[binutils, ARM, 7/16] New BFX and BFLX instruction for Armv8.1-M Mainline
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 #ifdef OBJ_ELF
306 static const arm_feature_set fpu_vfp_fp16 =
307 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
308 static const arm_feature_set fpu_neon_ext_fma =
309 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
310 #endif
311 static const arm_feature_set fpu_vfp_ext_fma =
312 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
313 static const arm_feature_set fpu_vfp_ext_armv8 =
314 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
315 static const arm_feature_set fpu_vfp_ext_armv8xd =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
317 static const arm_feature_set fpu_neon_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
319 static const arm_feature_set fpu_crypto_ext_armv8 =
320 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
321 static const arm_feature_set crc_ext_armv8 =
322 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
323 static const arm_feature_set fpu_neon_ext_v8_1 =
324 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
325 static const arm_feature_set fpu_neon_ext_dotprod =
326 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
327
328 static int mfloat_abi_opt = -1;
329 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
330 directive. */
331 static arm_feature_set selected_arch = ARM_ARCH_NONE;
332 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
333 directive. */
334 static arm_feature_set selected_ext = ARM_ARCH_NONE;
335 /* Feature bits selected by the last -mcpu/-march or by the combination of the
336 last .cpu/.arch directive .arch_extension directives since that
337 directive. */
338 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
339 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
340 static arm_feature_set selected_fpu = FPU_NONE;
341 /* Feature bits selected by the last .object_arch directive. */
342 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
343 /* Must be long enough to hold any of the names in arm_cpus. */
344 static char selected_cpu_name[20];
345
346 extern FLONUM_TYPE generic_floating_point_number;
347
348 /* Return if no cpu was selected on command-line. */
349 static bfd_boolean
350 no_cpu_selected (void)
351 {
352 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
353 }
354
355 #ifdef OBJ_ELF
356 # ifdef EABI_DEFAULT
357 static int meabi_flags = EABI_DEFAULT;
358 # else
359 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
360 # endif
361
362 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
363
364 bfd_boolean
365 arm_is_eabi (void)
366 {
367 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
368 }
369 #endif
370
371 #ifdef OBJ_ELF
372 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
373 symbolS * GOT_symbol;
374 #endif
375
376 /* 0: assemble for ARM,
377 1: assemble for Thumb,
378 2: assemble for Thumb even though target CPU does not support thumb
379 instructions. */
380 static int thumb_mode = 0;
381 /* A value distinct from the possible values for thumb_mode that we
382 can use to record whether thumb_mode has been copied into the
383 tc_frag_data field of a frag. */
384 #define MODE_RECORDED (1 << 4)
385
386 /* Specifies the intrinsic IT insn behavior mode. */
387 enum implicit_it_mode
388 {
389 IMPLICIT_IT_MODE_NEVER = 0x00,
390 IMPLICIT_IT_MODE_ARM = 0x01,
391 IMPLICIT_IT_MODE_THUMB = 0x02,
392 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
393 };
394 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
395
396 /* If unified_syntax is true, we are processing the new unified
397 ARM/Thumb syntax. Important differences from the old ARM mode:
398
399 - Immediate operands do not require a # prefix.
400 - Conditional affixes always appear at the end of the
401 instruction. (For backward compatibility, those instructions
402 that formerly had them in the middle, continue to accept them
403 there.)
404 - The IT instruction may appear, and if it does is validated
405 against subsequent conditional affixes. It does not generate
406 machine code.
407
408 Important differences from the old Thumb mode:
409
410 - Immediate operands do not require a # prefix.
411 - Most of the V6T2 instructions are only available in unified mode.
412 - The .N and .W suffixes are recognized and honored (it is an error
413 if they cannot be honored).
414 - All instructions set the flags if and only if they have an 's' affix.
415 - Conditional affixes may be used. They are validated against
416 preceding IT instructions. Unlike ARM mode, you cannot use a
417 conditional affix except in the scope of an IT instruction. */
418
419 static bfd_boolean unified_syntax = FALSE;
420
421 /* An immediate operand can start with #, and ld*, st*, pld operands
422 can contain [ and ]. We need to tell APP not to elide whitespace
423 before a [, which can appear as the first operand for pld.
424 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
425 const char arm_symbol_chars[] = "#[]{}";
426
427 enum neon_el_type
428 {
429 NT_invtype,
430 NT_untyped,
431 NT_integer,
432 NT_float,
433 NT_poly,
434 NT_signed,
435 NT_unsigned
436 };
437
438 struct neon_type_el
439 {
440 enum neon_el_type type;
441 unsigned size;
442 };
443
444 #define NEON_MAX_TYPE_ELS 4
445
446 struct neon_type
447 {
448 struct neon_type_el el[NEON_MAX_TYPE_ELS];
449 unsigned elems;
450 };
451
452 enum it_instruction_type
453 {
454 OUTSIDE_IT_INSN,
455 INSIDE_IT_INSN,
456 INSIDE_IT_LAST_INSN,
457 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
458 if inside, should be the last one. */
459 NEUTRAL_IT_INSN, /* This could be either inside or outside,
460 i.e. BKPT and NOP. */
461 IT_INSN /* The IT insn has been parsed. */
462 };
463
464 /* The maximum number of operands we need. */
465 #define ARM_IT_MAX_OPERANDS 6
466 #define ARM_IT_MAX_RELOCS 3
467
468 struct arm_it
469 {
470 const char * error;
471 unsigned long instruction;
472 int size;
473 int size_req;
474 int cond;
475 /* "uncond_value" is set to the value in place of the conditional field in
476 unconditional versions of the instruction, or -1 if nothing is
477 appropriate. */
478 int uncond_value;
479 struct neon_type vectype;
480 /* This does not indicate an actual NEON instruction, only that
481 the mnemonic accepts neon-style type suffixes. */
482 int is_neon;
483 /* Set to the opcode if the instruction needs relaxation.
484 Zero if the instruction is not relaxed. */
485 unsigned long relax;
486 struct
487 {
488 bfd_reloc_code_real_type type;
489 expressionS exp;
490 int pc_rel;
491 } relocs[ARM_IT_MAX_RELOCS];
492
493 enum it_instruction_type it_insn_type;
494
495 struct
496 {
497 unsigned reg;
498 signed int imm;
499 struct neon_type_el vectype;
500 unsigned present : 1; /* Operand present. */
501 unsigned isreg : 1; /* Operand was a register. */
502 unsigned immisreg : 1; /* .imm field is a second register. */
503 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
504 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
505 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
506 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
507 instructions. This allows us to disambiguate ARM <-> vector insns. */
508 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
509 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
510 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
511 unsigned issingle : 1; /* Operand is VFP single-precision register. */
512 unsigned hasreloc : 1; /* Operand has relocation suffix. */
513 unsigned writeback : 1; /* Operand has trailing ! */
514 unsigned preind : 1; /* Preindexed address. */
515 unsigned postind : 1; /* Postindexed address. */
516 unsigned negative : 1; /* Index register was negated. */
517 unsigned shifted : 1; /* Shift applied to operation. */
518 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
519 } operands[ARM_IT_MAX_OPERANDS];
520 };
521
522 static struct arm_it inst;
523
524 #define NUM_FLOAT_VALS 8
525
526 const char * fp_const[] =
527 {
528 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
529 };
530
531 /* Number of littlenums required to hold an extended precision number. */
532 #define MAX_LITTLENUMS 6
533
534 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
535
536 #define FAIL (-1)
537 #define SUCCESS (0)
538
539 #define SUFF_S 1
540 #define SUFF_D 2
541 #define SUFF_E 3
542 #define SUFF_P 4
543
544 #define CP_T_X 0x00008000
545 #define CP_T_Y 0x00400000
546
547 #define CONDS_BIT 0x00100000
548 #define LOAD_BIT 0x00100000
549
550 #define DOUBLE_LOAD_FLAG 0x00000001
551
552 struct asm_cond
553 {
554 const char * template_name;
555 unsigned long value;
556 };
557
558 #define COND_ALWAYS 0xE
559
560 struct asm_psr
561 {
562 const char * template_name;
563 unsigned long field;
564 };
565
566 struct asm_barrier_opt
567 {
568 const char * template_name;
569 unsigned long value;
570 const arm_feature_set arch;
571 };
572
573 /* The bit that distinguishes CPSR and SPSR. */
574 #define SPSR_BIT (1 << 22)
575
576 /* The individual PSR flag bits. */
577 #define PSR_c (1 << 16)
578 #define PSR_x (1 << 17)
579 #define PSR_s (1 << 18)
580 #define PSR_f (1 << 19)
581
582 struct reloc_entry
583 {
584 const char * name;
585 bfd_reloc_code_real_type reloc;
586 };
587
588 enum vfp_reg_pos
589 {
590 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
591 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
592 };
593
594 enum vfp_ldstm_type
595 {
596 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
597 };
598
599 /* Bits for DEFINED field in neon_typed_alias. */
600 #define NTA_HASTYPE 1
601 #define NTA_HASINDEX 2
602
603 struct neon_typed_alias
604 {
605 unsigned char defined;
606 unsigned char index;
607 struct neon_type_el eltype;
608 };
609
610 /* ARM register categories. This includes coprocessor numbers and various
611 architecture extensions' registers. Each entry should have an error message
612 in reg_expected_msgs below. */
613 enum arm_reg_type
614 {
615 REG_TYPE_RN,
616 REG_TYPE_CP,
617 REG_TYPE_CN,
618 REG_TYPE_FN,
619 REG_TYPE_VFS,
620 REG_TYPE_VFD,
621 REG_TYPE_NQ,
622 REG_TYPE_VFSD,
623 REG_TYPE_NDQ,
624 REG_TYPE_NSD,
625 REG_TYPE_NSDQ,
626 REG_TYPE_VFC,
627 REG_TYPE_MVF,
628 REG_TYPE_MVD,
629 REG_TYPE_MVFX,
630 REG_TYPE_MVDX,
631 REG_TYPE_MVAX,
632 REG_TYPE_DSPSC,
633 REG_TYPE_MMXWR,
634 REG_TYPE_MMXWC,
635 REG_TYPE_MMXWCG,
636 REG_TYPE_XSCALE,
637 REG_TYPE_RNB
638 };
639
640 /* Structure for a hash table entry for a register.
641 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
642 information which states whether a vector type or index is specified (for a
643 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
644 struct reg_entry
645 {
646 const char * name;
647 unsigned int number;
648 unsigned char type;
649 unsigned char builtin;
650 struct neon_typed_alias * neon;
651 };
652
653 /* Diagnostics used when we don't get a register of the expected type. */
654 const char * const reg_expected_msgs[] =
655 {
656 [REG_TYPE_RN] = N_("ARM register expected"),
657 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
658 [REG_TYPE_CN] = N_("co-processor register expected"),
659 [REG_TYPE_FN] = N_("FPA register expected"),
660 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
661 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
662 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
663 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
664 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
665 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
666 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
667 " expected"),
668 [REG_TYPE_VFC] = N_("VFP system register expected"),
669 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
670 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
671 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
672 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
673 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
674 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
675 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
676 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
677 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
678 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
679 [REG_TYPE_RNB] = N_("")
680 };
681
682 /* Some well known registers that we refer to directly elsewhere. */
683 #define REG_R12 12
684 #define REG_SP 13
685 #define REG_LR 14
686 #define REG_PC 15
687
688 /* ARM instructions take 4bytes in the object file, Thumb instructions
689 take 2: */
690 #define INSN_SIZE 4
691
692 struct asm_opcode
693 {
694 /* Basic string to match. */
695 const char * template_name;
696
697 /* Parameters to instruction. */
698 unsigned int operands[8];
699
700 /* Conditional tag - see opcode_lookup. */
701 unsigned int tag : 4;
702
703 /* Basic instruction code. */
704 unsigned int avalue : 28;
705
706 /* Thumb-format instruction code. */
707 unsigned int tvalue;
708
709 /* Which architecture variant provides this instruction. */
710 const arm_feature_set * avariant;
711 const arm_feature_set * tvariant;
712
713 /* Function to call to encode instruction in ARM format. */
714 void (* aencode) (void);
715
716 /* Function to call to encode instruction in Thumb format. */
717 void (* tencode) (void);
718 };
719
720 /* Defines for various bits that we will want to toggle. */
721 #define INST_IMMEDIATE 0x02000000
722 #define OFFSET_REG 0x02000000
723 #define HWOFFSET_IMM 0x00400000
724 #define SHIFT_BY_REG 0x00000010
725 #define PRE_INDEX 0x01000000
726 #define INDEX_UP 0x00800000
727 #define WRITE_BACK 0x00200000
728 #define LDM_TYPE_2_OR_3 0x00400000
729 #define CPSI_MMOD 0x00020000
730
731 #define LITERAL_MASK 0xf000f000
732 #define OPCODE_MASK 0xfe1fffff
733 #define V4_STR_BIT 0x00000020
734 #define VLDR_VMOV_SAME 0x0040f000
735
736 #define T2_SUBS_PC_LR 0xf3de8f00
737
738 #define DATA_OP_SHIFT 21
739 #define SBIT_SHIFT 20
740
741 #define T2_OPCODE_MASK 0xfe1fffff
742 #define T2_DATA_OP_SHIFT 21
743 #define T2_SBIT_SHIFT 20
744
745 #define A_COND_MASK 0xf0000000
746 #define A_PUSH_POP_OP_MASK 0x0fff0000
747
748 /* Opcodes for pushing/poping registers to/from the stack. */
749 #define A1_OPCODE_PUSH 0x092d0000
750 #define A2_OPCODE_PUSH 0x052d0004
751 #define A2_OPCODE_POP 0x049d0004
752
753 /* Codes to distinguish the arithmetic instructions. */
754 #define OPCODE_AND 0
755 #define OPCODE_EOR 1
756 #define OPCODE_SUB 2
757 #define OPCODE_RSB 3
758 #define OPCODE_ADD 4
759 #define OPCODE_ADC 5
760 #define OPCODE_SBC 6
761 #define OPCODE_RSC 7
762 #define OPCODE_TST 8
763 #define OPCODE_TEQ 9
764 #define OPCODE_CMP 10
765 #define OPCODE_CMN 11
766 #define OPCODE_ORR 12
767 #define OPCODE_MOV 13
768 #define OPCODE_BIC 14
769 #define OPCODE_MVN 15
770
771 #define T2_OPCODE_AND 0
772 #define T2_OPCODE_BIC 1
773 #define T2_OPCODE_ORR 2
774 #define T2_OPCODE_ORN 3
775 #define T2_OPCODE_EOR 4
776 #define T2_OPCODE_ADD 8
777 #define T2_OPCODE_ADC 10
778 #define T2_OPCODE_SBC 11
779 #define T2_OPCODE_SUB 13
780 #define T2_OPCODE_RSB 14
781
782 #define T_OPCODE_MUL 0x4340
783 #define T_OPCODE_TST 0x4200
784 #define T_OPCODE_CMN 0x42c0
785 #define T_OPCODE_NEG 0x4240
786 #define T_OPCODE_MVN 0x43c0
787
788 #define T_OPCODE_ADD_R3 0x1800
789 #define T_OPCODE_SUB_R3 0x1a00
790 #define T_OPCODE_ADD_HI 0x4400
791 #define T_OPCODE_ADD_ST 0xb000
792 #define T_OPCODE_SUB_ST 0xb080
793 #define T_OPCODE_ADD_SP 0xa800
794 #define T_OPCODE_ADD_PC 0xa000
795 #define T_OPCODE_ADD_I8 0x3000
796 #define T_OPCODE_SUB_I8 0x3800
797 #define T_OPCODE_ADD_I3 0x1c00
798 #define T_OPCODE_SUB_I3 0x1e00
799
800 #define T_OPCODE_ASR_R 0x4100
801 #define T_OPCODE_LSL_R 0x4080
802 #define T_OPCODE_LSR_R 0x40c0
803 #define T_OPCODE_ROR_R 0x41c0
804 #define T_OPCODE_ASR_I 0x1000
805 #define T_OPCODE_LSL_I 0x0000
806 #define T_OPCODE_LSR_I 0x0800
807
808 #define T_OPCODE_MOV_I8 0x2000
809 #define T_OPCODE_CMP_I8 0x2800
810 #define T_OPCODE_CMP_LR 0x4280
811 #define T_OPCODE_MOV_HR 0x4600
812 #define T_OPCODE_CMP_HR 0x4500
813
814 #define T_OPCODE_LDR_PC 0x4800
815 #define T_OPCODE_LDR_SP 0x9800
816 #define T_OPCODE_STR_SP 0x9000
817 #define T_OPCODE_LDR_IW 0x6800
818 #define T_OPCODE_STR_IW 0x6000
819 #define T_OPCODE_LDR_IH 0x8800
820 #define T_OPCODE_STR_IH 0x8000
821 #define T_OPCODE_LDR_IB 0x7800
822 #define T_OPCODE_STR_IB 0x7000
823 #define T_OPCODE_LDR_RW 0x5800
824 #define T_OPCODE_STR_RW 0x5000
825 #define T_OPCODE_LDR_RH 0x5a00
826 #define T_OPCODE_STR_RH 0x5200
827 #define T_OPCODE_LDR_RB 0x5c00
828 #define T_OPCODE_STR_RB 0x5400
829
830 #define T_OPCODE_PUSH 0xb400
831 #define T_OPCODE_POP 0xbc00
832
833 #define T_OPCODE_BRANCH 0xe000
834
835 #define THUMB_SIZE 2 /* Size of thumb instruction. */
836 #define THUMB_PP_PC_LR 0x0100
837 #define THUMB_LOAD_BIT 0x0800
838 #define THUMB2_LOAD_BIT 0x00100000
839
840 #define BAD_ARGS _("bad arguments to instruction")
841 #define BAD_SP _("r13 not allowed here")
842 #define BAD_PC _("r15 not allowed here")
843 #define BAD_COND _("instruction cannot be conditional")
844 #define BAD_OVERLAP _("registers may not be the same")
845 #define BAD_HIREG _("lo register required")
846 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
847 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
848 #define BAD_BRANCH _("branch must be last instruction in IT block")
849 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
850 #define BAD_NOT_IT _("instruction not allowed in IT block")
851 #define BAD_FPU _("selected FPU does not support instruction")
852 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
853 #define BAD_IT_COND _("incorrect condition in IT block")
854 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
855 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
856 #define BAD_PC_ADDRESSING \
857 _("cannot use register index with PC-relative addressing")
858 #define BAD_PC_WRITEBACK \
859 _("cannot use writeback with PC-relative addressing")
860 #define BAD_RANGE _("branch out of range")
861 #define BAD_FP16 _("selected processor does not support fp16 instruction")
862 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
863 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
864
865 static struct hash_control * arm_ops_hsh;
866 static struct hash_control * arm_cond_hsh;
867 static struct hash_control * arm_shift_hsh;
868 static struct hash_control * arm_psr_hsh;
869 static struct hash_control * arm_v7m_psr_hsh;
870 static struct hash_control * arm_reg_hsh;
871 static struct hash_control * arm_reloc_hsh;
872 static struct hash_control * arm_barrier_opt_hsh;
873
874 /* Stuff needed to resolve the label ambiguity
875 As:
876 ...
877 label: <insn>
878 may differ from:
879 ...
880 label:
881 <insn> */
882
883 symbolS * last_label_seen;
884 static int label_is_thumb_function_name = FALSE;
885
886 /* Literal pool structure. Held on a per-section
887 and per-sub-section basis. */
888
889 #define MAX_LITERAL_POOL_SIZE 1024
890 typedef struct literal_pool
891 {
892 expressionS literals [MAX_LITERAL_POOL_SIZE];
893 unsigned int next_free_entry;
894 unsigned int id;
895 symbolS * symbol;
896 segT section;
897 subsegT sub_section;
898 #ifdef OBJ_ELF
899 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
900 #endif
901 struct literal_pool * next;
902 unsigned int alignment;
903 } literal_pool;
904
905 /* Pointer to a linked list of literal pools. */
906 literal_pool * list_of_pools = NULL;
907
908 typedef enum asmfunc_states
909 {
910 OUTSIDE_ASMFUNC,
911 WAITING_ASMFUNC_NAME,
912 WAITING_ENDASMFUNC
913 } asmfunc_states;
914
915 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
916
917 #ifdef OBJ_ELF
918 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
919 #else
920 static struct current_it now_it;
921 #endif
922
923 static inline int
924 now_it_compatible (int cond)
925 {
926 return (cond & ~1) == (now_it.cc & ~1);
927 }
928
929 static inline int
930 conditional_insn (void)
931 {
932 return inst.cond != COND_ALWAYS;
933 }
934
935 static int in_it_block (void);
936
937 static int handle_it_state (void);
938
939 static void force_automatic_it_block_close (void);
940
941 static void it_fsm_post_encode (void);
942
943 #define set_it_insn_type(type) \
944 do \
945 { \
946 inst.it_insn_type = type; \
947 if (handle_it_state () == FAIL) \
948 return; \
949 } \
950 while (0)
951
952 #define set_it_insn_type_nonvoid(type, failret) \
953 do \
954 { \
955 inst.it_insn_type = type; \
956 if (handle_it_state () == FAIL) \
957 return failret; \
958 } \
959 while(0)
960
961 #define set_it_insn_type_last() \
962 do \
963 { \
964 if (inst.cond == COND_ALWAYS) \
965 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
966 else \
967 set_it_insn_type (INSIDE_IT_LAST_INSN); \
968 } \
969 while (0)
970
971 /* Pure syntax. */
972
973 /* This array holds the chars that always start a comment. If the
974 pre-processor is disabled, these aren't very useful. */
975 char arm_comment_chars[] = "@";
976
977 /* This array holds the chars that only start a comment at the beginning of
978 a line. If the line seems to have the form '# 123 filename'
979 .line and .file directives will appear in the pre-processed output. */
980 /* Note that input_file.c hand checks for '#' at the beginning of the
981 first line of the input file. This is because the compiler outputs
982 #NO_APP at the beginning of its output. */
983 /* Also note that comments like this one will always work. */
984 const char line_comment_chars[] = "#";
985
986 char arm_line_separator_chars[] = ";";
987
988 /* Chars that can be used to separate mant
989 from exp in floating point numbers. */
990 const char EXP_CHARS[] = "eE";
991
992 /* Chars that mean this number is a floating point constant. */
993 /* As in 0f12.456 */
994 /* or 0d1.2345e12 */
995
996 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
997
998 /* Prefix characters that indicate the start of an immediate
999 value. */
1000 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1001
1002 /* Separator character handling. */
1003
1004 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1005
1006 static inline int
1007 skip_past_char (char ** str, char c)
1008 {
1009 /* PR gas/14987: Allow for whitespace before the expected character. */
1010 skip_whitespace (*str);
1011
1012 if (**str == c)
1013 {
1014 (*str)++;
1015 return SUCCESS;
1016 }
1017 else
1018 return FAIL;
1019 }
1020
1021 #define skip_past_comma(str) skip_past_char (str, ',')
1022
1023 /* Arithmetic expressions (possibly involving symbols). */
1024
1025 /* Return TRUE if anything in the expression is a bignum. */
1026
1027 static bfd_boolean
1028 walk_no_bignums (symbolS * sp)
1029 {
1030 if (symbol_get_value_expression (sp)->X_op == O_big)
1031 return TRUE;
1032
1033 if (symbol_get_value_expression (sp)->X_add_symbol)
1034 {
1035 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1036 || (symbol_get_value_expression (sp)->X_op_symbol
1037 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1038 }
1039
1040 return FALSE;
1041 }
1042
1043 static bfd_boolean in_my_get_expression = FALSE;
1044
1045 /* Third argument to my_get_expression. */
1046 #define GE_NO_PREFIX 0
1047 #define GE_IMM_PREFIX 1
1048 #define GE_OPT_PREFIX 2
1049 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1050 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1051 #define GE_OPT_PREFIX_BIG 3
1052
1053 static int
1054 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1055 {
1056 char * save_in;
1057
1058 /* In unified syntax, all prefixes are optional. */
1059 if (unified_syntax)
1060 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1061 : GE_OPT_PREFIX;
1062
1063 switch (prefix_mode)
1064 {
1065 case GE_NO_PREFIX: break;
1066 case GE_IMM_PREFIX:
1067 if (!is_immediate_prefix (**str))
1068 {
1069 inst.error = _("immediate expression requires a # prefix");
1070 return FAIL;
1071 }
1072 (*str)++;
1073 break;
1074 case GE_OPT_PREFIX:
1075 case GE_OPT_PREFIX_BIG:
1076 if (is_immediate_prefix (**str))
1077 (*str)++;
1078 break;
1079 default:
1080 abort ();
1081 }
1082
1083 memset (ep, 0, sizeof (expressionS));
1084
1085 save_in = input_line_pointer;
1086 input_line_pointer = *str;
1087 in_my_get_expression = TRUE;
1088 expression (ep);
1089 in_my_get_expression = FALSE;
1090
1091 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1092 {
1093 /* We found a bad or missing expression in md_operand(). */
1094 *str = input_line_pointer;
1095 input_line_pointer = save_in;
1096 if (inst.error == NULL)
1097 inst.error = (ep->X_op == O_absent
1098 ? _("missing expression") :_("bad expression"));
1099 return 1;
1100 }
1101
1102 /* Get rid of any bignums now, so that we don't generate an error for which
1103 we can't establish a line number later on. Big numbers are never valid
1104 in instructions, which is where this routine is always called. */
1105 if (prefix_mode != GE_OPT_PREFIX_BIG
1106 && (ep->X_op == O_big
1107 || (ep->X_add_symbol
1108 && (walk_no_bignums (ep->X_add_symbol)
1109 || (ep->X_op_symbol
1110 && walk_no_bignums (ep->X_op_symbol))))))
1111 {
1112 inst.error = _("invalid constant");
1113 *str = input_line_pointer;
1114 input_line_pointer = save_in;
1115 return 1;
1116 }
1117
1118 *str = input_line_pointer;
1119 input_line_pointer = save_in;
1120 return SUCCESS;
1121 }
1122
1123 /* Turn a string in input_line_pointer into a floating point constant
1124 of type TYPE, and store the appropriate bytes in *LITP. The number
1125 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1126 returned, or NULL on OK.
1127
1128 Note that fp constants aren't represent in the normal way on the ARM.
1129 In big endian mode, things are as expected. However, in little endian
1130 mode fp constants are big-endian word-wise, and little-endian byte-wise
1131 within the words. For example, (double) 1.1 in big endian mode is
1132 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1133 the byte sequence 99 99 f1 3f 9a 99 99 99.
1134
1135 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1136
1137 const char *
1138 md_atof (int type, char * litP, int * sizeP)
1139 {
1140 int prec;
1141 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1142 char *t;
1143 int i;
1144
1145 switch (type)
1146 {
1147 case 'f':
1148 case 'F':
1149 case 's':
1150 case 'S':
1151 prec = 2;
1152 break;
1153
1154 case 'd':
1155 case 'D':
1156 case 'r':
1157 case 'R':
1158 prec = 4;
1159 break;
1160
1161 case 'x':
1162 case 'X':
1163 prec = 5;
1164 break;
1165
1166 case 'p':
1167 case 'P':
1168 prec = 5;
1169 break;
1170
1171 default:
1172 *sizeP = 0;
1173 return _("Unrecognized or unsupported floating point constant");
1174 }
1175
1176 t = atof_ieee (input_line_pointer, type, words);
1177 if (t)
1178 input_line_pointer = t;
1179 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1180
1181 if (target_big_endian)
1182 {
1183 for (i = 0; i < prec; i++)
1184 {
1185 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1186 litP += sizeof (LITTLENUM_TYPE);
1187 }
1188 }
1189 else
1190 {
1191 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1192 for (i = prec - 1; i >= 0; i--)
1193 {
1194 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1195 litP += sizeof (LITTLENUM_TYPE);
1196 }
1197 else
1198 /* For a 4 byte float the order of elements in `words' is 1 0.
1199 For an 8 byte float the order is 1 0 3 2. */
1200 for (i = 0; i < prec; i += 2)
1201 {
1202 md_number_to_chars (litP, (valueT) words[i + 1],
1203 sizeof (LITTLENUM_TYPE));
1204 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1205 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1206 litP += 2 * sizeof (LITTLENUM_TYPE);
1207 }
1208 }
1209
1210 return NULL;
1211 }
1212
1213 /* We handle all bad expressions here, so that we can report the faulty
1214 instruction in the error message. */
1215
1216 void
1217 md_operand (expressionS * exp)
1218 {
1219 if (in_my_get_expression)
1220 exp->X_op = O_illegal;
1221 }
1222
1223 /* Immediate values. */
1224
1225 #ifdef OBJ_ELF
1226 /* Generic immediate-value read function for use in directives.
1227 Accepts anything that 'expression' can fold to a constant.
1228 *val receives the number. */
1229
1230 static int
1231 immediate_for_directive (int *val)
1232 {
1233 expressionS exp;
1234 exp.X_op = O_illegal;
1235
1236 if (is_immediate_prefix (*input_line_pointer))
1237 {
1238 input_line_pointer++;
1239 expression (&exp);
1240 }
1241
1242 if (exp.X_op != O_constant)
1243 {
1244 as_bad (_("expected #constant"));
1245 ignore_rest_of_line ();
1246 return FAIL;
1247 }
1248 *val = exp.X_add_number;
1249 return SUCCESS;
1250 }
1251 #endif
1252
1253 /* Register parsing. */
1254
1255 /* Generic register parser. CCP points to what should be the
1256 beginning of a register name. If it is indeed a valid register
1257 name, advance CCP over it and return the reg_entry structure;
1258 otherwise return NULL. Does not issue diagnostics. */
1259
1260 static struct reg_entry *
1261 arm_reg_parse_multi (char **ccp)
1262 {
1263 char *start = *ccp;
1264 char *p;
1265 struct reg_entry *reg;
1266
1267 skip_whitespace (start);
1268
1269 #ifdef REGISTER_PREFIX
1270 if (*start != REGISTER_PREFIX)
1271 return NULL;
1272 start++;
1273 #endif
1274 #ifdef OPTIONAL_REGISTER_PREFIX
1275 if (*start == OPTIONAL_REGISTER_PREFIX)
1276 start++;
1277 #endif
1278
1279 p = start;
1280 if (!ISALPHA (*p) || !is_name_beginner (*p))
1281 return NULL;
1282
1283 do
1284 p++;
1285 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1286
1287 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1288
1289 if (!reg)
1290 return NULL;
1291
1292 *ccp = p;
1293 return reg;
1294 }
1295
1296 static int
1297 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1298 enum arm_reg_type type)
1299 {
1300 /* Alternative syntaxes are accepted for a few register classes. */
1301 switch (type)
1302 {
1303 case REG_TYPE_MVF:
1304 case REG_TYPE_MVD:
1305 case REG_TYPE_MVFX:
1306 case REG_TYPE_MVDX:
1307 /* Generic coprocessor register names are allowed for these. */
1308 if (reg && reg->type == REG_TYPE_CN)
1309 return reg->number;
1310 break;
1311
1312 case REG_TYPE_CP:
1313 /* For backward compatibility, a bare number is valid here. */
1314 {
1315 unsigned long processor = strtoul (start, ccp, 10);
1316 if (*ccp != start && processor <= 15)
1317 return processor;
1318 }
1319 /* Fall through. */
1320
1321 case REG_TYPE_MMXWC:
1322 /* WC includes WCG. ??? I'm not sure this is true for all
1323 instructions that take WC registers. */
1324 if (reg && reg->type == REG_TYPE_MMXWCG)
1325 return reg->number;
1326 break;
1327
1328 default:
1329 break;
1330 }
1331
1332 return FAIL;
1333 }
1334
1335 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1336 return value is the register number or FAIL. */
1337
1338 static int
1339 arm_reg_parse (char **ccp, enum arm_reg_type type)
1340 {
1341 char *start = *ccp;
1342 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1343 int ret;
1344
1345 /* Do not allow a scalar (reg+index) to parse as a register. */
1346 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1347 return FAIL;
1348
1349 if (reg && reg->type == type)
1350 return reg->number;
1351
1352 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1353 return ret;
1354
1355 *ccp = start;
1356 return FAIL;
1357 }
1358
1359 /* Parse a Neon type specifier. *STR should point at the leading '.'
1360 character. Does no verification at this stage that the type fits the opcode
1361 properly. E.g.,
1362
1363 .i32.i32.s16
1364 .s32.f32
1365 .u16
1366
1367 Can all be legally parsed by this function.
1368
1369 Fills in neon_type struct pointer with parsed information, and updates STR
1370 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1371 type, FAIL if not. */
1372
1373 static int
1374 parse_neon_type (struct neon_type *type, char **str)
1375 {
1376 char *ptr = *str;
1377
1378 if (type)
1379 type->elems = 0;
1380
1381 while (type->elems < NEON_MAX_TYPE_ELS)
1382 {
1383 enum neon_el_type thistype = NT_untyped;
1384 unsigned thissize = -1u;
1385
1386 if (*ptr != '.')
1387 break;
1388
1389 ptr++;
1390
1391 /* Just a size without an explicit type. */
1392 if (ISDIGIT (*ptr))
1393 goto parsesize;
1394
1395 switch (TOLOWER (*ptr))
1396 {
1397 case 'i': thistype = NT_integer; break;
1398 case 'f': thistype = NT_float; break;
1399 case 'p': thistype = NT_poly; break;
1400 case 's': thistype = NT_signed; break;
1401 case 'u': thistype = NT_unsigned; break;
1402 case 'd':
1403 thistype = NT_float;
1404 thissize = 64;
1405 ptr++;
1406 goto done;
1407 default:
1408 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1409 return FAIL;
1410 }
1411
1412 ptr++;
1413
1414 /* .f is an abbreviation for .f32. */
1415 if (thistype == NT_float && !ISDIGIT (*ptr))
1416 thissize = 32;
1417 else
1418 {
1419 parsesize:
1420 thissize = strtoul (ptr, &ptr, 10);
1421
1422 if (thissize != 8 && thissize != 16 && thissize != 32
1423 && thissize != 64)
1424 {
1425 as_bad (_("bad size %d in type specifier"), thissize);
1426 return FAIL;
1427 }
1428 }
1429
1430 done:
1431 if (type)
1432 {
1433 type->el[type->elems].type = thistype;
1434 type->el[type->elems].size = thissize;
1435 type->elems++;
1436 }
1437 }
1438
1439 /* Empty/missing type is not a successful parse. */
1440 if (type->elems == 0)
1441 return FAIL;
1442
1443 *str = ptr;
1444
1445 return SUCCESS;
1446 }
1447
1448 /* Errors may be set multiple times during parsing or bit encoding
1449 (particularly in the Neon bits), but usually the earliest error which is set
1450 will be the most meaningful. Avoid overwriting it with later (cascading)
1451 errors by calling this function. */
1452
1453 static void
1454 first_error (const char *err)
1455 {
1456 if (!inst.error)
1457 inst.error = err;
1458 }
1459
1460 /* Parse a single type, e.g. ".s32", leading period included. */
1461 static int
1462 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1463 {
1464 char *str = *ccp;
1465 struct neon_type optype;
1466
1467 if (*str == '.')
1468 {
1469 if (parse_neon_type (&optype, &str) == SUCCESS)
1470 {
1471 if (optype.elems == 1)
1472 *vectype = optype.el[0];
1473 else
1474 {
1475 first_error (_("only one type should be specified for operand"));
1476 return FAIL;
1477 }
1478 }
1479 else
1480 {
1481 first_error (_("vector type expected"));
1482 return FAIL;
1483 }
1484 }
1485 else
1486 return FAIL;
1487
1488 *ccp = str;
1489
1490 return SUCCESS;
1491 }
1492
1493 /* Special meanings for indices (which have a range of 0-7), which will fit into
1494 a 4-bit integer. */
1495
1496 #define NEON_ALL_LANES 15
1497 #define NEON_INTERLEAVE_LANES 14
1498
1499 /* Parse either a register or a scalar, with an optional type. Return the
1500 register number, and optionally fill in the actual type of the register
1501 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1502 type/index information in *TYPEINFO. */
1503
1504 static int
1505 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1506 enum arm_reg_type *rtype,
1507 struct neon_typed_alias *typeinfo)
1508 {
1509 char *str = *ccp;
1510 struct reg_entry *reg = arm_reg_parse_multi (&str);
1511 struct neon_typed_alias atype;
1512 struct neon_type_el parsetype;
1513
1514 atype.defined = 0;
1515 atype.index = -1;
1516 atype.eltype.type = NT_invtype;
1517 atype.eltype.size = -1;
1518
1519 /* Try alternate syntax for some types of register. Note these are mutually
1520 exclusive with the Neon syntax extensions. */
1521 if (reg == NULL)
1522 {
1523 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1524 if (altreg != FAIL)
1525 *ccp = str;
1526 if (typeinfo)
1527 *typeinfo = atype;
1528 return altreg;
1529 }
1530
1531 /* Undo polymorphism when a set of register types may be accepted. */
1532 if ((type == REG_TYPE_NDQ
1533 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1534 || (type == REG_TYPE_VFSD
1535 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1536 || (type == REG_TYPE_NSDQ
1537 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1538 || reg->type == REG_TYPE_NQ))
1539 || (type == REG_TYPE_NSD
1540 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1541 || (type == REG_TYPE_MMXWC
1542 && (reg->type == REG_TYPE_MMXWCG)))
1543 type = (enum arm_reg_type) reg->type;
1544
1545 if (type != reg->type)
1546 return FAIL;
1547
1548 if (reg->neon)
1549 atype = *reg->neon;
1550
1551 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1552 {
1553 if ((atype.defined & NTA_HASTYPE) != 0)
1554 {
1555 first_error (_("can't redefine type for operand"));
1556 return FAIL;
1557 }
1558 atype.defined |= NTA_HASTYPE;
1559 atype.eltype = parsetype;
1560 }
1561
1562 if (skip_past_char (&str, '[') == SUCCESS)
1563 {
1564 if (type != REG_TYPE_VFD
1565 && !(type == REG_TYPE_VFS
1566 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2)))
1567 {
1568 first_error (_("only D registers may be indexed"));
1569 return FAIL;
1570 }
1571
1572 if ((atype.defined & NTA_HASINDEX) != 0)
1573 {
1574 first_error (_("can't change index for operand"));
1575 return FAIL;
1576 }
1577
1578 atype.defined |= NTA_HASINDEX;
1579
1580 if (skip_past_char (&str, ']') == SUCCESS)
1581 atype.index = NEON_ALL_LANES;
1582 else
1583 {
1584 expressionS exp;
1585
1586 my_get_expression (&exp, &str, GE_NO_PREFIX);
1587
1588 if (exp.X_op != O_constant)
1589 {
1590 first_error (_("constant expression required"));
1591 return FAIL;
1592 }
1593
1594 if (skip_past_char (&str, ']') == FAIL)
1595 return FAIL;
1596
1597 atype.index = exp.X_add_number;
1598 }
1599 }
1600
1601 if (typeinfo)
1602 *typeinfo = atype;
1603
1604 if (rtype)
1605 *rtype = type;
1606
1607 *ccp = str;
1608
1609 return reg->number;
1610 }
1611
1612 /* Like arm_reg_parse, but allow allow the following extra features:
1613 - If RTYPE is non-zero, return the (possibly restricted) type of the
1614 register (e.g. Neon double or quad reg when either has been requested).
1615 - If this is a Neon vector type with additional type information, fill
1616 in the struct pointed to by VECTYPE (if non-NULL).
1617 This function will fault on encountering a scalar. */
1618
1619 static int
1620 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1621 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1622 {
1623 struct neon_typed_alias atype;
1624 char *str = *ccp;
1625 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1626
1627 if (reg == FAIL)
1628 return FAIL;
1629
1630 /* Do not allow regname(... to parse as a register. */
1631 if (*str == '(')
1632 return FAIL;
1633
1634 /* Do not allow a scalar (reg+index) to parse as a register. */
1635 if ((atype.defined & NTA_HASINDEX) != 0)
1636 {
1637 first_error (_("register operand expected, but got scalar"));
1638 return FAIL;
1639 }
1640
1641 if (vectype)
1642 *vectype = atype.eltype;
1643
1644 *ccp = str;
1645
1646 return reg;
1647 }
1648
1649 #define NEON_SCALAR_REG(X) ((X) >> 4)
1650 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1651
1652 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1653 have enough information to be able to do a good job bounds-checking. So, we
1654 just do easy checks here, and do further checks later. */
1655
1656 static int
1657 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1658 {
1659 int reg;
1660 char *str = *ccp;
1661 struct neon_typed_alias atype;
1662 enum arm_reg_type reg_type = REG_TYPE_VFD;
1663
1664 if (elsize == 4)
1665 reg_type = REG_TYPE_VFS;
1666
1667 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1668
1669 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1670 return FAIL;
1671
1672 if (atype.index == NEON_ALL_LANES)
1673 {
1674 first_error (_("scalar must have an index"));
1675 return FAIL;
1676 }
1677 else if (atype.index >= 64 / elsize)
1678 {
1679 first_error (_("scalar index out of range"));
1680 return FAIL;
1681 }
1682
1683 if (type)
1684 *type = atype.eltype;
1685
1686 *ccp = str;
1687
1688 return reg * 16 + atype.index;
1689 }
1690
1691 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1692
1693 static long
1694 parse_reg_list (char ** strp)
1695 {
1696 char * str = * strp;
1697 long range = 0;
1698 int another_range;
1699
1700 /* We come back here if we get ranges concatenated by '+' or '|'. */
1701 do
1702 {
1703 skip_whitespace (str);
1704
1705 another_range = 0;
1706
1707 if (*str == '{')
1708 {
1709 int in_range = 0;
1710 int cur_reg = -1;
1711
1712 str++;
1713 do
1714 {
1715 int reg;
1716
1717 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1718 {
1719 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1720 return FAIL;
1721 }
1722
1723 if (in_range)
1724 {
1725 int i;
1726
1727 if (reg <= cur_reg)
1728 {
1729 first_error (_("bad range in register list"));
1730 return FAIL;
1731 }
1732
1733 for (i = cur_reg + 1; i < reg; i++)
1734 {
1735 if (range & (1 << i))
1736 as_tsktsk
1737 (_("Warning: duplicated register (r%d) in register list"),
1738 i);
1739 else
1740 range |= 1 << i;
1741 }
1742 in_range = 0;
1743 }
1744
1745 if (range & (1 << reg))
1746 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1747 reg);
1748 else if (reg <= cur_reg)
1749 as_tsktsk (_("Warning: register range not in ascending order"));
1750
1751 range |= 1 << reg;
1752 cur_reg = reg;
1753 }
1754 while (skip_past_comma (&str) != FAIL
1755 || (in_range = 1, *str++ == '-'));
1756 str--;
1757
1758 if (skip_past_char (&str, '}') == FAIL)
1759 {
1760 first_error (_("missing `}'"));
1761 return FAIL;
1762 }
1763 }
1764 else
1765 {
1766 expressionS exp;
1767
1768 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1769 return FAIL;
1770
1771 if (exp.X_op == O_constant)
1772 {
1773 if (exp.X_add_number
1774 != (exp.X_add_number & 0x0000ffff))
1775 {
1776 inst.error = _("invalid register mask");
1777 return FAIL;
1778 }
1779
1780 if ((range & exp.X_add_number) != 0)
1781 {
1782 int regno = range & exp.X_add_number;
1783
1784 regno &= -regno;
1785 regno = (1 << regno) - 1;
1786 as_tsktsk
1787 (_("Warning: duplicated register (r%d) in register list"),
1788 regno);
1789 }
1790
1791 range |= exp.X_add_number;
1792 }
1793 else
1794 {
1795 if (inst.relocs[0].type != 0)
1796 {
1797 inst.error = _("expression too complex");
1798 return FAIL;
1799 }
1800
1801 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1802 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1803 inst.relocs[0].pc_rel = 0;
1804 }
1805 }
1806
1807 if (*str == '|' || *str == '+')
1808 {
1809 str++;
1810 another_range = 1;
1811 }
1812 }
1813 while (another_range);
1814
1815 *strp = str;
1816 return range;
1817 }
1818
1819 /* Types of registers in a list. */
1820
1821 enum reg_list_els
1822 {
1823 REGLIST_VFP_S,
1824 REGLIST_VFP_D,
1825 REGLIST_NEON_D
1826 };
1827
1828 /* Parse a VFP register list. If the string is invalid return FAIL.
1829 Otherwise return the number of registers, and set PBASE to the first
1830 register. Parses registers of type ETYPE.
1831 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1832 - Q registers can be used to specify pairs of D registers
1833 - { } can be omitted from around a singleton register list
1834 FIXME: This is not implemented, as it would require backtracking in
1835 some cases, e.g.:
1836 vtbl.8 d3,d4,d5
1837 This could be done (the meaning isn't really ambiguous), but doesn't
1838 fit in well with the current parsing framework.
1839 - 32 D registers may be used (also true for VFPv3).
1840 FIXME: Types are ignored in these register lists, which is probably a
1841 bug. */
1842
1843 static int
1844 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1845 {
1846 char *str = *ccp;
1847 int base_reg;
1848 int new_base;
1849 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1850 int max_regs = 0;
1851 int count = 0;
1852 int warned = 0;
1853 unsigned long mask = 0;
1854 int i;
1855
1856 if (skip_past_char (&str, '{') == FAIL)
1857 {
1858 inst.error = _("expecting {");
1859 return FAIL;
1860 }
1861
1862 switch (etype)
1863 {
1864 case REGLIST_VFP_S:
1865 regtype = REG_TYPE_VFS;
1866 max_regs = 32;
1867 break;
1868
1869 case REGLIST_VFP_D:
1870 regtype = REG_TYPE_VFD;
1871 break;
1872
1873 case REGLIST_NEON_D:
1874 regtype = REG_TYPE_NDQ;
1875 break;
1876 }
1877
1878 if (etype != REGLIST_VFP_S)
1879 {
1880 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1881 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1882 {
1883 max_regs = 32;
1884 if (thumb_mode)
1885 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1886 fpu_vfp_ext_d32);
1887 else
1888 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1889 fpu_vfp_ext_d32);
1890 }
1891 else
1892 max_regs = 16;
1893 }
1894
1895 base_reg = max_regs;
1896
1897 do
1898 {
1899 int setmask = 1, addregs = 1;
1900
1901 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1902
1903 if (new_base == FAIL)
1904 {
1905 first_error (_(reg_expected_msgs[regtype]));
1906 return FAIL;
1907 }
1908
1909 if (new_base >= max_regs)
1910 {
1911 first_error (_("register out of range in list"));
1912 return FAIL;
1913 }
1914
1915 /* Note: a value of 2 * n is returned for the register Q<n>. */
1916 if (regtype == REG_TYPE_NQ)
1917 {
1918 setmask = 3;
1919 addregs = 2;
1920 }
1921
1922 if (new_base < base_reg)
1923 base_reg = new_base;
1924
1925 if (mask & (setmask << new_base))
1926 {
1927 first_error (_("invalid register list"));
1928 return FAIL;
1929 }
1930
1931 if ((mask >> new_base) != 0 && ! warned)
1932 {
1933 as_tsktsk (_("register list not in ascending order"));
1934 warned = 1;
1935 }
1936
1937 mask |= setmask << new_base;
1938 count += addregs;
1939
1940 if (*str == '-') /* We have the start of a range expression */
1941 {
1942 int high_range;
1943
1944 str++;
1945
1946 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1947 == FAIL)
1948 {
1949 inst.error = gettext (reg_expected_msgs[regtype]);
1950 return FAIL;
1951 }
1952
1953 if (high_range >= max_regs)
1954 {
1955 first_error (_("register out of range in list"));
1956 return FAIL;
1957 }
1958
1959 if (regtype == REG_TYPE_NQ)
1960 high_range = high_range + 1;
1961
1962 if (high_range <= new_base)
1963 {
1964 inst.error = _("register range not in ascending order");
1965 return FAIL;
1966 }
1967
1968 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1969 {
1970 if (mask & (setmask << new_base))
1971 {
1972 inst.error = _("invalid register list");
1973 return FAIL;
1974 }
1975
1976 mask |= setmask << new_base;
1977 count += addregs;
1978 }
1979 }
1980 }
1981 while (skip_past_comma (&str) != FAIL);
1982
1983 str++;
1984
1985 /* Sanity check -- should have raised a parse error above. */
1986 if (count == 0 || count > max_regs)
1987 abort ();
1988
1989 *pbase = base_reg;
1990
1991 /* Final test -- the registers must be consecutive. */
1992 mask >>= base_reg;
1993 for (i = 0; i < count; i++)
1994 {
1995 if ((mask & (1u << i)) == 0)
1996 {
1997 inst.error = _("non-contiguous register range");
1998 return FAIL;
1999 }
2000 }
2001
2002 *ccp = str;
2003
2004 return count;
2005 }
2006
2007 /* True if two alias types are the same. */
2008
2009 static bfd_boolean
2010 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2011 {
2012 if (!a && !b)
2013 return TRUE;
2014
2015 if (!a || !b)
2016 return FALSE;
2017
2018 if (a->defined != b->defined)
2019 return FALSE;
2020
2021 if ((a->defined & NTA_HASTYPE) != 0
2022 && (a->eltype.type != b->eltype.type
2023 || a->eltype.size != b->eltype.size))
2024 return FALSE;
2025
2026 if ((a->defined & NTA_HASINDEX) != 0
2027 && (a->index != b->index))
2028 return FALSE;
2029
2030 return TRUE;
2031 }
2032
2033 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2034 The base register is put in *PBASE.
2035 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2036 the return value.
2037 The register stride (minus one) is put in bit 4 of the return value.
2038 Bits [6:5] encode the list length (minus one).
2039 The type of the list elements is put in *ELTYPE, if non-NULL. */
2040
2041 #define NEON_LANE(X) ((X) & 0xf)
2042 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2043 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2044
2045 static int
2046 parse_neon_el_struct_list (char **str, unsigned *pbase,
2047 struct neon_type_el *eltype)
2048 {
2049 char *ptr = *str;
2050 int base_reg = -1;
2051 int reg_incr = -1;
2052 int count = 0;
2053 int lane = -1;
2054 int leading_brace = 0;
2055 enum arm_reg_type rtype = REG_TYPE_NDQ;
2056 const char *const incr_error = _("register stride must be 1 or 2");
2057 const char *const type_error = _("mismatched element/structure types in list");
2058 struct neon_typed_alias firsttype;
2059 firsttype.defined = 0;
2060 firsttype.eltype.type = NT_invtype;
2061 firsttype.eltype.size = -1;
2062 firsttype.index = -1;
2063
2064 if (skip_past_char (&ptr, '{') == SUCCESS)
2065 leading_brace = 1;
2066
2067 do
2068 {
2069 struct neon_typed_alias atype;
2070 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2071
2072 if (getreg == FAIL)
2073 {
2074 first_error (_(reg_expected_msgs[rtype]));
2075 return FAIL;
2076 }
2077
2078 if (base_reg == -1)
2079 {
2080 base_reg = getreg;
2081 if (rtype == REG_TYPE_NQ)
2082 {
2083 reg_incr = 1;
2084 }
2085 firsttype = atype;
2086 }
2087 else if (reg_incr == -1)
2088 {
2089 reg_incr = getreg - base_reg;
2090 if (reg_incr < 1 || reg_incr > 2)
2091 {
2092 first_error (_(incr_error));
2093 return FAIL;
2094 }
2095 }
2096 else if (getreg != base_reg + reg_incr * count)
2097 {
2098 first_error (_(incr_error));
2099 return FAIL;
2100 }
2101
2102 if (! neon_alias_types_same (&atype, &firsttype))
2103 {
2104 first_error (_(type_error));
2105 return FAIL;
2106 }
2107
2108 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2109 modes. */
2110 if (ptr[0] == '-')
2111 {
2112 struct neon_typed_alias htype;
2113 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2114 if (lane == -1)
2115 lane = NEON_INTERLEAVE_LANES;
2116 else if (lane != NEON_INTERLEAVE_LANES)
2117 {
2118 first_error (_(type_error));
2119 return FAIL;
2120 }
2121 if (reg_incr == -1)
2122 reg_incr = 1;
2123 else if (reg_incr != 1)
2124 {
2125 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2126 return FAIL;
2127 }
2128 ptr++;
2129 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2130 if (hireg == FAIL)
2131 {
2132 first_error (_(reg_expected_msgs[rtype]));
2133 return FAIL;
2134 }
2135 if (! neon_alias_types_same (&htype, &firsttype))
2136 {
2137 first_error (_(type_error));
2138 return FAIL;
2139 }
2140 count += hireg + dregs - getreg;
2141 continue;
2142 }
2143
2144 /* If we're using Q registers, we can't use [] or [n] syntax. */
2145 if (rtype == REG_TYPE_NQ)
2146 {
2147 count += 2;
2148 continue;
2149 }
2150
2151 if ((atype.defined & NTA_HASINDEX) != 0)
2152 {
2153 if (lane == -1)
2154 lane = atype.index;
2155 else if (lane != atype.index)
2156 {
2157 first_error (_(type_error));
2158 return FAIL;
2159 }
2160 }
2161 else if (lane == -1)
2162 lane = NEON_INTERLEAVE_LANES;
2163 else if (lane != NEON_INTERLEAVE_LANES)
2164 {
2165 first_error (_(type_error));
2166 return FAIL;
2167 }
2168 count++;
2169 }
2170 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2171
2172 /* No lane set by [x]. We must be interleaving structures. */
2173 if (lane == -1)
2174 lane = NEON_INTERLEAVE_LANES;
2175
2176 /* Sanity check. */
2177 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2178 || (count > 1 && reg_incr == -1))
2179 {
2180 first_error (_("error parsing element/structure list"));
2181 return FAIL;
2182 }
2183
2184 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2185 {
2186 first_error (_("expected }"));
2187 return FAIL;
2188 }
2189
2190 if (reg_incr == -1)
2191 reg_incr = 1;
2192
2193 if (eltype)
2194 *eltype = firsttype.eltype;
2195
2196 *pbase = base_reg;
2197 *str = ptr;
2198
2199 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2200 }
2201
2202 /* Parse an explicit relocation suffix on an expression. This is
2203 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2204 arm_reloc_hsh contains no entries, so this function can only
2205 succeed if there is no () after the word. Returns -1 on error,
2206 BFD_RELOC_UNUSED if there wasn't any suffix. */
2207
2208 static int
2209 parse_reloc (char **str)
2210 {
2211 struct reloc_entry *r;
2212 char *p, *q;
2213
2214 if (**str != '(')
2215 return BFD_RELOC_UNUSED;
2216
2217 p = *str + 1;
2218 q = p;
2219
2220 while (*q && *q != ')' && *q != ',')
2221 q++;
2222 if (*q != ')')
2223 return -1;
2224
2225 if ((r = (struct reloc_entry *)
2226 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2227 return -1;
2228
2229 *str = q + 1;
2230 return r->reloc;
2231 }
2232
2233 /* Directives: register aliases. */
2234
2235 static struct reg_entry *
2236 insert_reg_alias (char *str, unsigned number, int type)
2237 {
2238 struct reg_entry *new_reg;
2239 const char *name;
2240
2241 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2242 {
2243 if (new_reg->builtin)
2244 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2245
2246 /* Only warn about a redefinition if it's not defined as the
2247 same register. */
2248 else if (new_reg->number != number || new_reg->type != type)
2249 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2250
2251 return NULL;
2252 }
2253
2254 name = xstrdup (str);
2255 new_reg = XNEW (struct reg_entry);
2256
2257 new_reg->name = name;
2258 new_reg->number = number;
2259 new_reg->type = type;
2260 new_reg->builtin = FALSE;
2261 new_reg->neon = NULL;
2262
2263 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2264 abort ();
2265
2266 return new_reg;
2267 }
2268
2269 static void
2270 insert_neon_reg_alias (char *str, int number, int type,
2271 struct neon_typed_alias *atype)
2272 {
2273 struct reg_entry *reg = insert_reg_alias (str, number, type);
2274
2275 if (!reg)
2276 {
2277 first_error (_("attempt to redefine typed alias"));
2278 return;
2279 }
2280
2281 if (atype)
2282 {
2283 reg->neon = XNEW (struct neon_typed_alias);
2284 *reg->neon = *atype;
2285 }
2286 }
2287
2288 /* Look for the .req directive. This is of the form:
2289
2290 new_register_name .req existing_register_name
2291
2292 If we find one, or if it looks sufficiently like one that we want to
2293 handle any error here, return TRUE. Otherwise return FALSE. */
2294
2295 static bfd_boolean
2296 create_register_alias (char * newname, char *p)
2297 {
2298 struct reg_entry *old;
2299 char *oldname, *nbuf;
2300 size_t nlen;
2301
2302 /* The input scrubber ensures that whitespace after the mnemonic is
2303 collapsed to single spaces. */
2304 oldname = p;
2305 if (strncmp (oldname, " .req ", 6) != 0)
2306 return FALSE;
2307
2308 oldname += 6;
2309 if (*oldname == '\0')
2310 return FALSE;
2311
2312 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2313 if (!old)
2314 {
2315 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2316 return TRUE;
2317 }
2318
2319 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2320 the desired alias name, and p points to its end. If not, then
2321 the desired alias name is in the global original_case_string. */
2322 #ifdef TC_CASE_SENSITIVE
2323 nlen = p - newname;
2324 #else
2325 newname = original_case_string;
2326 nlen = strlen (newname);
2327 #endif
2328
2329 nbuf = xmemdup0 (newname, nlen);
2330
2331 /* Create aliases under the new name as stated; an all-lowercase
2332 version of the new name; and an all-uppercase version of the new
2333 name. */
2334 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2335 {
2336 for (p = nbuf; *p; p++)
2337 *p = TOUPPER (*p);
2338
2339 if (strncmp (nbuf, newname, nlen))
2340 {
2341 /* If this attempt to create an additional alias fails, do not bother
2342 trying to create the all-lower case alias. We will fail and issue
2343 a second, duplicate error message. This situation arises when the
2344 programmer does something like:
2345 foo .req r0
2346 Foo .req r1
2347 The second .req creates the "Foo" alias but then fails to create
2348 the artificial FOO alias because it has already been created by the
2349 first .req. */
2350 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2351 {
2352 free (nbuf);
2353 return TRUE;
2354 }
2355 }
2356
2357 for (p = nbuf; *p; p++)
2358 *p = TOLOWER (*p);
2359
2360 if (strncmp (nbuf, newname, nlen))
2361 insert_reg_alias (nbuf, old->number, old->type);
2362 }
2363
2364 free (nbuf);
2365 return TRUE;
2366 }
2367
2368 /* Create a Neon typed/indexed register alias using directives, e.g.:
2369 X .dn d5.s32[1]
2370 Y .qn 6.s16
2371 Z .dn d7
2372 T .dn Z[0]
2373 These typed registers can be used instead of the types specified after the
2374 Neon mnemonic, so long as all operands given have types. Types can also be
2375 specified directly, e.g.:
2376 vadd d0.s32, d1.s32, d2.s32 */
2377
2378 static bfd_boolean
2379 create_neon_reg_alias (char *newname, char *p)
2380 {
2381 enum arm_reg_type basetype;
2382 struct reg_entry *basereg;
2383 struct reg_entry mybasereg;
2384 struct neon_type ntype;
2385 struct neon_typed_alias typeinfo;
2386 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2387 int namelen;
2388
2389 typeinfo.defined = 0;
2390 typeinfo.eltype.type = NT_invtype;
2391 typeinfo.eltype.size = -1;
2392 typeinfo.index = -1;
2393
2394 nameend = p;
2395
2396 if (strncmp (p, " .dn ", 5) == 0)
2397 basetype = REG_TYPE_VFD;
2398 else if (strncmp (p, " .qn ", 5) == 0)
2399 basetype = REG_TYPE_NQ;
2400 else
2401 return FALSE;
2402
2403 p += 5;
2404
2405 if (*p == '\0')
2406 return FALSE;
2407
2408 basereg = arm_reg_parse_multi (&p);
2409
2410 if (basereg && basereg->type != basetype)
2411 {
2412 as_bad (_("bad type for register"));
2413 return FALSE;
2414 }
2415
2416 if (basereg == NULL)
2417 {
2418 expressionS exp;
2419 /* Try parsing as an integer. */
2420 my_get_expression (&exp, &p, GE_NO_PREFIX);
2421 if (exp.X_op != O_constant)
2422 {
2423 as_bad (_("expression must be constant"));
2424 return FALSE;
2425 }
2426 basereg = &mybasereg;
2427 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2428 : exp.X_add_number;
2429 basereg->neon = 0;
2430 }
2431
2432 if (basereg->neon)
2433 typeinfo = *basereg->neon;
2434
2435 if (parse_neon_type (&ntype, &p) == SUCCESS)
2436 {
2437 /* We got a type. */
2438 if (typeinfo.defined & NTA_HASTYPE)
2439 {
2440 as_bad (_("can't redefine the type of a register alias"));
2441 return FALSE;
2442 }
2443
2444 typeinfo.defined |= NTA_HASTYPE;
2445 if (ntype.elems != 1)
2446 {
2447 as_bad (_("you must specify a single type only"));
2448 return FALSE;
2449 }
2450 typeinfo.eltype = ntype.el[0];
2451 }
2452
2453 if (skip_past_char (&p, '[') == SUCCESS)
2454 {
2455 expressionS exp;
2456 /* We got a scalar index. */
2457
2458 if (typeinfo.defined & NTA_HASINDEX)
2459 {
2460 as_bad (_("can't redefine the index of a scalar alias"));
2461 return FALSE;
2462 }
2463
2464 my_get_expression (&exp, &p, GE_NO_PREFIX);
2465
2466 if (exp.X_op != O_constant)
2467 {
2468 as_bad (_("scalar index must be constant"));
2469 return FALSE;
2470 }
2471
2472 typeinfo.defined |= NTA_HASINDEX;
2473 typeinfo.index = exp.X_add_number;
2474
2475 if (skip_past_char (&p, ']') == FAIL)
2476 {
2477 as_bad (_("expecting ]"));
2478 return FALSE;
2479 }
2480 }
2481
2482 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2483 the desired alias name, and p points to its end. If not, then
2484 the desired alias name is in the global original_case_string. */
2485 #ifdef TC_CASE_SENSITIVE
2486 namelen = nameend - newname;
2487 #else
2488 newname = original_case_string;
2489 namelen = strlen (newname);
2490 #endif
2491
2492 namebuf = xmemdup0 (newname, namelen);
2493
2494 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2495 typeinfo.defined != 0 ? &typeinfo : NULL);
2496
2497 /* Insert name in all uppercase. */
2498 for (p = namebuf; *p; p++)
2499 *p = TOUPPER (*p);
2500
2501 if (strncmp (namebuf, newname, namelen))
2502 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2503 typeinfo.defined != 0 ? &typeinfo : NULL);
2504
2505 /* Insert name in all lowercase. */
2506 for (p = namebuf; *p; p++)
2507 *p = TOLOWER (*p);
2508
2509 if (strncmp (namebuf, newname, namelen))
2510 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2511 typeinfo.defined != 0 ? &typeinfo : NULL);
2512
2513 free (namebuf);
2514 return TRUE;
2515 }
2516
2517 /* Should never be called, as .req goes between the alias and the
2518 register name, not at the beginning of the line. */
2519
2520 static void
2521 s_req (int a ATTRIBUTE_UNUSED)
2522 {
2523 as_bad (_("invalid syntax for .req directive"));
2524 }
2525
2526 static void
2527 s_dn (int a ATTRIBUTE_UNUSED)
2528 {
2529 as_bad (_("invalid syntax for .dn directive"));
2530 }
2531
2532 static void
2533 s_qn (int a ATTRIBUTE_UNUSED)
2534 {
2535 as_bad (_("invalid syntax for .qn directive"));
2536 }
2537
2538 /* The .unreq directive deletes an alias which was previously defined
2539 by .req. For example:
2540
2541 my_alias .req r11
2542 .unreq my_alias */
2543
2544 static void
2545 s_unreq (int a ATTRIBUTE_UNUSED)
2546 {
2547 char * name;
2548 char saved_char;
2549
2550 name = input_line_pointer;
2551
2552 while (*input_line_pointer != 0
2553 && *input_line_pointer != ' '
2554 && *input_line_pointer != '\n')
2555 ++input_line_pointer;
2556
2557 saved_char = *input_line_pointer;
2558 *input_line_pointer = 0;
2559
2560 if (!*name)
2561 as_bad (_("invalid syntax for .unreq directive"));
2562 else
2563 {
2564 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2565 name);
2566
2567 if (!reg)
2568 as_bad (_("unknown register alias '%s'"), name);
2569 else if (reg->builtin)
2570 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2571 name);
2572 else
2573 {
2574 char * p;
2575 char * nbuf;
2576
2577 hash_delete (arm_reg_hsh, name, FALSE);
2578 free ((char *) reg->name);
2579 if (reg->neon)
2580 free (reg->neon);
2581 free (reg);
2582
2583 /* Also locate the all upper case and all lower case versions.
2584 Do not complain if we cannot find one or the other as it
2585 was probably deleted above. */
2586
2587 nbuf = strdup (name);
2588 for (p = nbuf; *p; p++)
2589 *p = TOUPPER (*p);
2590 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2591 if (reg)
2592 {
2593 hash_delete (arm_reg_hsh, nbuf, FALSE);
2594 free ((char *) reg->name);
2595 if (reg->neon)
2596 free (reg->neon);
2597 free (reg);
2598 }
2599
2600 for (p = nbuf; *p; p++)
2601 *p = TOLOWER (*p);
2602 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2603 if (reg)
2604 {
2605 hash_delete (arm_reg_hsh, nbuf, FALSE);
2606 free ((char *) reg->name);
2607 if (reg->neon)
2608 free (reg->neon);
2609 free (reg);
2610 }
2611
2612 free (nbuf);
2613 }
2614 }
2615
2616 *input_line_pointer = saved_char;
2617 demand_empty_rest_of_line ();
2618 }
2619
2620 /* Directives: Instruction set selection. */
2621
2622 #ifdef OBJ_ELF
2623 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2624 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2625 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2626 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2627
2628 /* Create a new mapping symbol for the transition to STATE. */
2629
2630 static void
2631 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2632 {
2633 symbolS * symbolP;
2634 const char * symname;
2635 int type;
2636
2637 switch (state)
2638 {
2639 case MAP_DATA:
2640 symname = "$d";
2641 type = BSF_NO_FLAGS;
2642 break;
2643 case MAP_ARM:
2644 symname = "$a";
2645 type = BSF_NO_FLAGS;
2646 break;
2647 case MAP_THUMB:
2648 symname = "$t";
2649 type = BSF_NO_FLAGS;
2650 break;
2651 default:
2652 abort ();
2653 }
2654
2655 symbolP = symbol_new (symname, now_seg, value, frag);
2656 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2657
2658 switch (state)
2659 {
2660 case MAP_ARM:
2661 THUMB_SET_FUNC (symbolP, 0);
2662 ARM_SET_THUMB (symbolP, 0);
2663 ARM_SET_INTERWORK (symbolP, support_interwork);
2664 break;
2665
2666 case MAP_THUMB:
2667 THUMB_SET_FUNC (symbolP, 1);
2668 ARM_SET_THUMB (symbolP, 1);
2669 ARM_SET_INTERWORK (symbolP, support_interwork);
2670 break;
2671
2672 case MAP_DATA:
2673 default:
2674 break;
2675 }
2676
2677 /* Save the mapping symbols for future reference. Also check that
2678 we do not place two mapping symbols at the same offset within a
2679 frag. We'll handle overlap between frags in
2680 check_mapping_symbols.
2681
2682 If .fill or other data filling directive generates zero sized data,
2683 the mapping symbol for the following code will have the same value
2684 as the one generated for the data filling directive. In this case,
2685 we replace the old symbol with the new one at the same address. */
2686 if (value == 0)
2687 {
2688 if (frag->tc_frag_data.first_map != NULL)
2689 {
2690 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2691 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2692 }
2693 frag->tc_frag_data.first_map = symbolP;
2694 }
2695 if (frag->tc_frag_data.last_map != NULL)
2696 {
2697 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2698 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2699 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2700 }
2701 frag->tc_frag_data.last_map = symbolP;
2702 }
2703
2704 /* We must sometimes convert a region marked as code to data during
2705 code alignment, if an odd number of bytes have to be padded. The
2706 code mapping symbol is pushed to an aligned address. */
2707
2708 static void
2709 insert_data_mapping_symbol (enum mstate state,
2710 valueT value, fragS *frag, offsetT bytes)
2711 {
2712 /* If there was already a mapping symbol, remove it. */
2713 if (frag->tc_frag_data.last_map != NULL
2714 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2715 {
2716 symbolS *symp = frag->tc_frag_data.last_map;
2717
2718 if (value == 0)
2719 {
2720 know (frag->tc_frag_data.first_map == symp);
2721 frag->tc_frag_data.first_map = NULL;
2722 }
2723 frag->tc_frag_data.last_map = NULL;
2724 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2725 }
2726
2727 make_mapping_symbol (MAP_DATA, value, frag);
2728 make_mapping_symbol (state, value + bytes, frag);
2729 }
2730
2731 static void mapping_state_2 (enum mstate state, int max_chars);
2732
2733 /* Set the mapping state to STATE. Only call this when about to
2734 emit some STATE bytes to the file. */
2735
2736 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2737 void
2738 mapping_state (enum mstate state)
2739 {
2740 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2741
2742 if (mapstate == state)
2743 /* The mapping symbol has already been emitted.
2744 There is nothing else to do. */
2745 return;
2746
2747 if (state == MAP_ARM || state == MAP_THUMB)
2748 /* PR gas/12931
2749 All ARM instructions require 4-byte alignment.
2750 (Almost) all Thumb instructions require 2-byte alignment.
2751
2752 When emitting instructions into any section, mark the section
2753 appropriately.
2754
2755 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2756 but themselves require 2-byte alignment; this applies to some
2757 PC- relative forms. However, these cases will involve implicit
2758 literal pool generation or an explicit .align >=2, both of
2759 which will cause the section to me marked with sufficient
2760 alignment. Thus, we don't handle those cases here. */
2761 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2762
2763 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2764 /* This case will be evaluated later. */
2765 return;
2766
2767 mapping_state_2 (state, 0);
2768 }
2769
2770 /* Same as mapping_state, but MAX_CHARS bytes have already been
2771 allocated. Put the mapping symbol that far back. */
2772
2773 static void
2774 mapping_state_2 (enum mstate state, int max_chars)
2775 {
2776 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2777
2778 if (!SEG_NORMAL (now_seg))
2779 return;
2780
2781 if (mapstate == state)
2782 /* The mapping symbol has already been emitted.
2783 There is nothing else to do. */
2784 return;
2785
2786 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2787 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2788 {
2789 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2790 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2791
2792 if (add_symbol)
2793 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2794 }
2795
2796 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2797 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2798 }
2799 #undef TRANSITION
2800 #else
2801 #define mapping_state(x) ((void)0)
2802 #define mapping_state_2(x, y) ((void)0)
2803 #endif
2804
2805 /* Find the real, Thumb encoded start of a Thumb function. */
2806
2807 #ifdef OBJ_COFF
2808 static symbolS *
2809 find_real_start (symbolS * symbolP)
2810 {
2811 char * real_start;
2812 const char * name = S_GET_NAME (symbolP);
2813 symbolS * new_target;
2814
2815 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2816 #define STUB_NAME ".real_start_of"
2817
2818 if (name == NULL)
2819 abort ();
2820
2821 /* The compiler may generate BL instructions to local labels because
2822 it needs to perform a branch to a far away location. These labels
2823 do not have a corresponding ".real_start_of" label. We check
2824 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2825 the ".real_start_of" convention for nonlocal branches. */
2826 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2827 return symbolP;
2828
2829 real_start = concat (STUB_NAME, name, NULL);
2830 new_target = symbol_find (real_start);
2831 free (real_start);
2832
2833 if (new_target == NULL)
2834 {
2835 as_warn (_("Failed to find real start of function: %s\n"), name);
2836 new_target = symbolP;
2837 }
2838
2839 return new_target;
2840 }
2841 #endif
2842
2843 static void
2844 opcode_select (int width)
2845 {
2846 switch (width)
2847 {
2848 case 16:
2849 if (! thumb_mode)
2850 {
2851 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2852 as_bad (_("selected processor does not support THUMB opcodes"));
2853
2854 thumb_mode = 1;
2855 /* No need to force the alignment, since we will have been
2856 coming from ARM mode, which is word-aligned. */
2857 record_alignment (now_seg, 1);
2858 }
2859 break;
2860
2861 case 32:
2862 if (thumb_mode)
2863 {
2864 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2865 as_bad (_("selected processor does not support ARM opcodes"));
2866
2867 thumb_mode = 0;
2868
2869 if (!need_pass_2)
2870 frag_align (2, 0, 0);
2871
2872 record_alignment (now_seg, 1);
2873 }
2874 break;
2875
2876 default:
2877 as_bad (_("invalid instruction size selected (%d)"), width);
2878 }
2879 }
2880
2881 static void
2882 s_arm (int ignore ATTRIBUTE_UNUSED)
2883 {
2884 opcode_select (32);
2885 demand_empty_rest_of_line ();
2886 }
2887
2888 static void
2889 s_thumb (int ignore ATTRIBUTE_UNUSED)
2890 {
2891 opcode_select (16);
2892 demand_empty_rest_of_line ();
2893 }
2894
2895 static void
2896 s_code (int unused ATTRIBUTE_UNUSED)
2897 {
2898 int temp;
2899
2900 temp = get_absolute_expression ();
2901 switch (temp)
2902 {
2903 case 16:
2904 case 32:
2905 opcode_select (temp);
2906 break;
2907
2908 default:
2909 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2910 }
2911 }
2912
2913 static void
2914 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2915 {
2916 /* If we are not already in thumb mode go into it, EVEN if
2917 the target processor does not support thumb instructions.
2918 This is used by gcc/config/arm/lib1funcs.asm for example
2919 to compile interworking support functions even if the
2920 target processor should not support interworking. */
2921 if (! thumb_mode)
2922 {
2923 thumb_mode = 2;
2924 record_alignment (now_seg, 1);
2925 }
2926
2927 demand_empty_rest_of_line ();
2928 }
2929
2930 static void
2931 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2932 {
2933 s_thumb (0);
2934
2935 /* The following label is the name/address of the start of a Thumb function.
2936 We need to know this for the interworking support. */
2937 label_is_thumb_function_name = TRUE;
2938 }
2939
2940 /* Perform a .set directive, but also mark the alias as
2941 being a thumb function. */
2942
2943 static void
2944 s_thumb_set (int equiv)
2945 {
2946 /* XXX the following is a duplicate of the code for s_set() in read.c
2947 We cannot just call that code as we need to get at the symbol that
2948 is created. */
2949 char * name;
2950 char delim;
2951 char * end_name;
2952 symbolS * symbolP;
2953
2954 /* Especial apologies for the random logic:
2955 This just grew, and could be parsed much more simply!
2956 Dean - in haste. */
2957 delim = get_symbol_name (& name);
2958 end_name = input_line_pointer;
2959 (void) restore_line_pointer (delim);
2960
2961 if (*input_line_pointer != ',')
2962 {
2963 *end_name = 0;
2964 as_bad (_("expected comma after name \"%s\""), name);
2965 *end_name = delim;
2966 ignore_rest_of_line ();
2967 return;
2968 }
2969
2970 input_line_pointer++;
2971 *end_name = 0;
2972
2973 if (name[0] == '.' && name[1] == '\0')
2974 {
2975 /* XXX - this should not happen to .thumb_set. */
2976 abort ();
2977 }
2978
2979 if ((symbolP = symbol_find (name)) == NULL
2980 && (symbolP = md_undefined_symbol (name)) == NULL)
2981 {
2982 #ifndef NO_LISTING
2983 /* When doing symbol listings, play games with dummy fragments living
2984 outside the normal fragment chain to record the file and line info
2985 for this symbol. */
2986 if (listing & LISTING_SYMBOLS)
2987 {
2988 extern struct list_info_struct * listing_tail;
2989 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2990
2991 memset (dummy_frag, 0, sizeof (fragS));
2992 dummy_frag->fr_type = rs_fill;
2993 dummy_frag->line = listing_tail;
2994 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2995 dummy_frag->fr_symbol = symbolP;
2996 }
2997 else
2998 #endif
2999 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3000
3001 #ifdef OBJ_COFF
3002 /* "set" symbols are local unless otherwise specified. */
3003 SF_SET_LOCAL (symbolP);
3004 #endif /* OBJ_COFF */
3005 } /* Make a new symbol. */
3006
3007 symbol_table_insert (symbolP);
3008
3009 * end_name = delim;
3010
3011 if (equiv
3012 && S_IS_DEFINED (symbolP)
3013 && S_GET_SEGMENT (symbolP) != reg_section)
3014 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3015
3016 pseudo_set (symbolP);
3017
3018 demand_empty_rest_of_line ();
3019
3020 /* XXX Now we come to the Thumb specific bit of code. */
3021
3022 THUMB_SET_FUNC (symbolP, 1);
3023 ARM_SET_THUMB (symbolP, 1);
3024 #if defined OBJ_ELF || defined OBJ_COFF
3025 ARM_SET_INTERWORK (symbolP, support_interwork);
3026 #endif
3027 }
3028
3029 /* Directives: Mode selection. */
3030
3031 /* .syntax [unified|divided] - choose the new unified syntax
3032 (same for Arm and Thumb encoding, modulo slight differences in what
3033 can be represented) or the old divergent syntax for each mode. */
3034 static void
3035 s_syntax (int unused ATTRIBUTE_UNUSED)
3036 {
3037 char *name, delim;
3038
3039 delim = get_symbol_name (& name);
3040
3041 if (!strcasecmp (name, "unified"))
3042 unified_syntax = TRUE;
3043 else if (!strcasecmp (name, "divided"))
3044 unified_syntax = FALSE;
3045 else
3046 {
3047 as_bad (_("unrecognized syntax mode \"%s\""), name);
3048 return;
3049 }
3050 (void) restore_line_pointer (delim);
3051 demand_empty_rest_of_line ();
3052 }
3053
3054 /* Directives: sectioning and alignment. */
3055
3056 static void
3057 s_bss (int ignore ATTRIBUTE_UNUSED)
3058 {
3059 /* We don't support putting frags in the BSS segment, we fake it by
3060 marking in_bss, then looking at s_skip for clues. */
3061 subseg_set (bss_section, 0);
3062 demand_empty_rest_of_line ();
3063
3064 #ifdef md_elf_section_change_hook
3065 md_elf_section_change_hook ();
3066 #endif
3067 }
3068
3069 static void
3070 s_even (int ignore ATTRIBUTE_UNUSED)
3071 {
3072 /* Never make frag if expect extra pass. */
3073 if (!need_pass_2)
3074 frag_align (1, 0, 0);
3075
3076 record_alignment (now_seg, 1);
3077
3078 demand_empty_rest_of_line ();
3079 }
3080
3081 /* Directives: CodeComposer Studio. */
3082
3083 /* .ref (for CodeComposer Studio syntax only). */
3084 static void
3085 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3086 {
3087 if (codecomposer_syntax)
3088 ignore_rest_of_line ();
3089 else
3090 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3091 }
3092
3093 /* If name is not NULL, then it is used for marking the beginning of a
3094 function, whereas if it is NULL then it means the function end. */
3095 static void
3096 asmfunc_debug (const char * name)
3097 {
3098 static const char * last_name = NULL;
3099
3100 if (name != NULL)
3101 {
3102 gas_assert (last_name == NULL);
3103 last_name = name;
3104
3105 if (debug_type == DEBUG_STABS)
3106 stabs_generate_asm_func (name, name);
3107 }
3108 else
3109 {
3110 gas_assert (last_name != NULL);
3111
3112 if (debug_type == DEBUG_STABS)
3113 stabs_generate_asm_endfunc (last_name, last_name);
3114
3115 last_name = NULL;
3116 }
3117 }
3118
3119 static void
3120 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3121 {
3122 if (codecomposer_syntax)
3123 {
3124 switch (asmfunc_state)
3125 {
3126 case OUTSIDE_ASMFUNC:
3127 asmfunc_state = WAITING_ASMFUNC_NAME;
3128 break;
3129
3130 case WAITING_ASMFUNC_NAME:
3131 as_bad (_(".asmfunc repeated."));
3132 break;
3133
3134 case WAITING_ENDASMFUNC:
3135 as_bad (_(".asmfunc without function."));
3136 break;
3137 }
3138 demand_empty_rest_of_line ();
3139 }
3140 else
3141 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3142 }
3143
3144 static void
3145 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3146 {
3147 if (codecomposer_syntax)
3148 {
3149 switch (asmfunc_state)
3150 {
3151 case OUTSIDE_ASMFUNC:
3152 as_bad (_(".endasmfunc without a .asmfunc."));
3153 break;
3154
3155 case WAITING_ASMFUNC_NAME:
3156 as_bad (_(".endasmfunc without function."));
3157 break;
3158
3159 case WAITING_ENDASMFUNC:
3160 asmfunc_state = OUTSIDE_ASMFUNC;
3161 asmfunc_debug (NULL);
3162 break;
3163 }
3164 demand_empty_rest_of_line ();
3165 }
3166 else
3167 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3168 }
3169
3170 static void
3171 s_ccs_def (int name)
3172 {
3173 if (codecomposer_syntax)
3174 s_globl (name);
3175 else
3176 as_bad (_(".def pseudo-op only available with -mccs flag."));
3177 }
3178
3179 /* Directives: Literal pools. */
3180
3181 static literal_pool *
3182 find_literal_pool (void)
3183 {
3184 literal_pool * pool;
3185
3186 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3187 {
3188 if (pool->section == now_seg
3189 && pool->sub_section == now_subseg)
3190 break;
3191 }
3192
3193 return pool;
3194 }
3195
3196 static literal_pool *
3197 find_or_make_literal_pool (void)
3198 {
3199 /* Next literal pool ID number. */
3200 static unsigned int latest_pool_num = 1;
3201 literal_pool * pool;
3202
3203 pool = find_literal_pool ();
3204
3205 if (pool == NULL)
3206 {
3207 /* Create a new pool. */
3208 pool = XNEW (literal_pool);
3209 if (! pool)
3210 return NULL;
3211
3212 pool->next_free_entry = 0;
3213 pool->section = now_seg;
3214 pool->sub_section = now_subseg;
3215 pool->next = list_of_pools;
3216 pool->symbol = NULL;
3217 pool->alignment = 2;
3218
3219 /* Add it to the list. */
3220 list_of_pools = pool;
3221 }
3222
3223 /* New pools, and emptied pools, will have a NULL symbol. */
3224 if (pool->symbol == NULL)
3225 {
3226 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3227 (valueT) 0, &zero_address_frag);
3228 pool->id = latest_pool_num ++;
3229 }
3230
3231 /* Done. */
3232 return pool;
3233 }
3234
3235 /* Add the literal in the global 'inst'
3236 structure to the relevant literal pool. */
3237
3238 static int
3239 add_to_lit_pool (unsigned int nbytes)
3240 {
3241 #define PADDING_SLOT 0x1
3242 #define LIT_ENTRY_SIZE_MASK 0xFF
3243 literal_pool * pool;
3244 unsigned int entry, pool_size = 0;
3245 bfd_boolean padding_slot_p = FALSE;
3246 unsigned imm1 = 0;
3247 unsigned imm2 = 0;
3248
3249 if (nbytes == 8)
3250 {
3251 imm1 = inst.operands[1].imm;
3252 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3253 : inst.relocs[0].exp.X_unsigned ? 0
3254 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3255 if (target_big_endian)
3256 {
3257 imm1 = imm2;
3258 imm2 = inst.operands[1].imm;
3259 }
3260 }
3261
3262 pool = find_or_make_literal_pool ();
3263
3264 /* Check if this literal value is already in the pool. */
3265 for (entry = 0; entry < pool->next_free_entry; entry ++)
3266 {
3267 if (nbytes == 4)
3268 {
3269 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3270 && (inst.relocs[0].exp.X_op == O_constant)
3271 && (pool->literals[entry].X_add_number
3272 == inst.relocs[0].exp.X_add_number)
3273 && (pool->literals[entry].X_md == nbytes)
3274 && (pool->literals[entry].X_unsigned
3275 == inst.relocs[0].exp.X_unsigned))
3276 break;
3277
3278 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3279 && (inst.relocs[0].exp.X_op == O_symbol)
3280 && (pool->literals[entry].X_add_number
3281 == inst.relocs[0].exp.X_add_number)
3282 && (pool->literals[entry].X_add_symbol
3283 == inst.relocs[0].exp.X_add_symbol)
3284 && (pool->literals[entry].X_op_symbol
3285 == inst.relocs[0].exp.X_op_symbol)
3286 && (pool->literals[entry].X_md == nbytes))
3287 break;
3288 }
3289 else if ((nbytes == 8)
3290 && !(pool_size & 0x7)
3291 && ((entry + 1) != pool->next_free_entry)
3292 && (pool->literals[entry].X_op == O_constant)
3293 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3294 && (pool->literals[entry].X_unsigned
3295 == inst.relocs[0].exp.X_unsigned)
3296 && (pool->literals[entry + 1].X_op == O_constant)
3297 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3298 && (pool->literals[entry + 1].X_unsigned
3299 == inst.relocs[0].exp.X_unsigned))
3300 break;
3301
3302 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3303 if (padding_slot_p && (nbytes == 4))
3304 break;
3305
3306 pool_size += 4;
3307 }
3308
3309 /* Do we need to create a new entry? */
3310 if (entry == pool->next_free_entry)
3311 {
3312 if (entry >= MAX_LITERAL_POOL_SIZE)
3313 {
3314 inst.error = _("literal pool overflow");
3315 return FAIL;
3316 }
3317
3318 if (nbytes == 8)
3319 {
3320 /* For 8-byte entries, we align to an 8-byte boundary,
3321 and split it into two 4-byte entries, because on 32-bit
3322 host, 8-byte constants are treated as big num, thus
3323 saved in "generic_bignum" which will be overwritten
3324 by later assignments.
3325
3326 We also need to make sure there is enough space for
3327 the split.
3328
3329 We also check to make sure the literal operand is a
3330 constant number. */
3331 if (!(inst.relocs[0].exp.X_op == O_constant
3332 || inst.relocs[0].exp.X_op == O_big))
3333 {
3334 inst.error = _("invalid type for literal pool");
3335 return FAIL;
3336 }
3337 else if (pool_size & 0x7)
3338 {
3339 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3340 {
3341 inst.error = _("literal pool overflow");
3342 return FAIL;
3343 }
3344
3345 pool->literals[entry] = inst.relocs[0].exp;
3346 pool->literals[entry].X_op = O_constant;
3347 pool->literals[entry].X_add_number = 0;
3348 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3349 pool->next_free_entry += 1;
3350 pool_size += 4;
3351 }
3352 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3353 {
3354 inst.error = _("literal pool overflow");
3355 return FAIL;
3356 }
3357
3358 pool->literals[entry] = inst.relocs[0].exp;
3359 pool->literals[entry].X_op = O_constant;
3360 pool->literals[entry].X_add_number = imm1;
3361 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3362 pool->literals[entry++].X_md = 4;
3363 pool->literals[entry] = inst.relocs[0].exp;
3364 pool->literals[entry].X_op = O_constant;
3365 pool->literals[entry].X_add_number = imm2;
3366 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3367 pool->literals[entry].X_md = 4;
3368 pool->alignment = 3;
3369 pool->next_free_entry += 1;
3370 }
3371 else
3372 {
3373 pool->literals[entry] = inst.relocs[0].exp;
3374 pool->literals[entry].X_md = 4;
3375 }
3376
3377 #ifdef OBJ_ELF
3378 /* PR ld/12974: Record the location of the first source line to reference
3379 this entry in the literal pool. If it turns out during linking that the
3380 symbol does not exist we will be able to give an accurate line number for
3381 the (first use of the) missing reference. */
3382 if (debug_type == DEBUG_DWARF2)
3383 dwarf2_where (pool->locs + entry);
3384 #endif
3385 pool->next_free_entry += 1;
3386 }
3387 else if (padding_slot_p)
3388 {
3389 pool->literals[entry] = inst.relocs[0].exp;
3390 pool->literals[entry].X_md = nbytes;
3391 }
3392
3393 inst.relocs[0].exp.X_op = O_symbol;
3394 inst.relocs[0].exp.X_add_number = pool_size;
3395 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3396
3397 return SUCCESS;
3398 }
3399
3400 bfd_boolean
3401 tc_start_label_without_colon (void)
3402 {
3403 bfd_boolean ret = TRUE;
3404
3405 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3406 {
3407 const char *label = input_line_pointer;
3408
3409 while (!is_end_of_line[(int) label[-1]])
3410 --label;
3411
3412 if (*label == '.')
3413 {
3414 as_bad (_("Invalid label '%s'"), label);
3415 ret = FALSE;
3416 }
3417
3418 asmfunc_debug (label);
3419
3420 asmfunc_state = WAITING_ENDASMFUNC;
3421 }
3422
3423 return ret;
3424 }
3425
3426 /* Can't use symbol_new here, so have to create a symbol and then at
3427 a later date assign it a value. That's what these functions do. */
3428
3429 static void
3430 symbol_locate (symbolS * symbolP,
3431 const char * name, /* It is copied, the caller can modify. */
3432 segT segment, /* Segment identifier (SEG_<something>). */
3433 valueT valu, /* Symbol value. */
3434 fragS * frag) /* Associated fragment. */
3435 {
3436 size_t name_length;
3437 char * preserved_copy_of_name;
3438
3439 name_length = strlen (name) + 1; /* +1 for \0. */
3440 obstack_grow (&notes, name, name_length);
3441 preserved_copy_of_name = (char *) obstack_finish (&notes);
3442
3443 #ifdef tc_canonicalize_symbol_name
3444 preserved_copy_of_name =
3445 tc_canonicalize_symbol_name (preserved_copy_of_name);
3446 #endif
3447
3448 S_SET_NAME (symbolP, preserved_copy_of_name);
3449
3450 S_SET_SEGMENT (symbolP, segment);
3451 S_SET_VALUE (symbolP, valu);
3452 symbol_clear_list_pointers (symbolP);
3453
3454 symbol_set_frag (symbolP, frag);
3455
3456 /* Link to end of symbol chain. */
3457 {
3458 extern int symbol_table_frozen;
3459
3460 if (symbol_table_frozen)
3461 abort ();
3462 }
3463
3464 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3465
3466 obj_symbol_new_hook (symbolP);
3467
3468 #ifdef tc_symbol_new_hook
3469 tc_symbol_new_hook (symbolP);
3470 #endif
3471
3472 #ifdef DEBUG_SYMS
3473 verify_symbol_chain (symbol_rootP, symbol_lastP);
3474 #endif /* DEBUG_SYMS */
3475 }
3476
3477 static void
3478 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3479 {
3480 unsigned int entry;
3481 literal_pool * pool;
3482 char sym_name[20];
3483
3484 pool = find_literal_pool ();
3485 if (pool == NULL
3486 || pool->symbol == NULL
3487 || pool->next_free_entry == 0)
3488 return;
3489
3490 /* Align pool as you have word accesses.
3491 Only make a frag if we have to. */
3492 if (!need_pass_2)
3493 frag_align (pool->alignment, 0, 0);
3494
3495 record_alignment (now_seg, 2);
3496
3497 #ifdef OBJ_ELF
3498 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3499 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3500 #endif
3501 sprintf (sym_name, "$$lit_\002%x", pool->id);
3502
3503 symbol_locate (pool->symbol, sym_name, now_seg,
3504 (valueT) frag_now_fix (), frag_now);
3505 symbol_table_insert (pool->symbol);
3506
3507 ARM_SET_THUMB (pool->symbol, thumb_mode);
3508
3509 #if defined OBJ_COFF || defined OBJ_ELF
3510 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3511 #endif
3512
3513 for (entry = 0; entry < pool->next_free_entry; entry ++)
3514 {
3515 #ifdef OBJ_ELF
3516 if (debug_type == DEBUG_DWARF2)
3517 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3518 #endif
3519 /* First output the expression in the instruction to the pool. */
3520 emit_expr (&(pool->literals[entry]),
3521 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3522 }
3523
3524 /* Mark the pool as empty. */
3525 pool->next_free_entry = 0;
3526 pool->symbol = NULL;
3527 }
3528
3529 #ifdef OBJ_ELF
3530 /* Forward declarations for functions below, in the MD interface
3531 section. */
3532 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3533 static valueT create_unwind_entry (int);
3534 static void start_unwind_section (const segT, int);
3535 static void add_unwind_opcode (valueT, int);
3536 static void flush_pending_unwind (void);
3537
3538 /* Directives: Data. */
3539
3540 static void
3541 s_arm_elf_cons (int nbytes)
3542 {
3543 expressionS exp;
3544
3545 #ifdef md_flush_pending_output
3546 md_flush_pending_output ();
3547 #endif
3548
3549 if (is_it_end_of_statement ())
3550 {
3551 demand_empty_rest_of_line ();
3552 return;
3553 }
3554
3555 #ifdef md_cons_align
3556 md_cons_align (nbytes);
3557 #endif
3558
3559 mapping_state (MAP_DATA);
3560 do
3561 {
3562 int reloc;
3563 char *base = input_line_pointer;
3564
3565 expression (& exp);
3566
3567 if (exp.X_op != O_symbol)
3568 emit_expr (&exp, (unsigned int) nbytes);
3569 else
3570 {
3571 char *before_reloc = input_line_pointer;
3572 reloc = parse_reloc (&input_line_pointer);
3573 if (reloc == -1)
3574 {
3575 as_bad (_("unrecognized relocation suffix"));
3576 ignore_rest_of_line ();
3577 return;
3578 }
3579 else if (reloc == BFD_RELOC_UNUSED)
3580 emit_expr (&exp, (unsigned int) nbytes);
3581 else
3582 {
3583 reloc_howto_type *howto = (reloc_howto_type *)
3584 bfd_reloc_type_lookup (stdoutput,
3585 (bfd_reloc_code_real_type) reloc);
3586 int size = bfd_get_reloc_size (howto);
3587
3588 if (reloc == BFD_RELOC_ARM_PLT32)
3589 {
3590 as_bad (_("(plt) is only valid on branch targets"));
3591 reloc = BFD_RELOC_UNUSED;
3592 size = 0;
3593 }
3594
3595 if (size > nbytes)
3596 as_bad (ngettext ("%s relocations do not fit in %d byte",
3597 "%s relocations do not fit in %d bytes",
3598 nbytes),
3599 howto->name, nbytes);
3600 else
3601 {
3602 /* We've parsed an expression stopping at O_symbol.
3603 But there may be more expression left now that we
3604 have parsed the relocation marker. Parse it again.
3605 XXX Surely there is a cleaner way to do this. */
3606 char *p = input_line_pointer;
3607 int offset;
3608 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3609
3610 memcpy (save_buf, base, input_line_pointer - base);
3611 memmove (base + (input_line_pointer - before_reloc),
3612 base, before_reloc - base);
3613
3614 input_line_pointer = base + (input_line_pointer-before_reloc);
3615 expression (&exp);
3616 memcpy (base, save_buf, p - base);
3617
3618 offset = nbytes - size;
3619 p = frag_more (nbytes);
3620 memset (p, 0, nbytes);
3621 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3622 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3623 free (save_buf);
3624 }
3625 }
3626 }
3627 }
3628 while (*input_line_pointer++ == ',');
3629
3630 /* Put terminator back into stream. */
3631 input_line_pointer --;
3632 demand_empty_rest_of_line ();
3633 }
3634
3635 /* Emit an expression containing a 32-bit thumb instruction.
3636 Implementation based on put_thumb32_insn. */
3637
3638 static void
3639 emit_thumb32_expr (expressionS * exp)
3640 {
3641 expressionS exp_high = *exp;
3642
3643 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3644 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3645 exp->X_add_number &= 0xffff;
3646 emit_expr (exp, (unsigned int) THUMB_SIZE);
3647 }
3648
3649 /* Guess the instruction size based on the opcode. */
3650
3651 static int
3652 thumb_insn_size (int opcode)
3653 {
3654 if ((unsigned int) opcode < 0xe800u)
3655 return 2;
3656 else if ((unsigned int) opcode >= 0xe8000000u)
3657 return 4;
3658 else
3659 return 0;
3660 }
3661
3662 static bfd_boolean
3663 emit_insn (expressionS *exp, int nbytes)
3664 {
3665 int size = 0;
3666
3667 if (exp->X_op == O_constant)
3668 {
3669 size = nbytes;
3670
3671 if (size == 0)
3672 size = thumb_insn_size (exp->X_add_number);
3673
3674 if (size != 0)
3675 {
3676 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3677 {
3678 as_bad (_(".inst.n operand too big. "\
3679 "Use .inst.w instead"));
3680 size = 0;
3681 }
3682 else
3683 {
3684 if (now_it.state == AUTOMATIC_IT_BLOCK)
3685 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3686 else
3687 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3688
3689 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3690 emit_thumb32_expr (exp);
3691 else
3692 emit_expr (exp, (unsigned int) size);
3693
3694 it_fsm_post_encode ();
3695 }
3696 }
3697 else
3698 as_bad (_("cannot determine Thumb instruction size. " \
3699 "Use .inst.n/.inst.w instead"));
3700 }
3701 else
3702 as_bad (_("constant expression required"));
3703
3704 return (size != 0);
3705 }
3706
3707 /* Like s_arm_elf_cons but do not use md_cons_align and
3708 set the mapping state to MAP_ARM/MAP_THUMB. */
3709
3710 static void
3711 s_arm_elf_inst (int nbytes)
3712 {
3713 if (is_it_end_of_statement ())
3714 {
3715 demand_empty_rest_of_line ();
3716 return;
3717 }
3718
3719 /* Calling mapping_state () here will not change ARM/THUMB,
3720 but will ensure not to be in DATA state. */
3721
3722 if (thumb_mode)
3723 mapping_state (MAP_THUMB);
3724 else
3725 {
3726 if (nbytes != 0)
3727 {
3728 as_bad (_("width suffixes are invalid in ARM mode"));
3729 ignore_rest_of_line ();
3730 return;
3731 }
3732
3733 nbytes = 4;
3734
3735 mapping_state (MAP_ARM);
3736 }
3737
3738 do
3739 {
3740 expressionS exp;
3741
3742 expression (& exp);
3743
3744 if (! emit_insn (& exp, nbytes))
3745 {
3746 ignore_rest_of_line ();
3747 return;
3748 }
3749 }
3750 while (*input_line_pointer++ == ',');
3751
3752 /* Put terminator back into stream. */
3753 input_line_pointer --;
3754 demand_empty_rest_of_line ();
3755 }
3756
3757 /* Parse a .rel31 directive. */
3758
3759 static void
3760 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3761 {
3762 expressionS exp;
3763 char *p;
3764 valueT highbit;
3765
3766 highbit = 0;
3767 if (*input_line_pointer == '1')
3768 highbit = 0x80000000;
3769 else if (*input_line_pointer != '0')
3770 as_bad (_("expected 0 or 1"));
3771
3772 input_line_pointer++;
3773 if (*input_line_pointer != ',')
3774 as_bad (_("missing comma"));
3775 input_line_pointer++;
3776
3777 #ifdef md_flush_pending_output
3778 md_flush_pending_output ();
3779 #endif
3780
3781 #ifdef md_cons_align
3782 md_cons_align (4);
3783 #endif
3784
3785 mapping_state (MAP_DATA);
3786
3787 expression (&exp);
3788
3789 p = frag_more (4);
3790 md_number_to_chars (p, highbit, 4);
3791 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3792 BFD_RELOC_ARM_PREL31);
3793
3794 demand_empty_rest_of_line ();
3795 }
3796
3797 /* Directives: AEABI stack-unwind tables. */
3798
3799 /* Parse an unwind_fnstart directive. Simply records the current location. */
3800
3801 static void
3802 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3803 {
3804 demand_empty_rest_of_line ();
3805 if (unwind.proc_start)
3806 {
3807 as_bad (_("duplicate .fnstart directive"));
3808 return;
3809 }
3810
3811 /* Mark the start of the function. */
3812 unwind.proc_start = expr_build_dot ();
3813
3814 /* Reset the rest of the unwind info. */
3815 unwind.opcode_count = 0;
3816 unwind.table_entry = NULL;
3817 unwind.personality_routine = NULL;
3818 unwind.personality_index = -1;
3819 unwind.frame_size = 0;
3820 unwind.fp_offset = 0;
3821 unwind.fp_reg = REG_SP;
3822 unwind.fp_used = 0;
3823 unwind.sp_restored = 0;
3824 }
3825
3826
3827 /* Parse a handlerdata directive. Creates the exception handling table entry
3828 for the function. */
3829
3830 static void
3831 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3832 {
3833 demand_empty_rest_of_line ();
3834 if (!unwind.proc_start)
3835 as_bad (MISSING_FNSTART);
3836
3837 if (unwind.table_entry)
3838 as_bad (_("duplicate .handlerdata directive"));
3839
3840 create_unwind_entry (1);
3841 }
3842
3843 /* Parse an unwind_fnend directive. Generates the index table entry. */
3844
3845 static void
3846 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3847 {
3848 long where;
3849 char *ptr;
3850 valueT val;
3851 unsigned int marked_pr_dependency;
3852
3853 demand_empty_rest_of_line ();
3854
3855 if (!unwind.proc_start)
3856 {
3857 as_bad (_(".fnend directive without .fnstart"));
3858 return;
3859 }
3860
3861 /* Add eh table entry. */
3862 if (unwind.table_entry == NULL)
3863 val = create_unwind_entry (0);
3864 else
3865 val = 0;
3866
3867 /* Add index table entry. This is two words. */
3868 start_unwind_section (unwind.saved_seg, 1);
3869 frag_align (2, 0, 0);
3870 record_alignment (now_seg, 2);
3871
3872 ptr = frag_more (8);
3873 memset (ptr, 0, 8);
3874 where = frag_now_fix () - 8;
3875
3876 /* Self relative offset of the function start. */
3877 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3878 BFD_RELOC_ARM_PREL31);
3879
3880 /* Indicate dependency on EHABI-defined personality routines to the
3881 linker, if it hasn't been done already. */
3882 marked_pr_dependency
3883 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3884 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3885 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3886 {
3887 static const char *const name[] =
3888 {
3889 "__aeabi_unwind_cpp_pr0",
3890 "__aeabi_unwind_cpp_pr1",
3891 "__aeabi_unwind_cpp_pr2"
3892 };
3893 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3894 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3895 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3896 |= 1 << unwind.personality_index;
3897 }
3898
3899 if (val)
3900 /* Inline exception table entry. */
3901 md_number_to_chars (ptr + 4, val, 4);
3902 else
3903 /* Self relative offset of the table entry. */
3904 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3905 BFD_RELOC_ARM_PREL31);
3906
3907 /* Restore the original section. */
3908 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3909
3910 unwind.proc_start = NULL;
3911 }
3912
3913
3914 /* Parse an unwind_cantunwind directive. */
3915
3916 static void
3917 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3918 {
3919 demand_empty_rest_of_line ();
3920 if (!unwind.proc_start)
3921 as_bad (MISSING_FNSTART);
3922
3923 if (unwind.personality_routine || unwind.personality_index != -1)
3924 as_bad (_("personality routine specified for cantunwind frame"));
3925
3926 unwind.personality_index = -2;
3927 }
3928
3929
3930 /* Parse a personalityindex directive. */
3931
3932 static void
3933 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3934 {
3935 expressionS exp;
3936
3937 if (!unwind.proc_start)
3938 as_bad (MISSING_FNSTART);
3939
3940 if (unwind.personality_routine || unwind.personality_index != -1)
3941 as_bad (_("duplicate .personalityindex directive"));
3942
3943 expression (&exp);
3944
3945 if (exp.X_op != O_constant
3946 || exp.X_add_number < 0 || exp.X_add_number > 15)
3947 {
3948 as_bad (_("bad personality routine number"));
3949 ignore_rest_of_line ();
3950 return;
3951 }
3952
3953 unwind.personality_index = exp.X_add_number;
3954
3955 demand_empty_rest_of_line ();
3956 }
3957
3958
3959 /* Parse a personality directive. */
3960
3961 static void
3962 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3963 {
3964 char *name, *p, c;
3965
3966 if (!unwind.proc_start)
3967 as_bad (MISSING_FNSTART);
3968
3969 if (unwind.personality_routine || unwind.personality_index != -1)
3970 as_bad (_("duplicate .personality directive"));
3971
3972 c = get_symbol_name (& name);
3973 p = input_line_pointer;
3974 if (c == '"')
3975 ++ input_line_pointer;
3976 unwind.personality_routine = symbol_find_or_make (name);
3977 *p = c;
3978 demand_empty_rest_of_line ();
3979 }
3980
3981
3982 /* Parse a directive saving core registers. */
3983
3984 static void
3985 s_arm_unwind_save_core (void)
3986 {
3987 valueT op;
3988 long range;
3989 int n;
3990
3991 range = parse_reg_list (&input_line_pointer);
3992 if (range == FAIL)
3993 {
3994 as_bad (_("expected register list"));
3995 ignore_rest_of_line ();
3996 return;
3997 }
3998
3999 demand_empty_rest_of_line ();
4000
4001 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4002 into .unwind_save {..., sp...}. We aren't bothered about the value of
4003 ip because it is clobbered by calls. */
4004 if (unwind.sp_restored && unwind.fp_reg == 12
4005 && (range & 0x3000) == 0x1000)
4006 {
4007 unwind.opcode_count--;
4008 unwind.sp_restored = 0;
4009 range = (range | 0x2000) & ~0x1000;
4010 unwind.pending_offset = 0;
4011 }
4012
4013 /* Pop r4-r15. */
4014 if (range & 0xfff0)
4015 {
4016 /* See if we can use the short opcodes. These pop a block of up to 8
4017 registers starting with r4, plus maybe r14. */
4018 for (n = 0; n < 8; n++)
4019 {
4020 /* Break at the first non-saved register. */
4021 if ((range & (1 << (n + 4))) == 0)
4022 break;
4023 }
4024 /* See if there are any other bits set. */
4025 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4026 {
4027 /* Use the long form. */
4028 op = 0x8000 | ((range >> 4) & 0xfff);
4029 add_unwind_opcode (op, 2);
4030 }
4031 else
4032 {
4033 /* Use the short form. */
4034 if (range & 0x4000)
4035 op = 0xa8; /* Pop r14. */
4036 else
4037 op = 0xa0; /* Do not pop r14. */
4038 op |= (n - 1);
4039 add_unwind_opcode (op, 1);
4040 }
4041 }
4042
4043 /* Pop r0-r3. */
4044 if (range & 0xf)
4045 {
4046 op = 0xb100 | (range & 0xf);
4047 add_unwind_opcode (op, 2);
4048 }
4049
4050 /* Record the number of bytes pushed. */
4051 for (n = 0; n < 16; n++)
4052 {
4053 if (range & (1 << n))
4054 unwind.frame_size += 4;
4055 }
4056 }
4057
4058
4059 /* Parse a directive saving FPA registers. */
4060
4061 static void
4062 s_arm_unwind_save_fpa (int reg)
4063 {
4064 expressionS exp;
4065 int num_regs;
4066 valueT op;
4067
4068 /* Get Number of registers to transfer. */
4069 if (skip_past_comma (&input_line_pointer) != FAIL)
4070 expression (&exp);
4071 else
4072 exp.X_op = O_illegal;
4073
4074 if (exp.X_op != O_constant)
4075 {
4076 as_bad (_("expected , <constant>"));
4077 ignore_rest_of_line ();
4078 return;
4079 }
4080
4081 num_regs = exp.X_add_number;
4082
4083 if (num_regs < 1 || num_regs > 4)
4084 {
4085 as_bad (_("number of registers must be in the range [1:4]"));
4086 ignore_rest_of_line ();
4087 return;
4088 }
4089
4090 demand_empty_rest_of_line ();
4091
4092 if (reg == 4)
4093 {
4094 /* Short form. */
4095 op = 0xb4 | (num_regs - 1);
4096 add_unwind_opcode (op, 1);
4097 }
4098 else
4099 {
4100 /* Long form. */
4101 op = 0xc800 | (reg << 4) | (num_regs - 1);
4102 add_unwind_opcode (op, 2);
4103 }
4104 unwind.frame_size += num_regs * 12;
4105 }
4106
4107
4108 /* Parse a directive saving VFP registers for ARMv6 and above. */
4109
4110 static void
4111 s_arm_unwind_save_vfp_armv6 (void)
4112 {
4113 int count;
4114 unsigned int start;
4115 valueT op;
4116 int num_vfpv3_regs = 0;
4117 int num_regs_below_16;
4118
4119 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
4120 if (count == FAIL)
4121 {
4122 as_bad (_("expected register list"));
4123 ignore_rest_of_line ();
4124 return;
4125 }
4126
4127 demand_empty_rest_of_line ();
4128
4129 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4130 than FSTMX/FLDMX-style ones). */
4131
4132 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4133 if (start >= 16)
4134 num_vfpv3_regs = count;
4135 else if (start + count > 16)
4136 num_vfpv3_regs = start + count - 16;
4137
4138 if (num_vfpv3_regs > 0)
4139 {
4140 int start_offset = start > 16 ? start - 16 : 0;
4141 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4142 add_unwind_opcode (op, 2);
4143 }
4144
4145 /* Generate opcode for registers numbered in the range 0 .. 15. */
4146 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4147 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4148 if (num_regs_below_16 > 0)
4149 {
4150 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4151 add_unwind_opcode (op, 2);
4152 }
4153
4154 unwind.frame_size += count * 8;
4155 }
4156
4157
4158 /* Parse a directive saving VFP registers for pre-ARMv6. */
4159
4160 static void
4161 s_arm_unwind_save_vfp (void)
4162 {
4163 int count;
4164 unsigned int reg;
4165 valueT op;
4166
4167 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
4168 if (count == FAIL)
4169 {
4170 as_bad (_("expected register list"));
4171 ignore_rest_of_line ();
4172 return;
4173 }
4174
4175 demand_empty_rest_of_line ();
4176
4177 if (reg == 8)
4178 {
4179 /* Short form. */
4180 op = 0xb8 | (count - 1);
4181 add_unwind_opcode (op, 1);
4182 }
4183 else
4184 {
4185 /* Long form. */
4186 op = 0xb300 | (reg << 4) | (count - 1);
4187 add_unwind_opcode (op, 2);
4188 }
4189 unwind.frame_size += count * 8 + 4;
4190 }
4191
4192
4193 /* Parse a directive saving iWMMXt data registers. */
4194
4195 static void
4196 s_arm_unwind_save_mmxwr (void)
4197 {
4198 int reg;
4199 int hi_reg;
4200 int i;
4201 unsigned mask = 0;
4202 valueT op;
4203
4204 if (*input_line_pointer == '{')
4205 input_line_pointer++;
4206
4207 do
4208 {
4209 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4210
4211 if (reg == FAIL)
4212 {
4213 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4214 goto error;
4215 }
4216
4217 if (mask >> reg)
4218 as_tsktsk (_("register list not in ascending order"));
4219 mask |= 1 << reg;
4220
4221 if (*input_line_pointer == '-')
4222 {
4223 input_line_pointer++;
4224 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4225 if (hi_reg == FAIL)
4226 {
4227 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4228 goto error;
4229 }
4230 else if (reg >= hi_reg)
4231 {
4232 as_bad (_("bad register range"));
4233 goto error;
4234 }
4235 for (; reg < hi_reg; reg++)
4236 mask |= 1 << reg;
4237 }
4238 }
4239 while (skip_past_comma (&input_line_pointer) != FAIL);
4240
4241 skip_past_char (&input_line_pointer, '}');
4242
4243 demand_empty_rest_of_line ();
4244
4245 /* Generate any deferred opcodes because we're going to be looking at
4246 the list. */
4247 flush_pending_unwind ();
4248
4249 for (i = 0; i < 16; i++)
4250 {
4251 if (mask & (1 << i))
4252 unwind.frame_size += 8;
4253 }
4254
4255 /* Attempt to combine with a previous opcode. We do this because gcc
4256 likes to output separate unwind directives for a single block of
4257 registers. */
4258 if (unwind.opcode_count > 0)
4259 {
4260 i = unwind.opcodes[unwind.opcode_count - 1];
4261 if ((i & 0xf8) == 0xc0)
4262 {
4263 i &= 7;
4264 /* Only merge if the blocks are contiguous. */
4265 if (i < 6)
4266 {
4267 if ((mask & 0xfe00) == (1 << 9))
4268 {
4269 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4270 unwind.opcode_count--;
4271 }
4272 }
4273 else if (i == 6 && unwind.opcode_count >= 2)
4274 {
4275 i = unwind.opcodes[unwind.opcode_count - 2];
4276 reg = i >> 4;
4277 i &= 0xf;
4278
4279 op = 0xffff << (reg - 1);
4280 if (reg > 0
4281 && ((mask & op) == (1u << (reg - 1))))
4282 {
4283 op = (1 << (reg + i + 1)) - 1;
4284 op &= ~((1 << reg) - 1);
4285 mask |= op;
4286 unwind.opcode_count -= 2;
4287 }
4288 }
4289 }
4290 }
4291
4292 hi_reg = 15;
4293 /* We want to generate opcodes in the order the registers have been
4294 saved, ie. descending order. */
4295 for (reg = 15; reg >= -1; reg--)
4296 {
4297 /* Save registers in blocks. */
4298 if (reg < 0
4299 || !(mask & (1 << reg)))
4300 {
4301 /* We found an unsaved reg. Generate opcodes to save the
4302 preceding block. */
4303 if (reg != hi_reg)
4304 {
4305 if (reg == 9)
4306 {
4307 /* Short form. */
4308 op = 0xc0 | (hi_reg - 10);
4309 add_unwind_opcode (op, 1);
4310 }
4311 else
4312 {
4313 /* Long form. */
4314 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4315 add_unwind_opcode (op, 2);
4316 }
4317 }
4318 hi_reg = reg - 1;
4319 }
4320 }
4321
4322 return;
4323 error:
4324 ignore_rest_of_line ();
4325 }
4326
4327 static void
4328 s_arm_unwind_save_mmxwcg (void)
4329 {
4330 int reg;
4331 int hi_reg;
4332 unsigned mask = 0;
4333 valueT op;
4334
4335 if (*input_line_pointer == '{')
4336 input_line_pointer++;
4337
4338 skip_whitespace (input_line_pointer);
4339
4340 do
4341 {
4342 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4343
4344 if (reg == FAIL)
4345 {
4346 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4347 goto error;
4348 }
4349
4350 reg -= 8;
4351 if (mask >> reg)
4352 as_tsktsk (_("register list not in ascending order"));
4353 mask |= 1 << reg;
4354
4355 if (*input_line_pointer == '-')
4356 {
4357 input_line_pointer++;
4358 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4359 if (hi_reg == FAIL)
4360 {
4361 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4362 goto error;
4363 }
4364 else if (reg >= hi_reg)
4365 {
4366 as_bad (_("bad register range"));
4367 goto error;
4368 }
4369 for (; reg < hi_reg; reg++)
4370 mask |= 1 << reg;
4371 }
4372 }
4373 while (skip_past_comma (&input_line_pointer) != FAIL);
4374
4375 skip_past_char (&input_line_pointer, '}');
4376
4377 demand_empty_rest_of_line ();
4378
4379 /* Generate any deferred opcodes because we're going to be looking at
4380 the list. */
4381 flush_pending_unwind ();
4382
4383 for (reg = 0; reg < 16; reg++)
4384 {
4385 if (mask & (1 << reg))
4386 unwind.frame_size += 4;
4387 }
4388 op = 0xc700 | mask;
4389 add_unwind_opcode (op, 2);
4390 return;
4391 error:
4392 ignore_rest_of_line ();
4393 }
4394
4395
4396 /* Parse an unwind_save directive.
4397 If the argument is non-zero, this is a .vsave directive. */
4398
4399 static void
4400 s_arm_unwind_save (int arch_v6)
4401 {
4402 char *peek;
4403 struct reg_entry *reg;
4404 bfd_boolean had_brace = FALSE;
4405
4406 if (!unwind.proc_start)
4407 as_bad (MISSING_FNSTART);
4408
4409 /* Figure out what sort of save we have. */
4410 peek = input_line_pointer;
4411
4412 if (*peek == '{')
4413 {
4414 had_brace = TRUE;
4415 peek++;
4416 }
4417
4418 reg = arm_reg_parse_multi (&peek);
4419
4420 if (!reg)
4421 {
4422 as_bad (_("register expected"));
4423 ignore_rest_of_line ();
4424 return;
4425 }
4426
4427 switch (reg->type)
4428 {
4429 case REG_TYPE_FN:
4430 if (had_brace)
4431 {
4432 as_bad (_("FPA .unwind_save does not take a register list"));
4433 ignore_rest_of_line ();
4434 return;
4435 }
4436 input_line_pointer = peek;
4437 s_arm_unwind_save_fpa (reg->number);
4438 return;
4439
4440 case REG_TYPE_RN:
4441 s_arm_unwind_save_core ();
4442 return;
4443
4444 case REG_TYPE_VFD:
4445 if (arch_v6)
4446 s_arm_unwind_save_vfp_armv6 ();
4447 else
4448 s_arm_unwind_save_vfp ();
4449 return;
4450
4451 case REG_TYPE_MMXWR:
4452 s_arm_unwind_save_mmxwr ();
4453 return;
4454
4455 case REG_TYPE_MMXWCG:
4456 s_arm_unwind_save_mmxwcg ();
4457 return;
4458
4459 default:
4460 as_bad (_(".unwind_save does not support this kind of register"));
4461 ignore_rest_of_line ();
4462 }
4463 }
4464
4465
4466 /* Parse an unwind_movsp directive. */
4467
4468 static void
4469 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4470 {
4471 int reg;
4472 valueT op;
4473 int offset;
4474
4475 if (!unwind.proc_start)
4476 as_bad (MISSING_FNSTART);
4477
4478 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4479 if (reg == FAIL)
4480 {
4481 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4482 ignore_rest_of_line ();
4483 return;
4484 }
4485
4486 /* Optional constant. */
4487 if (skip_past_comma (&input_line_pointer) != FAIL)
4488 {
4489 if (immediate_for_directive (&offset) == FAIL)
4490 return;
4491 }
4492 else
4493 offset = 0;
4494
4495 demand_empty_rest_of_line ();
4496
4497 if (reg == REG_SP || reg == REG_PC)
4498 {
4499 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4500 return;
4501 }
4502
4503 if (unwind.fp_reg != REG_SP)
4504 as_bad (_("unexpected .unwind_movsp directive"));
4505
4506 /* Generate opcode to restore the value. */
4507 op = 0x90 | reg;
4508 add_unwind_opcode (op, 1);
4509
4510 /* Record the information for later. */
4511 unwind.fp_reg = reg;
4512 unwind.fp_offset = unwind.frame_size - offset;
4513 unwind.sp_restored = 1;
4514 }
4515
4516 /* Parse an unwind_pad directive. */
4517
4518 static void
4519 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4520 {
4521 int offset;
4522
4523 if (!unwind.proc_start)
4524 as_bad (MISSING_FNSTART);
4525
4526 if (immediate_for_directive (&offset) == FAIL)
4527 return;
4528
4529 if (offset & 3)
4530 {
4531 as_bad (_("stack increment must be multiple of 4"));
4532 ignore_rest_of_line ();
4533 return;
4534 }
4535
4536 /* Don't generate any opcodes, just record the details for later. */
4537 unwind.frame_size += offset;
4538 unwind.pending_offset += offset;
4539
4540 demand_empty_rest_of_line ();
4541 }
4542
4543 /* Parse an unwind_setfp directive. */
4544
4545 static void
4546 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4547 {
4548 int sp_reg;
4549 int fp_reg;
4550 int offset;
4551
4552 if (!unwind.proc_start)
4553 as_bad (MISSING_FNSTART);
4554
4555 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4556 if (skip_past_comma (&input_line_pointer) == FAIL)
4557 sp_reg = FAIL;
4558 else
4559 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4560
4561 if (fp_reg == FAIL || sp_reg == FAIL)
4562 {
4563 as_bad (_("expected <reg>, <reg>"));
4564 ignore_rest_of_line ();
4565 return;
4566 }
4567
4568 /* Optional constant. */
4569 if (skip_past_comma (&input_line_pointer) != FAIL)
4570 {
4571 if (immediate_for_directive (&offset) == FAIL)
4572 return;
4573 }
4574 else
4575 offset = 0;
4576
4577 demand_empty_rest_of_line ();
4578
4579 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4580 {
4581 as_bad (_("register must be either sp or set by a previous"
4582 "unwind_movsp directive"));
4583 return;
4584 }
4585
4586 /* Don't generate any opcodes, just record the information for later. */
4587 unwind.fp_reg = fp_reg;
4588 unwind.fp_used = 1;
4589 if (sp_reg == REG_SP)
4590 unwind.fp_offset = unwind.frame_size - offset;
4591 else
4592 unwind.fp_offset -= offset;
4593 }
4594
4595 /* Parse an unwind_raw directive. */
4596
4597 static void
4598 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4599 {
4600 expressionS exp;
4601 /* This is an arbitrary limit. */
4602 unsigned char op[16];
4603 int count;
4604
4605 if (!unwind.proc_start)
4606 as_bad (MISSING_FNSTART);
4607
4608 expression (&exp);
4609 if (exp.X_op == O_constant
4610 && skip_past_comma (&input_line_pointer) != FAIL)
4611 {
4612 unwind.frame_size += exp.X_add_number;
4613 expression (&exp);
4614 }
4615 else
4616 exp.X_op = O_illegal;
4617
4618 if (exp.X_op != O_constant)
4619 {
4620 as_bad (_("expected <offset>, <opcode>"));
4621 ignore_rest_of_line ();
4622 return;
4623 }
4624
4625 count = 0;
4626
4627 /* Parse the opcode. */
4628 for (;;)
4629 {
4630 if (count >= 16)
4631 {
4632 as_bad (_("unwind opcode too long"));
4633 ignore_rest_of_line ();
4634 }
4635 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4636 {
4637 as_bad (_("invalid unwind opcode"));
4638 ignore_rest_of_line ();
4639 return;
4640 }
4641 op[count++] = exp.X_add_number;
4642
4643 /* Parse the next byte. */
4644 if (skip_past_comma (&input_line_pointer) == FAIL)
4645 break;
4646
4647 expression (&exp);
4648 }
4649
4650 /* Add the opcode bytes in reverse order. */
4651 while (count--)
4652 add_unwind_opcode (op[count], 1);
4653
4654 demand_empty_rest_of_line ();
4655 }
4656
4657
4658 /* Parse a .eabi_attribute directive. */
4659
4660 static void
4661 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4662 {
4663 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4664
4665 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4666 attributes_set_explicitly[tag] = 1;
4667 }
4668
4669 /* Emit a tls fix for the symbol. */
4670
4671 static void
4672 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4673 {
4674 char *p;
4675 expressionS exp;
4676 #ifdef md_flush_pending_output
4677 md_flush_pending_output ();
4678 #endif
4679
4680 #ifdef md_cons_align
4681 md_cons_align (4);
4682 #endif
4683
4684 /* Since we're just labelling the code, there's no need to define a
4685 mapping symbol. */
4686 expression (&exp);
4687 p = obstack_next_free (&frchain_now->frch_obstack);
4688 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4689 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4690 : BFD_RELOC_ARM_TLS_DESCSEQ);
4691 }
4692 #endif /* OBJ_ELF */
4693
4694 static void s_arm_arch (int);
4695 static void s_arm_object_arch (int);
4696 static void s_arm_cpu (int);
4697 static void s_arm_fpu (int);
4698 static void s_arm_arch_extension (int);
4699
4700 #ifdef TE_PE
4701
4702 static void
4703 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4704 {
4705 expressionS exp;
4706
4707 do
4708 {
4709 expression (&exp);
4710 if (exp.X_op == O_symbol)
4711 exp.X_op = O_secrel;
4712
4713 emit_expr (&exp, 4);
4714 }
4715 while (*input_line_pointer++ == ',');
4716
4717 input_line_pointer--;
4718 demand_empty_rest_of_line ();
4719 }
4720 #endif /* TE_PE */
4721
4722 /* This table describes all the machine specific pseudo-ops the assembler
4723 has to support. The fields are:
4724 pseudo-op name without dot
4725 function to call to execute this pseudo-op
4726 Integer arg to pass to the function. */
4727
4728 const pseudo_typeS md_pseudo_table[] =
4729 {
4730 /* Never called because '.req' does not start a line. */
4731 { "req", s_req, 0 },
4732 /* Following two are likewise never called. */
4733 { "dn", s_dn, 0 },
4734 { "qn", s_qn, 0 },
4735 { "unreq", s_unreq, 0 },
4736 { "bss", s_bss, 0 },
4737 { "align", s_align_ptwo, 2 },
4738 { "arm", s_arm, 0 },
4739 { "thumb", s_thumb, 0 },
4740 { "code", s_code, 0 },
4741 { "force_thumb", s_force_thumb, 0 },
4742 { "thumb_func", s_thumb_func, 0 },
4743 { "thumb_set", s_thumb_set, 0 },
4744 { "even", s_even, 0 },
4745 { "ltorg", s_ltorg, 0 },
4746 { "pool", s_ltorg, 0 },
4747 { "syntax", s_syntax, 0 },
4748 { "cpu", s_arm_cpu, 0 },
4749 { "arch", s_arm_arch, 0 },
4750 { "object_arch", s_arm_object_arch, 0 },
4751 { "fpu", s_arm_fpu, 0 },
4752 { "arch_extension", s_arm_arch_extension, 0 },
4753 #ifdef OBJ_ELF
4754 { "word", s_arm_elf_cons, 4 },
4755 { "long", s_arm_elf_cons, 4 },
4756 { "inst.n", s_arm_elf_inst, 2 },
4757 { "inst.w", s_arm_elf_inst, 4 },
4758 { "inst", s_arm_elf_inst, 0 },
4759 { "rel31", s_arm_rel31, 0 },
4760 { "fnstart", s_arm_unwind_fnstart, 0 },
4761 { "fnend", s_arm_unwind_fnend, 0 },
4762 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4763 { "personality", s_arm_unwind_personality, 0 },
4764 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4765 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4766 { "save", s_arm_unwind_save, 0 },
4767 { "vsave", s_arm_unwind_save, 1 },
4768 { "movsp", s_arm_unwind_movsp, 0 },
4769 { "pad", s_arm_unwind_pad, 0 },
4770 { "setfp", s_arm_unwind_setfp, 0 },
4771 { "unwind_raw", s_arm_unwind_raw, 0 },
4772 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4773 { "tlsdescseq", s_arm_tls_descseq, 0 },
4774 #else
4775 { "word", cons, 4},
4776
4777 /* These are used for dwarf. */
4778 {"2byte", cons, 2},
4779 {"4byte", cons, 4},
4780 {"8byte", cons, 8},
4781 /* These are used for dwarf2. */
4782 { "file", dwarf2_directive_file, 0 },
4783 { "loc", dwarf2_directive_loc, 0 },
4784 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4785 #endif
4786 { "extend", float_cons, 'x' },
4787 { "ldouble", float_cons, 'x' },
4788 { "packed", float_cons, 'p' },
4789 #ifdef TE_PE
4790 {"secrel32", pe_directive_secrel, 0},
4791 #endif
4792
4793 /* These are for compatibility with CodeComposer Studio. */
4794 {"ref", s_ccs_ref, 0},
4795 {"def", s_ccs_def, 0},
4796 {"asmfunc", s_ccs_asmfunc, 0},
4797 {"endasmfunc", s_ccs_endasmfunc, 0},
4798
4799 { 0, 0, 0 }
4800 };
4801 \f
4802 /* Parser functions used exclusively in instruction operands. */
4803
4804 /* Generic immediate-value read function for use in insn parsing.
4805 STR points to the beginning of the immediate (the leading #);
4806 VAL receives the value; if the value is outside [MIN, MAX]
4807 issue an error. PREFIX_OPT is true if the immediate prefix is
4808 optional. */
4809
4810 static int
4811 parse_immediate (char **str, int *val, int min, int max,
4812 bfd_boolean prefix_opt)
4813 {
4814 expressionS exp;
4815
4816 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4817 if (exp.X_op != O_constant)
4818 {
4819 inst.error = _("constant expression required");
4820 return FAIL;
4821 }
4822
4823 if (exp.X_add_number < min || exp.X_add_number > max)
4824 {
4825 inst.error = _("immediate value out of range");
4826 return FAIL;
4827 }
4828
4829 *val = exp.X_add_number;
4830 return SUCCESS;
4831 }
4832
4833 /* Less-generic immediate-value read function with the possibility of loading a
4834 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4835 instructions. Puts the result directly in inst.operands[i]. */
4836
4837 static int
4838 parse_big_immediate (char **str, int i, expressionS *in_exp,
4839 bfd_boolean allow_symbol_p)
4840 {
4841 expressionS exp;
4842 expressionS *exp_p = in_exp ? in_exp : &exp;
4843 char *ptr = *str;
4844
4845 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
4846
4847 if (exp_p->X_op == O_constant)
4848 {
4849 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
4850 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4851 O_constant. We have to be careful not to break compilation for
4852 32-bit X_add_number, though. */
4853 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4854 {
4855 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
4856 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
4857 & 0xffffffff);
4858 inst.operands[i].regisimm = 1;
4859 }
4860 }
4861 else if (exp_p->X_op == O_big
4862 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
4863 {
4864 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4865
4866 /* Bignums have their least significant bits in
4867 generic_bignum[0]. Make sure we put 32 bits in imm and
4868 32 bits in reg, in a (hopefully) portable way. */
4869 gas_assert (parts != 0);
4870
4871 /* Make sure that the number is not too big.
4872 PR 11972: Bignums can now be sign-extended to the
4873 size of a .octa so check that the out of range bits
4874 are all zero or all one. */
4875 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
4876 {
4877 LITTLENUM_TYPE m = -1;
4878
4879 if (generic_bignum[parts * 2] != 0
4880 && generic_bignum[parts * 2] != m)
4881 return FAIL;
4882
4883 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
4884 if (generic_bignum[j] != generic_bignum[j-1])
4885 return FAIL;
4886 }
4887
4888 inst.operands[i].imm = 0;
4889 for (j = 0; j < parts; j++, idx++)
4890 inst.operands[i].imm |= generic_bignum[idx]
4891 << (LITTLENUM_NUMBER_OF_BITS * j);
4892 inst.operands[i].reg = 0;
4893 for (j = 0; j < parts; j++, idx++)
4894 inst.operands[i].reg |= generic_bignum[idx]
4895 << (LITTLENUM_NUMBER_OF_BITS * j);
4896 inst.operands[i].regisimm = 1;
4897 }
4898 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
4899 return FAIL;
4900
4901 *str = ptr;
4902
4903 return SUCCESS;
4904 }
4905
4906 /* Returns the pseudo-register number of an FPA immediate constant,
4907 or FAIL if there isn't a valid constant here. */
4908
4909 static int
4910 parse_fpa_immediate (char ** str)
4911 {
4912 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4913 char * save_in;
4914 expressionS exp;
4915 int i;
4916 int j;
4917
4918 /* First try and match exact strings, this is to guarantee
4919 that some formats will work even for cross assembly. */
4920
4921 for (i = 0; fp_const[i]; i++)
4922 {
4923 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4924 {
4925 char *start = *str;
4926
4927 *str += strlen (fp_const[i]);
4928 if (is_end_of_line[(unsigned char) **str])
4929 return i + 8;
4930 *str = start;
4931 }
4932 }
4933
4934 /* Just because we didn't get a match doesn't mean that the constant
4935 isn't valid, just that it is in a format that we don't
4936 automatically recognize. Try parsing it with the standard
4937 expression routines. */
4938
4939 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4940
4941 /* Look for a raw floating point number. */
4942 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4943 && is_end_of_line[(unsigned char) *save_in])
4944 {
4945 for (i = 0; i < NUM_FLOAT_VALS; i++)
4946 {
4947 for (j = 0; j < MAX_LITTLENUMS; j++)
4948 {
4949 if (words[j] != fp_values[i][j])
4950 break;
4951 }
4952
4953 if (j == MAX_LITTLENUMS)
4954 {
4955 *str = save_in;
4956 return i + 8;
4957 }
4958 }
4959 }
4960
4961 /* Try and parse a more complex expression, this will probably fail
4962 unless the code uses a floating point prefix (eg "0f"). */
4963 save_in = input_line_pointer;
4964 input_line_pointer = *str;
4965 if (expression (&exp) == absolute_section
4966 && exp.X_op == O_big
4967 && exp.X_add_number < 0)
4968 {
4969 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4970 Ditto for 15. */
4971 #define X_PRECISION 5
4972 #define E_PRECISION 15L
4973 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
4974 {
4975 for (i = 0; i < NUM_FLOAT_VALS; i++)
4976 {
4977 for (j = 0; j < MAX_LITTLENUMS; j++)
4978 {
4979 if (words[j] != fp_values[i][j])
4980 break;
4981 }
4982
4983 if (j == MAX_LITTLENUMS)
4984 {
4985 *str = input_line_pointer;
4986 input_line_pointer = save_in;
4987 return i + 8;
4988 }
4989 }
4990 }
4991 }
4992
4993 *str = input_line_pointer;
4994 input_line_pointer = save_in;
4995 inst.error = _("invalid FPA immediate expression");
4996 return FAIL;
4997 }
4998
4999 /* Returns 1 if a number has "quarter-precision" float format
5000 0baBbbbbbc defgh000 00000000 00000000. */
5001
5002 static int
5003 is_quarter_float (unsigned imm)
5004 {
5005 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5006 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5007 }
5008
5009
5010 /* Detect the presence of a floating point or integer zero constant,
5011 i.e. #0.0 or #0. */
5012
5013 static bfd_boolean
5014 parse_ifimm_zero (char **in)
5015 {
5016 int error_code;
5017
5018 if (!is_immediate_prefix (**in))
5019 {
5020 /* In unified syntax, all prefixes are optional. */
5021 if (!unified_syntax)
5022 return FALSE;
5023 }
5024 else
5025 ++*in;
5026
5027 /* Accept #0x0 as a synonym for #0. */
5028 if (strncmp (*in, "0x", 2) == 0)
5029 {
5030 int val;
5031 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5032 return FALSE;
5033 return TRUE;
5034 }
5035
5036 error_code = atof_generic (in, ".", EXP_CHARS,
5037 &generic_floating_point_number);
5038
5039 if (!error_code
5040 && generic_floating_point_number.sign == '+'
5041 && (generic_floating_point_number.low
5042 > generic_floating_point_number.leader))
5043 return TRUE;
5044
5045 return FALSE;
5046 }
5047
5048 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5049 0baBbbbbbc defgh000 00000000 00000000.
5050 The zero and minus-zero cases need special handling, since they can't be
5051 encoded in the "quarter-precision" float format, but can nonetheless be
5052 loaded as integer constants. */
5053
5054 static unsigned
5055 parse_qfloat_immediate (char **ccp, int *immed)
5056 {
5057 char *str = *ccp;
5058 char *fpnum;
5059 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5060 int found_fpchar = 0;
5061
5062 skip_past_char (&str, '#');
5063
5064 /* We must not accidentally parse an integer as a floating-point number. Make
5065 sure that the value we parse is not an integer by checking for special
5066 characters '.' or 'e'.
5067 FIXME: This is a horrible hack, but doing better is tricky because type
5068 information isn't in a very usable state at parse time. */
5069 fpnum = str;
5070 skip_whitespace (fpnum);
5071
5072 if (strncmp (fpnum, "0x", 2) == 0)
5073 return FAIL;
5074 else
5075 {
5076 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5077 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5078 {
5079 found_fpchar = 1;
5080 break;
5081 }
5082
5083 if (!found_fpchar)
5084 return FAIL;
5085 }
5086
5087 if ((str = atof_ieee (str, 's', words)) != NULL)
5088 {
5089 unsigned fpword = 0;
5090 int i;
5091
5092 /* Our FP word must be 32 bits (single-precision FP). */
5093 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5094 {
5095 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5096 fpword |= words[i];
5097 }
5098
5099 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5100 *immed = fpword;
5101 else
5102 return FAIL;
5103
5104 *ccp = str;
5105
5106 return SUCCESS;
5107 }
5108
5109 return FAIL;
5110 }
5111
5112 /* Shift operands. */
5113 enum shift_kind
5114 {
5115 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
5116 };
5117
5118 struct asm_shift_name
5119 {
5120 const char *name;
5121 enum shift_kind kind;
5122 };
5123
5124 /* Third argument to parse_shift. */
5125 enum parse_shift_mode
5126 {
5127 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5128 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5129 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5130 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5131 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5132 };
5133
5134 /* Parse a <shift> specifier on an ARM data processing instruction.
5135 This has three forms:
5136
5137 (LSL|LSR|ASL|ASR|ROR) Rs
5138 (LSL|LSR|ASL|ASR|ROR) #imm
5139 RRX
5140
5141 Note that ASL is assimilated to LSL in the instruction encoding, and
5142 RRX to ROR #0 (which cannot be written as such). */
5143
5144 static int
5145 parse_shift (char **str, int i, enum parse_shift_mode mode)
5146 {
5147 const struct asm_shift_name *shift_name;
5148 enum shift_kind shift;
5149 char *s = *str;
5150 char *p = s;
5151 int reg;
5152
5153 for (p = *str; ISALPHA (*p); p++)
5154 ;
5155
5156 if (p == *str)
5157 {
5158 inst.error = _("shift expression expected");
5159 return FAIL;
5160 }
5161
5162 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5163 p - *str);
5164
5165 if (shift_name == NULL)
5166 {
5167 inst.error = _("shift expression expected");
5168 return FAIL;
5169 }
5170
5171 shift = shift_name->kind;
5172
5173 switch (mode)
5174 {
5175 case NO_SHIFT_RESTRICT:
5176 case SHIFT_IMMEDIATE: break;
5177
5178 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5179 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5180 {
5181 inst.error = _("'LSL' or 'ASR' required");
5182 return FAIL;
5183 }
5184 break;
5185
5186 case SHIFT_LSL_IMMEDIATE:
5187 if (shift != SHIFT_LSL)
5188 {
5189 inst.error = _("'LSL' required");
5190 return FAIL;
5191 }
5192 break;
5193
5194 case SHIFT_ASR_IMMEDIATE:
5195 if (shift != SHIFT_ASR)
5196 {
5197 inst.error = _("'ASR' required");
5198 return FAIL;
5199 }
5200 break;
5201
5202 default: abort ();
5203 }
5204
5205 if (shift != SHIFT_RRX)
5206 {
5207 /* Whitespace can appear here if the next thing is a bare digit. */
5208 skip_whitespace (p);
5209
5210 if (mode == NO_SHIFT_RESTRICT
5211 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5212 {
5213 inst.operands[i].imm = reg;
5214 inst.operands[i].immisreg = 1;
5215 }
5216 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5217 return FAIL;
5218 }
5219 inst.operands[i].shift_kind = shift;
5220 inst.operands[i].shifted = 1;
5221 *str = p;
5222 return SUCCESS;
5223 }
5224
5225 /* Parse a <shifter_operand> for an ARM data processing instruction:
5226
5227 #<immediate>
5228 #<immediate>, <rotate>
5229 <Rm>
5230 <Rm>, <shift>
5231
5232 where <shift> is defined by parse_shift above, and <rotate> is a
5233 multiple of 2 between 0 and 30. Validation of immediate operands
5234 is deferred to md_apply_fix. */
5235
5236 static int
5237 parse_shifter_operand (char **str, int i)
5238 {
5239 int value;
5240 expressionS exp;
5241
5242 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5243 {
5244 inst.operands[i].reg = value;
5245 inst.operands[i].isreg = 1;
5246
5247 /* parse_shift will override this if appropriate */
5248 inst.relocs[0].exp.X_op = O_constant;
5249 inst.relocs[0].exp.X_add_number = 0;
5250
5251 if (skip_past_comma (str) == FAIL)
5252 return SUCCESS;
5253
5254 /* Shift operation on register. */
5255 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5256 }
5257
5258 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5259 return FAIL;
5260
5261 if (skip_past_comma (str) == SUCCESS)
5262 {
5263 /* #x, y -- ie explicit rotation by Y. */
5264 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5265 return FAIL;
5266
5267 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5268 {
5269 inst.error = _("constant expression expected");
5270 return FAIL;
5271 }
5272
5273 value = exp.X_add_number;
5274 if (value < 0 || value > 30 || value % 2 != 0)
5275 {
5276 inst.error = _("invalid rotation");
5277 return FAIL;
5278 }
5279 if (inst.relocs[0].exp.X_add_number < 0
5280 || inst.relocs[0].exp.X_add_number > 255)
5281 {
5282 inst.error = _("invalid constant");
5283 return FAIL;
5284 }
5285
5286 /* Encode as specified. */
5287 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5288 return SUCCESS;
5289 }
5290
5291 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5292 inst.relocs[0].pc_rel = 0;
5293 return SUCCESS;
5294 }
5295
5296 /* Group relocation information. Each entry in the table contains the
5297 textual name of the relocation as may appear in assembler source
5298 and must end with a colon.
5299 Along with this textual name are the relocation codes to be used if
5300 the corresponding instruction is an ALU instruction (ADD or SUB only),
5301 an LDR, an LDRS, or an LDC. */
5302
5303 struct group_reloc_table_entry
5304 {
5305 const char *name;
5306 int alu_code;
5307 int ldr_code;
5308 int ldrs_code;
5309 int ldc_code;
5310 };
5311
5312 typedef enum
5313 {
5314 /* Varieties of non-ALU group relocation. */
5315
5316 GROUP_LDR,
5317 GROUP_LDRS,
5318 GROUP_LDC
5319 } group_reloc_type;
5320
5321 static struct group_reloc_table_entry group_reloc_table[] =
5322 { /* Program counter relative: */
5323 { "pc_g0_nc",
5324 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5325 0, /* LDR */
5326 0, /* LDRS */
5327 0 }, /* LDC */
5328 { "pc_g0",
5329 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5330 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5331 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5332 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5333 { "pc_g1_nc",
5334 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5335 0, /* LDR */
5336 0, /* LDRS */
5337 0 }, /* LDC */
5338 { "pc_g1",
5339 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5340 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5341 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5342 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5343 { "pc_g2",
5344 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5345 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5346 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5347 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5348 /* Section base relative */
5349 { "sb_g0_nc",
5350 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5351 0, /* LDR */
5352 0, /* LDRS */
5353 0 }, /* LDC */
5354 { "sb_g0",
5355 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5356 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5357 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5358 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5359 { "sb_g1_nc",
5360 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5361 0, /* LDR */
5362 0, /* LDRS */
5363 0 }, /* LDC */
5364 { "sb_g1",
5365 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5366 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5367 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5368 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5369 { "sb_g2",
5370 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5371 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5372 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5373 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5374 /* Absolute thumb alu relocations. */
5375 { "lower0_7",
5376 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5377 0, /* LDR. */
5378 0, /* LDRS. */
5379 0 }, /* LDC. */
5380 { "lower8_15",
5381 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5382 0, /* LDR. */
5383 0, /* LDRS. */
5384 0 }, /* LDC. */
5385 { "upper0_7",
5386 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5387 0, /* LDR. */
5388 0, /* LDRS. */
5389 0 }, /* LDC. */
5390 { "upper8_15",
5391 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5392 0, /* LDR. */
5393 0, /* LDRS. */
5394 0 } }; /* LDC. */
5395
5396 /* Given the address of a pointer pointing to the textual name of a group
5397 relocation as may appear in assembler source, attempt to find its details
5398 in group_reloc_table. The pointer will be updated to the character after
5399 the trailing colon. On failure, FAIL will be returned; SUCCESS
5400 otherwise. On success, *entry will be updated to point at the relevant
5401 group_reloc_table entry. */
5402
5403 static int
5404 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5405 {
5406 unsigned int i;
5407 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5408 {
5409 int length = strlen (group_reloc_table[i].name);
5410
5411 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5412 && (*str)[length] == ':')
5413 {
5414 *out = &group_reloc_table[i];
5415 *str += (length + 1);
5416 return SUCCESS;
5417 }
5418 }
5419
5420 return FAIL;
5421 }
5422
5423 /* Parse a <shifter_operand> for an ARM data processing instruction
5424 (as for parse_shifter_operand) where group relocations are allowed:
5425
5426 #<immediate>
5427 #<immediate>, <rotate>
5428 #:<group_reloc>:<expression>
5429 <Rm>
5430 <Rm>, <shift>
5431
5432 where <group_reloc> is one of the strings defined in group_reloc_table.
5433 The hashes are optional.
5434
5435 Everything else is as for parse_shifter_operand. */
5436
5437 static parse_operand_result
5438 parse_shifter_operand_group_reloc (char **str, int i)
5439 {
5440 /* Determine if we have the sequence of characters #: or just :
5441 coming next. If we do, then we check for a group relocation.
5442 If we don't, punt the whole lot to parse_shifter_operand. */
5443
5444 if (((*str)[0] == '#' && (*str)[1] == ':')
5445 || (*str)[0] == ':')
5446 {
5447 struct group_reloc_table_entry *entry;
5448
5449 if ((*str)[0] == '#')
5450 (*str) += 2;
5451 else
5452 (*str)++;
5453
5454 /* Try to parse a group relocation. Anything else is an error. */
5455 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5456 {
5457 inst.error = _("unknown group relocation");
5458 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5459 }
5460
5461 /* We now have the group relocation table entry corresponding to
5462 the name in the assembler source. Next, we parse the expression. */
5463 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5464 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5465
5466 /* Record the relocation type (always the ALU variant here). */
5467 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5468 gas_assert (inst.relocs[0].type != 0);
5469
5470 return PARSE_OPERAND_SUCCESS;
5471 }
5472 else
5473 return parse_shifter_operand (str, i) == SUCCESS
5474 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5475
5476 /* Never reached. */
5477 }
5478
5479 /* Parse a Neon alignment expression. Information is written to
5480 inst.operands[i]. We assume the initial ':' has been skipped.
5481
5482 align .imm = align << 8, .immisalign=1, .preind=0 */
5483 static parse_operand_result
5484 parse_neon_alignment (char **str, int i)
5485 {
5486 char *p = *str;
5487 expressionS exp;
5488
5489 my_get_expression (&exp, &p, GE_NO_PREFIX);
5490
5491 if (exp.X_op != O_constant)
5492 {
5493 inst.error = _("alignment must be constant");
5494 return PARSE_OPERAND_FAIL;
5495 }
5496
5497 inst.operands[i].imm = exp.X_add_number << 8;
5498 inst.operands[i].immisalign = 1;
5499 /* Alignments are not pre-indexes. */
5500 inst.operands[i].preind = 0;
5501
5502 *str = p;
5503 return PARSE_OPERAND_SUCCESS;
5504 }
5505
5506 /* Parse all forms of an ARM address expression. Information is written
5507 to inst.operands[i] and/or inst.relocs[0].
5508
5509 Preindexed addressing (.preind=1):
5510
5511 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5512 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5513 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5514 .shift_kind=shift .relocs[0].exp=shift_imm
5515
5516 These three may have a trailing ! which causes .writeback to be set also.
5517
5518 Postindexed addressing (.postind=1, .writeback=1):
5519
5520 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5521 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5522 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5523 .shift_kind=shift .relocs[0].exp=shift_imm
5524
5525 Unindexed addressing (.preind=0, .postind=0):
5526
5527 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5528
5529 Other:
5530
5531 [Rn]{!} shorthand for [Rn,#0]{!}
5532 =immediate .isreg=0 .relocs[0].exp=immediate
5533 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5534
5535 It is the caller's responsibility to check for addressing modes not
5536 supported by the instruction, and to set inst.relocs[0].type. */
5537
5538 static parse_operand_result
5539 parse_address_main (char **str, int i, int group_relocations,
5540 group_reloc_type group_type)
5541 {
5542 char *p = *str;
5543 int reg;
5544
5545 if (skip_past_char (&p, '[') == FAIL)
5546 {
5547 if (skip_past_char (&p, '=') == FAIL)
5548 {
5549 /* Bare address - translate to PC-relative offset. */
5550 inst.relocs[0].pc_rel = 1;
5551 inst.operands[i].reg = REG_PC;
5552 inst.operands[i].isreg = 1;
5553 inst.operands[i].preind = 1;
5554
5555 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5556 return PARSE_OPERAND_FAIL;
5557 }
5558 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5559 /*allow_symbol_p=*/TRUE))
5560 return PARSE_OPERAND_FAIL;
5561
5562 *str = p;
5563 return PARSE_OPERAND_SUCCESS;
5564 }
5565
5566 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5567 skip_whitespace (p);
5568
5569 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5570 {
5571 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5572 return PARSE_OPERAND_FAIL;
5573 }
5574 inst.operands[i].reg = reg;
5575 inst.operands[i].isreg = 1;
5576
5577 if (skip_past_comma (&p) == SUCCESS)
5578 {
5579 inst.operands[i].preind = 1;
5580
5581 if (*p == '+') p++;
5582 else if (*p == '-') p++, inst.operands[i].negative = 1;
5583
5584 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5585 {
5586 inst.operands[i].imm = reg;
5587 inst.operands[i].immisreg = 1;
5588
5589 if (skip_past_comma (&p) == SUCCESS)
5590 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5591 return PARSE_OPERAND_FAIL;
5592 }
5593 else if (skip_past_char (&p, ':') == SUCCESS)
5594 {
5595 /* FIXME: '@' should be used here, but it's filtered out by generic
5596 code before we get to see it here. This may be subject to
5597 change. */
5598 parse_operand_result result = parse_neon_alignment (&p, i);
5599
5600 if (result != PARSE_OPERAND_SUCCESS)
5601 return result;
5602 }
5603 else
5604 {
5605 if (inst.operands[i].negative)
5606 {
5607 inst.operands[i].negative = 0;
5608 p--;
5609 }
5610
5611 if (group_relocations
5612 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5613 {
5614 struct group_reloc_table_entry *entry;
5615
5616 /* Skip over the #: or : sequence. */
5617 if (*p == '#')
5618 p += 2;
5619 else
5620 p++;
5621
5622 /* Try to parse a group relocation. Anything else is an
5623 error. */
5624 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5625 {
5626 inst.error = _("unknown group relocation");
5627 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5628 }
5629
5630 /* We now have the group relocation table entry corresponding to
5631 the name in the assembler source. Next, we parse the
5632 expression. */
5633 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5634 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5635
5636 /* Record the relocation type. */
5637 switch (group_type)
5638 {
5639 case GROUP_LDR:
5640 inst.relocs[0].type
5641 = (bfd_reloc_code_real_type) entry->ldr_code;
5642 break;
5643
5644 case GROUP_LDRS:
5645 inst.relocs[0].type
5646 = (bfd_reloc_code_real_type) entry->ldrs_code;
5647 break;
5648
5649 case GROUP_LDC:
5650 inst.relocs[0].type
5651 = (bfd_reloc_code_real_type) entry->ldc_code;
5652 break;
5653
5654 default:
5655 gas_assert (0);
5656 }
5657
5658 if (inst.relocs[0].type == 0)
5659 {
5660 inst.error = _("this group relocation is not allowed on this instruction");
5661 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5662 }
5663 }
5664 else
5665 {
5666 char *q = p;
5667
5668 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5669 return PARSE_OPERAND_FAIL;
5670 /* If the offset is 0, find out if it's a +0 or -0. */
5671 if (inst.relocs[0].exp.X_op == O_constant
5672 && inst.relocs[0].exp.X_add_number == 0)
5673 {
5674 skip_whitespace (q);
5675 if (*q == '#')
5676 {
5677 q++;
5678 skip_whitespace (q);
5679 }
5680 if (*q == '-')
5681 inst.operands[i].negative = 1;
5682 }
5683 }
5684 }
5685 }
5686 else if (skip_past_char (&p, ':') == SUCCESS)
5687 {
5688 /* FIXME: '@' should be used here, but it's filtered out by generic code
5689 before we get to see it here. This may be subject to change. */
5690 parse_operand_result result = parse_neon_alignment (&p, i);
5691
5692 if (result != PARSE_OPERAND_SUCCESS)
5693 return result;
5694 }
5695
5696 if (skip_past_char (&p, ']') == FAIL)
5697 {
5698 inst.error = _("']' expected");
5699 return PARSE_OPERAND_FAIL;
5700 }
5701
5702 if (skip_past_char (&p, '!') == SUCCESS)
5703 inst.operands[i].writeback = 1;
5704
5705 else if (skip_past_comma (&p) == SUCCESS)
5706 {
5707 if (skip_past_char (&p, '{') == SUCCESS)
5708 {
5709 /* [Rn], {expr} - unindexed, with option */
5710 if (parse_immediate (&p, &inst.operands[i].imm,
5711 0, 255, TRUE) == FAIL)
5712 return PARSE_OPERAND_FAIL;
5713
5714 if (skip_past_char (&p, '}') == FAIL)
5715 {
5716 inst.error = _("'}' expected at end of 'option' field");
5717 return PARSE_OPERAND_FAIL;
5718 }
5719 if (inst.operands[i].preind)
5720 {
5721 inst.error = _("cannot combine index with option");
5722 return PARSE_OPERAND_FAIL;
5723 }
5724 *str = p;
5725 return PARSE_OPERAND_SUCCESS;
5726 }
5727 else
5728 {
5729 inst.operands[i].postind = 1;
5730 inst.operands[i].writeback = 1;
5731
5732 if (inst.operands[i].preind)
5733 {
5734 inst.error = _("cannot combine pre- and post-indexing");
5735 return PARSE_OPERAND_FAIL;
5736 }
5737
5738 if (*p == '+') p++;
5739 else if (*p == '-') p++, inst.operands[i].negative = 1;
5740
5741 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5742 {
5743 /* We might be using the immediate for alignment already. If we
5744 are, OR the register number into the low-order bits. */
5745 if (inst.operands[i].immisalign)
5746 inst.operands[i].imm |= reg;
5747 else
5748 inst.operands[i].imm = reg;
5749 inst.operands[i].immisreg = 1;
5750
5751 if (skip_past_comma (&p) == SUCCESS)
5752 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5753 return PARSE_OPERAND_FAIL;
5754 }
5755 else
5756 {
5757 char *q = p;
5758
5759 if (inst.operands[i].negative)
5760 {
5761 inst.operands[i].negative = 0;
5762 p--;
5763 }
5764 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5765 return PARSE_OPERAND_FAIL;
5766 /* If the offset is 0, find out if it's a +0 or -0. */
5767 if (inst.relocs[0].exp.X_op == O_constant
5768 && inst.relocs[0].exp.X_add_number == 0)
5769 {
5770 skip_whitespace (q);
5771 if (*q == '#')
5772 {
5773 q++;
5774 skip_whitespace (q);
5775 }
5776 if (*q == '-')
5777 inst.operands[i].negative = 1;
5778 }
5779 }
5780 }
5781 }
5782
5783 /* If at this point neither .preind nor .postind is set, we have a
5784 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5785 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5786 {
5787 inst.operands[i].preind = 1;
5788 inst.relocs[0].exp.X_op = O_constant;
5789 inst.relocs[0].exp.X_add_number = 0;
5790 }
5791 *str = p;
5792 return PARSE_OPERAND_SUCCESS;
5793 }
5794
5795 static int
5796 parse_address (char **str, int i)
5797 {
5798 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5799 ? SUCCESS : FAIL;
5800 }
5801
5802 static parse_operand_result
5803 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5804 {
5805 return parse_address_main (str, i, 1, type);
5806 }
5807
5808 /* Parse an operand for a MOVW or MOVT instruction. */
5809 static int
5810 parse_half (char **str)
5811 {
5812 char * p;
5813
5814 p = *str;
5815 skip_past_char (&p, '#');
5816 if (strncasecmp (p, ":lower16:", 9) == 0)
5817 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
5818 else if (strncasecmp (p, ":upper16:", 9) == 0)
5819 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
5820
5821 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
5822 {
5823 p += 9;
5824 skip_whitespace (p);
5825 }
5826
5827 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5828 return FAIL;
5829
5830 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
5831 {
5832 if (inst.relocs[0].exp.X_op != O_constant)
5833 {
5834 inst.error = _("constant expression expected");
5835 return FAIL;
5836 }
5837 if (inst.relocs[0].exp.X_add_number < 0
5838 || inst.relocs[0].exp.X_add_number > 0xffff)
5839 {
5840 inst.error = _("immediate value out of range");
5841 return FAIL;
5842 }
5843 }
5844 *str = p;
5845 return SUCCESS;
5846 }
5847
5848 /* Miscellaneous. */
5849
5850 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5851 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5852 static int
5853 parse_psr (char **str, bfd_boolean lhs)
5854 {
5855 char *p;
5856 unsigned long psr_field;
5857 const struct asm_psr *psr;
5858 char *start;
5859 bfd_boolean is_apsr = FALSE;
5860 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5861
5862 /* PR gas/12698: If the user has specified -march=all then m_profile will
5863 be TRUE, but we want to ignore it in this case as we are building for any
5864 CPU type, including non-m variants. */
5865 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
5866 m_profile = FALSE;
5867
5868 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5869 feature for ease of use and backwards compatibility. */
5870 p = *str;
5871 if (strncasecmp (p, "SPSR", 4) == 0)
5872 {
5873 if (m_profile)
5874 goto unsupported_psr;
5875
5876 psr_field = SPSR_BIT;
5877 }
5878 else if (strncasecmp (p, "CPSR", 4) == 0)
5879 {
5880 if (m_profile)
5881 goto unsupported_psr;
5882
5883 psr_field = 0;
5884 }
5885 else if (strncasecmp (p, "APSR", 4) == 0)
5886 {
5887 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5888 and ARMv7-R architecture CPUs. */
5889 is_apsr = TRUE;
5890 psr_field = 0;
5891 }
5892 else if (m_profile)
5893 {
5894 start = p;
5895 do
5896 p++;
5897 while (ISALNUM (*p) || *p == '_');
5898
5899 if (strncasecmp (start, "iapsr", 5) == 0
5900 || strncasecmp (start, "eapsr", 5) == 0
5901 || strncasecmp (start, "xpsr", 4) == 0
5902 || strncasecmp (start, "psr", 3) == 0)
5903 p = start + strcspn (start, "rR") + 1;
5904
5905 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5906 p - start);
5907
5908 if (!psr)
5909 return FAIL;
5910
5911 /* If APSR is being written, a bitfield may be specified. Note that
5912 APSR itself is handled above. */
5913 if (psr->field <= 3)
5914 {
5915 psr_field = psr->field;
5916 is_apsr = TRUE;
5917 goto check_suffix;
5918 }
5919
5920 *str = p;
5921 /* M-profile MSR instructions have the mask field set to "10", except
5922 *PSR variants which modify APSR, which may use a different mask (and
5923 have been handled already). Do that by setting the PSR_f field
5924 here. */
5925 return psr->field | (lhs ? PSR_f : 0);
5926 }
5927 else
5928 goto unsupported_psr;
5929
5930 p += 4;
5931 check_suffix:
5932 if (*p == '_')
5933 {
5934 /* A suffix follows. */
5935 p++;
5936 start = p;
5937
5938 do
5939 p++;
5940 while (ISALNUM (*p) || *p == '_');
5941
5942 if (is_apsr)
5943 {
5944 /* APSR uses a notation for bits, rather than fields. */
5945 unsigned int nzcvq_bits = 0;
5946 unsigned int g_bit = 0;
5947 char *bit;
5948
5949 for (bit = start; bit != p; bit++)
5950 {
5951 switch (TOLOWER (*bit))
5952 {
5953 case 'n':
5954 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5955 break;
5956
5957 case 'z':
5958 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5959 break;
5960
5961 case 'c':
5962 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5963 break;
5964
5965 case 'v':
5966 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5967 break;
5968
5969 case 'q':
5970 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5971 break;
5972
5973 case 'g':
5974 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5975 break;
5976
5977 default:
5978 inst.error = _("unexpected bit specified after APSR");
5979 return FAIL;
5980 }
5981 }
5982
5983 if (nzcvq_bits == 0x1f)
5984 psr_field |= PSR_f;
5985
5986 if (g_bit == 0x1)
5987 {
5988 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5989 {
5990 inst.error = _("selected processor does not "
5991 "support DSP extension");
5992 return FAIL;
5993 }
5994
5995 psr_field |= PSR_s;
5996 }
5997
5998 if ((nzcvq_bits & 0x20) != 0
5999 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6000 || (g_bit & 0x2) != 0)
6001 {
6002 inst.error = _("bad bitmask specified after APSR");
6003 return FAIL;
6004 }
6005 }
6006 else
6007 {
6008 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6009 p - start);
6010 if (!psr)
6011 goto error;
6012
6013 psr_field |= psr->field;
6014 }
6015 }
6016 else
6017 {
6018 if (ISALNUM (*p))
6019 goto error; /* Garbage after "[CS]PSR". */
6020
6021 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6022 is deprecated, but allow it anyway. */
6023 if (is_apsr && lhs)
6024 {
6025 psr_field |= PSR_f;
6026 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6027 "deprecated"));
6028 }
6029 else if (!m_profile)
6030 /* These bits are never right for M-profile devices: don't set them
6031 (only code paths which read/write APSR reach here). */
6032 psr_field |= (PSR_c | PSR_f);
6033 }
6034 *str = p;
6035 return psr_field;
6036
6037 unsupported_psr:
6038 inst.error = _("selected processor does not support requested special "
6039 "purpose register");
6040 return FAIL;
6041
6042 error:
6043 inst.error = _("flag for {c}psr instruction expected");
6044 return FAIL;
6045 }
6046
6047 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6048 value suitable for splatting into the AIF field of the instruction. */
6049
6050 static int
6051 parse_cps_flags (char **str)
6052 {
6053 int val = 0;
6054 int saw_a_flag = 0;
6055 char *s = *str;
6056
6057 for (;;)
6058 switch (*s++)
6059 {
6060 case '\0': case ',':
6061 goto done;
6062
6063 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6064 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6065 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6066
6067 default:
6068 inst.error = _("unrecognized CPS flag");
6069 return FAIL;
6070 }
6071
6072 done:
6073 if (saw_a_flag == 0)
6074 {
6075 inst.error = _("missing CPS flags");
6076 return FAIL;
6077 }
6078
6079 *str = s - 1;
6080 return val;
6081 }
6082
6083 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6084 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6085
6086 static int
6087 parse_endian_specifier (char **str)
6088 {
6089 int little_endian;
6090 char *s = *str;
6091
6092 if (strncasecmp (s, "BE", 2))
6093 little_endian = 0;
6094 else if (strncasecmp (s, "LE", 2))
6095 little_endian = 1;
6096 else
6097 {
6098 inst.error = _("valid endian specifiers are be or le");
6099 return FAIL;
6100 }
6101
6102 if (ISALNUM (s[2]) || s[2] == '_')
6103 {
6104 inst.error = _("valid endian specifiers are be or le");
6105 return FAIL;
6106 }
6107
6108 *str = s + 2;
6109 return little_endian;
6110 }
6111
6112 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6113 value suitable for poking into the rotate field of an sxt or sxta
6114 instruction, or FAIL on error. */
6115
6116 static int
6117 parse_ror (char **str)
6118 {
6119 int rot;
6120 char *s = *str;
6121
6122 if (strncasecmp (s, "ROR", 3) == 0)
6123 s += 3;
6124 else
6125 {
6126 inst.error = _("missing rotation field after comma");
6127 return FAIL;
6128 }
6129
6130 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6131 return FAIL;
6132
6133 switch (rot)
6134 {
6135 case 0: *str = s; return 0x0;
6136 case 8: *str = s; return 0x1;
6137 case 16: *str = s; return 0x2;
6138 case 24: *str = s; return 0x3;
6139
6140 default:
6141 inst.error = _("rotation can only be 0, 8, 16, or 24");
6142 return FAIL;
6143 }
6144 }
6145
6146 /* Parse a conditional code (from conds[] below). The value returned is in the
6147 range 0 .. 14, or FAIL. */
6148 static int
6149 parse_cond (char **str)
6150 {
6151 char *q;
6152 const struct asm_cond *c;
6153 int n;
6154 /* Condition codes are always 2 characters, so matching up to
6155 3 characters is sufficient. */
6156 char cond[3];
6157
6158 q = *str;
6159 n = 0;
6160 while (ISALPHA (*q) && n < 3)
6161 {
6162 cond[n] = TOLOWER (*q);
6163 q++;
6164 n++;
6165 }
6166
6167 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6168 if (!c)
6169 {
6170 inst.error = _("condition required");
6171 return FAIL;
6172 }
6173
6174 *str = q;
6175 return c->value;
6176 }
6177
6178 /* Record a use of the given feature. */
6179 static void
6180 record_feature_use (const arm_feature_set *feature)
6181 {
6182 if (thumb_mode)
6183 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
6184 else
6185 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
6186 }
6187
6188 /* If the given feature is currently allowed, mark it as used and return TRUE.
6189 Return FALSE otherwise. */
6190 static bfd_boolean
6191 mark_feature_used (const arm_feature_set *feature)
6192 {
6193 /* Ensure the option is currently allowed. */
6194 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
6195 return FALSE;
6196
6197 /* Add the appropriate architecture feature for the barrier option used. */
6198 record_feature_use (feature);
6199
6200 return TRUE;
6201 }
6202
6203 /* Parse an option for a barrier instruction. Returns the encoding for the
6204 option, or FAIL. */
6205 static int
6206 parse_barrier (char **str)
6207 {
6208 char *p, *q;
6209 const struct asm_barrier_opt *o;
6210
6211 p = q = *str;
6212 while (ISALPHA (*q))
6213 q++;
6214
6215 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6216 q - p);
6217 if (!o)
6218 return FAIL;
6219
6220 if (!mark_feature_used (&o->arch))
6221 return FAIL;
6222
6223 *str = q;
6224 return o->value;
6225 }
6226
6227 /* Parse the operands of a table branch instruction. Similar to a memory
6228 operand. */
6229 static int
6230 parse_tb (char **str)
6231 {
6232 char * p = *str;
6233 int reg;
6234
6235 if (skip_past_char (&p, '[') == FAIL)
6236 {
6237 inst.error = _("'[' expected");
6238 return FAIL;
6239 }
6240
6241 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6242 {
6243 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6244 return FAIL;
6245 }
6246 inst.operands[0].reg = reg;
6247
6248 if (skip_past_comma (&p) == FAIL)
6249 {
6250 inst.error = _("',' expected");
6251 return FAIL;
6252 }
6253
6254 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6255 {
6256 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6257 return FAIL;
6258 }
6259 inst.operands[0].imm = reg;
6260
6261 if (skip_past_comma (&p) == SUCCESS)
6262 {
6263 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6264 return FAIL;
6265 if (inst.relocs[0].exp.X_add_number != 1)
6266 {
6267 inst.error = _("invalid shift");
6268 return FAIL;
6269 }
6270 inst.operands[0].shifted = 1;
6271 }
6272
6273 if (skip_past_char (&p, ']') == FAIL)
6274 {
6275 inst.error = _("']' expected");
6276 return FAIL;
6277 }
6278 *str = p;
6279 return SUCCESS;
6280 }
6281
6282 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6283 information on the types the operands can take and how they are encoded.
6284 Up to four operands may be read; this function handles setting the
6285 ".present" field for each read operand itself.
6286 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6287 else returns FAIL. */
6288
6289 static int
6290 parse_neon_mov (char **str, int *which_operand)
6291 {
6292 int i = *which_operand, val;
6293 enum arm_reg_type rtype;
6294 char *ptr = *str;
6295 struct neon_type_el optype;
6296
6297 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6298 {
6299 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6300 inst.operands[i].reg = val;
6301 inst.operands[i].isscalar = 1;
6302 inst.operands[i].vectype = optype;
6303 inst.operands[i++].present = 1;
6304
6305 if (skip_past_comma (&ptr) == FAIL)
6306 goto wanted_comma;
6307
6308 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6309 goto wanted_arm;
6310
6311 inst.operands[i].reg = val;
6312 inst.operands[i].isreg = 1;
6313 inst.operands[i].present = 1;
6314 }
6315 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6316 != FAIL)
6317 {
6318 /* Cases 0, 1, 2, 3, 5 (D only). */
6319 if (skip_past_comma (&ptr) == FAIL)
6320 goto wanted_comma;
6321
6322 inst.operands[i].reg = val;
6323 inst.operands[i].isreg = 1;
6324 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6325 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6326 inst.operands[i].isvec = 1;
6327 inst.operands[i].vectype = optype;
6328 inst.operands[i++].present = 1;
6329
6330 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6331 {
6332 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6333 Case 13: VMOV <Sd>, <Rm> */
6334 inst.operands[i].reg = val;
6335 inst.operands[i].isreg = 1;
6336 inst.operands[i].present = 1;
6337
6338 if (rtype == REG_TYPE_NQ)
6339 {
6340 first_error (_("can't use Neon quad register here"));
6341 return FAIL;
6342 }
6343 else if (rtype != REG_TYPE_VFS)
6344 {
6345 i++;
6346 if (skip_past_comma (&ptr) == FAIL)
6347 goto wanted_comma;
6348 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6349 goto wanted_arm;
6350 inst.operands[i].reg = val;
6351 inst.operands[i].isreg = 1;
6352 inst.operands[i].present = 1;
6353 }
6354 }
6355 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6356 &optype)) != FAIL)
6357 {
6358 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6359 Case 1: VMOV<c><q> <Dd>, <Dm>
6360 Case 8: VMOV.F32 <Sd>, <Sm>
6361 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6362
6363 inst.operands[i].reg = val;
6364 inst.operands[i].isreg = 1;
6365 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6366 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6367 inst.operands[i].isvec = 1;
6368 inst.operands[i].vectype = optype;
6369 inst.operands[i].present = 1;
6370
6371 if (skip_past_comma (&ptr) == SUCCESS)
6372 {
6373 /* Case 15. */
6374 i++;
6375
6376 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6377 goto wanted_arm;
6378
6379 inst.operands[i].reg = val;
6380 inst.operands[i].isreg = 1;
6381 inst.operands[i++].present = 1;
6382
6383 if (skip_past_comma (&ptr) == FAIL)
6384 goto wanted_comma;
6385
6386 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6387 goto wanted_arm;
6388
6389 inst.operands[i].reg = val;
6390 inst.operands[i].isreg = 1;
6391 inst.operands[i].present = 1;
6392 }
6393 }
6394 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6395 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6396 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6397 Case 10: VMOV.F32 <Sd>, #<imm>
6398 Case 11: VMOV.F64 <Dd>, #<imm> */
6399 inst.operands[i].immisfloat = 1;
6400 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6401 == SUCCESS)
6402 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6403 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6404 ;
6405 else
6406 {
6407 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6408 return FAIL;
6409 }
6410 }
6411 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6412 {
6413 /* Cases 6, 7. */
6414 inst.operands[i].reg = val;
6415 inst.operands[i].isreg = 1;
6416 inst.operands[i++].present = 1;
6417
6418 if (skip_past_comma (&ptr) == FAIL)
6419 goto wanted_comma;
6420
6421 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6422 {
6423 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6424 inst.operands[i].reg = val;
6425 inst.operands[i].isscalar = 1;
6426 inst.operands[i].present = 1;
6427 inst.operands[i].vectype = optype;
6428 }
6429 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6430 {
6431 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6432 inst.operands[i].reg = val;
6433 inst.operands[i].isreg = 1;
6434 inst.operands[i++].present = 1;
6435
6436 if (skip_past_comma (&ptr) == FAIL)
6437 goto wanted_comma;
6438
6439 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6440 == FAIL)
6441 {
6442 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6443 return FAIL;
6444 }
6445
6446 inst.operands[i].reg = val;
6447 inst.operands[i].isreg = 1;
6448 inst.operands[i].isvec = 1;
6449 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6450 inst.operands[i].vectype = optype;
6451 inst.operands[i].present = 1;
6452
6453 if (rtype == REG_TYPE_VFS)
6454 {
6455 /* Case 14. */
6456 i++;
6457 if (skip_past_comma (&ptr) == FAIL)
6458 goto wanted_comma;
6459 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6460 &optype)) == FAIL)
6461 {
6462 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6463 return FAIL;
6464 }
6465 inst.operands[i].reg = val;
6466 inst.operands[i].isreg = 1;
6467 inst.operands[i].isvec = 1;
6468 inst.operands[i].issingle = 1;
6469 inst.operands[i].vectype = optype;
6470 inst.operands[i].present = 1;
6471 }
6472 }
6473 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6474 != FAIL)
6475 {
6476 /* Case 13. */
6477 inst.operands[i].reg = val;
6478 inst.operands[i].isreg = 1;
6479 inst.operands[i].isvec = 1;
6480 inst.operands[i].issingle = 1;
6481 inst.operands[i].vectype = optype;
6482 inst.operands[i].present = 1;
6483 }
6484 }
6485 else
6486 {
6487 first_error (_("parse error"));
6488 return FAIL;
6489 }
6490
6491 /* Successfully parsed the operands. Update args. */
6492 *which_operand = i;
6493 *str = ptr;
6494 return SUCCESS;
6495
6496 wanted_comma:
6497 first_error (_("expected comma"));
6498 return FAIL;
6499
6500 wanted_arm:
6501 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6502 return FAIL;
6503 }
6504
6505 /* Use this macro when the operand constraints are different
6506 for ARM and THUMB (e.g. ldrd). */
6507 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6508 ((arm_operand) | ((thumb_operand) << 16))
6509
6510 /* Matcher codes for parse_operands. */
6511 enum operand_parse_code
6512 {
6513 OP_stop, /* end of line */
6514
6515 OP_RR, /* ARM register */
6516 OP_RRnpc, /* ARM register, not r15 */
6517 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6518 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6519 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6520 optional trailing ! */
6521 OP_RRw, /* ARM register, not r15, optional trailing ! */
6522 OP_RCP, /* Coprocessor number */
6523 OP_RCN, /* Coprocessor register */
6524 OP_RF, /* FPA register */
6525 OP_RVS, /* VFP single precision register */
6526 OP_RVD, /* VFP double precision register (0..15) */
6527 OP_RND, /* Neon double precision register (0..31) */
6528 OP_RNQ, /* Neon quad precision register */
6529 OP_RVSD, /* VFP single or double precision register */
6530 OP_RNSD, /* Neon single or double precision register */
6531 OP_RNDQ, /* Neon double or quad precision register */
6532 OP_RNSDQ, /* Neon single, double or quad precision register */
6533 OP_RNSC, /* Neon scalar D[X] */
6534 OP_RVC, /* VFP control register */
6535 OP_RMF, /* Maverick F register */
6536 OP_RMD, /* Maverick D register */
6537 OP_RMFX, /* Maverick FX register */
6538 OP_RMDX, /* Maverick DX register */
6539 OP_RMAX, /* Maverick AX register */
6540 OP_RMDS, /* Maverick DSPSC register */
6541 OP_RIWR, /* iWMMXt wR register */
6542 OP_RIWC, /* iWMMXt wC register */
6543 OP_RIWG, /* iWMMXt wCG register */
6544 OP_RXA, /* XScale accumulator register */
6545
6546 OP_REGLST, /* ARM register list */
6547 OP_VRSLST, /* VFP single-precision register list */
6548 OP_VRDLST, /* VFP double-precision register list */
6549 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6550 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6551 OP_NSTRLST, /* Neon element/structure list */
6552
6553 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6554 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6555 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6556 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6557 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6558 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6559 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6560 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6561 OP_VMOV, /* Neon VMOV operands. */
6562 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6563 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6564 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6565
6566 OP_I0, /* immediate zero */
6567 OP_I7, /* immediate value 0 .. 7 */
6568 OP_I15, /* 0 .. 15 */
6569 OP_I16, /* 1 .. 16 */
6570 OP_I16z, /* 0 .. 16 */
6571 OP_I31, /* 0 .. 31 */
6572 OP_I31w, /* 0 .. 31, optional trailing ! */
6573 OP_I32, /* 1 .. 32 */
6574 OP_I32z, /* 0 .. 32 */
6575 OP_I63, /* 0 .. 63 */
6576 OP_I63s, /* -64 .. 63 */
6577 OP_I64, /* 1 .. 64 */
6578 OP_I64z, /* 0 .. 64 */
6579 OP_I255, /* 0 .. 255 */
6580
6581 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6582 OP_I7b, /* 0 .. 7 */
6583 OP_I15b, /* 0 .. 15 */
6584 OP_I31b, /* 0 .. 31 */
6585
6586 OP_SH, /* shifter operand */
6587 OP_SHG, /* shifter operand with possible group relocation */
6588 OP_ADDR, /* Memory address expression (any mode) */
6589 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6590 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6591 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6592 OP_EXP, /* arbitrary expression */
6593 OP_EXPi, /* same, with optional immediate prefix */
6594 OP_EXPr, /* same, with optional relocation suffix */
6595 OP_EXPs, /* same, with optional non-first operand relocation suffix */
6596 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6597 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6598 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
6599
6600 OP_CPSF, /* CPS flags */
6601 OP_ENDI, /* Endianness specifier */
6602 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6603 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6604 OP_COND, /* conditional code */
6605 OP_TB, /* Table branch. */
6606
6607 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6608
6609 OP_RRnpc_I0, /* ARM register or literal 0 */
6610 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
6611 OP_RR_EXi, /* ARM register or expression with imm prefix */
6612 OP_RF_IF, /* FPA register or immediate */
6613 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6614 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6615
6616 /* Optional operands. */
6617 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6618 OP_oI31b, /* 0 .. 31 */
6619 OP_oI32b, /* 1 .. 32 */
6620 OP_oI32z, /* 0 .. 32 */
6621 OP_oIffffb, /* 0 .. 65535 */
6622 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6623
6624 OP_oRR, /* ARM register */
6625 OP_oRRnpc, /* ARM register, not the PC */
6626 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6627 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6628 OP_oRND, /* Optional Neon double precision register */
6629 OP_oRNQ, /* Optional Neon quad precision register */
6630 OP_oRNDQ, /* Optional Neon double or quad precision register */
6631 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6632 OP_oSHll, /* LSL immediate */
6633 OP_oSHar, /* ASR immediate */
6634 OP_oSHllar, /* LSL or ASR immediate */
6635 OP_oROR, /* ROR 0/8/16/24 */
6636 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6637
6638 /* Some pre-defined mixed (ARM/THUMB) operands. */
6639 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6640 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6641 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6642
6643 OP_FIRST_OPTIONAL = OP_oI7b
6644 };
6645
6646 /* Generic instruction operand parser. This does no encoding and no
6647 semantic validation; it merely squirrels values away in the inst
6648 structure. Returns SUCCESS or FAIL depending on whether the
6649 specified grammar matched. */
6650 static int
6651 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6652 {
6653 unsigned const int *upat = pattern;
6654 char *backtrack_pos = 0;
6655 const char *backtrack_error = 0;
6656 int i, val = 0, backtrack_index = 0;
6657 enum arm_reg_type rtype;
6658 parse_operand_result result;
6659 unsigned int op_parse_code;
6660
6661 #define po_char_or_fail(chr) \
6662 do \
6663 { \
6664 if (skip_past_char (&str, chr) == FAIL) \
6665 goto bad_args; \
6666 } \
6667 while (0)
6668
6669 #define po_reg_or_fail(regtype) \
6670 do \
6671 { \
6672 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6673 & inst.operands[i].vectype); \
6674 if (val == FAIL) \
6675 { \
6676 first_error (_(reg_expected_msgs[regtype])); \
6677 goto failure; \
6678 } \
6679 inst.operands[i].reg = val; \
6680 inst.operands[i].isreg = 1; \
6681 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6682 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6683 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6684 || rtype == REG_TYPE_VFD \
6685 || rtype == REG_TYPE_NQ); \
6686 } \
6687 while (0)
6688
6689 #define po_reg_or_goto(regtype, label) \
6690 do \
6691 { \
6692 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6693 & inst.operands[i].vectype); \
6694 if (val == FAIL) \
6695 goto label; \
6696 \
6697 inst.operands[i].reg = val; \
6698 inst.operands[i].isreg = 1; \
6699 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6700 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6701 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6702 || rtype == REG_TYPE_VFD \
6703 || rtype == REG_TYPE_NQ); \
6704 } \
6705 while (0)
6706
6707 #define po_imm_or_fail(min, max, popt) \
6708 do \
6709 { \
6710 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6711 goto failure; \
6712 inst.operands[i].imm = val; \
6713 } \
6714 while (0)
6715
6716 #define po_scalar_or_goto(elsz, label) \
6717 do \
6718 { \
6719 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6720 if (val == FAIL) \
6721 goto label; \
6722 inst.operands[i].reg = val; \
6723 inst.operands[i].isscalar = 1; \
6724 } \
6725 while (0)
6726
6727 #define po_misc_or_fail(expr) \
6728 do \
6729 { \
6730 if (expr) \
6731 goto failure; \
6732 } \
6733 while (0)
6734
6735 #define po_misc_or_fail_no_backtrack(expr) \
6736 do \
6737 { \
6738 result = expr; \
6739 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6740 backtrack_pos = 0; \
6741 if (result != PARSE_OPERAND_SUCCESS) \
6742 goto failure; \
6743 } \
6744 while (0)
6745
6746 #define po_barrier_or_imm(str) \
6747 do \
6748 { \
6749 val = parse_barrier (&str); \
6750 if (val == FAIL && ! ISALPHA (*str)) \
6751 goto immediate; \
6752 if (val == FAIL \
6753 /* ISB can only take SY as an option. */ \
6754 || ((inst.instruction & 0xf0) == 0x60 \
6755 && val != 0xf)) \
6756 { \
6757 inst.error = _("invalid barrier type"); \
6758 backtrack_pos = 0; \
6759 goto failure; \
6760 } \
6761 } \
6762 while (0)
6763
6764 skip_whitespace (str);
6765
6766 for (i = 0; upat[i] != OP_stop; i++)
6767 {
6768 op_parse_code = upat[i];
6769 if (op_parse_code >= 1<<16)
6770 op_parse_code = thumb ? (op_parse_code >> 16)
6771 : (op_parse_code & ((1<<16)-1));
6772
6773 if (op_parse_code >= OP_FIRST_OPTIONAL)
6774 {
6775 /* Remember where we are in case we need to backtrack. */
6776 gas_assert (!backtrack_pos);
6777 backtrack_pos = str;
6778 backtrack_error = inst.error;
6779 backtrack_index = i;
6780 }
6781
6782 if (i > 0 && (i > 1 || inst.operands[0].present))
6783 po_char_or_fail (',');
6784
6785 switch (op_parse_code)
6786 {
6787 /* Registers */
6788 case OP_oRRnpc:
6789 case OP_oRRnpcsp:
6790 case OP_RRnpc:
6791 case OP_RRnpcsp:
6792 case OP_oRR:
6793 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6794 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6795 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6796 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6797 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6798 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6799 case OP_oRND:
6800 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6801 case OP_RVC:
6802 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6803 break;
6804 /* Also accept generic coprocessor regs for unknown registers. */
6805 coproc_reg:
6806 po_reg_or_fail (REG_TYPE_CN);
6807 break;
6808 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6809 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6810 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6811 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6812 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6813 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6814 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6815 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6816 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6817 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6818 case OP_oRNQ:
6819 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6820 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
6821 case OP_oRNDQ:
6822 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6823 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6824 case OP_oRNSDQ:
6825 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6826
6827 /* Neon scalar. Using an element size of 8 means that some invalid
6828 scalars are accepted here, so deal with those in later code. */
6829 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6830
6831 case OP_RNDQ_I0:
6832 {
6833 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6834 break;
6835 try_imm0:
6836 po_imm_or_fail (0, 0, TRUE);
6837 }
6838 break;
6839
6840 case OP_RVSD_I0:
6841 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6842 break;
6843
6844 case OP_RSVD_FI0:
6845 {
6846 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
6847 break;
6848 try_ifimm0:
6849 if (parse_ifimm_zero (&str))
6850 inst.operands[i].imm = 0;
6851 else
6852 {
6853 inst.error
6854 = _("only floating point zero is allowed as immediate value");
6855 goto failure;
6856 }
6857 }
6858 break;
6859
6860 case OP_RR_RNSC:
6861 {
6862 po_scalar_or_goto (8, try_rr);
6863 break;
6864 try_rr:
6865 po_reg_or_fail (REG_TYPE_RN);
6866 }
6867 break;
6868
6869 case OP_RNSDQ_RNSC:
6870 {
6871 po_scalar_or_goto (8, try_nsdq);
6872 break;
6873 try_nsdq:
6874 po_reg_or_fail (REG_TYPE_NSDQ);
6875 }
6876 break;
6877
6878 case OP_RNSD_RNSC:
6879 {
6880 po_scalar_or_goto (8, try_s_scalar);
6881 break;
6882 try_s_scalar:
6883 po_scalar_or_goto (4, try_nsd);
6884 break;
6885 try_nsd:
6886 po_reg_or_fail (REG_TYPE_NSD);
6887 }
6888 break;
6889
6890 case OP_RNDQ_RNSC:
6891 {
6892 po_scalar_or_goto (8, try_ndq);
6893 break;
6894 try_ndq:
6895 po_reg_or_fail (REG_TYPE_NDQ);
6896 }
6897 break;
6898
6899 case OP_RND_RNSC:
6900 {
6901 po_scalar_or_goto (8, try_vfd);
6902 break;
6903 try_vfd:
6904 po_reg_or_fail (REG_TYPE_VFD);
6905 }
6906 break;
6907
6908 case OP_VMOV:
6909 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6910 not careful then bad things might happen. */
6911 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6912 break;
6913
6914 case OP_RNDQ_Ibig:
6915 {
6916 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6917 break;
6918 try_immbig:
6919 /* There's a possibility of getting a 64-bit immediate here, so
6920 we need special handling. */
6921 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
6922 == FAIL)
6923 {
6924 inst.error = _("immediate value is out of range");
6925 goto failure;
6926 }
6927 }
6928 break;
6929
6930 case OP_RNDQ_I63b:
6931 {
6932 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6933 break;
6934 try_shimm:
6935 po_imm_or_fail (0, 63, TRUE);
6936 }
6937 break;
6938
6939 case OP_RRnpcb:
6940 po_char_or_fail ('[');
6941 po_reg_or_fail (REG_TYPE_RN);
6942 po_char_or_fail (']');
6943 break;
6944
6945 case OP_RRnpctw:
6946 case OP_RRw:
6947 case OP_oRRw:
6948 po_reg_or_fail (REG_TYPE_RN);
6949 if (skip_past_char (&str, '!') == SUCCESS)
6950 inst.operands[i].writeback = 1;
6951 break;
6952
6953 /* Immediates */
6954 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6955 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6956 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6957 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6958 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6959 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6960 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6961 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6962 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6963 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6964 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6965 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6966
6967 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6968 case OP_oI7b:
6969 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6970 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6971 case OP_oI31b:
6972 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6973 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6974 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6975 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6976
6977 /* Immediate variants */
6978 case OP_oI255c:
6979 po_char_or_fail ('{');
6980 po_imm_or_fail (0, 255, TRUE);
6981 po_char_or_fail ('}');
6982 break;
6983
6984 case OP_I31w:
6985 /* The expression parser chokes on a trailing !, so we have
6986 to find it first and zap it. */
6987 {
6988 char *s = str;
6989 while (*s && *s != ',')
6990 s++;
6991 if (s[-1] == '!')
6992 {
6993 s[-1] = '\0';
6994 inst.operands[i].writeback = 1;
6995 }
6996 po_imm_or_fail (0, 31, TRUE);
6997 if (str == s - 1)
6998 str = s;
6999 }
7000 break;
7001
7002 /* Expressions */
7003 case OP_EXPi: EXPi:
7004 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7005 GE_OPT_PREFIX));
7006 break;
7007
7008 case OP_EXP:
7009 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7010 GE_NO_PREFIX));
7011 break;
7012
7013 case OP_EXPr: EXPr:
7014 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7015 GE_NO_PREFIX));
7016 if (inst.relocs[0].exp.X_op == O_symbol)
7017 {
7018 val = parse_reloc (&str);
7019 if (val == -1)
7020 {
7021 inst.error = _("unrecognized relocation suffix");
7022 goto failure;
7023 }
7024 else if (val != BFD_RELOC_UNUSED)
7025 {
7026 inst.operands[i].imm = val;
7027 inst.operands[i].hasreloc = 1;
7028 }
7029 }
7030 break;
7031
7032 case OP_EXPs:
7033 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7034 GE_NO_PREFIX));
7035 if (inst.relocs[i].exp.X_op == O_symbol)
7036 {
7037 inst.operands[i].hasreloc = 1;
7038 }
7039 else if (inst.relocs[i].exp.X_op == O_constant)
7040 {
7041 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7042 inst.operands[i].hasreloc = 0;
7043 }
7044 break;
7045
7046 /* Operand for MOVW or MOVT. */
7047 case OP_HALF:
7048 po_misc_or_fail (parse_half (&str));
7049 break;
7050
7051 /* Register or expression. */
7052 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7053 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7054
7055 /* Register or immediate. */
7056 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7057 I0: po_imm_or_fail (0, 0, FALSE); break;
7058
7059 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7060 IF:
7061 if (!is_immediate_prefix (*str))
7062 goto bad_args;
7063 str++;
7064 val = parse_fpa_immediate (&str);
7065 if (val == FAIL)
7066 goto failure;
7067 /* FPA immediates are encoded as registers 8-15.
7068 parse_fpa_immediate has already applied the offset. */
7069 inst.operands[i].reg = val;
7070 inst.operands[i].isreg = 1;
7071 break;
7072
7073 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7074 I32z: po_imm_or_fail (0, 32, FALSE); break;
7075
7076 /* Two kinds of register. */
7077 case OP_RIWR_RIWC:
7078 {
7079 struct reg_entry *rege = arm_reg_parse_multi (&str);
7080 if (!rege
7081 || (rege->type != REG_TYPE_MMXWR
7082 && rege->type != REG_TYPE_MMXWC
7083 && rege->type != REG_TYPE_MMXWCG))
7084 {
7085 inst.error = _("iWMMXt data or control register expected");
7086 goto failure;
7087 }
7088 inst.operands[i].reg = rege->number;
7089 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7090 }
7091 break;
7092
7093 case OP_RIWC_RIWG:
7094 {
7095 struct reg_entry *rege = arm_reg_parse_multi (&str);
7096 if (!rege
7097 || (rege->type != REG_TYPE_MMXWC
7098 && rege->type != REG_TYPE_MMXWCG))
7099 {
7100 inst.error = _("iWMMXt control register expected");
7101 goto failure;
7102 }
7103 inst.operands[i].reg = rege->number;
7104 inst.operands[i].isreg = 1;
7105 }
7106 break;
7107
7108 /* Misc */
7109 case OP_CPSF: val = parse_cps_flags (&str); break;
7110 case OP_ENDI: val = parse_endian_specifier (&str); break;
7111 case OP_oROR: val = parse_ror (&str); break;
7112 case OP_COND: val = parse_cond (&str); break;
7113 case OP_oBARRIER_I15:
7114 po_barrier_or_imm (str); break;
7115 immediate:
7116 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7117 goto failure;
7118 break;
7119
7120 case OP_wPSR:
7121 case OP_rPSR:
7122 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7123 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7124 {
7125 inst.error = _("Banked registers are not available with this "
7126 "architecture.");
7127 goto failure;
7128 }
7129 break;
7130 try_psr:
7131 val = parse_psr (&str, op_parse_code == OP_wPSR);
7132 break;
7133
7134 case OP_APSR_RR:
7135 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7136 break;
7137 try_apsr:
7138 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7139 instruction). */
7140 if (strncasecmp (str, "APSR_", 5) == 0)
7141 {
7142 unsigned found = 0;
7143 str += 5;
7144 while (found < 15)
7145 switch (*str++)
7146 {
7147 case 'c': found = (found & 1) ? 16 : found | 1; break;
7148 case 'n': found = (found & 2) ? 16 : found | 2; break;
7149 case 'z': found = (found & 4) ? 16 : found | 4; break;
7150 case 'v': found = (found & 8) ? 16 : found | 8; break;
7151 default: found = 16;
7152 }
7153 if (found != 15)
7154 goto failure;
7155 inst.operands[i].isvec = 1;
7156 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7157 inst.operands[i].reg = REG_PC;
7158 }
7159 else
7160 goto failure;
7161 break;
7162
7163 case OP_TB:
7164 po_misc_or_fail (parse_tb (&str));
7165 break;
7166
7167 /* Register lists. */
7168 case OP_REGLST:
7169 val = parse_reg_list (&str);
7170 if (*str == '^')
7171 {
7172 inst.operands[i].writeback = 1;
7173 str++;
7174 }
7175 break;
7176
7177 case OP_VRSLST:
7178 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
7179 break;
7180
7181 case OP_VRDLST:
7182 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
7183 break;
7184
7185 case OP_VRSDLST:
7186 /* Allow Q registers too. */
7187 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7188 REGLIST_NEON_D);
7189 if (val == FAIL)
7190 {
7191 inst.error = NULL;
7192 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7193 REGLIST_VFP_S);
7194 inst.operands[i].issingle = 1;
7195 }
7196 break;
7197
7198 case OP_NRDLST:
7199 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7200 REGLIST_NEON_D);
7201 break;
7202
7203 case OP_NSTRLST:
7204 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7205 &inst.operands[i].vectype);
7206 break;
7207
7208 /* Addressing modes */
7209 case OP_ADDR:
7210 po_misc_or_fail (parse_address (&str, i));
7211 break;
7212
7213 case OP_ADDRGLDR:
7214 po_misc_or_fail_no_backtrack (
7215 parse_address_group_reloc (&str, i, GROUP_LDR));
7216 break;
7217
7218 case OP_ADDRGLDRS:
7219 po_misc_or_fail_no_backtrack (
7220 parse_address_group_reloc (&str, i, GROUP_LDRS));
7221 break;
7222
7223 case OP_ADDRGLDC:
7224 po_misc_or_fail_no_backtrack (
7225 parse_address_group_reloc (&str, i, GROUP_LDC));
7226 break;
7227
7228 case OP_SH:
7229 po_misc_or_fail (parse_shifter_operand (&str, i));
7230 break;
7231
7232 case OP_SHG:
7233 po_misc_or_fail_no_backtrack (
7234 parse_shifter_operand_group_reloc (&str, i));
7235 break;
7236
7237 case OP_oSHll:
7238 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7239 break;
7240
7241 case OP_oSHar:
7242 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7243 break;
7244
7245 case OP_oSHllar:
7246 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7247 break;
7248
7249 default:
7250 as_fatal (_("unhandled operand code %d"), op_parse_code);
7251 }
7252
7253 /* Various value-based sanity checks and shared operations. We
7254 do not signal immediate failures for the register constraints;
7255 this allows a syntax error to take precedence. */
7256 switch (op_parse_code)
7257 {
7258 case OP_oRRnpc:
7259 case OP_RRnpc:
7260 case OP_RRnpcb:
7261 case OP_RRw:
7262 case OP_oRRw:
7263 case OP_RRnpc_I0:
7264 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7265 inst.error = BAD_PC;
7266 break;
7267
7268 case OP_oRRnpcsp:
7269 case OP_RRnpcsp:
7270 if (inst.operands[i].isreg)
7271 {
7272 if (inst.operands[i].reg == REG_PC)
7273 inst.error = BAD_PC;
7274 else if (inst.operands[i].reg == REG_SP
7275 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7276 relaxed since ARMv8-A. */
7277 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7278 {
7279 gas_assert (thumb);
7280 inst.error = BAD_SP;
7281 }
7282 }
7283 break;
7284
7285 case OP_RRnpctw:
7286 if (inst.operands[i].isreg
7287 && inst.operands[i].reg == REG_PC
7288 && (inst.operands[i].writeback || thumb))
7289 inst.error = BAD_PC;
7290 break;
7291
7292 case OP_CPSF:
7293 case OP_ENDI:
7294 case OP_oROR:
7295 case OP_wPSR:
7296 case OP_rPSR:
7297 case OP_COND:
7298 case OP_oBARRIER_I15:
7299 case OP_REGLST:
7300 case OP_VRSLST:
7301 case OP_VRDLST:
7302 case OP_VRSDLST:
7303 case OP_NRDLST:
7304 case OP_NSTRLST:
7305 if (val == FAIL)
7306 goto failure;
7307 inst.operands[i].imm = val;
7308 break;
7309
7310 default:
7311 break;
7312 }
7313
7314 /* If we get here, this operand was successfully parsed. */
7315 inst.operands[i].present = 1;
7316 continue;
7317
7318 bad_args:
7319 inst.error = BAD_ARGS;
7320
7321 failure:
7322 if (!backtrack_pos)
7323 {
7324 /* The parse routine should already have set inst.error, but set a
7325 default here just in case. */
7326 if (!inst.error)
7327 inst.error = _("syntax error");
7328 return FAIL;
7329 }
7330
7331 /* Do not backtrack over a trailing optional argument that
7332 absorbed some text. We will only fail again, with the
7333 'garbage following instruction' error message, which is
7334 probably less helpful than the current one. */
7335 if (backtrack_index == i && backtrack_pos != str
7336 && upat[i+1] == OP_stop)
7337 {
7338 if (!inst.error)
7339 inst.error = _("syntax error");
7340 return FAIL;
7341 }
7342
7343 /* Try again, skipping the optional argument at backtrack_pos. */
7344 str = backtrack_pos;
7345 inst.error = backtrack_error;
7346 inst.operands[backtrack_index].present = 0;
7347 i = backtrack_index;
7348 backtrack_pos = 0;
7349 }
7350
7351 /* Check that we have parsed all the arguments. */
7352 if (*str != '\0' && !inst.error)
7353 inst.error = _("garbage following instruction");
7354
7355 return inst.error ? FAIL : SUCCESS;
7356 }
7357
7358 #undef po_char_or_fail
7359 #undef po_reg_or_fail
7360 #undef po_reg_or_goto
7361 #undef po_imm_or_fail
7362 #undef po_scalar_or_fail
7363 #undef po_barrier_or_imm
7364
7365 /* Shorthand macro for instruction encoding functions issuing errors. */
7366 #define constraint(expr, err) \
7367 do \
7368 { \
7369 if (expr) \
7370 { \
7371 inst.error = err; \
7372 return; \
7373 } \
7374 } \
7375 while (0)
7376
7377 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7378 instructions are unpredictable if these registers are used. This
7379 is the BadReg predicate in ARM's Thumb-2 documentation.
7380
7381 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7382 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7383 #define reject_bad_reg(reg) \
7384 do \
7385 if (reg == REG_PC) \
7386 { \
7387 inst.error = BAD_PC; \
7388 return; \
7389 } \
7390 else if (reg == REG_SP \
7391 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7392 { \
7393 inst.error = BAD_SP; \
7394 return; \
7395 } \
7396 while (0)
7397
7398 /* If REG is R13 (the stack pointer), warn that its use is
7399 deprecated. */
7400 #define warn_deprecated_sp(reg) \
7401 do \
7402 if (warn_on_deprecated && reg == REG_SP) \
7403 as_tsktsk (_("use of r13 is deprecated")); \
7404 while (0)
7405
7406 /* Functions for operand encoding. ARM, then Thumb. */
7407
7408 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7409
7410 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7411
7412 The only binary encoding difference is the Coprocessor number. Coprocessor
7413 9 is used for half-precision calculations or conversions. The format of the
7414 instruction is the same as the equivalent Coprocessor 10 instruction that
7415 exists for Single-Precision operation. */
7416
7417 static void
7418 do_scalar_fp16_v82_encode (void)
7419 {
7420 if (inst.cond != COND_ALWAYS)
7421 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7422 " the behaviour is UNPREDICTABLE"));
7423 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7424 _(BAD_FP16));
7425
7426 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7427 mark_feature_used (&arm_ext_fp16);
7428 }
7429
7430 /* If VAL can be encoded in the immediate field of an ARM instruction,
7431 return the encoded form. Otherwise, return FAIL. */
7432
7433 static unsigned int
7434 encode_arm_immediate (unsigned int val)
7435 {
7436 unsigned int a, i;
7437
7438 if (val <= 0xff)
7439 return val;
7440
7441 for (i = 2; i < 32; i += 2)
7442 if ((a = rotate_left (val, i)) <= 0xff)
7443 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7444
7445 return FAIL;
7446 }
7447
7448 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7449 return the encoded form. Otherwise, return FAIL. */
7450 static unsigned int
7451 encode_thumb32_immediate (unsigned int val)
7452 {
7453 unsigned int a, i;
7454
7455 if (val <= 0xff)
7456 return val;
7457
7458 for (i = 1; i <= 24; i++)
7459 {
7460 a = val >> i;
7461 if ((val & ~(0xff << i)) == 0)
7462 return ((val >> i) & 0x7f) | ((32 - i) << 7);
7463 }
7464
7465 a = val & 0xff;
7466 if (val == ((a << 16) | a))
7467 return 0x100 | a;
7468 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
7469 return 0x300 | a;
7470
7471 a = val & 0xff00;
7472 if (val == ((a << 16) | a))
7473 return 0x200 | (a >> 8);
7474
7475 return FAIL;
7476 }
7477 /* Encode a VFP SP or DP register number into inst.instruction. */
7478
7479 static void
7480 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
7481 {
7482 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
7483 && reg > 15)
7484 {
7485 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
7486 {
7487 if (thumb_mode)
7488 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
7489 fpu_vfp_ext_d32);
7490 else
7491 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
7492 fpu_vfp_ext_d32);
7493 }
7494 else
7495 {
7496 first_error (_("D register out of range for selected VFP version"));
7497 return;
7498 }
7499 }
7500
7501 switch (pos)
7502 {
7503 case VFP_REG_Sd:
7504 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7505 break;
7506
7507 case VFP_REG_Sn:
7508 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7509 break;
7510
7511 case VFP_REG_Sm:
7512 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7513 break;
7514
7515 case VFP_REG_Dd:
7516 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7517 break;
7518
7519 case VFP_REG_Dn:
7520 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7521 break;
7522
7523 case VFP_REG_Dm:
7524 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7525 break;
7526
7527 default:
7528 abort ();
7529 }
7530 }
7531
7532 /* Encode a <shift> in an ARM-format instruction. The immediate,
7533 if any, is handled by md_apply_fix. */
7534 static void
7535 encode_arm_shift (int i)
7536 {
7537 /* register-shifted register. */
7538 if (inst.operands[i].immisreg)
7539 {
7540 int op_index;
7541 for (op_index = 0; op_index <= i; ++op_index)
7542 {
7543 /* Check the operand only when it's presented. In pre-UAL syntax,
7544 if the destination register is the same as the first operand, two
7545 register form of the instruction can be used. */
7546 if (inst.operands[op_index].present && inst.operands[op_index].isreg
7547 && inst.operands[op_index].reg == REG_PC)
7548 as_warn (UNPRED_REG ("r15"));
7549 }
7550
7551 if (inst.operands[i].imm == REG_PC)
7552 as_warn (UNPRED_REG ("r15"));
7553 }
7554
7555 if (inst.operands[i].shift_kind == SHIFT_RRX)
7556 inst.instruction |= SHIFT_ROR << 5;
7557 else
7558 {
7559 inst.instruction |= inst.operands[i].shift_kind << 5;
7560 if (inst.operands[i].immisreg)
7561 {
7562 inst.instruction |= SHIFT_BY_REG;
7563 inst.instruction |= inst.operands[i].imm << 8;
7564 }
7565 else
7566 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
7567 }
7568 }
7569
7570 static void
7571 encode_arm_shifter_operand (int i)
7572 {
7573 if (inst.operands[i].isreg)
7574 {
7575 inst.instruction |= inst.operands[i].reg;
7576 encode_arm_shift (i);
7577 }
7578 else
7579 {
7580 inst.instruction |= INST_IMMEDIATE;
7581 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
7582 inst.instruction |= inst.operands[i].imm;
7583 }
7584 }
7585
7586 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7587 static void
7588 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7589 {
7590 /* PR 14260:
7591 Generate an error if the operand is not a register. */
7592 constraint (!inst.operands[i].isreg,
7593 _("Instruction does not support =N addresses"));
7594
7595 inst.instruction |= inst.operands[i].reg << 16;
7596
7597 if (inst.operands[i].preind)
7598 {
7599 if (is_t)
7600 {
7601 inst.error = _("instruction does not accept preindexed addressing");
7602 return;
7603 }
7604 inst.instruction |= PRE_INDEX;
7605 if (inst.operands[i].writeback)
7606 inst.instruction |= WRITE_BACK;
7607
7608 }
7609 else if (inst.operands[i].postind)
7610 {
7611 gas_assert (inst.operands[i].writeback);
7612 if (is_t)
7613 inst.instruction |= WRITE_BACK;
7614 }
7615 else /* unindexed - only for coprocessor */
7616 {
7617 inst.error = _("instruction does not accept unindexed addressing");
7618 return;
7619 }
7620
7621 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7622 && (((inst.instruction & 0x000f0000) >> 16)
7623 == ((inst.instruction & 0x0000f000) >> 12)))
7624 as_warn ((inst.instruction & LOAD_BIT)
7625 ? _("destination register same as write-back base")
7626 : _("source register same as write-back base"));
7627 }
7628
7629 /* inst.operands[i] was set up by parse_address. Encode it into an
7630 ARM-format mode 2 load or store instruction. If is_t is true,
7631 reject forms that cannot be used with a T instruction (i.e. not
7632 post-indexed). */
7633 static void
7634 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7635 {
7636 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7637
7638 encode_arm_addr_mode_common (i, is_t);
7639
7640 if (inst.operands[i].immisreg)
7641 {
7642 constraint ((inst.operands[i].imm == REG_PC
7643 || (is_pc && inst.operands[i].writeback)),
7644 BAD_PC_ADDRESSING);
7645 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7646 inst.instruction |= inst.operands[i].imm;
7647 if (!inst.operands[i].negative)
7648 inst.instruction |= INDEX_UP;
7649 if (inst.operands[i].shifted)
7650 {
7651 if (inst.operands[i].shift_kind == SHIFT_RRX)
7652 inst.instruction |= SHIFT_ROR << 5;
7653 else
7654 {
7655 inst.instruction |= inst.operands[i].shift_kind << 5;
7656 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
7657 }
7658 }
7659 }
7660 else /* immediate offset in inst.relocs[0] */
7661 {
7662 if (is_pc && !inst.relocs[0].pc_rel)
7663 {
7664 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7665
7666 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7667 cannot use PC in addressing.
7668 PC cannot be used in writeback addressing, either. */
7669 constraint ((is_t || inst.operands[i].writeback),
7670 BAD_PC_ADDRESSING);
7671
7672 /* Use of PC in str is deprecated for ARMv7. */
7673 if (warn_on_deprecated
7674 && !is_load
7675 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7676 as_tsktsk (_("use of PC in this instruction is deprecated"));
7677 }
7678
7679 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
7680 {
7681 /* Prefer + for zero encoded value. */
7682 if (!inst.operands[i].negative)
7683 inst.instruction |= INDEX_UP;
7684 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
7685 }
7686 }
7687 }
7688
7689 /* inst.operands[i] was set up by parse_address. Encode it into an
7690 ARM-format mode 3 load or store instruction. Reject forms that
7691 cannot be used with such instructions. If is_t is true, reject
7692 forms that cannot be used with a T instruction (i.e. not
7693 post-indexed). */
7694 static void
7695 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7696 {
7697 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7698 {
7699 inst.error = _("instruction does not accept scaled register index");
7700 return;
7701 }
7702
7703 encode_arm_addr_mode_common (i, is_t);
7704
7705 if (inst.operands[i].immisreg)
7706 {
7707 constraint ((inst.operands[i].imm == REG_PC
7708 || (is_t && inst.operands[i].reg == REG_PC)),
7709 BAD_PC_ADDRESSING);
7710 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
7711 BAD_PC_WRITEBACK);
7712 inst.instruction |= inst.operands[i].imm;
7713 if (!inst.operands[i].negative)
7714 inst.instruction |= INDEX_UP;
7715 }
7716 else /* immediate offset in inst.relocs[0] */
7717 {
7718 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
7719 && inst.operands[i].writeback),
7720 BAD_PC_WRITEBACK);
7721 inst.instruction |= HWOFFSET_IMM;
7722 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
7723 {
7724 /* Prefer + for zero encoded value. */
7725 if (!inst.operands[i].negative)
7726 inst.instruction |= INDEX_UP;
7727
7728 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
7729 }
7730 }
7731 }
7732
7733 /* Write immediate bits [7:0] to the following locations:
7734
7735 |28/24|23 19|18 16|15 4|3 0|
7736 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
7737
7738 This function is used by VMOV/VMVN/VORR/VBIC. */
7739
7740 static void
7741 neon_write_immbits (unsigned immbits)
7742 {
7743 inst.instruction |= immbits & 0xf;
7744 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
7745 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
7746 }
7747
7748 /* Invert low-order SIZE bits of XHI:XLO. */
7749
7750 static void
7751 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
7752 {
7753 unsigned immlo = xlo ? *xlo : 0;
7754 unsigned immhi = xhi ? *xhi : 0;
7755
7756 switch (size)
7757 {
7758 case 8:
7759 immlo = (~immlo) & 0xff;
7760 break;
7761
7762 case 16:
7763 immlo = (~immlo) & 0xffff;
7764 break;
7765
7766 case 64:
7767 immhi = (~immhi) & 0xffffffff;
7768 /* fall through. */
7769
7770 case 32:
7771 immlo = (~immlo) & 0xffffffff;
7772 break;
7773
7774 default:
7775 abort ();
7776 }
7777
7778 if (xlo)
7779 *xlo = immlo;
7780
7781 if (xhi)
7782 *xhi = immhi;
7783 }
7784
7785 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
7786 A, B, C, D. */
7787
7788 static int
7789 neon_bits_same_in_bytes (unsigned imm)
7790 {
7791 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
7792 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
7793 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
7794 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
7795 }
7796
7797 /* For immediate of above form, return 0bABCD. */
7798
7799 static unsigned
7800 neon_squash_bits (unsigned imm)
7801 {
7802 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
7803 | ((imm & 0x01000000) >> 21);
7804 }
7805
7806 /* Compress quarter-float representation to 0b...000 abcdefgh. */
7807
7808 static unsigned
7809 neon_qfloat_bits (unsigned imm)
7810 {
7811 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
7812 }
7813
7814 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
7815 the instruction. *OP is passed as the initial value of the op field, and
7816 may be set to a different value depending on the constant (i.e.
7817 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
7818 MVN). If the immediate looks like a repeated pattern then also
7819 try smaller element sizes. */
7820
7821 static int
7822 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
7823 unsigned *immbits, int *op, int size,
7824 enum neon_el_type type)
7825 {
7826 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
7827 float. */
7828 if (type == NT_float && !float_p)
7829 return FAIL;
7830
7831 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
7832 {
7833 if (size != 32 || *op == 1)
7834 return FAIL;
7835 *immbits = neon_qfloat_bits (immlo);
7836 return 0xf;
7837 }
7838
7839 if (size == 64)
7840 {
7841 if (neon_bits_same_in_bytes (immhi)
7842 && neon_bits_same_in_bytes (immlo))
7843 {
7844 if (*op == 1)
7845 return FAIL;
7846 *immbits = (neon_squash_bits (immhi) << 4)
7847 | neon_squash_bits (immlo);
7848 *op = 1;
7849 return 0xe;
7850 }
7851
7852 if (immhi != immlo)
7853 return FAIL;
7854 }
7855
7856 if (size >= 32)
7857 {
7858 if (immlo == (immlo & 0x000000ff))
7859 {
7860 *immbits = immlo;
7861 return 0x0;
7862 }
7863 else if (immlo == (immlo & 0x0000ff00))
7864 {
7865 *immbits = immlo >> 8;
7866 return 0x2;
7867 }
7868 else if (immlo == (immlo & 0x00ff0000))
7869 {
7870 *immbits = immlo >> 16;
7871 return 0x4;
7872 }
7873 else if (immlo == (immlo & 0xff000000))
7874 {
7875 *immbits = immlo >> 24;
7876 return 0x6;
7877 }
7878 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
7879 {
7880 *immbits = (immlo >> 8) & 0xff;
7881 return 0xc;
7882 }
7883 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
7884 {
7885 *immbits = (immlo >> 16) & 0xff;
7886 return 0xd;
7887 }
7888
7889 if ((immlo & 0xffff) != (immlo >> 16))
7890 return FAIL;
7891 immlo &= 0xffff;
7892 }
7893
7894 if (size >= 16)
7895 {
7896 if (immlo == (immlo & 0x000000ff))
7897 {
7898 *immbits = immlo;
7899 return 0x8;
7900 }
7901 else if (immlo == (immlo & 0x0000ff00))
7902 {
7903 *immbits = immlo >> 8;
7904 return 0xa;
7905 }
7906
7907 if ((immlo & 0xff) != (immlo >> 8))
7908 return FAIL;
7909 immlo &= 0xff;
7910 }
7911
7912 if (immlo == (immlo & 0x000000ff))
7913 {
7914 /* Don't allow MVN with 8-bit immediate. */
7915 if (*op == 1)
7916 return FAIL;
7917 *immbits = immlo;
7918 return 0xe;
7919 }
7920
7921 return FAIL;
7922 }
7923
7924 #if defined BFD_HOST_64_BIT
7925 /* Returns TRUE if double precision value V may be cast
7926 to single precision without loss of accuracy. */
7927
7928 static bfd_boolean
7929 is_double_a_single (bfd_int64_t v)
7930 {
7931 int exp = (int)((v >> 52) & 0x7FF);
7932 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7933
7934 return (exp == 0 || exp == 0x7FF
7935 || (exp >= 1023 - 126 && exp <= 1023 + 127))
7936 && (mantissa & 0x1FFFFFFFl) == 0;
7937 }
7938
7939 /* Returns a double precision value casted to single precision
7940 (ignoring the least significant bits in exponent and mantissa). */
7941
7942 static int
7943 double_to_single (bfd_int64_t v)
7944 {
7945 int sign = (int) ((v >> 63) & 1l);
7946 int exp = (int) ((v >> 52) & 0x7FF);
7947 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
7948
7949 if (exp == 0x7FF)
7950 exp = 0xFF;
7951 else
7952 {
7953 exp = exp - 1023 + 127;
7954 if (exp >= 0xFF)
7955 {
7956 /* Infinity. */
7957 exp = 0x7F;
7958 mantissa = 0;
7959 }
7960 else if (exp < 0)
7961 {
7962 /* No denormalized numbers. */
7963 exp = 0;
7964 mantissa = 0;
7965 }
7966 }
7967 mantissa >>= 29;
7968 return (sign << 31) | (exp << 23) | mantissa;
7969 }
7970 #endif /* BFD_HOST_64_BIT */
7971
7972 enum lit_type
7973 {
7974 CONST_THUMB,
7975 CONST_ARM,
7976 CONST_VEC
7977 };
7978
7979 static void do_vfp_nsyn_opcode (const char *);
7980
7981 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
7982 Determine whether it can be performed with a move instruction; if
7983 it can, convert inst.instruction to that move instruction and
7984 return TRUE; if it can't, convert inst.instruction to a literal-pool
7985 load and return FALSE. If this is not a valid thing to do in the
7986 current context, set inst.error and return TRUE.
7987
7988 inst.operands[i] describes the destination register. */
7989
7990 static bfd_boolean
7991 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
7992 {
7993 unsigned long tbit;
7994 bfd_boolean thumb_p = (t == CONST_THUMB);
7995 bfd_boolean arm_p = (t == CONST_ARM);
7996
7997 if (thumb_p)
7998 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7999 else
8000 tbit = LOAD_BIT;
8001
8002 if ((inst.instruction & tbit) == 0)
8003 {
8004 inst.error = _("invalid pseudo operation");
8005 return TRUE;
8006 }
8007
8008 if (inst.relocs[0].exp.X_op != O_constant
8009 && inst.relocs[0].exp.X_op != O_symbol
8010 && inst.relocs[0].exp.X_op != O_big)
8011 {
8012 inst.error = _("constant expression expected");
8013 return TRUE;
8014 }
8015
8016 if (inst.relocs[0].exp.X_op == O_constant
8017 || inst.relocs[0].exp.X_op == O_big)
8018 {
8019 #if defined BFD_HOST_64_BIT
8020 bfd_int64_t v;
8021 #else
8022 offsetT v;
8023 #endif
8024 if (inst.relocs[0].exp.X_op == O_big)
8025 {
8026 LITTLENUM_TYPE w[X_PRECISION];
8027 LITTLENUM_TYPE * l;
8028
8029 if (inst.relocs[0].exp.X_add_number == -1)
8030 {
8031 gen_to_words (w, X_PRECISION, E_PRECISION);
8032 l = w;
8033 /* FIXME: Should we check words w[2..5] ? */
8034 }
8035 else
8036 l = generic_bignum;
8037
8038 #if defined BFD_HOST_64_BIT
8039 v =
8040 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8041 << LITTLENUM_NUMBER_OF_BITS)
8042 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8043 << LITTLENUM_NUMBER_OF_BITS)
8044 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8045 << LITTLENUM_NUMBER_OF_BITS)
8046 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8047 #else
8048 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8049 | (l[0] & LITTLENUM_MASK);
8050 #endif
8051 }
8052 else
8053 v = inst.relocs[0].exp.X_add_number;
8054
8055 if (!inst.operands[i].issingle)
8056 {
8057 if (thumb_p)
8058 {
8059 /* LDR should not use lead in a flag-setting instruction being
8060 chosen so we do not check whether movs can be used. */
8061
8062 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8063 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8064 && inst.operands[i].reg != 13
8065 && inst.operands[i].reg != 15)
8066 {
8067 /* Check if on thumb2 it can be done with a mov.w, mvn or
8068 movw instruction. */
8069 unsigned int newimm;
8070 bfd_boolean isNegated;
8071
8072 newimm = encode_thumb32_immediate (v);
8073 if (newimm != (unsigned int) FAIL)
8074 isNegated = FALSE;
8075 else
8076 {
8077 newimm = encode_thumb32_immediate (~v);
8078 if (newimm != (unsigned int) FAIL)
8079 isNegated = TRUE;
8080 }
8081
8082 /* The number can be loaded with a mov.w or mvn
8083 instruction. */
8084 if (newimm != (unsigned int) FAIL
8085 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8086 {
8087 inst.instruction = (0xf04f0000 /* MOV.W. */
8088 | (inst.operands[i].reg << 8));
8089 /* Change to MOVN. */
8090 inst.instruction |= (isNegated ? 0x200000 : 0);
8091 inst.instruction |= (newimm & 0x800) << 15;
8092 inst.instruction |= (newimm & 0x700) << 4;
8093 inst.instruction |= (newimm & 0x0ff);
8094 return TRUE;
8095 }
8096 /* The number can be loaded with a movw instruction. */
8097 else if ((v & ~0xFFFF) == 0
8098 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8099 {
8100 int imm = v & 0xFFFF;
8101
8102 inst.instruction = 0xf2400000; /* MOVW. */
8103 inst.instruction |= (inst.operands[i].reg << 8);
8104 inst.instruction |= (imm & 0xf000) << 4;
8105 inst.instruction |= (imm & 0x0800) << 15;
8106 inst.instruction |= (imm & 0x0700) << 4;
8107 inst.instruction |= (imm & 0x00ff);
8108 return TRUE;
8109 }
8110 }
8111 }
8112 else if (arm_p)
8113 {
8114 int value = encode_arm_immediate (v);
8115
8116 if (value != FAIL)
8117 {
8118 /* This can be done with a mov instruction. */
8119 inst.instruction &= LITERAL_MASK;
8120 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8121 inst.instruction |= value & 0xfff;
8122 return TRUE;
8123 }
8124
8125 value = encode_arm_immediate (~ v);
8126 if (value != FAIL)
8127 {
8128 /* This can be done with a mvn instruction. */
8129 inst.instruction &= LITERAL_MASK;
8130 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8131 inst.instruction |= value & 0xfff;
8132 return TRUE;
8133 }
8134 }
8135 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8136 {
8137 int op = 0;
8138 unsigned immbits = 0;
8139 unsigned immlo = inst.operands[1].imm;
8140 unsigned immhi = inst.operands[1].regisimm
8141 ? inst.operands[1].reg
8142 : inst.relocs[0].exp.X_unsigned
8143 ? 0
8144 : ((bfd_int64_t)((int) immlo)) >> 32;
8145 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8146 &op, 64, NT_invtype);
8147
8148 if (cmode == FAIL)
8149 {
8150 neon_invert_size (&immlo, &immhi, 64);
8151 op = !op;
8152 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8153 &op, 64, NT_invtype);
8154 }
8155
8156 if (cmode != FAIL)
8157 {
8158 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8159 | (1 << 23)
8160 | (cmode << 8)
8161 | (op << 5)
8162 | (1 << 4);
8163
8164 /* Fill other bits in vmov encoding for both thumb and arm. */
8165 if (thumb_mode)
8166 inst.instruction |= (0x7U << 29) | (0xF << 24);
8167 else
8168 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8169 neon_write_immbits (immbits);
8170 return TRUE;
8171 }
8172 }
8173 }
8174
8175 if (t == CONST_VEC)
8176 {
8177 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8178 if (inst.operands[i].issingle
8179 && is_quarter_float (inst.operands[1].imm)
8180 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8181 {
8182 inst.operands[1].imm =
8183 neon_qfloat_bits (v);
8184 do_vfp_nsyn_opcode ("fconsts");
8185 return TRUE;
8186 }
8187
8188 /* If our host does not support a 64-bit type then we cannot perform
8189 the following optimization. This mean that there will be a
8190 discrepancy between the output produced by an assembler built for
8191 a 32-bit-only host and the output produced from a 64-bit host, but
8192 this cannot be helped. */
8193 #if defined BFD_HOST_64_BIT
8194 else if (!inst.operands[1].issingle
8195 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8196 {
8197 if (is_double_a_single (v)
8198 && is_quarter_float (double_to_single (v)))
8199 {
8200 inst.operands[1].imm =
8201 neon_qfloat_bits (double_to_single (v));
8202 do_vfp_nsyn_opcode ("fconstd");
8203 return TRUE;
8204 }
8205 }
8206 #endif
8207 }
8208 }
8209
8210 if (add_to_lit_pool ((!inst.operands[i].isvec
8211 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8212 return TRUE;
8213
8214 inst.operands[1].reg = REG_PC;
8215 inst.operands[1].isreg = 1;
8216 inst.operands[1].preind = 1;
8217 inst.relocs[0].pc_rel = 1;
8218 inst.relocs[0].type = (thumb_p
8219 ? BFD_RELOC_ARM_THUMB_OFFSET
8220 : (mode_3
8221 ? BFD_RELOC_ARM_HWLITERAL
8222 : BFD_RELOC_ARM_LITERAL));
8223 return FALSE;
8224 }
8225
8226 /* inst.operands[i] was set up by parse_address. Encode it into an
8227 ARM-format instruction. Reject all forms which cannot be encoded
8228 into a coprocessor load/store instruction. If wb_ok is false,
8229 reject use of writeback; if unind_ok is false, reject use of
8230 unindexed addressing. If reloc_override is not 0, use it instead
8231 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8232 (in which case it is preserved). */
8233
8234 static int
8235 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8236 {
8237 if (!inst.operands[i].isreg)
8238 {
8239 /* PR 18256 */
8240 if (! inst.operands[0].isvec)
8241 {
8242 inst.error = _("invalid co-processor operand");
8243 return FAIL;
8244 }
8245 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8246 return SUCCESS;
8247 }
8248
8249 inst.instruction |= inst.operands[i].reg << 16;
8250
8251 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8252
8253 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8254 {
8255 gas_assert (!inst.operands[i].writeback);
8256 if (!unind_ok)
8257 {
8258 inst.error = _("instruction does not support unindexed addressing");
8259 return FAIL;
8260 }
8261 inst.instruction |= inst.operands[i].imm;
8262 inst.instruction |= INDEX_UP;
8263 return SUCCESS;
8264 }
8265
8266 if (inst.operands[i].preind)
8267 inst.instruction |= PRE_INDEX;
8268
8269 if (inst.operands[i].writeback)
8270 {
8271 if (inst.operands[i].reg == REG_PC)
8272 {
8273 inst.error = _("pc may not be used with write-back");
8274 return FAIL;
8275 }
8276 if (!wb_ok)
8277 {
8278 inst.error = _("instruction does not support writeback");
8279 return FAIL;
8280 }
8281 inst.instruction |= WRITE_BACK;
8282 }
8283
8284 if (reloc_override)
8285 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8286 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8287 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8288 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8289 {
8290 if (thumb_mode)
8291 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8292 else
8293 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8294 }
8295
8296 /* Prefer + for zero encoded value. */
8297 if (!inst.operands[i].negative)
8298 inst.instruction |= INDEX_UP;
8299
8300 return SUCCESS;
8301 }
8302
8303 /* Functions for instruction encoding, sorted by sub-architecture.
8304 First some generics; their names are taken from the conventional
8305 bit positions for register arguments in ARM format instructions. */
8306
8307 static void
8308 do_noargs (void)
8309 {
8310 }
8311
8312 static void
8313 do_rd (void)
8314 {
8315 inst.instruction |= inst.operands[0].reg << 12;
8316 }
8317
8318 static void
8319 do_rn (void)
8320 {
8321 inst.instruction |= inst.operands[0].reg << 16;
8322 }
8323
8324 static void
8325 do_rd_rm (void)
8326 {
8327 inst.instruction |= inst.operands[0].reg << 12;
8328 inst.instruction |= inst.operands[1].reg;
8329 }
8330
8331 static void
8332 do_rm_rn (void)
8333 {
8334 inst.instruction |= inst.operands[0].reg;
8335 inst.instruction |= inst.operands[1].reg << 16;
8336 }
8337
8338 static void
8339 do_rd_rn (void)
8340 {
8341 inst.instruction |= inst.operands[0].reg << 12;
8342 inst.instruction |= inst.operands[1].reg << 16;
8343 }
8344
8345 static void
8346 do_rn_rd (void)
8347 {
8348 inst.instruction |= inst.operands[0].reg << 16;
8349 inst.instruction |= inst.operands[1].reg << 12;
8350 }
8351
8352 static void
8353 do_tt (void)
8354 {
8355 inst.instruction |= inst.operands[0].reg << 8;
8356 inst.instruction |= inst.operands[1].reg << 16;
8357 }
8358
8359 static bfd_boolean
8360 check_obsolete (const arm_feature_set *feature, const char *msg)
8361 {
8362 if (ARM_CPU_IS_ANY (cpu_variant))
8363 {
8364 as_tsktsk ("%s", msg);
8365 return TRUE;
8366 }
8367 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8368 {
8369 as_bad ("%s", msg);
8370 return TRUE;
8371 }
8372
8373 return FALSE;
8374 }
8375
8376 static void
8377 do_rd_rm_rn (void)
8378 {
8379 unsigned Rn = inst.operands[2].reg;
8380 /* Enforce restrictions on SWP instruction. */
8381 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8382 {
8383 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8384 _("Rn must not overlap other operands"));
8385
8386 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8387 */
8388 if (!check_obsolete (&arm_ext_v8,
8389 _("swp{b} use is obsoleted for ARMv8 and later"))
8390 && warn_on_deprecated
8391 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8392 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8393 }
8394
8395 inst.instruction |= inst.operands[0].reg << 12;
8396 inst.instruction |= inst.operands[1].reg;
8397 inst.instruction |= Rn << 16;
8398 }
8399
8400 static void
8401 do_rd_rn_rm (void)
8402 {
8403 inst.instruction |= inst.operands[0].reg << 12;
8404 inst.instruction |= inst.operands[1].reg << 16;
8405 inst.instruction |= inst.operands[2].reg;
8406 }
8407
8408 static void
8409 do_rm_rd_rn (void)
8410 {
8411 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8412 constraint (((inst.relocs[0].exp.X_op != O_constant
8413 && inst.relocs[0].exp.X_op != O_illegal)
8414 || inst.relocs[0].exp.X_add_number != 0),
8415 BAD_ADDR_MODE);
8416 inst.instruction |= inst.operands[0].reg;
8417 inst.instruction |= inst.operands[1].reg << 12;
8418 inst.instruction |= inst.operands[2].reg << 16;
8419 }
8420
8421 static void
8422 do_imm0 (void)
8423 {
8424 inst.instruction |= inst.operands[0].imm;
8425 }
8426
8427 static void
8428 do_rd_cpaddr (void)
8429 {
8430 inst.instruction |= inst.operands[0].reg << 12;
8431 encode_arm_cp_address (1, TRUE, TRUE, 0);
8432 }
8433
8434 /* ARM instructions, in alphabetical order by function name (except
8435 that wrapper functions appear immediately after the function they
8436 wrap). */
8437
8438 /* This is a pseudo-op of the form "adr rd, label" to be converted
8439 into a relative address of the form "add rd, pc, #label-.-8". */
8440
8441 static void
8442 do_adr (void)
8443 {
8444 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8445
8446 /* Frag hacking will turn this into a sub instruction if the offset turns
8447 out to be negative. */
8448 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
8449 inst.relocs[0].pc_rel = 1;
8450 inst.relocs[0].exp.X_add_number -= 8;
8451
8452 if (support_interwork
8453 && inst.relocs[0].exp.X_op == O_symbol
8454 && inst.relocs[0].exp.X_add_symbol != NULL
8455 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
8456 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
8457 inst.relocs[0].exp.X_add_number |= 1;
8458 }
8459
8460 /* This is a pseudo-op of the form "adrl rd, label" to be converted
8461 into a relative address of the form:
8462 add rd, pc, #low(label-.-8)"
8463 add rd, rd, #high(label-.-8)" */
8464
8465 static void
8466 do_adrl (void)
8467 {
8468 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8469
8470 /* Frag hacking will turn this into a sub instruction if the offset turns
8471 out to be negative. */
8472 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
8473 inst.relocs[0].pc_rel = 1;
8474 inst.size = INSN_SIZE * 2;
8475 inst.relocs[0].exp.X_add_number -= 8;
8476
8477 if (support_interwork
8478 && inst.relocs[0].exp.X_op == O_symbol
8479 && inst.relocs[0].exp.X_add_symbol != NULL
8480 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
8481 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
8482 inst.relocs[0].exp.X_add_number |= 1;
8483 }
8484
8485 static void
8486 do_arit (void)
8487 {
8488 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
8489 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
8490 THUMB1_RELOC_ONLY);
8491 if (!inst.operands[1].present)
8492 inst.operands[1].reg = inst.operands[0].reg;
8493 inst.instruction |= inst.operands[0].reg << 12;
8494 inst.instruction |= inst.operands[1].reg << 16;
8495 encode_arm_shifter_operand (2);
8496 }
8497
8498 static void
8499 do_barrier (void)
8500 {
8501 if (inst.operands[0].present)
8502 inst.instruction |= inst.operands[0].imm;
8503 else
8504 inst.instruction |= 0xf;
8505 }
8506
8507 static void
8508 do_bfc (void)
8509 {
8510 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8511 constraint (msb > 32, _("bit-field extends past end of register"));
8512 /* The instruction encoding stores the LSB and MSB,
8513 not the LSB and width. */
8514 inst.instruction |= inst.operands[0].reg << 12;
8515 inst.instruction |= inst.operands[1].imm << 7;
8516 inst.instruction |= (msb - 1) << 16;
8517 }
8518
8519 static void
8520 do_bfi (void)
8521 {
8522 unsigned int msb;
8523
8524 /* #0 in second position is alternative syntax for bfc, which is
8525 the same instruction but with REG_PC in the Rm field. */
8526 if (!inst.operands[1].isreg)
8527 inst.operands[1].reg = REG_PC;
8528
8529 msb = inst.operands[2].imm + inst.operands[3].imm;
8530 constraint (msb > 32, _("bit-field extends past end of register"));
8531 /* The instruction encoding stores the LSB and MSB,
8532 not the LSB and width. */
8533 inst.instruction |= inst.operands[0].reg << 12;
8534 inst.instruction |= inst.operands[1].reg;
8535 inst.instruction |= inst.operands[2].imm << 7;
8536 inst.instruction |= (msb - 1) << 16;
8537 }
8538
8539 static void
8540 do_bfx (void)
8541 {
8542 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8543 _("bit-field extends past end of register"));
8544 inst.instruction |= inst.operands[0].reg << 12;
8545 inst.instruction |= inst.operands[1].reg;
8546 inst.instruction |= inst.operands[2].imm << 7;
8547 inst.instruction |= (inst.operands[3].imm - 1) << 16;
8548 }
8549
8550 /* ARM V5 breakpoint instruction (argument parse)
8551 BKPT <16 bit unsigned immediate>
8552 Instruction is not conditional.
8553 The bit pattern given in insns[] has the COND_ALWAYS condition,
8554 and it is an error if the caller tried to override that. */
8555
8556 static void
8557 do_bkpt (void)
8558 {
8559 /* Top 12 of 16 bits to bits 19:8. */
8560 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
8561
8562 /* Bottom 4 of 16 bits to bits 3:0. */
8563 inst.instruction |= inst.operands[0].imm & 0xf;
8564 }
8565
8566 static void
8567 encode_branch (int default_reloc)
8568 {
8569 if (inst.operands[0].hasreloc)
8570 {
8571 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
8572 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
8573 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
8574 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
8575 ? BFD_RELOC_ARM_PLT32
8576 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
8577 }
8578 else
8579 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
8580 inst.relocs[0].pc_rel = 1;
8581 }
8582
8583 static void
8584 do_branch (void)
8585 {
8586 #ifdef OBJ_ELF
8587 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8588 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8589 else
8590 #endif
8591 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8592 }
8593
8594 static void
8595 do_bl (void)
8596 {
8597 #ifdef OBJ_ELF
8598 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8599 {
8600 if (inst.cond == COND_ALWAYS)
8601 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
8602 else
8603 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
8604 }
8605 else
8606 #endif
8607 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
8608 }
8609
8610 /* ARM V5 branch-link-exchange instruction (argument parse)
8611 BLX <target_addr> ie BLX(1)
8612 BLX{<condition>} <Rm> ie BLX(2)
8613 Unfortunately, there are two different opcodes for this mnemonic.
8614 So, the insns[].value is not used, and the code here zaps values
8615 into inst.instruction.
8616 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
8617
8618 static void
8619 do_blx (void)
8620 {
8621 if (inst.operands[0].isreg)
8622 {
8623 /* Arg is a register; the opcode provided by insns[] is correct.
8624 It is not illegal to do "blx pc", just useless. */
8625 if (inst.operands[0].reg == REG_PC)
8626 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
8627
8628 inst.instruction |= inst.operands[0].reg;
8629 }
8630 else
8631 {
8632 /* Arg is an address; this instruction cannot be executed
8633 conditionally, and the opcode must be adjusted.
8634 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
8635 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
8636 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8637 inst.instruction = 0xfa000000;
8638 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
8639 }
8640 }
8641
8642 static void
8643 do_bx (void)
8644 {
8645 bfd_boolean want_reloc;
8646
8647 if (inst.operands[0].reg == REG_PC)
8648 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
8649
8650 inst.instruction |= inst.operands[0].reg;
8651 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
8652 it is for ARMv4t or earlier. */
8653 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
8654 if (!ARM_FEATURE_ZERO (selected_object_arch)
8655 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
8656 want_reloc = TRUE;
8657
8658 #ifdef OBJ_ELF
8659 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
8660 #endif
8661 want_reloc = FALSE;
8662
8663 if (want_reloc)
8664 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
8665 }
8666
8667
8668 /* ARM v5TEJ. Jump to Jazelle code. */
8669
8670 static void
8671 do_bxj (void)
8672 {
8673 if (inst.operands[0].reg == REG_PC)
8674 as_tsktsk (_("use of r15 in bxj is not really useful"));
8675
8676 inst.instruction |= inst.operands[0].reg;
8677 }
8678
8679 /* Co-processor data operation:
8680 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
8681 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
8682 static void
8683 do_cdp (void)
8684 {
8685 inst.instruction |= inst.operands[0].reg << 8;
8686 inst.instruction |= inst.operands[1].imm << 20;
8687 inst.instruction |= inst.operands[2].reg << 12;
8688 inst.instruction |= inst.operands[3].reg << 16;
8689 inst.instruction |= inst.operands[4].reg;
8690 inst.instruction |= inst.operands[5].imm << 5;
8691 }
8692
8693 static void
8694 do_cmp (void)
8695 {
8696 inst.instruction |= inst.operands[0].reg << 16;
8697 encode_arm_shifter_operand (1);
8698 }
8699
8700 /* Transfer between coprocessor and ARM registers.
8701 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
8702 MRC2
8703 MCR{cond}
8704 MCR2
8705
8706 No special properties. */
8707
8708 struct deprecated_coproc_regs_s
8709 {
8710 unsigned cp;
8711 int opc1;
8712 unsigned crn;
8713 unsigned crm;
8714 int opc2;
8715 arm_feature_set deprecated;
8716 arm_feature_set obsoleted;
8717 const char *dep_msg;
8718 const char *obs_msg;
8719 };
8720
8721 #define DEPR_ACCESS_V8 \
8722 N_("This coprocessor register access is deprecated in ARMv8")
8723
8724 /* Table of all deprecated coprocessor registers. */
8725 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
8726 {
8727 {15, 0, 7, 10, 5, /* CP15DMB. */
8728 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8729 DEPR_ACCESS_V8, NULL},
8730 {15, 0, 7, 10, 4, /* CP15DSB. */
8731 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8732 DEPR_ACCESS_V8, NULL},
8733 {15, 0, 7, 5, 4, /* CP15ISB. */
8734 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8735 DEPR_ACCESS_V8, NULL},
8736 {14, 6, 1, 0, 0, /* TEEHBR. */
8737 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8738 DEPR_ACCESS_V8, NULL},
8739 {14, 6, 0, 0, 0, /* TEECR. */
8740 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
8741 DEPR_ACCESS_V8, NULL},
8742 };
8743
8744 #undef DEPR_ACCESS_V8
8745
8746 static const size_t deprecated_coproc_reg_count =
8747 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
8748
8749 static void
8750 do_co_reg (void)
8751 {
8752 unsigned Rd;
8753 size_t i;
8754
8755 Rd = inst.operands[2].reg;
8756 if (thumb_mode)
8757 {
8758 if (inst.instruction == 0xee000010
8759 || inst.instruction == 0xfe000010)
8760 /* MCR, MCR2 */
8761 reject_bad_reg (Rd);
8762 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8763 /* MRC, MRC2 */
8764 constraint (Rd == REG_SP, BAD_SP);
8765 }
8766 else
8767 {
8768 /* MCR */
8769 if (inst.instruction == 0xe000010)
8770 constraint (Rd == REG_PC, BAD_PC);
8771 }
8772
8773 for (i = 0; i < deprecated_coproc_reg_count; ++i)
8774 {
8775 const struct deprecated_coproc_regs_s *r =
8776 deprecated_coproc_regs + i;
8777
8778 if (inst.operands[0].reg == r->cp
8779 && inst.operands[1].imm == r->opc1
8780 && inst.operands[3].reg == r->crn
8781 && inst.operands[4].reg == r->crm
8782 && inst.operands[5].imm == r->opc2)
8783 {
8784 if (! ARM_CPU_IS_ANY (cpu_variant)
8785 && warn_on_deprecated
8786 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
8787 as_tsktsk ("%s", r->dep_msg);
8788 }
8789 }
8790
8791 inst.instruction |= inst.operands[0].reg << 8;
8792 inst.instruction |= inst.operands[1].imm << 21;
8793 inst.instruction |= Rd << 12;
8794 inst.instruction |= inst.operands[3].reg << 16;
8795 inst.instruction |= inst.operands[4].reg;
8796 inst.instruction |= inst.operands[5].imm << 5;
8797 }
8798
8799 /* Transfer between coprocessor register and pair of ARM registers.
8800 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
8801 MCRR2
8802 MRRC{cond}
8803 MRRC2
8804
8805 Two XScale instructions are special cases of these:
8806
8807 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
8808 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
8809
8810 Result unpredictable if Rd or Rn is R15. */
8811
8812 static void
8813 do_co_reg2c (void)
8814 {
8815 unsigned Rd, Rn;
8816
8817 Rd = inst.operands[2].reg;
8818 Rn = inst.operands[3].reg;
8819
8820 if (thumb_mode)
8821 {
8822 reject_bad_reg (Rd);
8823 reject_bad_reg (Rn);
8824 }
8825 else
8826 {
8827 constraint (Rd == REG_PC, BAD_PC);
8828 constraint (Rn == REG_PC, BAD_PC);
8829 }
8830
8831 /* Only check the MRRC{2} variants. */
8832 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
8833 {
8834 /* If Rd == Rn, error that the operation is
8835 unpredictable (example MRRC p3,#1,r1,r1,c4). */
8836 constraint (Rd == Rn, BAD_OVERLAP);
8837 }
8838
8839 inst.instruction |= inst.operands[0].reg << 8;
8840 inst.instruction |= inst.operands[1].imm << 4;
8841 inst.instruction |= Rd << 12;
8842 inst.instruction |= Rn << 16;
8843 inst.instruction |= inst.operands[4].reg;
8844 }
8845
8846 static void
8847 do_cpsi (void)
8848 {
8849 inst.instruction |= inst.operands[0].imm << 6;
8850 if (inst.operands[1].present)
8851 {
8852 inst.instruction |= CPSI_MMOD;
8853 inst.instruction |= inst.operands[1].imm;
8854 }
8855 }
8856
8857 static void
8858 do_dbg (void)
8859 {
8860 inst.instruction |= inst.operands[0].imm;
8861 }
8862
8863 static void
8864 do_div (void)
8865 {
8866 unsigned Rd, Rn, Rm;
8867
8868 Rd = inst.operands[0].reg;
8869 Rn = (inst.operands[1].present
8870 ? inst.operands[1].reg : Rd);
8871 Rm = inst.operands[2].reg;
8872
8873 constraint ((Rd == REG_PC), BAD_PC);
8874 constraint ((Rn == REG_PC), BAD_PC);
8875 constraint ((Rm == REG_PC), BAD_PC);
8876
8877 inst.instruction |= Rd << 16;
8878 inst.instruction |= Rn << 0;
8879 inst.instruction |= Rm << 8;
8880 }
8881
8882 static void
8883 do_it (void)
8884 {
8885 /* There is no IT instruction in ARM mode. We
8886 process it to do the validation as if in
8887 thumb mode, just in case the code gets
8888 assembled for thumb using the unified syntax. */
8889
8890 inst.size = 0;
8891 if (unified_syntax)
8892 {
8893 set_it_insn_type (IT_INSN);
8894 now_it.mask = (inst.instruction & 0xf) | 0x10;
8895 now_it.cc = inst.operands[0].imm;
8896 }
8897 }
8898
8899 /* If there is only one register in the register list,
8900 then return its register number. Otherwise return -1. */
8901 static int
8902 only_one_reg_in_list (int range)
8903 {
8904 int i = ffs (range) - 1;
8905 return (i > 15 || range != (1 << i)) ? -1 : i;
8906 }
8907
8908 static void
8909 encode_ldmstm(int from_push_pop_mnem)
8910 {
8911 int base_reg = inst.operands[0].reg;
8912 int range = inst.operands[1].imm;
8913 int one_reg;
8914
8915 inst.instruction |= base_reg << 16;
8916 inst.instruction |= range;
8917
8918 if (inst.operands[1].writeback)
8919 inst.instruction |= LDM_TYPE_2_OR_3;
8920
8921 if (inst.operands[0].writeback)
8922 {
8923 inst.instruction |= WRITE_BACK;
8924 /* Check for unpredictable uses of writeback. */
8925 if (inst.instruction & LOAD_BIT)
8926 {
8927 /* Not allowed in LDM type 2. */
8928 if ((inst.instruction & LDM_TYPE_2_OR_3)
8929 && ((range & (1 << REG_PC)) == 0))
8930 as_warn (_("writeback of base register is UNPREDICTABLE"));
8931 /* Only allowed if base reg not in list for other types. */
8932 else if (range & (1 << base_reg))
8933 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8934 }
8935 else /* STM. */
8936 {
8937 /* Not allowed for type 2. */
8938 if (inst.instruction & LDM_TYPE_2_OR_3)
8939 as_warn (_("writeback of base register is UNPREDICTABLE"));
8940 /* Only allowed if base reg not in list, or first in list. */
8941 else if ((range & (1 << base_reg))
8942 && (range & ((1 << base_reg) - 1)))
8943 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
8944 }
8945 }
8946
8947 /* If PUSH/POP has only one register, then use the A2 encoding. */
8948 one_reg = only_one_reg_in_list (range);
8949 if (from_push_pop_mnem && one_reg >= 0)
8950 {
8951 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
8952
8953 if (is_push && one_reg == 13 /* SP */)
8954 /* PR 22483: The A2 encoding cannot be used when
8955 pushing the stack pointer as this is UNPREDICTABLE. */
8956 return;
8957
8958 inst.instruction &= A_COND_MASK;
8959 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
8960 inst.instruction |= one_reg << 12;
8961 }
8962 }
8963
8964 static void
8965 do_ldmstm (void)
8966 {
8967 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
8968 }
8969
8970 /* ARMv5TE load-consecutive (argument parse)
8971 Mode is like LDRH.
8972
8973 LDRccD R, mode
8974 STRccD R, mode. */
8975
8976 static void
8977 do_ldrd (void)
8978 {
8979 constraint (inst.operands[0].reg % 2 != 0,
8980 _("first transfer register must be even"));
8981 constraint (inst.operands[1].present
8982 && inst.operands[1].reg != inst.operands[0].reg + 1,
8983 _("can only transfer two consecutive registers"));
8984 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8985 constraint (!inst.operands[2].isreg, _("'[' expected"));
8986
8987 if (!inst.operands[1].present)
8988 inst.operands[1].reg = inst.operands[0].reg + 1;
8989
8990 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8991 register and the first register written; we have to diagnose
8992 overlap between the base and the second register written here. */
8993
8994 if (inst.operands[2].reg == inst.operands[1].reg
8995 && (inst.operands[2].writeback || inst.operands[2].postind))
8996 as_warn (_("base register written back, and overlaps "
8997 "second transfer register"));
8998
8999 if (!(inst.instruction & V4_STR_BIT))
9000 {
9001 /* For an index-register load, the index register must not overlap the
9002 destination (even if not write-back). */
9003 if (inst.operands[2].immisreg
9004 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9005 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9006 as_warn (_("index register overlaps transfer register"));
9007 }
9008 inst.instruction |= inst.operands[0].reg << 12;
9009 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9010 }
9011
9012 static void
9013 do_ldrex (void)
9014 {
9015 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9016 || inst.operands[1].postind || inst.operands[1].writeback
9017 || inst.operands[1].immisreg || inst.operands[1].shifted
9018 || inst.operands[1].negative
9019 /* This can arise if the programmer has written
9020 strex rN, rM, foo
9021 or if they have mistakenly used a register name as the last
9022 operand, eg:
9023 strex rN, rM, rX
9024 It is very difficult to distinguish between these two cases
9025 because "rX" might actually be a label. ie the register
9026 name has been occluded by a symbol of the same name. So we
9027 just generate a general 'bad addressing mode' type error
9028 message and leave it up to the programmer to discover the
9029 true cause and fix their mistake. */
9030 || (inst.operands[1].reg == REG_PC),
9031 BAD_ADDR_MODE);
9032
9033 constraint (inst.relocs[0].exp.X_op != O_constant
9034 || inst.relocs[0].exp.X_add_number != 0,
9035 _("offset must be zero in ARM encoding"));
9036
9037 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9038
9039 inst.instruction |= inst.operands[0].reg << 12;
9040 inst.instruction |= inst.operands[1].reg << 16;
9041 inst.relocs[0].type = BFD_RELOC_UNUSED;
9042 }
9043
9044 static void
9045 do_ldrexd (void)
9046 {
9047 constraint (inst.operands[0].reg % 2 != 0,
9048 _("even register required"));
9049 constraint (inst.operands[1].present
9050 && inst.operands[1].reg != inst.operands[0].reg + 1,
9051 _("can only load two consecutive registers"));
9052 /* If op 1 were present and equal to PC, this function wouldn't
9053 have been called in the first place. */
9054 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9055
9056 inst.instruction |= inst.operands[0].reg << 12;
9057 inst.instruction |= inst.operands[2].reg << 16;
9058 }
9059
9060 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9061 which is not a multiple of four is UNPREDICTABLE. */
9062 static void
9063 check_ldr_r15_aligned (void)
9064 {
9065 constraint (!(inst.operands[1].immisreg)
9066 && (inst.operands[0].reg == REG_PC
9067 && inst.operands[1].reg == REG_PC
9068 && (inst.relocs[0].exp.X_add_number & 0x3)),
9069 _("ldr to register 15 must be 4-byte aligned"));
9070 }
9071
9072 static void
9073 do_ldst (void)
9074 {
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 if (!inst.operands[1].isreg)
9077 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9078 return;
9079 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9080 check_ldr_r15_aligned ();
9081 }
9082
9083 static void
9084 do_ldstt (void)
9085 {
9086 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9087 reject [Rn,...]. */
9088 if (inst.operands[1].preind)
9089 {
9090 constraint (inst.relocs[0].exp.X_op != O_constant
9091 || inst.relocs[0].exp.X_add_number != 0,
9092 _("this instruction requires a post-indexed address"));
9093
9094 inst.operands[1].preind = 0;
9095 inst.operands[1].postind = 1;
9096 inst.operands[1].writeback = 1;
9097 }
9098 inst.instruction |= inst.operands[0].reg << 12;
9099 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9100 }
9101
9102 /* Halfword and signed-byte load/store operations. */
9103
9104 static void
9105 do_ldstv4 (void)
9106 {
9107 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9108 inst.instruction |= inst.operands[0].reg << 12;
9109 if (!inst.operands[1].isreg)
9110 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9111 return;
9112 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9113 }
9114
9115 static void
9116 do_ldsttv4 (void)
9117 {
9118 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9119 reject [Rn,...]. */
9120 if (inst.operands[1].preind)
9121 {
9122 constraint (inst.relocs[0].exp.X_op != O_constant
9123 || inst.relocs[0].exp.X_add_number != 0,
9124 _("this instruction requires a post-indexed address"));
9125
9126 inst.operands[1].preind = 0;
9127 inst.operands[1].postind = 1;
9128 inst.operands[1].writeback = 1;
9129 }
9130 inst.instruction |= inst.operands[0].reg << 12;
9131 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9132 }
9133
9134 /* Co-processor register load/store.
9135 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9136 static void
9137 do_lstc (void)
9138 {
9139 inst.instruction |= inst.operands[0].reg << 8;
9140 inst.instruction |= inst.operands[1].reg << 12;
9141 encode_arm_cp_address (2, TRUE, TRUE, 0);
9142 }
9143
9144 static void
9145 do_mlas (void)
9146 {
9147 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9148 if (inst.operands[0].reg == inst.operands[1].reg
9149 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9150 && !(inst.instruction & 0x00400000))
9151 as_tsktsk (_("Rd and Rm should be different in mla"));
9152
9153 inst.instruction |= inst.operands[0].reg << 16;
9154 inst.instruction |= inst.operands[1].reg;
9155 inst.instruction |= inst.operands[2].reg << 8;
9156 inst.instruction |= inst.operands[3].reg << 12;
9157 }
9158
9159 static void
9160 do_mov (void)
9161 {
9162 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9163 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9164 THUMB1_RELOC_ONLY);
9165 inst.instruction |= inst.operands[0].reg << 12;
9166 encode_arm_shifter_operand (1);
9167 }
9168
9169 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9170 static void
9171 do_mov16 (void)
9172 {
9173 bfd_vma imm;
9174 bfd_boolean top;
9175
9176 top = (inst.instruction & 0x00400000) != 0;
9177 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9178 _(":lower16: not allowed in this instruction"));
9179 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9180 _(":upper16: not allowed in this instruction"));
9181 inst.instruction |= inst.operands[0].reg << 12;
9182 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9183 {
9184 imm = inst.relocs[0].exp.X_add_number;
9185 /* The value is in two pieces: 0:11, 16:19. */
9186 inst.instruction |= (imm & 0x00000fff);
9187 inst.instruction |= (imm & 0x0000f000) << 4;
9188 }
9189 }
9190
9191 static int
9192 do_vfp_nsyn_mrs (void)
9193 {
9194 if (inst.operands[0].isvec)
9195 {
9196 if (inst.operands[1].reg != 1)
9197 first_error (_("operand 1 must be FPSCR"));
9198 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9199 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9200 do_vfp_nsyn_opcode ("fmstat");
9201 }
9202 else if (inst.operands[1].isvec)
9203 do_vfp_nsyn_opcode ("fmrx");
9204 else
9205 return FAIL;
9206
9207 return SUCCESS;
9208 }
9209
9210 static int
9211 do_vfp_nsyn_msr (void)
9212 {
9213 if (inst.operands[0].isvec)
9214 do_vfp_nsyn_opcode ("fmxr");
9215 else
9216 return FAIL;
9217
9218 return SUCCESS;
9219 }
9220
9221 static void
9222 do_vmrs (void)
9223 {
9224 unsigned Rt = inst.operands[0].reg;
9225
9226 if (thumb_mode && Rt == REG_SP)
9227 {
9228 inst.error = BAD_SP;
9229 return;
9230 }
9231
9232 /* MVFR2 is only valid at ARMv8-A. */
9233 if (inst.operands[1].reg == 5)
9234 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9235 _(BAD_FPU));
9236
9237 /* APSR_ sets isvec. All other refs to PC are illegal. */
9238 if (!inst.operands[0].isvec && Rt == REG_PC)
9239 {
9240 inst.error = BAD_PC;
9241 return;
9242 }
9243
9244 /* If we get through parsing the register name, we just insert the number
9245 generated into the instruction without further validation. */
9246 inst.instruction |= (inst.operands[1].reg << 16);
9247 inst.instruction |= (Rt << 12);
9248 }
9249
9250 static void
9251 do_vmsr (void)
9252 {
9253 unsigned Rt = inst.operands[1].reg;
9254
9255 if (thumb_mode)
9256 reject_bad_reg (Rt);
9257 else if (Rt == REG_PC)
9258 {
9259 inst.error = BAD_PC;
9260 return;
9261 }
9262
9263 /* MVFR2 is only valid for ARMv8-A. */
9264 if (inst.operands[0].reg == 5)
9265 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9266 _(BAD_FPU));
9267
9268 /* If we get through parsing the register name, we just insert the number
9269 generated into the instruction without further validation. */
9270 inst.instruction |= (inst.operands[0].reg << 16);
9271 inst.instruction |= (Rt << 12);
9272 }
9273
9274 static void
9275 do_mrs (void)
9276 {
9277 unsigned br;
9278
9279 if (do_vfp_nsyn_mrs () == SUCCESS)
9280 return;
9281
9282 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9283 inst.instruction |= inst.operands[0].reg << 12;
9284
9285 if (inst.operands[1].isreg)
9286 {
9287 br = inst.operands[1].reg;
9288 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9289 as_bad (_("bad register for mrs"));
9290 }
9291 else
9292 {
9293 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9294 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9295 != (PSR_c|PSR_f),
9296 _("'APSR', 'CPSR' or 'SPSR' expected"));
9297 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9298 }
9299
9300 inst.instruction |= br;
9301 }
9302
9303 /* Two possible forms:
9304 "{C|S}PSR_<field>, Rm",
9305 "{C|S}PSR_f, #expression". */
9306
9307 static void
9308 do_msr (void)
9309 {
9310 if (do_vfp_nsyn_msr () == SUCCESS)
9311 return;
9312
9313 inst.instruction |= inst.operands[0].imm;
9314 if (inst.operands[1].isreg)
9315 inst.instruction |= inst.operands[1].reg;
9316 else
9317 {
9318 inst.instruction |= INST_IMMEDIATE;
9319 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9320 inst.relocs[0].pc_rel = 0;
9321 }
9322 }
9323
9324 static void
9325 do_mul (void)
9326 {
9327 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9328
9329 if (!inst.operands[2].present)
9330 inst.operands[2].reg = inst.operands[0].reg;
9331 inst.instruction |= inst.operands[0].reg << 16;
9332 inst.instruction |= inst.operands[1].reg;
9333 inst.instruction |= inst.operands[2].reg << 8;
9334
9335 if (inst.operands[0].reg == inst.operands[1].reg
9336 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9337 as_tsktsk (_("Rd and Rm should be different in mul"));
9338 }
9339
9340 /* Long Multiply Parser
9341 UMULL RdLo, RdHi, Rm, Rs
9342 SMULL RdLo, RdHi, Rm, Rs
9343 UMLAL RdLo, RdHi, Rm, Rs
9344 SMLAL RdLo, RdHi, Rm, Rs. */
9345
9346 static void
9347 do_mull (void)
9348 {
9349 inst.instruction |= inst.operands[0].reg << 12;
9350 inst.instruction |= inst.operands[1].reg << 16;
9351 inst.instruction |= inst.operands[2].reg;
9352 inst.instruction |= inst.operands[3].reg << 8;
9353
9354 /* rdhi and rdlo must be different. */
9355 if (inst.operands[0].reg == inst.operands[1].reg)
9356 as_tsktsk (_("rdhi and rdlo must be different"));
9357
9358 /* rdhi, rdlo and rm must all be different before armv6. */
9359 if ((inst.operands[0].reg == inst.operands[2].reg
9360 || inst.operands[1].reg == inst.operands[2].reg)
9361 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9362 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9363 }
9364
9365 static void
9366 do_nop (void)
9367 {
9368 if (inst.operands[0].present
9369 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9370 {
9371 /* Architectural NOP hints are CPSR sets with no bits selected. */
9372 inst.instruction &= 0xf0000000;
9373 inst.instruction |= 0x0320f000;
9374 if (inst.operands[0].present)
9375 inst.instruction |= inst.operands[0].imm;
9376 }
9377 }
9378
9379 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9380 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9381 Condition defaults to COND_ALWAYS.
9382 Error if Rd, Rn or Rm are R15. */
9383
9384 static void
9385 do_pkhbt (void)
9386 {
9387 inst.instruction |= inst.operands[0].reg << 12;
9388 inst.instruction |= inst.operands[1].reg << 16;
9389 inst.instruction |= inst.operands[2].reg;
9390 if (inst.operands[3].present)
9391 encode_arm_shift (3);
9392 }
9393
9394 /* ARM V6 PKHTB (Argument Parse). */
9395
9396 static void
9397 do_pkhtb (void)
9398 {
9399 if (!inst.operands[3].present)
9400 {
9401 /* If the shift specifier is omitted, turn the instruction
9402 into pkhbt rd, rm, rn. */
9403 inst.instruction &= 0xfff00010;
9404 inst.instruction |= inst.operands[0].reg << 12;
9405 inst.instruction |= inst.operands[1].reg;
9406 inst.instruction |= inst.operands[2].reg << 16;
9407 }
9408 else
9409 {
9410 inst.instruction |= inst.operands[0].reg << 12;
9411 inst.instruction |= inst.operands[1].reg << 16;
9412 inst.instruction |= inst.operands[2].reg;
9413 encode_arm_shift (3);
9414 }
9415 }
9416
9417 /* ARMv5TE: Preload-Cache
9418 MP Extensions: Preload for write
9419
9420 PLD(W) <addr_mode>
9421
9422 Syntactically, like LDR with B=1, W=0, L=1. */
9423
9424 static void
9425 do_pld (void)
9426 {
9427 constraint (!inst.operands[0].isreg,
9428 _("'[' expected after PLD mnemonic"));
9429 constraint (inst.operands[0].postind,
9430 _("post-indexed expression used in preload instruction"));
9431 constraint (inst.operands[0].writeback,
9432 _("writeback used in preload instruction"));
9433 constraint (!inst.operands[0].preind,
9434 _("unindexed addressing used in preload instruction"));
9435 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9436 }
9437
9438 /* ARMv7: PLI <addr_mode> */
9439 static void
9440 do_pli (void)
9441 {
9442 constraint (!inst.operands[0].isreg,
9443 _("'[' expected after PLI mnemonic"));
9444 constraint (inst.operands[0].postind,
9445 _("post-indexed expression used in preload instruction"));
9446 constraint (inst.operands[0].writeback,
9447 _("writeback used in preload instruction"));
9448 constraint (!inst.operands[0].preind,
9449 _("unindexed addressing used in preload instruction"));
9450 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9451 inst.instruction &= ~PRE_INDEX;
9452 }
9453
9454 static void
9455 do_push_pop (void)
9456 {
9457 constraint (inst.operands[0].writeback,
9458 _("push/pop do not support {reglist}^"));
9459 inst.operands[1] = inst.operands[0];
9460 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
9461 inst.operands[0].isreg = 1;
9462 inst.operands[0].writeback = 1;
9463 inst.operands[0].reg = REG_SP;
9464 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
9465 }
9466
9467 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
9468 word at the specified address and the following word
9469 respectively.
9470 Unconditionally executed.
9471 Error if Rn is R15. */
9472
9473 static void
9474 do_rfe (void)
9475 {
9476 inst.instruction |= inst.operands[0].reg << 16;
9477 if (inst.operands[0].writeback)
9478 inst.instruction |= WRITE_BACK;
9479 }
9480
9481 /* ARM V6 ssat (argument parse). */
9482
9483 static void
9484 do_ssat (void)
9485 {
9486 inst.instruction |= inst.operands[0].reg << 12;
9487 inst.instruction |= (inst.operands[1].imm - 1) << 16;
9488 inst.instruction |= inst.operands[2].reg;
9489
9490 if (inst.operands[3].present)
9491 encode_arm_shift (3);
9492 }
9493
9494 /* ARM V6 usat (argument parse). */
9495
9496 static void
9497 do_usat (void)
9498 {
9499 inst.instruction |= inst.operands[0].reg << 12;
9500 inst.instruction |= inst.operands[1].imm << 16;
9501 inst.instruction |= inst.operands[2].reg;
9502
9503 if (inst.operands[3].present)
9504 encode_arm_shift (3);
9505 }
9506
9507 /* ARM V6 ssat16 (argument parse). */
9508
9509 static void
9510 do_ssat16 (void)
9511 {
9512 inst.instruction |= inst.operands[0].reg << 12;
9513 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
9514 inst.instruction |= inst.operands[2].reg;
9515 }
9516
9517 static void
9518 do_usat16 (void)
9519 {
9520 inst.instruction |= inst.operands[0].reg << 12;
9521 inst.instruction |= inst.operands[1].imm << 16;
9522 inst.instruction |= inst.operands[2].reg;
9523 }
9524
9525 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
9526 preserving the other bits.
9527
9528 setend <endian_specifier>, where <endian_specifier> is either
9529 BE or LE. */
9530
9531 static void
9532 do_setend (void)
9533 {
9534 if (warn_on_deprecated
9535 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9536 as_tsktsk (_("setend use is deprecated for ARMv8"));
9537
9538 if (inst.operands[0].imm)
9539 inst.instruction |= 0x200;
9540 }
9541
9542 static void
9543 do_shift (void)
9544 {
9545 unsigned int Rm = (inst.operands[1].present
9546 ? inst.operands[1].reg
9547 : inst.operands[0].reg);
9548
9549 inst.instruction |= inst.operands[0].reg << 12;
9550 inst.instruction |= Rm;
9551 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
9552 {
9553 inst.instruction |= inst.operands[2].reg << 8;
9554 inst.instruction |= SHIFT_BY_REG;
9555 /* PR 12854: Error on extraneous shifts. */
9556 constraint (inst.operands[2].shifted,
9557 _("extraneous shift as part of operand to shift insn"));
9558 }
9559 else
9560 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
9561 }
9562
9563 static void
9564 do_smc (void)
9565 {
9566 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
9567 inst.relocs[0].pc_rel = 0;
9568 }
9569
9570 static void
9571 do_hvc (void)
9572 {
9573 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
9574 inst.relocs[0].pc_rel = 0;
9575 }
9576
9577 static void
9578 do_swi (void)
9579 {
9580 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
9581 inst.relocs[0].pc_rel = 0;
9582 }
9583
9584 static void
9585 do_setpan (void)
9586 {
9587 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9588 _("selected processor does not support SETPAN instruction"));
9589
9590 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
9591 }
9592
9593 static void
9594 do_t_setpan (void)
9595 {
9596 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
9597 _("selected processor does not support SETPAN instruction"));
9598
9599 inst.instruction |= (inst.operands[0].imm << 3);
9600 }
9601
9602 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
9603 SMLAxy{cond} Rd,Rm,Rs,Rn
9604 SMLAWy{cond} Rd,Rm,Rs,Rn
9605 Error if any register is R15. */
9606
9607 static void
9608 do_smla (void)
9609 {
9610 inst.instruction |= inst.operands[0].reg << 16;
9611 inst.instruction |= inst.operands[1].reg;
9612 inst.instruction |= inst.operands[2].reg << 8;
9613 inst.instruction |= inst.operands[3].reg << 12;
9614 }
9615
9616 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
9617 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
9618 Error if any register is R15.
9619 Warning if Rdlo == Rdhi. */
9620
9621 static void
9622 do_smlal (void)
9623 {
9624 inst.instruction |= inst.operands[0].reg << 12;
9625 inst.instruction |= inst.operands[1].reg << 16;
9626 inst.instruction |= inst.operands[2].reg;
9627 inst.instruction |= inst.operands[3].reg << 8;
9628
9629 if (inst.operands[0].reg == inst.operands[1].reg)
9630 as_tsktsk (_("rdhi and rdlo must be different"));
9631 }
9632
9633 /* ARM V5E (El Segundo) signed-multiply (argument parse)
9634 SMULxy{cond} Rd,Rm,Rs
9635 Error if any register is R15. */
9636
9637 static void
9638 do_smul (void)
9639 {
9640 inst.instruction |= inst.operands[0].reg << 16;
9641 inst.instruction |= inst.operands[1].reg;
9642 inst.instruction |= inst.operands[2].reg << 8;
9643 }
9644
9645 /* ARM V6 srs (argument parse). The variable fields in the encoding are
9646 the same for both ARM and Thumb-2. */
9647
9648 static void
9649 do_srs (void)
9650 {
9651 int reg;
9652
9653 if (inst.operands[0].present)
9654 {
9655 reg = inst.operands[0].reg;
9656 constraint (reg != REG_SP, _("SRS base register must be r13"));
9657 }
9658 else
9659 reg = REG_SP;
9660
9661 inst.instruction |= reg << 16;
9662 inst.instruction |= inst.operands[1].imm;
9663 if (inst.operands[0].writeback || inst.operands[1].writeback)
9664 inst.instruction |= WRITE_BACK;
9665 }
9666
9667 /* ARM V6 strex (argument parse). */
9668
9669 static void
9670 do_strex (void)
9671 {
9672 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9673 || inst.operands[2].postind || inst.operands[2].writeback
9674 || inst.operands[2].immisreg || inst.operands[2].shifted
9675 || inst.operands[2].negative
9676 /* See comment in do_ldrex(). */
9677 || (inst.operands[2].reg == REG_PC),
9678 BAD_ADDR_MODE);
9679
9680 constraint (inst.operands[0].reg == inst.operands[1].reg
9681 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9682
9683 constraint (inst.relocs[0].exp.X_op != O_constant
9684 || inst.relocs[0].exp.X_add_number != 0,
9685 _("offset must be zero in ARM encoding"));
9686
9687 inst.instruction |= inst.operands[0].reg << 12;
9688 inst.instruction |= inst.operands[1].reg;
9689 inst.instruction |= inst.operands[2].reg << 16;
9690 inst.relocs[0].type = BFD_RELOC_UNUSED;
9691 }
9692
9693 static void
9694 do_t_strexbh (void)
9695 {
9696 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9697 || inst.operands[2].postind || inst.operands[2].writeback
9698 || inst.operands[2].immisreg || inst.operands[2].shifted
9699 || inst.operands[2].negative,
9700 BAD_ADDR_MODE);
9701
9702 constraint (inst.operands[0].reg == inst.operands[1].reg
9703 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9704
9705 do_rm_rd_rn ();
9706 }
9707
9708 static void
9709 do_strexd (void)
9710 {
9711 constraint (inst.operands[1].reg % 2 != 0,
9712 _("even register required"));
9713 constraint (inst.operands[2].present
9714 && inst.operands[2].reg != inst.operands[1].reg + 1,
9715 _("can only store two consecutive registers"));
9716 /* If op 2 were present and equal to PC, this function wouldn't
9717 have been called in the first place. */
9718 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
9719
9720 constraint (inst.operands[0].reg == inst.operands[1].reg
9721 || inst.operands[0].reg == inst.operands[1].reg + 1
9722 || inst.operands[0].reg == inst.operands[3].reg,
9723 BAD_OVERLAP);
9724
9725 inst.instruction |= inst.operands[0].reg << 12;
9726 inst.instruction |= inst.operands[1].reg;
9727 inst.instruction |= inst.operands[3].reg << 16;
9728 }
9729
9730 /* ARM V8 STRL. */
9731 static void
9732 do_stlex (void)
9733 {
9734 constraint (inst.operands[0].reg == inst.operands[1].reg
9735 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9736
9737 do_rd_rm_rn ();
9738 }
9739
9740 static void
9741 do_t_stlex (void)
9742 {
9743 constraint (inst.operands[0].reg == inst.operands[1].reg
9744 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
9745
9746 do_rm_rd_rn ();
9747 }
9748
9749 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
9750 extends it to 32-bits, and adds the result to a value in another
9751 register. You can specify a rotation by 0, 8, 16, or 24 bits
9752 before extracting the 16-bit value.
9753 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
9754 Condition defaults to COND_ALWAYS.
9755 Error if any register uses R15. */
9756
9757 static void
9758 do_sxtah (void)
9759 {
9760 inst.instruction |= inst.operands[0].reg << 12;
9761 inst.instruction |= inst.operands[1].reg << 16;
9762 inst.instruction |= inst.operands[2].reg;
9763 inst.instruction |= inst.operands[3].imm << 10;
9764 }
9765
9766 /* ARM V6 SXTH.
9767
9768 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
9769 Condition defaults to COND_ALWAYS.
9770 Error if any register uses R15. */
9771
9772 static void
9773 do_sxth (void)
9774 {
9775 inst.instruction |= inst.operands[0].reg << 12;
9776 inst.instruction |= inst.operands[1].reg;
9777 inst.instruction |= inst.operands[2].imm << 10;
9778 }
9779 \f
9780 /* VFP instructions. In a logical order: SP variant first, monad
9781 before dyad, arithmetic then move then load/store. */
9782
9783 static void
9784 do_vfp_sp_monadic (void)
9785 {
9786 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9787 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9788 }
9789
9790 static void
9791 do_vfp_sp_dyadic (void)
9792 {
9793 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9794 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9795 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9796 }
9797
9798 static void
9799 do_vfp_sp_compare_z (void)
9800 {
9801 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9802 }
9803
9804 static void
9805 do_vfp_dp_sp_cvt (void)
9806 {
9807 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9808 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
9809 }
9810
9811 static void
9812 do_vfp_sp_dp_cvt (void)
9813 {
9814 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9815 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9816 }
9817
9818 static void
9819 do_vfp_reg_from_sp (void)
9820 {
9821 inst.instruction |= inst.operands[0].reg << 12;
9822 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
9823 }
9824
9825 static void
9826 do_vfp_reg2_from_sp2 (void)
9827 {
9828 constraint (inst.operands[2].imm != 2,
9829 _("only two consecutive VFP SP registers allowed here"));
9830 inst.instruction |= inst.operands[0].reg << 12;
9831 inst.instruction |= inst.operands[1].reg << 16;
9832 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
9833 }
9834
9835 static void
9836 do_vfp_sp_from_reg (void)
9837 {
9838 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
9839 inst.instruction |= inst.operands[1].reg << 12;
9840 }
9841
9842 static void
9843 do_vfp_sp2_from_reg2 (void)
9844 {
9845 constraint (inst.operands[0].imm != 2,
9846 _("only two consecutive VFP SP registers allowed here"));
9847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
9848 inst.instruction |= inst.operands[1].reg << 12;
9849 inst.instruction |= inst.operands[2].reg << 16;
9850 }
9851
9852 static void
9853 do_vfp_sp_ldst (void)
9854 {
9855 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9856 encode_arm_cp_address (1, FALSE, TRUE, 0);
9857 }
9858
9859 static void
9860 do_vfp_dp_ldst (void)
9861 {
9862 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9863 encode_arm_cp_address (1, FALSE, TRUE, 0);
9864 }
9865
9866
9867 static void
9868 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
9869 {
9870 if (inst.operands[0].writeback)
9871 inst.instruction |= WRITE_BACK;
9872 else
9873 constraint (ldstm_type != VFP_LDSTMIA,
9874 _("this addressing mode requires base-register writeback"));
9875 inst.instruction |= inst.operands[0].reg << 16;
9876 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
9877 inst.instruction |= inst.operands[1].imm;
9878 }
9879
9880 static void
9881 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
9882 {
9883 int count;
9884
9885 if (inst.operands[0].writeback)
9886 inst.instruction |= WRITE_BACK;
9887 else
9888 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
9889 _("this addressing mode requires base-register writeback"));
9890
9891 inst.instruction |= inst.operands[0].reg << 16;
9892 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9893
9894 count = inst.operands[1].imm << 1;
9895 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9896 count += 1;
9897
9898 inst.instruction |= count;
9899 }
9900
9901 static void
9902 do_vfp_sp_ldstmia (void)
9903 {
9904 vfp_sp_ldstm (VFP_LDSTMIA);
9905 }
9906
9907 static void
9908 do_vfp_sp_ldstmdb (void)
9909 {
9910 vfp_sp_ldstm (VFP_LDSTMDB);
9911 }
9912
9913 static void
9914 do_vfp_dp_ldstmia (void)
9915 {
9916 vfp_dp_ldstm (VFP_LDSTMIA);
9917 }
9918
9919 static void
9920 do_vfp_dp_ldstmdb (void)
9921 {
9922 vfp_dp_ldstm (VFP_LDSTMDB);
9923 }
9924
9925 static void
9926 do_vfp_xp_ldstmia (void)
9927 {
9928 vfp_dp_ldstm (VFP_LDSTMIAX);
9929 }
9930
9931 static void
9932 do_vfp_xp_ldstmdb (void)
9933 {
9934 vfp_dp_ldstm (VFP_LDSTMDBX);
9935 }
9936
9937 static void
9938 do_vfp_dp_rd_rm (void)
9939 {
9940 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9941 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
9942 }
9943
9944 static void
9945 do_vfp_dp_rn_rd (void)
9946 {
9947 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
9948 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9949 }
9950
9951 static void
9952 do_vfp_dp_rd_rn (void)
9953 {
9954 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9955 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9956 }
9957
9958 static void
9959 do_vfp_dp_rd_rn_rm (void)
9960 {
9961 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9962 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
9963 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
9964 }
9965
9966 static void
9967 do_vfp_dp_rd (void)
9968 {
9969 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9970 }
9971
9972 static void
9973 do_vfp_dp_rm_rd_rn (void)
9974 {
9975 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
9976 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
9977 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
9978 }
9979
9980 /* VFPv3 instructions. */
9981 static void
9982 do_vfp_sp_const (void)
9983 {
9984 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9985 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9986 inst.instruction |= (inst.operands[1].imm & 0x0f);
9987 }
9988
9989 static void
9990 do_vfp_dp_const (void)
9991 {
9992 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9993 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9994 inst.instruction |= (inst.operands[1].imm & 0x0f);
9995 }
9996
9997 static void
9998 vfp_conv (int srcsize)
9999 {
10000 int immbits = srcsize - inst.operands[1].imm;
10001
10002 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10003 {
10004 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10005 i.e. immbits must be in range 0 - 16. */
10006 inst.error = _("immediate value out of range, expected range [0, 16]");
10007 return;
10008 }
10009 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10010 {
10011 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10012 i.e. immbits must be in range 0 - 31. */
10013 inst.error = _("immediate value out of range, expected range [1, 32]");
10014 return;
10015 }
10016
10017 inst.instruction |= (immbits & 1) << 5;
10018 inst.instruction |= (immbits >> 1);
10019 }
10020
10021 static void
10022 do_vfp_sp_conv_16 (void)
10023 {
10024 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10025 vfp_conv (16);
10026 }
10027
10028 static void
10029 do_vfp_dp_conv_16 (void)
10030 {
10031 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10032 vfp_conv (16);
10033 }
10034
10035 static void
10036 do_vfp_sp_conv_32 (void)
10037 {
10038 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10039 vfp_conv (32);
10040 }
10041
10042 static void
10043 do_vfp_dp_conv_32 (void)
10044 {
10045 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10046 vfp_conv (32);
10047 }
10048 \f
10049 /* FPA instructions. Also in a logical order. */
10050
10051 static void
10052 do_fpa_cmp (void)
10053 {
10054 inst.instruction |= inst.operands[0].reg << 16;
10055 inst.instruction |= inst.operands[1].reg;
10056 }
10057
10058 static void
10059 do_fpa_ldmstm (void)
10060 {
10061 inst.instruction |= inst.operands[0].reg << 12;
10062 switch (inst.operands[1].imm)
10063 {
10064 case 1: inst.instruction |= CP_T_X; break;
10065 case 2: inst.instruction |= CP_T_Y; break;
10066 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10067 case 4: break;
10068 default: abort ();
10069 }
10070
10071 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10072 {
10073 /* The instruction specified "ea" or "fd", so we can only accept
10074 [Rn]{!}. The instruction does not really support stacking or
10075 unstacking, so we have to emulate these by setting appropriate
10076 bits and offsets. */
10077 constraint (inst.relocs[0].exp.X_op != O_constant
10078 || inst.relocs[0].exp.X_add_number != 0,
10079 _("this instruction does not support indexing"));
10080
10081 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10082 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10083
10084 if (!(inst.instruction & INDEX_UP))
10085 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10086
10087 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10088 {
10089 inst.operands[2].preind = 0;
10090 inst.operands[2].postind = 1;
10091 }
10092 }
10093
10094 encode_arm_cp_address (2, TRUE, TRUE, 0);
10095 }
10096 \f
10097 /* iWMMXt instructions: strictly in alphabetical order. */
10098
10099 static void
10100 do_iwmmxt_tandorc (void)
10101 {
10102 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10103 }
10104
10105 static void
10106 do_iwmmxt_textrc (void)
10107 {
10108 inst.instruction |= inst.operands[0].reg << 12;
10109 inst.instruction |= inst.operands[1].imm;
10110 }
10111
10112 static void
10113 do_iwmmxt_textrm (void)
10114 {
10115 inst.instruction |= inst.operands[0].reg << 12;
10116 inst.instruction |= inst.operands[1].reg << 16;
10117 inst.instruction |= inst.operands[2].imm;
10118 }
10119
10120 static void
10121 do_iwmmxt_tinsr (void)
10122 {
10123 inst.instruction |= inst.operands[0].reg << 16;
10124 inst.instruction |= inst.operands[1].reg << 12;
10125 inst.instruction |= inst.operands[2].imm;
10126 }
10127
10128 static void
10129 do_iwmmxt_tmia (void)
10130 {
10131 inst.instruction |= inst.operands[0].reg << 5;
10132 inst.instruction |= inst.operands[1].reg;
10133 inst.instruction |= inst.operands[2].reg << 12;
10134 }
10135
10136 static void
10137 do_iwmmxt_waligni (void)
10138 {
10139 inst.instruction |= inst.operands[0].reg << 12;
10140 inst.instruction |= inst.operands[1].reg << 16;
10141 inst.instruction |= inst.operands[2].reg;
10142 inst.instruction |= inst.operands[3].imm << 20;
10143 }
10144
10145 static void
10146 do_iwmmxt_wmerge (void)
10147 {
10148 inst.instruction |= inst.operands[0].reg << 12;
10149 inst.instruction |= inst.operands[1].reg << 16;
10150 inst.instruction |= inst.operands[2].reg;
10151 inst.instruction |= inst.operands[3].imm << 21;
10152 }
10153
10154 static void
10155 do_iwmmxt_wmov (void)
10156 {
10157 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10158 inst.instruction |= inst.operands[0].reg << 12;
10159 inst.instruction |= inst.operands[1].reg << 16;
10160 inst.instruction |= inst.operands[1].reg;
10161 }
10162
10163 static void
10164 do_iwmmxt_wldstbh (void)
10165 {
10166 int reloc;
10167 inst.instruction |= inst.operands[0].reg << 12;
10168 if (thumb_mode)
10169 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10170 else
10171 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10172 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10173 }
10174
10175 static void
10176 do_iwmmxt_wldstw (void)
10177 {
10178 /* RIWR_RIWC clears .isreg for a control register. */
10179 if (!inst.operands[0].isreg)
10180 {
10181 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10182 inst.instruction |= 0xf0000000;
10183 }
10184
10185 inst.instruction |= inst.operands[0].reg << 12;
10186 encode_arm_cp_address (1, TRUE, TRUE, 0);
10187 }
10188
10189 static void
10190 do_iwmmxt_wldstd (void)
10191 {
10192 inst.instruction |= inst.operands[0].reg << 12;
10193 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10194 && inst.operands[1].immisreg)
10195 {
10196 inst.instruction &= ~0x1a000ff;
10197 inst.instruction |= (0xfU << 28);
10198 if (inst.operands[1].preind)
10199 inst.instruction |= PRE_INDEX;
10200 if (!inst.operands[1].negative)
10201 inst.instruction |= INDEX_UP;
10202 if (inst.operands[1].writeback)
10203 inst.instruction |= WRITE_BACK;
10204 inst.instruction |= inst.operands[1].reg << 16;
10205 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10206 inst.instruction |= inst.operands[1].imm;
10207 }
10208 else
10209 encode_arm_cp_address (1, TRUE, FALSE, 0);
10210 }
10211
10212 static void
10213 do_iwmmxt_wshufh (void)
10214 {
10215 inst.instruction |= inst.operands[0].reg << 12;
10216 inst.instruction |= inst.operands[1].reg << 16;
10217 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10218 inst.instruction |= (inst.operands[2].imm & 0x0f);
10219 }
10220
10221 static void
10222 do_iwmmxt_wzero (void)
10223 {
10224 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10225 inst.instruction |= inst.operands[0].reg;
10226 inst.instruction |= inst.operands[0].reg << 12;
10227 inst.instruction |= inst.operands[0].reg << 16;
10228 }
10229
10230 static void
10231 do_iwmmxt_wrwrwr_or_imm5 (void)
10232 {
10233 if (inst.operands[2].isreg)
10234 do_rd_rn_rm ();
10235 else {
10236 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10237 _("immediate operand requires iWMMXt2"));
10238 do_rd_rn ();
10239 if (inst.operands[2].imm == 0)
10240 {
10241 switch ((inst.instruction >> 20) & 0xf)
10242 {
10243 case 4:
10244 case 5:
10245 case 6:
10246 case 7:
10247 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10248 inst.operands[2].imm = 16;
10249 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10250 break;
10251 case 8:
10252 case 9:
10253 case 10:
10254 case 11:
10255 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10256 inst.operands[2].imm = 32;
10257 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10258 break;
10259 case 12:
10260 case 13:
10261 case 14:
10262 case 15:
10263 {
10264 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10265 unsigned long wrn;
10266 wrn = (inst.instruction >> 16) & 0xf;
10267 inst.instruction &= 0xff0fff0f;
10268 inst.instruction |= wrn;
10269 /* Bail out here; the instruction is now assembled. */
10270 return;
10271 }
10272 }
10273 }
10274 /* Map 32 -> 0, etc. */
10275 inst.operands[2].imm &= 0x1f;
10276 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10277 }
10278 }
10279 \f
10280 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10281 operations first, then control, shift, and load/store. */
10282
10283 /* Insns like "foo X,Y,Z". */
10284
10285 static void
10286 do_mav_triple (void)
10287 {
10288 inst.instruction |= inst.operands[0].reg << 16;
10289 inst.instruction |= inst.operands[1].reg;
10290 inst.instruction |= inst.operands[2].reg << 12;
10291 }
10292
10293 /* Insns like "foo W,X,Y,Z".
10294 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10295
10296 static void
10297 do_mav_quad (void)
10298 {
10299 inst.instruction |= inst.operands[0].reg << 5;
10300 inst.instruction |= inst.operands[1].reg << 12;
10301 inst.instruction |= inst.operands[2].reg << 16;
10302 inst.instruction |= inst.operands[3].reg;
10303 }
10304
10305 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10306 static void
10307 do_mav_dspsc (void)
10308 {
10309 inst.instruction |= inst.operands[1].reg << 12;
10310 }
10311
10312 /* Maverick shift immediate instructions.
10313 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10314 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10315
10316 static void
10317 do_mav_shift (void)
10318 {
10319 int imm = inst.operands[2].imm;
10320
10321 inst.instruction |= inst.operands[0].reg << 12;
10322 inst.instruction |= inst.operands[1].reg << 16;
10323
10324 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10325 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10326 Bit 4 should be 0. */
10327 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10328
10329 inst.instruction |= imm;
10330 }
10331 \f
10332 /* XScale instructions. Also sorted arithmetic before move. */
10333
10334 /* Xscale multiply-accumulate (argument parse)
10335 MIAcc acc0,Rm,Rs
10336 MIAPHcc acc0,Rm,Rs
10337 MIAxycc acc0,Rm,Rs. */
10338
10339 static void
10340 do_xsc_mia (void)
10341 {
10342 inst.instruction |= inst.operands[1].reg;
10343 inst.instruction |= inst.operands[2].reg << 12;
10344 }
10345
10346 /* Xscale move-accumulator-register (argument parse)
10347
10348 MARcc acc0,RdLo,RdHi. */
10349
10350 static void
10351 do_xsc_mar (void)
10352 {
10353 inst.instruction |= inst.operands[1].reg << 12;
10354 inst.instruction |= inst.operands[2].reg << 16;
10355 }
10356
10357 /* Xscale move-register-accumulator (argument parse)
10358
10359 MRAcc RdLo,RdHi,acc0. */
10360
10361 static void
10362 do_xsc_mra (void)
10363 {
10364 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10365 inst.instruction |= inst.operands[0].reg << 12;
10366 inst.instruction |= inst.operands[1].reg << 16;
10367 }
10368 \f
10369 /* Encoding functions relevant only to Thumb. */
10370
10371 /* inst.operands[i] is a shifted-register operand; encode
10372 it into inst.instruction in the format used by Thumb32. */
10373
10374 static void
10375 encode_thumb32_shifted_operand (int i)
10376 {
10377 unsigned int value = inst.relocs[0].exp.X_add_number;
10378 unsigned int shift = inst.operands[i].shift_kind;
10379
10380 constraint (inst.operands[i].immisreg,
10381 _("shift by register not allowed in thumb mode"));
10382 inst.instruction |= inst.operands[i].reg;
10383 if (shift == SHIFT_RRX)
10384 inst.instruction |= SHIFT_ROR << 4;
10385 else
10386 {
10387 constraint (inst.relocs[0].exp.X_op != O_constant,
10388 _("expression too complex"));
10389
10390 constraint (value > 32
10391 || (value == 32 && (shift == SHIFT_LSL
10392 || shift == SHIFT_ROR)),
10393 _("shift expression is too large"));
10394
10395 if (value == 0)
10396 shift = SHIFT_LSL;
10397 else if (value == 32)
10398 value = 0;
10399
10400 inst.instruction |= shift << 4;
10401 inst.instruction |= (value & 0x1c) << 10;
10402 inst.instruction |= (value & 0x03) << 6;
10403 }
10404 }
10405
10406
10407 /* inst.operands[i] was set up by parse_address. Encode it into a
10408 Thumb32 format load or store instruction. Reject forms that cannot
10409 be used with such instructions. If is_t is true, reject forms that
10410 cannot be used with a T instruction; if is_d is true, reject forms
10411 that cannot be used with a D instruction. If it is a store insn,
10412 reject PC in Rn. */
10413
10414 static void
10415 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10416 {
10417 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
10418
10419 constraint (!inst.operands[i].isreg,
10420 _("Instruction does not support =N addresses"));
10421
10422 inst.instruction |= inst.operands[i].reg << 16;
10423 if (inst.operands[i].immisreg)
10424 {
10425 constraint (is_pc, BAD_PC_ADDRESSING);
10426 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10427 constraint (inst.operands[i].negative,
10428 _("Thumb does not support negative register indexing"));
10429 constraint (inst.operands[i].postind,
10430 _("Thumb does not support register post-indexing"));
10431 constraint (inst.operands[i].writeback,
10432 _("Thumb does not support register indexing with writeback"));
10433 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
10434 _("Thumb supports only LSL in shifted register indexing"));
10435
10436 inst.instruction |= inst.operands[i].imm;
10437 if (inst.operands[i].shifted)
10438 {
10439 constraint (inst.relocs[0].exp.X_op != O_constant,
10440 _("expression too complex"));
10441 constraint (inst.relocs[0].exp.X_add_number < 0
10442 || inst.relocs[0].exp.X_add_number > 3,
10443 _("shift out of range"));
10444 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10445 }
10446 inst.relocs[0].type = BFD_RELOC_UNUSED;
10447 }
10448 else if (inst.operands[i].preind)
10449 {
10450 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
10451 constraint (is_t && inst.operands[i].writeback,
10452 _("cannot use writeback with this instruction"));
10453 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
10454 BAD_PC_ADDRESSING);
10455
10456 if (is_d)
10457 {
10458 inst.instruction |= 0x01000000;
10459 if (inst.operands[i].writeback)
10460 inst.instruction |= 0x00200000;
10461 }
10462 else
10463 {
10464 inst.instruction |= 0x00000c00;
10465 if (inst.operands[i].writeback)
10466 inst.instruction |= 0x00000100;
10467 }
10468 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10469 }
10470 else if (inst.operands[i].postind)
10471 {
10472 gas_assert (inst.operands[i].writeback);
10473 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
10474 constraint (is_t, _("cannot use post-indexing with this instruction"));
10475
10476 if (is_d)
10477 inst.instruction |= 0x00200000;
10478 else
10479 inst.instruction |= 0x00000900;
10480 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10481 }
10482 else /* unindexed - only for coprocessor */
10483 inst.error = _("instruction does not accept unindexed addressing");
10484 }
10485
10486 /* Table of Thumb instructions which exist in both 16- and 32-bit
10487 encodings (the latter only in post-V6T2 cores). The index is the
10488 value used in the insns table below. When there is more than one
10489 possible 16-bit encoding for the instruction, this table always
10490 holds variant (1).
10491 Also contains several pseudo-instructions used during relaxation. */
10492 #define T16_32_TAB \
10493 X(_adc, 4140, eb400000), \
10494 X(_adcs, 4140, eb500000), \
10495 X(_add, 1c00, eb000000), \
10496 X(_adds, 1c00, eb100000), \
10497 X(_addi, 0000, f1000000), \
10498 X(_addis, 0000, f1100000), \
10499 X(_add_pc,000f, f20f0000), \
10500 X(_add_sp,000d, f10d0000), \
10501 X(_adr, 000f, f20f0000), \
10502 X(_and, 4000, ea000000), \
10503 X(_ands, 4000, ea100000), \
10504 X(_asr, 1000, fa40f000), \
10505 X(_asrs, 1000, fa50f000), \
10506 X(_b, e000, f000b000), \
10507 X(_bcond, d000, f0008000), \
10508 X(_bf, 0000, f040e001), \
10509 X(_bfx, 0000, f060e001), \
10510 X(_bflx, 0000, f070e001), \
10511 X(_bic, 4380, ea200000), \
10512 X(_bics, 4380, ea300000), \
10513 X(_cmn, 42c0, eb100f00), \
10514 X(_cmp, 2800, ebb00f00), \
10515 X(_cpsie, b660, f3af8400), \
10516 X(_cpsid, b670, f3af8600), \
10517 X(_cpy, 4600, ea4f0000), \
10518 X(_dec_sp,80dd, f1ad0d00), \
10519 X(_eor, 4040, ea800000), \
10520 X(_eors, 4040, ea900000), \
10521 X(_inc_sp,00dd, f10d0d00), \
10522 X(_ldmia, c800, e8900000), \
10523 X(_ldr, 6800, f8500000), \
10524 X(_ldrb, 7800, f8100000), \
10525 X(_ldrh, 8800, f8300000), \
10526 X(_ldrsb, 5600, f9100000), \
10527 X(_ldrsh, 5e00, f9300000), \
10528 X(_ldr_pc,4800, f85f0000), \
10529 X(_ldr_pc2,4800, f85f0000), \
10530 X(_ldr_sp,9800, f85d0000), \
10531 X(_lsl, 0000, fa00f000), \
10532 X(_lsls, 0000, fa10f000), \
10533 X(_lsr, 0800, fa20f000), \
10534 X(_lsrs, 0800, fa30f000), \
10535 X(_mov, 2000, ea4f0000), \
10536 X(_movs, 2000, ea5f0000), \
10537 X(_mul, 4340, fb00f000), \
10538 X(_muls, 4340, ffffffff), /* no 32b muls */ \
10539 X(_mvn, 43c0, ea6f0000), \
10540 X(_mvns, 43c0, ea7f0000), \
10541 X(_neg, 4240, f1c00000), /* rsb #0 */ \
10542 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
10543 X(_orr, 4300, ea400000), \
10544 X(_orrs, 4300, ea500000), \
10545 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
10546 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
10547 X(_rev, ba00, fa90f080), \
10548 X(_rev16, ba40, fa90f090), \
10549 X(_revsh, bac0, fa90f0b0), \
10550 X(_ror, 41c0, fa60f000), \
10551 X(_rors, 41c0, fa70f000), \
10552 X(_sbc, 4180, eb600000), \
10553 X(_sbcs, 4180, eb700000), \
10554 X(_stmia, c000, e8800000), \
10555 X(_str, 6000, f8400000), \
10556 X(_strb, 7000, f8000000), \
10557 X(_strh, 8000, f8200000), \
10558 X(_str_sp,9000, f84d0000), \
10559 X(_sub, 1e00, eba00000), \
10560 X(_subs, 1e00, ebb00000), \
10561 X(_subi, 8000, f1a00000), \
10562 X(_subis, 8000, f1b00000), \
10563 X(_sxtb, b240, fa4ff080), \
10564 X(_sxth, b200, fa0ff080), \
10565 X(_tst, 4200, ea100f00), \
10566 X(_uxtb, b2c0, fa5ff080), \
10567 X(_uxth, b280, fa1ff080), \
10568 X(_nop, bf00, f3af8000), \
10569 X(_yield, bf10, f3af8001), \
10570 X(_wfe, bf20, f3af8002), \
10571 X(_wfi, bf30, f3af8003), \
10572 X(_sev, bf40, f3af8004), \
10573 X(_sevl, bf50, f3af8005), \
10574 X(_udf, de00, f7f0a000)
10575
10576 /* To catch errors in encoding functions, the codes are all offset by
10577 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
10578 as 16-bit instructions. */
10579 #define X(a,b,c) T_MNEM##a
10580 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
10581 #undef X
10582
10583 #define X(a,b,c) 0x##b
10584 static const unsigned short thumb_op16[] = { T16_32_TAB };
10585 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
10586 #undef X
10587
10588 #define X(a,b,c) 0x##c
10589 static const unsigned int thumb_op32[] = { T16_32_TAB };
10590 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
10591 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
10592 #undef X
10593 #undef T16_32_TAB
10594
10595 /* Thumb instruction encoders, in alphabetical order. */
10596
10597 /* ADDW or SUBW. */
10598
10599 static void
10600 do_t_add_sub_w (void)
10601 {
10602 int Rd, Rn;
10603
10604 Rd = inst.operands[0].reg;
10605 Rn = inst.operands[1].reg;
10606
10607 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
10608 is the SP-{plus,minus}-immediate form of the instruction. */
10609 if (Rn == REG_SP)
10610 constraint (Rd == REG_PC, BAD_PC);
10611 else
10612 reject_bad_reg (Rd);
10613
10614 inst.instruction |= (Rn << 16) | (Rd << 8);
10615 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
10616 }
10617
10618 /* Parse an add or subtract instruction. We get here with inst.instruction
10619 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
10620
10621 static void
10622 do_t_add_sub (void)
10623 {
10624 int Rd, Rs, Rn;
10625
10626 Rd = inst.operands[0].reg;
10627 Rs = (inst.operands[1].present
10628 ? inst.operands[1].reg /* Rd, Rs, foo */
10629 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10630
10631 if (Rd == REG_PC)
10632 set_it_insn_type_last ();
10633
10634 if (unified_syntax)
10635 {
10636 bfd_boolean flags;
10637 bfd_boolean narrow;
10638 int opcode;
10639
10640 flags = (inst.instruction == T_MNEM_adds
10641 || inst.instruction == T_MNEM_subs);
10642 if (flags)
10643 narrow = !in_it_block ();
10644 else
10645 narrow = in_it_block ();
10646 if (!inst.operands[2].isreg)
10647 {
10648 int add;
10649
10650 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10651 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10652
10653 add = (inst.instruction == T_MNEM_add
10654 || inst.instruction == T_MNEM_adds);
10655 opcode = 0;
10656 if (inst.size_req != 4)
10657 {
10658 /* Attempt to use a narrow opcode, with relaxation if
10659 appropriate. */
10660 if (Rd == REG_SP && Rs == REG_SP && !flags)
10661 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
10662 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
10663 opcode = T_MNEM_add_sp;
10664 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
10665 opcode = T_MNEM_add_pc;
10666 else if (Rd <= 7 && Rs <= 7 && narrow)
10667 {
10668 if (flags)
10669 opcode = add ? T_MNEM_addis : T_MNEM_subis;
10670 else
10671 opcode = add ? T_MNEM_addi : T_MNEM_subi;
10672 }
10673 if (opcode)
10674 {
10675 inst.instruction = THUMB_OP16(opcode);
10676 inst.instruction |= (Rd << 4) | Rs;
10677 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
10678 || (inst.relocs[0].type
10679 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
10680 {
10681 if (inst.size_req == 2)
10682 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
10683 else
10684 inst.relax = opcode;
10685 }
10686 }
10687 else
10688 constraint (inst.size_req == 2, BAD_HIREG);
10689 }
10690 if (inst.size_req == 4
10691 || (inst.size_req != 2 && !opcode))
10692 {
10693 constraint ((inst.relocs[0].type
10694 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
10695 && (inst.relocs[0].type
10696 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
10697 THUMB1_RELOC_ONLY);
10698 if (Rd == REG_PC)
10699 {
10700 constraint (add, BAD_PC);
10701 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
10702 _("only SUBS PC, LR, #const allowed"));
10703 constraint (inst.relocs[0].exp.X_op != O_constant,
10704 _("expression too complex"));
10705 constraint (inst.relocs[0].exp.X_add_number < 0
10706 || inst.relocs[0].exp.X_add_number > 0xff,
10707 _("immediate value out of range"));
10708 inst.instruction = T2_SUBS_PC_LR
10709 | inst.relocs[0].exp.X_add_number;
10710 inst.relocs[0].type = BFD_RELOC_UNUSED;
10711 return;
10712 }
10713 else if (Rs == REG_PC)
10714 {
10715 /* Always use addw/subw. */
10716 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
10717 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
10718 }
10719 else
10720 {
10721 inst.instruction = THUMB_OP32 (inst.instruction);
10722 inst.instruction = (inst.instruction & 0xe1ffffff)
10723 | 0x10000000;
10724 if (flags)
10725 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
10726 else
10727 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
10728 }
10729 inst.instruction |= Rd << 8;
10730 inst.instruction |= Rs << 16;
10731 }
10732 }
10733 else
10734 {
10735 unsigned int value = inst.relocs[0].exp.X_add_number;
10736 unsigned int shift = inst.operands[2].shift_kind;
10737
10738 Rn = inst.operands[2].reg;
10739 /* See if we can do this with a 16-bit instruction. */
10740 if (!inst.operands[2].shifted && inst.size_req != 4)
10741 {
10742 if (Rd > 7 || Rs > 7 || Rn > 7)
10743 narrow = FALSE;
10744
10745 if (narrow)
10746 {
10747 inst.instruction = ((inst.instruction == T_MNEM_adds
10748 || inst.instruction == T_MNEM_add)
10749 ? T_OPCODE_ADD_R3
10750 : T_OPCODE_SUB_R3);
10751 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10752 return;
10753 }
10754
10755 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
10756 {
10757 /* Thumb-1 cores (except v6-M) require at least one high
10758 register in a narrow non flag setting add. */
10759 if (Rd > 7 || Rn > 7
10760 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
10761 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
10762 {
10763 if (Rd == Rn)
10764 {
10765 Rn = Rs;
10766 Rs = Rd;
10767 }
10768 inst.instruction = T_OPCODE_ADD_HI;
10769 inst.instruction |= (Rd & 8) << 4;
10770 inst.instruction |= (Rd & 7);
10771 inst.instruction |= Rn << 3;
10772 return;
10773 }
10774 }
10775 }
10776
10777 constraint (Rd == REG_PC, BAD_PC);
10778 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10779 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
10780 constraint (Rs == REG_PC, BAD_PC);
10781 reject_bad_reg (Rn);
10782
10783 /* If we get here, it can't be done in 16 bits. */
10784 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
10785 _("shift must be constant"));
10786 inst.instruction = THUMB_OP32 (inst.instruction);
10787 inst.instruction |= Rd << 8;
10788 inst.instruction |= Rs << 16;
10789 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
10790 _("shift value over 3 not allowed in thumb mode"));
10791 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
10792 _("only LSL shift allowed in thumb mode"));
10793 encode_thumb32_shifted_operand (2);
10794 }
10795 }
10796 else
10797 {
10798 constraint (inst.instruction == T_MNEM_adds
10799 || inst.instruction == T_MNEM_subs,
10800 BAD_THUMB32);
10801
10802 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
10803 {
10804 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
10805 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
10806 BAD_HIREG);
10807
10808 inst.instruction = (inst.instruction == T_MNEM_add
10809 ? 0x0000 : 0x8000);
10810 inst.instruction |= (Rd << 4) | Rs;
10811 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
10812 return;
10813 }
10814
10815 Rn = inst.operands[2].reg;
10816 constraint (inst.operands[2].shifted, _("unshifted register required"));
10817
10818 /* We now have Rd, Rs, and Rn set to registers. */
10819 if (Rd > 7 || Rs > 7 || Rn > 7)
10820 {
10821 /* Can't do this for SUB. */
10822 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
10823 inst.instruction = T_OPCODE_ADD_HI;
10824 inst.instruction |= (Rd & 8) << 4;
10825 inst.instruction |= (Rd & 7);
10826 if (Rs == Rd)
10827 inst.instruction |= Rn << 3;
10828 else if (Rn == Rd)
10829 inst.instruction |= Rs << 3;
10830 else
10831 constraint (1, _("dest must overlap one source register"));
10832 }
10833 else
10834 {
10835 inst.instruction = (inst.instruction == T_MNEM_add
10836 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
10837 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
10838 }
10839 }
10840 }
10841
10842 static void
10843 do_t_adr (void)
10844 {
10845 unsigned Rd;
10846
10847 Rd = inst.operands[0].reg;
10848 reject_bad_reg (Rd);
10849
10850 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
10851 {
10852 /* Defer to section relaxation. */
10853 inst.relax = inst.instruction;
10854 inst.instruction = THUMB_OP16 (inst.instruction);
10855 inst.instruction |= Rd << 4;
10856 }
10857 else if (unified_syntax && inst.size_req != 2)
10858 {
10859 /* Generate a 32-bit opcode. */
10860 inst.instruction = THUMB_OP32 (inst.instruction);
10861 inst.instruction |= Rd << 8;
10862 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
10863 inst.relocs[0].pc_rel = 1;
10864 }
10865 else
10866 {
10867 /* Generate a 16-bit opcode. */
10868 inst.instruction = THUMB_OP16 (inst.instruction);
10869 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
10870 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
10871 inst.relocs[0].pc_rel = 1;
10872 inst.instruction |= Rd << 4;
10873 }
10874
10875 if (inst.relocs[0].exp.X_op == O_symbol
10876 && inst.relocs[0].exp.X_add_symbol != NULL
10877 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
10878 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
10879 inst.relocs[0].exp.X_add_number += 1;
10880 }
10881
10882 /* Arithmetic instructions for which there is just one 16-bit
10883 instruction encoding, and it allows only two low registers.
10884 For maximal compatibility with ARM syntax, we allow three register
10885 operands even when Thumb-32 instructions are not available, as long
10886 as the first two are identical. For instance, both "sbc r0,r1" and
10887 "sbc r0,r0,r1" are allowed. */
10888 static void
10889 do_t_arit3 (void)
10890 {
10891 int Rd, Rs, Rn;
10892
10893 Rd = inst.operands[0].reg;
10894 Rs = (inst.operands[1].present
10895 ? inst.operands[1].reg /* Rd, Rs, foo */
10896 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10897 Rn = inst.operands[2].reg;
10898
10899 reject_bad_reg (Rd);
10900 reject_bad_reg (Rs);
10901 if (inst.operands[2].isreg)
10902 reject_bad_reg (Rn);
10903
10904 if (unified_syntax)
10905 {
10906 if (!inst.operands[2].isreg)
10907 {
10908 /* For an immediate, we always generate a 32-bit opcode;
10909 section relaxation will shrink it later if possible. */
10910 inst.instruction = THUMB_OP32 (inst.instruction);
10911 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10912 inst.instruction |= Rd << 8;
10913 inst.instruction |= Rs << 16;
10914 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
10915 }
10916 else
10917 {
10918 bfd_boolean narrow;
10919
10920 /* See if we can do this with a 16-bit instruction. */
10921 if (THUMB_SETS_FLAGS (inst.instruction))
10922 narrow = !in_it_block ();
10923 else
10924 narrow = in_it_block ();
10925
10926 if (Rd > 7 || Rn > 7 || Rs > 7)
10927 narrow = FALSE;
10928 if (inst.operands[2].shifted)
10929 narrow = FALSE;
10930 if (inst.size_req == 4)
10931 narrow = FALSE;
10932
10933 if (narrow
10934 && Rd == Rs)
10935 {
10936 inst.instruction = THUMB_OP16 (inst.instruction);
10937 inst.instruction |= Rd;
10938 inst.instruction |= Rn << 3;
10939 return;
10940 }
10941
10942 /* If we get here, it can't be done in 16 bits. */
10943 constraint (inst.operands[2].shifted
10944 && inst.operands[2].immisreg,
10945 _("shift must be constant"));
10946 inst.instruction = THUMB_OP32 (inst.instruction);
10947 inst.instruction |= Rd << 8;
10948 inst.instruction |= Rs << 16;
10949 encode_thumb32_shifted_operand (2);
10950 }
10951 }
10952 else
10953 {
10954 /* On its face this is a lie - the instruction does set the
10955 flags. However, the only supported mnemonic in this mode
10956 says it doesn't. */
10957 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10958
10959 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10960 _("unshifted register required"));
10961 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10962 constraint (Rd != Rs,
10963 _("dest and source1 must be the same register"));
10964
10965 inst.instruction = THUMB_OP16 (inst.instruction);
10966 inst.instruction |= Rd;
10967 inst.instruction |= Rn << 3;
10968 }
10969 }
10970
10971 /* Similarly, but for instructions where the arithmetic operation is
10972 commutative, so we can allow either of them to be different from
10973 the destination operand in a 16-bit instruction. For instance, all
10974 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
10975 accepted. */
10976 static void
10977 do_t_arit3c (void)
10978 {
10979 int Rd, Rs, Rn;
10980
10981 Rd = inst.operands[0].reg;
10982 Rs = (inst.operands[1].present
10983 ? inst.operands[1].reg /* Rd, Rs, foo */
10984 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10985 Rn = inst.operands[2].reg;
10986
10987 reject_bad_reg (Rd);
10988 reject_bad_reg (Rs);
10989 if (inst.operands[2].isreg)
10990 reject_bad_reg (Rn);
10991
10992 if (unified_syntax)
10993 {
10994 if (!inst.operands[2].isreg)
10995 {
10996 /* For an immediate, we always generate a 32-bit opcode;
10997 section relaxation will shrink it later if possible. */
10998 inst.instruction = THUMB_OP32 (inst.instruction);
10999 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11000 inst.instruction |= Rd << 8;
11001 inst.instruction |= Rs << 16;
11002 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11003 }
11004 else
11005 {
11006 bfd_boolean narrow;
11007
11008 /* See if we can do this with a 16-bit instruction. */
11009 if (THUMB_SETS_FLAGS (inst.instruction))
11010 narrow = !in_it_block ();
11011 else
11012 narrow = in_it_block ();
11013
11014 if (Rd > 7 || Rn > 7 || Rs > 7)
11015 narrow = FALSE;
11016 if (inst.operands[2].shifted)
11017 narrow = FALSE;
11018 if (inst.size_req == 4)
11019 narrow = FALSE;
11020
11021 if (narrow)
11022 {
11023 if (Rd == Rs)
11024 {
11025 inst.instruction = THUMB_OP16 (inst.instruction);
11026 inst.instruction |= Rd;
11027 inst.instruction |= Rn << 3;
11028 return;
11029 }
11030 if (Rd == Rn)
11031 {
11032 inst.instruction = THUMB_OP16 (inst.instruction);
11033 inst.instruction |= Rd;
11034 inst.instruction |= Rs << 3;
11035 return;
11036 }
11037 }
11038
11039 /* If we get here, it can't be done in 16 bits. */
11040 constraint (inst.operands[2].shifted
11041 && inst.operands[2].immisreg,
11042 _("shift must be constant"));
11043 inst.instruction = THUMB_OP32 (inst.instruction);
11044 inst.instruction |= Rd << 8;
11045 inst.instruction |= Rs << 16;
11046 encode_thumb32_shifted_operand (2);
11047 }
11048 }
11049 else
11050 {
11051 /* On its face this is a lie - the instruction does set the
11052 flags. However, the only supported mnemonic in this mode
11053 says it doesn't. */
11054 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11055
11056 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11057 _("unshifted register required"));
11058 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11059
11060 inst.instruction = THUMB_OP16 (inst.instruction);
11061 inst.instruction |= Rd;
11062
11063 if (Rd == Rs)
11064 inst.instruction |= Rn << 3;
11065 else if (Rd == Rn)
11066 inst.instruction |= Rs << 3;
11067 else
11068 constraint (1, _("dest must overlap one source register"));
11069 }
11070 }
11071
11072 static void
11073 do_t_bfc (void)
11074 {
11075 unsigned Rd;
11076 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11077 constraint (msb > 32, _("bit-field extends past end of register"));
11078 /* The instruction encoding stores the LSB and MSB,
11079 not the LSB and width. */
11080 Rd = inst.operands[0].reg;
11081 reject_bad_reg (Rd);
11082 inst.instruction |= Rd << 8;
11083 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11084 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11085 inst.instruction |= msb - 1;
11086 }
11087
11088 static void
11089 do_t_bfi (void)
11090 {
11091 int Rd, Rn;
11092 unsigned int msb;
11093
11094 Rd = inst.operands[0].reg;
11095 reject_bad_reg (Rd);
11096
11097 /* #0 in second position is alternative syntax for bfc, which is
11098 the same instruction but with REG_PC in the Rm field. */
11099 if (!inst.operands[1].isreg)
11100 Rn = REG_PC;
11101 else
11102 {
11103 Rn = inst.operands[1].reg;
11104 reject_bad_reg (Rn);
11105 }
11106
11107 msb = inst.operands[2].imm + inst.operands[3].imm;
11108 constraint (msb > 32, _("bit-field extends past end of register"));
11109 /* The instruction encoding stores the LSB and MSB,
11110 not the LSB and width. */
11111 inst.instruction |= Rd << 8;
11112 inst.instruction |= Rn << 16;
11113 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11114 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11115 inst.instruction |= msb - 1;
11116 }
11117
11118 static void
11119 do_t_bfx (void)
11120 {
11121 unsigned Rd, Rn;
11122
11123 Rd = inst.operands[0].reg;
11124 Rn = inst.operands[1].reg;
11125
11126 reject_bad_reg (Rd);
11127 reject_bad_reg (Rn);
11128
11129 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11130 _("bit-field extends past end of register"));
11131 inst.instruction |= Rd << 8;
11132 inst.instruction |= Rn << 16;
11133 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11134 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11135 inst.instruction |= inst.operands[3].imm - 1;
11136 }
11137
11138 /* ARM V5 Thumb BLX (argument parse)
11139 BLX <target_addr> which is BLX(1)
11140 BLX <Rm> which is BLX(2)
11141 Unfortunately, there are two different opcodes for this mnemonic.
11142 So, the insns[].value is not used, and the code here zaps values
11143 into inst.instruction.
11144
11145 ??? How to take advantage of the additional two bits of displacement
11146 available in Thumb32 mode? Need new relocation? */
11147
11148 static void
11149 do_t_blx (void)
11150 {
11151 set_it_insn_type_last ();
11152
11153 if (inst.operands[0].isreg)
11154 {
11155 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11156 /* We have a register, so this is BLX(2). */
11157 inst.instruction |= inst.operands[0].reg << 3;
11158 }
11159 else
11160 {
11161 /* No register. This must be BLX(1). */
11162 inst.instruction = 0xf000e800;
11163 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11164 }
11165 }
11166
11167 static void
11168 do_t_branch (void)
11169 {
11170 int opcode;
11171 int cond;
11172 bfd_reloc_code_real_type reloc;
11173
11174 cond = inst.cond;
11175 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
11176
11177 if (in_it_block ())
11178 {
11179 /* Conditional branches inside IT blocks are encoded as unconditional
11180 branches. */
11181 cond = COND_ALWAYS;
11182 }
11183 else
11184 cond = inst.cond;
11185
11186 if (cond != COND_ALWAYS)
11187 opcode = T_MNEM_bcond;
11188 else
11189 opcode = inst.instruction;
11190
11191 if (unified_syntax
11192 && (inst.size_req == 4
11193 || (inst.size_req != 2
11194 && (inst.operands[0].hasreloc
11195 || inst.relocs[0].exp.X_op == O_constant))))
11196 {
11197 inst.instruction = THUMB_OP32(opcode);
11198 if (cond == COND_ALWAYS)
11199 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11200 else
11201 {
11202 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11203 _("selected architecture does not support "
11204 "wide conditional branch instruction"));
11205
11206 gas_assert (cond != 0xF);
11207 inst.instruction |= cond << 22;
11208 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11209 }
11210 }
11211 else
11212 {
11213 inst.instruction = THUMB_OP16(opcode);
11214 if (cond == COND_ALWAYS)
11215 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11216 else
11217 {
11218 inst.instruction |= cond << 8;
11219 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11220 }
11221 /* Allow section relaxation. */
11222 if (unified_syntax && inst.size_req != 2)
11223 inst.relax = opcode;
11224 }
11225 inst.relocs[0].type = reloc;
11226 inst.relocs[0].pc_rel = 1;
11227 }
11228
11229 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11230 between the two is the maximum immediate allowed - which is passed in
11231 RANGE. */
11232 static void
11233 do_t_bkpt_hlt1 (int range)
11234 {
11235 constraint (inst.cond != COND_ALWAYS,
11236 _("instruction is always unconditional"));
11237 if (inst.operands[0].present)
11238 {
11239 constraint (inst.operands[0].imm > range,
11240 _("immediate value out of range"));
11241 inst.instruction |= inst.operands[0].imm;
11242 }
11243
11244 set_it_insn_type (NEUTRAL_IT_INSN);
11245 }
11246
11247 static void
11248 do_t_hlt (void)
11249 {
11250 do_t_bkpt_hlt1 (63);
11251 }
11252
11253 static void
11254 do_t_bkpt (void)
11255 {
11256 do_t_bkpt_hlt1 (255);
11257 }
11258
11259 static void
11260 do_t_branch23 (void)
11261 {
11262 set_it_insn_type_last ();
11263 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11264
11265 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11266 this file. We used to simply ignore the PLT reloc type here --
11267 the branch encoding is now needed to deal with TLSCALL relocs.
11268 So if we see a PLT reloc now, put it back to how it used to be to
11269 keep the preexisting behaviour. */
11270 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11271 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11272
11273 #if defined(OBJ_COFF)
11274 /* If the destination of the branch is a defined symbol which does not have
11275 the THUMB_FUNC attribute, then we must be calling a function which has
11276 the (interfacearm) attribute. We look for the Thumb entry point to that
11277 function and change the branch to refer to that function instead. */
11278 if ( inst.relocs[0].exp.X_op == O_symbol
11279 && inst.relocs[0].exp.X_add_symbol != NULL
11280 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11281 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11282 inst.relocs[0].exp.X_add_symbol
11283 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11284 #endif
11285 }
11286
11287 static void
11288 do_t_bx (void)
11289 {
11290 set_it_insn_type_last ();
11291 inst.instruction |= inst.operands[0].reg << 3;
11292 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11293 should cause the alignment to be checked once it is known. This is
11294 because BX PC only works if the instruction is word aligned. */
11295 }
11296
11297 static void
11298 do_t_bxj (void)
11299 {
11300 int Rm;
11301
11302 set_it_insn_type_last ();
11303 Rm = inst.operands[0].reg;
11304 reject_bad_reg (Rm);
11305 inst.instruction |= Rm << 16;
11306 }
11307
11308 static void
11309 do_t_clz (void)
11310 {
11311 unsigned Rd;
11312 unsigned Rm;
11313
11314 Rd = inst.operands[0].reg;
11315 Rm = inst.operands[1].reg;
11316
11317 reject_bad_reg (Rd);
11318 reject_bad_reg (Rm);
11319
11320 inst.instruction |= Rd << 8;
11321 inst.instruction |= Rm << 16;
11322 inst.instruction |= Rm;
11323 }
11324
11325 static void
11326 do_t_csdb (void)
11327 {
11328 set_it_insn_type (OUTSIDE_IT_INSN);
11329 }
11330
11331 static void
11332 do_t_cps (void)
11333 {
11334 set_it_insn_type (OUTSIDE_IT_INSN);
11335 inst.instruction |= inst.operands[0].imm;
11336 }
11337
11338 static void
11339 do_t_cpsi (void)
11340 {
11341 set_it_insn_type (OUTSIDE_IT_INSN);
11342 if (unified_syntax
11343 && (inst.operands[1].present || inst.size_req == 4)
11344 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11345 {
11346 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11347 inst.instruction = 0xf3af8000;
11348 inst.instruction |= imod << 9;
11349 inst.instruction |= inst.operands[0].imm << 5;
11350 if (inst.operands[1].present)
11351 inst.instruction |= 0x100 | inst.operands[1].imm;
11352 }
11353 else
11354 {
11355 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11356 && (inst.operands[0].imm & 4),
11357 _("selected processor does not support 'A' form "
11358 "of this instruction"));
11359 constraint (inst.operands[1].present || inst.size_req == 4,
11360 _("Thumb does not support the 2-argument "
11361 "form of this instruction"));
11362 inst.instruction |= inst.operands[0].imm;
11363 }
11364 }
11365
11366 /* THUMB CPY instruction (argument parse). */
11367
11368 static void
11369 do_t_cpy (void)
11370 {
11371 if (inst.size_req == 4)
11372 {
11373 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11374 inst.instruction |= inst.operands[0].reg << 8;
11375 inst.instruction |= inst.operands[1].reg;
11376 }
11377 else
11378 {
11379 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11380 inst.instruction |= (inst.operands[0].reg & 0x7);
11381 inst.instruction |= inst.operands[1].reg << 3;
11382 }
11383 }
11384
11385 static void
11386 do_t_cbz (void)
11387 {
11388 set_it_insn_type (OUTSIDE_IT_INSN);
11389 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11390 inst.instruction |= inst.operands[0].reg;
11391 inst.relocs[0].pc_rel = 1;
11392 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11393 }
11394
11395 static void
11396 do_t_dbg (void)
11397 {
11398 inst.instruction |= inst.operands[0].imm;
11399 }
11400
11401 static void
11402 do_t_div (void)
11403 {
11404 unsigned Rd, Rn, Rm;
11405
11406 Rd = inst.operands[0].reg;
11407 Rn = (inst.operands[1].present
11408 ? inst.operands[1].reg : Rd);
11409 Rm = inst.operands[2].reg;
11410
11411 reject_bad_reg (Rd);
11412 reject_bad_reg (Rn);
11413 reject_bad_reg (Rm);
11414
11415 inst.instruction |= Rd << 8;
11416 inst.instruction |= Rn << 16;
11417 inst.instruction |= Rm;
11418 }
11419
11420 static void
11421 do_t_hint (void)
11422 {
11423 if (unified_syntax && inst.size_req == 4)
11424 inst.instruction = THUMB_OP32 (inst.instruction);
11425 else
11426 inst.instruction = THUMB_OP16 (inst.instruction);
11427 }
11428
11429 static void
11430 do_t_it (void)
11431 {
11432 unsigned int cond = inst.operands[0].imm;
11433
11434 set_it_insn_type (IT_INSN);
11435 now_it.mask = (inst.instruction & 0xf) | 0x10;
11436 now_it.cc = cond;
11437 now_it.warn_deprecated = FALSE;
11438
11439 /* If the condition is a negative condition, invert the mask. */
11440 if ((cond & 0x1) == 0x0)
11441 {
11442 unsigned int mask = inst.instruction & 0x000f;
11443
11444 if ((mask & 0x7) == 0)
11445 {
11446 /* No conversion needed. */
11447 now_it.block_length = 1;
11448 }
11449 else if ((mask & 0x3) == 0)
11450 {
11451 mask ^= 0x8;
11452 now_it.block_length = 2;
11453 }
11454 else if ((mask & 0x1) == 0)
11455 {
11456 mask ^= 0xC;
11457 now_it.block_length = 3;
11458 }
11459 else
11460 {
11461 mask ^= 0xE;
11462 now_it.block_length = 4;
11463 }
11464
11465 inst.instruction &= 0xfff0;
11466 inst.instruction |= mask;
11467 }
11468
11469 inst.instruction |= cond << 4;
11470 }
11471
11472 /* Helper function used for both push/pop and ldm/stm. */
11473 static void
11474 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
11475 {
11476 bfd_boolean load;
11477
11478 load = (inst.instruction & (1 << 20)) != 0;
11479
11480 if (mask & (1 << 13))
11481 inst.error = _("SP not allowed in register list");
11482
11483 if ((mask & (1 << base)) != 0
11484 && writeback)
11485 inst.error = _("having the base register in the register list when "
11486 "using write back is UNPREDICTABLE");
11487
11488 if (load)
11489 {
11490 if (mask & (1 << 15))
11491 {
11492 if (mask & (1 << 14))
11493 inst.error = _("LR and PC should not both be in register list");
11494 else
11495 set_it_insn_type_last ();
11496 }
11497 }
11498 else
11499 {
11500 if (mask & (1 << 15))
11501 inst.error = _("PC not allowed in register list");
11502 }
11503
11504 if ((mask & (mask - 1)) == 0)
11505 {
11506 /* Single register transfers implemented as str/ldr. */
11507 if (writeback)
11508 {
11509 if (inst.instruction & (1 << 23))
11510 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
11511 else
11512 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
11513 }
11514 else
11515 {
11516 if (inst.instruction & (1 << 23))
11517 inst.instruction = 0x00800000; /* ia -> [base] */
11518 else
11519 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
11520 }
11521
11522 inst.instruction |= 0xf8400000;
11523 if (load)
11524 inst.instruction |= 0x00100000;
11525
11526 mask = ffs (mask) - 1;
11527 mask <<= 12;
11528 }
11529 else if (writeback)
11530 inst.instruction |= WRITE_BACK;
11531
11532 inst.instruction |= mask;
11533 inst.instruction |= base << 16;
11534 }
11535
11536 static void
11537 do_t_ldmstm (void)
11538 {
11539 /* This really doesn't seem worth it. */
11540 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
11541 _("expression too complex"));
11542 constraint (inst.operands[1].writeback,
11543 _("Thumb load/store multiple does not support {reglist}^"));
11544
11545 if (unified_syntax)
11546 {
11547 bfd_boolean narrow;
11548 unsigned mask;
11549
11550 narrow = FALSE;
11551 /* See if we can use a 16-bit instruction. */
11552 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
11553 && inst.size_req != 4
11554 && !(inst.operands[1].imm & ~0xff))
11555 {
11556 mask = 1 << inst.operands[0].reg;
11557
11558 if (inst.operands[0].reg <= 7)
11559 {
11560 if (inst.instruction == T_MNEM_stmia
11561 ? inst.operands[0].writeback
11562 : (inst.operands[0].writeback
11563 == !(inst.operands[1].imm & mask)))
11564 {
11565 if (inst.instruction == T_MNEM_stmia
11566 && (inst.operands[1].imm & mask)
11567 && (inst.operands[1].imm & (mask - 1)))
11568 as_warn (_("value stored for r%d is UNKNOWN"),
11569 inst.operands[0].reg);
11570
11571 inst.instruction = THUMB_OP16 (inst.instruction);
11572 inst.instruction |= inst.operands[0].reg << 8;
11573 inst.instruction |= inst.operands[1].imm;
11574 narrow = TRUE;
11575 }
11576 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11577 {
11578 /* This means 1 register in reg list one of 3 situations:
11579 1. Instruction is stmia, but without writeback.
11580 2. lmdia without writeback, but with Rn not in
11581 reglist.
11582 3. ldmia with writeback, but with Rn in reglist.
11583 Case 3 is UNPREDICTABLE behaviour, so we handle
11584 case 1 and 2 which can be converted into a 16-bit
11585 str or ldr. The SP cases are handled below. */
11586 unsigned long opcode;
11587 /* First, record an error for Case 3. */
11588 if (inst.operands[1].imm & mask
11589 && inst.operands[0].writeback)
11590 inst.error =
11591 _("having the base register in the register list when "
11592 "using write back is UNPREDICTABLE");
11593
11594 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
11595 : T_MNEM_ldr);
11596 inst.instruction = THUMB_OP16 (opcode);
11597 inst.instruction |= inst.operands[0].reg << 3;
11598 inst.instruction |= (ffs (inst.operands[1].imm)-1);
11599 narrow = TRUE;
11600 }
11601 }
11602 else if (inst.operands[0] .reg == REG_SP)
11603 {
11604 if (inst.operands[0].writeback)
11605 {
11606 inst.instruction =
11607 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11608 ? T_MNEM_push : T_MNEM_pop);
11609 inst.instruction |= inst.operands[1].imm;
11610 narrow = TRUE;
11611 }
11612 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
11613 {
11614 inst.instruction =
11615 THUMB_OP16 (inst.instruction == T_MNEM_stmia
11616 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
11617 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
11618 narrow = TRUE;
11619 }
11620 }
11621 }
11622
11623 if (!narrow)
11624 {
11625 if (inst.instruction < 0xffff)
11626 inst.instruction = THUMB_OP32 (inst.instruction);
11627
11628 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
11629 inst.operands[0].writeback);
11630 }
11631 }
11632 else
11633 {
11634 constraint (inst.operands[0].reg > 7
11635 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
11636 constraint (inst.instruction != T_MNEM_ldmia
11637 && inst.instruction != T_MNEM_stmia,
11638 _("Thumb-2 instruction only valid in unified syntax"));
11639 if (inst.instruction == T_MNEM_stmia)
11640 {
11641 if (!inst.operands[0].writeback)
11642 as_warn (_("this instruction will write back the base register"));
11643 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
11644 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
11645 as_warn (_("value stored for r%d is UNKNOWN"),
11646 inst.operands[0].reg);
11647 }
11648 else
11649 {
11650 if (!inst.operands[0].writeback
11651 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
11652 as_warn (_("this instruction will write back the base register"));
11653 else if (inst.operands[0].writeback
11654 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
11655 as_warn (_("this instruction will not write back the base register"));
11656 }
11657
11658 inst.instruction = THUMB_OP16 (inst.instruction);
11659 inst.instruction |= inst.operands[0].reg << 8;
11660 inst.instruction |= inst.operands[1].imm;
11661 }
11662 }
11663
11664 static void
11665 do_t_ldrex (void)
11666 {
11667 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
11668 || inst.operands[1].postind || inst.operands[1].writeback
11669 || inst.operands[1].immisreg || inst.operands[1].shifted
11670 || inst.operands[1].negative,
11671 BAD_ADDR_MODE);
11672
11673 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
11674
11675 inst.instruction |= inst.operands[0].reg << 12;
11676 inst.instruction |= inst.operands[1].reg << 16;
11677 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
11678 }
11679
11680 static void
11681 do_t_ldrexd (void)
11682 {
11683 if (!inst.operands[1].present)
11684 {
11685 constraint (inst.operands[0].reg == REG_LR,
11686 _("r14 not allowed as first register "
11687 "when second register is omitted"));
11688 inst.operands[1].reg = inst.operands[0].reg + 1;
11689 }
11690 constraint (inst.operands[0].reg == inst.operands[1].reg,
11691 BAD_OVERLAP);
11692
11693 inst.instruction |= inst.operands[0].reg << 12;
11694 inst.instruction |= inst.operands[1].reg << 8;
11695 inst.instruction |= inst.operands[2].reg << 16;
11696 }
11697
11698 static void
11699 do_t_ldst (void)
11700 {
11701 unsigned long opcode;
11702 int Rn;
11703
11704 if (inst.operands[0].isreg
11705 && !inst.operands[0].preind
11706 && inst.operands[0].reg == REG_PC)
11707 set_it_insn_type_last ();
11708
11709 opcode = inst.instruction;
11710 if (unified_syntax)
11711 {
11712 if (!inst.operands[1].isreg)
11713 {
11714 if (opcode <= 0xffff)
11715 inst.instruction = THUMB_OP32 (opcode);
11716 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11717 return;
11718 }
11719 if (inst.operands[1].isreg
11720 && !inst.operands[1].writeback
11721 && !inst.operands[1].shifted && !inst.operands[1].postind
11722 && !inst.operands[1].negative && inst.operands[0].reg <= 7
11723 && opcode <= 0xffff
11724 && inst.size_req != 4)
11725 {
11726 /* Insn may have a 16-bit form. */
11727 Rn = inst.operands[1].reg;
11728 if (inst.operands[1].immisreg)
11729 {
11730 inst.instruction = THUMB_OP16 (opcode);
11731 /* [Rn, Rik] */
11732 if (Rn <= 7 && inst.operands[1].imm <= 7)
11733 goto op16;
11734 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
11735 reject_bad_reg (inst.operands[1].imm);
11736 }
11737 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
11738 && opcode != T_MNEM_ldrsb)
11739 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
11740 || (Rn == REG_SP && opcode == T_MNEM_str))
11741 {
11742 /* [Rn, #const] */
11743 if (Rn > 7)
11744 {
11745 if (Rn == REG_PC)
11746 {
11747 if (inst.relocs[0].pc_rel)
11748 opcode = T_MNEM_ldr_pc2;
11749 else
11750 opcode = T_MNEM_ldr_pc;
11751 }
11752 else
11753 {
11754 if (opcode == T_MNEM_ldr)
11755 opcode = T_MNEM_ldr_sp;
11756 else
11757 opcode = T_MNEM_str_sp;
11758 }
11759 inst.instruction = inst.operands[0].reg << 8;
11760 }
11761 else
11762 {
11763 inst.instruction = inst.operands[0].reg;
11764 inst.instruction |= inst.operands[1].reg << 3;
11765 }
11766 inst.instruction |= THUMB_OP16 (opcode);
11767 if (inst.size_req == 2)
11768 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
11769 else
11770 inst.relax = opcode;
11771 return;
11772 }
11773 }
11774 /* Definitely a 32-bit variant. */
11775
11776 /* Warning for Erratum 752419. */
11777 if (opcode == T_MNEM_ldr
11778 && inst.operands[0].reg == REG_SP
11779 && inst.operands[1].writeback == 1
11780 && !inst.operands[1].immisreg)
11781 {
11782 if (no_cpu_selected ()
11783 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
11784 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
11785 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
11786 as_warn (_("This instruction may be unpredictable "
11787 "if executed on M-profile cores "
11788 "with interrupts enabled."));
11789 }
11790
11791 /* Do some validations regarding addressing modes. */
11792 if (inst.operands[1].immisreg)
11793 reject_bad_reg (inst.operands[1].imm);
11794
11795 constraint (inst.operands[1].writeback == 1
11796 && inst.operands[0].reg == inst.operands[1].reg,
11797 BAD_OVERLAP);
11798
11799 inst.instruction = THUMB_OP32 (opcode);
11800 inst.instruction |= inst.operands[0].reg << 12;
11801 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
11802 check_ldr_r15_aligned ();
11803 return;
11804 }
11805
11806 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11807
11808 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
11809 {
11810 /* Only [Rn,Rm] is acceptable. */
11811 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
11812 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
11813 || inst.operands[1].postind || inst.operands[1].shifted
11814 || inst.operands[1].negative,
11815 _("Thumb does not support this addressing mode"));
11816 inst.instruction = THUMB_OP16 (inst.instruction);
11817 goto op16;
11818 }
11819
11820 inst.instruction = THUMB_OP16 (inst.instruction);
11821 if (!inst.operands[1].isreg)
11822 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
11823 return;
11824
11825 constraint (!inst.operands[1].preind
11826 || inst.operands[1].shifted
11827 || inst.operands[1].writeback,
11828 _("Thumb does not support this addressing mode"));
11829 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
11830 {
11831 constraint (inst.instruction & 0x0600,
11832 _("byte or halfword not valid for base register"));
11833 constraint (inst.operands[1].reg == REG_PC
11834 && !(inst.instruction & THUMB_LOAD_BIT),
11835 _("r15 based store not allowed"));
11836 constraint (inst.operands[1].immisreg,
11837 _("invalid base register for register offset"));
11838
11839 if (inst.operands[1].reg == REG_PC)
11840 inst.instruction = T_OPCODE_LDR_PC;
11841 else if (inst.instruction & THUMB_LOAD_BIT)
11842 inst.instruction = T_OPCODE_LDR_SP;
11843 else
11844 inst.instruction = T_OPCODE_STR_SP;
11845
11846 inst.instruction |= inst.operands[0].reg << 8;
11847 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
11848 return;
11849 }
11850
11851 constraint (inst.operands[1].reg > 7, BAD_HIREG);
11852 if (!inst.operands[1].immisreg)
11853 {
11854 /* Immediate offset. */
11855 inst.instruction |= inst.operands[0].reg;
11856 inst.instruction |= inst.operands[1].reg << 3;
11857 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
11858 return;
11859 }
11860
11861 /* Register offset. */
11862 constraint (inst.operands[1].imm > 7, BAD_HIREG);
11863 constraint (inst.operands[1].negative,
11864 _("Thumb does not support this addressing mode"));
11865
11866 op16:
11867 switch (inst.instruction)
11868 {
11869 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
11870 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
11871 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
11872 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
11873 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
11874 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
11875 case 0x5600 /* ldrsb */:
11876 case 0x5e00 /* ldrsh */: break;
11877 default: abort ();
11878 }
11879
11880 inst.instruction |= inst.operands[0].reg;
11881 inst.instruction |= inst.operands[1].reg << 3;
11882 inst.instruction |= inst.operands[1].imm << 6;
11883 }
11884
11885 static void
11886 do_t_ldstd (void)
11887 {
11888 if (!inst.operands[1].present)
11889 {
11890 inst.operands[1].reg = inst.operands[0].reg + 1;
11891 constraint (inst.operands[0].reg == REG_LR,
11892 _("r14 not allowed here"));
11893 constraint (inst.operands[0].reg == REG_R12,
11894 _("r12 not allowed here"));
11895 }
11896
11897 if (inst.operands[2].writeback
11898 && (inst.operands[0].reg == inst.operands[2].reg
11899 || inst.operands[1].reg == inst.operands[2].reg))
11900 as_warn (_("base register written back, and overlaps "
11901 "one of transfer registers"));
11902
11903 inst.instruction |= inst.operands[0].reg << 12;
11904 inst.instruction |= inst.operands[1].reg << 8;
11905 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
11906 }
11907
11908 static void
11909 do_t_ldstt (void)
11910 {
11911 inst.instruction |= inst.operands[0].reg << 12;
11912 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
11913 }
11914
11915 static void
11916 do_t_mla (void)
11917 {
11918 unsigned Rd, Rn, Rm, Ra;
11919
11920 Rd = inst.operands[0].reg;
11921 Rn = inst.operands[1].reg;
11922 Rm = inst.operands[2].reg;
11923 Ra = inst.operands[3].reg;
11924
11925 reject_bad_reg (Rd);
11926 reject_bad_reg (Rn);
11927 reject_bad_reg (Rm);
11928 reject_bad_reg (Ra);
11929
11930 inst.instruction |= Rd << 8;
11931 inst.instruction |= Rn << 16;
11932 inst.instruction |= Rm;
11933 inst.instruction |= Ra << 12;
11934 }
11935
11936 static void
11937 do_t_mlal (void)
11938 {
11939 unsigned RdLo, RdHi, Rn, Rm;
11940
11941 RdLo = inst.operands[0].reg;
11942 RdHi = inst.operands[1].reg;
11943 Rn = inst.operands[2].reg;
11944 Rm = inst.operands[3].reg;
11945
11946 reject_bad_reg (RdLo);
11947 reject_bad_reg (RdHi);
11948 reject_bad_reg (Rn);
11949 reject_bad_reg (Rm);
11950
11951 inst.instruction |= RdLo << 12;
11952 inst.instruction |= RdHi << 8;
11953 inst.instruction |= Rn << 16;
11954 inst.instruction |= Rm;
11955 }
11956
11957 static void
11958 do_t_mov_cmp (void)
11959 {
11960 unsigned Rn, Rm;
11961
11962 Rn = inst.operands[0].reg;
11963 Rm = inst.operands[1].reg;
11964
11965 if (Rn == REG_PC)
11966 set_it_insn_type_last ();
11967
11968 if (unified_syntax)
11969 {
11970 int r0off = (inst.instruction == T_MNEM_mov
11971 || inst.instruction == T_MNEM_movs) ? 8 : 16;
11972 unsigned long opcode;
11973 bfd_boolean narrow;
11974 bfd_boolean low_regs;
11975
11976 low_regs = (Rn <= 7 && Rm <= 7);
11977 opcode = inst.instruction;
11978 if (in_it_block ())
11979 narrow = opcode != T_MNEM_movs;
11980 else
11981 narrow = opcode != T_MNEM_movs || low_regs;
11982 if (inst.size_req == 4
11983 || inst.operands[1].shifted)
11984 narrow = FALSE;
11985
11986 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
11987 if (opcode == T_MNEM_movs && inst.operands[1].isreg
11988 && !inst.operands[1].shifted
11989 && Rn == REG_PC
11990 && Rm == REG_LR)
11991 {
11992 inst.instruction = T2_SUBS_PC_LR;
11993 return;
11994 }
11995
11996 if (opcode == T_MNEM_cmp)
11997 {
11998 constraint (Rn == REG_PC, BAD_PC);
11999 if (narrow)
12000 {
12001 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12002 but valid. */
12003 warn_deprecated_sp (Rm);
12004 /* R15 was documented as a valid choice for Rm in ARMv6,
12005 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12006 tools reject R15, so we do too. */
12007 constraint (Rm == REG_PC, BAD_PC);
12008 }
12009 else
12010 reject_bad_reg (Rm);
12011 }
12012 else if (opcode == T_MNEM_mov
12013 || opcode == T_MNEM_movs)
12014 {
12015 if (inst.operands[1].isreg)
12016 {
12017 if (opcode == T_MNEM_movs)
12018 {
12019 reject_bad_reg (Rn);
12020 reject_bad_reg (Rm);
12021 }
12022 else if (narrow)
12023 {
12024 /* This is mov.n. */
12025 if ((Rn == REG_SP || Rn == REG_PC)
12026 && (Rm == REG_SP || Rm == REG_PC))
12027 {
12028 as_tsktsk (_("Use of r%u as a source register is "
12029 "deprecated when r%u is the destination "
12030 "register."), Rm, Rn);
12031 }
12032 }
12033 else
12034 {
12035 /* This is mov.w. */
12036 constraint (Rn == REG_PC, BAD_PC);
12037 constraint (Rm == REG_PC, BAD_PC);
12038 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12039 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12040 }
12041 }
12042 else
12043 reject_bad_reg (Rn);
12044 }
12045
12046 if (!inst.operands[1].isreg)
12047 {
12048 /* Immediate operand. */
12049 if (!in_it_block () && opcode == T_MNEM_mov)
12050 narrow = 0;
12051 if (low_regs && narrow)
12052 {
12053 inst.instruction = THUMB_OP16 (opcode);
12054 inst.instruction |= Rn << 8;
12055 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12056 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12057 {
12058 if (inst.size_req == 2)
12059 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12060 else
12061 inst.relax = opcode;
12062 }
12063 }
12064 else
12065 {
12066 constraint ((inst.relocs[0].type
12067 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12068 && (inst.relocs[0].type
12069 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12070 THUMB1_RELOC_ONLY);
12071
12072 inst.instruction = THUMB_OP32 (inst.instruction);
12073 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12074 inst.instruction |= Rn << r0off;
12075 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12076 }
12077 }
12078 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12079 && (inst.instruction == T_MNEM_mov
12080 || inst.instruction == T_MNEM_movs))
12081 {
12082 /* Register shifts are encoded as separate shift instructions. */
12083 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12084
12085 if (in_it_block ())
12086 narrow = !flags;
12087 else
12088 narrow = flags;
12089
12090 if (inst.size_req == 4)
12091 narrow = FALSE;
12092
12093 if (!low_regs || inst.operands[1].imm > 7)
12094 narrow = FALSE;
12095
12096 if (Rn != Rm)
12097 narrow = FALSE;
12098
12099 switch (inst.operands[1].shift_kind)
12100 {
12101 case SHIFT_LSL:
12102 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12103 break;
12104 case SHIFT_ASR:
12105 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12106 break;
12107 case SHIFT_LSR:
12108 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12109 break;
12110 case SHIFT_ROR:
12111 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12112 break;
12113 default:
12114 abort ();
12115 }
12116
12117 inst.instruction = opcode;
12118 if (narrow)
12119 {
12120 inst.instruction |= Rn;
12121 inst.instruction |= inst.operands[1].imm << 3;
12122 }
12123 else
12124 {
12125 if (flags)
12126 inst.instruction |= CONDS_BIT;
12127
12128 inst.instruction |= Rn << 8;
12129 inst.instruction |= Rm << 16;
12130 inst.instruction |= inst.operands[1].imm;
12131 }
12132 }
12133 else if (!narrow)
12134 {
12135 /* Some mov with immediate shift have narrow variants.
12136 Register shifts are handled above. */
12137 if (low_regs && inst.operands[1].shifted
12138 && (inst.instruction == T_MNEM_mov
12139 || inst.instruction == T_MNEM_movs))
12140 {
12141 if (in_it_block ())
12142 narrow = (inst.instruction == T_MNEM_mov);
12143 else
12144 narrow = (inst.instruction == T_MNEM_movs);
12145 }
12146
12147 if (narrow)
12148 {
12149 switch (inst.operands[1].shift_kind)
12150 {
12151 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12152 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12153 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12154 default: narrow = FALSE; break;
12155 }
12156 }
12157
12158 if (narrow)
12159 {
12160 inst.instruction |= Rn;
12161 inst.instruction |= Rm << 3;
12162 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12163 }
12164 else
12165 {
12166 inst.instruction = THUMB_OP32 (inst.instruction);
12167 inst.instruction |= Rn << r0off;
12168 encode_thumb32_shifted_operand (1);
12169 }
12170 }
12171 else
12172 switch (inst.instruction)
12173 {
12174 case T_MNEM_mov:
12175 /* In v4t or v5t a move of two lowregs produces unpredictable
12176 results. Don't allow this. */
12177 if (low_regs)
12178 {
12179 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12180 "MOV Rd, Rs with two low registers is not "
12181 "permitted on this architecture");
12182 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12183 arm_ext_v6);
12184 }
12185
12186 inst.instruction = T_OPCODE_MOV_HR;
12187 inst.instruction |= (Rn & 0x8) << 4;
12188 inst.instruction |= (Rn & 0x7);
12189 inst.instruction |= Rm << 3;
12190 break;
12191
12192 case T_MNEM_movs:
12193 /* We know we have low registers at this point.
12194 Generate LSLS Rd, Rs, #0. */
12195 inst.instruction = T_OPCODE_LSL_I;
12196 inst.instruction |= Rn;
12197 inst.instruction |= Rm << 3;
12198 break;
12199
12200 case T_MNEM_cmp:
12201 if (low_regs)
12202 {
12203 inst.instruction = T_OPCODE_CMP_LR;
12204 inst.instruction |= Rn;
12205 inst.instruction |= Rm << 3;
12206 }
12207 else
12208 {
12209 inst.instruction = T_OPCODE_CMP_HR;
12210 inst.instruction |= (Rn & 0x8) << 4;
12211 inst.instruction |= (Rn & 0x7);
12212 inst.instruction |= Rm << 3;
12213 }
12214 break;
12215 }
12216 return;
12217 }
12218
12219 inst.instruction = THUMB_OP16 (inst.instruction);
12220
12221 /* PR 10443: Do not silently ignore shifted operands. */
12222 constraint (inst.operands[1].shifted,
12223 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12224
12225 if (inst.operands[1].isreg)
12226 {
12227 if (Rn < 8 && Rm < 8)
12228 {
12229 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12230 since a MOV instruction produces unpredictable results. */
12231 if (inst.instruction == T_OPCODE_MOV_I8)
12232 inst.instruction = T_OPCODE_ADD_I3;
12233 else
12234 inst.instruction = T_OPCODE_CMP_LR;
12235
12236 inst.instruction |= Rn;
12237 inst.instruction |= Rm << 3;
12238 }
12239 else
12240 {
12241 if (inst.instruction == T_OPCODE_MOV_I8)
12242 inst.instruction = T_OPCODE_MOV_HR;
12243 else
12244 inst.instruction = T_OPCODE_CMP_HR;
12245 do_t_cpy ();
12246 }
12247 }
12248 else
12249 {
12250 constraint (Rn > 7,
12251 _("only lo regs allowed with immediate"));
12252 inst.instruction |= Rn << 8;
12253 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12254 }
12255 }
12256
12257 static void
12258 do_t_mov16 (void)
12259 {
12260 unsigned Rd;
12261 bfd_vma imm;
12262 bfd_boolean top;
12263
12264 top = (inst.instruction & 0x00800000) != 0;
12265 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12266 {
12267 constraint (top, _(":lower16: not allowed in this instruction"));
12268 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12269 }
12270 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12271 {
12272 constraint (!top, _(":upper16: not allowed in this instruction"));
12273 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12274 }
12275
12276 Rd = inst.operands[0].reg;
12277 reject_bad_reg (Rd);
12278
12279 inst.instruction |= Rd << 8;
12280 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12281 {
12282 imm = inst.relocs[0].exp.X_add_number;
12283 inst.instruction |= (imm & 0xf000) << 4;
12284 inst.instruction |= (imm & 0x0800) << 15;
12285 inst.instruction |= (imm & 0x0700) << 4;
12286 inst.instruction |= (imm & 0x00ff);
12287 }
12288 }
12289
12290 static void
12291 do_t_mvn_tst (void)
12292 {
12293 unsigned Rn, Rm;
12294
12295 Rn = inst.operands[0].reg;
12296 Rm = inst.operands[1].reg;
12297
12298 if (inst.instruction == T_MNEM_cmp
12299 || inst.instruction == T_MNEM_cmn)
12300 constraint (Rn == REG_PC, BAD_PC);
12301 else
12302 reject_bad_reg (Rn);
12303 reject_bad_reg (Rm);
12304
12305 if (unified_syntax)
12306 {
12307 int r0off = (inst.instruction == T_MNEM_mvn
12308 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12309 bfd_boolean narrow;
12310
12311 if (inst.size_req == 4
12312 || inst.instruction > 0xffff
12313 || inst.operands[1].shifted
12314 || Rn > 7 || Rm > 7)
12315 narrow = FALSE;
12316 else if (inst.instruction == T_MNEM_cmn
12317 || inst.instruction == T_MNEM_tst)
12318 narrow = TRUE;
12319 else if (THUMB_SETS_FLAGS (inst.instruction))
12320 narrow = !in_it_block ();
12321 else
12322 narrow = in_it_block ();
12323
12324 if (!inst.operands[1].isreg)
12325 {
12326 /* For an immediate, we always generate a 32-bit opcode;
12327 section relaxation will shrink it later if possible. */
12328 if (inst.instruction < 0xffff)
12329 inst.instruction = THUMB_OP32 (inst.instruction);
12330 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12331 inst.instruction |= Rn << r0off;
12332 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12333 }
12334 else
12335 {
12336 /* See if we can do this with a 16-bit instruction. */
12337 if (narrow)
12338 {
12339 inst.instruction = THUMB_OP16 (inst.instruction);
12340 inst.instruction |= Rn;
12341 inst.instruction |= Rm << 3;
12342 }
12343 else
12344 {
12345 constraint (inst.operands[1].shifted
12346 && inst.operands[1].immisreg,
12347 _("shift must be constant"));
12348 if (inst.instruction < 0xffff)
12349 inst.instruction = THUMB_OP32 (inst.instruction);
12350 inst.instruction |= Rn << r0off;
12351 encode_thumb32_shifted_operand (1);
12352 }
12353 }
12354 }
12355 else
12356 {
12357 constraint (inst.instruction > 0xffff
12358 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12359 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12360 _("unshifted register required"));
12361 constraint (Rn > 7 || Rm > 7,
12362 BAD_HIREG);
12363
12364 inst.instruction = THUMB_OP16 (inst.instruction);
12365 inst.instruction |= Rn;
12366 inst.instruction |= Rm << 3;
12367 }
12368 }
12369
12370 static void
12371 do_t_mrs (void)
12372 {
12373 unsigned Rd;
12374
12375 if (do_vfp_nsyn_mrs () == SUCCESS)
12376 return;
12377
12378 Rd = inst.operands[0].reg;
12379 reject_bad_reg (Rd);
12380 inst.instruction |= Rd << 8;
12381
12382 if (inst.operands[1].isreg)
12383 {
12384 unsigned br = inst.operands[1].reg;
12385 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12386 as_bad (_("bad register for mrs"));
12387
12388 inst.instruction |= br & (0xf << 16);
12389 inst.instruction |= (br & 0x300) >> 4;
12390 inst.instruction |= (br & SPSR_BIT) >> 2;
12391 }
12392 else
12393 {
12394 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12395
12396 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12397 {
12398 /* PR gas/12698: The constraint is only applied for m_profile.
12399 If the user has specified -march=all, we want to ignore it as
12400 we are building for any CPU type, including non-m variants. */
12401 bfd_boolean m_profile =
12402 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12403 constraint ((flags != 0) && m_profile, _("selected processor does "
12404 "not support requested special purpose register"));
12405 }
12406 else
12407 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12408 devices). */
12409 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12410 _("'APSR', 'CPSR' or 'SPSR' expected"));
12411
12412 inst.instruction |= (flags & SPSR_BIT) >> 2;
12413 inst.instruction |= inst.operands[1].imm & 0xff;
12414 inst.instruction |= 0xf0000;
12415 }
12416 }
12417
12418 static void
12419 do_t_msr (void)
12420 {
12421 int flags;
12422 unsigned Rn;
12423
12424 if (do_vfp_nsyn_msr () == SUCCESS)
12425 return;
12426
12427 constraint (!inst.operands[1].isreg,
12428 _("Thumb encoding does not support an immediate here"));
12429
12430 if (inst.operands[0].isreg)
12431 flags = (int)(inst.operands[0].reg);
12432 else
12433 flags = inst.operands[0].imm;
12434
12435 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12436 {
12437 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12438
12439 /* PR gas/12698: The constraint is only applied for m_profile.
12440 If the user has specified -march=all, we want to ignore it as
12441 we are building for any CPU type, including non-m variants. */
12442 bfd_boolean m_profile =
12443 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12444 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12445 && (bits & ~(PSR_s | PSR_f)) != 0)
12446 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
12447 && bits != PSR_f)) && m_profile,
12448 _("selected processor does not support requested special "
12449 "purpose register"));
12450 }
12451 else
12452 constraint ((flags & 0xff) != 0, _("selected processor does not support "
12453 "requested special purpose register"));
12454
12455 Rn = inst.operands[1].reg;
12456 reject_bad_reg (Rn);
12457
12458 inst.instruction |= (flags & SPSR_BIT) >> 2;
12459 inst.instruction |= (flags & 0xf0000) >> 8;
12460 inst.instruction |= (flags & 0x300) >> 4;
12461 inst.instruction |= (flags & 0xff);
12462 inst.instruction |= Rn << 16;
12463 }
12464
12465 static void
12466 do_t_mul (void)
12467 {
12468 bfd_boolean narrow;
12469 unsigned Rd, Rn, Rm;
12470
12471 if (!inst.operands[2].present)
12472 inst.operands[2].reg = inst.operands[0].reg;
12473
12474 Rd = inst.operands[0].reg;
12475 Rn = inst.operands[1].reg;
12476 Rm = inst.operands[2].reg;
12477
12478 if (unified_syntax)
12479 {
12480 if (inst.size_req == 4
12481 || (Rd != Rn
12482 && Rd != Rm)
12483 || Rn > 7
12484 || Rm > 7)
12485 narrow = FALSE;
12486 else if (inst.instruction == T_MNEM_muls)
12487 narrow = !in_it_block ();
12488 else
12489 narrow = in_it_block ();
12490 }
12491 else
12492 {
12493 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
12494 constraint (Rn > 7 || Rm > 7,
12495 BAD_HIREG);
12496 narrow = TRUE;
12497 }
12498
12499 if (narrow)
12500 {
12501 /* 16-bit MULS/Conditional MUL. */
12502 inst.instruction = THUMB_OP16 (inst.instruction);
12503 inst.instruction |= Rd;
12504
12505 if (Rd == Rn)
12506 inst.instruction |= Rm << 3;
12507 else if (Rd == Rm)
12508 inst.instruction |= Rn << 3;
12509 else
12510 constraint (1, _("dest must overlap one source register"));
12511 }
12512 else
12513 {
12514 constraint (inst.instruction != T_MNEM_mul,
12515 _("Thumb-2 MUL must not set flags"));
12516 /* 32-bit MUL. */
12517 inst.instruction = THUMB_OP32 (inst.instruction);
12518 inst.instruction |= Rd << 8;
12519 inst.instruction |= Rn << 16;
12520 inst.instruction |= Rm << 0;
12521
12522 reject_bad_reg (Rd);
12523 reject_bad_reg (Rn);
12524 reject_bad_reg (Rm);
12525 }
12526 }
12527
12528 static void
12529 do_t_mull (void)
12530 {
12531 unsigned RdLo, RdHi, Rn, Rm;
12532
12533 RdLo = inst.operands[0].reg;
12534 RdHi = inst.operands[1].reg;
12535 Rn = inst.operands[2].reg;
12536 Rm = inst.operands[3].reg;
12537
12538 reject_bad_reg (RdLo);
12539 reject_bad_reg (RdHi);
12540 reject_bad_reg (Rn);
12541 reject_bad_reg (Rm);
12542
12543 inst.instruction |= RdLo << 12;
12544 inst.instruction |= RdHi << 8;
12545 inst.instruction |= Rn << 16;
12546 inst.instruction |= Rm;
12547
12548 if (RdLo == RdHi)
12549 as_tsktsk (_("rdhi and rdlo must be different"));
12550 }
12551
12552 static void
12553 do_t_nop (void)
12554 {
12555 set_it_insn_type (NEUTRAL_IT_INSN);
12556
12557 if (unified_syntax)
12558 {
12559 if (inst.size_req == 4 || inst.operands[0].imm > 15)
12560 {
12561 inst.instruction = THUMB_OP32 (inst.instruction);
12562 inst.instruction |= inst.operands[0].imm;
12563 }
12564 else
12565 {
12566 /* PR9722: Check for Thumb2 availability before
12567 generating a thumb2 nop instruction. */
12568 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
12569 {
12570 inst.instruction = THUMB_OP16 (inst.instruction);
12571 inst.instruction |= inst.operands[0].imm << 4;
12572 }
12573 else
12574 inst.instruction = 0x46c0;
12575 }
12576 }
12577 else
12578 {
12579 constraint (inst.operands[0].present,
12580 _("Thumb does not support NOP with hints"));
12581 inst.instruction = 0x46c0;
12582 }
12583 }
12584
12585 static void
12586 do_t_neg (void)
12587 {
12588 if (unified_syntax)
12589 {
12590 bfd_boolean narrow;
12591
12592 if (THUMB_SETS_FLAGS (inst.instruction))
12593 narrow = !in_it_block ();
12594 else
12595 narrow = in_it_block ();
12596 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12597 narrow = FALSE;
12598 if (inst.size_req == 4)
12599 narrow = FALSE;
12600
12601 if (!narrow)
12602 {
12603 inst.instruction = THUMB_OP32 (inst.instruction);
12604 inst.instruction |= inst.operands[0].reg << 8;
12605 inst.instruction |= inst.operands[1].reg << 16;
12606 }
12607 else
12608 {
12609 inst.instruction = THUMB_OP16 (inst.instruction);
12610 inst.instruction |= inst.operands[0].reg;
12611 inst.instruction |= inst.operands[1].reg << 3;
12612 }
12613 }
12614 else
12615 {
12616 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
12617 BAD_HIREG);
12618 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12619
12620 inst.instruction = THUMB_OP16 (inst.instruction);
12621 inst.instruction |= inst.operands[0].reg;
12622 inst.instruction |= inst.operands[1].reg << 3;
12623 }
12624 }
12625
12626 static void
12627 do_t_orn (void)
12628 {
12629 unsigned Rd, Rn;
12630
12631 Rd = inst.operands[0].reg;
12632 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
12633
12634 reject_bad_reg (Rd);
12635 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
12636 reject_bad_reg (Rn);
12637
12638 inst.instruction |= Rd << 8;
12639 inst.instruction |= Rn << 16;
12640
12641 if (!inst.operands[2].isreg)
12642 {
12643 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12644 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12645 }
12646 else
12647 {
12648 unsigned Rm;
12649
12650 Rm = inst.operands[2].reg;
12651 reject_bad_reg (Rm);
12652
12653 constraint (inst.operands[2].shifted
12654 && inst.operands[2].immisreg,
12655 _("shift must be constant"));
12656 encode_thumb32_shifted_operand (2);
12657 }
12658 }
12659
12660 static void
12661 do_t_pkhbt (void)
12662 {
12663 unsigned Rd, Rn, Rm;
12664
12665 Rd = inst.operands[0].reg;
12666 Rn = inst.operands[1].reg;
12667 Rm = inst.operands[2].reg;
12668
12669 reject_bad_reg (Rd);
12670 reject_bad_reg (Rn);
12671 reject_bad_reg (Rm);
12672
12673 inst.instruction |= Rd << 8;
12674 inst.instruction |= Rn << 16;
12675 inst.instruction |= Rm;
12676 if (inst.operands[3].present)
12677 {
12678 unsigned int val = inst.relocs[0].exp.X_add_number;
12679 constraint (inst.relocs[0].exp.X_op != O_constant,
12680 _("expression too complex"));
12681 inst.instruction |= (val & 0x1c) << 10;
12682 inst.instruction |= (val & 0x03) << 6;
12683 }
12684 }
12685
12686 static void
12687 do_t_pkhtb (void)
12688 {
12689 if (!inst.operands[3].present)
12690 {
12691 unsigned Rtmp;
12692
12693 inst.instruction &= ~0x00000020;
12694
12695 /* PR 10168. Swap the Rm and Rn registers. */
12696 Rtmp = inst.operands[1].reg;
12697 inst.operands[1].reg = inst.operands[2].reg;
12698 inst.operands[2].reg = Rtmp;
12699 }
12700 do_t_pkhbt ();
12701 }
12702
12703 static void
12704 do_t_pld (void)
12705 {
12706 if (inst.operands[0].immisreg)
12707 reject_bad_reg (inst.operands[0].imm);
12708
12709 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
12710 }
12711
12712 static void
12713 do_t_push_pop (void)
12714 {
12715 unsigned mask;
12716
12717 constraint (inst.operands[0].writeback,
12718 _("push/pop do not support {reglist}^"));
12719 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12720 _("expression too complex"));
12721
12722 mask = inst.operands[0].imm;
12723 if (inst.size_req != 4 && (mask & ~0xff) == 0)
12724 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
12725 else if (inst.size_req != 4
12726 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
12727 ? REG_LR : REG_PC)))
12728 {
12729 inst.instruction = THUMB_OP16 (inst.instruction);
12730 inst.instruction |= THUMB_PP_PC_LR;
12731 inst.instruction |= mask & 0xff;
12732 }
12733 else if (unified_syntax)
12734 {
12735 inst.instruction = THUMB_OP32 (inst.instruction);
12736 encode_thumb2_ldmstm (13, mask, TRUE);
12737 }
12738 else
12739 {
12740 inst.error = _("invalid register list to push/pop instruction");
12741 return;
12742 }
12743 }
12744
12745 static void
12746 do_t_rbit (void)
12747 {
12748 unsigned Rd, Rm;
12749
12750 Rd = inst.operands[0].reg;
12751 Rm = inst.operands[1].reg;
12752
12753 reject_bad_reg (Rd);
12754 reject_bad_reg (Rm);
12755
12756 inst.instruction |= Rd << 8;
12757 inst.instruction |= Rm << 16;
12758 inst.instruction |= Rm;
12759 }
12760
12761 static void
12762 do_t_rev (void)
12763 {
12764 unsigned Rd, Rm;
12765
12766 Rd = inst.operands[0].reg;
12767 Rm = inst.operands[1].reg;
12768
12769 reject_bad_reg (Rd);
12770 reject_bad_reg (Rm);
12771
12772 if (Rd <= 7 && Rm <= 7
12773 && inst.size_req != 4)
12774 {
12775 inst.instruction = THUMB_OP16 (inst.instruction);
12776 inst.instruction |= Rd;
12777 inst.instruction |= Rm << 3;
12778 }
12779 else if (unified_syntax)
12780 {
12781 inst.instruction = THUMB_OP32 (inst.instruction);
12782 inst.instruction |= Rd << 8;
12783 inst.instruction |= Rm << 16;
12784 inst.instruction |= Rm;
12785 }
12786 else
12787 inst.error = BAD_HIREG;
12788 }
12789
12790 static void
12791 do_t_rrx (void)
12792 {
12793 unsigned Rd, Rm;
12794
12795 Rd = inst.operands[0].reg;
12796 Rm = inst.operands[1].reg;
12797
12798 reject_bad_reg (Rd);
12799 reject_bad_reg (Rm);
12800
12801 inst.instruction |= Rd << 8;
12802 inst.instruction |= Rm;
12803 }
12804
12805 static void
12806 do_t_rsb (void)
12807 {
12808 unsigned Rd, Rs;
12809
12810 Rd = inst.operands[0].reg;
12811 Rs = (inst.operands[1].present
12812 ? inst.operands[1].reg /* Rd, Rs, foo */
12813 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
12814
12815 reject_bad_reg (Rd);
12816 reject_bad_reg (Rs);
12817 if (inst.operands[2].isreg)
12818 reject_bad_reg (inst.operands[2].reg);
12819
12820 inst.instruction |= Rd << 8;
12821 inst.instruction |= Rs << 16;
12822 if (!inst.operands[2].isreg)
12823 {
12824 bfd_boolean narrow;
12825
12826 if ((inst.instruction & 0x00100000) != 0)
12827 narrow = !in_it_block ();
12828 else
12829 narrow = in_it_block ();
12830
12831 if (Rd > 7 || Rs > 7)
12832 narrow = FALSE;
12833
12834 if (inst.size_req == 4 || !unified_syntax)
12835 narrow = FALSE;
12836
12837 if (inst.relocs[0].exp.X_op != O_constant
12838 || inst.relocs[0].exp.X_add_number != 0)
12839 narrow = FALSE;
12840
12841 /* Turn rsb #0 into 16-bit neg. We should probably do this via
12842 relaxation, but it doesn't seem worth the hassle. */
12843 if (narrow)
12844 {
12845 inst.relocs[0].type = BFD_RELOC_UNUSED;
12846 inst.instruction = THUMB_OP16 (T_MNEM_negs);
12847 inst.instruction |= Rs << 3;
12848 inst.instruction |= Rd;
12849 }
12850 else
12851 {
12852 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12853 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12854 }
12855 }
12856 else
12857 encode_thumb32_shifted_operand (2);
12858 }
12859
12860 static void
12861 do_t_setend (void)
12862 {
12863 if (warn_on_deprecated
12864 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12865 as_tsktsk (_("setend use is deprecated for ARMv8"));
12866
12867 set_it_insn_type (OUTSIDE_IT_INSN);
12868 if (inst.operands[0].imm)
12869 inst.instruction |= 0x8;
12870 }
12871
12872 static void
12873 do_t_shift (void)
12874 {
12875 if (!inst.operands[1].present)
12876 inst.operands[1].reg = inst.operands[0].reg;
12877
12878 if (unified_syntax)
12879 {
12880 bfd_boolean narrow;
12881 int shift_kind;
12882
12883 switch (inst.instruction)
12884 {
12885 case T_MNEM_asr:
12886 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
12887 case T_MNEM_lsl:
12888 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
12889 case T_MNEM_lsr:
12890 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
12891 case T_MNEM_ror:
12892 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
12893 default: abort ();
12894 }
12895
12896 if (THUMB_SETS_FLAGS (inst.instruction))
12897 narrow = !in_it_block ();
12898 else
12899 narrow = in_it_block ();
12900 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
12901 narrow = FALSE;
12902 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
12903 narrow = FALSE;
12904 if (inst.operands[2].isreg
12905 && (inst.operands[1].reg != inst.operands[0].reg
12906 || inst.operands[2].reg > 7))
12907 narrow = FALSE;
12908 if (inst.size_req == 4)
12909 narrow = FALSE;
12910
12911 reject_bad_reg (inst.operands[0].reg);
12912 reject_bad_reg (inst.operands[1].reg);
12913
12914 if (!narrow)
12915 {
12916 if (inst.operands[2].isreg)
12917 {
12918 reject_bad_reg (inst.operands[2].reg);
12919 inst.instruction = THUMB_OP32 (inst.instruction);
12920 inst.instruction |= inst.operands[0].reg << 8;
12921 inst.instruction |= inst.operands[1].reg << 16;
12922 inst.instruction |= inst.operands[2].reg;
12923
12924 /* PR 12854: Error on extraneous shifts. */
12925 constraint (inst.operands[2].shifted,
12926 _("extraneous shift as part of operand to shift insn"));
12927 }
12928 else
12929 {
12930 inst.operands[1].shifted = 1;
12931 inst.operands[1].shift_kind = shift_kind;
12932 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
12933 ? T_MNEM_movs : T_MNEM_mov);
12934 inst.instruction |= inst.operands[0].reg << 8;
12935 encode_thumb32_shifted_operand (1);
12936 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
12937 inst.relocs[0].type = BFD_RELOC_UNUSED;
12938 }
12939 }
12940 else
12941 {
12942 if (inst.operands[2].isreg)
12943 {
12944 switch (shift_kind)
12945 {
12946 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
12947 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
12948 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
12949 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
12950 default: abort ();
12951 }
12952
12953 inst.instruction |= inst.operands[0].reg;
12954 inst.instruction |= inst.operands[2].reg << 3;
12955
12956 /* PR 12854: Error on extraneous shifts. */
12957 constraint (inst.operands[2].shifted,
12958 _("extraneous shift as part of operand to shift insn"));
12959 }
12960 else
12961 {
12962 switch (shift_kind)
12963 {
12964 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12965 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12966 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12967 default: abort ();
12968 }
12969 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12970 inst.instruction |= inst.operands[0].reg;
12971 inst.instruction |= inst.operands[1].reg << 3;
12972 }
12973 }
12974 }
12975 else
12976 {
12977 constraint (inst.operands[0].reg > 7
12978 || inst.operands[1].reg > 7, BAD_HIREG);
12979 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
12980
12981 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
12982 {
12983 constraint (inst.operands[2].reg > 7, BAD_HIREG);
12984 constraint (inst.operands[0].reg != inst.operands[1].reg,
12985 _("source1 and dest must be same register"));
12986
12987 switch (inst.instruction)
12988 {
12989 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
12990 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
12991 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
12992 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
12993 default: abort ();
12994 }
12995
12996 inst.instruction |= inst.operands[0].reg;
12997 inst.instruction |= inst.operands[2].reg << 3;
12998
12999 /* PR 12854: Error on extraneous shifts. */
13000 constraint (inst.operands[2].shifted,
13001 _("extraneous shift as part of operand to shift insn"));
13002 }
13003 else
13004 {
13005 switch (inst.instruction)
13006 {
13007 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13008 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13009 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13010 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13011 default: abort ();
13012 }
13013 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13014 inst.instruction |= inst.operands[0].reg;
13015 inst.instruction |= inst.operands[1].reg << 3;
13016 }
13017 }
13018 }
13019
13020 static void
13021 do_t_simd (void)
13022 {
13023 unsigned Rd, Rn, Rm;
13024
13025 Rd = inst.operands[0].reg;
13026 Rn = inst.operands[1].reg;
13027 Rm = inst.operands[2].reg;
13028
13029 reject_bad_reg (Rd);
13030 reject_bad_reg (Rn);
13031 reject_bad_reg (Rm);
13032
13033 inst.instruction |= Rd << 8;
13034 inst.instruction |= Rn << 16;
13035 inst.instruction |= Rm;
13036 }
13037
13038 static void
13039 do_t_simd2 (void)
13040 {
13041 unsigned Rd, Rn, Rm;
13042
13043 Rd = inst.operands[0].reg;
13044 Rm = inst.operands[1].reg;
13045 Rn = inst.operands[2].reg;
13046
13047 reject_bad_reg (Rd);
13048 reject_bad_reg (Rn);
13049 reject_bad_reg (Rm);
13050
13051 inst.instruction |= Rd << 8;
13052 inst.instruction |= Rn << 16;
13053 inst.instruction |= Rm;
13054 }
13055
13056 static void
13057 do_t_smc (void)
13058 {
13059 unsigned int value = inst.relocs[0].exp.X_add_number;
13060 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13061 _("SMC is not permitted on this architecture"));
13062 constraint (inst.relocs[0].exp.X_op != O_constant,
13063 _("expression too complex"));
13064 inst.relocs[0].type = BFD_RELOC_UNUSED;
13065 inst.instruction |= (value & 0xf000) >> 12;
13066 inst.instruction |= (value & 0x0ff0);
13067 inst.instruction |= (value & 0x000f) << 16;
13068 /* PR gas/15623: SMC instructions must be last in an IT block. */
13069 set_it_insn_type_last ();
13070 }
13071
13072 static void
13073 do_t_hvc (void)
13074 {
13075 unsigned int value = inst.relocs[0].exp.X_add_number;
13076
13077 inst.relocs[0].type = BFD_RELOC_UNUSED;
13078 inst.instruction |= (value & 0x0fff);
13079 inst.instruction |= (value & 0xf000) << 4;
13080 }
13081
13082 static void
13083 do_t_ssat_usat (int bias)
13084 {
13085 unsigned Rd, Rn;
13086
13087 Rd = inst.operands[0].reg;
13088 Rn = inst.operands[2].reg;
13089
13090 reject_bad_reg (Rd);
13091 reject_bad_reg (Rn);
13092
13093 inst.instruction |= Rd << 8;
13094 inst.instruction |= inst.operands[1].imm - bias;
13095 inst.instruction |= Rn << 16;
13096
13097 if (inst.operands[3].present)
13098 {
13099 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13100
13101 inst.relocs[0].type = BFD_RELOC_UNUSED;
13102
13103 constraint (inst.relocs[0].exp.X_op != O_constant,
13104 _("expression too complex"));
13105
13106 if (shift_amount != 0)
13107 {
13108 constraint (shift_amount > 31,
13109 _("shift expression is too large"));
13110
13111 if (inst.operands[3].shift_kind == SHIFT_ASR)
13112 inst.instruction |= 0x00200000; /* sh bit. */
13113
13114 inst.instruction |= (shift_amount & 0x1c) << 10;
13115 inst.instruction |= (shift_amount & 0x03) << 6;
13116 }
13117 }
13118 }
13119
13120 static void
13121 do_t_ssat (void)
13122 {
13123 do_t_ssat_usat (1);
13124 }
13125
13126 static void
13127 do_t_ssat16 (void)
13128 {
13129 unsigned Rd, Rn;
13130
13131 Rd = inst.operands[0].reg;
13132 Rn = inst.operands[2].reg;
13133
13134 reject_bad_reg (Rd);
13135 reject_bad_reg (Rn);
13136
13137 inst.instruction |= Rd << 8;
13138 inst.instruction |= inst.operands[1].imm - 1;
13139 inst.instruction |= Rn << 16;
13140 }
13141
13142 static void
13143 do_t_strex (void)
13144 {
13145 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13146 || inst.operands[2].postind || inst.operands[2].writeback
13147 || inst.operands[2].immisreg || inst.operands[2].shifted
13148 || inst.operands[2].negative,
13149 BAD_ADDR_MODE);
13150
13151 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13152
13153 inst.instruction |= inst.operands[0].reg << 8;
13154 inst.instruction |= inst.operands[1].reg << 12;
13155 inst.instruction |= inst.operands[2].reg << 16;
13156 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13157 }
13158
13159 static void
13160 do_t_strexd (void)
13161 {
13162 if (!inst.operands[2].present)
13163 inst.operands[2].reg = inst.operands[1].reg + 1;
13164
13165 constraint (inst.operands[0].reg == inst.operands[1].reg
13166 || inst.operands[0].reg == inst.operands[2].reg
13167 || inst.operands[0].reg == inst.operands[3].reg,
13168 BAD_OVERLAP);
13169
13170 inst.instruction |= inst.operands[0].reg;
13171 inst.instruction |= inst.operands[1].reg << 12;
13172 inst.instruction |= inst.operands[2].reg << 8;
13173 inst.instruction |= inst.operands[3].reg << 16;
13174 }
13175
13176 static void
13177 do_t_sxtah (void)
13178 {
13179 unsigned Rd, Rn, Rm;
13180
13181 Rd = inst.operands[0].reg;
13182 Rn = inst.operands[1].reg;
13183 Rm = inst.operands[2].reg;
13184
13185 reject_bad_reg (Rd);
13186 reject_bad_reg (Rn);
13187 reject_bad_reg (Rm);
13188
13189 inst.instruction |= Rd << 8;
13190 inst.instruction |= Rn << 16;
13191 inst.instruction |= Rm;
13192 inst.instruction |= inst.operands[3].imm << 4;
13193 }
13194
13195 static void
13196 do_t_sxth (void)
13197 {
13198 unsigned Rd, Rm;
13199
13200 Rd = inst.operands[0].reg;
13201 Rm = inst.operands[1].reg;
13202
13203 reject_bad_reg (Rd);
13204 reject_bad_reg (Rm);
13205
13206 if (inst.instruction <= 0xffff
13207 && inst.size_req != 4
13208 && Rd <= 7 && Rm <= 7
13209 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13210 {
13211 inst.instruction = THUMB_OP16 (inst.instruction);
13212 inst.instruction |= Rd;
13213 inst.instruction |= Rm << 3;
13214 }
13215 else if (unified_syntax)
13216 {
13217 if (inst.instruction <= 0xffff)
13218 inst.instruction = THUMB_OP32 (inst.instruction);
13219 inst.instruction |= Rd << 8;
13220 inst.instruction |= Rm;
13221 inst.instruction |= inst.operands[2].imm << 4;
13222 }
13223 else
13224 {
13225 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13226 _("Thumb encoding does not support rotation"));
13227 constraint (1, BAD_HIREG);
13228 }
13229 }
13230
13231 static void
13232 do_t_swi (void)
13233 {
13234 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13235 }
13236
13237 static void
13238 do_t_tb (void)
13239 {
13240 unsigned Rn, Rm;
13241 int half;
13242
13243 half = (inst.instruction & 0x10) != 0;
13244 set_it_insn_type_last ();
13245 constraint (inst.operands[0].immisreg,
13246 _("instruction requires register index"));
13247
13248 Rn = inst.operands[0].reg;
13249 Rm = inst.operands[0].imm;
13250
13251 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13252 constraint (Rn == REG_SP, BAD_SP);
13253 reject_bad_reg (Rm);
13254
13255 constraint (!half && inst.operands[0].shifted,
13256 _("instruction does not allow shifted index"));
13257 inst.instruction |= (Rn << 16) | Rm;
13258 }
13259
13260 static void
13261 do_t_udf (void)
13262 {
13263 if (!inst.operands[0].present)
13264 inst.operands[0].imm = 0;
13265
13266 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13267 {
13268 constraint (inst.size_req == 2,
13269 _("immediate value out of range"));
13270 inst.instruction = THUMB_OP32 (inst.instruction);
13271 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13272 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13273 }
13274 else
13275 {
13276 inst.instruction = THUMB_OP16 (inst.instruction);
13277 inst.instruction |= inst.operands[0].imm;
13278 }
13279
13280 set_it_insn_type (NEUTRAL_IT_INSN);
13281 }
13282
13283
13284 static void
13285 do_t_usat (void)
13286 {
13287 do_t_ssat_usat (0);
13288 }
13289
13290 static void
13291 do_t_usat16 (void)
13292 {
13293 unsigned Rd, Rn;
13294
13295 Rd = inst.operands[0].reg;
13296 Rn = inst.operands[2].reg;
13297
13298 reject_bad_reg (Rd);
13299 reject_bad_reg (Rn);
13300
13301 inst.instruction |= Rd << 8;
13302 inst.instruction |= inst.operands[1].imm;
13303 inst.instruction |= Rn << 16;
13304 }
13305
13306 /* Checking the range of the branch offset (VAL) with NBITS bits
13307 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13308 static int
13309 v8_1_branch_value_check (int val, int nbits, int is_signed)
13310 {
13311 gas_assert (nbits > 0 && nbits <= 32);
13312 if (is_signed)
13313 {
13314 int cmp = (1 << (nbits - 1));
13315 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13316 return FAIL;
13317 }
13318 else
13319 {
13320 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13321 return FAIL;
13322 }
13323 return SUCCESS;
13324 }
13325
13326 /* For branches in Armv8.1-M Mainline. */
13327 static void
13328 do_t_branch_future (void)
13329 {
13330 unsigned long insn = inst.instruction;
13331
13332 inst.instruction = THUMB_OP32 (inst.instruction);
13333 if (inst.operands[0].hasreloc == 0)
13334 {
13335 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13336 as_bad (BAD_BRANCH_OFF);
13337
13338 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13339 }
13340 else
13341 {
13342 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13343 inst.relocs[0].pc_rel = 1;
13344 }
13345
13346 switch (insn)
13347 {
13348 case T_MNEM_bf:
13349 if (inst.operands[1].hasreloc == 0)
13350 {
13351 int val = inst.operands[1].imm;
13352 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13353 as_bad (BAD_BRANCH_OFF);
13354
13355 int immA = (val & 0x0001f000) >> 12;
13356 int immB = (val & 0x00000ffc) >> 2;
13357 int immC = (val & 0x00000002) >> 1;
13358 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13359 }
13360 else
13361 {
13362 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13363 inst.relocs[1].pc_rel = 1;
13364 }
13365 break;
13366
13367 case T_MNEM_bfx:
13368 case T_MNEM_bflx:
13369 inst.instruction |= inst.operands[1].reg << 16;
13370 break;
13371
13372 default: abort ();
13373 }
13374 }
13375
13376 /* Neon instruction encoder helpers. */
13377
13378 /* Encodings for the different types for various Neon opcodes. */
13379
13380 /* An "invalid" code for the following tables. */
13381 #define N_INV -1u
13382
13383 struct neon_tab_entry
13384 {
13385 unsigned integer;
13386 unsigned float_or_poly;
13387 unsigned scalar_or_imm;
13388 };
13389
13390 /* Map overloaded Neon opcodes to their respective encodings. */
13391 #define NEON_ENC_TAB \
13392 X(vabd, 0x0000700, 0x1200d00, N_INV), \
13393 X(vmax, 0x0000600, 0x0000f00, N_INV), \
13394 X(vmin, 0x0000610, 0x0200f00, N_INV), \
13395 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
13396 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
13397 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
13398 X(vadd, 0x0000800, 0x0000d00, N_INV), \
13399 X(vsub, 0x1000800, 0x0200d00, N_INV), \
13400 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
13401 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
13402 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
13403 /* Register variants of the following two instructions are encoded as
13404 vcge / vcgt with the operands reversed. */ \
13405 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
13406 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
13407 X(vfma, N_INV, 0x0000c10, N_INV), \
13408 X(vfms, N_INV, 0x0200c10, N_INV), \
13409 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
13410 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
13411 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
13412 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
13413 X(vmlal, 0x0800800, N_INV, 0x0800240), \
13414 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
13415 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
13416 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
13417 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
13418 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
13419 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
13420 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
13421 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
13422 X(vshl, 0x0000400, N_INV, 0x0800510), \
13423 X(vqshl, 0x0000410, N_INV, 0x0800710), \
13424 X(vand, 0x0000110, N_INV, 0x0800030), \
13425 X(vbic, 0x0100110, N_INV, 0x0800030), \
13426 X(veor, 0x1000110, N_INV, N_INV), \
13427 X(vorn, 0x0300110, N_INV, 0x0800010), \
13428 X(vorr, 0x0200110, N_INV, 0x0800010), \
13429 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
13430 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
13431 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
13432 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
13433 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
13434 X(vst1, 0x0000000, 0x0800000, N_INV), \
13435 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
13436 X(vst2, 0x0000100, 0x0800100, N_INV), \
13437 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
13438 X(vst3, 0x0000200, 0x0800200, N_INV), \
13439 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
13440 X(vst4, 0x0000300, 0x0800300, N_INV), \
13441 X(vmovn, 0x1b20200, N_INV, N_INV), \
13442 X(vtrn, 0x1b20080, N_INV, N_INV), \
13443 X(vqmovn, 0x1b20200, N_INV, N_INV), \
13444 X(vqmovun, 0x1b20240, N_INV, N_INV), \
13445 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
13446 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
13447 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
13448 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
13449 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
13450 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
13451 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
13452 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
13453 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
13454 X(vseleq, 0xe000a00, N_INV, N_INV), \
13455 X(vselvs, 0xe100a00, N_INV, N_INV), \
13456 X(vselge, 0xe200a00, N_INV, N_INV), \
13457 X(vselgt, 0xe300a00, N_INV, N_INV), \
13458 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
13459 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
13460 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
13461 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
13462 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
13463 X(aes, 0x3b00300, N_INV, N_INV), \
13464 X(sha3op, 0x2000c00, N_INV, N_INV), \
13465 X(sha1h, 0x3b902c0, N_INV, N_INV), \
13466 X(sha2op, 0x3ba0380, N_INV, N_INV)
13467
13468 enum neon_opc
13469 {
13470 #define X(OPC,I,F,S) N_MNEM_##OPC
13471 NEON_ENC_TAB
13472 #undef X
13473 };
13474
13475 static const struct neon_tab_entry neon_enc_tab[] =
13476 {
13477 #define X(OPC,I,F,S) { (I), (F), (S) }
13478 NEON_ENC_TAB
13479 #undef X
13480 };
13481
13482 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
13483 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13484 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13485 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13486 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13487 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13488 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13489 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
13490 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
13491 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
13492 #define NEON_ENC_SINGLE_(X) \
13493 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
13494 #define NEON_ENC_DOUBLE_(X) \
13495 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
13496 #define NEON_ENC_FPV8_(X) \
13497 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
13498
13499 #define NEON_ENCODE(type, inst) \
13500 do \
13501 { \
13502 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
13503 inst.is_neon = 1; \
13504 } \
13505 while (0)
13506
13507 #define check_neon_suffixes \
13508 do \
13509 { \
13510 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
13511 { \
13512 as_bad (_("invalid neon suffix for non neon instruction")); \
13513 return; \
13514 } \
13515 } \
13516 while (0)
13517
13518 /* Define shapes for instruction operands. The following mnemonic characters
13519 are used in this table:
13520
13521 F - VFP S<n> register
13522 D - Neon D<n> register
13523 Q - Neon Q<n> register
13524 I - Immediate
13525 S - Scalar
13526 R - ARM register
13527 L - D<n> register list
13528
13529 This table is used to generate various data:
13530 - enumerations of the form NS_DDR to be used as arguments to
13531 neon_select_shape.
13532 - a table classifying shapes into single, double, quad, mixed.
13533 - a table used to drive neon_select_shape. */
13534
13535 #define NEON_SHAPE_DEF \
13536 X(3, (D, D, D), DOUBLE), \
13537 X(3, (Q, Q, Q), QUAD), \
13538 X(3, (D, D, I), DOUBLE), \
13539 X(3, (Q, Q, I), QUAD), \
13540 X(3, (D, D, S), DOUBLE), \
13541 X(3, (Q, Q, S), QUAD), \
13542 X(2, (D, D), DOUBLE), \
13543 X(2, (Q, Q), QUAD), \
13544 X(2, (D, S), DOUBLE), \
13545 X(2, (Q, S), QUAD), \
13546 X(2, (D, R), DOUBLE), \
13547 X(2, (Q, R), QUAD), \
13548 X(2, (D, I), DOUBLE), \
13549 X(2, (Q, I), QUAD), \
13550 X(3, (D, L, D), DOUBLE), \
13551 X(2, (D, Q), MIXED), \
13552 X(2, (Q, D), MIXED), \
13553 X(3, (D, Q, I), MIXED), \
13554 X(3, (Q, D, I), MIXED), \
13555 X(3, (Q, D, D), MIXED), \
13556 X(3, (D, Q, Q), MIXED), \
13557 X(3, (Q, Q, D), MIXED), \
13558 X(3, (Q, D, S), MIXED), \
13559 X(3, (D, Q, S), MIXED), \
13560 X(4, (D, D, D, I), DOUBLE), \
13561 X(4, (Q, Q, Q, I), QUAD), \
13562 X(4, (D, D, S, I), DOUBLE), \
13563 X(4, (Q, Q, S, I), QUAD), \
13564 X(2, (F, F), SINGLE), \
13565 X(3, (F, F, F), SINGLE), \
13566 X(2, (F, I), SINGLE), \
13567 X(2, (F, D), MIXED), \
13568 X(2, (D, F), MIXED), \
13569 X(3, (F, F, I), MIXED), \
13570 X(4, (R, R, F, F), SINGLE), \
13571 X(4, (F, F, R, R), SINGLE), \
13572 X(3, (D, R, R), DOUBLE), \
13573 X(3, (R, R, D), DOUBLE), \
13574 X(2, (S, R), SINGLE), \
13575 X(2, (R, S), SINGLE), \
13576 X(2, (F, R), SINGLE), \
13577 X(2, (R, F), SINGLE), \
13578 /* Half float shape supported so far. */\
13579 X (2, (H, D), MIXED), \
13580 X (2, (D, H), MIXED), \
13581 X (2, (H, F), MIXED), \
13582 X (2, (F, H), MIXED), \
13583 X (2, (H, H), HALF), \
13584 X (2, (H, R), HALF), \
13585 X (2, (R, H), HALF), \
13586 X (2, (H, I), HALF), \
13587 X (3, (H, H, H), HALF), \
13588 X (3, (H, F, I), MIXED), \
13589 X (3, (F, H, I), MIXED), \
13590 X (3, (D, H, H), MIXED), \
13591 X (3, (D, H, S), MIXED)
13592
13593 #define S2(A,B) NS_##A##B
13594 #define S3(A,B,C) NS_##A##B##C
13595 #define S4(A,B,C,D) NS_##A##B##C##D
13596
13597 #define X(N, L, C) S##N L
13598
13599 enum neon_shape
13600 {
13601 NEON_SHAPE_DEF,
13602 NS_NULL
13603 };
13604
13605 #undef X
13606 #undef S2
13607 #undef S3
13608 #undef S4
13609
13610 enum neon_shape_class
13611 {
13612 SC_HALF,
13613 SC_SINGLE,
13614 SC_DOUBLE,
13615 SC_QUAD,
13616 SC_MIXED
13617 };
13618
13619 #define X(N, L, C) SC_##C
13620
13621 static enum neon_shape_class neon_shape_class[] =
13622 {
13623 NEON_SHAPE_DEF
13624 };
13625
13626 #undef X
13627
13628 enum neon_shape_el
13629 {
13630 SE_H,
13631 SE_F,
13632 SE_D,
13633 SE_Q,
13634 SE_I,
13635 SE_S,
13636 SE_R,
13637 SE_L
13638 };
13639
13640 /* Register widths of above. */
13641 static unsigned neon_shape_el_size[] =
13642 {
13643 16,
13644 32,
13645 64,
13646 128,
13647 0,
13648 32,
13649 32,
13650 0
13651 };
13652
13653 struct neon_shape_info
13654 {
13655 unsigned els;
13656 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
13657 };
13658
13659 #define S2(A,B) { SE_##A, SE_##B }
13660 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
13661 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
13662
13663 #define X(N, L, C) { N, S##N L }
13664
13665 static struct neon_shape_info neon_shape_tab[] =
13666 {
13667 NEON_SHAPE_DEF
13668 };
13669
13670 #undef X
13671 #undef S2
13672 #undef S3
13673 #undef S4
13674
13675 /* Bit masks used in type checking given instructions.
13676 'N_EQK' means the type must be the same as (or based on in some way) the key
13677 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
13678 set, various other bits can be set as well in order to modify the meaning of
13679 the type constraint. */
13680
13681 enum neon_type_mask
13682 {
13683 N_S8 = 0x0000001,
13684 N_S16 = 0x0000002,
13685 N_S32 = 0x0000004,
13686 N_S64 = 0x0000008,
13687 N_U8 = 0x0000010,
13688 N_U16 = 0x0000020,
13689 N_U32 = 0x0000040,
13690 N_U64 = 0x0000080,
13691 N_I8 = 0x0000100,
13692 N_I16 = 0x0000200,
13693 N_I32 = 0x0000400,
13694 N_I64 = 0x0000800,
13695 N_8 = 0x0001000,
13696 N_16 = 0x0002000,
13697 N_32 = 0x0004000,
13698 N_64 = 0x0008000,
13699 N_P8 = 0x0010000,
13700 N_P16 = 0x0020000,
13701 N_F16 = 0x0040000,
13702 N_F32 = 0x0080000,
13703 N_F64 = 0x0100000,
13704 N_P64 = 0x0200000,
13705 N_KEY = 0x1000000, /* Key element (main type specifier). */
13706 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
13707 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
13708 N_UNT = 0x8000000, /* Must be explicitly untyped. */
13709 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
13710 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
13711 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
13712 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
13713 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
13714 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
13715 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
13716 N_UTYP = 0,
13717 N_MAX_NONSPECIAL = N_P64
13718 };
13719
13720 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
13721
13722 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
13723 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
13724 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
13725 #define N_S_32 (N_S8 | N_S16 | N_S32)
13726 #define N_F_16_32 (N_F16 | N_F32)
13727 #define N_SUF_32 (N_SU_32 | N_F_16_32)
13728 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
13729 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
13730 #define N_F_ALL (N_F16 | N_F32 | N_F64)
13731
13732 /* Pass this as the first type argument to neon_check_type to ignore types
13733 altogether. */
13734 #define N_IGNORE_TYPE (N_KEY | N_EQK)
13735
13736 /* Select a "shape" for the current instruction (describing register types or
13737 sizes) from a list of alternatives. Return NS_NULL if the current instruction
13738 doesn't fit. For non-polymorphic shapes, checking is usually done as a
13739 function of operand parsing, so this function doesn't need to be called.
13740 Shapes should be listed in order of decreasing length. */
13741
13742 static enum neon_shape
13743 neon_select_shape (enum neon_shape shape, ...)
13744 {
13745 va_list ap;
13746 enum neon_shape first_shape = shape;
13747
13748 /* Fix missing optional operands. FIXME: we don't know at this point how
13749 many arguments we should have, so this makes the assumption that we have
13750 > 1. This is true of all current Neon opcodes, I think, but may not be
13751 true in the future. */
13752 if (!inst.operands[1].present)
13753 inst.operands[1] = inst.operands[0];
13754
13755 va_start (ap, shape);
13756
13757 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
13758 {
13759 unsigned j;
13760 int matches = 1;
13761
13762 for (j = 0; j < neon_shape_tab[shape].els; j++)
13763 {
13764 if (!inst.operands[j].present)
13765 {
13766 matches = 0;
13767 break;
13768 }
13769
13770 switch (neon_shape_tab[shape].el[j])
13771 {
13772 /* If a .f16, .16, .u16, .s16 type specifier is given over
13773 a VFP single precision register operand, it's essentially
13774 means only half of the register is used.
13775
13776 If the type specifier is given after the mnemonics, the
13777 information is stored in inst.vectype. If the type specifier
13778 is given after register operand, the information is stored
13779 in inst.operands[].vectype.
13780
13781 When there is only one type specifier, and all the register
13782 operands are the same type of hardware register, the type
13783 specifier applies to all register operands.
13784
13785 If no type specifier is given, the shape is inferred from
13786 operand information.
13787
13788 for example:
13789 vadd.f16 s0, s1, s2: NS_HHH
13790 vabs.f16 s0, s1: NS_HH
13791 vmov.f16 s0, r1: NS_HR
13792 vmov.f16 r0, s1: NS_RH
13793 vcvt.f16 r0, s1: NS_RH
13794 vcvt.f16.s32 s2, s2, #29: NS_HFI
13795 vcvt.f16.s32 s2, s2: NS_HF
13796 */
13797 case SE_H:
13798 if (!(inst.operands[j].isreg
13799 && inst.operands[j].isvec
13800 && inst.operands[j].issingle
13801 && !inst.operands[j].isquad
13802 && ((inst.vectype.elems == 1
13803 && inst.vectype.el[0].size == 16)
13804 || (inst.vectype.elems > 1
13805 && inst.vectype.el[j].size == 16)
13806 || (inst.vectype.elems == 0
13807 && inst.operands[j].vectype.type != NT_invtype
13808 && inst.operands[j].vectype.size == 16))))
13809 matches = 0;
13810 break;
13811
13812 case SE_F:
13813 if (!(inst.operands[j].isreg
13814 && inst.operands[j].isvec
13815 && inst.operands[j].issingle
13816 && !inst.operands[j].isquad
13817 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
13818 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
13819 || (inst.vectype.elems == 0
13820 && (inst.operands[j].vectype.size == 32
13821 || inst.operands[j].vectype.type == NT_invtype)))))
13822 matches = 0;
13823 break;
13824
13825 case SE_D:
13826 if (!(inst.operands[j].isreg
13827 && inst.operands[j].isvec
13828 && !inst.operands[j].isquad
13829 && !inst.operands[j].issingle))
13830 matches = 0;
13831 break;
13832
13833 case SE_R:
13834 if (!(inst.operands[j].isreg
13835 && !inst.operands[j].isvec))
13836 matches = 0;
13837 break;
13838
13839 case SE_Q:
13840 if (!(inst.operands[j].isreg
13841 && inst.operands[j].isvec
13842 && inst.operands[j].isquad
13843 && !inst.operands[j].issingle))
13844 matches = 0;
13845 break;
13846
13847 case SE_I:
13848 if (!(!inst.operands[j].isreg
13849 && !inst.operands[j].isscalar))
13850 matches = 0;
13851 break;
13852
13853 case SE_S:
13854 if (!(!inst.operands[j].isreg
13855 && inst.operands[j].isscalar))
13856 matches = 0;
13857 break;
13858
13859 case SE_L:
13860 break;
13861 }
13862 if (!matches)
13863 break;
13864 }
13865 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
13866 /* We've matched all the entries in the shape table, and we don't
13867 have any left over operands which have not been matched. */
13868 break;
13869 }
13870
13871 va_end (ap);
13872
13873 if (shape == NS_NULL && first_shape != NS_NULL)
13874 first_error (_("invalid instruction shape"));
13875
13876 return shape;
13877 }
13878
13879 /* True if SHAPE is predominantly a quadword operation (most of the time, this
13880 means the Q bit should be set). */
13881
13882 static int
13883 neon_quad (enum neon_shape shape)
13884 {
13885 return neon_shape_class[shape] == SC_QUAD;
13886 }
13887
13888 static void
13889 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
13890 unsigned *g_size)
13891 {
13892 /* Allow modification to be made to types which are constrained to be
13893 based on the key element, based on bits set alongside N_EQK. */
13894 if ((typebits & N_EQK) != 0)
13895 {
13896 if ((typebits & N_HLF) != 0)
13897 *g_size /= 2;
13898 else if ((typebits & N_DBL) != 0)
13899 *g_size *= 2;
13900 if ((typebits & N_SGN) != 0)
13901 *g_type = NT_signed;
13902 else if ((typebits & N_UNS) != 0)
13903 *g_type = NT_unsigned;
13904 else if ((typebits & N_INT) != 0)
13905 *g_type = NT_integer;
13906 else if ((typebits & N_FLT) != 0)
13907 *g_type = NT_float;
13908 else if ((typebits & N_SIZ) != 0)
13909 *g_type = NT_untyped;
13910 }
13911 }
13912
13913 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
13914 operand type, i.e. the single type specified in a Neon instruction when it
13915 is the only one given. */
13916
13917 static struct neon_type_el
13918 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
13919 {
13920 struct neon_type_el dest = *key;
13921
13922 gas_assert ((thisarg & N_EQK) != 0);
13923
13924 neon_modify_type_size (thisarg, &dest.type, &dest.size);
13925
13926 return dest;
13927 }
13928
13929 /* Convert Neon type and size into compact bitmask representation. */
13930
13931 static enum neon_type_mask
13932 type_chk_of_el_type (enum neon_el_type type, unsigned size)
13933 {
13934 switch (type)
13935 {
13936 case NT_untyped:
13937 switch (size)
13938 {
13939 case 8: return N_8;
13940 case 16: return N_16;
13941 case 32: return N_32;
13942 case 64: return N_64;
13943 default: ;
13944 }
13945 break;
13946
13947 case NT_integer:
13948 switch (size)
13949 {
13950 case 8: return N_I8;
13951 case 16: return N_I16;
13952 case 32: return N_I32;
13953 case 64: return N_I64;
13954 default: ;
13955 }
13956 break;
13957
13958 case NT_float:
13959 switch (size)
13960 {
13961 case 16: return N_F16;
13962 case 32: return N_F32;
13963 case 64: return N_F64;
13964 default: ;
13965 }
13966 break;
13967
13968 case NT_poly:
13969 switch (size)
13970 {
13971 case 8: return N_P8;
13972 case 16: return N_P16;
13973 case 64: return N_P64;
13974 default: ;
13975 }
13976 break;
13977
13978 case NT_signed:
13979 switch (size)
13980 {
13981 case 8: return N_S8;
13982 case 16: return N_S16;
13983 case 32: return N_S32;
13984 case 64: return N_S64;
13985 default: ;
13986 }
13987 break;
13988
13989 case NT_unsigned:
13990 switch (size)
13991 {
13992 case 8: return N_U8;
13993 case 16: return N_U16;
13994 case 32: return N_U32;
13995 case 64: return N_U64;
13996 default: ;
13997 }
13998 break;
13999
14000 default: ;
14001 }
14002
14003 return N_UTYP;
14004 }
14005
14006 /* Convert compact Neon bitmask type representation to a type and size. Only
14007 handles the case where a single bit is set in the mask. */
14008
14009 static int
14010 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14011 enum neon_type_mask mask)
14012 {
14013 if ((mask & N_EQK) != 0)
14014 return FAIL;
14015
14016 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14017 *size = 8;
14018 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14019 *size = 16;
14020 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14021 *size = 32;
14022 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14023 *size = 64;
14024 else
14025 return FAIL;
14026
14027 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14028 *type = NT_signed;
14029 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14030 *type = NT_unsigned;
14031 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14032 *type = NT_integer;
14033 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14034 *type = NT_untyped;
14035 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14036 *type = NT_poly;
14037 else if ((mask & (N_F_ALL)) != 0)
14038 *type = NT_float;
14039 else
14040 return FAIL;
14041
14042 return SUCCESS;
14043 }
14044
14045 /* Modify a bitmask of allowed types. This is only needed for type
14046 relaxation. */
14047
14048 static unsigned
14049 modify_types_allowed (unsigned allowed, unsigned mods)
14050 {
14051 unsigned size;
14052 enum neon_el_type type;
14053 unsigned destmask;
14054 int i;
14055
14056 destmask = 0;
14057
14058 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14059 {
14060 if (el_type_of_type_chk (&type, &size,
14061 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14062 {
14063 neon_modify_type_size (mods, &type, &size);
14064 destmask |= type_chk_of_el_type (type, size);
14065 }
14066 }
14067
14068 return destmask;
14069 }
14070
14071 /* Check type and return type classification.
14072 The manual states (paraphrase): If one datatype is given, it indicates the
14073 type given in:
14074 - the second operand, if there is one
14075 - the operand, if there is no second operand
14076 - the result, if there are no operands.
14077 This isn't quite good enough though, so we use a concept of a "key" datatype
14078 which is set on a per-instruction basis, which is the one which matters when
14079 only one data type is written.
14080 Note: this function has side-effects (e.g. filling in missing operands). All
14081 Neon instructions should call it before performing bit encoding. */
14082
14083 static struct neon_type_el
14084 neon_check_type (unsigned els, enum neon_shape ns, ...)
14085 {
14086 va_list ap;
14087 unsigned i, pass, key_el = 0;
14088 unsigned types[NEON_MAX_TYPE_ELS];
14089 enum neon_el_type k_type = NT_invtype;
14090 unsigned k_size = -1u;
14091 struct neon_type_el badtype = {NT_invtype, -1};
14092 unsigned key_allowed = 0;
14093
14094 /* Optional registers in Neon instructions are always (not) in operand 1.
14095 Fill in the missing operand here, if it was omitted. */
14096 if (els > 1 && !inst.operands[1].present)
14097 inst.operands[1] = inst.operands[0];
14098
14099 /* Suck up all the varargs. */
14100 va_start (ap, ns);
14101 for (i = 0; i < els; i++)
14102 {
14103 unsigned thisarg = va_arg (ap, unsigned);
14104 if (thisarg == N_IGNORE_TYPE)
14105 {
14106 va_end (ap);
14107 return badtype;
14108 }
14109 types[i] = thisarg;
14110 if ((thisarg & N_KEY) != 0)
14111 key_el = i;
14112 }
14113 va_end (ap);
14114
14115 if (inst.vectype.elems > 0)
14116 for (i = 0; i < els; i++)
14117 if (inst.operands[i].vectype.type != NT_invtype)
14118 {
14119 first_error (_("types specified in both the mnemonic and operands"));
14120 return badtype;
14121 }
14122
14123 /* Duplicate inst.vectype elements here as necessary.
14124 FIXME: No idea if this is exactly the same as the ARM assembler,
14125 particularly when an insn takes one register and one non-register
14126 operand. */
14127 if (inst.vectype.elems == 1 && els > 1)
14128 {
14129 unsigned j;
14130 inst.vectype.elems = els;
14131 inst.vectype.el[key_el] = inst.vectype.el[0];
14132 for (j = 0; j < els; j++)
14133 if (j != key_el)
14134 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14135 types[j]);
14136 }
14137 else if (inst.vectype.elems == 0 && els > 0)
14138 {
14139 unsigned j;
14140 /* No types were given after the mnemonic, so look for types specified
14141 after each operand. We allow some flexibility here; as long as the
14142 "key" operand has a type, we can infer the others. */
14143 for (j = 0; j < els; j++)
14144 if (inst.operands[j].vectype.type != NT_invtype)
14145 inst.vectype.el[j] = inst.operands[j].vectype;
14146
14147 if (inst.operands[key_el].vectype.type != NT_invtype)
14148 {
14149 for (j = 0; j < els; j++)
14150 if (inst.operands[j].vectype.type == NT_invtype)
14151 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14152 types[j]);
14153 }
14154 else
14155 {
14156 first_error (_("operand types can't be inferred"));
14157 return badtype;
14158 }
14159 }
14160 else if (inst.vectype.elems != els)
14161 {
14162 first_error (_("type specifier has the wrong number of parts"));
14163 return badtype;
14164 }
14165
14166 for (pass = 0; pass < 2; pass++)
14167 {
14168 for (i = 0; i < els; i++)
14169 {
14170 unsigned thisarg = types[i];
14171 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14172 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14173 enum neon_el_type g_type = inst.vectype.el[i].type;
14174 unsigned g_size = inst.vectype.el[i].size;
14175
14176 /* Decay more-specific signed & unsigned types to sign-insensitive
14177 integer types if sign-specific variants are unavailable. */
14178 if ((g_type == NT_signed || g_type == NT_unsigned)
14179 && (types_allowed & N_SU_ALL) == 0)
14180 g_type = NT_integer;
14181
14182 /* If only untyped args are allowed, decay any more specific types to
14183 them. Some instructions only care about signs for some element
14184 sizes, so handle that properly. */
14185 if (((types_allowed & N_UNT) == 0)
14186 && ((g_size == 8 && (types_allowed & N_8) != 0)
14187 || (g_size == 16 && (types_allowed & N_16) != 0)
14188 || (g_size == 32 && (types_allowed & N_32) != 0)
14189 || (g_size == 64 && (types_allowed & N_64) != 0)))
14190 g_type = NT_untyped;
14191
14192 if (pass == 0)
14193 {
14194 if ((thisarg & N_KEY) != 0)
14195 {
14196 k_type = g_type;
14197 k_size = g_size;
14198 key_allowed = thisarg & ~N_KEY;
14199
14200 /* Check architecture constraint on FP16 extension. */
14201 if (k_size == 16
14202 && k_type == NT_float
14203 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14204 {
14205 inst.error = _(BAD_FP16);
14206 return badtype;
14207 }
14208 }
14209 }
14210 else
14211 {
14212 if ((thisarg & N_VFP) != 0)
14213 {
14214 enum neon_shape_el regshape;
14215 unsigned regwidth, match;
14216
14217 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14218 if (ns == NS_NULL)
14219 {
14220 first_error (_("invalid instruction shape"));
14221 return badtype;
14222 }
14223 regshape = neon_shape_tab[ns].el[i];
14224 regwidth = neon_shape_el_size[regshape];
14225
14226 /* In VFP mode, operands must match register widths. If we
14227 have a key operand, use its width, else use the width of
14228 the current operand. */
14229 if (k_size != -1u)
14230 match = k_size;
14231 else
14232 match = g_size;
14233
14234 /* FP16 will use a single precision register. */
14235 if (regwidth == 32 && match == 16)
14236 {
14237 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14238 match = regwidth;
14239 else
14240 {
14241 inst.error = _(BAD_FP16);
14242 return badtype;
14243 }
14244 }
14245
14246 if (regwidth != match)
14247 {
14248 first_error (_("operand size must match register width"));
14249 return badtype;
14250 }
14251 }
14252
14253 if ((thisarg & N_EQK) == 0)
14254 {
14255 unsigned given_type = type_chk_of_el_type (g_type, g_size);
14256
14257 if ((given_type & types_allowed) == 0)
14258 {
14259 first_error (_("bad type in Neon instruction"));
14260 return badtype;
14261 }
14262 }
14263 else
14264 {
14265 enum neon_el_type mod_k_type = k_type;
14266 unsigned mod_k_size = k_size;
14267 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
14268 if (g_type != mod_k_type || g_size != mod_k_size)
14269 {
14270 first_error (_("inconsistent types in Neon instruction"));
14271 return badtype;
14272 }
14273 }
14274 }
14275 }
14276 }
14277
14278 return inst.vectype.el[key_el];
14279 }
14280
14281 /* Neon-style VFP instruction forwarding. */
14282
14283 /* Thumb VFP instructions have 0xE in the condition field. */
14284
14285 static void
14286 do_vfp_cond_or_thumb (void)
14287 {
14288 inst.is_neon = 1;
14289
14290 if (thumb_mode)
14291 inst.instruction |= 0xe0000000;
14292 else
14293 inst.instruction |= inst.cond << 28;
14294 }
14295
14296 /* Look up and encode a simple mnemonic, for use as a helper function for the
14297 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
14298 etc. It is assumed that operand parsing has already been done, and that the
14299 operands are in the form expected by the given opcode (this isn't necessarily
14300 the same as the form in which they were parsed, hence some massaging must
14301 take place before this function is called).
14302 Checks current arch version against that in the looked-up opcode. */
14303
14304 static void
14305 do_vfp_nsyn_opcode (const char *opname)
14306 {
14307 const struct asm_opcode *opcode;
14308
14309 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
14310
14311 if (!opcode)
14312 abort ();
14313
14314 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
14315 thumb_mode ? *opcode->tvariant : *opcode->avariant),
14316 _(BAD_FPU));
14317
14318 inst.is_neon = 1;
14319
14320 if (thumb_mode)
14321 {
14322 inst.instruction = opcode->tvalue;
14323 opcode->tencode ();
14324 }
14325 else
14326 {
14327 inst.instruction = (inst.cond << 28) | opcode->avalue;
14328 opcode->aencode ();
14329 }
14330 }
14331
14332 static void
14333 do_vfp_nsyn_add_sub (enum neon_shape rs)
14334 {
14335 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
14336
14337 if (rs == NS_FFF || rs == NS_HHH)
14338 {
14339 if (is_add)
14340 do_vfp_nsyn_opcode ("fadds");
14341 else
14342 do_vfp_nsyn_opcode ("fsubs");
14343
14344 /* ARMv8.2 fp16 instruction. */
14345 if (rs == NS_HHH)
14346 do_scalar_fp16_v82_encode ();
14347 }
14348 else
14349 {
14350 if (is_add)
14351 do_vfp_nsyn_opcode ("faddd");
14352 else
14353 do_vfp_nsyn_opcode ("fsubd");
14354 }
14355 }
14356
14357 /* Check operand types to see if this is a VFP instruction, and if so call
14358 PFN (). */
14359
14360 static int
14361 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
14362 {
14363 enum neon_shape rs;
14364 struct neon_type_el et;
14365
14366 switch (args)
14367 {
14368 case 2:
14369 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14370 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14371 break;
14372
14373 case 3:
14374 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14375 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14376 N_F_ALL | N_KEY | N_VFP);
14377 break;
14378
14379 default:
14380 abort ();
14381 }
14382
14383 if (et.type != NT_invtype)
14384 {
14385 pfn (rs);
14386 return SUCCESS;
14387 }
14388
14389 inst.error = NULL;
14390 return FAIL;
14391 }
14392
14393 static void
14394 do_vfp_nsyn_mla_mls (enum neon_shape rs)
14395 {
14396 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
14397
14398 if (rs == NS_FFF || rs == NS_HHH)
14399 {
14400 if (is_mla)
14401 do_vfp_nsyn_opcode ("fmacs");
14402 else
14403 do_vfp_nsyn_opcode ("fnmacs");
14404
14405 /* ARMv8.2 fp16 instruction. */
14406 if (rs == NS_HHH)
14407 do_scalar_fp16_v82_encode ();
14408 }
14409 else
14410 {
14411 if (is_mla)
14412 do_vfp_nsyn_opcode ("fmacd");
14413 else
14414 do_vfp_nsyn_opcode ("fnmacd");
14415 }
14416 }
14417
14418 static void
14419 do_vfp_nsyn_fma_fms (enum neon_shape rs)
14420 {
14421 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
14422
14423 if (rs == NS_FFF || rs == NS_HHH)
14424 {
14425 if (is_fma)
14426 do_vfp_nsyn_opcode ("ffmas");
14427 else
14428 do_vfp_nsyn_opcode ("ffnmas");
14429
14430 /* ARMv8.2 fp16 instruction. */
14431 if (rs == NS_HHH)
14432 do_scalar_fp16_v82_encode ();
14433 }
14434 else
14435 {
14436 if (is_fma)
14437 do_vfp_nsyn_opcode ("ffmad");
14438 else
14439 do_vfp_nsyn_opcode ("ffnmad");
14440 }
14441 }
14442
14443 static void
14444 do_vfp_nsyn_mul (enum neon_shape rs)
14445 {
14446 if (rs == NS_FFF || rs == NS_HHH)
14447 {
14448 do_vfp_nsyn_opcode ("fmuls");
14449
14450 /* ARMv8.2 fp16 instruction. */
14451 if (rs == NS_HHH)
14452 do_scalar_fp16_v82_encode ();
14453 }
14454 else
14455 do_vfp_nsyn_opcode ("fmuld");
14456 }
14457
14458 static void
14459 do_vfp_nsyn_abs_neg (enum neon_shape rs)
14460 {
14461 int is_neg = (inst.instruction & 0x80) != 0;
14462 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
14463
14464 if (rs == NS_FF || rs == NS_HH)
14465 {
14466 if (is_neg)
14467 do_vfp_nsyn_opcode ("fnegs");
14468 else
14469 do_vfp_nsyn_opcode ("fabss");
14470
14471 /* ARMv8.2 fp16 instruction. */
14472 if (rs == NS_HH)
14473 do_scalar_fp16_v82_encode ();
14474 }
14475 else
14476 {
14477 if (is_neg)
14478 do_vfp_nsyn_opcode ("fnegd");
14479 else
14480 do_vfp_nsyn_opcode ("fabsd");
14481 }
14482 }
14483
14484 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
14485 insns belong to Neon, and are handled elsewhere. */
14486
14487 static void
14488 do_vfp_nsyn_ldm_stm (int is_dbmode)
14489 {
14490 int is_ldm = (inst.instruction & (1 << 20)) != 0;
14491 if (is_ldm)
14492 {
14493 if (is_dbmode)
14494 do_vfp_nsyn_opcode ("fldmdbs");
14495 else
14496 do_vfp_nsyn_opcode ("fldmias");
14497 }
14498 else
14499 {
14500 if (is_dbmode)
14501 do_vfp_nsyn_opcode ("fstmdbs");
14502 else
14503 do_vfp_nsyn_opcode ("fstmias");
14504 }
14505 }
14506
14507 static void
14508 do_vfp_nsyn_sqrt (void)
14509 {
14510 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14511 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14512
14513 if (rs == NS_FF || rs == NS_HH)
14514 {
14515 do_vfp_nsyn_opcode ("fsqrts");
14516
14517 /* ARMv8.2 fp16 instruction. */
14518 if (rs == NS_HH)
14519 do_scalar_fp16_v82_encode ();
14520 }
14521 else
14522 do_vfp_nsyn_opcode ("fsqrtd");
14523 }
14524
14525 static void
14526 do_vfp_nsyn_div (void)
14527 {
14528 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14529 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14530 N_F_ALL | N_KEY | N_VFP);
14531
14532 if (rs == NS_FFF || rs == NS_HHH)
14533 {
14534 do_vfp_nsyn_opcode ("fdivs");
14535
14536 /* ARMv8.2 fp16 instruction. */
14537 if (rs == NS_HHH)
14538 do_scalar_fp16_v82_encode ();
14539 }
14540 else
14541 do_vfp_nsyn_opcode ("fdivd");
14542 }
14543
14544 static void
14545 do_vfp_nsyn_nmul (void)
14546 {
14547 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
14548 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
14549 N_F_ALL | N_KEY | N_VFP);
14550
14551 if (rs == NS_FFF || rs == NS_HHH)
14552 {
14553 NEON_ENCODE (SINGLE, inst);
14554 do_vfp_sp_dyadic ();
14555
14556 /* ARMv8.2 fp16 instruction. */
14557 if (rs == NS_HHH)
14558 do_scalar_fp16_v82_encode ();
14559 }
14560 else
14561 {
14562 NEON_ENCODE (DOUBLE, inst);
14563 do_vfp_dp_rd_rn_rm ();
14564 }
14565 do_vfp_cond_or_thumb ();
14566
14567 }
14568
14569 static void
14570 do_vfp_nsyn_cmp (void)
14571 {
14572 enum neon_shape rs;
14573 if (inst.operands[1].isreg)
14574 {
14575 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
14576 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
14577
14578 if (rs == NS_FF || rs == NS_HH)
14579 {
14580 NEON_ENCODE (SINGLE, inst);
14581 do_vfp_sp_monadic ();
14582 }
14583 else
14584 {
14585 NEON_ENCODE (DOUBLE, inst);
14586 do_vfp_dp_rd_rm ();
14587 }
14588 }
14589 else
14590 {
14591 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
14592 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
14593
14594 switch (inst.instruction & 0x0fffffff)
14595 {
14596 case N_MNEM_vcmp:
14597 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
14598 break;
14599 case N_MNEM_vcmpe:
14600 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
14601 break;
14602 default:
14603 abort ();
14604 }
14605
14606 if (rs == NS_FI || rs == NS_HI)
14607 {
14608 NEON_ENCODE (SINGLE, inst);
14609 do_vfp_sp_compare_z ();
14610 }
14611 else
14612 {
14613 NEON_ENCODE (DOUBLE, inst);
14614 do_vfp_dp_rd ();
14615 }
14616 }
14617 do_vfp_cond_or_thumb ();
14618
14619 /* ARMv8.2 fp16 instruction. */
14620 if (rs == NS_HI || rs == NS_HH)
14621 do_scalar_fp16_v82_encode ();
14622 }
14623
14624 static void
14625 nsyn_insert_sp (void)
14626 {
14627 inst.operands[1] = inst.operands[0];
14628 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
14629 inst.operands[0].reg = REG_SP;
14630 inst.operands[0].isreg = 1;
14631 inst.operands[0].writeback = 1;
14632 inst.operands[0].present = 1;
14633 }
14634
14635 static void
14636 do_vfp_nsyn_push (void)
14637 {
14638 nsyn_insert_sp ();
14639
14640 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14641 _("register list must contain at least 1 and at most 16 "
14642 "registers"));
14643
14644 if (inst.operands[1].issingle)
14645 do_vfp_nsyn_opcode ("fstmdbs");
14646 else
14647 do_vfp_nsyn_opcode ("fstmdbd");
14648 }
14649
14650 static void
14651 do_vfp_nsyn_pop (void)
14652 {
14653 nsyn_insert_sp ();
14654
14655 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14656 _("register list must contain at least 1 and at most 16 "
14657 "registers"));
14658
14659 if (inst.operands[1].issingle)
14660 do_vfp_nsyn_opcode ("fldmias");
14661 else
14662 do_vfp_nsyn_opcode ("fldmiad");
14663 }
14664
14665 /* Fix up Neon data-processing instructions, ORing in the correct bits for
14666 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
14667
14668 static void
14669 neon_dp_fixup (struct arm_it* insn)
14670 {
14671 unsigned int i = insn->instruction;
14672 insn->is_neon = 1;
14673
14674 if (thumb_mode)
14675 {
14676 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
14677 if (i & (1 << 24))
14678 i |= 1 << 28;
14679
14680 i &= ~(1 << 24);
14681
14682 i |= 0xef000000;
14683 }
14684 else
14685 i |= 0xf2000000;
14686
14687 insn->instruction = i;
14688 }
14689
14690 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
14691 (0, 1, 2, 3). */
14692
14693 static unsigned
14694 neon_logbits (unsigned x)
14695 {
14696 return ffs (x) - 4;
14697 }
14698
14699 #define LOW4(R) ((R) & 0xf)
14700 #define HI1(R) (((R) >> 4) & 1)
14701
14702 /* Encode insns with bit pattern:
14703
14704 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14705 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
14706
14707 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
14708 different meaning for some instruction. */
14709
14710 static void
14711 neon_three_same (int isquad, int ubit, int size)
14712 {
14713 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14714 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14715 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14716 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14717 inst.instruction |= LOW4 (inst.operands[2].reg);
14718 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14719 inst.instruction |= (isquad != 0) << 6;
14720 inst.instruction |= (ubit != 0) << 24;
14721 if (size != -1)
14722 inst.instruction |= neon_logbits (size) << 20;
14723
14724 neon_dp_fixup (&inst);
14725 }
14726
14727 /* Encode instructions of the form:
14728
14729 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
14730 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
14731
14732 Don't write size if SIZE == -1. */
14733
14734 static void
14735 neon_two_same (int qbit, int ubit, int size)
14736 {
14737 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14738 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14739 inst.instruction |= LOW4 (inst.operands[1].reg);
14740 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14741 inst.instruction |= (qbit != 0) << 6;
14742 inst.instruction |= (ubit != 0) << 24;
14743
14744 if (size != -1)
14745 inst.instruction |= neon_logbits (size) << 18;
14746
14747 neon_dp_fixup (&inst);
14748 }
14749
14750 /* Neon instruction encoders, in approximate order of appearance. */
14751
14752 static void
14753 do_neon_dyadic_i_su (void)
14754 {
14755 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14756 struct neon_type_el et = neon_check_type (3, rs,
14757 N_EQK, N_EQK, N_SU_32 | N_KEY);
14758 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14759 }
14760
14761 static void
14762 do_neon_dyadic_i64_su (void)
14763 {
14764 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14765 struct neon_type_el et = neon_check_type (3, rs,
14766 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14767 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14768 }
14769
14770 static void
14771 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
14772 unsigned immbits)
14773 {
14774 unsigned size = et.size >> 3;
14775 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14776 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14777 inst.instruction |= LOW4 (inst.operands[1].reg);
14778 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14779 inst.instruction |= (isquad != 0) << 6;
14780 inst.instruction |= immbits << 16;
14781 inst.instruction |= (size >> 3) << 7;
14782 inst.instruction |= (size & 0x7) << 19;
14783 if (write_ubit)
14784 inst.instruction |= (uval != 0) << 24;
14785
14786 neon_dp_fixup (&inst);
14787 }
14788
14789 static void
14790 do_neon_shl_imm (void)
14791 {
14792 if (!inst.operands[2].isreg)
14793 {
14794 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14795 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
14796 int imm = inst.operands[2].imm;
14797
14798 constraint (imm < 0 || (unsigned)imm >= et.size,
14799 _("immediate out of range for shift"));
14800 NEON_ENCODE (IMMED, inst);
14801 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14802 }
14803 else
14804 {
14805 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14806 struct neon_type_el et = neon_check_type (3, rs,
14807 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14808 unsigned int tmp;
14809
14810 /* VSHL/VQSHL 3-register variants have syntax such as:
14811 vshl.xx Dd, Dm, Dn
14812 whereas other 3-register operations encoded by neon_three_same have
14813 syntax like:
14814 vadd.xx Dd, Dn, Dm
14815 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
14816 here. */
14817 tmp = inst.operands[2].reg;
14818 inst.operands[2].reg = inst.operands[1].reg;
14819 inst.operands[1].reg = tmp;
14820 NEON_ENCODE (INTEGER, inst);
14821 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14822 }
14823 }
14824
14825 static void
14826 do_neon_qshl_imm (void)
14827 {
14828 if (!inst.operands[2].isreg)
14829 {
14830 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14831 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14832 int imm = inst.operands[2].imm;
14833
14834 constraint (imm < 0 || (unsigned)imm >= et.size,
14835 _("immediate out of range for shift"));
14836 NEON_ENCODE (IMMED, inst);
14837 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
14838 }
14839 else
14840 {
14841 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14842 struct neon_type_el et = neon_check_type (3, rs,
14843 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
14844 unsigned int tmp;
14845
14846 /* See note in do_neon_shl_imm. */
14847 tmp = inst.operands[2].reg;
14848 inst.operands[2].reg = inst.operands[1].reg;
14849 inst.operands[1].reg = tmp;
14850 NEON_ENCODE (INTEGER, inst);
14851 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14852 }
14853 }
14854
14855 static void
14856 do_neon_rshl (void)
14857 {
14858 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14859 struct neon_type_el et = neon_check_type (3, rs,
14860 N_EQK, N_EQK, N_SU_ALL | N_KEY);
14861 unsigned int tmp;
14862
14863 tmp = inst.operands[2].reg;
14864 inst.operands[2].reg = inst.operands[1].reg;
14865 inst.operands[1].reg = tmp;
14866 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
14867 }
14868
14869 static int
14870 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
14871 {
14872 /* Handle .I8 pseudo-instructions. */
14873 if (size == 8)
14874 {
14875 /* Unfortunately, this will make everything apart from zero out-of-range.
14876 FIXME is this the intended semantics? There doesn't seem much point in
14877 accepting .I8 if so. */
14878 immediate |= immediate << 8;
14879 size = 16;
14880 }
14881
14882 if (size >= 32)
14883 {
14884 if (immediate == (immediate & 0x000000ff))
14885 {
14886 *immbits = immediate;
14887 return 0x1;
14888 }
14889 else if (immediate == (immediate & 0x0000ff00))
14890 {
14891 *immbits = immediate >> 8;
14892 return 0x3;
14893 }
14894 else if (immediate == (immediate & 0x00ff0000))
14895 {
14896 *immbits = immediate >> 16;
14897 return 0x5;
14898 }
14899 else if (immediate == (immediate & 0xff000000))
14900 {
14901 *immbits = immediate >> 24;
14902 return 0x7;
14903 }
14904 if ((immediate & 0xffff) != (immediate >> 16))
14905 goto bad_immediate;
14906 immediate &= 0xffff;
14907 }
14908
14909 if (immediate == (immediate & 0x000000ff))
14910 {
14911 *immbits = immediate;
14912 return 0x9;
14913 }
14914 else if (immediate == (immediate & 0x0000ff00))
14915 {
14916 *immbits = immediate >> 8;
14917 return 0xb;
14918 }
14919
14920 bad_immediate:
14921 first_error (_("immediate value out of range"));
14922 return FAIL;
14923 }
14924
14925 static void
14926 do_neon_logic (void)
14927 {
14928 if (inst.operands[2].present && inst.operands[2].isreg)
14929 {
14930 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14931 neon_check_type (3, rs, N_IGNORE_TYPE);
14932 /* U bit and size field were set as part of the bitmask. */
14933 NEON_ENCODE (INTEGER, inst);
14934 neon_three_same (neon_quad (rs), 0, -1);
14935 }
14936 else
14937 {
14938 const int three_ops_form = (inst.operands[2].present
14939 && !inst.operands[2].isreg);
14940 const int immoperand = (three_ops_form ? 2 : 1);
14941 enum neon_shape rs = (three_ops_form
14942 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
14943 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
14944 struct neon_type_el et = neon_check_type (2, rs,
14945 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14946 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
14947 unsigned immbits;
14948 int cmode;
14949
14950 if (et.type == NT_invtype)
14951 return;
14952
14953 if (three_ops_form)
14954 constraint (inst.operands[0].reg != inst.operands[1].reg,
14955 _("first and second operands shall be the same register"));
14956
14957 NEON_ENCODE (IMMED, inst);
14958
14959 immbits = inst.operands[immoperand].imm;
14960 if (et.size == 64)
14961 {
14962 /* .i64 is a pseudo-op, so the immediate must be a repeating
14963 pattern. */
14964 if (immbits != (inst.operands[immoperand].regisimm ?
14965 inst.operands[immoperand].reg : 0))
14966 {
14967 /* Set immbits to an invalid constant. */
14968 immbits = 0xdeadbeef;
14969 }
14970 }
14971
14972 switch (opcode)
14973 {
14974 case N_MNEM_vbic:
14975 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14976 break;
14977
14978 case N_MNEM_vorr:
14979 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14980 break;
14981
14982 case N_MNEM_vand:
14983 /* Pseudo-instruction for VBIC. */
14984 neon_invert_size (&immbits, 0, et.size);
14985 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14986 break;
14987
14988 case N_MNEM_vorn:
14989 /* Pseudo-instruction for VORR. */
14990 neon_invert_size (&immbits, 0, et.size);
14991 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
14992 break;
14993
14994 default:
14995 abort ();
14996 }
14997
14998 if (cmode == FAIL)
14999 return;
15000
15001 inst.instruction |= neon_quad (rs) << 6;
15002 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15003 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15004 inst.instruction |= cmode << 8;
15005 neon_write_immbits (immbits);
15006
15007 neon_dp_fixup (&inst);
15008 }
15009 }
15010
15011 static void
15012 do_neon_bitfield (void)
15013 {
15014 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15015 neon_check_type (3, rs, N_IGNORE_TYPE);
15016 neon_three_same (neon_quad (rs), 0, -1);
15017 }
15018
15019 static void
15020 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
15021 unsigned destbits)
15022 {
15023 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15024 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
15025 types | N_KEY);
15026 if (et.type == NT_float)
15027 {
15028 NEON_ENCODE (FLOAT, inst);
15029 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
15030 }
15031 else
15032 {
15033 NEON_ENCODE (INTEGER, inst);
15034 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
15035 }
15036 }
15037
15038 static void
15039 do_neon_dyadic_if_su (void)
15040 {
15041 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
15042 }
15043
15044 static void
15045 do_neon_dyadic_if_su_d (void)
15046 {
15047 /* This version only allow D registers, but that constraint is enforced during
15048 operand parsing so we don't need to do anything extra here. */
15049 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
15050 }
15051
15052 static void
15053 do_neon_dyadic_if_i_d (void)
15054 {
15055 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15056 affected if we specify unsigned args. */
15057 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15058 }
15059
15060 enum vfp_or_neon_is_neon_bits
15061 {
15062 NEON_CHECK_CC = 1,
15063 NEON_CHECK_ARCH = 2,
15064 NEON_CHECK_ARCH8 = 4
15065 };
15066
15067 /* Call this function if an instruction which may have belonged to the VFP or
15068 Neon instruction sets, but turned out to be a Neon instruction (due to the
15069 operand types involved, etc.). We have to check and/or fix-up a couple of
15070 things:
15071
15072 - Make sure the user hasn't attempted to make a Neon instruction
15073 conditional.
15074 - Alter the value in the condition code field if necessary.
15075 - Make sure that the arch supports Neon instructions.
15076
15077 Which of these operations take place depends on bits from enum
15078 vfp_or_neon_is_neon_bits.
15079
15080 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
15081 current instruction's condition is COND_ALWAYS, the condition field is
15082 changed to inst.uncond_value. This is necessary because instructions shared
15083 between VFP and Neon may be conditional for the VFP variants only, and the
15084 unconditional Neon version must have, e.g., 0xF in the condition field. */
15085
15086 static int
15087 vfp_or_neon_is_neon (unsigned check)
15088 {
15089 /* Conditions are always legal in Thumb mode (IT blocks). */
15090 if (!thumb_mode && (check & NEON_CHECK_CC))
15091 {
15092 if (inst.cond != COND_ALWAYS)
15093 {
15094 first_error (_(BAD_COND));
15095 return FAIL;
15096 }
15097 if (inst.uncond_value != -1)
15098 inst.instruction |= inst.uncond_value << 28;
15099 }
15100
15101 if ((check & NEON_CHECK_ARCH)
15102 && !mark_feature_used (&fpu_neon_ext_v1))
15103 {
15104 first_error (_(BAD_FPU));
15105 return FAIL;
15106 }
15107
15108 if ((check & NEON_CHECK_ARCH8)
15109 && !mark_feature_used (&fpu_neon_ext_armv8))
15110 {
15111 first_error (_(BAD_FPU));
15112 return FAIL;
15113 }
15114
15115 return SUCCESS;
15116 }
15117
15118 static void
15119 do_neon_addsub_if_i (void)
15120 {
15121 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
15122 return;
15123
15124 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15125 return;
15126
15127 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15128 affected if we specify unsigned args. */
15129 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
15130 }
15131
15132 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
15133 result to be:
15134 V<op> A,B (A is operand 0, B is operand 2)
15135 to mean:
15136 V<op> A,B,A
15137 not:
15138 V<op> A,B,B
15139 so handle that case specially. */
15140
15141 static void
15142 neon_exchange_operands (void)
15143 {
15144 if (inst.operands[1].present)
15145 {
15146 void *scratch = xmalloc (sizeof (inst.operands[0]));
15147
15148 /* Swap operands[1] and operands[2]. */
15149 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
15150 inst.operands[1] = inst.operands[2];
15151 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
15152 free (scratch);
15153 }
15154 else
15155 {
15156 inst.operands[1] = inst.operands[2];
15157 inst.operands[2] = inst.operands[0];
15158 }
15159 }
15160
15161 static void
15162 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
15163 {
15164 if (inst.operands[2].isreg)
15165 {
15166 if (invert)
15167 neon_exchange_operands ();
15168 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
15169 }
15170 else
15171 {
15172 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15173 struct neon_type_el et = neon_check_type (2, rs,
15174 N_EQK | N_SIZ, immtypes | N_KEY);
15175
15176 NEON_ENCODE (IMMED, inst);
15177 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15178 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15179 inst.instruction |= LOW4 (inst.operands[1].reg);
15180 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15181 inst.instruction |= neon_quad (rs) << 6;
15182 inst.instruction |= (et.type == NT_float) << 10;
15183 inst.instruction |= neon_logbits (et.size) << 18;
15184
15185 neon_dp_fixup (&inst);
15186 }
15187 }
15188
15189 static void
15190 do_neon_cmp (void)
15191 {
15192 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
15193 }
15194
15195 static void
15196 do_neon_cmp_inv (void)
15197 {
15198 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
15199 }
15200
15201 static void
15202 do_neon_ceq (void)
15203 {
15204 neon_compare (N_IF_32, N_IF_32, FALSE);
15205 }
15206
15207 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
15208 scalars, which are encoded in 5 bits, M : Rm.
15209 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
15210 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
15211 index in M.
15212
15213 Dot Product instructions are similar to multiply instructions except elsize
15214 should always be 32.
15215
15216 This function translates SCALAR, which is GAS's internal encoding of indexed
15217 scalar register, to raw encoding. There is also register and index range
15218 check based on ELSIZE. */
15219
15220 static unsigned
15221 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
15222 {
15223 unsigned regno = NEON_SCALAR_REG (scalar);
15224 unsigned elno = NEON_SCALAR_INDEX (scalar);
15225
15226 switch (elsize)
15227 {
15228 case 16:
15229 if (regno > 7 || elno > 3)
15230 goto bad_scalar;
15231 return regno | (elno << 3);
15232
15233 case 32:
15234 if (regno > 15 || elno > 1)
15235 goto bad_scalar;
15236 return regno | (elno << 4);
15237
15238 default:
15239 bad_scalar:
15240 first_error (_("scalar out of range for multiply instruction"));
15241 }
15242
15243 return 0;
15244 }
15245
15246 /* Encode multiply / multiply-accumulate scalar instructions. */
15247
15248 static void
15249 neon_mul_mac (struct neon_type_el et, int ubit)
15250 {
15251 unsigned scalar;
15252
15253 /* Give a more helpful error message if we have an invalid type. */
15254 if (et.type == NT_invtype)
15255 return;
15256
15257 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
15258 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15259 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15260 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15261 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15262 inst.instruction |= LOW4 (scalar);
15263 inst.instruction |= HI1 (scalar) << 5;
15264 inst.instruction |= (et.type == NT_float) << 8;
15265 inst.instruction |= neon_logbits (et.size) << 20;
15266 inst.instruction |= (ubit != 0) << 24;
15267
15268 neon_dp_fixup (&inst);
15269 }
15270
15271 static void
15272 do_neon_mac_maybe_scalar (void)
15273 {
15274 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
15275 return;
15276
15277 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15278 return;
15279
15280 if (inst.operands[2].isscalar)
15281 {
15282 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15283 struct neon_type_el et = neon_check_type (3, rs,
15284 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
15285 NEON_ENCODE (SCALAR, inst);
15286 neon_mul_mac (et, neon_quad (rs));
15287 }
15288 else
15289 {
15290 /* The "untyped" case can't happen. Do this to stop the "U" bit being
15291 affected if we specify unsigned args. */
15292 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15293 }
15294 }
15295
15296 static void
15297 do_neon_fmac (void)
15298 {
15299 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
15300 return;
15301
15302 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15303 return;
15304
15305 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
15306 }
15307
15308 static void
15309 do_neon_tst (void)
15310 {
15311 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15312 struct neon_type_el et = neon_check_type (3, rs,
15313 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
15314 neon_three_same (neon_quad (rs), 0, et.size);
15315 }
15316
15317 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
15318 same types as the MAC equivalents. The polynomial type for this instruction
15319 is encoded the same as the integer type. */
15320
15321 static void
15322 do_neon_mul (void)
15323 {
15324 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
15325 return;
15326
15327 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15328 return;
15329
15330 if (inst.operands[2].isscalar)
15331 do_neon_mac_maybe_scalar ();
15332 else
15333 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
15334 }
15335
15336 static void
15337 do_neon_qdmulh (void)
15338 {
15339 if (inst.operands[2].isscalar)
15340 {
15341 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15342 struct neon_type_el et = neon_check_type (3, rs,
15343 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15344 NEON_ENCODE (SCALAR, inst);
15345 neon_mul_mac (et, neon_quad (rs));
15346 }
15347 else
15348 {
15349 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15350 struct neon_type_el et = neon_check_type (3, rs,
15351 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15352 NEON_ENCODE (INTEGER, inst);
15353 /* The U bit (rounding) comes from bit mask. */
15354 neon_three_same (neon_quad (rs), 0, et.size);
15355 }
15356 }
15357
15358 static void
15359 do_neon_qrdmlah (void)
15360 {
15361 /* Check we're on the correct architecture. */
15362 if (!mark_feature_used (&fpu_neon_ext_armv8))
15363 inst.error =
15364 _("instruction form not available on this architecture.");
15365 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
15366 {
15367 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
15368 record_feature_use (&fpu_neon_ext_v8_1);
15369 }
15370
15371 if (inst.operands[2].isscalar)
15372 {
15373 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
15374 struct neon_type_el et = neon_check_type (3, rs,
15375 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15376 NEON_ENCODE (SCALAR, inst);
15377 neon_mul_mac (et, neon_quad (rs));
15378 }
15379 else
15380 {
15381 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15382 struct neon_type_el et = neon_check_type (3, rs,
15383 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
15384 NEON_ENCODE (INTEGER, inst);
15385 /* The U bit (rounding) comes from bit mask. */
15386 neon_three_same (neon_quad (rs), 0, et.size);
15387 }
15388 }
15389
15390 static void
15391 do_neon_fcmp_absolute (void)
15392 {
15393 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15394 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15395 N_F_16_32 | N_KEY);
15396 /* Size field comes from bit mask. */
15397 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
15398 }
15399
15400 static void
15401 do_neon_fcmp_absolute_inv (void)
15402 {
15403 neon_exchange_operands ();
15404 do_neon_fcmp_absolute ();
15405 }
15406
15407 static void
15408 do_neon_step (void)
15409 {
15410 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15411 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
15412 N_F_16_32 | N_KEY);
15413 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
15414 }
15415
15416 static void
15417 do_neon_abs_neg (void)
15418 {
15419 enum neon_shape rs;
15420 struct neon_type_el et;
15421
15422 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
15423 return;
15424
15425 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15426 return;
15427
15428 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15429 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
15430
15431 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15432 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15433 inst.instruction |= LOW4 (inst.operands[1].reg);
15434 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15435 inst.instruction |= neon_quad (rs) << 6;
15436 inst.instruction |= (et.type == NT_float) << 10;
15437 inst.instruction |= neon_logbits (et.size) << 18;
15438
15439 neon_dp_fixup (&inst);
15440 }
15441
15442 static void
15443 do_neon_sli (void)
15444 {
15445 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15446 struct neon_type_el et = neon_check_type (2, rs,
15447 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15448 int imm = inst.operands[2].imm;
15449 constraint (imm < 0 || (unsigned)imm >= et.size,
15450 _("immediate out of range for insert"));
15451 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15452 }
15453
15454 static void
15455 do_neon_sri (void)
15456 {
15457 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15458 struct neon_type_el et = neon_check_type (2, rs,
15459 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15460 int imm = inst.operands[2].imm;
15461 constraint (imm < 1 || (unsigned)imm > et.size,
15462 _("immediate out of range for insert"));
15463 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
15464 }
15465
15466 static void
15467 do_neon_qshlu_imm (void)
15468 {
15469 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15470 struct neon_type_el et = neon_check_type (2, rs,
15471 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
15472 int imm = inst.operands[2].imm;
15473 constraint (imm < 0 || (unsigned)imm >= et.size,
15474 _("immediate out of range for shift"));
15475 /* Only encodes the 'U present' variant of the instruction.
15476 In this case, signed types have OP (bit 8) set to 0.
15477 Unsigned types have OP set to 1. */
15478 inst.instruction |= (et.type == NT_unsigned) << 8;
15479 /* The rest of the bits are the same as other immediate shifts. */
15480 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15481 }
15482
15483 static void
15484 do_neon_qmovn (void)
15485 {
15486 struct neon_type_el et = neon_check_type (2, NS_DQ,
15487 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15488 /* Saturating move where operands can be signed or unsigned, and the
15489 destination has the same signedness. */
15490 NEON_ENCODE (INTEGER, inst);
15491 if (et.type == NT_unsigned)
15492 inst.instruction |= 0xc0;
15493 else
15494 inst.instruction |= 0x80;
15495 neon_two_same (0, 1, et.size / 2);
15496 }
15497
15498 static void
15499 do_neon_qmovun (void)
15500 {
15501 struct neon_type_el et = neon_check_type (2, NS_DQ,
15502 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15503 /* Saturating move with unsigned results. Operands must be signed. */
15504 NEON_ENCODE (INTEGER, inst);
15505 neon_two_same (0, 1, et.size / 2);
15506 }
15507
15508 static void
15509 do_neon_rshift_sat_narrow (void)
15510 {
15511 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15512 or unsigned. If operands are unsigned, results must also be unsigned. */
15513 struct neon_type_el et = neon_check_type (2, NS_DQI,
15514 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
15515 int imm = inst.operands[2].imm;
15516 /* This gets the bounds check, size encoding and immediate bits calculation
15517 right. */
15518 et.size /= 2;
15519
15520 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
15521 VQMOVN.I<size> <Dd>, <Qm>. */
15522 if (imm == 0)
15523 {
15524 inst.operands[2].present = 0;
15525 inst.instruction = N_MNEM_vqmovn;
15526 do_neon_qmovn ();
15527 return;
15528 }
15529
15530 constraint (imm < 1 || (unsigned)imm > et.size,
15531 _("immediate out of range"));
15532 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
15533 }
15534
15535 static void
15536 do_neon_rshift_sat_narrow_u (void)
15537 {
15538 /* FIXME: Types for narrowing. If operands are signed, results can be signed
15539 or unsigned. If operands are unsigned, results must also be unsigned. */
15540 struct neon_type_el et = neon_check_type (2, NS_DQI,
15541 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
15542 int imm = inst.operands[2].imm;
15543 /* This gets the bounds check, size encoding and immediate bits calculation
15544 right. */
15545 et.size /= 2;
15546
15547 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
15548 VQMOVUN.I<size> <Dd>, <Qm>. */
15549 if (imm == 0)
15550 {
15551 inst.operands[2].present = 0;
15552 inst.instruction = N_MNEM_vqmovun;
15553 do_neon_qmovun ();
15554 return;
15555 }
15556
15557 constraint (imm < 1 || (unsigned)imm > et.size,
15558 _("immediate out of range"));
15559 /* FIXME: The manual is kind of unclear about what value U should have in
15560 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
15561 must be 1. */
15562 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
15563 }
15564
15565 static void
15566 do_neon_movn (void)
15567 {
15568 struct neon_type_el et = neon_check_type (2, NS_DQ,
15569 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15570 NEON_ENCODE (INTEGER, inst);
15571 neon_two_same (0, 1, et.size / 2);
15572 }
15573
15574 static void
15575 do_neon_rshift_narrow (void)
15576 {
15577 struct neon_type_el et = neon_check_type (2, NS_DQI,
15578 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
15579 int imm = inst.operands[2].imm;
15580 /* This gets the bounds check, size encoding and immediate bits calculation
15581 right. */
15582 et.size /= 2;
15583
15584 /* If immediate is zero then we are a pseudo-instruction for
15585 VMOVN.I<size> <Dd>, <Qm> */
15586 if (imm == 0)
15587 {
15588 inst.operands[2].present = 0;
15589 inst.instruction = N_MNEM_vmovn;
15590 do_neon_movn ();
15591 return;
15592 }
15593
15594 constraint (imm < 1 || (unsigned)imm > et.size,
15595 _("immediate out of range for narrowing operation"));
15596 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
15597 }
15598
15599 static void
15600 do_neon_shll (void)
15601 {
15602 /* FIXME: Type checking when lengthening. */
15603 struct neon_type_el et = neon_check_type (2, NS_QDI,
15604 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
15605 unsigned imm = inst.operands[2].imm;
15606
15607 if (imm == et.size)
15608 {
15609 /* Maximum shift variant. */
15610 NEON_ENCODE (INTEGER, inst);
15611 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15612 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15613 inst.instruction |= LOW4 (inst.operands[1].reg);
15614 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15615 inst.instruction |= neon_logbits (et.size) << 18;
15616
15617 neon_dp_fixup (&inst);
15618 }
15619 else
15620 {
15621 /* A more-specific type check for non-max versions. */
15622 et = neon_check_type (2, NS_QDI,
15623 N_EQK | N_DBL, N_SU_32 | N_KEY);
15624 NEON_ENCODE (IMMED, inst);
15625 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
15626 }
15627 }
15628
15629 /* Check the various types for the VCVT instruction, and return which version
15630 the current instruction is. */
15631
15632 #define CVT_FLAVOUR_VAR \
15633 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
15634 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
15635 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
15636 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
15637 /* Half-precision conversions. */ \
15638 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15639 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
15640 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
15641 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
15642 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
15643 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
15644 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
15645 Compared with single/double precision variants, only the co-processor \
15646 field is different, so the encoding flow is reused here. */ \
15647 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
15648 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
15649 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
15650 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
15651 /* VFP instructions. */ \
15652 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
15653 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
15654 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
15655 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
15656 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
15657 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
15658 /* VFP instructions with bitshift. */ \
15659 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
15660 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
15661 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
15662 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
15663 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
15664 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
15665 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
15666 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
15667
15668 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
15669 neon_cvt_flavour_##C,
15670
15671 /* The different types of conversions we can do. */
15672 enum neon_cvt_flavour
15673 {
15674 CVT_FLAVOUR_VAR
15675 neon_cvt_flavour_invalid,
15676 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
15677 };
15678
15679 #undef CVT_VAR
15680
15681 static enum neon_cvt_flavour
15682 get_neon_cvt_flavour (enum neon_shape rs)
15683 {
15684 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
15685 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
15686 if (et.type != NT_invtype) \
15687 { \
15688 inst.error = NULL; \
15689 return (neon_cvt_flavour_##C); \
15690 }
15691
15692 struct neon_type_el et;
15693 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
15694 || rs == NS_FF) ? N_VFP : 0;
15695 /* The instruction versions which take an immediate take one register
15696 argument, which is extended to the width of the full register. Thus the
15697 "source" and "destination" registers must have the same width. Hack that
15698 here by making the size equal to the key (wider, in this case) operand. */
15699 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
15700
15701 CVT_FLAVOUR_VAR;
15702
15703 return neon_cvt_flavour_invalid;
15704 #undef CVT_VAR
15705 }
15706
15707 enum neon_cvt_mode
15708 {
15709 neon_cvt_mode_a,
15710 neon_cvt_mode_n,
15711 neon_cvt_mode_p,
15712 neon_cvt_mode_m,
15713 neon_cvt_mode_z,
15714 neon_cvt_mode_x,
15715 neon_cvt_mode_r
15716 };
15717
15718 /* Neon-syntax VFP conversions. */
15719
15720 static void
15721 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
15722 {
15723 const char *opname = 0;
15724
15725 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
15726 || rs == NS_FHI || rs == NS_HFI)
15727 {
15728 /* Conversions with immediate bitshift. */
15729 const char *enc[] =
15730 {
15731 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
15732 CVT_FLAVOUR_VAR
15733 NULL
15734 #undef CVT_VAR
15735 };
15736
15737 if (flavour < (int) ARRAY_SIZE (enc))
15738 {
15739 opname = enc[flavour];
15740 constraint (inst.operands[0].reg != inst.operands[1].reg,
15741 _("operands 0 and 1 must be the same register"));
15742 inst.operands[1] = inst.operands[2];
15743 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
15744 }
15745 }
15746 else
15747 {
15748 /* Conversions without bitshift. */
15749 const char *enc[] =
15750 {
15751 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
15752 CVT_FLAVOUR_VAR
15753 NULL
15754 #undef CVT_VAR
15755 };
15756
15757 if (flavour < (int) ARRAY_SIZE (enc))
15758 opname = enc[flavour];
15759 }
15760
15761 if (opname)
15762 do_vfp_nsyn_opcode (opname);
15763
15764 /* ARMv8.2 fp16 VCVT instruction. */
15765 if (flavour == neon_cvt_flavour_s32_f16
15766 || flavour == neon_cvt_flavour_u32_f16
15767 || flavour == neon_cvt_flavour_f16_u32
15768 || flavour == neon_cvt_flavour_f16_s32)
15769 do_scalar_fp16_v82_encode ();
15770 }
15771
15772 static void
15773 do_vfp_nsyn_cvtz (void)
15774 {
15775 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
15776 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15777 const char *enc[] =
15778 {
15779 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
15780 CVT_FLAVOUR_VAR
15781 NULL
15782 #undef CVT_VAR
15783 };
15784
15785 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
15786 do_vfp_nsyn_opcode (enc[flavour]);
15787 }
15788
15789 static void
15790 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
15791 enum neon_cvt_mode mode)
15792 {
15793 int sz, op;
15794 int rm;
15795
15796 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
15797 D register operands. */
15798 if (flavour == neon_cvt_flavour_s32_f64
15799 || flavour == neon_cvt_flavour_u32_f64)
15800 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
15801 _(BAD_FPU));
15802
15803 if (flavour == neon_cvt_flavour_s32_f16
15804 || flavour == neon_cvt_flavour_u32_f16)
15805 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
15806 _(BAD_FP16));
15807
15808 set_it_insn_type (OUTSIDE_IT_INSN);
15809
15810 switch (flavour)
15811 {
15812 case neon_cvt_flavour_s32_f64:
15813 sz = 1;
15814 op = 1;
15815 break;
15816 case neon_cvt_flavour_s32_f32:
15817 sz = 0;
15818 op = 1;
15819 break;
15820 case neon_cvt_flavour_s32_f16:
15821 sz = 0;
15822 op = 1;
15823 break;
15824 case neon_cvt_flavour_u32_f64:
15825 sz = 1;
15826 op = 0;
15827 break;
15828 case neon_cvt_flavour_u32_f32:
15829 sz = 0;
15830 op = 0;
15831 break;
15832 case neon_cvt_flavour_u32_f16:
15833 sz = 0;
15834 op = 0;
15835 break;
15836 default:
15837 first_error (_("invalid instruction shape"));
15838 return;
15839 }
15840
15841 switch (mode)
15842 {
15843 case neon_cvt_mode_a: rm = 0; break;
15844 case neon_cvt_mode_n: rm = 1; break;
15845 case neon_cvt_mode_p: rm = 2; break;
15846 case neon_cvt_mode_m: rm = 3; break;
15847 default: first_error (_("invalid rounding mode")); return;
15848 }
15849
15850 NEON_ENCODE (FPV8, inst);
15851 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
15852 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
15853 inst.instruction |= sz << 8;
15854
15855 /* ARMv8.2 fp16 VCVT instruction. */
15856 if (flavour == neon_cvt_flavour_s32_f16
15857 ||flavour == neon_cvt_flavour_u32_f16)
15858 do_scalar_fp16_v82_encode ();
15859 inst.instruction |= op << 7;
15860 inst.instruction |= rm << 16;
15861 inst.instruction |= 0xf0000000;
15862 inst.is_neon = TRUE;
15863 }
15864
15865 static void
15866 do_neon_cvt_1 (enum neon_cvt_mode mode)
15867 {
15868 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
15869 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
15870 NS_FH, NS_HF, NS_FHI, NS_HFI,
15871 NS_NULL);
15872 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
15873
15874 if (flavour == neon_cvt_flavour_invalid)
15875 return;
15876
15877 /* PR11109: Handle round-to-zero for VCVT conversions. */
15878 if (mode == neon_cvt_mode_z
15879 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
15880 && (flavour == neon_cvt_flavour_s16_f16
15881 || flavour == neon_cvt_flavour_u16_f16
15882 || flavour == neon_cvt_flavour_s32_f32
15883 || flavour == neon_cvt_flavour_u32_f32
15884 || flavour == neon_cvt_flavour_s32_f64
15885 || flavour == neon_cvt_flavour_u32_f64)
15886 && (rs == NS_FD || rs == NS_FF))
15887 {
15888 do_vfp_nsyn_cvtz ();
15889 return;
15890 }
15891
15892 /* ARMv8.2 fp16 VCVT conversions. */
15893 if (mode == neon_cvt_mode_z
15894 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
15895 && (flavour == neon_cvt_flavour_s32_f16
15896 || flavour == neon_cvt_flavour_u32_f16)
15897 && (rs == NS_FH))
15898 {
15899 do_vfp_nsyn_cvtz ();
15900 do_scalar_fp16_v82_encode ();
15901 return;
15902 }
15903
15904 /* VFP rather than Neon conversions. */
15905 if (flavour >= neon_cvt_flavour_first_fp)
15906 {
15907 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
15908 do_vfp_nsyn_cvt (rs, flavour);
15909 else
15910 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
15911
15912 return;
15913 }
15914
15915 switch (rs)
15916 {
15917 case NS_DDI:
15918 case NS_QQI:
15919 {
15920 unsigned immbits;
15921 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
15922 0x0000100, 0x1000100, 0x0, 0x1000000};
15923
15924 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15925 return;
15926
15927 /* Fixed-point conversion with #0 immediate is encoded as an
15928 integer conversion. */
15929 if (inst.operands[2].present && inst.operands[2].imm == 0)
15930 goto int_encode;
15931 NEON_ENCODE (IMMED, inst);
15932 if (flavour != neon_cvt_flavour_invalid)
15933 inst.instruction |= enctab[flavour];
15934 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15935 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15936 inst.instruction |= LOW4 (inst.operands[1].reg);
15937 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15938 inst.instruction |= neon_quad (rs) << 6;
15939 inst.instruction |= 1 << 21;
15940 if (flavour < neon_cvt_flavour_s16_f16)
15941 {
15942 inst.instruction |= 1 << 21;
15943 immbits = 32 - inst.operands[2].imm;
15944 inst.instruction |= immbits << 16;
15945 }
15946 else
15947 {
15948 inst.instruction |= 3 << 20;
15949 immbits = 16 - inst.operands[2].imm;
15950 inst.instruction |= immbits << 16;
15951 inst.instruction &= ~(1 << 9);
15952 }
15953
15954 neon_dp_fixup (&inst);
15955 }
15956 break;
15957
15958 case NS_DD:
15959 case NS_QQ:
15960 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
15961 {
15962 NEON_ENCODE (FLOAT, inst);
15963 set_it_insn_type (OUTSIDE_IT_INSN);
15964
15965 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15966 return;
15967
15968 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15969 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15970 inst.instruction |= LOW4 (inst.operands[1].reg);
15971 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15972 inst.instruction |= neon_quad (rs) << 6;
15973 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
15974 || flavour == neon_cvt_flavour_u32_f32) << 7;
15975 inst.instruction |= mode << 8;
15976 if (flavour == neon_cvt_flavour_u16_f16
15977 || flavour == neon_cvt_flavour_s16_f16)
15978 /* Mask off the original size bits and reencode them. */
15979 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
15980
15981 if (thumb_mode)
15982 inst.instruction |= 0xfc000000;
15983 else
15984 inst.instruction |= 0xf0000000;
15985 }
15986 else
15987 {
15988 int_encode:
15989 {
15990 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
15991 0x100, 0x180, 0x0, 0x080};
15992
15993 NEON_ENCODE (INTEGER, inst);
15994
15995 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15996 return;
15997
15998 if (flavour != neon_cvt_flavour_invalid)
15999 inst.instruction |= enctab[flavour];
16000
16001 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16002 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16003 inst.instruction |= LOW4 (inst.operands[1].reg);
16004 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16005 inst.instruction |= neon_quad (rs) << 6;
16006 if (flavour >= neon_cvt_flavour_s16_f16
16007 && flavour <= neon_cvt_flavour_f16_u16)
16008 /* Half precision. */
16009 inst.instruction |= 1 << 18;
16010 else
16011 inst.instruction |= 2 << 18;
16012
16013 neon_dp_fixup (&inst);
16014 }
16015 }
16016 break;
16017
16018 /* Half-precision conversions for Advanced SIMD -- neon. */
16019 case NS_QD:
16020 case NS_DQ:
16021 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16022 return;
16023
16024 if ((rs == NS_DQ)
16025 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
16026 {
16027 as_bad (_("operand size must match register width"));
16028 break;
16029 }
16030
16031 if ((rs == NS_QD)
16032 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
16033 {
16034 as_bad (_("operand size must match register width"));
16035 break;
16036 }
16037
16038 if (rs == NS_DQ)
16039 inst.instruction = 0x3b60600;
16040 else
16041 inst.instruction = 0x3b60700;
16042
16043 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16044 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16045 inst.instruction |= LOW4 (inst.operands[1].reg);
16046 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16047 neon_dp_fixup (&inst);
16048 break;
16049
16050 default:
16051 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
16052 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
16053 do_vfp_nsyn_cvt (rs, flavour);
16054 else
16055 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
16056 }
16057 }
16058
16059 static void
16060 do_neon_cvtr (void)
16061 {
16062 do_neon_cvt_1 (neon_cvt_mode_x);
16063 }
16064
16065 static void
16066 do_neon_cvt (void)
16067 {
16068 do_neon_cvt_1 (neon_cvt_mode_z);
16069 }
16070
16071 static void
16072 do_neon_cvta (void)
16073 {
16074 do_neon_cvt_1 (neon_cvt_mode_a);
16075 }
16076
16077 static void
16078 do_neon_cvtn (void)
16079 {
16080 do_neon_cvt_1 (neon_cvt_mode_n);
16081 }
16082
16083 static void
16084 do_neon_cvtp (void)
16085 {
16086 do_neon_cvt_1 (neon_cvt_mode_p);
16087 }
16088
16089 static void
16090 do_neon_cvtm (void)
16091 {
16092 do_neon_cvt_1 (neon_cvt_mode_m);
16093 }
16094
16095 static void
16096 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
16097 {
16098 if (is_double)
16099 mark_feature_used (&fpu_vfp_ext_armv8);
16100
16101 encode_arm_vfp_reg (inst.operands[0].reg,
16102 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
16103 encode_arm_vfp_reg (inst.operands[1].reg,
16104 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
16105 inst.instruction |= to ? 0x10000 : 0;
16106 inst.instruction |= t ? 0x80 : 0;
16107 inst.instruction |= is_double ? 0x100 : 0;
16108 do_vfp_cond_or_thumb ();
16109 }
16110
16111 static void
16112 do_neon_cvttb_1 (bfd_boolean t)
16113 {
16114 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
16115 NS_DF, NS_DH, NS_NULL);
16116
16117 if (rs == NS_NULL)
16118 return;
16119 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
16120 {
16121 inst.error = NULL;
16122 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
16123 }
16124 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
16125 {
16126 inst.error = NULL;
16127 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
16128 }
16129 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
16130 {
16131 /* The VCVTB and VCVTT instructions with D-register operands
16132 don't work for SP only targets. */
16133 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16134 _(BAD_FPU));
16135
16136 inst.error = NULL;
16137 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
16138 }
16139 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
16140 {
16141 /* The VCVTB and VCVTT instructions with D-register operands
16142 don't work for SP only targets. */
16143 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
16144 _(BAD_FPU));
16145
16146 inst.error = NULL;
16147 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
16148 }
16149 else
16150 return;
16151 }
16152
16153 static void
16154 do_neon_cvtb (void)
16155 {
16156 do_neon_cvttb_1 (FALSE);
16157 }
16158
16159
16160 static void
16161 do_neon_cvtt (void)
16162 {
16163 do_neon_cvttb_1 (TRUE);
16164 }
16165
16166 static void
16167 neon_move_immediate (void)
16168 {
16169 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
16170 struct neon_type_el et = neon_check_type (2, rs,
16171 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
16172 unsigned immlo, immhi = 0, immbits;
16173 int op, cmode, float_p;
16174
16175 constraint (et.type == NT_invtype,
16176 _("operand size must be specified for immediate VMOV"));
16177
16178 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
16179 op = (inst.instruction & (1 << 5)) != 0;
16180
16181 immlo = inst.operands[1].imm;
16182 if (inst.operands[1].regisimm)
16183 immhi = inst.operands[1].reg;
16184
16185 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
16186 _("immediate has bits set outside the operand size"));
16187
16188 float_p = inst.operands[1].immisfloat;
16189
16190 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
16191 et.size, et.type)) == FAIL)
16192 {
16193 /* Invert relevant bits only. */
16194 neon_invert_size (&immlo, &immhi, et.size);
16195 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
16196 with one or the other; those cases are caught by
16197 neon_cmode_for_move_imm. */
16198 op = !op;
16199 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
16200 &op, et.size, et.type)) == FAIL)
16201 {
16202 first_error (_("immediate out of range"));
16203 return;
16204 }
16205 }
16206
16207 inst.instruction &= ~(1 << 5);
16208 inst.instruction |= op << 5;
16209
16210 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16211 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16212 inst.instruction |= neon_quad (rs) << 6;
16213 inst.instruction |= cmode << 8;
16214
16215 neon_write_immbits (immbits);
16216 }
16217
16218 static void
16219 do_neon_mvn (void)
16220 {
16221 if (inst.operands[1].isreg)
16222 {
16223 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16224
16225 NEON_ENCODE (INTEGER, inst);
16226 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16227 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16228 inst.instruction |= LOW4 (inst.operands[1].reg);
16229 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16230 inst.instruction |= neon_quad (rs) << 6;
16231 }
16232 else
16233 {
16234 NEON_ENCODE (IMMED, inst);
16235 neon_move_immediate ();
16236 }
16237
16238 neon_dp_fixup (&inst);
16239 }
16240
16241 /* Encode instructions of form:
16242
16243 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16244 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
16245
16246 static void
16247 neon_mixed_length (struct neon_type_el et, unsigned size)
16248 {
16249 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16250 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16251 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16252 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16253 inst.instruction |= LOW4 (inst.operands[2].reg);
16254 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16255 inst.instruction |= (et.type == NT_unsigned) << 24;
16256 inst.instruction |= neon_logbits (size) << 20;
16257
16258 neon_dp_fixup (&inst);
16259 }
16260
16261 static void
16262 do_neon_dyadic_long (void)
16263 {
16264 /* FIXME: Type checking for lengthening op. */
16265 struct neon_type_el et = neon_check_type (3, NS_QDD,
16266 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
16267 neon_mixed_length (et, et.size);
16268 }
16269
16270 static void
16271 do_neon_abal (void)
16272 {
16273 struct neon_type_el et = neon_check_type (3, NS_QDD,
16274 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
16275 neon_mixed_length (et, et.size);
16276 }
16277
16278 static void
16279 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
16280 {
16281 if (inst.operands[2].isscalar)
16282 {
16283 struct neon_type_el et = neon_check_type (3, NS_QDS,
16284 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
16285 NEON_ENCODE (SCALAR, inst);
16286 neon_mul_mac (et, et.type == NT_unsigned);
16287 }
16288 else
16289 {
16290 struct neon_type_el et = neon_check_type (3, NS_QDD,
16291 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
16292 NEON_ENCODE (INTEGER, inst);
16293 neon_mixed_length (et, et.size);
16294 }
16295 }
16296
16297 static void
16298 do_neon_mac_maybe_scalar_long (void)
16299 {
16300 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
16301 }
16302
16303 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
16304 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
16305
16306 static unsigned
16307 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
16308 {
16309 unsigned regno = NEON_SCALAR_REG (scalar);
16310 unsigned elno = NEON_SCALAR_INDEX (scalar);
16311
16312 if (quad_p)
16313 {
16314 if (regno > 7 || elno > 3)
16315 goto bad_scalar;
16316
16317 return ((regno & 0x7)
16318 | ((elno & 0x1) << 3)
16319 | (((elno >> 1) & 0x1) << 5));
16320 }
16321 else
16322 {
16323 if (regno > 15 || elno > 1)
16324 goto bad_scalar;
16325
16326 return (((regno & 0x1) << 5)
16327 | ((regno >> 1) & 0x7)
16328 | ((elno & 0x1) << 3));
16329 }
16330
16331 bad_scalar:
16332 first_error (_("scalar out of range for multiply instruction"));
16333 return 0;
16334 }
16335
16336 static void
16337 do_neon_fmac_maybe_scalar_long (int subtype)
16338 {
16339 enum neon_shape rs;
16340 int high8;
16341 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
16342 field (bits[21:20]) has different meaning. For scalar index variant, it's
16343 used to differentiate add and subtract, otherwise it's with fixed value
16344 0x2. */
16345 int size = -1;
16346
16347 if (inst.cond != COND_ALWAYS)
16348 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
16349 "behaviour is UNPREDICTABLE"));
16350
16351 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
16352 _(BAD_FP16));
16353
16354 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
16355 _(BAD_FPU));
16356
16357 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
16358 be a scalar index register. */
16359 if (inst.operands[2].isscalar)
16360 {
16361 high8 = 0xfe000000;
16362 if (subtype)
16363 size = 16;
16364 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
16365 }
16366 else
16367 {
16368 high8 = 0xfc000000;
16369 size = 32;
16370 if (subtype)
16371 inst.instruction |= (0x1 << 23);
16372 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
16373 }
16374
16375 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
16376
16377 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
16378 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
16379 so we simply pass -1 as size. */
16380 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
16381 neon_three_same (quad_p, 0, size);
16382
16383 /* Undo neon_dp_fixup. Redo the high eight bits. */
16384 inst.instruction &= 0x00ffffff;
16385 inst.instruction |= high8;
16386
16387 #define LOW1(R) ((R) & 0x1)
16388 #define HI4(R) (((R) >> 1) & 0xf)
16389 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
16390 whether the instruction is in Q form and whether Vm is a scalar indexed
16391 operand. */
16392 if (inst.operands[2].isscalar)
16393 {
16394 unsigned rm
16395 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
16396 inst.instruction &= 0xffffffd0;
16397 inst.instruction |= rm;
16398
16399 if (!quad_p)
16400 {
16401 /* Redo Rn as well. */
16402 inst.instruction &= 0xfff0ff7f;
16403 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16404 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16405 }
16406 }
16407 else if (!quad_p)
16408 {
16409 /* Redo Rn and Rm. */
16410 inst.instruction &= 0xfff0ff50;
16411 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
16412 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
16413 inst.instruction |= HI4 (inst.operands[2].reg);
16414 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
16415 }
16416 }
16417
16418 static void
16419 do_neon_vfmal (void)
16420 {
16421 return do_neon_fmac_maybe_scalar_long (0);
16422 }
16423
16424 static void
16425 do_neon_vfmsl (void)
16426 {
16427 return do_neon_fmac_maybe_scalar_long (1);
16428 }
16429
16430 static void
16431 do_neon_dyadic_wide (void)
16432 {
16433 struct neon_type_el et = neon_check_type (3, NS_QQD,
16434 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
16435 neon_mixed_length (et, et.size);
16436 }
16437
16438 static void
16439 do_neon_dyadic_narrow (void)
16440 {
16441 struct neon_type_el et = neon_check_type (3, NS_QDD,
16442 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
16443 /* Operand sign is unimportant, and the U bit is part of the opcode,
16444 so force the operand type to integer. */
16445 et.type = NT_integer;
16446 neon_mixed_length (et, et.size / 2);
16447 }
16448
16449 static void
16450 do_neon_mul_sat_scalar_long (void)
16451 {
16452 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
16453 }
16454
16455 static void
16456 do_neon_vmull (void)
16457 {
16458 if (inst.operands[2].isscalar)
16459 do_neon_mac_maybe_scalar_long ();
16460 else
16461 {
16462 struct neon_type_el et = neon_check_type (3, NS_QDD,
16463 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
16464
16465 if (et.type == NT_poly)
16466 NEON_ENCODE (POLY, inst);
16467 else
16468 NEON_ENCODE (INTEGER, inst);
16469
16470 /* For polynomial encoding the U bit must be zero, and the size must
16471 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
16472 obviously, as 0b10). */
16473 if (et.size == 64)
16474 {
16475 /* Check we're on the correct architecture. */
16476 if (!mark_feature_used (&fpu_crypto_ext_armv8))
16477 inst.error =
16478 _("Instruction form not available on this architecture.");
16479
16480 et.size = 32;
16481 }
16482
16483 neon_mixed_length (et, et.size);
16484 }
16485 }
16486
16487 static void
16488 do_neon_ext (void)
16489 {
16490 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
16491 struct neon_type_el et = neon_check_type (3, rs,
16492 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16493 unsigned imm = (inst.operands[3].imm * et.size) / 8;
16494
16495 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
16496 _("shift out of range"));
16497 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16498 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16499 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16500 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16501 inst.instruction |= LOW4 (inst.operands[2].reg);
16502 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16503 inst.instruction |= neon_quad (rs) << 6;
16504 inst.instruction |= imm << 8;
16505
16506 neon_dp_fixup (&inst);
16507 }
16508
16509 static void
16510 do_neon_rev (void)
16511 {
16512 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16513 struct neon_type_el et = neon_check_type (2, rs,
16514 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16515 unsigned op = (inst.instruction >> 7) & 3;
16516 /* N (width of reversed regions) is encoded as part of the bitmask. We
16517 extract it here to check the elements to be reversed are smaller.
16518 Otherwise we'd get a reserved instruction. */
16519 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
16520 gas_assert (elsize != 0);
16521 constraint (et.size >= elsize,
16522 _("elements must be smaller than reversal region"));
16523 neon_two_same (neon_quad (rs), 1, et.size);
16524 }
16525
16526 static void
16527 do_neon_dup (void)
16528 {
16529 if (inst.operands[1].isscalar)
16530 {
16531 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
16532 struct neon_type_el et = neon_check_type (2, rs,
16533 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16534 unsigned sizebits = et.size >> 3;
16535 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
16536 int logsize = neon_logbits (et.size);
16537 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
16538
16539 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
16540 return;
16541
16542 NEON_ENCODE (SCALAR, inst);
16543 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16544 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16545 inst.instruction |= LOW4 (dm);
16546 inst.instruction |= HI1 (dm) << 5;
16547 inst.instruction |= neon_quad (rs) << 6;
16548 inst.instruction |= x << 17;
16549 inst.instruction |= sizebits << 16;
16550
16551 neon_dp_fixup (&inst);
16552 }
16553 else
16554 {
16555 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
16556 struct neon_type_el et = neon_check_type (2, rs,
16557 N_8 | N_16 | N_32 | N_KEY, N_EQK);
16558 /* Duplicate ARM register to lanes of vector. */
16559 NEON_ENCODE (ARMREG, inst);
16560 switch (et.size)
16561 {
16562 case 8: inst.instruction |= 0x400000; break;
16563 case 16: inst.instruction |= 0x000020; break;
16564 case 32: inst.instruction |= 0x000000; break;
16565 default: break;
16566 }
16567 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
16568 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
16569 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
16570 inst.instruction |= neon_quad (rs) << 21;
16571 /* The encoding for this instruction is identical for the ARM and Thumb
16572 variants, except for the condition field. */
16573 do_vfp_cond_or_thumb ();
16574 }
16575 }
16576
16577 /* VMOV has particularly many variations. It can be one of:
16578 0. VMOV<c><q> <Qd>, <Qm>
16579 1. VMOV<c><q> <Dd>, <Dm>
16580 (Register operations, which are VORR with Rm = Rn.)
16581 2. VMOV<c><q>.<dt> <Qd>, #<imm>
16582 3. VMOV<c><q>.<dt> <Dd>, #<imm>
16583 (Immediate loads.)
16584 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
16585 (ARM register to scalar.)
16586 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
16587 (Two ARM registers to vector.)
16588 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
16589 (Scalar to ARM register.)
16590 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
16591 (Vector to two ARM registers.)
16592 8. VMOV.F32 <Sd>, <Sm>
16593 9. VMOV.F64 <Dd>, <Dm>
16594 (VFP register moves.)
16595 10. VMOV.F32 <Sd>, #imm
16596 11. VMOV.F64 <Dd>, #imm
16597 (VFP float immediate load.)
16598 12. VMOV <Rd>, <Sm>
16599 (VFP single to ARM reg.)
16600 13. VMOV <Sd>, <Rm>
16601 (ARM reg to VFP single.)
16602 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
16603 (Two ARM regs to two VFP singles.)
16604 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
16605 (Two VFP singles to two ARM regs.)
16606
16607 These cases can be disambiguated using neon_select_shape, except cases 1/9
16608 and 3/11 which depend on the operand type too.
16609
16610 All the encoded bits are hardcoded by this function.
16611
16612 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
16613 Cases 5, 7 may be used with VFPv2 and above.
16614
16615 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
16616 can specify a type where it doesn't make sense to, and is ignored). */
16617
16618 static void
16619 do_neon_mov (void)
16620 {
16621 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
16622 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR,
16623 NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
16624 NS_HR, NS_RH, NS_HI, NS_NULL);
16625 struct neon_type_el et;
16626 const char *ldconst = 0;
16627
16628 switch (rs)
16629 {
16630 case NS_DD: /* case 1/9. */
16631 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16632 /* It is not an error here if no type is given. */
16633 inst.error = NULL;
16634 if (et.type == NT_float && et.size == 64)
16635 {
16636 do_vfp_nsyn_opcode ("fcpyd");
16637 break;
16638 }
16639 /* fall through. */
16640
16641 case NS_QQ: /* case 0/1. */
16642 {
16643 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16644 return;
16645 /* The architecture manual I have doesn't explicitly state which
16646 value the U bit should have for register->register moves, but
16647 the equivalent VORR instruction has U = 0, so do that. */
16648 inst.instruction = 0x0200110;
16649 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16650 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16651 inst.instruction |= LOW4 (inst.operands[1].reg);
16652 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16653 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16654 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16655 inst.instruction |= neon_quad (rs) << 6;
16656
16657 neon_dp_fixup (&inst);
16658 }
16659 break;
16660
16661 case NS_DI: /* case 3/11. */
16662 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
16663 inst.error = NULL;
16664 if (et.type == NT_float && et.size == 64)
16665 {
16666 /* case 11 (fconstd). */
16667 ldconst = "fconstd";
16668 goto encode_fconstd;
16669 }
16670 /* fall through. */
16671
16672 case NS_QI: /* case 2/3. */
16673 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16674 return;
16675 inst.instruction = 0x0800010;
16676 neon_move_immediate ();
16677 neon_dp_fixup (&inst);
16678 break;
16679
16680 case NS_SR: /* case 4. */
16681 {
16682 unsigned bcdebits = 0;
16683 int logsize;
16684 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
16685 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
16686
16687 /* .<size> is optional here, defaulting to .32. */
16688 if (inst.vectype.elems == 0
16689 && inst.operands[0].vectype.type == NT_invtype
16690 && inst.operands[1].vectype.type == NT_invtype)
16691 {
16692 inst.vectype.el[0].type = NT_untyped;
16693 inst.vectype.el[0].size = 32;
16694 inst.vectype.elems = 1;
16695 }
16696
16697 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
16698 logsize = neon_logbits (et.size);
16699
16700 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16701 _(BAD_FPU));
16702 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16703 && et.size != 32, _(BAD_FPU));
16704 constraint (et.type == NT_invtype, _("bad type for scalar"));
16705 constraint (x >= 64 / et.size, _("scalar index out of range"));
16706
16707 switch (et.size)
16708 {
16709 case 8: bcdebits = 0x8; break;
16710 case 16: bcdebits = 0x1; break;
16711 case 32: bcdebits = 0x0; break;
16712 default: ;
16713 }
16714
16715 bcdebits |= x << logsize;
16716
16717 inst.instruction = 0xe000b10;
16718 do_vfp_cond_or_thumb ();
16719 inst.instruction |= LOW4 (dn) << 16;
16720 inst.instruction |= HI1 (dn) << 7;
16721 inst.instruction |= inst.operands[1].reg << 12;
16722 inst.instruction |= (bcdebits & 3) << 5;
16723 inst.instruction |= (bcdebits >> 2) << 21;
16724 }
16725 break;
16726
16727 case NS_DRR: /* case 5 (fmdrr). */
16728 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16729 _(BAD_FPU));
16730
16731 inst.instruction = 0xc400b10;
16732 do_vfp_cond_or_thumb ();
16733 inst.instruction |= LOW4 (inst.operands[0].reg);
16734 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
16735 inst.instruction |= inst.operands[1].reg << 12;
16736 inst.instruction |= inst.operands[2].reg << 16;
16737 break;
16738
16739 case NS_RS: /* case 6. */
16740 {
16741 unsigned logsize;
16742 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
16743 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
16744 unsigned abcdebits = 0;
16745
16746 /* .<dt> is optional here, defaulting to .32. */
16747 if (inst.vectype.elems == 0
16748 && inst.operands[0].vectype.type == NT_invtype
16749 && inst.operands[1].vectype.type == NT_invtype)
16750 {
16751 inst.vectype.el[0].type = NT_untyped;
16752 inst.vectype.el[0].size = 32;
16753 inst.vectype.elems = 1;
16754 }
16755
16756 et = neon_check_type (2, NS_NULL,
16757 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
16758 logsize = neon_logbits (et.size);
16759
16760 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
16761 _(BAD_FPU));
16762 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
16763 && et.size != 32, _(BAD_FPU));
16764 constraint (et.type == NT_invtype, _("bad type for scalar"));
16765 constraint (x >= 64 / et.size, _("scalar index out of range"));
16766
16767 switch (et.size)
16768 {
16769 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
16770 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
16771 case 32: abcdebits = 0x00; break;
16772 default: ;
16773 }
16774
16775 abcdebits |= x << logsize;
16776 inst.instruction = 0xe100b10;
16777 do_vfp_cond_or_thumb ();
16778 inst.instruction |= LOW4 (dn) << 16;
16779 inst.instruction |= HI1 (dn) << 7;
16780 inst.instruction |= inst.operands[0].reg << 12;
16781 inst.instruction |= (abcdebits & 3) << 5;
16782 inst.instruction |= (abcdebits >> 2) << 21;
16783 }
16784 break;
16785
16786 case NS_RRD: /* case 7 (fmrrd). */
16787 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
16788 _(BAD_FPU));
16789
16790 inst.instruction = 0xc500b10;
16791 do_vfp_cond_or_thumb ();
16792 inst.instruction |= inst.operands[0].reg << 12;
16793 inst.instruction |= inst.operands[1].reg << 16;
16794 inst.instruction |= LOW4 (inst.operands[2].reg);
16795 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16796 break;
16797
16798 case NS_FF: /* case 8 (fcpys). */
16799 do_vfp_nsyn_opcode ("fcpys");
16800 break;
16801
16802 case NS_HI:
16803 case NS_FI: /* case 10 (fconsts). */
16804 ldconst = "fconsts";
16805 encode_fconstd:
16806 if (!inst.operands[1].immisfloat)
16807 {
16808 unsigned new_imm;
16809 /* Immediate has to fit in 8 bits so float is enough. */
16810 float imm = (float) inst.operands[1].imm;
16811 memcpy (&new_imm, &imm, sizeof (float));
16812 /* But the assembly may have been written to provide an integer
16813 bit pattern that equates to a float, so check that the
16814 conversion has worked. */
16815 if (is_quarter_float (new_imm))
16816 {
16817 if (is_quarter_float (inst.operands[1].imm))
16818 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
16819
16820 inst.operands[1].imm = new_imm;
16821 inst.operands[1].immisfloat = 1;
16822 }
16823 }
16824
16825 if (is_quarter_float (inst.operands[1].imm))
16826 {
16827 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
16828 do_vfp_nsyn_opcode (ldconst);
16829
16830 /* ARMv8.2 fp16 vmov.f16 instruction. */
16831 if (rs == NS_HI)
16832 do_scalar_fp16_v82_encode ();
16833 }
16834 else
16835 first_error (_("immediate out of range"));
16836 break;
16837
16838 case NS_RH:
16839 case NS_RF: /* case 12 (fmrs). */
16840 do_vfp_nsyn_opcode ("fmrs");
16841 /* ARMv8.2 fp16 vmov.f16 instruction. */
16842 if (rs == NS_RH)
16843 do_scalar_fp16_v82_encode ();
16844 break;
16845
16846 case NS_HR:
16847 case NS_FR: /* case 13 (fmsr). */
16848 do_vfp_nsyn_opcode ("fmsr");
16849 /* ARMv8.2 fp16 vmov.f16 instruction. */
16850 if (rs == NS_HR)
16851 do_scalar_fp16_v82_encode ();
16852 break;
16853
16854 /* The encoders for the fmrrs and fmsrr instructions expect three operands
16855 (one of which is a list), but we have parsed four. Do some fiddling to
16856 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
16857 expect. */
16858 case NS_RRFF: /* case 14 (fmrrs). */
16859 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
16860 _("VFP registers must be adjacent"));
16861 inst.operands[2].imm = 2;
16862 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16863 do_vfp_nsyn_opcode ("fmrrs");
16864 break;
16865
16866 case NS_FFRR: /* case 15 (fmsrr). */
16867 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
16868 _("VFP registers must be adjacent"));
16869 inst.operands[1] = inst.operands[2];
16870 inst.operands[2] = inst.operands[3];
16871 inst.operands[0].imm = 2;
16872 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
16873 do_vfp_nsyn_opcode ("fmsrr");
16874 break;
16875
16876 case NS_NULL:
16877 /* neon_select_shape has determined that the instruction
16878 shape is wrong and has already set the error message. */
16879 break;
16880
16881 default:
16882 abort ();
16883 }
16884 }
16885
16886 static void
16887 do_neon_rshift_round_imm (void)
16888 {
16889 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16890 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16891 int imm = inst.operands[2].imm;
16892
16893 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
16894 if (imm == 0)
16895 {
16896 inst.operands[2].present = 0;
16897 do_neon_mov ();
16898 return;
16899 }
16900
16901 constraint (imm < 1 || (unsigned)imm > et.size,
16902 _("immediate out of range for shift"));
16903 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
16904 et.size - imm);
16905 }
16906
16907 static void
16908 do_neon_movhf (void)
16909 {
16910 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
16911 constraint (rs != NS_HH, _("invalid suffix"));
16912
16913 if (inst.cond != COND_ALWAYS)
16914 {
16915 if (thumb_mode)
16916 {
16917 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
16918 " the behaviour is UNPREDICTABLE"));
16919 }
16920 else
16921 {
16922 inst.error = BAD_COND;
16923 return;
16924 }
16925 }
16926
16927 do_vfp_sp_monadic ();
16928
16929 inst.is_neon = 1;
16930 inst.instruction |= 0xf0000000;
16931 }
16932
16933 static void
16934 do_neon_movl (void)
16935 {
16936 struct neon_type_el et = neon_check_type (2, NS_QD,
16937 N_EQK | N_DBL, N_SU_32 | N_KEY);
16938 unsigned sizebits = et.size >> 3;
16939 inst.instruction |= sizebits << 19;
16940 neon_two_same (0, et.type == NT_unsigned, -1);
16941 }
16942
16943 static void
16944 do_neon_trn (void)
16945 {
16946 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16947 struct neon_type_el et = neon_check_type (2, rs,
16948 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16949 NEON_ENCODE (INTEGER, inst);
16950 neon_two_same (neon_quad (rs), 1, et.size);
16951 }
16952
16953 static void
16954 do_neon_zip_uzp (void)
16955 {
16956 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16957 struct neon_type_el et = neon_check_type (2, rs,
16958 N_EQK, N_8 | N_16 | N_32 | N_KEY);
16959 if (rs == NS_DD && et.size == 32)
16960 {
16961 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
16962 inst.instruction = N_MNEM_vtrn;
16963 do_neon_trn ();
16964 return;
16965 }
16966 neon_two_same (neon_quad (rs), 1, et.size);
16967 }
16968
16969 static void
16970 do_neon_sat_abs_neg (void)
16971 {
16972 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16973 struct neon_type_el et = neon_check_type (2, rs,
16974 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
16975 neon_two_same (neon_quad (rs), 1, et.size);
16976 }
16977
16978 static void
16979 do_neon_pair_long (void)
16980 {
16981 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16982 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
16983 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
16984 inst.instruction |= (et.type == NT_unsigned) << 7;
16985 neon_two_same (neon_quad (rs), 1, et.size);
16986 }
16987
16988 static void
16989 do_neon_recip_est (void)
16990 {
16991 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16992 struct neon_type_el et = neon_check_type (2, rs,
16993 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
16994 inst.instruction |= (et.type == NT_float) << 8;
16995 neon_two_same (neon_quad (rs), 1, et.size);
16996 }
16997
16998 static void
16999 do_neon_cls (void)
17000 {
17001 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17002 struct neon_type_el et = neon_check_type (2, rs,
17003 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17004 neon_two_same (neon_quad (rs), 1, et.size);
17005 }
17006
17007 static void
17008 do_neon_clz (void)
17009 {
17010 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17011 struct neon_type_el et = neon_check_type (2, rs,
17012 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
17013 neon_two_same (neon_quad (rs), 1, et.size);
17014 }
17015
17016 static void
17017 do_neon_cnt (void)
17018 {
17019 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17020 struct neon_type_el et = neon_check_type (2, rs,
17021 N_EQK | N_INT, N_8 | N_KEY);
17022 neon_two_same (neon_quad (rs), 1, et.size);
17023 }
17024
17025 static void
17026 do_neon_swp (void)
17027 {
17028 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17029 neon_two_same (neon_quad (rs), 1, -1);
17030 }
17031
17032 static void
17033 do_neon_tbl_tbx (void)
17034 {
17035 unsigned listlenbits;
17036 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
17037
17038 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
17039 {
17040 first_error (_("bad list length for table lookup"));
17041 return;
17042 }
17043
17044 listlenbits = inst.operands[1].imm - 1;
17045 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17046 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17047 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17048 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17049 inst.instruction |= LOW4 (inst.operands[2].reg);
17050 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
17051 inst.instruction |= listlenbits << 8;
17052
17053 neon_dp_fixup (&inst);
17054 }
17055
17056 static void
17057 do_neon_ldm_stm (void)
17058 {
17059 /* P, U and L bits are part of bitmask. */
17060 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
17061 unsigned offsetbits = inst.operands[1].imm * 2;
17062
17063 if (inst.operands[1].issingle)
17064 {
17065 do_vfp_nsyn_ldm_stm (is_dbmode);
17066 return;
17067 }
17068
17069 constraint (is_dbmode && !inst.operands[0].writeback,
17070 _("writeback (!) must be used for VLDMDB and VSTMDB"));
17071
17072 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
17073 _("register list must contain at least 1 and at most 16 "
17074 "registers"));
17075
17076 inst.instruction |= inst.operands[0].reg << 16;
17077 inst.instruction |= inst.operands[0].writeback << 21;
17078 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
17079 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
17080
17081 inst.instruction |= offsetbits;
17082
17083 do_vfp_cond_or_thumb ();
17084 }
17085
17086 static void
17087 do_neon_ldr_str (void)
17088 {
17089 int is_ldr = (inst.instruction & (1 << 20)) != 0;
17090
17091 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
17092 And is UNPREDICTABLE in thumb mode. */
17093 if (!is_ldr
17094 && inst.operands[1].reg == REG_PC
17095 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
17096 {
17097 if (thumb_mode)
17098 inst.error = _("Use of PC here is UNPREDICTABLE");
17099 else if (warn_on_deprecated)
17100 as_tsktsk (_("Use of PC here is deprecated"));
17101 }
17102
17103 if (inst.operands[0].issingle)
17104 {
17105 if (is_ldr)
17106 do_vfp_nsyn_opcode ("flds");
17107 else
17108 do_vfp_nsyn_opcode ("fsts");
17109
17110 /* ARMv8.2 vldr.16/vstr.16 instruction. */
17111 if (inst.vectype.el[0].size == 16)
17112 do_scalar_fp16_v82_encode ();
17113 }
17114 else
17115 {
17116 if (is_ldr)
17117 do_vfp_nsyn_opcode ("fldd");
17118 else
17119 do_vfp_nsyn_opcode ("fstd");
17120 }
17121 }
17122
17123 /* "interleave" version also handles non-interleaving register VLD1/VST1
17124 instructions. */
17125
17126 static void
17127 do_neon_ld_st_interleave (void)
17128 {
17129 struct neon_type_el et = neon_check_type (1, NS_NULL,
17130 N_8 | N_16 | N_32 | N_64);
17131 unsigned alignbits = 0;
17132 unsigned idx;
17133 /* The bits in this table go:
17134 0: register stride of one (0) or two (1)
17135 1,2: register list length, minus one (1, 2, 3, 4).
17136 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
17137 We use -1 for invalid entries. */
17138 const int typetable[] =
17139 {
17140 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
17141 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
17142 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
17143 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
17144 };
17145 int typebits;
17146
17147 if (et.type == NT_invtype)
17148 return;
17149
17150 if (inst.operands[1].immisalign)
17151 switch (inst.operands[1].imm >> 8)
17152 {
17153 case 64: alignbits = 1; break;
17154 case 128:
17155 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
17156 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
17157 goto bad_alignment;
17158 alignbits = 2;
17159 break;
17160 case 256:
17161 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
17162 goto bad_alignment;
17163 alignbits = 3;
17164 break;
17165 default:
17166 bad_alignment:
17167 first_error (_("bad alignment"));
17168 return;
17169 }
17170
17171 inst.instruction |= alignbits << 4;
17172 inst.instruction |= neon_logbits (et.size) << 6;
17173
17174 /* Bits [4:6] of the immediate in a list specifier encode register stride
17175 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
17176 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
17177 up the right value for "type" in a table based on this value and the given
17178 list style, then stick it back. */
17179 idx = ((inst.operands[0].imm >> 4) & 7)
17180 | (((inst.instruction >> 8) & 3) << 3);
17181
17182 typebits = typetable[idx];
17183
17184 constraint (typebits == -1, _("bad list type for instruction"));
17185 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
17186 _("bad element type for instruction"));
17187
17188 inst.instruction &= ~0xf00;
17189 inst.instruction |= typebits << 8;
17190 }
17191
17192 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
17193 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
17194 otherwise. The variable arguments are a list of pairs of legal (size, align)
17195 values, terminated with -1. */
17196
17197 static int
17198 neon_alignment_bit (int size, int align, int *do_alignment, ...)
17199 {
17200 va_list ap;
17201 int result = FAIL, thissize, thisalign;
17202
17203 if (!inst.operands[1].immisalign)
17204 {
17205 *do_alignment = 0;
17206 return SUCCESS;
17207 }
17208
17209 va_start (ap, do_alignment);
17210
17211 do
17212 {
17213 thissize = va_arg (ap, int);
17214 if (thissize == -1)
17215 break;
17216 thisalign = va_arg (ap, int);
17217
17218 if (size == thissize && align == thisalign)
17219 result = SUCCESS;
17220 }
17221 while (result != SUCCESS);
17222
17223 va_end (ap);
17224
17225 if (result == SUCCESS)
17226 *do_alignment = 1;
17227 else
17228 first_error (_("unsupported alignment for instruction"));
17229
17230 return result;
17231 }
17232
17233 static void
17234 do_neon_ld_st_lane (void)
17235 {
17236 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
17237 int align_good, do_alignment = 0;
17238 int logsize = neon_logbits (et.size);
17239 int align = inst.operands[1].imm >> 8;
17240 int n = (inst.instruction >> 8) & 3;
17241 int max_el = 64 / et.size;
17242
17243 if (et.type == NT_invtype)
17244 return;
17245
17246 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
17247 _("bad list length"));
17248 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
17249 _("scalar index out of range"));
17250 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
17251 && et.size == 8,
17252 _("stride of 2 unavailable when element size is 8"));
17253
17254 switch (n)
17255 {
17256 case 0: /* VLD1 / VST1. */
17257 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
17258 32, 32, -1);
17259 if (align_good == FAIL)
17260 return;
17261 if (do_alignment)
17262 {
17263 unsigned alignbits = 0;
17264 switch (et.size)
17265 {
17266 case 16: alignbits = 0x1; break;
17267 case 32: alignbits = 0x3; break;
17268 default: ;
17269 }
17270 inst.instruction |= alignbits << 4;
17271 }
17272 break;
17273
17274 case 1: /* VLD2 / VST2. */
17275 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
17276 16, 32, 32, 64, -1);
17277 if (align_good == FAIL)
17278 return;
17279 if (do_alignment)
17280 inst.instruction |= 1 << 4;
17281 break;
17282
17283 case 2: /* VLD3 / VST3. */
17284 constraint (inst.operands[1].immisalign,
17285 _("can't use alignment with this instruction"));
17286 break;
17287
17288 case 3: /* VLD4 / VST4. */
17289 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
17290 16, 64, 32, 64, 32, 128, -1);
17291 if (align_good == FAIL)
17292 return;
17293 if (do_alignment)
17294 {
17295 unsigned alignbits = 0;
17296 switch (et.size)
17297 {
17298 case 8: alignbits = 0x1; break;
17299 case 16: alignbits = 0x1; break;
17300 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
17301 default: ;
17302 }
17303 inst.instruction |= alignbits << 4;
17304 }
17305 break;
17306
17307 default: ;
17308 }
17309
17310 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
17311 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17312 inst.instruction |= 1 << (4 + logsize);
17313
17314 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
17315 inst.instruction |= logsize << 10;
17316 }
17317
17318 /* Encode single n-element structure to all lanes VLD<n> instructions. */
17319
17320 static void
17321 do_neon_ld_dup (void)
17322 {
17323 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
17324 int align_good, do_alignment = 0;
17325
17326 if (et.type == NT_invtype)
17327 return;
17328
17329 switch ((inst.instruction >> 8) & 3)
17330 {
17331 case 0: /* VLD1. */
17332 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
17333 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
17334 &do_alignment, 16, 16, 32, 32, -1);
17335 if (align_good == FAIL)
17336 return;
17337 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
17338 {
17339 case 1: break;
17340 case 2: inst.instruction |= 1 << 5; break;
17341 default: first_error (_("bad list length")); return;
17342 }
17343 inst.instruction |= neon_logbits (et.size) << 6;
17344 break;
17345
17346 case 1: /* VLD2. */
17347 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
17348 &do_alignment, 8, 16, 16, 32, 32, 64,
17349 -1);
17350 if (align_good == FAIL)
17351 return;
17352 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
17353 _("bad list length"));
17354 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17355 inst.instruction |= 1 << 5;
17356 inst.instruction |= neon_logbits (et.size) << 6;
17357 break;
17358
17359 case 2: /* VLD3. */
17360 constraint (inst.operands[1].immisalign,
17361 _("can't use alignment with this instruction"));
17362 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
17363 _("bad list length"));
17364 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17365 inst.instruction |= 1 << 5;
17366 inst.instruction |= neon_logbits (et.size) << 6;
17367 break;
17368
17369 case 3: /* VLD4. */
17370 {
17371 int align = inst.operands[1].imm >> 8;
17372 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
17373 16, 64, 32, 64, 32, 128, -1);
17374 if (align_good == FAIL)
17375 return;
17376 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
17377 _("bad list length"));
17378 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
17379 inst.instruction |= 1 << 5;
17380 if (et.size == 32 && align == 128)
17381 inst.instruction |= 0x3 << 6;
17382 else
17383 inst.instruction |= neon_logbits (et.size) << 6;
17384 }
17385 break;
17386
17387 default: ;
17388 }
17389
17390 inst.instruction |= do_alignment << 4;
17391 }
17392
17393 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
17394 apart from bits [11:4]. */
17395
17396 static void
17397 do_neon_ldx_stx (void)
17398 {
17399 if (inst.operands[1].isreg)
17400 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17401
17402 switch (NEON_LANE (inst.operands[0].imm))
17403 {
17404 case NEON_INTERLEAVE_LANES:
17405 NEON_ENCODE (INTERLV, inst);
17406 do_neon_ld_st_interleave ();
17407 break;
17408
17409 case NEON_ALL_LANES:
17410 NEON_ENCODE (DUP, inst);
17411 if (inst.instruction == N_INV)
17412 {
17413 first_error ("only loads support such operands");
17414 break;
17415 }
17416 do_neon_ld_dup ();
17417 break;
17418
17419 default:
17420 NEON_ENCODE (LANE, inst);
17421 do_neon_ld_st_lane ();
17422 }
17423
17424 /* L bit comes from bit mask. */
17425 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17426 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17427 inst.instruction |= inst.operands[1].reg << 16;
17428
17429 if (inst.operands[1].postind)
17430 {
17431 int postreg = inst.operands[1].imm & 0xf;
17432 constraint (!inst.operands[1].immisreg,
17433 _("post-index must be a register"));
17434 constraint (postreg == 0xd || postreg == 0xf,
17435 _("bad register for post-index"));
17436 inst.instruction |= postreg;
17437 }
17438 else
17439 {
17440 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17441 constraint (inst.relocs[0].exp.X_op != O_constant
17442 || inst.relocs[0].exp.X_add_number != 0,
17443 BAD_ADDR_MODE);
17444
17445 if (inst.operands[1].writeback)
17446 {
17447 inst.instruction |= 0xd;
17448 }
17449 else
17450 inst.instruction |= 0xf;
17451 }
17452
17453 if (thumb_mode)
17454 inst.instruction |= 0xf9000000;
17455 else
17456 inst.instruction |= 0xf4000000;
17457 }
17458
17459 /* FP v8. */
17460 static void
17461 do_vfp_nsyn_fpv8 (enum neon_shape rs)
17462 {
17463 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17464 D register operands. */
17465 if (neon_shape_class[rs] == SC_DOUBLE)
17466 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17467 _(BAD_FPU));
17468
17469 NEON_ENCODE (FPV8, inst);
17470
17471 if (rs == NS_FFF || rs == NS_HHH)
17472 {
17473 do_vfp_sp_dyadic ();
17474
17475 /* ARMv8.2 fp16 instruction. */
17476 if (rs == NS_HHH)
17477 do_scalar_fp16_v82_encode ();
17478 }
17479 else
17480 do_vfp_dp_rd_rn_rm ();
17481
17482 if (rs == NS_DDD)
17483 inst.instruction |= 0x100;
17484
17485 inst.instruction |= 0xf0000000;
17486 }
17487
17488 static void
17489 do_vsel (void)
17490 {
17491 set_it_insn_type (OUTSIDE_IT_INSN);
17492
17493 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
17494 first_error (_("invalid instruction shape"));
17495 }
17496
17497 static void
17498 do_vmaxnm (void)
17499 {
17500 set_it_insn_type (OUTSIDE_IT_INSN);
17501
17502 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
17503 return;
17504
17505 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17506 return;
17507
17508 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
17509 }
17510
17511 static void
17512 do_vrint_1 (enum neon_cvt_mode mode)
17513 {
17514 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
17515 struct neon_type_el et;
17516
17517 if (rs == NS_NULL)
17518 return;
17519
17520 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17521 D register operands. */
17522 if (neon_shape_class[rs] == SC_DOUBLE)
17523 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17524 _(BAD_FPU));
17525
17526 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
17527 | N_VFP);
17528 if (et.type != NT_invtype)
17529 {
17530 /* VFP encodings. */
17531 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17532 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
17533 set_it_insn_type (OUTSIDE_IT_INSN);
17534
17535 NEON_ENCODE (FPV8, inst);
17536 if (rs == NS_FF || rs == NS_HH)
17537 do_vfp_sp_monadic ();
17538 else
17539 do_vfp_dp_rd_rm ();
17540
17541 switch (mode)
17542 {
17543 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
17544 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
17545 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
17546 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
17547 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
17548 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
17549 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
17550 default: abort ();
17551 }
17552
17553 inst.instruction |= (rs == NS_DD) << 8;
17554 do_vfp_cond_or_thumb ();
17555
17556 /* ARMv8.2 fp16 vrint instruction. */
17557 if (rs == NS_HH)
17558 do_scalar_fp16_v82_encode ();
17559 }
17560 else
17561 {
17562 /* Neon encodings (or something broken...). */
17563 inst.error = NULL;
17564 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
17565
17566 if (et.type == NT_invtype)
17567 return;
17568
17569 set_it_insn_type (OUTSIDE_IT_INSN);
17570 NEON_ENCODE (FLOAT, inst);
17571
17572 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
17573 return;
17574
17575 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17576 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17577 inst.instruction |= LOW4 (inst.operands[1].reg);
17578 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17579 inst.instruction |= neon_quad (rs) << 6;
17580 /* Mask off the original size bits and reencode them. */
17581 inst.instruction = ((inst.instruction & 0xfff3ffff)
17582 | neon_logbits (et.size) << 18);
17583
17584 switch (mode)
17585 {
17586 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
17587 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
17588 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
17589 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
17590 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
17591 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
17592 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
17593 default: abort ();
17594 }
17595
17596 if (thumb_mode)
17597 inst.instruction |= 0xfc000000;
17598 else
17599 inst.instruction |= 0xf0000000;
17600 }
17601 }
17602
17603 static void
17604 do_vrintx (void)
17605 {
17606 do_vrint_1 (neon_cvt_mode_x);
17607 }
17608
17609 static void
17610 do_vrintz (void)
17611 {
17612 do_vrint_1 (neon_cvt_mode_z);
17613 }
17614
17615 static void
17616 do_vrintr (void)
17617 {
17618 do_vrint_1 (neon_cvt_mode_r);
17619 }
17620
17621 static void
17622 do_vrinta (void)
17623 {
17624 do_vrint_1 (neon_cvt_mode_a);
17625 }
17626
17627 static void
17628 do_vrintn (void)
17629 {
17630 do_vrint_1 (neon_cvt_mode_n);
17631 }
17632
17633 static void
17634 do_vrintp (void)
17635 {
17636 do_vrint_1 (neon_cvt_mode_p);
17637 }
17638
17639 static void
17640 do_vrintm (void)
17641 {
17642 do_vrint_1 (neon_cvt_mode_m);
17643 }
17644
17645 static unsigned
17646 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
17647 {
17648 unsigned regno = NEON_SCALAR_REG (opnd);
17649 unsigned elno = NEON_SCALAR_INDEX (opnd);
17650
17651 if (elsize == 16 && elno < 2 && regno < 16)
17652 return regno | (elno << 4);
17653 else if (elsize == 32 && elno == 0)
17654 return regno;
17655
17656 first_error (_("scalar out of range"));
17657 return 0;
17658 }
17659
17660 static void
17661 do_vcmla (void)
17662 {
17663 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17664 _(BAD_FPU));
17665 constraint (inst.relocs[0].exp.X_op != O_constant,
17666 _("expression too complex"));
17667 unsigned rot = inst.relocs[0].exp.X_add_number;
17668 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
17669 _("immediate out of range"));
17670 rot /= 90;
17671 if (inst.operands[2].isscalar)
17672 {
17673 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
17674 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17675 N_KEY | N_F16 | N_F32).size;
17676 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
17677 inst.is_neon = 1;
17678 inst.instruction = 0xfe000800;
17679 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17680 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17681 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17682 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17683 inst.instruction |= LOW4 (m);
17684 inst.instruction |= HI1 (m) << 5;
17685 inst.instruction |= neon_quad (rs) << 6;
17686 inst.instruction |= rot << 20;
17687 inst.instruction |= (size == 32) << 23;
17688 }
17689 else
17690 {
17691 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17692 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17693 N_KEY | N_F16 | N_F32).size;
17694 neon_three_same (neon_quad (rs), 0, -1);
17695 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17696 inst.instruction |= 0xfc200800;
17697 inst.instruction |= rot << 23;
17698 inst.instruction |= (size == 32) << 20;
17699 }
17700 }
17701
17702 static void
17703 do_vcadd (void)
17704 {
17705 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17706 _(BAD_FPU));
17707 constraint (inst.relocs[0].exp.X_op != O_constant,
17708 _("expression too complex"));
17709 unsigned rot = inst.relocs[0].exp.X_add_number;
17710 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17711 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
17712 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
17713 N_KEY | N_F16 | N_F32).size;
17714 neon_three_same (neon_quad (rs), 0, -1);
17715 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
17716 inst.instruction |= 0xfc800800;
17717 inst.instruction |= (rot == 270) << 24;
17718 inst.instruction |= (size == 32) << 20;
17719 }
17720
17721 /* Dot Product instructions encoding support. */
17722
17723 static void
17724 do_neon_dotproduct (int unsigned_p)
17725 {
17726 enum neon_shape rs;
17727 unsigned scalar_oprd2 = 0;
17728 int high8;
17729
17730 if (inst.cond != COND_ALWAYS)
17731 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
17732 "is UNPREDICTABLE"));
17733
17734 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
17735 _(BAD_FPU));
17736
17737 /* Dot Product instructions are in three-same D/Q register format or the third
17738 operand can be a scalar index register. */
17739 if (inst.operands[2].isscalar)
17740 {
17741 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
17742 high8 = 0xfe000000;
17743 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17744 }
17745 else
17746 {
17747 high8 = 0xfc000000;
17748 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17749 }
17750
17751 if (unsigned_p)
17752 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
17753 else
17754 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
17755
17756 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
17757 Product instruction, so we pass 0 as the "ubit" parameter. And the
17758 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
17759 neon_three_same (neon_quad (rs), 0, 32);
17760
17761 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
17762 different NEON three-same encoding. */
17763 inst.instruction &= 0x00ffffff;
17764 inst.instruction |= high8;
17765 /* Encode 'U' bit which indicates signedness. */
17766 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
17767 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
17768 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
17769 the instruction encoding. */
17770 if (inst.operands[2].isscalar)
17771 {
17772 inst.instruction &= 0xffffffd0;
17773 inst.instruction |= LOW4 (scalar_oprd2);
17774 inst.instruction |= HI1 (scalar_oprd2) << 5;
17775 }
17776 }
17777
17778 /* Dot Product instructions for signed integer. */
17779
17780 static void
17781 do_neon_dotproduct_s (void)
17782 {
17783 return do_neon_dotproduct (0);
17784 }
17785
17786 /* Dot Product instructions for unsigned integer. */
17787
17788 static void
17789 do_neon_dotproduct_u (void)
17790 {
17791 return do_neon_dotproduct (1);
17792 }
17793
17794 /* Crypto v1 instructions. */
17795 static void
17796 do_crypto_2op_1 (unsigned elttype, int op)
17797 {
17798 set_it_insn_type (OUTSIDE_IT_INSN);
17799
17800 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
17801 == NT_invtype)
17802 return;
17803
17804 inst.error = NULL;
17805
17806 NEON_ENCODE (INTEGER, inst);
17807 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17808 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17809 inst.instruction |= LOW4 (inst.operands[1].reg);
17810 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17811 if (op != -1)
17812 inst.instruction |= op << 6;
17813
17814 if (thumb_mode)
17815 inst.instruction |= 0xfc000000;
17816 else
17817 inst.instruction |= 0xf0000000;
17818 }
17819
17820 static void
17821 do_crypto_3op_1 (int u, int op)
17822 {
17823 set_it_insn_type (OUTSIDE_IT_INSN);
17824
17825 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
17826 N_32 | N_UNT | N_KEY).type == NT_invtype)
17827 return;
17828
17829 inst.error = NULL;
17830
17831 NEON_ENCODE (INTEGER, inst);
17832 neon_three_same (1, u, 8 << op);
17833 }
17834
17835 static void
17836 do_aese (void)
17837 {
17838 do_crypto_2op_1 (N_8, 0);
17839 }
17840
17841 static void
17842 do_aesd (void)
17843 {
17844 do_crypto_2op_1 (N_8, 1);
17845 }
17846
17847 static void
17848 do_aesmc (void)
17849 {
17850 do_crypto_2op_1 (N_8, 2);
17851 }
17852
17853 static void
17854 do_aesimc (void)
17855 {
17856 do_crypto_2op_1 (N_8, 3);
17857 }
17858
17859 static void
17860 do_sha1c (void)
17861 {
17862 do_crypto_3op_1 (0, 0);
17863 }
17864
17865 static void
17866 do_sha1p (void)
17867 {
17868 do_crypto_3op_1 (0, 1);
17869 }
17870
17871 static void
17872 do_sha1m (void)
17873 {
17874 do_crypto_3op_1 (0, 2);
17875 }
17876
17877 static void
17878 do_sha1su0 (void)
17879 {
17880 do_crypto_3op_1 (0, 3);
17881 }
17882
17883 static void
17884 do_sha256h (void)
17885 {
17886 do_crypto_3op_1 (1, 0);
17887 }
17888
17889 static void
17890 do_sha256h2 (void)
17891 {
17892 do_crypto_3op_1 (1, 1);
17893 }
17894
17895 static void
17896 do_sha256su1 (void)
17897 {
17898 do_crypto_3op_1 (1, 2);
17899 }
17900
17901 static void
17902 do_sha1h (void)
17903 {
17904 do_crypto_2op_1 (N_32, -1);
17905 }
17906
17907 static void
17908 do_sha1su1 (void)
17909 {
17910 do_crypto_2op_1 (N_32, 0);
17911 }
17912
17913 static void
17914 do_sha256su0 (void)
17915 {
17916 do_crypto_2op_1 (N_32, 1);
17917 }
17918
17919 static void
17920 do_crc32_1 (unsigned int poly, unsigned int sz)
17921 {
17922 unsigned int Rd = inst.operands[0].reg;
17923 unsigned int Rn = inst.operands[1].reg;
17924 unsigned int Rm = inst.operands[2].reg;
17925
17926 set_it_insn_type (OUTSIDE_IT_INSN);
17927 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
17928 inst.instruction |= LOW4 (Rn) << 16;
17929 inst.instruction |= LOW4 (Rm);
17930 inst.instruction |= sz << (thumb_mode ? 4 : 21);
17931 inst.instruction |= poly << (thumb_mode ? 20 : 9);
17932
17933 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
17934 as_warn (UNPRED_REG ("r15"));
17935 }
17936
17937 static void
17938 do_crc32b (void)
17939 {
17940 do_crc32_1 (0, 0);
17941 }
17942
17943 static void
17944 do_crc32h (void)
17945 {
17946 do_crc32_1 (0, 1);
17947 }
17948
17949 static void
17950 do_crc32w (void)
17951 {
17952 do_crc32_1 (0, 2);
17953 }
17954
17955 static void
17956 do_crc32cb (void)
17957 {
17958 do_crc32_1 (1, 0);
17959 }
17960
17961 static void
17962 do_crc32ch (void)
17963 {
17964 do_crc32_1 (1, 1);
17965 }
17966
17967 static void
17968 do_crc32cw (void)
17969 {
17970 do_crc32_1 (1, 2);
17971 }
17972
17973 static void
17974 do_vjcvt (void)
17975 {
17976 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17977 _(BAD_FPU));
17978 neon_check_type (2, NS_FD, N_S32, N_F64);
17979 do_vfp_sp_dp_cvt ();
17980 do_vfp_cond_or_thumb ();
17981 }
17982
17983 \f
17984 /* Overall per-instruction processing. */
17985
17986 /* We need to be able to fix up arbitrary expressions in some statements.
17987 This is so that we can handle symbols that are an arbitrary distance from
17988 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
17989 which returns part of an address in a form which will be valid for
17990 a data instruction. We do this by pushing the expression into a symbol
17991 in the expr_section, and creating a fix for that. */
17992
17993 static void
17994 fix_new_arm (fragS * frag,
17995 int where,
17996 short int size,
17997 expressionS * exp,
17998 int pc_rel,
17999 int reloc)
18000 {
18001 fixS * new_fix;
18002
18003 switch (exp->X_op)
18004 {
18005 case O_constant:
18006 if (pc_rel)
18007 {
18008 /* Create an absolute valued symbol, so we have something to
18009 refer to in the object file. Unfortunately for us, gas's
18010 generic expression parsing will already have folded out
18011 any use of .set foo/.type foo %function that may have
18012 been used to set type information of the target location,
18013 that's being specified symbolically. We have to presume
18014 the user knows what they are doing. */
18015 char name[16 + 8];
18016 symbolS *symbol;
18017
18018 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
18019
18020 symbol = symbol_find_or_make (name);
18021 S_SET_SEGMENT (symbol, absolute_section);
18022 symbol_set_frag (symbol, &zero_address_frag);
18023 S_SET_VALUE (symbol, exp->X_add_number);
18024 exp->X_op = O_symbol;
18025 exp->X_add_symbol = symbol;
18026 exp->X_add_number = 0;
18027 }
18028 /* FALLTHROUGH */
18029 case O_symbol:
18030 case O_add:
18031 case O_subtract:
18032 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
18033 (enum bfd_reloc_code_real) reloc);
18034 break;
18035
18036 default:
18037 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
18038 pc_rel, (enum bfd_reloc_code_real) reloc);
18039 break;
18040 }
18041
18042 /* Mark whether the fix is to a THUMB instruction, or an ARM
18043 instruction. */
18044 new_fix->tc_fix_data = thumb_mode;
18045 }
18046
18047 /* Create a frg for an instruction requiring relaxation. */
18048 static void
18049 output_relax_insn (void)
18050 {
18051 char * to;
18052 symbolS *sym;
18053 int offset;
18054
18055 /* The size of the instruction is unknown, so tie the debug info to the
18056 start of the instruction. */
18057 dwarf2_emit_insn (0);
18058
18059 switch (inst.relocs[0].exp.X_op)
18060 {
18061 case O_symbol:
18062 sym = inst.relocs[0].exp.X_add_symbol;
18063 offset = inst.relocs[0].exp.X_add_number;
18064 break;
18065 case O_constant:
18066 sym = NULL;
18067 offset = inst.relocs[0].exp.X_add_number;
18068 break;
18069 default:
18070 sym = make_expr_symbol (&inst.relocs[0].exp);
18071 offset = 0;
18072 break;
18073 }
18074 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
18075 inst.relax, sym, offset, NULL/*offset, opcode*/);
18076 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
18077 }
18078
18079 /* Write a 32-bit thumb instruction to buf. */
18080 static void
18081 put_thumb32_insn (char * buf, unsigned long insn)
18082 {
18083 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
18084 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
18085 }
18086
18087 static void
18088 output_inst (const char * str)
18089 {
18090 char * to = NULL;
18091
18092 if (inst.error)
18093 {
18094 as_bad ("%s -- `%s'", inst.error, str);
18095 return;
18096 }
18097 if (inst.relax)
18098 {
18099 output_relax_insn ();
18100 return;
18101 }
18102 if (inst.size == 0)
18103 return;
18104
18105 to = frag_more (inst.size);
18106 /* PR 9814: Record the thumb mode into the current frag so that we know
18107 what type of NOP padding to use, if necessary. We override any previous
18108 setting so that if the mode has changed then the NOPS that we use will
18109 match the encoding of the last instruction in the frag. */
18110 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18111
18112 if (thumb_mode && (inst.size > THUMB_SIZE))
18113 {
18114 gas_assert (inst.size == (2 * THUMB_SIZE));
18115 put_thumb32_insn (to, inst.instruction);
18116 }
18117 else if (inst.size > INSN_SIZE)
18118 {
18119 gas_assert (inst.size == (2 * INSN_SIZE));
18120 md_number_to_chars (to, inst.instruction, INSN_SIZE);
18121 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
18122 }
18123 else
18124 md_number_to_chars (to, inst.instruction, inst.size);
18125
18126 int r;
18127 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
18128 {
18129 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
18130 fix_new_arm (frag_now, to - frag_now->fr_literal,
18131 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
18132 inst.relocs[r].type);
18133 }
18134
18135 dwarf2_emit_insn (inst.size);
18136 }
18137
18138 static char *
18139 output_it_inst (int cond, int mask, char * to)
18140 {
18141 unsigned long instruction = 0xbf00;
18142
18143 mask &= 0xf;
18144 instruction |= mask;
18145 instruction |= cond << 4;
18146
18147 if (to == NULL)
18148 {
18149 to = frag_more (2);
18150 #ifdef OBJ_ELF
18151 dwarf2_emit_insn (2);
18152 #endif
18153 }
18154
18155 md_number_to_chars (to, instruction, 2);
18156
18157 return to;
18158 }
18159
18160 /* Tag values used in struct asm_opcode's tag field. */
18161 enum opcode_tag
18162 {
18163 OT_unconditional, /* Instruction cannot be conditionalized.
18164 The ARM condition field is still 0xE. */
18165 OT_unconditionalF, /* Instruction cannot be conditionalized
18166 and carries 0xF in its ARM condition field. */
18167 OT_csuffix, /* Instruction takes a conditional suffix. */
18168 OT_csuffixF, /* Some forms of the instruction take a conditional
18169 suffix, others place 0xF where the condition field
18170 would be. */
18171 OT_cinfix3, /* Instruction takes a conditional infix,
18172 beginning at character index 3. (In
18173 unified mode, it becomes a suffix.) */
18174 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
18175 tsts, cmps, cmns, and teqs. */
18176 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
18177 character index 3, even in unified mode. Used for
18178 legacy instructions where suffix and infix forms
18179 may be ambiguous. */
18180 OT_csuf_or_in3, /* Instruction takes either a conditional
18181 suffix or an infix at character index 3. */
18182 OT_odd_infix_unc, /* This is the unconditional variant of an
18183 instruction that takes a conditional infix
18184 at an unusual position. In unified mode,
18185 this variant will accept a suffix. */
18186 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
18187 are the conditional variants of instructions that
18188 take conditional infixes in unusual positions.
18189 The infix appears at character index
18190 (tag - OT_odd_infix_0). These are not accepted
18191 in unified mode. */
18192 };
18193
18194 /* Subroutine of md_assemble, responsible for looking up the primary
18195 opcode from the mnemonic the user wrote. STR points to the
18196 beginning of the mnemonic.
18197
18198 This is not simply a hash table lookup, because of conditional
18199 variants. Most instructions have conditional variants, which are
18200 expressed with a _conditional affix_ to the mnemonic. If we were
18201 to encode each conditional variant as a literal string in the opcode
18202 table, it would have approximately 20,000 entries.
18203
18204 Most mnemonics take this affix as a suffix, and in unified syntax,
18205 'most' is upgraded to 'all'. However, in the divided syntax, some
18206 instructions take the affix as an infix, notably the s-variants of
18207 the arithmetic instructions. Of those instructions, all but six
18208 have the infix appear after the third character of the mnemonic.
18209
18210 Accordingly, the algorithm for looking up primary opcodes given
18211 an identifier is:
18212
18213 1. Look up the identifier in the opcode table.
18214 If we find a match, go to step U.
18215
18216 2. Look up the last two characters of the identifier in the
18217 conditions table. If we find a match, look up the first N-2
18218 characters of the identifier in the opcode table. If we
18219 find a match, go to step CE.
18220
18221 3. Look up the fourth and fifth characters of the identifier in
18222 the conditions table. If we find a match, extract those
18223 characters from the identifier, and look up the remaining
18224 characters in the opcode table. If we find a match, go
18225 to step CM.
18226
18227 4. Fail.
18228
18229 U. Examine the tag field of the opcode structure, in case this is
18230 one of the six instructions with its conditional infix in an
18231 unusual place. If it is, the tag tells us where to find the
18232 infix; look it up in the conditions table and set inst.cond
18233 accordingly. Otherwise, this is an unconditional instruction.
18234 Again set inst.cond accordingly. Return the opcode structure.
18235
18236 CE. Examine the tag field to make sure this is an instruction that
18237 should receive a conditional suffix. If it is not, fail.
18238 Otherwise, set inst.cond from the suffix we already looked up,
18239 and return the opcode structure.
18240
18241 CM. Examine the tag field to make sure this is an instruction that
18242 should receive a conditional infix after the third character.
18243 If it is not, fail. Otherwise, undo the edits to the current
18244 line of input and proceed as for case CE. */
18245
18246 static const struct asm_opcode *
18247 opcode_lookup (char **str)
18248 {
18249 char *end, *base;
18250 char *affix;
18251 const struct asm_opcode *opcode;
18252 const struct asm_cond *cond;
18253 char save[2];
18254
18255 /* Scan up to the end of the mnemonic, which must end in white space,
18256 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
18257 for (base = end = *str; *end != '\0'; end++)
18258 if (*end == ' ' || *end == '.')
18259 break;
18260
18261 if (end == base)
18262 return NULL;
18263
18264 /* Handle a possible width suffix and/or Neon type suffix. */
18265 if (end[0] == '.')
18266 {
18267 int offset = 2;
18268
18269 /* The .w and .n suffixes are only valid if the unified syntax is in
18270 use. */
18271 if (unified_syntax && end[1] == 'w')
18272 inst.size_req = 4;
18273 else if (unified_syntax && end[1] == 'n')
18274 inst.size_req = 2;
18275 else
18276 offset = 0;
18277
18278 inst.vectype.elems = 0;
18279
18280 *str = end + offset;
18281
18282 if (end[offset] == '.')
18283 {
18284 /* See if we have a Neon type suffix (possible in either unified or
18285 non-unified ARM syntax mode). */
18286 if (parse_neon_type (&inst.vectype, str) == FAIL)
18287 return NULL;
18288 }
18289 else if (end[offset] != '\0' && end[offset] != ' ')
18290 return NULL;
18291 }
18292 else
18293 *str = end;
18294
18295 /* Look for unaffixed or special-case affixed mnemonic. */
18296 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
18297 end - base);
18298 if (opcode)
18299 {
18300 /* step U */
18301 if (opcode->tag < OT_odd_infix_0)
18302 {
18303 inst.cond = COND_ALWAYS;
18304 return opcode;
18305 }
18306
18307 if (warn_on_deprecated && unified_syntax)
18308 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
18309 affix = base + (opcode->tag - OT_odd_infix_0);
18310 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18311 gas_assert (cond);
18312
18313 inst.cond = cond->value;
18314 return opcode;
18315 }
18316
18317 /* Cannot have a conditional suffix on a mnemonic of less than two
18318 characters. */
18319 if (end - base < 3)
18320 return NULL;
18321
18322 /* Look for suffixed mnemonic. */
18323 affix = end - 2;
18324 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18325 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
18326 affix - base);
18327 if (opcode && cond)
18328 {
18329 /* step CE */
18330 switch (opcode->tag)
18331 {
18332 case OT_cinfix3_legacy:
18333 /* Ignore conditional suffixes matched on infix only mnemonics. */
18334 break;
18335
18336 case OT_cinfix3:
18337 case OT_cinfix3_deprecated:
18338 case OT_odd_infix_unc:
18339 if (!unified_syntax)
18340 return NULL;
18341 /* Fall through. */
18342
18343 case OT_csuffix:
18344 case OT_csuffixF:
18345 case OT_csuf_or_in3:
18346 inst.cond = cond->value;
18347 return opcode;
18348
18349 case OT_unconditional:
18350 case OT_unconditionalF:
18351 if (thumb_mode)
18352 inst.cond = cond->value;
18353 else
18354 {
18355 /* Delayed diagnostic. */
18356 inst.error = BAD_COND;
18357 inst.cond = COND_ALWAYS;
18358 }
18359 return opcode;
18360
18361 default:
18362 return NULL;
18363 }
18364 }
18365
18366 /* Cannot have a usual-position infix on a mnemonic of less than
18367 six characters (five would be a suffix). */
18368 if (end - base < 6)
18369 return NULL;
18370
18371 /* Look for infixed mnemonic in the usual position. */
18372 affix = base + 3;
18373 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
18374 if (!cond)
18375 return NULL;
18376
18377 memcpy (save, affix, 2);
18378 memmove (affix, affix + 2, (end - affix) - 2);
18379 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
18380 (end - base) - 2);
18381 memmove (affix + 2, affix, (end - affix) - 2);
18382 memcpy (affix, save, 2);
18383
18384 if (opcode
18385 && (opcode->tag == OT_cinfix3
18386 || opcode->tag == OT_cinfix3_deprecated
18387 || opcode->tag == OT_csuf_or_in3
18388 || opcode->tag == OT_cinfix3_legacy))
18389 {
18390 /* Step CM. */
18391 if (warn_on_deprecated && unified_syntax
18392 && (opcode->tag == OT_cinfix3
18393 || opcode->tag == OT_cinfix3_deprecated))
18394 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
18395
18396 inst.cond = cond->value;
18397 return opcode;
18398 }
18399
18400 return NULL;
18401 }
18402
18403 /* This function generates an initial IT instruction, leaving its block
18404 virtually open for the new instructions. Eventually,
18405 the mask will be updated by now_it_add_mask () each time
18406 a new instruction needs to be included in the IT block.
18407 Finally, the block is closed with close_automatic_it_block ().
18408 The block closure can be requested either from md_assemble (),
18409 a tencode (), or due to a label hook. */
18410
18411 static void
18412 new_automatic_it_block (int cond)
18413 {
18414 now_it.state = AUTOMATIC_IT_BLOCK;
18415 now_it.mask = 0x18;
18416 now_it.cc = cond;
18417 now_it.block_length = 1;
18418 mapping_state (MAP_THUMB);
18419 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
18420 now_it.warn_deprecated = FALSE;
18421 now_it.insn_cond = TRUE;
18422 }
18423
18424 /* Close an automatic IT block.
18425 See comments in new_automatic_it_block (). */
18426
18427 static void
18428 close_automatic_it_block (void)
18429 {
18430 now_it.mask = 0x10;
18431 now_it.block_length = 0;
18432 }
18433
18434 /* Update the mask of the current automatically-generated IT
18435 instruction. See comments in new_automatic_it_block (). */
18436
18437 static void
18438 now_it_add_mask (int cond)
18439 {
18440 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
18441 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
18442 | ((bitvalue) << (nbit)))
18443 const int resulting_bit = (cond & 1);
18444
18445 now_it.mask &= 0xf;
18446 now_it.mask = SET_BIT_VALUE (now_it.mask,
18447 resulting_bit,
18448 (5 - now_it.block_length));
18449 now_it.mask = SET_BIT_VALUE (now_it.mask,
18450 1,
18451 ((5 - now_it.block_length) - 1) );
18452 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
18453
18454 #undef CLEAR_BIT
18455 #undef SET_BIT_VALUE
18456 }
18457
18458 /* The IT blocks handling machinery is accessed through the these functions:
18459 it_fsm_pre_encode () from md_assemble ()
18460 set_it_insn_type () optional, from the tencode functions
18461 set_it_insn_type_last () ditto
18462 in_it_block () ditto
18463 it_fsm_post_encode () from md_assemble ()
18464 force_automatic_it_block_close () from label handling functions
18465
18466 Rationale:
18467 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
18468 initializing the IT insn type with a generic initial value depending
18469 on the inst.condition.
18470 2) During the tencode function, two things may happen:
18471 a) The tencode function overrides the IT insn type by
18472 calling either set_it_insn_type (type) or set_it_insn_type_last ().
18473 b) The tencode function queries the IT block state by
18474 calling in_it_block () (i.e. to determine narrow/not narrow mode).
18475
18476 Both set_it_insn_type and in_it_block run the internal FSM state
18477 handling function (handle_it_state), because: a) setting the IT insn
18478 type may incur in an invalid state (exiting the function),
18479 and b) querying the state requires the FSM to be updated.
18480 Specifically we want to avoid creating an IT block for conditional
18481 branches, so it_fsm_pre_encode is actually a guess and we can't
18482 determine whether an IT block is required until the tencode () routine
18483 has decided what type of instruction this actually it.
18484 Because of this, if set_it_insn_type and in_it_block have to be used,
18485 set_it_insn_type has to be called first.
18486
18487 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
18488 determines the insn IT type depending on the inst.cond code.
18489 When a tencode () routine encodes an instruction that can be
18490 either outside an IT block, or, in the case of being inside, has to be
18491 the last one, set_it_insn_type_last () will determine the proper
18492 IT instruction type based on the inst.cond code. Otherwise,
18493 set_it_insn_type can be called for overriding that logic or
18494 for covering other cases.
18495
18496 Calling handle_it_state () may not transition the IT block state to
18497 OUTSIDE_IT_BLOCK immediately, since the (current) state could be
18498 still queried. Instead, if the FSM determines that the state should
18499 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
18500 after the tencode () function: that's what it_fsm_post_encode () does.
18501
18502 Since in_it_block () calls the state handling function to get an
18503 updated state, an error may occur (due to invalid insns combination).
18504 In that case, inst.error is set.
18505 Therefore, inst.error has to be checked after the execution of
18506 the tencode () routine.
18507
18508 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
18509 any pending state change (if any) that didn't take place in
18510 handle_it_state () as explained above. */
18511
18512 static void
18513 it_fsm_pre_encode (void)
18514 {
18515 if (inst.cond != COND_ALWAYS)
18516 inst.it_insn_type = INSIDE_IT_INSN;
18517 else
18518 inst.it_insn_type = OUTSIDE_IT_INSN;
18519
18520 now_it.state_handled = 0;
18521 }
18522
18523 /* IT state FSM handling function. */
18524
18525 static int
18526 handle_it_state (void)
18527 {
18528 now_it.state_handled = 1;
18529 now_it.insn_cond = FALSE;
18530
18531 switch (now_it.state)
18532 {
18533 case OUTSIDE_IT_BLOCK:
18534 switch (inst.it_insn_type)
18535 {
18536 case OUTSIDE_IT_INSN:
18537 break;
18538
18539 case INSIDE_IT_INSN:
18540 case INSIDE_IT_LAST_INSN:
18541 if (thumb_mode == 0)
18542 {
18543 if (unified_syntax
18544 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
18545 as_tsktsk (_("Warning: conditional outside an IT block"\
18546 " for Thumb."));
18547 }
18548 else
18549 {
18550 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
18551 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
18552 {
18553 /* Automatically generate the IT instruction. */
18554 new_automatic_it_block (inst.cond);
18555 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
18556 close_automatic_it_block ();
18557 }
18558 else
18559 {
18560 inst.error = BAD_OUT_IT;
18561 return FAIL;
18562 }
18563 }
18564 break;
18565
18566 case IF_INSIDE_IT_LAST_INSN:
18567 case NEUTRAL_IT_INSN:
18568 break;
18569
18570 case IT_INSN:
18571 now_it.state = MANUAL_IT_BLOCK;
18572 now_it.block_length = 0;
18573 break;
18574 }
18575 break;
18576
18577 case AUTOMATIC_IT_BLOCK:
18578 /* Three things may happen now:
18579 a) We should increment current it block size;
18580 b) We should close current it block (closing insn or 4 insns);
18581 c) We should close current it block and start a new one (due
18582 to incompatible conditions or
18583 4 insns-length block reached). */
18584
18585 switch (inst.it_insn_type)
18586 {
18587 case OUTSIDE_IT_INSN:
18588 /* The closure of the block shall happen immediately,
18589 so any in_it_block () call reports the block as closed. */
18590 force_automatic_it_block_close ();
18591 break;
18592
18593 case INSIDE_IT_INSN:
18594 case INSIDE_IT_LAST_INSN:
18595 case IF_INSIDE_IT_LAST_INSN:
18596 now_it.block_length++;
18597
18598 if (now_it.block_length > 4
18599 || !now_it_compatible (inst.cond))
18600 {
18601 force_automatic_it_block_close ();
18602 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
18603 new_automatic_it_block (inst.cond);
18604 }
18605 else
18606 {
18607 now_it.insn_cond = TRUE;
18608 now_it_add_mask (inst.cond);
18609 }
18610
18611 if (now_it.state == AUTOMATIC_IT_BLOCK
18612 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
18613 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
18614 close_automatic_it_block ();
18615 break;
18616
18617 case NEUTRAL_IT_INSN:
18618 now_it.block_length++;
18619 now_it.insn_cond = TRUE;
18620
18621 if (now_it.block_length > 4)
18622 force_automatic_it_block_close ();
18623 else
18624 now_it_add_mask (now_it.cc & 1);
18625 break;
18626
18627 case IT_INSN:
18628 close_automatic_it_block ();
18629 now_it.state = MANUAL_IT_BLOCK;
18630 break;
18631 }
18632 break;
18633
18634 case MANUAL_IT_BLOCK:
18635 {
18636 /* Check conditional suffixes. */
18637 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
18638 int is_last;
18639 now_it.mask <<= 1;
18640 now_it.mask &= 0x1f;
18641 is_last = (now_it.mask == 0x10);
18642 now_it.insn_cond = TRUE;
18643
18644 switch (inst.it_insn_type)
18645 {
18646 case OUTSIDE_IT_INSN:
18647 inst.error = BAD_NOT_IT;
18648 return FAIL;
18649
18650 case INSIDE_IT_INSN:
18651 if (cond != inst.cond)
18652 {
18653 inst.error = BAD_IT_COND;
18654 return FAIL;
18655 }
18656 break;
18657
18658 case INSIDE_IT_LAST_INSN:
18659 case IF_INSIDE_IT_LAST_INSN:
18660 if (cond != inst.cond)
18661 {
18662 inst.error = BAD_IT_COND;
18663 return FAIL;
18664 }
18665 if (!is_last)
18666 {
18667 inst.error = BAD_BRANCH;
18668 return FAIL;
18669 }
18670 break;
18671
18672 case NEUTRAL_IT_INSN:
18673 /* The BKPT instruction is unconditional even in an IT block. */
18674 break;
18675
18676 case IT_INSN:
18677 inst.error = BAD_IT_IT;
18678 return FAIL;
18679 }
18680 }
18681 break;
18682 }
18683
18684 return SUCCESS;
18685 }
18686
18687 struct depr_insn_mask
18688 {
18689 unsigned long pattern;
18690 unsigned long mask;
18691 const char* description;
18692 };
18693
18694 /* List of 16-bit instruction patterns deprecated in an IT block in
18695 ARMv8. */
18696 static const struct depr_insn_mask depr_it_insns[] = {
18697 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
18698 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
18699 { 0xa000, 0xb800, N_("ADR") },
18700 { 0x4800, 0xf800, N_("Literal loads") },
18701 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
18702 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
18703 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
18704 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
18705 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
18706 { 0, 0, NULL }
18707 };
18708
18709 static void
18710 it_fsm_post_encode (void)
18711 {
18712 int is_last;
18713
18714 if (!now_it.state_handled)
18715 handle_it_state ();
18716
18717 if (now_it.insn_cond
18718 && !now_it.warn_deprecated
18719 && warn_on_deprecated
18720 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
18721 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
18722 {
18723 if (inst.instruction >= 0x10000)
18724 {
18725 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
18726 "performance deprecated in ARMv8-A and ARMv8-R"));
18727 now_it.warn_deprecated = TRUE;
18728 }
18729 else
18730 {
18731 const struct depr_insn_mask *p = depr_it_insns;
18732
18733 while (p->mask != 0)
18734 {
18735 if ((inst.instruction & p->mask) == p->pattern)
18736 {
18737 as_tsktsk (_("IT blocks containing 16-bit Thumb "
18738 "instructions of the following class are "
18739 "performance deprecated in ARMv8-A and "
18740 "ARMv8-R: %s"), p->description);
18741 now_it.warn_deprecated = TRUE;
18742 break;
18743 }
18744
18745 ++p;
18746 }
18747 }
18748
18749 if (now_it.block_length > 1)
18750 {
18751 as_tsktsk (_("IT blocks containing more than one conditional "
18752 "instruction are performance deprecated in ARMv8-A and "
18753 "ARMv8-R"));
18754 now_it.warn_deprecated = TRUE;
18755 }
18756 }
18757
18758 is_last = (now_it.mask == 0x10);
18759 if (is_last)
18760 {
18761 now_it.state = OUTSIDE_IT_BLOCK;
18762 now_it.mask = 0;
18763 }
18764 }
18765
18766 static void
18767 force_automatic_it_block_close (void)
18768 {
18769 if (now_it.state == AUTOMATIC_IT_BLOCK)
18770 {
18771 close_automatic_it_block ();
18772 now_it.state = OUTSIDE_IT_BLOCK;
18773 now_it.mask = 0;
18774 }
18775 }
18776
18777 static int
18778 in_it_block (void)
18779 {
18780 if (!now_it.state_handled)
18781 handle_it_state ();
18782
18783 return now_it.state != OUTSIDE_IT_BLOCK;
18784 }
18785
18786 /* Whether OPCODE only has T32 encoding. Since this function is only used by
18787 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
18788 here, hence the "known" in the function name. */
18789
18790 static bfd_boolean
18791 known_t32_only_insn (const struct asm_opcode *opcode)
18792 {
18793 /* Original Thumb-1 wide instruction. */
18794 if (opcode->tencode == do_t_blx
18795 || opcode->tencode == do_t_branch23
18796 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
18797 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
18798 return TRUE;
18799
18800 /* Wide-only instruction added to ARMv8-M Baseline. */
18801 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
18802 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
18803 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
18804 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
18805 return TRUE;
18806
18807 return FALSE;
18808 }
18809
18810 /* Whether wide instruction variant can be used if available for a valid OPCODE
18811 in ARCH. */
18812
18813 static bfd_boolean
18814 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
18815 {
18816 if (known_t32_only_insn (opcode))
18817 return TRUE;
18818
18819 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
18820 of variant T3 of B.W is checked in do_t_branch. */
18821 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18822 && opcode->tencode == do_t_branch)
18823 return TRUE;
18824
18825 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
18826 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
18827 && opcode->tencode == do_t_mov_cmp
18828 /* Make sure CMP instruction is not affected. */
18829 && opcode->aencode == do_mov)
18830 return TRUE;
18831
18832 /* Wide instruction variants of all instructions with narrow *and* wide
18833 variants become available with ARMv6t2. Other opcodes are either
18834 narrow-only or wide-only and are thus available if OPCODE is valid. */
18835 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
18836 return TRUE;
18837
18838 /* OPCODE with narrow only instruction variant or wide variant not
18839 available. */
18840 return FALSE;
18841 }
18842
18843 void
18844 md_assemble (char *str)
18845 {
18846 char *p = str;
18847 const struct asm_opcode * opcode;
18848
18849 /* Align the previous label if needed. */
18850 if (last_label_seen != NULL)
18851 {
18852 symbol_set_frag (last_label_seen, frag_now);
18853 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
18854 S_SET_SEGMENT (last_label_seen, now_seg);
18855 }
18856
18857 memset (&inst, '\0', sizeof (inst));
18858 int r;
18859 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
18860 inst.relocs[r].type = BFD_RELOC_UNUSED;
18861
18862 opcode = opcode_lookup (&p);
18863 if (!opcode)
18864 {
18865 /* It wasn't an instruction, but it might be a register alias of
18866 the form alias .req reg, or a Neon .dn/.qn directive. */
18867 if (! create_register_alias (str, p)
18868 && ! create_neon_reg_alias (str, p))
18869 as_bad (_("bad instruction `%s'"), str);
18870
18871 return;
18872 }
18873
18874 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
18875 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
18876
18877 /* The value which unconditional instructions should have in place of the
18878 condition field. */
18879 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
18880
18881 if (thumb_mode)
18882 {
18883 arm_feature_set variant;
18884
18885 variant = cpu_variant;
18886 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
18887 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
18888 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
18889 /* Check that this instruction is supported for this CPU. */
18890 if (!opcode->tvariant
18891 || (thumb_mode == 1
18892 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
18893 {
18894 if (opcode->tencode == do_t_swi)
18895 as_bad (_("SVC is not permitted on this architecture"));
18896 else
18897 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
18898 return;
18899 }
18900 if (inst.cond != COND_ALWAYS && !unified_syntax
18901 && opcode->tencode != do_t_branch)
18902 {
18903 as_bad (_("Thumb does not support conditional execution"));
18904 return;
18905 }
18906
18907 /* Two things are addressed here:
18908 1) Implicit require narrow instructions on Thumb-1.
18909 This avoids relaxation accidentally introducing Thumb-2
18910 instructions.
18911 2) Reject wide instructions in non Thumb-2 cores.
18912
18913 Only instructions with narrow and wide variants need to be handled
18914 but selecting all non wide-only instructions is easier. */
18915 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
18916 && !t32_insn_ok (variant, opcode))
18917 {
18918 if (inst.size_req == 0)
18919 inst.size_req = 2;
18920 else if (inst.size_req == 4)
18921 {
18922 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
18923 as_bad (_("selected processor does not support 32bit wide "
18924 "variant of instruction `%s'"), str);
18925 else
18926 as_bad (_("selected processor does not support `%s' in "
18927 "Thumb-2 mode"), str);
18928 return;
18929 }
18930 }
18931
18932 inst.instruction = opcode->tvalue;
18933
18934 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
18935 {
18936 /* Prepare the it_insn_type for those encodings that don't set
18937 it. */
18938 it_fsm_pre_encode ();
18939
18940 opcode->tencode ();
18941
18942 it_fsm_post_encode ();
18943 }
18944
18945 if (!(inst.error || inst.relax))
18946 {
18947 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
18948 inst.size = (inst.instruction > 0xffff ? 4 : 2);
18949 if (inst.size_req && inst.size_req != inst.size)
18950 {
18951 as_bad (_("cannot honor width suffix -- `%s'"), str);
18952 return;
18953 }
18954 }
18955
18956 /* Something has gone badly wrong if we try to relax a fixed size
18957 instruction. */
18958 gas_assert (inst.size_req == 0 || !inst.relax);
18959
18960 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18961 *opcode->tvariant);
18962 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
18963 set those bits when Thumb-2 32-bit instructions are seen. The impact
18964 of relaxable instructions will be considered later after we finish all
18965 relaxation. */
18966 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
18967 variant = arm_arch_none;
18968 else
18969 variant = cpu_variant;
18970 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
18971 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
18972 arm_ext_v6t2);
18973
18974 check_neon_suffixes;
18975
18976 if (!inst.error)
18977 {
18978 mapping_state (MAP_THUMB);
18979 }
18980 }
18981 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
18982 {
18983 bfd_boolean is_bx;
18984
18985 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
18986 is_bx = (opcode->aencode == do_bx);
18987
18988 /* Check that this instruction is supported for this CPU. */
18989 if (!(is_bx && fix_v4bx)
18990 && !(opcode->avariant &&
18991 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
18992 {
18993 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
18994 return;
18995 }
18996 if (inst.size_req)
18997 {
18998 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
18999 return;
19000 }
19001
19002 inst.instruction = opcode->avalue;
19003 if (opcode->tag == OT_unconditionalF)
19004 inst.instruction |= 0xFU << 28;
19005 else
19006 inst.instruction |= inst.cond << 28;
19007 inst.size = INSN_SIZE;
19008 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
19009 {
19010 it_fsm_pre_encode ();
19011 opcode->aencode ();
19012 it_fsm_post_encode ();
19013 }
19014 /* Arm mode bx is marked as both v4T and v5 because it's still required
19015 on a hypothetical non-thumb v5 core. */
19016 if (is_bx)
19017 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
19018 else
19019 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
19020 *opcode->avariant);
19021
19022 check_neon_suffixes;
19023
19024 if (!inst.error)
19025 {
19026 mapping_state (MAP_ARM);
19027 }
19028 }
19029 else
19030 {
19031 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
19032 "-- `%s'"), str);
19033 return;
19034 }
19035 output_inst (str);
19036 }
19037
19038 static void
19039 check_it_blocks_finished (void)
19040 {
19041 #ifdef OBJ_ELF
19042 asection *sect;
19043
19044 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
19045 if (seg_info (sect)->tc_segment_info_data.current_it.state
19046 == MANUAL_IT_BLOCK)
19047 {
19048 as_warn (_("section '%s' finished with an open IT block."),
19049 sect->name);
19050 }
19051 #else
19052 if (now_it.state == MANUAL_IT_BLOCK)
19053 as_warn (_("file finished with an open IT block."));
19054 #endif
19055 }
19056
19057 /* Various frobbings of labels and their addresses. */
19058
19059 void
19060 arm_start_line_hook (void)
19061 {
19062 last_label_seen = NULL;
19063 }
19064
19065 void
19066 arm_frob_label (symbolS * sym)
19067 {
19068 last_label_seen = sym;
19069
19070 ARM_SET_THUMB (sym, thumb_mode);
19071
19072 #if defined OBJ_COFF || defined OBJ_ELF
19073 ARM_SET_INTERWORK (sym, support_interwork);
19074 #endif
19075
19076 force_automatic_it_block_close ();
19077
19078 /* Note - do not allow local symbols (.Lxxx) to be labelled
19079 as Thumb functions. This is because these labels, whilst
19080 they exist inside Thumb code, are not the entry points for
19081 possible ARM->Thumb calls. Also, these labels can be used
19082 as part of a computed goto or switch statement. eg gcc
19083 can generate code that looks like this:
19084
19085 ldr r2, [pc, .Laaa]
19086 lsl r3, r3, #2
19087 ldr r2, [r3, r2]
19088 mov pc, r2
19089
19090 .Lbbb: .word .Lxxx
19091 .Lccc: .word .Lyyy
19092 ..etc...
19093 .Laaa: .word Lbbb
19094
19095 The first instruction loads the address of the jump table.
19096 The second instruction converts a table index into a byte offset.
19097 The third instruction gets the jump address out of the table.
19098 The fourth instruction performs the jump.
19099
19100 If the address stored at .Laaa is that of a symbol which has the
19101 Thumb_Func bit set, then the linker will arrange for this address
19102 to have the bottom bit set, which in turn would mean that the
19103 address computation performed by the third instruction would end
19104 up with the bottom bit set. Since the ARM is capable of unaligned
19105 word loads, the instruction would then load the incorrect address
19106 out of the jump table, and chaos would ensue. */
19107 if (label_is_thumb_function_name
19108 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
19109 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
19110 {
19111 /* When the address of a Thumb function is taken the bottom
19112 bit of that address should be set. This will allow
19113 interworking between Arm and Thumb functions to work
19114 correctly. */
19115
19116 THUMB_SET_FUNC (sym, 1);
19117
19118 label_is_thumb_function_name = FALSE;
19119 }
19120
19121 dwarf2_emit_label (sym);
19122 }
19123
19124 bfd_boolean
19125 arm_data_in_code (void)
19126 {
19127 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
19128 {
19129 *input_line_pointer = '/';
19130 input_line_pointer += 5;
19131 *input_line_pointer = 0;
19132 return TRUE;
19133 }
19134
19135 return FALSE;
19136 }
19137
19138 char *
19139 arm_canonicalize_symbol_name (char * name)
19140 {
19141 int len;
19142
19143 if (thumb_mode && (len = strlen (name)) > 5
19144 && streq (name + len - 5, "/data"))
19145 *(name + len - 5) = 0;
19146
19147 return name;
19148 }
19149 \f
19150 /* Table of all register names defined by default. The user can
19151 define additional names with .req. Note that all register names
19152 should appear in both upper and lowercase variants. Some registers
19153 also have mixed-case names. */
19154
19155 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
19156 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
19157 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
19158 #define REGSET(p,t) \
19159 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
19160 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
19161 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
19162 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
19163 #define REGSETH(p,t) \
19164 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
19165 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
19166 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
19167 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
19168 #define REGSET2(p,t) \
19169 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
19170 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
19171 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
19172 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
19173 #define SPLRBANK(base,bank,t) \
19174 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
19175 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
19176 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
19177 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
19178 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
19179 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
19180
19181 static const struct reg_entry reg_names[] =
19182 {
19183 /* ARM integer registers. */
19184 REGSET(r, RN), REGSET(R, RN),
19185
19186 /* ATPCS synonyms. */
19187 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
19188 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
19189 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
19190
19191 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
19192 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
19193 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
19194
19195 /* Well-known aliases. */
19196 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
19197 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
19198
19199 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
19200 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
19201
19202 /* Coprocessor numbers. */
19203 REGSET(p, CP), REGSET(P, CP),
19204
19205 /* Coprocessor register numbers. The "cr" variants are for backward
19206 compatibility. */
19207 REGSET(c, CN), REGSET(C, CN),
19208 REGSET(cr, CN), REGSET(CR, CN),
19209
19210 /* ARM banked registers. */
19211 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
19212 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
19213 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
19214 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
19215 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
19216 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
19217 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
19218
19219 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
19220 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
19221 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
19222 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
19223 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
19224 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
19225 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
19226 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
19227
19228 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
19229 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
19230 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
19231 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
19232 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
19233 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
19234 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
19235 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
19236 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
19237
19238 /* FPA registers. */
19239 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
19240 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
19241
19242 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
19243 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
19244
19245 /* VFP SP registers. */
19246 REGSET(s,VFS), REGSET(S,VFS),
19247 REGSETH(s,VFS), REGSETH(S,VFS),
19248
19249 /* VFP DP Registers. */
19250 REGSET(d,VFD), REGSET(D,VFD),
19251 /* Extra Neon DP registers. */
19252 REGSETH(d,VFD), REGSETH(D,VFD),
19253
19254 /* Neon QP registers. */
19255 REGSET2(q,NQ), REGSET2(Q,NQ),
19256
19257 /* VFP control registers. */
19258 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
19259 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
19260 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
19261 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
19262 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
19263 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
19264 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
19265
19266 /* Maverick DSP coprocessor registers. */
19267 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
19268 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
19269
19270 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
19271 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
19272 REGDEF(dspsc,0,DSPSC),
19273
19274 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
19275 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
19276 REGDEF(DSPSC,0,DSPSC),
19277
19278 /* iWMMXt data registers - p0, c0-15. */
19279 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
19280
19281 /* iWMMXt control registers - p1, c0-3. */
19282 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
19283 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
19284 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
19285 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
19286
19287 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
19288 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
19289 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
19290 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
19291 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
19292
19293 /* XScale accumulator registers. */
19294 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
19295 };
19296 #undef REGDEF
19297 #undef REGNUM
19298 #undef REGSET
19299
19300 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
19301 within psr_required_here. */
19302 static const struct asm_psr psrs[] =
19303 {
19304 /* Backward compatibility notation. Note that "all" is no longer
19305 truly all possible PSR bits. */
19306 {"all", PSR_c | PSR_f},
19307 {"flg", PSR_f},
19308 {"ctl", PSR_c},
19309
19310 /* Individual flags. */
19311 {"f", PSR_f},
19312 {"c", PSR_c},
19313 {"x", PSR_x},
19314 {"s", PSR_s},
19315
19316 /* Combinations of flags. */
19317 {"fs", PSR_f | PSR_s},
19318 {"fx", PSR_f | PSR_x},
19319 {"fc", PSR_f | PSR_c},
19320 {"sf", PSR_s | PSR_f},
19321 {"sx", PSR_s | PSR_x},
19322 {"sc", PSR_s | PSR_c},
19323 {"xf", PSR_x | PSR_f},
19324 {"xs", PSR_x | PSR_s},
19325 {"xc", PSR_x | PSR_c},
19326 {"cf", PSR_c | PSR_f},
19327 {"cs", PSR_c | PSR_s},
19328 {"cx", PSR_c | PSR_x},
19329 {"fsx", PSR_f | PSR_s | PSR_x},
19330 {"fsc", PSR_f | PSR_s | PSR_c},
19331 {"fxs", PSR_f | PSR_x | PSR_s},
19332 {"fxc", PSR_f | PSR_x | PSR_c},
19333 {"fcs", PSR_f | PSR_c | PSR_s},
19334 {"fcx", PSR_f | PSR_c | PSR_x},
19335 {"sfx", PSR_s | PSR_f | PSR_x},
19336 {"sfc", PSR_s | PSR_f | PSR_c},
19337 {"sxf", PSR_s | PSR_x | PSR_f},
19338 {"sxc", PSR_s | PSR_x | PSR_c},
19339 {"scf", PSR_s | PSR_c | PSR_f},
19340 {"scx", PSR_s | PSR_c | PSR_x},
19341 {"xfs", PSR_x | PSR_f | PSR_s},
19342 {"xfc", PSR_x | PSR_f | PSR_c},
19343 {"xsf", PSR_x | PSR_s | PSR_f},
19344 {"xsc", PSR_x | PSR_s | PSR_c},
19345 {"xcf", PSR_x | PSR_c | PSR_f},
19346 {"xcs", PSR_x | PSR_c | PSR_s},
19347 {"cfs", PSR_c | PSR_f | PSR_s},
19348 {"cfx", PSR_c | PSR_f | PSR_x},
19349 {"csf", PSR_c | PSR_s | PSR_f},
19350 {"csx", PSR_c | PSR_s | PSR_x},
19351 {"cxf", PSR_c | PSR_x | PSR_f},
19352 {"cxs", PSR_c | PSR_x | PSR_s},
19353 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
19354 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
19355 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
19356 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
19357 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
19358 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
19359 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
19360 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
19361 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
19362 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
19363 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
19364 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
19365 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
19366 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
19367 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
19368 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
19369 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
19370 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
19371 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
19372 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
19373 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
19374 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
19375 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
19376 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
19377 };
19378
19379 /* Table of V7M psr names. */
19380 static const struct asm_psr v7m_psrs[] =
19381 {
19382 {"apsr", 0x0 }, {"APSR", 0x0 },
19383 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
19384 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
19385 {"psr", 0x3 }, {"PSR", 0x3 },
19386 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
19387 {"ipsr", 0x5 }, {"IPSR", 0x5 },
19388 {"epsr", 0x6 }, {"EPSR", 0x6 },
19389 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
19390 {"msp", 0x8 }, {"MSP", 0x8 },
19391 {"psp", 0x9 }, {"PSP", 0x9 },
19392 {"msplim", 0xa }, {"MSPLIM", 0xa },
19393 {"psplim", 0xb }, {"PSPLIM", 0xb },
19394 {"primask", 0x10}, {"PRIMASK", 0x10},
19395 {"basepri", 0x11}, {"BASEPRI", 0x11},
19396 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
19397 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
19398 {"control", 0x14}, {"CONTROL", 0x14},
19399 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
19400 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
19401 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
19402 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
19403 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
19404 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
19405 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
19406 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
19407 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
19408 };
19409
19410 /* Table of all shift-in-operand names. */
19411 static const struct asm_shift_name shift_names [] =
19412 {
19413 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
19414 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
19415 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
19416 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
19417 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
19418 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
19419 };
19420
19421 /* Table of all explicit relocation names. */
19422 #ifdef OBJ_ELF
19423 static struct reloc_entry reloc_names[] =
19424 {
19425 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
19426 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
19427 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
19428 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
19429 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
19430 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
19431 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
19432 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
19433 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
19434 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
19435 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
19436 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
19437 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
19438 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
19439 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
19440 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
19441 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
19442 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
19443 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
19444 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
19445 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
19446 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
19447 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
19448 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
19449 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
19450 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
19451 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
19452 };
19453 #endif
19454
19455 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
19456 static const struct asm_cond conds[] =
19457 {
19458 {"eq", 0x0},
19459 {"ne", 0x1},
19460 {"cs", 0x2}, {"hs", 0x2},
19461 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
19462 {"mi", 0x4},
19463 {"pl", 0x5},
19464 {"vs", 0x6},
19465 {"vc", 0x7},
19466 {"hi", 0x8},
19467 {"ls", 0x9},
19468 {"ge", 0xa},
19469 {"lt", 0xb},
19470 {"gt", 0xc},
19471 {"le", 0xd},
19472 {"al", 0xe}
19473 };
19474
19475 #define UL_BARRIER(L,U,CODE,FEAT) \
19476 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
19477 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
19478
19479 static struct asm_barrier_opt barrier_opt_names[] =
19480 {
19481 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
19482 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
19483 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
19484 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
19485 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
19486 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
19487 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
19488 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
19489 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
19490 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
19491 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
19492 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
19493 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
19494 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
19495 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
19496 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
19497 };
19498
19499 #undef UL_BARRIER
19500
19501 /* Table of ARM-format instructions. */
19502
19503 /* Macros for gluing together operand strings. N.B. In all cases
19504 other than OPS0, the trailing OP_stop comes from default
19505 zero-initialization of the unspecified elements of the array. */
19506 #define OPS0() { OP_stop, }
19507 #define OPS1(a) { OP_##a, }
19508 #define OPS2(a,b) { OP_##a,OP_##b, }
19509 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
19510 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
19511 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
19512 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
19513
19514 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
19515 This is useful when mixing operands for ARM and THUMB, i.e. using the
19516 MIX_ARM_THUMB_OPERANDS macro.
19517 In order to use these macros, prefix the number of operands with _
19518 e.g. _3. */
19519 #define OPS_1(a) { a, }
19520 #define OPS_2(a,b) { a,b, }
19521 #define OPS_3(a,b,c) { a,b,c, }
19522 #define OPS_4(a,b,c,d) { a,b,c,d, }
19523 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
19524 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
19525
19526 /* These macros abstract out the exact format of the mnemonic table and
19527 save some repeated characters. */
19528
19529 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
19530 #define TxCE(mnem, op, top, nops, ops, ae, te) \
19531 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
19532 THUMB_VARIANT, do_##ae, do_##te }
19533
19534 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
19535 a T_MNEM_xyz enumerator. */
19536 #define TCE(mnem, aop, top, nops, ops, ae, te) \
19537 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
19538 #define tCE(mnem, aop, top, nops, ops, ae, te) \
19539 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19540
19541 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
19542 infix after the third character. */
19543 #define TxC3(mnem, op, top, nops, ops, ae, te) \
19544 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
19545 THUMB_VARIANT, do_##ae, do_##te }
19546 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
19547 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
19548 THUMB_VARIANT, do_##ae, do_##te }
19549 #define TC3(mnem, aop, top, nops, ops, ae, te) \
19550 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
19551 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
19552 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
19553 #define tC3(mnem, aop, top, nops, ops, ae, te) \
19554 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19555 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
19556 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
19557
19558 /* Mnemonic that cannot be conditionalized. The ARM condition-code
19559 field is still 0xE. Many of the Thumb variants can be executed
19560 conditionally, so this is checked separately. */
19561 #define TUE(mnem, op, top, nops, ops, ae, te) \
19562 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19563 THUMB_VARIANT, do_##ae, do_##te }
19564
19565 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
19566 Used by mnemonics that have very minimal differences in the encoding for
19567 ARM and Thumb variants and can be handled in a common function. */
19568 #define TUEc(mnem, op, top, nops, ops, en) \
19569 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
19570 THUMB_VARIANT, do_##en, do_##en }
19571
19572 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
19573 condition code field. */
19574 #define TUF(mnem, op, top, nops, ops, ae, te) \
19575 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
19576 THUMB_VARIANT, do_##ae, do_##te }
19577
19578 /* ARM-only variants of all the above. */
19579 #define CE(mnem, op, nops, ops, ae) \
19580 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19581
19582 #define C3(mnem, op, nops, ops, ae) \
19583 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19584
19585 /* Thumb-only variants of TCE and TUE. */
19586 #define ToC(mnem, top, nops, ops, te) \
19587 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
19588 do_##te }
19589
19590 #define ToU(mnem, top, nops, ops, te) \
19591 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
19592 NULL, do_##te }
19593
19594 /* T_MNEM_xyz enumerator variants of ToC. */
19595 #define toC(mnem, top, nops, ops, te) \
19596 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
19597 do_##te }
19598
19599 /* Legacy mnemonics that always have conditional infix after the third
19600 character. */
19601 #define CL(mnem, op, nops, ops, ae) \
19602 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
19603 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19604
19605 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
19606 #define cCE(mnem, op, nops, ops, ae) \
19607 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19608
19609 /* Legacy coprocessor instructions where conditional infix and conditional
19610 suffix are ambiguous. For consistency this includes all FPA instructions,
19611 not just the potentially ambiguous ones. */
19612 #define cCL(mnem, op, nops, ops, ae) \
19613 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
19614 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19615
19616 /* Coprocessor, takes either a suffix or a position-3 infix
19617 (for an FPA corner case). */
19618 #define C3E(mnem, op, nops, ops, ae) \
19619 { mnem, OPS##nops ops, OT_csuf_or_in3, \
19620 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
19621
19622 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
19623 { m1 #m2 m3, OPS##nops ops, \
19624 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
19625 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
19626
19627 #define CM(m1, m2, op, nops, ops, ae) \
19628 xCM_ (m1, , m2, op, nops, ops, ae), \
19629 xCM_ (m1, eq, m2, op, nops, ops, ae), \
19630 xCM_ (m1, ne, m2, op, nops, ops, ae), \
19631 xCM_ (m1, cs, m2, op, nops, ops, ae), \
19632 xCM_ (m1, hs, m2, op, nops, ops, ae), \
19633 xCM_ (m1, cc, m2, op, nops, ops, ae), \
19634 xCM_ (m1, ul, m2, op, nops, ops, ae), \
19635 xCM_ (m1, lo, m2, op, nops, ops, ae), \
19636 xCM_ (m1, mi, m2, op, nops, ops, ae), \
19637 xCM_ (m1, pl, m2, op, nops, ops, ae), \
19638 xCM_ (m1, vs, m2, op, nops, ops, ae), \
19639 xCM_ (m1, vc, m2, op, nops, ops, ae), \
19640 xCM_ (m1, hi, m2, op, nops, ops, ae), \
19641 xCM_ (m1, ls, m2, op, nops, ops, ae), \
19642 xCM_ (m1, ge, m2, op, nops, ops, ae), \
19643 xCM_ (m1, lt, m2, op, nops, ops, ae), \
19644 xCM_ (m1, gt, m2, op, nops, ops, ae), \
19645 xCM_ (m1, le, m2, op, nops, ops, ae), \
19646 xCM_ (m1, al, m2, op, nops, ops, ae)
19647
19648 #define UE(mnem, op, nops, ops, ae) \
19649 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19650
19651 #define UF(mnem, op, nops, ops, ae) \
19652 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
19653
19654 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
19655 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
19656 use the same encoding function for each. */
19657 #define NUF(mnem, op, nops, ops, enc) \
19658 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
19659 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19660
19661 /* Neon data processing, version which indirects through neon_enc_tab for
19662 the various overloaded versions of opcodes. */
19663 #define nUF(mnem, op, nops, ops, enc) \
19664 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
19665 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19666
19667 /* Neon insn with conditional suffix for the ARM version, non-overloaded
19668 version. */
19669 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
19670 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
19671 THUMB_VARIANT, do_##enc, do_##enc }
19672
19673 #define NCE(mnem, op, nops, ops, enc) \
19674 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
19675
19676 #define NCEF(mnem, op, nops, ops, enc) \
19677 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
19678
19679 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
19680 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
19681 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
19682 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
19683
19684 #define nCE(mnem, op, nops, ops, enc) \
19685 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
19686
19687 #define nCEF(mnem, op, nops, ops, enc) \
19688 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
19689
19690 #define do_0 0
19691
19692 static const struct asm_opcode insns[] =
19693 {
19694 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
19695 #define THUMB_VARIANT & arm_ext_v4t
19696 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
19697 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
19698 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
19699 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
19700 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
19701 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
19702 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
19703 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
19704 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
19705 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
19706 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
19707 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
19708 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
19709 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
19710 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
19711 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
19712
19713 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
19714 for setting PSR flag bits. They are obsolete in V6 and do not
19715 have Thumb equivalents. */
19716 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19717 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
19718 CL("tstp", 110f000, 2, (RR, SH), cmp),
19719 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19720 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
19721 CL("cmpp", 150f000, 2, (RR, SH), cmp),
19722 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19723 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
19724 CL("cmnp", 170f000, 2, (RR, SH), cmp),
19725
19726 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
19727 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
19728 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
19729 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
19730
19731 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
19732 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19733 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
19734 OP_RRnpc),
19735 OP_ADDRGLDR),ldst, t_ldst),
19736 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
19737
19738 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19739 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19740 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19741 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19742 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19743 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19744
19745 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
19746 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
19747
19748 /* Pseudo ops. */
19749 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
19750 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
19751 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
19752 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
19753
19754 /* Thumb-compatibility pseudo ops. */
19755 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
19756 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
19757 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
19758 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
19759 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
19760 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
19761 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
19762 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
19763 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
19764 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
19765 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
19766 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
19767
19768 /* These may simplify to neg. */
19769 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
19770 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
19771
19772 #undef THUMB_VARIANT
19773 #define THUMB_VARIANT & arm_ext_os
19774
19775 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
19776 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
19777
19778 #undef THUMB_VARIANT
19779 #define THUMB_VARIANT & arm_ext_v6
19780
19781 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
19782
19783 /* V1 instructions with no Thumb analogue prior to V6T2. */
19784 #undef THUMB_VARIANT
19785 #define THUMB_VARIANT & arm_ext_v6t2
19786
19787 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19788 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
19789 CL("teqp", 130f000, 2, (RR, SH), cmp),
19790
19791 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19792 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19793 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
19794 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
19795
19796 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19797 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19798
19799 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19800 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
19801
19802 /* V1 instructions with no Thumb analogue at all. */
19803 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
19804 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
19805
19806 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
19807 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
19808 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
19809 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
19810 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
19811 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
19812 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
19813 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
19814
19815 #undef ARM_VARIANT
19816 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
19817 #undef THUMB_VARIANT
19818 #define THUMB_VARIANT & arm_ext_v4t
19819
19820 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19821 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
19822
19823 #undef THUMB_VARIANT
19824 #define THUMB_VARIANT & arm_ext_v6t2
19825
19826 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
19827 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
19828
19829 /* Generic coprocessor instructions. */
19830 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19831 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19832 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19833 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19834 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19835 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19836 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
19837
19838 #undef ARM_VARIANT
19839 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
19840
19841 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19842 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
19843
19844 #undef ARM_VARIANT
19845 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
19846 #undef THUMB_VARIANT
19847 #define THUMB_VARIANT & arm_ext_msr
19848
19849 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
19850 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
19851
19852 #undef ARM_VARIANT
19853 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
19854 #undef THUMB_VARIANT
19855 #define THUMB_VARIANT & arm_ext_v6t2
19856
19857 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19858 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19859 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19860 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19861 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19862 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19863 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
19864 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
19865
19866 #undef ARM_VARIANT
19867 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
19868 #undef THUMB_VARIANT
19869 #define THUMB_VARIANT & arm_ext_v4t
19870
19871 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19872 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19873 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19874 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19875 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19876 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
19877
19878 #undef ARM_VARIANT
19879 #define ARM_VARIANT & arm_ext_v4t_5
19880
19881 /* ARM Architecture 4T. */
19882 /* Note: bx (and blx) are required on V5, even if the processor does
19883 not support Thumb. */
19884 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
19885
19886 #undef ARM_VARIANT
19887 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
19888 #undef THUMB_VARIANT
19889 #define THUMB_VARIANT & arm_ext_v5t
19890
19891 /* Note: blx has 2 variants; the .value coded here is for
19892 BLX(2). Only this variant has conditional execution. */
19893 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
19894 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
19895
19896 #undef THUMB_VARIANT
19897 #define THUMB_VARIANT & arm_ext_v6t2
19898
19899 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
19900 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19901 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19902 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19903 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
19904 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
19905 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19906 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
19907
19908 #undef ARM_VARIANT
19909 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
19910 #undef THUMB_VARIANT
19911 #define THUMB_VARIANT & arm_ext_v5exp
19912
19913 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19914 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19915 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19916 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19917
19918 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19919 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
19920
19921 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19922 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19923 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19924 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
19925
19926 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19927 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19928 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19929 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19930
19931 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19932 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
19933
19934 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19935 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19936 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19937 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
19938
19939 #undef ARM_VARIANT
19940 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
19941 #undef THUMB_VARIANT
19942 #define THUMB_VARIANT & arm_ext_v6t2
19943
19944 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
19945 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
19946 ldrd, t_ldstd),
19947 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
19948 ADDRGLDRS), ldrd, t_ldstd),
19949
19950 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19951 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19952
19953 #undef ARM_VARIANT
19954 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
19955
19956 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
19957
19958 #undef ARM_VARIANT
19959 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
19960 #undef THUMB_VARIANT
19961 #define THUMB_VARIANT & arm_ext_v6
19962
19963 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
19964 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
19965 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19966 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19967 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
19968 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19969 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19970 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19971 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
19972 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
19973
19974 #undef THUMB_VARIANT
19975 #define THUMB_VARIANT & arm_ext_v6t2_v8m
19976
19977 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
19978 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
19979 strex, t_strex),
19980 #undef THUMB_VARIANT
19981 #define THUMB_VARIANT & arm_ext_v6t2
19982
19983 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19984 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
19985
19986 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
19987 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
19988
19989 /* ARM V6 not included in V7M. */
19990 #undef THUMB_VARIANT
19991 #define THUMB_VARIANT & arm_ext_v6_notm
19992 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19993 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19994 UF(rfeib, 9900a00, 1, (RRw), rfe),
19995 UF(rfeda, 8100a00, 1, (RRw), rfe),
19996 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
19997 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
19998 UF(rfefa, 8100a00, 1, (RRw), rfe),
19999 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
20000 UF(rfeed, 9900a00, 1, (RRw), rfe),
20001 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
20002 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
20003 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
20004 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
20005 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
20006 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
20007 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
20008 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
20009 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
20010 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
20011
20012 /* ARM V6 not included in V7M (eg. integer SIMD). */
20013 #undef THUMB_VARIANT
20014 #define THUMB_VARIANT & arm_ext_v6_dsp
20015 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
20016 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
20017 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20018 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20019 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20020 /* Old name for QASX. */
20021 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20022 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20023 /* Old name for QSAX. */
20024 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20025 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20026 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20027 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20028 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20029 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20030 /* Old name for SASX. */
20031 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20032 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20033 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20034 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20035 /* Old name for SHASX. */
20036 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20037 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20038 /* Old name for SHSAX. */
20039 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20040 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20041 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20042 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20043 /* Old name for SSAX. */
20044 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20045 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20046 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20047 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20048 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20049 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20050 /* Old name for UASX. */
20051 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20052 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20053 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20054 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20055 /* Old name for UHASX. */
20056 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20057 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20058 /* Old name for UHSAX. */
20059 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20060 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20061 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20062 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20063 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20064 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20065 /* Old name for UQASX. */
20066 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20067 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20068 /* Old name for UQSAX. */
20069 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20070 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20071 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20072 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20073 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20074 /* Old name for USAX. */
20075 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20076 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20077 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20078 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20079 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20080 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
20081 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20082 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20083 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
20084 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
20085 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
20086 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20087 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20088 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20089 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20090 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20091 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20092 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20093 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
20094 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20095 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20096 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20097 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20098 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20099 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20100 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20101 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20102 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20103 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20104 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
20105 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
20106 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
20107 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
20108 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
20109
20110 #undef ARM_VARIANT
20111 #define ARM_VARIANT & arm_ext_v6k_v6t2
20112 #undef THUMB_VARIANT
20113 #define THUMB_VARIANT & arm_ext_v6k_v6t2
20114
20115 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
20116 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
20117 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
20118 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
20119
20120 #undef THUMB_VARIANT
20121 #define THUMB_VARIANT & arm_ext_v6_notm
20122 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
20123 ldrexd, t_ldrexd),
20124 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
20125 RRnpcb), strexd, t_strexd),
20126
20127 #undef THUMB_VARIANT
20128 #define THUMB_VARIANT & arm_ext_v6t2_v8m
20129 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
20130 rd_rn, rd_rn),
20131 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
20132 rd_rn, rd_rn),
20133 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
20134 strex, t_strexbh),
20135 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
20136 strex, t_strexbh),
20137 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
20138
20139 #undef ARM_VARIANT
20140 #define ARM_VARIANT & arm_ext_sec
20141 #undef THUMB_VARIANT
20142 #define THUMB_VARIANT & arm_ext_sec
20143
20144 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
20145
20146 #undef ARM_VARIANT
20147 #define ARM_VARIANT & arm_ext_virt
20148 #undef THUMB_VARIANT
20149 #define THUMB_VARIANT & arm_ext_virt
20150
20151 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
20152 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
20153
20154 #undef ARM_VARIANT
20155 #define ARM_VARIANT & arm_ext_pan
20156 #undef THUMB_VARIANT
20157 #define THUMB_VARIANT & arm_ext_pan
20158
20159 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
20160
20161 #undef ARM_VARIANT
20162 #define ARM_VARIANT & arm_ext_v6t2
20163 #undef THUMB_VARIANT
20164 #define THUMB_VARIANT & arm_ext_v6t2
20165
20166 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
20167 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
20168 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
20169 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
20170
20171 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
20172 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
20173
20174 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20175 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20176 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20177 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
20178
20179 #undef ARM_VARIANT
20180 #define ARM_VARIANT & arm_ext_v3
20181 #undef THUMB_VARIANT
20182 #define THUMB_VARIANT & arm_ext_v6t2
20183
20184 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
20185 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
20186 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
20187
20188 #undef ARM_VARIANT
20189 #define ARM_VARIANT & arm_ext_v6t2
20190 #undef THUMB_VARIANT
20191 #define THUMB_VARIANT & arm_ext_v6t2_v8m
20192 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
20193 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
20194
20195 /* Thumb-only instructions. */
20196 #undef ARM_VARIANT
20197 #define ARM_VARIANT NULL
20198 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
20199 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
20200
20201 /* ARM does not really have an IT instruction, so always allow it.
20202 The opcode is copied from Thumb in order to allow warnings in
20203 -mimplicit-it=[never | arm] modes. */
20204 #undef ARM_VARIANT
20205 #define ARM_VARIANT & arm_ext_v1
20206 #undef THUMB_VARIANT
20207 #define THUMB_VARIANT & arm_ext_v6t2
20208
20209 TUE("it", bf08, bf08, 1, (COND), it, t_it),
20210 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
20211 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
20212 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
20213 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
20214 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
20215 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
20216 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
20217 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
20218 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
20219 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
20220 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
20221 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
20222 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
20223 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
20224 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
20225 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
20226 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
20227
20228 /* Thumb2 only instructions. */
20229 #undef ARM_VARIANT
20230 #define ARM_VARIANT NULL
20231
20232 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20233 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
20234 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
20235 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
20236 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
20237 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
20238
20239 /* Hardware division instructions. */
20240 #undef ARM_VARIANT
20241 #define ARM_VARIANT & arm_ext_adiv
20242 #undef THUMB_VARIANT
20243 #define THUMB_VARIANT & arm_ext_div
20244
20245 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
20246 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
20247
20248 /* ARM V6M/V7 instructions. */
20249 #undef ARM_VARIANT
20250 #define ARM_VARIANT & arm_ext_barrier
20251 #undef THUMB_VARIANT
20252 #define THUMB_VARIANT & arm_ext_barrier
20253
20254 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
20255 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
20256 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
20257
20258 /* ARM V7 instructions. */
20259 #undef ARM_VARIANT
20260 #define ARM_VARIANT & arm_ext_v7
20261 #undef THUMB_VARIANT
20262 #define THUMB_VARIANT & arm_ext_v7
20263
20264 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
20265 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
20266
20267 #undef ARM_VARIANT
20268 #define ARM_VARIANT & arm_ext_mp
20269 #undef THUMB_VARIANT
20270 #define THUMB_VARIANT & arm_ext_mp
20271
20272 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
20273
20274 /* AArchv8 instructions. */
20275 #undef ARM_VARIANT
20276 #define ARM_VARIANT & arm_ext_v8
20277
20278 /* Instructions shared between armv8-a and armv8-m. */
20279 #undef THUMB_VARIANT
20280 #define THUMB_VARIANT & arm_ext_atomics
20281
20282 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20283 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20284 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20285 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20286 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20287 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
20288 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20289 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
20290 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
20291 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
20292 stlex, t_stlex),
20293 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
20294 stlex, t_stlex),
20295 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
20296 stlex, t_stlex),
20297 #undef THUMB_VARIANT
20298 #define THUMB_VARIANT & arm_ext_v8
20299
20300 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
20301 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
20302 ldrexd, t_ldrexd),
20303 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
20304 strexd, t_strexd),
20305
20306 /* Defined in V8 but is in undefined encoding space for earlier
20307 architectures. However earlier architectures are required to treat
20308 this instuction as a semihosting trap as well. Hence while not explicitly
20309 defined as such, it is in fact correct to define the instruction for all
20310 architectures. */
20311 #undef THUMB_VARIANT
20312 #define THUMB_VARIANT & arm_ext_v1
20313 #undef ARM_VARIANT
20314 #define ARM_VARIANT & arm_ext_v1
20315 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
20316
20317 /* ARMv8 T32 only. */
20318 #undef ARM_VARIANT
20319 #define ARM_VARIANT NULL
20320 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
20321 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
20322 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
20323
20324 /* FP for ARMv8. */
20325 #undef ARM_VARIANT
20326 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
20327 #undef THUMB_VARIANT
20328 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
20329
20330 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
20331 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
20332 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
20333 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
20334 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
20335 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
20336 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
20337 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
20338 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
20339 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
20340 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
20341 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
20342 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
20343 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
20344 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
20345 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
20346 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
20347
20348 /* Crypto v1 extensions. */
20349 #undef ARM_VARIANT
20350 #define ARM_VARIANT & fpu_crypto_ext_armv8
20351 #undef THUMB_VARIANT
20352 #define THUMB_VARIANT & fpu_crypto_ext_armv8
20353
20354 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
20355 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
20356 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
20357 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
20358 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
20359 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
20360 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
20361 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
20362 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
20363 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
20364 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
20365 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
20366 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
20367 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
20368
20369 #undef ARM_VARIANT
20370 #define ARM_VARIANT & crc_ext_armv8
20371 #undef THUMB_VARIANT
20372 #define THUMB_VARIANT & crc_ext_armv8
20373 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
20374 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
20375 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
20376 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
20377 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
20378 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
20379
20380 /* ARMv8.2 RAS extension. */
20381 #undef ARM_VARIANT
20382 #define ARM_VARIANT & arm_ext_ras
20383 #undef THUMB_VARIANT
20384 #define THUMB_VARIANT & arm_ext_ras
20385 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
20386
20387 #undef ARM_VARIANT
20388 #define ARM_VARIANT & arm_ext_v8_3
20389 #undef THUMB_VARIANT
20390 #define THUMB_VARIANT & arm_ext_v8_3
20391 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
20392 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
20393 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
20394
20395 #undef ARM_VARIANT
20396 #define ARM_VARIANT & fpu_neon_ext_dotprod
20397 #undef THUMB_VARIANT
20398 #define THUMB_VARIANT & fpu_neon_ext_dotprod
20399 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
20400 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
20401
20402 #undef ARM_VARIANT
20403 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
20404 #undef THUMB_VARIANT
20405 #define THUMB_VARIANT NULL
20406
20407 cCE("wfs", e200110, 1, (RR), rd),
20408 cCE("rfs", e300110, 1, (RR), rd),
20409 cCE("wfc", e400110, 1, (RR), rd),
20410 cCE("rfc", e500110, 1, (RR), rd),
20411
20412 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
20413 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
20414 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
20415 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
20416
20417 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
20418 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
20419 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
20420 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
20421
20422 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
20423 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
20424 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
20425 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
20426 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
20427 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
20428 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
20429 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
20430 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
20431 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
20432 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
20433 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
20434
20435 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
20436 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
20437 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
20438 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
20439 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
20440 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
20441 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
20442 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
20443 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
20444 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
20445 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
20446 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
20447
20448 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
20449 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
20450 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
20451 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
20452 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
20453 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
20454 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
20455 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
20456 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
20457 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
20458 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
20459 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
20460
20461 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
20462 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
20463 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
20464 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
20465 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
20466 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
20467 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
20468 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
20469 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
20470 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
20471 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
20472 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
20473
20474 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
20475 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
20476 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
20477 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
20478 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
20479 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
20480 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
20481 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
20482 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
20483 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
20484 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
20485 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
20486
20487 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
20488 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
20489 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
20490 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
20491 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
20492 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
20493 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
20494 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
20495 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
20496 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
20497 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
20498 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
20499
20500 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
20501 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
20502 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
20503 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
20504 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
20505 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
20506 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
20507 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
20508 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
20509 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
20510 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
20511 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
20512
20513 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
20514 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
20515 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
20516 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
20517 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
20518 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
20519 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
20520 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
20521 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
20522 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
20523 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
20524 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
20525
20526 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
20527 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
20528 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
20529 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
20530 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
20531 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
20532 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
20533 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
20534 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
20535 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
20536 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
20537 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
20538
20539 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
20540 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
20541 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
20542 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
20543 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
20544 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
20545 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
20546 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
20547 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
20548 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
20549 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
20550 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
20551
20552 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
20553 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
20554 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
20555 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
20556 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
20557 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
20558 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
20559 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
20560 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
20561 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
20562 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
20563 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
20564
20565 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
20566 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
20567 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
20568 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
20569 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
20570 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
20571 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
20572 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
20573 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
20574 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
20575 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
20576 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
20577
20578 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
20579 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
20580 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
20581 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
20582 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
20583 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
20584 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
20585 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
20586 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
20587 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
20588 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
20589 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
20590
20591 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
20592 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
20593 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
20594 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
20595 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
20596 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
20597 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
20598 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
20599 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
20600 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
20601 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
20602 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
20603
20604 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
20605 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
20606 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
20607 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
20608 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
20609 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
20610 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
20611 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
20612 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
20613 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
20614 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
20615 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
20616
20617 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
20618 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
20619 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
20620 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
20621 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
20622 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
20623 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
20624 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
20625 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
20626 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
20627 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
20628 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
20629
20630 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
20631 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
20632 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
20633 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
20634 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
20635 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20636 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20637 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20638 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
20639 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
20640 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
20641 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
20642
20643 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
20644 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
20645 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
20646 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
20647 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
20648 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20649 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20650 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20651 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
20652 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
20653 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
20654 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
20655
20656 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
20657 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
20658 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
20659 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
20660 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
20661 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20662 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20663 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20664 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
20665 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
20666 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
20667 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
20668
20669 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
20670 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
20671 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
20672 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
20673 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
20674 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20675 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20676 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20677 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
20678 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
20679 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
20680 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
20681
20682 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
20683 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
20684 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
20685 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
20686 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
20687 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20688 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20689 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20690 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
20691 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
20692 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
20693 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
20694
20695 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
20696 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
20697 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
20698 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
20699 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
20700 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20701 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20702 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20703 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
20704 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
20705 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
20706 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
20707
20708 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
20709 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
20710 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
20711 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
20712 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
20713 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20714 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20715 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20716 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
20717 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
20718 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
20719 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
20720
20721 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
20722 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
20723 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
20724 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
20725 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
20726 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20727 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20728 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20729 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
20730 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
20731 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
20732 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
20733
20734 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
20735 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
20736 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
20737 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
20738 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
20739 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20740 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20741 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20742 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
20743 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
20744 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
20745 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
20746
20747 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
20748 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
20749 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
20750 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
20751 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
20752 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20753 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20754 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20755 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
20756 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
20757 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
20758 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
20759
20760 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20761 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20762 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20763 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20764 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20765 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20766 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20767 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20768 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20769 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20770 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20771 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20772
20773 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20774 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20775 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20776 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20777 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20778 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20779 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20780 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20781 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20782 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20783 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20784 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20785
20786 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
20787 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
20788 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
20789 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
20790 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
20791 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
20792 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
20793 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
20794 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
20795 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
20796 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
20797 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
20798
20799 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
20800 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
20801 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
20802 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
20803
20804 cCL("flts", e000110, 2, (RF, RR), rn_rd),
20805 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
20806 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
20807 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
20808 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
20809 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
20810 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
20811 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
20812 cCL("flte", e080110, 2, (RF, RR), rn_rd),
20813 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
20814 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
20815 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
20816
20817 /* The implementation of the FIX instruction is broken on some
20818 assemblers, in that it accepts a precision specifier as well as a
20819 rounding specifier, despite the fact that this is meaningless.
20820 To be more compatible, we accept it as well, though of course it
20821 does not set any bits. */
20822 cCE("fix", e100110, 2, (RR, RF), rd_rm),
20823 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
20824 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
20825 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
20826 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
20827 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
20828 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
20829 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
20830 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
20831 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
20832 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
20833 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
20834 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
20835
20836 /* Instructions that were new with the real FPA, call them V2. */
20837 #undef ARM_VARIANT
20838 #define ARM_VARIANT & fpu_fpa_ext_v2
20839
20840 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20841 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20842 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20843 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20844 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20845 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
20846
20847 #undef ARM_VARIANT
20848 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
20849
20850 /* Moves and type conversions. */
20851 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
20852 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
20853 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
20854 cCE("fmstat", ef1fa10, 0, (), noargs),
20855 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
20856 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
20857 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
20858 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
20859 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
20860 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20861 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
20862 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
20863 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
20864 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
20865
20866 /* Memory operations. */
20867 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20868 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
20869 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20870 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20871 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20872 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20873 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20874 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20875 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20876 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20877 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20878 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
20879 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20880 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
20881 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20882 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
20883 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20884 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
20885
20886 /* Monadic operations. */
20887 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
20888 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
20889 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
20890
20891 /* Dyadic operations. */
20892 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20893 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20894 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20895 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20896 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20897 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20898 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20899 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20900 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
20901
20902 /* Comparisons. */
20903 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
20904 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
20905 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
20906 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
20907
20908 /* Double precision load/store are still present on single precision
20909 implementations. */
20910 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20911 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
20912 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20913 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20914 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20915 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20916 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20917 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
20918 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20919 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
20920
20921 #undef ARM_VARIANT
20922 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
20923
20924 /* Moves and type conversions. */
20925 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20926 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20927 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20928 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
20929 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
20930 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
20931 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
20932 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
20933 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
20934 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20935 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20936 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
20937 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
20938
20939 /* Monadic operations. */
20940 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20941 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20942 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20943
20944 /* Dyadic operations. */
20945 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20946 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20947 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20948 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20949 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20950 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20951 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20952 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20953 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
20954
20955 /* Comparisons. */
20956 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
20957 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
20958 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
20959 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
20960
20961 #undef ARM_VARIANT
20962 #define ARM_VARIANT & fpu_vfp_ext_v2
20963
20964 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
20965 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
20966 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
20967 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
20968
20969 /* Instructions which may belong to either the Neon or VFP instruction sets.
20970 Individual encoder functions perform additional architecture checks. */
20971 #undef ARM_VARIANT
20972 #define ARM_VARIANT & fpu_vfp_ext_v1xd
20973 #undef THUMB_VARIANT
20974 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
20975
20976 /* These mnemonics are unique to VFP. */
20977 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
20978 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
20979 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20980 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20981 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
20982 nCE(vcmp, _vcmp, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20983 nCE(vcmpe, _vcmpe, 2, (RVSD, RSVD_FI0), vfp_nsyn_cmp),
20984 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
20985 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
20986 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
20987
20988 /* Mnemonics shared by Neon and VFP. */
20989 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
20990 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20991 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
20992
20993 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20994 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
20995
20996 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20997 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
20998
20999 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21000 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21001 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21002 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21003 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21004 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
21005 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
21006 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
21007
21008 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
21009 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21010 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
21011 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
21012
21013
21014 /* NOTE: All VMOV encoding is special-cased! */
21015 NCE(vmov, 0, 1, (VMOV), neon_mov),
21016 NCE(vmovq, 0, 1, (VMOV), neon_mov),
21017
21018 #undef ARM_VARIANT
21019 #define ARM_VARIANT & arm_ext_fp16
21020 #undef THUMB_VARIANT
21021 #define THUMB_VARIANT & arm_ext_fp16
21022 /* New instructions added from v8.2, allowing the extraction and insertion of
21023 the upper 16 bits of a 32-bit vector register. */
21024 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
21025 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
21026
21027 /* New backported fma/fms instructions optional in v8.2. */
21028 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
21029 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
21030
21031 #undef THUMB_VARIANT
21032 #define THUMB_VARIANT & fpu_neon_ext_v1
21033 #undef ARM_VARIANT
21034 #define ARM_VARIANT & fpu_neon_ext_v1
21035
21036 /* Data processing with three registers of the same length. */
21037 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
21038 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
21039 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
21040 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
21041 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
21042 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
21043 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
21044 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
21045 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
21046 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
21047 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
21048 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
21049 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
21050 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
21051 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
21052 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
21053 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
21054 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
21055 /* If not immediate, fall back to neon_dyadic_i64_su.
21056 shl_imm should accept I8 I16 I32 I64,
21057 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21058 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
21059 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
21060 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
21061 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
21062 /* Logic ops, types optional & ignored. */
21063 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21064 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21065 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21066 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21067 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21068 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21069 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
21070 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
21071 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
21072 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
21073 /* Bitfield ops, untyped. */
21074 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21075 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
21076 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21077 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
21078 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
21079 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
21080 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21081 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21082 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21083 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21084 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21085 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
21086 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21087 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
21088 back to neon_dyadic_if_su. */
21089 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
21090 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
21091 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
21092 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
21093 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
21094 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
21095 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
21096 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
21097 /* Comparison. Type I8 I16 I32 F32. */
21098 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
21099 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
21100 /* As above, D registers only. */
21101 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
21102 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
21103 /* Int and float variants, signedness unimportant. */
21104 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
21105 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
21106 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
21107 /* Add/sub take types I8 I16 I32 I64 F32. */
21108 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
21109 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
21110 /* vtst takes sizes 8, 16, 32. */
21111 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
21112 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
21113 /* VMUL takes I8 I16 I32 F32 P8. */
21114 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
21115 /* VQD{R}MULH takes S16 S32. */
21116 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
21117 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
21118 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
21119 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
21120 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
21121 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
21122 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
21123 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
21124 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
21125 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
21126 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
21127 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
21128 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
21129 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
21130 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
21131 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
21132 /* ARM v8.1 extension. */
21133 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
21134 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
21135 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
21136 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
21137
21138 /* Two address, int/float. Types S8 S16 S32 F32. */
21139 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
21140 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
21141
21142 /* Data processing with two registers and a shift amount. */
21143 /* Right shifts, and variants with rounding.
21144 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
21145 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
21146 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
21147 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
21148 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
21149 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
21150 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
21151 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
21152 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
21153 /* Shift and insert. Sizes accepted 8 16 32 64. */
21154 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
21155 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
21156 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
21157 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
21158 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
21159 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
21160 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
21161 /* Right shift immediate, saturating & narrowing, with rounding variants.
21162 Types accepted S16 S32 S64 U16 U32 U64. */
21163 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
21164 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
21165 /* As above, unsigned. Types accepted S16 S32 S64. */
21166 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
21167 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
21168 /* Right shift narrowing. Types accepted I16 I32 I64. */
21169 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
21170 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
21171 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21172 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
21173 /* CVT with optional immediate for fixed-point variant. */
21174 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
21175
21176 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
21177 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
21178
21179 /* Data processing, three registers of different lengths. */
21180 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
21181 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
21182 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
21183 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
21184 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
21185 /* If not scalar, fall back to neon_dyadic_long.
21186 Vector types as above, scalar types S16 S32 U16 U32. */
21187 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
21188 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
21189 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
21190 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
21191 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
21192 /* Dyadic, narrowing insns. Types I16 I32 I64. */
21193 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21194 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21195 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21196 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
21197 /* Saturating doubling multiplies. Types S16 S32. */
21198 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21199 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21200 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
21201 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
21202 S16 S32 U16 U32. */
21203 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
21204
21205 /* Extract. Size 8. */
21206 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
21207 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
21208
21209 /* Two registers, miscellaneous. */
21210 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
21211 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
21212 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
21213 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
21214 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
21215 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
21216 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
21217 /* Vector replicate. Sizes 8 16 32. */
21218 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
21219 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
21220 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
21221 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
21222 /* VMOVN. Types I16 I32 I64. */
21223 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
21224 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21225 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
21226 /* VQMOVUN. Types S16 S32 S64. */
21227 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
21228 /* VZIP / VUZP. Sizes 8 16 32. */
21229 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
21230 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
21231 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
21232 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
21233 /* VQABS / VQNEG. Types S8 S16 S32. */
21234 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21235 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
21236 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
21237 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
21238 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
21239 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
21240 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
21241 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
21242 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
21243 /* Reciprocal estimates. Types U32 F16 F32. */
21244 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
21245 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
21246 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
21247 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
21248 /* VCLS. Types S8 S16 S32. */
21249 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
21250 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
21251 /* VCLZ. Types I8 I16 I32. */
21252 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
21253 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
21254 /* VCNT. Size 8. */
21255 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
21256 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
21257 /* Two address, untyped. */
21258 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
21259 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
21260 /* VTRN. Sizes 8 16 32. */
21261 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
21262 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
21263
21264 /* Table lookup. Size 8. */
21265 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21266 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
21267
21268 #undef THUMB_VARIANT
21269 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
21270 #undef ARM_VARIANT
21271 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
21272
21273 /* Neon element/structure load/store. */
21274 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21275 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
21276 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21277 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
21278 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21279 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
21280 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
21281 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
21282
21283 #undef THUMB_VARIANT
21284 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
21285 #undef ARM_VARIANT
21286 #define ARM_VARIANT & fpu_vfp_ext_v3xd
21287 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
21288 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21289 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21290 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21291 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21292 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21293 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21294 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
21295 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
21296
21297 #undef THUMB_VARIANT
21298 #define THUMB_VARIANT & fpu_vfp_ext_v3
21299 #undef ARM_VARIANT
21300 #define ARM_VARIANT & fpu_vfp_ext_v3
21301
21302 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21303 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21304 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21305 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21306 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21307 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21308 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21309 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21310 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21311
21312 #undef ARM_VARIANT
21313 #define ARM_VARIANT & fpu_vfp_ext_fma
21314 #undef THUMB_VARIANT
21315 #define THUMB_VARIANT & fpu_vfp_ext_fma
21316 /* Mnemonics shared by Neon and VFP. These are included in the
21317 VFP FMA variant; NEON and VFP FMA always includes the NEON
21318 FMA instructions. */
21319 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21320 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
21321 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
21322 the v form should always be used. */
21323 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21324 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
21325 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21326 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
21327 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21328 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
21329
21330 #undef THUMB_VARIANT
21331 #undef ARM_VARIANT
21332 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
21333
21334 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21335 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21336 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21337 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21338 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21339 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
21340 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
21341 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
21342
21343 #undef ARM_VARIANT
21344 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
21345
21346 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
21347 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
21348 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
21349 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
21350 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
21351 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
21352 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
21353 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
21354 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
21355 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21356 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21357 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
21358 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21359 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21360 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21361 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21362 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21363 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
21364 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
21365 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
21366 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21367 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21368 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21369 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21370 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21371 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
21372 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
21373 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
21374 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21375 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
21376 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
21377 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
21378 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
21379 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
21380 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
21381 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
21382 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
21383 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21384 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21385 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21386 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21387 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21388 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21389 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21390 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21391 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21392 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
21393 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21394 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21395 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21396 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21397 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21398 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21399 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21400 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21401 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21402 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21403 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21404 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21405 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21406 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21407 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21408 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21409 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21410 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21411 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21412 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21413 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21414 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21415 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21416 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21417 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21418 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21419 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21420 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21421 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21422 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21423 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21424 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21425 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21426 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21427 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21428 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21429 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21430 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21431 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21432 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21433 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21434 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
21435 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21436 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21437 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21438 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21439 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21440 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21441 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21442 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21443 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21444 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21445 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21446 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21447 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21448 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21449 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21450 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21451 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21452 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21453 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21454 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21455 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21456 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
21457 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21458 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21459 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21460 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21461 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21462 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21463 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21464 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21465 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21466 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21467 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21468 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21469 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21470 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21471 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21472 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21473 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
21474 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
21475 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21476 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
21477 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
21478 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
21479 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21480 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21481 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21482 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21483 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21484 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21485 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21486 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21487 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21488 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
21489 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
21490 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
21491 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
21492 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
21493 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
21494 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21495 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21496 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21497 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
21498 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
21499 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
21500 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
21501 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
21502 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
21503 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21504 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21505 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21506 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21507 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
21508
21509 #undef ARM_VARIANT
21510 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
21511
21512 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
21513 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
21514 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
21515 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
21516 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
21517 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
21518 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21519 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21520 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21521 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21522 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21523 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21524 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21525 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21526 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21527 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21528 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21529 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21530 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21531 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21532 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
21533 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21534 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21535 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21536 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21537 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21538 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21539 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21540 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21541 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21542 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21543 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21544 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21545 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21546 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21547 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21548 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21549 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21550 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21551 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21552 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21553 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21554 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21555 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21556 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21557 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21558 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21559 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21560 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21561 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21562 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21563 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21564 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21565 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21566 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21567 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21568 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21569
21570 #undef ARM_VARIANT
21571 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
21572
21573 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21574 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21575 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21576 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21577 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
21578 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
21579 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
21580 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
21581 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
21582 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
21583 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
21584 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
21585 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
21586 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
21587 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
21588 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
21589 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
21590 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
21591 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
21592 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
21593 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
21594 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
21595 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
21596 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21597 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
21598 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
21599 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
21600 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
21601 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
21602 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21603 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
21604 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
21605 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
21606 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
21607 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
21608 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
21609 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
21610 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
21611 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
21612 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21613 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
21614 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
21615 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
21616 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21617 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
21618 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
21619 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
21620 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
21621 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
21622 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
21623 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
21624 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
21625 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
21626 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
21627 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
21628 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
21629 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
21630 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
21631 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
21632 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
21633 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
21634 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
21635 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
21636 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
21637 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21638 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21639 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21640 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21641 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21642 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
21643 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21644 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
21645 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21646 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21647 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21648 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
21649
21650 /* ARMv8.5-A instructions. */
21651 #undef ARM_VARIANT
21652 #define ARM_VARIANT & arm_ext_sb
21653 #undef THUMB_VARIANT
21654 #define THUMB_VARIANT & arm_ext_sb
21655 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
21656
21657 #undef ARM_VARIANT
21658 #define ARM_VARIANT & arm_ext_predres
21659 #undef THUMB_VARIANT
21660 #define THUMB_VARIANT & arm_ext_predres
21661 CE("cfprctx", e070f93, 1, (RRnpc), rd),
21662 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
21663 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
21664
21665 /* ARMv8-M instructions. */
21666 #undef ARM_VARIANT
21667 #define ARM_VARIANT NULL
21668 #undef THUMB_VARIANT
21669 #define THUMB_VARIANT & arm_ext_v8m
21670 ToU("sg", e97fe97f, 0, (), noargs),
21671 ToC("blxns", 4784, 1, (RRnpc), t_blx),
21672 ToC("bxns", 4704, 1, (RRnpc), t_bx),
21673 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
21674 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
21675 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
21676 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
21677
21678 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
21679 instructions behave as nop if no VFP is present. */
21680 #undef THUMB_VARIANT
21681 #define THUMB_VARIANT & arm_ext_v8m_main
21682 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
21683 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
21684
21685 /* Armv8.1-M Mainline instructions. */
21686 #undef THUMB_VARIANT
21687 #define THUMB_VARIANT & arm_ext_v8_1m_main
21688 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
21689 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
21690 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
21691 };
21692 #undef ARM_VARIANT
21693 #undef THUMB_VARIANT
21694 #undef TCE
21695 #undef TUE
21696 #undef TUF
21697 #undef TCC
21698 #undef cCE
21699 #undef cCL
21700 #undef C3E
21701 #undef C3
21702 #undef CE
21703 #undef CM
21704 #undef CL
21705 #undef UE
21706 #undef UF
21707 #undef UT
21708 #undef NUF
21709 #undef nUF
21710 #undef NCE
21711 #undef nCE
21712 #undef OPS0
21713 #undef OPS1
21714 #undef OPS2
21715 #undef OPS3
21716 #undef OPS4
21717 #undef OPS5
21718 #undef OPS6
21719 #undef do_0
21720 #undef ToC
21721 #undef toC
21722 #undef ToU
21723 \f
21724 /* MD interface: bits in the object file. */
21725
21726 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
21727 for use in the a.out file, and stores them in the array pointed to by buf.
21728 This knows about the endian-ness of the target machine and does
21729 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
21730 2 (short) and 4 (long) Floating numbers are put out as a series of
21731 LITTLENUMS (shorts, here at least). */
21732
21733 void
21734 md_number_to_chars (char * buf, valueT val, int n)
21735 {
21736 if (target_big_endian)
21737 number_to_chars_bigendian (buf, val, n);
21738 else
21739 number_to_chars_littleendian (buf, val, n);
21740 }
21741
21742 static valueT
21743 md_chars_to_number (char * buf, int n)
21744 {
21745 valueT result = 0;
21746 unsigned char * where = (unsigned char *) buf;
21747
21748 if (target_big_endian)
21749 {
21750 while (n--)
21751 {
21752 result <<= 8;
21753 result |= (*where++ & 255);
21754 }
21755 }
21756 else
21757 {
21758 while (n--)
21759 {
21760 result <<= 8;
21761 result |= (where[n] & 255);
21762 }
21763 }
21764
21765 return result;
21766 }
21767
21768 /* MD interface: Sections. */
21769
21770 /* Calculate the maximum variable size (i.e., excluding fr_fix)
21771 that an rs_machine_dependent frag may reach. */
21772
21773 unsigned int
21774 arm_frag_max_var (fragS *fragp)
21775 {
21776 /* We only use rs_machine_dependent for variable-size Thumb instructions,
21777 which are either THUMB_SIZE (2) or INSN_SIZE (4).
21778
21779 Note that we generate relaxable instructions even for cases that don't
21780 really need it, like an immediate that's a trivial constant. So we're
21781 overestimating the instruction size for some of those cases. Rather
21782 than putting more intelligence here, it would probably be better to
21783 avoid generating a relaxation frag in the first place when it can be
21784 determined up front that a short instruction will suffice. */
21785
21786 gas_assert (fragp->fr_type == rs_machine_dependent);
21787 return INSN_SIZE;
21788 }
21789
21790 /* Estimate the size of a frag before relaxing. Assume everything fits in
21791 2 bytes. */
21792
21793 int
21794 md_estimate_size_before_relax (fragS * fragp,
21795 segT segtype ATTRIBUTE_UNUSED)
21796 {
21797 fragp->fr_var = 2;
21798 return 2;
21799 }
21800
21801 /* Convert a machine dependent frag. */
21802
21803 void
21804 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
21805 {
21806 unsigned long insn;
21807 unsigned long old_op;
21808 char *buf;
21809 expressionS exp;
21810 fixS *fixp;
21811 int reloc_type;
21812 int pc_rel;
21813 int opcode;
21814
21815 buf = fragp->fr_literal + fragp->fr_fix;
21816
21817 old_op = bfd_get_16(abfd, buf);
21818 if (fragp->fr_symbol)
21819 {
21820 exp.X_op = O_symbol;
21821 exp.X_add_symbol = fragp->fr_symbol;
21822 }
21823 else
21824 {
21825 exp.X_op = O_constant;
21826 }
21827 exp.X_add_number = fragp->fr_offset;
21828 opcode = fragp->fr_subtype;
21829 switch (opcode)
21830 {
21831 case T_MNEM_ldr_pc:
21832 case T_MNEM_ldr_pc2:
21833 case T_MNEM_ldr_sp:
21834 case T_MNEM_str_sp:
21835 case T_MNEM_ldr:
21836 case T_MNEM_ldrb:
21837 case T_MNEM_ldrh:
21838 case T_MNEM_str:
21839 case T_MNEM_strb:
21840 case T_MNEM_strh:
21841 if (fragp->fr_var == 4)
21842 {
21843 insn = THUMB_OP32 (opcode);
21844 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
21845 {
21846 insn |= (old_op & 0x700) << 4;
21847 }
21848 else
21849 {
21850 insn |= (old_op & 7) << 12;
21851 insn |= (old_op & 0x38) << 13;
21852 }
21853 insn |= 0x00000c00;
21854 put_thumb32_insn (buf, insn);
21855 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
21856 }
21857 else
21858 {
21859 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
21860 }
21861 pc_rel = (opcode == T_MNEM_ldr_pc2);
21862 break;
21863 case T_MNEM_adr:
21864 if (fragp->fr_var == 4)
21865 {
21866 insn = THUMB_OP32 (opcode);
21867 insn |= (old_op & 0xf0) << 4;
21868 put_thumb32_insn (buf, insn);
21869 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
21870 }
21871 else
21872 {
21873 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21874 exp.X_add_number -= 4;
21875 }
21876 pc_rel = 1;
21877 break;
21878 case T_MNEM_mov:
21879 case T_MNEM_movs:
21880 case T_MNEM_cmp:
21881 case T_MNEM_cmn:
21882 if (fragp->fr_var == 4)
21883 {
21884 int r0off = (opcode == T_MNEM_mov
21885 || opcode == T_MNEM_movs) ? 0 : 8;
21886 insn = THUMB_OP32 (opcode);
21887 insn = (insn & 0xe1ffffff) | 0x10000000;
21888 insn |= (old_op & 0x700) << r0off;
21889 put_thumb32_insn (buf, insn);
21890 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21891 }
21892 else
21893 {
21894 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
21895 }
21896 pc_rel = 0;
21897 break;
21898 case T_MNEM_b:
21899 if (fragp->fr_var == 4)
21900 {
21901 insn = THUMB_OP32(opcode);
21902 put_thumb32_insn (buf, insn);
21903 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
21904 }
21905 else
21906 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
21907 pc_rel = 1;
21908 break;
21909 case T_MNEM_bcond:
21910 if (fragp->fr_var == 4)
21911 {
21912 insn = THUMB_OP32(opcode);
21913 insn |= (old_op & 0xf00) << 14;
21914 put_thumb32_insn (buf, insn);
21915 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
21916 }
21917 else
21918 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
21919 pc_rel = 1;
21920 break;
21921 case T_MNEM_add_sp:
21922 case T_MNEM_add_pc:
21923 case T_MNEM_inc_sp:
21924 case T_MNEM_dec_sp:
21925 if (fragp->fr_var == 4)
21926 {
21927 /* ??? Choose between add and addw. */
21928 insn = THUMB_OP32 (opcode);
21929 insn |= (old_op & 0xf0) << 4;
21930 put_thumb32_insn (buf, insn);
21931 if (opcode == T_MNEM_add_pc)
21932 reloc_type = BFD_RELOC_ARM_T32_IMM12;
21933 else
21934 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21935 }
21936 else
21937 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21938 pc_rel = 0;
21939 break;
21940
21941 case T_MNEM_addi:
21942 case T_MNEM_addis:
21943 case T_MNEM_subi:
21944 case T_MNEM_subis:
21945 if (fragp->fr_var == 4)
21946 {
21947 insn = THUMB_OP32 (opcode);
21948 insn |= (old_op & 0xf0) << 4;
21949 insn |= (old_op & 0xf) << 16;
21950 put_thumb32_insn (buf, insn);
21951 if (insn & (1 << 20))
21952 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
21953 else
21954 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
21955 }
21956 else
21957 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
21958 pc_rel = 0;
21959 break;
21960 default:
21961 abort ();
21962 }
21963 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21964 (enum bfd_reloc_code_real) reloc_type);
21965 fixp->fx_file = fragp->fr_file;
21966 fixp->fx_line = fragp->fr_line;
21967 fragp->fr_fix += fragp->fr_var;
21968
21969 /* Set whether we use thumb-2 ISA based on final relaxation results. */
21970 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
21971 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
21972 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
21973 }
21974
21975 /* Return the size of a relaxable immediate operand instruction.
21976 SHIFT and SIZE specify the form of the allowable immediate. */
21977 static int
21978 relax_immediate (fragS *fragp, int size, int shift)
21979 {
21980 offsetT offset;
21981 offsetT mask;
21982 offsetT low;
21983
21984 /* ??? Should be able to do better than this. */
21985 if (fragp->fr_symbol)
21986 return 4;
21987
21988 low = (1 << shift) - 1;
21989 mask = (1 << (shift + size)) - (1 << shift);
21990 offset = fragp->fr_offset;
21991 /* Force misaligned offsets to 32-bit variant. */
21992 if (offset & low)
21993 return 4;
21994 if (offset & ~mask)
21995 return 4;
21996 return 2;
21997 }
21998
21999 /* Get the address of a symbol during relaxation. */
22000 static addressT
22001 relaxed_symbol_addr (fragS *fragp, long stretch)
22002 {
22003 fragS *sym_frag;
22004 addressT addr;
22005 symbolS *sym;
22006
22007 sym = fragp->fr_symbol;
22008 sym_frag = symbol_get_frag (sym);
22009 know (S_GET_SEGMENT (sym) != absolute_section
22010 || sym_frag == &zero_address_frag);
22011 addr = S_GET_VALUE (sym) + fragp->fr_offset;
22012
22013 /* If frag has yet to be reached on this pass, assume it will
22014 move by STRETCH just as we did. If this is not so, it will
22015 be because some frag between grows, and that will force
22016 another pass. */
22017
22018 if (stretch != 0
22019 && sym_frag->relax_marker != fragp->relax_marker)
22020 {
22021 fragS *f;
22022
22023 /* Adjust stretch for any alignment frag. Note that if have
22024 been expanding the earlier code, the symbol may be
22025 defined in what appears to be an earlier frag. FIXME:
22026 This doesn't handle the fr_subtype field, which specifies
22027 a maximum number of bytes to skip when doing an
22028 alignment. */
22029 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
22030 {
22031 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
22032 {
22033 if (stretch < 0)
22034 stretch = - ((- stretch)
22035 & ~ ((1 << (int) f->fr_offset) - 1));
22036 else
22037 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
22038 if (stretch == 0)
22039 break;
22040 }
22041 }
22042 if (f != NULL)
22043 addr += stretch;
22044 }
22045
22046 return addr;
22047 }
22048
22049 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
22050 load. */
22051 static int
22052 relax_adr (fragS *fragp, asection *sec, long stretch)
22053 {
22054 addressT addr;
22055 offsetT val;
22056
22057 /* Assume worst case for symbols not known to be in the same section. */
22058 if (fragp->fr_symbol == NULL
22059 || !S_IS_DEFINED (fragp->fr_symbol)
22060 || sec != S_GET_SEGMENT (fragp->fr_symbol)
22061 || S_IS_WEAK (fragp->fr_symbol))
22062 return 4;
22063
22064 val = relaxed_symbol_addr (fragp, stretch);
22065 addr = fragp->fr_address + fragp->fr_fix;
22066 addr = (addr + 4) & ~3;
22067 /* Force misaligned targets to 32-bit variant. */
22068 if (val & 3)
22069 return 4;
22070 val -= addr;
22071 if (val < 0 || val > 1020)
22072 return 4;
22073 return 2;
22074 }
22075
22076 /* Return the size of a relaxable add/sub immediate instruction. */
22077 static int
22078 relax_addsub (fragS *fragp, asection *sec)
22079 {
22080 char *buf;
22081 int op;
22082
22083 buf = fragp->fr_literal + fragp->fr_fix;
22084 op = bfd_get_16(sec->owner, buf);
22085 if ((op & 0xf) == ((op >> 4) & 0xf))
22086 return relax_immediate (fragp, 8, 0);
22087 else
22088 return relax_immediate (fragp, 3, 0);
22089 }
22090
22091 /* Return TRUE iff the definition of symbol S could be pre-empted
22092 (overridden) at link or load time. */
22093 static bfd_boolean
22094 symbol_preemptible (symbolS *s)
22095 {
22096 /* Weak symbols can always be pre-empted. */
22097 if (S_IS_WEAK (s))
22098 return TRUE;
22099
22100 /* Non-global symbols cannot be pre-empted. */
22101 if (! S_IS_EXTERNAL (s))
22102 return FALSE;
22103
22104 #ifdef OBJ_ELF
22105 /* In ELF, a global symbol can be marked protected, or private. In that
22106 case it can't be pre-empted (other definitions in the same link unit
22107 would violate the ODR). */
22108 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
22109 return FALSE;
22110 #endif
22111
22112 /* Other global symbols might be pre-empted. */
22113 return TRUE;
22114 }
22115
22116 /* Return the size of a relaxable branch instruction. BITS is the
22117 size of the offset field in the narrow instruction. */
22118
22119 static int
22120 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
22121 {
22122 addressT addr;
22123 offsetT val;
22124 offsetT limit;
22125
22126 /* Assume worst case for symbols not known to be in the same section. */
22127 if (!S_IS_DEFINED (fragp->fr_symbol)
22128 || sec != S_GET_SEGMENT (fragp->fr_symbol)
22129 || S_IS_WEAK (fragp->fr_symbol))
22130 return 4;
22131
22132 #ifdef OBJ_ELF
22133 /* A branch to a function in ARM state will require interworking. */
22134 if (S_IS_DEFINED (fragp->fr_symbol)
22135 && ARM_IS_FUNC (fragp->fr_symbol))
22136 return 4;
22137 #endif
22138
22139 if (symbol_preemptible (fragp->fr_symbol))
22140 return 4;
22141
22142 val = relaxed_symbol_addr (fragp, stretch);
22143 addr = fragp->fr_address + fragp->fr_fix + 4;
22144 val -= addr;
22145
22146 /* Offset is a signed value *2 */
22147 limit = 1 << bits;
22148 if (val >= limit || val < -limit)
22149 return 4;
22150 return 2;
22151 }
22152
22153
22154 /* Relax a machine dependent frag. This returns the amount by which
22155 the current size of the frag should change. */
22156
22157 int
22158 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
22159 {
22160 int oldsize;
22161 int newsize;
22162
22163 oldsize = fragp->fr_var;
22164 switch (fragp->fr_subtype)
22165 {
22166 case T_MNEM_ldr_pc2:
22167 newsize = relax_adr (fragp, sec, stretch);
22168 break;
22169 case T_MNEM_ldr_pc:
22170 case T_MNEM_ldr_sp:
22171 case T_MNEM_str_sp:
22172 newsize = relax_immediate (fragp, 8, 2);
22173 break;
22174 case T_MNEM_ldr:
22175 case T_MNEM_str:
22176 newsize = relax_immediate (fragp, 5, 2);
22177 break;
22178 case T_MNEM_ldrh:
22179 case T_MNEM_strh:
22180 newsize = relax_immediate (fragp, 5, 1);
22181 break;
22182 case T_MNEM_ldrb:
22183 case T_MNEM_strb:
22184 newsize = relax_immediate (fragp, 5, 0);
22185 break;
22186 case T_MNEM_adr:
22187 newsize = relax_adr (fragp, sec, stretch);
22188 break;
22189 case T_MNEM_mov:
22190 case T_MNEM_movs:
22191 case T_MNEM_cmp:
22192 case T_MNEM_cmn:
22193 newsize = relax_immediate (fragp, 8, 0);
22194 break;
22195 case T_MNEM_b:
22196 newsize = relax_branch (fragp, sec, 11, stretch);
22197 break;
22198 case T_MNEM_bcond:
22199 newsize = relax_branch (fragp, sec, 8, stretch);
22200 break;
22201 case T_MNEM_add_sp:
22202 case T_MNEM_add_pc:
22203 newsize = relax_immediate (fragp, 8, 2);
22204 break;
22205 case T_MNEM_inc_sp:
22206 case T_MNEM_dec_sp:
22207 newsize = relax_immediate (fragp, 7, 2);
22208 break;
22209 case T_MNEM_addi:
22210 case T_MNEM_addis:
22211 case T_MNEM_subi:
22212 case T_MNEM_subis:
22213 newsize = relax_addsub (fragp, sec);
22214 break;
22215 default:
22216 abort ();
22217 }
22218
22219 fragp->fr_var = newsize;
22220 /* Freeze wide instructions that are at or before the same location as
22221 in the previous pass. This avoids infinite loops.
22222 Don't freeze them unconditionally because targets may be artificially
22223 misaligned by the expansion of preceding frags. */
22224 if (stretch <= 0 && newsize > 2)
22225 {
22226 md_convert_frag (sec->owner, sec, fragp);
22227 frag_wane (fragp);
22228 }
22229
22230 return newsize - oldsize;
22231 }
22232
22233 /* Round up a section size to the appropriate boundary. */
22234
22235 valueT
22236 md_section_align (segT segment ATTRIBUTE_UNUSED,
22237 valueT size)
22238 {
22239 return size;
22240 }
22241
22242 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
22243 of an rs_align_code fragment. */
22244
22245 void
22246 arm_handle_align (fragS * fragP)
22247 {
22248 static unsigned char const arm_noop[2][2][4] =
22249 {
22250 { /* ARMv1 */
22251 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
22252 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
22253 },
22254 { /* ARMv6k */
22255 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
22256 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
22257 },
22258 };
22259 static unsigned char const thumb_noop[2][2][2] =
22260 {
22261 { /* Thumb-1 */
22262 {0xc0, 0x46}, /* LE */
22263 {0x46, 0xc0}, /* BE */
22264 },
22265 { /* Thumb-2 */
22266 {0x00, 0xbf}, /* LE */
22267 {0xbf, 0x00} /* BE */
22268 }
22269 };
22270 static unsigned char const wide_thumb_noop[2][4] =
22271 { /* Wide Thumb-2 */
22272 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
22273 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
22274 };
22275
22276 unsigned bytes, fix, noop_size;
22277 char * p;
22278 const unsigned char * noop;
22279 const unsigned char *narrow_noop = NULL;
22280 #ifdef OBJ_ELF
22281 enum mstate state;
22282 #endif
22283
22284 if (fragP->fr_type != rs_align_code)
22285 return;
22286
22287 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
22288 p = fragP->fr_literal + fragP->fr_fix;
22289 fix = 0;
22290
22291 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
22292 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
22293
22294 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
22295
22296 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
22297 {
22298 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22299 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
22300 {
22301 narrow_noop = thumb_noop[1][target_big_endian];
22302 noop = wide_thumb_noop[target_big_endian];
22303 }
22304 else
22305 noop = thumb_noop[0][target_big_endian];
22306 noop_size = 2;
22307 #ifdef OBJ_ELF
22308 state = MAP_THUMB;
22309 #endif
22310 }
22311 else
22312 {
22313 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
22314 ? selected_cpu : arm_arch_none,
22315 arm_ext_v6k) != 0]
22316 [target_big_endian];
22317 noop_size = 4;
22318 #ifdef OBJ_ELF
22319 state = MAP_ARM;
22320 #endif
22321 }
22322
22323 fragP->fr_var = noop_size;
22324
22325 if (bytes & (noop_size - 1))
22326 {
22327 fix = bytes & (noop_size - 1);
22328 #ifdef OBJ_ELF
22329 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
22330 #endif
22331 memset (p, 0, fix);
22332 p += fix;
22333 bytes -= fix;
22334 }
22335
22336 if (narrow_noop)
22337 {
22338 if (bytes & noop_size)
22339 {
22340 /* Insert a narrow noop. */
22341 memcpy (p, narrow_noop, noop_size);
22342 p += noop_size;
22343 bytes -= noop_size;
22344 fix += noop_size;
22345 }
22346
22347 /* Use wide noops for the remainder */
22348 noop_size = 4;
22349 }
22350
22351 while (bytes >= noop_size)
22352 {
22353 memcpy (p, noop, noop_size);
22354 p += noop_size;
22355 bytes -= noop_size;
22356 fix += noop_size;
22357 }
22358
22359 fragP->fr_fix += fix;
22360 }
22361
22362 /* Called from md_do_align. Used to create an alignment
22363 frag in a code section. */
22364
22365 void
22366 arm_frag_align_code (int n, int max)
22367 {
22368 char * p;
22369
22370 /* We assume that there will never be a requirement
22371 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
22372 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
22373 {
22374 char err_msg[128];
22375
22376 sprintf (err_msg,
22377 _("alignments greater than %d bytes not supported in .text sections."),
22378 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
22379 as_fatal ("%s", err_msg);
22380 }
22381
22382 p = frag_var (rs_align_code,
22383 MAX_MEM_FOR_RS_ALIGN_CODE,
22384 1,
22385 (relax_substateT) max,
22386 (symbolS *) NULL,
22387 (offsetT) n,
22388 (char *) NULL);
22389 *p = 0;
22390 }
22391
22392 /* Perform target specific initialisation of a frag.
22393 Note - despite the name this initialisation is not done when the frag
22394 is created, but only when its type is assigned. A frag can be created
22395 and used a long time before its type is set, so beware of assuming that
22396 this initialisation is performed first. */
22397
22398 #ifndef OBJ_ELF
22399 void
22400 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
22401 {
22402 /* Record whether this frag is in an ARM or a THUMB area. */
22403 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22404 }
22405
22406 #else /* OBJ_ELF is defined. */
22407 void
22408 arm_init_frag (fragS * fragP, int max_chars)
22409 {
22410 bfd_boolean frag_thumb_mode;
22411
22412 /* If the current ARM vs THUMB mode has not already
22413 been recorded into this frag then do so now. */
22414 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
22415 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
22416
22417 /* PR 21809: Do not set a mapping state for debug sections
22418 - it just confuses other tools. */
22419 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
22420 return;
22421
22422 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
22423
22424 /* Record a mapping symbol for alignment frags. We will delete this
22425 later if the alignment ends up empty. */
22426 switch (fragP->fr_type)
22427 {
22428 case rs_align:
22429 case rs_align_test:
22430 case rs_fill:
22431 mapping_state_2 (MAP_DATA, max_chars);
22432 break;
22433 case rs_align_code:
22434 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
22435 break;
22436 default:
22437 break;
22438 }
22439 }
22440
22441 /* When we change sections we need to issue a new mapping symbol. */
22442
22443 void
22444 arm_elf_change_section (void)
22445 {
22446 /* Link an unlinked unwind index table section to the .text section. */
22447 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
22448 && elf_linked_to_section (now_seg) == NULL)
22449 elf_linked_to_section (now_seg) = text_section;
22450 }
22451
22452 int
22453 arm_elf_section_type (const char * str, size_t len)
22454 {
22455 if (len == 5 && strncmp (str, "exidx", 5) == 0)
22456 return SHT_ARM_EXIDX;
22457
22458 return -1;
22459 }
22460 \f
22461 /* Code to deal with unwinding tables. */
22462
22463 static void add_unwind_adjustsp (offsetT);
22464
22465 /* Generate any deferred unwind frame offset. */
22466
22467 static void
22468 flush_pending_unwind (void)
22469 {
22470 offsetT offset;
22471
22472 offset = unwind.pending_offset;
22473 unwind.pending_offset = 0;
22474 if (offset != 0)
22475 add_unwind_adjustsp (offset);
22476 }
22477
22478 /* Add an opcode to this list for this function. Two-byte opcodes should
22479 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
22480 order. */
22481
22482 static void
22483 add_unwind_opcode (valueT op, int length)
22484 {
22485 /* Add any deferred stack adjustment. */
22486 if (unwind.pending_offset)
22487 flush_pending_unwind ();
22488
22489 unwind.sp_restored = 0;
22490
22491 if (unwind.opcode_count + length > unwind.opcode_alloc)
22492 {
22493 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
22494 if (unwind.opcodes)
22495 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
22496 unwind.opcode_alloc);
22497 else
22498 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
22499 }
22500 while (length > 0)
22501 {
22502 length--;
22503 unwind.opcodes[unwind.opcode_count] = op & 0xff;
22504 op >>= 8;
22505 unwind.opcode_count++;
22506 }
22507 }
22508
22509 /* Add unwind opcodes to adjust the stack pointer. */
22510
22511 static void
22512 add_unwind_adjustsp (offsetT offset)
22513 {
22514 valueT op;
22515
22516 if (offset > 0x200)
22517 {
22518 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
22519 char bytes[5];
22520 int n;
22521 valueT o;
22522
22523 /* Long form: 0xb2, uleb128. */
22524 /* This might not fit in a word so add the individual bytes,
22525 remembering the list is built in reverse order. */
22526 o = (valueT) ((offset - 0x204) >> 2);
22527 if (o == 0)
22528 add_unwind_opcode (0, 1);
22529
22530 /* Calculate the uleb128 encoding of the offset. */
22531 n = 0;
22532 while (o)
22533 {
22534 bytes[n] = o & 0x7f;
22535 o >>= 7;
22536 if (o)
22537 bytes[n] |= 0x80;
22538 n++;
22539 }
22540 /* Add the insn. */
22541 for (; n; n--)
22542 add_unwind_opcode (bytes[n - 1], 1);
22543 add_unwind_opcode (0xb2, 1);
22544 }
22545 else if (offset > 0x100)
22546 {
22547 /* Two short opcodes. */
22548 add_unwind_opcode (0x3f, 1);
22549 op = (offset - 0x104) >> 2;
22550 add_unwind_opcode (op, 1);
22551 }
22552 else if (offset > 0)
22553 {
22554 /* Short opcode. */
22555 op = (offset - 4) >> 2;
22556 add_unwind_opcode (op, 1);
22557 }
22558 else if (offset < 0)
22559 {
22560 offset = -offset;
22561 while (offset > 0x100)
22562 {
22563 add_unwind_opcode (0x7f, 1);
22564 offset -= 0x100;
22565 }
22566 op = ((offset - 4) >> 2) | 0x40;
22567 add_unwind_opcode (op, 1);
22568 }
22569 }
22570
22571 /* Finish the list of unwind opcodes for this function. */
22572
22573 static void
22574 finish_unwind_opcodes (void)
22575 {
22576 valueT op;
22577
22578 if (unwind.fp_used)
22579 {
22580 /* Adjust sp as necessary. */
22581 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
22582 flush_pending_unwind ();
22583
22584 /* After restoring sp from the frame pointer. */
22585 op = 0x90 | unwind.fp_reg;
22586 add_unwind_opcode (op, 1);
22587 }
22588 else
22589 flush_pending_unwind ();
22590 }
22591
22592
22593 /* Start an exception table entry. If idx is nonzero this is an index table
22594 entry. */
22595
22596 static void
22597 start_unwind_section (const segT text_seg, int idx)
22598 {
22599 const char * text_name;
22600 const char * prefix;
22601 const char * prefix_once;
22602 const char * group_name;
22603 char * sec_name;
22604 int type;
22605 int flags;
22606 int linkonce;
22607
22608 if (idx)
22609 {
22610 prefix = ELF_STRING_ARM_unwind;
22611 prefix_once = ELF_STRING_ARM_unwind_once;
22612 type = SHT_ARM_EXIDX;
22613 }
22614 else
22615 {
22616 prefix = ELF_STRING_ARM_unwind_info;
22617 prefix_once = ELF_STRING_ARM_unwind_info_once;
22618 type = SHT_PROGBITS;
22619 }
22620
22621 text_name = segment_name (text_seg);
22622 if (streq (text_name, ".text"))
22623 text_name = "";
22624
22625 if (strncmp (text_name, ".gnu.linkonce.t.",
22626 strlen (".gnu.linkonce.t.")) == 0)
22627 {
22628 prefix = prefix_once;
22629 text_name += strlen (".gnu.linkonce.t.");
22630 }
22631
22632 sec_name = concat (prefix, text_name, (char *) NULL);
22633
22634 flags = SHF_ALLOC;
22635 linkonce = 0;
22636 group_name = 0;
22637
22638 /* Handle COMDAT group. */
22639 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
22640 {
22641 group_name = elf_group_name (text_seg);
22642 if (group_name == NULL)
22643 {
22644 as_bad (_("Group section `%s' has no group signature"),
22645 segment_name (text_seg));
22646 ignore_rest_of_line ();
22647 return;
22648 }
22649 flags |= SHF_GROUP;
22650 linkonce = 1;
22651 }
22652
22653 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
22654 linkonce, 0);
22655
22656 /* Set the section link for index tables. */
22657 if (idx)
22658 elf_linked_to_section (now_seg) = text_seg;
22659 }
22660
22661
22662 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
22663 personality routine data. Returns zero, or the index table value for
22664 an inline entry. */
22665
22666 static valueT
22667 create_unwind_entry (int have_data)
22668 {
22669 int size;
22670 addressT where;
22671 char *ptr;
22672 /* The current word of data. */
22673 valueT data;
22674 /* The number of bytes left in this word. */
22675 int n;
22676
22677 finish_unwind_opcodes ();
22678
22679 /* Remember the current text section. */
22680 unwind.saved_seg = now_seg;
22681 unwind.saved_subseg = now_subseg;
22682
22683 start_unwind_section (now_seg, 0);
22684
22685 if (unwind.personality_routine == NULL)
22686 {
22687 if (unwind.personality_index == -2)
22688 {
22689 if (have_data)
22690 as_bad (_("handlerdata in cantunwind frame"));
22691 return 1; /* EXIDX_CANTUNWIND. */
22692 }
22693
22694 /* Use a default personality routine if none is specified. */
22695 if (unwind.personality_index == -1)
22696 {
22697 if (unwind.opcode_count > 3)
22698 unwind.personality_index = 1;
22699 else
22700 unwind.personality_index = 0;
22701 }
22702
22703 /* Space for the personality routine entry. */
22704 if (unwind.personality_index == 0)
22705 {
22706 if (unwind.opcode_count > 3)
22707 as_bad (_("too many unwind opcodes for personality routine 0"));
22708
22709 if (!have_data)
22710 {
22711 /* All the data is inline in the index table. */
22712 data = 0x80;
22713 n = 3;
22714 while (unwind.opcode_count > 0)
22715 {
22716 unwind.opcode_count--;
22717 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22718 n--;
22719 }
22720
22721 /* Pad with "finish" opcodes. */
22722 while (n--)
22723 data = (data << 8) | 0xb0;
22724
22725 return data;
22726 }
22727 size = 0;
22728 }
22729 else
22730 /* We get two opcodes "free" in the first word. */
22731 size = unwind.opcode_count - 2;
22732 }
22733 else
22734 {
22735 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
22736 if (unwind.personality_index != -1)
22737 {
22738 as_bad (_("attempt to recreate an unwind entry"));
22739 return 1;
22740 }
22741
22742 /* An extra byte is required for the opcode count. */
22743 size = unwind.opcode_count + 1;
22744 }
22745
22746 size = (size + 3) >> 2;
22747 if (size > 0xff)
22748 as_bad (_("too many unwind opcodes"));
22749
22750 frag_align (2, 0, 0);
22751 record_alignment (now_seg, 2);
22752 unwind.table_entry = expr_build_dot ();
22753
22754 /* Allocate the table entry. */
22755 ptr = frag_more ((size << 2) + 4);
22756 /* PR 13449: Zero the table entries in case some of them are not used. */
22757 memset (ptr, 0, (size << 2) + 4);
22758 where = frag_now_fix () - ((size << 2) + 4);
22759
22760 switch (unwind.personality_index)
22761 {
22762 case -1:
22763 /* ??? Should this be a PLT generating relocation? */
22764 /* Custom personality routine. */
22765 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
22766 BFD_RELOC_ARM_PREL31);
22767
22768 where += 4;
22769 ptr += 4;
22770
22771 /* Set the first byte to the number of additional words. */
22772 data = size > 0 ? size - 1 : 0;
22773 n = 3;
22774 break;
22775
22776 /* ABI defined personality routines. */
22777 case 0:
22778 /* Three opcodes bytes are packed into the first word. */
22779 data = 0x80;
22780 n = 3;
22781 break;
22782
22783 case 1:
22784 case 2:
22785 /* The size and first two opcode bytes go in the first word. */
22786 data = ((0x80 + unwind.personality_index) << 8) | size;
22787 n = 2;
22788 break;
22789
22790 default:
22791 /* Should never happen. */
22792 abort ();
22793 }
22794
22795 /* Pack the opcodes into words (MSB first), reversing the list at the same
22796 time. */
22797 while (unwind.opcode_count > 0)
22798 {
22799 if (n == 0)
22800 {
22801 md_number_to_chars (ptr, data, 4);
22802 ptr += 4;
22803 n = 4;
22804 data = 0;
22805 }
22806 unwind.opcode_count--;
22807 n--;
22808 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
22809 }
22810
22811 /* Finish off the last word. */
22812 if (n < 4)
22813 {
22814 /* Pad with "finish" opcodes. */
22815 while (n--)
22816 data = (data << 8) | 0xb0;
22817
22818 md_number_to_chars (ptr, data, 4);
22819 }
22820
22821 if (!have_data)
22822 {
22823 /* Add an empty descriptor if there is no user-specified data. */
22824 ptr = frag_more (4);
22825 md_number_to_chars (ptr, 0, 4);
22826 }
22827
22828 return 0;
22829 }
22830
22831
22832 /* Initialize the DWARF-2 unwind information for this procedure. */
22833
22834 void
22835 tc_arm_frame_initial_instructions (void)
22836 {
22837 cfi_add_CFA_def_cfa (REG_SP, 0);
22838 }
22839 #endif /* OBJ_ELF */
22840
22841 /* Convert REGNAME to a DWARF-2 register number. */
22842
22843 int
22844 tc_arm_regname_to_dw2regnum (char *regname)
22845 {
22846 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
22847 if (reg != FAIL)
22848 return reg;
22849
22850 /* PR 16694: Allow VFP registers as well. */
22851 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
22852 if (reg != FAIL)
22853 return 64 + reg;
22854
22855 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
22856 if (reg != FAIL)
22857 return reg + 256;
22858
22859 return FAIL;
22860 }
22861
22862 #ifdef TE_PE
22863 void
22864 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
22865 {
22866 expressionS exp;
22867
22868 exp.X_op = O_secrel;
22869 exp.X_add_symbol = symbol;
22870 exp.X_add_number = 0;
22871 emit_expr (&exp, size);
22872 }
22873 #endif
22874
22875 /* MD interface: Symbol and relocation handling. */
22876
22877 /* Return the address within the segment that a PC-relative fixup is
22878 relative to. For ARM, PC-relative fixups applied to instructions
22879 are generally relative to the location of the fixup plus 8 bytes.
22880 Thumb branches are offset by 4, and Thumb loads relative to PC
22881 require special handling. */
22882
22883 long
22884 md_pcrel_from_section (fixS * fixP, segT seg)
22885 {
22886 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
22887
22888 /* If this is pc-relative and we are going to emit a relocation
22889 then we just want to put out any pipeline compensation that the linker
22890 will need. Otherwise we want to use the calculated base.
22891 For WinCE we skip the bias for externals as well, since this
22892 is how the MS ARM-CE assembler behaves and we want to be compatible. */
22893 if (fixP->fx_pcrel
22894 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
22895 || (arm_force_relocation (fixP)
22896 #ifdef TE_WINCE
22897 && !S_IS_EXTERNAL (fixP->fx_addsy)
22898 #endif
22899 )))
22900 base = 0;
22901
22902
22903 switch (fixP->fx_r_type)
22904 {
22905 /* PC relative addressing on the Thumb is slightly odd as the
22906 bottom two bits of the PC are forced to zero for the
22907 calculation. This happens *after* application of the
22908 pipeline offset. However, Thumb adrl already adjusts for
22909 this, so we need not do it again. */
22910 case BFD_RELOC_ARM_THUMB_ADD:
22911 return base & ~3;
22912
22913 case BFD_RELOC_ARM_THUMB_OFFSET:
22914 case BFD_RELOC_ARM_T32_OFFSET_IMM:
22915 case BFD_RELOC_ARM_T32_ADD_PC12:
22916 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
22917 return (base + 4) & ~3;
22918
22919 /* Thumb branches are simply offset by +4. */
22920 case BFD_RELOC_THUMB_PCREL_BRANCH5:
22921 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22922 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22923 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22924 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22925 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22926 case BFD_RELOC_ARM_THUMB_BF17:
22927 return base + 4;
22928
22929 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22930 if (fixP->fx_addsy
22931 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22932 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22933 && ARM_IS_FUNC (fixP->fx_addsy)
22934 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22935 base = fixP->fx_where + fixP->fx_frag->fr_address;
22936 return base + 4;
22937
22938 /* BLX is like branches above, but forces the low two bits of PC to
22939 zero. */
22940 case BFD_RELOC_THUMB_PCREL_BLX:
22941 if (fixP->fx_addsy
22942 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22943 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22944 && THUMB_IS_FUNC (fixP->fx_addsy)
22945 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22946 base = fixP->fx_where + fixP->fx_frag->fr_address;
22947 return (base + 4) & ~3;
22948
22949 /* ARM mode branches are offset by +8. However, the Windows CE
22950 loader expects the relocation not to take this into account. */
22951 case BFD_RELOC_ARM_PCREL_BLX:
22952 if (fixP->fx_addsy
22953 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22954 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22955 && ARM_IS_FUNC (fixP->fx_addsy)
22956 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22957 base = fixP->fx_where + fixP->fx_frag->fr_address;
22958 return base + 8;
22959
22960 case BFD_RELOC_ARM_PCREL_CALL:
22961 if (fixP->fx_addsy
22962 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22963 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
22964 && THUMB_IS_FUNC (fixP->fx_addsy)
22965 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22966 base = fixP->fx_where + fixP->fx_frag->fr_address;
22967 return base + 8;
22968
22969 case BFD_RELOC_ARM_PCREL_BRANCH:
22970 case BFD_RELOC_ARM_PCREL_JUMP:
22971 case BFD_RELOC_ARM_PLT32:
22972 #ifdef TE_WINCE
22973 /* When handling fixups immediately, because we have already
22974 discovered the value of a symbol, or the address of the frag involved
22975 we must account for the offset by +8, as the OS loader will never see the reloc.
22976 see fixup_segment() in write.c
22977 The S_IS_EXTERNAL test handles the case of global symbols.
22978 Those need the calculated base, not just the pipe compensation the linker will need. */
22979 if (fixP->fx_pcrel
22980 && fixP->fx_addsy != NULL
22981 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22982 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
22983 return base + 8;
22984 return base;
22985 #else
22986 return base + 8;
22987 #endif
22988
22989
22990 /* ARM mode loads relative to PC are also offset by +8. Unlike
22991 branches, the Windows CE loader *does* expect the relocation
22992 to take this into account. */
22993 case BFD_RELOC_ARM_OFFSET_IMM:
22994 case BFD_RELOC_ARM_OFFSET_IMM8:
22995 case BFD_RELOC_ARM_HWLITERAL:
22996 case BFD_RELOC_ARM_LITERAL:
22997 case BFD_RELOC_ARM_CP_OFF_IMM:
22998 return base + 8;
22999
23000
23001 /* Other PC-relative relocations are un-offset. */
23002 default:
23003 return base;
23004 }
23005 }
23006
23007 static bfd_boolean flag_warn_syms = TRUE;
23008
23009 bfd_boolean
23010 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
23011 {
23012 /* PR 18347 - Warn if the user attempts to create a symbol with the same
23013 name as an ARM instruction. Whilst strictly speaking it is allowed, it
23014 does mean that the resulting code might be very confusing to the reader.
23015 Also this warning can be triggered if the user omits an operand before
23016 an immediate address, eg:
23017
23018 LDR =foo
23019
23020 GAS treats this as an assignment of the value of the symbol foo to a
23021 symbol LDR, and so (without this code) it will not issue any kind of
23022 warning or error message.
23023
23024 Note - ARM instructions are case-insensitive but the strings in the hash
23025 table are all stored in lower case, so we must first ensure that name is
23026 lower case too. */
23027 if (flag_warn_syms && arm_ops_hsh)
23028 {
23029 char * nbuf = strdup (name);
23030 char * p;
23031
23032 for (p = nbuf; *p; p++)
23033 *p = TOLOWER (*p);
23034 if (hash_find (arm_ops_hsh, nbuf) != NULL)
23035 {
23036 static struct hash_control * already_warned = NULL;
23037
23038 if (already_warned == NULL)
23039 already_warned = hash_new ();
23040 /* Only warn about the symbol once. To keep the code
23041 simple we let hash_insert do the lookup for us. */
23042 if (hash_insert (already_warned, name, NULL) == NULL)
23043 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
23044 }
23045 else
23046 free (nbuf);
23047 }
23048
23049 return FALSE;
23050 }
23051
23052 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
23053 Otherwise we have no need to default values of symbols. */
23054
23055 symbolS *
23056 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
23057 {
23058 #ifdef OBJ_ELF
23059 if (name[0] == '_' && name[1] == 'G'
23060 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
23061 {
23062 if (!GOT_symbol)
23063 {
23064 if (symbol_find (name))
23065 as_bad (_("GOT already in the symbol table"));
23066
23067 GOT_symbol = symbol_new (name, undefined_section,
23068 (valueT) 0, & zero_address_frag);
23069 }
23070
23071 return GOT_symbol;
23072 }
23073 #endif
23074
23075 return NULL;
23076 }
23077
23078 /* Subroutine of md_apply_fix. Check to see if an immediate can be
23079 computed as two separate immediate values, added together. We
23080 already know that this value cannot be computed by just one ARM
23081 instruction. */
23082
23083 static unsigned int
23084 validate_immediate_twopart (unsigned int val,
23085 unsigned int * highpart)
23086 {
23087 unsigned int a;
23088 unsigned int i;
23089
23090 for (i = 0; i < 32; i += 2)
23091 if (((a = rotate_left (val, i)) & 0xff) != 0)
23092 {
23093 if (a & 0xff00)
23094 {
23095 if (a & ~ 0xffff)
23096 continue;
23097 * highpart = (a >> 8) | ((i + 24) << 7);
23098 }
23099 else if (a & 0xff0000)
23100 {
23101 if (a & 0xff000000)
23102 continue;
23103 * highpart = (a >> 16) | ((i + 16) << 7);
23104 }
23105 else
23106 {
23107 gas_assert (a & 0xff000000);
23108 * highpart = (a >> 24) | ((i + 8) << 7);
23109 }
23110
23111 return (a & 0xff) | (i << 7);
23112 }
23113
23114 return FAIL;
23115 }
23116
23117 static int
23118 validate_offset_imm (unsigned int val, int hwse)
23119 {
23120 if ((hwse && val > 255) || val > 4095)
23121 return FAIL;
23122 return val;
23123 }
23124
23125 /* Subroutine of md_apply_fix. Do those data_ops which can take a
23126 negative immediate constant by altering the instruction. A bit of
23127 a hack really.
23128 MOV <-> MVN
23129 AND <-> BIC
23130 ADC <-> SBC
23131 by inverting the second operand, and
23132 ADD <-> SUB
23133 CMP <-> CMN
23134 by negating the second operand. */
23135
23136 static int
23137 negate_data_op (unsigned long * instruction,
23138 unsigned long value)
23139 {
23140 int op, new_inst;
23141 unsigned long negated, inverted;
23142
23143 negated = encode_arm_immediate (-value);
23144 inverted = encode_arm_immediate (~value);
23145
23146 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
23147 switch (op)
23148 {
23149 /* First negates. */
23150 case OPCODE_SUB: /* ADD <-> SUB */
23151 new_inst = OPCODE_ADD;
23152 value = negated;
23153 break;
23154
23155 case OPCODE_ADD:
23156 new_inst = OPCODE_SUB;
23157 value = negated;
23158 break;
23159
23160 case OPCODE_CMP: /* CMP <-> CMN */
23161 new_inst = OPCODE_CMN;
23162 value = negated;
23163 break;
23164
23165 case OPCODE_CMN:
23166 new_inst = OPCODE_CMP;
23167 value = negated;
23168 break;
23169
23170 /* Now Inverted ops. */
23171 case OPCODE_MOV: /* MOV <-> MVN */
23172 new_inst = OPCODE_MVN;
23173 value = inverted;
23174 break;
23175
23176 case OPCODE_MVN:
23177 new_inst = OPCODE_MOV;
23178 value = inverted;
23179 break;
23180
23181 case OPCODE_AND: /* AND <-> BIC */
23182 new_inst = OPCODE_BIC;
23183 value = inverted;
23184 break;
23185
23186 case OPCODE_BIC:
23187 new_inst = OPCODE_AND;
23188 value = inverted;
23189 break;
23190
23191 case OPCODE_ADC: /* ADC <-> SBC */
23192 new_inst = OPCODE_SBC;
23193 value = inverted;
23194 break;
23195
23196 case OPCODE_SBC:
23197 new_inst = OPCODE_ADC;
23198 value = inverted;
23199 break;
23200
23201 /* We cannot do anything. */
23202 default:
23203 return FAIL;
23204 }
23205
23206 if (value == (unsigned) FAIL)
23207 return FAIL;
23208
23209 *instruction &= OPCODE_MASK;
23210 *instruction |= new_inst << DATA_OP_SHIFT;
23211 return value;
23212 }
23213
23214 /* Like negate_data_op, but for Thumb-2. */
23215
23216 static unsigned int
23217 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
23218 {
23219 int op, new_inst;
23220 int rd;
23221 unsigned int negated, inverted;
23222
23223 negated = encode_thumb32_immediate (-value);
23224 inverted = encode_thumb32_immediate (~value);
23225
23226 rd = (*instruction >> 8) & 0xf;
23227 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
23228 switch (op)
23229 {
23230 /* ADD <-> SUB. Includes CMP <-> CMN. */
23231 case T2_OPCODE_SUB:
23232 new_inst = T2_OPCODE_ADD;
23233 value = negated;
23234 break;
23235
23236 case T2_OPCODE_ADD:
23237 new_inst = T2_OPCODE_SUB;
23238 value = negated;
23239 break;
23240
23241 /* ORR <-> ORN. Includes MOV <-> MVN. */
23242 case T2_OPCODE_ORR:
23243 new_inst = T2_OPCODE_ORN;
23244 value = inverted;
23245 break;
23246
23247 case T2_OPCODE_ORN:
23248 new_inst = T2_OPCODE_ORR;
23249 value = inverted;
23250 break;
23251
23252 /* AND <-> BIC. TST has no inverted equivalent. */
23253 case T2_OPCODE_AND:
23254 new_inst = T2_OPCODE_BIC;
23255 if (rd == 15)
23256 value = FAIL;
23257 else
23258 value = inverted;
23259 break;
23260
23261 case T2_OPCODE_BIC:
23262 new_inst = T2_OPCODE_AND;
23263 value = inverted;
23264 break;
23265
23266 /* ADC <-> SBC */
23267 case T2_OPCODE_ADC:
23268 new_inst = T2_OPCODE_SBC;
23269 value = inverted;
23270 break;
23271
23272 case T2_OPCODE_SBC:
23273 new_inst = T2_OPCODE_ADC;
23274 value = inverted;
23275 break;
23276
23277 /* We cannot do anything. */
23278 default:
23279 return FAIL;
23280 }
23281
23282 if (value == (unsigned int)FAIL)
23283 return FAIL;
23284
23285 *instruction &= T2_OPCODE_MASK;
23286 *instruction |= new_inst << T2_DATA_OP_SHIFT;
23287 return value;
23288 }
23289
23290 /* Read a 32-bit thumb instruction from buf. */
23291
23292 static unsigned long
23293 get_thumb32_insn (char * buf)
23294 {
23295 unsigned long insn;
23296 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
23297 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23298
23299 return insn;
23300 }
23301
23302 /* We usually want to set the low bit on the address of thumb function
23303 symbols. In particular .word foo - . should have the low bit set.
23304 Generic code tries to fold the difference of two symbols to
23305 a constant. Prevent this and force a relocation when the first symbols
23306 is a thumb function. */
23307
23308 bfd_boolean
23309 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
23310 {
23311 if (op == O_subtract
23312 && l->X_op == O_symbol
23313 && r->X_op == O_symbol
23314 && THUMB_IS_FUNC (l->X_add_symbol))
23315 {
23316 l->X_op = O_subtract;
23317 l->X_op_symbol = r->X_add_symbol;
23318 l->X_add_number -= r->X_add_number;
23319 return TRUE;
23320 }
23321
23322 /* Process as normal. */
23323 return FALSE;
23324 }
23325
23326 /* Encode Thumb2 unconditional branches and calls. The encoding
23327 for the 2 are identical for the immediate values. */
23328
23329 static void
23330 encode_thumb2_b_bl_offset (char * buf, offsetT value)
23331 {
23332 #define T2I1I2MASK ((1 << 13) | (1 << 11))
23333 offsetT newval;
23334 offsetT newval2;
23335 addressT S, I1, I2, lo, hi;
23336
23337 S = (value >> 24) & 0x01;
23338 I1 = (value >> 23) & 0x01;
23339 I2 = (value >> 22) & 0x01;
23340 hi = (value >> 12) & 0x3ff;
23341 lo = (value >> 1) & 0x7ff;
23342 newval = md_chars_to_number (buf, THUMB_SIZE);
23343 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
23344 newval |= (S << 10) | hi;
23345 newval2 &= ~T2I1I2MASK;
23346 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
23347 md_number_to_chars (buf, newval, THUMB_SIZE);
23348 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
23349 }
23350
23351 void
23352 md_apply_fix (fixS * fixP,
23353 valueT * valP,
23354 segT seg)
23355 {
23356 offsetT value = * valP;
23357 offsetT newval;
23358 unsigned int newimm;
23359 unsigned long temp;
23360 int sign;
23361 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
23362
23363 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
23364
23365 /* Note whether this will delete the relocation. */
23366
23367 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
23368 fixP->fx_done = 1;
23369
23370 /* On a 64-bit host, silently truncate 'value' to 32 bits for
23371 consistency with the behaviour on 32-bit hosts. Remember value
23372 for emit_reloc. */
23373 value &= 0xffffffff;
23374 value ^= 0x80000000;
23375 value -= 0x80000000;
23376
23377 *valP = value;
23378 fixP->fx_addnumber = value;
23379
23380 /* Same treatment for fixP->fx_offset. */
23381 fixP->fx_offset &= 0xffffffff;
23382 fixP->fx_offset ^= 0x80000000;
23383 fixP->fx_offset -= 0x80000000;
23384
23385 switch (fixP->fx_r_type)
23386 {
23387 case BFD_RELOC_NONE:
23388 /* This will need to go in the object file. */
23389 fixP->fx_done = 0;
23390 break;
23391
23392 case BFD_RELOC_ARM_IMMEDIATE:
23393 /* We claim that this fixup has been processed here,
23394 even if in fact we generate an error because we do
23395 not have a reloc for it, so tc_gen_reloc will reject it. */
23396 fixP->fx_done = 1;
23397
23398 if (fixP->fx_addsy)
23399 {
23400 const char *msg = 0;
23401
23402 if (! S_IS_DEFINED (fixP->fx_addsy))
23403 msg = _("undefined symbol %s used as an immediate value");
23404 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23405 msg = _("symbol %s is in a different section");
23406 else if (S_IS_WEAK (fixP->fx_addsy))
23407 msg = _("symbol %s is weak and may be overridden later");
23408
23409 if (msg)
23410 {
23411 as_bad_where (fixP->fx_file, fixP->fx_line,
23412 msg, S_GET_NAME (fixP->fx_addsy));
23413 break;
23414 }
23415 }
23416
23417 temp = md_chars_to_number (buf, INSN_SIZE);
23418
23419 /* If the offset is negative, we should use encoding A2 for ADR. */
23420 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
23421 newimm = negate_data_op (&temp, value);
23422 else
23423 {
23424 newimm = encode_arm_immediate (value);
23425
23426 /* If the instruction will fail, see if we can fix things up by
23427 changing the opcode. */
23428 if (newimm == (unsigned int) FAIL)
23429 newimm = negate_data_op (&temp, value);
23430 /* MOV accepts both ARM modified immediate (A1 encoding) and
23431 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
23432 When disassembling, MOV is preferred when there is no encoding
23433 overlap. */
23434 if (newimm == (unsigned int) FAIL
23435 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
23436 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
23437 && !((temp >> SBIT_SHIFT) & 0x1)
23438 && value >= 0 && value <= 0xffff)
23439 {
23440 /* Clear bits[23:20] to change encoding from A1 to A2. */
23441 temp &= 0xff0fffff;
23442 /* Encoding high 4bits imm. Code below will encode the remaining
23443 low 12bits. */
23444 temp |= (value & 0x0000f000) << 4;
23445 newimm = value & 0x00000fff;
23446 }
23447 }
23448
23449 if (newimm == (unsigned int) FAIL)
23450 {
23451 as_bad_where (fixP->fx_file, fixP->fx_line,
23452 _("invalid constant (%lx) after fixup"),
23453 (unsigned long) value);
23454 break;
23455 }
23456
23457 newimm |= (temp & 0xfffff000);
23458 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23459 break;
23460
23461 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
23462 {
23463 unsigned int highpart = 0;
23464 unsigned int newinsn = 0xe1a00000; /* nop. */
23465
23466 if (fixP->fx_addsy)
23467 {
23468 const char *msg = 0;
23469
23470 if (! S_IS_DEFINED (fixP->fx_addsy))
23471 msg = _("undefined symbol %s used as an immediate value");
23472 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
23473 msg = _("symbol %s is in a different section");
23474 else if (S_IS_WEAK (fixP->fx_addsy))
23475 msg = _("symbol %s is weak and may be overridden later");
23476
23477 if (msg)
23478 {
23479 as_bad_where (fixP->fx_file, fixP->fx_line,
23480 msg, S_GET_NAME (fixP->fx_addsy));
23481 break;
23482 }
23483 }
23484
23485 newimm = encode_arm_immediate (value);
23486 temp = md_chars_to_number (buf, INSN_SIZE);
23487
23488 /* If the instruction will fail, see if we can fix things up by
23489 changing the opcode. */
23490 if (newimm == (unsigned int) FAIL
23491 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
23492 {
23493 /* No ? OK - try using two ADD instructions to generate
23494 the value. */
23495 newimm = validate_immediate_twopart (value, & highpart);
23496
23497 /* Yes - then make sure that the second instruction is
23498 also an add. */
23499 if (newimm != (unsigned int) FAIL)
23500 newinsn = temp;
23501 /* Still No ? Try using a negated value. */
23502 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
23503 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
23504 /* Otherwise - give up. */
23505 else
23506 {
23507 as_bad_where (fixP->fx_file, fixP->fx_line,
23508 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
23509 (long) value);
23510 break;
23511 }
23512
23513 /* Replace the first operand in the 2nd instruction (which
23514 is the PC) with the destination register. We have
23515 already added in the PC in the first instruction and we
23516 do not want to do it again. */
23517 newinsn &= ~ 0xf0000;
23518 newinsn |= ((newinsn & 0x0f000) << 4);
23519 }
23520
23521 newimm |= (temp & 0xfffff000);
23522 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
23523
23524 highpart |= (newinsn & 0xfffff000);
23525 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
23526 }
23527 break;
23528
23529 case BFD_RELOC_ARM_OFFSET_IMM:
23530 if (!fixP->fx_done && seg->use_rela_p)
23531 value = 0;
23532 /* Fall through. */
23533
23534 case BFD_RELOC_ARM_LITERAL:
23535 sign = value > 0;
23536
23537 if (value < 0)
23538 value = - value;
23539
23540 if (validate_offset_imm (value, 0) == FAIL)
23541 {
23542 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
23543 as_bad_where (fixP->fx_file, fixP->fx_line,
23544 _("invalid literal constant: pool needs to be closer"));
23545 else
23546 as_bad_where (fixP->fx_file, fixP->fx_line,
23547 _("bad immediate value for offset (%ld)"),
23548 (long) value);
23549 break;
23550 }
23551
23552 newval = md_chars_to_number (buf, INSN_SIZE);
23553 if (value == 0)
23554 newval &= 0xfffff000;
23555 else
23556 {
23557 newval &= 0xff7ff000;
23558 newval |= value | (sign ? INDEX_UP : 0);
23559 }
23560 md_number_to_chars (buf, newval, INSN_SIZE);
23561 break;
23562
23563 case BFD_RELOC_ARM_OFFSET_IMM8:
23564 case BFD_RELOC_ARM_HWLITERAL:
23565 sign = value > 0;
23566
23567 if (value < 0)
23568 value = - value;
23569
23570 if (validate_offset_imm (value, 1) == FAIL)
23571 {
23572 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
23573 as_bad_where (fixP->fx_file, fixP->fx_line,
23574 _("invalid literal constant: pool needs to be closer"));
23575 else
23576 as_bad_where (fixP->fx_file, fixP->fx_line,
23577 _("bad immediate value for 8-bit offset (%ld)"),
23578 (long) value);
23579 break;
23580 }
23581
23582 newval = md_chars_to_number (buf, INSN_SIZE);
23583 if (value == 0)
23584 newval &= 0xfffff0f0;
23585 else
23586 {
23587 newval &= 0xff7ff0f0;
23588 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
23589 }
23590 md_number_to_chars (buf, newval, INSN_SIZE);
23591 break;
23592
23593 case BFD_RELOC_ARM_T32_OFFSET_U8:
23594 if (value < 0 || value > 1020 || value % 4 != 0)
23595 as_bad_where (fixP->fx_file, fixP->fx_line,
23596 _("bad immediate value for offset (%ld)"), (long) value);
23597 value /= 4;
23598
23599 newval = md_chars_to_number (buf+2, THUMB_SIZE);
23600 newval |= value;
23601 md_number_to_chars (buf+2, newval, THUMB_SIZE);
23602 break;
23603
23604 case BFD_RELOC_ARM_T32_OFFSET_IMM:
23605 /* This is a complicated relocation used for all varieties of Thumb32
23606 load/store instruction with immediate offset:
23607
23608 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
23609 *4, optional writeback(W)
23610 (doubleword load/store)
23611
23612 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
23613 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
23614 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
23615 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
23616 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
23617
23618 Uppercase letters indicate bits that are already encoded at
23619 this point. Lowercase letters are our problem. For the
23620 second block of instructions, the secondary opcode nybble
23621 (bits 8..11) is present, and bit 23 is zero, even if this is
23622 a PC-relative operation. */
23623 newval = md_chars_to_number (buf, THUMB_SIZE);
23624 newval <<= 16;
23625 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
23626
23627 if ((newval & 0xf0000000) == 0xe0000000)
23628 {
23629 /* Doubleword load/store: 8-bit offset, scaled by 4. */
23630 if (value >= 0)
23631 newval |= (1 << 23);
23632 else
23633 value = -value;
23634 if (value % 4 != 0)
23635 {
23636 as_bad_where (fixP->fx_file, fixP->fx_line,
23637 _("offset not a multiple of 4"));
23638 break;
23639 }
23640 value /= 4;
23641 if (value > 0xff)
23642 {
23643 as_bad_where (fixP->fx_file, fixP->fx_line,
23644 _("offset out of range"));
23645 break;
23646 }
23647 newval &= ~0xff;
23648 }
23649 else if ((newval & 0x000f0000) == 0x000f0000)
23650 {
23651 /* PC-relative, 12-bit offset. */
23652 if (value >= 0)
23653 newval |= (1 << 23);
23654 else
23655 value = -value;
23656 if (value > 0xfff)
23657 {
23658 as_bad_where (fixP->fx_file, fixP->fx_line,
23659 _("offset out of range"));
23660 break;
23661 }
23662 newval &= ~0xfff;
23663 }
23664 else if ((newval & 0x00000100) == 0x00000100)
23665 {
23666 /* Writeback: 8-bit, +/- offset. */
23667 if (value >= 0)
23668 newval |= (1 << 9);
23669 else
23670 value = -value;
23671 if (value > 0xff)
23672 {
23673 as_bad_where (fixP->fx_file, fixP->fx_line,
23674 _("offset out of range"));
23675 break;
23676 }
23677 newval &= ~0xff;
23678 }
23679 else if ((newval & 0x00000f00) == 0x00000e00)
23680 {
23681 /* T-instruction: positive 8-bit offset. */
23682 if (value < 0 || value > 0xff)
23683 {
23684 as_bad_where (fixP->fx_file, fixP->fx_line,
23685 _("offset out of range"));
23686 break;
23687 }
23688 newval &= ~0xff;
23689 newval |= value;
23690 }
23691 else
23692 {
23693 /* Positive 12-bit or negative 8-bit offset. */
23694 int limit;
23695 if (value >= 0)
23696 {
23697 newval |= (1 << 23);
23698 limit = 0xfff;
23699 }
23700 else
23701 {
23702 value = -value;
23703 limit = 0xff;
23704 }
23705 if (value > limit)
23706 {
23707 as_bad_where (fixP->fx_file, fixP->fx_line,
23708 _("offset out of range"));
23709 break;
23710 }
23711 newval &= ~limit;
23712 }
23713
23714 newval |= value;
23715 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
23716 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
23717 break;
23718
23719 case BFD_RELOC_ARM_SHIFT_IMM:
23720 newval = md_chars_to_number (buf, INSN_SIZE);
23721 if (((unsigned long) value) > 32
23722 || (value == 32
23723 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
23724 {
23725 as_bad_where (fixP->fx_file, fixP->fx_line,
23726 _("shift expression is too large"));
23727 break;
23728 }
23729
23730 if (value == 0)
23731 /* Shifts of zero must be done as lsl. */
23732 newval &= ~0x60;
23733 else if (value == 32)
23734 value = 0;
23735 newval &= 0xfffff07f;
23736 newval |= (value & 0x1f) << 7;
23737 md_number_to_chars (buf, newval, INSN_SIZE);
23738 break;
23739
23740 case BFD_RELOC_ARM_T32_IMMEDIATE:
23741 case BFD_RELOC_ARM_T32_ADD_IMM:
23742 case BFD_RELOC_ARM_T32_IMM12:
23743 case BFD_RELOC_ARM_T32_ADD_PC12:
23744 /* We claim that this fixup has been processed here,
23745 even if in fact we generate an error because we do
23746 not have a reloc for it, so tc_gen_reloc will reject it. */
23747 fixP->fx_done = 1;
23748
23749 if (fixP->fx_addsy
23750 && ! S_IS_DEFINED (fixP->fx_addsy))
23751 {
23752 as_bad_where (fixP->fx_file, fixP->fx_line,
23753 _("undefined symbol %s used as an immediate value"),
23754 S_GET_NAME (fixP->fx_addsy));
23755 break;
23756 }
23757
23758 newval = md_chars_to_number (buf, THUMB_SIZE);
23759 newval <<= 16;
23760 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
23761
23762 newimm = FAIL;
23763 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
23764 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
23765 Thumb2 modified immediate encoding (T2). */
23766 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
23767 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23768 {
23769 newimm = encode_thumb32_immediate (value);
23770 if (newimm == (unsigned int) FAIL)
23771 newimm = thumb32_negate_data_op (&newval, value);
23772 }
23773 if (newimm == (unsigned int) FAIL)
23774 {
23775 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
23776 {
23777 /* Turn add/sum into addw/subw. */
23778 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
23779 newval = (newval & 0xfeffffff) | 0x02000000;
23780 /* No flat 12-bit imm encoding for addsw/subsw. */
23781 if ((newval & 0x00100000) == 0)
23782 {
23783 /* 12 bit immediate for addw/subw. */
23784 if (value < 0)
23785 {
23786 value = -value;
23787 newval ^= 0x00a00000;
23788 }
23789 if (value > 0xfff)
23790 newimm = (unsigned int) FAIL;
23791 else
23792 newimm = value;
23793 }
23794 }
23795 else
23796 {
23797 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
23798 UINT16 (T3 encoding), MOVW only accepts UINT16. When
23799 disassembling, MOV is preferred when there is no encoding
23800 overlap. */
23801 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
23802 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
23803 but with the Rn field [19:16] set to 1111. */
23804 && (((newval >> 16) & 0xf) == 0xf)
23805 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
23806 && !((newval >> T2_SBIT_SHIFT) & 0x1)
23807 && value >= 0 && value <= 0xffff)
23808 {
23809 /* Toggle bit[25] to change encoding from T2 to T3. */
23810 newval ^= 1 << 25;
23811 /* Clear bits[19:16]. */
23812 newval &= 0xfff0ffff;
23813 /* Encoding high 4bits imm. Code below will encode the
23814 remaining low 12bits. */
23815 newval |= (value & 0x0000f000) << 4;
23816 newimm = value & 0x00000fff;
23817 }
23818 }
23819 }
23820
23821 if (newimm == (unsigned int)FAIL)
23822 {
23823 as_bad_where (fixP->fx_file, fixP->fx_line,
23824 _("invalid constant (%lx) after fixup"),
23825 (unsigned long) value);
23826 break;
23827 }
23828
23829 newval |= (newimm & 0x800) << 15;
23830 newval |= (newimm & 0x700) << 4;
23831 newval |= (newimm & 0x0ff);
23832
23833 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
23834 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
23835 break;
23836
23837 case BFD_RELOC_ARM_SMC:
23838 if (((unsigned long) value) > 0xffff)
23839 as_bad_where (fixP->fx_file, fixP->fx_line,
23840 _("invalid smc expression"));
23841 newval = md_chars_to_number (buf, INSN_SIZE);
23842 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23843 md_number_to_chars (buf, newval, INSN_SIZE);
23844 break;
23845
23846 case BFD_RELOC_ARM_HVC:
23847 if (((unsigned long) value) > 0xffff)
23848 as_bad_where (fixP->fx_file, fixP->fx_line,
23849 _("invalid hvc expression"));
23850 newval = md_chars_to_number (buf, INSN_SIZE);
23851 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
23852 md_number_to_chars (buf, newval, INSN_SIZE);
23853 break;
23854
23855 case BFD_RELOC_ARM_SWI:
23856 if (fixP->tc_fix_data != 0)
23857 {
23858 if (((unsigned long) value) > 0xff)
23859 as_bad_where (fixP->fx_file, fixP->fx_line,
23860 _("invalid swi expression"));
23861 newval = md_chars_to_number (buf, THUMB_SIZE);
23862 newval |= value;
23863 md_number_to_chars (buf, newval, THUMB_SIZE);
23864 }
23865 else
23866 {
23867 if (((unsigned long) value) > 0x00ffffff)
23868 as_bad_where (fixP->fx_file, fixP->fx_line,
23869 _("invalid swi expression"));
23870 newval = md_chars_to_number (buf, INSN_SIZE);
23871 newval |= value;
23872 md_number_to_chars (buf, newval, INSN_SIZE);
23873 }
23874 break;
23875
23876 case BFD_RELOC_ARM_MULTI:
23877 if (((unsigned long) value) > 0xffff)
23878 as_bad_where (fixP->fx_file, fixP->fx_line,
23879 _("invalid expression in load/store multiple"));
23880 newval = value | md_chars_to_number (buf, INSN_SIZE);
23881 md_number_to_chars (buf, newval, INSN_SIZE);
23882 break;
23883
23884 #ifdef OBJ_ELF
23885 case BFD_RELOC_ARM_PCREL_CALL:
23886
23887 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23888 && fixP->fx_addsy
23889 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23890 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23891 && THUMB_IS_FUNC (fixP->fx_addsy))
23892 /* Flip the bl to blx. This is a simple flip
23893 bit here because we generate PCREL_CALL for
23894 unconditional bls. */
23895 {
23896 newval = md_chars_to_number (buf, INSN_SIZE);
23897 newval = newval | 0x10000000;
23898 md_number_to_chars (buf, newval, INSN_SIZE);
23899 temp = 1;
23900 fixP->fx_done = 1;
23901 }
23902 else
23903 temp = 3;
23904 goto arm_branch_common;
23905
23906 case BFD_RELOC_ARM_PCREL_JUMP:
23907 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23908 && fixP->fx_addsy
23909 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23910 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23911 && THUMB_IS_FUNC (fixP->fx_addsy))
23912 {
23913 /* This would map to a bl<cond>, b<cond>,
23914 b<always> to a Thumb function. We
23915 need to force a relocation for this particular
23916 case. */
23917 newval = md_chars_to_number (buf, INSN_SIZE);
23918 fixP->fx_done = 0;
23919 }
23920 /* Fall through. */
23921
23922 case BFD_RELOC_ARM_PLT32:
23923 #endif
23924 case BFD_RELOC_ARM_PCREL_BRANCH:
23925 temp = 3;
23926 goto arm_branch_common;
23927
23928 case BFD_RELOC_ARM_PCREL_BLX:
23929
23930 temp = 1;
23931 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23932 && fixP->fx_addsy
23933 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
23934 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
23935 && ARM_IS_FUNC (fixP->fx_addsy))
23936 {
23937 /* Flip the blx to a bl and warn. */
23938 const char *name = S_GET_NAME (fixP->fx_addsy);
23939 newval = 0xeb000000;
23940 as_warn_where (fixP->fx_file, fixP->fx_line,
23941 _("blx to '%s' an ARM ISA state function changed to bl"),
23942 name);
23943 md_number_to_chars (buf, newval, INSN_SIZE);
23944 temp = 3;
23945 fixP->fx_done = 1;
23946 }
23947
23948 #ifdef OBJ_ELF
23949 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
23950 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
23951 #endif
23952
23953 arm_branch_common:
23954 /* We are going to store value (shifted right by two) in the
23955 instruction, in a 24 bit, signed field. Bits 26 through 32 either
23956 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
23957 also be clear. */
23958 if (value & temp)
23959 as_bad_where (fixP->fx_file, fixP->fx_line,
23960 _("misaligned branch destination"));
23961 if ((value & (offsetT)0xfe000000) != (offsetT)0
23962 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
23963 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
23964
23965 if (fixP->fx_done || !seg->use_rela_p)
23966 {
23967 newval = md_chars_to_number (buf, INSN_SIZE);
23968 newval |= (value >> 2) & 0x00ffffff;
23969 /* Set the H bit on BLX instructions. */
23970 if (temp == 1)
23971 {
23972 if (value & 2)
23973 newval |= 0x01000000;
23974 else
23975 newval &= ~0x01000000;
23976 }
23977 md_number_to_chars (buf, newval, INSN_SIZE);
23978 }
23979 break;
23980
23981 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
23982 /* CBZ can only branch forward. */
23983
23984 /* Attempts to use CBZ to branch to the next instruction
23985 (which, strictly speaking, are prohibited) will be turned into
23986 no-ops.
23987
23988 FIXME: It may be better to remove the instruction completely and
23989 perform relaxation. */
23990 if (value == -2)
23991 {
23992 newval = md_chars_to_number (buf, THUMB_SIZE);
23993 newval = 0xbf00; /* NOP encoding T1 */
23994 md_number_to_chars (buf, newval, THUMB_SIZE);
23995 }
23996 else
23997 {
23998 if (value & ~0x7e)
23999 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
24000
24001 if (fixP->fx_done || !seg->use_rela_p)
24002 {
24003 newval = md_chars_to_number (buf, THUMB_SIZE);
24004 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
24005 md_number_to_chars (buf, newval, THUMB_SIZE);
24006 }
24007 }
24008 break;
24009
24010 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
24011 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
24012 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
24013
24014 if (fixP->fx_done || !seg->use_rela_p)
24015 {
24016 newval = md_chars_to_number (buf, THUMB_SIZE);
24017 newval |= (value & 0x1ff) >> 1;
24018 md_number_to_chars (buf, newval, THUMB_SIZE);
24019 }
24020 break;
24021
24022 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
24023 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
24024 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
24025
24026 if (fixP->fx_done || !seg->use_rela_p)
24027 {
24028 newval = md_chars_to_number (buf, THUMB_SIZE);
24029 newval |= (value & 0xfff) >> 1;
24030 md_number_to_chars (buf, newval, THUMB_SIZE);
24031 }
24032 break;
24033
24034 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24035 if (fixP->fx_addsy
24036 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24037 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24038 && ARM_IS_FUNC (fixP->fx_addsy)
24039 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
24040 {
24041 /* Force a relocation for a branch 20 bits wide. */
24042 fixP->fx_done = 0;
24043 }
24044 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
24045 as_bad_where (fixP->fx_file, fixP->fx_line,
24046 _("conditional branch out of range"));
24047
24048 if (fixP->fx_done || !seg->use_rela_p)
24049 {
24050 offsetT newval2;
24051 addressT S, J1, J2, lo, hi;
24052
24053 S = (value & 0x00100000) >> 20;
24054 J2 = (value & 0x00080000) >> 19;
24055 J1 = (value & 0x00040000) >> 18;
24056 hi = (value & 0x0003f000) >> 12;
24057 lo = (value & 0x00000ffe) >> 1;
24058
24059 newval = md_chars_to_number (buf, THUMB_SIZE);
24060 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24061 newval |= (S << 10) | hi;
24062 newval2 |= (J1 << 13) | (J2 << 11) | lo;
24063 md_number_to_chars (buf, newval, THUMB_SIZE);
24064 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
24065 }
24066 break;
24067
24068 case BFD_RELOC_THUMB_PCREL_BLX:
24069 /* If there is a blx from a thumb state function to
24070 another thumb function flip this to a bl and warn
24071 about it. */
24072
24073 if (fixP->fx_addsy
24074 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24075 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24076 && THUMB_IS_FUNC (fixP->fx_addsy))
24077 {
24078 const char *name = S_GET_NAME (fixP->fx_addsy);
24079 as_warn_where (fixP->fx_file, fixP->fx_line,
24080 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
24081 name);
24082 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24083 newval = newval | 0x1000;
24084 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
24085 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
24086 fixP->fx_done = 1;
24087 }
24088
24089
24090 goto thumb_bl_common;
24091
24092 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24093 /* A bl from Thumb state ISA to an internal ARM state function
24094 is converted to a blx. */
24095 if (fixP->fx_addsy
24096 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24097 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24098 && ARM_IS_FUNC (fixP->fx_addsy)
24099 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
24100 {
24101 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24102 newval = newval & ~0x1000;
24103 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
24104 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
24105 fixP->fx_done = 1;
24106 }
24107
24108 thumb_bl_common:
24109
24110 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
24111 /* For a BLX instruction, make sure that the relocation is rounded up
24112 to a word boundary. This follows the semantics of the instruction
24113 which specifies that bit 1 of the target address will come from bit
24114 1 of the base address. */
24115 value = (value + 3) & ~ 3;
24116
24117 #ifdef OBJ_ELF
24118 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
24119 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
24120 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
24121 #endif
24122
24123 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
24124 {
24125 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
24126 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
24127 else if ((value & ~0x1ffffff)
24128 && ((value & ~0x1ffffff) != ~0x1ffffff))
24129 as_bad_where (fixP->fx_file, fixP->fx_line,
24130 _("Thumb2 branch out of range"));
24131 }
24132
24133 if (fixP->fx_done || !seg->use_rela_p)
24134 encode_thumb2_b_bl_offset (buf, value);
24135
24136 break;
24137
24138 case BFD_RELOC_THUMB_PCREL_BRANCH25:
24139 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
24140 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
24141
24142 if (fixP->fx_done || !seg->use_rela_p)
24143 encode_thumb2_b_bl_offset (buf, value);
24144
24145 break;
24146
24147 case BFD_RELOC_8:
24148 if (fixP->fx_done || !seg->use_rela_p)
24149 *buf = value;
24150 break;
24151
24152 case BFD_RELOC_16:
24153 if (fixP->fx_done || !seg->use_rela_p)
24154 md_number_to_chars (buf, value, 2);
24155 break;
24156
24157 #ifdef OBJ_ELF
24158 case BFD_RELOC_ARM_TLS_CALL:
24159 case BFD_RELOC_ARM_THM_TLS_CALL:
24160 case BFD_RELOC_ARM_TLS_DESCSEQ:
24161 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
24162 case BFD_RELOC_ARM_TLS_GOTDESC:
24163 case BFD_RELOC_ARM_TLS_GD32:
24164 case BFD_RELOC_ARM_TLS_LE32:
24165 case BFD_RELOC_ARM_TLS_IE32:
24166 case BFD_RELOC_ARM_TLS_LDM32:
24167 case BFD_RELOC_ARM_TLS_LDO32:
24168 S_SET_THREAD_LOCAL (fixP->fx_addsy);
24169 break;
24170
24171 /* Same handling as above, but with the arm_fdpic guard. */
24172 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
24173 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
24174 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
24175 if (arm_fdpic)
24176 {
24177 S_SET_THREAD_LOCAL (fixP->fx_addsy);
24178 }
24179 else
24180 {
24181 as_bad_where (fixP->fx_file, fixP->fx_line,
24182 _("Relocation supported only in FDPIC mode"));
24183 }
24184 break;
24185
24186 case BFD_RELOC_ARM_GOT32:
24187 case BFD_RELOC_ARM_GOTOFF:
24188 break;
24189
24190 case BFD_RELOC_ARM_GOT_PREL:
24191 if (fixP->fx_done || !seg->use_rela_p)
24192 md_number_to_chars (buf, value, 4);
24193 break;
24194
24195 case BFD_RELOC_ARM_TARGET2:
24196 /* TARGET2 is not partial-inplace, so we need to write the
24197 addend here for REL targets, because it won't be written out
24198 during reloc processing later. */
24199 if (fixP->fx_done || !seg->use_rela_p)
24200 md_number_to_chars (buf, fixP->fx_offset, 4);
24201 break;
24202
24203 /* Relocations for FDPIC. */
24204 case BFD_RELOC_ARM_GOTFUNCDESC:
24205 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
24206 case BFD_RELOC_ARM_FUNCDESC:
24207 if (arm_fdpic)
24208 {
24209 if (fixP->fx_done || !seg->use_rela_p)
24210 md_number_to_chars (buf, 0, 4);
24211 }
24212 else
24213 {
24214 as_bad_where (fixP->fx_file, fixP->fx_line,
24215 _("Relocation supported only in FDPIC mode"));
24216 }
24217 break;
24218 #endif
24219
24220 case BFD_RELOC_RVA:
24221 case BFD_RELOC_32:
24222 case BFD_RELOC_ARM_TARGET1:
24223 case BFD_RELOC_ARM_ROSEGREL32:
24224 case BFD_RELOC_ARM_SBREL32:
24225 case BFD_RELOC_32_PCREL:
24226 #ifdef TE_PE
24227 case BFD_RELOC_32_SECREL:
24228 #endif
24229 if (fixP->fx_done || !seg->use_rela_p)
24230 #ifdef TE_WINCE
24231 /* For WinCE we only do this for pcrel fixups. */
24232 if (fixP->fx_done || fixP->fx_pcrel)
24233 #endif
24234 md_number_to_chars (buf, value, 4);
24235 break;
24236
24237 #ifdef OBJ_ELF
24238 case BFD_RELOC_ARM_PREL31:
24239 if (fixP->fx_done || !seg->use_rela_p)
24240 {
24241 newval = md_chars_to_number (buf, 4) & 0x80000000;
24242 if ((value ^ (value >> 1)) & 0x40000000)
24243 {
24244 as_bad_where (fixP->fx_file, fixP->fx_line,
24245 _("rel31 relocation overflow"));
24246 }
24247 newval |= value & 0x7fffffff;
24248 md_number_to_chars (buf, newval, 4);
24249 }
24250 break;
24251 #endif
24252
24253 case BFD_RELOC_ARM_CP_OFF_IMM:
24254 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
24255 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
24256 newval = md_chars_to_number (buf, INSN_SIZE);
24257 else
24258 newval = get_thumb32_insn (buf);
24259 if ((newval & 0x0f200f00) == 0x0d000900)
24260 {
24261 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
24262 has permitted values that are multiples of 2, in the range 0
24263 to 510. */
24264 if (value < -510 || value > 510 || (value & 1))
24265 as_bad_where (fixP->fx_file, fixP->fx_line,
24266 _("co-processor offset out of range"));
24267 }
24268 else if (value < -1023 || value > 1023 || (value & 3))
24269 as_bad_where (fixP->fx_file, fixP->fx_line,
24270 _("co-processor offset out of range"));
24271 cp_off_common:
24272 sign = value > 0;
24273 if (value < 0)
24274 value = -value;
24275 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24276 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24277 newval = md_chars_to_number (buf, INSN_SIZE);
24278 else
24279 newval = get_thumb32_insn (buf);
24280 if (value == 0)
24281 newval &= 0xffffff00;
24282 else
24283 {
24284 newval &= 0xff7fff00;
24285 if ((newval & 0x0f200f00) == 0x0d000900)
24286 {
24287 /* This is a fp16 vstr/vldr.
24288
24289 It requires the immediate offset in the instruction is shifted
24290 left by 1 to be a half-word offset.
24291
24292 Here, left shift by 1 first, and later right shift by 2
24293 should get the right offset. */
24294 value <<= 1;
24295 }
24296 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
24297 }
24298 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
24299 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
24300 md_number_to_chars (buf, newval, INSN_SIZE);
24301 else
24302 put_thumb32_insn (buf, newval);
24303 break;
24304
24305 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
24306 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
24307 if (value < -255 || value > 255)
24308 as_bad_where (fixP->fx_file, fixP->fx_line,
24309 _("co-processor offset out of range"));
24310 value *= 4;
24311 goto cp_off_common;
24312
24313 case BFD_RELOC_ARM_THUMB_OFFSET:
24314 newval = md_chars_to_number (buf, THUMB_SIZE);
24315 /* Exactly what ranges, and where the offset is inserted depends
24316 on the type of instruction, we can establish this from the
24317 top 4 bits. */
24318 switch (newval >> 12)
24319 {
24320 case 4: /* PC load. */
24321 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
24322 forced to zero for these loads; md_pcrel_from has already
24323 compensated for this. */
24324 if (value & 3)
24325 as_bad_where (fixP->fx_file, fixP->fx_line,
24326 _("invalid offset, target not word aligned (0x%08lX)"),
24327 (((unsigned long) fixP->fx_frag->fr_address
24328 + (unsigned long) fixP->fx_where) & ~3)
24329 + (unsigned long) value);
24330
24331 if (value & ~0x3fc)
24332 as_bad_where (fixP->fx_file, fixP->fx_line,
24333 _("invalid offset, value too big (0x%08lX)"),
24334 (long) value);
24335
24336 newval |= value >> 2;
24337 break;
24338
24339 case 9: /* SP load/store. */
24340 if (value & ~0x3fc)
24341 as_bad_where (fixP->fx_file, fixP->fx_line,
24342 _("invalid offset, value too big (0x%08lX)"),
24343 (long) value);
24344 newval |= value >> 2;
24345 break;
24346
24347 case 6: /* Word load/store. */
24348 if (value & ~0x7c)
24349 as_bad_where (fixP->fx_file, fixP->fx_line,
24350 _("invalid offset, value too big (0x%08lX)"),
24351 (long) value);
24352 newval |= value << 4; /* 6 - 2. */
24353 break;
24354
24355 case 7: /* Byte load/store. */
24356 if (value & ~0x1f)
24357 as_bad_where (fixP->fx_file, fixP->fx_line,
24358 _("invalid offset, value too big (0x%08lX)"),
24359 (long) value);
24360 newval |= value << 6;
24361 break;
24362
24363 case 8: /* Halfword load/store. */
24364 if (value & ~0x3e)
24365 as_bad_where (fixP->fx_file, fixP->fx_line,
24366 _("invalid offset, value too big (0x%08lX)"),
24367 (long) value);
24368 newval |= value << 5; /* 6 - 1. */
24369 break;
24370
24371 default:
24372 as_bad_where (fixP->fx_file, fixP->fx_line,
24373 "Unable to process relocation for thumb opcode: %lx",
24374 (unsigned long) newval);
24375 break;
24376 }
24377 md_number_to_chars (buf, newval, THUMB_SIZE);
24378 break;
24379
24380 case BFD_RELOC_ARM_THUMB_ADD:
24381 /* This is a complicated relocation, since we use it for all of
24382 the following immediate relocations:
24383
24384 3bit ADD/SUB
24385 8bit ADD/SUB
24386 9bit ADD/SUB SP word-aligned
24387 10bit ADD PC/SP word-aligned
24388
24389 The type of instruction being processed is encoded in the
24390 instruction field:
24391
24392 0x8000 SUB
24393 0x00F0 Rd
24394 0x000F Rs
24395 */
24396 newval = md_chars_to_number (buf, THUMB_SIZE);
24397 {
24398 int rd = (newval >> 4) & 0xf;
24399 int rs = newval & 0xf;
24400 int subtract = !!(newval & 0x8000);
24401
24402 /* Check for HI regs, only very restricted cases allowed:
24403 Adjusting SP, and using PC or SP to get an address. */
24404 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
24405 || (rs > 7 && rs != REG_SP && rs != REG_PC))
24406 as_bad_where (fixP->fx_file, fixP->fx_line,
24407 _("invalid Hi register with immediate"));
24408
24409 /* If value is negative, choose the opposite instruction. */
24410 if (value < 0)
24411 {
24412 value = -value;
24413 subtract = !subtract;
24414 if (value < 0)
24415 as_bad_where (fixP->fx_file, fixP->fx_line,
24416 _("immediate value out of range"));
24417 }
24418
24419 if (rd == REG_SP)
24420 {
24421 if (value & ~0x1fc)
24422 as_bad_where (fixP->fx_file, fixP->fx_line,
24423 _("invalid immediate for stack address calculation"));
24424 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
24425 newval |= value >> 2;
24426 }
24427 else if (rs == REG_PC || rs == REG_SP)
24428 {
24429 /* PR gas/18541. If the addition is for a defined symbol
24430 within range of an ADR instruction then accept it. */
24431 if (subtract
24432 && value == 4
24433 && fixP->fx_addsy != NULL)
24434 {
24435 subtract = 0;
24436
24437 if (! S_IS_DEFINED (fixP->fx_addsy)
24438 || S_GET_SEGMENT (fixP->fx_addsy) != seg
24439 || S_IS_WEAK (fixP->fx_addsy))
24440 {
24441 as_bad_where (fixP->fx_file, fixP->fx_line,
24442 _("address calculation needs a strongly defined nearby symbol"));
24443 }
24444 else
24445 {
24446 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
24447
24448 /* Round up to the next 4-byte boundary. */
24449 if (v & 3)
24450 v = (v + 3) & ~ 3;
24451 else
24452 v += 4;
24453 v = S_GET_VALUE (fixP->fx_addsy) - v;
24454
24455 if (v & ~0x3fc)
24456 {
24457 as_bad_where (fixP->fx_file, fixP->fx_line,
24458 _("symbol too far away"));
24459 }
24460 else
24461 {
24462 fixP->fx_done = 1;
24463 value = v;
24464 }
24465 }
24466 }
24467
24468 if (subtract || value & ~0x3fc)
24469 as_bad_where (fixP->fx_file, fixP->fx_line,
24470 _("invalid immediate for address calculation (value = 0x%08lX)"),
24471 (unsigned long) (subtract ? - value : value));
24472 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
24473 newval |= rd << 8;
24474 newval |= value >> 2;
24475 }
24476 else if (rs == rd)
24477 {
24478 if (value & ~0xff)
24479 as_bad_where (fixP->fx_file, fixP->fx_line,
24480 _("immediate value out of range"));
24481 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
24482 newval |= (rd << 8) | value;
24483 }
24484 else
24485 {
24486 if (value & ~0x7)
24487 as_bad_where (fixP->fx_file, fixP->fx_line,
24488 _("immediate value out of range"));
24489 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
24490 newval |= rd | (rs << 3) | (value << 6);
24491 }
24492 }
24493 md_number_to_chars (buf, newval, THUMB_SIZE);
24494 break;
24495
24496 case BFD_RELOC_ARM_THUMB_IMM:
24497 newval = md_chars_to_number (buf, THUMB_SIZE);
24498 if (value < 0 || value > 255)
24499 as_bad_where (fixP->fx_file, fixP->fx_line,
24500 _("invalid immediate: %ld is out of range"),
24501 (long) value);
24502 newval |= value;
24503 md_number_to_chars (buf, newval, THUMB_SIZE);
24504 break;
24505
24506 case BFD_RELOC_ARM_THUMB_SHIFT:
24507 /* 5bit shift value (0..32). LSL cannot take 32. */
24508 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
24509 temp = newval & 0xf800;
24510 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
24511 as_bad_where (fixP->fx_file, fixP->fx_line,
24512 _("invalid shift value: %ld"), (long) value);
24513 /* Shifts of zero must be encoded as LSL. */
24514 if (value == 0)
24515 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
24516 /* Shifts of 32 are encoded as zero. */
24517 else if (value == 32)
24518 value = 0;
24519 newval |= value << 6;
24520 md_number_to_chars (buf, newval, THUMB_SIZE);
24521 break;
24522
24523 case BFD_RELOC_VTABLE_INHERIT:
24524 case BFD_RELOC_VTABLE_ENTRY:
24525 fixP->fx_done = 0;
24526 return;
24527
24528 case BFD_RELOC_ARM_MOVW:
24529 case BFD_RELOC_ARM_MOVT:
24530 case BFD_RELOC_ARM_THUMB_MOVW:
24531 case BFD_RELOC_ARM_THUMB_MOVT:
24532 if (fixP->fx_done || !seg->use_rela_p)
24533 {
24534 /* REL format relocations are limited to a 16-bit addend. */
24535 if (!fixP->fx_done)
24536 {
24537 if (value < -0x8000 || value > 0x7fff)
24538 as_bad_where (fixP->fx_file, fixP->fx_line,
24539 _("offset out of range"));
24540 }
24541 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
24542 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24543 {
24544 value >>= 16;
24545 }
24546
24547 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
24548 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
24549 {
24550 newval = get_thumb32_insn (buf);
24551 newval &= 0xfbf08f00;
24552 newval |= (value & 0xf000) << 4;
24553 newval |= (value & 0x0800) << 15;
24554 newval |= (value & 0x0700) << 4;
24555 newval |= (value & 0x00ff);
24556 put_thumb32_insn (buf, newval);
24557 }
24558 else
24559 {
24560 newval = md_chars_to_number (buf, 4);
24561 newval &= 0xfff0f000;
24562 newval |= value & 0x0fff;
24563 newval |= (value & 0xf000) << 4;
24564 md_number_to_chars (buf, newval, 4);
24565 }
24566 }
24567 return;
24568
24569 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
24570 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
24571 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
24572 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
24573 gas_assert (!fixP->fx_done);
24574 {
24575 bfd_vma insn;
24576 bfd_boolean is_mov;
24577 bfd_vma encoded_addend = value;
24578
24579 /* Check that addend can be encoded in instruction. */
24580 if (!seg->use_rela_p && (value < 0 || value > 255))
24581 as_bad_where (fixP->fx_file, fixP->fx_line,
24582 _("the offset 0x%08lX is not representable"),
24583 (unsigned long) encoded_addend);
24584
24585 /* Extract the instruction. */
24586 insn = md_chars_to_number (buf, THUMB_SIZE);
24587 is_mov = (insn & 0xf800) == 0x2000;
24588
24589 /* Encode insn. */
24590 if (is_mov)
24591 {
24592 if (!seg->use_rela_p)
24593 insn |= encoded_addend;
24594 }
24595 else
24596 {
24597 int rd, rs;
24598
24599 /* Extract the instruction. */
24600 /* Encoding is the following
24601 0x8000 SUB
24602 0x00F0 Rd
24603 0x000F Rs
24604 */
24605 /* The following conditions must be true :
24606 - ADD
24607 - Rd == Rs
24608 - Rd <= 7
24609 */
24610 rd = (insn >> 4) & 0xf;
24611 rs = insn & 0xf;
24612 if ((insn & 0x8000) || (rd != rs) || rd > 7)
24613 as_bad_where (fixP->fx_file, fixP->fx_line,
24614 _("Unable to process relocation for thumb opcode: %lx"),
24615 (unsigned long) insn);
24616
24617 /* Encode as ADD immediate8 thumb 1 code. */
24618 insn = 0x3000 | (rd << 8);
24619
24620 /* Place the encoded addend into the first 8 bits of the
24621 instruction. */
24622 if (!seg->use_rela_p)
24623 insn |= encoded_addend;
24624 }
24625
24626 /* Update the instruction. */
24627 md_number_to_chars (buf, insn, THUMB_SIZE);
24628 }
24629 break;
24630
24631 case BFD_RELOC_ARM_ALU_PC_G0_NC:
24632 case BFD_RELOC_ARM_ALU_PC_G0:
24633 case BFD_RELOC_ARM_ALU_PC_G1_NC:
24634 case BFD_RELOC_ARM_ALU_PC_G1:
24635 case BFD_RELOC_ARM_ALU_PC_G2:
24636 case BFD_RELOC_ARM_ALU_SB_G0_NC:
24637 case BFD_RELOC_ARM_ALU_SB_G0:
24638 case BFD_RELOC_ARM_ALU_SB_G1_NC:
24639 case BFD_RELOC_ARM_ALU_SB_G1:
24640 case BFD_RELOC_ARM_ALU_SB_G2:
24641 gas_assert (!fixP->fx_done);
24642 if (!seg->use_rela_p)
24643 {
24644 bfd_vma insn;
24645 bfd_vma encoded_addend;
24646 bfd_vma addend_abs = llabs (value);
24647
24648 /* Check that the absolute value of the addend can be
24649 expressed as an 8-bit constant plus a rotation. */
24650 encoded_addend = encode_arm_immediate (addend_abs);
24651 if (encoded_addend == (unsigned int) FAIL)
24652 as_bad_where (fixP->fx_file, fixP->fx_line,
24653 _("the offset 0x%08lX is not representable"),
24654 (unsigned long) addend_abs);
24655
24656 /* Extract the instruction. */
24657 insn = md_chars_to_number (buf, INSN_SIZE);
24658
24659 /* If the addend is positive, use an ADD instruction.
24660 Otherwise use a SUB. Take care not to destroy the S bit. */
24661 insn &= 0xff1fffff;
24662 if (value < 0)
24663 insn |= 1 << 22;
24664 else
24665 insn |= 1 << 23;
24666
24667 /* Place the encoded addend into the first 12 bits of the
24668 instruction. */
24669 insn &= 0xfffff000;
24670 insn |= encoded_addend;
24671
24672 /* Update the instruction. */
24673 md_number_to_chars (buf, insn, INSN_SIZE);
24674 }
24675 break;
24676
24677 case BFD_RELOC_ARM_LDR_PC_G0:
24678 case BFD_RELOC_ARM_LDR_PC_G1:
24679 case BFD_RELOC_ARM_LDR_PC_G2:
24680 case BFD_RELOC_ARM_LDR_SB_G0:
24681 case BFD_RELOC_ARM_LDR_SB_G1:
24682 case BFD_RELOC_ARM_LDR_SB_G2:
24683 gas_assert (!fixP->fx_done);
24684 if (!seg->use_rela_p)
24685 {
24686 bfd_vma insn;
24687 bfd_vma addend_abs = llabs (value);
24688
24689 /* Check that the absolute value of the addend can be
24690 encoded in 12 bits. */
24691 if (addend_abs >= 0x1000)
24692 as_bad_where (fixP->fx_file, fixP->fx_line,
24693 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
24694 (unsigned long) addend_abs);
24695
24696 /* Extract the instruction. */
24697 insn = md_chars_to_number (buf, INSN_SIZE);
24698
24699 /* If the addend is negative, clear bit 23 of the instruction.
24700 Otherwise set it. */
24701 if (value < 0)
24702 insn &= ~(1 << 23);
24703 else
24704 insn |= 1 << 23;
24705
24706 /* Place the absolute value of the addend into the first 12 bits
24707 of the instruction. */
24708 insn &= 0xfffff000;
24709 insn |= addend_abs;
24710
24711 /* Update the instruction. */
24712 md_number_to_chars (buf, insn, INSN_SIZE);
24713 }
24714 break;
24715
24716 case BFD_RELOC_ARM_LDRS_PC_G0:
24717 case BFD_RELOC_ARM_LDRS_PC_G1:
24718 case BFD_RELOC_ARM_LDRS_PC_G2:
24719 case BFD_RELOC_ARM_LDRS_SB_G0:
24720 case BFD_RELOC_ARM_LDRS_SB_G1:
24721 case BFD_RELOC_ARM_LDRS_SB_G2:
24722 gas_assert (!fixP->fx_done);
24723 if (!seg->use_rela_p)
24724 {
24725 bfd_vma insn;
24726 bfd_vma addend_abs = llabs (value);
24727
24728 /* Check that the absolute value of the addend can be
24729 encoded in 8 bits. */
24730 if (addend_abs >= 0x100)
24731 as_bad_where (fixP->fx_file, fixP->fx_line,
24732 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
24733 (unsigned long) addend_abs);
24734
24735 /* Extract the instruction. */
24736 insn = md_chars_to_number (buf, INSN_SIZE);
24737
24738 /* If the addend is negative, clear bit 23 of the instruction.
24739 Otherwise set it. */
24740 if (value < 0)
24741 insn &= ~(1 << 23);
24742 else
24743 insn |= 1 << 23;
24744
24745 /* Place the first four bits of the absolute value of the addend
24746 into the first 4 bits of the instruction, and the remaining
24747 four into bits 8 .. 11. */
24748 insn &= 0xfffff0f0;
24749 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
24750
24751 /* Update the instruction. */
24752 md_number_to_chars (buf, insn, INSN_SIZE);
24753 }
24754 break;
24755
24756 case BFD_RELOC_ARM_LDC_PC_G0:
24757 case BFD_RELOC_ARM_LDC_PC_G1:
24758 case BFD_RELOC_ARM_LDC_PC_G2:
24759 case BFD_RELOC_ARM_LDC_SB_G0:
24760 case BFD_RELOC_ARM_LDC_SB_G1:
24761 case BFD_RELOC_ARM_LDC_SB_G2:
24762 gas_assert (!fixP->fx_done);
24763 if (!seg->use_rela_p)
24764 {
24765 bfd_vma insn;
24766 bfd_vma addend_abs = llabs (value);
24767
24768 /* Check that the absolute value of the addend is a multiple of
24769 four and, when divided by four, fits in 8 bits. */
24770 if (addend_abs & 0x3)
24771 as_bad_where (fixP->fx_file, fixP->fx_line,
24772 _("bad offset 0x%08lX (must be word-aligned)"),
24773 (unsigned long) addend_abs);
24774
24775 if ((addend_abs >> 2) > 0xff)
24776 as_bad_where (fixP->fx_file, fixP->fx_line,
24777 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
24778 (unsigned long) addend_abs);
24779
24780 /* Extract the instruction. */
24781 insn = md_chars_to_number (buf, INSN_SIZE);
24782
24783 /* If the addend is negative, clear bit 23 of the instruction.
24784 Otherwise set it. */
24785 if (value < 0)
24786 insn &= ~(1 << 23);
24787 else
24788 insn |= 1 << 23;
24789
24790 /* Place the addend (divided by four) into the first eight
24791 bits of the instruction. */
24792 insn &= 0xfffffff0;
24793 insn |= addend_abs >> 2;
24794
24795 /* Update the instruction. */
24796 md_number_to_chars (buf, insn, INSN_SIZE);
24797 }
24798 break;
24799
24800 case BFD_RELOC_THUMB_PCREL_BRANCH5:
24801 if (fixP->fx_addsy
24802 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24803 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24804 && ARM_IS_FUNC (fixP->fx_addsy)
24805 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
24806 {
24807 /* Force a relocation for a branch 5 bits wide. */
24808 fixP->fx_done = 0;
24809 }
24810 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
24811 as_bad_where (fixP->fx_file, fixP->fx_line,
24812 BAD_BRANCH_OFF);
24813
24814 if (fixP->fx_done || !seg->use_rela_p)
24815 {
24816 addressT boff = value >> 1;
24817
24818 newval = md_chars_to_number (buf, THUMB_SIZE);
24819 newval |= (boff << 7);
24820 md_number_to_chars (buf, newval, THUMB_SIZE);
24821 }
24822 break;
24823
24824 case BFD_RELOC_ARM_THUMB_BF17:
24825 if (fixP->fx_addsy
24826 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
24827 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
24828 && ARM_IS_FUNC (fixP->fx_addsy)
24829 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
24830 {
24831 /* Force a relocation for a branch 17 bits wide. */
24832 fixP->fx_done = 0;
24833 }
24834
24835 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
24836 as_bad_where (fixP->fx_file, fixP->fx_line,
24837 BAD_BRANCH_OFF);
24838
24839 if (fixP->fx_done || !seg->use_rela_p)
24840 {
24841 offsetT newval2;
24842 addressT immA, immB, immC;
24843
24844 immA = (value & 0x0001f000) >> 12;
24845 immB = (value & 0x00000ffc) >> 2;
24846 immC = (value & 0x00000002) >> 1;
24847
24848 newval = md_chars_to_number (buf, THUMB_SIZE);
24849 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
24850 newval |= immA;
24851 newval2 |= (immC << 11) | (immB << 1);
24852 md_number_to_chars (buf, newval, THUMB_SIZE);
24853 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
24854 }
24855 break;
24856
24857 case BFD_RELOC_ARM_V4BX:
24858 /* This will need to go in the object file. */
24859 fixP->fx_done = 0;
24860 break;
24861
24862 case BFD_RELOC_UNUSED:
24863 default:
24864 as_bad_where (fixP->fx_file, fixP->fx_line,
24865 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
24866 }
24867 }
24868
24869 /* Translate internal representation of relocation info to BFD target
24870 format. */
24871
24872 arelent *
24873 tc_gen_reloc (asection *section, fixS *fixp)
24874 {
24875 arelent * reloc;
24876 bfd_reloc_code_real_type code;
24877
24878 reloc = XNEW (arelent);
24879
24880 reloc->sym_ptr_ptr = XNEW (asymbol *);
24881 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
24882 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
24883
24884 if (fixp->fx_pcrel)
24885 {
24886 if (section->use_rela_p)
24887 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
24888 else
24889 fixp->fx_offset = reloc->address;
24890 }
24891 reloc->addend = fixp->fx_offset;
24892
24893 switch (fixp->fx_r_type)
24894 {
24895 case BFD_RELOC_8:
24896 if (fixp->fx_pcrel)
24897 {
24898 code = BFD_RELOC_8_PCREL;
24899 break;
24900 }
24901 /* Fall through. */
24902
24903 case BFD_RELOC_16:
24904 if (fixp->fx_pcrel)
24905 {
24906 code = BFD_RELOC_16_PCREL;
24907 break;
24908 }
24909 /* Fall through. */
24910
24911 case BFD_RELOC_32:
24912 if (fixp->fx_pcrel)
24913 {
24914 code = BFD_RELOC_32_PCREL;
24915 break;
24916 }
24917 /* Fall through. */
24918
24919 case BFD_RELOC_ARM_MOVW:
24920 if (fixp->fx_pcrel)
24921 {
24922 code = BFD_RELOC_ARM_MOVW_PCREL;
24923 break;
24924 }
24925 /* Fall through. */
24926
24927 case BFD_RELOC_ARM_MOVT:
24928 if (fixp->fx_pcrel)
24929 {
24930 code = BFD_RELOC_ARM_MOVT_PCREL;
24931 break;
24932 }
24933 /* Fall through. */
24934
24935 case BFD_RELOC_ARM_THUMB_MOVW:
24936 if (fixp->fx_pcrel)
24937 {
24938 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
24939 break;
24940 }
24941 /* Fall through. */
24942
24943 case BFD_RELOC_ARM_THUMB_MOVT:
24944 if (fixp->fx_pcrel)
24945 {
24946 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
24947 break;
24948 }
24949 /* Fall through. */
24950
24951 case BFD_RELOC_NONE:
24952 case BFD_RELOC_ARM_PCREL_BRANCH:
24953 case BFD_RELOC_ARM_PCREL_BLX:
24954 case BFD_RELOC_RVA:
24955 case BFD_RELOC_THUMB_PCREL_BRANCH7:
24956 case BFD_RELOC_THUMB_PCREL_BRANCH9:
24957 case BFD_RELOC_THUMB_PCREL_BRANCH12:
24958 case BFD_RELOC_THUMB_PCREL_BRANCH20:
24959 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24960 case BFD_RELOC_THUMB_PCREL_BRANCH25:
24961 case BFD_RELOC_VTABLE_ENTRY:
24962 case BFD_RELOC_VTABLE_INHERIT:
24963 #ifdef TE_PE
24964 case BFD_RELOC_32_SECREL:
24965 #endif
24966 code = fixp->fx_r_type;
24967 break;
24968
24969 case BFD_RELOC_THUMB_PCREL_BLX:
24970 #ifdef OBJ_ELF
24971 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
24972 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
24973 else
24974 #endif
24975 code = BFD_RELOC_THUMB_PCREL_BLX;
24976 break;
24977
24978 case BFD_RELOC_ARM_LITERAL:
24979 case BFD_RELOC_ARM_HWLITERAL:
24980 /* If this is called then the a literal has
24981 been referenced across a section boundary. */
24982 as_bad_where (fixp->fx_file, fixp->fx_line,
24983 _("literal referenced across section boundary"));
24984 return NULL;
24985
24986 #ifdef OBJ_ELF
24987 case BFD_RELOC_ARM_TLS_CALL:
24988 case BFD_RELOC_ARM_THM_TLS_CALL:
24989 case BFD_RELOC_ARM_TLS_DESCSEQ:
24990 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
24991 case BFD_RELOC_ARM_GOT32:
24992 case BFD_RELOC_ARM_GOTOFF:
24993 case BFD_RELOC_ARM_GOT_PREL:
24994 case BFD_RELOC_ARM_PLT32:
24995 case BFD_RELOC_ARM_TARGET1:
24996 case BFD_RELOC_ARM_ROSEGREL32:
24997 case BFD_RELOC_ARM_SBREL32:
24998 case BFD_RELOC_ARM_PREL31:
24999 case BFD_RELOC_ARM_TARGET2:
25000 case BFD_RELOC_ARM_TLS_LDO32:
25001 case BFD_RELOC_ARM_PCREL_CALL:
25002 case BFD_RELOC_ARM_PCREL_JUMP:
25003 case BFD_RELOC_ARM_ALU_PC_G0_NC:
25004 case BFD_RELOC_ARM_ALU_PC_G0:
25005 case BFD_RELOC_ARM_ALU_PC_G1_NC:
25006 case BFD_RELOC_ARM_ALU_PC_G1:
25007 case BFD_RELOC_ARM_ALU_PC_G2:
25008 case BFD_RELOC_ARM_LDR_PC_G0:
25009 case BFD_RELOC_ARM_LDR_PC_G1:
25010 case BFD_RELOC_ARM_LDR_PC_G2:
25011 case BFD_RELOC_ARM_LDRS_PC_G0:
25012 case BFD_RELOC_ARM_LDRS_PC_G1:
25013 case BFD_RELOC_ARM_LDRS_PC_G2:
25014 case BFD_RELOC_ARM_LDC_PC_G0:
25015 case BFD_RELOC_ARM_LDC_PC_G1:
25016 case BFD_RELOC_ARM_LDC_PC_G2:
25017 case BFD_RELOC_ARM_ALU_SB_G0_NC:
25018 case BFD_RELOC_ARM_ALU_SB_G0:
25019 case BFD_RELOC_ARM_ALU_SB_G1_NC:
25020 case BFD_RELOC_ARM_ALU_SB_G1:
25021 case BFD_RELOC_ARM_ALU_SB_G2:
25022 case BFD_RELOC_ARM_LDR_SB_G0:
25023 case BFD_RELOC_ARM_LDR_SB_G1:
25024 case BFD_RELOC_ARM_LDR_SB_G2:
25025 case BFD_RELOC_ARM_LDRS_SB_G0:
25026 case BFD_RELOC_ARM_LDRS_SB_G1:
25027 case BFD_RELOC_ARM_LDRS_SB_G2:
25028 case BFD_RELOC_ARM_LDC_SB_G0:
25029 case BFD_RELOC_ARM_LDC_SB_G1:
25030 case BFD_RELOC_ARM_LDC_SB_G2:
25031 case BFD_RELOC_ARM_V4BX:
25032 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
25033 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
25034 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
25035 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
25036 case BFD_RELOC_ARM_GOTFUNCDESC:
25037 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
25038 case BFD_RELOC_ARM_FUNCDESC:
25039 case BFD_RELOC_ARM_THUMB_BF17:
25040 code = fixp->fx_r_type;
25041 break;
25042
25043 case BFD_RELOC_ARM_TLS_GOTDESC:
25044 case BFD_RELOC_ARM_TLS_GD32:
25045 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
25046 case BFD_RELOC_ARM_TLS_LE32:
25047 case BFD_RELOC_ARM_TLS_IE32:
25048 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
25049 case BFD_RELOC_ARM_TLS_LDM32:
25050 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
25051 /* BFD will include the symbol's address in the addend.
25052 But we don't want that, so subtract it out again here. */
25053 if (!S_IS_COMMON (fixp->fx_addsy))
25054 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
25055 code = fixp->fx_r_type;
25056 break;
25057 #endif
25058
25059 case BFD_RELOC_ARM_IMMEDIATE:
25060 as_bad_where (fixp->fx_file, fixp->fx_line,
25061 _("internal relocation (type: IMMEDIATE) not fixed up"));
25062 return NULL;
25063
25064 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
25065 as_bad_where (fixp->fx_file, fixp->fx_line,
25066 _("ADRL used for a symbol not defined in the same file"));
25067 return NULL;
25068
25069 case BFD_RELOC_THUMB_PCREL_BRANCH5:
25070 as_bad_where (fixp->fx_file, fixp->fx_line,
25071 _("%s used for a symbol not defined in the same file"),
25072 bfd_get_reloc_code_name (fixp->fx_r_type));
25073 return NULL;
25074
25075 case BFD_RELOC_ARM_OFFSET_IMM:
25076 if (section->use_rela_p)
25077 {
25078 code = fixp->fx_r_type;
25079 break;
25080 }
25081
25082 if (fixp->fx_addsy != NULL
25083 && !S_IS_DEFINED (fixp->fx_addsy)
25084 && S_IS_LOCAL (fixp->fx_addsy))
25085 {
25086 as_bad_where (fixp->fx_file, fixp->fx_line,
25087 _("undefined local label `%s'"),
25088 S_GET_NAME (fixp->fx_addsy));
25089 return NULL;
25090 }
25091
25092 as_bad_where (fixp->fx_file, fixp->fx_line,
25093 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
25094 return NULL;
25095
25096 default:
25097 {
25098 const char * type;
25099
25100 switch (fixp->fx_r_type)
25101 {
25102 case BFD_RELOC_NONE: type = "NONE"; break;
25103 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
25104 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
25105 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
25106 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
25107 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
25108 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
25109 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
25110 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
25111 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
25112 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
25113 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
25114 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
25115 default: type = _("<unknown>"); break;
25116 }
25117 as_bad_where (fixp->fx_file, fixp->fx_line,
25118 _("cannot represent %s relocation in this object file format"),
25119 type);
25120 return NULL;
25121 }
25122 }
25123
25124 #ifdef OBJ_ELF
25125 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
25126 && GOT_symbol
25127 && fixp->fx_addsy == GOT_symbol)
25128 {
25129 code = BFD_RELOC_ARM_GOTPC;
25130 reloc->addend = fixp->fx_offset = reloc->address;
25131 }
25132 #endif
25133
25134 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
25135
25136 if (reloc->howto == NULL)
25137 {
25138 as_bad_where (fixp->fx_file, fixp->fx_line,
25139 _("cannot represent %s relocation in this object file format"),
25140 bfd_get_reloc_code_name (code));
25141 return NULL;
25142 }
25143
25144 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
25145 vtable entry to be used in the relocation's section offset. */
25146 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
25147 reloc->address = fixp->fx_offset;
25148
25149 return reloc;
25150 }
25151
25152 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
25153
25154 void
25155 cons_fix_new_arm (fragS * frag,
25156 int where,
25157 int size,
25158 expressionS * exp,
25159 bfd_reloc_code_real_type reloc)
25160 {
25161 int pcrel = 0;
25162
25163 /* Pick a reloc.
25164 FIXME: @@ Should look at CPU word size. */
25165 switch (size)
25166 {
25167 case 1:
25168 reloc = BFD_RELOC_8;
25169 break;
25170 case 2:
25171 reloc = BFD_RELOC_16;
25172 break;
25173 case 4:
25174 default:
25175 reloc = BFD_RELOC_32;
25176 break;
25177 case 8:
25178 reloc = BFD_RELOC_64;
25179 break;
25180 }
25181
25182 #ifdef TE_PE
25183 if (exp->X_op == O_secrel)
25184 {
25185 exp->X_op = O_symbol;
25186 reloc = BFD_RELOC_32_SECREL;
25187 }
25188 #endif
25189
25190 fix_new_exp (frag, where, size, exp, pcrel, reloc);
25191 }
25192
25193 #if defined (OBJ_COFF)
25194 void
25195 arm_validate_fix (fixS * fixP)
25196 {
25197 /* If the destination of the branch is a defined symbol which does not have
25198 the THUMB_FUNC attribute, then we must be calling a function which has
25199 the (interfacearm) attribute. We look for the Thumb entry point to that
25200 function and change the branch to refer to that function instead. */
25201 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
25202 && fixP->fx_addsy != NULL
25203 && S_IS_DEFINED (fixP->fx_addsy)
25204 && ! THUMB_IS_FUNC (fixP->fx_addsy))
25205 {
25206 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
25207 }
25208 }
25209 #endif
25210
25211
25212 int
25213 arm_force_relocation (struct fix * fixp)
25214 {
25215 #if defined (OBJ_COFF) && defined (TE_PE)
25216 if (fixp->fx_r_type == BFD_RELOC_RVA)
25217 return 1;
25218 #endif
25219
25220 /* In case we have a call or a branch to a function in ARM ISA mode from
25221 a thumb function or vice-versa force the relocation. These relocations
25222 are cleared off for some cores that might have blx and simple transformations
25223 are possible. */
25224
25225 #ifdef OBJ_ELF
25226 switch (fixp->fx_r_type)
25227 {
25228 case BFD_RELOC_ARM_PCREL_JUMP:
25229 case BFD_RELOC_ARM_PCREL_CALL:
25230 case BFD_RELOC_THUMB_PCREL_BLX:
25231 if (THUMB_IS_FUNC (fixp->fx_addsy))
25232 return 1;
25233 break;
25234
25235 case BFD_RELOC_ARM_PCREL_BLX:
25236 case BFD_RELOC_THUMB_PCREL_BRANCH25:
25237 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25238 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25239 if (ARM_IS_FUNC (fixp->fx_addsy))
25240 return 1;
25241 break;
25242
25243 default:
25244 break;
25245 }
25246 #endif
25247
25248 /* Resolve these relocations even if the symbol is extern or weak.
25249 Technically this is probably wrong due to symbol preemption.
25250 In practice these relocations do not have enough range to be useful
25251 at dynamic link time, and some code (e.g. in the Linux kernel)
25252 expects these references to be resolved. */
25253 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
25254 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
25255 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
25256 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
25257 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
25258 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
25259 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
25260 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
25261 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
25262 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
25263 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
25264 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
25265 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
25266 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
25267 return 0;
25268
25269 /* Always leave these relocations for the linker. */
25270 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25271 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25272 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
25273 return 1;
25274
25275 /* Always generate relocations against function symbols. */
25276 if (fixp->fx_r_type == BFD_RELOC_32
25277 && fixp->fx_addsy
25278 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
25279 return 1;
25280
25281 return generic_force_reloc (fixp);
25282 }
25283
25284 #if defined (OBJ_ELF) || defined (OBJ_COFF)
25285 /* Relocations against function names must be left unadjusted,
25286 so that the linker can use this information to generate interworking
25287 stubs. The MIPS version of this function
25288 also prevents relocations that are mips-16 specific, but I do not
25289 know why it does this.
25290
25291 FIXME:
25292 There is one other problem that ought to be addressed here, but
25293 which currently is not: Taking the address of a label (rather
25294 than a function) and then later jumping to that address. Such
25295 addresses also ought to have their bottom bit set (assuming that
25296 they reside in Thumb code), but at the moment they will not. */
25297
25298 bfd_boolean
25299 arm_fix_adjustable (fixS * fixP)
25300 {
25301 if (fixP->fx_addsy == NULL)
25302 return 1;
25303
25304 /* Preserve relocations against symbols with function type. */
25305 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
25306 return FALSE;
25307
25308 if (THUMB_IS_FUNC (fixP->fx_addsy)
25309 && fixP->fx_subsy == NULL)
25310 return FALSE;
25311
25312 /* We need the symbol name for the VTABLE entries. */
25313 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
25314 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
25315 return FALSE;
25316
25317 /* Don't allow symbols to be discarded on GOT related relocs. */
25318 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
25319 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
25320 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
25321 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
25322 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
25323 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
25324 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
25325 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
25326 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
25327 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
25328 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
25329 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
25330 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
25331 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
25332 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
25333 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
25334 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
25335 return FALSE;
25336
25337 /* Similarly for group relocations. */
25338 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
25339 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
25340 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
25341 return FALSE;
25342
25343 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
25344 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
25345 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
25346 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
25347 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
25348 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
25349 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
25350 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
25351 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
25352 return FALSE;
25353
25354 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
25355 offsets, so keep these symbols. */
25356 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
25357 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
25358 return FALSE;
25359
25360 return TRUE;
25361 }
25362 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
25363
25364 #ifdef OBJ_ELF
25365 const char *
25366 elf32_arm_target_format (void)
25367 {
25368 #ifdef TE_SYMBIAN
25369 return (target_big_endian
25370 ? "elf32-bigarm-symbian"
25371 : "elf32-littlearm-symbian");
25372 #elif defined (TE_VXWORKS)
25373 return (target_big_endian
25374 ? "elf32-bigarm-vxworks"
25375 : "elf32-littlearm-vxworks");
25376 #elif defined (TE_NACL)
25377 return (target_big_endian
25378 ? "elf32-bigarm-nacl"
25379 : "elf32-littlearm-nacl");
25380 #else
25381 if (arm_fdpic)
25382 {
25383 if (target_big_endian)
25384 return "elf32-bigarm-fdpic";
25385 else
25386 return "elf32-littlearm-fdpic";
25387 }
25388 else
25389 {
25390 if (target_big_endian)
25391 return "elf32-bigarm";
25392 else
25393 return "elf32-littlearm";
25394 }
25395 #endif
25396 }
25397
25398 void
25399 armelf_frob_symbol (symbolS * symp,
25400 int * puntp)
25401 {
25402 elf_frob_symbol (symp, puntp);
25403 }
25404 #endif
25405
25406 /* MD interface: Finalization. */
25407
25408 void
25409 arm_cleanup (void)
25410 {
25411 literal_pool * pool;
25412
25413 /* Ensure that all the IT blocks are properly closed. */
25414 check_it_blocks_finished ();
25415
25416 for (pool = list_of_pools; pool; pool = pool->next)
25417 {
25418 /* Put it at the end of the relevant section. */
25419 subseg_set (pool->section, pool->sub_section);
25420 #ifdef OBJ_ELF
25421 arm_elf_change_section ();
25422 #endif
25423 s_ltorg (0);
25424 }
25425 }
25426
25427 #ifdef OBJ_ELF
25428 /* Remove any excess mapping symbols generated for alignment frags in
25429 SEC. We may have created a mapping symbol before a zero byte
25430 alignment; remove it if there's a mapping symbol after the
25431 alignment. */
25432 static void
25433 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
25434 void *dummy ATTRIBUTE_UNUSED)
25435 {
25436 segment_info_type *seginfo = seg_info (sec);
25437 fragS *fragp;
25438
25439 if (seginfo == NULL || seginfo->frchainP == NULL)
25440 return;
25441
25442 for (fragp = seginfo->frchainP->frch_root;
25443 fragp != NULL;
25444 fragp = fragp->fr_next)
25445 {
25446 symbolS *sym = fragp->tc_frag_data.last_map;
25447 fragS *next = fragp->fr_next;
25448
25449 /* Variable-sized frags have been converted to fixed size by
25450 this point. But if this was variable-sized to start with,
25451 there will be a fixed-size frag after it. So don't handle
25452 next == NULL. */
25453 if (sym == NULL || next == NULL)
25454 continue;
25455
25456 if (S_GET_VALUE (sym) < next->fr_address)
25457 /* Not at the end of this frag. */
25458 continue;
25459 know (S_GET_VALUE (sym) == next->fr_address);
25460
25461 do
25462 {
25463 if (next->tc_frag_data.first_map != NULL)
25464 {
25465 /* Next frag starts with a mapping symbol. Discard this
25466 one. */
25467 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25468 break;
25469 }
25470
25471 if (next->fr_next == NULL)
25472 {
25473 /* This mapping symbol is at the end of the section. Discard
25474 it. */
25475 know (next->fr_fix == 0 && next->fr_var == 0);
25476 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
25477 break;
25478 }
25479
25480 /* As long as we have empty frags without any mapping symbols,
25481 keep looking. */
25482 /* If the next frag is non-empty and does not start with a
25483 mapping symbol, then this mapping symbol is required. */
25484 if (next->fr_address != next->fr_next->fr_address)
25485 break;
25486
25487 next = next->fr_next;
25488 }
25489 while (next != NULL);
25490 }
25491 }
25492 #endif
25493
25494 /* Adjust the symbol table. This marks Thumb symbols as distinct from
25495 ARM ones. */
25496
25497 void
25498 arm_adjust_symtab (void)
25499 {
25500 #ifdef OBJ_COFF
25501 symbolS * sym;
25502
25503 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
25504 {
25505 if (ARM_IS_THUMB (sym))
25506 {
25507 if (THUMB_IS_FUNC (sym))
25508 {
25509 /* Mark the symbol as a Thumb function. */
25510 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
25511 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
25512 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
25513
25514 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
25515 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
25516 else
25517 as_bad (_("%s: unexpected function type: %d"),
25518 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
25519 }
25520 else switch (S_GET_STORAGE_CLASS (sym))
25521 {
25522 case C_EXT:
25523 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
25524 break;
25525 case C_STAT:
25526 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
25527 break;
25528 case C_LABEL:
25529 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
25530 break;
25531 default:
25532 /* Do nothing. */
25533 break;
25534 }
25535 }
25536
25537 if (ARM_IS_INTERWORK (sym))
25538 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
25539 }
25540 #endif
25541 #ifdef OBJ_ELF
25542 symbolS * sym;
25543 char bind;
25544
25545 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
25546 {
25547 if (ARM_IS_THUMB (sym))
25548 {
25549 elf_symbol_type * elf_sym;
25550
25551 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
25552 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
25553
25554 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
25555 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
25556 {
25557 /* If it's a .thumb_func, declare it as so,
25558 otherwise tag label as .code 16. */
25559 if (THUMB_IS_FUNC (sym))
25560 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
25561 ST_BRANCH_TO_THUMB);
25562 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
25563 elf_sym->internal_elf_sym.st_info =
25564 ELF_ST_INFO (bind, STT_ARM_16BIT);
25565 }
25566 }
25567 }
25568
25569 /* Remove any overlapping mapping symbols generated by alignment frags. */
25570 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
25571 /* Now do generic ELF adjustments. */
25572 elf_adjust_symtab ();
25573 #endif
25574 }
25575
25576 /* MD interface: Initialization. */
25577
25578 static void
25579 set_constant_flonums (void)
25580 {
25581 int i;
25582
25583 for (i = 0; i < NUM_FLOAT_VALS; i++)
25584 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
25585 abort ();
25586 }
25587
25588 /* Auto-select Thumb mode if it's the only available instruction set for the
25589 given architecture. */
25590
25591 static void
25592 autoselect_thumb_from_cpu_variant (void)
25593 {
25594 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
25595 opcode_select (16);
25596 }
25597
25598 void
25599 md_begin (void)
25600 {
25601 unsigned mach;
25602 unsigned int i;
25603
25604 if ( (arm_ops_hsh = hash_new ()) == NULL
25605 || (arm_cond_hsh = hash_new ()) == NULL
25606 || (arm_shift_hsh = hash_new ()) == NULL
25607 || (arm_psr_hsh = hash_new ()) == NULL
25608 || (arm_v7m_psr_hsh = hash_new ()) == NULL
25609 || (arm_reg_hsh = hash_new ()) == NULL
25610 || (arm_reloc_hsh = hash_new ()) == NULL
25611 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
25612 as_fatal (_("virtual memory exhausted"));
25613
25614 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
25615 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
25616 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
25617 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
25618 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
25619 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
25620 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
25621 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
25622 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
25623 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
25624 (void *) (v7m_psrs + i));
25625 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
25626 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
25627 for (i = 0;
25628 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
25629 i++)
25630 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
25631 (void *) (barrier_opt_names + i));
25632 #ifdef OBJ_ELF
25633 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
25634 {
25635 struct reloc_entry * entry = reloc_names + i;
25636
25637 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
25638 /* This makes encode_branch() use the EABI versions of this relocation. */
25639 entry->reloc = BFD_RELOC_UNUSED;
25640
25641 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
25642 }
25643 #endif
25644
25645 set_constant_flonums ();
25646
25647 /* Set the cpu variant based on the command-line options. We prefer
25648 -mcpu= over -march= if both are set (as for GCC); and we prefer
25649 -mfpu= over any other way of setting the floating point unit.
25650 Use of legacy options with new options are faulted. */
25651 if (legacy_cpu)
25652 {
25653 if (mcpu_cpu_opt || march_cpu_opt)
25654 as_bad (_("use of old and new-style options to set CPU type"));
25655
25656 selected_arch = *legacy_cpu;
25657 }
25658 else if (mcpu_cpu_opt)
25659 {
25660 selected_arch = *mcpu_cpu_opt;
25661 selected_ext = *mcpu_ext_opt;
25662 }
25663 else if (march_cpu_opt)
25664 {
25665 selected_arch = *march_cpu_opt;
25666 selected_ext = *march_ext_opt;
25667 }
25668 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
25669
25670 if (legacy_fpu)
25671 {
25672 if (mfpu_opt)
25673 as_bad (_("use of old and new-style options to set FPU type"));
25674
25675 selected_fpu = *legacy_fpu;
25676 }
25677 else if (mfpu_opt)
25678 selected_fpu = *mfpu_opt;
25679 else
25680 {
25681 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
25682 || defined (TE_NetBSD) || defined (TE_VXWORKS))
25683 /* Some environments specify a default FPU. If they don't, infer it
25684 from the processor. */
25685 if (mcpu_fpu_opt)
25686 selected_fpu = *mcpu_fpu_opt;
25687 else if (march_fpu_opt)
25688 selected_fpu = *march_fpu_opt;
25689 #else
25690 selected_fpu = fpu_default;
25691 #endif
25692 }
25693
25694 if (ARM_FEATURE_ZERO (selected_fpu))
25695 {
25696 if (!no_cpu_selected ())
25697 selected_fpu = fpu_default;
25698 else
25699 selected_fpu = fpu_arch_fpa;
25700 }
25701
25702 #ifdef CPU_DEFAULT
25703 if (ARM_FEATURE_ZERO (selected_arch))
25704 {
25705 selected_arch = cpu_default;
25706 selected_cpu = selected_arch;
25707 }
25708 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
25709 #else
25710 /* Autodection of feature mode: allow all features in cpu_variant but leave
25711 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
25712 after all instruction have been processed and we can decide what CPU
25713 should be selected. */
25714 if (ARM_FEATURE_ZERO (selected_arch))
25715 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
25716 else
25717 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
25718 #endif
25719
25720 autoselect_thumb_from_cpu_variant ();
25721
25722 arm_arch_used = thumb_arch_used = arm_arch_none;
25723
25724 #if defined OBJ_COFF || defined OBJ_ELF
25725 {
25726 unsigned int flags = 0;
25727
25728 #if defined OBJ_ELF
25729 flags = meabi_flags;
25730
25731 switch (meabi_flags)
25732 {
25733 case EF_ARM_EABI_UNKNOWN:
25734 #endif
25735 /* Set the flags in the private structure. */
25736 if (uses_apcs_26) flags |= F_APCS26;
25737 if (support_interwork) flags |= F_INTERWORK;
25738 if (uses_apcs_float) flags |= F_APCS_FLOAT;
25739 if (pic_code) flags |= F_PIC;
25740 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
25741 flags |= F_SOFT_FLOAT;
25742
25743 switch (mfloat_abi_opt)
25744 {
25745 case ARM_FLOAT_ABI_SOFT:
25746 case ARM_FLOAT_ABI_SOFTFP:
25747 flags |= F_SOFT_FLOAT;
25748 break;
25749
25750 case ARM_FLOAT_ABI_HARD:
25751 if (flags & F_SOFT_FLOAT)
25752 as_bad (_("hard-float conflicts with specified fpu"));
25753 break;
25754 }
25755
25756 /* Using pure-endian doubles (even if soft-float). */
25757 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
25758 flags |= F_VFP_FLOAT;
25759
25760 #if defined OBJ_ELF
25761 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
25762 flags |= EF_ARM_MAVERICK_FLOAT;
25763 break;
25764
25765 case EF_ARM_EABI_VER4:
25766 case EF_ARM_EABI_VER5:
25767 /* No additional flags to set. */
25768 break;
25769
25770 default:
25771 abort ();
25772 }
25773 #endif
25774 bfd_set_private_flags (stdoutput, flags);
25775
25776 /* We have run out flags in the COFF header to encode the
25777 status of ATPCS support, so instead we create a dummy,
25778 empty, debug section called .arm.atpcs. */
25779 if (atpcs)
25780 {
25781 asection * sec;
25782
25783 sec = bfd_make_section (stdoutput, ".arm.atpcs");
25784
25785 if (sec != NULL)
25786 {
25787 bfd_set_section_flags
25788 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
25789 bfd_set_section_size (stdoutput, sec, 0);
25790 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
25791 }
25792 }
25793 }
25794 #endif
25795
25796 /* Record the CPU type as well. */
25797 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
25798 mach = bfd_mach_arm_iWMMXt2;
25799 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
25800 mach = bfd_mach_arm_iWMMXt;
25801 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
25802 mach = bfd_mach_arm_XScale;
25803 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
25804 mach = bfd_mach_arm_ep9312;
25805 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
25806 mach = bfd_mach_arm_5TE;
25807 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
25808 {
25809 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
25810 mach = bfd_mach_arm_5T;
25811 else
25812 mach = bfd_mach_arm_5;
25813 }
25814 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
25815 {
25816 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
25817 mach = bfd_mach_arm_4T;
25818 else
25819 mach = bfd_mach_arm_4;
25820 }
25821 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
25822 mach = bfd_mach_arm_3M;
25823 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
25824 mach = bfd_mach_arm_3;
25825 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
25826 mach = bfd_mach_arm_2a;
25827 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
25828 mach = bfd_mach_arm_2;
25829 else
25830 mach = bfd_mach_arm_unknown;
25831
25832 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
25833 }
25834
25835 /* Command line processing. */
25836
25837 /* md_parse_option
25838 Invocation line includes a switch not recognized by the base assembler.
25839 See if it's a processor-specific option.
25840
25841 This routine is somewhat complicated by the need for backwards
25842 compatibility (since older releases of gcc can't be changed).
25843 The new options try to make the interface as compatible as
25844 possible with GCC.
25845
25846 New options (supported) are:
25847
25848 -mcpu=<cpu name> Assemble for selected processor
25849 -march=<architecture name> Assemble for selected architecture
25850 -mfpu=<fpu architecture> Assemble for selected FPU.
25851 -EB/-mbig-endian Big-endian
25852 -EL/-mlittle-endian Little-endian
25853 -k Generate PIC code
25854 -mthumb Start in Thumb mode
25855 -mthumb-interwork Code supports ARM/Thumb interworking
25856
25857 -m[no-]warn-deprecated Warn about deprecated features
25858 -m[no-]warn-syms Warn when symbols match instructions
25859
25860 For now we will also provide support for:
25861
25862 -mapcs-32 32-bit Program counter
25863 -mapcs-26 26-bit Program counter
25864 -macps-float Floats passed in FP registers
25865 -mapcs-reentrant Reentrant code
25866 -matpcs
25867 (sometime these will probably be replaced with -mapcs=<list of options>
25868 and -matpcs=<list of options>)
25869
25870 The remaining options are only supported for back-wards compatibility.
25871 Cpu variants, the arm part is optional:
25872 -m[arm]1 Currently not supported.
25873 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
25874 -m[arm]3 Arm 3 processor
25875 -m[arm]6[xx], Arm 6 processors
25876 -m[arm]7[xx][t][[d]m] Arm 7 processors
25877 -m[arm]8[10] Arm 8 processors
25878 -m[arm]9[20][tdmi] Arm 9 processors
25879 -mstrongarm[110[0]] StrongARM processors
25880 -mxscale XScale processors
25881 -m[arm]v[2345[t[e]]] Arm architectures
25882 -mall All (except the ARM1)
25883 FP variants:
25884 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
25885 -mfpe-old (No float load/store multiples)
25886 -mvfpxd VFP Single precision
25887 -mvfp All VFP
25888 -mno-fpu Disable all floating point instructions
25889
25890 The following CPU names are recognized:
25891 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
25892 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
25893 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
25894 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
25895 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
25896 arm10t arm10e, arm1020t, arm1020e, arm10200e,
25897 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
25898
25899 */
25900
25901 const char * md_shortopts = "m:k";
25902
25903 #ifdef ARM_BI_ENDIAN
25904 #define OPTION_EB (OPTION_MD_BASE + 0)
25905 #define OPTION_EL (OPTION_MD_BASE + 1)
25906 #else
25907 #if TARGET_BYTES_BIG_ENDIAN
25908 #define OPTION_EB (OPTION_MD_BASE + 0)
25909 #else
25910 #define OPTION_EL (OPTION_MD_BASE + 1)
25911 #endif
25912 #endif
25913 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
25914 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
25915
25916 struct option md_longopts[] =
25917 {
25918 #ifdef OPTION_EB
25919 {"EB", no_argument, NULL, OPTION_EB},
25920 #endif
25921 #ifdef OPTION_EL
25922 {"EL", no_argument, NULL, OPTION_EL},
25923 #endif
25924 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
25925 #ifdef OBJ_ELF
25926 {"fdpic", no_argument, NULL, OPTION_FDPIC},
25927 #endif
25928 {NULL, no_argument, NULL, 0}
25929 };
25930
25931 size_t md_longopts_size = sizeof (md_longopts);
25932
25933 struct arm_option_table
25934 {
25935 const char * option; /* Option name to match. */
25936 const char * help; /* Help information. */
25937 int * var; /* Variable to change. */
25938 int value; /* What to change it to. */
25939 const char * deprecated; /* If non-null, print this message. */
25940 };
25941
25942 struct arm_option_table arm_opts[] =
25943 {
25944 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
25945 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
25946 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
25947 &support_interwork, 1, NULL},
25948 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
25949 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
25950 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
25951 1, NULL},
25952 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
25953 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
25954 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
25955 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
25956 NULL},
25957
25958 /* These are recognized by the assembler, but have no affect on code. */
25959 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
25960 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
25961
25962 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
25963 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
25964 &warn_on_deprecated, 0, NULL},
25965 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
25966 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
25967 {NULL, NULL, NULL, 0, NULL}
25968 };
25969
25970 struct arm_legacy_option_table
25971 {
25972 const char * option; /* Option name to match. */
25973 const arm_feature_set ** var; /* Variable to change. */
25974 const arm_feature_set value; /* What to change it to. */
25975 const char * deprecated; /* If non-null, print this message. */
25976 };
25977
25978 const struct arm_legacy_option_table arm_legacy_opts[] =
25979 {
25980 /* DON'T add any new processors to this list -- we want the whole list
25981 to go away... Add them to the processors table instead. */
25982 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25983 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
25984 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25985 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
25986 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25987 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
25988 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25989 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
25990 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25991 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
25992 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25993 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
25994 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25995 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
25996 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25997 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
25998 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
25999 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
26000 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
26001 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
26002 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
26003 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
26004 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
26005 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
26006 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
26007 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
26008 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
26009 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
26010 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
26011 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
26012 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
26013 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
26014 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
26015 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
26016 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
26017 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
26018 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
26019 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
26020 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
26021 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
26022 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
26023 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
26024 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
26025 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
26026 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
26027 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
26028 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26029 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26030 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26031 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
26032 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
26033 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
26034 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
26035 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
26036 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
26037 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
26038 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
26039 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
26040 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
26041 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
26042 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
26043 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
26044 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
26045 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
26046 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
26047 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
26048 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
26049 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
26050 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
26051 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
26052 N_("use -mcpu=strongarm110")},
26053 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
26054 N_("use -mcpu=strongarm1100")},
26055 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
26056 N_("use -mcpu=strongarm1110")},
26057 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
26058 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
26059 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
26060
26061 /* Architecture variants -- don't add any more to this list either. */
26062 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
26063 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
26064 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
26065 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
26066 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
26067 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
26068 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
26069 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
26070 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
26071 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
26072 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
26073 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
26074 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
26075 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
26076 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
26077 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
26078 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
26079 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
26080
26081 /* Floating point variants -- don't add any more to this list either. */
26082 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
26083 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
26084 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
26085 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
26086 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
26087
26088 {NULL, NULL, ARM_ARCH_NONE, NULL}
26089 };
26090
26091 struct arm_cpu_option_table
26092 {
26093 const char * name;
26094 size_t name_len;
26095 const arm_feature_set value;
26096 const arm_feature_set ext;
26097 /* For some CPUs we assume an FPU unless the user explicitly sets
26098 -mfpu=... */
26099 const arm_feature_set default_fpu;
26100 /* The canonical name of the CPU, or NULL to use NAME converted to upper
26101 case. */
26102 const char * canonical_name;
26103 };
26104
26105 /* This list should, at a minimum, contain all the cpu names
26106 recognized by GCC. */
26107 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
26108
26109 static const struct arm_cpu_option_table arm_cpus[] =
26110 {
26111 ARM_CPU_OPT ("all", NULL, ARM_ANY,
26112 ARM_ARCH_NONE,
26113 FPU_ARCH_FPA),
26114 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
26115 ARM_ARCH_NONE,
26116 FPU_ARCH_FPA),
26117 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
26118 ARM_ARCH_NONE,
26119 FPU_ARCH_FPA),
26120 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
26121 ARM_ARCH_NONE,
26122 FPU_ARCH_FPA),
26123 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
26124 ARM_ARCH_NONE,
26125 FPU_ARCH_FPA),
26126 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
26127 ARM_ARCH_NONE,
26128 FPU_ARCH_FPA),
26129 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
26130 ARM_ARCH_NONE,
26131 FPU_ARCH_FPA),
26132 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
26133 ARM_ARCH_NONE,
26134 FPU_ARCH_FPA),
26135 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
26136 ARM_ARCH_NONE,
26137 FPU_ARCH_FPA),
26138 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
26139 ARM_ARCH_NONE,
26140 FPU_ARCH_FPA),
26141 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
26142 ARM_ARCH_NONE,
26143 FPU_ARCH_FPA),
26144 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
26145 ARM_ARCH_NONE,
26146 FPU_ARCH_FPA),
26147 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
26148 ARM_ARCH_NONE,
26149 FPU_ARCH_FPA),
26150 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
26151 ARM_ARCH_NONE,
26152 FPU_ARCH_FPA),
26153 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
26154 ARM_ARCH_NONE,
26155 FPU_ARCH_FPA),
26156 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
26157 ARM_ARCH_NONE,
26158 FPU_ARCH_FPA),
26159 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
26160 ARM_ARCH_NONE,
26161 FPU_ARCH_FPA),
26162 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
26163 ARM_ARCH_NONE,
26164 FPU_ARCH_FPA),
26165 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
26166 ARM_ARCH_NONE,
26167 FPU_ARCH_FPA),
26168 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
26169 ARM_ARCH_NONE,
26170 FPU_ARCH_FPA),
26171 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
26172 ARM_ARCH_NONE,
26173 FPU_ARCH_FPA),
26174 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
26175 ARM_ARCH_NONE,
26176 FPU_ARCH_FPA),
26177 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
26178 ARM_ARCH_NONE,
26179 FPU_ARCH_FPA),
26180 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
26181 ARM_ARCH_NONE,
26182 FPU_ARCH_FPA),
26183 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
26184 ARM_ARCH_NONE,
26185 FPU_ARCH_FPA),
26186 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
26187 ARM_ARCH_NONE,
26188 FPU_ARCH_FPA),
26189 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
26190 ARM_ARCH_NONE,
26191 FPU_ARCH_FPA),
26192 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
26193 ARM_ARCH_NONE,
26194 FPU_ARCH_FPA),
26195 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
26196 ARM_ARCH_NONE,
26197 FPU_ARCH_FPA),
26198 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
26199 ARM_ARCH_NONE,
26200 FPU_ARCH_FPA),
26201 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
26202 ARM_ARCH_NONE,
26203 FPU_ARCH_FPA),
26204 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
26205 ARM_ARCH_NONE,
26206 FPU_ARCH_FPA),
26207 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
26208 ARM_ARCH_NONE,
26209 FPU_ARCH_FPA),
26210 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
26211 ARM_ARCH_NONE,
26212 FPU_ARCH_FPA),
26213 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
26214 ARM_ARCH_NONE,
26215 FPU_ARCH_FPA),
26216 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
26217 ARM_ARCH_NONE,
26218 FPU_ARCH_FPA),
26219 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
26220 ARM_ARCH_NONE,
26221 FPU_ARCH_FPA),
26222 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
26223 ARM_ARCH_NONE,
26224 FPU_ARCH_FPA),
26225 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
26226 ARM_ARCH_NONE,
26227 FPU_ARCH_FPA),
26228 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
26229 ARM_ARCH_NONE,
26230 FPU_ARCH_FPA),
26231 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
26232 ARM_ARCH_NONE,
26233 FPU_ARCH_FPA),
26234 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
26235 ARM_ARCH_NONE,
26236 FPU_ARCH_FPA),
26237 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
26238 ARM_ARCH_NONE,
26239 FPU_ARCH_FPA),
26240 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
26241 ARM_ARCH_NONE,
26242 FPU_ARCH_FPA),
26243 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
26244 ARM_ARCH_NONE,
26245 FPU_ARCH_FPA),
26246 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
26247 ARM_ARCH_NONE,
26248 FPU_ARCH_FPA),
26249
26250 /* For V5 or later processors we default to using VFP; but the user
26251 should really set the FPU type explicitly. */
26252 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
26253 ARM_ARCH_NONE,
26254 FPU_ARCH_VFP_V2),
26255 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
26256 ARM_ARCH_NONE,
26257 FPU_ARCH_VFP_V2),
26258 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
26259 ARM_ARCH_NONE,
26260 FPU_ARCH_VFP_V2),
26261 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
26262 ARM_ARCH_NONE,
26263 FPU_ARCH_VFP_V2),
26264 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
26265 ARM_ARCH_NONE,
26266 FPU_ARCH_VFP_V2),
26267 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
26268 ARM_ARCH_NONE,
26269 FPU_ARCH_VFP_V2),
26270 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
26271 ARM_ARCH_NONE,
26272 FPU_ARCH_VFP_V2),
26273 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
26274 ARM_ARCH_NONE,
26275 FPU_ARCH_VFP_V2),
26276 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
26277 ARM_ARCH_NONE,
26278 FPU_ARCH_VFP_V2),
26279 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
26280 ARM_ARCH_NONE,
26281 FPU_ARCH_VFP_V2),
26282 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
26283 ARM_ARCH_NONE,
26284 FPU_ARCH_VFP_V2),
26285 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
26286 ARM_ARCH_NONE,
26287 FPU_ARCH_VFP_V2),
26288 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
26289 ARM_ARCH_NONE,
26290 FPU_ARCH_VFP_V1),
26291 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
26292 ARM_ARCH_NONE,
26293 FPU_ARCH_VFP_V1),
26294 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
26295 ARM_ARCH_NONE,
26296 FPU_ARCH_VFP_V2),
26297 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
26298 ARM_ARCH_NONE,
26299 FPU_ARCH_VFP_V2),
26300 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
26301 ARM_ARCH_NONE,
26302 FPU_ARCH_VFP_V1),
26303 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
26304 ARM_ARCH_NONE,
26305 FPU_ARCH_VFP_V2),
26306 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
26307 ARM_ARCH_NONE,
26308 FPU_ARCH_VFP_V2),
26309 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
26310 ARM_ARCH_NONE,
26311 FPU_ARCH_VFP_V2),
26312 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
26313 ARM_ARCH_NONE,
26314 FPU_ARCH_VFP_V2),
26315 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
26316 ARM_ARCH_NONE,
26317 FPU_ARCH_VFP_V2),
26318 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
26319 ARM_ARCH_NONE,
26320 FPU_ARCH_VFP_V2),
26321 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
26322 ARM_ARCH_NONE,
26323 FPU_ARCH_VFP_V2),
26324 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
26325 ARM_ARCH_NONE,
26326 FPU_ARCH_VFP_V2),
26327 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
26328 ARM_ARCH_NONE,
26329 FPU_ARCH_VFP_V2),
26330 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
26331 ARM_ARCH_NONE,
26332 FPU_NONE),
26333 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
26334 ARM_ARCH_NONE,
26335 FPU_NONE),
26336 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
26337 ARM_ARCH_NONE,
26338 FPU_ARCH_VFP_V2),
26339 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
26340 ARM_ARCH_NONE,
26341 FPU_ARCH_VFP_V2),
26342 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
26343 ARM_ARCH_NONE,
26344 FPU_ARCH_VFP_V2),
26345 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
26346 ARM_ARCH_NONE,
26347 FPU_NONE),
26348 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
26349 ARM_ARCH_NONE,
26350 FPU_NONE),
26351 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
26352 ARM_ARCH_NONE,
26353 FPU_ARCH_VFP_V2),
26354 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
26355 ARM_ARCH_NONE,
26356 FPU_NONE),
26357 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
26358 ARM_ARCH_NONE,
26359 FPU_ARCH_VFP_V2),
26360 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
26361 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26362 FPU_NONE),
26363 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
26364 ARM_ARCH_NONE,
26365 FPU_ARCH_NEON_VFP_V4),
26366 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
26367 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26368 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26369 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
26370 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26371 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
26372 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
26373 ARM_ARCH_NONE,
26374 FPU_ARCH_NEON_VFP_V4),
26375 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
26376 ARM_ARCH_NONE,
26377 FPU_ARCH_NEON_VFP_V4),
26378 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
26379 ARM_ARCH_NONE,
26380 FPU_ARCH_NEON_VFP_V4),
26381 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
26382 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26383 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26384 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
26385 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26386 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26387 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
26388 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26389 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26390 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
26391 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26392 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26393 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
26394 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26395 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26396 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
26397 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26398 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26399 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
26400 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26401 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26402 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
26403 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26404 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26405 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
26406 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26407 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26408 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
26409 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26410 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26411 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
26412 ARM_ARCH_NONE,
26413 FPU_NONE),
26414 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
26415 ARM_ARCH_NONE,
26416 FPU_ARCH_VFP_V3D16),
26417 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
26418 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26419 FPU_NONE),
26420 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
26421 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26422 FPU_ARCH_VFP_V3D16),
26423 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
26424 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
26425 FPU_ARCH_VFP_V3D16),
26426 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
26427 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26428 FPU_ARCH_NEON_VFP_ARMV8),
26429 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
26430 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26431 FPU_NONE),
26432 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
26433 ARM_ARCH_NONE,
26434 FPU_NONE),
26435 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
26436 ARM_ARCH_NONE,
26437 FPU_NONE),
26438 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
26439 ARM_ARCH_NONE,
26440 FPU_NONE),
26441 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
26442 ARM_ARCH_NONE,
26443 FPU_NONE),
26444 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
26445 ARM_ARCH_NONE,
26446 FPU_NONE),
26447 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
26448 ARM_ARCH_NONE,
26449 FPU_NONE),
26450 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
26451 ARM_ARCH_NONE,
26452 FPU_NONE),
26453 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
26454 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26455 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26456 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
26457 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26458 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
26459 /* ??? XSCALE is really an architecture. */
26460 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
26461 ARM_ARCH_NONE,
26462 FPU_ARCH_VFP_V2),
26463
26464 /* ??? iwmmxt is not a processor. */
26465 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
26466 ARM_ARCH_NONE,
26467 FPU_ARCH_VFP_V2),
26468 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
26469 ARM_ARCH_NONE,
26470 FPU_ARCH_VFP_V2),
26471 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
26472 ARM_ARCH_NONE,
26473 FPU_ARCH_VFP_V2),
26474
26475 /* Maverick. */
26476 ARM_CPU_OPT ("ep9312", "ARM920T",
26477 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
26478 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
26479
26480 /* Marvell processors. */
26481 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
26482 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26483 FPU_ARCH_VFP_V3D16),
26484 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
26485 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
26486 FPU_ARCH_NEON_VFP_V4),
26487
26488 /* APM X-Gene family. */
26489 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
26490 ARM_ARCH_NONE,
26491 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26492 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
26493 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26494 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
26495
26496 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
26497 };
26498 #undef ARM_CPU_OPT
26499
26500 struct arm_ext_table
26501 {
26502 const char * name;
26503 size_t name_len;
26504 const arm_feature_set merge;
26505 const arm_feature_set clear;
26506 };
26507
26508 struct arm_arch_option_table
26509 {
26510 const char * name;
26511 size_t name_len;
26512 const arm_feature_set value;
26513 const arm_feature_set default_fpu;
26514 const struct arm_ext_table * ext_table;
26515 };
26516
26517 /* Used to add support for +E and +noE extension. */
26518 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
26519 /* Used to add support for a +E extension. */
26520 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
26521 /* Used to add support for a +noE extension. */
26522 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
26523
26524 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
26525 ~0 & ~FPU_ENDIAN_PURE)
26526
26527 static const struct arm_ext_table armv5te_ext_table[] =
26528 {
26529 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
26530 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26531 };
26532
26533 static const struct arm_ext_table armv7_ext_table[] =
26534 {
26535 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26536 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26537 };
26538
26539 static const struct arm_ext_table armv7ve_ext_table[] =
26540 {
26541 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
26542 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
26543 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
26544 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26545 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
26546 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
26547 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
26548
26549 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
26550 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
26551
26552 /* Aliases for +simd. */
26553 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
26554
26555 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26556 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26557 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
26558
26559 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26560 };
26561
26562 static const struct arm_ext_table armv7a_ext_table[] =
26563 {
26564 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26565 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
26566 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
26567 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26568 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
26569 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
26570 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
26571
26572 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
26573 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
26574
26575 /* Aliases for +simd. */
26576 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26577 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
26578
26579 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
26580 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
26581
26582 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
26583 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
26584 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26585 };
26586
26587 static const struct arm_ext_table armv7r_ext_table[] =
26588 {
26589 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
26590 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
26591 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
26592 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
26593 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
26594 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
26595 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
26596 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
26597 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26598 };
26599
26600 static const struct arm_ext_table armv7em_ext_table[] =
26601 {
26602 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
26603 /* Alias for +fp, used to be known as fpv4-sp-d16. */
26604 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
26605 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
26606 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
26607 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
26608 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26609 };
26610
26611 static const struct arm_ext_table armv8a_ext_table[] =
26612 {
26613 ARM_ADD ("crc", ARCH_CRC_ARMV8),
26614 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
26615 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26616 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26617
26618 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26619 should use the +simd option to turn on FP. */
26620 ARM_REMOVE ("fp", ALL_FP),
26621 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26622 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26623 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26624 };
26625
26626
26627 static const struct arm_ext_table armv81a_ext_table[] =
26628 {
26629 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
26630 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
26631 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26632
26633 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26634 should use the +simd option to turn on FP. */
26635 ARM_REMOVE ("fp", ALL_FP),
26636 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26637 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26638 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26639 };
26640
26641 static const struct arm_ext_table armv82a_ext_table[] =
26642 {
26643 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
26644 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
26645 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
26646 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
26647 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26648 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26649
26650 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26651 should use the +simd option to turn on FP. */
26652 ARM_REMOVE ("fp", ALL_FP),
26653 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26654 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26655 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26656 };
26657
26658 static const struct arm_ext_table armv84a_ext_table[] =
26659 {
26660 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26661 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
26662 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
26663 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26664
26665 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26666 should use the +simd option to turn on FP. */
26667 ARM_REMOVE ("fp", ALL_FP),
26668 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
26669 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
26670 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26671 };
26672
26673 static const struct arm_ext_table armv85a_ext_table[] =
26674 {
26675 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
26676 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
26677 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
26678 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26679
26680 /* Armv8-a does not allow an FP implementation without SIMD, so the user
26681 should use the +simd option to turn on FP. */
26682 ARM_REMOVE ("fp", ALL_FP),
26683 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26684 };
26685
26686 static const struct arm_ext_table armv8m_main_ext_table[] =
26687 {
26688 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26689 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
26690 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
26691 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
26692 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26693 };
26694
26695 static const struct arm_ext_table armv8_1m_main_ext_table[] =
26696 {
26697 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26698 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
26699 ARM_EXT ("fp",
26700 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
26701 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
26702 ALL_FP),
26703 ARM_ADD ("fp.dp",
26704 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
26705 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
26706 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26707 };
26708
26709 static const struct arm_ext_table armv8r_ext_table[] =
26710 {
26711 ARM_ADD ("crc", ARCH_CRC_ARMV8),
26712 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
26713 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26714 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
26715 ARM_REMOVE ("fp", ALL_FP),
26716 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
26717 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
26718 };
26719
26720 /* This list should, at a minimum, contain all the architecture names
26721 recognized by GCC. */
26722 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
26723 #define ARM_ARCH_OPT2(N, V, DF, ext) \
26724 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
26725
26726 static const struct arm_arch_option_table arm_archs[] =
26727 {
26728 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
26729 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
26730 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
26731 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
26732 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
26733 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
26734 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
26735 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
26736 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
26737 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
26738 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
26739 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
26740 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
26741 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
26742 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
26743 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
26744 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
26745 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
26746 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
26747 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
26748 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
26749 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
26750 kept to preserve existing behaviour. */
26751 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
26752 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
26753 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
26754 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
26755 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
26756 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
26757 kept to preserve existing behaviour. */
26758 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
26759 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
26760 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
26761 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
26762 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
26763 /* The official spelling of the ARMv7 profile variants is the dashed form.
26764 Accept the non-dashed form for compatibility with old toolchains. */
26765 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
26766 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
26767 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
26768 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26769 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
26770 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
26771 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
26772 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
26773 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
26774 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
26775 armv8m_main),
26776 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
26777 armv8_1m_main),
26778 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
26779 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
26780 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
26781 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
26782 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
26783 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
26784 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
26785 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
26786 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
26787 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
26788 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
26789 };
26790 #undef ARM_ARCH_OPT
26791
26792 /* ISA extensions in the co-processor and main instruction set space. */
26793
26794 struct arm_option_extension_value_table
26795 {
26796 const char * name;
26797 size_t name_len;
26798 const arm_feature_set merge_value;
26799 const arm_feature_set clear_value;
26800 /* List of architectures for which an extension is available. ARM_ARCH_NONE
26801 indicates that an extension is available for all architectures while
26802 ARM_ANY marks an empty entry. */
26803 const arm_feature_set allowed_archs[2];
26804 };
26805
26806 /* The following table must be in alphabetical order with a NULL last entry. */
26807
26808 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
26809 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
26810
26811 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
26812 use the context sensitive approach using arm_ext_table's. */
26813 static const struct arm_option_extension_value_table arm_extensions[] =
26814 {
26815 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
26816 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26817 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
26818 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
26819 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26820 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
26821 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
26822 ARM_ARCH_V8_2A),
26823 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26824 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
26825 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
26826 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
26827 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26828 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26829 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
26830 ARM_ARCH_V8_2A),
26831 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26832 | ARM_EXT2_FP16_FML),
26833 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
26834 | ARM_EXT2_FP16_FML),
26835 ARM_ARCH_V8_2A),
26836 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
26837 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
26838 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26839 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
26840 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
26841 Thumb divide instruction. Due to this having the same name as the
26842 previous entry, this will be ignored when doing command-line parsing and
26843 only considered by build attribute selection code. */
26844 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26845 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
26846 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
26847 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
26848 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
26849 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
26850 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
26851 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
26852 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
26853 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
26854 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
26855 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
26856 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
26857 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26858 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
26859 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
26860 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
26861 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
26862 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
26863 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
26864 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
26865 ARM_ARCH_V8A),
26866 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
26867 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
26868 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
26869 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
26870 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
26871 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
26872 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
26873 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
26874 ARM_ARCH_V8A),
26875 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26876 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
26877 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
26878 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26879 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
26880 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
26881 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
26882 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
26883 | ARM_EXT_DIV),
26884 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
26885 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
26886 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
26887 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
26888 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
26889 };
26890 #undef ARM_EXT_OPT
26891
26892 /* ISA floating-point and Advanced SIMD extensions. */
26893 struct arm_option_fpu_value_table
26894 {
26895 const char * name;
26896 const arm_feature_set value;
26897 };
26898
26899 /* This list should, at a minimum, contain all the fpu names
26900 recognized by GCC. */
26901 static const struct arm_option_fpu_value_table arm_fpus[] =
26902 {
26903 {"softfpa", FPU_NONE},
26904 {"fpe", FPU_ARCH_FPE},
26905 {"fpe2", FPU_ARCH_FPE},
26906 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
26907 {"fpa", FPU_ARCH_FPA},
26908 {"fpa10", FPU_ARCH_FPA},
26909 {"fpa11", FPU_ARCH_FPA},
26910 {"arm7500fe", FPU_ARCH_FPA},
26911 {"softvfp", FPU_ARCH_VFP},
26912 {"softvfp+vfp", FPU_ARCH_VFP_V2},
26913 {"vfp", FPU_ARCH_VFP_V2},
26914 {"vfp9", FPU_ARCH_VFP_V2},
26915 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
26916 {"vfp10", FPU_ARCH_VFP_V2},
26917 {"vfp10-r0", FPU_ARCH_VFP_V1},
26918 {"vfpxd", FPU_ARCH_VFP_V1xD},
26919 {"vfpv2", FPU_ARCH_VFP_V2},
26920 {"vfpv3", FPU_ARCH_VFP_V3},
26921 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
26922 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
26923 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
26924 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
26925 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
26926 {"arm1020t", FPU_ARCH_VFP_V1},
26927 {"arm1020e", FPU_ARCH_VFP_V2},
26928 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
26929 {"arm1136jf-s", FPU_ARCH_VFP_V2},
26930 {"maverick", FPU_ARCH_MAVERICK},
26931 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
26932 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
26933 {"neon-fp16", FPU_ARCH_NEON_FP16},
26934 {"vfpv4", FPU_ARCH_VFP_V4},
26935 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
26936 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
26937 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
26938 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
26939 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
26940 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
26941 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
26942 {"crypto-neon-fp-armv8",
26943 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
26944 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
26945 {"crypto-neon-fp-armv8.1",
26946 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
26947 {NULL, ARM_ARCH_NONE}
26948 };
26949
26950 struct arm_option_value_table
26951 {
26952 const char *name;
26953 long value;
26954 };
26955
26956 static const struct arm_option_value_table arm_float_abis[] =
26957 {
26958 {"hard", ARM_FLOAT_ABI_HARD},
26959 {"softfp", ARM_FLOAT_ABI_SOFTFP},
26960 {"soft", ARM_FLOAT_ABI_SOFT},
26961 {NULL, 0}
26962 };
26963
26964 #ifdef OBJ_ELF
26965 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
26966 static const struct arm_option_value_table arm_eabis[] =
26967 {
26968 {"gnu", EF_ARM_EABI_UNKNOWN},
26969 {"4", EF_ARM_EABI_VER4},
26970 {"5", EF_ARM_EABI_VER5},
26971 {NULL, 0}
26972 };
26973 #endif
26974
26975 struct arm_long_option_table
26976 {
26977 const char * option; /* Substring to match. */
26978 const char * help; /* Help information. */
26979 int (* func) (const char * subopt); /* Function to decode sub-option. */
26980 const char * deprecated; /* If non-null, print this message. */
26981 };
26982
26983 static bfd_boolean
26984 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
26985 arm_feature_set *ext_set,
26986 const struct arm_ext_table *ext_table)
26987 {
26988 /* We insist on extensions being specified in alphabetical order, and with
26989 extensions being added before being removed. We achieve this by having
26990 the global ARM_EXTENSIONS table in alphabetical order, and using the
26991 ADDING_VALUE variable to indicate whether we are adding an extension (1)
26992 or removing it (0) and only allowing it to change in the order
26993 -1 -> 1 -> 0. */
26994 const struct arm_option_extension_value_table * opt = NULL;
26995 const arm_feature_set arm_any = ARM_ANY;
26996 int adding_value = -1;
26997
26998 while (str != NULL && *str != 0)
26999 {
27000 const char *ext;
27001 size_t len;
27002
27003 if (*str != '+')
27004 {
27005 as_bad (_("invalid architectural extension"));
27006 return FALSE;
27007 }
27008
27009 str++;
27010 ext = strchr (str, '+');
27011
27012 if (ext != NULL)
27013 len = ext - str;
27014 else
27015 len = strlen (str);
27016
27017 if (len >= 2 && strncmp (str, "no", 2) == 0)
27018 {
27019 if (adding_value != 0)
27020 {
27021 adding_value = 0;
27022 opt = arm_extensions;
27023 }
27024
27025 len -= 2;
27026 str += 2;
27027 }
27028 else if (len > 0)
27029 {
27030 if (adding_value == -1)
27031 {
27032 adding_value = 1;
27033 opt = arm_extensions;
27034 }
27035 else if (adding_value != 1)
27036 {
27037 as_bad (_("must specify extensions to add before specifying "
27038 "those to remove"));
27039 return FALSE;
27040 }
27041 }
27042
27043 if (len == 0)
27044 {
27045 as_bad (_("missing architectural extension"));
27046 return FALSE;
27047 }
27048
27049 gas_assert (adding_value != -1);
27050 gas_assert (opt != NULL);
27051
27052 if (ext_table != NULL)
27053 {
27054 const struct arm_ext_table * ext_opt = ext_table;
27055 bfd_boolean found = FALSE;
27056 for (; ext_opt->name != NULL; ext_opt++)
27057 if (ext_opt->name_len == len
27058 && strncmp (ext_opt->name, str, len) == 0)
27059 {
27060 if (adding_value)
27061 {
27062 if (ARM_FEATURE_ZERO (ext_opt->merge))
27063 /* TODO: Option not supported. When we remove the
27064 legacy table this case should error out. */
27065 continue;
27066
27067 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
27068 }
27069 else
27070 {
27071 if (ARM_FEATURE_ZERO (ext_opt->clear))
27072 /* TODO: Option not supported. When we remove the
27073 legacy table this case should error out. */
27074 continue;
27075 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
27076 }
27077 found = TRUE;
27078 break;
27079 }
27080 if (found)
27081 {
27082 str = ext;
27083 continue;
27084 }
27085 }
27086
27087 /* Scan over the options table trying to find an exact match. */
27088 for (; opt->name != NULL; opt++)
27089 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
27090 {
27091 int i, nb_allowed_archs =
27092 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
27093 /* Check we can apply the extension to this architecture. */
27094 for (i = 0; i < nb_allowed_archs; i++)
27095 {
27096 /* Empty entry. */
27097 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
27098 continue;
27099 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
27100 break;
27101 }
27102 if (i == nb_allowed_archs)
27103 {
27104 as_bad (_("extension does not apply to the base architecture"));
27105 return FALSE;
27106 }
27107
27108 /* Add or remove the extension. */
27109 if (adding_value)
27110 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
27111 else
27112 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
27113
27114 /* Allowing Thumb division instructions for ARMv7 in autodetection
27115 rely on this break so that duplicate extensions (extensions
27116 with the same name as a previous extension in the list) are not
27117 considered for command-line parsing. */
27118 break;
27119 }
27120
27121 if (opt->name == NULL)
27122 {
27123 /* Did we fail to find an extension because it wasn't specified in
27124 alphabetical order, or because it does not exist? */
27125
27126 for (opt = arm_extensions; opt->name != NULL; opt++)
27127 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
27128 break;
27129
27130 if (opt->name == NULL)
27131 as_bad (_("unknown architectural extension `%s'"), str);
27132 else
27133 as_bad (_("architectural extensions must be specified in "
27134 "alphabetical order"));
27135
27136 return FALSE;
27137 }
27138 else
27139 {
27140 /* We should skip the extension we've just matched the next time
27141 round. */
27142 opt++;
27143 }
27144
27145 str = ext;
27146 };
27147
27148 return TRUE;
27149 }
27150
27151 static bfd_boolean
27152 arm_parse_cpu (const char *str)
27153 {
27154 const struct arm_cpu_option_table *opt;
27155 const char *ext = strchr (str, '+');
27156 size_t len;
27157
27158 if (ext != NULL)
27159 len = ext - str;
27160 else
27161 len = strlen (str);
27162
27163 if (len == 0)
27164 {
27165 as_bad (_("missing cpu name `%s'"), str);
27166 return FALSE;
27167 }
27168
27169 for (opt = arm_cpus; opt->name != NULL; opt++)
27170 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
27171 {
27172 mcpu_cpu_opt = &opt->value;
27173 if (mcpu_ext_opt == NULL)
27174 mcpu_ext_opt = XNEW (arm_feature_set);
27175 *mcpu_ext_opt = opt->ext;
27176 mcpu_fpu_opt = &opt->default_fpu;
27177 if (opt->canonical_name)
27178 {
27179 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
27180 strcpy (selected_cpu_name, opt->canonical_name);
27181 }
27182 else
27183 {
27184 size_t i;
27185
27186 if (len >= sizeof selected_cpu_name)
27187 len = (sizeof selected_cpu_name) - 1;
27188
27189 for (i = 0; i < len; i++)
27190 selected_cpu_name[i] = TOUPPER (opt->name[i]);
27191 selected_cpu_name[i] = 0;
27192 }
27193
27194 if (ext != NULL)
27195 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
27196
27197 return TRUE;
27198 }
27199
27200 as_bad (_("unknown cpu `%s'"), str);
27201 return FALSE;
27202 }
27203
27204 static bfd_boolean
27205 arm_parse_arch (const char *str)
27206 {
27207 const struct arm_arch_option_table *opt;
27208 const char *ext = strchr (str, '+');
27209 size_t len;
27210
27211 if (ext != NULL)
27212 len = ext - str;
27213 else
27214 len = strlen (str);
27215
27216 if (len == 0)
27217 {
27218 as_bad (_("missing architecture name `%s'"), str);
27219 return FALSE;
27220 }
27221
27222 for (opt = arm_archs; opt->name != NULL; opt++)
27223 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
27224 {
27225 march_cpu_opt = &opt->value;
27226 if (march_ext_opt == NULL)
27227 march_ext_opt = XNEW (arm_feature_set);
27228 *march_ext_opt = arm_arch_none;
27229 march_fpu_opt = &opt->default_fpu;
27230 strcpy (selected_cpu_name, opt->name);
27231
27232 if (ext != NULL)
27233 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
27234 opt->ext_table);
27235
27236 return TRUE;
27237 }
27238
27239 as_bad (_("unknown architecture `%s'\n"), str);
27240 return FALSE;
27241 }
27242
27243 static bfd_boolean
27244 arm_parse_fpu (const char * str)
27245 {
27246 const struct arm_option_fpu_value_table * opt;
27247
27248 for (opt = arm_fpus; opt->name != NULL; opt++)
27249 if (streq (opt->name, str))
27250 {
27251 mfpu_opt = &opt->value;
27252 return TRUE;
27253 }
27254
27255 as_bad (_("unknown floating point format `%s'\n"), str);
27256 return FALSE;
27257 }
27258
27259 static bfd_boolean
27260 arm_parse_float_abi (const char * str)
27261 {
27262 const struct arm_option_value_table * opt;
27263
27264 for (opt = arm_float_abis; opt->name != NULL; opt++)
27265 if (streq (opt->name, str))
27266 {
27267 mfloat_abi_opt = opt->value;
27268 return TRUE;
27269 }
27270
27271 as_bad (_("unknown floating point abi `%s'\n"), str);
27272 return FALSE;
27273 }
27274
27275 #ifdef OBJ_ELF
27276 static bfd_boolean
27277 arm_parse_eabi (const char * str)
27278 {
27279 const struct arm_option_value_table *opt;
27280
27281 for (opt = arm_eabis; opt->name != NULL; opt++)
27282 if (streq (opt->name, str))
27283 {
27284 meabi_flags = opt->value;
27285 return TRUE;
27286 }
27287 as_bad (_("unknown EABI `%s'\n"), str);
27288 return FALSE;
27289 }
27290 #endif
27291
27292 static bfd_boolean
27293 arm_parse_it_mode (const char * str)
27294 {
27295 bfd_boolean ret = TRUE;
27296
27297 if (streq ("arm", str))
27298 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
27299 else if (streq ("thumb", str))
27300 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
27301 else if (streq ("always", str))
27302 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
27303 else if (streq ("never", str))
27304 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
27305 else
27306 {
27307 as_bad (_("unknown implicit IT mode `%s', should be "\
27308 "arm, thumb, always, or never."), str);
27309 ret = FALSE;
27310 }
27311
27312 return ret;
27313 }
27314
27315 static bfd_boolean
27316 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
27317 {
27318 codecomposer_syntax = TRUE;
27319 arm_comment_chars[0] = ';';
27320 arm_line_separator_chars[0] = 0;
27321 return TRUE;
27322 }
27323
27324 struct arm_long_option_table arm_long_opts[] =
27325 {
27326 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
27327 arm_parse_cpu, NULL},
27328 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
27329 arm_parse_arch, NULL},
27330 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
27331 arm_parse_fpu, NULL},
27332 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
27333 arm_parse_float_abi, NULL},
27334 #ifdef OBJ_ELF
27335 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
27336 arm_parse_eabi, NULL},
27337 #endif
27338 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
27339 arm_parse_it_mode, NULL},
27340 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
27341 arm_ccs_mode, NULL},
27342 {NULL, NULL, 0, NULL}
27343 };
27344
27345 int
27346 md_parse_option (int c, const char * arg)
27347 {
27348 struct arm_option_table *opt;
27349 const struct arm_legacy_option_table *fopt;
27350 struct arm_long_option_table *lopt;
27351
27352 switch (c)
27353 {
27354 #ifdef OPTION_EB
27355 case OPTION_EB:
27356 target_big_endian = 1;
27357 break;
27358 #endif
27359
27360 #ifdef OPTION_EL
27361 case OPTION_EL:
27362 target_big_endian = 0;
27363 break;
27364 #endif
27365
27366 case OPTION_FIX_V4BX:
27367 fix_v4bx = TRUE;
27368 break;
27369
27370 #ifdef OBJ_ELF
27371 case OPTION_FDPIC:
27372 arm_fdpic = TRUE;
27373 break;
27374 #endif /* OBJ_ELF */
27375
27376 case 'a':
27377 /* Listing option. Just ignore these, we don't support additional
27378 ones. */
27379 return 0;
27380
27381 default:
27382 for (opt = arm_opts; opt->option != NULL; opt++)
27383 {
27384 if (c == opt->option[0]
27385 && ((arg == NULL && opt->option[1] == 0)
27386 || streq (arg, opt->option + 1)))
27387 {
27388 /* If the option is deprecated, tell the user. */
27389 if (warn_on_deprecated && opt->deprecated != NULL)
27390 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
27391 arg ? arg : "", _(opt->deprecated));
27392
27393 if (opt->var != NULL)
27394 *opt->var = opt->value;
27395
27396 return 1;
27397 }
27398 }
27399
27400 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
27401 {
27402 if (c == fopt->option[0]
27403 && ((arg == NULL && fopt->option[1] == 0)
27404 || streq (arg, fopt->option + 1)))
27405 {
27406 /* If the option is deprecated, tell the user. */
27407 if (warn_on_deprecated && fopt->deprecated != NULL)
27408 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
27409 arg ? arg : "", _(fopt->deprecated));
27410
27411 if (fopt->var != NULL)
27412 *fopt->var = &fopt->value;
27413
27414 return 1;
27415 }
27416 }
27417
27418 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
27419 {
27420 /* These options are expected to have an argument. */
27421 if (c == lopt->option[0]
27422 && arg != NULL
27423 && strncmp (arg, lopt->option + 1,
27424 strlen (lopt->option + 1)) == 0)
27425 {
27426 /* If the option is deprecated, tell the user. */
27427 if (warn_on_deprecated && lopt->deprecated != NULL)
27428 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
27429 _(lopt->deprecated));
27430
27431 /* Call the sup-option parser. */
27432 return lopt->func (arg + strlen (lopt->option) - 1);
27433 }
27434 }
27435
27436 return 0;
27437 }
27438
27439 return 1;
27440 }
27441
27442 void
27443 md_show_usage (FILE * fp)
27444 {
27445 struct arm_option_table *opt;
27446 struct arm_long_option_table *lopt;
27447
27448 fprintf (fp, _(" ARM-specific assembler options:\n"));
27449
27450 for (opt = arm_opts; opt->option != NULL; opt++)
27451 if (opt->help != NULL)
27452 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
27453
27454 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
27455 if (lopt->help != NULL)
27456 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
27457
27458 #ifdef OPTION_EB
27459 fprintf (fp, _("\
27460 -EB assemble code for a big-endian cpu\n"));
27461 #endif
27462
27463 #ifdef OPTION_EL
27464 fprintf (fp, _("\
27465 -EL assemble code for a little-endian cpu\n"));
27466 #endif
27467
27468 fprintf (fp, _("\
27469 --fix-v4bx Allow BX in ARMv4 code\n"));
27470
27471 #ifdef OBJ_ELF
27472 fprintf (fp, _("\
27473 --fdpic generate an FDPIC object file\n"));
27474 #endif /* OBJ_ELF */
27475 }
27476
27477 #ifdef OBJ_ELF
27478
27479 typedef struct
27480 {
27481 int val;
27482 arm_feature_set flags;
27483 } cpu_arch_ver_table;
27484
27485 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
27486 chronologically for architectures, with an exception for ARMv6-M and
27487 ARMv6S-M due to legacy reasons. No new architecture should have a
27488 special case. This allows for build attribute selection results to be
27489 stable when new architectures are added. */
27490 static const cpu_arch_ver_table cpu_arch_ver[] =
27491 {
27492 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
27493 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
27494 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
27495 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
27496 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
27497 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
27498 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
27499 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
27500 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
27501 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
27502 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
27503 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
27504 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
27505 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
27506 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
27507 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
27508 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
27509 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
27510 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
27511 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
27512 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
27513 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
27514 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
27515 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
27516
27517 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
27518 always selected build attributes to match those of ARMv6-M
27519 (resp. ARMv6S-M). However, due to these architectures being a strict
27520 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
27521 would be selected when fully respecting chronology of architectures.
27522 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
27523 move them before ARMv7 architectures. */
27524 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
27525 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
27526
27527 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
27528 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
27529 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
27530 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
27531 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
27532 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
27533 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
27534 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
27535 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
27536 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
27537 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
27538 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
27539 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
27540 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
27541 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
27542 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
27543 {-1, ARM_ARCH_NONE}
27544 };
27545
27546 /* Set an attribute if it has not already been set by the user. */
27547
27548 static void
27549 aeabi_set_attribute_int (int tag, int value)
27550 {
27551 if (tag < 1
27552 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
27553 || !attributes_set_explicitly[tag])
27554 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
27555 }
27556
27557 static void
27558 aeabi_set_attribute_string (int tag, const char *value)
27559 {
27560 if (tag < 1
27561 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
27562 || !attributes_set_explicitly[tag])
27563 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
27564 }
27565
27566 /* Return whether features in the *NEEDED feature set are available via
27567 extensions for the architecture whose feature set is *ARCH_FSET. */
27568
27569 static bfd_boolean
27570 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
27571 const arm_feature_set *needed)
27572 {
27573 int i, nb_allowed_archs;
27574 arm_feature_set ext_fset;
27575 const struct arm_option_extension_value_table *opt;
27576
27577 ext_fset = arm_arch_none;
27578 for (opt = arm_extensions; opt->name != NULL; opt++)
27579 {
27580 /* Extension does not provide any feature we need. */
27581 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
27582 continue;
27583
27584 nb_allowed_archs =
27585 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
27586 for (i = 0; i < nb_allowed_archs; i++)
27587 {
27588 /* Empty entry. */
27589 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
27590 break;
27591
27592 /* Extension is available, add it. */
27593 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
27594 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
27595 }
27596 }
27597
27598 /* Can we enable all features in *needed? */
27599 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
27600 }
27601
27602 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
27603 a given architecture feature set *ARCH_EXT_FSET including extension feature
27604 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
27605 - if true, check for an exact match of the architecture modulo extensions;
27606 - otherwise, select build attribute value of the first superset
27607 architecture released so that results remains stable when new architectures
27608 are added.
27609 For -march/-mcpu=all the build attribute value of the most featureful
27610 architecture is returned. Tag_CPU_arch_profile result is returned in
27611 PROFILE. */
27612
27613 static int
27614 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
27615 const arm_feature_set *ext_fset,
27616 char *profile, int exact_match)
27617 {
27618 arm_feature_set arch_fset;
27619 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
27620
27621 /* Select most featureful architecture with all its extensions if building
27622 for -march=all as the feature sets used to set build attributes. */
27623 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
27624 {
27625 /* Force revisiting of decision for each new architecture. */
27626 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
27627 *profile = 'A';
27628 return TAG_CPU_ARCH_V8;
27629 }
27630
27631 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
27632
27633 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
27634 {
27635 arm_feature_set known_arch_fset;
27636
27637 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
27638 if (exact_match)
27639 {
27640 /* Base architecture match user-specified architecture and
27641 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
27642 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
27643 {
27644 p_ver_ret = p_ver;
27645 goto found;
27646 }
27647 /* Base architecture match user-specified architecture only
27648 (eg. ARMv6-M in the same case as above). Record it in case we
27649 find a match with above condition. */
27650 else if (p_ver_ret == NULL
27651 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
27652 p_ver_ret = p_ver;
27653 }
27654 else
27655 {
27656
27657 /* Architecture has all features wanted. */
27658 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
27659 {
27660 arm_feature_set added_fset;
27661
27662 /* Compute features added by this architecture over the one
27663 recorded in p_ver_ret. */
27664 if (p_ver_ret != NULL)
27665 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
27666 p_ver_ret->flags);
27667 /* First architecture that match incl. with extensions, or the
27668 only difference in features over the recorded match is
27669 features that were optional and are now mandatory. */
27670 if (p_ver_ret == NULL
27671 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
27672 {
27673 p_ver_ret = p_ver;
27674 goto found;
27675 }
27676 }
27677 else if (p_ver_ret == NULL)
27678 {
27679 arm_feature_set needed_ext_fset;
27680
27681 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
27682
27683 /* Architecture has all features needed when using some
27684 extensions. Record it and continue searching in case there
27685 exist an architecture providing all needed features without
27686 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
27687 OS extension). */
27688 if (have_ext_for_needed_feat_p (&known_arch_fset,
27689 &needed_ext_fset))
27690 p_ver_ret = p_ver;
27691 }
27692 }
27693 }
27694
27695 if (p_ver_ret == NULL)
27696 return -1;
27697
27698 found:
27699 /* Tag_CPU_arch_profile. */
27700 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
27701 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
27702 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
27703 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
27704 *profile = 'A';
27705 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
27706 *profile = 'R';
27707 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
27708 *profile = 'M';
27709 else
27710 *profile = '\0';
27711 return p_ver_ret->val;
27712 }
27713
27714 /* Set the public EABI object attributes. */
27715
27716 static void
27717 aeabi_set_public_attributes (void)
27718 {
27719 char profile = '\0';
27720 int arch = -1;
27721 int virt_sec = 0;
27722 int fp16_optional = 0;
27723 int skip_exact_match = 0;
27724 arm_feature_set flags, flags_arch, flags_ext;
27725
27726 /* Autodetection mode, choose the architecture based the instructions
27727 actually used. */
27728 if (no_cpu_selected ())
27729 {
27730 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
27731
27732 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
27733 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
27734
27735 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
27736 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
27737
27738 /* Code run during relaxation relies on selected_cpu being set. */
27739 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
27740 flags_ext = arm_arch_none;
27741 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
27742 selected_ext = flags_ext;
27743 selected_cpu = flags;
27744 }
27745 /* Otherwise, choose the architecture based on the capabilities of the
27746 requested cpu. */
27747 else
27748 {
27749 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
27750 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
27751 flags_ext = selected_ext;
27752 flags = selected_cpu;
27753 }
27754 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
27755
27756 /* Allow the user to override the reported architecture. */
27757 if (!ARM_FEATURE_ZERO (selected_object_arch))
27758 {
27759 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
27760 flags_ext = arm_arch_none;
27761 }
27762 else
27763 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
27764
27765 /* When this function is run again after relaxation has happened there is no
27766 way to determine whether an architecture or CPU was specified by the user:
27767 - selected_cpu is set above for relaxation to work;
27768 - march_cpu_opt is not set if only -mcpu or .cpu is used;
27769 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
27770 Therefore, if not in -march=all case we first try an exact match and fall
27771 back to autodetection. */
27772 if (!skip_exact_match)
27773 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
27774 if (arch == -1)
27775 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
27776 if (arch == -1)
27777 as_bad (_("no architecture contains all the instructions used\n"));
27778
27779 /* Tag_CPU_name. */
27780 if (selected_cpu_name[0])
27781 {
27782 char *q;
27783
27784 q = selected_cpu_name;
27785 if (strncmp (q, "armv", 4) == 0)
27786 {
27787 int i;
27788
27789 q += 4;
27790 for (i = 0; q[i]; i++)
27791 q[i] = TOUPPER (q[i]);
27792 }
27793 aeabi_set_attribute_string (Tag_CPU_name, q);
27794 }
27795
27796 /* Tag_CPU_arch. */
27797 aeabi_set_attribute_int (Tag_CPU_arch, arch);
27798
27799 /* Tag_CPU_arch_profile. */
27800 if (profile != '\0')
27801 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
27802
27803 /* Tag_DSP_extension. */
27804 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
27805 aeabi_set_attribute_int (Tag_DSP_extension, 1);
27806
27807 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
27808 /* Tag_ARM_ISA_use. */
27809 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
27810 || ARM_FEATURE_ZERO (flags_arch))
27811 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
27812
27813 /* Tag_THUMB_ISA_use. */
27814 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
27815 || ARM_FEATURE_ZERO (flags_arch))
27816 {
27817 int thumb_isa_use;
27818
27819 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
27820 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
27821 thumb_isa_use = 3;
27822 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
27823 thumb_isa_use = 2;
27824 else
27825 thumb_isa_use = 1;
27826 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
27827 }
27828
27829 /* Tag_VFP_arch. */
27830 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
27831 aeabi_set_attribute_int (Tag_VFP_arch,
27832 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27833 ? 7 : 8);
27834 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
27835 aeabi_set_attribute_int (Tag_VFP_arch,
27836 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
27837 ? 5 : 6);
27838 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
27839 {
27840 fp16_optional = 1;
27841 aeabi_set_attribute_int (Tag_VFP_arch, 3);
27842 }
27843 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
27844 {
27845 aeabi_set_attribute_int (Tag_VFP_arch, 4);
27846 fp16_optional = 1;
27847 }
27848 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
27849 aeabi_set_attribute_int (Tag_VFP_arch, 2);
27850 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
27851 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
27852 aeabi_set_attribute_int (Tag_VFP_arch, 1);
27853
27854 /* Tag_ABI_HardFP_use. */
27855 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
27856 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
27857 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
27858
27859 /* Tag_WMMX_arch. */
27860 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
27861 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
27862 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
27863 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
27864
27865 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
27866 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
27867 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
27868 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
27869 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
27870 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
27871 {
27872 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
27873 {
27874 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
27875 }
27876 else
27877 {
27878 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
27879 fp16_optional = 1;
27880 }
27881 }
27882
27883 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
27884 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
27885 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
27886
27887 /* Tag_DIV_use.
27888
27889 We set Tag_DIV_use to two when integer divide instructions have been used
27890 in ARM state, or when Thumb integer divide instructions have been used,
27891 but we have no architecture profile set, nor have we any ARM instructions.
27892
27893 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
27894 by the base architecture.
27895
27896 For new architectures we will have to check these tests. */
27897 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
27898 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
27899 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
27900 aeabi_set_attribute_int (Tag_DIV_use, 0);
27901 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
27902 || (profile == '\0'
27903 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
27904 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
27905 aeabi_set_attribute_int (Tag_DIV_use, 2);
27906
27907 /* Tag_MP_extension_use. */
27908 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
27909 aeabi_set_attribute_int (Tag_MPextension_use, 1);
27910
27911 /* Tag Virtualization_use. */
27912 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
27913 virt_sec |= 1;
27914 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
27915 virt_sec |= 2;
27916 if (virt_sec != 0)
27917 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
27918 }
27919
27920 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
27921 finished and free extension feature bits which will not be used anymore. */
27922
27923 void
27924 arm_md_post_relax (void)
27925 {
27926 aeabi_set_public_attributes ();
27927 XDELETE (mcpu_ext_opt);
27928 mcpu_ext_opt = NULL;
27929 XDELETE (march_ext_opt);
27930 march_ext_opt = NULL;
27931 }
27932
27933 /* Add the default contents for the .ARM.attributes section. */
27934
27935 void
27936 arm_md_end (void)
27937 {
27938 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
27939 return;
27940
27941 aeabi_set_public_attributes ();
27942 }
27943 #endif /* OBJ_ELF */
27944
27945 /* Parse a .cpu directive. */
27946
27947 static void
27948 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
27949 {
27950 const struct arm_cpu_option_table *opt;
27951 char *name;
27952 char saved_char;
27953
27954 name = input_line_pointer;
27955 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27956 input_line_pointer++;
27957 saved_char = *input_line_pointer;
27958 *input_line_pointer = 0;
27959
27960 /* Skip the first "all" entry. */
27961 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
27962 if (streq (opt->name, name))
27963 {
27964 selected_arch = opt->value;
27965 selected_ext = opt->ext;
27966 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
27967 if (opt->canonical_name)
27968 strcpy (selected_cpu_name, opt->canonical_name);
27969 else
27970 {
27971 int i;
27972 for (i = 0; opt->name[i]; i++)
27973 selected_cpu_name[i] = TOUPPER (opt->name[i]);
27974
27975 selected_cpu_name[i] = 0;
27976 }
27977 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
27978
27979 *input_line_pointer = saved_char;
27980 demand_empty_rest_of_line ();
27981 return;
27982 }
27983 as_bad (_("unknown cpu `%s'"), name);
27984 *input_line_pointer = saved_char;
27985 ignore_rest_of_line ();
27986 }
27987
27988 /* Parse a .arch directive. */
27989
27990 static void
27991 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
27992 {
27993 const struct arm_arch_option_table *opt;
27994 char saved_char;
27995 char *name;
27996
27997 name = input_line_pointer;
27998 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
27999 input_line_pointer++;
28000 saved_char = *input_line_pointer;
28001 *input_line_pointer = 0;
28002
28003 /* Skip the first "all" entry. */
28004 for (opt = arm_archs + 1; opt->name != NULL; opt++)
28005 if (streq (opt->name, name))
28006 {
28007 selected_arch = opt->value;
28008 selected_ext = arm_arch_none;
28009 selected_cpu = selected_arch;
28010 strcpy (selected_cpu_name, opt->name);
28011 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28012 *input_line_pointer = saved_char;
28013 demand_empty_rest_of_line ();
28014 return;
28015 }
28016
28017 as_bad (_("unknown architecture `%s'\n"), name);
28018 *input_line_pointer = saved_char;
28019 ignore_rest_of_line ();
28020 }
28021
28022 /* Parse a .object_arch directive. */
28023
28024 static void
28025 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
28026 {
28027 const struct arm_arch_option_table *opt;
28028 char saved_char;
28029 char *name;
28030
28031 name = input_line_pointer;
28032 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
28033 input_line_pointer++;
28034 saved_char = *input_line_pointer;
28035 *input_line_pointer = 0;
28036
28037 /* Skip the first "all" entry. */
28038 for (opt = arm_archs + 1; opt->name != NULL; opt++)
28039 if (streq (opt->name, name))
28040 {
28041 selected_object_arch = opt->value;
28042 *input_line_pointer = saved_char;
28043 demand_empty_rest_of_line ();
28044 return;
28045 }
28046
28047 as_bad (_("unknown architecture `%s'\n"), name);
28048 *input_line_pointer = saved_char;
28049 ignore_rest_of_line ();
28050 }
28051
28052 /* Parse a .arch_extension directive. */
28053
28054 static void
28055 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
28056 {
28057 const struct arm_option_extension_value_table *opt;
28058 char saved_char;
28059 char *name;
28060 int adding_value = 1;
28061
28062 name = input_line_pointer;
28063 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
28064 input_line_pointer++;
28065 saved_char = *input_line_pointer;
28066 *input_line_pointer = 0;
28067
28068 if (strlen (name) >= 2
28069 && strncmp (name, "no", 2) == 0)
28070 {
28071 adding_value = 0;
28072 name += 2;
28073 }
28074
28075 for (opt = arm_extensions; opt->name != NULL; opt++)
28076 if (streq (opt->name, name))
28077 {
28078 int i, nb_allowed_archs =
28079 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
28080 for (i = 0; i < nb_allowed_archs; i++)
28081 {
28082 /* Empty entry. */
28083 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
28084 continue;
28085 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
28086 break;
28087 }
28088
28089 if (i == nb_allowed_archs)
28090 {
28091 as_bad (_("architectural extension `%s' is not allowed for the "
28092 "current base architecture"), name);
28093 break;
28094 }
28095
28096 if (adding_value)
28097 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
28098 opt->merge_value);
28099 else
28100 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
28101
28102 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
28103 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28104 *input_line_pointer = saved_char;
28105 demand_empty_rest_of_line ();
28106 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
28107 on this return so that duplicate extensions (extensions with the
28108 same name as a previous extension in the list) are not considered
28109 for command-line parsing. */
28110 return;
28111 }
28112
28113 if (opt->name == NULL)
28114 as_bad (_("unknown architecture extension `%s'\n"), name);
28115
28116 *input_line_pointer = saved_char;
28117 ignore_rest_of_line ();
28118 }
28119
28120 /* Parse a .fpu directive. */
28121
28122 static void
28123 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
28124 {
28125 const struct arm_option_fpu_value_table *opt;
28126 char saved_char;
28127 char *name;
28128
28129 name = input_line_pointer;
28130 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
28131 input_line_pointer++;
28132 saved_char = *input_line_pointer;
28133 *input_line_pointer = 0;
28134
28135 for (opt = arm_fpus; opt->name != NULL; opt++)
28136 if (streq (opt->name, name))
28137 {
28138 selected_fpu = opt->value;
28139 #ifndef CPU_DEFAULT
28140 if (no_cpu_selected ())
28141 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
28142 else
28143 #endif
28144 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28145 *input_line_pointer = saved_char;
28146 demand_empty_rest_of_line ();
28147 return;
28148 }
28149
28150 as_bad (_("unknown floating point format `%s'\n"), name);
28151 *input_line_pointer = saved_char;
28152 ignore_rest_of_line ();
28153 }
28154
28155 /* Copy symbol information. */
28156
28157 void
28158 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
28159 {
28160 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
28161 }
28162
28163 #ifdef OBJ_ELF
28164 /* Given a symbolic attribute NAME, return the proper integer value.
28165 Returns -1 if the attribute is not known. */
28166
28167 int
28168 arm_convert_symbolic_attribute (const char *name)
28169 {
28170 static const struct
28171 {
28172 const char * name;
28173 const int tag;
28174 }
28175 attribute_table[] =
28176 {
28177 /* When you modify this table you should
28178 also modify the list in doc/c-arm.texi. */
28179 #define T(tag) {#tag, tag}
28180 T (Tag_CPU_raw_name),
28181 T (Tag_CPU_name),
28182 T (Tag_CPU_arch),
28183 T (Tag_CPU_arch_profile),
28184 T (Tag_ARM_ISA_use),
28185 T (Tag_THUMB_ISA_use),
28186 T (Tag_FP_arch),
28187 T (Tag_VFP_arch),
28188 T (Tag_WMMX_arch),
28189 T (Tag_Advanced_SIMD_arch),
28190 T (Tag_PCS_config),
28191 T (Tag_ABI_PCS_R9_use),
28192 T (Tag_ABI_PCS_RW_data),
28193 T (Tag_ABI_PCS_RO_data),
28194 T (Tag_ABI_PCS_GOT_use),
28195 T (Tag_ABI_PCS_wchar_t),
28196 T (Tag_ABI_FP_rounding),
28197 T (Tag_ABI_FP_denormal),
28198 T (Tag_ABI_FP_exceptions),
28199 T (Tag_ABI_FP_user_exceptions),
28200 T (Tag_ABI_FP_number_model),
28201 T (Tag_ABI_align_needed),
28202 T (Tag_ABI_align8_needed),
28203 T (Tag_ABI_align_preserved),
28204 T (Tag_ABI_align8_preserved),
28205 T (Tag_ABI_enum_size),
28206 T (Tag_ABI_HardFP_use),
28207 T (Tag_ABI_VFP_args),
28208 T (Tag_ABI_WMMX_args),
28209 T (Tag_ABI_optimization_goals),
28210 T (Tag_ABI_FP_optimization_goals),
28211 T (Tag_compatibility),
28212 T (Tag_CPU_unaligned_access),
28213 T (Tag_FP_HP_extension),
28214 T (Tag_VFP_HP_extension),
28215 T (Tag_ABI_FP_16bit_format),
28216 T (Tag_MPextension_use),
28217 T (Tag_DIV_use),
28218 T (Tag_nodefaults),
28219 T (Tag_also_compatible_with),
28220 T (Tag_conformance),
28221 T (Tag_T2EE_use),
28222 T (Tag_Virtualization_use),
28223 T (Tag_DSP_extension),
28224 /* We deliberately do not include Tag_MPextension_use_legacy. */
28225 #undef T
28226 };
28227 unsigned int i;
28228
28229 if (name == NULL)
28230 return -1;
28231
28232 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
28233 if (streq (name, attribute_table[i].name))
28234 return attribute_table[i].tag;
28235
28236 return -1;
28237 }
28238
28239 /* Apply sym value for relocations only in the case that they are for
28240 local symbols in the same segment as the fixup and you have the
28241 respective architectural feature for blx and simple switches. */
28242
28243 int
28244 arm_apply_sym_value (struct fix * fixP, segT this_seg)
28245 {
28246 if (fixP->fx_addsy
28247 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
28248 /* PR 17444: If the local symbol is in a different section then a reloc
28249 will always be generated for it, so applying the symbol value now
28250 will result in a double offset being stored in the relocation. */
28251 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
28252 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
28253 {
28254 switch (fixP->fx_r_type)
28255 {
28256 case BFD_RELOC_ARM_PCREL_BLX:
28257 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28258 if (ARM_IS_FUNC (fixP->fx_addsy))
28259 return 1;
28260 break;
28261
28262 case BFD_RELOC_ARM_PCREL_CALL:
28263 case BFD_RELOC_THUMB_PCREL_BLX:
28264 if (THUMB_IS_FUNC (fixP->fx_addsy))
28265 return 1;
28266 break;
28267
28268 default:
28269 break;
28270 }
28271
28272 }
28273 return 0;
28274 }
28275 #endif /* OBJ_ELF */
This page took 0.943801 seconds and 4 git commands to generate.