662 as_bad_where (fixP->fx_file, fixP->fx_line,
23663 _("invalid immediate for address calculation (value = 0x%08lX)"),
23664 (unsigned long) (subtract ? - value : value));
23665 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
23666 newval |= rd << 8;
23667 newval |= value >> 2;
23668 }
23669 else if (rs == rd)
23670 {
23671 if (value & ~0xff)
23672 as_bad_where (fixP->fx_file, fixP->fx_line,
23673 _("immediate value out of range"));
23674 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
23675 newval |= (rd << 8) | value;
23676 }
23677 else
23678 {
23679 if (value & ~0x7)
23680 as_bad_where (fixP->fx_file, fixP->fx_line,
23681 _("immediate value out of range"));
23682 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
23683 newval |= rd | (rs << 3) | (value << 6);
23684 }
23685 }
23686 md_number_to_chars (buf, newval, THUMB_SIZE);
23687 break;
23688
23689 case BFD_RELOC_ARM_THUMB_IMM:
23690 newval = md_chars_to_number (buf, THUMB_SIZE);
23691 if (value < 0 || value > 255)
23692 as_bad_where (fixP->fx_file, fixP->fx_line,
23693 _("invalid immediate: %ld is out of range"),
23694 (long) value);
23695 newval |= value;
23696 md_number_to_chars (buf, newval, THUMB_SIZE);
23697 break;
23698
23699 case BFD_RELOC_ARM_THUMB_SHIFT:
23700 /* 5bit shift value (0..32). LSL cannot take 32. */
23701 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
23702 temp = newval & 0xf800;
23703 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
23704 as_bad_where (fixP->fx_file, fixP->fx_line,
23705 _("invalid shift value: %ld"), (long) value);
23706 /* Shifts of zero must be encoded as LSL. */
23707 if (value == 0)
23708 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
23709 /* Shifts of 32 are encoded as zero. */
23710 else if (value == 32)
23711 value = 0;
23712 newval |= value << 6;
23713 md_number_to_chars (buf, newval, THUMB_SIZE);
23714 break;
23715
23716 case BFD_RELOC_VTABLE_INHERIT:
23717 case BFD_RELOC_VTABLE_ENTRY:
23718 fixP->fx_done = 0;
23719 return;
23720
23721 case BFD_RELOC_ARM_MOVW:
23722 case BFD_RELOC_ARM_MOVT:
23723 case BFD_RELOC_ARM_THUMB_MOVW:
23724 case BFD_RELOC_ARM_THUMB_MOVT:
23725 if (fixP->fx_done || !seg->use_rela_p)
23726 {
23727 /* REL format relocations are limited to a 16-bit addend. */
23728 if (!fixP->fx_done)
23729 {
23730 if (value < -0x8000 || value > 0x7fff)
23731 as_bad_where (fixP->fx_file, fixP->fx_line,
23732 _("offset out of range"));
23733 }
23734 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
23735 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
23736 {
23737 value >>= 16;
23738 }
23739
23740 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
23741 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
23742 {
23743 newval = get_thumb32_insn (buf);
23744 newval &= 0xfbf08f00;
23745 newval |= (value & 0xf000) << 4;
23746 newval |= (value & 0x0800) << 15;
23747 newval |= (value & 0x0700) << 4;
23748 newval |= (value & 0x00ff);
23749 put_thumb32_insn (buf, newval);
23750 }
23751 else
23752 {
23753 newval = md_chars_to_number (buf, 4);
23754 newval &= 0xfff0f000;
23755 newval |= value & 0x0fff;
23756 newval |= (value & 0xf000) << 4;
23757 md_number_to_chars (buf, newval, 4);
23758 }
23759 }
23760 return;
23761
23762 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
23763 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
23764 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
23765 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
23766 gas_assert (!fixP->fx_done);
23767 {
23768 bfd_vma insn;
23769 bfd_boolean is_mov;
23770 bfd_vma encoded_addend = value;
23771
23772 /* Check that addend can be encoded in instruction. */
23773 if (!seg->use_rela_p && (value < 0 || value > 255))
23774 as_bad_where (fixP->fx_file, fixP->fx_line,
23775 _("the offset 0x%08lX is not representable"),
23776 (unsigned long) encoded_addend);
23777
23778 /* Extract the instruction. */
23779 insn = md_chars_to_number (buf, THUMB_SIZE);
23780 is_mov = (insn & 0xf800) == 0x2000;
23781
23782 /* Encode insn. */
23783 if (is_mov)
23784 {
23785 if (!seg->use_rela_p)
23786 insn |= encoded_addend;
23787 }
23788 else
23789 {
23790 int rd, rs;
23791
23792 /* Extract the instruction. */
23793 /* Encoding is the following
23794 0x8000 SUB
23795 0x00F0 Rd
23796 0x000F Rs
23797 */
23798 /* The following conditions must be true :
23799 - ADD
23800 - Rd == Rs
23801 - Rd <= 7
23802 */
23803 rd = (insn >> 4) & 0xf;
23804 rs = insn & 0xf;
23805 if ((insn & 0x8000) || (rd != rs) || rd > 7)
23806 as_bad_where (fixP->fx_file, fixP->fx_line,
23807 _("Unable to process relocation for thumb opcode: %lx"),
23808 (unsigned long) insn);
23809
23810 /* Encode as ADD immediate8 thumb 1 code. */
23811 insn = 0x3000 | (rd << 8);
23812
23813 /* Place the encoded addend into the first 8 bits of the
23814 instruction. */
23815 if (!seg->use_rela_p)
23816 insn |= encoded_addend;
23817 }
23818
23819 /* Update the instruction. */
23820 md_number_to_chars (buf, insn, THUMB_SIZE);
23821 }
23822 break;
23823
23824 case BFD_RELOC_ARM_ALU_PC_G0_NC:
23825 case BFD_RELOC_ARM_ALU_PC_G0:
23826 case BFD_RELOC_ARM_ALU_PC_G1_NC:
23827 case BFD_RELOC_ARM_ALU_PC_G1:
23828 case BFD_RELOC_ARM_ALU_PC_G2:
23829 case BFD_RELOC_ARM_ALU_SB_G0_NC:
23830 case BFD_RELOC_ARM_ALU_SB_G0:
23831 case BFD_RELOC_ARM_ALU_SB_G1_NC:
23832 case BFD_RELOC_ARM_ALU_SB_G1:
23833 case BFD_RELOC_ARM_ALU_SB_G2:
23834 gas_assert (!fixP->fx_done);
23835 if (!seg->use_rela_p)
23836 {
23837 bfd_vma insn;
23838 bfd_vma encoded_addend;
23839 bfd_vma addend_abs = abs (value);
23840
23841 /* Check that the absolute value of the addend can be
23842 expressed as an 8-bit constant plus a rotation. */
23843 encoded_addend = encode_arm_immediate (addend_abs);
23844 if (encoded_addend == (unsigned int) FAIL)
23845 as_bad_where (fixP->fx_file, fixP->fx_line,
23846 _("the offset 0x%08lX is not representable"),
23847 (unsigned long) addend_abs);
23848
23849 /* Extract the instruction. */
23850 insn = md_chars_to_number (buf, INSN_SIZE);
23851
23852 /* If the addend is positive, use an ADD instruction.
23853 Otherwise use a SUB. Take care not to destroy the S bit. */
23854 insn &= 0xff1fffff;
23855 if (value < 0)
23856 insn |= 1 << 22;
23857 else
23858 insn |= 1 << 23;
23859
23860 /* Place the encoded addend into the first 12 bits of the
23861 instruction. */
23862 insn &= 0xfffff000;
23863 insn |= encoded_addend;
23864
23865 /* Update the instruction. */
23866 md_number_to_chars (buf, insn, INSN_SIZE);
23867 }
23868 break;
23869
23870 case BFD_RELOC_ARM_LDR_PC_G0:
23871 case BFD_RELOC_ARM_LDR_PC_G1:
23872 case BFD_RELOC_ARM_LDR_PC_G2:
23873 case BFD_RELOC_ARM_LDR_SB_G0:
23874 case BFD_RELOC_ARM_LDR_SB_G1:
23875 case BFD_RELOC_ARM_LDR_SB_G2:
23876 gas_assert (!fixP->fx_done);
23877 if (!seg->use_rela_p)
23878 {
23879 bfd_vma insn;
23880 bfd_vma addend_abs = abs (value);
23881
23882 /* Check that the absolute value of the addend can be
23883 encoded in 12 bits. */
23884 if (addend_abs >= 0x1000)
23885 as_bad_where (fixP->fx_file, fixP->fx_line,
23886 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
23887 (unsigned long) addend_abs);
23888
23889 /* Extract the instruction. */
23890 insn = md_chars_to_number (buf, INSN_SIZE);
23891
23892 /* If the addend is negative, clear bit 23 of the instruction.
23893 Otherwise set it. */
23894 if (value < 0)
23895 insn &= ~(1 << 23);
23896 else
23897 insn |= 1 << 23;
23898
23899 /* Place the absolute value of the addend into the first 12 bits
23900 of the instruction. */
23901 insn &= 0xfffff000;
23902 insn |= addend_abs;
23903
23904 /* Update the instruction. */
23905 md_number_to_chars (buf, insn, INSN_SIZE);
23906 }
23907 break;
23908
23909 case BFD_RELOC_ARM_LDRS_PC_G0:
23910 case BFD_RELOC_ARM_LDRS_PC_G1:
23911 case BFD_RELOC_ARM_LDRS_PC_G2:
23912 case BFD_RELOC_ARM_LDRS_SB_G0:
23913 case BFD_RELOC_ARM_LDRS_SB_G1:
23914 case BFD_RELOC_ARM_LDRS_SB_G2:
23915 gas_assert (!fixP->fx_done);
23916 if (!seg->use_rela_p)
23917 {
23918 bfd_vma insn;
23919 bfd_vma addend_abs = abs (value);
23920
23921 /* Check that the absolute value of the addend can be
23922 encoded in 8 bits. */
23923 if (addend_abs >= 0x100)
23924 as_bad_where (fixP->fx_file, fixP->fx_line,
23925 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
23926 (unsigned long) addend_abs);
23927
23928 /* Extract the instruction. */
23929 insn = md_chars_to_number (buf, INSN_SIZE);
23930
23931 /* If the addend is negative, clear bit 23 of the instruction.
23932 Otherwise set it. */
23933 if (value < 0)
23934 insn &= ~(1 << 23);
23935 else
23936 insn |= 1 << 23;
23937
23938 /* Place the first four bits of the absolute value of the addend
23939 into the first 4 bits of the instruction, and the remaining
23940 four into bits 8 .. 11. */
23941 insn &= 0xfffff0f0;
23942 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
23943
23944 /* Update the instruction. */
23945 md_number_to_chars (buf, insn, INSN_SIZE);
23946 }
23947 break;
23948
23949 case BFD_RELOC_ARM_LDC_PC_G0:
23950 case BFD_RELOC_ARM_LDC_PC_G1:
23951 case BFD_RELOC_ARM_LDC_PC_G2:
23952 case BFD_RELOC_ARM_LDC_SB_G0:
23953 case BFD_RELOC_ARM_LDC_SB_G1:
23954 case BFD_RELOC_ARM_LDC_SB_G2:
23955 gas_assert (!fixP->fx_done);
23956 if (!seg->use_rela_p)
23957 {
23958 bfd_vma insn;
23959 bfd_vma addend_abs = abs (value);
23960
23961 /* Check that the absolute value of the addend is a multiple of
23962 four and, when divided by four, fits in 8 bits. */
23963 if (addend_abs & 0x3)
23964 as_bad_where (fixP->fx_file, fixP->fx_line,
23965 _("bad offset 0x%08lX (must be word-aligned)"),
23966 (unsigned long) addend_abs);
23967
23968 if ((addend_abs >> 2) > 0xff)
23969 as_bad_where (fixP->fx_file, fixP->fx_line,
23970 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
23971 (unsigned long) addend_abs);
23972
23973 /* Extract the instruction. */
23974 insn = md_chars_to_number (buf, INSN_SIZE);
23975
23976 /* If the addend is negative, clear bit 23 of the instruction.
23977 Otherwise set it. */
23978 if (value < 0)
23979 insn &= ~(1 << 23);
23980 else
23981 insn |= 1 << 23;
23982
23983 /* Place the addend (divided by four) into the first eight
23984 bits of the instruction. */
23985 insn &= 0xfffffff0;
23986 insn |= addend_abs >> 2;
23987
23988 /* Update the instruction. */
23989 md_number_to_chars (buf, insn, INSN_SIZE);
23990 }
23991 break;
23992
23993 case BFD_RELOC_ARM_V4BX:
23994 /* This will need to go in the object file. */
23995 fixP->fx_done = 0;
23996 break;
23997
23998 case BFD_RELOC_UNUSED:
23999 default:
24000 as_bad_where (fixP->fx_file, fixP->fx_line,
24001 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
24002 }
24003 }
24004
24005 /* Translate internal representation of relocation info to BFD target
24006 format. */
24007
24008 arelent *
24009 tc_gen_reloc (asection *section, fixS *fixp)
24010 {
24011 arelent * reloc;
24012 bfd_reloc_code_real_type code;
24013
24014 reloc = XNEW (arelent);
24015
24016 reloc->sym_ptr_ptr = XNEW (asymbol *);
24017 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
24018 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
24019
24020 if (fixp->fx_pcrel)
24021 {
24022 if (section->use_rela_p)
24023 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
24024 else
24025 fixp->fx_offset = reloc->address;
24026 }
24027 reloc->addend = fixp->fx_offset;
24028
24029 switch (fixp->fx_r_type)
24030 {
24031 case BFD_RELOC_8:
24032 if (fixp->fx_pcrel)
24033 {
24034 code = BFD_RELOC_8_PCREL;
24035 break;
24036 }
24037
24038 case BFD_RELOC_16:
24039 if (fixp->fx_pcrel)
24040 {
24041 code = BFD_RELOC_16_PCREL;
24042 break;
24043 }
24044
24045 case BFD_RELOC_32:
24046 if (fixp->fx_pcrel)
24047 {
24048 code = BFD_RELOC_32_PCREL;
24049 break;
24050 }
24051
24052 case BFD_RELOC_ARM_MOVW:
24053 if (fixp->fx_pcrel)
24054 {
24055 code = BFD_RELOC_ARM_MOVW_PCREL;
24056 break;
24057 }
24058
24059 case BFD_RELOC_ARM_MOVT:
24060 if (fixp->fx_pcrel)
24061 {
24062 code = BFD_RELOC_ARM_MOVT_PCREL;
24063 break;
24064 }
24065
24066 case BFD_RELOC_ARM_THUMB_MOVW:
24067 if (fixp->fx_pcrel)
24068 {
24069 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
24070 break;
24071 }
24072
24073 case BFD_RELOC_ARM_THUMB_MOVT:
24074 if (fixp->fx_pcrel)
24075 {
24076 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
24077 break;
24078 }
24079
24080 case BFD_RELOC_NONE:
24081 case BFD_RELOC_ARM_PCREL_BRANCH:
24082 case BFD_RELOC_ARM_PCREL_BLX:
24083 case BFD_RELOC_RVA:
24084 case BFD_RELOC_THUMB_PCREL_BRANCH7:
24085 case BFD_RELOC_THUMB_PCREL_BRANCH9:
24086 case BFD_RELOC_THUMB_PCREL_BRANCH12:
24087 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24088 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24089 case BFD_RELOC_THUMB_PCREL_BRANCH25:
24090 case BFD_RELOC_VTABLE_ENTRY:
24091 case BFD_RELOC_VTABLE_INHERIT:
24092 #ifdef TE_PE
24093 case BFD_RELOC_32_SECREL:
24094 #endif
24095 code = fixp->fx_r_type;
24096 break;
24097
24098 case BFD_RELOC_THUMB_PCREL_BLX:
24099 #ifdef OBJ_ELF
24100 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
24101 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
24102 else
24103 #endif
24104 code = BFD_RELOC_THUMB_PCREL_BLX;
24105 break;
24106
24107 case BFD_RELOC_ARM_LITERAL:
24108 case BFD_RELOC_ARM_HWLITERAL:
24109 /* If this is called then the a literal has
24110 been referenced across a section boundary. */
24111 as_bad_where (fixp->fx_file, fixp->fx_line,
24112 _("literal referenced across section boundary"));
24113 return NULL;
24114
24115 #ifdef OBJ_ELF
24116 case BFD_RELOC_ARM_TLS_CALL:
24117 case BFD_RELOC_ARM_THM_TLS_CALL:
24118 case BFD_RELOC_ARM_TLS_DESCSEQ:
24119 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
24120 case BFD_RELOC_ARM_GOT32:
24121 case BFD_RELOC_ARM_GOTOFF:
24122 case BFD_RELOC_ARM_GOT_PREL:
24123 case BFD_RELOC_ARM_PLT32:
24124 case BFD_RELOC_ARM_TARGET1:
24125 case BFD_RELOC_ARM_ROSEGREL32:
24126 case BFD_RELOC_ARM_SBREL32:
24127 case BFD_RELOC_ARM_PREL31:
24128 case BFD_RELOC_ARM_TARGET2:
24129 case BFD_RELOC_ARM_TLS_LDO32:
24130 case BFD_RELOC_ARM_PCREL_CALL:
24131 case BFD_RELOC_ARM_PCREL_JUMP:
24132 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24133 case BFD_RELOC_ARM_ALU_PC_G0:
24134 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24135 case BFD_RELOC_ARM_ALU_PC_G1:
24136 case BFD_RELOC_ARM_ALU_PC_G2:
24137 case BFD_RELOC_ARM_LDR_PC_G0:
24138 case BFD_RELOC_ARM_LDR_PC_G1:
24139 case BFD_RELOC_ARM_LDR_PC_G2:
24140 case BFD_RELOC_ARM_LDRS_PC_G0:
24141 case BFD_RELOC_ARM_LDRS_PC_G1:
24142 case BFD_RELOC_ARM_LDRS_PC_G2:
24143 case BFD_RELOC_ARM_LDC_PC_G0:
24144 case BFD_RELOC_ARM_LDC_PC_G1:
24145 case BFD_RELOC_ARM_LDC_PC_G2:
24146 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24147 case BFD_RELOC_ARM_ALU_SB_G0:
24148 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24149 case BFD_RELOC_ARM_ALU_SB_G1:
24150 case BFD_RELOC_ARM_ALU_SB_G2:
24151 case BFD_RELOC_ARM_LDR_SB_G0:
24152 case BFD_RELOC_ARM_LDR_SB_G1:
24153 case BFD_RELOC_ARM_LDR_SB_G2:
24154 case BFD_RELOC_ARM_LDRS_SB_G0:
24155 case BFD_RELOC_ARM_LDRS_SB_G1:
24156 case BFD_RELOC_ARM_LDRS_SB_G2:
24157 case BFD_RELOC_ARM_LDC_SB_G0:
24158 case BFD_RELOC_ARM_LDC_SB_G1:
24159 case BFD_RELOC_ARM_LDC_SB_G2:
24160 case BFD_RELOC_ARM_V4BX:
24161 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24162 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24163 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24164 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24165 code = fixp->fx_r_type;
24166 break;
24167
24168 case BFD_RELOC_ARM_TLS_GOTDESC:
24169 case BFD_RELOC_ARM_TLS_GD32:
24170 case BFD_RELOC_ARM_TLS_LE32:
24171 case BFD_RELOC_ARM_TLS_IE32:
24172 case BFD_RELOC_ARM_TLS_LDM32:
24173 /* BFD will include the symbol's address in the addend.
24174 But we don't want that, so subtract it out again here. */
24175 if (!S_IS_COMMON (fixp->fx_addsy))
24176 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
24177 code = fixp->fx_r_type;
24178 break;
24179 #endif
24180
24181 case BFD_RELOC_ARM_IMMEDIATE:
24182 as_bad_where (fixp->fx_file, fixp->fx_line,
24183 _("internal relocation (type: IMMEDIATE) not fixed up"));
24184 return NULL;
24185
24186 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
24187 as_bad_where (fixp->fx_file, fixp->fx_line,
24188 _("ADRL used for a symbol not defined in the same file"));
24189 return NULL;
24190
24191 case BFD_RELOC_ARM_OFFSET_IMM:
24192 if (section->use_rela_p)
24193 {
24194 code = fixp->fx_r_type;
24195 break;
24196 }
24197
24198 if (fixp->fx_addsy != NULL
24199 && !S_IS_DEFINED (fixp->fx_addsy)
24200 && S_IS_LOCAL (fixp->fx_addsy))
24201 {
24202 as_bad_where (fixp->fx_file, fixp->fx_line,
24203 _("undefined local label `%s'"),
24204 S_GET_NAME (fixp->fx_addsy));
24205 return NULL;
24206 }
24207
24208 as_bad_where (fixp->fx_file, fixp->fx_line,
24209 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
24210 return NULL;
24211
24212 default:
24213 {
24214 const char * type;
24215
24216 switch (fixp->fx_r_type)
24217 {
24218 case BFD_RELOC_NONE: type = "NONE"; break;
24219 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
24220 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
24221 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
24222 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
24223 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
24224 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
24225 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
24226 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
24227 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
24228 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
24229 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
24230 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
24231 default: type = _("<unknown>"); break;
24232 }
24233 as_bad_where (fixp->fx_file, fixp->fx_line,
24234 _("cannot represent %s relocation in this object file format"),
24235 type);
24236 return NULL;
24237 }
24238 }
24239
24240 #ifdef OBJ_ELF
24241 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
24242 && GOT_symbol
24243 && fixp->fx_addsy == GOT_symbol)
24244 {
24245 code = BFD_RELOC_ARM_GOTPC;
24246 reloc->addend = fixp->fx_offset = reloc->address;
24247 }
24248 #endif
24249
24250 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
24251
24252 if (reloc->howto == NULL)
24253 {
24254 as_bad_where (fixp->fx_file, fixp->fx_line,
24255 _("cannot represent %s relocation in this object file format"),
24256 bfd_get_reloc_code_name (code));
24257 return NULL;
24258 }
24259
24260 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
24261 vtable entry to be used in the relocation's section offset. */
24262 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
24263 reloc->address = fixp->fx_offset;
24264
24265 return reloc;
24266 }
24267
24268 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
24269
24270 void
24271 cons_fix_new_arm (fragS * frag,
24272 int where,
24273 int size,
24274 expressionS * exp,
24275 bfd_reloc_code_real_type reloc)
24276 {
24277 int pcrel = 0;
24278
24279 /* Pick a reloc.
24280 FIXME: @@ Should look at CPU word size. */
24281 switch (size)
24282 {
24283 case 1:
24284 reloc = BFD_RELOC_8;
24285 break;
24286 case 2:
24287 reloc = BFD_RELOC_16;
24288 break;
24289 case 4:
24290 default:
24291 reloc = BFD_RELOC_32;
24292 break;
24293 case 8:
24294 reloc = BFD_RELOC_64;
24295 break;
24296 }
24297
24298 #ifdef TE_PE
24299 if (exp->X_op == O_secrel)
24300 {
24301 exp->X_op = O_symbol;
24302 reloc = BFD_RELOC_32_SECREL;
24303 }
24304 #endif
24305
24306 fix_new_exp (frag, where, size, exp, pcrel, reloc);
24307 }
24308
24309 #if defined (OBJ_COFF)
24310 void
24311 arm_validate_fix (fixS * fixP)
24312 {
24313 /* If the destination of the branch is a defined symbol which does not have
24314 the THUMB_FUNC attribute, then we must be calling a function which has
24315 the (interfacearm) attribute. We look for the Thumb entry point to that
24316 function and change the branch to refer to that function instead. */
24317 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
24318 && fixP->fx_addsy != NULL
24319 && S_IS_DEFINED (fixP->fx_addsy)
24320 && ! THUMB_IS_FUNC (fixP->fx_addsy))
24321 {
24322 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
24323 }
24324 }
24325 #endif
24326
24327
24328 int
24329 arm_force_relocation (struct fix * fixp)
24330 {
24331 #if defined (OBJ_COFF) && defined (TE_PE)
24332 if (fixp->fx_r_type == BFD_RELOC_RVA)
24333 return 1;
24334 #endif
24335
24336 /* In case we have a call or a branch to a function in ARM ISA mode from
24337 a thumb function or vice-versa force the relocation. These relocations
24338 are cleared off for some cores that might have blx and simple transformations
24339 are possible. */
24340
24341 #ifdef OBJ_ELF
24342 switch (fixp->fx_r_type)
24343 {
24344 case BFD_RELOC_ARM_PCREL_JUMP:
24345 case BFD_RELOC_ARM_PCREL_CALL:
24346 case BFD_RELOC_THUMB_PCREL_BLX:
24347 if (THUMB_IS_FUNC (fixp->fx_addsy))
24348 return 1;
24349 break;
24350
24351 case BFD_RELOC_ARM_PCREL_BLX:
24352 case BFD_RELOC_THUMB_PCREL_BRANCH25:
24353 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24354 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24355 if (ARM_IS_FUNC (fixp->fx_addsy))
24356 return 1;
24357 break;
24358
24359 default:
24360 break;
24361 }
24362 #endif
24363
24364 /* Resolve these relocations even if the symbol is extern or weak.
24365 Technically this is probably wrong due to symbol preemption.
24366 In practice these relocations do not have enough range to be useful
24367 at dynamic link time, and some code (e.g. in the Linux kernel)
24368 expects these references to be resolved. */
24369 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
24370 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
24371 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
24372 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
24373 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24374 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
24375 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
24376 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
24377 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
24378 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
24379 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
24380 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
24381 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
24382 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
24383 return 0;
24384
24385 /* Always leave these relocations for the linker. */
24386 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
24387 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
24388 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
24389 return 1;
24390
24391 /* Always generate relocations against function symbols. */
24392 if (fixp->fx_r_type == BFD_RELOC_32
24393 && fixp->fx_addsy
24394 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
24395 return 1;
24396
24397 return generic_force_reloc (fixp);
24398 }
24399
24400 #if defined (OBJ_ELF) || defined (OBJ_COFF)
24401 /* Relocations against function names must be left unadjusted,
24402 so that the linker can use this information to generate interworking
24403 stubs. The MIPS version of this function
24404 also prevents relocations that are mips-16 specific, but I do not
24405 know why it does this.
24406
24407 FIXME:
24408 There is one other problem that ought to be addressed here, but
24409 which currently is not: Taking the address of a label (rather
24410 than a function) and then later jumping to that address. Such
24411 addresses also ought to have their bottom bit set (assuming that
24412 they reside in Thumb code), but at the moment they will not. */
24413
24414 bfd_boolean
24415 arm_fix_adjustable (fixS * fixP)
24416 {
24417 if (fixP->fx_addsy == NULL)
24418 return 1;
24419
24420 /* Preserve relocations against symbols with function type. */
24421 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
24422 return FALSE;
24423
24424 if (THUMB_IS_FUNC (fixP->fx_addsy)
24425 && fixP->fx_subsy == NULL)
24426 return FALSE;
24427
24428 /* We need the symbol name for the VTABLE entries. */
24429 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
24430 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
24431 return FALSE;
24432
24433 /* Don't allow symbols to be discarded on GOT related relocs. */
24434 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
24435 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
24436 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
24437 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
24438 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
24439 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
24440 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
24441 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
24442 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
24443 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
24444 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
24445 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
24446 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
24447 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
24448 return FALSE;
24449
24450 /* Similarly for group relocations. */
24451 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
24452 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
24453 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
24454 return FALSE;
24455
24456 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
24457 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
24458 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24459 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
24460 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
24461 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24462 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
24463 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
24464 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
24465 return FALSE;
24466
24467 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
24468 offsets, so keep these symbols. */
24469 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
24470 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
24471 return FALSE;
24472
24473 return TRUE;
24474 }
24475 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
24476
24477 #ifdef OBJ_ELF
24478 const char *
24479 elf32_arm_target_format (void)
24480 {
24481 #ifdef TE_SYMBIAN
24482 return (target_big_endian
24483 ? "elf32-bigarm-symbian"
24484 : "elf32-littlearm-symbian");
24485 #elif defined (TE_VXWORKS)
24486 return (target_big_endian
24487 ? "elf32-bigarm-vxworks"
24488 : "elf32-littlearm-vxworks");
24489 #elif defined (TE_NACL)
24490 return (target_big_endian
24491 ? "elf32-bigarm-nacl"
24492 : "elf32-littlearm-nacl");
24493 #else
24494 if (target_big_endian)
24495 return "elf32-bigarm";
24496 else
24497 return "elf32-littlearm";
24498 #endif
24499 }
24500
24501 void
24502 armelf_frob_symbol (symbolS * symp,
24503 int * puntp)
24504 {
24505 elf_frob_symbol (symp, puntp);
24506 }
24507 #endif
24508
24509 /* MD interface: Finalization. */
24510
24511 void
24512 arm_cleanup (void)
24513 {
24514 literal_pool * pool;
24515
24516 /* Ensure that all the IT blocks are properly closed. */
24517 check_it_blocks_finished ();
24518
24519 for (pool = list_of_pools; pool; pool = pool->next)
24520 {
24521 /* Put it at the end of the relevant section. */
24522 subseg_set (pool->section, pool->sub_section);
24523 #ifdef OBJ_ELF
24524 arm_elf_change_section ();
24525 #endif
24526 s_ltorg (0);
24527 }
24528 }
24529
24530 #ifdef OBJ_ELF
24531 /* Remove any excess mapping symbols generated for alignment frags in
24532 SEC. We may have created a mapping symbol before a zero byte
24533 alignment; remove it if there's a mapping symbol after the
24534 alignment. */
24535 static void
24536 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
24537 void *dummy ATTRIBUTE_UNUSED)
24538 {
24539 segment_info_type *seginfo = seg_info (sec);
24540 fragS *fragp;
24541
24542 if (seginfo == NULL || seginfo->frchainP == NULL)
24543 return;
24544
24545 for (fragp = seginfo->frchainP->frch_root;
24546 fragp != NULL;
24547 fragp = fragp->fr_next)
24548 {
24549 symbolS *sym = fragp->tc_frag_data.last_map;
24550 fragS *next = fragp->fr_next;
24551
24552 /* Variable-sized frags have been converted to fixed size by
24553 this point. But if this was variable-sized to start with,
24554 there will be a fixed-size frag after it. So don't handle
24555 next == NULL. */
24556 if (sym == NULL || next == NULL)
24557 continue;
24558
24559 if (S_GET_VALUE (sym) < next->fr_address)
24560 /* Not at the end of this frag. */
24561 continue;
24562 know (S_GET_VALUE (sym) == next->fr_address);
24563
24564 do
24565 {
24566 if (next->tc_frag_data.first_map != NULL)
24567 {
24568 /* Next frag starts with a mapping symbol. Discard this
24569 one. */
24570 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
24571 break;
24572 }
24573
24574 if (next->fr_next == NULL)
24575 {
24576 /* This mapping symbol is at the end of the section. Discard
24577 it. */
24578 know (next->fr_fix == 0 && next->fr_var == 0);
24579 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
24580 break;
24581 }
24582
24583 /* As long as we have empty frags without any mapping symbols,
24584 keep looking. */
24585 /* If the next frag is non-empty and does not start with a
24586 mapping symbol, then this mapping symbol is required. */
24587 if (next->fr_address != next->fr_next->fr_address)
24588 break;
24589
24590 next = next->fr_next;
24591 }
24592 while (next != NULL);
24593 }
24594 }
24595 #endif
24596
24597 /* Adjust the symbol table. This marks Thumb symbols as distinct from
24598 ARM ones. */
24599
24600 void
24601 arm_adjust_symtab (void)
24602 {
24603 #ifdef OBJ_COFF
24604 symbolS * sym;
24605
24606 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
24607 {
24608 if (ARM_IS_THUMB (sym))
24609 {
24610 if (THUMB_IS_FUNC (sym))
24611 {
24612 /* Mark the symbol as a Thumb function. */
24613 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
24614 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
24615 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
24616
24617 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
24618 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
24619 else
24620 as_bad (_("%s: unexpected function type: %d"),
24621 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
24622 }
24623 else switch (S_GET_STORAGE_CLASS (sym))
24624 {
24625 case C_EXT:
24626 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
24627 break;
24628 case C_STAT:
24629 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
24630 break;
24631 case C_LABEL:
24632 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
24633 break;
24634 default:
24635 /* Do nothing. */
24636 break;
24637 }
24638 }
24639
24640 if (ARM_IS_INTERWORK (sym))
24641 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
24642 }
24643 #endif
24644 #ifdef OBJ_ELF
24645 symbolS * sym;
24646 char bind;
24647
24648 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
24649 {
24650 if (ARM_IS_THUMB (sym))
24651 {
24652 elf_symbol_type * elf_sym;
24653
24654 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
24655 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
24656
24657 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
24658 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
24659 {
24660 /* If it's a .thumb_func, declare it as so,
24661 otherwise tag label as .code 16. */
24662 if (THUMB_IS_FUNC (sym))
24663 elf_sym->internal_elf_sym.st_target_internal
24664 = ST_BRANCH_TO_THUMB;
24665 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24666 elf_sym->internal_elf_sym.st_info =
24667 ELF_ST_INFO (bind, STT_ARM_16BIT);
24668 }
24669 }
24670 }
24671
24672 /* Remove any overlapping mapping symbols generated by alignment frags. */
24673 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
24674 /* Now do generic ELF adjustments. */
24675 elf_adjust_symtab ();
24676 #endif
24677 }
24678
24679 /* MD interface: Initialization. */
24680
24681 static void
24682 set_constant_flonums (void)
24683 {
24684 int i;
24685
24686 for (i = 0; i < NUM_FLOAT_VALS; i++)
24687 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
24688 abort ();
24689 }
24690
24691 /* Auto-select Thumb mode if it's the only available instruction set for the
24692 given architecture. */
24693
24694 static void
24695 autoselect_thumb_from_cpu_variant (void)
24696 {
24697 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
24698 opcode_select (16);
24699 }
24700
24701 void
24702 md_begin (void)
24703 {
24704 unsigned mach;
24705 unsigned int i;
24706
24707 if ( (arm_ops_hsh = hash_new ()) == NULL
24708 || (arm_cond_hsh = hash_new ()) == NULL
24709 || (arm_shift_hsh = hash_new ()) == NULL
24710 || (arm_psr_hsh = hash_new ()) == NULL
24711 || (arm_v7m_psr_hsh = hash_new ()) == NULL
24712 || (arm_reg_hsh = hash_new ()) == NULL
24713 || (arm_reloc_hsh = hash_new ()) == NULL
24714 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
24715 as_fatal (_("virtual memory exhausted"));
24716
24717 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
24718 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
24719 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
24720 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
24721 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
24722 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
24723 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
24724 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
24725 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
24726 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
24727 (void *) (v7m_psrs + i));
24728 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
24729 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
24730 for (i = 0;
24731 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
24732 i++)
24733 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
24734 (void *) (barrier_opt_names + i));
24735 #ifdef OBJ_ELF
24736 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
24737 {
24738 struct reloc_entry * entry = reloc_names + i;
24739
24740 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
24741 /* This makes encode_branch() use the EABI versions of this relocation. */
24742 entry->reloc = BFD_RELOC_UNUSED;
24743
24744 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
24745 }
24746 #endif
24747
24748 set_constant_flonums ();
24749
24750 /* Set the cpu variant based on the command-line options. We prefer
24751 -mcpu= over -march= if both are set (as for GCC); and we prefer
24752 -mfpu= over any other way of setting the floating point unit.
24753 Use of legacy options with new options are faulted. */
24754 if (legacy_cpu)
24755 {
24756 if (mcpu_cpu_opt || march_cpu_opt)
24757 as_bad (_("use of old and new-style options to set CPU type"));
24758
24759 mcpu_cpu_opt = legacy_cpu;
24760 }
24761 else if (!mcpu_cpu_opt)
24762 mcpu_cpu_opt = march_cpu_opt;
24763
24764 if (legacy_fpu)
24765 {
24766 if (mfpu_opt)
24767 as_bad (_("use of old and new-style options to set FPU type"));
24768
24769 mfpu_opt = legacy_fpu;
24770 }
24771 else if (!mfpu_opt)
24772 {
24773 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
24774 || defined (TE_NetBSD) || defined (TE_VXWORKS))
24775 /* Some environments specify a default FPU. If they don't, infer it
24776 from the processor. */
24777 if (mcpu_fpu_opt)
24778 mfpu_opt = mcpu_fpu_opt;
24779 else
24780 mfpu_opt = march_fpu_opt;
24781 #else
24782 mfpu_opt = &fpu_default;
24783 #endif
24784 }
24785
24786 if (!mfpu_opt)
24787 {
24788 if (mcpu_cpu_opt != NULL)
24789 mfpu_opt = &fpu_default;
24790 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
24791 mfpu_opt = &fpu_arch_vfp_v2;
24792 else
24793 mfpu_opt = &fpu_arch_fpa;
24794 }
24795
24796 #ifdef CPU_DEFAULT
24797 if (!mcpu_cpu_opt)
24798 {
24799 mcpu_cpu_opt = &cpu_default;
24800 selected_cpu = cpu_default;
24801 }
24802 else if (no_cpu_selected ())
24803 selected_cpu = cpu_default;
24804 #else
24805 if (mcpu_cpu_opt)
24806 selected_cpu = *mcpu_cpu_opt;
24807 else
24808 mcpu_cpu_opt = &arm_arch_any;
24809 #endif
24810
24811 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24812
24813 autoselect_thumb_from_cpu_variant ();
24814
24815 arm_arch_used = thumb_arch_used = arm_arch_none;
24816
24817 #if defined OBJ_COFF || defined OBJ_ELF
24818 {
24819 unsigned int flags = 0;
24820
24821 #if defined OBJ_ELF
24822 flags = meabi_flags;
24823
24824 switch (meabi_flags)
24825 {
24826 case EF_ARM_EABI_UNKNOWN:
24827 #endif
24828 /* Set the flags in the private structure. */
24829 if (uses_apcs_26) flags |= F_APCS26;
24830 if (support_interwork) flags |= F_INTERWORK;
24831 if (uses_apcs_float) flags |= F_APCS_FLOAT;
24832 if (pic_code) flags |= F_PIC;
24833 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
24834 flags |= F_SOFT_FLOAT;
24835
24836 switch (mfloat_abi_opt)
24837 {
24838 case ARM_FLOAT_ABI_SOFT:
24839 case ARM_FLOAT_ABI_SOFTFP:
24840 flags |= F_SOFT_FLOAT;
24841 break;
24842
24843 case ARM_FLOAT_ABI_HARD:
24844 if (flags & F_SOFT_FLOAT)
24845 as_bad (_("hard-float conflicts with specified fpu"));
24846 break;
24847 }
24848
24849 /* Using pure-endian doubles (even if soft-float). */
24850 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
24851 flags |= F_VFP_FLOAT;
24852
24853 #if defined OBJ_ELF
24854 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
24855 flags |= EF_ARM_MAVERICK_FLOAT;
24856 break;
24857
24858 case EF_ARM_EABI_VER4:
24859 case EF_ARM_EABI_VER5:
24860 /* No additional flags to set. */
24861 break;
24862
24863 default:
24864 abort ();
24865 }
24866 #endif
24867 bfd_set_private_flags (stdoutput, flags);
24868
24869 /* We have run out flags in the COFF header to encode the
24870 status of ATPCS support, so instead we create a dummy,
24871 empty, debug section called .arm.atpcs. */
24872 if (atpcs)
24873 {
24874 asection * sec;
24875
24876 sec = bfd_make_section (stdoutput, ".arm.atpcs");
24877
24878 if (sec != NULL)
24879 {
24880 bfd_set_section_flags
24881 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
24882 bfd_set_section_size (stdoutput, sec, 0);
24883 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
24884 }
24885 }
24886 }
24887 #endif
24888
24889 /* Record the CPU type as well. */
24890 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
24891 mach = bfd_mach_arm_iWMMXt2;
24892 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
24893 mach = bfd_mach_arm_iWMMXt;
24894 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
24895 mach = bfd_mach_arm_XScale;
24896 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
24897 mach = bfd_mach_arm_ep9312;
24898 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
24899 mach = bfd_mach_arm_5TE;
24900 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
24901 {
24902 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
24903 mach = bfd_mach_arm_5T;
24904 else
24905 mach = bfd_mach_arm_5;
24906 }
24907 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
24908 {
24909 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
24910 mach = bfd_mach_arm_4T;
24911 else
24912 mach = bfd_mach_arm_4;
24913 }
24914 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
24915 mach = bfd_mach_arm_3M;
24916 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
24917 mach = bfd_mach_arm_3;
24918 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
24919 mach = bfd_mach_arm_2a;
24920 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
24921 mach = bfd_mach_arm_2;
24922 else
24923 mach = bfd_mach_arm_unknown;
24924
24925 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
24926 }
24927
24928 /* Command line processing. */
24929
24930 /* md_parse_option
24931 Invocation line includes a switch not recognized by the base assembler.
24932 See if it's a processor-specific option.
24933
24934 This routine is somewhat complicated by the need for backwards
24935 compatibility (since older releases of gcc can't be changed).
24936 The new options try to make the interface as compatible as
24937 possible with GCC.
24938
24939 New options (supported) are:
24940
24941 -mcpu=<cpu name> Assemble for selected processor
24942 -march=<architecture name> Assemble for selected architecture
24943 -mfpu=<fpu architecture> Assemble for selected FPU.
24944 -EB/-mbig-endian Big-endian
24945 -EL/-mlittle-endian Little-endian
24946 -k Generate PIC code
24947 -mthumb Start in Thumb mode
24948 -mthumb-interwork Code supports ARM/Thumb interworking
24949
24950 -m[no-]warn-deprecated Warn about deprecated features
24951 -m[no-]warn-syms Warn when symbols match instructions
24952
24953 For now we will also provide support for:
24954
24955 -mapcs-32 32-bit Program counter
24956 -mapcs-26 26-bit Program counter
24957 -macps-float Floats passed in FP registers
24958 -mapcs-reentrant Reentrant code
24959 -matpcs
24960 (sometime these will probably be replaced with -mapcs=<list of options>
24961 and -matpcs=<list of options>)
24962
24963 The remaining options are only supported for back-wards compatibility.
24964 Cpu variants, the arm part is optional:
24965 -m[arm]1 Currently not supported.
24966 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
24967 -m[arm]3 Arm 3 processor
24968 -m[arm]6[xx], Arm 6 processors
24969 -m[arm]7[xx][t][[d]m] Arm 7 processors
24970 -m[arm]8[10] Arm 8 processors
24971 -m[arm]9[20][tdmi] Arm 9 processors
24972 -mstrongarm[110[0]] StrongARM processors
24973 -mxscale XScale processors
24974 -m[arm]v[2345[t[e]]] Arm architectures
24975 -mall All (except the ARM1)
24976 FP variants:
24977 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
24978 -mfpe-old (No float load/store multiples)
24979 -mvfpxd VFP Single precision
24980 -mvfp All VFP
24981 -mno-fpu Disable all floating point instructions
24982
24983 The following CPU names are recognized:
24984 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
24985 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
24986 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
24987 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
24988 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
24989 arm10t arm10e, arm1020t, arm1020e, arm10200e,
24990 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
24991
24992 */
24993
24994 const char * md_shortopts = "m:k";
24995
24996 #ifdef ARM_BI_ENDIAN
24997 #define OPTION_EB (OPTION_MD_BASE + 0)
24998 #define OPTION_EL (OPTION_MD_BASE + 1)
24999 #else
25000 #if TARGET_BYTES_BIG_ENDIAN
25001 #define OPTION_EB (OPTION_MD_BASE + 0)
25002 #else
25003 #define OPTION_EL (OPTION_MD_BASE + 1)
25004 #endif
25005 #endif
25006 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
25007
25008 struct option md_longopts[] =
25009 {
25010 #ifdef OPTION_EB
25011 {"EB", no_argument, NULL, OPTION_EB},
25012 #endif
25013 #ifdef OPTION_EL
25014 {"EL", no_argument, NULL, OPTION_EL},
25015 #endif
25016 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
25017 {NULL, no_argument, NULL, 0}
25018 };
25019
25020
25021 size_t md_longopts_size = sizeof (md_longopts);
25022
25023 struct arm_option_table
25024 {
25025 const char *option; /* Option name to match. */
25026 const char *help; /* Help information. */
25027 int *var; /* Variable to change. */
25028 int value; /* What to change it to. */
25029 const char *deprecated; /* If non-null, print this message. */
25030 };
25031
25032 struct arm_option_table arm_opts[] =
25033 {
25034 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
25035 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
25036 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
25037 &support_interwork, 1, NULL},
25038 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
25039 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
25040 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
25041 1, NULL},
25042 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
25043 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
25044 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
25045 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
25046 NULL},
25047
25048 /* These are recognized by the assembler, but have no affect on code. */
25049 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
25050 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
25051
25052 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
25053 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
25054 &warn_on_deprecated, 0, NULL},
25055 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
25056 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
25057 {NULL, NULL, NULL, 0, NULL}
25058 };
25059
25060 struct arm_legacy_option_table
25061 {
25062 const char *option; /* Option name to match. */
25063 const arm_feature_set **var; /* Variable to change. */
25064 const arm_feature_set value; /* What to change it to. */
25065 const char *deprecated; /* If non-null, print this message. */
25066 };
25067
25068 const struct arm_legacy_option_table arm_legacy_opts[] =
25069 {
25070 /* DON'T add any new processors to this list -- we want the whole list
25071 to go away... Add them to the processors table instead. */
25072 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25073 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25074 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25075 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25076 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25077 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25078 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25079 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25080 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25081 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25082 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25083 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25084 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25085 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25086 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25087 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25088 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25089 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25090 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25091 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
25092 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25093 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
25094 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25095 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
25096 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25097 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
25098 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25099 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
25100 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25101 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
25102 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25103 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
25104 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25105 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
25106 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25107 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
25108 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25109 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
25110 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25111 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
25112 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25113 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
25114 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25115 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
25116 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25117 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
25118 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25119 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25120 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25121 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
25122 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25123 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
25124 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25125 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
25126 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25127 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
25128 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25129 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
25130 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25131 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
25132 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25133 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
25134 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25135 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
25136 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25137 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
25138 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25139 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
25140 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
25141 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
25142 N_("use -mcpu=strongarm110")},
25143 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
25144 N_("use -mcpu=strongarm1100")},
25145 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
25146 N_("use -mcpu=strongarm1110")},
25147 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
25148 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
25149 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
25150
25151 /* Architecture variants -- don't add any more to this list either. */
25152 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25153 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
25154 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25155 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
25156 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25157 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
25158 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25159 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
25160 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25161 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
25162 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25163 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
25164 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25165 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
25166 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25167 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
25168 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
25169 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
25170
25171 /* Floating point variants -- don't add any more to this list either. */
25172 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
25173 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
25174 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
25175 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
25176 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
25177
25178 {NULL, NULL, ARM_ARCH_NONE, NULL}
25179 };
25180
25181 struct arm_cpu_option_table
25182 {
25183 const char *name;
25184 size_t name_len;
25185 const arm_feature_set value;
25186 /* For some CPUs we assume an FPU unless the user explicitly sets
25187 -mfpu=... */
25188 const arm_feature_set default_fpu;
25189 /* The canonical name of the CPU, or NULL to use NAME converted to upper
25190 case. */
25191 const char *canonical_name;
25192 };
25193
25194 /* This list should, at a minimum, contain all the cpu names
25195 recognized by GCC. */
25196 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
25197 static const struct arm_cpu_option_table arm_cpus[] =
25198 {
25199 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
25200 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
25201 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
25202 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
25203 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
25204 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25205 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25206 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25207 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25208 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25209 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25210 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
25211 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25212 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
25213 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25214 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
25215 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25216 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25217 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25218 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25219 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
25220 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25221 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
25222 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
25223 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25224 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25225 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25226 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
25227 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
25228 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
25229 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
25230 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
25231 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
25232 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
25233 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
25234 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
25235 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
25236 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
25237 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
25238 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
25239 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
25240 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
25241 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
25242 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
25243 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
25244 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
25245 /* For V5 or later processors we default to using VFP; but the user
25246 should really set the FPU type explicitly. */
25247 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
25248 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
25249 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
25250 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
25251 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
25252 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
25253 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
25254 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
25255 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
25256 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
25257 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
25258 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
25259 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
25260 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
25261 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
25262 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
25263 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
25264 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
25265 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
25266 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
25267 "ARM1026EJ-S"),
25268 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
25269 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
25270 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
25271 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
25272 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
25273 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
25274 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
25275 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
25276 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
25277 "ARM1136JF-S"),
25278 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
25279 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
25280 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
25281 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
25282 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
25283 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6KZ, FPU_NONE, NULL),
25284 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6KZ, FPU_ARCH_VFP_V2, NULL),
25285 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
25286 FPU_NONE, "Cortex-A5"),
25287 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
25288 "Cortex-A7"),
25289 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
25290 ARM_FEATURE_COPROC (FPU_VFP_V3
25291 | FPU_NEON_EXT_V1),
25292 "Cortex-A8"),
25293 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
25294 ARM_FEATURE_COPROC (FPU_VFP_V3
25295 | FPU_NEON_EXT_V1),
25296 "Cortex-A9"),
25297 ARM_CPU_OPT ("cortex-a12", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
25298 "Cortex-A12"),
25299 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
25300 "Cortex-A15"),
25301 ARM_CPU_OPT ("cortex-a17", ARM_ARCH_V7VE, FPU_ARCH_NEON_VFP_V4,
25302 "Cortex-A17"),
25303 ARM_CPU_OPT ("cortex-a32", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
25304 "Cortex-A32"),
25305 ARM_CPU_OPT ("cortex-a35", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
25306 "Cortex-A35"),
25307 ARM_CPU_OPT ("cortex-a53", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
25308 "Cortex-A53"),
25309 ARM_CPU_OPT ("cortex-a57", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
25310 "Cortex-A57"),
25311 ARM_CPU_OPT ("cortex-a72", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
25312 "Cortex-A72"),
25313 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
25314 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
25315 "Cortex-R4F"),
25316 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
25317 FPU_NONE, "Cortex-R5"),
25318 ARM_CPU_OPT ("cortex-r7", ARM_ARCH_V7R_IDIV,
25319 FPU_ARCH_VFP_V3D16,
25320 "Cortex-R7"),
25321 ARM_CPU_OPT ("cortex-r8", ARM_ARCH_V7R_IDIV,
25322 FPU_ARCH_VFP_V3D16,
25323 "Cortex-R8"),
25324 ARM_CPU_OPT ("cortex-m7", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M7"),
25325 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
25326 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
25327 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
25328 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
25329 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
25330 ARM_CPU_OPT ("exynos-m1", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
25331 "Samsung " \
25332 "Exynos M1"),
25333 ARM_CPU_OPT ("qdf24xx", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
25334 "Qualcomm "
25335 "QDF24XX"),
25336
25337 /* ??? XSCALE is really an architecture. */
25338 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
25339 /* ??? iwmmxt is not a processor. */
25340 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
25341 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
25342 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
25343 /* Maverick */
25344 ARM_CPU_OPT ("ep9312", ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
25345 FPU_ARCH_MAVERICK, "ARM920T"),
25346 /* Marvell processors. */
25347 ARM_CPU_OPT ("marvell-pj4", ARM_FEATURE_CORE (ARM_AEXT_V7A | ARM_EXT_MP
25348 | ARM_EXT_SEC,
25349 ARM_EXT2_V6T2_V8M),
25350 FPU_ARCH_VFP_V3D16, NULL),
25351 ARM_CPU_OPT ("marvell-whitney", ARM_FEATURE_CORE (ARM_AEXT_V7A | ARM_EXT_MP
25352 | ARM_EXT_SEC,
25353 ARM_EXT2_V6T2_V8M),
25354 FPU_ARCH_NEON_VFP_V4, NULL),
25355 /* APM X-Gene family. */
25356 ARM_CPU_OPT ("xgene1", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
25357 "APM X-Gene 1"),
25358 ARM_CPU_OPT ("xgene2", ARM_ARCH_V8A, FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
25359 "APM X-Gene 2"),
25360
25361 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
25362 };
25363 #undef ARM_CPU_OPT
25364
25365 struct arm_arch_option_table
25366 {
25367 const char *name;
25368 size_t name_len;
25369 const arm_feature_set value;
25370 const arm_feature_set default_fpu;
25371 };
25372
25373 /* This list should, at a minimum, contain all the architecture names
25374 recognized by GCC. */
25375 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
25376 static const struct arm_arch_option_table arm_archs[] =
25377 {
25378 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
25379 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
25380 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
25381 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
25382 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
25383 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
25384 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
25385 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
25386 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
25387 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
25388 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
25389 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
25390 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
25391 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
25392 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
25393 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
25394 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
25395 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
25396 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
25397 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
25398 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
25399 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
25400 kept to preserve existing behaviour. */
25401 ARM_ARCH_OPT ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
25402 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP),
25403 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
25404 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
25405 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
25406 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
25407 kept to preserve existing behaviour. */
25408 ARM_ARCH_OPT ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
25409 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP),
25410 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
25411 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
25412 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
25413 /* The official spelling of the ARMv7 profile variants is the dashed form.
25414 Accept the non-dashed form for compatibility with old toolchains. */
25415 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
25416 ARM_ARCH_OPT ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP),
25417 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
25418 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
25419 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
25420 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
25421 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
25422 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
25423 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
25424 ARM_ARCH_OPT ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP),
25425 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
25426 ARM_ARCH_OPT ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP),
25427 ARM_ARCH_OPT ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP),
25428 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
25429 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
25430 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
25431 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
25432 };
25433 #undef ARM_ARCH_OPT
25434
25435 /* ISA extensions in the co-processor and main instruction set space. */
25436 struct arm_option_extension_value_table
25437 {
25438 const char *name;
25439 size_t name_len;
25440 const arm_feature_set merge_value;
25441 const arm_feature_set clear_value;
25442 const arm_feature_set allowed_archs;
25443 };
25444
25445 /* The following table must be in alphabetical order with a NULL last entry.
25446 */
25447 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, AA }
25448 static const struct arm_option_extension_value_table arm_extensions[] =
25449 {
25450 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
25451 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
25452 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
25453 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
25454 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
25455 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
25456 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
25457 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
25458 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
25459 ARM_ARCH_V8_2A),
25460 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
25461 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
25462 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A | ARM_EXT_V7R)),
25463 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
25464 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ANY),
25465 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
25466 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ANY),
25467 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
25468 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ANY),
25469 ARM_EXT_OPT ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
25470 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
25471 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A | ARM_EXT_V7R)),
25472 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
25473 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
25474 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
25475 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
25476 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
25477 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
25478 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
25479 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
25480 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
25481 ARM_EXT_OPT ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
25482 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
25483 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V7A)),
25484 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
25485 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
25486 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
25487 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
25488 | ARM_EXT_DIV),
25489 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
25490 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
25491 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
25492 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ANY),
25493 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE }
25494 };
25495 #undef ARM_EXT_OPT
25496
25497 /* ISA floating-point and Advanced SIMD extensions. */
25498 struct arm_option_fpu_value_table
25499 {
25500 const char *name;
25501 const arm_feature_set value;
25502 };
25503
25504 /* This list should, at a minimum, contain all the fpu names
25505 recognized by GCC. */
25506 static const struct arm_option_fpu_value_table arm_fpus[] =
25507 {
25508 {"softfpa", FPU_NONE},
25509 {"fpe", FPU_ARCH_FPE},
25510 {"fpe2", FPU_ARCH_FPE},
25511 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
25512 {"fpa", FPU_ARCH_FPA},
25513 {"fpa10", FPU_ARCH_FPA},
25514 {"fpa11", FPU_ARCH_FPA},
25515 {"arm7500fe", FPU_ARCH_FPA},
25516 {"softvfp", FPU_ARCH_VFP},
25517 {"softvfp+vfp", FPU_ARCH_VFP_V2},
25518 {"vfp", FPU_ARCH_VFP_V2},
25519 {"vfp9", FPU_ARCH_VFP_V2},
25520 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
25521 {"vfp10", FPU_ARCH_VFP_V2},
25522 {"vfp10-r0", FPU_ARCH_VFP_V1},
25523 {"vfpxd", FPU_ARCH_VFP_V1xD},
25524 {"vfpv2", FPU_ARCH_VFP_V2},
25525 {"vfpv3", FPU_ARCH_VFP_V3},
25526 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
25527 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
25528 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
25529 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
25530 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
25531 {"arm1020t", FPU_ARCH_VFP_V1},
25532 {"arm1020e", FPU_ARCH_VFP_V2},
25533 {"arm1136jfs", FPU_ARCH_VFP_V2},
25534 {"arm1136jf-s", FPU_ARCH_VFP_V2},
25535 {"maverick", FPU_ARCH_MAVERICK},
25536 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
25537 {"neon-fp16", FPU_ARCH_NEON_FP16},
25538 {"vfpv4", FPU_ARCH_VFP_V4},
25539 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
25540 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
25541 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
25542 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
25543 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
25544 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
25545 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
25546 {"crypto-neon-fp-armv8",
25547 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
25548 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
25549 {"crypto-neon-fp-armv8.1",
25550 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
25551 {NULL, ARM_ARCH_NONE}
25552 };
25553
25554 struct arm_option_value_table
25555 {
25556 const char *name;
25557 long value;
25558 };
25559
25560 static const struct arm_option_value_table arm_float_abis[] =
25561 {
25562 {"hard", ARM_FLOAT_ABI_HARD},
25563 {"softfp", ARM_FLOAT_ABI_SOFTFP},
25564 {"soft", ARM_FLOAT_ABI_SOFT},
25565 {NULL, 0}
25566 };
25567
25568 #ifdef OBJ_ELF
25569 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
25570 static const struct arm_option_value_table arm_eabis[] =
25571 {
25572 {"gnu", EF_ARM_EABI_UNKNOWN},
25573 {"4", EF_ARM_EABI_VER4},
25574 {"5", EF_ARM_EABI_VER5},
25575 {NULL, 0}
25576 };
25577 #endif
25578
25579 struct arm_long_option_table
25580 {
25581 const char * option; /* Substring to match. */
25582 const char * help; /* Help information. */
25583 int (* func) (const char * subopt); /* Function to decode sub-option. */
25584 const char * deprecated; /* If non-null, print this message. */
25585 };
25586
25587 static bfd_boolean
25588 arm_parse_extension (const char *str, const arm_feature_set **opt_p)
25589 {
25590 arm_feature_set *ext_set = XNEW (arm_feature_set);
25591
25592 /* We insist on extensions being specified in alphabetical order, and with
25593 extensions being added before being removed. We achieve this by having
25594 the global ARM_EXTENSIONS table in alphabetical order, and using the
25595 ADDING_VALUE variable to indicate whether we are adding an extension (1)
25596 or removing it (0) and only allowing it to change in the order
25597 -1 -> 1 -> 0. */
25598 const struct arm_option_extension_value_table * opt = NULL;
25599 int adding_value = -1;
25600
25601 /* Copy the feature set, so that we can modify it. */
25602 *ext_set = **opt_p;
25603 *opt_p = ext_set;
25604
25605 while (str != NULL && *str != 0)
25606 {
25607 const char *ext;
25608 size_t len;
25609
25610 if (*str != '+')
25611 {
25612 as_bad (_("invalid architectural extension"));
25613 return FALSE;
25614 }
25615
25616 str++;
25617 ext = strchr (str, '+');
25618
25619 if (ext != NULL)
25620 len = ext - str;
25621 else
25622 len = strlen (str);
25623
25624 if (len >= 2 && strncmp (str, "no", 2) == 0)
25625 {
25626 if (adding_value != 0)
25627 {
25628 adding_value = 0;
25629 opt = arm_extensions;
25630 }
25631
25632 len -= 2;
25633 str += 2;
25634 }
25635 else if (len > 0)
25636 {
25637 if (adding_value == -1)
25638 {
25639 adding_value = 1;
25640 opt = arm_extensions;
25641 }
25642 else if (adding_value != 1)
25643 {
25644 as_bad (_("must specify extensions to add before specifying "
25645 "those to remove"));
25646 return FALSE;
25647 }
25648 }
25649
25650 if (len == 0)
25651 {
25652 as_bad (_("missing architectural extension"));
25653 return FALSE;
25654 }
25655
25656 gas_assert (adding_value != -1);
25657 gas_assert (opt != NULL);
25658
25659 /* Scan over the options table trying to find an exact match. */
25660 for (; opt->name != NULL; opt++)
25661 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
25662 {
25663 /* Check we can apply the extension to this architecture. */
25664 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
25665 {
25666 as_bad (_("extension does not apply to the base architecture"));
25667 return FALSE;
25668 }
25669
25670 /* Add or remove the extension. */
25671 if (adding_value)
25672 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
25673 else
25674 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
25675
25676 break;
25677 }
25678
25679 if (opt->name == NULL)
25680 {
25681 /* Did we fail to find an extension because it wasn't specified in
25682 alphabetical order, or because it does not exist? */
25683
25684 for (opt = arm_extensions; opt->name != NULL; opt++)
25685 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
25686 break;
25687
25688 if (opt->name == NULL)
25689 as_bad (_("unknown architectural extension `%s'"), str);
25690 else
25691 as_bad (_("architectural extensions must be specified in "
25692 "alphabetical order"));
25693
25694 return FALSE;
25695 }
25696 else
25697 {
25698 /* We should skip the extension we've just matched the next time
25699 round. */
25700 opt++;
25701 }
25702
25703 str = ext;
25704 };
25705
25706 return TRUE;
25707 }
25708
25709 static bfd_boolean
25710 arm_parse_cpu (const char *str)
25711 {
25712 const struct arm_cpu_option_table *opt;
25713 const char *ext = strchr (str, '+');
25714 size_t len;
25715
25716 if (ext != NULL)
25717 len = ext - str;
25718 else
25719 len = strlen (str);
25720
25721 if (len == 0)
25722 {
25723 as_bad (_("missing cpu name `%s'"), str);
25724 return FALSE;
25725 }
25726
25727 for (opt = arm_cpus; opt->name != NULL; opt++)
25728 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
25729 {
25730 mcpu_cpu_opt = &opt->value;
25731 mcpu_fpu_opt = &opt->default_fpu;
25732 if (opt->canonical_name)
25733 {
25734 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
25735 strcpy (selected_cpu_name, opt->canonical_name);
25736 }
25737 else
25738 {
25739 size_t i;
25740
25741 if (len >= sizeof selected_cpu_name)
25742 len = (sizeof selected_cpu_name) - 1;
25743
25744 for (i = 0; i < len; i++)
25745 selected_cpu_name[i] = TOUPPER (opt->name[i]);
25746 selected_cpu_name[i] = 0;
25747 }
25748
25749 if (ext != NULL)
25750 return arm_parse_extension (ext, &mcpu_cpu_opt);
25751
25752 return TRUE;
25753 }
25754
25755 as_bad (_("unknown cpu `%s'"), str);
25756 return FALSE;
25757 }
25758
25759 static bfd_boolean
25760 arm_parse_arch (const char *str)
25761 {
25762 const struct arm_arch_option_table *opt;
25763 const char *ext = strchr (str, '+');
25764 size_t len;
25765
25766 if (ext != NULL)
25767 len = ext - str;
25768 else
25769 len = strlen (str);
25770
25771 if (len == 0)
25772 {
25773 as_bad (_("missing architecture name `%s'"), str);
25774 return FALSE;
25775 }
25776
25777 for (opt = arm_archs; opt->name != NULL; opt++)
25778 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
25779 {
25780 march_cpu_opt = &opt->value;
25781 march_fpu_opt = &opt->default_fpu;
25782 strcpy (selected_cpu_name, opt->name);
25783
25784 if (ext != NULL)
25785 return arm_parse_extension (ext, &march_cpu_opt);
25786
25787 return TRUE;
25788 }
25789
25790 as_bad (_("unknown architecture `%s'\n"), str);
25791 return FALSE;
25792 }
25793
25794 static bfd_boolean
25795 arm_parse_fpu (const char * str)
25796 {
25797 const struct arm_option_fpu_value_table * opt;
25798
25799 for (opt = arm_fpus; opt->name != NULL; opt++)
25800 if (streq (opt->name, str))
25801 {
25802 mfpu_opt = &opt->value;
25803 return TRUE;
25804 }
25805
25806 as_bad (_("unknown floating point format `%s'\n"), str);
25807 return FALSE;
25808 }
25809
25810 static bfd_boolean
25811 arm_parse_float_abi (const char * str)
25812 {
25813 const struct arm_option_value_table * opt;
25814
25815 for (opt = arm_float_abis; opt->name != NULL; opt++)
25816 if (streq (opt->name, str))
25817 {
25818 mfloat_abi_opt = opt->value;
25819 return TRUE;
25820 }
25821
25822 as_bad (_("unknown floating point abi `%s'\n"), str);
25823 return FALSE;
25824 }
25825
25826 #ifdef OBJ_ELF
25827 static bfd_boolean
25828 arm_parse_eabi (const char * str)
25829 {
25830 const struct arm_option_value_table *opt;
25831
25832 for (opt = arm_eabis; opt->name != NULL; opt++)
25833 if (streq (opt->name, str))
25834 {
25835 meabi_flags = opt->value;
25836 return TRUE;
25837 }
25838 as_bad (_("unknown EABI `%s'\n"), str);
25839 return FALSE;
25840 }
25841 #endif
25842
25843 static bfd_boolean
25844 arm_parse_it_mode (const char * str)
25845 {
25846 bfd_boolean ret = TRUE;
25847
25848 if (streq ("arm", str))
25849 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
25850 else if (streq ("thumb", str))
25851 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
25852 else if (streq ("always", str))
25853 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
25854 else if (streq ("never", str))
25855 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
25856 else
25857 {
25858 as_bad (_("unknown implicit IT mode `%s', should be "\
25859 "arm, thumb, always, or never."), str);
25860 ret = FALSE;
25861 }
25862
25863 return ret;
25864 }
25865
25866 static bfd_boolean
25867 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
25868 {
25869 codecomposer_syntax = TRUE;
25870 arm_comment_chars[0] = ';';
25871 arm_line_separator_chars[0] = 0;
25872 return TRUE;
25873 }
25874
25875 struct arm_long_option_table arm_long_opts[] =
25876 {
25877 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
25878 arm_parse_cpu, NULL},
25879 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
25880 arm_parse_arch, NULL},
25881 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
25882 arm_parse_fpu, NULL},
25883 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
25884 arm_parse_float_abi, NULL},
25885 #ifdef OBJ_ELF
25886 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
25887 arm_parse_eabi, NULL},
25888 #endif
25889 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
25890 arm_parse_it_mode, NULL},
25891 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
25892 arm_ccs_mode, NULL},
25893 {NULL, NULL, 0, NULL}
25894 };
25895
25896 int
25897 md_parse_option (int c, const char * arg)
25898 {
25899 struct arm_option_table *opt;
25900 const struct arm_legacy_option_table *fopt;
25901 struct arm_long_option_table *lopt;
25902
25903 switch (c)
25904 {
25905 #ifdef OPTION_EB
25906 case OPTION_EB:
25907 target_big_endian = 1;
25908 break;
25909 #endif
25910
25911 #ifdef OPTION_EL
25912 case OPTION_EL:
25913 target_big_endian = 0;
25914 break;
25915 #endif
25916
25917 case OPTION_FIX_V4BX:
25918 fix_v4bx = TRUE;
25919 break;
25920
25921 case 'a':
25922 /* Listing option. Just ignore these, we don't support additional
25923 ones. */
25924 return 0;
25925
25926 default:
25927 for (opt = arm_opts; opt->option != NULL; opt++)
25928 {
25929 if (c == opt->option[0]
25930 && ((arg == NULL && opt->option[1] == 0)
25931 || streq (arg, opt->option + 1)))
25932 {
25933 /* If the option is deprecated, tell the user. */
25934 if (warn_on_deprecated && opt->deprecated != NULL)
25935 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
25936 arg ? arg : "", _(opt->deprecated));
25937
25938 if (opt->var != NULL)
25939 *opt->var = opt->value;
25940
25941 return 1;
25942 }
25943 }
25944
25945 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
25946 {
25947 if (c == fopt->option[0]
25948 && ((arg == NULL && fopt->option[1] == 0)
25949 || streq (arg, fopt->option + 1)))
25950 {
25951 /* If the option is deprecated, tell the user. */
25952 if (warn_on_deprecated && fopt->deprecated != NULL)
25953 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
25954 arg ? arg : "", _(fopt->deprecated));
25955
25956 if (fopt->var != NULL)
25957 *fopt->var = &fopt->value;
25958
25959 return 1;
25960 }
25961 }
25962
25963 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
25964 {
25965 /* These options are expected to have an argument. */
25966 if (c == lopt->option[0]
25967 && arg != NULL
25968 && strncmp (arg, lopt->option + 1,
25969 strlen (lopt->option + 1)) == 0)
25970 {
25971 /* If the option is deprecated, tell the user. */
25972 if (warn_on_deprecated && lopt->deprecated != NULL)
25973 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
25974 _(lopt->deprecated));
25975
25976 /* Call the sup-option parser. */
25977 return lopt->func (arg + strlen (lopt->option) - 1);
25978 }
25979 }
25980
25981 return 0;
25982 }
25983
25984 return 1;
25985 }
25986
25987 void
25988 md_show_usage (FILE * fp)
25989 {
25990 struct arm_option_table *opt;
25991 struct arm_long_option_table *lopt;
25992
25993 fprintf (fp, _(" ARM-specific assembler options:\n"));
25994
25995 for (opt = arm_opts; opt->option != NULL; opt++)
25996 if (opt->help != NULL)
25997 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
25998
25999 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
26000 if (lopt->help != NULL)
26001 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
26002
26003 #ifdef OPTION_EB
26004 fprintf (fp, _("\
26005 -EB assemble code for a big-endian cpu\n"));
26006 #endif
26007
26008 #ifdef OPTION_EL
26009 fprintf (fp, _("\
26010 -EL assemble code for a little-endian cpu\n"));
26011 #endif
26012
26013 fprintf (fp, _("\
26014 --fix-v4bx Allow BX in ARMv4 code\n"));
26015 }
26016
26017
26018 #ifdef OBJ_ELF
26019 typedef struct
26020 {
26021 int val;
26022 arm_feature_set flags;
26023 } cpu_arch_ver_table;
26024
26025 /* Mapping from CPU features to EABI CPU arch values. As a general rule, table
26026 must be sorted least features first but some reordering is needed, eg. for
26027 Thumb-2 instructions to be detected as coming from ARMv6T2. */
26028 static const cpu_arch_ver_table cpu_arch_ver[] =
26029 {
26030 {1, ARM_ARCH_V4},
26031 {2, ARM_ARCH_V4T},
26032 {3, ARM_ARCH_V5},
26033 {3, ARM_ARCH_V5T},
26034 {4, ARM_ARCH_V5TE},
26035 {5, ARM_ARCH_V5TEJ},
26036 {6, ARM_ARCH_V6},
26037 {9, ARM_ARCH_V6K},
26038 {7, ARM_ARCH_V6Z},
26039 {11, ARM_ARCH_V6M},
26040 {12, ARM_ARCH_V6SM},
26041 {8, ARM_ARCH_V6T2},
26042 {10, ARM_ARCH_V7VE},
26043 {10, ARM_ARCH_V7R},
26044 {10, ARM_ARCH_V7M},
26045 {14, ARM_ARCH_V8A},
26046 {16, ARM_ARCH_V8M_BASE},
26047 {17, ARM_ARCH_V8M_MAIN},
26048 {0, ARM_ARCH_NONE}
26049 };
26050
26051 /* Set an attribute if it has not already been set by the user. */
26052 static void
26053 aeabi_set_attribute_int (int tag, int value)
26054 {
26055 if (tag < 1
26056 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
26057 || !attributes_set_explicitly[tag])
26058 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
26059 }
26060
26061 static void
26062 aeabi_set_attribute_string (int tag, const char *value)
26063 {
26064 if (tag < 1
26065 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
26066 || !attributes_set_explicitly[tag])
26067 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
26068 }
26069
26070 /* Set the public EABI object attributes. */
26071 void
26072 aeabi_set_public_attributes (void)
26073 {
26074 int arch;
26075 char profile;
26076 int virt_sec = 0;
26077 int fp16_optional = 0;
26078 arm_feature_set flags;
26079 arm_feature_set tmp;
26080 arm_feature_set arm_arch_v8m_base = ARM_ARCH_V8M_BASE;
26081 const cpu_arch_ver_table *p;
26082
26083 /* Choose the architecture based on the capabilities of the requested cpu
26084 (if any) and/or the instructions actually used. */
26085 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
26086 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
26087 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
26088
26089 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
26090 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
26091
26092 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
26093 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
26094
26095 selected_cpu = flags;
26096
26097 /* Allow the user to override the reported architecture. */
26098 if (object_arch)
26099 {
26100 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
26101 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
26102 }
26103
26104 /* We need to make sure that the attributes do not identify us as v6S-M
26105 when the only v6S-M feature in use is the Operating System Extensions. */
26106 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
26107 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
26108 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
26109
26110 tmp = flags;
26111 arch = 0;
26112 for (p = cpu_arch_ver; p->val; p++)
26113 {
26114 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
26115 {
26116 arch = p->val;
26117 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
26118 }
26119 }
26120
26121 /* The table lookup above finds the last architecture to contribute
26122 a new feature. Unfortunately, Tag13 is a subset of the union of
26123 v6T2 and v7-M, so it is never seen as contributing a new feature.
26124 We can not search for the last entry which is entirely used,
26125 because if no CPU is specified we build up only those flags
26126 actually used. Perhaps we should separate out the specified
26127 and implicit cases. Avoid taking this path for -march=all by
26128 checking for contradictory v7-A / v7-M features. */
26129 if (arch == TAG_CPU_ARCH_V7
26130 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
26131 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
26132 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
26133 arch = TAG_CPU_ARCH_V7E_M;
26134
26135 ARM_CLEAR_FEATURE (tmp, flags, arm_arch_v8m_base);
26136 if (arch == TAG_CPU_ARCH_V8M_BASE && ARM_CPU_HAS_FEATURE (tmp, arm_arch_any))
26137 arch = TAG_CPU_ARCH_V8M_MAIN;
26138
26139 /* In cpu_arch_ver ARMv8-A is before ARMv8-M for atomics to be detected as
26140 coming from ARMv8-A. However, since ARMv8-A has more instructions than
26141 ARMv8-M, -march=all must be detected as ARMv8-A. */
26142 if (arch == TAG_CPU_ARCH_V8M_MAIN
26143 && ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
26144 arch = TAG_CPU_ARCH_V8;
26145
26146 /* Tag_CPU_name. */
26147 if (selected_cpu_name[0])
26148 {
26149 char *q;
26150
26151 q = selected_cpu_name;
26152 if (strncmp (q, "armv", 4) == 0)
26153 {
26154 int i;
26155
26156 q += 4;
26157 for (i = 0; q[i]; i++)
26158 q[i] = TOUPPER (q[i]);
26159 }
26160 aeabi_set_attribute_string (Tag_CPU_name, q);
26161 }
26162
26163 /* Tag_CPU_arch. */
26164 aeabi_set_attribute_int (Tag_CPU_arch, arch);
26165
26166 /* Tag_CPU_arch_profile. */
26167 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
26168 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
26169 || (ARM_CPU_HAS_FEATURE (flags, arm_ext_atomics)
26170 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m)))
26171 profile = 'A';
26172 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
26173 profile = 'R';
26174 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
26175 profile = 'M';
26176 else
26177 profile = '\0';
26178
26179 if (profile != '\0')
26180 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
26181
26182 /* Tag_ARM_ISA_use. */
26183 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
26184 || arch == 0)
26185 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
26186
26187 /* Tag_THUMB_ISA_use. */
26188 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
26189 || arch == 0)
26190 {
26191 int thumb_isa_use;
26192
26193 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
26194 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
26195 thumb_isa_use = 3;
26196 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
26197 thumb_isa_use = 2;
26198 else
26199 thumb_isa_use = 1;
26200 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
26201 }
26202
26203 /* Tag_VFP_arch. */
26204 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
26205 aeabi_set_attribute_int (Tag_VFP_arch,
26206 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
26207 ? 7 : 8);
26208 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
26209 aeabi_set_attribute_int (Tag_VFP_arch,
26210 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
26211 ? 5 : 6);
26212 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
26213 {
26214 fp16_optional = 1;
26215 aeabi_set_attribute_int (Tag_VFP_arch, 3);
26216 }
26217 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
26218 {
26219 aeabi_set_attribute_int (Tag_VFP_arch, 4);
26220 fp16_optional = 1;
26221 }
26222 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
26223 aeabi_set_attribute_int (Tag_VFP_arch, 2);
26224 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
26225 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
26226 aeabi_set_attribute_int (Tag_VFP_arch, 1);
26227
26228 /* Tag_ABI_HardFP_use. */
26229 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
26230 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
26231 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
26232
26233 /* Tag_WMMX_arch. */
26234 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
26235 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
26236 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
26237 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
26238
26239 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
26240 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
26241 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
26242 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
26243 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
26244 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
26245 {
26246 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
26247 {
26248 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
26249 }
26250 else
26251 {
26252 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
26253 fp16_optional = 1;
26254 }
26255 }
26256
26257 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
26258 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
26259 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
26260
26261 /* Tag_DIV_use.
26262
26263 We set Tag_DIV_use to two when integer divide instructions have been used
26264 in ARM state, or when Thumb integer divide instructions have been used,
26265 but we have no architecture profile set, nor have we any ARM instructions.
26266
26267 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
26268 by the base architecture.
26269
26270 For new architectures we will have to check these tests. */
26271 gas_assert (arch <= TAG_CPU_ARCH_V8
26272 || (arch >= TAG_CPU_ARCH_V8M_BASE
26273 && arch <= TAG_CPU_ARCH_V8M_MAIN));
26274 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
26275 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
26276 aeabi_set_attribute_int (Tag_DIV_use, 0);
26277 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
26278 || (profile == '\0'
26279 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
26280 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
26281 aeabi_set_attribute_int (Tag_DIV_use, 2);
26282
26283 /* Tag_MP_extension_use. */
26284 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
26285 aeabi_set_attribute_int (Tag_MPextension_use, 1);
26286
26287 /* Tag Virtualization_use. */
26288 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
26289 virt_sec |= 1;
26290 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
26291 virt_sec |= 2;
26292 if (virt_sec != 0)
26293 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
26294 }
26295
26296 /* Add the default contents for the .ARM.attributes section. */
26297 void
26298 arm_md_end (void)
26299 {
26300 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
26301 return;
26302
26303 aeabi_set_public_attributes ();
26304 }
26305 #endif /* OBJ_ELF */
26306
26307
26308 /* Parse a .cpu directive. */
26309
26310 static void
26311 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
26312 {
26313 const struct arm_cpu_option_table *opt;
26314 char *name;
26315 char saved_char;
26316
26317 name = input_line_pointer;
26318 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
26319 input_line_pointer++;
26320 saved_char = *input_line_pointer;
26321 *input_line_pointer = 0;
26322
26323 /* Skip the first "all" entry. */
26324 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
26325 if (streq (opt->name, name))
26326 {
26327 mcpu_cpu_opt = &opt->value;
26328 selected_cpu = opt->value;
26329 if (opt->canonical_name)
26330 strcpy (selected_cpu_name, opt->canonical_name);
26331 else
26332 {
26333 int i;
26334 for (i = 0; opt->name[i]; i++)
26335 selected_cpu_name[i] = TOUPPER (opt->name[i]);
26336
26337 selected_cpu_name[i] = 0;
26338 }
26339 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
26340 *input_line_pointer = saved_char;
26341 demand_empty_rest_of_line ();
26342 return;
26343 }
26344 as_bad (_("unknown cpu `%s'"), name);
26345 *input_line_pointer = saved_char;
26346 ignore_rest_of_line ();
26347 }
26348
26349
26350 /* Parse a .arch directive. */
26351
26352 static void
26353 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
26354 {
26355 const struct arm_arch_option_table *opt;
26356 char saved_char;
26357 char *name;
26358
26359 name = input_line_pointer;
26360 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
26361 input_line_pointer++;
26362 saved_char = *input_line_pointer;
26363 *input_line_pointer = 0;
26364
26365 /* Skip the first "all" entry. */
26366 for (opt = arm_archs + 1; opt->name != NULL; opt++)
26367 if (streq (opt->name, name))
26368 {
26369 mcpu_cpu_opt = &opt->value;
26370 selected_cpu = opt->value;
26371 strcpy (selected_cpu_name, opt->name);
26372 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
26373 *input_line_pointer = saved_char;
26374 demand_empty_rest_of_line ();
26375 return;
26376 }
26377
26378 as_bad (_("unknown architecture `%s'\n"), name);
26379 *input_line_pointer = saved_char;
26380 ignore_rest_of_line ();
26381 }
26382
26383
26384 /* Parse a .object_arch directive. */
26385
26386 static void
26387 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
26388 {
26389 const struct arm_arch_option_table *opt;
26390 char saved_char;
26391 char *name;
26392
26393 name = input_line_pointer;
26394 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
26395 input_line_pointer++;
26396 saved_char = *input_line_pointer;
26397 *input_line_pointer = 0;
26398
26399 /* Skip the first "all" entry. */
26400 for (opt = arm_archs + 1; opt->name != NULL; opt++)
26401 if (streq (opt->name, name))
26402 {
26403 object_arch = &opt->value;
26404 *input_line_pointer = saved_char;
26405 demand_empty_rest_of_line ();
26406 return;
26407 }
26408
26409 as_bad (_("unknown architecture `%s'\n"), name);
26410 *input_line_pointer = saved_char;
26411 ignore_rest_of_line ();
26412 }
26413
26414 /* Parse a .arch_extension directive. */
26415
26416 static void
26417 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
26418 {
26419 const struct arm_option_extension_value_table *opt;
26420 char saved_char;
26421 char *name;
26422 int adding_value = 1;
26423
26424 name = input_line_pointer;
26425 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
26426 input_line_pointer++;
26427 saved_char = *input_line_pointer;
26428 *input_line_pointer = 0;
26429
26430 if (strlen (name) >= 2
26431 && strncmp (name, "no", 2) == 0)
26432 {
26433 adding_value = 0;
26434 name += 2;
26435 }
26436
26437 for (opt = arm_extensions; opt->name != NULL; opt++)
26438 if (streq (opt->name, name))
26439 {
26440 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
26441 {
26442 as_bad (_("architectural extension `%s' is not allowed for the "
26443 "current base architecture"), name);
26444 break;
26445 }
26446
26447 if (adding_value)
26448 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu,
26449 opt->merge_value);
26450 else
26451 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->clear_value);
26452
26453 mcpu_cpu_opt = &selected_cpu;
26454 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
26455 *input_line_pointer = saved_char;
26456 demand_empty_rest_of_line ();
26457 return;
26458 }
26459
26460 if (opt->name == NULL)
26461 as_bad (_("unknown architecture extension `%s'\n"), name);
26462
26463 *input_line_pointer = saved_char;
26464 ignore_rest_of_line ();
26465 }
26466
26467 /* Parse a .fpu directive. */
26468
26469 static void
26470 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
26471 {
26472 const struct arm_option_fpu_value_table *opt;
26473 char saved_char;
26474 char *name;
26475
26476 name = input_line_pointer;
26477 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
26478 input_line_pointer++;
26479 saved_char = *input_line_pointer;
26480 *input_line_pointer = 0;
26481
26482 for (opt = arm_fpus; opt->name != NULL; opt++)
26483 if (streq (opt->name, name))
26484 {
26485 mfpu_opt = &opt->value;
26486 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
26487 *input_line_pointer = saved_char;
26488 demand_empty_rest_of_line ();
26489 return;
26490 }
26491
26492 as_bad (_("unknown floating point format `%s'\n"), name);
26493 *input_line_pointer = saved_char;
26494 ignore_rest_of_line ();
26495 }
26496
26497 /* Copy symbol information. */
26498
26499 void
26500 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
26501 {
26502 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
26503 }
26504
26505 #ifdef OBJ_ELF
26506 /* Given a symbolic attribute NAME, return the proper integer value.
26507 Returns -1 if the attribute is not known. */
26508
26509 int
26510 arm_convert_symbolic_attribute (const char *name)
26511 {
26512 static const struct
26513 {
26514 const char * name;
26515 const int tag;
26516 }
26517 attribute_table[] =
26518 {
26519 /* When you modify this table you should
26520 also modify the list in doc/c-arm.texi. */
26521 #define T(tag) {#tag, tag}
26522 T (Tag_CPU_raw_name),
26523 T (Tag_CPU_name),
26524 T (Tag_CPU_arch),
26525 T (Tag_CPU_arch_profile),
26526 T (Tag_ARM_ISA_use),
26527 T (Tag_THUMB_ISA_use),
26528 T (Tag_FP_arch),
26529 T (Tag_VFP_arch),
26530 T (Tag_WMMX_arch),
26531 T (Tag_Advanced_SIMD_arch),
26532 T (Tag_PCS_config),
26533 T (Tag_ABI_PCS_R9_use),
26534 T (Tag_ABI_PCS_RW_data),
26535 T (Tag_ABI_PCS_RO_data),
26536 T (Tag_ABI_PCS_GOT_use),
26537 T (Tag_ABI_PCS_wchar_t),
26538 T (Tag_ABI_FP_rounding),
26539 T (Tag_ABI_FP_denormal),
26540 T (Tag_ABI_FP_exceptions),
26541 T (Tag_ABI_FP_user_exceptions),
26542 T (Tag_ABI_FP_number_model),
26543 T (Tag_ABI_align_needed),
26544 T (Tag_ABI_align8_needed),
26545 T (Tag_ABI_align_preserved),
26546 T (Tag_ABI_align8_preserved),
26547 T (Tag_ABI_enum_size),
26548 T (Tag_ABI_HardFP_use),
26549 T (Tag_ABI_VFP_args),
26550 T (Tag_ABI_WMMX_args),
26551 T (Tag_ABI_optimization_goals),
26552 T (Tag_ABI_FP_optimization_goals),
26553 T (Tag_compatibility),
26554 T (Tag_CPU_unaligned_access),
26555 T (Tag_FP_HP_extension),
26556 T (Tag_VFP_HP_extension),
26557 T (Tag_ABI_FP_16bit_format),
26558 T (Tag_MPextension_use),
26559 T (Tag_DIV_use),
26560 T (Tag_nodefaults),
26561 T (Tag_also_compatible_with),
26562 T (Tag_conformance),
26563 T (Tag_T2EE_use),
26564 T (Tag_Virtualization_use),
26565 /* We deliberately do not include Tag_MPextension_use_legacy. */
26566 #undef T
26567 };
26568 unsigned int i;
26569
26570 if (name == NULL)
26571 return -1;
26572
26573 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
26574 if (streq (name, attribute_table[i].name))
26575 return attribute_table[i].tag;
26576
26577 return -1;
26578 }
26579
26580
26581 /* Apply sym value for relocations only in the case that they are for
26582 local symbols in the same segment as the fixup and you have the
26583 respective architectural feature for blx and simple switches. */
26584 int
26585 arm_apply_sym_value (struct fix * fixP, segT this_seg)
26586 {
26587 if (fixP->fx_addsy
26588 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26589 /* PR 17444: If the local symbol is in a different section then a reloc
26590 will always be generated for it, so applying the symbol value now
26591 will result in a double offset being stored in the relocation. */
26592 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
26593 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
26594 {
26595 switch (fixP->fx_r_type)
26596 {
26597 case BFD_RELOC_ARM_PCREL_BLX:
26598 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26599 if (ARM_IS_FUNC (fixP->fx_addsy))
26600 return 1;
26601 break;
26602
26603 case BFD_RELOC_ARM_PCREL_CALL:
26604 case BFD_RELOC_THUMB_PCREL_BLX:
26605 if (THUMB_IS_FUNC (fixP->fx_addsy))
26606 return 1;
26607 break;
26608
26609 default:
26610 break;
26611 }
26612
26613 }
26614 return 0;
26615 }
26616 #endif /* OBJ_ELF */
This page took 0.694413 seconds and 4 git commands to generate.