* config/tc-mips.c (macro_build_jalr): Reverse a negative
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35 #include "libiberty.h"
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
200 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
201 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
202 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
203 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
204 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
205
206 static const arm_feature_set arm_arch_any = ARM_ANY;
207 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
210 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
211
212 static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
214 static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216 static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218 static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222 static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
226 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
227 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
228 static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
230 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
233 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
236
237 static int mfloat_abi_opt = -1;
238 /* Record user cpu selection for object attributes. */
239 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
240 /* Must be long enough to hold any of the names in arm_cpus. */
241 static char selected_cpu_name[16];
242
243 /* Return if no cpu was selected on command-line. */
244 static bfd_boolean
245 no_cpu_selected (void)
246 {
247 return selected_cpu.core == arm_arch_none.core
248 && selected_cpu.coproc == arm_arch_none.coproc;
249 }
250
251 #ifdef OBJ_ELF
252 # ifdef EABI_DEFAULT
253 static int meabi_flags = EABI_DEFAULT;
254 # else
255 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
256 # endif
257
258 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
259
260 bfd_boolean
261 arm_is_eabi (void)
262 {
263 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
264 }
265 #endif
266
267 #ifdef OBJ_ELF
268 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
269 symbolS * GOT_symbol;
270 #endif
271
272 /* 0: assemble for ARM,
273 1: assemble for Thumb,
274 2: assemble for Thumb even though target CPU does not support thumb
275 instructions. */
276 static int thumb_mode = 0;
277 /* A value distinct from the possible values for thumb_mode that we
278 can use to record whether thumb_mode has been copied into the
279 tc_frag_data field of a frag. */
280 #define MODE_RECORDED (1 << 4)
281
282 /* Specifies the intrinsic IT insn behavior mode. */
283 enum implicit_it_mode
284 {
285 IMPLICIT_IT_MODE_NEVER = 0x00,
286 IMPLICIT_IT_MODE_ARM = 0x01,
287 IMPLICIT_IT_MODE_THUMB = 0x02,
288 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
289 };
290 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
291
292 /* If unified_syntax is true, we are processing the new unified
293 ARM/Thumb syntax. Important differences from the old ARM mode:
294
295 - Immediate operands do not require a # prefix.
296 - Conditional affixes always appear at the end of the
297 instruction. (For backward compatibility, those instructions
298 that formerly had them in the middle, continue to accept them
299 there.)
300 - The IT instruction may appear, and if it does is validated
301 against subsequent conditional affixes. It does not generate
302 machine code.
303
304 Important differences from the old Thumb mode:
305
306 - Immediate operands do not require a # prefix.
307 - Most of the V6T2 instructions are only available in unified mode.
308 - The .N and .W suffixes are recognized and honored (it is an error
309 if they cannot be honored).
310 - All instructions set the flags if and only if they have an 's' affix.
311 - Conditional affixes may be used. They are validated against
312 preceding IT instructions. Unlike ARM mode, you cannot use a
313 conditional affix except in the scope of an IT instruction. */
314
315 static bfd_boolean unified_syntax = FALSE;
316
317 enum neon_el_type
318 {
319 NT_invtype,
320 NT_untyped,
321 NT_integer,
322 NT_float,
323 NT_poly,
324 NT_signed,
325 NT_unsigned
326 };
327
328 struct neon_type_el
329 {
330 enum neon_el_type type;
331 unsigned size;
332 };
333
334 #define NEON_MAX_TYPE_ELS 4
335
336 struct neon_type
337 {
338 struct neon_type_el el[NEON_MAX_TYPE_ELS];
339 unsigned elems;
340 };
341
342 enum it_instruction_type
343 {
344 OUTSIDE_IT_INSN,
345 INSIDE_IT_INSN,
346 INSIDE_IT_LAST_INSN,
347 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
348 if inside, should be the last one. */
349 NEUTRAL_IT_INSN, /* This could be either inside or outside,
350 i.e. BKPT and NOP. */
351 IT_INSN /* The IT insn has been parsed. */
352 };
353
354 struct arm_it
355 {
356 const char * error;
357 unsigned long instruction;
358 int size;
359 int size_req;
360 int cond;
361 /* "uncond_value" is set to the value in place of the conditional field in
362 unconditional versions of the instruction, or -1 if nothing is
363 appropriate. */
364 int uncond_value;
365 struct neon_type vectype;
366 /* This does not indicate an actual NEON instruction, only that
367 the mnemonic accepts neon-style type suffixes. */
368 int is_neon;
369 /* Set to the opcode if the instruction needs relaxation.
370 Zero if the instruction is not relaxed. */
371 unsigned long relax;
372 struct
373 {
374 bfd_reloc_code_real_type type;
375 expressionS exp;
376 int pc_rel;
377 } reloc;
378
379 enum it_instruction_type it_insn_type;
380
381 struct
382 {
383 unsigned reg;
384 signed int imm;
385 struct neon_type_el vectype;
386 unsigned present : 1; /* Operand present. */
387 unsigned isreg : 1; /* Operand was a register. */
388 unsigned immisreg : 1; /* .imm field is a second register. */
389 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
390 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
391 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
392 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
393 instructions. This allows us to disambiguate ARM <-> vector insns. */
394 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
395 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
396 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
397 unsigned issingle : 1; /* Operand is VFP single-precision register. */
398 unsigned hasreloc : 1; /* Operand has relocation suffix. */
399 unsigned writeback : 1; /* Operand has trailing ! */
400 unsigned preind : 1; /* Preindexed address. */
401 unsigned postind : 1; /* Postindexed address. */
402 unsigned negative : 1; /* Index register was negated. */
403 unsigned shifted : 1; /* Shift applied to operation. */
404 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
405 } operands[6];
406 };
407
408 static struct arm_it inst;
409
410 #define NUM_FLOAT_VALS 8
411
412 const char * fp_const[] =
413 {
414 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
415 };
416
417 /* Number of littlenums required to hold an extended precision number. */
418 #define MAX_LITTLENUMS 6
419
420 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
421
422 #define FAIL (-1)
423 #define SUCCESS (0)
424
425 #define SUFF_S 1
426 #define SUFF_D 2
427 #define SUFF_E 3
428 #define SUFF_P 4
429
430 #define CP_T_X 0x00008000
431 #define CP_T_Y 0x00400000
432
433 #define CONDS_BIT 0x00100000
434 #define LOAD_BIT 0x00100000
435
436 #define DOUBLE_LOAD_FLAG 0x00000001
437
438 struct asm_cond
439 {
440 const char * template_name;
441 unsigned long value;
442 };
443
444 #define COND_ALWAYS 0xE
445
446 struct asm_psr
447 {
448 const char * template_name;
449 unsigned long field;
450 };
451
452 struct asm_barrier_opt
453 {
454 const char * template_name;
455 unsigned long value;
456 };
457
458 /* The bit that distinguishes CPSR and SPSR. */
459 #define SPSR_BIT (1 << 22)
460
461 /* The individual PSR flag bits. */
462 #define PSR_c (1 << 16)
463 #define PSR_x (1 << 17)
464 #define PSR_s (1 << 18)
465 #define PSR_f (1 << 19)
466
467 struct reloc_entry
468 {
469 char * name;
470 bfd_reloc_code_real_type reloc;
471 };
472
473 enum vfp_reg_pos
474 {
475 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
476 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
477 };
478
479 enum vfp_ldstm_type
480 {
481 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
482 };
483
484 /* Bits for DEFINED field in neon_typed_alias. */
485 #define NTA_HASTYPE 1
486 #define NTA_HASINDEX 2
487
488 struct neon_typed_alias
489 {
490 unsigned char defined;
491 unsigned char index;
492 struct neon_type_el eltype;
493 };
494
495 /* ARM register categories. This includes coprocessor numbers and various
496 architecture extensions' registers. */
497 enum arm_reg_type
498 {
499 REG_TYPE_RN,
500 REG_TYPE_CP,
501 REG_TYPE_CN,
502 REG_TYPE_FN,
503 REG_TYPE_VFS,
504 REG_TYPE_VFD,
505 REG_TYPE_NQ,
506 REG_TYPE_VFSD,
507 REG_TYPE_NDQ,
508 REG_TYPE_NSDQ,
509 REG_TYPE_VFC,
510 REG_TYPE_MVF,
511 REG_TYPE_MVD,
512 REG_TYPE_MVFX,
513 REG_TYPE_MVDX,
514 REG_TYPE_MVAX,
515 REG_TYPE_DSPSC,
516 REG_TYPE_MMXWR,
517 REG_TYPE_MMXWC,
518 REG_TYPE_MMXWCG,
519 REG_TYPE_XSCALE,
520 REG_TYPE_RNB
521 };
522
523 /* Structure for a hash table entry for a register.
524 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
525 information which states whether a vector type or index is specified (for a
526 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
527 struct reg_entry
528 {
529 const char * name;
530 unsigned int number;
531 unsigned char type;
532 unsigned char builtin;
533 struct neon_typed_alias * neon;
534 };
535
536 /* Diagnostics used when we don't get a register of the expected type. */
537 const char * const reg_expected_msgs[] =
538 {
539 N_("ARM register expected"),
540 N_("bad or missing co-processor number"),
541 N_("co-processor register expected"),
542 N_("FPA register expected"),
543 N_("VFP single precision register expected"),
544 N_("VFP/Neon double precision register expected"),
545 N_("Neon quad precision register expected"),
546 N_("VFP single or double precision register expected"),
547 N_("Neon double or quad precision register expected"),
548 N_("VFP single, double or Neon quad precision register expected"),
549 N_("VFP system register expected"),
550 N_("Maverick MVF register expected"),
551 N_("Maverick MVD register expected"),
552 N_("Maverick MVFX register expected"),
553 N_("Maverick MVDX register expected"),
554 N_("Maverick MVAX register expected"),
555 N_("Maverick DSPSC register expected"),
556 N_("iWMMXt data register expected"),
557 N_("iWMMXt control register expected"),
558 N_("iWMMXt scalar register expected"),
559 N_("XScale accumulator register expected"),
560 };
561
562 /* Some well known registers that we refer to directly elsewhere. */
563 #define REG_SP 13
564 #define REG_LR 14
565 #define REG_PC 15
566
567 /* ARM instructions take 4bytes in the object file, Thumb instructions
568 take 2: */
569 #define INSN_SIZE 4
570
571 struct asm_opcode
572 {
573 /* Basic string to match. */
574 const char * template_name;
575
576 /* Parameters to instruction. */
577 unsigned int operands[8];
578
579 /* Conditional tag - see opcode_lookup. */
580 unsigned int tag : 4;
581
582 /* Basic instruction code. */
583 unsigned int avalue : 28;
584
585 /* Thumb-format instruction code. */
586 unsigned int tvalue;
587
588 /* Which architecture variant provides this instruction. */
589 const arm_feature_set * avariant;
590 const arm_feature_set * tvariant;
591
592 /* Function to call to encode instruction in ARM format. */
593 void (* aencode) (void);
594
595 /* Function to call to encode instruction in Thumb format. */
596 void (* tencode) (void);
597 };
598
599 /* Defines for various bits that we will want to toggle. */
600 #define INST_IMMEDIATE 0x02000000
601 #define OFFSET_REG 0x02000000
602 #define HWOFFSET_IMM 0x00400000
603 #define SHIFT_BY_REG 0x00000010
604 #define PRE_INDEX 0x01000000
605 #define INDEX_UP 0x00800000
606 #define WRITE_BACK 0x00200000
607 #define LDM_TYPE_2_OR_3 0x00400000
608 #define CPSI_MMOD 0x00020000
609
610 #define LITERAL_MASK 0xf000f000
611 #define OPCODE_MASK 0xfe1fffff
612 #define V4_STR_BIT 0x00000020
613
614 #define T2_SUBS_PC_LR 0xf3de8f00
615
616 #define DATA_OP_SHIFT 21
617
618 #define T2_OPCODE_MASK 0xfe1fffff
619 #define T2_DATA_OP_SHIFT 21
620
621 /* Codes to distinguish the arithmetic instructions. */
622 #define OPCODE_AND 0
623 #define OPCODE_EOR 1
624 #define OPCODE_SUB 2
625 #define OPCODE_RSB 3
626 #define OPCODE_ADD 4
627 #define OPCODE_ADC 5
628 #define OPCODE_SBC 6
629 #define OPCODE_RSC 7
630 #define OPCODE_TST 8
631 #define OPCODE_TEQ 9
632 #define OPCODE_CMP 10
633 #define OPCODE_CMN 11
634 #define OPCODE_ORR 12
635 #define OPCODE_MOV 13
636 #define OPCODE_BIC 14
637 #define OPCODE_MVN 15
638
639 #define T2_OPCODE_AND 0
640 #define T2_OPCODE_BIC 1
641 #define T2_OPCODE_ORR 2
642 #define T2_OPCODE_ORN 3
643 #define T2_OPCODE_EOR 4
644 #define T2_OPCODE_ADD 8
645 #define T2_OPCODE_ADC 10
646 #define T2_OPCODE_SBC 11
647 #define T2_OPCODE_SUB 13
648 #define T2_OPCODE_RSB 14
649
650 #define T_OPCODE_MUL 0x4340
651 #define T_OPCODE_TST 0x4200
652 #define T_OPCODE_CMN 0x42c0
653 #define T_OPCODE_NEG 0x4240
654 #define T_OPCODE_MVN 0x43c0
655
656 #define T_OPCODE_ADD_R3 0x1800
657 #define T_OPCODE_SUB_R3 0x1a00
658 #define T_OPCODE_ADD_HI 0x4400
659 #define T_OPCODE_ADD_ST 0xb000
660 #define T_OPCODE_SUB_ST 0xb080
661 #define T_OPCODE_ADD_SP 0xa800
662 #define T_OPCODE_ADD_PC 0xa000
663 #define T_OPCODE_ADD_I8 0x3000
664 #define T_OPCODE_SUB_I8 0x3800
665 #define T_OPCODE_ADD_I3 0x1c00
666 #define T_OPCODE_SUB_I3 0x1e00
667
668 #define T_OPCODE_ASR_R 0x4100
669 #define T_OPCODE_LSL_R 0x4080
670 #define T_OPCODE_LSR_R 0x40c0
671 #define T_OPCODE_ROR_R 0x41c0
672 #define T_OPCODE_ASR_I 0x1000
673 #define T_OPCODE_LSL_I 0x0000
674 #define T_OPCODE_LSR_I 0x0800
675
676 #define T_OPCODE_MOV_I8 0x2000
677 #define T_OPCODE_CMP_I8 0x2800
678 #define T_OPCODE_CMP_LR 0x4280
679 #define T_OPCODE_MOV_HR 0x4600
680 #define T_OPCODE_CMP_HR 0x4500
681
682 #define T_OPCODE_LDR_PC 0x4800
683 #define T_OPCODE_LDR_SP 0x9800
684 #define T_OPCODE_STR_SP 0x9000
685 #define T_OPCODE_LDR_IW 0x6800
686 #define T_OPCODE_STR_IW 0x6000
687 #define T_OPCODE_LDR_IH 0x8800
688 #define T_OPCODE_STR_IH 0x8000
689 #define T_OPCODE_LDR_IB 0x7800
690 #define T_OPCODE_STR_IB 0x7000
691 #define T_OPCODE_LDR_RW 0x5800
692 #define T_OPCODE_STR_RW 0x5000
693 #define T_OPCODE_LDR_RH 0x5a00
694 #define T_OPCODE_STR_RH 0x5200
695 #define T_OPCODE_LDR_RB 0x5c00
696 #define T_OPCODE_STR_RB 0x5400
697
698 #define T_OPCODE_PUSH 0xb400
699 #define T_OPCODE_POP 0xbc00
700
701 #define T_OPCODE_BRANCH 0xe000
702
703 #define THUMB_SIZE 2 /* Size of thumb instruction. */
704 #define THUMB_PP_PC_LR 0x0100
705 #define THUMB_LOAD_BIT 0x0800
706 #define THUMB2_LOAD_BIT 0x00100000
707
708 #define BAD_ARGS _("bad arguments to instruction")
709 #define BAD_SP _("r13 not allowed here")
710 #define BAD_PC _("r15 not allowed here")
711 #define BAD_COND _("instruction cannot be conditional")
712 #define BAD_OVERLAP _("registers may not be the same")
713 #define BAD_HIREG _("lo register required")
714 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
715 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
716 #define BAD_BRANCH _("branch must be last instruction in IT block")
717 #define BAD_NOT_IT _("instruction not allowed in IT block")
718 #define BAD_FPU _("selected FPU does not support instruction")
719 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
720 #define BAD_IT_COND _("incorrect condition in IT block")
721 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
722 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
723 #define BAD_PC_ADDRESSING \
724 _("cannot use register index with PC-relative addressing")
725 #define BAD_PC_WRITEBACK \
726 _("cannot use writeback with PC-relative addressing")
727 #define BAD_RANGE _("branch out of range")
728
729 static struct hash_control * arm_ops_hsh;
730 static struct hash_control * arm_cond_hsh;
731 static struct hash_control * arm_shift_hsh;
732 static struct hash_control * arm_psr_hsh;
733 static struct hash_control * arm_v7m_psr_hsh;
734 static struct hash_control * arm_reg_hsh;
735 static struct hash_control * arm_reloc_hsh;
736 static struct hash_control * arm_barrier_opt_hsh;
737
738 /* Stuff needed to resolve the label ambiguity
739 As:
740 ...
741 label: <insn>
742 may differ from:
743 ...
744 label:
745 <insn> */
746
747 symbolS * last_label_seen;
748 static int label_is_thumb_function_name = FALSE;
749
750 /* Literal pool structure. Held on a per-section
751 and per-sub-section basis. */
752
753 #define MAX_LITERAL_POOL_SIZE 1024
754 typedef struct literal_pool
755 {
756 expressionS literals [MAX_LITERAL_POOL_SIZE];
757 unsigned int next_free_entry;
758 unsigned int id;
759 symbolS * symbol;
760 segT section;
761 subsegT sub_section;
762 #ifdef OBJ_ELF
763 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
764 #endif
765 struct literal_pool * next;
766 } literal_pool;
767
768 /* Pointer to a linked list of literal pools. */
769 literal_pool * list_of_pools = NULL;
770
771 #ifdef OBJ_ELF
772 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
773 #else
774 static struct current_it now_it;
775 #endif
776
777 static inline int
778 now_it_compatible (int cond)
779 {
780 return (cond & ~1) == (now_it.cc & ~1);
781 }
782
783 static inline int
784 conditional_insn (void)
785 {
786 return inst.cond != COND_ALWAYS;
787 }
788
789 static int in_it_block (void);
790
791 static int handle_it_state (void);
792
793 static void force_automatic_it_block_close (void);
794
795 static void it_fsm_post_encode (void);
796
797 #define set_it_insn_type(type) \
798 do \
799 { \
800 inst.it_insn_type = type; \
801 if (handle_it_state () == FAIL) \
802 return; \
803 } \
804 while (0)
805
806 #define set_it_insn_type_nonvoid(type, failret) \
807 do \
808 { \
809 inst.it_insn_type = type; \
810 if (handle_it_state () == FAIL) \
811 return failret; \
812 } \
813 while(0)
814
815 #define set_it_insn_type_last() \
816 do \
817 { \
818 if (inst.cond == COND_ALWAYS) \
819 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
820 else \
821 set_it_insn_type (INSIDE_IT_LAST_INSN); \
822 } \
823 while (0)
824
825 /* Pure syntax. */
826
827 /* This array holds the chars that always start a comment. If the
828 pre-processor is disabled, these aren't very useful. */
829 const char comment_chars[] = "@";
830
831 /* This array holds the chars that only start a comment at the beginning of
832 a line. If the line seems to have the form '# 123 filename'
833 .line and .file directives will appear in the pre-processed output. */
834 /* Note that input_file.c hand checks for '#' at the beginning of the
835 first line of the input file. This is because the compiler outputs
836 #NO_APP at the beginning of its output. */
837 /* Also note that comments like this one will always work. */
838 const char line_comment_chars[] = "#";
839
840 const char line_separator_chars[] = ";";
841
842 /* Chars that can be used to separate mant
843 from exp in floating point numbers. */
844 const char EXP_CHARS[] = "eE";
845
846 /* Chars that mean this number is a floating point constant. */
847 /* As in 0f12.456 */
848 /* or 0d1.2345e12 */
849
850 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
851
852 /* Prefix characters that indicate the start of an immediate
853 value. */
854 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
855
856 /* Separator character handling. */
857
858 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
859
860 static inline int
861 skip_past_char (char ** str, char c)
862 {
863 if (**str == c)
864 {
865 (*str)++;
866 return SUCCESS;
867 }
868 else
869 return FAIL;
870 }
871
872 #define skip_past_comma(str) skip_past_char (str, ',')
873
874 /* Arithmetic expressions (possibly involving symbols). */
875
876 /* Return TRUE if anything in the expression is a bignum. */
877
878 static int
879 walk_no_bignums (symbolS * sp)
880 {
881 if (symbol_get_value_expression (sp)->X_op == O_big)
882 return 1;
883
884 if (symbol_get_value_expression (sp)->X_add_symbol)
885 {
886 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
887 || (symbol_get_value_expression (sp)->X_op_symbol
888 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
889 }
890
891 return 0;
892 }
893
894 static int in_my_get_expression = 0;
895
896 /* Third argument to my_get_expression. */
897 #define GE_NO_PREFIX 0
898 #define GE_IMM_PREFIX 1
899 #define GE_OPT_PREFIX 2
900 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
901 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
902 #define GE_OPT_PREFIX_BIG 3
903
904 static int
905 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
906 {
907 char * save_in;
908 segT seg;
909
910 /* In unified syntax, all prefixes are optional. */
911 if (unified_syntax)
912 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
913 : GE_OPT_PREFIX;
914
915 switch (prefix_mode)
916 {
917 case GE_NO_PREFIX: break;
918 case GE_IMM_PREFIX:
919 if (!is_immediate_prefix (**str))
920 {
921 inst.error = _("immediate expression requires a # prefix");
922 return FAIL;
923 }
924 (*str)++;
925 break;
926 case GE_OPT_PREFIX:
927 case GE_OPT_PREFIX_BIG:
928 if (is_immediate_prefix (**str))
929 (*str)++;
930 break;
931 default: abort ();
932 }
933
934 memset (ep, 0, sizeof (expressionS));
935
936 save_in = input_line_pointer;
937 input_line_pointer = *str;
938 in_my_get_expression = 1;
939 seg = expression (ep);
940 in_my_get_expression = 0;
941
942 if (ep->X_op == O_illegal || ep->X_op == O_absent)
943 {
944 /* We found a bad or missing expression in md_operand(). */
945 *str = input_line_pointer;
946 input_line_pointer = save_in;
947 if (inst.error == NULL)
948 inst.error = (ep->X_op == O_absent
949 ? _("missing expression") :_("bad expression"));
950 return 1;
951 }
952
953 #ifdef OBJ_AOUT
954 if (seg != absolute_section
955 && seg != text_section
956 && seg != data_section
957 && seg != bss_section
958 && seg != undefined_section)
959 {
960 inst.error = _("bad segment");
961 *str = input_line_pointer;
962 input_line_pointer = save_in;
963 return 1;
964 }
965 #else
966 (void) seg;
967 #endif
968
969 /* Get rid of any bignums now, so that we don't generate an error for which
970 we can't establish a line number later on. Big numbers are never valid
971 in instructions, which is where this routine is always called. */
972 if (prefix_mode != GE_OPT_PREFIX_BIG
973 && (ep->X_op == O_big
974 || (ep->X_add_symbol
975 && (walk_no_bignums (ep->X_add_symbol)
976 || (ep->X_op_symbol
977 && walk_no_bignums (ep->X_op_symbol))))))
978 {
979 inst.error = _("invalid constant");
980 *str = input_line_pointer;
981 input_line_pointer = save_in;
982 return 1;
983 }
984
985 *str = input_line_pointer;
986 input_line_pointer = save_in;
987 return 0;
988 }
989
990 /* Turn a string in input_line_pointer into a floating point constant
991 of type TYPE, and store the appropriate bytes in *LITP. The number
992 of LITTLENUMS emitted is stored in *SIZEP. An error message is
993 returned, or NULL on OK.
994
995 Note that fp constants aren't represent in the normal way on the ARM.
996 In big endian mode, things are as expected. However, in little endian
997 mode fp constants are big-endian word-wise, and little-endian byte-wise
998 within the words. For example, (double) 1.1 in big endian mode is
999 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1000 the byte sequence 99 99 f1 3f 9a 99 99 99.
1001
1002 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1003
1004 char *
1005 md_atof (int type, char * litP, int * sizeP)
1006 {
1007 int prec;
1008 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1009 char *t;
1010 int i;
1011
1012 switch (type)
1013 {
1014 case 'f':
1015 case 'F':
1016 case 's':
1017 case 'S':
1018 prec = 2;
1019 break;
1020
1021 case 'd':
1022 case 'D':
1023 case 'r':
1024 case 'R':
1025 prec = 4;
1026 break;
1027
1028 case 'x':
1029 case 'X':
1030 prec = 5;
1031 break;
1032
1033 case 'p':
1034 case 'P':
1035 prec = 5;
1036 break;
1037
1038 default:
1039 *sizeP = 0;
1040 return _("Unrecognized or unsupported floating point constant");
1041 }
1042
1043 t = atof_ieee (input_line_pointer, type, words);
1044 if (t)
1045 input_line_pointer = t;
1046 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1047
1048 if (target_big_endian)
1049 {
1050 for (i = 0; i < prec; i++)
1051 {
1052 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1053 litP += sizeof (LITTLENUM_TYPE);
1054 }
1055 }
1056 else
1057 {
1058 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1059 for (i = prec - 1; i >= 0; i--)
1060 {
1061 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1062 litP += sizeof (LITTLENUM_TYPE);
1063 }
1064 else
1065 /* For a 4 byte float the order of elements in `words' is 1 0.
1066 For an 8 byte float the order is 1 0 3 2. */
1067 for (i = 0; i < prec; i += 2)
1068 {
1069 md_number_to_chars (litP, (valueT) words[i + 1],
1070 sizeof (LITTLENUM_TYPE));
1071 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1072 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += 2 * sizeof (LITTLENUM_TYPE);
1074 }
1075 }
1076
1077 return NULL;
1078 }
1079
1080 /* We handle all bad expressions here, so that we can report the faulty
1081 instruction in the error message. */
1082 void
1083 md_operand (expressionS * exp)
1084 {
1085 if (in_my_get_expression)
1086 exp->X_op = O_illegal;
1087 }
1088
1089 /* Immediate values. */
1090
1091 /* Generic immediate-value read function for use in directives.
1092 Accepts anything that 'expression' can fold to a constant.
1093 *val receives the number. */
1094 #ifdef OBJ_ELF
1095 static int
1096 immediate_for_directive (int *val)
1097 {
1098 expressionS exp;
1099 exp.X_op = O_illegal;
1100
1101 if (is_immediate_prefix (*input_line_pointer))
1102 {
1103 input_line_pointer++;
1104 expression (&exp);
1105 }
1106
1107 if (exp.X_op != O_constant)
1108 {
1109 as_bad (_("expected #constant"));
1110 ignore_rest_of_line ();
1111 return FAIL;
1112 }
1113 *val = exp.X_add_number;
1114 return SUCCESS;
1115 }
1116 #endif
1117
1118 /* Register parsing. */
1119
1120 /* Generic register parser. CCP points to what should be the
1121 beginning of a register name. If it is indeed a valid register
1122 name, advance CCP over it and return the reg_entry structure;
1123 otherwise return NULL. Does not issue diagnostics. */
1124
1125 static struct reg_entry *
1126 arm_reg_parse_multi (char **ccp)
1127 {
1128 char *start = *ccp;
1129 char *p;
1130 struct reg_entry *reg;
1131
1132 #ifdef REGISTER_PREFIX
1133 if (*start != REGISTER_PREFIX)
1134 return NULL;
1135 start++;
1136 #endif
1137 #ifdef OPTIONAL_REGISTER_PREFIX
1138 if (*start == OPTIONAL_REGISTER_PREFIX)
1139 start++;
1140 #endif
1141
1142 p = start;
1143 if (!ISALPHA (*p) || !is_name_beginner (*p))
1144 return NULL;
1145
1146 do
1147 p++;
1148 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1149
1150 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1151
1152 if (!reg)
1153 return NULL;
1154
1155 *ccp = p;
1156 return reg;
1157 }
1158
1159 static int
1160 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1161 enum arm_reg_type type)
1162 {
1163 /* Alternative syntaxes are accepted for a few register classes. */
1164 switch (type)
1165 {
1166 case REG_TYPE_MVF:
1167 case REG_TYPE_MVD:
1168 case REG_TYPE_MVFX:
1169 case REG_TYPE_MVDX:
1170 /* Generic coprocessor register names are allowed for these. */
1171 if (reg && reg->type == REG_TYPE_CN)
1172 return reg->number;
1173 break;
1174
1175 case REG_TYPE_CP:
1176 /* For backward compatibility, a bare number is valid here. */
1177 {
1178 unsigned long processor = strtoul (start, ccp, 10);
1179 if (*ccp != start && processor <= 15)
1180 return processor;
1181 }
1182
1183 case REG_TYPE_MMXWC:
1184 /* WC includes WCG. ??? I'm not sure this is true for all
1185 instructions that take WC registers. */
1186 if (reg && reg->type == REG_TYPE_MMXWCG)
1187 return reg->number;
1188 break;
1189
1190 default:
1191 break;
1192 }
1193
1194 return FAIL;
1195 }
1196
1197 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1198 return value is the register number or FAIL. */
1199
1200 static int
1201 arm_reg_parse (char **ccp, enum arm_reg_type type)
1202 {
1203 char *start = *ccp;
1204 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1205 int ret;
1206
1207 /* Do not allow a scalar (reg+index) to parse as a register. */
1208 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1209 return FAIL;
1210
1211 if (reg && reg->type == type)
1212 return reg->number;
1213
1214 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1215 return ret;
1216
1217 *ccp = start;
1218 return FAIL;
1219 }
1220
1221 /* Parse a Neon type specifier. *STR should point at the leading '.'
1222 character. Does no verification at this stage that the type fits the opcode
1223 properly. E.g.,
1224
1225 .i32.i32.s16
1226 .s32.f32
1227 .u16
1228
1229 Can all be legally parsed by this function.
1230
1231 Fills in neon_type struct pointer with parsed information, and updates STR
1232 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1233 type, FAIL if not. */
1234
1235 static int
1236 parse_neon_type (struct neon_type *type, char **str)
1237 {
1238 char *ptr = *str;
1239
1240 if (type)
1241 type->elems = 0;
1242
1243 while (type->elems < NEON_MAX_TYPE_ELS)
1244 {
1245 enum neon_el_type thistype = NT_untyped;
1246 unsigned thissize = -1u;
1247
1248 if (*ptr != '.')
1249 break;
1250
1251 ptr++;
1252
1253 /* Just a size without an explicit type. */
1254 if (ISDIGIT (*ptr))
1255 goto parsesize;
1256
1257 switch (TOLOWER (*ptr))
1258 {
1259 case 'i': thistype = NT_integer; break;
1260 case 'f': thistype = NT_float; break;
1261 case 'p': thistype = NT_poly; break;
1262 case 's': thistype = NT_signed; break;
1263 case 'u': thistype = NT_unsigned; break;
1264 case 'd':
1265 thistype = NT_float;
1266 thissize = 64;
1267 ptr++;
1268 goto done;
1269 default:
1270 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1271 return FAIL;
1272 }
1273
1274 ptr++;
1275
1276 /* .f is an abbreviation for .f32. */
1277 if (thistype == NT_float && !ISDIGIT (*ptr))
1278 thissize = 32;
1279 else
1280 {
1281 parsesize:
1282 thissize = strtoul (ptr, &ptr, 10);
1283
1284 if (thissize != 8 && thissize != 16 && thissize != 32
1285 && thissize != 64)
1286 {
1287 as_bad (_("bad size %d in type specifier"), thissize);
1288 return FAIL;
1289 }
1290 }
1291
1292 done:
1293 if (type)
1294 {
1295 type->el[type->elems].type = thistype;
1296 type->el[type->elems].size = thissize;
1297 type->elems++;
1298 }
1299 }
1300
1301 /* Empty/missing type is not a successful parse. */
1302 if (type->elems == 0)
1303 return FAIL;
1304
1305 *str = ptr;
1306
1307 return SUCCESS;
1308 }
1309
1310 /* Errors may be set multiple times during parsing or bit encoding
1311 (particularly in the Neon bits), but usually the earliest error which is set
1312 will be the most meaningful. Avoid overwriting it with later (cascading)
1313 errors by calling this function. */
1314
1315 static void
1316 first_error (const char *err)
1317 {
1318 if (!inst.error)
1319 inst.error = err;
1320 }
1321
1322 /* Parse a single type, e.g. ".s32", leading period included. */
1323 static int
1324 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1325 {
1326 char *str = *ccp;
1327 struct neon_type optype;
1328
1329 if (*str == '.')
1330 {
1331 if (parse_neon_type (&optype, &str) == SUCCESS)
1332 {
1333 if (optype.elems == 1)
1334 *vectype = optype.el[0];
1335 else
1336 {
1337 first_error (_("only one type should be specified for operand"));
1338 return FAIL;
1339 }
1340 }
1341 else
1342 {
1343 first_error (_("vector type expected"));
1344 return FAIL;
1345 }
1346 }
1347 else
1348 return FAIL;
1349
1350 *ccp = str;
1351
1352 return SUCCESS;
1353 }
1354
1355 /* Special meanings for indices (which have a range of 0-7), which will fit into
1356 a 4-bit integer. */
1357
1358 #define NEON_ALL_LANES 15
1359 #define NEON_INTERLEAVE_LANES 14
1360
1361 /* Parse either a register or a scalar, with an optional type. Return the
1362 register number, and optionally fill in the actual type of the register
1363 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1364 type/index information in *TYPEINFO. */
1365
1366 static int
1367 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1368 enum arm_reg_type *rtype,
1369 struct neon_typed_alias *typeinfo)
1370 {
1371 char *str = *ccp;
1372 struct reg_entry *reg = arm_reg_parse_multi (&str);
1373 struct neon_typed_alias atype;
1374 struct neon_type_el parsetype;
1375
1376 atype.defined = 0;
1377 atype.index = -1;
1378 atype.eltype.type = NT_invtype;
1379 atype.eltype.size = -1;
1380
1381 /* Try alternate syntax for some types of register. Note these are mutually
1382 exclusive with the Neon syntax extensions. */
1383 if (reg == NULL)
1384 {
1385 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1386 if (altreg != FAIL)
1387 *ccp = str;
1388 if (typeinfo)
1389 *typeinfo = atype;
1390 return altreg;
1391 }
1392
1393 /* Undo polymorphism when a set of register types may be accepted. */
1394 if ((type == REG_TYPE_NDQ
1395 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1396 || (type == REG_TYPE_VFSD
1397 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1398 || (type == REG_TYPE_NSDQ
1399 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1400 || reg->type == REG_TYPE_NQ))
1401 || (type == REG_TYPE_MMXWC
1402 && (reg->type == REG_TYPE_MMXWCG)))
1403 type = (enum arm_reg_type) reg->type;
1404
1405 if (type != reg->type)
1406 return FAIL;
1407
1408 if (reg->neon)
1409 atype = *reg->neon;
1410
1411 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1412 {
1413 if ((atype.defined & NTA_HASTYPE) != 0)
1414 {
1415 first_error (_("can't redefine type for operand"));
1416 return FAIL;
1417 }
1418 atype.defined |= NTA_HASTYPE;
1419 atype.eltype = parsetype;
1420 }
1421
1422 if (skip_past_char (&str, '[') == SUCCESS)
1423 {
1424 if (type != REG_TYPE_VFD)
1425 {
1426 first_error (_("only D registers may be indexed"));
1427 return FAIL;
1428 }
1429
1430 if ((atype.defined & NTA_HASINDEX) != 0)
1431 {
1432 first_error (_("can't change index for operand"));
1433 return FAIL;
1434 }
1435
1436 atype.defined |= NTA_HASINDEX;
1437
1438 if (skip_past_char (&str, ']') == SUCCESS)
1439 atype.index = NEON_ALL_LANES;
1440 else
1441 {
1442 expressionS exp;
1443
1444 my_get_expression (&exp, &str, GE_NO_PREFIX);
1445
1446 if (exp.X_op != O_constant)
1447 {
1448 first_error (_("constant expression required"));
1449 return FAIL;
1450 }
1451
1452 if (skip_past_char (&str, ']') == FAIL)
1453 return FAIL;
1454
1455 atype.index = exp.X_add_number;
1456 }
1457 }
1458
1459 if (typeinfo)
1460 *typeinfo = atype;
1461
1462 if (rtype)
1463 *rtype = type;
1464
1465 *ccp = str;
1466
1467 return reg->number;
1468 }
1469
1470 /* Like arm_reg_parse, but allow allow the following extra features:
1471 - If RTYPE is non-zero, return the (possibly restricted) type of the
1472 register (e.g. Neon double or quad reg when either has been requested).
1473 - If this is a Neon vector type with additional type information, fill
1474 in the struct pointed to by VECTYPE (if non-NULL).
1475 This function will fault on encountering a scalar. */
1476
1477 static int
1478 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1479 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1480 {
1481 struct neon_typed_alias atype;
1482 char *str = *ccp;
1483 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1484
1485 if (reg == FAIL)
1486 return FAIL;
1487
1488 /* Do not allow regname(... to parse as a register. */
1489 if (*str == '(')
1490 return FAIL;
1491
1492 /* Do not allow a scalar (reg+index) to parse as a register. */
1493 if ((atype.defined & NTA_HASINDEX) != 0)
1494 {
1495 first_error (_("register operand expected, but got scalar"));
1496 return FAIL;
1497 }
1498
1499 if (vectype)
1500 *vectype = atype.eltype;
1501
1502 *ccp = str;
1503
1504 return reg;
1505 }
1506
1507 #define NEON_SCALAR_REG(X) ((X) >> 4)
1508 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1509
1510 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1511 have enough information to be able to do a good job bounds-checking. So, we
1512 just do easy checks here, and do further checks later. */
1513
1514 static int
1515 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1516 {
1517 int reg;
1518 char *str = *ccp;
1519 struct neon_typed_alias atype;
1520
1521 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1522
1523 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1524 return FAIL;
1525
1526 if (atype.index == NEON_ALL_LANES)
1527 {
1528 first_error (_("scalar must have an index"));
1529 return FAIL;
1530 }
1531 else if (atype.index >= 64 / elsize)
1532 {
1533 first_error (_("scalar index out of range"));
1534 return FAIL;
1535 }
1536
1537 if (type)
1538 *type = atype.eltype;
1539
1540 *ccp = str;
1541
1542 return reg * 16 + atype.index;
1543 }
1544
1545 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1546
1547 static long
1548 parse_reg_list (char ** strp)
1549 {
1550 char * str = * strp;
1551 long range = 0;
1552 int another_range;
1553
1554 /* We come back here if we get ranges concatenated by '+' or '|'. */
1555 do
1556 {
1557 another_range = 0;
1558
1559 if (*str == '{')
1560 {
1561 int in_range = 0;
1562 int cur_reg = -1;
1563
1564 str++;
1565 do
1566 {
1567 int reg;
1568
1569 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1570 {
1571 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1572 return FAIL;
1573 }
1574
1575 if (in_range)
1576 {
1577 int i;
1578
1579 if (reg <= cur_reg)
1580 {
1581 first_error (_("bad range in register list"));
1582 return FAIL;
1583 }
1584
1585 for (i = cur_reg + 1; i < reg; i++)
1586 {
1587 if (range & (1 << i))
1588 as_tsktsk
1589 (_("Warning: duplicated register (r%d) in register list"),
1590 i);
1591 else
1592 range |= 1 << i;
1593 }
1594 in_range = 0;
1595 }
1596
1597 if (range & (1 << reg))
1598 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1599 reg);
1600 else if (reg <= cur_reg)
1601 as_tsktsk (_("Warning: register range not in ascending order"));
1602
1603 range |= 1 << reg;
1604 cur_reg = reg;
1605 }
1606 while (skip_past_comma (&str) != FAIL
1607 || (in_range = 1, *str++ == '-'));
1608 str--;
1609
1610 if (*str++ != '}')
1611 {
1612 first_error (_("missing `}'"));
1613 return FAIL;
1614 }
1615 }
1616 else
1617 {
1618 expressionS exp;
1619
1620 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1621 return FAIL;
1622
1623 if (exp.X_op == O_constant)
1624 {
1625 if (exp.X_add_number
1626 != (exp.X_add_number & 0x0000ffff))
1627 {
1628 inst.error = _("invalid register mask");
1629 return FAIL;
1630 }
1631
1632 if ((range & exp.X_add_number) != 0)
1633 {
1634 int regno = range & exp.X_add_number;
1635
1636 regno &= -regno;
1637 regno = (1 << regno) - 1;
1638 as_tsktsk
1639 (_("Warning: duplicated register (r%d) in register list"),
1640 regno);
1641 }
1642
1643 range |= exp.X_add_number;
1644 }
1645 else
1646 {
1647 if (inst.reloc.type != 0)
1648 {
1649 inst.error = _("expression too complex");
1650 return FAIL;
1651 }
1652
1653 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1654 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1655 inst.reloc.pc_rel = 0;
1656 }
1657 }
1658
1659 if (*str == '|' || *str == '+')
1660 {
1661 str++;
1662 another_range = 1;
1663 }
1664 }
1665 while (another_range);
1666
1667 *strp = str;
1668 return range;
1669 }
1670
1671 /* Types of registers in a list. */
1672
1673 enum reg_list_els
1674 {
1675 REGLIST_VFP_S,
1676 REGLIST_VFP_D,
1677 REGLIST_NEON_D
1678 };
1679
1680 /* Parse a VFP register list. If the string is invalid return FAIL.
1681 Otherwise return the number of registers, and set PBASE to the first
1682 register. Parses registers of type ETYPE.
1683 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1684 - Q registers can be used to specify pairs of D registers
1685 - { } can be omitted from around a singleton register list
1686 FIXME: This is not implemented, as it would require backtracking in
1687 some cases, e.g.:
1688 vtbl.8 d3,d4,d5
1689 This could be done (the meaning isn't really ambiguous), but doesn't
1690 fit in well with the current parsing framework.
1691 - 32 D registers may be used (also true for VFPv3).
1692 FIXME: Types are ignored in these register lists, which is probably a
1693 bug. */
1694
1695 static int
1696 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1697 {
1698 char *str = *ccp;
1699 int base_reg;
1700 int new_base;
1701 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1702 int max_regs = 0;
1703 int count = 0;
1704 int warned = 0;
1705 unsigned long mask = 0;
1706 int i;
1707
1708 if (*str != '{')
1709 {
1710 inst.error = _("expecting {");
1711 return FAIL;
1712 }
1713
1714 str++;
1715
1716 switch (etype)
1717 {
1718 case REGLIST_VFP_S:
1719 regtype = REG_TYPE_VFS;
1720 max_regs = 32;
1721 break;
1722
1723 case REGLIST_VFP_D:
1724 regtype = REG_TYPE_VFD;
1725 break;
1726
1727 case REGLIST_NEON_D:
1728 regtype = REG_TYPE_NDQ;
1729 break;
1730 }
1731
1732 if (etype != REGLIST_VFP_S)
1733 {
1734 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1735 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1736 {
1737 max_regs = 32;
1738 if (thumb_mode)
1739 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1740 fpu_vfp_ext_d32);
1741 else
1742 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1743 fpu_vfp_ext_d32);
1744 }
1745 else
1746 max_regs = 16;
1747 }
1748
1749 base_reg = max_regs;
1750
1751 do
1752 {
1753 int setmask = 1, addregs = 1;
1754
1755 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1756
1757 if (new_base == FAIL)
1758 {
1759 first_error (_(reg_expected_msgs[regtype]));
1760 return FAIL;
1761 }
1762
1763 if (new_base >= max_regs)
1764 {
1765 first_error (_("register out of range in list"));
1766 return FAIL;
1767 }
1768
1769 /* Note: a value of 2 * n is returned for the register Q<n>. */
1770 if (regtype == REG_TYPE_NQ)
1771 {
1772 setmask = 3;
1773 addregs = 2;
1774 }
1775
1776 if (new_base < base_reg)
1777 base_reg = new_base;
1778
1779 if (mask & (setmask << new_base))
1780 {
1781 first_error (_("invalid register list"));
1782 return FAIL;
1783 }
1784
1785 if ((mask >> new_base) != 0 && ! warned)
1786 {
1787 as_tsktsk (_("register list not in ascending order"));
1788 warned = 1;
1789 }
1790
1791 mask |= setmask << new_base;
1792 count += addregs;
1793
1794 if (*str == '-') /* We have the start of a range expression */
1795 {
1796 int high_range;
1797
1798 str++;
1799
1800 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1801 == FAIL)
1802 {
1803 inst.error = gettext (reg_expected_msgs[regtype]);
1804 return FAIL;
1805 }
1806
1807 if (high_range >= max_regs)
1808 {
1809 first_error (_("register out of range in list"));
1810 return FAIL;
1811 }
1812
1813 if (regtype == REG_TYPE_NQ)
1814 high_range = high_range + 1;
1815
1816 if (high_range <= new_base)
1817 {
1818 inst.error = _("register range not in ascending order");
1819 return FAIL;
1820 }
1821
1822 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1823 {
1824 if (mask & (setmask << new_base))
1825 {
1826 inst.error = _("invalid register list");
1827 return FAIL;
1828 }
1829
1830 mask |= setmask << new_base;
1831 count += addregs;
1832 }
1833 }
1834 }
1835 while (skip_past_comma (&str) != FAIL);
1836
1837 str++;
1838
1839 /* Sanity check -- should have raised a parse error above. */
1840 if (count == 0 || count > max_regs)
1841 abort ();
1842
1843 *pbase = base_reg;
1844
1845 /* Final test -- the registers must be consecutive. */
1846 mask >>= base_reg;
1847 for (i = 0; i < count; i++)
1848 {
1849 if ((mask & (1u << i)) == 0)
1850 {
1851 inst.error = _("non-contiguous register range");
1852 return FAIL;
1853 }
1854 }
1855
1856 *ccp = str;
1857
1858 return count;
1859 }
1860
1861 /* True if two alias types are the same. */
1862
1863 static bfd_boolean
1864 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1865 {
1866 if (!a && !b)
1867 return TRUE;
1868
1869 if (!a || !b)
1870 return FALSE;
1871
1872 if (a->defined != b->defined)
1873 return FALSE;
1874
1875 if ((a->defined & NTA_HASTYPE) != 0
1876 && (a->eltype.type != b->eltype.type
1877 || a->eltype.size != b->eltype.size))
1878 return FALSE;
1879
1880 if ((a->defined & NTA_HASINDEX) != 0
1881 && (a->index != b->index))
1882 return FALSE;
1883
1884 return TRUE;
1885 }
1886
1887 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1888 The base register is put in *PBASE.
1889 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1890 the return value.
1891 The register stride (minus one) is put in bit 4 of the return value.
1892 Bits [6:5] encode the list length (minus one).
1893 The type of the list elements is put in *ELTYPE, if non-NULL. */
1894
1895 #define NEON_LANE(X) ((X) & 0xf)
1896 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1897 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1898
1899 static int
1900 parse_neon_el_struct_list (char **str, unsigned *pbase,
1901 struct neon_type_el *eltype)
1902 {
1903 char *ptr = *str;
1904 int base_reg = -1;
1905 int reg_incr = -1;
1906 int count = 0;
1907 int lane = -1;
1908 int leading_brace = 0;
1909 enum arm_reg_type rtype = REG_TYPE_NDQ;
1910 const char *const incr_error = _("register stride must be 1 or 2");
1911 const char *const type_error = _("mismatched element/structure types in list");
1912 struct neon_typed_alias firsttype;
1913
1914 if (skip_past_char (&ptr, '{') == SUCCESS)
1915 leading_brace = 1;
1916
1917 do
1918 {
1919 struct neon_typed_alias atype;
1920 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1921
1922 if (getreg == FAIL)
1923 {
1924 first_error (_(reg_expected_msgs[rtype]));
1925 return FAIL;
1926 }
1927
1928 if (base_reg == -1)
1929 {
1930 base_reg = getreg;
1931 if (rtype == REG_TYPE_NQ)
1932 {
1933 reg_incr = 1;
1934 }
1935 firsttype = atype;
1936 }
1937 else if (reg_incr == -1)
1938 {
1939 reg_incr = getreg - base_reg;
1940 if (reg_incr < 1 || reg_incr > 2)
1941 {
1942 first_error (_(incr_error));
1943 return FAIL;
1944 }
1945 }
1946 else if (getreg != base_reg + reg_incr * count)
1947 {
1948 first_error (_(incr_error));
1949 return FAIL;
1950 }
1951
1952 if (! neon_alias_types_same (&atype, &firsttype))
1953 {
1954 first_error (_(type_error));
1955 return FAIL;
1956 }
1957
1958 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1959 modes. */
1960 if (ptr[0] == '-')
1961 {
1962 struct neon_typed_alias htype;
1963 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1964 if (lane == -1)
1965 lane = NEON_INTERLEAVE_LANES;
1966 else if (lane != NEON_INTERLEAVE_LANES)
1967 {
1968 first_error (_(type_error));
1969 return FAIL;
1970 }
1971 if (reg_incr == -1)
1972 reg_incr = 1;
1973 else if (reg_incr != 1)
1974 {
1975 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1976 return FAIL;
1977 }
1978 ptr++;
1979 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1980 if (hireg == FAIL)
1981 {
1982 first_error (_(reg_expected_msgs[rtype]));
1983 return FAIL;
1984 }
1985 if (! neon_alias_types_same (&htype, &firsttype))
1986 {
1987 first_error (_(type_error));
1988 return FAIL;
1989 }
1990 count += hireg + dregs - getreg;
1991 continue;
1992 }
1993
1994 /* If we're using Q registers, we can't use [] or [n] syntax. */
1995 if (rtype == REG_TYPE_NQ)
1996 {
1997 count += 2;
1998 continue;
1999 }
2000
2001 if ((atype.defined & NTA_HASINDEX) != 0)
2002 {
2003 if (lane == -1)
2004 lane = atype.index;
2005 else if (lane != atype.index)
2006 {
2007 first_error (_(type_error));
2008 return FAIL;
2009 }
2010 }
2011 else if (lane == -1)
2012 lane = NEON_INTERLEAVE_LANES;
2013 else if (lane != NEON_INTERLEAVE_LANES)
2014 {
2015 first_error (_(type_error));
2016 return FAIL;
2017 }
2018 count++;
2019 }
2020 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2021
2022 /* No lane set by [x]. We must be interleaving structures. */
2023 if (lane == -1)
2024 lane = NEON_INTERLEAVE_LANES;
2025
2026 /* Sanity check. */
2027 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2028 || (count > 1 && reg_incr == -1))
2029 {
2030 first_error (_("error parsing element/structure list"));
2031 return FAIL;
2032 }
2033
2034 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2035 {
2036 first_error (_("expected }"));
2037 return FAIL;
2038 }
2039
2040 if (reg_incr == -1)
2041 reg_incr = 1;
2042
2043 if (eltype)
2044 *eltype = firsttype.eltype;
2045
2046 *pbase = base_reg;
2047 *str = ptr;
2048
2049 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2050 }
2051
2052 /* Parse an explicit relocation suffix on an expression. This is
2053 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2054 arm_reloc_hsh contains no entries, so this function can only
2055 succeed if there is no () after the word. Returns -1 on error,
2056 BFD_RELOC_UNUSED if there wasn't any suffix. */
2057
2058 static int
2059 parse_reloc (char **str)
2060 {
2061 struct reloc_entry *r;
2062 char *p, *q;
2063
2064 if (**str != '(')
2065 return BFD_RELOC_UNUSED;
2066
2067 p = *str + 1;
2068 q = p;
2069
2070 while (*q && *q != ')' && *q != ',')
2071 q++;
2072 if (*q != ')')
2073 return -1;
2074
2075 if ((r = (struct reloc_entry *)
2076 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2077 return -1;
2078
2079 *str = q + 1;
2080 return r->reloc;
2081 }
2082
2083 /* Directives: register aliases. */
2084
2085 static struct reg_entry *
2086 insert_reg_alias (char *str, unsigned number, int type)
2087 {
2088 struct reg_entry *new_reg;
2089 const char *name;
2090
2091 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2092 {
2093 if (new_reg->builtin)
2094 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2095
2096 /* Only warn about a redefinition if it's not defined as the
2097 same register. */
2098 else if (new_reg->number != number || new_reg->type != type)
2099 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2100
2101 return NULL;
2102 }
2103
2104 name = xstrdup (str);
2105 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2106
2107 new_reg->name = name;
2108 new_reg->number = number;
2109 new_reg->type = type;
2110 new_reg->builtin = FALSE;
2111 new_reg->neon = NULL;
2112
2113 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2114 abort ();
2115
2116 return new_reg;
2117 }
2118
2119 static void
2120 insert_neon_reg_alias (char *str, int number, int type,
2121 struct neon_typed_alias *atype)
2122 {
2123 struct reg_entry *reg = insert_reg_alias (str, number, type);
2124
2125 if (!reg)
2126 {
2127 first_error (_("attempt to redefine typed alias"));
2128 return;
2129 }
2130
2131 if (atype)
2132 {
2133 reg->neon = (struct neon_typed_alias *)
2134 xmalloc (sizeof (struct neon_typed_alias));
2135 *reg->neon = *atype;
2136 }
2137 }
2138
2139 /* Look for the .req directive. This is of the form:
2140
2141 new_register_name .req existing_register_name
2142
2143 If we find one, or if it looks sufficiently like one that we want to
2144 handle any error here, return TRUE. Otherwise return FALSE. */
2145
2146 static bfd_boolean
2147 create_register_alias (char * newname, char *p)
2148 {
2149 struct reg_entry *old;
2150 char *oldname, *nbuf;
2151 size_t nlen;
2152
2153 /* The input scrubber ensures that whitespace after the mnemonic is
2154 collapsed to single spaces. */
2155 oldname = p;
2156 if (strncmp (oldname, " .req ", 6) != 0)
2157 return FALSE;
2158
2159 oldname += 6;
2160 if (*oldname == '\0')
2161 return FALSE;
2162
2163 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2164 if (!old)
2165 {
2166 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2167 return TRUE;
2168 }
2169
2170 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2171 the desired alias name, and p points to its end. If not, then
2172 the desired alias name is in the global original_case_string. */
2173 #ifdef TC_CASE_SENSITIVE
2174 nlen = p - newname;
2175 #else
2176 newname = original_case_string;
2177 nlen = strlen (newname);
2178 #endif
2179
2180 nbuf = (char *) alloca (nlen + 1);
2181 memcpy (nbuf, newname, nlen);
2182 nbuf[nlen] = '\0';
2183
2184 /* Create aliases under the new name as stated; an all-lowercase
2185 version of the new name; and an all-uppercase version of the new
2186 name. */
2187 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2188 {
2189 for (p = nbuf; *p; p++)
2190 *p = TOUPPER (*p);
2191
2192 if (strncmp (nbuf, newname, nlen))
2193 {
2194 /* If this attempt to create an additional alias fails, do not bother
2195 trying to create the all-lower case alias. We will fail and issue
2196 a second, duplicate error message. This situation arises when the
2197 programmer does something like:
2198 foo .req r0
2199 Foo .req r1
2200 The second .req creates the "Foo" alias but then fails to create
2201 the artificial FOO alias because it has already been created by the
2202 first .req. */
2203 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2204 return TRUE;
2205 }
2206
2207 for (p = nbuf; *p; p++)
2208 *p = TOLOWER (*p);
2209
2210 if (strncmp (nbuf, newname, nlen))
2211 insert_reg_alias (nbuf, old->number, old->type);
2212 }
2213
2214 return TRUE;
2215 }
2216
2217 /* Create a Neon typed/indexed register alias using directives, e.g.:
2218 X .dn d5.s32[1]
2219 Y .qn 6.s16
2220 Z .dn d7
2221 T .dn Z[0]
2222 These typed registers can be used instead of the types specified after the
2223 Neon mnemonic, so long as all operands given have types. Types can also be
2224 specified directly, e.g.:
2225 vadd d0.s32, d1.s32, d2.s32 */
2226
2227 static bfd_boolean
2228 create_neon_reg_alias (char *newname, char *p)
2229 {
2230 enum arm_reg_type basetype;
2231 struct reg_entry *basereg;
2232 struct reg_entry mybasereg;
2233 struct neon_type ntype;
2234 struct neon_typed_alias typeinfo;
2235 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2236 int namelen;
2237
2238 typeinfo.defined = 0;
2239 typeinfo.eltype.type = NT_invtype;
2240 typeinfo.eltype.size = -1;
2241 typeinfo.index = -1;
2242
2243 nameend = p;
2244
2245 if (strncmp (p, " .dn ", 5) == 0)
2246 basetype = REG_TYPE_VFD;
2247 else if (strncmp (p, " .qn ", 5) == 0)
2248 basetype = REG_TYPE_NQ;
2249 else
2250 return FALSE;
2251
2252 p += 5;
2253
2254 if (*p == '\0')
2255 return FALSE;
2256
2257 basereg = arm_reg_parse_multi (&p);
2258
2259 if (basereg && basereg->type != basetype)
2260 {
2261 as_bad (_("bad type for register"));
2262 return FALSE;
2263 }
2264
2265 if (basereg == NULL)
2266 {
2267 expressionS exp;
2268 /* Try parsing as an integer. */
2269 my_get_expression (&exp, &p, GE_NO_PREFIX);
2270 if (exp.X_op != O_constant)
2271 {
2272 as_bad (_("expression must be constant"));
2273 return FALSE;
2274 }
2275 basereg = &mybasereg;
2276 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2277 : exp.X_add_number;
2278 basereg->neon = 0;
2279 }
2280
2281 if (basereg->neon)
2282 typeinfo = *basereg->neon;
2283
2284 if (parse_neon_type (&ntype, &p) == SUCCESS)
2285 {
2286 /* We got a type. */
2287 if (typeinfo.defined & NTA_HASTYPE)
2288 {
2289 as_bad (_("can't redefine the type of a register alias"));
2290 return FALSE;
2291 }
2292
2293 typeinfo.defined |= NTA_HASTYPE;
2294 if (ntype.elems != 1)
2295 {
2296 as_bad (_("you must specify a single type only"));
2297 return FALSE;
2298 }
2299 typeinfo.eltype = ntype.el[0];
2300 }
2301
2302 if (skip_past_char (&p, '[') == SUCCESS)
2303 {
2304 expressionS exp;
2305 /* We got a scalar index. */
2306
2307 if (typeinfo.defined & NTA_HASINDEX)
2308 {
2309 as_bad (_("can't redefine the index of a scalar alias"));
2310 return FALSE;
2311 }
2312
2313 my_get_expression (&exp, &p, GE_NO_PREFIX);
2314
2315 if (exp.X_op != O_constant)
2316 {
2317 as_bad (_("scalar index must be constant"));
2318 return FALSE;
2319 }
2320
2321 typeinfo.defined |= NTA_HASINDEX;
2322 typeinfo.index = exp.X_add_number;
2323
2324 if (skip_past_char (&p, ']') == FAIL)
2325 {
2326 as_bad (_("expecting ]"));
2327 return FALSE;
2328 }
2329 }
2330
2331 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2332 the desired alias name, and p points to its end. If not, then
2333 the desired alias name is in the global original_case_string. */
2334 #ifdef TC_CASE_SENSITIVE
2335 namelen = nameend - newname;
2336 #else
2337 newname = original_case_string;
2338 namelen = strlen (newname);
2339 #endif
2340
2341 namebuf = (char *) alloca (namelen + 1);
2342 strncpy (namebuf, newname, namelen);
2343 namebuf[namelen] = '\0';
2344
2345 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2346 typeinfo.defined != 0 ? &typeinfo : NULL);
2347
2348 /* Insert name in all uppercase. */
2349 for (p = namebuf; *p; p++)
2350 *p = TOUPPER (*p);
2351
2352 if (strncmp (namebuf, newname, namelen))
2353 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2354 typeinfo.defined != 0 ? &typeinfo : NULL);
2355
2356 /* Insert name in all lowercase. */
2357 for (p = namebuf; *p; p++)
2358 *p = TOLOWER (*p);
2359
2360 if (strncmp (namebuf, newname, namelen))
2361 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2362 typeinfo.defined != 0 ? &typeinfo : NULL);
2363
2364 return TRUE;
2365 }
2366
2367 /* Should never be called, as .req goes between the alias and the
2368 register name, not at the beginning of the line. */
2369
2370 static void
2371 s_req (int a ATTRIBUTE_UNUSED)
2372 {
2373 as_bad (_("invalid syntax for .req directive"));
2374 }
2375
2376 static void
2377 s_dn (int a ATTRIBUTE_UNUSED)
2378 {
2379 as_bad (_("invalid syntax for .dn directive"));
2380 }
2381
2382 static void
2383 s_qn (int a ATTRIBUTE_UNUSED)
2384 {
2385 as_bad (_("invalid syntax for .qn directive"));
2386 }
2387
2388 /* The .unreq directive deletes an alias which was previously defined
2389 by .req. For example:
2390
2391 my_alias .req r11
2392 .unreq my_alias */
2393
2394 static void
2395 s_unreq (int a ATTRIBUTE_UNUSED)
2396 {
2397 char * name;
2398 char saved_char;
2399
2400 name = input_line_pointer;
2401
2402 while (*input_line_pointer != 0
2403 && *input_line_pointer != ' '
2404 && *input_line_pointer != '\n')
2405 ++input_line_pointer;
2406
2407 saved_char = *input_line_pointer;
2408 *input_line_pointer = 0;
2409
2410 if (!*name)
2411 as_bad (_("invalid syntax for .unreq directive"));
2412 else
2413 {
2414 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2415 name);
2416
2417 if (!reg)
2418 as_bad (_("unknown register alias '%s'"), name);
2419 else if (reg->builtin)
2420 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2421 name);
2422 else
2423 {
2424 char * p;
2425 char * nbuf;
2426
2427 hash_delete (arm_reg_hsh, name, FALSE);
2428 free ((char *) reg->name);
2429 if (reg->neon)
2430 free (reg->neon);
2431 free (reg);
2432
2433 /* Also locate the all upper case and all lower case versions.
2434 Do not complain if we cannot find one or the other as it
2435 was probably deleted above. */
2436
2437 nbuf = strdup (name);
2438 for (p = nbuf; *p; p++)
2439 *p = TOUPPER (*p);
2440 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2441 if (reg)
2442 {
2443 hash_delete (arm_reg_hsh, nbuf, FALSE);
2444 free ((char *) reg->name);
2445 if (reg->neon)
2446 free (reg->neon);
2447 free (reg);
2448 }
2449
2450 for (p = nbuf; *p; p++)
2451 *p = TOLOWER (*p);
2452 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2453 if (reg)
2454 {
2455 hash_delete (arm_reg_hsh, nbuf, FALSE);
2456 free ((char *) reg->name);
2457 if (reg->neon)
2458 free (reg->neon);
2459 free (reg);
2460 }
2461
2462 free (nbuf);
2463 }
2464 }
2465
2466 *input_line_pointer = saved_char;
2467 demand_empty_rest_of_line ();
2468 }
2469
2470 /* Directives: Instruction set selection. */
2471
2472 #ifdef OBJ_ELF
2473 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2474 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2475 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2476 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2477
2478 /* Create a new mapping symbol for the transition to STATE. */
2479
2480 static void
2481 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2482 {
2483 symbolS * symbolP;
2484 const char * symname;
2485 int type;
2486
2487 switch (state)
2488 {
2489 case MAP_DATA:
2490 symname = "$d";
2491 type = BSF_NO_FLAGS;
2492 break;
2493 case MAP_ARM:
2494 symname = "$a";
2495 type = BSF_NO_FLAGS;
2496 break;
2497 case MAP_THUMB:
2498 symname = "$t";
2499 type = BSF_NO_FLAGS;
2500 break;
2501 default:
2502 abort ();
2503 }
2504
2505 symbolP = symbol_new (symname, now_seg, value, frag);
2506 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2507
2508 switch (state)
2509 {
2510 case MAP_ARM:
2511 THUMB_SET_FUNC (symbolP, 0);
2512 ARM_SET_THUMB (symbolP, 0);
2513 ARM_SET_INTERWORK (symbolP, support_interwork);
2514 break;
2515
2516 case MAP_THUMB:
2517 THUMB_SET_FUNC (symbolP, 1);
2518 ARM_SET_THUMB (symbolP, 1);
2519 ARM_SET_INTERWORK (symbolP, support_interwork);
2520 break;
2521
2522 case MAP_DATA:
2523 default:
2524 break;
2525 }
2526
2527 /* Save the mapping symbols for future reference. Also check that
2528 we do not place two mapping symbols at the same offset within a
2529 frag. We'll handle overlap between frags in
2530 check_mapping_symbols.
2531
2532 If .fill or other data filling directive generates zero sized data,
2533 the mapping symbol for the following code will have the same value
2534 as the one generated for the data filling directive. In this case,
2535 we replace the old symbol with the new one at the same address. */
2536 if (value == 0)
2537 {
2538 if (frag->tc_frag_data.first_map != NULL)
2539 {
2540 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2541 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2542 }
2543 frag->tc_frag_data.first_map = symbolP;
2544 }
2545 if (frag->tc_frag_data.last_map != NULL)
2546 {
2547 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2548 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2549 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2550 }
2551 frag->tc_frag_data.last_map = symbolP;
2552 }
2553
2554 /* We must sometimes convert a region marked as code to data during
2555 code alignment, if an odd number of bytes have to be padded. The
2556 code mapping symbol is pushed to an aligned address. */
2557
2558 static void
2559 insert_data_mapping_symbol (enum mstate state,
2560 valueT value, fragS *frag, offsetT bytes)
2561 {
2562 /* If there was already a mapping symbol, remove it. */
2563 if (frag->tc_frag_data.last_map != NULL
2564 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2565 {
2566 symbolS *symp = frag->tc_frag_data.last_map;
2567
2568 if (value == 0)
2569 {
2570 know (frag->tc_frag_data.first_map == symp);
2571 frag->tc_frag_data.first_map = NULL;
2572 }
2573 frag->tc_frag_data.last_map = NULL;
2574 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2575 }
2576
2577 make_mapping_symbol (MAP_DATA, value, frag);
2578 make_mapping_symbol (state, value + bytes, frag);
2579 }
2580
2581 static void mapping_state_2 (enum mstate state, int max_chars);
2582
2583 /* Set the mapping state to STATE. Only call this when about to
2584 emit some STATE bytes to the file. */
2585
2586 void
2587 mapping_state (enum mstate state)
2588 {
2589 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2590
2591 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2592
2593 if (mapstate == state)
2594 /* The mapping symbol has already been emitted.
2595 There is nothing else to do. */
2596 return;
2597
2598 if (state == MAP_ARM || state == MAP_THUMB)
2599 /* PR gas/12931
2600 All ARM instructions require 4-byte alignment.
2601 (Almost) all Thumb instructions require 2-byte alignment.
2602
2603 When emitting instructions into any section, mark the section
2604 appropriately.
2605
2606 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2607 but themselves require 2-byte alignment; this applies to some
2608 PC- relative forms. However, these cases will invovle implicit
2609 literal pool generation or an explicit .align >=2, both of
2610 which will cause the section to me marked with sufficient
2611 alignment. Thus, we don't handle those cases here. */
2612 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2613
2614 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2615 /* This case will be evaluated later in the next else. */
2616 return;
2617 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2618 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2619 {
2620 /* Only add the symbol if the offset is > 0:
2621 if we're at the first frag, check it's size > 0;
2622 if we're not at the first frag, then for sure
2623 the offset is > 0. */
2624 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2625 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2626
2627 if (add_symbol)
2628 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2629 }
2630
2631 mapping_state_2 (state, 0);
2632 #undef TRANSITION
2633 }
2634
2635 /* Same as mapping_state, but MAX_CHARS bytes have already been
2636 allocated. Put the mapping symbol that far back. */
2637
2638 static void
2639 mapping_state_2 (enum mstate state, int max_chars)
2640 {
2641 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2642
2643 if (!SEG_NORMAL (now_seg))
2644 return;
2645
2646 if (mapstate == state)
2647 /* The mapping symbol has already been emitted.
2648 There is nothing else to do. */
2649 return;
2650
2651 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2652 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2653 }
2654 #else
2655 #define mapping_state(x) ((void)0)
2656 #define mapping_state_2(x, y) ((void)0)
2657 #endif
2658
2659 /* Find the real, Thumb encoded start of a Thumb function. */
2660
2661 #ifdef OBJ_COFF
2662 static symbolS *
2663 find_real_start (symbolS * symbolP)
2664 {
2665 char * real_start;
2666 const char * name = S_GET_NAME (symbolP);
2667 symbolS * new_target;
2668
2669 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2670 #define STUB_NAME ".real_start_of"
2671
2672 if (name == NULL)
2673 abort ();
2674
2675 /* The compiler may generate BL instructions to local labels because
2676 it needs to perform a branch to a far away location. These labels
2677 do not have a corresponding ".real_start_of" label. We check
2678 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2679 the ".real_start_of" convention for nonlocal branches. */
2680 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2681 return symbolP;
2682
2683 real_start = ACONCAT ((STUB_NAME, name, NULL));
2684 new_target = symbol_find (real_start);
2685
2686 if (new_target == NULL)
2687 {
2688 as_warn (_("Failed to find real start of function: %s\n"), name);
2689 new_target = symbolP;
2690 }
2691
2692 return new_target;
2693 }
2694 #endif
2695
2696 static void
2697 opcode_select (int width)
2698 {
2699 switch (width)
2700 {
2701 case 16:
2702 if (! thumb_mode)
2703 {
2704 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2705 as_bad (_("selected processor does not support THUMB opcodes"));
2706
2707 thumb_mode = 1;
2708 /* No need to force the alignment, since we will have been
2709 coming from ARM mode, which is word-aligned. */
2710 record_alignment (now_seg, 1);
2711 }
2712 break;
2713
2714 case 32:
2715 if (thumb_mode)
2716 {
2717 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2718 as_bad (_("selected processor does not support ARM opcodes"));
2719
2720 thumb_mode = 0;
2721
2722 if (!need_pass_2)
2723 frag_align (2, 0, 0);
2724
2725 record_alignment (now_seg, 1);
2726 }
2727 break;
2728
2729 default:
2730 as_bad (_("invalid instruction size selected (%d)"), width);
2731 }
2732 }
2733
2734 static void
2735 s_arm (int ignore ATTRIBUTE_UNUSED)
2736 {
2737 opcode_select (32);
2738 demand_empty_rest_of_line ();
2739 }
2740
2741 static void
2742 s_thumb (int ignore ATTRIBUTE_UNUSED)
2743 {
2744 opcode_select (16);
2745 demand_empty_rest_of_line ();
2746 }
2747
2748 static void
2749 s_code (int unused ATTRIBUTE_UNUSED)
2750 {
2751 int temp;
2752
2753 temp = get_absolute_expression ();
2754 switch (temp)
2755 {
2756 case 16:
2757 case 32:
2758 opcode_select (temp);
2759 break;
2760
2761 default:
2762 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2763 }
2764 }
2765
2766 static void
2767 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2768 {
2769 /* If we are not already in thumb mode go into it, EVEN if
2770 the target processor does not support thumb instructions.
2771 This is used by gcc/config/arm/lib1funcs.asm for example
2772 to compile interworking support functions even if the
2773 target processor should not support interworking. */
2774 if (! thumb_mode)
2775 {
2776 thumb_mode = 2;
2777 record_alignment (now_seg, 1);
2778 }
2779
2780 demand_empty_rest_of_line ();
2781 }
2782
2783 static void
2784 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2785 {
2786 s_thumb (0);
2787
2788 /* The following label is the name/address of the start of a Thumb function.
2789 We need to know this for the interworking support. */
2790 label_is_thumb_function_name = TRUE;
2791 }
2792
2793 /* Perform a .set directive, but also mark the alias as
2794 being a thumb function. */
2795
2796 static void
2797 s_thumb_set (int equiv)
2798 {
2799 /* XXX the following is a duplicate of the code for s_set() in read.c
2800 We cannot just call that code as we need to get at the symbol that
2801 is created. */
2802 char * name;
2803 char delim;
2804 char * end_name;
2805 symbolS * symbolP;
2806
2807 /* Especial apologies for the random logic:
2808 This just grew, and could be parsed much more simply!
2809 Dean - in haste. */
2810 name = input_line_pointer;
2811 delim = get_symbol_end ();
2812 end_name = input_line_pointer;
2813 *end_name = delim;
2814
2815 if (*input_line_pointer != ',')
2816 {
2817 *end_name = 0;
2818 as_bad (_("expected comma after name \"%s\""), name);
2819 *end_name = delim;
2820 ignore_rest_of_line ();
2821 return;
2822 }
2823
2824 input_line_pointer++;
2825 *end_name = 0;
2826
2827 if (name[0] == '.' && name[1] == '\0')
2828 {
2829 /* XXX - this should not happen to .thumb_set. */
2830 abort ();
2831 }
2832
2833 if ((symbolP = symbol_find (name)) == NULL
2834 && (symbolP = md_undefined_symbol (name)) == NULL)
2835 {
2836 #ifndef NO_LISTING
2837 /* When doing symbol listings, play games with dummy fragments living
2838 outside the normal fragment chain to record the file and line info
2839 for this symbol. */
2840 if (listing & LISTING_SYMBOLS)
2841 {
2842 extern struct list_info_struct * listing_tail;
2843 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2844
2845 memset (dummy_frag, 0, sizeof (fragS));
2846 dummy_frag->fr_type = rs_fill;
2847 dummy_frag->line = listing_tail;
2848 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2849 dummy_frag->fr_symbol = symbolP;
2850 }
2851 else
2852 #endif
2853 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2854
2855 #ifdef OBJ_COFF
2856 /* "set" symbols are local unless otherwise specified. */
2857 SF_SET_LOCAL (symbolP);
2858 #endif /* OBJ_COFF */
2859 } /* Make a new symbol. */
2860
2861 symbol_table_insert (symbolP);
2862
2863 * end_name = delim;
2864
2865 if (equiv
2866 && S_IS_DEFINED (symbolP)
2867 && S_GET_SEGMENT (symbolP) != reg_section)
2868 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2869
2870 pseudo_set (symbolP);
2871
2872 demand_empty_rest_of_line ();
2873
2874 /* XXX Now we come to the Thumb specific bit of code. */
2875
2876 THUMB_SET_FUNC (symbolP, 1);
2877 ARM_SET_THUMB (symbolP, 1);
2878 #if defined OBJ_ELF || defined OBJ_COFF
2879 ARM_SET_INTERWORK (symbolP, support_interwork);
2880 #endif
2881 }
2882
2883 /* Directives: Mode selection. */
2884
2885 /* .syntax [unified|divided] - choose the new unified syntax
2886 (same for Arm and Thumb encoding, modulo slight differences in what
2887 can be represented) or the old divergent syntax for each mode. */
2888 static void
2889 s_syntax (int unused ATTRIBUTE_UNUSED)
2890 {
2891 char *name, delim;
2892
2893 name = input_line_pointer;
2894 delim = get_symbol_end ();
2895
2896 if (!strcasecmp (name, "unified"))
2897 unified_syntax = TRUE;
2898 else if (!strcasecmp (name, "divided"))
2899 unified_syntax = FALSE;
2900 else
2901 {
2902 as_bad (_("unrecognized syntax mode \"%s\""), name);
2903 return;
2904 }
2905 *input_line_pointer = delim;
2906 demand_empty_rest_of_line ();
2907 }
2908
2909 /* Directives: sectioning and alignment. */
2910
2911 /* Same as s_align_ptwo but align 0 => align 2. */
2912
2913 static void
2914 s_align (int unused ATTRIBUTE_UNUSED)
2915 {
2916 int temp;
2917 bfd_boolean fill_p;
2918 long temp_fill;
2919 long max_alignment = 15;
2920
2921 temp = get_absolute_expression ();
2922 if (temp > max_alignment)
2923 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2924 else if (temp < 0)
2925 {
2926 as_bad (_("alignment negative. 0 assumed."));
2927 temp = 0;
2928 }
2929
2930 if (*input_line_pointer == ',')
2931 {
2932 input_line_pointer++;
2933 temp_fill = get_absolute_expression ();
2934 fill_p = TRUE;
2935 }
2936 else
2937 {
2938 fill_p = FALSE;
2939 temp_fill = 0;
2940 }
2941
2942 if (!temp)
2943 temp = 2;
2944
2945 /* Only make a frag if we HAVE to. */
2946 if (temp && !need_pass_2)
2947 {
2948 if (!fill_p && subseg_text_p (now_seg))
2949 frag_align_code (temp, 0);
2950 else
2951 frag_align (temp, (int) temp_fill, 0);
2952 }
2953 demand_empty_rest_of_line ();
2954
2955 record_alignment (now_seg, temp);
2956 }
2957
2958 static void
2959 s_bss (int ignore ATTRIBUTE_UNUSED)
2960 {
2961 /* We don't support putting frags in the BSS segment, we fake it by
2962 marking in_bss, then looking at s_skip for clues. */
2963 subseg_set (bss_section, 0);
2964 demand_empty_rest_of_line ();
2965
2966 #ifdef md_elf_section_change_hook
2967 md_elf_section_change_hook ();
2968 #endif
2969 }
2970
2971 static void
2972 s_even (int ignore ATTRIBUTE_UNUSED)
2973 {
2974 /* Never make frag if expect extra pass. */
2975 if (!need_pass_2)
2976 frag_align (1, 0, 0);
2977
2978 record_alignment (now_seg, 1);
2979
2980 demand_empty_rest_of_line ();
2981 }
2982
2983 /* Directives: Literal pools. */
2984
2985 static literal_pool *
2986 find_literal_pool (void)
2987 {
2988 literal_pool * pool;
2989
2990 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2991 {
2992 if (pool->section == now_seg
2993 && pool->sub_section == now_subseg)
2994 break;
2995 }
2996
2997 return pool;
2998 }
2999
3000 static literal_pool *
3001 find_or_make_literal_pool (void)
3002 {
3003 /* Next literal pool ID number. */
3004 static unsigned int latest_pool_num = 1;
3005 literal_pool * pool;
3006
3007 pool = find_literal_pool ();
3008
3009 if (pool == NULL)
3010 {
3011 /* Create a new pool. */
3012 pool = (literal_pool *) xmalloc (sizeof (* pool));
3013 if (! pool)
3014 return NULL;
3015
3016 pool->next_free_entry = 0;
3017 pool->section = now_seg;
3018 pool->sub_section = now_subseg;
3019 pool->next = list_of_pools;
3020 pool->symbol = NULL;
3021
3022 /* Add it to the list. */
3023 list_of_pools = pool;
3024 }
3025
3026 /* New pools, and emptied pools, will have a NULL symbol. */
3027 if (pool->symbol == NULL)
3028 {
3029 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3030 (valueT) 0, &zero_address_frag);
3031 pool->id = latest_pool_num ++;
3032 }
3033
3034 /* Done. */
3035 return pool;
3036 }
3037
3038 /* Add the literal in the global 'inst'
3039 structure to the relevant literal pool. */
3040
3041 static int
3042 add_to_lit_pool (void)
3043 {
3044 literal_pool * pool;
3045 unsigned int entry;
3046
3047 pool = find_or_make_literal_pool ();
3048
3049 /* Check if this literal value is already in the pool. */
3050 for (entry = 0; entry < pool->next_free_entry; entry ++)
3051 {
3052 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3053 && (inst.reloc.exp.X_op == O_constant)
3054 && (pool->literals[entry].X_add_number
3055 == inst.reloc.exp.X_add_number)
3056 && (pool->literals[entry].X_unsigned
3057 == inst.reloc.exp.X_unsigned))
3058 break;
3059
3060 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3061 && (inst.reloc.exp.X_op == O_symbol)
3062 && (pool->literals[entry].X_add_number
3063 == inst.reloc.exp.X_add_number)
3064 && (pool->literals[entry].X_add_symbol
3065 == inst.reloc.exp.X_add_symbol)
3066 && (pool->literals[entry].X_op_symbol
3067 == inst.reloc.exp.X_op_symbol))
3068 break;
3069 }
3070
3071 /* Do we need to create a new entry? */
3072 if (entry == pool->next_free_entry)
3073 {
3074 if (entry >= MAX_LITERAL_POOL_SIZE)
3075 {
3076 inst.error = _("literal pool overflow");
3077 return FAIL;
3078 }
3079
3080 pool->literals[entry] = inst.reloc.exp;
3081 #ifdef OBJ_ELF
3082 /* PR ld/12974: Record the location of the first source line to reference
3083 this entry in the literal pool. If it turns out during linking that the
3084 symbol does not exist we will be able to give an accurate line number for
3085 the (first use of the) missing reference. */
3086 if (debug_type == DEBUG_DWARF2)
3087 dwarf2_where (pool->locs + entry);
3088 #endif
3089 pool->next_free_entry += 1;
3090 }
3091
3092 inst.reloc.exp.X_op = O_symbol;
3093 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3094 inst.reloc.exp.X_add_symbol = pool->symbol;
3095
3096 return SUCCESS;
3097 }
3098
3099 /* Can't use symbol_new here, so have to create a symbol and then at
3100 a later date assign it a value. Thats what these functions do. */
3101
3102 static void
3103 symbol_locate (symbolS * symbolP,
3104 const char * name, /* It is copied, the caller can modify. */
3105 segT segment, /* Segment identifier (SEG_<something>). */
3106 valueT valu, /* Symbol value. */
3107 fragS * frag) /* Associated fragment. */
3108 {
3109 unsigned int name_length;
3110 char * preserved_copy_of_name;
3111
3112 name_length = strlen (name) + 1; /* +1 for \0. */
3113 obstack_grow (&notes, name, name_length);
3114 preserved_copy_of_name = (char *) obstack_finish (&notes);
3115
3116 #ifdef tc_canonicalize_symbol_name
3117 preserved_copy_of_name =
3118 tc_canonicalize_symbol_name (preserved_copy_of_name);
3119 #endif
3120
3121 S_SET_NAME (symbolP, preserved_copy_of_name);
3122
3123 S_SET_SEGMENT (symbolP, segment);
3124 S_SET_VALUE (symbolP, valu);
3125 symbol_clear_list_pointers (symbolP);
3126
3127 symbol_set_frag (symbolP, frag);
3128
3129 /* Link to end of symbol chain. */
3130 {
3131 extern int symbol_table_frozen;
3132
3133 if (symbol_table_frozen)
3134 abort ();
3135 }
3136
3137 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3138
3139 obj_symbol_new_hook (symbolP);
3140
3141 #ifdef tc_symbol_new_hook
3142 tc_symbol_new_hook (symbolP);
3143 #endif
3144
3145 #ifdef DEBUG_SYMS
3146 verify_symbol_chain (symbol_rootP, symbol_lastP);
3147 #endif /* DEBUG_SYMS */
3148 }
3149
3150
3151 static void
3152 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3153 {
3154 unsigned int entry;
3155 literal_pool * pool;
3156 char sym_name[20];
3157
3158 pool = find_literal_pool ();
3159 if (pool == NULL
3160 || pool->symbol == NULL
3161 || pool->next_free_entry == 0)
3162 return;
3163
3164 mapping_state (MAP_DATA);
3165
3166 /* Align pool as you have word accesses.
3167 Only make a frag if we have to. */
3168 if (!need_pass_2)
3169 frag_align (2, 0, 0);
3170
3171 record_alignment (now_seg, 2);
3172
3173 sprintf (sym_name, "$$lit_\002%x", pool->id);
3174
3175 symbol_locate (pool->symbol, sym_name, now_seg,
3176 (valueT) frag_now_fix (), frag_now);
3177 symbol_table_insert (pool->symbol);
3178
3179 ARM_SET_THUMB (pool->symbol, thumb_mode);
3180
3181 #if defined OBJ_COFF || defined OBJ_ELF
3182 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3183 #endif
3184
3185 for (entry = 0; entry < pool->next_free_entry; entry ++)
3186 {
3187 #ifdef OBJ_ELF
3188 if (debug_type == DEBUG_DWARF2)
3189 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3190 #endif
3191 /* First output the expression in the instruction to the pool. */
3192 emit_expr (&(pool->literals[entry]), 4); /* .word */
3193 }
3194
3195 /* Mark the pool as empty. */
3196 pool->next_free_entry = 0;
3197 pool->symbol = NULL;
3198 }
3199
3200 #ifdef OBJ_ELF
3201 /* Forward declarations for functions below, in the MD interface
3202 section. */
3203 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3204 static valueT create_unwind_entry (int);
3205 static void start_unwind_section (const segT, int);
3206 static void add_unwind_opcode (valueT, int);
3207 static void flush_pending_unwind (void);
3208
3209 /* Directives: Data. */
3210
3211 static void
3212 s_arm_elf_cons (int nbytes)
3213 {
3214 expressionS exp;
3215
3216 #ifdef md_flush_pending_output
3217 md_flush_pending_output ();
3218 #endif
3219
3220 if (is_it_end_of_statement ())
3221 {
3222 demand_empty_rest_of_line ();
3223 return;
3224 }
3225
3226 #ifdef md_cons_align
3227 md_cons_align (nbytes);
3228 #endif
3229
3230 mapping_state (MAP_DATA);
3231 do
3232 {
3233 int reloc;
3234 char *base = input_line_pointer;
3235
3236 expression (& exp);
3237
3238 if (exp.X_op != O_symbol)
3239 emit_expr (&exp, (unsigned int) nbytes);
3240 else
3241 {
3242 char *before_reloc = input_line_pointer;
3243 reloc = parse_reloc (&input_line_pointer);
3244 if (reloc == -1)
3245 {
3246 as_bad (_("unrecognized relocation suffix"));
3247 ignore_rest_of_line ();
3248 return;
3249 }
3250 else if (reloc == BFD_RELOC_UNUSED)
3251 emit_expr (&exp, (unsigned int) nbytes);
3252 else
3253 {
3254 reloc_howto_type *howto = (reloc_howto_type *)
3255 bfd_reloc_type_lookup (stdoutput,
3256 (bfd_reloc_code_real_type) reloc);
3257 int size = bfd_get_reloc_size (howto);
3258
3259 if (reloc == BFD_RELOC_ARM_PLT32)
3260 {
3261 as_bad (_("(plt) is only valid on branch targets"));
3262 reloc = BFD_RELOC_UNUSED;
3263 size = 0;
3264 }
3265
3266 if (size > nbytes)
3267 as_bad (_("%s relocations do not fit in %d bytes"),
3268 howto->name, nbytes);
3269 else
3270 {
3271 /* We've parsed an expression stopping at O_symbol.
3272 But there may be more expression left now that we
3273 have parsed the relocation marker. Parse it again.
3274 XXX Surely there is a cleaner way to do this. */
3275 char *p = input_line_pointer;
3276 int offset;
3277 char *save_buf = (char *) alloca (input_line_pointer - base);
3278 memcpy (save_buf, base, input_line_pointer - base);
3279 memmove (base + (input_line_pointer - before_reloc),
3280 base, before_reloc - base);
3281
3282 input_line_pointer = base + (input_line_pointer-before_reloc);
3283 expression (&exp);
3284 memcpy (base, save_buf, p - base);
3285
3286 offset = nbytes - size;
3287 p = frag_more ((int) nbytes);
3288 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3289 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3290 }
3291 }
3292 }
3293 }
3294 while (*input_line_pointer++ == ',');
3295
3296 /* Put terminator back into stream. */
3297 input_line_pointer --;
3298 demand_empty_rest_of_line ();
3299 }
3300
3301 /* Emit an expression containing a 32-bit thumb instruction.
3302 Implementation based on put_thumb32_insn. */
3303
3304 static void
3305 emit_thumb32_expr (expressionS * exp)
3306 {
3307 expressionS exp_high = *exp;
3308
3309 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3310 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3311 exp->X_add_number &= 0xffff;
3312 emit_expr (exp, (unsigned int) THUMB_SIZE);
3313 }
3314
3315 /* Guess the instruction size based on the opcode. */
3316
3317 static int
3318 thumb_insn_size (int opcode)
3319 {
3320 if ((unsigned int) opcode < 0xe800u)
3321 return 2;
3322 else if ((unsigned int) opcode >= 0xe8000000u)
3323 return 4;
3324 else
3325 return 0;
3326 }
3327
3328 static bfd_boolean
3329 emit_insn (expressionS *exp, int nbytes)
3330 {
3331 int size = 0;
3332
3333 if (exp->X_op == O_constant)
3334 {
3335 size = nbytes;
3336
3337 if (size == 0)
3338 size = thumb_insn_size (exp->X_add_number);
3339
3340 if (size != 0)
3341 {
3342 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3343 {
3344 as_bad (_(".inst.n operand too big. "\
3345 "Use .inst.w instead"));
3346 size = 0;
3347 }
3348 else
3349 {
3350 if (now_it.state == AUTOMATIC_IT_BLOCK)
3351 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3352 else
3353 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3354
3355 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3356 emit_thumb32_expr (exp);
3357 else
3358 emit_expr (exp, (unsigned int) size);
3359
3360 it_fsm_post_encode ();
3361 }
3362 }
3363 else
3364 as_bad (_("cannot determine Thumb instruction size. " \
3365 "Use .inst.n/.inst.w instead"));
3366 }
3367 else
3368 as_bad (_("constant expression required"));
3369
3370 return (size != 0);
3371 }
3372
3373 /* Like s_arm_elf_cons but do not use md_cons_align and
3374 set the mapping state to MAP_ARM/MAP_THUMB. */
3375
3376 static void
3377 s_arm_elf_inst (int nbytes)
3378 {
3379 if (is_it_end_of_statement ())
3380 {
3381 demand_empty_rest_of_line ();
3382 return;
3383 }
3384
3385 /* Calling mapping_state () here will not change ARM/THUMB,
3386 but will ensure not to be in DATA state. */
3387
3388 if (thumb_mode)
3389 mapping_state (MAP_THUMB);
3390 else
3391 {
3392 if (nbytes != 0)
3393 {
3394 as_bad (_("width suffixes are invalid in ARM mode"));
3395 ignore_rest_of_line ();
3396 return;
3397 }
3398
3399 nbytes = 4;
3400
3401 mapping_state (MAP_ARM);
3402 }
3403
3404 do
3405 {
3406 expressionS exp;
3407
3408 expression (& exp);
3409
3410 if (! emit_insn (& exp, nbytes))
3411 {
3412 ignore_rest_of_line ();
3413 return;
3414 }
3415 }
3416 while (*input_line_pointer++ == ',');
3417
3418 /* Put terminator back into stream. */
3419 input_line_pointer --;
3420 demand_empty_rest_of_line ();
3421 }
3422
3423 /* Parse a .rel31 directive. */
3424
3425 static void
3426 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3427 {
3428 expressionS exp;
3429 char *p;
3430 valueT highbit;
3431
3432 highbit = 0;
3433 if (*input_line_pointer == '1')
3434 highbit = 0x80000000;
3435 else if (*input_line_pointer != '0')
3436 as_bad (_("expected 0 or 1"));
3437
3438 input_line_pointer++;
3439 if (*input_line_pointer != ',')
3440 as_bad (_("missing comma"));
3441 input_line_pointer++;
3442
3443 #ifdef md_flush_pending_output
3444 md_flush_pending_output ();
3445 #endif
3446
3447 #ifdef md_cons_align
3448 md_cons_align (4);
3449 #endif
3450
3451 mapping_state (MAP_DATA);
3452
3453 expression (&exp);
3454
3455 p = frag_more (4);
3456 md_number_to_chars (p, highbit, 4);
3457 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3458 BFD_RELOC_ARM_PREL31);
3459
3460 demand_empty_rest_of_line ();
3461 }
3462
3463 /* Directives: AEABI stack-unwind tables. */
3464
3465 /* Parse an unwind_fnstart directive. Simply records the current location. */
3466
3467 static void
3468 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3469 {
3470 demand_empty_rest_of_line ();
3471 if (unwind.proc_start)
3472 {
3473 as_bad (_("duplicate .fnstart directive"));
3474 return;
3475 }
3476
3477 /* Mark the start of the function. */
3478 unwind.proc_start = expr_build_dot ();
3479
3480 /* Reset the rest of the unwind info. */
3481 unwind.opcode_count = 0;
3482 unwind.table_entry = NULL;
3483 unwind.personality_routine = NULL;
3484 unwind.personality_index = -1;
3485 unwind.frame_size = 0;
3486 unwind.fp_offset = 0;
3487 unwind.fp_reg = REG_SP;
3488 unwind.fp_used = 0;
3489 unwind.sp_restored = 0;
3490 }
3491
3492
3493 /* Parse a handlerdata directive. Creates the exception handling table entry
3494 for the function. */
3495
3496 static void
3497 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3498 {
3499 demand_empty_rest_of_line ();
3500 if (!unwind.proc_start)
3501 as_bad (MISSING_FNSTART);
3502
3503 if (unwind.table_entry)
3504 as_bad (_("duplicate .handlerdata directive"));
3505
3506 create_unwind_entry (1);
3507 }
3508
3509 /* Parse an unwind_fnend directive. Generates the index table entry. */
3510
3511 static void
3512 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3513 {
3514 long where;
3515 char *ptr;
3516 valueT val;
3517 unsigned int marked_pr_dependency;
3518
3519 demand_empty_rest_of_line ();
3520
3521 if (!unwind.proc_start)
3522 {
3523 as_bad (_(".fnend directive without .fnstart"));
3524 return;
3525 }
3526
3527 /* Add eh table entry. */
3528 if (unwind.table_entry == NULL)
3529 val = create_unwind_entry (0);
3530 else
3531 val = 0;
3532
3533 /* Add index table entry. This is two words. */
3534 start_unwind_section (unwind.saved_seg, 1);
3535 frag_align (2, 0, 0);
3536 record_alignment (now_seg, 2);
3537
3538 ptr = frag_more (8);
3539 where = frag_now_fix () - 8;
3540
3541 /* Self relative offset of the function start. */
3542 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3543 BFD_RELOC_ARM_PREL31);
3544
3545 /* Indicate dependency on EHABI-defined personality routines to the
3546 linker, if it hasn't been done already. */
3547 marked_pr_dependency
3548 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3549 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3550 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3551 {
3552 static const char *const name[] =
3553 {
3554 "__aeabi_unwind_cpp_pr0",
3555 "__aeabi_unwind_cpp_pr1",
3556 "__aeabi_unwind_cpp_pr2"
3557 };
3558 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3559 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3560 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3561 |= 1 << unwind.personality_index;
3562 }
3563
3564 if (val)
3565 /* Inline exception table entry. */
3566 md_number_to_chars (ptr + 4, val, 4);
3567 else
3568 /* Self relative offset of the table entry. */
3569 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3570 BFD_RELOC_ARM_PREL31);
3571
3572 /* Restore the original section. */
3573 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3574
3575 unwind.proc_start = NULL;
3576 }
3577
3578
3579 /* Parse an unwind_cantunwind directive. */
3580
3581 static void
3582 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3583 {
3584 demand_empty_rest_of_line ();
3585 if (!unwind.proc_start)
3586 as_bad (MISSING_FNSTART);
3587
3588 if (unwind.personality_routine || unwind.personality_index != -1)
3589 as_bad (_("personality routine specified for cantunwind frame"));
3590
3591 unwind.personality_index = -2;
3592 }
3593
3594
3595 /* Parse a personalityindex directive. */
3596
3597 static void
3598 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3599 {
3600 expressionS exp;
3601
3602 if (!unwind.proc_start)
3603 as_bad (MISSING_FNSTART);
3604
3605 if (unwind.personality_routine || unwind.personality_index != -1)
3606 as_bad (_("duplicate .personalityindex directive"));
3607
3608 expression (&exp);
3609
3610 if (exp.X_op != O_constant
3611 || exp.X_add_number < 0 || exp.X_add_number > 15)
3612 {
3613 as_bad (_("bad personality routine number"));
3614 ignore_rest_of_line ();
3615 return;
3616 }
3617
3618 unwind.personality_index = exp.X_add_number;
3619
3620 demand_empty_rest_of_line ();
3621 }
3622
3623
3624 /* Parse a personality directive. */
3625
3626 static void
3627 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3628 {
3629 char *name, *p, c;
3630
3631 if (!unwind.proc_start)
3632 as_bad (MISSING_FNSTART);
3633
3634 if (unwind.personality_routine || unwind.personality_index != -1)
3635 as_bad (_("duplicate .personality directive"));
3636
3637 name = input_line_pointer;
3638 c = get_symbol_end ();
3639 p = input_line_pointer;
3640 unwind.personality_routine = symbol_find_or_make (name);
3641 *p = c;
3642 demand_empty_rest_of_line ();
3643 }
3644
3645
3646 /* Parse a directive saving core registers. */
3647
3648 static void
3649 s_arm_unwind_save_core (void)
3650 {
3651 valueT op;
3652 long range;
3653 int n;
3654
3655 range = parse_reg_list (&input_line_pointer);
3656 if (range == FAIL)
3657 {
3658 as_bad (_("expected register list"));
3659 ignore_rest_of_line ();
3660 return;
3661 }
3662
3663 demand_empty_rest_of_line ();
3664
3665 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3666 into .unwind_save {..., sp...}. We aren't bothered about the value of
3667 ip because it is clobbered by calls. */
3668 if (unwind.sp_restored && unwind.fp_reg == 12
3669 && (range & 0x3000) == 0x1000)
3670 {
3671 unwind.opcode_count--;
3672 unwind.sp_restored = 0;
3673 range = (range | 0x2000) & ~0x1000;
3674 unwind.pending_offset = 0;
3675 }
3676
3677 /* Pop r4-r15. */
3678 if (range & 0xfff0)
3679 {
3680 /* See if we can use the short opcodes. These pop a block of up to 8
3681 registers starting with r4, plus maybe r14. */
3682 for (n = 0; n < 8; n++)
3683 {
3684 /* Break at the first non-saved register. */
3685 if ((range & (1 << (n + 4))) == 0)
3686 break;
3687 }
3688 /* See if there are any other bits set. */
3689 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3690 {
3691 /* Use the long form. */
3692 op = 0x8000 | ((range >> 4) & 0xfff);
3693 add_unwind_opcode (op, 2);
3694 }
3695 else
3696 {
3697 /* Use the short form. */
3698 if (range & 0x4000)
3699 op = 0xa8; /* Pop r14. */
3700 else
3701 op = 0xa0; /* Do not pop r14. */
3702 op |= (n - 1);
3703 add_unwind_opcode (op, 1);
3704 }
3705 }
3706
3707 /* Pop r0-r3. */
3708 if (range & 0xf)
3709 {
3710 op = 0xb100 | (range & 0xf);
3711 add_unwind_opcode (op, 2);
3712 }
3713
3714 /* Record the number of bytes pushed. */
3715 for (n = 0; n < 16; n++)
3716 {
3717 if (range & (1 << n))
3718 unwind.frame_size += 4;
3719 }
3720 }
3721
3722
3723 /* Parse a directive saving FPA registers. */
3724
3725 static void
3726 s_arm_unwind_save_fpa (int reg)
3727 {
3728 expressionS exp;
3729 int num_regs;
3730 valueT op;
3731
3732 /* Get Number of registers to transfer. */
3733 if (skip_past_comma (&input_line_pointer) != FAIL)
3734 expression (&exp);
3735 else
3736 exp.X_op = O_illegal;
3737
3738 if (exp.X_op != O_constant)
3739 {
3740 as_bad (_("expected , <constant>"));
3741 ignore_rest_of_line ();
3742 return;
3743 }
3744
3745 num_regs = exp.X_add_number;
3746
3747 if (num_regs < 1 || num_regs > 4)
3748 {
3749 as_bad (_("number of registers must be in the range [1:4]"));
3750 ignore_rest_of_line ();
3751 return;
3752 }
3753
3754 demand_empty_rest_of_line ();
3755
3756 if (reg == 4)
3757 {
3758 /* Short form. */
3759 op = 0xb4 | (num_regs - 1);
3760 add_unwind_opcode (op, 1);
3761 }
3762 else
3763 {
3764 /* Long form. */
3765 op = 0xc800 | (reg << 4) | (num_regs - 1);
3766 add_unwind_opcode (op, 2);
3767 }
3768 unwind.frame_size += num_regs * 12;
3769 }
3770
3771
3772 /* Parse a directive saving VFP registers for ARMv6 and above. */
3773
3774 static void
3775 s_arm_unwind_save_vfp_armv6 (void)
3776 {
3777 int count;
3778 unsigned int start;
3779 valueT op;
3780 int num_vfpv3_regs = 0;
3781 int num_regs_below_16;
3782
3783 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3784 if (count == FAIL)
3785 {
3786 as_bad (_("expected register list"));
3787 ignore_rest_of_line ();
3788 return;
3789 }
3790
3791 demand_empty_rest_of_line ();
3792
3793 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3794 than FSTMX/FLDMX-style ones). */
3795
3796 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3797 if (start >= 16)
3798 num_vfpv3_regs = count;
3799 else if (start + count > 16)
3800 num_vfpv3_regs = start + count - 16;
3801
3802 if (num_vfpv3_regs > 0)
3803 {
3804 int start_offset = start > 16 ? start - 16 : 0;
3805 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3806 add_unwind_opcode (op, 2);
3807 }
3808
3809 /* Generate opcode for registers numbered in the range 0 .. 15. */
3810 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3811 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3812 if (num_regs_below_16 > 0)
3813 {
3814 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3815 add_unwind_opcode (op, 2);
3816 }
3817
3818 unwind.frame_size += count * 8;
3819 }
3820
3821
3822 /* Parse a directive saving VFP registers for pre-ARMv6. */
3823
3824 static void
3825 s_arm_unwind_save_vfp (void)
3826 {
3827 int count;
3828 unsigned int reg;
3829 valueT op;
3830
3831 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3832 if (count == FAIL)
3833 {
3834 as_bad (_("expected register list"));
3835 ignore_rest_of_line ();
3836 return;
3837 }
3838
3839 demand_empty_rest_of_line ();
3840
3841 if (reg == 8)
3842 {
3843 /* Short form. */
3844 op = 0xb8 | (count - 1);
3845 add_unwind_opcode (op, 1);
3846 }
3847 else
3848 {
3849 /* Long form. */
3850 op = 0xb300 | (reg << 4) | (count - 1);
3851 add_unwind_opcode (op, 2);
3852 }
3853 unwind.frame_size += count * 8 + 4;
3854 }
3855
3856
3857 /* Parse a directive saving iWMMXt data registers. */
3858
3859 static void
3860 s_arm_unwind_save_mmxwr (void)
3861 {
3862 int reg;
3863 int hi_reg;
3864 int i;
3865 unsigned mask = 0;
3866 valueT op;
3867
3868 if (*input_line_pointer == '{')
3869 input_line_pointer++;
3870
3871 do
3872 {
3873 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3874
3875 if (reg == FAIL)
3876 {
3877 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3878 goto error;
3879 }
3880
3881 if (mask >> reg)
3882 as_tsktsk (_("register list not in ascending order"));
3883 mask |= 1 << reg;
3884
3885 if (*input_line_pointer == '-')
3886 {
3887 input_line_pointer++;
3888 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3889 if (hi_reg == FAIL)
3890 {
3891 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3892 goto error;
3893 }
3894 else if (reg >= hi_reg)
3895 {
3896 as_bad (_("bad register range"));
3897 goto error;
3898 }
3899 for (; reg < hi_reg; reg++)
3900 mask |= 1 << reg;
3901 }
3902 }
3903 while (skip_past_comma (&input_line_pointer) != FAIL);
3904
3905 if (*input_line_pointer == '}')
3906 input_line_pointer++;
3907
3908 demand_empty_rest_of_line ();
3909
3910 /* Generate any deferred opcodes because we're going to be looking at
3911 the list. */
3912 flush_pending_unwind ();
3913
3914 for (i = 0; i < 16; i++)
3915 {
3916 if (mask & (1 << i))
3917 unwind.frame_size += 8;
3918 }
3919
3920 /* Attempt to combine with a previous opcode. We do this because gcc
3921 likes to output separate unwind directives for a single block of
3922 registers. */
3923 if (unwind.opcode_count > 0)
3924 {
3925 i = unwind.opcodes[unwind.opcode_count - 1];
3926 if ((i & 0xf8) == 0xc0)
3927 {
3928 i &= 7;
3929 /* Only merge if the blocks are contiguous. */
3930 if (i < 6)
3931 {
3932 if ((mask & 0xfe00) == (1 << 9))
3933 {
3934 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3935 unwind.opcode_count--;
3936 }
3937 }
3938 else if (i == 6 && unwind.opcode_count >= 2)
3939 {
3940 i = unwind.opcodes[unwind.opcode_count - 2];
3941 reg = i >> 4;
3942 i &= 0xf;
3943
3944 op = 0xffff << (reg - 1);
3945 if (reg > 0
3946 && ((mask & op) == (1u << (reg - 1))))
3947 {
3948 op = (1 << (reg + i + 1)) - 1;
3949 op &= ~((1 << reg) - 1);
3950 mask |= op;
3951 unwind.opcode_count -= 2;
3952 }
3953 }
3954 }
3955 }
3956
3957 hi_reg = 15;
3958 /* We want to generate opcodes in the order the registers have been
3959 saved, ie. descending order. */
3960 for (reg = 15; reg >= -1; reg--)
3961 {
3962 /* Save registers in blocks. */
3963 if (reg < 0
3964 || !(mask & (1 << reg)))
3965 {
3966 /* We found an unsaved reg. Generate opcodes to save the
3967 preceding block. */
3968 if (reg != hi_reg)
3969 {
3970 if (reg == 9)
3971 {
3972 /* Short form. */
3973 op = 0xc0 | (hi_reg - 10);
3974 add_unwind_opcode (op, 1);
3975 }
3976 else
3977 {
3978 /* Long form. */
3979 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3980 add_unwind_opcode (op, 2);
3981 }
3982 }
3983 hi_reg = reg - 1;
3984 }
3985 }
3986
3987 return;
3988 error:
3989 ignore_rest_of_line ();
3990 }
3991
3992 static void
3993 s_arm_unwind_save_mmxwcg (void)
3994 {
3995 int reg;
3996 int hi_reg;
3997 unsigned mask = 0;
3998 valueT op;
3999
4000 if (*input_line_pointer == '{')
4001 input_line_pointer++;
4002
4003 do
4004 {
4005 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4006
4007 if (reg == FAIL)
4008 {
4009 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4010 goto error;
4011 }
4012
4013 reg -= 8;
4014 if (mask >> reg)
4015 as_tsktsk (_("register list not in ascending order"));
4016 mask |= 1 << reg;
4017
4018 if (*input_line_pointer == '-')
4019 {
4020 input_line_pointer++;
4021 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4022 if (hi_reg == FAIL)
4023 {
4024 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4025 goto error;
4026 }
4027 else if (reg >= hi_reg)
4028 {
4029 as_bad (_("bad register range"));
4030 goto error;
4031 }
4032 for (; reg < hi_reg; reg++)
4033 mask |= 1 << reg;
4034 }
4035 }
4036 while (skip_past_comma (&input_line_pointer) != FAIL);
4037
4038 if (*input_line_pointer == '}')
4039 input_line_pointer++;
4040
4041 demand_empty_rest_of_line ();
4042
4043 /* Generate any deferred opcodes because we're going to be looking at
4044 the list. */
4045 flush_pending_unwind ();
4046
4047 for (reg = 0; reg < 16; reg++)
4048 {
4049 if (mask & (1 << reg))
4050 unwind.frame_size += 4;
4051 }
4052 op = 0xc700 | mask;
4053 add_unwind_opcode (op, 2);
4054 return;
4055 error:
4056 ignore_rest_of_line ();
4057 }
4058
4059
4060 /* Parse an unwind_save directive.
4061 If the argument is non-zero, this is a .vsave directive. */
4062
4063 static void
4064 s_arm_unwind_save (int arch_v6)
4065 {
4066 char *peek;
4067 struct reg_entry *reg;
4068 bfd_boolean had_brace = FALSE;
4069
4070 if (!unwind.proc_start)
4071 as_bad (MISSING_FNSTART);
4072
4073 /* Figure out what sort of save we have. */
4074 peek = input_line_pointer;
4075
4076 if (*peek == '{')
4077 {
4078 had_brace = TRUE;
4079 peek++;
4080 }
4081
4082 reg = arm_reg_parse_multi (&peek);
4083
4084 if (!reg)
4085 {
4086 as_bad (_("register expected"));
4087 ignore_rest_of_line ();
4088 return;
4089 }
4090
4091 switch (reg->type)
4092 {
4093 case REG_TYPE_FN:
4094 if (had_brace)
4095 {
4096 as_bad (_("FPA .unwind_save does not take a register list"));
4097 ignore_rest_of_line ();
4098 return;
4099 }
4100 input_line_pointer = peek;
4101 s_arm_unwind_save_fpa (reg->number);
4102 return;
4103
4104 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4105 case REG_TYPE_VFD:
4106 if (arch_v6)
4107 s_arm_unwind_save_vfp_armv6 ();
4108 else
4109 s_arm_unwind_save_vfp ();
4110 return;
4111 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4112 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4113
4114 default:
4115 as_bad (_(".unwind_save does not support this kind of register"));
4116 ignore_rest_of_line ();
4117 }
4118 }
4119
4120
4121 /* Parse an unwind_movsp directive. */
4122
4123 static void
4124 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4125 {
4126 int reg;
4127 valueT op;
4128 int offset;
4129
4130 if (!unwind.proc_start)
4131 as_bad (MISSING_FNSTART);
4132
4133 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4134 if (reg == FAIL)
4135 {
4136 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4137 ignore_rest_of_line ();
4138 return;
4139 }
4140
4141 /* Optional constant. */
4142 if (skip_past_comma (&input_line_pointer) != FAIL)
4143 {
4144 if (immediate_for_directive (&offset) == FAIL)
4145 return;
4146 }
4147 else
4148 offset = 0;
4149
4150 demand_empty_rest_of_line ();
4151
4152 if (reg == REG_SP || reg == REG_PC)
4153 {
4154 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4155 return;
4156 }
4157
4158 if (unwind.fp_reg != REG_SP)
4159 as_bad (_("unexpected .unwind_movsp directive"));
4160
4161 /* Generate opcode to restore the value. */
4162 op = 0x90 | reg;
4163 add_unwind_opcode (op, 1);
4164
4165 /* Record the information for later. */
4166 unwind.fp_reg = reg;
4167 unwind.fp_offset = unwind.frame_size - offset;
4168 unwind.sp_restored = 1;
4169 }
4170
4171 /* Parse an unwind_pad directive. */
4172
4173 static void
4174 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4175 {
4176 int offset;
4177
4178 if (!unwind.proc_start)
4179 as_bad (MISSING_FNSTART);
4180
4181 if (immediate_for_directive (&offset) == FAIL)
4182 return;
4183
4184 if (offset & 3)
4185 {
4186 as_bad (_("stack increment must be multiple of 4"));
4187 ignore_rest_of_line ();
4188 return;
4189 }
4190
4191 /* Don't generate any opcodes, just record the details for later. */
4192 unwind.frame_size += offset;
4193 unwind.pending_offset += offset;
4194
4195 demand_empty_rest_of_line ();
4196 }
4197
4198 /* Parse an unwind_setfp directive. */
4199
4200 static void
4201 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4202 {
4203 int sp_reg;
4204 int fp_reg;
4205 int offset;
4206
4207 if (!unwind.proc_start)
4208 as_bad (MISSING_FNSTART);
4209
4210 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4211 if (skip_past_comma (&input_line_pointer) == FAIL)
4212 sp_reg = FAIL;
4213 else
4214 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4215
4216 if (fp_reg == FAIL || sp_reg == FAIL)
4217 {
4218 as_bad (_("expected <reg>, <reg>"));
4219 ignore_rest_of_line ();
4220 return;
4221 }
4222
4223 /* Optional constant. */
4224 if (skip_past_comma (&input_line_pointer) != FAIL)
4225 {
4226 if (immediate_for_directive (&offset) == FAIL)
4227 return;
4228 }
4229 else
4230 offset = 0;
4231
4232 demand_empty_rest_of_line ();
4233
4234 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4235 {
4236 as_bad (_("register must be either sp or set by a previous"
4237 "unwind_movsp directive"));
4238 return;
4239 }
4240
4241 /* Don't generate any opcodes, just record the information for later. */
4242 unwind.fp_reg = fp_reg;
4243 unwind.fp_used = 1;
4244 if (sp_reg == REG_SP)
4245 unwind.fp_offset = unwind.frame_size - offset;
4246 else
4247 unwind.fp_offset -= offset;
4248 }
4249
4250 /* Parse an unwind_raw directive. */
4251
4252 static void
4253 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4254 {
4255 expressionS exp;
4256 /* This is an arbitrary limit. */
4257 unsigned char op[16];
4258 int count;
4259
4260 if (!unwind.proc_start)
4261 as_bad (MISSING_FNSTART);
4262
4263 expression (&exp);
4264 if (exp.X_op == O_constant
4265 && skip_past_comma (&input_line_pointer) != FAIL)
4266 {
4267 unwind.frame_size += exp.X_add_number;
4268 expression (&exp);
4269 }
4270 else
4271 exp.X_op = O_illegal;
4272
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected <offset>, <opcode>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 count = 0;
4281
4282 /* Parse the opcode. */
4283 for (;;)
4284 {
4285 if (count >= 16)
4286 {
4287 as_bad (_("unwind opcode too long"));
4288 ignore_rest_of_line ();
4289 }
4290 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4291 {
4292 as_bad (_("invalid unwind opcode"));
4293 ignore_rest_of_line ();
4294 return;
4295 }
4296 op[count++] = exp.X_add_number;
4297
4298 /* Parse the next byte. */
4299 if (skip_past_comma (&input_line_pointer) == FAIL)
4300 break;
4301
4302 expression (&exp);
4303 }
4304
4305 /* Add the opcode bytes in reverse order. */
4306 while (count--)
4307 add_unwind_opcode (op[count], 1);
4308
4309 demand_empty_rest_of_line ();
4310 }
4311
4312
4313 /* Parse a .eabi_attribute directive. */
4314
4315 static void
4316 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4317 {
4318 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4319
4320 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4321 attributes_set_explicitly[tag] = 1;
4322 }
4323
4324 /* Emit a tls fix for the symbol. */
4325
4326 static void
4327 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4328 {
4329 char *p;
4330 expressionS exp;
4331 #ifdef md_flush_pending_output
4332 md_flush_pending_output ();
4333 #endif
4334
4335 #ifdef md_cons_align
4336 md_cons_align (4);
4337 #endif
4338
4339 /* Since we're just labelling the code, there's no need to define a
4340 mapping symbol. */
4341 expression (&exp);
4342 p = obstack_next_free (&frchain_now->frch_obstack);
4343 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4344 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4345 : BFD_RELOC_ARM_TLS_DESCSEQ);
4346 }
4347 #endif /* OBJ_ELF */
4348
4349 static void s_arm_arch (int);
4350 static void s_arm_object_arch (int);
4351 static void s_arm_cpu (int);
4352 static void s_arm_fpu (int);
4353 static void s_arm_arch_extension (int);
4354
4355 #ifdef TE_PE
4356
4357 static void
4358 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4359 {
4360 expressionS exp;
4361
4362 do
4363 {
4364 expression (&exp);
4365 if (exp.X_op == O_symbol)
4366 exp.X_op = O_secrel;
4367
4368 emit_expr (&exp, 4);
4369 }
4370 while (*input_line_pointer++ == ',');
4371
4372 input_line_pointer--;
4373 demand_empty_rest_of_line ();
4374 }
4375 #endif /* TE_PE */
4376
4377 /* This table describes all the machine specific pseudo-ops the assembler
4378 has to support. The fields are:
4379 pseudo-op name without dot
4380 function to call to execute this pseudo-op
4381 Integer arg to pass to the function. */
4382
4383 const pseudo_typeS md_pseudo_table[] =
4384 {
4385 /* Never called because '.req' does not start a line. */
4386 { "req", s_req, 0 },
4387 /* Following two are likewise never called. */
4388 { "dn", s_dn, 0 },
4389 { "qn", s_qn, 0 },
4390 { "unreq", s_unreq, 0 },
4391 { "bss", s_bss, 0 },
4392 { "align", s_align, 0 },
4393 { "arm", s_arm, 0 },
4394 { "thumb", s_thumb, 0 },
4395 { "code", s_code, 0 },
4396 { "force_thumb", s_force_thumb, 0 },
4397 { "thumb_func", s_thumb_func, 0 },
4398 { "thumb_set", s_thumb_set, 0 },
4399 { "even", s_even, 0 },
4400 { "ltorg", s_ltorg, 0 },
4401 { "pool", s_ltorg, 0 },
4402 { "syntax", s_syntax, 0 },
4403 { "cpu", s_arm_cpu, 0 },
4404 { "arch", s_arm_arch, 0 },
4405 { "object_arch", s_arm_object_arch, 0 },
4406 { "fpu", s_arm_fpu, 0 },
4407 { "arch_extension", s_arm_arch_extension, 0 },
4408 #ifdef OBJ_ELF
4409 { "word", s_arm_elf_cons, 4 },
4410 { "long", s_arm_elf_cons, 4 },
4411 { "inst.n", s_arm_elf_inst, 2 },
4412 { "inst.w", s_arm_elf_inst, 4 },
4413 { "inst", s_arm_elf_inst, 0 },
4414 { "rel31", s_arm_rel31, 0 },
4415 { "fnstart", s_arm_unwind_fnstart, 0 },
4416 { "fnend", s_arm_unwind_fnend, 0 },
4417 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4418 { "personality", s_arm_unwind_personality, 0 },
4419 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4420 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4421 { "save", s_arm_unwind_save, 0 },
4422 { "vsave", s_arm_unwind_save, 1 },
4423 { "movsp", s_arm_unwind_movsp, 0 },
4424 { "pad", s_arm_unwind_pad, 0 },
4425 { "setfp", s_arm_unwind_setfp, 0 },
4426 { "unwind_raw", s_arm_unwind_raw, 0 },
4427 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4428 { "tlsdescseq", s_arm_tls_descseq, 0 },
4429 #else
4430 { "word", cons, 4},
4431
4432 /* These are used for dwarf. */
4433 {"2byte", cons, 2},
4434 {"4byte", cons, 4},
4435 {"8byte", cons, 8},
4436 /* These are used for dwarf2. */
4437 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4438 { "loc", dwarf2_directive_loc, 0 },
4439 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4440 #endif
4441 { "extend", float_cons, 'x' },
4442 { "ldouble", float_cons, 'x' },
4443 { "packed", float_cons, 'p' },
4444 #ifdef TE_PE
4445 {"secrel32", pe_directive_secrel, 0},
4446 #endif
4447 { 0, 0, 0 }
4448 };
4449 \f
4450 /* Parser functions used exclusively in instruction operands. */
4451
4452 /* Generic immediate-value read function for use in insn parsing.
4453 STR points to the beginning of the immediate (the leading #);
4454 VAL receives the value; if the value is outside [MIN, MAX]
4455 issue an error. PREFIX_OPT is true if the immediate prefix is
4456 optional. */
4457
4458 static int
4459 parse_immediate (char **str, int *val, int min, int max,
4460 bfd_boolean prefix_opt)
4461 {
4462 expressionS exp;
4463 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4464 if (exp.X_op != O_constant)
4465 {
4466 inst.error = _("constant expression required");
4467 return FAIL;
4468 }
4469
4470 if (exp.X_add_number < min || exp.X_add_number > max)
4471 {
4472 inst.error = _("immediate value out of range");
4473 return FAIL;
4474 }
4475
4476 *val = exp.X_add_number;
4477 return SUCCESS;
4478 }
4479
4480 /* Less-generic immediate-value read function with the possibility of loading a
4481 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4482 instructions. Puts the result directly in inst.operands[i]. */
4483
4484 static int
4485 parse_big_immediate (char **str, int i)
4486 {
4487 expressionS exp;
4488 char *ptr = *str;
4489
4490 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4491
4492 if (exp.X_op == O_constant)
4493 {
4494 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4495 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4496 O_constant. We have to be careful not to break compilation for
4497 32-bit X_add_number, though. */
4498 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4499 {
4500 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4501 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4502 inst.operands[i].regisimm = 1;
4503 }
4504 }
4505 else if (exp.X_op == O_big
4506 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4507 {
4508 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4509
4510 /* Bignums have their least significant bits in
4511 generic_bignum[0]. Make sure we put 32 bits in imm and
4512 32 bits in reg, in a (hopefully) portable way. */
4513 gas_assert (parts != 0);
4514
4515 /* Make sure that the number is not too big.
4516 PR 11972: Bignums can now be sign-extended to the
4517 size of a .octa so check that the out of range bits
4518 are all zero or all one. */
4519 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4520 {
4521 LITTLENUM_TYPE m = -1;
4522
4523 if (generic_bignum[parts * 2] != 0
4524 && generic_bignum[parts * 2] != m)
4525 return FAIL;
4526
4527 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4528 if (generic_bignum[j] != generic_bignum[j-1])
4529 return FAIL;
4530 }
4531
4532 inst.operands[i].imm = 0;
4533 for (j = 0; j < parts; j++, idx++)
4534 inst.operands[i].imm |= generic_bignum[idx]
4535 << (LITTLENUM_NUMBER_OF_BITS * j);
4536 inst.operands[i].reg = 0;
4537 for (j = 0; j < parts; j++, idx++)
4538 inst.operands[i].reg |= generic_bignum[idx]
4539 << (LITTLENUM_NUMBER_OF_BITS * j);
4540 inst.operands[i].regisimm = 1;
4541 }
4542 else
4543 return FAIL;
4544
4545 *str = ptr;
4546
4547 return SUCCESS;
4548 }
4549
4550 /* Returns the pseudo-register number of an FPA immediate constant,
4551 or FAIL if there isn't a valid constant here. */
4552
4553 static int
4554 parse_fpa_immediate (char ** str)
4555 {
4556 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4557 char * save_in;
4558 expressionS exp;
4559 int i;
4560 int j;
4561
4562 /* First try and match exact strings, this is to guarantee
4563 that some formats will work even for cross assembly. */
4564
4565 for (i = 0; fp_const[i]; i++)
4566 {
4567 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4568 {
4569 char *start = *str;
4570
4571 *str += strlen (fp_const[i]);
4572 if (is_end_of_line[(unsigned char) **str])
4573 return i + 8;
4574 *str = start;
4575 }
4576 }
4577
4578 /* Just because we didn't get a match doesn't mean that the constant
4579 isn't valid, just that it is in a format that we don't
4580 automatically recognize. Try parsing it with the standard
4581 expression routines. */
4582
4583 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4584
4585 /* Look for a raw floating point number. */
4586 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4587 && is_end_of_line[(unsigned char) *save_in])
4588 {
4589 for (i = 0; i < NUM_FLOAT_VALS; i++)
4590 {
4591 for (j = 0; j < MAX_LITTLENUMS; j++)
4592 {
4593 if (words[j] != fp_values[i][j])
4594 break;
4595 }
4596
4597 if (j == MAX_LITTLENUMS)
4598 {
4599 *str = save_in;
4600 return i + 8;
4601 }
4602 }
4603 }
4604
4605 /* Try and parse a more complex expression, this will probably fail
4606 unless the code uses a floating point prefix (eg "0f"). */
4607 save_in = input_line_pointer;
4608 input_line_pointer = *str;
4609 if (expression (&exp) == absolute_section
4610 && exp.X_op == O_big
4611 && exp.X_add_number < 0)
4612 {
4613 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4614 Ditto for 15. */
4615 if (gen_to_words (words, 5, (long) 15) == 0)
4616 {
4617 for (i = 0; i < NUM_FLOAT_VALS; i++)
4618 {
4619 for (j = 0; j < MAX_LITTLENUMS; j++)
4620 {
4621 if (words[j] != fp_values[i][j])
4622 break;
4623 }
4624
4625 if (j == MAX_LITTLENUMS)
4626 {
4627 *str = input_line_pointer;
4628 input_line_pointer = save_in;
4629 return i + 8;
4630 }
4631 }
4632 }
4633 }
4634
4635 *str = input_line_pointer;
4636 input_line_pointer = save_in;
4637 inst.error = _("invalid FPA immediate expression");
4638 return FAIL;
4639 }
4640
4641 /* Returns 1 if a number has "quarter-precision" float format
4642 0baBbbbbbc defgh000 00000000 00000000. */
4643
4644 static int
4645 is_quarter_float (unsigned imm)
4646 {
4647 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4648 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4649 }
4650
4651 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4652 0baBbbbbbc defgh000 00000000 00000000.
4653 The zero and minus-zero cases need special handling, since they can't be
4654 encoded in the "quarter-precision" float format, but can nonetheless be
4655 loaded as integer constants. */
4656
4657 static unsigned
4658 parse_qfloat_immediate (char **ccp, int *immed)
4659 {
4660 char *str = *ccp;
4661 char *fpnum;
4662 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4663 int found_fpchar = 0;
4664
4665 skip_past_char (&str, '#');
4666
4667 /* We must not accidentally parse an integer as a floating-point number. Make
4668 sure that the value we parse is not an integer by checking for special
4669 characters '.' or 'e'.
4670 FIXME: This is a horrible hack, but doing better is tricky because type
4671 information isn't in a very usable state at parse time. */
4672 fpnum = str;
4673 skip_whitespace (fpnum);
4674
4675 if (strncmp (fpnum, "0x", 2) == 0)
4676 return FAIL;
4677 else
4678 {
4679 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4680 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4681 {
4682 found_fpchar = 1;
4683 break;
4684 }
4685
4686 if (!found_fpchar)
4687 return FAIL;
4688 }
4689
4690 if ((str = atof_ieee (str, 's', words)) != NULL)
4691 {
4692 unsigned fpword = 0;
4693 int i;
4694
4695 /* Our FP word must be 32 bits (single-precision FP). */
4696 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4697 {
4698 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4699 fpword |= words[i];
4700 }
4701
4702 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4703 *immed = fpword;
4704 else
4705 return FAIL;
4706
4707 *ccp = str;
4708
4709 return SUCCESS;
4710 }
4711
4712 return FAIL;
4713 }
4714
4715 /* Shift operands. */
4716 enum shift_kind
4717 {
4718 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4719 };
4720
4721 struct asm_shift_name
4722 {
4723 const char *name;
4724 enum shift_kind kind;
4725 };
4726
4727 /* Third argument to parse_shift. */
4728 enum parse_shift_mode
4729 {
4730 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4731 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4732 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4733 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4734 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4735 };
4736
4737 /* Parse a <shift> specifier on an ARM data processing instruction.
4738 This has three forms:
4739
4740 (LSL|LSR|ASL|ASR|ROR) Rs
4741 (LSL|LSR|ASL|ASR|ROR) #imm
4742 RRX
4743
4744 Note that ASL is assimilated to LSL in the instruction encoding, and
4745 RRX to ROR #0 (which cannot be written as such). */
4746
4747 static int
4748 parse_shift (char **str, int i, enum parse_shift_mode mode)
4749 {
4750 const struct asm_shift_name *shift_name;
4751 enum shift_kind shift;
4752 char *s = *str;
4753 char *p = s;
4754 int reg;
4755
4756 for (p = *str; ISALPHA (*p); p++)
4757 ;
4758
4759 if (p == *str)
4760 {
4761 inst.error = _("shift expression expected");
4762 return FAIL;
4763 }
4764
4765 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4766 p - *str);
4767
4768 if (shift_name == NULL)
4769 {
4770 inst.error = _("shift expression expected");
4771 return FAIL;
4772 }
4773
4774 shift = shift_name->kind;
4775
4776 switch (mode)
4777 {
4778 case NO_SHIFT_RESTRICT:
4779 case SHIFT_IMMEDIATE: break;
4780
4781 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4782 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4783 {
4784 inst.error = _("'LSL' or 'ASR' required");
4785 return FAIL;
4786 }
4787 break;
4788
4789 case SHIFT_LSL_IMMEDIATE:
4790 if (shift != SHIFT_LSL)
4791 {
4792 inst.error = _("'LSL' required");
4793 return FAIL;
4794 }
4795 break;
4796
4797 case SHIFT_ASR_IMMEDIATE:
4798 if (shift != SHIFT_ASR)
4799 {
4800 inst.error = _("'ASR' required");
4801 return FAIL;
4802 }
4803 break;
4804
4805 default: abort ();
4806 }
4807
4808 if (shift != SHIFT_RRX)
4809 {
4810 /* Whitespace can appear here if the next thing is a bare digit. */
4811 skip_whitespace (p);
4812
4813 if (mode == NO_SHIFT_RESTRICT
4814 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4815 {
4816 inst.operands[i].imm = reg;
4817 inst.operands[i].immisreg = 1;
4818 }
4819 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4820 return FAIL;
4821 }
4822 inst.operands[i].shift_kind = shift;
4823 inst.operands[i].shifted = 1;
4824 *str = p;
4825 return SUCCESS;
4826 }
4827
4828 /* Parse a <shifter_operand> for an ARM data processing instruction:
4829
4830 #<immediate>
4831 #<immediate>, <rotate>
4832 <Rm>
4833 <Rm>, <shift>
4834
4835 where <shift> is defined by parse_shift above, and <rotate> is a
4836 multiple of 2 between 0 and 30. Validation of immediate operands
4837 is deferred to md_apply_fix. */
4838
4839 static int
4840 parse_shifter_operand (char **str, int i)
4841 {
4842 int value;
4843 expressionS exp;
4844
4845 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4846 {
4847 inst.operands[i].reg = value;
4848 inst.operands[i].isreg = 1;
4849
4850 /* parse_shift will override this if appropriate */
4851 inst.reloc.exp.X_op = O_constant;
4852 inst.reloc.exp.X_add_number = 0;
4853
4854 if (skip_past_comma (str) == FAIL)
4855 return SUCCESS;
4856
4857 /* Shift operation on register. */
4858 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4859 }
4860
4861 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4862 return FAIL;
4863
4864 if (skip_past_comma (str) == SUCCESS)
4865 {
4866 /* #x, y -- ie explicit rotation by Y. */
4867 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4868 return FAIL;
4869
4870 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4871 {
4872 inst.error = _("constant expression expected");
4873 return FAIL;
4874 }
4875
4876 value = exp.X_add_number;
4877 if (value < 0 || value > 30 || value % 2 != 0)
4878 {
4879 inst.error = _("invalid rotation");
4880 return FAIL;
4881 }
4882 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4883 {
4884 inst.error = _("invalid constant");
4885 return FAIL;
4886 }
4887
4888 /* Encode as specified. */
4889 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4890 return SUCCESS;
4891 }
4892
4893 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4894 inst.reloc.pc_rel = 0;
4895 return SUCCESS;
4896 }
4897
4898 /* Group relocation information. Each entry in the table contains the
4899 textual name of the relocation as may appear in assembler source
4900 and must end with a colon.
4901 Along with this textual name are the relocation codes to be used if
4902 the corresponding instruction is an ALU instruction (ADD or SUB only),
4903 an LDR, an LDRS, or an LDC. */
4904
4905 struct group_reloc_table_entry
4906 {
4907 const char *name;
4908 int alu_code;
4909 int ldr_code;
4910 int ldrs_code;
4911 int ldc_code;
4912 };
4913
4914 typedef enum
4915 {
4916 /* Varieties of non-ALU group relocation. */
4917
4918 GROUP_LDR,
4919 GROUP_LDRS,
4920 GROUP_LDC
4921 } group_reloc_type;
4922
4923 static struct group_reloc_table_entry group_reloc_table[] =
4924 { /* Program counter relative: */
4925 { "pc_g0_nc",
4926 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4927 0, /* LDR */
4928 0, /* LDRS */
4929 0 }, /* LDC */
4930 { "pc_g0",
4931 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4932 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4933 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4934 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4935 { "pc_g1_nc",
4936 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4937 0, /* LDR */
4938 0, /* LDRS */
4939 0 }, /* LDC */
4940 { "pc_g1",
4941 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4942 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4943 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4944 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4945 { "pc_g2",
4946 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4947 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4948 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4949 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4950 /* Section base relative */
4951 { "sb_g0_nc",
4952 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4953 0, /* LDR */
4954 0, /* LDRS */
4955 0 }, /* LDC */
4956 { "sb_g0",
4957 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4958 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4959 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4960 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4961 { "sb_g1_nc",
4962 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4963 0, /* LDR */
4964 0, /* LDRS */
4965 0 }, /* LDC */
4966 { "sb_g1",
4967 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4968 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4969 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4970 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4971 { "sb_g2",
4972 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4973 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4974 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4975 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4976
4977 /* Given the address of a pointer pointing to the textual name of a group
4978 relocation as may appear in assembler source, attempt to find its details
4979 in group_reloc_table. The pointer will be updated to the character after
4980 the trailing colon. On failure, FAIL will be returned; SUCCESS
4981 otherwise. On success, *entry will be updated to point at the relevant
4982 group_reloc_table entry. */
4983
4984 static int
4985 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4986 {
4987 unsigned int i;
4988 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4989 {
4990 int length = strlen (group_reloc_table[i].name);
4991
4992 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4993 && (*str)[length] == ':')
4994 {
4995 *out = &group_reloc_table[i];
4996 *str += (length + 1);
4997 return SUCCESS;
4998 }
4999 }
5000
5001 return FAIL;
5002 }
5003
5004 /* Parse a <shifter_operand> for an ARM data processing instruction
5005 (as for parse_shifter_operand) where group relocations are allowed:
5006
5007 #<immediate>
5008 #<immediate>, <rotate>
5009 #:<group_reloc>:<expression>
5010 <Rm>
5011 <Rm>, <shift>
5012
5013 where <group_reloc> is one of the strings defined in group_reloc_table.
5014 The hashes are optional.
5015
5016 Everything else is as for parse_shifter_operand. */
5017
5018 static parse_operand_result
5019 parse_shifter_operand_group_reloc (char **str, int i)
5020 {
5021 /* Determine if we have the sequence of characters #: or just :
5022 coming next. If we do, then we check for a group relocation.
5023 If we don't, punt the whole lot to parse_shifter_operand. */
5024
5025 if (((*str)[0] == '#' && (*str)[1] == ':')
5026 || (*str)[0] == ':')
5027 {
5028 struct group_reloc_table_entry *entry;
5029
5030 if ((*str)[0] == '#')
5031 (*str) += 2;
5032 else
5033 (*str)++;
5034
5035 /* Try to parse a group relocation. Anything else is an error. */
5036 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5037 {
5038 inst.error = _("unknown group relocation");
5039 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5040 }
5041
5042 /* We now have the group relocation table entry corresponding to
5043 the name in the assembler source. Next, we parse the expression. */
5044 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5045 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5046
5047 /* Record the relocation type (always the ALU variant here). */
5048 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5049 gas_assert (inst.reloc.type != 0);
5050
5051 return PARSE_OPERAND_SUCCESS;
5052 }
5053 else
5054 return parse_shifter_operand (str, i) == SUCCESS
5055 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5056
5057 /* Never reached. */
5058 }
5059
5060 /* Parse a Neon alignment expression. Information is written to
5061 inst.operands[i]. We assume the initial ':' has been skipped.
5062
5063 align .imm = align << 8, .immisalign=1, .preind=0 */
5064 static parse_operand_result
5065 parse_neon_alignment (char **str, int i)
5066 {
5067 char *p = *str;
5068 expressionS exp;
5069
5070 my_get_expression (&exp, &p, GE_NO_PREFIX);
5071
5072 if (exp.X_op != O_constant)
5073 {
5074 inst.error = _("alignment must be constant");
5075 return PARSE_OPERAND_FAIL;
5076 }
5077
5078 inst.operands[i].imm = exp.X_add_number << 8;
5079 inst.operands[i].immisalign = 1;
5080 /* Alignments are not pre-indexes. */
5081 inst.operands[i].preind = 0;
5082
5083 *str = p;
5084 return PARSE_OPERAND_SUCCESS;
5085 }
5086
5087 /* Parse all forms of an ARM address expression. Information is written
5088 to inst.operands[i] and/or inst.reloc.
5089
5090 Preindexed addressing (.preind=1):
5091
5092 [Rn, #offset] .reg=Rn .reloc.exp=offset
5093 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5094 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5095 .shift_kind=shift .reloc.exp=shift_imm
5096
5097 These three may have a trailing ! which causes .writeback to be set also.
5098
5099 Postindexed addressing (.postind=1, .writeback=1):
5100
5101 [Rn], #offset .reg=Rn .reloc.exp=offset
5102 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5103 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5104 .shift_kind=shift .reloc.exp=shift_imm
5105
5106 Unindexed addressing (.preind=0, .postind=0):
5107
5108 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5109
5110 Other:
5111
5112 [Rn]{!} shorthand for [Rn,#0]{!}
5113 =immediate .isreg=0 .reloc.exp=immediate
5114 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5115
5116 It is the caller's responsibility to check for addressing modes not
5117 supported by the instruction, and to set inst.reloc.type. */
5118
5119 static parse_operand_result
5120 parse_address_main (char **str, int i, int group_relocations,
5121 group_reloc_type group_type)
5122 {
5123 char *p = *str;
5124 int reg;
5125
5126 if (skip_past_char (&p, '[') == FAIL)
5127 {
5128 if (skip_past_char (&p, '=') == FAIL)
5129 {
5130 /* Bare address - translate to PC-relative offset. */
5131 inst.reloc.pc_rel = 1;
5132 inst.operands[i].reg = REG_PC;
5133 inst.operands[i].isreg = 1;
5134 inst.operands[i].preind = 1;
5135 }
5136 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5137
5138 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5139 return PARSE_OPERAND_FAIL;
5140
5141 *str = p;
5142 return PARSE_OPERAND_SUCCESS;
5143 }
5144
5145 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5146 {
5147 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5148 return PARSE_OPERAND_FAIL;
5149 }
5150 inst.operands[i].reg = reg;
5151 inst.operands[i].isreg = 1;
5152
5153 if (skip_past_comma (&p) == SUCCESS)
5154 {
5155 inst.operands[i].preind = 1;
5156
5157 if (*p == '+') p++;
5158 else if (*p == '-') p++, inst.operands[i].negative = 1;
5159
5160 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5161 {
5162 inst.operands[i].imm = reg;
5163 inst.operands[i].immisreg = 1;
5164
5165 if (skip_past_comma (&p) == SUCCESS)
5166 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5167 return PARSE_OPERAND_FAIL;
5168 }
5169 else if (skip_past_char (&p, ':') == SUCCESS)
5170 {
5171 /* FIXME: '@' should be used here, but it's filtered out by generic
5172 code before we get to see it here. This may be subject to
5173 change. */
5174 parse_operand_result result = parse_neon_alignment (&p, i);
5175
5176 if (result != PARSE_OPERAND_SUCCESS)
5177 return result;
5178 }
5179 else
5180 {
5181 if (inst.operands[i].negative)
5182 {
5183 inst.operands[i].negative = 0;
5184 p--;
5185 }
5186
5187 if (group_relocations
5188 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5189 {
5190 struct group_reloc_table_entry *entry;
5191
5192 /* Skip over the #: or : sequence. */
5193 if (*p == '#')
5194 p += 2;
5195 else
5196 p++;
5197
5198 /* Try to parse a group relocation. Anything else is an
5199 error. */
5200 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5201 {
5202 inst.error = _("unknown group relocation");
5203 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5204 }
5205
5206 /* We now have the group relocation table entry corresponding to
5207 the name in the assembler source. Next, we parse the
5208 expression. */
5209 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5210 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5211
5212 /* Record the relocation type. */
5213 switch (group_type)
5214 {
5215 case GROUP_LDR:
5216 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5217 break;
5218
5219 case GROUP_LDRS:
5220 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5221 break;
5222
5223 case GROUP_LDC:
5224 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5225 break;
5226
5227 default:
5228 gas_assert (0);
5229 }
5230
5231 if (inst.reloc.type == 0)
5232 {
5233 inst.error = _("this group relocation is not allowed on this instruction");
5234 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5235 }
5236 }
5237 else
5238 {
5239 char *q = p;
5240 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5241 return PARSE_OPERAND_FAIL;
5242 /* If the offset is 0, find out if it's a +0 or -0. */
5243 if (inst.reloc.exp.X_op == O_constant
5244 && inst.reloc.exp.X_add_number == 0)
5245 {
5246 skip_whitespace (q);
5247 if (*q == '#')
5248 {
5249 q++;
5250 skip_whitespace (q);
5251 }
5252 if (*q == '-')
5253 inst.operands[i].negative = 1;
5254 }
5255 }
5256 }
5257 }
5258 else if (skip_past_char (&p, ':') == SUCCESS)
5259 {
5260 /* FIXME: '@' should be used here, but it's filtered out by generic code
5261 before we get to see it here. This may be subject to change. */
5262 parse_operand_result result = parse_neon_alignment (&p, i);
5263
5264 if (result != PARSE_OPERAND_SUCCESS)
5265 return result;
5266 }
5267
5268 if (skip_past_char (&p, ']') == FAIL)
5269 {
5270 inst.error = _("']' expected");
5271 return PARSE_OPERAND_FAIL;
5272 }
5273
5274 if (skip_past_char (&p, '!') == SUCCESS)
5275 inst.operands[i].writeback = 1;
5276
5277 else if (skip_past_comma (&p) == SUCCESS)
5278 {
5279 if (skip_past_char (&p, '{') == SUCCESS)
5280 {
5281 /* [Rn], {expr} - unindexed, with option */
5282 if (parse_immediate (&p, &inst.operands[i].imm,
5283 0, 255, TRUE) == FAIL)
5284 return PARSE_OPERAND_FAIL;
5285
5286 if (skip_past_char (&p, '}') == FAIL)
5287 {
5288 inst.error = _("'}' expected at end of 'option' field");
5289 return PARSE_OPERAND_FAIL;
5290 }
5291 if (inst.operands[i].preind)
5292 {
5293 inst.error = _("cannot combine index with option");
5294 return PARSE_OPERAND_FAIL;
5295 }
5296 *str = p;
5297 return PARSE_OPERAND_SUCCESS;
5298 }
5299 else
5300 {
5301 inst.operands[i].postind = 1;
5302 inst.operands[i].writeback = 1;
5303
5304 if (inst.operands[i].preind)
5305 {
5306 inst.error = _("cannot combine pre- and post-indexing");
5307 return PARSE_OPERAND_FAIL;
5308 }
5309
5310 if (*p == '+') p++;
5311 else if (*p == '-') p++, inst.operands[i].negative = 1;
5312
5313 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5314 {
5315 /* We might be using the immediate for alignment already. If we
5316 are, OR the register number into the low-order bits. */
5317 if (inst.operands[i].immisalign)
5318 inst.operands[i].imm |= reg;
5319 else
5320 inst.operands[i].imm = reg;
5321 inst.operands[i].immisreg = 1;
5322
5323 if (skip_past_comma (&p) == SUCCESS)
5324 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5325 return PARSE_OPERAND_FAIL;
5326 }
5327 else
5328 {
5329 char *q = p;
5330 if (inst.operands[i].negative)
5331 {
5332 inst.operands[i].negative = 0;
5333 p--;
5334 }
5335 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5336 return PARSE_OPERAND_FAIL;
5337 /* If the offset is 0, find out if it's a +0 or -0. */
5338 if (inst.reloc.exp.X_op == O_constant
5339 && inst.reloc.exp.X_add_number == 0)
5340 {
5341 skip_whitespace (q);
5342 if (*q == '#')
5343 {
5344 q++;
5345 skip_whitespace (q);
5346 }
5347 if (*q == '-')
5348 inst.operands[i].negative = 1;
5349 }
5350 }
5351 }
5352 }
5353
5354 /* If at this point neither .preind nor .postind is set, we have a
5355 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5356 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5357 {
5358 inst.operands[i].preind = 1;
5359 inst.reloc.exp.X_op = O_constant;
5360 inst.reloc.exp.X_add_number = 0;
5361 }
5362 *str = p;
5363 return PARSE_OPERAND_SUCCESS;
5364 }
5365
5366 static int
5367 parse_address (char **str, int i)
5368 {
5369 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5370 ? SUCCESS : FAIL;
5371 }
5372
5373 static parse_operand_result
5374 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5375 {
5376 return parse_address_main (str, i, 1, type);
5377 }
5378
5379 /* Parse an operand for a MOVW or MOVT instruction. */
5380 static int
5381 parse_half (char **str)
5382 {
5383 char * p;
5384
5385 p = *str;
5386 skip_past_char (&p, '#');
5387 if (strncasecmp (p, ":lower16:", 9) == 0)
5388 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5389 else if (strncasecmp (p, ":upper16:", 9) == 0)
5390 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5391
5392 if (inst.reloc.type != BFD_RELOC_UNUSED)
5393 {
5394 p += 9;
5395 skip_whitespace (p);
5396 }
5397
5398 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5399 return FAIL;
5400
5401 if (inst.reloc.type == BFD_RELOC_UNUSED)
5402 {
5403 if (inst.reloc.exp.X_op != O_constant)
5404 {
5405 inst.error = _("constant expression expected");
5406 return FAIL;
5407 }
5408 if (inst.reloc.exp.X_add_number < 0
5409 || inst.reloc.exp.X_add_number > 0xffff)
5410 {
5411 inst.error = _("immediate value out of range");
5412 return FAIL;
5413 }
5414 }
5415 *str = p;
5416 return SUCCESS;
5417 }
5418
5419 /* Miscellaneous. */
5420
5421 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5422 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5423 static int
5424 parse_psr (char **str, bfd_boolean lhs)
5425 {
5426 char *p;
5427 unsigned long psr_field;
5428 const struct asm_psr *psr;
5429 char *start;
5430 bfd_boolean is_apsr = FALSE;
5431 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5432
5433 /* PR gas/12698: If the user has specified -march=all then m_profile will
5434 be TRUE, but we want to ignore it in this case as we are building for any
5435 CPU type, including non-m variants. */
5436 if (selected_cpu.core == arm_arch_any.core)
5437 m_profile = FALSE;
5438
5439 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5440 feature for ease of use and backwards compatibility. */
5441 p = *str;
5442 if (strncasecmp (p, "SPSR", 4) == 0)
5443 {
5444 if (m_profile)
5445 goto unsupported_psr;
5446
5447 psr_field = SPSR_BIT;
5448 }
5449 else if (strncasecmp (p, "CPSR", 4) == 0)
5450 {
5451 if (m_profile)
5452 goto unsupported_psr;
5453
5454 psr_field = 0;
5455 }
5456 else if (strncasecmp (p, "APSR", 4) == 0)
5457 {
5458 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5459 and ARMv7-R architecture CPUs. */
5460 is_apsr = TRUE;
5461 psr_field = 0;
5462 }
5463 else if (m_profile)
5464 {
5465 start = p;
5466 do
5467 p++;
5468 while (ISALNUM (*p) || *p == '_');
5469
5470 if (strncasecmp (start, "iapsr", 5) == 0
5471 || strncasecmp (start, "eapsr", 5) == 0
5472 || strncasecmp (start, "xpsr", 4) == 0
5473 || strncasecmp (start, "psr", 3) == 0)
5474 p = start + strcspn (start, "rR") + 1;
5475
5476 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5477 p - start);
5478
5479 if (!psr)
5480 return FAIL;
5481
5482 /* If APSR is being written, a bitfield may be specified. Note that
5483 APSR itself is handled above. */
5484 if (psr->field <= 3)
5485 {
5486 psr_field = psr->field;
5487 is_apsr = TRUE;
5488 goto check_suffix;
5489 }
5490
5491 *str = p;
5492 /* M-profile MSR instructions have the mask field set to "10", except
5493 *PSR variants which modify APSR, which may use a different mask (and
5494 have been handled already). Do that by setting the PSR_f field
5495 here. */
5496 return psr->field | (lhs ? PSR_f : 0);
5497 }
5498 else
5499 goto unsupported_psr;
5500
5501 p += 4;
5502 check_suffix:
5503 if (*p == '_')
5504 {
5505 /* A suffix follows. */
5506 p++;
5507 start = p;
5508
5509 do
5510 p++;
5511 while (ISALNUM (*p) || *p == '_');
5512
5513 if (is_apsr)
5514 {
5515 /* APSR uses a notation for bits, rather than fields. */
5516 unsigned int nzcvq_bits = 0;
5517 unsigned int g_bit = 0;
5518 char *bit;
5519
5520 for (bit = start; bit != p; bit++)
5521 {
5522 switch (TOLOWER (*bit))
5523 {
5524 case 'n':
5525 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5526 break;
5527
5528 case 'z':
5529 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5530 break;
5531
5532 case 'c':
5533 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5534 break;
5535
5536 case 'v':
5537 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5538 break;
5539
5540 case 'q':
5541 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5542 break;
5543
5544 case 'g':
5545 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5546 break;
5547
5548 default:
5549 inst.error = _("unexpected bit specified after APSR");
5550 return FAIL;
5551 }
5552 }
5553
5554 if (nzcvq_bits == 0x1f)
5555 psr_field |= PSR_f;
5556
5557 if (g_bit == 0x1)
5558 {
5559 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5560 {
5561 inst.error = _("selected processor does not "
5562 "support DSP extension");
5563 return FAIL;
5564 }
5565
5566 psr_field |= PSR_s;
5567 }
5568
5569 if ((nzcvq_bits & 0x20) != 0
5570 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5571 || (g_bit & 0x2) != 0)
5572 {
5573 inst.error = _("bad bitmask specified after APSR");
5574 return FAIL;
5575 }
5576 }
5577 else
5578 {
5579 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5580 p - start);
5581 if (!psr)
5582 goto error;
5583
5584 psr_field |= psr->field;
5585 }
5586 }
5587 else
5588 {
5589 if (ISALNUM (*p))
5590 goto error; /* Garbage after "[CS]PSR". */
5591
5592 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5593 is deprecated, but allow it anyway. */
5594 if (is_apsr && lhs)
5595 {
5596 psr_field |= PSR_f;
5597 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5598 "deprecated"));
5599 }
5600 else if (!m_profile)
5601 /* These bits are never right for M-profile devices: don't set them
5602 (only code paths which read/write APSR reach here). */
5603 psr_field |= (PSR_c | PSR_f);
5604 }
5605 *str = p;
5606 return psr_field;
5607
5608 unsupported_psr:
5609 inst.error = _("selected processor does not support requested special "
5610 "purpose register");
5611 return FAIL;
5612
5613 error:
5614 inst.error = _("flag for {c}psr instruction expected");
5615 return FAIL;
5616 }
5617
5618 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5619 value suitable for splatting into the AIF field of the instruction. */
5620
5621 static int
5622 parse_cps_flags (char **str)
5623 {
5624 int val = 0;
5625 int saw_a_flag = 0;
5626 char *s = *str;
5627
5628 for (;;)
5629 switch (*s++)
5630 {
5631 case '\0': case ',':
5632 goto done;
5633
5634 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5635 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5636 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5637
5638 default:
5639 inst.error = _("unrecognized CPS flag");
5640 return FAIL;
5641 }
5642
5643 done:
5644 if (saw_a_flag == 0)
5645 {
5646 inst.error = _("missing CPS flags");
5647 return FAIL;
5648 }
5649
5650 *str = s - 1;
5651 return val;
5652 }
5653
5654 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5655 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5656
5657 static int
5658 parse_endian_specifier (char **str)
5659 {
5660 int little_endian;
5661 char *s = *str;
5662
5663 if (strncasecmp (s, "BE", 2))
5664 little_endian = 0;
5665 else if (strncasecmp (s, "LE", 2))
5666 little_endian = 1;
5667 else
5668 {
5669 inst.error = _("valid endian specifiers are be or le");
5670 return FAIL;
5671 }
5672
5673 if (ISALNUM (s[2]) || s[2] == '_')
5674 {
5675 inst.error = _("valid endian specifiers are be or le");
5676 return FAIL;
5677 }
5678
5679 *str = s + 2;
5680 return little_endian;
5681 }
5682
5683 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5684 value suitable for poking into the rotate field of an sxt or sxta
5685 instruction, or FAIL on error. */
5686
5687 static int
5688 parse_ror (char **str)
5689 {
5690 int rot;
5691 char *s = *str;
5692
5693 if (strncasecmp (s, "ROR", 3) == 0)
5694 s += 3;
5695 else
5696 {
5697 inst.error = _("missing rotation field after comma");
5698 return FAIL;
5699 }
5700
5701 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5702 return FAIL;
5703
5704 switch (rot)
5705 {
5706 case 0: *str = s; return 0x0;
5707 case 8: *str = s; return 0x1;
5708 case 16: *str = s; return 0x2;
5709 case 24: *str = s; return 0x3;
5710
5711 default:
5712 inst.error = _("rotation can only be 0, 8, 16, or 24");
5713 return FAIL;
5714 }
5715 }
5716
5717 /* Parse a conditional code (from conds[] below). The value returned is in the
5718 range 0 .. 14, or FAIL. */
5719 static int
5720 parse_cond (char **str)
5721 {
5722 char *q;
5723 const struct asm_cond *c;
5724 int n;
5725 /* Condition codes are always 2 characters, so matching up to
5726 3 characters is sufficient. */
5727 char cond[3];
5728
5729 q = *str;
5730 n = 0;
5731 while (ISALPHA (*q) && n < 3)
5732 {
5733 cond[n] = TOLOWER (*q);
5734 q++;
5735 n++;
5736 }
5737
5738 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5739 if (!c)
5740 {
5741 inst.error = _("condition required");
5742 return FAIL;
5743 }
5744
5745 *str = q;
5746 return c->value;
5747 }
5748
5749 /* Parse an option for a barrier instruction. Returns the encoding for the
5750 option, or FAIL. */
5751 static int
5752 parse_barrier (char **str)
5753 {
5754 char *p, *q;
5755 const struct asm_barrier_opt *o;
5756
5757 p = q = *str;
5758 while (ISALPHA (*q))
5759 q++;
5760
5761 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5762 q - p);
5763 if (!o)
5764 return FAIL;
5765
5766 *str = q;
5767 return o->value;
5768 }
5769
5770 /* Parse the operands of a table branch instruction. Similar to a memory
5771 operand. */
5772 static int
5773 parse_tb (char **str)
5774 {
5775 char * p = *str;
5776 int reg;
5777
5778 if (skip_past_char (&p, '[') == FAIL)
5779 {
5780 inst.error = _("'[' expected");
5781 return FAIL;
5782 }
5783
5784 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5785 {
5786 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5787 return FAIL;
5788 }
5789 inst.operands[0].reg = reg;
5790
5791 if (skip_past_comma (&p) == FAIL)
5792 {
5793 inst.error = _("',' expected");
5794 return FAIL;
5795 }
5796
5797 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5798 {
5799 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5800 return FAIL;
5801 }
5802 inst.operands[0].imm = reg;
5803
5804 if (skip_past_comma (&p) == SUCCESS)
5805 {
5806 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5807 return FAIL;
5808 if (inst.reloc.exp.X_add_number != 1)
5809 {
5810 inst.error = _("invalid shift");
5811 return FAIL;
5812 }
5813 inst.operands[0].shifted = 1;
5814 }
5815
5816 if (skip_past_char (&p, ']') == FAIL)
5817 {
5818 inst.error = _("']' expected");
5819 return FAIL;
5820 }
5821 *str = p;
5822 return SUCCESS;
5823 }
5824
5825 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5826 information on the types the operands can take and how they are encoded.
5827 Up to four operands may be read; this function handles setting the
5828 ".present" field for each read operand itself.
5829 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5830 else returns FAIL. */
5831
5832 static int
5833 parse_neon_mov (char **str, int *which_operand)
5834 {
5835 int i = *which_operand, val;
5836 enum arm_reg_type rtype;
5837 char *ptr = *str;
5838 struct neon_type_el optype;
5839
5840 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5841 {
5842 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5843 inst.operands[i].reg = val;
5844 inst.operands[i].isscalar = 1;
5845 inst.operands[i].vectype = optype;
5846 inst.operands[i++].present = 1;
5847
5848 if (skip_past_comma (&ptr) == FAIL)
5849 goto wanted_comma;
5850
5851 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5852 goto wanted_arm;
5853
5854 inst.operands[i].reg = val;
5855 inst.operands[i].isreg = 1;
5856 inst.operands[i].present = 1;
5857 }
5858 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5859 != FAIL)
5860 {
5861 /* Cases 0, 1, 2, 3, 5 (D only). */
5862 if (skip_past_comma (&ptr) == FAIL)
5863 goto wanted_comma;
5864
5865 inst.operands[i].reg = val;
5866 inst.operands[i].isreg = 1;
5867 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5868 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5869 inst.operands[i].isvec = 1;
5870 inst.operands[i].vectype = optype;
5871 inst.operands[i++].present = 1;
5872
5873 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5874 {
5875 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5876 Case 13: VMOV <Sd>, <Rm> */
5877 inst.operands[i].reg = val;
5878 inst.operands[i].isreg = 1;
5879 inst.operands[i].present = 1;
5880
5881 if (rtype == REG_TYPE_NQ)
5882 {
5883 first_error (_("can't use Neon quad register here"));
5884 return FAIL;
5885 }
5886 else if (rtype != REG_TYPE_VFS)
5887 {
5888 i++;
5889 if (skip_past_comma (&ptr) == FAIL)
5890 goto wanted_comma;
5891 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5892 goto wanted_arm;
5893 inst.operands[i].reg = val;
5894 inst.operands[i].isreg = 1;
5895 inst.operands[i].present = 1;
5896 }
5897 }
5898 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5899 &optype)) != FAIL)
5900 {
5901 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5902 Case 1: VMOV<c><q> <Dd>, <Dm>
5903 Case 8: VMOV.F32 <Sd>, <Sm>
5904 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5905
5906 inst.operands[i].reg = val;
5907 inst.operands[i].isreg = 1;
5908 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5909 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5910 inst.operands[i].isvec = 1;
5911 inst.operands[i].vectype = optype;
5912 inst.operands[i].present = 1;
5913
5914 if (skip_past_comma (&ptr) == SUCCESS)
5915 {
5916 /* Case 15. */
5917 i++;
5918
5919 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5920 goto wanted_arm;
5921
5922 inst.operands[i].reg = val;
5923 inst.operands[i].isreg = 1;
5924 inst.operands[i++].present = 1;
5925
5926 if (skip_past_comma (&ptr) == FAIL)
5927 goto wanted_comma;
5928
5929 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5930 goto wanted_arm;
5931
5932 inst.operands[i].reg = val;
5933 inst.operands[i].isreg = 1;
5934 inst.operands[i++].present = 1;
5935 }
5936 }
5937 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5938 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5939 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5940 Case 10: VMOV.F32 <Sd>, #<imm>
5941 Case 11: VMOV.F64 <Dd>, #<imm> */
5942 inst.operands[i].immisfloat = 1;
5943 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5944 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5945 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5946 ;
5947 else
5948 {
5949 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5950 return FAIL;
5951 }
5952 }
5953 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5954 {
5955 /* Cases 6, 7. */
5956 inst.operands[i].reg = val;
5957 inst.operands[i].isreg = 1;
5958 inst.operands[i++].present = 1;
5959
5960 if (skip_past_comma (&ptr) == FAIL)
5961 goto wanted_comma;
5962
5963 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5964 {
5965 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5966 inst.operands[i].reg = val;
5967 inst.operands[i].isscalar = 1;
5968 inst.operands[i].present = 1;
5969 inst.operands[i].vectype = optype;
5970 }
5971 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5972 {
5973 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5974 inst.operands[i].reg = val;
5975 inst.operands[i].isreg = 1;
5976 inst.operands[i++].present = 1;
5977
5978 if (skip_past_comma (&ptr) == FAIL)
5979 goto wanted_comma;
5980
5981 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5982 == FAIL)
5983 {
5984 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5985 return FAIL;
5986 }
5987
5988 inst.operands[i].reg = val;
5989 inst.operands[i].isreg = 1;
5990 inst.operands[i].isvec = 1;
5991 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5992 inst.operands[i].vectype = optype;
5993 inst.operands[i].present = 1;
5994
5995 if (rtype == REG_TYPE_VFS)
5996 {
5997 /* Case 14. */
5998 i++;
5999 if (skip_past_comma (&ptr) == FAIL)
6000 goto wanted_comma;
6001 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6002 &optype)) == FAIL)
6003 {
6004 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6005 return FAIL;
6006 }
6007 inst.operands[i].reg = val;
6008 inst.operands[i].isreg = 1;
6009 inst.operands[i].isvec = 1;
6010 inst.operands[i].issingle = 1;
6011 inst.operands[i].vectype = optype;
6012 inst.operands[i].present = 1;
6013 }
6014 }
6015 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6016 != FAIL)
6017 {
6018 /* Case 13. */
6019 inst.operands[i].reg = val;
6020 inst.operands[i].isreg = 1;
6021 inst.operands[i].isvec = 1;
6022 inst.operands[i].issingle = 1;
6023 inst.operands[i].vectype = optype;
6024 inst.operands[i++].present = 1;
6025 }
6026 }
6027 else
6028 {
6029 first_error (_("parse error"));
6030 return FAIL;
6031 }
6032
6033 /* Successfully parsed the operands. Update args. */
6034 *which_operand = i;
6035 *str = ptr;
6036 return SUCCESS;
6037
6038 wanted_comma:
6039 first_error (_("expected comma"));
6040 return FAIL;
6041
6042 wanted_arm:
6043 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6044 return FAIL;
6045 }
6046
6047 /* Use this macro when the operand constraints are different
6048 for ARM and THUMB (e.g. ldrd). */
6049 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6050 ((arm_operand) | ((thumb_operand) << 16))
6051
6052 /* Matcher codes for parse_operands. */
6053 enum operand_parse_code
6054 {
6055 OP_stop, /* end of line */
6056
6057 OP_RR, /* ARM register */
6058 OP_RRnpc, /* ARM register, not r15 */
6059 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6060 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6061 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6062 optional trailing ! */
6063 OP_RRw, /* ARM register, not r15, optional trailing ! */
6064 OP_RCP, /* Coprocessor number */
6065 OP_RCN, /* Coprocessor register */
6066 OP_RF, /* FPA register */
6067 OP_RVS, /* VFP single precision register */
6068 OP_RVD, /* VFP double precision register (0..15) */
6069 OP_RND, /* Neon double precision register (0..31) */
6070 OP_RNQ, /* Neon quad precision register */
6071 OP_RVSD, /* VFP single or double precision register */
6072 OP_RNDQ, /* Neon double or quad precision register */
6073 OP_RNSDQ, /* Neon single, double or quad precision register */
6074 OP_RNSC, /* Neon scalar D[X] */
6075 OP_RVC, /* VFP control register */
6076 OP_RMF, /* Maverick F register */
6077 OP_RMD, /* Maverick D register */
6078 OP_RMFX, /* Maverick FX register */
6079 OP_RMDX, /* Maverick DX register */
6080 OP_RMAX, /* Maverick AX register */
6081 OP_RMDS, /* Maverick DSPSC register */
6082 OP_RIWR, /* iWMMXt wR register */
6083 OP_RIWC, /* iWMMXt wC register */
6084 OP_RIWG, /* iWMMXt wCG register */
6085 OP_RXA, /* XScale accumulator register */
6086
6087 OP_REGLST, /* ARM register list */
6088 OP_VRSLST, /* VFP single-precision register list */
6089 OP_VRDLST, /* VFP double-precision register list */
6090 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6091 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6092 OP_NSTRLST, /* Neon element/structure list */
6093
6094 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6095 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6096 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6097 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6098 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6099 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6100 OP_VMOV, /* Neon VMOV operands. */
6101 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6102 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6103 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6104
6105 OP_I0, /* immediate zero */
6106 OP_I7, /* immediate value 0 .. 7 */
6107 OP_I15, /* 0 .. 15 */
6108 OP_I16, /* 1 .. 16 */
6109 OP_I16z, /* 0 .. 16 */
6110 OP_I31, /* 0 .. 31 */
6111 OP_I31w, /* 0 .. 31, optional trailing ! */
6112 OP_I32, /* 1 .. 32 */
6113 OP_I32z, /* 0 .. 32 */
6114 OP_I63, /* 0 .. 63 */
6115 OP_I63s, /* -64 .. 63 */
6116 OP_I64, /* 1 .. 64 */
6117 OP_I64z, /* 0 .. 64 */
6118 OP_I255, /* 0 .. 255 */
6119
6120 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6121 OP_I7b, /* 0 .. 7 */
6122 OP_I15b, /* 0 .. 15 */
6123 OP_I31b, /* 0 .. 31 */
6124
6125 OP_SH, /* shifter operand */
6126 OP_SHG, /* shifter operand with possible group relocation */
6127 OP_ADDR, /* Memory address expression (any mode) */
6128 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6129 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6130 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6131 OP_EXP, /* arbitrary expression */
6132 OP_EXPi, /* same, with optional immediate prefix */
6133 OP_EXPr, /* same, with optional relocation suffix */
6134 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6135
6136 OP_CPSF, /* CPS flags */
6137 OP_ENDI, /* Endianness specifier */
6138 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6139 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6140 OP_COND, /* conditional code */
6141 OP_TB, /* Table branch. */
6142
6143 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6144
6145 OP_RRnpc_I0, /* ARM register or literal 0 */
6146 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6147 OP_RR_EXi, /* ARM register or expression with imm prefix */
6148 OP_RF_IF, /* FPA register or immediate */
6149 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6150 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6151
6152 /* Optional operands. */
6153 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6154 OP_oI31b, /* 0 .. 31 */
6155 OP_oI32b, /* 1 .. 32 */
6156 OP_oI32z, /* 0 .. 32 */
6157 OP_oIffffb, /* 0 .. 65535 */
6158 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6159
6160 OP_oRR, /* ARM register */
6161 OP_oRRnpc, /* ARM register, not the PC */
6162 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6163 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6164 OP_oRND, /* Optional Neon double precision register */
6165 OP_oRNQ, /* Optional Neon quad precision register */
6166 OP_oRNDQ, /* Optional Neon double or quad precision register */
6167 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6168 OP_oSHll, /* LSL immediate */
6169 OP_oSHar, /* ASR immediate */
6170 OP_oSHllar, /* LSL or ASR immediate */
6171 OP_oROR, /* ROR 0/8/16/24 */
6172 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6173
6174 /* Some pre-defined mixed (ARM/THUMB) operands. */
6175 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6176 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6177 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6178
6179 OP_FIRST_OPTIONAL = OP_oI7b
6180 };
6181
6182 /* Generic instruction operand parser. This does no encoding and no
6183 semantic validation; it merely squirrels values away in the inst
6184 structure. Returns SUCCESS or FAIL depending on whether the
6185 specified grammar matched. */
6186 static int
6187 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6188 {
6189 unsigned const int *upat = pattern;
6190 char *backtrack_pos = 0;
6191 const char *backtrack_error = 0;
6192 int i, val, backtrack_index = 0;
6193 enum arm_reg_type rtype;
6194 parse_operand_result result;
6195 unsigned int op_parse_code;
6196
6197 #define po_char_or_fail(chr) \
6198 do \
6199 { \
6200 if (skip_past_char (&str, chr) == FAIL) \
6201 goto bad_args; \
6202 } \
6203 while (0)
6204
6205 #define po_reg_or_fail(regtype) \
6206 do \
6207 { \
6208 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6209 & inst.operands[i].vectype); \
6210 if (val == FAIL) \
6211 { \
6212 first_error (_(reg_expected_msgs[regtype])); \
6213 goto failure; \
6214 } \
6215 inst.operands[i].reg = val; \
6216 inst.operands[i].isreg = 1; \
6217 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6218 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6219 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6220 || rtype == REG_TYPE_VFD \
6221 || rtype == REG_TYPE_NQ); \
6222 } \
6223 while (0)
6224
6225 #define po_reg_or_goto(regtype, label) \
6226 do \
6227 { \
6228 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6229 & inst.operands[i].vectype); \
6230 if (val == FAIL) \
6231 goto label; \
6232 \
6233 inst.operands[i].reg = val; \
6234 inst.operands[i].isreg = 1; \
6235 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6236 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6237 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6238 || rtype == REG_TYPE_VFD \
6239 || rtype == REG_TYPE_NQ); \
6240 } \
6241 while (0)
6242
6243 #define po_imm_or_fail(min, max, popt) \
6244 do \
6245 { \
6246 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6247 goto failure; \
6248 inst.operands[i].imm = val; \
6249 } \
6250 while (0)
6251
6252 #define po_scalar_or_goto(elsz, label) \
6253 do \
6254 { \
6255 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6256 if (val == FAIL) \
6257 goto label; \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isscalar = 1; \
6260 } \
6261 while (0)
6262
6263 #define po_misc_or_fail(expr) \
6264 do \
6265 { \
6266 if (expr) \
6267 goto failure; \
6268 } \
6269 while (0)
6270
6271 #define po_misc_or_fail_no_backtrack(expr) \
6272 do \
6273 { \
6274 result = expr; \
6275 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6276 backtrack_pos = 0; \
6277 if (result != PARSE_OPERAND_SUCCESS) \
6278 goto failure; \
6279 } \
6280 while (0)
6281
6282 #define po_barrier_or_imm(str) \
6283 do \
6284 { \
6285 val = parse_barrier (&str); \
6286 if (val == FAIL) \
6287 { \
6288 if (ISALPHA (*str)) \
6289 goto failure; \
6290 else \
6291 goto immediate; \
6292 } \
6293 else \
6294 { \
6295 if ((inst.instruction & 0xf0) == 0x60 \
6296 && val != 0xf) \
6297 { \
6298 /* ISB can only take SY as an option. */ \
6299 inst.error = _("invalid barrier type"); \
6300 goto failure; \
6301 } \
6302 } \
6303 } \
6304 while (0)
6305
6306 skip_whitespace (str);
6307
6308 for (i = 0; upat[i] != OP_stop; i++)
6309 {
6310 op_parse_code = upat[i];
6311 if (op_parse_code >= 1<<16)
6312 op_parse_code = thumb ? (op_parse_code >> 16)
6313 : (op_parse_code & ((1<<16)-1));
6314
6315 if (op_parse_code >= OP_FIRST_OPTIONAL)
6316 {
6317 /* Remember where we are in case we need to backtrack. */
6318 gas_assert (!backtrack_pos);
6319 backtrack_pos = str;
6320 backtrack_error = inst.error;
6321 backtrack_index = i;
6322 }
6323
6324 if (i > 0 && (i > 1 || inst.operands[0].present))
6325 po_char_or_fail (',');
6326
6327 switch (op_parse_code)
6328 {
6329 /* Registers */
6330 case OP_oRRnpc:
6331 case OP_oRRnpcsp:
6332 case OP_RRnpc:
6333 case OP_RRnpcsp:
6334 case OP_oRR:
6335 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6336 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6337 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6338 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6339 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6340 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6341 case OP_oRND:
6342 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6343 case OP_RVC:
6344 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6345 break;
6346 /* Also accept generic coprocessor regs for unknown registers. */
6347 coproc_reg:
6348 po_reg_or_fail (REG_TYPE_CN);
6349 break;
6350 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6351 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6352 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6353 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6354 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6355 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6356 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6357 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6358 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6359 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6360 case OP_oRNQ:
6361 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6362 case OP_oRNDQ:
6363 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6364 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6365 case OP_oRNSDQ:
6366 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6367
6368 /* Neon scalar. Using an element size of 8 means that some invalid
6369 scalars are accepted here, so deal with those in later code. */
6370 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6371
6372 case OP_RNDQ_I0:
6373 {
6374 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6375 break;
6376 try_imm0:
6377 po_imm_or_fail (0, 0, TRUE);
6378 }
6379 break;
6380
6381 case OP_RVSD_I0:
6382 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6383 break;
6384
6385 case OP_RR_RNSC:
6386 {
6387 po_scalar_or_goto (8, try_rr);
6388 break;
6389 try_rr:
6390 po_reg_or_fail (REG_TYPE_RN);
6391 }
6392 break;
6393
6394 case OP_RNSDQ_RNSC:
6395 {
6396 po_scalar_or_goto (8, try_nsdq);
6397 break;
6398 try_nsdq:
6399 po_reg_or_fail (REG_TYPE_NSDQ);
6400 }
6401 break;
6402
6403 case OP_RNDQ_RNSC:
6404 {
6405 po_scalar_or_goto (8, try_ndq);
6406 break;
6407 try_ndq:
6408 po_reg_or_fail (REG_TYPE_NDQ);
6409 }
6410 break;
6411
6412 case OP_RND_RNSC:
6413 {
6414 po_scalar_or_goto (8, try_vfd);
6415 break;
6416 try_vfd:
6417 po_reg_or_fail (REG_TYPE_VFD);
6418 }
6419 break;
6420
6421 case OP_VMOV:
6422 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6423 not careful then bad things might happen. */
6424 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6425 break;
6426
6427 case OP_RNDQ_Ibig:
6428 {
6429 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6430 break;
6431 try_immbig:
6432 /* There's a possibility of getting a 64-bit immediate here, so
6433 we need special handling. */
6434 if (parse_big_immediate (&str, i) == FAIL)
6435 {
6436 inst.error = _("immediate value is out of range");
6437 goto failure;
6438 }
6439 }
6440 break;
6441
6442 case OP_RNDQ_I63b:
6443 {
6444 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6445 break;
6446 try_shimm:
6447 po_imm_or_fail (0, 63, TRUE);
6448 }
6449 break;
6450
6451 case OP_RRnpcb:
6452 po_char_or_fail ('[');
6453 po_reg_or_fail (REG_TYPE_RN);
6454 po_char_or_fail (']');
6455 break;
6456
6457 case OP_RRnpctw:
6458 case OP_RRw:
6459 case OP_oRRw:
6460 po_reg_or_fail (REG_TYPE_RN);
6461 if (skip_past_char (&str, '!') == SUCCESS)
6462 inst.operands[i].writeback = 1;
6463 break;
6464
6465 /* Immediates */
6466 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6467 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6468 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6469 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6470 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6471 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6472 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6473 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6474 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6475 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6476 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6477 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6478
6479 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6480 case OP_oI7b:
6481 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6482 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6483 case OP_oI31b:
6484 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6485 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6486 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6487 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6488
6489 /* Immediate variants */
6490 case OP_oI255c:
6491 po_char_or_fail ('{');
6492 po_imm_or_fail (0, 255, TRUE);
6493 po_char_or_fail ('}');
6494 break;
6495
6496 case OP_I31w:
6497 /* The expression parser chokes on a trailing !, so we have
6498 to find it first and zap it. */
6499 {
6500 char *s = str;
6501 while (*s && *s != ',')
6502 s++;
6503 if (s[-1] == '!')
6504 {
6505 s[-1] = '\0';
6506 inst.operands[i].writeback = 1;
6507 }
6508 po_imm_or_fail (0, 31, TRUE);
6509 if (str == s - 1)
6510 str = s;
6511 }
6512 break;
6513
6514 /* Expressions */
6515 case OP_EXPi: EXPi:
6516 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6517 GE_OPT_PREFIX));
6518 break;
6519
6520 case OP_EXP:
6521 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6522 GE_NO_PREFIX));
6523 break;
6524
6525 case OP_EXPr: EXPr:
6526 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6527 GE_NO_PREFIX));
6528 if (inst.reloc.exp.X_op == O_symbol)
6529 {
6530 val = parse_reloc (&str);
6531 if (val == -1)
6532 {
6533 inst.error = _("unrecognized relocation suffix");
6534 goto failure;
6535 }
6536 else if (val != BFD_RELOC_UNUSED)
6537 {
6538 inst.operands[i].imm = val;
6539 inst.operands[i].hasreloc = 1;
6540 }
6541 }
6542 break;
6543
6544 /* Operand for MOVW or MOVT. */
6545 case OP_HALF:
6546 po_misc_or_fail (parse_half (&str));
6547 break;
6548
6549 /* Register or expression. */
6550 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6551 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6552
6553 /* Register or immediate. */
6554 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6555 I0: po_imm_or_fail (0, 0, FALSE); break;
6556
6557 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6558 IF:
6559 if (!is_immediate_prefix (*str))
6560 goto bad_args;
6561 str++;
6562 val = parse_fpa_immediate (&str);
6563 if (val == FAIL)
6564 goto failure;
6565 /* FPA immediates are encoded as registers 8-15.
6566 parse_fpa_immediate has already applied the offset. */
6567 inst.operands[i].reg = val;
6568 inst.operands[i].isreg = 1;
6569 break;
6570
6571 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6572 I32z: po_imm_or_fail (0, 32, FALSE); break;
6573
6574 /* Two kinds of register. */
6575 case OP_RIWR_RIWC:
6576 {
6577 struct reg_entry *rege = arm_reg_parse_multi (&str);
6578 if (!rege
6579 || (rege->type != REG_TYPE_MMXWR
6580 && rege->type != REG_TYPE_MMXWC
6581 && rege->type != REG_TYPE_MMXWCG))
6582 {
6583 inst.error = _("iWMMXt data or control register expected");
6584 goto failure;
6585 }
6586 inst.operands[i].reg = rege->number;
6587 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6588 }
6589 break;
6590
6591 case OP_RIWC_RIWG:
6592 {
6593 struct reg_entry *rege = arm_reg_parse_multi (&str);
6594 if (!rege
6595 || (rege->type != REG_TYPE_MMXWC
6596 && rege->type != REG_TYPE_MMXWCG))
6597 {
6598 inst.error = _("iWMMXt control register expected");
6599 goto failure;
6600 }
6601 inst.operands[i].reg = rege->number;
6602 inst.operands[i].isreg = 1;
6603 }
6604 break;
6605
6606 /* Misc */
6607 case OP_CPSF: val = parse_cps_flags (&str); break;
6608 case OP_ENDI: val = parse_endian_specifier (&str); break;
6609 case OP_oROR: val = parse_ror (&str); break;
6610 case OP_COND: val = parse_cond (&str); break;
6611 case OP_oBARRIER_I15:
6612 po_barrier_or_imm (str); break;
6613 immediate:
6614 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6615 goto failure;
6616 break;
6617
6618 case OP_wPSR:
6619 case OP_rPSR:
6620 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6621 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6622 {
6623 inst.error = _("Banked registers are not available with this "
6624 "architecture.");
6625 goto failure;
6626 }
6627 break;
6628 try_psr:
6629 val = parse_psr (&str, op_parse_code == OP_wPSR);
6630 break;
6631
6632 case OP_APSR_RR:
6633 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6634 break;
6635 try_apsr:
6636 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6637 instruction). */
6638 if (strncasecmp (str, "APSR_", 5) == 0)
6639 {
6640 unsigned found = 0;
6641 str += 5;
6642 while (found < 15)
6643 switch (*str++)
6644 {
6645 case 'c': found = (found & 1) ? 16 : found | 1; break;
6646 case 'n': found = (found & 2) ? 16 : found | 2; break;
6647 case 'z': found = (found & 4) ? 16 : found | 4; break;
6648 case 'v': found = (found & 8) ? 16 : found | 8; break;
6649 default: found = 16;
6650 }
6651 if (found != 15)
6652 goto failure;
6653 inst.operands[i].isvec = 1;
6654 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6655 inst.operands[i].reg = REG_PC;
6656 }
6657 else
6658 goto failure;
6659 break;
6660
6661 case OP_TB:
6662 po_misc_or_fail (parse_tb (&str));
6663 break;
6664
6665 /* Register lists. */
6666 case OP_REGLST:
6667 val = parse_reg_list (&str);
6668 if (*str == '^')
6669 {
6670 inst.operands[1].writeback = 1;
6671 str++;
6672 }
6673 break;
6674
6675 case OP_VRSLST:
6676 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6677 break;
6678
6679 case OP_VRDLST:
6680 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6681 break;
6682
6683 case OP_VRSDLST:
6684 /* Allow Q registers too. */
6685 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6686 REGLIST_NEON_D);
6687 if (val == FAIL)
6688 {
6689 inst.error = NULL;
6690 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6691 REGLIST_VFP_S);
6692 inst.operands[i].issingle = 1;
6693 }
6694 break;
6695
6696 case OP_NRDLST:
6697 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6698 REGLIST_NEON_D);
6699 break;
6700
6701 case OP_NSTRLST:
6702 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6703 &inst.operands[i].vectype);
6704 break;
6705
6706 /* Addressing modes */
6707 case OP_ADDR:
6708 po_misc_or_fail (parse_address (&str, i));
6709 break;
6710
6711 case OP_ADDRGLDR:
6712 po_misc_or_fail_no_backtrack (
6713 parse_address_group_reloc (&str, i, GROUP_LDR));
6714 break;
6715
6716 case OP_ADDRGLDRS:
6717 po_misc_or_fail_no_backtrack (
6718 parse_address_group_reloc (&str, i, GROUP_LDRS));
6719 break;
6720
6721 case OP_ADDRGLDC:
6722 po_misc_or_fail_no_backtrack (
6723 parse_address_group_reloc (&str, i, GROUP_LDC));
6724 break;
6725
6726 case OP_SH:
6727 po_misc_or_fail (parse_shifter_operand (&str, i));
6728 break;
6729
6730 case OP_SHG:
6731 po_misc_or_fail_no_backtrack (
6732 parse_shifter_operand_group_reloc (&str, i));
6733 break;
6734
6735 case OP_oSHll:
6736 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6737 break;
6738
6739 case OP_oSHar:
6740 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6741 break;
6742
6743 case OP_oSHllar:
6744 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6745 break;
6746
6747 default:
6748 as_fatal (_("unhandled operand code %d"), op_parse_code);
6749 }
6750
6751 /* Various value-based sanity checks and shared operations. We
6752 do not signal immediate failures for the register constraints;
6753 this allows a syntax error to take precedence. */
6754 switch (op_parse_code)
6755 {
6756 case OP_oRRnpc:
6757 case OP_RRnpc:
6758 case OP_RRnpcb:
6759 case OP_RRw:
6760 case OP_oRRw:
6761 case OP_RRnpc_I0:
6762 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6763 inst.error = BAD_PC;
6764 break;
6765
6766 case OP_oRRnpcsp:
6767 case OP_RRnpcsp:
6768 if (inst.operands[i].isreg)
6769 {
6770 if (inst.operands[i].reg == REG_PC)
6771 inst.error = BAD_PC;
6772 else if (inst.operands[i].reg == REG_SP)
6773 inst.error = BAD_SP;
6774 }
6775 break;
6776
6777 case OP_RRnpctw:
6778 if (inst.operands[i].isreg
6779 && inst.operands[i].reg == REG_PC
6780 && (inst.operands[i].writeback || thumb))
6781 inst.error = BAD_PC;
6782 break;
6783
6784 case OP_CPSF:
6785 case OP_ENDI:
6786 case OP_oROR:
6787 case OP_wPSR:
6788 case OP_rPSR:
6789 case OP_COND:
6790 case OP_oBARRIER_I15:
6791 case OP_REGLST:
6792 case OP_VRSLST:
6793 case OP_VRDLST:
6794 case OP_VRSDLST:
6795 case OP_NRDLST:
6796 case OP_NSTRLST:
6797 if (val == FAIL)
6798 goto failure;
6799 inst.operands[i].imm = val;
6800 break;
6801
6802 default:
6803 break;
6804 }
6805
6806 /* If we get here, this operand was successfully parsed. */
6807 inst.operands[i].present = 1;
6808 continue;
6809
6810 bad_args:
6811 inst.error = BAD_ARGS;
6812
6813 failure:
6814 if (!backtrack_pos)
6815 {
6816 /* The parse routine should already have set inst.error, but set a
6817 default here just in case. */
6818 if (!inst.error)
6819 inst.error = _("syntax error");
6820 return FAIL;
6821 }
6822
6823 /* Do not backtrack over a trailing optional argument that
6824 absorbed some text. We will only fail again, with the
6825 'garbage following instruction' error message, which is
6826 probably less helpful than the current one. */
6827 if (backtrack_index == i && backtrack_pos != str
6828 && upat[i+1] == OP_stop)
6829 {
6830 if (!inst.error)
6831 inst.error = _("syntax error");
6832 return FAIL;
6833 }
6834
6835 /* Try again, skipping the optional argument at backtrack_pos. */
6836 str = backtrack_pos;
6837 inst.error = backtrack_error;
6838 inst.operands[backtrack_index].present = 0;
6839 i = backtrack_index;
6840 backtrack_pos = 0;
6841 }
6842
6843 /* Check that we have parsed all the arguments. */
6844 if (*str != '\0' && !inst.error)
6845 inst.error = _("garbage following instruction");
6846
6847 return inst.error ? FAIL : SUCCESS;
6848 }
6849
6850 #undef po_char_or_fail
6851 #undef po_reg_or_fail
6852 #undef po_reg_or_goto
6853 #undef po_imm_or_fail
6854 #undef po_scalar_or_fail
6855 #undef po_barrier_or_imm
6856
6857 /* Shorthand macro for instruction encoding functions issuing errors. */
6858 #define constraint(expr, err) \
6859 do \
6860 { \
6861 if (expr) \
6862 { \
6863 inst.error = err; \
6864 return; \
6865 } \
6866 } \
6867 while (0)
6868
6869 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6870 instructions are unpredictable if these registers are used. This
6871 is the BadReg predicate in ARM's Thumb-2 documentation. */
6872 #define reject_bad_reg(reg) \
6873 do \
6874 if (reg == REG_SP || reg == REG_PC) \
6875 { \
6876 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6877 return; \
6878 } \
6879 while (0)
6880
6881 /* If REG is R13 (the stack pointer), warn that its use is
6882 deprecated. */
6883 #define warn_deprecated_sp(reg) \
6884 do \
6885 if (warn_on_deprecated && reg == REG_SP) \
6886 as_warn (_("use of r13 is deprecated")); \
6887 while (0)
6888
6889 /* Functions for operand encoding. ARM, then Thumb. */
6890
6891 #define rotate_left(v, n) (v << n | v >> (32 - n))
6892
6893 /* If VAL can be encoded in the immediate field of an ARM instruction,
6894 return the encoded form. Otherwise, return FAIL. */
6895
6896 static unsigned int
6897 encode_arm_immediate (unsigned int val)
6898 {
6899 unsigned int a, i;
6900
6901 for (i = 0; i < 32; i += 2)
6902 if ((a = rotate_left (val, i)) <= 0xff)
6903 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6904
6905 return FAIL;
6906 }
6907
6908 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6909 return the encoded form. Otherwise, return FAIL. */
6910 static unsigned int
6911 encode_thumb32_immediate (unsigned int val)
6912 {
6913 unsigned int a, i;
6914
6915 if (val <= 0xff)
6916 return val;
6917
6918 for (i = 1; i <= 24; i++)
6919 {
6920 a = val >> i;
6921 if ((val & ~(0xff << i)) == 0)
6922 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6923 }
6924
6925 a = val & 0xff;
6926 if (val == ((a << 16) | a))
6927 return 0x100 | a;
6928 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6929 return 0x300 | a;
6930
6931 a = val & 0xff00;
6932 if (val == ((a << 16) | a))
6933 return 0x200 | (a >> 8);
6934
6935 return FAIL;
6936 }
6937 /* Encode a VFP SP or DP register number into inst.instruction. */
6938
6939 static void
6940 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6941 {
6942 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6943 && reg > 15)
6944 {
6945 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6946 {
6947 if (thumb_mode)
6948 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6949 fpu_vfp_ext_d32);
6950 else
6951 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6952 fpu_vfp_ext_d32);
6953 }
6954 else
6955 {
6956 first_error (_("D register out of range for selected VFP version"));
6957 return;
6958 }
6959 }
6960
6961 switch (pos)
6962 {
6963 case VFP_REG_Sd:
6964 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6965 break;
6966
6967 case VFP_REG_Sn:
6968 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6969 break;
6970
6971 case VFP_REG_Sm:
6972 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6973 break;
6974
6975 case VFP_REG_Dd:
6976 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6977 break;
6978
6979 case VFP_REG_Dn:
6980 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6981 break;
6982
6983 case VFP_REG_Dm:
6984 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6985 break;
6986
6987 default:
6988 abort ();
6989 }
6990 }
6991
6992 /* Encode a <shift> in an ARM-format instruction. The immediate,
6993 if any, is handled by md_apply_fix. */
6994 static void
6995 encode_arm_shift (int i)
6996 {
6997 if (inst.operands[i].shift_kind == SHIFT_RRX)
6998 inst.instruction |= SHIFT_ROR << 5;
6999 else
7000 {
7001 inst.instruction |= inst.operands[i].shift_kind << 5;
7002 if (inst.operands[i].immisreg)
7003 {
7004 inst.instruction |= SHIFT_BY_REG;
7005 inst.instruction |= inst.operands[i].imm << 8;
7006 }
7007 else
7008 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7009 }
7010 }
7011
7012 static void
7013 encode_arm_shifter_operand (int i)
7014 {
7015 if (inst.operands[i].isreg)
7016 {
7017 inst.instruction |= inst.operands[i].reg;
7018 encode_arm_shift (i);
7019 }
7020 else
7021 {
7022 inst.instruction |= INST_IMMEDIATE;
7023 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7024 inst.instruction |= inst.operands[i].imm;
7025 }
7026 }
7027
7028 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7029 static void
7030 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7031 {
7032 gas_assert (inst.operands[i].isreg);
7033 inst.instruction |= inst.operands[i].reg << 16;
7034
7035 if (inst.operands[i].preind)
7036 {
7037 if (is_t)
7038 {
7039 inst.error = _("instruction does not accept preindexed addressing");
7040 return;
7041 }
7042 inst.instruction |= PRE_INDEX;
7043 if (inst.operands[i].writeback)
7044 inst.instruction |= WRITE_BACK;
7045
7046 }
7047 else if (inst.operands[i].postind)
7048 {
7049 gas_assert (inst.operands[i].writeback);
7050 if (is_t)
7051 inst.instruction |= WRITE_BACK;
7052 }
7053 else /* unindexed - only for coprocessor */
7054 {
7055 inst.error = _("instruction does not accept unindexed addressing");
7056 return;
7057 }
7058
7059 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7060 && (((inst.instruction & 0x000f0000) >> 16)
7061 == ((inst.instruction & 0x0000f000) >> 12)))
7062 as_warn ((inst.instruction & LOAD_BIT)
7063 ? _("destination register same as write-back base")
7064 : _("source register same as write-back base"));
7065 }
7066
7067 /* inst.operands[i] was set up by parse_address. Encode it into an
7068 ARM-format mode 2 load or store instruction. If is_t is true,
7069 reject forms that cannot be used with a T instruction (i.e. not
7070 post-indexed). */
7071 static void
7072 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7073 {
7074 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7075
7076 encode_arm_addr_mode_common (i, is_t);
7077
7078 if (inst.operands[i].immisreg)
7079 {
7080 constraint ((inst.operands[i].imm == REG_PC
7081 || (is_pc && inst.operands[i].writeback)),
7082 BAD_PC_ADDRESSING);
7083 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7084 inst.instruction |= inst.operands[i].imm;
7085 if (!inst.operands[i].negative)
7086 inst.instruction |= INDEX_UP;
7087 if (inst.operands[i].shifted)
7088 {
7089 if (inst.operands[i].shift_kind == SHIFT_RRX)
7090 inst.instruction |= SHIFT_ROR << 5;
7091 else
7092 {
7093 inst.instruction |= inst.operands[i].shift_kind << 5;
7094 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7095 }
7096 }
7097 }
7098 else /* immediate offset in inst.reloc */
7099 {
7100 if (is_pc && !inst.reloc.pc_rel)
7101 {
7102 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7103
7104 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7105 cannot use PC in addressing.
7106 PC cannot be used in writeback addressing, either. */
7107 constraint ((is_t || inst.operands[i].writeback),
7108 BAD_PC_ADDRESSING);
7109
7110 /* Use of PC in str is deprecated for ARMv7. */
7111 if (warn_on_deprecated
7112 && !is_load
7113 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7114 as_warn (_("use of PC in this instruction is deprecated"));
7115 }
7116
7117 if (inst.reloc.type == BFD_RELOC_UNUSED)
7118 {
7119 /* Prefer + for zero encoded value. */
7120 if (!inst.operands[i].negative)
7121 inst.instruction |= INDEX_UP;
7122 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7123 }
7124 }
7125 }
7126
7127 /* inst.operands[i] was set up by parse_address. Encode it into an
7128 ARM-format mode 3 load or store instruction. Reject forms that
7129 cannot be used with such instructions. If is_t is true, reject
7130 forms that cannot be used with a T instruction (i.e. not
7131 post-indexed). */
7132 static void
7133 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7134 {
7135 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7136 {
7137 inst.error = _("instruction does not accept scaled register index");
7138 return;
7139 }
7140
7141 encode_arm_addr_mode_common (i, is_t);
7142
7143 if (inst.operands[i].immisreg)
7144 {
7145 constraint ((inst.operands[i].imm == REG_PC
7146 || inst.operands[i].reg == REG_PC),
7147 BAD_PC_ADDRESSING);
7148 inst.instruction |= inst.operands[i].imm;
7149 if (!inst.operands[i].negative)
7150 inst.instruction |= INDEX_UP;
7151 }
7152 else /* immediate offset in inst.reloc */
7153 {
7154 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7155 && inst.operands[i].writeback),
7156 BAD_PC_WRITEBACK);
7157 inst.instruction |= HWOFFSET_IMM;
7158 if (inst.reloc.type == BFD_RELOC_UNUSED)
7159 {
7160 /* Prefer + for zero encoded value. */
7161 if (!inst.operands[i].negative)
7162 inst.instruction |= INDEX_UP;
7163
7164 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7165 }
7166 }
7167 }
7168
7169 /* inst.operands[i] was set up by parse_address. Encode it into an
7170 ARM-format instruction. Reject all forms which cannot be encoded
7171 into a coprocessor load/store instruction. If wb_ok is false,
7172 reject use of writeback; if unind_ok is false, reject use of
7173 unindexed addressing. If reloc_override is not 0, use it instead
7174 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7175 (in which case it is preserved). */
7176
7177 static int
7178 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7179 {
7180 inst.instruction |= inst.operands[i].reg << 16;
7181
7182 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7183
7184 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7185 {
7186 gas_assert (!inst.operands[i].writeback);
7187 if (!unind_ok)
7188 {
7189 inst.error = _("instruction does not support unindexed addressing");
7190 return FAIL;
7191 }
7192 inst.instruction |= inst.operands[i].imm;
7193 inst.instruction |= INDEX_UP;
7194 return SUCCESS;
7195 }
7196
7197 if (inst.operands[i].preind)
7198 inst.instruction |= PRE_INDEX;
7199
7200 if (inst.operands[i].writeback)
7201 {
7202 if (inst.operands[i].reg == REG_PC)
7203 {
7204 inst.error = _("pc may not be used with write-back");
7205 return FAIL;
7206 }
7207 if (!wb_ok)
7208 {
7209 inst.error = _("instruction does not support writeback");
7210 return FAIL;
7211 }
7212 inst.instruction |= WRITE_BACK;
7213 }
7214
7215 if (reloc_override)
7216 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7217 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7218 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7219 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7220 {
7221 if (thumb_mode)
7222 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7223 else
7224 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7225 }
7226
7227 /* Prefer + for zero encoded value. */
7228 if (!inst.operands[i].negative)
7229 inst.instruction |= INDEX_UP;
7230
7231 return SUCCESS;
7232 }
7233
7234 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7235 Determine whether it can be performed with a move instruction; if
7236 it can, convert inst.instruction to that move instruction and
7237 return TRUE; if it can't, convert inst.instruction to a literal-pool
7238 load and return FALSE. If this is not a valid thing to do in the
7239 current context, set inst.error and return TRUE.
7240
7241 inst.operands[i] describes the destination register. */
7242
7243 static bfd_boolean
7244 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7245 {
7246 unsigned long tbit;
7247
7248 if (thumb_p)
7249 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7250 else
7251 tbit = LOAD_BIT;
7252
7253 if ((inst.instruction & tbit) == 0)
7254 {
7255 inst.error = _("invalid pseudo operation");
7256 return TRUE;
7257 }
7258 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7259 {
7260 inst.error = _("constant expression expected");
7261 return TRUE;
7262 }
7263 if (inst.reloc.exp.X_op == O_constant)
7264 {
7265 if (thumb_p)
7266 {
7267 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7268 {
7269 /* This can be done with a mov(1) instruction. */
7270 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7271 inst.instruction |= inst.reloc.exp.X_add_number;
7272 return TRUE;
7273 }
7274 }
7275 else
7276 {
7277 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7278 if (value != FAIL)
7279 {
7280 /* This can be done with a mov instruction. */
7281 inst.instruction &= LITERAL_MASK;
7282 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7283 inst.instruction |= value & 0xfff;
7284 return TRUE;
7285 }
7286
7287 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7288 if (value != FAIL)
7289 {
7290 /* This can be done with a mvn instruction. */
7291 inst.instruction &= LITERAL_MASK;
7292 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7293 inst.instruction |= value & 0xfff;
7294 return TRUE;
7295 }
7296 }
7297 }
7298
7299 if (add_to_lit_pool () == FAIL)
7300 {
7301 inst.error = _("literal pool insertion failed");
7302 return TRUE;
7303 }
7304 inst.operands[1].reg = REG_PC;
7305 inst.operands[1].isreg = 1;
7306 inst.operands[1].preind = 1;
7307 inst.reloc.pc_rel = 1;
7308 inst.reloc.type = (thumb_p
7309 ? BFD_RELOC_ARM_THUMB_OFFSET
7310 : (mode_3
7311 ? BFD_RELOC_ARM_HWLITERAL
7312 : BFD_RELOC_ARM_LITERAL));
7313 return FALSE;
7314 }
7315
7316 /* Functions for instruction encoding, sorted by sub-architecture.
7317 First some generics; their names are taken from the conventional
7318 bit positions for register arguments in ARM format instructions. */
7319
7320 static void
7321 do_noargs (void)
7322 {
7323 }
7324
7325 static void
7326 do_rd (void)
7327 {
7328 inst.instruction |= inst.operands[0].reg << 12;
7329 }
7330
7331 static void
7332 do_rd_rm (void)
7333 {
7334 inst.instruction |= inst.operands[0].reg << 12;
7335 inst.instruction |= inst.operands[1].reg;
7336 }
7337
7338 static void
7339 do_rd_rn (void)
7340 {
7341 inst.instruction |= inst.operands[0].reg << 12;
7342 inst.instruction |= inst.operands[1].reg << 16;
7343 }
7344
7345 static void
7346 do_rn_rd (void)
7347 {
7348 inst.instruction |= inst.operands[0].reg << 16;
7349 inst.instruction |= inst.operands[1].reg << 12;
7350 }
7351
7352 static void
7353 do_rd_rm_rn (void)
7354 {
7355 unsigned Rn = inst.operands[2].reg;
7356 /* Enforce restrictions on SWP instruction. */
7357 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7358 {
7359 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7360 _("Rn must not overlap other operands"));
7361
7362 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7363 if (warn_on_deprecated
7364 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7365 as_warn (_("swp{b} use is deprecated for this architecture"));
7366
7367 }
7368 inst.instruction |= inst.operands[0].reg << 12;
7369 inst.instruction |= inst.operands[1].reg;
7370 inst.instruction |= Rn << 16;
7371 }
7372
7373 static void
7374 do_rd_rn_rm (void)
7375 {
7376 inst.instruction |= inst.operands[0].reg << 12;
7377 inst.instruction |= inst.operands[1].reg << 16;
7378 inst.instruction |= inst.operands[2].reg;
7379 }
7380
7381 static void
7382 do_rm_rd_rn (void)
7383 {
7384 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7385 constraint (((inst.reloc.exp.X_op != O_constant
7386 && inst.reloc.exp.X_op != O_illegal)
7387 || inst.reloc.exp.X_add_number != 0),
7388 BAD_ADDR_MODE);
7389 inst.instruction |= inst.operands[0].reg;
7390 inst.instruction |= inst.operands[1].reg << 12;
7391 inst.instruction |= inst.operands[2].reg << 16;
7392 }
7393
7394 static void
7395 do_imm0 (void)
7396 {
7397 inst.instruction |= inst.operands[0].imm;
7398 }
7399
7400 static void
7401 do_rd_cpaddr (void)
7402 {
7403 inst.instruction |= inst.operands[0].reg << 12;
7404 encode_arm_cp_address (1, TRUE, TRUE, 0);
7405 }
7406
7407 /* ARM instructions, in alphabetical order by function name (except
7408 that wrapper functions appear immediately after the function they
7409 wrap). */
7410
7411 /* This is a pseudo-op of the form "adr rd, label" to be converted
7412 into a relative address of the form "add rd, pc, #label-.-8". */
7413
7414 static void
7415 do_adr (void)
7416 {
7417 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7418
7419 /* Frag hacking will turn this into a sub instruction if the offset turns
7420 out to be negative. */
7421 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7422 inst.reloc.pc_rel = 1;
7423 inst.reloc.exp.X_add_number -= 8;
7424 }
7425
7426 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7427 into a relative address of the form:
7428 add rd, pc, #low(label-.-8)"
7429 add rd, rd, #high(label-.-8)" */
7430
7431 static void
7432 do_adrl (void)
7433 {
7434 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7435
7436 /* Frag hacking will turn this into a sub instruction if the offset turns
7437 out to be negative. */
7438 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7439 inst.reloc.pc_rel = 1;
7440 inst.size = INSN_SIZE * 2;
7441 inst.reloc.exp.X_add_number -= 8;
7442 }
7443
7444 static void
7445 do_arit (void)
7446 {
7447 if (!inst.operands[1].present)
7448 inst.operands[1].reg = inst.operands[0].reg;
7449 inst.instruction |= inst.operands[0].reg << 12;
7450 inst.instruction |= inst.operands[1].reg << 16;
7451 encode_arm_shifter_operand (2);
7452 }
7453
7454 static void
7455 do_barrier (void)
7456 {
7457 if (inst.operands[0].present)
7458 {
7459 constraint ((inst.instruction & 0xf0) != 0x40
7460 && inst.operands[0].imm > 0xf
7461 && inst.operands[0].imm < 0x0,
7462 _("bad barrier type"));
7463 inst.instruction |= inst.operands[0].imm;
7464 }
7465 else
7466 inst.instruction |= 0xf;
7467 }
7468
7469 static void
7470 do_bfc (void)
7471 {
7472 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7473 constraint (msb > 32, _("bit-field extends past end of register"));
7474 /* The instruction encoding stores the LSB and MSB,
7475 not the LSB and width. */
7476 inst.instruction |= inst.operands[0].reg << 12;
7477 inst.instruction |= inst.operands[1].imm << 7;
7478 inst.instruction |= (msb - 1) << 16;
7479 }
7480
7481 static void
7482 do_bfi (void)
7483 {
7484 unsigned int msb;
7485
7486 /* #0 in second position is alternative syntax for bfc, which is
7487 the same instruction but with REG_PC in the Rm field. */
7488 if (!inst.operands[1].isreg)
7489 inst.operands[1].reg = REG_PC;
7490
7491 msb = inst.operands[2].imm + inst.operands[3].imm;
7492 constraint (msb > 32, _("bit-field extends past end of register"));
7493 /* The instruction encoding stores the LSB and MSB,
7494 not the LSB and width. */
7495 inst.instruction |= inst.operands[0].reg << 12;
7496 inst.instruction |= inst.operands[1].reg;
7497 inst.instruction |= inst.operands[2].imm << 7;
7498 inst.instruction |= (msb - 1) << 16;
7499 }
7500
7501 static void
7502 do_bfx (void)
7503 {
7504 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7505 _("bit-field extends past end of register"));
7506 inst.instruction |= inst.operands[0].reg << 12;
7507 inst.instruction |= inst.operands[1].reg;
7508 inst.instruction |= inst.operands[2].imm << 7;
7509 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7510 }
7511
7512 /* ARM V5 breakpoint instruction (argument parse)
7513 BKPT <16 bit unsigned immediate>
7514 Instruction is not conditional.
7515 The bit pattern given in insns[] has the COND_ALWAYS condition,
7516 and it is an error if the caller tried to override that. */
7517
7518 static void
7519 do_bkpt (void)
7520 {
7521 /* Top 12 of 16 bits to bits 19:8. */
7522 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7523
7524 /* Bottom 4 of 16 bits to bits 3:0. */
7525 inst.instruction |= inst.operands[0].imm & 0xf;
7526 }
7527
7528 static void
7529 encode_branch (int default_reloc)
7530 {
7531 if (inst.operands[0].hasreloc)
7532 {
7533 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7534 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7535 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7536 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7537 ? BFD_RELOC_ARM_PLT32
7538 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7539 }
7540 else
7541 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7542 inst.reloc.pc_rel = 1;
7543 }
7544
7545 static void
7546 do_branch (void)
7547 {
7548 #ifdef OBJ_ELF
7549 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7550 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7551 else
7552 #endif
7553 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7554 }
7555
7556 static void
7557 do_bl (void)
7558 {
7559 #ifdef OBJ_ELF
7560 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7561 {
7562 if (inst.cond == COND_ALWAYS)
7563 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7564 else
7565 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7566 }
7567 else
7568 #endif
7569 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7570 }
7571
7572 /* ARM V5 branch-link-exchange instruction (argument parse)
7573 BLX <target_addr> ie BLX(1)
7574 BLX{<condition>} <Rm> ie BLX(2)
7575 Unfortunately, there are two different opcodes for this mnemonic.
7576 So, the insns[].value is not used, and the code here zaps values
7577 into inst.instruction.
7578 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7579
7580 static void
7581 do_blx (void)
7582 {
7583 if (inst.operands[0].isreg)
7584 {
7585 /* Arg is a register; the opcode provided by insns[] is correct.
7586 It is not illegal to do "blx pc", just useless. */
7587 if (inst.operands[0].reg == REG_PC)
7588 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7589
7590 inst.instruction |= inst.operands[0].reg;
7591 }
7592 else
7593 {
7594 /* Arg is an address; this instruction cannot be executed
7595 conditionally, and the opcode must be adjusted.
7596 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7597 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7598 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7599 inst.instruction = 0xfa000000;
7600 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7601 }
7602 }
7603
7604 static void
7605 do_bx (void)
7606 {
7607 bfd_boolean want_reloc;
7608
7609 if (inst.operands[0].reg == REG_PC)
7610 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7611
7612 inst.instruction |= inst.operands[0].reg;
7613 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7614 it is for ARMv4t or earlier. */
7615 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7616 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7617 want_reloc = TRUE;
7618
7619 #ifdef OBJ_ELF
7620 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7621 #endif
7622 want_reloc = FALSE;
7623
7624 if (want_reloc)
7625 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7626 }
7627
7628
7629 /* ARM v5TEJ. Jump to Jazelle code. */
7630
7631 static void
7632 do_bxj (void)
7633 {
7634 if (inst.operands[0].reg == REG_PC)
7635 as_tsktsk (_("use of r15 in bxj is not really useful"));
7636
7637 inst.instruction |= inst.operands[0].reg;
7638 }
7639
7640 /* Co-processor data operation:
7641 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7642 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7643 static void
7644 do_cdp (void)
7645 {
7646 inst.instruction |= inst.operands[0].reg << 8;
7647 inst.instruction |= inst.operands[1].imm << 20;
7648 inst.instruction |= inst.operands[2].reg << 12;
7649 inst.instruction |= inst.operands[3].reg << 16;
7650 inst.instruction |= inst.operands[4].reg;
7651 inst.instruction |= inst.operands[5].imm << 5;
7652 }
7653
7654 static void
7655 do_cmp (void)
7656 {
7657 inst.instruction |= inst.operands[0].reg << 16;
7658 encode_arm_shifter_operand (1);
7659 }
7660
7661 /* Transfer between coprocessor and ARM registers.
7662 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7663 MRC2
7664 MCR{cond}
7665 MCR2
7666
7667 No special properties. */
7668
7669 static void
7670 do_co_reg (void)
7671 {
7672 unsigned Rd;
7673
7674 Rd = inst.operands[2].reg;
7675 if (thumb_mode)
7676 {
7677 if (inst.instruction == 0xee000010
7678 || inst.instruction == 0xfe000010)
7679 /* MCR, MCR2 */
7680 reject_bad_reg (Rd);
7681 else
7682 /* MRC, MRC2 */
7683 constraint (Rd == REG_SP, BAD_SP);
7684 }
7685 else
7686 {
7687 /* MCR */
7688 if (inst.instruction == 0xe000010)
7689 constraint (Rd == REG_PC, BAD_PC);
7690 }
7691
7692
7693 inst.instruction |= inst.operands[0].reg << 8;
7694 inst.instruction |= inst.operands[1].imm << 21;
7695 inst.instruction |= Rd << 12;
7696 inst.instruction |= inst.operands[3].reg << 16;
7697 inst.instruction |= inst.operands[4].reg;
7698 inst.instruction |= inst.operands[5].imm << 5;
7699 }
7700
7701 /* Transfer between coprocessor register and pair of ARM registers.
7702 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7703 MCRR2
7704 MRRC{cond}
7705 MRRC2
7706
7707 Two XScale instructions are special cases of these:
7708
7709 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7710 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7711
7712 Result unpredictable if Rd or Rn is R15. */
7713
7714 static void
7715 do_co_reg2c (void)
7716 {
7717 unsigned Rd, Rn;
7718
7719 Rd = inst.operands[2].reg;
7720 Rn = inst.operands[3].reg;
7721
7722 if (thumb_mode)
7723 {
7724 reject_bad_reg (Rd);
7725 reject_bad_reg (Rn);
7726 }
7727 else
7728 {
7729 constraint (Rd == REG_PC, BAD_PC);
7730 constraint (Rn == REG_PC, BAD_PC);
7731 }
7732
7733 inst.instruction |= inst.operands[0].reg << 8;
7734 inst.instruction |= inst.operands[1].imm << 4;
7735 inst.instruction |= Rd << 12;
7736 inst.instruction |= Rn << 16;
7737 inst.instruction |= inst.operands[4].reg;
7738 }
7739
7740 static void
7741 do_cpsi (void)
7742 {
7743 inst.instruction |= inst.operands[0].imm << 6;
7744 if (inst.operands[1].present)
7745 {
7746 inst.instruction |= CPSI_MMOD;
7747 inst.instruction |= inst.operands[1].imm;
7748 }
7749 }
7750
7751 static void
7752 do_dbg (void)
7753 {
7754 inst.instruction |= inst.operands[0].imm;
7755 }
7756
7757 static void
7758 do_div (void)
7759 {
7760 unsigned Rd, Rn, Rm;
7761
7762 Rd = inst.operands[0].reg;
7763 Rn = (inst.operands[1].present
7764 ? inst.operands[1].reg : Rd);
7765 Rm = inst.operands[2].reg;
7766
7767 constraint ((Rd == REG_PC), BAD_PC);
7768 constraint ((Rn == REG_PC), BAD_PC);
7769 constraint ((Rm == REG_PC), BAD_PC);
7770
7771 inst.instruction |= Rd << 16;
7772 inst.instruction |= Rn << 0;
7773 inst.instruction |= Rm << 8;
7774 }
7775
7776 static void
7777 do_it (void)
7778 {
7779 /* There is no IT instruction in ARM mode. We
7780 process it to do the validation as if in
7781 thumb mode, just in case the code gets
7782 assembled for thumb using the unified syntax. */
7783
7784 inst.size = 0;
7785 if (unified_syntax)
7786 {
7787 set_it_insn_type (IT_INSN);
7788 now_it.mask = (inst.instruction & 0xf) | 0x10;
7789 now_it.cc = inst.operands[0].imm;
7790 }
7791 }
7792
7793 static void
7794 do_ldmstm (void)
7795 {
7796 int base_reg = inst.operands[0].reg;
7797 int range = inst.operands[1].imm;
7798
7799 inst.instruction |= base_reg << 16;
7800 inst.instruction |= range;
7801
7802 if (inst.operands[1].writeback)
7803 inst.instruction |= LDM_TYPE_2_OR_3;
7804
7805 if (inst.operands[0].writeback)
7806 {
7807 inst.instruction |= WRITE_BACK;
7808 /* Check for unpredictable uses of writeback. */
7809 if (inst.instruction & LOAD_BIT)
7810 {
7811 /* Not allowed in LDM type 2. */
7812 if ((inst.instruction & LDM_TYPE_2_OR_3)
7813 && ((range & (1 << REG_PC)) == 0))
7814 as_warn (_("writeback of base register is UNPREDICTABLE"));
7815 /* Only allowed if base reg not in list for other types. */
7816 else if (range & (1 << base_reg))
7817 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7818 }
7819 else /* STM. */
7820 {
7821 /* Not allowed for type 2. */
7822 if (inst.instruction & LDM_TYPE_2_OR_3)
7823 as_warn (_("writeback of base register is UNPREDICTABLE"));
7824 /* Only allowed if base reg not in list, or first in list. */
7825 else if ((range & (1 << base_reg))
7826 && (range & ((1 << base_reg) - 1)))
7827 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7828 }
7829 }
7830 }
7831
7832 /* ARMv5TE load-consecutive (argument parse)
7833 Mode is like LDRH.
7834
7835 LDRccD R, mode
7836 STRccD R, mode. */
7837
7838 static void
7839 do_ldrd (void)
7840 {
7841 constraint (inst.operands[0].reg % 2 != 0,
7842 _("first transfer register must be even"));
7843 constraint (inst.operands[1].present
7844 && inst.operands[1].reg != inst.operands[0].reg + 1,
7845 _("can only transfer two consecutive registers"));
7846 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7847 constraint (!inst.operands[2].isreg, _("'[' expected"));
7848
7849 if (!inst.operands[1].present)
7850 inst.operands[1].reg = inst.operands[0].reg + 1;
7851
7852 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7853 register and the first register written; we have to diagnose
7854 overlap between the base and the second register written here. */
7855
7856 if (inst.operands[2].reg == inst.operands[1].reg
7857 && (inst.operands[2].writeback || inst.operands[2].postind))
7858 as_warn (_("base register written back, and overlaps "
7859 "second transfer register"));
7860
7861 if (!(inst.instruction & V4_STR_BIT))
7862 {
7863 /* For an index-register load, the index register must not overlap the
7864 destination (even if not write-back). */
7865 if (inst.operands[2].immisreg
7866 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7867 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7868 as_warn (_("index register overlaps transfer register"));
7869 }
7870 inst.instruction |= inst.operands[0].reg << 12;
7871 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7872 }
7873
7874 static void
7875 do_ldrex (void)
7876 {
7877 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7878 || inst.operands[1].postind || inst.operands[1].writeback
7879 || inst.operands[1].immisreg || inst.operands[1].shifted
7880 || inst.operands[1].negative
7881 /* This can arise if the programmer has written
7882 strex rN, rM, foo
7883 or if they have mistakenly used a register name as the last
7884 operand, eg:
7885 strex rN, rM, rX
7886 It is very difficult to distinguish between these two cases
7887 because "rX" might actually be a label. ie the register
7888 name has been occluded by a symbol of the same name. So we
7889 just generate a general 'bad addressing mode' type error
7890 message and leave it up to the programmer to discover the
7891 true cause and fix their mistake. */
7892 || (inst.operands[1].reg == REG_PC),
7893 BAD_ADDR_MODE);
7894
7895 constraint (inst.reloc.exp.X_op != O_constant
7896 || inst.reloc.exp.X_add_number != 0,
7897 _("offset must be zero in ARM encoding"));
7898
7899 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7900
7901 inst.instruction |= inst.operands[0].reg << 12;
7902 inst.instruction |= inst.operands[1].reg << 16;
7903 inst.reloc.type = BFD_RELOC_UNUSED;
7904 }
7905
7906 static void
7907 do_ldrexd (void)
7908 {
7909 constraint (inst.operands[0].reg % 2 != 0,
7910 _("even register required"));
7911 constraint (inst.operands[1].present
7912 && inst.operands[1].reg != inst.operands[0].reg + 1,
7913 _("can only load two consecutive registers"));
7914 /* If op 1 were present and equal to PC, this function wouldn't
7915 have been called in the first place. */
7916 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7917
7918 inst.instruction |= inst.operands[0].reg << 12;
7919 inst.instruction |= inst.operands[2].reg << 16;
7920 }
7921
7922 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
7923 which is not a multiple of four is UNPREDICTABLE. */
7924 static void
7925 check_ldr_r15_aligned (void)
7926 {
7927 constraint (!(inst.operands[1].immisreg)
7928 && (inst.operands[0].reg == REG_PC
7929 && inst.operands[1].reg == REG_PC
7930 && (inst.reloc.exp.X_add_number & 0x3)),
7931 _("ldr to register 15 must be 4-byte alligned"));
7932 }
7933
7934 static void
7935 do_ldst (void)
7936 {
7937 inst.instruction |= inst.operands[0].reg << 12;
7938 if (!inst.operands[1].isreg)
7939 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7940 return;
7941 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7942 check_ldr_r15_aligned ();
7943 }
7944
7945 static void
7946 do_ldstt (void)
7947 {
7948 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7949 reject [Rn,...]. */
7950 if (inst.operands[1].preind)
7951 {
7952 constraint (inst.reloc.exp.X_op != O_constant
7953 || inst.reloc.exp.X_add_number != 0,
7954 _("this instruction requires a post-indexed address"));
7955
7956 inst.operands[1].preind = 0;
7957 inst.operands[1].postind = 1;
7958 inst.operands[1].writeback = 1;
7959 }
7960 inst.instruction |= inst.operands[0].reg << 12;
7961 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7962 }
7963
7964 /* Halfword and signed-byte load/store operations. */
7965
7966 static void
7967 do_ldstv4 (void)
7968 {
7969 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7970 inst.instruction |= inst.operands[0].reg << 12;
7971 if (!inst.operands[1].isreg)
7972 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7973 return;
7974 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7975 }
7976
7977 static void
7978 do_ldsttv4 (void)
7979 {
7980 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7981 reject [Rn,...]. */
7982 if (inst.operands[1].preind)
7983 {
7984 constraint (inst.reloc.exp.X_op != O_constant
7985 || inst.reloc.exp.X_add_number != 0,
7986 _("this instruction requires a post-indexed address"));
7987
7988 inst.operands[1].preind = 0;
7989 inst.operands[1].postind = 1;
7990 inst.operands[1].writeback = 1;
7991 }
7992 inst.instruction |= inst.operands[0].reg << 12;
7993 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7994 }
7995
7996 /* Co-processor register load/store.
7997 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7998 static void
7999 do_lstc (void)
8000 {
8001 inst.instruction |= inst.operands[0].reg << 8;
8002 inst.instruction |= inst.operands[1].reg << 12;
8003 encode_arm_cp_address (2, TRUE, TRUE, 0);
8004 }
8005
8006 static void
8007 do_mlas (void)
8008 {
8009 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8010 if (inst.operands[0].reg == inst.operands[1].reg
8011 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8012 && !(inst.instruction & 0x00400000))
8013 as_tsktsk (_("Rd and Rm should be different in mla"));
8014
8015 inst.instruction |= inst.operands[0].reg << 16;
8016 inst.instruction |= inst.operands[1].reg;
8017 inst.instruction |= inst.operands[2].reg << 8;
8018 inst.instruction |= inst.operands[3].reg << 12;
8019 }
8020
8021 static void
8022 do_mov (void)
8023 {
8024 inst.instruction |= inst.operands[0].reg << 12;
8025 encode_arm_shifter_operand (1);
8026 }
8027
8028 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8029 static void
8030 do_mov16 (void)
8031 {
8032 bfd_vma imm;
8033 bfd_boolean top;
8034
8035 top = (inst.instruction & 0x00400000) != 0;
8036 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8037 _(":lower16: not allowed this instruction"));
8038 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8039 _(":upper16: not allowed instruction"));
8040 inst.instruction |= inst.operands[0].reg << 12;
8041 if (inst.reloc.type == BFD_RELOC_UNUSED)
8042 {
8043 imm = inst.reloc.exp.X_add_number;
8044 /* The value is in two pieces: 0:11, 16:19. */
8045 inst.instruction |= (imm & 0x00000fff);
8046 inst.instruction |= (imm & 0x0000f000) << 4;
8047 }
8048 }
8049
8050 static void do_vfp_nsyn_opcode (const char *);
8051
8052 static int
8053 do_vfp_nsyn_mrs (void)
8054 {
8055 if (inst.operands[0].isvec)
8056 {
8057 if (inst.operands[1].reg != 1)
8058 first_error (_("operand 1 must be FPSCR"));
8059 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8060 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8061 do_vfp_nsyn_opcode ("fmstat");
8062 }
8063 else if (inst.operands[1].isvec)
8064 do_vfp_nsyn_opcode ("fmrx");
8065 else
8066 return FAIL;
8067
8068 return SUCCESS;
8069 }
8070
8071 static int
8072 do_vfp_nsyn_msr (void)
8073 {
8074 if (inst.operands[0].isvec)
8075 do_vfp_nsyn_opcode ("fmxr");
8076 else
8077 return FAIL;
8078
8079 return SUCCESS;
8080 }
8081
8082 static void
8083 do_vmrs (void)
8084 {
8085 unsigned Rt = inst.operands[0].reg;
8086
8087 if (thumb_mode && inst.operands[0].reg == REG_SP)
8088 {
8089 inst.error = BAD_SP;
8090 return;
8091 }
8092
8093 /* APSR_ sets isvec. All other refs to PC are illegal. */
8094 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8095 {
8096 inst.error = BAD_PC;
8097 return;
8098 }
8099
8100 if (inst.operands[1].reg != 1)
8101 first_error (_("operand 1 must be FPSCR"));
8102
8103 inst.instruction |= (Rt << 12);
8104 }
8105
8106 static void
8107 do_vmsr (void)
8108 {
8109 unsigned Rt = inst.operands[1].reg;
8110
8111 if (thumb_mode)
8112 reject_bad_reg (Rt);
8113 else if (Rt == REG_PC)
8114 {
8115 inst.error = BAD_PC;
8116 return;
8117 }
8118
8119 if (inst.operands[0].reg != 1)
8120 first_error (_("operand 0 must be FPSCR"));
8121
8122 inst.instruction |= (Rt << 12);
8123 }
8124
8125 static void
8126 do_mrs (void)
8127 {
8128 unsigned br;
8129
8130 if (do_vfp_nsyn_mrs () == SUCCESS)
8131 return;
8132
8133 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8134 inst.instruction |= inst.operands[0].reg << 12;
8135
8136 if (inst.operands[1].isreg)
8137 {
8138 br = inst.operands[1].reg;
8139 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8140 as_bad (_("bad register for mrs"));
8141 }
8142 else
8143 {
8144 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8145 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8146 != (PSR_c|PSR_f),
8147 _("'APSR', 'CPSR' or 'SPSR' expected"));
8148 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8149 }
8150
8151 inst.instruction |= br;
8152 }
8153
8154 /* Two possible forms:
8155 "{C|S}PSR_<field>, Rm",
8156 "{C|S}PSR_f, #expression". */
8157
8158 static void
8159 do_msr (void)
8160 {
8161 if (do_vfp_nsyn_msr () == SUCCESS)
8162 return;
8163
8164 inst.instruction |= inst.operands[0].imm;
8165 if (inst.operands[1].isreg)
8166 inst.instruction |= inst.operands[1].reg;
8167 else
8168 {
8169 inst.instruction |= INST_IMMEDIATE;
8170 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8171 inst.reloc.pc_rel = 0;
8172 }
8173 }
8174
8175 static void
8176 do_mul (void)
8177 {
8178 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8179
8180 if (!inst.operands[2].present)
8181 inst.operands[2].reg = inst.operands[0].reg;
8182 inst.instruction |= inst.operands[0].reg << 16;
8183 inst.instruction |= inst.operands[1].reg;
8184 inst.instruction |= inst.operands[2].reg << 8;
8185
8186 if (inst.operands[0].reg == inst.operands[1].reg
8187 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8188 as_tsktsk (_("Rd and Rm should be different in mul"));
8189 }
8190
8191 /* Long Multiply Parser
8192 UMULL RdLo, RdHi, Rm, Rs
8193 SMULL RdLo, RdHi, Rm, Rs
8194 UMLAL RdLo, RdHi, Rm, Rs
8195 SMLAL RdLo, RdHi, Rm, Rs. */
8196
8197 static void
8198 do_mull (void)
8199 {
8200 inst.instruction |= inst.operands[0].reg << 12;
8201 inst.instruction |= inst.operands[1].reg << 16;
8202 inst.instruction |= inst.operands[2].reg;
8203 inst.instruction |= inst.operands[3].reg << 8;
8204
8205 /* rdhi and rdlo must be different. */
8206 if (inst.operands[0].reg == inst.operands[1].reg)
8207 as_tsktsk (_("rdhi and rdlo must be different"));
8208
8209 /* rdhi, rdlo and rm must all be different before armv6. */
8210 if ((inst.operands[0].reg == inst.operands[2].reg
8211 || inst.operands[1].reg == inst.operands[2].reg)
8212 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8213 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8214 }
8215
8216 static void
8217 do_nop (void)
8218 {
8219 if (inst.operands[0].present
8220 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8221 {
8222 /* Architectural NOP hints are CPSR sets with no bits selected. */
8223 inst.instruction &= 0xf0000000;
8224 inst.instruction |= 0x0320f000;
8225 if (inst.operands[0].present)
8226 inst.instruction |= inst.operands[0].imm;
8227 }
8228 }
8229
8230 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8231 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8232 Condition defaults to COND_ALWAYS.
8233 Error if Rd, Rn or Rm are R15. */
8234
8235 static void
8236 do_pkhbt (void)
8237 {
8238 inst.instruction |= inst.operands[0].reg << 12;
8239 inst.instruction |= inst.operands[1].reg << 16;
8240 inst.instruction |= inst.operands[2].reg;
8241 if (inst.operands[3].present)
8242 encode_arm_shift (3);
8243 }
8244
8245 /* ARM V6 PKHTB (Argument Parse). */
8246
8247 static void
8248 do_pkhtb (void)
8249 {
8250 if (!inst.operands[3].present)
8251 {
8252 /* If the shift specifier is omitted, turn the instruction
8253 into pkhbt rd, rm, rn. */
8254 inst.instruction &= 0xfff00010;
8255 inst.instruction |= inst.operands[0].reg << 12;
8256 inst.instruction |= inst.operands[1].reg;
8257 inst.instruction |= inst.operands[2].reg << 16;
8258 }
8259 else
8260 {
8261 inst.instruction |= inst.operands[0].reg << 12;
8262 inst.instruction |= inst.operands[1].reg << 16;
8263 inst.instruction |= inst.operands[2].reg;
8264 encode_arm_shift (3);
8265 }
8266 }
8267
8268 /* ARMv5TE: Preload-Cache
8269 MP Extensions: Preload for write
8270
8271 PLD(W) <addr_mode>
8272
8273 Syntactically, like LDR with B=1, W=0, L=1. */
8274
8275 static void
8276 do_pld (void)
8277 {
8278 constraint (!inst.operands[0].isreg,
8279 _("'[' expected after PLD mnemonic"));
8280 constraint (inst.operands[0].postind,
8281 _("post-indexed expression used in preload instruction"));
8282 constraint (inst.operands[0].writeback,
8283 _("writeback used in preload instruction"));
8284 constraint (!inst.operands[0].preind,
8285 _("unindexed addressing used in preload instruction"));
8286 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8287 }
8288
8289 /* ARMv7: PLI <addr_mode> */
8290 static void
8291 do_pli (void)
8292 {
8293 constraint (!inst.operands[0].isreg,
8294 _("'[' expected after PLI mnemonic"));
8295 constraint (inst.operands[0].postind,
8296 _("post-indexed expression used in preload instruction"));
8297 constraint (inst.operands[0].writeback,
8298 _("writeback used in preload instruction"));
8299 constraint (!inst.operands[0].preind,
8300 _("unindexed addressing used in preload instruction"));
8301 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8302 inst.instruction &= ~PRE_INDEX;
8303 }
8304
8305 static void
8306 do_push_pop (void)
8307 {
8308 inst.operands[1] = inst.operands[0];
8309 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8310 inst.operands[0].isreg = 1;
8311 inst.operands[0].writeback = 1;
8312 inst.operands[0].reg = REG_SP;
8313 do_ldmstm ();
8314 }
8315
8316 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8317 word at the specified address and the following word
8318 respectively.
8319 Unconditionally executed.
8320 Error if Rn is R15. */
8321
8322 static void
8323 do_rfe (void)
8324 {
8325 inst.instruction |= inst.operands[0].reg << 16;
8326 if (inst.operands[0].writeback)
8327 inst.instruction |= WRITE_BACK;
8328 }
8329
8330 /* ARM V6 ssat (argument parse). */
8331
8332 static void
8333 do_ssat (void)
8334 {
8335 inst.instruction |= inst.operands[0].reg << 12;
8336 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8337 inst.instruction |= inst.operands[2].reg;
8338
8339 if (inst.operands[3].present)
8340 encode_arm_shift (3);
8341 }
8342
8343 /* ARM V6 usat (argument parse). */
8344
8345 static void
8346 do_usat (void)
8347 {
8348 inst.instruction |= inst.operands[0].reg << 12;
8349 inst.instruction |= inst.operands[1].imm << 16;
8350 inst.instruction |= inst.operands[2].reg;
8351
8352 if (inst.operands[3].present)
8353 encode_arm_shift (3);
8354 }
8355
8356 /* ARM V6 ssat16 (argument parse). */
8357
8358 static void
8359 do_ssat16 (void)
8360 {
8361 inst.instruction |= inst.operands[0].reg << 12;
8362 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8363 inst.instruction |= inst.operands[2].reg;
8364 }
8365
8366 static void
8367 do_usat16 (void)
8368 {
8369 inst.instruction |= inst.operands[0].reg << 12;
8370 inst.instruction |= inst.operands[1].imm << 16;
8371 inst.instruction |= inst.operands[2].reg;
8372 }
8373
8374 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8375 preserving the other bits.
8376
8377 setend <endian_specifier>, where <endian_specifier> is either
8378 BE or LE. */
8379
8380 static void
8381 do_setend (void)
8382 {
8383 if (inst.operands[0].imm)
8384 inst.instruction |= 0x200;
8385 }
8386
8387 static void
8388 do_shift (void)
8389 {
8390 unsigned int Rm = (inst.operands[1].present
8391 ? inst.operands[1].reg
8392 : inst.operands[0].reg);
8393
8394 inst.instruction |= inst.operands[0].reg << 12;
8395 inst.instruction |= Rm;
8396 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8397 {
8398 inst.instruction |= inst.operands[2].reg << 8;
8399 inst.instruction |= SHIFT_BY_REG;
8400 /* PR 12854: Error on extraneous shifts. */
8401 constraint (inst.operands[2].shifted,
8402 _("extraneous shift as part of operand to shift insn"));
8403 }
8404 else
8405 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8406 }
8407
8408 static void
8409 do_smc (void)
8410 {
8411 inst.reloc.type = BFD_RELOC_ARM_SMC;
8412 inst.reloc.pc_rel = 0;
8413 }
8414
8415 static void
8416 do_hvc (void)
8417 {
8418 inst.reloc.type = BFD_RELOC_ARM_HVC;
8419 inst.reloc.pc_rel = 0;
8420 }
8421
8422 static void
8423 do_swi (void)
8424 {
8425 inst.reloc.type = BFD_RELOC_ARM_SWI;
8426 inst.reloc.pc_rel = 0;
8427 }
8428
8429 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8430 SMLAxy{cond} Rd,Rm,Rs,Rn
8431 SMLAWy{cond} Rd,Rm,Rs,Rn
8432 Error if any register is R15. */
8433
8434 static void
8435 do_smla (void)
8436 {
8437 inst.instruction |= inst.operands[0].reg << 16;
8438 inst.instruction |= inst.operands[1].reg;
8439 inst.instruction |= inst.operands[2].reg << 8;
8440 inst.instruction |= inst.operands[3].reg << 12;
8441 }
8442
8443 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8444 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8445 Error if any register is R15.
8446 Warning if Rdlo == Rdhi. */
8447
8448 static void
8449 do_smlal (void)
8450 {
8451 inst.instruction |= inst.operands[0].reg << 12;
8452 inst.instruction |= inst.operands[1].reg << 16;
8453 inst.instruction |= inst.operands[2].reg;
8454 inst.instruction |= inst.operands[3].reg << 8;
8455
8456 if (inst.operands[0].reg == inst.operands[1].reg)
8457 as_tsktsk (_("rdhi and rdlo must be different"));
8458 }
8459
8460 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8461 SMULxy{cond} Rd,Rm,Rs
8462 Error if any register is R15. */
8463
8464 static void
8465 do_smul (void)
8466 {
8467 inst.instruction |= inst.operands[0].reg << 16;
8468 inst.instruction |= inst.operands[1].reg;
8469 inst.instruction |= inst.operands[2].reg << 8;
8470 }
8471
8472 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8473 the same for both ARM and Thumb-2. */
8474
8475 static void
8476 do_srs (void)
8477 {
8478 int reg;
8479
8480 if (inst.operands[0].present)
8481 {
8482 reg = inst.operands[0].reg;
8483 constraint (reg != REG_SP, _("SRS base register must be r13"));
8484 }
8485 else
8486 reg = REG_SP;
8487
8488 inst.instruction |= reg << 16;
8489 inst.instruction |= inst.operands[1].imm;
8490 if (inst.operands[0].writeback || inst.operands[1].writeback)
8491 inst.instruction |= WRITE_BACK;
8492 }
8493
8494 /* ARM V6 strex (argument parse). */
8495
8496 static void
8497 do_strex (void)
8498 {
8499 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8500 || inst.operands[2].postind || inst.operands[2].writeback
8501 || inst.operands[2].immisreg || inst.operands[2].shifted
8502 || inst.operands[2].negative
8503 /* See comment in do_ldrex(). */
8504 || (inst.operands[2].reg == REG_PC),
8505 BAD_ADDR_MODE);
8506
8507 constraint (inst.operands[0].reg == inst.operands[1].reg
8508 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8509
8510 constraint (inst.reloc.exp.X_op != O_constant
8511 || inst.reloc.exp.X_add_number != 0,
8512 _("offset must be zero in ARM encoding"));
8513
8514 inst.instruction |= inst.operands[0].reg << 12;
8515 inst.instruction |= inst.operands[1].reg;
8516 inst.instruction |= inst.operands[2].reg << 16;
8517 inst.reloc.type = BFD_RELOC_UNUSED;
8518 }
8519
8520 static void
8521 do_t_strexbh (void)
8522 {
8523 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8524 || inst.operands[2].postind || inst.operands[2].writeback
8525 || inst.operands[2].immisreg || inst.operands[2].shifted
8526 || inst.operands[2].negative,
8527 BAD_ADDR_MODE);
8528
8529 constraint (inst.operands[0].reg == inst.operands[1].reg
8530 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8531
8532 do_rm_rd_rn ();
8533 }
8534
8535 static void
8536 do_strexd (void)
8537 {
8538 constraint (inst.operands[1].reg % 2 != 0,
8539 _("even register required"));
8540 constraint (inst.operands[2].present
8541 && inst.operands[2].reg != inst.operands[1].reg + 1,
8542 _("can only store two consecutive registers"));
8543 /* If op 2 were present and equal to PC, this function wouldn't
8544 have been called in the first place. */
8545 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8546
8547 constraint (inst.operands[0].reg == inst.operands[1].reg
8548 || inst.operands[0].reg == inst.operands[1].reg + 1
8549 || inst.operands[0].reg == inst.operands[3].reg,
8550 BAD_OVERLAP);
8551
8552 inst.instruction |= inst.operands[0].reg << 12;
8553 inst.instruction |= inst.operands[1].reg;
8554 inst.instruction |= inst.operands[3].reg << 16;
8555 }
8556
8557 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8558 extends it to 32-bits, and adds the result to a value in another
8559 register. You can specify a rotation by 0, 8, 16, or 24 bits
8560 before extracting the 16-bit value.
8561 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8562 Condition defaults to COND_ALWAYS.
8563 Error if any register uses R15. */
8564
8565 static void
8566 do_sxtah (void)
8567 {
8568 inst.instruction |= inst.operands[0].reg << 12;
8569 inst.instruction |= inst.operands[1].reg << 16;
8570 inst.instruction |= inst.operands[2].reg;
8571 inst.instruction |= inst.operands[3].imm << 10;
8572 }
8573
8574 /* ARM V6 SXTH.
8575
8576 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8577 Condition defaults to COND_ALWAYS.
8578 Error if any register uses R15. */
8579
8580 static void
8581 do_sxth (void)
8582 {
8583 inst.instruction |= inst.operands[0].reg << 12;
8584 inst.instruction |= inst.operands[1].reg;
8585 inst.instruction |= inst.operands[2].imm << 10;
8586 }
8587 \f
8588 /* VFP instructions. In a logical order: SP variant first, monad
8589 before dyad, arithmetic then move then load/store. */
8590
8591 static void
8592 do_vfp_sp_monadic (void)
8593 {
8594 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8595 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8596 }
8597
8598 static void
8599 do_vfp_sp_dyadic (void)
8600 {
8601 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8602 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8603 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8604 }
8605
8606 static void
8607 do_vfp_sp_compare_z (void)
8608 {
8609 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8610 }
8611
8612 static void
8613 do_vfp_dp_sp_cvt (void)
8614 {
8615 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8616 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8617 }
8618
8619 static void
8620 do_vfp_sp_dp_cvt (void)
8621 {
8622 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8623 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8624 }
8625
8626 static void
8627 do_vfp_reg_from_sp (void)
8628 {
8629 inst.instruction |= inst.operands[0].reg << 12;
8630 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8631 }
8632
8633 static void
8634 do_vfp_reg2_from_sp2 (void)
8635 {
8636 constraint (inst.operands[2].imm != 2,
8637 _("only two consecutive VFP SP registers allowed here"));
8638 inst.instruction |= inst.operands[0].reg << 12;
8639 inst.instruction |= inst.operands[1].reg << 16;
8640 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8641 }
8642
8643 static void
8644 do_vfp_sp_from_reg (void)
8645 {
8646 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8647 inst.instruction |= inst.operands[1].reg << 12;
8648 }
8649
8650 static void
8651 do_vfp_sp2_from_reg2 (void)
8652 {
8653 constraint (inst.operands[0].imm != 2,
8654 _("only two consecutive VFP SP registers allowed here"));
8655 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8656 inst.instruction |= inst.operands[1].reg << 12;
8657 inst.instruction |= inst.operands[2].reg << 16;
8658 }
8659
8660 static void
8661 do_vfp_sp_ldst (void)
8662 {
8663 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8664 encode_arm_cp_address (1, FALSE, TRUE, 0);
8665 }
8666
8667 static void
8668 do_vfp_dp_ldst (void)
8669 {
8670 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8671 encode_arm_cp_address (1, FALSE, TRUE, 0);
8672 }
8673
8674
8675 static void
8676 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8677 {
8678 if (inst.operands[0].writeback)
8679 inst.instruction |= WRITE_BACK;
8680 else
8681 constraint (ldstm_type != VFP_LDSTMIA,
8682 _("this addressing mode requires base-register writeback"));
8683 inst.instruction |= inst.operands[0].reg << 16;
8684 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8685 inst.instruction |= inst.operands[1].imm;
8686 }
8687
8688 static void
8689 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8690 {
8691 int count;
8692
8693 if (inst.operands[0].writeback)
8694 inst.instruction |= WRITE_BACK;
8695 else
8696 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8697 _("this addressing mode requires base-register writeback"));
8698
8699 inst.instruction |= inst.operands[0].reg << 16;
8700 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8701
8702 count = inst.operands[1].imm << 1;
8703 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8704 count += 1;
8705
8706 inst.instruction |= count;
8707 }
8708
8709 static void
8710 do_vfp_sp_ldstmia (void)
8711 {
8712 vfp_sp_ldstm (VFP_LDSTMIA);
8713 }
8714
8715 static void
8716 do_vfp_sp_ldstmdb (void)
8717 {
8718 vfp_sp_ldstm (VFP_LDSTMDB);
8719 }
8720
8721 static void
8722 do_vfp_dp_ldstmia (void)
8723 {
8724 vfp_dp_ldstm (VFP_LDSTMIA);
8725 }
8726
8727 static void
8728 do_vfp_dp_ldstmdb (void)
8729 {
8730 vfp_dp_ldstm (VFP_LDSTMDB);
8731 }
8732
8733 static void
8734 do_vfp_xp_ldstmia (void)
8735 {
8736 vfp_dp_ldstm (VFP_LDSTMIAX);
8737 }
8738
8739 static void
8740 do_vfp_xp_ldstmdb (void)
8741 {
8742 vfp_dp_ldstm (VFP_LDSTMDBX);
8743 }
8744
8745 static void
8746 do_vfp_dp_rd_rm (void)
8747 {
8748 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8749 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8750 }
8751
8752 static void
8753 do_vfp_dp_rn_rd (void)
8754 {
8755 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8756 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8757 }
8758
8759 static void
8760 do_vfp_dp_rd_rn (void)
8761 {
8762 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8763 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8764 }
8765
8766 static void
8767 do_vfp_dp_rd_rn_rm (void)
8768 {
8769 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8770 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8771 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8772 }
8773
8774 static void
8775 do_vfp_dp_rd (void)
8776 {
8777 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8778 }
8779
8780 static void
8781 do_vfp_dp_rm_rd_rn (void)
8782 {
8783 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8784 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8785 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8786 }
8787
8788 /* VFPv3 instructions. */
8789 static void
8790 do_vfp_sp_const (void)
8791 {
8792 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8793 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8794 inst.instruction |= (inst.operands[1].imm & 0x0f);
8795 }
8796
8797 static void
8798 do_vfp_dp_const (void)
8799 {
8800 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8801 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8802 inst.instruction |= (inst.operands[1].imm & 0x0f);
8803 }
8804
8805 static void
8806 vfp_conv (int srcsize)
8807 {
8808 int immbits = srcsize - inst.operands[1].imm;
8809
8810 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
8811 {
8812 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
8813 i.e. immbits must be in range 0 - 16. */
8814 inst.error = _("immediate value out of range, expected range [0, 16]");
8815 return;
8816 }
8817 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
8818 {
8819 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
8820 i.e. immbits must be in range 0 - 31. */
8821 inst.error = _("immediate value out of range, expected range [1, 32]");
8822 return;
8823 }
8824
8825 inst.instruction |= (immbits & 1) << 5;
8826 inst.instruction |= (immbits >> 1);
8827 }
8828
8829 static void
8830 do_vfp_sp_conv_16 (void)
8831 {
8832 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8833 vfp_conv (16);
8834 }
8835
8836 static void
8837 do_vfp_dp_conv_16 (void)
8838 {
8839 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8840 vfp_conv (16);
8841 }
8842
8843 static void
8844 do_vfp_sp_conv_32 (void)
8845 {
8846 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8847 vfp_conv (32);
8848 }
8849
8850 static void
8851 do_vfp_dp_conv_32 (void)
8852 {
8853 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8854 vfp_conv (32);
8855 }
8856 \f
8857 /* FPA instructions. Also in a logical order. */
8858
8859 static void
8860 do_fpa_cmp (void)
8861 {
8862 inst.instruction |= inst.operands[0].reg << 16;
8863 inst.instruction |= inst.operands[1].reg;
8864 }
8865
8866 static void
8867 do_fpa_ldmstm (void)
8868 {
8869 inst.instruction |= inst.operands[0].reg << 12;
8870 switch (inst.operands[1].imm)
8871 {
8872 case 1: inst.instruction |= CP_T_X; break;
8873 case 2: inst.instruction |= CP_T_Y; break;
8874 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8875 case 4: break;
8876 default: abort ();
8877 }
8878
8879 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8880 {
8881 /* The instruction specified "ea" or "fd", so we can only accept
8882 [Rn]{!}. The instruction does not really support stacking or
8883 unstacking, so we have to emulate these by setting appropriate
8884 bits and offsets. */
8885 constraint (inst.reloc.exp.X_op != O_constant
8886 || inst.reloc.exp.X_add_number != 0,
8887 _("this instruction does not support indexing"));
8888
8889 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8890 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8891
8892 if (!(inst.instruction & INDEX_UP))
8893 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8894
8895 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8896 {
8897 inst.operands[2].preind = 0;
8898 inst.operands[2].postind = 1;
8899 }
8900 }
8901
8902 encode_arm_cp_address (2, TRUE, TRUE, 0);
8903 }
8904 \f
8905 /* iWMMXt instructions: strictly in alphabetical order. */
8906
8907 static void
8908 do_iwmmxt_tandorc (void)
8909 {
8910 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8911 }
8912
8913 static void
8914 do_iwmmxt_textrc (void)
8915 {
8916 inst.instruction |= inst.operands[0].reg << 12;
8917 inst.instruction |= inst.operands[1].imm;
8918 }
8919
8920 static void
8921 do_iwmmxt_textrm (void)
8922 {
8923 inst.instruction |= inst.operands[0].reg << 12;
8924 inst.instruction |= inst.operands[1].reg << 16;
8925 inst.instruction |= inst.operands[2].imm;
8926 }
8927
8928 static void
8929 do_iwmmxt_tinsr (void)
8930 {
8931 inst.instruction |= inst.operands[0].reg << 16;
8932 inst.instruction |= inst.operands[1].reg << 12;
8933 inst.instruction |= inst.operands[2].imm;
8934 }
8935
8936 static void
8937 do_iwmmxt_tmia (void)
8938 {
8939 inst.instruction |= inst.operands[0].reg << 5;
8940 inst.instruction |= inst.operands[1].reg;
8941 inst.instruction |= inst.operands[2].reg << 12;
8942 }
8943
8944 static void
8945 do_iwmmxt_waligni (void)
8946 {
8947 inst.instruction |= inst.operands[0].reg << 12;
8948 inst.instruction |= inst.operands[1].reg << 16;
8949 inst.instruction |= inst.operands[2].reg;
8950 inst.instruction |= inst.operands[3].imm << 20;
8951 }
8952
8953 static void
8954 do_iwmmxt_wmerge (void)
8955 {
8956 inst.instruction |= inst.operands[0].reg << 12;
8957 inst.instruction |= inst.operands[1].reg << 16;
8958 inst.instruction |= inst.operands[2].reg;
8959 inst.instruction |= inst.operands[3].imm << 21;
8960 }
8961
8962 static void
8963 do_iwmmxt_wmov (void)
8964 {
8965 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8966 inst.instruction |= inst.operands[0].reg << 12;
8967 inst.instruction |= inst.operands[1].reg << 16;
8968 inst.instruction |= inst.operands[1].reg;
8969 }
8970
8971 static void
8972 do_iwmmxt_wldstbh (void)
8973 {
8974 int reloc;
8975 inst.instruction |= inst.operands[0].reg << 12;
8976 if (thumb_mode)
8977 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8978 else
8979 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8980 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8981 }
8982
8983 static void
8984 do_iwmmxt_wldstw (void)
8985 {
8986 /* RIWR_RIWC clears .isreg for a control register. */
8987 if (!inst.operands[0].isreg)
8988 {
8989 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8990 inst.instruction |= 0xf0000000;
8991 }
8992
8993 inst.instruction |= inst.operands[0].reg << 12;
8994 encode_arm_cp_address (1, TRUE, TRUE, 0);
8995 }
8996
8997 static void
8998 do_iwmmxt_wldstd (void)
8999 {
9000 inst.instruction |= inst.operands[0].reg << 12;
9001 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9002 && inst.operands[1].immisreg)
9003 {
9004 inst.instruction &= ~0x1a000ff;
9005 inst.instruction |= (0xf << 28);
9006 if (inst.operands[1].preind)
9007 inst.instruction |= PRE_INDEX;
9008 if (!inst.operands[1].negative)
9009 inst.instruction |= INDEX_UP;
9010 if (inst.operands[1].writeback)
9011 inst.instruction |= WRITE_BACK;
9012 inst.instruction |= inst.operands[1].reg << 16;
9013 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9014 inst.instruction |= inst.operands[1].imm;
9015 }
9016 else
9017 encode_arm_cp_address (1, TRUE, FALSE, 0);
9018 }
9019
9020 static void
9021 do_iwmmxt_wshufh (void)
9022 {
9023 inst.instruction |= inst.operands[0].reg << 12;
9024 inst.instruction |= inst.operands[1].reg << 16;
9025 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9026 inst.instruction |= (inst.operands[2].imm & 0x0f);
9027 }
9028
9029 static void
9030 do_iwmmxt_wzero (void)
9031 {
9032 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9033 inst.instruction |= inst.operands[0].reg;
9034 inst.instruction |= inst.operands[0].reg << 12;
9035 inst.instruction |= inst.operands[0].reg << 16;
9036 }
9037
9038 static void
9039 do_iwmmxt_wrwrwr_or_imm5 (void)
9040 {
9041 if (inst.operands[2].isreg)
9042 do_rd_rn_rm ();
9043 else {
9044 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9045 _("immediate operand requires iWMMXt2"));
9046 do_rd_rn ();
9047 if (inst.operands[2].imm == 0)
9048 {
9049 switch ((inst.instruction >> 20) & 0xf)
9050 {
9051 case 4:
9052 case 5:
9053 case 6:
9054 case 7:
9055 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9056 inst.operands[2].imm = 16;
9057 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9058 break;
9059 case 8:
9060 case 9:
9061 case 10:
9062 case 11:
9063 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9064 inst.operands[2].imm = 32;
9065 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9066 break;
9067 case 12:
9068 case 13:
9069 case 14:
9070 case 15:
9071 {
9072 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9073 unsigned long wrn;
9074 wrn = (inst.instruction >> 16) & 0xf;
9075 inst.instruction &= 0xff0fff0f;
9076 inst.instruction |= wrn;
9077 /* Bail out here; the instruction is now assembled. */
9078 return;
9079 }
9080 }
9081 }
9082 /* Map 32 -> 0, etc. */
9083 inst.operands[2].imm &= 0x1f;
9084 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9085 }
9086 }
9087 \f
9088 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9089 operations first, then control, shift, and load/store. */
9090
9091 /* Insns like "foo X,Y,Z". */
9092
9093 static void
9094 do_mav_triple (void)
9095 {
9096 inst.instruction |= inst.operands[0].reg << 16;
9097 inst.instruction |= inst.operands[1].reg;
9098 inst.instruction |= inst.operands[2].reg << 12;
9099 }
9100
9101 /* Insns like "foo W,X,Y,Z".
9102 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9103
9104 static void
9105 do_mav_quad (void)
9106 {
9107 inst.instruction |= inst.operands[0].reg << 5;
9108 inst.instruction |= inst.operands[1].reg << 12;
9109 inst.instruction |= inst.operands[2].reg << 16;
9110 inst.instruction |= inst.operands[3].reg;
9111 }
9112
9113 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9114 static void
9115 do_mav_dspsc (void)
9116 {
9117 inst.instruction |= inst.operands[1].reg << 12;
9118 }
9119
9120 /* Maverick shift immediate instructions.
9121 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9122 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9123
9124 static void
9125 do_mav_shift (void)
9126 {
9127 int imm = inst.operands[2].imm;
9128
9129 inst.instruction |= inst.operands[0].reg << 12;
9130 inst.instruction |= inst.operands[1].reg << 16;
9131
9132 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9133 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9134 Bit 4 should be 0. */
9135 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9136
9137 inst.instruction |= imm;
9138 }
9139 \f
9140 /* XScale instructions. Also sorted arithmetic before move. */
9141
9142 /* Xscale multiply-accumulate (argument parse)
9143 MIAcc acc0,Rm,Rs
9144 MIAPHcc acc0,Rm,Rs
9145 MIAxycc acc0,Rm,Rs. */
9146
9147 static void
9148 do_xsc_mia (void)
9149 {
9150 inst.instruction |= inst.operands[1].reg;
9151 inst.instruction |= inst.operands[2].reg << 12;
9152 }
9153
9154 /* Xscale move-accumulator-register (argument parse)
9155
9156 MARcc acc0,RdLo,RdHi. */
9157
9158 static void
9159 do_xsc_mar (void)
9160 {
9161 inst.instruction |= inst.operands[1].reg << 12;
9162 inst.instruction |= inst.operands[2].reg << 16;
9163 }
9164
9165 /* Xscale move-register-accumulator (argument parse)
9166
9167 MRAcc RdLo,RdHi,acc0. */
9168
9169 static void
9170 do_xsc_mra (void)
9171 {
9172 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9173 inst.instruction |= inst.operands[0].reg << 12;
9174 inst.instruction |= inst.operands[1].reg << 16;
9175 }
9176 \f
9177 /* Encoding functions relevant only to Thumb. */
9178
9179 /* inst.operands[i] is a shifted-register operand; encode
9180 it into inst.instruction in the format used by Thumb32. */
9181
9182 static void
9183 encode_thumb32_shifted_operand (int i)
9184 {
9185 unsigned int value = inst.reloc.exp.X_add_number;
9186 unsigned int shift = inst.operands[i].shift_kind;
9187
9188 constraint (inst.operands[i].immisreg,
9189 _("shift by register not allowed in thumb mode"));
9190 inst.instruction |= inst.operands[i].reg;
9191 if (shift == SHIFT_RRX)
9192 inst.instruction |= SHIFT_ROR << 4;
9193 else
9194 {
9195 constraint (inst.reloc.exp.X_op != O_constant,
9196 _("expression too complex"));
9197
9198 constraint (value > 32
9199 || (value == 32 && (shift == SHIFT_LSL
9200 || shift == SHIFT_ROR)),
9201 _("shift expression is too large"));
9202
9203 if (value == 0)
9204 shift = SHIFT_LSL;
9205 else if (value == 32)
9206 value = 0;
9207
9208 inst.instruction |= shift << 4;
9209 inst.instruction |= (value & 0x1c) << 10;
9210 inst.instruction |= (value & 0x03) << 6;
9211 }
9212 }
9213
9214
9215 /* inst.operands[i] was set up by parse_address. Encode it into a
9216 Thumb32 format load or store instruction. Reject forms that cannot
9217 be used with such instructions. If is_t is true, reject forms that
9218 cannot be used with a T instruction; if is_d is true, reject forms
9219 that cannot be used with a D instruction. If it is a store insn,
9220 reject PC in Rn. */
9221
9222 static void
9223 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9224 {
9225 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9226
9227 constraint (!inst.operands[i].isreg,
9228 _("Instruction does not support =N addresses"));
9229
9230 inst.instruction |= inst.operands[i].reg << 16;
9231 if (inst.operands[i].immisreg)
9232 {
9233 constraint (is_pc, BAD_PC_ADDRESSING);
9234 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9235 constraint (inst.operands[i].negative,
9236 _("Thumb does not support negative register indexing"));
9237 constraint (inst.operands[i].postind,
9238 _("Thumb does not support register post-indexing"));
9239 constraint (inst.operands[i].writeback,
9240 _("Thumb does not support register indexing with writeback"));
9241 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9242 _("Thumb supports only LSL in shifted register indexing"));
9243
9244 inst.instruction |= inst.operands[i].imm;
9245 if (inst.operands[i].shifted)
9246 {
9247 constraint (inst.reloc.exp.X_op != O_constant,
9248 _("expression too complex"));
9249 constraint (inst.reloc.exp.X_add_number < 0
9250 || inst.reloc.exp.X_add_number > 3,
9251 _("shift out of range"));
9252 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9253 }
9254 inst.reloc.type = BFD_RELOC_UNUSED;
9255 }
9256 else if (inst.operands[i].preind)
9257 {
9258 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9259 constraint (is_t && inst.operands[i].writeback,
9260 _("cannot use writeback with this instruction"));
9261 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9262 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9263
9264 if (is_d)
9265 {
9266 inst.instruction |= 0x01000000;
9267 if (inst.operands[i].writeback)
9268 inst.instruction |= 0x00200000;
9269 }
9270 else
9271 {
9272 inst.instruction |= 0x00000c00;
9273 if (inst.operands[i].writeback)
9274 inst.instruction |= 0x00000100;
9275 }
9276 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9277 }
9278 else if (inst.operands[i].postind)
9279 {
9280 gas_assert (inst.operands[i].writeback);
9281 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9282 constraint (is_t, _("cannot use post-indexing with this instruction"));
9283
9284 if (is_d)
9285 inst.instruction |= 0x00200000;
9286 else
9287 inst.instruction |= 0x00000900;
9288 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9289 }
9290 else /* unindexed - only for coprocessor */
9291 inst.error = _("instruction does not accept unindexed addressing");
9292 }
9293
9294 /* Table of Thumb instructions which exist in both 16- and 32-bit
9295 encodings (the latter only in post-V6T2 cores). The index is the
9296 value used in the insns table below. When there is more than one
9297 possible 16-bit encoding for the instruction, this table always
9298 holds variant (1).
9299 Also contains several pseudo-instructions used during relaxation. */
9300 #define T16_32_TAB \
9301 X(_adc, 4140, eb400000), \
9302 X(_adcs, 4140, eb500000), \
9303 X(_add, 1c00, eb000000), \
9304 X(_adds, 1c00, eb100000), \
9305 X(_addi, 0000, f1000000), \
9306 X(_addis, 0000, f1100000), \
9307 X(_add_pc,000f, f20f0000), \
9308 X(_add_sp,000d, f10d0000), \
9309 X(_adr, 000f, f20f0000), \
9310 X(_and, 4000, ea000000), \
9311 X(_ands, 4000, ea100000), \
9312 X(_asr, 1000, fa40f000), \
9313 X(_asrs, 1000, fa50f000), \
9314 X(_b, e000, f000b000), \
9315 X(_bcond, d000, f0008000), \
9316 X(_bic, 4380, ea200000), \
9317 X(_bics, 4380, ea300000), \
9318 X(_cmn, 42c0, eb100f00), \
9319 X(_cmp, 2800, ebb00f00), \
9320 X(_cpsie, b660, f3af8400), \
9321 X(_cpsid, b670, f3af8600), \
9322 X(_cpy, 4600, ea4f0000), \
9323 X(_dec_sp,80dd, f1ad0d00), \
9324 X(_eor, 4040, ea800000), \
9325 X(_eors, 4040, ea900000), \
9326 X(_inc_sp,00dd, f10d0d00), \
9327 X(_ldmia, c800, e8900000), \
9328 X(_ldr, 6800, f8500000), \
9329 X(_ldrb, 7800, f8100000), \
9330 X(_ldrh, 8800, f8300000), \
9331 X(_ldrsb, 5600, f9100000), \
9332 X(_ldrsh, 5e00, f9300000), \
9333 X(_ldr_pc,4800, f85f0000), \
9334 X(_ldr_pc2,4800, f85f0000), \
9335 X(_ldr_sp,9800, f85d0000), \
9336 X(_lsl, 0000, fa00f000), \
9337 X(_lsls, 0000, fa10f000), \
9338 X(_lsr, 0800, fa20f000), \
9339 X(_lsrs, 0800, fa30f000), \
9340 X(_mov, 2000, ea4f0000), \
9341 X(_movs, 2000, ea5f0000), \
9342 X(_mul, 4340, fb00f000), \
9343 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9344 X(_mvn, 43c0, ea6f0000), \
9345 X(_mvns, 43c0, ea7f0000), \
9346 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9347 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9348 X(_orr, 4300, ea400000), \
9349 X(_orrs, 4300, ea500000), \
9350 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9351 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9352 X(_rev, ba00, fa90f080), \
9353 X(_rev16, ba40, fa90f090), \
9354 X(_revsh, bac0, fa90f0b0), \
9355 X(_ror, 41c0, fa60f000), \
9356 X(_rors, 41c0, fa70f000), \
9357 X(_sbc, 4180, eb600000), \
9358 X(_sbcs, 4180, eb700000), \
9359 X(_stmia, c000, e8800000), \
9360 X(_str, 6000, f8400000), \
9361 X(_strb, 7000, f8000000), \
9362 X(_strh, 8000, f8200000), \
9363 X(_str_sp,9000, f84d0000), \
9364 X(_sub, 1e00, eba00000), \
9365 X(_subs, 1e00, ebb00000), \
9366 X(_subi, 8000, f1a00000), \
9367 X(_subis, 8000, f1b00000), \
9368 X(_sxtb, b240, fa4ff080), \
9369 X(_sxth, b200, fa0ff080), \
9370 X(_tst, 4200, ea100f00), \
9371 X(_uxtb, b2c0, fa5ff080), \
9372 X(_uxth, b280, fa1ff080), \
9373 X(_nop, bf00, f3af8000), \
9374 X(_yield, bf10, f3af8001), \
9375 X(_wfe, bf20, f3af8002), \
9376 X(_wfi, bf30, f3af8003), \
9377 X(_sev, bf40, f3af8004),
9378
9379 /* To catch errors in encoding functions, the codes are all offset by
9380 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9381 as 16-bit instructions. */
9382 #define X(a,b,c) T_MNEM##a
9383 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9384 #undef X
9385
9386 #define X(a,b,c) 0x##b
9387 static const unsigned short thumb_op16[] = { T16_32_TAB };
9388 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9389 #undef X
9390
9391 #define X(a,b,c) 0x##c
9392 static const unsigned int thumb_op32[] = { T16_32_TAB };
9393 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9394 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9395 #undef X
9396 #undef T16_32_TAB
9397
9398 /* Thumb instruction encoders, in alphabetical order. */
9399
9400 /* ADDW or SUBW. */
9401
9402 static void
9403 do_t_add_sub_w (void)
9404 {
9405 int Rd, Rn;
9406
9407 Rd = inst.operands[0].reg;
9408 Rn = inst.operands[1].reg;
9409
9410 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9411 is the SP-{plus,minus}-immediate form of the instruction. */
9412 if (Rn == REG_SP)
9413 constraint (Rd == REG_PC, BAD_PC);
9414 else
9415 reject_bad_reg (Rd);
9416
9417 inst.instruction |= (Rn << 16) | (Rd << 8);
9418 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9419 }
9420
9421 /* Parse an add or subtract instruction. We get here with inst.instruction
9422 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9423
9424 static void
9425 do_t_add_sub (void)
9426 {
9427 int Rd, Rs, Rn;
9428
9429 Rd = inst.operands[0].reg;
9430 Rs = (inst.operands[1].present
9431 ? inst.operands[1].reg /* Rd, Rs, foo */
9432 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9433
9434 if (Rd == REG_PC)
9435 set_it_insn_type_last ();
9436
9437 if (unified_syntax)
9438 {
9439 bfd_boolean flags;
9440 bfd_boolean narrow;
9441 int opcode;
9442
9443 flags = (inst.instruction == T_MNEM_adds
9444 || inst.instruction == T_MNEM_subs);
9445 if (flags)
9446 narrow = !in_it_block ();
9447 else
9448 narrow = in_it_block ();
9449 if (!inst.operands[2].isreg)
9450 {
9451 int add;
9452
9453 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9454
9455 add = (inst.instruction == T_MNEM_add
9456 || inst.instruction == T_MNEM_adds);
9457 opcode = 0;
9458 if (inst.size_req != 4)
9459 {
9460 /* Attempt to use a narrow opcode, with relaxation if
9461 appropriate. */
9462 if (Rd == REG_SP && Rs == REG_SP && !flags)
9463 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9464 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9465 opcode = T_MNEM_add_sp;
9466 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9467 opcode = T_MNEM_add_pc;
9468 else if (Rd <= 7 && Rs <= 7 && narrow)
9469 {
9470 if (flags)
9471 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9472 else
9473 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9474 }
9475 if (opcode)
9476 {
9477 inst.instruction = THUMB_OP16(opcode);
9478 inst.instruction |= (Rd << 4) | Rs;
9479 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9480 if (inst.size_req != 2)
9481 inst.relax = opcode;
9482 }
9483 else
9484 constraint (inst.size_req == 2, BAD_HIREG);
9485 }
9486 if (inst.size_req == 4
9487 || (inst.size_req != 2 && !opcode))
9488 {
9489 if (Rd == REG_PC)
9490 {
9491 constraint (add, BAD_PC);
9492 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9493 _("only SUBS PC, LR, #const allowed"));
9494 constraint (inst.reloc.exp.X_op != O_constant,
9495 _("expression too complex"));
9496 constraint (inst.reloc.exp.X_add_number < 0
9497 || inst.reloc.exp.X_add_number > 0xff,
9498 _("immediate value out of range"));
9499 inst.instruction = T2_SUBS_PC_LR
9500 | inst.reloc.exp.X_add_number;
9501 inst.reloc.type = BFD_RELOC_UNUSED;
9502 return;
9503 }
9504 else if (Rs == REG_PC)
9505 {
9506 /* Always use addw/subw. */
9507 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9508 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9509 }
9510 else
9511 {
9512 inst.instruction = THUMB_OP32 (inst.instruction);
9513 inst.instruction = (inst.instruction & 0xe1ffffff)
9514 | 0x10000000;
9515 if (flags)
9516 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9517 else
9518 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9519 }
9520 inst.instruction |= Rd << 8;
9521 inst.instruction |= Rs << 16;
9522 }
9523 }
9524 else
9525 {
9526 unsigned int value = inst.reloc.exp.X_add_number;
9527 unsigned int shift = inst.operands[2].shift_kind;
9528
9529 Rn = inst.operands[2].reg;
9530 /* See if we can do this with a 16-bit instruction. */
9531 if (!inst.operands[2].shifted && inst.size_req != 4)
9532 {
9533 if (Rd > 7 || Rs > 7 || Rn > 7)
9534 narrow = FALSE;
9535
9536 if (narrow)
9537 {
9538 inst.instruction = ((inst.instruction == T_MNEM_adds
9539 || inst.instruction == T_MNEM_add)
9540 ? T_OPCODE_ADD_R3
9541 : T_OPCODE_SUB_R3);
9542 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9543 return;
9544 }
9545
9546 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9547 {
9548 /* Thumb-1 cores (except v6-M) require at least one high
9549 register in a narrow non flag setting add. */
9550 if (Rd > 7 || Rn > 7
9551 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9552 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9553 {
9554 if (Rd == Rn)
9555 {
9556 Rn = Rs;
9557 Rs = Rd;
9558 }
9559 inst.instruction = T_OPCODE_ADD_HI;
9560 inst.instruction |= (Rd & 8) << 4;
9561 inst.instruction |= (Rd & 7);
9562 inst.instruction |= Rn << 3;
9563 return;
9564 }
9565 }
9566 }
9567
9568 constraint (Rd == REG_PC, BAD_PC);
9569 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9570 constraint (Rs == REG_PC, BAD_PC);
9571 reject_bad_reg (Rn);
9572
9573 /* If we get here, it can't be done in 16 bits. */
9574 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9575 _("shift must be constant"));
9576 inst.instruction = THUMB_OP32 (inst.instruction);
9577 inst.instruction |= Rd << 8;
9578 inst.instruction |= Rs << 16;
9579 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9580 _("shift value over 3 not allowed in thumb mode"));
9581 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9582 _("only LSL shift allowed in thumb mode"));
9583 encode_thumb32_shifted_operand (2);
9584 }
9585 }
9586 else
9587 {
9588 constraint (inst.instruction == T_MNEM_adds
9589 || inst.instruction == T_MNEM_subs,
9590 BAD_THUMB32);
9591
9592 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9593 {
9594 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9595 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9596 BAD_HIREG);
9597
9598 inst.instruction = (inst.instruction == T_MNEM_add
9599 ? 0x0000 : 0x8000);
9600 inst.instruction |= (Rd << 4) | Rs;
9601 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9602 return;
9603 }
9604
9605 Rn = inst.operands[2].reg;
9606 constraint (inst.operands[2].shifted, _("unshifted register required"));
9607
9608 /* We now have Rd, Rs, and Rn set to registers. */
9609 if (Rd > 7 || Rs > 7 || Rn > 7)
9610 {
9611 /* Can't do this for SUB. */
9612 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9613 inst.instruction = T_OPCODE_ADD_HI;
9614 inst.instruction |= (Rd & 8) << 4;
9615 inst.instruction |= (Rd & 7);
9616 if (Rs == Rd)
9617 inst.instruction |= Rn << 3;
9618 else if (Rn == Rd)
9619 inst.instruction |= Rs << 3;
9620 else
9621 constraint (1, _("dest must overlap one source register"));
9622 }
9623 else
9624 {
9625 inst.instruction = (inst.instruction == T_MNEM_add
9626 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9627 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9628 }
9629 }
9630 }
9631
9632 static void
9633 do_t_adr (void)
9634 {
9635 unsigned Rd;
9636
9637 Rd = inst.operands[0].reg;
9638 reject_bad_reg (Rd);
9639
9640 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9641 {
9642 /* Defer to section relaxation. */
9643 inst.relax = inst.instruction;
9644 inst.instruction = THUMB_OP16 (inst.instruction);
9645 inst.instruction |= Rd << 4;
9646 }
9647 else if (unified_syntax && inst.size_req != 2)
9648 {
9649 /* Generate a 32-bit opcode. */
9650 inst.instruction = THUMB_OP32 (inst.instruction);
9651 inst.instruction |= Rd << 8;
9652 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9653 inst.reloc.pc_rel = 1;
9654 }
9655 else
9656 {
9657 /* Generate a 16-bit opcode. */
9658 inst.instruction = THUMB_OP16 (inst.instruction);
9659 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9660 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9661 inst.reloc.pc_rel = 1;
9662
9663 inst.instruction |= Rd << 4;
9664 }
9665 }
9666
9667 /* Arithmetic instructions for which there is just one 16-bit
9668 instruction encoding, and it allows only two low registers.
9669 For maximal compatibility with ARM syntax, we allow three register
9670 operands even when Thumb-32 instructions are not available, as long
9671 as the first two are identical. For instance, both "sbc r0,r1" and
9672 "sbc r0,r0,r1" are allowed. */
9673 static void
9674 do_t_arit3 (void)
9675 {
9676 int Rd, Rs, Rn;
9677
9678 Rd = inst.operands[0].reg;
9679 Rs = (inst.operands[1].present
9680 ? inst.operands[1].reg /* Rd, Rs, foo */
9681 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9682 Rn = inst.operands[2].reg;
9683
9684 reject_bad_reg (Rd);
9685 reject_bad_reg (Rs);
9686 if (inst.operands[2].isreg)
9687 reject_bad_reg (Rn);
9688
9689 if (unified_syntax)
9690 {
9691 if (!inst.operands[2].isreg)
9692 {
9693 /* For an immediate, we always generate a 32-bit opcode;
9694 section relaxation will shrink it later if possible. */
9695 inst.instruction = THUMB_OP32 (inst.instruction);
9696 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9697 inst.instruction |= Rd << 8;
9698 inst.instruction |= Rs << 16;
9699 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9700 }
9701 else
9702 {
9703 bfd_boolean narrow;
9704
9705 /* See if we can do this with a 16-bit instruction. */
9706 if (THUMB_SETS_FLAGS (inst.instruction))
9707 narrow = !in_it_block ();
9708 else
9709 narrow = in_it_block ();
9710
9711 if (Rd > 7 || Rn > 7 || Rs > 7)
9712 narrow = FALSE;
9713 if (inst.operands[2].shifted)
9714 narrow = FALSE;
9715 if (inst.size_req == 4)
9716 narrow = FALSE;
9717
9718 if (narrow
9719 && Rd == Rs)
9720 {
9721 inst.instruction = THUMB_OP16 (inst.instruction);
9722 inst.instruction |= Rd;
9723 inst.instruction |= Rn << 3;
9724 return;
9725 }
9726
9727 /* If we get here, it can't be done in 16 bits. */
9728 constraint (inst.operands[2].shifted
9729 && inst.operands[2].immisreg,
9730 _("shift must be constant"));
9731 inst.instruction = THUMB_OP32 (inst.instruction);
9732 inst.instruction |= Rd << 8;
9733 inst.instruction |= Rs << 16;
9734 encode_thumb32_shifted_operand (2);
9735 }
9736 }
9737 else
9738 {
9739 /* On its face this is a lie - the instruction does set the
9740 flags. However, the only supported mnemonic in this mode
9741 says it doesn't. */
9742 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9743
9744 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9745 _("unshifted register required"));
9746 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9747 constraint (Rd != Rs,
9748 _("dest and source1 must be the same register"));
9749
9750 inst.instruction = THUMB_OP16 (inst.instruction);
9751 inst.instruction |= Rd;
9752 inst.instruction |= Rn << 3;
9753 }
9754 }
9755
9756 /* Similarly, but for instructions where the arithmetic operation is
9757 commutative, so we can allow either of them to be different from
9758 the destination operand in a 16-bit instruction. For instance, all
9759 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9760 accepted. */
9761 static void
9762 do_t_arit3c (void)
9763 {
9764 int Rd, Rs, Rn;
9765
9766 Rd = inst.operands[0].reg;
9767 Rs = (inst.operands[1].present
9768 ? inst.operands[1].reg /* Rd, Rs, foo */
9769 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9770 Rn = inst.operands[2].reg;
9771
9772 reject_bad_reg (Rd);
9773 reject_bad_reg (Rs);
9774 if (inst.operands[2].isreg)
9775 reject_bad_reg (Rn);
9776
9777 if (unified_syntax)
9778 {
9779 if (!inst.operands[2].isreg)
9780 {
9781 /* For an immediate, we always generate a 32-bit opcode;
9782 section relaxation will shrink it later if possible. */
9783 inst.instruction = THUMB_OP32 (inst.instruction);
9784 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9785 inst.instruction |= Rd << 8;
9786 inst.instruction |= Rs << 16;
9787 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9788 }
9789 else
9790 {
9791 bfd_boolean narrow;
9792
9793 /* See if we can do this with a 16-bit instruction. */
9794 if (THUMB_SETS_FLAGS (inst.instruction))
9795 narrow = !in_it_block ();
9796 else
9797 narrow = in_it_block ();
9798
9799 if (Rd > 7 || Rn > 7 || Rs > 7)
9800 narrow = FALSE;
9801 if (inst.operands[2].shifted)
9802 narrow = FALSE;
9803 if (inst.size_req == 4)
9804 narrow = FALSE;
9805
9806 if (narrow)
9807 {
9808 if (Rd == Rs)
9809 {
9810 inst.instruction = THUMB_OP16 (inst.instruction);
9811 inst.instruction |= Rd;
9812 inst.instruction |= Rn << 3;
9813 return;
9814 }
9815 if (Rd == Rn)
9816 {
9817 inst.instruction = THUMB_OP16 (inst.instruction);
9818 inst.instruction |= Rd;
9819 inst.instruction |= Rs << 3;
9820 return;
9821 }
9822 }
9823
9824 /* If we get here, it can't be done in 16 bits. */
9825 constraint (inst.operands[2].shifted
9826 && inst.operands[2].immisreg,
9827 _("shift must be constant"));
9828 inst.instruction = THUMB_OP32 (inst.instruction);
9829 inst.instruction |= Rd << 8;
9830 inst.instruction |= Rs << 16;
9831 encode_thumb32_shifted_operand (2);
9832 }
9833 }
9834 else
9835 {
9836 /* On its face this is a lie - the instruction does set the
9837 flags. However, the only supported mnemonic in this mode
9838 says it doesn't. */
9839 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9840
9841 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9842 _("unshifted register required"));
9843 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9844
9845 inst.instruction = THUMB_OP16 (inst.instruction);
9846 inst.instruction |= Rd;
9847
9848 if (Rd == Rs)
9849 inst.instruction |= Rn << 3;
9850 else if (Rd == Rn)
9851 inst.instruction |= Rs << 3;
9852 else
9853 constraint (1, _("dest must overlap one source register"));
9854 }
9855 }
9856
9857 static void
9858 do_t_barrier (void)
9859 {
9860 if (inst.operands[0].present)
9861 {
9862 constraint ((inst.instruction & 0xf0) != 0x40
9863 && inst.operands[0].imm > 0xf
9864 && inst.operands[0].imm < 0x0,
9865 _("bad barrier type"));
9866 inst.instruction |= inst.operands[0].imm;
9867 }
9868 else
9869 inst.instruction |= 0xf;
9870 }
9871
9872 static void
9873 do_t_bfc (void)
9874 {
9875 unsigned Rd;
9876 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9877 constraint (msb > 32, _("bit-field extends past end of register"));
9878 /* The instruction encoding stores the LSB and MSB,
9879 not the LSB and width. */
9880 Rd = inst.operands[0].reg;
9881 reject_bad_reg (Rd);
9882 inst.instruction |= Rd << 8;
9883 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9884 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9885 inst.instruction |= msb - 1;
9886 }
9887
9888 static void
9889 do_t_bfi (void)
9890 {
9891 int Rd, Rn;
9892 unsigned int msb;
9893
9894 Rd = inst.operands[0].reg;
9895 reject_bad_reg (Rd);
9896
9897 /* #0 in second position is alternative syntax for bfc, which is
9898 the same instruction but with REG_PC in the Rm field. */
9899 if (!inst.operands[1].isreg)
9900 Rn = REG_PC;
9901 else
9902 {
9903 Rn = inst.operands[1].reg;
9904 reject_bad_reg (Rn);
9905 }
9906
9907 msb = inst.operands[2].imm + inst.operands[3].imm;
9908 constraint (msb > 32, _("bit-field extends past end of register"));
9909 /* The instruction encoding stores the LSB and MSB,
9910 not the LSB and width. */
9911 inst.instruction |= Rd << 8;
9912 inst.instruction |= Rn << 16;
9913 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9914 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9915 inst.instruction |= msb - 1;
9916 }
9917
9918 static void
9919 do_t_bfx (void)
9920 {
9921 unsigned Rd, Rn;
9922
9923 Rd = inst.operands[0].reg;
9924 Rn = inst.operands[1].reg;
9925
9926 reject_bad_reg (Rd);
9927 reject_bad_reg (Rn);
9928
9929 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9930 _("bit-field extends past end of register"));
9931 inst.instruction |= Rd << 8;
9932 inst.instruction |= Rn << 16;
9933 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9934 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9935 inst.instruction |= inst.operands[3].imm - 1;
9936 }
9937
9938 /* ARM V5 Thumb BLX (argument parse)
9939 BLX <target_addr> which is BLX(1)
9940 BLX <Rm> which is BLX(2)
9941 Unfortunately, there are two different opcodes for this mnemonic.
9942 So, the insns[].value is not used, and the code here zaps values
9943 into inst.instruction.
9944
9945 ??? How to take advantage of the additional two bits of displacement
9946 available in Thumb32 mode? Need new relocation? */
9947
9948 static void
9949 do_t_blx (void)
9950 {
9951 set_it_insn_type_last ();
9952
9953 if (inst.operands[0].isreg)
9954 {
9955 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9956 /* We have a register, so this is BLX(2). */
9957 inst.instruction |= inst.operands[0].reg << 3;
9958 }
9959 else
9960 {
9961 /* No register. This must be BLX(1). */
9962 inst.instruction = 0xf000e800;
9963 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
9964 }
9965 }
9966
9967 static void
9968 do_t_branch (void)
9969 {
9970 int opcode;
9971 int cond;
9972 int reloc;
9973
9974 cond = inst.cond;
9975 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9976
9977 if (in_it_block ())
9978 {
9979 /* Conditional branches inside IT blocks are encoded as unconditional
9980 branches. */
9981 cond = COND_ALWAYS;
9982 }
9983 else
9984 cond = inst.cond;
9985
9986 if (cond != COND_ALWAYS)
9987 opcode = T_MNEM_bcond;
9988 else
9989 opcode = inst.instruction;
9990
9991 if (unified_syntax
9992 && (inst.size_req == 4
9993 || (inst.size_req != 2
9994 && (inst.operands[0].hasreloc
9995 || inst.reloc.exp.X_op == O_constant))))
9996 {
9997 inst.instruction = THUMB_OP32(opcode);
9998 if (cond == COND_ALWAYS)
9999 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10000 else
10001 {
10002 gas_assert (cond != 0xF);
10003 inst.instruction |= cond << 22;
10004 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10005 }
10006 }
10007 else
10008 {
10009 inst.instruction = THUMB_OP16(opcode);
10010 if (cond == COND_ALWAYS)
10011 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10012 else
10013 {
10014 inst.instruction |= cond << 8;
10015 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10016 }
10017 /* Allow section relaxation. */
10018 if (unified_syntax && inst.size_req != 2)
10019 inst.relax = opcode;
10020 }
10021 inst.reloc.type = reloc;
10022 inst.reloc.pc_rel = 1;
10023 }
10024
10025 static void
10026 do_t_bkpt (void)
10027 {
10028 constraint (inst.cond != COND_ALWAYS,
10029 _("instruction is always unconditional"));
10030 if (inst.operands[0].present)
10031 {
10032 constraint (inst.operands[0].imm > 255,
10033 _("immediate value out of range"));
10034 inst.instruction |= inst.operands[0].imm;
10035 set_it_insn_type (NEUTRAL_IT_INSN);
10036 }
10037 }
10038
10039 static void
10040 do_t_branch23 (void)
10041 {
10042 set_it_insn_type_last ();
10043 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10044
10045 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10046 this file. We used to simply ignore the PLT reloc type here --
10047 the branch encoding is now needed to deal with TLSCALL relocs.
10048 So if we see a PLT reloc now, put it back to how it used to be to
10049 keep the preexisting behaviour. */
10050 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10051 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10052
10053 #if defined(OBJ_COFF)
10054 /* If the destination of the branch is a defined symbol which does not have
10055 the THUMB_FUNC attribute, then we must be calling a function which has
10056 the (interfacearm) attribute. We look for the Thumb entry point to that
10057 function and change the branch to refer to that function instead. */
10058 if ( inst.reloc.exp.X_op == O_symbol
10059 && inst.reloc.exp.X_add_symbol != NULL
10060 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10061 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10062 inst.reloc.exp.X_add_symbol =
10063 find_real_start (inst.reloc.exp.X_add_symbol);
10064 #endif
10065 }
10066
10067 static void
10068 do_t_bx (void)
10069 {
10070 set_it_insn_type_last ();
10071 inst.instruction |= inst.operands[0].reg << 3;
10072 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10073 should cause the alignment to be checked once it is known. This is
10074 because BX PC only works if the instruction is word aligned. */
10075 }
10076
10077 static void
10078 do_t_bxj (void)
10079 {
10080 int Rm;
10081
10082 set_it_insn_type_last ();
10083 Rm = inst.operands[0].reg;
10084 reject_bad_reg (Rm);
10085 inst.instruction |= Rm << 16;
10086 }
10087
10088 static void
10089 do_t_clz (void)
10090 {
10091 unsigned Rd;
10092 unsigned Rm;
10093
10094 Rd = inst.operands[0].reg;
10095 Rm = inst.operands[1].reg;
10096
10097 reject_bad_reg (Rd);
10098 reject_bad_reg (Rm);
10099
10100 inst.instruction |= Rd << 8;
10101 inst.instruction |= Rm << 16;
10102 inst.instruction |= Rm;
10103 }
10104
10105 static void
10106 do_t_cps (void)
10107 {
10108 set_it_insn_type (OUTSIDE_IT_INSN);
10109 inst.instruction |= inst.operands[0].imm;
10110 }
10111
10112 static void
10113 do_t_cpsi (void)
10114 {
10115 set_it_insn_type (OUTSIDE_IT_INSN);
10116 if (unified_syntax
10117 && (inst.operands[1].present || inst.size_req == 4)
10118 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10119 {
10120 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10121 inst.instruction = 0xf3af8000;
10122 inst.instruction |= imod << 9;
10123 inst.instruction |= inst.operands[0].imm << 5;
10124 if (inst.operands[1].present)
10125 inst.instruction |= 0x100 | inst.operands[1].imm;
10126 }
10127 else
10128 {
10129 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10130 && (inst.operands[0].imm & 4),
10131 _("selected processor does not support 'A' form "
10132 "of this instruction"));
10133 constraint (inst.operands[1].present || inst.size_req == 4,
10134 _("Thumb does not support the 2-argument "
10135 "form of this instruction"));
10136 inst.instruction |= inst.operands[0].imm;
10137 }
10138 }
10139
10140 /* THUMB CPY instruction (argument parse). */
10141
10142 static void
10143 do_t_cpy (void)
10144 {
10145 if (inst.size_req == 4)
10146 {
10147 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10148 inst.instruction |= inst.operands[0].reg << 8;
10149 inst.instruction |= inst.operands[1].reg;
10150 }
10151 else
10152 {
10153 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10154 inst.instruction |= (inst.operands[0].reg & 0x7);
10155 inst.instruction |= inst.operands[1].reg << 3;
10156 }
10157 }
10158
10159 static void
10160 do_t_cbz (void)
10161 {
10162 set_it_insn_type (OUTSIDE_IT_INSN);
10163 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10164 inst.instruction |= inst.operands[0].reg;
10165 inst.reloc.pc_rel = 1;
10166 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10167 }
10168
10169 static void
10170 do_t_dbg (void)
10171 {
10172 inst.instruction |= inst.operands[0].imm;
10173 }
10174
10175 static void
10176 do_t_div (void)
10177 {
10178 unsigned Rd, Rn, Rm;
10179
10180 Rd = inst.operands[0].reg;
10181 Rn = (inst.operands[1].present
10182 ? inst.operands[1].reg : Rd);
10183 Rm = inst.operands[2].reg;
10184
10185 reject_bad_reg (Rd);
10186 reject_bad_reg (Rn);
10187 reject_bad_reg (Rm);
10188
10189 inst.instruction |= Rd << 8;
10190 inst.instruction |= Rn << 16;
10191 inst.instruction |= Rm;
10192 }
10193
10194 static void
10195 do_t_hint (void)
10196 {
10197 if (unified_syntax && inst.size_req == 4)
10198 inst.instruction = THUMB_OP32 (inst.instruction);
10199 else
10200 inst.instruction = THUMB_OP16 (inst.instruction);
10201 }
10202
10203 static void
10204 do_t_it (void)
10205 {
10206 unsigned int cond = inst.operands[0].imm;
10207
10208 set_it_insn_type (IT_INSN);
10209 now_it.mask = (inst.instruction & 0xf) | 0x10;
10210 now_it.cc = cond;
10211
10212 /* If the condition is a negative condition, invert the mask. */
10213 if ((cond & 0x1) == 0x0)
10214 {
10215 unsigned int mask = inst.instruction & 0x000f;
10216
10217 if ((mask & 0x7) == 0)
10218 /* no conversion needed */;
10219 else if ((mask & 0x3) == 0)
10220 mask ^= 0x8;
10221 else if ((mask & 0x1) == 0)
10222 mask ^= 0xC;
10223 else
10224 mask ^= 0xE;
10225
10226 inst.instruction &= 0xfff0;
10227 inst.instruction |= mask;
10228 }
10229
10230 inst.instruction |= cond << 4;
10231 }
10232
10233 /* Helper function used for both push/pop and ldm/stm. */
10234 static void
10235 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10236 {
10237 bfd_boolean load;
10238
10239 load = (inst.instruction & (1 << 20)) != 0;
10240
10241 if (mask & (1 << 13))
10242 inst.error = _("SP not allowed in register list");
10243
10244 if ((mask & (1 << base)) != 0
10245 && writeback)
10246 inst.error = _("having the base register in the register list when "
10247 "using write back is UNPREDICTABLE");
10248
10249 if (load)
10250 {
10251 if (mask & (1 << 15))
10252 {
10253 if (mask & (1 << 14))
10254 inst.error = _("LR and PC should not both be in register list");
10255 else
10256 set_it_insn_type_last ();
10257 }
10258 }
10259 else
10260 {
10261 if (mask & (1 << 15))
10262 inst.error = _("PC not allowed in register list");
10263 }
10264
10265 if ((mask & (mask - 1)) == 0)
10266 {
10267 /* Single register transfers implemented as str/ldr. */
10268 if (writeback)
10269 {
10270 if (inst.instruction & (1 << 23))
10271 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10272 else
10273 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10274 }
10275 else
10276 {
10277 if (inst.instruction & (1 << 23))
10278 inst.instruction = 0x00800000; /* ia -> [base] */
10279 else
10280 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10281 }
10282
10283 inst.instruction |= 0xf8400000;
10284 if (load)
10285 inst.instruction |= 0x00100000;
10286
10287 mask = ffs (mask) - 1;
10288 mask <<= 12;
10289 }
10290 else if (writeback)
10291 inst.instruction |= WRITE_BACK;
10292
10293 inst.instruction |= mask;
10294 inst.instruction |= base << 16;
10295 }
10296
10297 static void
10298 do_t_ldmstm (void)
10299 {
10300 /* This really doesn't seem worth it. */
10301 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10302 _("expression too complex"));
10303 constraint (inst.operands[1].writeback,
10304 _("Thumb load/store multiple does not support {reglist}^"));
10305
10306 if (unified_syntax)
10307 {
10308 bfd_boolean narrow;
10309 unsigned mask;
10310
10311 narrow = FALSE;
10312 /* See if we can use a 16-bit instruction. */
10313 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10314 && inst.size_req != 4
10315 && !(inst.operands[1].imm & ~0xff))
10316 {
10317 mask = 1 << inst.operands[0].reg;
10318
10319 if (inst.operands[0].reg <= 7)
10320 {
10321 if (inst.instruction == T_MNEM_stmia
10322 ? inst.operands[0].writeback
10323 : (inst.operands[0].writeback
10324 == !(inst.operands[1].imm & mask)))
10325 {
10326 if (inst.instruction == T_MNEM_stmia
10327 && (inst.operands[1].imm & mask)
10328 && (inst.operands[1].imm & (mask - 1)))
10329 as_warn (_("value stored for r%d is UNKNOWN"),
10330 inst.operands[0].reg);
10331
10332 inst.instruction = THUMB_OP16 (inst.instruction);
10333 inst.instruction |= inst.operands[0].reg << 8;
10334 inst.instruction |= inst.operands[1].imm;
10335 narrow = TRUE;
10336 }
10337 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10338 {
10339 /* This means 1 register in reg list one of 3 situations:
10340 1. Instruction is stmia, but without writeback.
10341 2. lmdia without writeback, but with Rn not in
10342 reglist.
10343 3. ldmia with writeback, but with Rn in reglist.
10344 Case 3 is UNPREDICTABLE behaviour, so we handle
10345 case 1 and 2 which can be converted into a 16-bit
10346 str or ldr. The SP cases are handled below. */
10347 unsigned long opcode;
10348 /* First, record an error for Case 3. */
10349 if (inst.operands[1].imm & mask
10350 && inst.operands[0].writeback)
10351 inst.error =
10352 _("having the base register in the register list when "
10353 "using write back is UNPREDICTABLE");
10354
10355 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10356 : T_MNEM_ldr);
10357 inst.instruction = THUMB_OP16 (opcode);
10358 inst.instruction |= inst.operands[0].reg << 3;
10359 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10360 narrow = TRUE;
10361 }
10362 }
10363 else if (inst.operands[0] .reg == REG_SP)
10364 {
10365 if (inst.operands[0].writeback)
10366 {
10367 inst.instruction =
10368 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10369 ? T_MNEM_push : T_MNEM_pop);
10370 inst.instruction |= inst.operands[1].imm;
10371 narrow = TRUE;
10372 }
10373 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10374 {
10375 inst.instruction =
10376 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10377 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10378 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10379 narrow = TRUE;
10380 }
10381 }
10382 }
10383
10384 if (!narrow)
10385 {
10386 if (inst.instruction < 0xffff)
10387 inst.instruction = THUMB_OP32 (inst.instruction);
10388
10389 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10390 inst.operands[0].writeback);
10391 }
10392 }
10393 else
10394 {
10395 constraint (inst.operands[0].reg > 7
10396 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10397 constraint (inst.instruction != T_MNEM_ldmia
10398 && inst.instruction != T_MNEM_stmia,
10399 _("Thumb-2 instruction only valid in unified syntax"));
10400 if (inst.instruction == T_MNEM_stmia)
10401 {
10402 if (!inst.operands[0].writeback)
10403 as_warn (_("this instruction will write back the base register"));
10404 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10405 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10406 as_warn (_("value stored for r%d is UNKNOWN"),
10407 inst.operands[0].reg);
10408 }
10409 else
10410 {
10411 if (!inst.operands[0].writeback
10412 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10413 as_warn (_("this instruction will write back the base register"));
10414 else if (inst.operands[0].writeback
10415 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10416 as_warn (_("this instruction will not write back the base register"));
10417 }
10418
10419 inst.instruction = THUMB_OP16 (inst.instruction);
10420 inst.instruction |= inst.operands[0].reg << 8;
10421 inst.instruction |= inst.operands[1].imm;
10422 }
10423 }
10424
10425 static void
10426 do_t_ldrex (void)
10427 {
10428 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10429 || inst.operands[1].postind || inst.operands[1].writeback
10430 || inst.operands[1].immisreg || inst.operands[1].shifted
10431 || inst.operands[1].negative,
10432 BAD_ADDR_MODE);
10433
10434 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10435
10436 inst.instruction |= inst.operands[0].reg << 12;
10437 inst.instruction |= inst.operands[1].reg << 16;
10438 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10439 }
10440
10441 static void
10442 do_t_ldrexd (void)
10443 {
10444 if (!inst.operands[1].present)
10445 {
10446 constraint (inst.operands[0].reg == REG_LR,
10447 _("r14 not allowed as first register "
10448 "when second register is omitted"));
10449 inst.operands[1].reg = inst.operands[0].reg + 1;
10450 }
10451 constraint (inst.operands[0].reg == inst.operands[1].reg,
10452 BAD_OVERLAP);
10453
10454 inst.instruction |= inst.operands[0].reg << 12;
10455 inst.instruction |= inst.operands[1].reg << 8;
10456 inst.instruction |= inst.operands[2].reg << 16;
10457 }
10458
10459 static void
10460 do_t_ldst (void)
10461 {
10462 unsigned long opcode;
10463 int Rn;
10464
10465 if (inst.operands[0].isreg
10466 && !inst.operands[0].preind
10467 && inst.operands[0].reg == REG_PC)
10468 set_it_insn_type_last ();
10469
10470 opcode = inst.instruction;
10471 if (unified_syntax)
10472 {
10473 if (!inst.operands[1].isreg)
10474 {
10475 if (opcode <= 0xffff)
10476 inst.instruction = THUMB_OP32 (opcode);
10477 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10478 return;
10479 }
10480 if (inst.operands[1].isreg
10481 && !inst.operands[1].writeback
10482 && !inst.operands[1].shifted && !inst.operands[1].postind
10483 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10484 && opcode <= 0xffff
10485 && inst.size_req != 4)
10486 {
10487 /* Insn may have a 16-bit form. */
10488 Rn = inst.operands[1].reg;
10489 if (inst.operands[1].immisreg)
10490 {
10491 inst.instruction = THUMB_OP16 (opcode);
10492 /* [Rn, Rik] */
10493 if (Rn <= 7 && inst.operands[1].imm <= 7)
10494 goto op16;
10495 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10496 reject_bad_reg (inst.operands[1].imm);
10497 }
10498 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10499 && opcode != T_MNEM_ldrsb)
10500 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10501 || (Rn == REG_SP && opcode == T_MNEM_str))
10502 {
10503 /* [Rn, #const] */
10504 if (Rn > 7)
10505 {
10506 if (Rn == REG_PC)
10507 {
10508 if (inst.reloc.pc_rel)
10509 opcode = T_MNEM_ldr_pc2;
10510 else
10511 opcode = T_MNEM_ldr_pc;
10512 }
10513 else
10514 {
10515 if (opcode == T_MNEM_ldr)
10516 opcode = T_MNEM_ldr_sp;
10517 else
10518 opcode = T_MNEM_str_sp;
10519 }
10520 inst.instruction = inst.operands[0].reg << 8;
10521 }
10522 else
10523 {
10524 inst.instruction = inst.operands[0].reg;
10525 inst.instruction |= inst.operands[1].reg << 3;
10526 }
10527 inst.instruction |= THUMB_OP16 (opcode);
10528 if (inst.size_req == 2)
10529 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10530 else
10531 inst.relax = opcode;
10532 return;
10533 }
10534 }
10535 /* Definitely a 32-bit variant. */
10536
10537 /* Warning for Erratum 752419. */
10538 if (opcode == T_MNEM_ldr
10539 && inst.operands[0].reg == REG_SP
10540 && inst.operands[1].writeback == 1
10541 && !inst.operands[1].immisreg)
10542 {
10543 if (no_cpu_selected ()
10544 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10545 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10546 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10547 as_warn (_("This instruction may be unpredictable "
10548 "if executed on M-profile cores "
10549 "with interrupts enabled."));
10550 }
10551
10552 /* Do some validations regarding addressing modes. */
10553 if (inst.operands[1].immisreg)
10554 reject_bad_reg (inst.operands[1].imm);
10555
10556 constraint (inst.operands[1].writeback == 1
10557 && inst.operands[0].reg == inst.operands[1].reg,
10558 BAD_OVERLAP);
10559
10560 inst.instruction = THUMB_OP32 (opcode);
10561 inst.instruction |= inst.operands[0].reg << 12;
10562 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10563 check_ldr_r15_aligned ();
10564 return;
10565 }
10566
10567 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10568
10569 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10570 {
10571 /* Only [Rn,Rm] is acceptable. */
10572 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10573 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10574 || inst.operands[1].postind || inst.operands[1].shifted
10575 || inst.operands[1].negative,
10576 _("Thumb does not support this addressing mode"));
10577 inst.instruction = THUMB_OP16 (inst.instruction);
10578 goto op16;
10579 }
10580
10581 inst.instruction = THUMB_OP16 (inst.instruction);
10582 if (!inst.operands[1].isreg)
10583 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10584 return;
10585
10586 constraint (!inst.operands[1].preind
10587 || inst.operands[1].shifted
10588 || inst.operands[1].writeback,
10589 _("Thumb does not support this addressing mode"));
10590 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10591 {
10592 constraint (inst.instruction & 0x0600,
10593 _("byte or halfword not valid for base register"));
10594 constraint (inst.operands[1].reg == REG_PC
10595 && !(inst.instruction & THUMB_LOAD_BIT),
10596 _("r15 based store not allowed"));
10597 constraint (inst.operands[1].immisreg,
10598 _("invalid base register for register offset"));
10599
10600 if (inst.operands[1].reg == REG_PC)
10601 inst.instruction = T_OPCODE_LDR_PC;
10602 else if (inst.instruction & THUMB_LOAD_BIT)
10603 inst.instruction = T_OPCODE_LDR_SP;
10604 else
10605 inst.instruction = T_OPCODE_STR_SP;
10606
10607 inst.instruction |= inst.operands[0].reg << 8;
10608 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10609 return;
10610 }
10611
10612 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10613 if (!inst.operands[1].immisreg)
10614 {
10615 /* Immediate offset. */
10616 inst.instruction |= inst.operands[0].reg;
10617 inst.instruction |= inst.operands[1].reg << 3;
10618 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10619 return;
10620 }
10621
10622 /* Register offset. */
10623 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10624 constraint (inst.operands[1].negative,
10625 _("Thumb does not support this addressing mode"));
10626
10627 op16:
10628 switch (inst.instruction)
10629 {
10630 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10631 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10632 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10633 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10634 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10635 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10636 case 0x5600 /* ldrsb */:
10637 case 0x5e00 /* ldrsh */: break;
10638 default: abort ();
10639 }
10640
10641 inst.instruction |= inst.operands[0].reg;
10642 inst.instruction |= inst.operands[1].reg << 3;
10643 inst.instruction |= inst.operands[1].imm << 6;
10644 }
10645
10646 static void
10647 do_t_ldstd (void)
10648 {
10649 if (!inst.operands[1].present)
10650 {
10651 inst.operands[1].reg = inst.operands[0].reg + 1;
10652 constraint (inst.operands[0].reg == REG_LR,
10653 _("r14 not allowed here"));
10654 }
10655 inst.instruction |= inst.operands[0].reg << 12;
10656 inst.instruction |= inst.operands[1].reg << 8;
10657 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10658 }
10659
10660 static void
10661 do_t_ldstt (void)
10662 {
10663 inst.instruction |= inst.operands[0].reg << 12;
10664 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10665 }
10666
10667 static void
10668 do_t_mla (void)
10669 {
10670 unsigned Rd, Rn, Rm, Ra;
10671
10672 Rd = inst.operands[0].reg;
10673 Rn = inst.operands[1].reg;
10674 Rm = inst.operands[2].reg;
10675 Ra = inst.operands[3].reg;
10676
10677 reject_bad_reg (Rd);
10678 reject_bad_reg (Rn);
10679 reject_bad_reg (Rm);
10680 reject_bad_reg (Ra);
10681
10682 inst.instruction |= Rd << 8;
10683 inst.instruction |= Rn << 16;
10684 inst.instruction |= Rm;
10685 inst.instruction |= Ra << 12;
10686 }
10687
10688 static void
10689 do_t_mlal (void)
10690 {
10691 unsigned RdLo, RdHi, Rn, Rm;
10692
10693 RdLo = inst.operands[0].reg;
10694 RdHi = inst.operands[1].reg;
10695 Rn = inst.operands[2].reg;
10696 Rm = inst.operands[3].reg;
10697
10698 reject_bad_reg (RdLo);
10699 reject_bad_reg (RdHi);
10700 reject_bad_reg (Rn);
10701 reject_bad_reg (Rm);
10702
10703 inst.instruction |= RdLo << 12;
10704 inst.instruction |= RdHi << 8;
10705 inst.instruction |= Rn << 16;
10706 inst.instruction |= Rm;
10707 }
10708
10709 static void
10710 do_t_mov_cmp (void)
10711 {
10712 unsigned Rn, Rm;
10713
10714 Rn = inst.operands[0].reg;
10715 Rm = inst.operands[1].reg;
10716
10717 if (Rn == REG_PC)
10718 set_it_insn_type_last ();
10719
10720 if (unified_syntax)
10721 {
10722 int r0off = (inst.instruction == T_MNEM_mov
10723 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10724 unsigned long opcode;
10725 bfd_boolean narrow;
10726 bfd_boolean low_regs;
10727
10728 low_regs = (Rn <= 7 && Rm <= 7);
10729 opcode = inst.instruction;
10730 if (in_it_block ())
10731 narrow = opcode != T_MNEM_movs;
10732 else
10733 narrow = opcode != T_MNEM_movs || low_regs;
10734 if (inst.size_req == 4
10735 || inst.operands[1].shifted)
10736 narrow = FALSE;
10737
10738 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10739 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10740 && !inst.operands[1].shifted
10741 && Rn == REG_PC
10742 && Rm == REG_LR)
10743 {
10744 inst.instruction = T2_SUBS_PC_LR;
10745 return;
10746 }
10747
10748 if (opcode == T_MNEM_cmp)
10749 {
10750 constraint (Rn == REG_PC, BAD_PC);
10751 if (narrow)
10752 {
10753 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10754 but valid. */
10755 warn_deprecated_sp (Rm);
10756 /* R15 was documented as a valid choice for Rm in ARMv6,
10757 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10758 tools reject R15, so we do too. */
10759 constraint (Rm == REG_PC, BAD_PC);
10760 }
10761 else
10762 reject_bad_reg (Rm);
10763 }
10764 else if (opcode == T_MNEM_mov
10765 || opcode == T_MNEM_movs)
10766 {
10767 if (inst.operands[1].isreg)
10768 {
10769 if (opcode == T_MNEM_movs)
10770 {
10771 reject_bad_reg (Rn);
10772 reject_bad_reg (Rm);
10773 }
10774 else if (narrow)
10775 {
10776 /* This is mov.n. */
10777 if ((Rn == REG_SP || Rn == REG_PC)
10778 && (Rm == REG_SP || Rm == REG_PC))
10779 {
10780 as_warn (_("Use of r%u as a source register is "
10781 "deprecated when r%u is the destination "
10782 "register."), Rm, Rn);
10783 }
10784 }
10785 else
10786 {
10787 /* This is mov.w. */
10788 constraint (Rn == REG_PC, BAD_PC);
10789 constraint (Rm == REG_PC, BAD_PC);
10790 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10791 }
10792 }
10793 else
10794 reject_bad_reg (Rn);
10795 }
10796
10797 if (!inst.operands[1].isreg)
10798 {
10799 /* Immediate operand. */
10800 if (!in_it_block () && opcode == T_MNEM_mov)
10801 narrow = 0;
10802 if (low_regs && narrow)
10803 {
10804 inst.instruction = THUMB_OP16 (opcode);
10805 inst.instruction |= Rn << 8;
10806 if (inst.size_req == 2)
10807 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10808 else
10809 inst.relax = opcode;
10810 }
10811 else
10812 {
10813 inst.instruction = THUMB_OP32 (inst.instruction);
10814 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10815 inst.instruction |= Rn << r0off;
10816 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10817 }
10818 }
10819 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10820 && (inst.instruction == T_MNEM_mov
10821 || inst.instruction == T_MNEM_movs))
10822 {
10823 /* Register shifts are encoded as separate shift instructions. */
10824 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10825
10826 if (in_it_block ())
10827 narrow = !flags;
10828 else
10829 narrow = flags;
10830
10831 if (inst.size_req == 4)
10832 narrow = FALSE;
10833
10834 if (!low_regs || inst.operands[1].imm > 7)
10835 narrow = FALSE;
10836
10837 if (Rn != Rm)
10838 narrow = FALSE;
10839
10840 switch (inst.operands[1].shift_kind)
10841 {
10842 case SHIFT_LSL:
10843 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10844 break;
10845 case SHIFT_ASR:
10846 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10847 break;
10848 case SHIFT_LSR:
10849 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10850 break;
10851 case SHIFT_ROR:
10852 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10853 break;
10854 default:
10855 abort ();
10856 }
10857
10858 inst.instruction = opcode;
10859 if (narrow)
10860 {
10861 inst.instruction |= Rn;
10862 inst.instruction |= inst.operands[1].imm << 3;
10863 }
10864 else
10865 {
10866 if (flags)
10867 inst.instruction |= CONDS_BIT;
10868
10869 inst.instruction |= Rn << 8;
10870 inst.instruction |= Rm << 16;
10871 inst.instruction |= inst.operands[1].imm;
10872 }
10873 }
10874 else if (!narrow)
10875 {
10876 /* Some mov with immediate shift have narrow variants.
10877 Register shifts are handled above. */
10878 if (low_regs && inst.operands[1].shifted
10879 && (inst.instruction == T_MNEM_mov
10880 || inst.instruction == T_MNEM_movs))
10881 {
10882 if (in_it_block ())
10883 narrow = (inst.instruction == T_MNEM_mov);
10884 else
10885 narrow = (inst.instruction == T_MNEM_movs);
10886 }
10887
10888 if (narrow)
10889 {
10890 switch (inst.operands[1].shift_kind)
10891 {
10892 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10893 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10894 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10895 default: narrow = FALSE; break;
10896 }
10897 }
10898
10899 if (narrow)
10900 {
10901 inst.instruction |= Rn;
10902 inst.instruction |= Rm << 3;
10903 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10904 }
10905 else
10906 {
10907 inst.instruction = THUMB_OP32 (inst.instruction);
10908 inst.instruction |= Rn << r0off;
10909 encode_thumb32_shifted_operand (1);
10910 }
10911 }
10912 else
10913 switch (inst.instruction)
10914 {
10915 case T_MNEM_mov:
10916 inst.instruction = T_OPCODE_MOV_HR;
10917 inst.instruction |= (Rn & 0x8) << 4;
10918 inst.instruction |= (Rn & 0x7);
10919 inst.instruction |= Rm << 3;
10920 break;
10921
10922 case T_MNEM_movs:
10923 /* We know we have low registers at this point.
10924 Generate LSLS Rd, Rs, #0. */
10925 inst.instruction = T_OPCODE_LSL_I;
10926 inst.instruction |= Rn;
10927 inst.instruction |= Rm << 3;
10928 break;
10929
10930 case T_MNEM_cmp:
10931 if (low_regs)
10932 {
10933 inst.instruction = T_OPCODE_CMP_LR;
10934 inst.instruction |= Rn;
10935 inst.instruction |= Rm << 3;
10936 }
10937 else
10938 {
10939 inst.instruction = T_OPCODE_CMP_HR;
10940 inst.instruction |= (Rn & 0x8) << 4;
10941 inst.instruction |= (Rn & 0x7);
10942 inst.instruction |= Rm << 3;
10943 }
10944 break;
10945 }
10946 return;
10947 }
10948
10949 inst.instruction = THUMB_OP16 (inst.instruction);
10950
10951 /* PR 10443: Do not silently ignore shifted operands. */
10952 constraint (inst.operands[1].shifted,
10953 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10954
10955 if (inst.operands[1].isreg)
10956 {
10957 if (Rn < 8 && Rm < 8)
10958 {
10959 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10960 since a MOV instruction produces unpredictable results. */
10961 if (inst.instruction == T_OPCODE_MOV_I8)
10962 inst.instruction = T_OPCODE_ADD_I3;
10963 else
10964 inst.instruction = T_OPCODE_CMP_LR;
10965
10966 inst.instruction |= Rn;
10967 inst.instruction |= Rm << 3;
10968 }
10969 else
10970 {
10971 if (inst.instruction == T_OPCODE_MOV_I8)
10972 inst.instruction = T_OPCODE_MOV_HR;
10973 else
10974 inst.instruction = T_OPCODE_CMP_HR;
10975 do_t_cpy ();
10976 }
10977 }
10978 else
10979 {
10980 constraint (Rn > 7,
10981 _("only lo regs allowed with immediate"));
10982 inst.instruction |= Rn << 8;
10983 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10984 }
10985 }
10986
10987 static void
10988 do_t_mov16 (void)
10989 {
10990 unsigned Rd;
10991 bfd_vma imm;
10992 bfd_boolean top;
10993
10994 top = (inst.instruction & 0x00800000) != 0;
10995 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10996 {
10997 constraint (top, _(":lower16: not allowed this instruction"));
10998 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10999 }
11000 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11001 {
11002 constraint (!top, _(":upper16: not allowed this instruction"));
11003 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11004 }
11005
11006 Rd = inst.operands[0].reg;
11007 reject_bad_reg (Rd);
11008
11009 inst.instruction |= Rd << 8;
11010 if (inst.reloc.type == BFD_RELOC_UNUSED)
11011 {
11012 imm = inst.reloc.exp.X_add_number;
11013 inst.instruction |= (imm & 0xf000) << 4;
11014 inst.instruction |= (imm & 0x0800) << 15;
11015 inst.instruction |= (imm & 0x0700) << 4;
11016 inst.instruction |= (imm & 0x00ff);
11017 }
11018 }
11019
11020 static void
11021 do_t_mvn_tst (void)
11022 {
11023 unsigned Rn, Rm;
11024
11025 Rn = inst.operands[0].reg;
11026 Rm = inst.operands[1].reg;
11027
11028 if (inst.instruction == T_MNEM_cmp
11029 || inst.instruction == T_MNEM_cmn)
11030 constraint (Rn == REG_PC, BAD_PC);
11031 else
11032 reject_bad_reg (Rn);
11033 reject_bad_reg (Rm);
11034
11035 if (unified_syntax)
11036 {
11037 int r0off = (inst.instruction == T_MNEM_mvn
11038 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11039 bfd_boolean narrow;
11040
11041 if (inst.size_req == 4
11042 || inst.instruction > 0xffff
11043 || inst.operands[1].shifted
11044 || Rn > 7 || Rm > 7)
11045 narrow = FALSE;
11046 else if (inst.instruction == T_MNEM_cmn)
11047 narrow = TRUE;
11048 else if (THUMB_SETS_FLAGS (inst.instruction))
11049 narrow = !in_it_block ();
11050 else
11051 narrow = in_it_block ();
11052
11053 if (!inst.operands[1].isreg)
11054 {
11055 /* For an immediate, we always generate a 32-bit opcode;
11056 section relaxation will shrink it later if possible. */
11057 if (inst.instruction < 0xffff)
11058 inst.instruction = THUMB_OP32 (inst.instruction);
11059 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11060 inst.instruction |= Rn << r0off;
11061 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11062 }
11063 else
11064 {
11065 /* See if we can do this with a 16-bit instruction. */
11066 if (narrow)
11067 {
11068 inst.instruction = THUMB_OP16 (inst.instruction);
11069 inst.instruction |= Rn;
11070 inst.instruction |= Rm << 3;
11071 }
11072 else
11073 {
11074 constraint (inst.operands[1].shifted
11075 && inst.operands[1].immisreg,
11076 _("shift must be constant"));
11077 if (inst.instruction < 0xffff)
11078 inst.instruction = THUMB_OP32 (inst.instruction);
11079 inst.instruction |= Rn << r0off;
11080 encode_thumb32_shifted_operand (1);
11081 }
11082 }
11083 }
11084 else
11085 {
11086 constraint (inst.instruction > 0xffff
11087 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11088 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11089 _("unshifted register required"));
11090 constraint (Rn > 7 || Rm > 7,
11091 BAD_HIREG);
11092
11093 inst.instruction = THUMB_OP16 (inst.instruction);
11094 inst.instruction |= Rn;
11095 inst.instruction |= Rm << 3;
11096 }
11097 }
11098
11099 static void
11100 do_t_mrs (void)
11101 {
11102 unsigned Rd;
11103
11104 if (do_vfp_nsyn_mrs () == SUCCESS)
11105 return;
11106
11107 Rd = inst.operands[0].reg;
11108 reject_bad_reg (Rd);
11109 inst.instruction |= Rd << 8;
11110
11111 if (inst.operands[1].isreg)
11112 {
11113 unsigned br = inst.operands[1].reg;
11114 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11115 as_bad (_("bad register for mrs"));
11116
11117 inst.instruction |= br & (0xf << 16);
11118 inst.instruction |= (br & 0x300) >> 4;
11119 inst.instruction |= (br & SPSR_BIT) >> 2;
11120 }
11121 else
11122 {
11123 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11124
11125 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11126 constraint (flags != 0, _("selected processor does not support "
11127 "requested special purpose register"));
11128 else
11129 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11130 devices). */
11131 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11132 _("'APSR', 'CPSR' or 'SPSR' expected"));
11133
11134 inst.instruction |= (flags & SPSR_BIT) >> 2;
11135 inst.instruction |= inst.operands[1].imm & 0xff;
11136 inst.instruction |= 0xf0000;
11137 }
11138 }
11139
11140 static void
11141 do_t_msr (void)
11142 {
11143 int flags;
11144 unsigned Rn;
11145
11146 if (do_vfp_nsyn_msr () == SUCCESS)
11147 return;
11148
11149 constraint (!inst.operands[1].isreg,
11150 _("Thumb encoding does not support an immediate here"));
11151
11152 if (inst.operands[0].isreg)
11153 flags = (int)(inst.operands[0].reg);
11154 else
11155 flags = inst.operands[0].imm;
11156
11157 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11158 {
11159 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11160
11161 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11162 && (bits & ~(PSR_s | PSR_f)) != 0)
11163 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11164 && bits != PSR_f),
11165 _("selected processor does not support requested special "
11166 "purpose register"));
11167 }
11168 else
11169 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11170 "requested special purpose register"));
11171
11172 Rn = inst.operands[1].reg;
11173 reject_bad_reg (Rn);
11174
11175 inst.instruction |= (flags & SPSR_BIT) >> 2;
11176 inst.instruction |= (flags & 0xf0000) >> 8;
11177 inst.instruction |= (flags & 0x300) >> 4;
11178 inst.instruction |= (flags & 0xff);
11179 inst.instruction |= Rn << 16;
11180 }
11181
11182 static void
11183 do_t_mul (void)
11184 {
11185 bfd_boolean narrow;
11186 unsigned Rd, Rn, Rm;
11187
11188 if (!inst.operands[2].present)
11189 inst.operands[2].reg = inst.operands[0].reg;
11190
11191 Rd = inst.operands[0].reg;
11192 Rn = inst.operands[1].reg;
11193 Rm = inst.operands[2].reg;
11194
11195 if (unified_syntax)
11196 {
11197 if (inst.size_req == 4
11198 || (Rd != Rn
11199 && Rd != Rm)
11200 || Rn > 7
11201 || Rm > 7)
11202 narrow = FALSE;
11203 else if (inst.instruction == T_MNEM_muls)
11204 narrow = !in_it_block ();
11205 else
11206 narrow = in_it_block ();
11207 }
11208 else
11209 {
11210 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11211 constraint (Rn > 7 || Rm > 7,
11212 BAD_HIREG);
11213 narrow = TRUE;
11214 }
11215
11216 if (narrow)
11217 {
11218 /* 16-bit MULS/Conditional MUL. */
11219 inst.instruction = THUMB_OP16 (inst.instruction);
11220 inst.instruction |= Rd;
11221
11222 if (Rd == Rn)
11223 inst.instruction |= Rm << 3;
11224 else if (Rd == Rm)
11225 inst.instruction |= Rn << 3;
11226 else
11227 constraint (1, _("dest must overlap one source register"));
11228 }
11229 else
11230 {
11231 constraint (inst.instruction != T_MNEM_mul,
11232 _("Thumb-2 MUL must not set flags"));
11233 /* 32-bit MUL. */
11234 inst.instruction = THUMB_OP32 (inst.instruction);
11235 inst.instruction |= Rd << 8;
11236 inst.instruction |= Rn << 16;
11237 inst.instruction |= Rm << 0;
11238
11239 reject_bad_reg (Rd);
11240 reject_bad_reg (Rn);
11241 reject_bad_reg (Rm);
11242 }
11243 }
11244
11245 static void
11246 do_t_mull (void)
11247 {
11248 unsigned RdLo, RdHi, Rn, Rm;
11249
11250 RdLo = inst.operands[0].reg;
11251 RdHi = inst.operands[1].reg;
11252 Rn = inst.operands[2].reg;
11253 Rm = inst.operands[3].reg;
11254
11255 reject_bad_reg (RdLo);
11256 reject_bad_reg (RdHi);
11257 reject_bad_reg (Rn);
11258 reject_bad_reg (Rm);
11259
11260 inst.instruction |= RdLo << 12;
11261 inst.instruction |= RdHi << 8;
11262 inst.instruction |= Rn << 16;
11263 inst.instruction |= Rm;
11264
11265 if (RdLo == RdHi)
11266 as_tsktsk (_("rdhi and rdlo must be different"));
11267 }
11268
11269 static void
11270 do_t_nop (void)
11271 {
11272 set_it_insn_type (NEUTRAL_IT_INSN);
11273
11274 if (unified_syntax)
11275 {
11276 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11277 {
11278 inst.instruction = THUMB_OP32 (inst.instruction);
11279 inst.instruction |= inst.operands[0].imm;
11280 }
11281 else
11282 {
11283 /* PR9722: Check for Thumb2 availability before
11284 generating a thumb2 nop instruction. */
11285 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11286 {
11287 inst.instruction = THUMB_OP16 (inst.instruction);
11288 inst.instruction |= inst.operands[0].imm << 4;
11289 }
11290 else
11291 inst.instruction = 0x46c0;
11292 }
11293 }
11294 else
11295 {
11296 constraint (inst.operands[0].present,
11297 _("Thumb does not support NOP with hints"));
11298 inst.instruction = 0x46c0;
11299 }
11300 }
11301
11302 static void
11303 do_t_neg (void)
11304 {
11305 if (unified_syntax)
11306 {
11307 bfd_boolean narrow;
11308
11309 if (THUMB_SETS_FLAGS (inst.instruction))
11310 narrow = !in_it_block ();
11311 else
11312 narrow = in_it_block ();
11313 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11314 narrow = FALSE;
11315 if (inst.size_req == 4)
11316 narrow = FALSE;
11317
11318 if (!narrow)
11319 {
11320 inst.instruction = THUMB_OP32 (inst.instruction);
11321 inst.instruction |= inst.operands[0].reg << 8;
11322 inst.instruction |= inst.operands[1].reg << 16;
11323 }
11324 else
11325 {
11326 inst.instruction = THUMB_OP16 (inst.instruction);
11327 inst.instruction |= inst.operands[0].reg;
11328 inst.instruction |= inst.operands[1].reg << 3;
11329 }
11330 }
11331 else
11332 {
11333 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11334 BAD_HIREG);
11335 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11336
11337 inst.instruction = THUMB_OP16 (inst.instruction);
11338 inst.instruction |= inst.operands[0].reg;
11339 inst.instruction |= inst.operands[1].reg << 3;
11340 }
11341 }
11342
11343 static void
11344 do_t_orn (void)
11345 {
11346 unsigned Rd, Rn;
11347
11348 Rd = inst.operands[0].reg;
11349 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11350
11351 reject_bad_reg (Rd);
11352 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11353 reject_bad_reg (Rn);
11354
11355 inst.instruction |= Rd << 8;
11356 inst.instruction |= Rn << 16;
11357
11358 if (!inst.operands[2].isreg)
11359 {
11360 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11361 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11362 }
11363 else
11364 {
11365 unsigned Rm;
11366
11367 Rm = inst.operands[2].reg;
11368 reject_bad_reg (Rm);
11369
11370 constraint (inst.operands[2].shifted
11371 && inst.operands[2].immisreg,
11372 _("shift must be constant"));
11373 encode_thumb32_shifted_operand (2);
11374 }
11375 }
11376
11377 static void
11378 do_t_pkhbt (void)
11379 {
11380 unsigned Rd, Rn, Rm;
11381
11382 Rd = inst.operands[0].reg;
11383 Rn = inst.operands[1].reg;
11384 Rm = inst.operands[2].reg;
11385
11386 reject_bad_reg (Rd);
11387 reject_bad_reg (Rn);
11388 reject_bad_reg (Rm);
11389
11390 inst.instruction |= Rd << 8;
11391 inst.instruction |= Rn << 16;
11392 inst.instruction |= Rm;
11393 if (inst.operands[3].present)
11394 {
11395 unsigned int val = inst.reloc.exp.X_add_number;
11396 constraint (inst.reloc.exp.X_op != O_constant,
11397 _("expression too complex"));
11398 inst.instruction |= (val & 0x1c) << 10;
11399 inst.instruction |= (val & 0x03) << 6;
11400 }
11401 }
11402
11403 static void
11404 do_t_pkhtb (void)
11405 {
11406 if (!inst.operands[3].present)
11407 {
11408 unsigned Rtmp;
11409
11410 inst.instruction &= ~0x00000020;
11411
11412 /* PR 10168. Swap the Rm and Rn registers. */
11413 Rtmp = inst.operands[1].reg;
11414 inst.operands[1].reg = inst.operands[2].reg;
11415 inst.operands[2].reg = Rtmp;
11416 }
11417 do_t_pkhbt ();
11418 }
11419
11420 static void
11421 do_t_pld (void)
11422 {
11423 if (inst.operands[0].immisreg)
11424 reject_bad_reg (inst.operands[0].imm);
11425
11426 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11427 }
11428
11429 static void
11430 do_t_push_pop (void)
11431 {
11432 unsigned mask;
11433
11434 constraint (inst.operands[0].writeback,
11435 _("push/pop do not support {reglist}^"));
11436 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11437 _("expression too complex"));
11438
11439 mask = inst.operands[0].imm;
11440 if ((mask & ~0xff) == 0)
11441 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11442 else if ((inst.instruction == T_MNEM_push
11443 && (mask & ~0xff) == 1 << REG_LR)
11444 || (inst.instruction == T_MNEM_pop
11445 && (mask & ~0xff) == 1 << REG_PC))
11446 {
11447 inst.instruction = THUMB_OP16 (inst.instruction);
11448 inst.instruction |= THUMB_PP_PC_LR;
11449 inst.instruction |= mask & 0xff;
11450 }
11451 else if (unified_syntax)
11452 {
11453 inst.instruction = THUMB_OP32 (inst.instruction);
11454 encode_thumb2_ldmstm (13, mask, TRUE);
11455 }
11456 else
11457 {
11458 inst.error = _("invalid register list to push/pop instruction");
11459 return;
11460 }
11461 }
11462
11463 static void
11464 do_t_rbit (void)
11465 {
11466 unsigned Rd, Rm;
11467
11468 Rd = inst.operands[0].reg;
11469 Rm = inst.operands[1].reg;
11470
11471 reject_bad_reg (Rd);
11472 reject_bad_reg (Rm);
11473
11474 inst.instruction |= Rd << 8;
11475 inst.instruction |= Rm << 16;
11476 inst.instruction |= Rm;
11477 }
11478
11479 static void
11480 do_t_rev (void)
11481 {
11482 unsigned Rd, Rm;
11483
11484 Rd = inst.operands[0].reg;
11485 Rm = inst.operands[1].reg;
11486
11487 reject_bad_reg (Rd);
11488 reject_bad_reg (Rm);
11489
11490 if (Rd <= 7 && Rm <= 7
11491 && inst.size_req != 4)
11492 {
11493 inst.instruction = THUMB_OP16 (inst.instruction);
11494 inst.instruction |= Rd;
11495 inst.instruction |= Rm << 3;
11496 }
11497 else if (unified_syntax)
11498 {
11499 inst.instruction = THUMB_OP32 (inst.instruction);
11500 inst.instruction |= Rd << 8;
11501 inst.instruction |= Rm << 16;
11502 inst.instruction |= Rm;
11503 }
11504 else
11505 inst.error = BAD_HIREG;
11506 }
11507
11508 static void
11509 do_t_rrx (void)
11510 {
11511 unsigned Rd, Rm;
11512
11513 Rd = inst.operands[0].reg;
11514 Rm = inst.operands[1].reg;
11515
11516 reject_bad_reg (Rd);
11517 reject_bad_reg (Rm);
11518
11519 inst.instruction |= Rd << 8;
11520 inst.instruction |= Rm;
11521 }
11522
11523 static void
11524 do_t_rsb (void)
11525 {
11526 unsigned Rd, Rs;
11527
11528 Rd = inst.operands[0].reg;
11529 Rs = (inst.operands[1].present
11530 ? inst.operands[1].reg /* Rd, Rs, foo */
11531 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11532
11533 reject_bad_reg (Rd);
11534 reject_bad_reg (Rs);
11535 if (inst.operands[2].isreg)
11536 reject_bad_reg (inst.operands[2].reg);
11537
11538 inst.instruction |= Rd << 8;
11539 inst.instruction |= Rs << 16;
11540 if (!inst.operands[2].isreg)
11541 {
11542 bfd_boolean narrow;
11543
11544 if ((inst.instruction & 0x00100000) != 0)
11545 narrow = !in_it_block ();
11546 else
11547 narrow = in_it_block ();
11548
11549 if (Rd > 7 || Rs > 7)
11550 narrow = FALSE;
11551
11552 if (inst.size_req == 4 || !unified_syntax)
11553 narrow = FALSE;
11554
11555 if (inst.reloc.exp.X_op != O_constant
11556 || inst.reloc.exp.X_add_number != 0)
11557 narrow = FALSE;
11558
11559 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11560 relaxation, but it doesn't seem worth the hassle. */
11561 if (narrow)
11562 {
11563 inst.reloc.type = BFD_RELOC_UNUSED;
11564 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11565 inst.instruction |= Rs << 3;
11566 inst.instruction |= Rd;
11567 }
11568 else
11569 {
11570 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11571 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11572 }
11573 }
11574 else
11575 encode_thumb32_shifted_operand (2);
11576 }
11577
11578 static void
11579 do_t_setend (void)
11580 {
11581 set_it_insn_type (OUTSIDE_IT_INSN);
11582 if (inst.operands[0].imm)
11583 inst.instruction |= 0x8;
11584 }
11585
11586 static void
11587 do_t_shift (void)
11588 {
11589 if (!inst.operands[1].present)
11590 inst.operands[1].reg = inst.operands[0].reg;
11591
11592 if (unified_syntax)
11593 {
11594 bfd_boolean narrow;
11595 int shift_kind;
11596
11597 switch (inst.instruction)
11598 {
11599 case T_MNEM_asr:
11600 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11601 case T_MNEM_lsl:
11602 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11603 case T_MNEM_lsr:
11604 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11605 case T_MNEM_ror:
11606 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11607 default: abort ();
11608 }
11609
11610 if (THUMB_SETS_FLAGS (inst.instruction))
11611 narrow = !in_it_block ();
11612 else
11613 narrow = in_it_block ();
11614 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11615 narrow = FALSE;
11616 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11617 narrow = FALSE;
11618 if (inst.operands[2].isreg
11619 && (inst.operands[1].reg != inst.operands[0].reg
11620 || inst.operands[2].reg > 7))
11621 narrow = FALSE;
11622 if (inst.size_req == 4)
11623 narrow = FALSE;
11624
11625 reject_bad_reg (inst.operands[0].reg);
11626 reject_bad_reg (inst.operands[1].reg);
11627
11628 if (!narrow)
11629 {
11630 if (inst.operands[2].isreg)
11631 {
11632 reject_bad_reg (inst.operands[2].reg);
11633 inst.instruction = THUMB_OP32 (inst.instruction);
11634 inst.instruction |= inst.operands[0].reg << 8;
11635 inst.instruction |= inst.operands[1].reg << 16;
11636 inst.instruction |= inst.operands[2].reg;
11637
11638 /* PR 12854: Error on extraneous shifts. */
11639 constraint (inst.operands[2].shifted,
11640 _("extraneous shift as part of operand to shift insn"));
11641 }
11642 else
11643 {
11644 inst.operands[1].shifted = 1;
11645 inst.operands[1].shift_kind = shift_kind;
11646 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11647 ? T_MNEM_movs : T_MNEM_mov);
11648 inst.instruction |= inst.operands[0].reg << 8;
11649 encode_thumb32_shifted_operand (1);
11650 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11651 inst.reloc.type = BFD_RELOC_UNUSED;
11652 }
11653 }
11654 else
11655 {
11656 if (inst.operands[2].isreg)
11657 {
11658 switch (shift_kind)
11659 {
11660 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11661 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11662 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11663 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11664 default: abort ();
11665 }
11666
11667 inst.instruction |= inst.operands[0].reg;
11668 inst.instruction |= inst.operands[2].reg << 3;
11669
11670 /* PR 12854: Error on extraneous shifts. */
11671 constraint (inst.operands[2].shifted,
11672 _("extraneous shift as part of operand to shift insn"));
11673 }
11674 else
11675 {
11676 switch (shift_kind)
11677 {
11678 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11679 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11680 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11681 default: abort ();
11682 }
11683 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11684 inst.instruction |= inst.operands[0].reg;
11685 inst.instruction |= inst.operands[1].reg << 3;
11686 }
11687 }
11688 }
11689 else
11690 {
11691 constraint (inst.operands[0].reg > 7
11692 || inst.operands[1].reg > 7, BAD_HIREG);
11693 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11694
11695 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11696 {
11697 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11698 constraint (inst.operands[0].reg != inst.operands[1].reg,
11699 _("source1 and dest must be same register"));
11700
11701 switch (inst.instruction)
11702 {
11703 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11704 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11705 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11706 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11707 default: abort ();
11708 }
11709
11710 inst.instruction |= inst.operands[0].reg;
11711 inst.instruction |= inst.operands[2].reg << 3;
11712
11713 /* PR 12854: Error on extraneous shifts. */
11714 constraint (inst.operands[2].shifted,
11715 _("extraneous shift as part of operand to shift insn"));
11716 }
11717 else
11718 {
11719 switch (inst.instruction)
11720 {
11721 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11722 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11723 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11724 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11725 default: abort ();
11726 }
11727 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11728 inst.instruction |= inst.operands[0].reg;
11729 inst.instruction |= inst.operands[1].reg << 3;
11730 }
11731 }
11732 }
11733
11734 static void
11735 do_t_simd (void)
11736 {
11737 unsigned Rd, Rn, Rm;
11738
11739 Rd = inst.operands[0].reg;
11740 Rn = inst.operands[1].reg;
11741 Rm = inst.operands[2].reg;
11742
11743 reject_bad_reg (Rd);
11744 reject_bad_reg (Rn);
11745 reject_bad_reg (Rm);
11746
11747 inst.instruction |= Rd << 8;
11748 inst.instruction |= Rn << 16;
11749 inst.instruction |= Rm;
11750 }
11751
11752 static void
11753 do_t_simd2 (void)
11754 {
11755 unsigned Rd, Rn, Rm;
11756
11757 Rd = inst.operands[0].reg;
11758 Rm = inst.operands[1].reg;
11759 Rn = inst.operands[2].reg;
11760
11761 reject_bad_reg (Rd);
11762 reject_bad_reg (Rn);
11763 reject_bad_reg (Rm);
11764
11765 inst.instruction |= Rd << 8;
11766 inst.instruction |= Rn << 16;
11767 inst.instruction |= Rm;
11768 }
11769
11770 static void
11771 do_t_smc (void)
11772 {
11773 unsigned int value = inst.reloc.exp.X_add_number;
11774 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11775 _("SMC is not permitted on this architecture"));
11776 constraint (inst.reloc.exp.X_op != O_constant,
11777 _("expression too complex"));
11778 inst.reloc.type = BFD_RELOC_UNUSED;
11779 inst.instruction |= (value & 0xf000) >> 12;
11780 inst.instruction |= (value & 0x0ff0);
11781 inst.instruction |= (value & 0x000f) << 16;
11782 }
11783
11784 static void
11785 do_t_hvc (void)
11786 {
11787 unsigned int value = inst.reloc.exp.X_add_number;
11788
11789 inst.reloc.type = BFD_RELOC_UNUSED;
11790 inst.instruction |= (value & 0x0fff);
11791 inst.instruction |= (value & 0xf000) << 4;
11792 }
11793
11794 static void
11795 do_t_ssat_usat (int bias)
11796 {
11797 unsigned Rd, Rn;
11798
11799 Rd = inst.operands[0].reg;
11800 Rn = inst.operands[2].reg;
11801
11802 reject_bad_reg (Rd);
11803 reject_bad_reg (Rn);
11804
11805 inst.instruction |= Rd << 8;
11806 inst.instruction |= inst.operands[1].imm - bias;
11807 inst.instruction |= Rn << 16;
11808
11809 if (inst.operands[3].present)
11810 {
11811 offsetT shift_amount = inst.reloc.exp.X_add_number;
11812
11813 inst.reloc.type = BFD_RELOC_UNUSED;
11814
11815 constraint (inst.reloc.exp.X_op != O_constant,
11816 _("expression too complex"));
11817
11818 if (shift_amount != 0)
11819 {
11820 constraint (shift_amount > 31,
11821 _("shift expression is too large"));
11822
11823 if (inst.operands[3].shift_kind == SHIFT_ASR)
11824 inst.instruction |= 0x00200000; /* sh bit. */
11825
11826 inst.instruction |= (shift_amount & 0x1c) << 10;
11827 inst.instruction |= (shift_amount & 0x03) << 6;
11828 }
11829 }
11830 }
11831
11832 static void
11833 do_t_ssat (void)
11834 {
11835 do_t_ssat_usat (1);
11836 }
11837
11838 static void
11839 do_t_ssat16 (void)
11840 {
11841 unsigned Rd, Rn;
11842
11843 Rd = inst.operands[0].reg;
11844 Rn = inst.operands[2].reg;
11845
11846 reject_bad_reg (Rd);
11847 reject_bad_reg (Rn);
11848
11849 inst.instruction |= Rd << 8;
11850 inst.instruction |= inst.operands[1].imm - 1;
11851 inst.instruction |= Rn << 16;
11852 }
11853
11854 static void
11855 do_t_strex (void)
11856 {
11857 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11858 || inst.operands[2].postind || inst.operands[2].writeback
11859 || inst.operands[2].immisreg || inst.operands[2].shifted
11860 || inst.operands[2].negative,
11861 BAD_ADDR_MODE);
11862
11863 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11864
11865 inst.instruction |= inst.operands[0].reg << 8;
11866 inst.instruction |= inst.operands[1].reg << 12;
11867 inst.instruction |= inst.operands[2].reg << 16;
11868 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11869 }
11870
11871 static void
11872 do_t_strexd (void)
11873 {
11874 if (!inst.operands[2].present)
11875 inst.operands[2].reg = inst.operands[1].reg + 1;
11876
11877 constraint (inst.operands[0].reg == inst.operands[1].reg
11878 || inst.operands[0].reg == inst.operands[2].reg
11879 || inst.operands[0].reg == inst.operands[3].reg,
11880 BAD_OVERLAP);
11881
11882 inst.instruction |= inst.operands[0].reg;
11883 inst.instruction |= inst.operands[1].reg << 12;
11884 inst.instruction |= inst.operands[2].reg << 8;
11885 inst.instruction |= inst.operands[3].reg << 16;
11886 }
11887
11888 static void
11889 do_t_sxtah (void)
11890 {
11891 unsigned Rd, Rn, Rm;
11892
11893 Rd = inst.operands[0].reg;
11894 Rn = inst.operands[1].reg;
11895 Rm = inst.operands[2].reg;
11896
11897 reject_bad_reg (Rd);
11898 reject_bad_reg (Rn);
11899 reject_bad_reg (Rm);
11900
11901 inst.instruction |= Rd << 8;
11902 inst.instruction |= Rn << 16;
11903 inst.instruction |= Rm;
11904 inst.instruction |= inst.operands[3].imm << 4;
11905 }
11906
11907 static void
11908 do_t_sxth (void)
11909 {
11910 unsigned Rd, Rm;
11911
11912 Rd = inst.operands[0].reg;
11913 Rm = inst.operands[1].reg;
11914
11915 reject_bad_reg (Rd);
11916 reject_bad_reg (Rm);
11917
11918 if (inst.instruction <= 0xffff
11919 && inst.size_req != 4
11920 && Rd <= 7 && Rm <= 7
11921 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11922 {
11923 inst.instruction = THUMB_OP16 (inst.instruction);
11924 inst.instruction |= Rd;
11925 inst.instruction |= Rm << 3;
11926 }
11927 else if (unified_syntax)
11928 {
11929 if (inst.instruction <= 0xffff)
11930 inst.instruction = THUMB_OP32 (inst.instruction);
11931 inst.instruction |= Rd << 8;
11932 inst.instruction |= Rm;
11933 inst.instruction |= inst.operands[2].imm << 4;
11934 }
11935 else
11936 {
11937 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11938 _("Thumb encoding does not support rotation"));
11939 constraint (1, BAD_HIREG);
11940 }
11941 }
11942
11943 static void
11944 do_t_swi (void)
11945 {
11946 /* We have to do the following check manually as ARM_EXT_OS only applies
11947 to ARM_EXT_V6M. */
11948 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11949 {
11950 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
11951 /* This only applies to the v6m howver, not later architectures. */
11952 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
11953 as_bad (_("SVC is not permitted on this architecture"));
11954 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11955 }
11956
11957 inst.reloc.type = BFD_RELOC_ARM_SWI;
11958 }
11959
11960 static void
11961 do_t_tb (void)
11962 {
11963 unsigned Rn, Rm;
11964 int half;
11965
11966 half = (inst.instruction & 0x10) != 0;
11967 set_it_insn_type_last ();
11968 constraint (inst.operands[0].immisreg,
11969 _("instruction requires register index"));
11970
11971 Rn = inst.operands[0].reg;
11972 Rm = inst.operands[0].imm;
11973
11974 constraint (Rn == REG_SP, BAD_SP);
11975 reject_bad_reg (Rm);
11976
11977 constraint (!half && inst.operands[0].shifted,
11978 _("instruction does not allow shifted index"));
11979 inst.instruction |= (Rn << 16) | Rm;
11980 }
11981
11982 static void
11983 do_t_usat (void)
11984 {
11985 do_t_ssat_usat (0);
11986 }
11987
11988 static void
11989 do_t_usat16 (void)
11990 {
11991 unsigned Rd, Rn;
11992
11993 Rd = inst.operands[0].reg;
11994 Rn = inst.operands[2].reg;
11995
11996 reject_bad_reg (Rd);
11997 reject_bad_reg (Rn);
11998
11999 inst.instruction |= Rd << 8;
12000 inst.instruction |= inst.operands[1].imm;
12001 inst.instruction |= Rn << 16;
12002 }
12003
12004 /* Neon instruction encoder helpers. */
12005
12006 /* Encodings for the different types for various Neon opcodes. */
12007
12008 /* An "invalid" code for the following tables. */
12009 #define N_INV -1u
12010
12011 struct neon_tab_entry
12012 {
12013 unsigned integer;
12014 unsigned float_or_poly;
12015 unsigned scalar_or_imm;
12016 };
12017
12018 /* Map overloaded Neon opcodes to their respective encodings. */
12019 #define NEON_ENC_TAB \
12020 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12021 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12022 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12023 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12024 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12025 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12026 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12027 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12028 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12029 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12030 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12031 /* Register variants of the following two instructions are encoded as
12032 vcge / vcgt with the operands reversed. */ \
12033 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12034 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12035 X(vfma, N_INV, 0x0000c10, N_INV), \
12036 X(vfms, N_INV, 0x0200c10, N_INV), \
12037 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12038 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12039 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12040 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12041 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12042 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12043 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12044 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12045 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12046 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12047 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12048 X(vshl, 0x0000400, N_INV, 0x0800510), \
12049 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12050 X(vand, 0x0000110, N_INV, 0x0800030), \
12051 X(vbic, 0x0100110, N_INV, 0x0800030), \
12052 X(veor, 0x1000110, N_INV, N_INV), \
12053 X(vorn, 0x0300110, N_INV, 0x0800010), \
12054 X(vorr, 0x0200110, N_INV, 0x0800010), \
12055 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12056 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12057 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12058 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12059 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12060 X(vst1, 0x0000000, 0x0800000, N_INV), \
12061 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12062 X(vst2, 0x0000100, 0x0800100, N_INV), \
12063 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12064 X(vst3, 0x0000200, 0x0800200, N_INV), \
12065 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12066 X(vst4, 0x0000300, 0x0800300, N_INV), \
12067 X(vmovn, 0x1b20200, N_INV, N_INV), \
12068 X(vtrn, 0x1b20080, N_INV, N_INV), \
12069 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12070 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12071 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12072 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12073 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12074 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12075 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12076 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12077 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12078 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12079 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
12080
12081 enum neon_opc
12082 {
12083 #define X(OPC,I,F,S) N_MNEM_##OPC
12084 NEON_ENC_TAB
12085 #undef X
12086 };
12087
12088 static const struct neon_tab_entry neon_enc_tab[] =
12089 {
12090 #define X(OPC,I,F,S) { (I), (F), (S) }
12091 NEON_ENC_TAB
12092 #undef X
12093 };
12094
12095 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12096 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12097 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12098 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12099 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12100 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12101 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12102 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12103 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12104 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12105 #define NEON_ENC_SINGLE_(X) \
12106 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12107 #define NEON_ENC_DOUBLE_(X) \
12108 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12109
12110 #define NEON_ENCODE(type, inst) \
12111 do \
12112 { \
12113 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12114 inst.is_neon = 1; \
12115 } \
12116 while (0)
12117
12118 #define check_neon_suffixes \
12119 do \
12120 { \
12121 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12122 { \
12123 as_bad (_("invalid neon suffix for non neon instruction")); \
12124 return; \
12125 } \
12126 } \
12127 while (0)
12128
12129 /* Define shapes for instruction operands. The following mnemonic characters
12130 are used in this table:
12131
12132 F - VFP S<n> register
12133 D - Neon D<n> register
12134 Q - Neon Q<n> register
12135 I - Immediate
12136 S - Scalar
12137 R - ARM register
12138 L - D<n> register list
12139
12140 This table is used to generate various data:
12141 - enumerations of the form NS_DDR to be used as arguments to
12142 neon_select_shape.
12143 - a table classifying shapes into single, double, quad, mixed.
12144 - a table used to drive neon_select_shape. */
12145
12146 #define NEON_SHAPE_DEF \
12147 X(3, (D, D, D), DOUBLE), \
12148 X(3, (Q, Q, Q), QUAD), \
12149 X(3, (D, D, I), DOUBLE), \
12150 X(3, (Q, Q, I), QUAD), \
12151 X(3, (D, D, S), DOUBLE), \
12152 X(3, (Q, Q, S), QUAD), \
12153 X(2, (D, D), DOUBLE), \
12154 X(2, (Q, Q), QUAD), \
12155 X(2, (D, S), DOUBLE), \
12156 X(2, (Q, S), QUAD), \
12157 X(2, (D, R), DOUBLE), \
12158 X(2, (Q, R), QUAD), \
12159 X(2, (D, I), DOUBLE), \
12160 X(2, (Q, I), QUAD), \
12161 X(3, (D, L, D), DOUBLE), \
12162 X(2, (D, Q), MIXED), \
12163 X(2, (Q, D), MIXED), \
12164 X(3, (D, Q, I), MIXED), \
12165 X(3, (Q, D, I), MIXED), \
12166 X(3, (Q, D, D), MIXED), \
12167 X(3, (D, Q, Q), MIXED), \
12168 X(3, (Q, Q, D), MIXED), \
12169 X(3, (Q, D, S), MIXED), \
12170 X(3, (D, Q, S), MIXED), \
12171 X(4, (D, D, D, I), DOUBLE), \
12172 X(4, (Q, Q, Q, I), QUAD), \
12173 X(2, (F, F), SINGLE), \
12174 X(3, (F, F, F), SINGLE), \
12175 X(2, (F, I), SINGLE), \
12176 X(2, (F, D), MIXED), \
12177 X(2, (D, F), MIXED), \
12178 X(3, (F, F, I), MIXED), \
12179 X(4, (R, R, F, F), SINGLE), \
12180 X(4, (F, F, R, R), SINGLE), \
12181 X(3, (D, R, R), DOUBLE), \
12182 X(3, (R, R, D), DOUBLE), \
12183 X(2, (S, R), SINGLE), \
12184 X(2, (R, S), SINGLE), \
12185 X(2, (F, R), SINGLE), \
12186 X(2, (R, F), SINGLE)
12187
12188 #define S2(A,B) NS_##A##B
12189 #define S3(A,B,C) NS_##A##B##C
12190 #define S4(A,B,C,D) NS_##A##B##C##D
12191
12192 #define X(N, L, C) S##N L
12193
12194 enum neon_shape
12195 {
12196 NEON_SHAPE_DEF,
12197 NS_NULL
12198 };
12199
12200 #undef X
12201 #undef S2
12202 #undef S3
12203 #undef S4
12204
12205 enum neon_shape_class
12206 {
12207 SC_SINGLE,
12208 SC_DOUBLE,
12209 SC_QUAD,
12210 SC_MIXED
12211 };
12212
12213 #define X(N, L, C) SC_##C
12214
12215 static enum neon_shape_class neon_shape_class[] =
12216 {
12217 NEON_SHAPE_DEF
12218 };
12219
12220 #undef X
12221
12222 enum neon_shape_el
12223 {
12224 SE_F,
12225 SE_D,
12226 SE_Q,
12227 SE_I,
12228 SE_S,
12229 SE_R,
12230 SE_L
12231 };
12232
12233 /* Register widths of above. */
12234 static unsigned neon_shape_el_size[] =
12235 {
12236 32,
12237 64,
12238 128,
12239 0,
12240 32,
12241 32,
12242 0
12243 };
12244
12245 struct neon_shape_info
12246 {
12247 unsigned els;
12248 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12249 };
12250
12251 #define S2(A,B) { SE_##A, SE_##B }
12252 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12253 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12254
12255 #define X(N, L, C) { N, S##N L }
12256
12257 static struct neon_shape_info neon_shape_tab[] =
12258 {
12259 NEON_SHAPE_DEF
12260 };
12261
12262 #undef X
12263 #undef S2
12264 #undef S3
12265 #undef S4
12266
12267 /* Bit masks used in type checking given instructions.
12268 'N_EQK' means the type must be the same as (or based on in some way) the key
12269 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12270 set, various other bits can be set as well in order to modify the meaning of
12271 the type constraint. */
12272
12273 enum neon_type_mask
12274 {
12275 N_S8 = 0x0000001,
12276 N_S16 = 0x0000002,
12277 N_S32 = 0x0000004,
12278 N_S64 = 0x0000008,
12279 N_U8 = 0x0000010,
12280 N_U16 = 0x0000020,
12281 N_U32 = 0x0000040,
12282 N_U64 = 0x0000080,
12283 N_I8 = 0x0000100,
12284 N_I16 = 0x0000200,
12285 N_I32 = 0x0000400,
12286 N_I64 = 0x0000800,
12287 N_8 = 0x0001000,
12288 N_16 = 0x0002000,
12289 N_32 = 0x0004000,
12290 N_64 = 0x0008000,
12291 N_P8 = 0x0010000,
12292 N_P16 = 0x0020000,
12293 N_F16 = 0x0040000,
12294 N_F32 = 0x0080000,
12295 N_F64 = 0x0100000,
12296 N_KEY = 0x1000000, /* Key element (main type specifier). */
12297 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12298 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12299 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12300 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12301 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12302 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12303 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12304 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12305 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12306 N_UTYP = 0,
12307 N_MAX_NONSPECIAL = N_F64
12308 };
12309
12310 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12311
12312 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12313 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12314 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12315 #define N_SUF_32 (N_SU_32 | N_F32)
12316 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12317 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12318
12319 /* Pass this as the first type argument to neon_check_type to ignore types
12320 altogether. */
12321 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12322
12323 /* Select a "shape" for the current instruction (describing register types or
12324 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12325 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12326 function of operand parsing, so this function doesn't need to be called.
12327 Shapes should be listed in order of decreasing length. */
12328
12329 static enum neon_shape
12330 neon_select_shape (enum neon_shape shape, ...)
12331 {
12332 va_list ap;
12333 enum neon_shape first_shape = shape;
12334
12335 /* Fix missing optional operands. FIXME: we don't know at this point how
12336 many arguments we should have, so this makes the assumption that we have
12337 > 1. This is true of all current Neon opcodes, I think, but may not be
12338 true in the future. */
12339 if (!inst.operands[1].present)
12340 inst.operands[1] = inst.operands[0];
12341
12342 va_start (ap, shape);
12343
12344 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12345 {
12346 unsigned j;
12347 int matches = 1;
12348
12349 for (j = 0; j < neon_shape_tab[shape].els; j++)
12350 {
12351 if (!inst.operands[j].present)
12352 {
12353 matches = 0;
12354 break;
12355 }
12356
12357 switch (neon_shape_tab[shape].el[j])
12358 {
12359 case SE_F:
12360 if (!(inst.operands[j].isreg
12361 && inst.operands[j].isvec
12362 && inst.operands[j].issingle
12363 && !inst.operands[j].isquad))
12364 matches = 0;
12365 break;
12366
12367 case SE_D:
12368 if (!(inst.operands[j].isreg
12369 && inst.operands[j].isvec
12370 && !inst.operands[j].isquad
12371 && !inst.operands[j].issingle))
12372 matches = 0;
12373 break;
12374
12375 case SE_R:
12376 if (!(inst.operands[j].isreg
12377 && !inst.operands[j].isvec))
12378 matches = 0;
12379 break;
12380
12381 case SE_Q:
12382 if (!(inst.operands[j].isreg
12383 && inst.operands[j].isvec
12384 && inst.operands[j].isquad
12385 && !inst.operands[j].issingle))
12386 matches = 0;
12387 break;
12388
12389 case SE_I:
12390 if (!(!inst.operands[j].isreg
12391 && !inst.operands[j].isscalar))
12392 matches = 0;
12393 break;
12394
12395 case SE_S:
12396 if (!(!inst.operands[j].isreg
12397 && inst.operands[j].isscalar))
12398 matches = 0;
12399 break;
12400
12401 case SE_L:
12402 break;
12403 }
12404 if (!matches)
12405 break;
12406 }
12407 if (matches)
12408 break;
12409 }
12410
12411 va_end (ap);
12412
12413 if (shape == NS_NULL && first_shape != NS_NULL)
12414 first_error (_("invalid instruction shape"));
12415
12416 return shape;
12417 }
12418
12419 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12420 means the Q bit should be set). */
12421
12422 static int
12423 neon_quad (enum neon_shape shape)
12424 {
12425 return neon_shape_class[shape] == SC_QUAD;
12426 }
12427
12428 static void
12429 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12430 unsigned *g_size)
12431 {
12432 /* Allow modification to be made to types which are constrained to be
12433 based on the key element, based on bits set alongside N_EQK. */
12434 if ((typebits & N_EQK) != 0)
12435 {
12436 if ((typebits & N_HLF) != 0)
12437 *g_size /= 2;
12438 else if ((typebits & N_DBL) != 0)
12439 *g_size *= 2;
12440 if ((typebits & N_SGN) != 0)
12441 *g_type = NT_signed;
12442 else if ((typebits & N_UNS) != 0)
12443 *g_type = NT_unsigned;
12444 else if ((typebits & N_INT) != 0)
12445 *g_type = NT_integer;
12446 else if ((typebits & N_FLT) != 0)
12447 *g_type = NT_float;
12448 else if ((typebits & N_SIZ) != 0)
12449 *g_type = NT_untyped;
12450 }
12451 }
12452
12453 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12454 operand type, i.e. the single type specified in a Neon instruction when it
12455 is the only one given. */
12456
12457 static struct neon_type_el
12458 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12459 {
12460 struct neon_type_el dest = *key;
12461
12462 gas_assert ((thisarg & N_EQK) != 0);
12463
12464 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12465
12466 return dest;
12467 }
12468
12469 /* Convert Neon type and size into compact bitmask representation. */
12470
12471 static enum neon_type_mask
12472 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12473 {
12474 switch (type)
12475 {
12476 case NT_untyped:
12477 switch (size)
12478 {
12479 case 8: return N_8;
12480 case 16: return N_16;
12481 case 32: return N_32;
12482 case 64: return N_64;
12483 default: ;
12484 }
12485 break;
12486
12487 case NT_integer:
12488 switch (size)
12489 {
12490 case 8: return N_I8;
12491 case 16: return N_I16;
12492 case 32: return N_I32;
12493 case 64: return N_I64;
12494 default: ;
12495 }
12496 break;
12497
12498 case NT_float:
12499 switch (size)
12500 {
12501 case 16: return N_F16;
12502 case 32: return N_F32;
12503 case 64: return N_F64;
12504 default: ;
12505 }
12506 break;
12507
12508 case NT_poly:
12509 switch (size)
12510 {
12511 case 8: return N_P8;
12512 case 16: return N_P16;
12513 default: ;
12514 }
12515 break;
12516
12517 case NT_signed:
12518 switch (size)
12519 {
12520 case 8: return N_S8;
12521 case 16: return N_S16;
12522 case 32: return N_S32;
12523 case 64: return N_S64;
12524 default: ;
12525 }
12526 break;
12527
12528 case NT_unsigned:
12529 switch (size)
12530 {
12531 case 8: return N_U8;
12532 case 16: return N_U16;
12533 case 32: return N_U32;
12534 case 64: return N_U64;
12535 default: ;
12536 }
12537 break;
12538
12539 default: ;
12540 }
12541
12542 return N_UTYP;
12543 }
12544
12545 /* Convert compact Neon bitmask type representation to a type and size. Only
12546 handles the case where a single bit is set in the mask. */
12547
12548 static int
12549 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12550 enum neon_type_mask mask)
12551 {
12552 if ((mask & N_EQK) != 0)
12553 return FAIL;
12554
12555 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12556 *size = 8;
12557 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12558 *size = 16;
12559 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12560 *size = 32;
12561 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12562 *size = 64;
12563 else
12564 return FAIL;
12565
12566 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12567 *type = NT_signed;
12568 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12569 *type = NT_unsigned;
12570 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12571 *type = NT_integer;
12572 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12573 *type = NT_untyped;
12574 else if ((mask & (N_P8 | N_P16)) != 0)
12575 *type = NT_poly;
12576 else if ((mask & (N_F32 | N_F64)) != 0)
12577 *type = NT_float;
12578 else
12579 return FAIL;
12580
12581 return SUCCESS;
12582 }
12583
12584 /* Modify a bitmask of allowed types. This is only needed for type
12585 relaxation. */
12586
12587 static unsigned
12588 modify_types_allowed (unsigned allowed, unsigned mods)
12589 {
12590 unsigned size;
12591 enum neon_el_type type;
12592 unsigned destmask;
12593 int i;
12594
12595 destmask = 0;
12596
12597 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12598 {
12599 if (el_type_of_type_chk (&type, &size,
12600 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12601 {
12602 neon_modify_type_size (mods, &type, &size);
12603 destmask |= type_chk_of_el_type (type, size);
12604 }
12605 }
12606
12607 return destmask;
12608 }
12609
12610 /* Check type and return type classification.
12611 The manual states (paraphrase): If one datatype is given, it indicates the
12612 type given in:
12613 - the second operand, if there is one
12614 - the operand, if there is no second operand
12615 - the result, if there are no operands.
12616 This isn't quite good enough though, so we use a concept of a "key" datatype
12617 which is set on a per-instruction basis, which is the one which matters when
12618 only one data type is written.
12619 Note: this function has side-effects (e.g. filling in missing operands). All
12620 Neon instructions should call it before performing bit encoding. */
12621
12622 static struct neon_type_el
12623 neon_check_type (unsigned els, enum neon_shape ns, ...)
12624 {
12625 va_list ap;
12626 unsigned i, pass, key_el = 0;
12627 unsigned types[NEON_MAX_TYPE_ELS];
12628 enum neon_el_type k_type = NT_invtype;
12629 unsigned k_size = -1u;
12630 struct neon_type_el badtype = {NT_invtype, -1};
12631 unsigned key_allowed = 0;
12632
12633 /* Optional registers in Neon instructions are always (not) in operand 1.
12634 Fill in the missing operand here, if it was omitted. */
12635 if (els > 1 && !inst.operands[1].present)
12636 inst.operands[1] = inst.operands[0];
12637
12638 /* Suck up all the varargs. */
12639 va_start (ap, ns);
12640 for (i = 0; i < els; i++)
12641 {
12642 unsigned thisarg = va_arg (ap, unsigned);
12643 if (thisarg == N_IGNORE_TYPE)
12644 {
12645 va_end (ap);
12646 return badtype;
12647 }
12648 types[i] = thisarg;
12649 if ((thisarg & N_KEY) != 0)
12650 key_el = i;
12651 }
12652 va_end (ap);
12653
12654 if (inst.vectype.elems > 0)
12655 for (i = 0; i < els; i++)
12656 if (inst.operands[i].vectype.type != NT_invtype)
12657 {
12658 first_error (_("types specified in both the mnemonic and operands"));
12659 return badtype;
12660 }
12661
12662 /* Duplicate inst.vectype elements here as necessary.
12663 FIXME: No idea if this is exactly the same as the ARM assembler,
12664 particularly when an insn takes one register and one non-register
12665 operand. */
12666 if (inst.vectype.elems == 1 && els > 1)
12667 {
12668 unsigned j;
12669 inst.vectype.elems = els;
12670 inst.vectype.el[key_el] = inst.vectype.el[0];
12671 for (j = 0; j < els; j++)
12672 if (j != key_el)
12673 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12674 types[j]);
12675 }
12676 else if (inst.vectype.elems == 0 && els > 0)
12677 {
12678 unsigned j;
12679 /* No types were given after the mnemonic, so look for types specified
12680 after each operand. We allow some flexibility here; as long as the
12681 "key" operand has a type, we can infer the others. */
12682 for (j = 0; j < els; j++)
12683 if (inst.operands[j].vectype.type != NT_invtype)
12684 inst.vectype.el[j] = inst.operands[j].vectype;
12685
12686 if (inst.operands[key_el].vectype.type != NT_invtype)
12687 {
12688 for (j = 0; j < els; j++)
12689 if (inst.operands[j].vectype.type == NT_invtype)
12690 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12691 types[j]);
12692 }
12693 else
12694 {
12695 first_error (_("operand types can't be inferred"));
12696 return badtype;
12697 }
12698 }
12699 else if (inst.vectype.elems != els)
12700 {
12701 first_error (_("type specifier has the wrong number of parts"));
12702 return badtype;
12703 }
12704
12705 for (pass = 0; pass < 2; pass++)
12706 {
12707 for (i = 0; i < els; i++)
12708 {
12709 unsigned thisarg = types[i];
12710 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12711 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12712 enum neon_el_type g_type = inst.vectype.el[i].type;
12713 unsigned g_size = inst.vectype.el[i].size;
12714
12715 /* Decay more-specific signed & unsigned types to sign-insensitive
12716 integer types if sign-specific variants are unavailable. */
12717 if ((g_type == NT_signed || g_type == NT_unsigned)
12718 && (types_allowed & N_SU_ALL) == 0)
12719 g_type = NT_integer;
12720
12721 /* If only untyped args are allowed, decay any more specific types to
12722 them. Some instructions only care about signs for some element
12723 sizes, so handle that properly. */
12724 if ((g_size == 8 && (types_allowed & N_8) != 0)
12725 || (g_size == 16 && (types_allowed & N_16) != 0)
12726 || (g_size == 32 && (types_allowed & N_32) != 0)
12727 || (g_size == 64 && (types_allowed & N_64) != 0))
12728 g_type = NT_untyped;
12729
12730 if (pass == 0)
12731 {
12732 if ((thisarg & N_KEY) != 0)
12733 {
12734 k_type = g_type;
12735 k_size = g_size;
12736 key_allowed = thisarg & ~N_KEY;
12737 }
12738 }
12739 else
12740 {
12741 if ((thisarg & N_VFP) != 0)
12742 {
12743 enum neon_shape_el regshape;
12744 unsigned regwidth, match;
12745
12746 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12747 if (ns == NS_NULL)
12748 {
12749 first_error (_("invalid instruction shape"));
12750 return badtype;
12751 }
12752 regshape = neon_shape_tab[ns].el[i];
12753 regwidth = neon_shape_el_size[regshape];
12754
12755 /* In VFP mode, operands must match register widths. If we
12756 have a key operand, use its width, else use the width of
12757 the current operand. */
12758 if (k_size != -1u)
12759 match = k_size;
12760 else
12761 match = g_size;
12762
12763 if (regwidth != match)
12764 {
12765 first_error (_("operand size must match register width"));
12766 return badtype;
12767 }
12768 }
12769
12770 if ((thisarg & N_EQK) == 0)
12771 {
12772 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12773
12774 if ((given_type & types_allowed) == 0)
12775 {
12776 first_error (_("bad type in Neon instruction"));
12777 return badtype;
12778 }
12779 }
12780 else
12781 {
12782 enum neon_el_type mod_k_type = k_type;
12783 unsigned mod_k_size = k_size;
12784 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12785 if (g_type != mod_k_type || g_size != mod_k_size)
12786 {
12787 first_error (_("inconsistent types in Neon instruction"));
12788 return badtype;
12789 }
12790 }
12791 }
12792 }
12793 }
12794
12795 return inst.vectype.el[key_el];
12796 }
12797
12798 /* Neon-style VFP instruction forwarding. */
12799
12800 /* Thumb VFP instructions have 0xE in the condition field. */
12801
12802 static void
12803 do_vfp_cond_or_thumb (void)
12804 {
12805 inst.is_neon = 1;
12806
12807 if (thumb_mode)
12808 inst.instruction |= 0xe0000000;
12809 else
12810 inst.instruction |= inst.cond << 28;
12811 }
12812
12813 /* Look up and encode a simple mnemonic, for use as a helper function for the
12814 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12815 etc. It is assumed that operand parsing has already been done, and that the
12816 operands are in the form expected by the given opcode (this isn't necessarily
12817 the same as the form in which they were parsed, hence some massaging must
12818 take place before this function is called).
12819 Checks current arch version against that in the looked-up opcode. */
12820
12821 static void
12822 do_vfp_nsyn_opcode (const char *opname)
12823 {
12824 const struct asm_opcode *opcode;
12825
12826 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12827
12828 if (!opcode)
12829 abort ();
12830
12831 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12832 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12833 _(BAD_FPU));
12834
12835 inst.is_neon = 1;
12836
12837 if (thumb_mode)
12838 {
12839 inst.instruction = opcode->tvalue;
12840 opcode->tencode ();
12841 }
12842 else
12843 {
12844 inst.instruction = (inst.cond << 28) | opcode->avalue;
12845 opcode->aencode ();
12846 }
12847 }
12848
12849 static void
12850 do_vfp_nsyn_add_sub (enum neon_shape rs)
12851 {
12852 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12853
12854 if (rs == NS_FFF)
12855 {
12856 if (is_add)
12857 do_vfp_nsyn_opcode ("fadds");
12858 else
12859 do_vfp_nsyn_opcode ("fsubs");
12860 }
12861 else
12862 {
12863 if (is_add)
12864 do_vfp_nsyn_opcode ("faddd");
12865 else
12866 do_vfp_nsyn_opcode ("fsubd");
12867 }
12868 }
12869
12870 /* Check operand types to see if this is a VFP instruction, and if so call
12871 PFN (). */
12872
12873 static int
12874 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12875 {
12876 enum neon_shape rs;
12877 struct neon_type_el et;
12878
12879 switch (args)
12880 {
12881 case 2:
12882 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12883 et = neon_check_type (2, rs,
12884 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12885 break;
12886
12887 case 3:
12888 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12889 et = neon_check_type (3, rs,
12890 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12891 break;
12892
12893 default:
12894 abort ();
12895 }
12896
12897 if (et.type != NT_invtype)
12898 {
12899 pfn (rs);
12900 return SUCCESS;
12901 }
12902
12903 inst.error = NULL;
12904 return FAIL;
12905 }
12906
12907 static void
12908 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12909 {
12910 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12911
12912 if (rs == NS_FFF)
12913 {
12914 if (is_mla)
12915 do_vfp_nsyn_opcode ("fmacs");
12916 else
12917 do_vfp_nsyn_opcode ("fnmacs");
12918 }
12919 else
12920 {
12921 if (is_mla)
12922 do_vfp_nsyn_opcode ("fmacd");
12923 else
12924 do_vfp_nsyn_opcode ("fnmacd");
12925 }
12926 }
12927
12928 static void
12929 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12930 {
12931 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12932
12933 if (rs == NS_FFF)
12934 {
12935 if (is_fma)
12936 do_vfp_nsyn_opcode ("ffmas");
12937 else
12938 do_vfp_nsyn_opcode ("ffnmas");
12939 }
12940 else
12941 {
12942 if (is_fma)
12943 do_vfp_nsyn_opcode ("ffmad");
12944 else
12945 do_vfp_nsyn_opcode ("ffnmad");
12946 }
12947 }
12948
12949 static void
12950 do_vfp_nsyn_mul (enum neon_shape rs)
12951 {
12952 if (rs == NS_FFF)
12953 do_vfp_nsyn_opcode ("fmuls");
12954 else
12955 do_vfp_nsyn_opcode ("fmuld");
12956 }
12957
12958 static void
12959 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12960 {
12961 int is_neg = (inst.instruction & 0x80) != 0;
12962 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12963
12964 if (rs == NS_FF)
12965 {
12966 if (is_neg)
12967 do_vfp_nsyn_opcode ("fnegs");
12968 else
12969 do_vfp_nsyn_opcode ("fabss");
12970 }
12971 else
12972 {
12973 if (is_neg)
12974 do_vfp_nsyn_opcode ("fnegd");
12975 else
12976 do_vfp_nsyn_opcode ("fabsd");
12977 }
12978 }
12979
12980 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12981 insns belong to Neon, and are handled elsewhere. */
12982
12983 static void
12984 do_vfp_nsyn_ldm_stm (int is_dbmode)
12985 {
12986 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12987 if (is_ldm)
12988 {
12989 if (is_dbmode)
12990 do_vfp_nsyn_opcode ("fldmdbs");
12991 else
12992 do_vfp_nsyn_opcode ("fldmias");
12993 }
12994 else
12995 {
12996 if (is_dbmode)
12997 do_vfp_nsyn_opcode ("fstmdbs");
12998 else
12999 do_vfp_nsyn_opcode ("fstmias");
13000 }
13001 }
13002
13003 static void
13004 do_vfp_nsyn_sqrt (void)
13005 {
13006 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13007 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13008
13009 if (rs == NS_FF)
13010 do_vfp_nsyn_opcode ("fsqrts");
13011 else
13012 do_vfp_nsyn_opcode ("fsqrtd");
13013 }
13014
13015 static void
13016 do_vfp_nsyn_div (void)
13017 {
13018 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13019 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13020 N_F32 | N_F64 | N_KEY | N_VFP);
13021
13022 if (rs == NS_FFF)
13023 do_vfp_nsyn_opcode ("fdivs");
13024 else
13025 do_vfp_nsyn_opcode ("fdivd");
13026 }
13027
13028 static void
13029 do_vfp_nsyn_nmul (void)
13030 {
13031 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13032 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13033 N_F32 | N_F64 | N_KEY | N_VFP);
13034
13035 if (rs == NS_FFF)
13036 {
13037 NEON_ENCODE (SINGLE, inst);
13038 do_vfp_sp_dyadic ();
13039 }
13040 else
13041 {
13042 NEON_ENCODE (DOUBLE, inst);
13043 do_vfp_dp_rd_rn_rm ();
13044 }
13045 do_vfp_cond_or_thumb ();
13046 }
13047
13048 static void
13049 do_vfp_nsyn_cmp (void)
13050 {
13051 if (inst.operands[1].isreg)
13052 {
13053 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13054 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13055
13056 if (rs == NS_FF)
13057 {
13058 NEON_ENCODE (SINGLE, inst);
13059 do_vfp_sp_monadic ();
13060 }
13061 else
13062 {
13063 NEON_ENCODE (DOUBLE, inst);
13064 do_vfp_dp_rd_rm ();
13065 }
13066 }
13067 else
13068 {
13069 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13070 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13071
13072 switch (inst.instruction & 0x0fffffff)
13073 {
13074 case N_MNEM_vcmp:
13075 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13076 break;
13077 case N_MNEM_vcmpe:
13078 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13079 break;
13080 default:
13081 abort ();
13082 }
13083
13084 if (rs == NS_FI)
13085 {
13086 NEON_ENCODE (SINGLE, inst);
13087 do_vfp_sp_compare_z ();
13088 }
13089 else
13090 {
13091 NEON_ENCODE (DOUBLE, inst);
13092 do_vfp_dp_rd ();
13093 }
13094 }
13095 do_vfp_cond_or_thumb ();
13096 }
13097
13098 static void
13099 nsyn_insert_sp (void)
13100 {
13101 inst.operands[1] = inst.operands[0];
13102 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13103 inst.operands[0].reg = REG_SP;
13104 inst.operands[0].isreg = 1;
13105 inst.operands[0].writeback = 1;
13106 inst.operands[0].present = 1;
13107 }
13108
13109 static void
13110 do_vfp_nsyn_push (void)
13111 {
13112 nsyn_insert_sp ();
13113 if (inst.operands[1].issingle)
13114 do_vfp_nsyn_opcode ("fstmdbs");
13115 else
13116 do_vfp_nsyn_opcode ("fstmdbd");
13117 }
13118
13119 static void
13120 do_vfp_nsyn_pop (void)
13121 {
13122 nsyn_insert_sp ();
13123 if (inst.operands[1].issingle)
13124 do_vfp_nsyn_opcode ("fldmias");
13125 else
13126 do_vfp_nsyn_opcode ("fldmiad");
13127 }
13128
13129 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13130 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13131
13132 static void
13133 neon_dp_fixup (struct arm_it* insn)
13134 {
13135 unsigned int i = insn->instruction;
13136 insn->is_neon = 1;
13137
13138 if (thumb_mode)
13139 {
13140 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13141 if (i & (1 << 24))
13142 i |= 1 << 28;
13143
13144 i &= ~(1 << 24);
13145
13146 i |= 0xef000000;
13147 }
13148 else
13149 i |= 0xf2000000;
13150
13151 insn->instruction = i;
13152 }
13153
13154 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13155 (0, 1, 2, 3). */
13156
13157 static unsigned
13158 neon_logbits (unsigned x)
13159 {
13160 return ffs (x) - 4;
13161 }
13162
13163 #define LOW4(R) ((R) & 0xf)
13164 #define HI1(R) (((R) >> 4) & 1)
13165
13166 /* Encode insns with bit pattern:
13167
13168 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13169 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13170
13171 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13172 different meaning for some instruction. */
13173
13174 static void
13175 neon_three_same (int isquad, int ubit, int size)
13176 {
13177 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13178 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13179 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13180 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13181 inst.instruction |= LOW4 (inst.operands[2].reg);
13182 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13183 inst.instruction |= (isquad != 0) << 6;
13184 inst.instruction |= (ubit != 0) << 24;
13185 if (size != -1)
13186 inst.instruction |= neon_logbits (size) << 20;
13187
13188 neon_dp_fixup (&inst);
13189 }
13190
13191 /* Encode instructions of the form:
13192
13193 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13194 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13195
13196 Don't write size if SIZE == -1. */
13197
13198 static void
13199 neon_two_same (int qbit, int ubit, int size)
13200 {
13201 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13202 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13203 inst.instruction |= LOW4 (inst.operands[1].reg);
13204 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13205 inst.instruction |= (qbit != 0) << 6;
13206 inst.instruction |= (ubit != 0) << 24;
13207
13208 if (size != -1)
13209 inst.instruction |= neon_logbits (size) << 18;
13210
13211 neon_dp_fixup (&inst);
13212 }
13213
13214 /* Neon instruction encoders, in approximate order of appearance. */
13215
13216 static void
13217 do_neon_dyadic_i_su (void)
13218 {
13219 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13220 struct neon_type_el et = neon_check_type (3, rs,
13221 N_EQK, N_EQK, N_SU_32 | N_KEY);
13222 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13223 }
13224
13225 static void
13226 do_neon_dyadic_i64_su (void)
13227 {
13228 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13229 struct neon_type_el et = neon_check_type (3, rs,
13230 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13231 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13232 }
13233
13234 static void
13235 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13236 unsigned immbits)
13237 {
13238 unsigned size = et.size >> 3;
13239 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13240 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13241 inst.instruction |= LOW4 (inst.operands[1].reg);
13242 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13243 inst.instruction |= (isquad != 0) << 6;
13244 inst.instruction |= immbits << 16;
13245 inst.instruction |= (size >> 3) << 7;
13246 inst.instruction |= (size & 0x7) << 19;
13247 if (write_ubit)
13248 inst.instruction |= (uval != 0) << 24;
13249
13250 neon_dp_fixup (&inst);
13251 }
13252
13253 static void
13254 do_neon_shl_imm (void)
13255 {
13256 if (!inst.operands[2].isreg)
13257 {
13258 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13259 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13260 NEON_ENCODE (IMMED, inst);
13261 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13262 }
13263 else
13264 {
13265 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13266 struct neon_type_el et = neon_check_type (3, rs,
13267 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13268 unsigned int tmp;
13269
13270 /* VSHL/VQSHL 3-register variants have syntax such as:
13271 vshl.xx Dd, Dm, Dn
13272 whereas other 3-register operations encoded by neon_three_same have
13273 syntax like:
13274 vadd.xx Dd, Dn, Dm
13275 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13276 here. */
13277 tmp = inst.operands[2].reg;
13278 inst.operands[2].reg = inst.operands[1].reg;
13279 inst.operands[1].reg = tmp;
13280 NEON_ENCODE (INTEGER, inst);
13281 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13282 }
13283 }
13284
13285 static void
13286 do_neon_qshl_imm (void)
13287 {
13288 if (!inst.operands[2].isreg)
13289 {
13290 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13291 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13292
13293 NEON_ENCODE (IMMED, inst);
13294 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13295 inst.operands[2].imm);
13296 }
13297 else
13298 {
13299 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13300 struct neon_type_el et = neon_check_type (3, rs,
13301 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13302 unsigned int tmp;
13303
13304 /* See note in do_neon_shl_imm. */
13305 tmp = inst.operands[2].reg;
13306 inst.operands[2].reg = inst.operands[1].reg;
13307 inst.operands[1].reg = tmp;
13308 NEON_ENCODE (INTEGER, inst);
13309 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13310 }
13311 }
13312
13313 static void
13314 do_neon_rshl (void)
13315 {
13316 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13317 struct neon_type_el et = neon_check_type (3, rs,
13318 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13319 unsigned int tmp;
13320
13321 tmp = inst.operands[2].reg;
13322 inst.operands[2].reg = inst.operands[1].reg;
13323 inst.operands[1].reg = tmp;
13324 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13325 }
13326
13327 static int
13328 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13329 {
13330 /* Handle .I8 pseudo-instructions. */
13331 if (size == 8)
13332 {
13333 /* Unfortunately, this will make everything apart from zero out-of-range.
13334 FIXME is this the intended semantics? There doesn't seem much point in
13335 accepting .I8 if so. */
13336 immediate |= immediate << 8;
13337 size = 16;
13338 }
13339
13340 if (size >= 32)
13341 {
13342 if (immediate == (immediate & 0x000000ff))
13343 {
13344 *immbits = immediate;
13345 return 0x1;
13346 }
13347 else if (immediate == (immediate & 0x0000ff00))
13348 {
13349 *immbits = immediate >> 8;
13350 return 0x3;
13351 }
13352 else if (immediate == (immediate & 0x00ff0000))
13353 {
13354 *immbits = immediate >> 16;
13355 return 0x5;
13356 }
13357 else if (immediate == (immediate & 0xff000000))
13358 {
13359 *immbits = immediate >> 24;
13360 return 0x7;
13361 }
13362 if ((immediate & 0xffff) != (immediate >> 16))
13363 goto bad_immediate;
13364 immediate &= 0xffff;
13365 }
13366
13367 if (immediate == (immediate & 0x000000ff))
13368 {
13369 *immbits = immediate;
13370 return 0x9;
13371 }
13372 else if (immediate == (immediate & 0x0000ff00))
13373 {
13374 *immbits = immediate >> 8;
13375 return 0xb;
13376 }
13377
13378 bad_immediate:
13379 first_error (_("immediate value out of range"));
13380 return FAIL;
13381 }
13382
13383 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13384 A, B, C, D. */
13385
13386 static int
13387 neon_bits_same_in_bytes (unsigned imm)
13388 {
13389 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13390 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13391 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13392 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13393 }
13394
13395 /* For immediate of above form, return 0bABCD. */
13396
13397 static unsigned
13398 neon_squash_bits (unsigned imm)
13399 {
13400 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13401 | ((imm & 0x01000000) >> 21);
13402 }
13403
13404 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13405
13406 static unsigned
13407 neon_qfloat_bits (unsigned imm)
13408 {
13409 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13410 }
13411
13412 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13413 the instruction. *OP is passed as the initial value of the op field, and
13414 may be set to a different value depending on the constant (i.e.
13415 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13416 MVN). If the immediate looks like a repeated pattern then also
13417 try smaller element sizes. */
13418
13419 static int
13420 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13421 unsigned *immbits, int *op, int size,
13422 enum neon_el_type type)
13423 {
13424 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13425 float. */
13426 if (type == NT_float && !float_p)
13427 return FAIL;
13428
13429 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13430 {
13431 if (size != 32 || *op == 1)
13432 return FAIL;
13433 *immbits = neon_qfloat_bits (immlo);
13434 return 0xf;
13435 }
13436
13437 if (size == 64)
13438 {
13439 if (neon_bits_same_in_bytes (immhi)
13440 && neon_bits_same_in_bytes (immlo))
13441 {
13442 if (*op == 1)
13443 return FAIL;
13444 *immbits = (neon_squash_bits (immhi) << 4)
13445 | neon_squash_bits (immlo);
13446 *op = 1;
13447 return 0xe;
13448 }
13449
13450 if (immhi != immlo)
13451 return FAIL;
13452 }
13453
13454 if (size >= 32)
13455 {
13456 if (immlo == (immlo & 0x000000ff))
13457 {
13458 *immbits = immlo;
13459 return 0x0;
13460 }
13461 else if (immlo == (immlo & 0x0000ff00))
13462 {
13463 *immbits = immlo >> 8;
13464 return 0x2;
13465 }
13466 else if (immlo == (immlo & 0x00ff0000))
13467 {
13468 *immbits = immlo >> 16;
13469 return 0x4;
13470 }
13471 else if (immlo == (immlo & 0xff000000))
13472 {
13473 *immbits = immlo >> 24;
13474 return 0x6;
13475 }
13476 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13477 {
13478 *immbits = (immlo >> 8) & 0xff;
13479 return 0xc;
13480 }
13481 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13482 {
13483 *immbits = (immlo >> 16) & 0xff;
13484 return 0xd;
13485 }
13486
13487 if ((immlo & 0xffff) != (immlo >> 16))
13488 return FAIL;
13489 immlo &= 0xffff;
13490 }
13491
13492 if (size >= 16)
13493 {
13494 if (immlo == (immlo & 0x000000ff))
13495 {
13496 *immbits = immlo;
13497 return 0x8;
13498 }
13499 else if (immlo == (immlo & 0x0000ff00))
13500 {
13501 *immbits = immlo >> 8;
13502 return 0xa;
13503 }
13504
13505 if ((immlo & 0xff) != (immlo >> 8))
13506 return FAIL;
13507 immlo &= 0xff;
13508 }
13509
13510 if (immlo == (immlo & 0x000000ff))
13511 {
13512 /* Don't allow MVN with 8-bit immediate. */
13513 if (*op == 1)
13514 return FAIL;
13515 *immbits = immlo;
13516 return 0xe;
13517 }
13518
13519 return FAIL;
13520 }
13521
13522 /* Write immediate bits [7:0] to the following locations:
13523
13524 |28/24|23 19|18 16|15 4|3 0|
13525 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13526
13527 This function is used by VMOV/VMVN/VORR/VBIC. */
13528
13529 static void
13530 neon_write_immbits (unsigned immbits)
13531 {
13532 inst.instruction |= immbits & 0xf;
13533 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13534 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13535 }
13536
13537 /* Invert low-order SIZE bits of XHI:XLO. */
13538
13539 static void
13540 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13541 {
13542 unsigned immlo = xlo ? *xlo : 0;
13543 unsigned immhi = xhi ? *xhi : 0;
13544
13545 switch (size)
13546 {
13547 case 8:
13548 immlo = (~immlo) & 0xff;
13549 break;
13550
13551 case 16:
13552 immlo = (~immlo) & 0xffff;
13553 break;
13554
13555 case 64:
13556 immhi = (~immhi) & 0xffffffff;
13557 /* fall through. */
13558
13559 case 32:
13560 immlo = (~immlo) & 0xffffffff;
13561 break;
13562
13563 default:
13564 abort ();
13565 }
13566
13567 if (xlo)
13568 *xlo = immlo;
13569
13570 if (xhi)
13571 *xhi = immhi;
13572 }
13573
13574 static void
13575 do_neon_logic (void)
13576 {
13577 if (inst.operands[2].present && inst.operands[2].isreg)
13578 {
13579 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13580 neon_check_type (3, rs, N_IGNORE_TYPE);
13581 /* U bit and size field were set as part of the bitmask. */
13582 NEON_ENCODE (INTEGER, inst);
13583 neon_three_same (neon_quad (rs), 0, -1);
13584 }
13585 else
13586 {
13587 const int three_ops_form = (inst.operands[2].present
13588 && !inst.operands[2].isreg);
13589 const int immoperand = (three_ops_form ? 2 : 1);
13590 enum neon_shape rs = (three_ops_form
13591 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13592 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13593 struct neon_type_el et = neon_check_type (2, rs,
13594 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13595 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13596 unsigned immbits;
13597 int cmode;
13598
13599 if (et.type == NT_invtype)
13600 return;
13601
13602 if (three_ops_form)
13603 constraint (inst.operands[0].reg != inst.operands[1].reg,
13604 _("first and second operands shall be the same register"));
13605
13606 NEON_ENCODE (IMMED, inst);
13607
13608 immbits = inst.operands[immoperand].imm;
13609 if (et.size == 64)
13610 {
13611 /* .i64 is a pseudo-op, so the immediate must be a repeating
13612 pattern. */
13613 if (immbits != (inst.operands[immoperand].regisimm ?
13614 inst.operands[immoperand].reg : 0))
13615 {
13616 /* Set immbits to an invalid constant. */
13617 immbits = 0xdeadbeef;
13618 }
13619 }
13620
13621 switch (opcode)
13622 {
13623 case N_MNEM_vbic:
13624 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13625 break;
13626
13627 case N_MNEM_vorr:
13628 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13629 break;
13630
13631 case N_MNEM_vand:
13632 /* Pseudo-instruction for VBIC. */
13633 neon_invert_size (&immbits, 0, et.size);
13634 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13635 break;
13636
13637 case N_MNEM_vorn:
13638 /* Pseudo-instruction for VORR. */
13639 neon_invert_size (&immbits, 0, et.size);
13640 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13641 break;
13642
13643 default:
13644 abort ();
13645 }
13646
13647 if (cmode == FAIL)
13648 return;
13649
13650 inst.instruction |= neon_quad (rs) << 6;
13651 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13652 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13653 inst.instruction |= cmode << 8;
13654 neon_write_immbits (immbits);
13655
13656 neon_dp_fixup (&inst);
13657 }
13658 }
13659
13660 static void
13661 do_neon_bitfield (void)
13662 {
13663 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13664 neon_check_type (3, rs, N_IGNORE_TYPE);
13665 neon_three_same (neon_quad (rs), 0, -1);
13666 }
13667
13668 static void
13669 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13670 unsigned destbits)
13671 {
13672 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13673 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13674 types | N_KEY);
13675 if (et.type == NT_float)
13676 {
13677 NEON_ENCODE (FLOAT, inst);
13678 neon_three_same (neon_quad (rs), 0, -1);
13679 }
13680 else
13681 {
13682 NEON_ENCODE (INTEGER, inst);
13683 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13684 }
13685 }
13686
13687 static void
13688 do_neon_dyadic_if_su (void)
13689 {
13690 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13691 }
13692
13693 static void
13694 do_neon_dyadic_if_su_d (void)
13695 {
13696 /* This version only allow D registers, but that constraint is enforced during
13697 operand parsing so we don't need to do anything extra here. */
13698 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13699 }
13700
13701 static void
13702 do_neon_dyadic_if_i_d (void)
13703 {
13704 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13705 affected if we specify unsigned args. */
13706 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13707 }
13708
13709 enum vfp_or_neon_is_neon_bits
13710 {
13711 NEON_CHECK_CC = 1,
13712 NEON_CHECK_ARCH = 2
13713 };
13714
13715 /* Call this function if an instruction which may have belonged to the VFP or
13716 Neon instruction sets, but turned out to be a Neon instruction (due to the
13717 operand types involved, etc.). We have to check and/or fix-up a couple of
13718 things:
13719
13720 - Make sure the user hasn't attempted to make a Neon instruction
13721 conditional.
13722 - Alter the value in the condition code field if necessary.
13723 - Make sure that the arch supports Neon instructions.
13724
13725 Which of these operations take place depends on bits from enum
13726 vfp_or_neon_is_neon_bits.
13727
13728 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13729 current instruction's condition is COND_ALWAYS, the condition field is
13730 changed to inst.uncond_value. This is necessary because instructions shared
13731 between VFP and Neon may be conditional for the VFP variants only, and the
13732 unconditional Neon version must have, e.g., 0xF in the condition field. */
13733
13734 static int
13735 vfp_or_neon_is_neon (unsigned check)
13736 {
13737 /* Conditions are always legal in Thumb mode (IT blocks). */
13738 if (!thumb_mode && (check & NEON_CHECK_CC))
13739 {
13740 if (inst.cond != COND_ALWAYS)
13741 {
13742 first_error (_(BAD_COND));
13743 return FAIL;
13744 }
13745 if (inst.uncond_value != -1)
13746 inst.instruction |= inst.uncond_value << 28;
13747 }
13748
13749 if ((check & NEON_CHECK_ARCH)
13750 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13751 {
13752 first_error (_(BAD_FPU));
13753 return FAIL;
13754 }
13755
13756 return SUCCESS;
13757 }
13758
13759 static void
13760 do_neon_addsub_if_i (void)
13761 {
13762 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13763 return;
13764
13765 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13766 return;
13767
13768 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13769 affected if we specify unsigned args. */
13770 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13771 }
13772
13773 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13774 result to be:
13775 V<op> A,B (A is operand 0, B is operand 2)
13776 to mean:
13777 V<op> A,B,A
13778 not:
13779 V<op> A,B,B
13780 so handle that case specially. */
13781
13782 static void
13783 neon_exchange_operands (void)
13784 {
13785 void *scratch = alloca (sizeof (inst.operands[0]));
13786 if (inst.operands[1].present)
13787 {
13788 /* Swap operands[1] and operands[2]. */
13789 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13790 inst.operands[1] = inst.operands[2];
13791 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13792 }
13793 else
13794 {
13795 inst.operands[1] = inst.operands[2];
13796 inst.operands[2] = inst.operands[0];
13797 }
13798 }
13799
13800 static void
13801 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13802 {
13803 if (inst.operands[2].isreg)
13804 {
13805 if (invert)
13806 neon_exchange_operands ();
13807 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13808 }
13809 else
13810 {
13811 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13812 struct neon_type_el et = neon_check_type (2, rs,
13813 N_EQK | N_SIZ, immtypes | N_KEY);
13814
13815 NEON_ENCODE (IMMED, inst);
13816 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13817 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13818 inst.instruction |= LOW4 (inst.operands[1].reg);
13819 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13820 inst.instruction |= neon_quad (rs) << 6;
13821 inst.instruction |= (et.type == NT_float) << 10;
13822 inst.instruction |= neon_logbits (et.size) << 18;
13823
13824 neon_dp_fixup (&inst);
13825 }
13826 }
13827
13828 static void
13829 do_neon_cmp (void)
13830 {
13831 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13832 }
13833
13834 static void
13835 do_neon_cmp_inv (void)
13836 {
13837 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13838 }
13839
13840 static void
13841 do_neon_ceq (void)
13842 {
13843 neon_compare (N_IF_32, N_IF_32, FALSE);
13844 }
13845
13846 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13847 scalars, which are encoded in 5 bits, M : Rm.
13848 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13849 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13850 index in M. */
13851
13852 static unsigned
13853 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13854 {
13855 unsigned regno = NEON_SCALAR_REG (scalar);
13856 unsigned elno = NEON_SCALAR_INDEX (scalar);
13857
13858 switch (elsize)
13859 {
13860 case 16:
13861 if (regno > 7 || elno > 3)
13862 goto bad_scalar;
13863 return regno | (elno << 3);
13864
13865 case 32:
13866 if (regno > 15 || elno > 1)
13867 goto bad_scalar;
13868 return regno | (elno << 4);
13869
13870 default:
13871 bad_scalar:
13872 first_error (_("scalar out of range for multiply instruction"));
13873 }
13874
13875 return 0;
13876 }
13877
13878 /* Encode multiply / multiply-accumulate scalar instructions. */
13879
13880 static void
13881 neon_mul_mac (struct neon_type_el et, int ubit)
13882 {
13883 unsigned scalar;
13884
13885 /* Give a more helpful error message if we have an invalid type. */
13886 if (et.type == NT_invtype)
13887 return;
13888
13889 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13890 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13891 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13892 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13893 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13894 inst.instruction |= LOW4 (scalar);
13895 inst.instruction |= HI1 (scalar) << 5;
13896 inst.instruction |= (et.type == NT_float) << 8;
13897 inst.instruction |= neon_logbits (et.size) << 20;
13898 inst.instruction |= (ubit != 0) << 24;
13899
13900 neon_dp_fixup (&inst);
13901 }
13902
13903 static void
13904 do_neon_mac_maybe_scalar (void)
13905 {
13906 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13907 return;
13908
13909 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13910 return;
13911
13912 if (inst.operands[2].isscalar)
13913 {
13914 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13915 struct neon_type_el et = neon_check_type (3, rs,
13916 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13917 NEON_ENCODE (SCALAR, inst);
13918 neon_mul_mac (et, neon_quad (rs));
13919 }
13920 else
13921 {
13922 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13923 affected if we specify unsigned args. */
13924 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13925 }
13926 }
13927
13928 static void
13929 do_neon_fmac (void)
13930 {
13931 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13932 return;
13933
13934 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13935 return;
13936
13937 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13938 }
13939
13940 static void
13941 do_neon_tst (void)
13942 {
13943 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13944 struct neon_type_el et = neon_check_type (3, rs,
13945 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13946 neon_three_same (neon_quad (rs), 0, et.size);
13947 }
13948
13949 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13950 same types as the MAC equivalents. The polynomial type for this instruction
13951 is encoded the same as the integer type. */
13952
13953 static void
13954 do_neon_mul (void)
13955 {
13956 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13957 return;
13958
13959 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13960 return;
13961
13962 if (inst.operands[2].isscalar)
13963 do_neon_mac_maybe_scalar ();
13964 else
13965 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13966 }
13967
13968 static void
13969 do_neon_qdmulh (void)
13970 {
13971 if (inst.operands[2].isscalar)
13972 {
13973 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13974 struct neon_type_el et = neon_check_type (3, rs,
13975 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13976 NEON_ENCODE (SCALAR, inst);
13977 neon_mul_mac (et, neon_quad (rs));
13978 }
13979 else
13980 {
13981 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13982 struct neon_type_el et = neon_check_type (3, rs,
13983 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13984 NEON_ENCODE (INTEGER, inst);
13985 /* The U bit (rounding) comes from bit mask. */
13986 neon_three_same (neon_quad (rs), 0, et.size);
13987 }
13988 }
13989
13990 static void
13991 do_neon_fcmp_absolute (void)
13992 {
13993 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13994 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13995 /* Size field comes from bit mask. */
13996 neon_three_same (neon_quad (rs), 1, -1);
13997 }
13998
13999 static void
14000 do_neon_fcmp_absolute_inv (void)
14001 {
14002 neon_exchange_operands ();
14003 do_neon_fcmp_absolute ();
14004 }
14005
14006 static void
14007 do_neon_step (void)
14008 {
14009 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14010 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14011 neon_three_same (neon_quad (rs), 0, -1);
14012 }
14013
14014 static void
14015 do_neon_abs_neg (void)
14016 {
14017 enum neon_shape rs;
14018 struct neon_type_el et;
14019
14020 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14021 return;
14022
14023 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14024 return;
14025
14026 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14027 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14028
14029 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14030 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14031 inst.instruction |= LOW4 (inst.operands[1].reg);
14032 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14033 inst.instruction |= neon_quad (rs) << 6;
14034 inst.instruction |= (et.type == NT_float) << 10;
14035 inst.instruction |= neon_logbits (et.size) << 18;
14036
14037 neon_dp_fixup (&inst);
14038 }
14039
14040 static void
14041 do_neon_sli (void)
14042 {
14043 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14044 struct neon_type_el et = neon_check_type (2, rs,
14045 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14046 int imm = inst.operands[2].imm;
14047 constraint (imm < 0 || (unsigned)imm >= et.size,
14048 _("immediate out of range for insert"));
14049 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14050 }
14051
14052 static void
14053 do_neon_sri (void)
14054 {
14055 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14056 struct neon_type_el et = neon_check_type (2, rs,
14057 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14058 int imm = inst.operands[2].imm;
14059 constraint (imm < 1 || (unsigned)imm > et.size,
14060 _("immediate out of range for insert"));
14061 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14062 }
14063
14064 static void
14065 do_neon_qshlu_imm (void)
14066 {
14067 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14068 struct neon_type_el et = neon_check_type (2, rs,
14069 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14070 int imm = inst.operands[2].imm;
14071 constraint (imm < 0 || (unsigned)imm >= et.size,
14072 _("immediate out of range for shift"));
14073 /* Only encodes the 'U present' variant of the instruction.
14074 In this case, signed types have OP (bit 8) set to 0.
14075 Unsigned types have OP set to 1. */
14076 inst.instruction |= (et.type == NT_unsigned) << 8;
14077 /* The rest of the bits are the same as other immediate shifts. */
14078 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14079 }
14080
14081 static void
14082 do_neon_qmovn (void)
14083 {
14084 struct neon_type_el et = neon_check_type (2, NS_DQ,
14085 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14086 /* Saturating move where operands can be signed or unsigned, and the
14087 destination has the same signedness. */
14088 NEON_ENCODE (INTEGER, inst);
14089 if (et.type == NT_unsigned)
14090 inst.instruction |= 0xc0;
14091 else
14092 inst.instruction |= 0x80;
14093 neon_two_same (0, 1, et.size / 2);
14094 }
14095
14096 static void
14097 do_neon_qmovun (void)
14098 {
14099 struct neon_type_el et = neon_check_type (2, NS_DQ,
14100 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14101 /* Saturating move with unsigned results. Operands must be signed. */
14102 NEON_ENCODE (INTEGER, inst);
14103 neon_two_same (0, 1, et.size / 2);
14104 }
14105
14106 static void
14107 do_neon_rshift_sat_narrow (void)
14108 {
14109 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14110 or unsigned. If operands are unsigned, results must also be unsigned. */
14111 struct neon_type_el et = neon_check_type (2, NS_DQI,
14112 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14113 int imm = inst.operands[2].imm;
14114 /* This gets the bounds check, size encoding and immediate bits calculation
14115 right. */
14116 et.size /= 2;
14117
14118 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14119 VQMOVN.I<size> <Dd>, <Qm>. */
14120 if (imm == 0)
14121 {
14122 inst.operands[2].present = 0;
14123 inst.instruction = N_MNEM_vqmovn;
14124 do_neon_qmovn ();
14125 return;
14126 }
14127
14128 constraint (imm < 1 || (unsigned)imm > et.size,
14129 _("immediate out of range"));
14130 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14131 }
14132
14133 static void
14134 do_neon_rshift_sat_narrow_u (void)
14135 {
14136 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14137 or unsigned. If operands are unsigned, results must also be unsigned. */
14138 struct neon_type_el et = neon_check_type (2, NS_DQI,
14139 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14140 int imm = inst.operands[2].imm;
14141 /* This gets the bounds check, size encoding and immediate bits calculation
14142 right. */
14143 et.size /= 2;
14144
14145 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14146 VQMOVUN.I<size> <Dd>, <Qm>. */
14147 if (imm == 0)
14148 {
14149 inst.operands[2].present = 0;
14150 inst.instruction = N_MNEM_vqmovun;
14151 do_neon_qmovun ();
14152 return;
14153 }
14154
14155 constraint (imm < 1 || (unsigned)imm > et.size,
14156 _("immediate out of range"));
14157 /* FIXME: The manual is kind of unclear about what value U should have in
14158 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14159 must be 1. */
14160 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14161 }
14162
14163 static void
14164 do_neon_movn (void)
14165 {
14166 struct neon_type_el et = neon_check_type (2, NS_DQ,
14167 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14168 NEON_ENCODE (INTEGER, inst);
14169 neon_two_same (0, 1, et.size / 2);
14170 }
14171
14172 static void
14173 do_neon_rshift_narrow (void)
14174 {
14175 struct neon_type_el et = neon_check_type (2, NS_DQI,
14176 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14177 int imm = inst.operands[2].imm;
14178 /* This gets the bounds check, size encoding and immediate bits calculation
14179 right. */
14180 et.size /= 2;
14181
14182 /* If immediate is zero then we are a pseudo-instruction for
14183 VMOVN.I<size> <Dd>, <Qm> */
14184 if (imm == 0)
14185 {
14186 inst.operands[2].present = 0;
14187 inst.instruction = N_MNEM_vmovn;
14188 do_neon_movn ();
14189 return;
14190 }
14191
14192 constraint (imm < 1 || (unsigned)imm > et.size,
14193 _("immediate out of range for narrowing operation"));
14194 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14195 }
14196
14197 static void
14198 do_neon_shll (void)
14199 {
14200 /* FIXME: Type checking when lengthening. */
14201 struct neon_type_el et = neon_check_type (2, NS_QDI,
14202 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14203 unsigned imm = inst.operands[2].imm;
14204
14205 if (imm == et.size)
14206 {
14207 /* Maximum shift variant. */
14208 NEON_ENCODE (INTEGER, inst);
14209 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14210 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14211 inst.instruction |= LOW4 (inst.operands[1].reg);
14212 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14213 inst.instruction |= neon_logbits (et.size) << 18;
14214
14215 neon_dp_fixup (&inst);
14216 }
14217 else
14218 {
14219 /* A more-specific type check for non-max versions. */
14220 et = neon_check_type (2, NS_QDI,
14221 N_EQK | N_DBL, N_SU_32 | N_KEY);
14222 NEON_ENCODE (IMMED, inst);
14223 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14224 }
14225 }
14226
14227 /* Check the various types for the VCVT instruction, and return which version
14228 the current instruction is. */
14229
14230 static int
14231 neon_cvt_flavour (enum neon_shape rs)
14232 {
14233 #define CVT_VAR(C,X,Y) \
14234 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14235 if (et.type != NT_invtype) \
14236 { \
14237 inst.error = NULL; \
14238 return (C); \
14239 }
14240 struct neon_type_el et;
14241 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14242 || rs == NS_FF) ? N_VFP : 0;
14243 /* The instruction versions which take an immediate take one register
14244 argument, which is extended to the width of the full register. Thus the
14245 "source" and "destination" registers must have the same width. Hack that
14246 here by making the size equal to the key (wider, in this case) operand. */
14247 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14248
14249 CVT_VAR (0, N_S32, N_F32);
14250 CVT_VAR (1, N_U32, N_F32);
14251 CVT_VAR (2, N_F32, N_S32);
14252 CVT_VAR (3, N_F32, N_U32);
14253 /* Half-precision conversions. */
14254 CVT_VAR (4, N_F32, N_F16);
14255 CVT_VAR (5, N_F16, N_F32);
14256
14257 whole_reg = N_VFP;
14258
14259 /* VFP instructions. */
14260 CVT_VAR (6, N_F32, N_F64);
14261 CVT_VAR (7, N_F64, N_F32);
14262 CVT_VAR (8, N_S32, N_F64 | key);
14263 CVT_VAR (9, N_U32, N_F64 | key);
14264 CVT_VAR (10, N_F64 | key, N_S32);
14265 CVT_VAR (11, N_F64 | key, N_U32);
14266 /* VFP instructions with bitshift. */
14267 CVT_VAR (12, N_F32 | key, N_S16);
14268 CVT_VAR (13, N_F32 | key, N_U16);
14269 CVT_VAR (14, N_F64 | key, N_S16);
14270 CVT_VAR (15, N_F64 | key, N_U16);
14271 CVT_VAR (16, N_S16, N_F32 | key);
14272 CVT_VAR (17, N_U16, N_F32 | key);
14273 CVT_VAR (18, N_S16, N_F64 | key);
14274 CVT_VAR (19, N_U16, N_F64 | key);
14275
14276 return -1;
14277 #undef CVT_VAR
14278 }
14279
14280 /* Neon-syntax VFP conversions. */
14281
14282 static void
14283 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
14284 {
14285 const char *opname = 0;
14286
14287 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14288 {
14289 /* Conversions with immediate bitshift. */
14290 const char *enc[] =
14291 {
14292 "ftosls",
14293 "ftouls",
14294 "fsltos",
14295 "fultos",
14296 NULL,
14297 NULL,
14298 NULL,
14299 NULL,
14300 "ftosld",
14301 "ftould",
14302 "fsltod",
14303 "fultod",
14304 "fshtos",
14305 "fuhtos",
14306 "fshtod",
14307 "fuhtod",
14308 "ftoshs",
14309 "ftouhs",
14310 "ftoshd",
14311 "ftouhd"
14312 };
14313
14314 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14315 {
14316 opname = enc[flavour];
14317 constraint (inst.operands[0].reg != inst.operands[1].reg,
14318 _("operands 0 and 1 must be the same register"));
14319 inst.operands[1] = inst.operands[2];
14320 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14321 }
14322 }
14323 else
14324 {
14325 /* Conversions without bitshift. */
14326 const char *enc[] =
14327 {
14328 "ftosis",
14329 "ftouis",
14330 "fsitos",
14331 "fuitos",
14332 "NULL",
14333 "NULL",
14334 "fcvtsd",
14335 "fcvtds",
14336 "ftosid",
14337 "ftouid",
14338 "fsitod",
14339 "fuitod"
14340 };
14341
14342 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14343 opname = enc[flavour];
14344 }
14345
14346 if (opname)
14347 do_vfp_nsyn_opcode (opname);
14348 }
14349
14350 static void
14351 do_vfp_nsyn_cvtz (void)
14352 {
14353 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14354 int flavour = neon_cvt_flavour (rs);
14355 const char *enc[] =
14356 {
14357 "ftosizs",
14358 "ftouizs",
14359 NULL,
14360 NULL,
14361 NULL,
14362 NULL,
14363 NULL,
14364 NULL,
14365 "ftosizd",
14366 "ftouizd"
14367 };
14368
14369 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14370 do_vfp_nsyn_opcode (enc[flavour]);
14371 }
14372
14373 static void
14374 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14375 {
14376 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14377 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14378 int flavour = neon_cvt_flavour (rs);
14379
14380 /* PR11109: Handle round-to-zero for VCVT conversions. */
14381 if (round_to_zero
14382 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14383 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14384 && (rs == NS_FD || rs == NS_FF))
14385 {
14386 do_vfp_nsyn_cvtz ();
14387 return;
14388 }
14389
14390 /* VFP rather than Neon conversions. */
14391 if (flavour >= 6)
14392 {
14393 do_vfp_nsyn_cvt (rs, flavour);
14394 return;
14395 }
14396
14397 switch (rs)
14398 {
14399 case NS_DDI:
14400 case NS_QQI:
14401 {
14402 unsigned immbits;
14403 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14404
14405 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14406 return;
14407
14408 /* Fixed-point conversion with #0 immediate is encoded as an
14409 integer conversion. */
14410 if (inst.operands[2].present && inst.operands[2].imm == 0)
14411 goto int_encode;
14412 immbits = 32 - inst.operands[2].imm;
14413 NEON_ENCODE (IMMED, inst);
14414 if (flavour != -1)
14415 inst.instruction |= enctab[flavour];
14416 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14417 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14418 inst.instruction |= LOW4 (inst.operands[1].reg);
14419 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14420 inst.instruction |= neon_quad (rs) << 6;
14421 inst.instruction |= 1 << 21;
14422 inst.instruction |= immbits << 16;
14423
14424 neon_dp_fixup (&inst);
14425 }
14426 break;
14427
14428 case NS_DD:
14429 case NS_QQ:
14430 int_encode:
14431 {
14432 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14433
14434 NEON_ENCODE (INTEGER, inst);
14435
14436 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14437 return;
14438
14439 if (flavour != -1)
14440 inst.instruction |= enctab[flavour];
14441
14442 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14443 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14444 inst.instruction |= LOW4 (inst.operands[1].reg);
14445 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14446 inst.instruction |= neon_quad (rs) << 6;
14447 inst.instruction |= 2 << 18;
14448
14449 neon_dp_fixup (&inst);
14450 }
14451 break;
14452
14453 /* Half-precision conversions for Advanced SIMD -- neon. */
14454 case NS_QD:
14455 case NS_DQ:
14456
14457 if ((rs == NS_DQ)
14458 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14459 {
14460 as_bad (_("operand size must match register width"));
14461 break;
14462 }
14463
14464 if ((rs == NS_QD)
14465 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14466 {
14467 as_bad (_("operand size must match register width"));
14468 break;
14469 }
14470
14471 if (rs == NS_DQ)
14472 inst.instruction = 0x3b60600;
14473 else
14474 inst.instruction = 0x3b60700;
14475
14476 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14477 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14478 inst.instruction |= LOW4 (inst.operands[1].reg);
14479 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14480 neon_dp_fixup (&inst);
14481 break;
14482
14483 default:
14484 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14485 do_vfp_nsyn_cvt (rs, flavour);
14486 }
14487 }
14488
14489 static void
14490 do_neon_cvtr (void)
14491 {
14492 do_neon_cvt_1 (FALSE);
14493 }
14494
14495 static void
14496 do_neon_cvt (void)
14497 {
14498 do_neon_cvt_1 (TRUE);
14499 }
14500
14501 static void
14502 do_neon_cvtb (void)
14503 {
14504 inst.instruction = 0xeb20a40;
14505
14506 /* The sizes are attached to the mnemonic. */
14507 if (inst.vectype.el[0].type != NT_invtype
14508 && inst.vectype.el[0].size == 16)
14509 inst.instruction |= 0x00010000;
14510
14511 /* Programmer's syntax: the sizes are attached to the operands. */
14512 else if (inst.operands[0].vectype.type != NT_invtype
14513 && inst.operands[0].vectype.size == 16)
14514 inst.instruction |= 0x00010000;
14515
14516 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14517 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14518 do_vfp_cond_or_thumb ();
14519 }
14520
14521
14522 static void
14523 do_neon_cvtt (void)
14524 {
14525 do_neon_cvtb ();
14526 inst.instruction |= 0x80;
14527 }
14528
14529 static void
14530 neon_move_immediate (void)
14531 {
14532 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14533 struct neon_type_el et = neon_check_type (2, rs,
14534 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14535 unsigned immlo, immhi = 0, immbits;
14536 int op, cmode, float_p;
14537
14538 constraint (et.type == NT_invtype,
14539 _("operand size must be specified for immediate VMOV"));
14540
14541 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14542 op = (inst.instruction & (1 << 5)) != 0;
14543
14544 immlo = inst.operands[1].imm;
14545 if (inst.operands[1].regisimm)
14546 immhi = inst.operands[1].reg;
14547
14548 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14549 _("immediate has bits set outside the operand size"));
14550
14551 float_p = inst.operands[1].immisfloat;
14552
14553 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14554 et.size, et.type)) == FAIL)
14555 {
14556 /* Invert relevant bits only. */
14557 neon_invert_size (&immlo, &immhi, et.size);
14558 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14559 with one or the other; those cases are caught by
14560 neon_cmode_for_move_imm. */
14561 op = !op;
14562 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14563 &op, et.size, et.type)) == FAIL)
14564 {
14565 first_error (_("immediate out of range"));
14566 return;
14567 }
14568 }
14569
14570 inst.instruction &= ~(1 << 5);
14571 inst.instruction |= op << 5;
14572
14573 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14574 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14575 inst.instruction |= neon_quad (rs) << 6;
14576 inst.instruction |= cmode << 8;
14577
14578 neon_write_immbits (immbits);
14579 }
14580
14581 static void
14582 do_neon_mvn (void)
14583 {
14584 if (inst.operands[1].isreg)
14585 {
14586 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14587
14588 NEON_ENCODE (INTEGER, inst);
14589 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14590 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14591 inst.instruction |= LOW4 (inst.operands[1].reg);
14592 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14593 inst.instruction |= neon_quad (rs) << 6;
14594 }
14595 else
14596 {
14597 NEON_ENCODE (IMMED, inst);
14598 neon_move_immediate ();
14599 }
14600
14601 neon_dp_fixup (&inst);
14602 }
14603
14604 /* Encode instructions of form:
14605
14606 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14607 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14608
14609 static void
14610 neon_mixed_length (struct neon_type_el et, unsigned size)
14611 {
14612 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14613 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14614 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14615 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14616 inst.instruction |= LOW4 (inst.operands[2].reg);
14617 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14618 inst.instruction |= (et.type == NT_unsigned) << 24;
14619 inst.instruction |= neon_logbits (size) << 20;
14620
14621 neon_dp_fixup (&inst);
14622 }
14623
14624 static void
14625 do_neon_dyadic_long (void)
14626 {
14627 /* FIXME: Type checking for lengthening op. */
14628 struct neon_type_el et = neon_check_type (3, NS_QDD,
14629 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14630 neon_mixed_length (et, et.size);
14631 }
14632
14633 static void
14634 do_neon_abal (void)
14635 {
14636 struct neon_type_el et = neon_check_type (3, NS_QDD,
14637 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14638 neon_mixed_length (et, et.size);
14639 }
14640
14641 static void
14642 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14643 {
14644 if (inst.operands[2].isscalar)
14645 {
14646 struct neon_type_el et = neon_check_type (3, NS_QDS,
14647 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14648 NEON_ENCODE (SCALAR, inst);
14649 neon_mul_mac (et, et.type == NT_unsigned);
14650 }
14651 else
14652 {
14653 struct neon_type_el et = neon_check_type (3, NS_QDD,
14654 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14655 NEON_ENCODE (INTEGER, inst);
14656 neon_mixed_length (et, et.size);
14657 }
14658 }
14659
14660 static void
14661 do_neon_mac_maybe_scalar_long (void)
14662 {
14663 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14664 }
14665
14666 static void
14667 do_neon_dyadic_wide (void)
14668 {
14669 struct neon_type_el et = neon_check_type (3, NS_QQD,
14670 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14671 neon_mixed_length (et, et.size);
14672 }
14673
14674 static void
14675 do_neon_dyadic_narrow (void)
14676 {
14677 struct neon_type_el et = neon_check_type (3, NS_QDD,
14678 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14679 /* Operand sign is unimportant, and the U bit is part of the opcode,
14680 so force the operand type to integer. */
14681 et.type = NT_integer;
14682 neon_mixed_length (et, et.size / 2);
14683 }
14684
14685 static void
14686 do_neon_mul_sat_scalar_long (void)
14687 {
14688 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14689 }
14690
14691 static void
14692 do_neon_vmull (void)
14693 {
14694 if (inst.operands[2].isscalar)
14695 do_neon_mac_maybe_scalar_long ();
14696 else
14697 {
14698 struct neon_type_el et = neon_check_type (3, NS_QDD,
14699 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14700 if (et.type == NT_poly)
14701 NEON_ENCODE (POLY, inst);
14702 else
14703 NEON_ENCODE (INTEGER, inst);
14704 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14705 zero. Should be OK as-is. */
14706 neon_mixed_length (et, et.size);
14707 }
14708 }
14709
14710 static void
14711 do_neon_ext (void)
14712 {
14713 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14714 struct neon_type_el et = neon_check_type (3, rs,
14715 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14716 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14717
14718 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14719 _("shift out of range"));
14720 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14721 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14722 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14723 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14724 inst.instruction |= LOW4 (inst.operands[2].reg);
14725 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14726 inst.instruction |= neon_quad (rs) << 6;
14727 inst.instruction |= imm << 8;
14728
14729 neon_dp_fixup (&inst);
14730 }
14731
14732 static void
14733 do_neon_rev (void)
14734 {
14735 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14736 struct neon_type_el et = neon_check_type (2, rs,
14737 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14738 unsigned op = (inst.instruction >> 7) & 3;
14739 /* N (width of reversed regions) is encoded as part of the bitmask. We
14740 extract it here to check the elements to be reversed are smaller.
14741 Otherwise we'd get a reserved instruction. */
14742 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14743 gas_assert (elsize != 0);
14744 constraint (et.size >= elsize,
14745 _("elements must be smaller than reversal region"));
14746 neon_two_same (neon_quad (rs), 1, et.size);
14747 }
14748
14749 static void
14750 do_neon_dup (void)
14751 {
14752 if (inst.operands[1].isscalar)
14753 {
14754 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14755 struct neon_type_el et = neon_check_type (2, rs,
14756 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14757 unsigned sizebits = et.size >> 3;
14758 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14759 int logsize = neon_logbits (et.size);
14760 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14761
14762 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14763 return;
14764
14765 NEON_ENCODE (SCALAR, inst);
14766 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14767 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14768 inst.instruction |= LOW4 (dm);
14769 inst.instruction |= HI1 (dm) << 5;
14770 inst.instruction |= neon_quad (rs) << 6;
14771 inst.instruction |= x << 17;
14772 inst.instruction |= sizebits << 16;
14773
14774 neon_dp_fixup (&inst);
14775 }
14776 else
14777 {
14778 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14779 struct neon_type_el et = neon_check_type (2, rs,
14780 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14781 /* Duplicate ARM register to lanes of vector. */
14782 NEON_ENCODE (ARMREG, inst);
14783 switch (et.size)
14784 {
14785 case 8: inst.instruction |= 0x400000; break;
14786 case 16: inst.instruction |= 0x000020; break;
14787 case 32: inst.instruction |= 0x000000; break;
14788 default: break;
14789 }
14790 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14791 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14792 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14793 inst.instruction |= neon_quad (rs) << 21;
14794 /* The encoding for this instruction is identical for the ARM and Thumb
14795 variants, except for the condition field. */
14796 do_vfp_cond_or_thumb ();
14797 }
14798 }
14799
14800 /* VMOV has particularly many variations. It can be one of:
14801 0. VMOV<c><q> <Qd>, <Qm>
14802 1. VMOV<c><q> <Dd>, <Dm>
14803 (Register operations, which are VORR with Rm = Rn.)
14804 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14805 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14806 (Immediate loads.)
14807 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14808 (ARM register to scalar.)
14809 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14810 (Two ARM registers to vector.)
14811 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14812 (Scalar to ARM register.)
14813 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14814 (Vector to two ARM registers.)
14815 8. VMOV.F32 <Sd>, <Sm>
14816 9. VMOV.F64 <Dd>, <Dm>
14817 (VFP register moves.)
14818 10. VMOV.F32 <Sd>, #imm
14819 11. VMOV.F64 <Dd>, #imm
14820 (VFP float immediate load.)
14821 12. VMOV <Rd>, <Sm>
14822 (VFP single to ARM reg.)
14823 13. VMOV <Sd>, <Rm>
14824 (ARM reg to VFP single.)
14825 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14826 (Two ARM regs to two VFP singles.)
14827 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14828 (Two VFP singles to two ARM regs.)
14829
14830 These cases can be disambiguated using neon_select_shape, except cases 1/9
14831 and 3/11 which depend on the operand type too.
14832
14833 All the encoded bits are hardcoded by this function.
14834
14835 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14836 Cases 5, 7 may be used with VFPv2 and above.
14837
14838 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14839 can specify a type where it doesn't make sense to, and is ignored). */
14840
14841 static void
14842 do_neon_mov (void)
14843 {
14844 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14845 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14846 NS_NULL);
14847 struct neon_type_el et;
14848 const char *ldconst = 0;
14849
14850 switch (rs)
14851 {
14852 case NS_DD: /* case 1/9. */
14853 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14854 /* It is not an error here if no type is given. */
14855 inst.error = NULL;
14856 if (et.type == NT_float && et.size == 64)
14857 {
14858 do_vfp_nsyn_opcode ("fcpyd");
14859 break;
14860 }
14861 /* fall through. */
14862
14863 case NS_QQ: /* case 0/1. */
14864 {
14865 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14866 return;
14867 /* The architecture manual I have doesn't explicitly state which
14868 value the U bit should have for register->register moves, but
14869 the equivalent VORR instruction has U = 0, so do that. */
14870 inst.instruction = 0x0200110;
14871 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14872 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14873 inst.instruction |= LOW4 (inst.operands[1].reg);
14874 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14875 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14876 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14877 inst.instruction |= neon_quad (rs) << 6;
14878
14879 neon_dp_fixup (&inst);
14880 }
14881 break;
14882
14883 case NS_DI: /* case 3/11. */
14884 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14885 inst.error = NULL;
14886 if (et.type == NT_float && et.size == 64)
14887 {
14888 /* case 11 (fconstd). */
14889 ldconst = "fconstd";
14890 goto encode_fconstd;
14891 }
14892 /* fall through. */
14893
14894 case NS_QI: /* case 2/3. */
14895 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14896 return;
14897 inst.instruction = 0x0800010;
14898 neon_move_immediate ();
14899 neon_dp_fixup (&inst);
14900 break;
14901
14902 case NS_SR: /* case 4. */
14903 {
14904 unsigned bcdebits = 0;
14905 int logsize;
14906 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14907 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14908
14909 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14910 logsize = neon_logbits (et.size);
14911
14912 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14913 _(BAD_FPU));
14914 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14915 && et.size != 32, _(BAD_FPU));
14916 constraint (et.type == NT_invtype, _("bad type for scalar"));
14917 constraint (x >= 64 / et.size, _("scalar index out of range"));
14918
14919 switch (et.size)
14920 {
14921 case 8: bcdebits = 0x8; break;
14922 case 16: bcdebits = 0x1; break;
14923 case 32: bcdebits = 0x0; break;
14924 default: ;
14925 }
14926
14927 bcdebits |= x << logsize;
14928
14929 inst.instruction = 0xe000b10;
14930 do_vfp_cond_or_thumb ();
14931 inst.instruction |= LOW4 (dn) << 16;
14932 inst.instruction |= HI1 (dn) << 7;
14933 inst.instruction |= inst.operands[1].reg << 12;
14934 inst.instruction |= (bcdebits & 3) << 5;
14935 inst.instruction |= (bcdebits >> 2) << 21;
14936 }
14937 break;
14938
14939 case NS_DRR: /* case 5 (fmdrr). */
14940 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14941 _(BAD_FPU));
14942
14943 inst.instruction = 0xc400b10;
14944 do_vfp_cond_or_thumb ();
14945 inst.instruction |= LOW4 (inst.operands[0].reg);
14946 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14947 inst.instruction |= inst.operands[1].reg << 12;
14948 inst.instruction |= inst.operands[2].reg << 16;
14949 break;
14950
14951 case NS_RS: /* case 6. */
14952 {
14953 unsigned logsize;
14954 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14955 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14956 unsigned abcdebits = 0;
14957
14958 et = neon_check_type (2, NS_NULL,
14959 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14960 logsize = neon_logbits (et.size);
14961
14962 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14963 _(BAD_FPU));
14964 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14965 && et.size != 32, _(BAD_FPU));
14966 constraint (et.type == NT_invtype, _("bad type for scalar"));
14967 constraint (x >= 64 / et.size, _("scalar index out of range"));
14968
14969 switch (et.size)
14970 {
14971 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14972 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14973 case 32: abcdebits = 0x00; break;
14974 default: ;
14975 }
14976
14977 abcdebits |= x << logsize;
14978 inst.instruction = 0xe100b10;
14979 do_vfp_cond_or_thumb ();
14980 inst.instruction |= LOW4 (dn) << 16;
14981 inst.instruction |= HI1 (dn) << 7;
14982 inst.instruction |= inst.operands[0].reg << 12;
14983 inst.instruction |= (abcdebits & 3) << 5;
14984 inst.instruction |= (abcdebits >> 2) << 21;
14985 }
14986 break;
14987
14988 case NS_RRD: /* case 7 (fmrrd). */
14989 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14990 _(BAD_FPU));
14991
14992 inst.instruction = 0xc500b10;
14993 do_vfp_cond_or_thumb ();
14994 inst.instruction |= inst.operands[0].reg << 12;
14995 inst.instruction |= inst.operands[1].reg << 16;
14996 inst.instruction |= LOW4 (inst.operands[2].reg);
14997 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14998 break;
14999
15000 case NS_FF: /* case 8 (fcpys). */
15001 do_vfp_nsyn_opcode ("fcpys");
15002 break;
15003
15004 case NS_FI: /* case 10 (fconsts). */
15005 ldconst = "fconsts";
15006 encode_fconstd:
15007 if (is_quarter_float (inst.operands[1].imm))
15008 {
15009 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15010 do_vfp_nsyn_opcode (ldconst);
15011 }
15012 else
15013 first_error (_("immediate out of range"));
15014 break;
15015
15016 case NS_RF: /* case 12 (fmrs). */
15017 do_vfp_nsyn_opcode ("fmrs");
15018 break;
15019
15020 case NS_FR: /* case 13 (fmsr). */
15021 do_vfp_nsyn_opcode ("fmsr");
15022 break;
15023
15024 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15025 (one of which is a list), but we have parsed four. Do some fiddling to
15026 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15027 expect. */
15028 case NS_RRFF: /* case 14 (fmrrs). */
15029 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15030 _("VFP registers must be adjacent"));
15031 inst.operands[2].imm = 2;
15032 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15033 do_vfp_nsyn_opcode ("fmrrs");
15034 break;
15035
15036 case NS_FFRR: /* case 15 (fmsrr). */
15037 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15038 _("VFP registers must be adjacent"));
15039 inst.operands[1] = inst.operands[2];
15040 inst.operands[2] = inst.operands[3];
15041 inst.operands[0].imm = 2;
15042 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15043 do_vfp_nsyn_opcode ("fmsrr");
15044 break;
15045
15046 default:
15047 abort ();
15048 }
15049 }
15050
15051 static void
15052 do_neon_rshift_round_imm (void)
15053 {
15054 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15055 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15056 int imm = inst.operands[2].imm;
15057
15058 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15059 if (imm == 0)
15060 {
15061 inst.operands[2].present = 0;
15062 do_neon_mov ();
15063 return;
15064 }
15065
15066 constraint (imm < 1 || (unsigned)imm > et.size,
15067 _("immediate out of range for shift"));
15068 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15069 et.size - imm);
15070 }
15071
15072 static void
15073 do_neon_movl (void)
15074 {
15075 struct neon_type_el et = neon_check_type (2, NS_QD,
15076 N_EQK | N_DBL, N_SU_32 | N_KEY);
15077 unsigned sizebits = et.size >> 3;
15078 inst.instruction |= sizebits << 19;
15079 neon_two_same (0, et.type == NT_unsigned, -1);
15080 }
15081
15082 static void
15083 do_neon_trn (void)
15084 {
15085 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15086 struct neon_type_el et = neon_check_type (2, rs,
15087 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15088 NEON_ENCODE (INTEGER, inst);
15089 neon_two_same (neon_quad (rs), 1, et.size);
15090 }
15091
15092 static void
15093 do_neon_zip_uzp (void)
15094 {
15095 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15096 struct neon_type_el et = neon_check_type (2, rs,
15097 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15098 if (rs == NS_DD && et.size == 32)
15099 {
15100 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15101 inst.instruction = N_MNEM_vtrn;
15102 do_neon_trn ();
15103 return;
15104 }
15105 neon_two_same (neon_quad (rs), 1, et.size);
15106 }
15107
15108 static void
15109 do_neon_sat_abs_neg (void)
15110 {
15111 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15112 struct neon_type_el et = neon_check_type (2, rs,
15113 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15114 neon_two_same (neon_quad (rs), 1, et.size);
15115 }
15116
15117 static void
15118 do_neon_pair_long (void)
15119 {
15120 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15121 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15122 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15123 inst.instruction |= (et.type == NT_unsigned) << 7;
15124 neon_two_same (neon_quad (rs), 1, et.size);
15125 }
15126
15127 static void
15128 do_neon_recip_est (void)
15129 {
15130 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15131 struct neon_type_el et = neon_check_type (2, rs,
15132 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15133 inst.instruction |= (et.type == NT_float) << 8;
15134 neon_two_same (neon_quad (rs), 1, et.size);
15135 }
15136
15137 static void
15138 do_neon_cls (void)
15139 {
15140 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15141 struct neon_type_el et = neon_check_type (2, rs,
15142 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15143 neon_two_same (neon_quad (rs), 1, et.size);
15144 }
15145
15146 static void
15147 do_neon_clz (void)
15148 {
15149 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15150 struct neon_type_el et = neon_check_type (2, rs,
15151 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15152 neon_two_same (neon_quad (rs), 1, et.size);
15153 }
15154
15155 static void
15156 do_neon_cnt (void)
15157 {
15158 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15159 struct neon_type_el et = neon_check_type (2, rs,
15160 N_EQK | N_INT, N_8 | N_KEY);
15161 neon_two_same (neon_quad (rs), 1, et.size);
15162 }
15163
15164 static void
15165 do_neon_swp (void)
15166 {
15167 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15168 neon_two_same (neon_quad (rs), 1, -1);
15169 }
15170
15171 static void
15172 do_neon_tbl_tbx (void)
15173 {
15174 unsigned listlenbits;
15175 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15176
15177 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15178 {
15179 first_error (_("bad list length for table lookup"));
15180 return;
15181 }
15182
15183 listlenbits = inst.operands[1].imm - 1;
15184 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15185 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15186 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15187 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15188 inst.instruction |= LOW4 (inst.operands[2].reg);
15189 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15190 inst.instruction |= listlenbits << 8;
15191
15192 neon_dp_fixup (&inst);
15193 }
15194
15195 static void
15196 do_neon_ldm_stm (void)
15197 {
15198 /* P, U and L bits are part of bitmask. */
15199 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15200 unsigned offsetbits = inst.operands[1].imm * 2;
15201
15202 if (inst.operands[1].issingle)
15203 {
15204 do_vfp_nsyn_ldm_stm (is_dbmode);
15205 return;
15206 }
15207
15208 constraint (is_dbmode && !inst.operands[0].writeback,
15209 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15210
15211 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15212 _("register list must contain at least 1 and at most 16 "
15213 "registers"));
15214
15215 inst.instruction |= inst.operands[0].reg << 16;
15216 inst.instruction |= inst.operands[0].writeback << 21;
15217 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15218 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15219
15220 inst.instruction |= offsetbits;
15221
15222 do_vfp_cond_or_thumb ();
15223 }
15224
15225 static void
15226 do_neon_ldr_str (void)
15227 {
15228 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15229
15230 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15231 And is UNPREDICTABLE in thumb mode. */
15232 if (!is_ldr
15233 && inst.operands[1].reg == REG_PC
15234 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15235 {
15236 if (!thumb_mode && warn_on_deprecated)
15237 as_warn (_("Use of PC here is deprecated"));
15238 else
15239 inst.error = _("Use of PC here is UNPREDICTABLE");
15240 }
15241
15242 if (inst.operands[0].issingle)
15243 {
15244 if (is_ldr)
15245 do_vfp_nsyn_opcode ("flds");
15246 else
15247 do_vfp_nsyn_opcode ("fsts");
15248 }
15249 else
15250 {
15251 if (is_ldr)
15252 do_vfp_nsyn_opcode ("fldd");
15253 else
15254 do_vfp_nsyn_opcode ("fstd");
15255 }
15256 }
15257
15258 /* "interleave" version also handles non-interleaving register VLD1/VST1
15259 instructions. */
15260
15261 static void
15262 do_neon_ld_st_interleave (void)
15263 {
15264 struct neon_type_el et = neon_check_type (1, NS_NULL,
15265 N_8 | N_16 | N_32 | N_64);
15266 unsigned alignbits = 0;
15267 unsigned idx;
15268 /* The bits in this table go:
15269 0: register stride of one (0) or two (1)
15270 1,2: register list length, minus one (1, 2, 3, 4).
15271 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15272 We use -1 for invalid entries. */
15273 const int typetable[] =
15274 {
15275 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15276 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15277 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15278 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15279 };
15280 int typebits;
15281
15282 if (et.type == NT_invtype)
15283 return;
15284
15285 if (inst.operands[1].immisalign)
15286 switch (inst.operands[1].imm >> 8)
15287 {
15288 case 64: alignbits = 1; break;
15289 case 128:
15290 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15291 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15292 goto bad_alignment;
15293 alignbits = 2;
15294 break;
15295 case 256:
15296 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15297 goto bad_alignment;
15298 alignbits = 3;
15299 break;
15300 default:
15301 bad_alignment:
15302 first_error (_("bad alignment"));
15303 return;
15304 }
15305
15306 inst.instruction |= alignbits << 4;
15307 inst.instruction |= neon_logbits (et.size) << 6;
15308
15309 /* Bits [4:6] of the immediate in a list specifier encode register stride
15310 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15311 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15312 up the right value for "type" in a table based on this value and the given
15313 list style, then stick it back. */
15314 idx = ((inst.operands[0].imm >> 4) & 7)
15315 | (((inst.instruction >> 8) & 3) << 3);
15316
15317 typebits = typetable[idx];
15318
15319 constraint (typebits == -1, _("bad list type for instruction"));
15320
15321 inst.instruction &= ~0xf00;
15322 inst.instruction |= typebits << 8;
15323 }
15324
15325 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15326 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15327 otherwise. The variable arguments are a list of pairs of legal (size, align)
15328 values, terminated with -1. */
15329
15330 static int
15331 neon_alignment_bit (int size, int align, int *do_align, ...)
15332 {
15333 va_list ap;
15334 int result = FAIL, thissize, thisalign;
15335
15336 if (!inst.operands[1].immisalign)
15337 {
15338 *do_align = 0;
15339 return SUCCESS;
15340 }
15341
15342 va_start (ap, do_align);
15343
15344 do
15345 {
15346 thissize = va_arg (ap, int);
15347 if (thissize == -1)
15348 break;
15349 thisalign = va_arg (ap, int);
15350
15351 if (size == thissize && align == thisalign)
15352 result = SUCCESS;
15353 }
15354 while (result != SUCCESS);
15355
15356 va_end (ap);
15357
15358 if (result == SUCCESS)
15359 *do_align = 1;
15360 else
15361 first_error (_("unsupported alignment for instruction"));
15362
15363 return result;
15364 }
15365
15366 static void
15367 do_neon_ld_st_lane (void)
15368 {
15369 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15370 int align_good, do_align = 0;
15371 int logsize = neon_logbits (et.size);
15372 int align = inst.operands[1].imm >> 8;
15373 int n = (inst.instruction >> 8) & 3;
15374 int max_el = 64 / et.size;
15375
15376 if (et.type == NT_invtype)
15377 return;
15378
15379 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15380 _("bad list length"));
15381 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15382 _("scalar index out of range"));
15383 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15384 && et.size == 8,
15385 _("stride of 2 unavailable when element size is 8"));
15386
15387 switch (n)
15388 {
15389 case 0: /* VLD1 / VST1. */
15390 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15391 32, 32, -1);
15392 if (align_good == FAIL)
15393 return;
15394 if (do_align)
15395 {
15396 unsigned alignbits = 0;
15397 switch (et.size)
15398 {
15399 case 16: alignbits = 0x1; break;
15400 case 32: alignbits = 0x3; break;
15401 default: ;
15402 }
15403 inst.instruction |= alignbits << 4;
15404 }
15405 break;
15406
15407 case 1: /* VLD2 / VST2. */
15408 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15409 32, 64, -1);
15410 if (align_good == FAIL)
15411 return;
15412 if (do_align)
15413 inst.instruction |= 1 << 4;
15414 break;
15415
15416 case 2: /* VLD3 / VST3. */
15417 constraint (inst.operands[1].immisalign,
15418 _("can't use alignment with this instruction"));
15419 break;
15420
15421 case 3: /* VLD4 / VST4. */
15422 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15423 16, 64, 32, 64, 32, 128, -1);
15424 if (align_good == FAIL)
15425 return;
15426 if (do_align)
15427 {
15428 unsigned alignbits = 0;
15429 switch (et.size)
15430 {
15431 case 8: alignbits = 0x1; break;
15432 case 16: alignbits = 0x1; break;
15433 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15434 default: ;
15435 }
15436 inst.instruction |= alignbits << 4;
15437 }
15438 break;
15439
15440 default: ;
15441 }
15442
15443 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15444 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15445 inst.instruction |= 1 << (4 + logsize);
15446
15447 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15448 inst.instruction |= logsize << 10;
15449 }
15450
15451 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15452
15453 static void
15454 do_neon_ld_dup (void)
15455 {
15456 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15457 int align_good, do_align = 0;
15458
15459 if (et.type == NT_invtype)
15460 return;
15461
15462 switch ((inst.instruction >> 8) & 3)
15463 {
15464 case 0: /* VLD1. */
15465 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15466 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15467 &do_align, 16, 16, 32, 32, -1);
15468 if (align_good == FAIL)
15469 return;
15470 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15471 {
15472 case 1: break;
15473 case 2: inst.instruction |= 1 << 5; break;
15474 default: first_error (_("bad list length")); return;
15475 }
15476 inst.instruction |= neon_logbits (et.size) << 6;
15477 break;
15478
15479 case 1: /* VLD2. */
15480 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15481 &do_align, 8, 16, 16, 32, 32, 64, -1);
15482 if (align_good == FAIL)
15483 return;
15484 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15485 _("bad list length"));
15486 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15487 inst.instruction |= 1 << 5;
15488 inst.instruction |= neon_logbits (et.size) << 6;
15489 break;
15490
15491 case 2: /* VLD3. */
15492 constraint (inst.operands[1].immisalign,
15493 _("can't use alignment with this instruction"));
15494 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15495 _("bad list length"));
15496 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15497 inst.instruction |= 1 << 5;
15498 inst.instruction |= neon_logbits (et.size) << 6;
15499 break;
15500
15501 case 3: /* VLD4. */
15502 {
15503 int align = inst.operands[1].imm >> 8;
15504 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15505 16, 64, 32, 64, 32, 128, -1);
15506 if (align_good == FAIL)
15507 return;
15508 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15509 _("bad list length"));
15510 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15511 inst.instruction |= 1 << 5;
15512 if (et.size == 32 && align == 128)
15513 inst.instruction |= 0x3 << 6;
15514 else
15515 inst.instruction |= neon_logbits (et.size) << 6;
15516 }
15517 break;
15518
15519 default: ;
15520 }
15521
15522 inst.instruction |= do_align << 4;
15523 }
15524
15525 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15526 apart from bits [11:4]. */
15527
15528 static void
15529 do_neon_ldx_stx (void)
15530 {
15531 if (inst.operands[1].isreg)
15532 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15533
15534 switch (NEON_LANE (inst.operands[0].imm))
15535 {
15536 case NEON_INTERLEAVE_LANES:
15537 NEON_ENCODE (INTERLV, inst);
15538 do_neon_ld_st_interleave ();
15539 break;
15540
15541 case NEON_ALL_LANES:
15542 NEON_ENCODE (DUP, inst);
15543 do_neon_ld_dup ();
15544 break;
15545
15546 default:
15547 NEON_ENCODE (LANE, inst);
15548 do_neon_ld_st_lane ();
15549 }
15550
15551 /* L bit comes from bit mask. */
15552 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15553 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15554 inst.instruction |= inst.operands[1].reg << 16;
15555
15556 if (inst.operands[1].postind)
15557 {
15558 int postreg = inst.operands[1].imm & 0xf;
15559 constraint (!inst.operands[1].immisreg,
15560 _("post-index must be a register"));
15561 constraint (postreg == 0xd || postreg == 0xf,
15562 _("bad register for post-index"));
15563 inst.instruction |= postreg;
15564 }
15565 else if (inst.operands[1].writeback)
15566 {
15567 inst.instruction |= 0xd;
15568 }
15569 else
15570 inst.instruction |= 0xf;
15571
15572 if (thumb_mode)
15573 inst.instruction |= 0xf9000000;
15574 else
15575 inst.instruction |= 0xf4000000;
15576 }
15577 \f
15578 /* Overall per-instruction processing. */
15579
15580 /* We need to be able to fix up arbitrary expressions in some statements.
15581 This is so that we can handle symbols that are an arbitrary distance from
15582 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15583 which returns part of an address in a form which will be valid for
15584 a data instruction. We do this by pushing the expression into a symbol
15585 in the expr_section, and creating a fix for that. */
15586
15587 static void
15588 fix_new_arm (fragS * frag,
15589 int where,
15590 short int size,
15591 expressionS * exp,
15592 int pc_rel,
15593 int reloc)
15594 {
15595 fixS * new_fix;
15596
15597 switch (exp->X_op)
15598 {
15599 case O_constant:
15600 if (pc_rel)
15601 {
15602 /* Create an absolute valued symbol, so we have something to
15603 refer to in the object file. Unfortunately for us, gas's
15604 generic expression parsing will already have folded out
15605 any use of .set foo/.type foo %function that may have
15606 been used to set type information of the target location,
15607 that's being specified symbolically. We have to presume
15608 the user knows what they are doing. */
15609 char name[16 + 8];
15610 symbolS *symbol;
15611
15612 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15613
15614 symbol = symbol_find_or_make (name);
15615 S_SET_SEGMENT (symbol, absolute_section);
15616 symbol_set_frag (symbol, &zero_address_frag);
15617 S_SET_VALUE (symbol, exp->X_add_number);
15618 exp->X_op = O_symbol;
15619 exp->X_add_symbol = symbol;
15620 exp->X_add_number = 0;
15621 }
15622 /* FALLTHROUGH */
15623 case O_symbol:
15624 case O_add:
15625 case O_subtract:
15626 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15627 (enum bfd_reloc_code_real) reloc);
15628 break;
15629
15630 default:
15631 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15632 pc_rel, (enum bfd_reloc_code_real) reloc);
15633 break;
15634 }
15635
15636 /* Mark whether the fix is to a THUMB instruction, or an ARM
15637 instruction. */
15638 new_fix->tc_fix_data = thumb_mode;
15639 }
15640
15641 /* Create a frg for an instruction requiring relaxation. */
15642 static void
15643 output_relax_insn (void)
15644 {
15645 char * to;
15646 symbolS *sym;
15647 int offset;
15648
15649 /* The size of the instruction is unknown, so tie the debug info to the
15650 start of the instruction. */
15651 dwarf2_emit_insn (0);
15652
15653 switch (inst.reloc.exp.X_op)
15654 {
15655 case O_symbol:
15656 sym = inst.reloc.exp.X_add_symbol;
15657 offset = inst.reloc.exp.X_add_number;
15658 break;
15659 case O_constant:
15660 sym = NULL;
15661 offset = inst.reloc.exp.X_add_number;
15662 break;
15663 default:
15664 sym = make_expr_symbol (&inst.reloc.exp);
15665 offset = 0;
15666 break;
15667 }
15668 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15669 inst.relax, sym, offset, NULL/*offset, opcode*/);
15670 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15671 }
15672
15673 /* Write a 32-bit thumb instruction to buf. */
15674 static void
15675 put_thumb32_insn (char * buf, unsigned long insn)
15676 {
15677 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15678 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15679 }
15680
15681 static void
15682 output_inst (const char * str)
15683 {
15684 char * to = NULL;
15685
15686 if (inst.error)
15687 {
15688 as_bad ("%s -- `%s'", inst.error, str);
15689 return;
15690 }
15691 if (inst.relax)
15692 {
15693 output_relax_insn ();
15694 return;
15695 }
15696 if (inst.size == 0)
15697 return;
15698
15699 to = frag_more (inst.size);
15700 /* PR 9814: Record the thumb mode into the current frag so that we know
15701 what type of NOP padding to use, if necessary. We override any previous
15702 setting so that if the mode has changed then the NOPS that we use will
15703 match the encoding of the last instruction in the frag. */
15704 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15705
15706 if (thumb_mode && (inst.size > THUMB_SIZE))
15707 {
15708 gas_assert (inst.size == (2 * THUMB_SIZE));
15709 put_thumb32_insn (to, inst.instruction);
15710 }
15711 else if (inst.size > INSN_SIZE)
15712 {
15713 gas_assert (inst.size == (2 * INSN_SIZE));
15714 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15715 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15716 }
15717 else
15718 md_number_to_chars (to, inst.instruction, inst.size);
15719
15720 if (inst.reloc.type != BFD_RELOC_UNUSED)
15721 fix_new_arm (frag_now, to - frag_now->fr_literal,
15722 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15723 inst.reloc.type);
15724
15725 dwarf2_emit_insn (inst.size);
15726 }
15727
15728 static char *
15729 output_it_inst (int cond, int mask, char * to)
15730 {
15731 unsigned long instruction = 0xbf00;
15732
15733 mask &= 0xf;
15734 instruction |= mask;
15735 instruction |= cond << 4;
15736
15737 if (to == NULL)
15738 {
15739 to = frag_more (2);
15740 #ifdef OBJ_ELF
15741 dwarf2_emit_insn (2);
15742 #endif
15743 }
15744
15745 md_number_to_chars (to, instruction, 2);
15746
15747 return to;
15748 }
15749
15750 /* Tag values used in struct asm_opcode's tag field. */
15751 enum opcode_tag
15752 {
15753 OT_unconditional, /* Instruction cannot be conditionalized.
15754 The ARM condition field is still 0xE. */
15755 OT_unconditionalF, /* Instruction cannot be conditionalized
15756 and carries 0xF in its ARM condition field. */
15757 OT_csuffix, /* Instruction takes a conditional suffix. */
15758 OT_csuffixF, /* Some forms of the instruction take a conditional
15759 suffix, others place 0xF where the condition field
15760 would be. */
15761 OT_cinfix3, /* Instruction takes a conditional infix,
15762 beginning at character index 3. (In
15763 unified mode, it becomes a suffix.) */
15764 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15765 tsts, cmps, cmns, and teqs. */
15766 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15767 character index 3, even in unified mode. Used for
15768 legacy instructions where suffix and infix forms
15769 may be ambiguous. */
15770 OT_csuf_or_in3, /* Instruction takes either a conditional
15771 suffix or an infix at character index 3. */
15772 OT_odd_infix_unc, /* This is the unconditional variant of an
15773 instruction that takes a conditional infix
15774 at an unusual position. In unified mode,
15775 this variant will accept a suffix. */
15776 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15777 are the conditional variants of instructions that
15778 take conditional infixes in unusual positions.
15779 The infix appears at character index
15780 (tag - OT_odd_infix_0). These are not accepted
15781 in unified mode. */
15782 };
15783
15784 /* Subroutine of md_assemble, responsible for looking up the primary
15785 opcode from the mnemonic the user wrote. STR points to the
15786 beginning of the mnemonic.
15787
15788 This is not simply a hash table lookup, because of conditional
15789 variants. Most instructions have conditional variants, which are
15790 expressed with a _conditional affix_ to the mnemonic. If we were
15791 to encode each conditional variant as a literal string in the opcode
15792 table, it would have approximately 20,000 entries.
15793
15794 Most mnemonics take this affix as a suffix, and in unified syntax,
15795 'most' is upgraded to 'all'. However, in the divided syntax, some
15796 instructions take the affix as an infix, notably the s-variants of
15797 the arithmetic instructions. Of those instructions, all but six
15798 have the infix appear after the third character of the mnemonic.
15799
15800 Accordingly, the algorithm for looking up primary opcodes given
15801 an identifier is:
15802
15803 1. Look up the identifier in the opcode table.
15804 If we find a match, go to step U.
15805
15806 2. Look up the last two characters of the identifier in the
15807 conditions table. If we find a match, look up the first N-2
15808 characters of the identifier in the opcode table. If we
15809 find a match, go to step CE.
15810
15811 3. Look up the fourth and fifth characters of the identifier in
15812 the conditions table. If we find a match, extract those
15813 characters from the identifier, and look up the remaining
15814 characters in the opcode table. If we find a match, go
15815 to step CM.
15816
15817 4. Fail.
15818
15819 U. Examine the tag field of the opcode structure, in case this is
15820 one of the six instructions with its conditional infix in an
15821 unusual place. If it is, the tag tells us where to find the
15822 infix; look it up in the conditions table and set inst.cond
15823 accordingly. Otherwise, this is an unconditional instruction.
15824 Again set inst.cond accordingly. Return the opcode structure.
15825
15826 CE. Examine the tag field to make sure this is an instruction that
15827 should receive a conditional suffix. If it is not, fail.
15828 Otherwise, set inst.cond from the suffix we already looked up,
15829 and return the opcode structure.
15830
15831 CM. Examine the tag field to make sure this is an instruction that
15832 should receive a conditional infix after the third character.
15833 If it is not, fail. Otherwise, undo the edits to the current
15834 line of input and proceed as for case CE. */
15835
15836 static const struct asm_opcode *
15837 opcode_lookup (char **str)
15838 {
15839 char *end, *base;
15840 char *affix;
15841 const struct asm_opcode *opcode;
15842 const struct asm_cond *cond;
15843 char save[2];
15844
15845 /* Scan up to the end of the mnemonic, which must end in white space,
15846 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15847 for (base = end = *str; *end != '\0'; end++)
15848 if (*end == ' ' || *end == '.')
15849 break;
15850
15851 if (end == base)
15852 return NULL;
15853
15854 /* Handle a possible width suffix and/or Neon type suffix. */
15855 if (end[0] == '.')
15856 {
15857 int offset = 2;
15858
15859 /* The .w and .n suffixes are only valid if the unified syntax is in
15860 use. */
15861 if (unified_syntax && end[1] == 'w')
15862 inst.size_req = 4;
15863 else if (unified_syntax && end[1] == 'n')
15864 inst.size_req = 2;
15865 else
15866 offset = 0;
15867
15868 inst.vectype.elems = 0;
15869
15870 *str = end + offset;
15871
15872 if (end[offset] == '.')
15873 {
15874 /* See if we have a Neon type suffix (possible in either unified or
15875 non-unified ARM syntax mode). */
15876 if (parse_neon_type (&inst.vectype, str) == FAIL)
15877 return NULL;
15878 }
15879 else if (end[offset] != '\0' && end[offset] != ' ')
15880 return NULL;
15881 }
15882 else
15883 *str = end;
15884
15885 /* Look for unaffixed or special-case affixed mnemonic. */
15886 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15887 end - base);
15888 if (opcode)
15889 {
15890 /* step U */
15891 if (opcode->tag < OT_odd_infix_0)
15892 {
15893 inst.cond = COND_ALWAYS;
15894 return opcode;
15895 }
15896
15897 if (warn_on_deprecated && unified_syntax)
15898 as_warn (_("conditional infixes are deprecated in unified syntax"));
15899 affix = base + (opcode->tag - OT_odd_infix_0);
15900 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15901 gas_assert (cond);
15902
15903 inst.cond = cond->value;
15904 return opcode;
15905 }
15906
15907 /* Cannot have a conditional suffix on a mnemonic of less than two
15908 characters. */
15909 if (end - base < 3)
15910 return NULL;
15911
15912 /* Look for suffixed mnemonic. */
15913 affix = end - 2;
15914 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15915 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15916 affix - base);
15917 if (opcode && cond)
15918 {
15919 /* step CE */
15920 switch (opcode->tag)
15921 {
15922 case OT_cinfix3_legacy:
15923 /* Ignore conditional suffixes matched on infix only mnemonics. */
15924 break;
15925
15926 case OT_cinfix3:
15927 case OT_cinfix3_deprecated:
15928 case OT_odd_infix_unc:
15929 if (!unified_syntax)
15930 return 0;
15931 /* else fall through */
15932
15933 case OT_csuffix:
15934 case OT_csuffixF:
15935 case OT_csuf_or_in3:
15936 inst.cond = cond->value;
15937 return opcode;
15938
15939 case OT_unconditional:
15940 case OT_unconditionalF:
15941 if (thumb_mode)
15942 inst.cond = cond->value;
15943 else
15944 {
15945 /* Delayed diagnostic. */
15946 inst.error = BAD_COND;
15947 inst.cond = COND_ALWAYS;
15948 }
15949 return opcode;
15950
15951 default:
15952 return NULL;
15953 }
15954 }
15955
15956 /* Cannot have a usual-position infix on a mnemonic of less than
15957 six characters (five would be a suffix). */
15958 if (end - base < 6)
15959 return NULL;
15960
15961 /* Look for infixed mnemonic in the usual position. */
15962 affix = base + 3;
15963 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15964 if (!cond)
15965 return NULL;
15966
15967 memcpy (save, affix, 2);
15968 memmove (affix, affix + 2, (end - affix) - 2);
15969 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15970 (end - base) - 2);
15971 memmove (affix + 2, affix, (end - affix) - 2);
15972 memcpy (affix, save, 2);
15973
15974 if (opcode
15975 && (opcode->tag == OT_cinfix3
15976 || opcode->tag == OT_cinfix3_deprecated
15977 || opcode->tag == OT_csuf_or_in3
15978 || opcode->tag == OT_cinfix3_legacy))
15979 {
15980 /* Step CM. */
15981 if (warn_on_deprecated && unified_syntax
15982 && (opcode->tag == OT_cinfix3
15983 || opcode->tag == OT_cinfix3_deprecated))
15984 as_warn (_("conditional infixes are deprecated in unified syntax"));
15985
15986 inst.cond = cond->value;
15987 return opcode;
15988 }
15989
15990 return NULL;
15991 }
15992
15993 /* This function generates an initial IT instruction, leaving its block
15994 virtually open for the new instructions. Eventually,
15995 the mask will be updated by now_it_add_mask () each time
15996 a new instruction needs to be included in the IT block.
15997 Finally, the block is closed with close_automatic_it_block ().
15998 The block closure can be requested either from md_assemble (),
15999 a tencode (), or due to a label hook. */
16000
16001 static void
16002 new_automatic_it_block (int cond)
16003 {
16004 now_it.state = AUTOMATIC_IT_BLOCK;
16005 now_it.mask = 0x18;
16006 now_it.cc = cond;
16007 now_it.block_length = 1;
16008 mapping_state (MAP_THUMB);
16009 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16010 }
16011
16012 /* Close an automatic IT block.
16013 See comments in new_automatic_it_block (). */
16014
16015 static void
16016 close_automatic_it_block (void)
16017 {
16018 now_it.mask = 0x10;
16019 now_it.block_length = 0;
16020 }
16021
16022 /* Update the mask of the current automatically-generated IT
16023 instruction. See comments in new_automatic_it_block (). */
16024
16025 static void
16026 now_it_add_mask (int cond)
16027 {
16028 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16029 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16030 | ((bitvalue) << (nbit)))
16031 const int resulting_bit = (cond & 1);
16032
16033 now_it.mask &= 0xf;
16034 now_it.mask = SET_BIT_VALUE (now_it.mask,
16035 resulting_bit,
16036 (5 - now_it.block_length));
16037 now_it.mask = SET_BIT_VALUE (now_it.mask,
16038 1,
16039 ((5 - now_it.block_length) - 1) );
16040 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16041
16042 #undef CLEAR_BIT
16043 #undef SET_BIT_VALUE
16044 }
16045
16046 /* The IT blocks handling machinery is accessed through the these functions:
16047 it_fsm_pre_encode () from md_assemble ()
16048 set_it_insn_type () optional, from the tencode functions
16049 set_it_insn_type_last () ditto
16050 in_it_block () ditto
16051 it_fsm_post_encode () from md_assemble ()
16052 force_automatic_it_block_close () from label habdling functions
16053
16054 Rationale:
16055 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16056 initializing the IT insn type with a generic initial value depending
16057 on the inst.condition.
16058 2) During the tencode function, two things may happen:
16059 a) The tencode function overrides the IT insn type by
16060 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16061 b) The tencode function queries the IT block state by
16062 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16063
16064 Both set_it_insn_type and in_it_block run the internal FSM state
16065 handling function (handle_it_state), because: a) setting the IT insn
16066 type may incur in an invalid state (exiting the function),
16067 and b) querying the state requires the FSM to be updated.
16068 Specifically we want to avoid creating an IT block for conditional
16069 branches, so it_fsm_pre_encode is actually a guess and we can't
16070 determine whether an IT block is required until the tencode () routine
16071 has decided what type of instruction this actually it.
16072 Because of this, if set_it_insn_type and in_it_block have to be used,
16073 set_it_insn_type has to be called first.
16074
16075 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16076 determines the insn IT type depending on the inst.cond code.
16077 When a tencode () routine encodes an instruction that can be
16078 either outside an IT block, or, in the case of being inside, has to be
16079 the last one, set_it_insn_type_last () will determine the proper
16080 IT instruction type based on the inst.cond code. Otherwise,
16081 set_it_insn_type can be called for overriding that logic or
16082 for covering other cases.
16083
16084 Calling handle_it_state () may not transition the IT block state to
16085 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16086 still queried. Instead, if the FSM determines that the state should
16087 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16088 after the tencode () function: that's what it_fsm_post_encode () does.
16089
16090 Since in_it_block () calls the state handling function to get an
16091 updated state, an error may occur (due to invalid insns combination).
16092 In that case, inst.error is set.
16093 Therefore, inst.error has to be checked after the execution of
16094 the tencode () routine.
16095
16096 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16097 any pending state change (if any) that didn't take place in
16098 handle_it_state () as explained above. */
16099
16100 static void
16101 it_fsm_pre_encode (void)
16102 {
16103 if (inst.cond != COND_ALWAYS)
16104 inst.it_insn_type = INSIDE_IT_INSN;
16105 else
16106 inst.it_insn_type = OUTSIDE_IT_INSN;
16107
16108 now_it.state_handled = 0;
16109 }
16110
16111 /* IT state FSM handling function. */
16112
16113 static int
16114 handle_it_state (void)
16115 {
16116 now_it.state_handled = 1;
16117
16118 switch (now_it.state)
16119 {
16120 case OUTSIDE_IT_BLOCK:
16121 switch (inst.it_insn_type)
16122 {
16123 case OUTSIDE_IT_INSN:
16124 break;
16125
16126 case INSIDE_IT_INSN:
16127 case INSIDE_IT_LAST_INSN:
16128 if (thumb_mode == 0)
16129 {
16130 if (unified_syntax
16131 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16132 as_tsktsk (_("Warning: conditional outside an IT block"\
16133 " for Thumb."));
16134 }
16135 else
16136 {
16137 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16138 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16139 {
16140 /* Automatically generate the IT instruction. */
16141 new_automatic_it_block (inst.cond);
16142 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16143 close_automatic_it_block ();
16144 }
16145 else
16146 {
16147 inst.error = BAD_OUT_IT;
16148 return FAIL;
16149 }
16150 }
16151 break;
16152
16153 case IF_INSIDE_IT_LAST_INSN:
16154 case NEUTRAL_IT_INSN:
16155 break;
16156
16157 case IT_INSN:
16158 now_it.state = MANUAL_IT_BLOCK;
16159 now_it.block_length = 0;
16160 break;
16161 }
16162 break;
16163
16164 case AUTOMATIC_IT_BLOCK:
16165 /* Three things may happen now:
16166 a) We should increment current it block size;
16167 b) We should close current it block (closing insn or 4 insns);
16168 c) We should close current it block and start a new one (due
16169 to incompatible conditions or
16170 4 insns-length block reached). */
16171
16172 switch (inst.it_insn_type)
16173 {
16174 case OUTSIDE_IT_INSN:
16175 /* The closure of the block shall happen immediatelly,
16176 so any in_it_block () call reports the block as closed. */
16177 force_automatic_it_block_close ();
16178 break;
16179
16180 case INSIDE_IT_INSN:
16181 case INSIDE_IT_LAST_INSN:
16182 case IF_INSIDE_IT_LAST_INSN:
16183 now_it.block_length++;
16184
16185 if (now_it.block_length > 4
16186 || !now_it_compatible (inst.cond))
16187 {
16188 force_automatic_it_block_close ();
16189 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16190 new_automatic_it_block (inst.cond);
16191 }
16192 else
16193 {
16194 now_it_add_mask (inst.cond);
16195 }
16196
16197 if (now_it.state == AUTOMATIC_IT_BLOCK
16198 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16199 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16200 close_automatic_it_block ();
16201 break;
16202
16203 case NEUTRAL_IT_INSN:
16204 now_it.block_length++;
16205
16206 if (now_it.block_length > 4)
16207 force_automatic_it_block_close ();
16208 else
16209 now_it_add_mask (now_it.cc & 1);
16210 break;
16211
16212 case IT_INSN:
16213 close_automatic_it_block ();
16214 now_it.state = MANUAL_IT_BLOCK;
16215 break;
16216 }
16217 break;
16218
16219 case MANUAL_IT_BLOCK:
16220 {
16221 /* Check conditional suffixes. */
16222 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16223 int is_last;
16224 now_it.mask <<= 1;
16225 now_it.mask &= 0x1f;
16226 is_last = (now_it.mask == 0x10);
16227
16228 switch (inst.it_insn_type)
16229 {
16230 case OUTSIDE_IT_INSN:
16231 inst.error = BAD_NOT_IT;
16232 return FAIL;
16233
16234 case INSIDE_IT_INSN:
16235 if (cond != inst.cond)
16236 {
16237 inst.error = BAD_IT_COND;
16238 return FAIL;
16239 }
16240 break;
16241
16242 case INSIDE_IT_LAST_INSN:
16243 case IF_INSIDE_IT_LAST_INSN:
16244 if (cond != inst.cond)
16245 {
16246 inst.error = BAD_IT_COND;
16247 return FAIL;
16248 }
16249 if (!is_last)
16250 {
16251 inst.error = BAD_BRANCH;
16252 return FAIL;
16253 }
16254 break;
16255
16256 case NEUTRAL_IT_INSN:
16257 /* The BKPT instruction is unconditional even in an IT block. */
16258 break;
16259
16260 case IT_INSN:
16261 inst.error = BAD_IT_IT;
16262 return FAIL;
16263 }
16264 }
16265 break;
16266 }
16267
16268 return SUCCESS;
16269 }
16270
16271 static void
16272 it_fsm_post_encode (void)
16273 {
16274 int is_last;
16275
16276 if (!now_it.state_handled)
16277 handle_it_state ();
16278
16279 is_last = (now_it.mask == 0x10);
16280 if (is_last)
16281 {
16282 now_it.state = OUTSIDE_IT_BLOCK;
16283 now_it.mask = 0;
16284 }
16285 }
16286
16287 static void
16288 force_automatic_it_block_close (void)
16289 {
16290 if (now_it.state == AUTOMATIC_IT_BLOCK)
16291 {
16292 close_automatic_it_block ();
16293 now_it.state = OUTSIDE_IT_BLOCK;
16294 now_it.mask = 0;
16295 }
16296 }
16297
16298 static int
16299 in_it_block (void)
16300 {
16301 if (!now_it.state_handled)
16302 handle_it_state ();
16303
16304 return now_it.state != OUTSIDE_IT_BLOCK;
16305 }
16306
16307 void
16308 md_assemble (char *str)
16309 {
16310 char *p = str;
16311 const struct asm_opcode * opcode;
16312
16313 /* Align the previous label if needed. */
16314 if (last_label_seen != NULL)
16315 {
16316 symbol_set_frag (last_label_seen, frag_now);
16317 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16318 S_SET_SEGMENT (last_label_seen, now_seg);
16319 }
16320
16321 memset (&inst, '\0', sizeof (inst));
16322 inst.reloc.type = BFD_RELOC_UNUSED;
16323
16324 opcode = opcode_lookup (&p);
16325 if (!opcode)
16326 {
16327 /* It wasn't an instruction, but it might be a register alias of
16328 the form alias .req reg, or a Neon .dn/.qn directive. */
16329 if (! create_register_alias (str, p)
16330 && ! create_neon_reg_alias (str, p))
16331 as_bad (_("bad instruction `%s'"), str);
16332
16333 return;
16334 }
16335
16336 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16337 as_warn (_("s suffix on comparison instruction is deprecated"));
16338
16339 /* The value which unconditional instructions should have in place of the
16340 condition field. */
16341 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16342
16343 if (thumb_mode)
16344 {
16345 arm_feature_set variant;
16346
16347 variant = cpu_variant;
16348 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16349 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16350 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16351 /* Check that this instruction is supported for this CPU. */
16352 if (!opcode->tvariant
16353 || (thumb_mode == 1
16354 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16355 {
16356 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16357 return;
16358 }
16359 if (inst.cond != COND_ALWAYS && !unified_syntax
16360 && opcode->tencode != do_t_branch)
16361 {
16362 as_bad (_("Thumb does not support conditional execution"));
16363 return;
16364 }
16365
16366 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16367 {
16368 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16369 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16370 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16371 {
16372 /* Two things are addressed here.
16373 1) Implicit require narrow instructions on Thumb-1.
16374 This avoids relaxation accidentally introducing Thumb-2
16375 instructions.
16376 2) Reject wide instructions in non Thumb-2 cores. */
16377 if (inst.size_req == 0)
16378 inst.size_req = 2;
16379 else if (inst.size_req == 4)
16380 {
16381 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16382 return;
16383 }
16384 }
16385 }
16386
16387 inst.instruction = opcode->tvalue;
16388
16389 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16390 {
16391 /* Prepare the it_insn_type for those encodings that don't set
16392 it. */
16393 it_fsm_pre_encode ();
16394
16395 opcode->tencode ();
16396
16397 it_fsm_post_encode ();
16398 }
16399
16400 if (!(inst.error || inst.relax))
16401 {
16402 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16403 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16404 if (inst.size_req && inst.size_req != inst.size)
16405 {
16406 as_bad (_("cannot honor width suffix -- `%s'"), str);
16407 return;
16408 }
16409 }
16410
16411 /* Something has gone badly wrong if we try to relax a fixed size
16412 instruction. */
16413 gas_assert (inst.size_req == 0 || !inst.relax);
16414
16415 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16416 *opcode->tvariant);
16417 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16418 set those bits when Thumb-2 32-bit instructions are seen. ie.
16419 anything other than bl/blx and v6-M instructions.
16420 This is overly pessimistic for relaxable instructions. */
16421 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16422 || inst.relax)
16423 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16424 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16425 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16426 arm_ext_v6t2);
16427
16428 check_neon_suffixes;
16429
16430 if (!inst.error)
16431 {
16432 mapping_state (MAP_THUMB);
16433 }
16434 }
16435 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16436 {
16437 bfd_boolean is_bx;
16438
16439 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16440 is_bx = (opcode->aencode == do_bx);
16441
16442 /* Check that this instruction is supported for this CPU. */
16443 if (!(is_bx && fix_v4bx)
16444 && !(opcode->avariant &&
16445 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16446 {
16447 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16448 return;
16449 }
16450 if (inst.size_req)
16451 {
16452 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16453 return;
16454 }
16455
16456 inst.instruction = opcode->avalue;
16457 if (opcode->tag == OT_unconditionalF)
16458 inst.instruction |= 0xF << 28;
16459 else
16460 inst.instruction |= inst.cond << 28;
16461 inst.size = INSN_SIZE;
16462 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16463 {
16464 it_fsm_pre_encode ();
16465 opcode->aencode ();
16466 it_fsm_post_encode ();
16467 }
16468 /* Arm mode bx is marked as both v4T and v5 because it's still required
16469 on a hypothetical non-thumb v5 core. */
16470 if (is_bx)
16471 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16472 else
16473 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16474 *opcode->avariant);
16475
16476 check_neon_suffixes;
16477
16478 if (!inst.error)
16479 {
16480 mapping_state (MAP_ARM);
16481 }
16482 }
16483 else
16484 {
16485 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16486 "-- `%s'"), str);
16487 return;
16488 }
16489 output_inst (str);
16490 }
16491
16492 static void
16493 check_it_blocks_finished (void)
16494 {
16495 #ifdef OBJ_ELF
16496 asection *sect;
16497
16498 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16499 if (seg_info (sect)->tc_segment_info_data.current_it.state
16500 == MANUAL_IT_BLOCK)
16501 {
16502 as_warn (_("section '%s' finished with an open IT block."),
16503 sect->name);
16504 }
16505 #else
16506 if (now_it.state == MANUAL_IT_BLOCK)
16507 as_warn (_("file finished with an open IT block."));
16508 #endif
16509 }
16510
16511 /* Various frobbings of labels and their addresses. */
16512
16513 void
16514 arm_start_line_hook (void)
16515 {
16516 last_label_seen = NULL;
16517 }
16518
16519 void
16520 arm_frob_label (symbolS * sym)
16521 {
16522 last_label_seen = sym;
16523
16524 ARM_SET_THUMB (sym, thumb_mode);
16525
16526 #if defined OBJ_COFF || defined OBJ_ELF
16527 ARM_SET_INTERWORK (sym, support_interwork);
16528 #endif
16529
16530 force_automatic_it_block_close ();
16531
16532 /* Note - do not allow local symbols (.Lxxx) to be labelled
16533 as Thumb functions. This is because these labels, whilst
16534 they exist inside Thumb code, are not the entry points for
16535 possible ARM->Thumb calls. Also, these labels can be used
16536 as part of a computed goto or switch statement. eg gcc
16537 can generate code that looks like this:
16538
16539 ldr r2, [pc, .Laaa]
16540 lsl r3, r3, #2
16541 ldr r2, [r3, r2]
16542 mov pc, r2
16543
16544 .Lbbb: .word .Lxxx
16545 .Lccc: .word .Lyyy
16546 ..etc...
16547 .Laaa: .word Lbbb
16548
16549 The first instruction loads the address of the jump table.
16550 The second instruction converts a table index into a byte offset.
16551 The third instruction gets the jump address out of the table.
16552 The fourth instruction performs the jump.
16553
16554 If the address stored at .Laaa is that of a symbol which has the
16555 Thumb_Func bit set, then the linker will arrange for this address
16556 to have the bottom bit set, which in turn would mean that the
16557 address computation performed by the third instruction would end
16558 up with the bottom bit set. Since the ARM is capable of unaligned
16559 word loads, the instruction would then load the incorrect address
16560 out of the jump table, and chaos would ensue. */
16561 if (label_is_thumb_function_name
16562 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16563 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16564 {
16565 /* When the address of a Thumb function is taken the bottom
16566 bit of that address should be set. This will allow
16567 interworking between Arm and Thumb functions to work
16568 correctly. */
16569
16570 THUMB_SET_FUNC (sym, 1);
16571
16572 label_is_thumb_function_name = FALSE;
16573 }
16574
16575 dwarf2_emit_label (sym);
16576 }
16577
16578 bfd_boolean
16579 arm_data_in_code (void)
16580 {
16581 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16582 {
16583 *input_line_pointer = '/';
16584 input_line_pointer += 5;
16585 *input_line_pointer = 0;
16586 return TRUE;
16587 }
16588
16589 return FALSE;
16590 }
16591
16592 char *
16593 arm_canonicalize_symbol_name (char * name)
16594 {
16595 int len;
16596
16597 if (thumb_mode && (len = strlen (name)) > 5
16598 && streq (name + len - 5, "/data"))
16599 *(name + len - 5) = 0;
16600
16601 return name;
16602 }
16603 \f
16604 /* Table of all register names defined by default. The user can
16605 define additional names with .req. Note that all register names
16606 should appear in both upper and lowercase variants. Some registers
16607 also have mixed-case names. */
16608
16609 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16610 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16611 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16612 #define REGSET(p,t) \
16613 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16614 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16615 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16616 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16617 #define REGSETH(p,t) \
16618 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16619 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16620 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16621 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16622 #define REGSET2(p,t) \
16623 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16624 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16625 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16626 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16627 #define SPLRBANK(base,bank,t) \
16628 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16629 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16630 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16631 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16632 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16633 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16634
16635 static const struct reg_entry reg_names[] =
16636 {
16637 /* ARM integer registers. */
16638 REGSET(r, RN), REGSET(R, RN),
16639
16640 /* ATPCS synonyms. */
16641 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16642 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16643 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16644
16645 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16646 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16647 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16648
16649 /* Well-known aliases. */
16650 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16651 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16652
16653 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16654 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16655
16656 /* Coprocessor numbers. */
16657 REGSET(p, CP), REGSET(P, CP),
16658
16659 /* Coprocessor register numbers. The "cr" variants are for backward
16660 compatibility. */
16661 REGSET(c, CN), REGSET(C, CN),
16662 REGSET(cr, CN), REGSET(CR, CN),
16663
16664 /* ARM banked registers. */
16665 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16666 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16667 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16668 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16669 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16670 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16671 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16672
16673 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16674 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16675 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16676 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16677 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16678 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16679 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16680 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16681
16682 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16683 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16684 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16685 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16686 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16687 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16688 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16689 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16690 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16691
16692 /* FPA registers. */
16693 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16694 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16695
16696 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16697 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16698
16699 /* VFP SP registers. */
16700 REGSET(s,VFS), REGSET(S,VFS),
16701 REGSETH(s,VFS), REGSETH(S,VFS),
16702
16703 /* VFP DP Registers. */
16704 REGSET(d,VFD), REGSET(D,VFD),
16705 /* Extra Neon DP registers. */
16706 REGSETH(d,VFD), REGSETH(D,VFD),
16707
16708 /* Neon QP registers. */
16709 REGSET2(q,NQ), REGSET2(Q,NQ),
16710
16711 /* VFP control registers. */
16712 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16713 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16714 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16715 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16716 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16717 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16718
16719 /* Maverick DSP coprocessor registers. */
16720 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16721 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16722
16723 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16724 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16725 REGDEF(dspsc,0,DSPSC),
16726
16727 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16728 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16729 REGDEF(DSPSC,0,DSPSC),
16730
16731 /* iWMMXt data registers - p0, c0-15. */
16732 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16733
16734 /* iWMMXt control registers - p1, c0-3. */
16735 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16736 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16737 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16738 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16739
16740 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16741 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16742 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16743 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16744 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16745
16746 /* XScale accumulator registers. */
16747 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16748 };
16749 #undef REGDEF
16750 #undef REGNUM
16751 #undef REGSET
16752
16753 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16754 within psr_required_here. */
16755 static const struct asm_psr psrs[] =
16756 {
16757 /* Backward compatibility notation. Note that "all" is no longer
16758 truly all possible PSR bits. */
16759 {"all", PSR_c | PSR_f},
16760 {"flg", PSR_f},
16761 {"ctl", PSR_c},
16762
16763 /* Individual flags. */
16764 {"f", PSR_f},
16765 {"c", PSR_c},
16766 {"x", PSR_x},
16767 {"s", PSR_s},
16768
16769 /* Combinations of flags. */
16770 {"fs", PSR_f | PSR_s},
16771 {"fx", PSR_f | PSR_x},
16772 {"fc", PSR_f | PSR_c},
16773 {"sf", PSR_s | PSR_f},
16774 {"sx", PSR_s | PSR_x},
16775 {"sc", PSR_s | PSR_c},
16776 {"xf", PSR_x | PSR_f},
16777 {"xs", PSR_x | PSR_s},
16778 {"xc", PSR_x | PSR_c},
16779 {"cf", PSR_c | PSR_f},
16780 {"cs", PSR_c | PSR_s},
16781 {"cx", PSR_c | PSR_x},
16782 {"fsx", PSR_f | PSR_s | PSR_x},
16783 {"fsc", PSR_f | PSR_s | PSR_c},
16784 {"fxs", PSR_f | PSR_x | PSR_s},
16785 {"fxc", PSR_f | PSR_x | PSR_c},
16786 {"fcs", PSR_f | PSR_c | PSR_s},
16787 {"fcx", PSR_f | PSR_c | PSR_x},
16788 {"sfx", PSR_s | PSR_f | PSR_x},
16789 {"sfc", PSR_s | PSR_f | PSR_c},
16790 {"sxf", PSR_s | PSR_x | PSR_f},
16791 {"sxc", PSR_s | PSR_x | PSR_c},
16792 {"scf", PSR_s | PSR_c | PSR_f},
16793 {"scx", PSR_s | PSR_c | PSR_x},
16794 {"xfs", PSR_x | PSR_f | PSR_s},
16795 {"xfc", PSR_x | PSR_f | PSR_c},
16796 {"xsf", PSR_x | PSR_s | PSR_f},
16797 {"xsc", PSR_x | PSR_s | PSR_c},
16798 {"xcf", PSR_x | PSR_c | PSR_f},
16799 {"xcs", PSR_x | PSR_c | PSR_s},
16800 {"cfs", PSR_c | PSR_f | PSR_s},
16801 {"cfx", PSR_c | PSR_f | PSR_x},
16802 {"csf", PSR_c | PSR_s | PSR_f},
16803 {"csx", PSR_c | PSR_s | PSR_x},
16804 {"cxf", PSR_c | PSR_x | PSR_f},
16805 {"cxs", PSR_c | PSR_x | PSR_s},
16806 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16807 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16808 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16809 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16810 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16811 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16812 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16813 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16814 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16815 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16816 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16817 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16818 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16819 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16820 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16821 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16822 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16823 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16824 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16825 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16826 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16827 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16828 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16829 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16830 };
16831
16832 /* Table of V7M psr names. */
16833 static const struct asm_psr v7m_psrs[] =
16834 {
16835 {"apsr", 0 }, {"APSR", 0 },
16836 {"iapsr", 1 }, {"IAPSR", 1 },
16837 {"eapsr", 2 }, {"EAPSR", 2 },
16838 {"psr", 3 }, {"PSR", 3 },
16839 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16840 {"ipsr", 5 }, {"IPSR", 5 },
16841 {"epsr", 6 }, {"EPSR", 6 },
16842 {"iepsr", 7 }, {"IEPSR", 7 },
16843 {"msp", 8 }, {"MSP", 8 },
16844 {"psp", 9 }, {"PSP", 9 },
16845 {"primask", 16}, {"PRIMASK", 16},
16846 {"basepri", 17}, {"BASEPRI", 17},
16847 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16848 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
16849 {"faultmask", 19}, {"FAULTMASK", 19},
16850 {"control", 20}, {"CONTROL", 20}
16851 };
16852
16853 /* Table of all shift-in-operand names. */
16854 static const struct asm_shift_name shift_names [] =
16855 {
16856 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16857 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16858 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16859 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16860 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16861 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16862 };
16863
16864 /* Table of all explicit relocation names. */
16865 #ifdef OBJ_ELF
16866 static struct reloc_entry reloc_names[] =
16867 {
16868 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16869 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16870 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16871 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16872 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16873 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16874 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16875 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16876 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16877 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16878 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16879 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16880 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16881 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16882 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16883 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16884 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16885 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
16886 };
16887 #endif
16888
16889 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16890 static const struct asm_cond conds[] =
16891 {
16892 {"eq", 0x0},
16893 {"ne", 0x1},
16894 {"cs", 0x2}, {"hs", 0x2},
16895 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16896 {"mi", 0x4},
16897 {"pl", 0x5},
16898 {"vs", 0x6},
16899 {"vc", 0x7},
16900 {"hi", 0x8},
16901 {"ls", 0x9},
16902 {"ge", 0xa},
16903 {"lt", 0xb},
16904 {"gt", 0xc},
16905 {"le", 0xd},
16906 {"al", 0xe}
16907 };
16908
16909 static struct asm_barrier_opt barrier_opt_names[] =
16910 {
16911 { "sy", 0xf }, { "SY", 0xf },
16912 { "un", 0x7 }, { "UN", 0x7 },
16913 { "st", 0xe }, { "ST", 0xe },
16914 { "unst", 0x6 }, { "UNST", 0x6 },
16915 { "ish", 0xb }, { "ISH", 0xb },
16916 { "sh", 0xb }, { "SH", 0xb },
16917 { "ishst", 0xa }, { "ISHST", 0xa },
16918 { "shst", 0xa }, { "SHST", 0xa },
16919 { "nsh", 0x7 }, { "NSH", 0x7 },
16920 { "nshst", 0x6 }, { "NSHST", 0x6 },
16921 { "osh", 0x3 }, { "OSH", 0x3 },
16922 { "oshst", 0x2 }, { "OSHST", 0x2 }
16923 };
16924
16925 /* Table of ARM-format instructions. */
16926
16927 /* Macros for gluing together operand strings. N.B. In all cases
16928 other than OPS0, the trailing OP_stop comes from default
16929 zero-initialization of the unspecified elements of the array. */
16930 #define OPS0() { OP_stop, }
16931 #define OPS1(a) { OP_##a, }
16932 #define OPS2(a,b) { OP_##a,OP_##b, }
16933 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16934 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16935 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16936 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16937
16938 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16939 This is useful when mixing operands for ARM and THUMB, i.e. using the
16940 MIX_ARM_THUMB_OPERANDS macro.
16941 In order to use these macros, prefix the number of operands with _
16942 e.g. _3. */
16943 #define OPS_1(a) { a, }
16944 #define OPS_2(a,b) { a,b, }
16945 #define OPS_3(a,b,c) { a,b,c, }
16946 #define OPS_4(a,b,c,d) { a,b,c,d, }
16947 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16948 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16949
16950 /* These macros abstract out the exact format of the mnemonic table and
16951 save some repeated characters. */
16952
16953 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16954 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16955 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16956 THUMB_VARIANT, do_##ae, do_##te }
16957
16958 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16959 a T_MNEM_xyz enumerator. */
16960 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16961 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16962 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16963 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16964
16965 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16966 infix after the third character. */
16967 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16968 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16969 THUMB_VARIANT, do_##ae, do_##te }
16970 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16971 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16972 THUMB_VARIANT, do_##ae, do_##te }
16973 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16974 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16975 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16976 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16977 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16978 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16979 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16980 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16981
16982 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16983 appear in the condition table. */
16984 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16985 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16986 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16987
16988 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16989 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16990 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16991 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16992 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16993 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16994 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16995 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16996 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16997 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16998 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16999 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17000 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17001 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17002 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17003 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17004 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17005 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17006 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17007 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
17008
17009 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
17010 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17011 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
17012 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
17013
17014 /* Mnemonic that cannot be conditionalized. The ARM condition-code
17015 field is still 0xE. Many of the Thumb variants can be executed
17016 conditionally, so this is checked separately. */
17017 #define TUE(mnem, op, top, nops, ops, ae, te) \
17018 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17019 THUMB_VARIANT, do_##ae, do_##te }
17020
17021 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17022 condition code field. */
17023 #define TUF(mnem, op, top, nops, ops, ae, te) \
17024 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17025 THUMB_VARIANT, do_##ae, do_##te }
17026
17027 /* ARM-only variants of all the above. */
17028 #define CE(mnem, op, nops, ops, ae) \
17029 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17030
17031 #define C3(mnem, op, nops, ops, ae) \
17032 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17033
17034 /* Legacy mnemonics that always have conditional infix after the third
17035 character. */
17036 #define CL(mnem, op, nops, ops, ae) \
17037 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17038 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17039
17040 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17041 #define cCE(mnem, op, nops, ops, ae) \
17042 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17043
17044 /* Legacy coprocessor instructions where conditional infix and conditional
17045 suffix are ambiguous. For consistency this includes all FPA instructions,
17046 not just the potentially ambiguous ones. */
17047 #define cCL(mnem, op, nops, ops, ae) \
17048 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17049 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17050
17051 /* Coprocessor, takes either a suffix or a position-3 infix
17052 (for an FPA corner case). */
17053 #define C3E(mnem, op, nops, ops, ae) \
17054 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17055 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17056
17057 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17058 { m1 #m2 m3, OPS##nops ops, \
17059 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17060 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17061
17062 #define CM(m1, m2, op, nops, ops, ae) \
17063 xCM_ (m1, , m2, op, nops, ops, ae), \
17064 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17065 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17066 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17067 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17068 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17069 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17070 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17071 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17072 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17073 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17074 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17075 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17076 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17077 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17078 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17079 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17080 xCM_ (m1, le, m2, op, nops, ops, ae), \
17081 xCM_ (m1, al, m2, op, nops, ops, ae)
17082
17083 #define UE(mnem, op, nops, ops, ae) \
17084 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17085
17086 #define UF(mnem, op, nops, ops, ae) \
17087 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17088
17089 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17090 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17091 use the same encoding function for each. */
17092 #define NUF(mnem, op, nops, ops, enc) \
17093 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17094 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17095
17096 /* Neon data processing, version which indirects through neon_enc_tab for
17097 the various overloaded versions of opcodes. */
17098 #define nUF(mnem, op, nops, ops, enc) \
17099 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17100 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17101
17102 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17103 version. */
17104 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17105 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17106 THUMB_VARIANT, do_##enc, do_##enc }
17107
17108 #define NCE(mnem, op, nops, ops, enc) \
17109 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17110
17111 #define NCEF(mnem, op, nops, ops, enc) \
17112 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17113
17114 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17115 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17116 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17117 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17118
17119 #define nCE(mnem, op, nops, ops, enc) \
17120 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17121
17122 #define nCEF(mnem, op, nops, ops, enc) \
17123 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17124
17125 #define do_0 0
17126
17127 static const struct asm_opcode insns[] =
17128 {
17129 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17130 #define THUMB_VARIANT &arm_ext_v4t
17131 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17132 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17133 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17134 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17135 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17136 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17137 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17138 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17139 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17140 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17141 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17142 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17143 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17144 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17145 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17146 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17147
17148 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17149 for setting PSR flag bits. They are obsolete in V6 and do not
17150 have Thumb equivalents. */
17151 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17152 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17153 CL("tstp", 110f000, 2, (RR, SH), cmp),
17154 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17155 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17156 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17157 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17158 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17159 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17160
17161 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17162 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17163 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17164 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17165
17166 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17167 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17168 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17169 OP_RRnpc),
17170 OP_ADDRGLDR),ldst, t_ldst),
17171 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17172
17173 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17174 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17175 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17176 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17177 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17178 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17179
17180 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17181 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17182 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17183 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17184
17185 /* Pseudo ops. */
17186 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17187 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17188 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17189
17190 /* Thumb-compatibility pseudo ops. */
17191 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17192 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17193 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17194 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17195 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17196 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17197 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17198 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17199 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17200 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17201 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17202 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17203
17204 /* These may simplify to neg. */
17205 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17206 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17207
17208 #undef THUMB_VARIANT
17209 #define THUMB_VARIANT & arm_ext_v6
17210
17211 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17212
17213 /* V1 instructions with no Thumb analogue prior to V6T2. */
17214 #undef THUMB_VARIANT
17215 #define THUMB_VARIANT & arm_ext_v6t2
17216
17217 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17218 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17219 CL("teqp", 130f000, 2, (RR, SH), cmp),
17220
17221 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17222 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17223 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17224 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17225
17226 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17227 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17228
17229 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17230 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17231
17232 /* V1 instructions with no Thumb analogue at all. */
17233 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17234 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17235
17236 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17237 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17238 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17239 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17240 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17241 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17242 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17243 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17244
17245 #undef ARM_VARIANT
17246 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17247 #undef THUMB_VARIANT
17248 #define THUMB_VARIANT & arm_ext_v4t
17249
17250 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17251 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17252
17253 #undef THUMB_VARIANT
17254 #define THUMB_VARIANT & arm_ext_v6t2
17255
17256 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17257 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17258
17259 /* Generic coprocessor instructions. */
17260 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17261 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17262 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17263 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17264 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17265 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17266 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17267
17268 #undef ARM_VARIANT
17269 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17270
17271 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17272 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17273
17274 #undef ARM_VARIANT
17275 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17276 #undef THUMB_VARIANT
17277 #define THUMB_VARIANT & arm_ext_msr
17278
17279 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17280 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17281
17282 #undef ARM_VARIANT
17283 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17284 #undef THUMB_VARIANT
17285 #define THUMB_VARIANT & arm_ext_v6t2
17286
17287 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17288 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17289 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17290 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17291 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17292 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17293 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17294 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17295
17296 #undef ARM_VARIANT
17297 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17298 #undef THUMB_VARIANT
17299 #define THUMB_VARIANT & arm_ext_v4t
17300
17301 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17302 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17303 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17304 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17305 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17306 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17307
17308 #undef ARM_VARIANT
17309 #define ARM_VARIANT & arm_ext_v4t_5
17310
17311 /* ARM Architecture 4T. */
17312 /* Note: bx (and blx) are required on V5, even if the processor does
17313 not support Thumb. */
17314 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17315
17316 #undef ARM_VARIANT
17317 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17318 #undef THUMB_VARIANT
17319 #define THUMB_VARIANT & arm_ext_v5t
17320
17321 /* Note: blx has 2 variants; the .value coded here is for
17322 BLX(2). Only this variant has conditional execution. */
17323 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17324 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17325
17326 #undef THUMB_VARIANT
17327 #define THUMB_VARIANT & arm_ext_v6t2
17328
17329 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17330 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17331 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17332 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17333 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17334 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17335 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17336 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17337
17338 #undef ARM_VARIANT
17339 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17340 #undef THUMB_VARIANT
17341 #define THUMB_VARIANT &arm_ext_v5exp
17342
17343 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17344 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17345 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17346 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17347
17348 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17349 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17350
17351 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17352 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17353 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17354 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17355
17356 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17357 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17358 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17359 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17360
17361 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17362 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17363
17364 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17365 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17366 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17367 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17368
17369 #undef ARM_VARIANT
17370 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17371 #undef THUMB_VARIANT
17372 #define THUMB_VARIANT &arm_ext_v6t2
17373
17374 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17375 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17376 ldrd, t_ldstd),
17377 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17378 ADDRGLDRS), ldrd, t_ldstd),
17379
17380 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17381 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17382
17383 #undef ARM_VARIANT
17384 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17385
17386 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17387
17388 #undef ARM_VARIANT
17389 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17390 #undef THUMB_VARIANT
17391 #define THUMB_VARIANT & arm_ext_v6
17392
17393 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17394 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17395 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17396 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17397 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17398 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17399 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17400 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17401 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17402 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17403
17404 #undef THUMB_VARIANT
17405 #define THUMB_VARIANT & arm_ext_v6t2
17406
17407 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17408 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17409 strex, t_strex),
17410 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17411 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17412
17413 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17414 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17415
17416 /* ARM V6 not included in V7M. */
17417 #undef THUMB_VARIANT
17418 #define THUMB_VARIANT & arm_ext_v6_notm
17419 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17420 UF(rfeib, 9900a00, 1, (RRw), rfe),
17421 UF(rfeda, 8100a00, 1, (RRw), rfe),
17422 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17423 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17424 UF(rfefa, 9900a00, 1, (RRw), rfe),
17425 UF(rfeea, 8100a00, 1, (RRw), rfe),
17426 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17427 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17428 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17429 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17430 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17431
17432 /* ARM V6 not included in V7M (eg. integer SIMD). */
17433 #undef THUMB_VARIANT
17434 #define THUMB_VARIANT & arm_ext_v6_dsp
17435 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17436 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17437 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17438 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17439 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17440 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17441 /* Old name for QASX. */
17442 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17443 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17444 /* Old name for QSAX. */
17445 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17446 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17447 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17448 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17449 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17450 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17451 /* Old name for SASX. */
17452 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17453 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17454 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17455 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17456 /* Old name for SHASX. */
17457 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17458 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17459 /* Old name for SHSAX. */
17460 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17461 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17462 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17463 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17464 /* Old name for SSAX. */
17465 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17466 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17467 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17468 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17469 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17470 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17471 /* Old name for UASX. */
17472 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17473 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17474 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17475 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17476 /* Old name for UHASX. */
17477 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17478 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17479 /* Old name for UHSAX. */
17480 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17481 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17482 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17483 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17484 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17485 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17486 /* Old name for UQASX. */
17487 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17488 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17489 /* Old name for UQSAX. */
17490 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17491 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17492 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17493 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17494 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17495 /* Old name for USAX. */
17496 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17497 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17498 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17499 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17500 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17501 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17502 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17503 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17504 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17505 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17506 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17507 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17508 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17509 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17510 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17511 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17512 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17513 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17514 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17515 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17516 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17517 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17518 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17519 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17520 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17521 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17522 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17523 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17524 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17525 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17526 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17527 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17528 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17529 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17530
17531 #undef ARM_VARIANT
17532 #define ARM_VARIANT & arm_ext_v6k
17533 #undef THUMB_VARIANT
17534 #define THUMB_VARIANT & arm_ext_v6k
17535
17536 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17537 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17538 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17539 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17540
17541 #undef THUMB_VARIANT
17542 #define THUMB_VARIANT & arm_ext_v6_notm
17543 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17544 ldrexd, t_ldrexd),
17545 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17546 RRnpcb), strexd, t_strexd),
17547
17548 #undef THUMB_VARIANT
17549 #define THUMB_VARIANT & arm_ext_v6t2
17550 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17551 rd_rn, rd_rn),
17552 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17553 rd_rn, rd_rn),
17554 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17555 strex, t_strexbh),
17556 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17557 strex, t_strexbh),
17558 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17559
17560 #undef ARM_VARIANT
17561 #define ARM_VARIANT & arm_ext_sec
17562 #undef THUMB_VARIANT
17563 #define THUMB_VARIANT & arm_ext_sec
17564
17565 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17566
17567 #undef ARM_VARIANT
17568 #define ARM_VARIANT & arm_ext_virt
17569 #undef THUMB_VARIANT
17570 #define THUMB_VARIANT & arm_ext_virt
17571
17572 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17573 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17574
17575 #undef ARM_VARIANT
17576 #define ARM_VARIANT & arm_ext_v6t2
17577 #undef THUMB_VARIANT
17578 #define THUMB_VARIANT & arm_ext_v6t2
17579
17580 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17581 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17582 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17583 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17584
17585 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17586 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17587 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17588 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17589
17590 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17591 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17592 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17593 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17594
17595 /* Thumb-only instructions. */
17596 #undef ARM_VARIANT
17597 #define ARM_VARIANT NULL
17598 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17599 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17600
17601 /* ARM does not really have an IT instruction, so always allow it.
17602 The opcode is copied from Thumb in order to allow warnings in
17603 -mimplicit-it=[never | arm] modes. */
17604 #undef ARM_VARIANT
17605 #define ARM_VARIANT & arm_ext_v1
17606
17607 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17608 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17609 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17610 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17611 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17612 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17613 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17614 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17615 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17616 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17617 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17618 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17619 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17620 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17621 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17622 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17623 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17624 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17625
17626 /* Thumb2 only instructions. */
17627 #undef ARM_VARIANT
17628 #define ARM_VARIANT NULL
17629
17630 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17631 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17632 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17633 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17634 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17635 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17636
17637 /* Hardware division instructions. */
17638 #undef ARM_VARIANT
17639 #define ARM_VARIANT & arm_ext_adiv
17640 #undef THUMB_VARIANT
17641 #define THUMB_VARIANT & arm_ext_div
17642
17643 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17644 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17645
17646 /* ARM V6M/V7 instructions. */
17647 #undef ARM_VARIANT
17648 #define ARM_VARIANT & arm_ext_barrier
17649 #undef THUMB_VARIANT
17650 #define THUMB_VARIANT & arm_ext_barrier
17651
17652 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17653 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17654 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17655
17656 /* ARM V7 instructions. */
17657 #undef ARM_VARIANT
17658 #define ARM_VARIANT & arm_ext_v7
17659 #undef THUMB_VARIANT
17660 #define THUMB_VARIANT & arm_ext_v7
17661
17662 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17663 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17664
17665 #undef ARM_VARIANT
17666 #define ARM_VARIANT & arm_ext_mp
17667 #undef THUMB_VARIANT
17668 #define THUMB_VARIANT & arm_ext_mp
17669
17670 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17671
17672 #undef ARM_VARIANT
17673 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17674
17675 cCE("wfs", e200110, 1, (RR), rd),
17676 cCE("rfs", e300110, 1, (RR), rd),
17677 cCE("wfc", e400110, 1, (RR), rd),
17678 cCE("rfc", e500110, 1, (RR), rd),
17679
17680 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17681 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17682 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17683 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17684
17685 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17686 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17687 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17688 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17689
17690 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17691 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17692 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17693 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17694 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17695 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17696 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17697 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17698 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17699 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17700 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17701 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17702
17703 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17704 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17705 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17706 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17707 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17708 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17709 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17710 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17711 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17712 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17713 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17714 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17715
17716 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17717 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17718 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17719 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17720 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17721 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17722 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17723 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17724 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17725 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17726 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17727 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17728
17729 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17730 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17731 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17732 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17733 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17734 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17735 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17736 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17737 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17738 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17739 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17740 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17741
17742 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17743 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17744 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17745 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17746 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17747 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17748 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17749 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17750 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17751 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17752 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17753 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17754
17755 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17756 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17757 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17758 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17759 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17760 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17761 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17762 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17763 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17764 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17765 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17766 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17767
17768 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17769 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17770 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17771 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17772 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17773 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17774 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17775 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17776 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17777 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17778 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17779 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17780
17781 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17782 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17783 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17784 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17785 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17786 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17787 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17788 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17789 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17790 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17791 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17792 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17793
17794 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17795 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17796 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17797 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17798 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17799 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17800 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17801 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17802 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17803 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17804 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17805 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17806
17807 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17808 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17809 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17810 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17811 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17812 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17813 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17814 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17815 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17816 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17817 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17818 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17819
17820 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17821 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17822 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17823 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17824 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17825 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17826 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17827 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17828 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17829 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17830 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17831 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17832
17833 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17834 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17835 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17836 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17837 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17838 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17839 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17840 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17841 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17842 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17843 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17844 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17845
17846 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17847 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17848 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17849 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17850 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17851 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17852 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17853 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17854 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17855 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17856 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17857 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17858
17859 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17860 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17861 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17862 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17863 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17864 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17865 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17866 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17867 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17868 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17869 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17870 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17871
17872 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17873 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17874 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17875 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17876 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17877 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17878 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17879 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17880 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17881 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17882 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17883 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17884
17885 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17886 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17887 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17888 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17889 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17890 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17891 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17892 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17893 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17894 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17895 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17896 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17897
17898 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17899 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17900 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17901 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17902 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17903 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17904 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17905 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17906 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17907 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17908 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17909 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17910
17911 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17912 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17913 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17914 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17915 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17916 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17917 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17918 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17919 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17920 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17921 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17922 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17923
17924 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17925 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17926 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17927 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17928 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17929 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17930 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17931 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17932 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17933 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17934 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17935 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17936
17937 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17938 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17939 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17940 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17941 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17942 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17943 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17944 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17945 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17946 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17947 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17948 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17949
17950 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17951 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17952 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17953 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17954 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17955 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17956 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17957 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17958 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17959 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17960 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17961 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17962
17963 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17964 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17965 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17966 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17967 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17968 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17969 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17970 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17971 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17972 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17973 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17974 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17975
17976 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17977 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17978 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17979 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17980 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17981 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17982 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17983 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17984 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17985 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17986 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17987 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17988
17989 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17990 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17991 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17992 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17993 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17994 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17995 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17996 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17997 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17998 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17999 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18000 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18001
18002 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18003 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18004 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18005 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18006 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18007 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18008 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18009 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18010 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18011 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18012 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18013 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18014
18015 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18016 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18017 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18018 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18019 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18020 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18021 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18022 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18023 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18024 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18025 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18026 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18027
18028 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18029 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18030 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18031 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18032 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18033 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18034 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18035 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18036 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18037 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18038 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18039 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18040
18041 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18042 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18043 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18044 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18045 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18046 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18047 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18048 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18049 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18050 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18051 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18052 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18053
18054 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18055 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18056 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18057 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18058 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18059 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18060 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18061 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18062 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18063 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18064 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18065 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18066
18067 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18068 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18069 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18070 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18071
18072 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18073 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18074 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18075 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18076 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18077 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18078 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18079 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18080 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18081 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18082 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18083 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
18084
18085 /* The implementation of the FIX instruction is broken on some
18086 assemblers, in that it accepts a precision specifier as well as a
18087 rounding specifier, despite the fact that this is meaningless.
18088 To be more compatible, we accept it as well, though of course it
18089 does not set any bits. */
18090 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18091 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18092 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18093 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18094 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18095 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18096 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18097 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18098 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18099 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18100 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18101 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18102 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
18103
18104 /* Instructions that were new with the real FPA, call them V2. */
18105 #undef ARM_VARIANT
18106 #define ARM_VARIANT & fpu_fpa_ext_v2
18107
18108 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18109 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18110 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18111 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18112 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18113 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18114
18115 #undef ARM_VARIANT
18116 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18117
18118 /* Moves and type conversions. */
18119 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18120 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18121 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18122 cCE("fmstat", ef1fa10, 0, (), noargs),
18123 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
18124 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
18125 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18126 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18127 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18128 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18129 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18130 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18131 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18132 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
18133
18134 /* Memory operations. */
18135 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18136 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18137 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18138 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18139 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18140 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18141 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18142 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18143 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18144 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18145 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18146 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18147 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18148 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18149 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18150 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18151 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18152 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18153
18154 /* Monadic operations. */
18155 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18156 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18157 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
18158
18159 /* Dyadic operations. */
18160 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18161 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18162 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18163 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18164 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18165 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18166 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18167 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18168 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18169
18170 /* Comparisons. */
18171 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18172 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18173 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18174 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18175
18176 /* Double precision load/store are still present on single precision
18177 implementations. */
18178 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18179 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18180 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18181 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18182 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18183 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18184 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18185 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18186 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18187 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18188
18189 #undef ARM_VARIANT
18190 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18191
18192 /* Moves and type conversions. */
18193 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18194 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18195 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18196 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18197 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18198 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18199 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18200 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18201 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18202 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18203 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18204 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18205 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18206
18207 /* Monadic operations. */
18208 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18209 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18210 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18211
18212 /* Dyadic operations. */
18213 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18214 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18215 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18216 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18217 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18218 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18219 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18220 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18221 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18222
18223 /* Comparisons. */
18224 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18225 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18226 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18227 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18228
18229 #undef ARM_VARIANT
18230 #define ARM_VARIANT & fpu_vfp_ext_v2
18231
18232 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18233 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18234 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18235 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18236
18237 /* Instructions which may belong to either the Neon or VFP instruction sets.
18238 Individual encoder functions perform additional architecture checks. */
18239 #undef ARM_VARIANT
18240 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18241 #undef THUMB_VARIANT
18242 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18243
18244 /* These mnemonics are unique to VFP. */
18245 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18246 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18247 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18248 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18249 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18250 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18251 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18252 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18253 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18254 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18255
18256 /* Mnemonics shared by Neon and VFP. */
18257 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18258 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18259 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18260
18261 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18262 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18263
18264 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18265 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18266
18267 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18268 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18269 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18270 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18271 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18272 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18273 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18274 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18275
18276 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
18277 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18278 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18279 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18280
18281
18282 /* NOTE: All VMOV encoding is special-cased! */
18283 NCE(vmov, 0, 1, (VMOV), neon_mov),
18284 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18285
18286 #undef THUMB_VARIANT
18287 #define THUMB_VARIANT & fpu_neon_ext_v1
18288 #undef ARM_VARIANT
18289 #define ARM_VARIANT & fpu_neon_ext_v1
18290
18291 /* Data processing with three registers of the same length. */
18292 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18293 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18294 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18295 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18296 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18297 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18298 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18299 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18300 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18301 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18302 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18303 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18304 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18305 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18306 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18307 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18308 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18309 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18310 /* If not immediate, fall back to neon_dyadic_i64_su.
18311 shl_imm should accept I8 I16 I32 I64,
18312 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18313 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18314 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18315 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18316 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
18317 /* Logic ops, types optional & ignored. */
18318 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18319 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18320 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18321 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18322 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18323 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18324 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18325 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18326 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18327 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18328 /* Bitfield ops, untyped. */
18329 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18330 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18331 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18332 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18333 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18334 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18335 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18336 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18337 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18338 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18339 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18340 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18341 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18342 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18343 back to neon_dyadic_if_su. */
18344 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18345 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18346 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18347 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18348 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18349 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18350 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18351 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18352 /* Comparison. Type I8 I16 I32 F32. */
18353 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18354 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18355 /* As above, D registers only. */
18356 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18357 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18358 /* Int and float variants, signedness unimportant. */
18359 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18360 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18361 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18362 /* Add/sub take types I8 I16 I32 I64 F32. */
18363 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18364 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18365 /* vtst takes sizes 8, 16, 32. */
18366 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18367 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18368 /* VMUL takes I8 I16 I32 F32 P8. */
18369 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18370 /* VQD{R}MULH takes S16 S32. */
18371 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18372 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18373 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18374 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18375 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18376 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18377 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18378 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18379 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18380 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18381 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18382 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18383 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18384 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18385 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18386 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18387
18388 /* Two address, int/float. Types S8 S16 S32 F32. */
18389 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18390 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18391
18392 /* Data processing with two registers and a shift amount. */
18393 /* Right shifts, and variants with rounding.
18394 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18395 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18396 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18397 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18398 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18399 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18400 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18401 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18402 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18403 /* Shift and insert. Sizes accepted 8 16 32 64. */
18404 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18405 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18406 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18407 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18408 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18409 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18410 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18411 /* Right shift immediate, saturating & narrowing, with rounding variants.
18412 Types accepted S16 S32 S64 U16 U32 U64. */
18413 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18414 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18415 /* As above, unsigned. Types accepted S16 S32 S64. */
18416 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18417 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18418 /* Right shift narrowing. Types accepted I16 I32 I64. */
18419 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18420 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18421 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18422 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18423 /* CVT with optional immediate for fixed-point variant. */
18424 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18425
18426 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18427 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18428
18429 /* Data processing, three registers of different lengths. */
18430 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18431 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18432 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18433 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18434 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18435 /* If not scalar, fall back to neon_dyadic_long.
18436 Vector types as above, scalar types S16 S32 U16 U32. */
18437 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18438 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18439 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18440 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18441 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18442 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18443 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18444 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18445 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18446 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18447 /* Saturating doubling multiplies. Types S16 S32. */
18448 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18449 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18450 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18451 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18452 S16 S32 U16 U32. */
18453 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18454
18455 /* Extract. Size 8. */
18456 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18457 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18458
18459 /* Two registers, miscellaneous. */
18460 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18461 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18462 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18463 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18464 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18465 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18466 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18467 /* Vector replicate. Sizes 8 16 32. */
18468 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18469 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18470 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18471 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18472 /* VMOVN. Types I16 I32 I64. */
18473 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18474 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18475 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18476 /* VQMOVUN. Types S16 S32 S64. */
18477 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18478 /* VZIP / VUZP. Sizes 8 16 32. */
18479 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18480 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18481 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18482 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18483 /* VQABS / VQNEG. Types S8 S16 S32. */
18484 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18485 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18486 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18487 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18488 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18489 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18490 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18491 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18492 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18493 /* Reciprocal estimates. Types U32 F32. */
18494 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18495 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18496 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18497 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18498 /* VCLS. Types S8 S16 S32. */
18499 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18500 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18501 /* VCLZ. Types I8 I16 I32. */
18502 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18503 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18504 /* VCNT. Size 8. */
18505 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18506 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18507 /* Two address, untyped. */
18508 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18509 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18510 /* VTRN. Sizes 8 16 32. */
18511 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18512 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18513
18514 /* Table lookup. Size 8. */
18515 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18516 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18517
18518 #undef THUMB_VARIANT
18519 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18520 #undef ARM_VARIANT
18521 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18522
18523 /* Neon element/structure load/store. */
18524 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18525 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18526 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18527 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18528 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18529 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18530 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18531 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18532
18533 #undef THUMB_VARIANT
18534 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18535 #undef ARM_VARIANT
18536 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18537 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18538 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18539 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18540 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18541 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18542 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18543 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18544 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18545 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18546
18547 #undef THUMB_VARIANT
18548 #define THUMB_VARIANT & fpu_vfp_ext_v3
18549 #undef ARM_VARIANT
18550 #define ARM_VARIANT & fpu_vfp_ext_v3
18551
18552 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18553 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18554 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18555 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18556 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18557 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18558 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18559 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18560 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18561
18562 #undef ARM_VARIANT
18563 #define ARM_VARIANT &fpu_vfp_ext_fma
18564 #undef THUMB_VARIANT
18565 #define THUMB_VARIANT &fpu_vfp_ext_fma
18566 /* Mnemonics shared by Neon and VFP. These are included in the
18567 VFP FMA variant; NEON and VFP FMA always includes the NEON
18568 FMA instructions. */
18569 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18570 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18571 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18572 the v form should always be used. */
18573 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18574 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18575 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18576 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18577 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18578 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18579
18580 #undef THUMB_VARIANT
18581 #undef ARM_VARIANT
18582 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18583
18584 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18585 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18586 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18587 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18588 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18589 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18590 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18591 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18592
18593 #undef ARM_VARIANT
18594 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18595
18596 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18597 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18598 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18599 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18600 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18601 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18602 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18603 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18604 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18605 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18606 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18607 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18608 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18609 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18610 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18611 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18612 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18613 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18614 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18615 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18616 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18617 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18618 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18619 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18620 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18621 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18622 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18623 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18624 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18625 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18626 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18627 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18628 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18629 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18630 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18631 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18632 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18633 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18634 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18635 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18636 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18637 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18638 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18639 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18640 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18641 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18642 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18643 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18644 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18645 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18646 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18647 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18648 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18649 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18650 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18651 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18652 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18653 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18654 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18655 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18656 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18657 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18658 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18659 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18660 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18661 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18662 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18663 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18664 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18665 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18666 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18667 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18668 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18669 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18670 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18671 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18672 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18673 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18674 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18675 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18676 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18677 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18678 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18679 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18680 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18681 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18682 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18683 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18684 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18685 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18686 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18687 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18688 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18689 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18690 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18691 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18692 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18693 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18694 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18695 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18696 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18697 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18698 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18699 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18700 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18701 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18702 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18703 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18704 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18705 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18706 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18707 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18708 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18709 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18710 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18711 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18712 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18713 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18714 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18715 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18716 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18717 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18718 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18719 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18720 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18721 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18722 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18723 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18724 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18725 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18726 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18727 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18728 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18729 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18730 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18731 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18732 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18733 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18734 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18735 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18736 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18737 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18738 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18739 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18740 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18741 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18742 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18743 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18744 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18745 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18746 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18747 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18748 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18749 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18750 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18751 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18752 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18753 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18754 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18755 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18756 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18757 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
18758
18759 #undef ARM_VARIANT
18760 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18761
18762 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18763 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18764 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18765 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18766 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18767 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18768 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18769 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18770 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18771 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18772 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18773 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18774 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18775 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18776 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18777 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18778 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18779 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18780 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18781 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18782 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18783 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18784 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18785 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18786 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18787 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18788 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18789 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18790 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18791 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18792 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18793 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18794 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18795 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18796 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18797 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18798 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18799 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18800 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18801 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18802 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18803 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18804 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18805 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18806 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18807 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18808 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18809 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18810 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18811 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18812 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18813 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18814 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18815 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18816 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18817 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18818 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18819
18820 #undef ARM_VARIANT
18821 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18822
18823 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18824 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18825 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18826 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18827 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18828 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18829 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18830 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18831 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18832 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18833 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18834 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18835 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18836 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18837 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18838 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18839 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18840 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18841 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18842 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18843 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18844 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18845 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18846 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18847 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18848 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18849 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18850 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18851 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18852 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18853 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18854 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18855 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18856 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18857 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18858 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18859 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18860 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18861 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18862 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18863 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18864 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18865 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18866 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18867 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18868 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18869 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18870 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18871 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18872 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18873 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18874 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18875 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18876 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18877 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18878 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18879 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18880 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18881 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18882 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18883 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18884 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18885 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18886 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18887 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18888 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18889 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18890 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18891 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18892 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18893 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18894 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18895 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18896 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18897 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18898 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18899 };
18900 #undef ARM_VARIANT
18901 #undef THUMB_VARIANT
18902 #undef TCE
18903 #undef TCM
18904 #undef TUE
18905 #undef TUF
18906 #undef TCC
18907 #undef cCE
18908 #undef cCL
18909 #undef C3E
18910 #undef CE
18911 #undef CM
18912 #undef UE
18913 #undef UF
18914 #undef UT
18915 #undef NUF
18916 #undef nUF
18917 #undef NCE
18918 #undef nCE
18919 #undef OPS0
18920 #undef OPS1
18921 #undef OPS2
18922 #undef OPS3
18923 #undef OPS4
18924 #undef OPS5
18925 #undef OPS6
18926 #undef do_0
18927 \f
18928 /* MD interface: bits in the object file. */
18929
18930 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18931 for use in the a.out file, and stores them in the array pointed to by buf.
18932 This knows about the endian-ness of the target machine and does
18933 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18934 2 (short) and 4 (long) Floating numbers are put out as a series of
18935 LITTLENUMS (shorts, here at least). */
18936
18937 void
18938 md_number_to_chars (char * buf, valueT val, int n)
18939 {
18940 if (target_big_endian)
18941 number_to_chars_bigendian (buf, val, n);
18942 else
18943 number_to_chars_littleendian (buf, val, n);
18944 }
18945
18946 static valueT
18947 md_chars_to_number (char * buf, int n)
18948 {
18949 valueT result = 0;
18950 unsigned char * where = (unsigned char *) buf;
18951
18952 if (target_big_endian)
18953 {
18954 while (n--)
18955 {
18956 result <<= 8;
18957 result |= (*where++ & 255);
18958 }
18959 }
18960 else
18961 {
18962 while (n--)
18963 {
18964 result <<= 8;
18965 result |= (where[n] & 255);
18966 }
18967 }
18968
18969 return result;
18970 }
18971
18972 /* MD interface: Sections. */
18973
18974 /* Estimate the size of a frag before relaxing. Assume everything fits in
18975 2 bytes. */
18976
18977 int
18978 md_estimate_size_before_relax (fragS * fragp,
18979 segT segtype ATTRIBUTE_UNUSED)
18980 {
18981 fragp->fr_var = 2;
18982 return 2;
18983 }
18984
18985 /* Convert a machine dependent frag. */
18986
18987 void
18988 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18989 {
18990 unsigned long insn;
18991 unsigned long old_op;
18992 char *buf;
18993 expressionS exp;
18994 fixS *fixp;
18995 int reloc_type;
18996 int pc_rel;
18997 int opcode;
18998
18999 buf = fragp->fr_literal + fragp->fr_fix;
19000
19001 old_op = bfd_get_16(abfd, buf);
19002 if (fragp->fr_symbol)
19003 {
19004 exp.X_op = O_symbol;
19005 exp.X_add_symbol = fragp->fr_symbol;
19006 }
19007 else
19008 {
19009 exp.X_op = O_constant;
19010 }
19011 exp.X_add_number = fragp->fr_offset;
19012 opcode = fragp->fr_subtype;
19013 switch (opcode)
19014 {
19015 case T_MNEM_ldr_pc:
19016 case T_MNEM_ldr_pc2:
19017 case T_MNEM_ldr_sp:
19018 case T_MNEM_str_sp:
19019 case T_MNEM_ldr:
19020 case T_MNEM_ldrb:
19021 case T_MNEM_ldrh:
19022 case T_MNEM_str:
19023 case T_MNEM_strb:
19024 case T_MNEM_strh:
19025 if (fragp->fr_var == 4)
19026 {
19027 insn = THUMB_OP32 (opcode);
19028 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19029 {
19030 insn |= (old_op & 0x700) << 4;
19031 }
19032 else
19033 {
19034 insn |= (old_op & 7) << 12;
19035 insn |= (old_op & 0x38) << 13;
19036 }
19037 insn |= 0x00000c00;
19038 put_thumb32_insn (buf, insn);
19039 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19040 }
19041 else
19042 {
19043 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19044 }
19045 pc_rel = (opcode == T_MNEM_ldr_pc2);
19046 break;
19047 case T_MNEM_adr:
19048 if (fragp->fr_var == 4)
19049 {
19050 insn = THUMB_OP32 (opcode);
19051 insn |= (old_op & 0xf0) << 4;
19052 put_thumb32_insn (buf, insn);
19053 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19054 }
19055 else
19056 {
19057 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19058 exp.X_add_number -= 4;
19059 }
19060 pc_rel = 1;
19061 break;
19062 case T_MNEM_mov:
19063 case T_MNEM_movs:
19064 case T_MNEM_cmp:
19065 case T_MNEM_cmn:
19066 if (fragp->fr_var == 4)
19067 {
19068 int r0off = (opcode == T_MNEM_mov
19069 || opcode == T_MNEM_movs) ? 0 : 8;
19070 insn = THUMB_OP32 (opcode);
19071 insn = (insn & 0xe1ffffff) | 0x10000000;
19072 insn |= (old_op & 0x700) << r0off;
19073 put_thumb32_insn (buf, insn);
19074 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19075 }
19076 else
19077 {
19078 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19079 }
19080 pc_rel = 0;
19081 break;
19082 case T_MNEM_b:
19083 if (fragp->fr_var == 4)
19084 {
19085 insn = THUMB_OP32(opcode);
19086 put_thumb32_insn (buf, insn);
19087 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19088 }
19089 else
19090 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19091 pc_rel = 1;
19092 break;
19093 case T_MNEM_bcond:
19094 if (fragp->fr_var == 4)
19095 {
19096 insn = THUMB_OP32(opcode);
19097 insn |= (old_op & 0xf00) << 14;
19098 put_thumb32_insn (buf, insn);
19099 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19100 }
19101 else
19102 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19103 pc_rel = 1;
19104 break;
19105 case T_MNEM_add_sp:
19106 case T_MNEM_add_pc:
19107 case T_MNEM_inc_sp:
19108 case T_MNEM_dec_sp:
19109 if (fragp->fr_var == 4)
19110 {
19111 /* ??? Choose between add and addw. */
19112 insn = THUMB_OP32 (opcode);
19113 insn |= (old_op & 0xf0) << 4;
19114 put_thumb32_insn (buf, insn);
19115 if (opcode == T_MNEM_add_pc)
19116 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19117 else
19118 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19119 }
19120 else
19121 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19122 pc_rel = 0;
19123 break;
19124
19125 case T_MNEM_addi:
19126 case T_MNEM_addis:
19127 case T_MNEM_subi:
19128 case T_MNEM_subis:
19129 if (fragp->fr_var == 4)
19130 {
19131 insn = THUMB_OP32 (opcode);
19132 insn |= (old_op & 0xf0) << 4;
19133 insn |= (old_op & 0xf) << 16;
19134 put_thumb32_insn (buf, insn);
19135 if (insn & (1 << 20))
19136 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19137 else
19138 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19139 }
19140 else
19141 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19142 pc_rel = 0;
19143 break;
19144 default:
19145 abort ();
19146 }
19147 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
19148 (enum bfd_reloc_code_real) reloc_type);
19149 fixp->fx_file = fragp->fr_file;
19150 fixp->fx_line = fragp->fr_line;
19151 fragp->fr_fix += fragp->fr_var;
19152 }
19153
19154 /* Return the size of a relaxable immediate operand instruction.
19155 SHIFT and SIZE specify the form of the allowable immediate. */
19156 static int
19157 relax_immediate (fragS *fragp, int size, int shift)
19158 {
19159 offsetT offset;
19160 offsetT mask;
19161 offsetT low;
19162
19163 /* ??? Should be able to do better than this. */
19164 if (fragp->fr_symbol)
19165 return 4;
19166
19167 low = (1 << shift) - 1;
19168 mask = (1 << (shift + size)) - (1 << shift);
19169 offset = fragp->fr_offset;
19170 /* Force misaligned offsets to 32-bit variant. */
19171 if (offset & low)
19172 return 4;
19173 if (offset & ~mask)
19174 return 4;
19175 return 2;
19176 }
19177
19178 /* Get the address of a symbol during relaxation. */
19179 static addressT
19180 relaxed_symbol_addr (fragS *fragp, long stretch)
19181 {
19182 fragS *sym_frag;
19183 addressT addr;
19184 symbolS *sym;
19185
19186 sym = fragp->fr_symbol;
19187 sym_frag = symbol_get_frag (sym);
19188 know (S_GET_SEGMENT (sym) != absolute_section
19189 || sym_frag == &zero_address_frag);
19190 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19191
19192 /* If frag has yet to be reached on this pass, assume it will
19193 move by STRETCH just as we did. If this is not so, it will
19194 be because some frag between grows, and that will force
19195 another pass. */
19196
19197 if (stretch != 0
19198 && sym_frag->relax_marker != fragp->relax_marker)
19199 {
19200 fragS *f;
19201
19202 /* Adjust stretch for any alignment frag. Note that if have
19203 been expanding the earlier code, the symbol may be
19204 defined in what appears to be an earlier frag. FIXME:
19205 This doesn't handle the fr_subtype field, which specifies
19206 a maximum number of bytes to skip when doing an
19207 alignment. */
19208 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19209 {
19210 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19211 {
19212 if (stretch < 0)
19213 stretch = - ((- stretch)
19214 & ~ ((1 << (int) f->fr_offset) - 1));
19215 else
19216 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19217 if (stretch == 0)
19218 break;
19219 }
19220 }
19221 if (f != NULL)
19222 addr += stretch;
19223 }
19224
19225 return addr;
19226 }
19227
19228 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19229 load. */
19230 static int
19231 relax_adr (fragS *fragp, asection *sec, long stretch)
19232 {
19233 addressT addr;
19234 offsetT val;
19235
19236 /* Assume worst case for symbols not known to be in the same section. */
19237 if (fragp->fr_symbol == NULL
19238 || !S_IS_DEFINED (fragp->fr_symbol)
19239 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19240 || S_IS_WEAK (fragp->fr_symbol))
19241 return 4;
19242
19243 val = relaxed_symbol_addr (fragp, stretch);
19244 addr = fragp->fr_address + fragp->fr_fix;
19245 addr = (addr + 4) & ~3;
19246 /* Force misaligned targets to 32-bit variant. */
19247 if (val & 3)
19248 return 4;
19249 val -= addr;
19250 if (val < 0 || val > 1020)
19251 return 4;
19252 return 2;
19253 }
19254
19255 /* Return the size of a relaxable add/sub immediate instruction. */
19256 static int
19257 relax_addsub (fragS *fragp, asection *sec)
19258 {
19259 char *buf;
19260 int op;
19261
19262 buf = fragp->fr_literal + fragp->fr_fix;
19263 op = bfd_get_16(sec->owner, buf);
19264 if ((op & 0xf) == ((op >> 4) & 0xf))
19265 return relax_immediate (fragp, 8, 0);
19266 else
19267 return relax_immediate (fragp, 3, 0);
19268 }
19269
19270
19271 /* Return the size of a relaxable branch instruction. BITS is the
19272 size of the offset field in the narrow instruction. */
19273
19274 static int
19275 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19276 {
19277 addressT addr;
19278 offsetT val;
19279 offsetT limit;
19280
19281 /* Assume worst case for symbols not known to be in the same section. */
19282 if (!S_IS_DEFINED (fragp->fr_symbol)
19283 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19284 || S_IS_WEAK (fragp->fr_symbol))
19285 return 4;
19286
19287 #ifdef OBJ_ELF
19288 if (S_IS_DEFINED (fragp->fr_symbol)
19289 && ARM_IS_FUNC (fragp->fr_symbol))
19290 return 4;
19291
19292 /* PR 12532. Global symbols with default visibility might
19293 be preempted, so do not relax relocations to them. */
19294 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19295 && (! S_IS_LOCAL (fragp->fr_symbol)))
19296 return 4;
19297 #endif
19298
19299 val = relaxed_symbol_addr (fragp, stretch);
19300 addr = fragp->fr_address + fragp->fr_fix + 4;
19301 val -= addr;
19302
19303 /* Offset is a signed value *2 */
19304 limit = 1 << bits;
19305 if (val >= limit || val < -limit)
19306 return 4;
19307 return 2;
19308 }
19309
19310
19311 /* Relax a machine dependent frag. This returns the amount by which
19312 the current size of the frag should change. */
19313
19314 int
19315 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
19316 {
19317 int oldsize;
19318 int newsize;
19319
19320 oldsize = fragp->fr_var;
19321 switch (fragp->fr_subtype)
19322 {
19323 case T_MNEM_ldr_pc2:
19324 newsize = relax_adr (fragp, sec, stretch);
19325 break;
19326 case T_MNEM_ldr_pc:
19327 case T_MNEM_ldr_sp:
19328 case T_MNEM_str_sp:
19329 newsize = relax_immediate (fragp, 8, 2);
19330 break;
19331 case T_MNEM_ldr:
19332 case T_MNEM_str:
19333 newsize = relax_immediate (fragp, 5, 2);
19334 break;
19335 case T_MNEM_ldrh:
19336 case T_MNEM_strh:
19337 newsize = relax_immediate (fragp, 5, 1);
19338 break;
19339 case T_MNEM_ldrb:
19340 case T_MNEM_strb:
19341 newsize = relax_immediate (fragp, 5, 0);
19342 break;
19343 case T_MNEM_adr:
19344 newsize = relax_adr (fragp, sec, stretch);
19345 break;
19346 case T_MNEM_mov:
19347 case T_MNEM_movs:
19348 case T_MNEM_cmp:
19349 case T_MNEM_cmn:
19350 newsize = relax_immediate (fragp, 8, 0);
19351 break;
19352 case T_MNEM_b:
19353 newsize = relax_branch (fragp, sec, 11, stretch);
19354 break;
19355 case T_MNEM_bcond:
19356 newsize = relax_branch (fragp, sec, 8, stretch);
19357 break;
19358 case T_MNEM_add_sp:
19359 case T_MNEM_add_pc:
19360 newsize = relax_immediate (fragp, 8, 2);
19361 break;
19362 case T_MNEM_inc_sp:
19363 case T_MNEM_dec_sp:
19364 newsize = relax_immediate (fragp, 7, 2);
19365 break;
19366 case T_MNEM_addi:
19367 case T_MNEM_addis:
19368 case T_MNEM_subi:
19369 case T_MNEM_subis:
19370 newsize = relax_addsub (fragp, sec);
19371 break;
19372 default:
19373 abort ();
19374 }
19375
19376 fragp->fr_var = newsize;
19377 /* Freeze wide instructions that are at or before the same location as
19378 in the previous pass. This avoids infinite loops.
19379 Don't freeze them unconditionally because targets may be artificially
19380 misaligned by the expansion of preceding frags. */
19381 if (stretch <= 0 && newsize > 2)
19382 {
19383 md_convert_frag (sec->owner, sec, fragp);
19384 frag_wane (fragp);
19385 }
19386
19387 return newsize - oldsize;
19388 }
19389
19390 /* Round up a section size to the appropriate boundary. */
19391
19392 valueT
19393 md_section_align (segT segment ATTRIBUTE_UNUSED,
19394 valueT size)
19395 {
19396 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19397 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19398 {
19399 /* For a.out, force the section size to be aligned. If we don't do
19400 this, BFD will align it for us, but it will not write out the
19401 final bytes of the section. This may be a bug in BFD, but it is
19402 easier to fix it here since that is how the other a.out targets
19403 work. */
19404 int align;
19405
19406 align = bfd_get_section_alignment (stdoutput, segment);
19407 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19408 }
19409 #endif
19410
19411 return size;
19412 }
19413
19414 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19415 of an rs_align_code fragment. */
19416
19417 void
19418 arm_handle_align (fragS * fragP)
19419 {
19420 static char const arm_noop[2][2][4] =
19421 {
19422 { /* ARMv1 */
19423 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19424 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19425 },
19426 { /* ARMv6k */
19427 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19428 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19429 },
19430 };
19431 static char const thumb_noop[2][2][2] =
19432 {
19433 { /* Thumb-1 */
19434 {0xc0, 0x46}, /* LE */
19435 {0x46, 0xc0}, /* BE */
19436 },
19437 { /* Thumb-2 */
19438 {0x00, 0xbf}, /* LE */
19439 {0xbf, 0x00} /* BE */
19440 }
19441 };
19442 static char const wide_thumb_noop[2][4] =
19443 { /* Wide Thumb-2 */
19444 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19445 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19446 };
19447
19448 unsigned bytes, fix, noop_size;
19449 char * p;
19450 const char * noop;
19451 const char *narrow_noop = NULL;
19452 #ifdef OBJ_ELF
19453 enum mstate state;
19454 #endif
19455
19456 if (fragP->fr_type != rs_align_code)
19457 return;
19458
19459 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19460 p = fragP->fr_literal + fragP->fr_fix;
19461 fix = 0;
19462
19463 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19464 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19465
19466 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19467
19468 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19469 {
19470 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19471 {
19472 narrow_noop = thumb_noop[1][target_big_endian];
19473 noop = wide_thumb_noop[target_big_endian];
19474 }
19475 else
19476 noop = thumb_noop[0][target_big_endian];
19477 noop_size = 2;
19478 #ifdef OBJ_ELF
19479 state = MAP_THUMB;
19480 #endif
19481 }
19482 else
19483 {
19484 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19485 [target_big_endian];
19486 noop_size = 4;
19487 #ifdef OBJ_ELF
19488 state = MAP_ARM;
19489 #endif
19490 }
19491
19492 fragP->fr_var = noop_size;
19493
19494 if (bytes & (noop_size - 1))
19495 {
19496 fix = bytes & (noop_size - 1);
19497 #ifdef OBJ_ELF
19498 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19499 #endif
19500 memset (p, 0, fix);
19501 p += fix;
19502 bytes -= fix;
19503 }
19504
19505 if (narrow_noop)
19506 {
19507 if (bytes & noop_size)
19508 {
19509 /* Insert a narrow noop. */
19510 memcpy (p, narrow_noop, noop_size);
19511 p += noop_size;
19512 bytes -= noop_size;
19513 fix += noop_size;
19514 }
19515
19516 /* Use wide noops for the remainder */
19517 noop_size = 4;
19518 }
19519
19520 while (bytes >= noop_size)
19521 {
19522 memcpy (p, noop, noop_size);
19523 p += noop_size;
19524 bytes -= noop_size;
19525 fix += noop_size;
19526 }
19527
19528 fragP->fr_fix += fix;
19529 }
19530
19531 /* Called from md_do_align. Used to create an alignment
19532 frag in a code section. */
19533
19534 void
19535 arm_frag_align_code (int n, int max)
19536 {
19537 char * p;
19538
19539 /* We assume that there will never be a requirement
19540 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19541 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19542 {
19543 char err_msg[128];
19544
19545 sprintf (err_msg,
19546 _("alignments greater than %d bytes not supported in .text sections."),
19547 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19548 as_fatal ("%s", err_msg);
19549 }
19550
19551 p = frag_var (rs_align_code,
19552 MAX_MEM_FOR_RS_ALIGN_CODE,
19553 1,
19554 (relax_substateT) max,
19555 (symbolS *) NULL,
19556 (offsetT) n,
19557 (char *) NULL);
19558 *p = 0;
19559 }
19560
19561 /* Perform target specific initialisation of a frag.
19562 Note - despite the name this initialisation is not done when the frag
19563 is created, but only when its type is assigned. A frag can be created
19564 and used a long time before its type is set, so beware of assuming that
19565 this initialisationis performed first. */
19566
19567 #ifndef OBJ_ELF
19568 void
19569 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19570 {
19571 /* Record whether this frag is in an ARM or a THUMB area. */
19572 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19573 }
19574
19575 #else /* OBJ_ELF is defined. */
19576 void
19577 arm_init_frag (fragS * fragP, int max_chars)
19578 {
19579 /* If the current ARM vs THUMB mode has not already
19580 been recorded into this frag then do so now. */
19581 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19582 {
19583 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19584
19585 /* Record a mapping symbol for alignment frags. We will delete this
19586 later if the alignment ends up empty. */
19587 switch (fragP->fr_type)
19588 {
19589 case rs_align:
19590 case rs_align_test:
19591 case rs_fill:
19592 mapping_state_2 (MAP_DATA, max_chars);
19593 break;
19594 case rs_align_code:
19595 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19596 break;
19597 default:
19598 break;
19599 }
19600 }
19601 }
19602
19603 /* When we change sections we need to issue a new mapping symbol. */
19604
19605 void
19606 arm_elf_change_section (void)
19607 {
19608 /* Link an unlinked unwind index table section to the .text section. */
19609 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19610 && elf_linked_to_section (now_seg) == NULL)
19611 elf_linked_to_section (now_seg) = text_section;
19612 }
19613
19614 int
19615 arm_elf_section_type (const char * str, size_t len)
19616 {
19617 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19618 return SHT_ARM_EXIDX;
19619
19620 return -1;
19621 }
19622 \f
19623 /* Code to deal with unwinding tables. */
19624
19625 static void add_unwind_adjustsp (offsetT);
19626
19627 /* Generate any deferred unwind frame offset. */
19628
19629 static void
19630 flush_pending_unwind (void)
19631 {
19632 offsetT offset;
19633
19634 offset = unwind.pending_offset;
19635 unwind.pending_offset = 0;
19636 if (offset != 0)
19637 add_unwind_adjustsp (offset);
19638 }
19639
19640 /* Add an opcode to this list for this function. Two-byte opcodes should
19641 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19642 order. */
19643
19644 static void
19645 add_unwind_opcode (valueT op, int length)
19646 {
19647 /* Add any deferred stack adjustment. */
19648 if (unwind.pending_offset)
19649 flush_pending_unwind ();
19650
19651 unwind.sp_restored = 0;
19652
19653 if (unwind.opcode_count + length > unwind.opcode_alloc)
19654 {
19655 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19656 if (unwind.opcodes)
19657 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19658 unwind.opcode_alloc);
19659 else
19660 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19661 }
19662 while (length > 0)
19663 {
19664 length--;
19665 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19666 op >>= 8;
19667 unwind.opcode_count++;
19668 }
19669 }
19670
19671 /* Add unwind opcodes to adjust the stack pointer. */
19672
19673 static void
19674 add_unwind_adjustsp (offsetT offset)
19675 {
19676 valueT op;
19677
19678 if (offset > 0x200)
19679 {
19680 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19681 char bytes[5];
19682 int n;
19683 valueT o;
19684
19685 /* Long form: 0xb2, uleb128. */
19686 /* This might not fit in a word so add the individual bytes,
19687 remembering the list is built in reverse order. */
19688 o = (valueT) ((offset - 0x204) >> 2);
19689 if (o == 0)
19690 add_unwind_opcode (0, 1);
19691
19692 /* Calculate the uleb128 encoding of the offset. */
19693 n = 0;
19694 while (o)
19695 {
19696 bytes[n] = o & 0x7f;
19697 o >>= 7;
19698 if (o)
19699 bytes[n] |= 0x80;
19700 n++;
19701 }
19702 /* Add the insn. */
19703 for (; n; n--)
19704 add_unwind_opcode (bytes[n - 1], 1);
19705 add_unwind_opcode (0xb2, 1);
19706 }
19707 else if (offset > 0x100)
19708 {
19709 /* Two short opcodes. */
19710 add_unwind_opcode (0x3f, 1);
19711 op = (offset - 0x104) >> 2;
19712 add_unwind_opcode (op, 1);
19713 }
19714 else if (offset > 0)
19715 {
19716 /* Short opcode. */
19717 op = (offset - 4) >> 2;
19718 add_unwind_opcode (op, 1);
19719 }
19720 else if (offset < 0)
19721 {
19722 offset = -offset;
19723 while (offset > 0x100)
19724 {
19725 add_unwind_opcode (0x7f, 1);
19726 offset -= 0x100;
19727 }
19728 op = ((offset - 4) >> 2) | 0x40;
19729 add_unwind_opcode (op, 1);
19730 }
19731 }
19732
19733 /* Finish the list of unwind opcodes for this function. */
19734 static void
19735 finish_unwind_opcodes (void)
19736 {
19737 valueT op;
19738
19739 if (unwind.fp_used)
19740 {
19741 /* Adjust sp as necessary. */
19742 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19743 flush_pending_unwind ();
19744
19745 /* After restoring sp from the frame pointer. */
19746 op = 0x90 | unwind.fp_reg;
19747 add_unwind_opcode (op, 1);
19748 }
19749 else
19750 flush_pending_unwind ();
19751 }
19752
19753
19754 /* Start an exception table entry. If idx is nonzero this is an index table
19755 entry. */
19756
19757 static void
19758 start_unwind_section (const segT text_seg, int idx)
19759 {
19760 const char * text_name;
19761 const char * prefix;
19762 const char * prefix_once;
19763 const char * group_name;
19764 size_t prefix_len;
19765 size_t text_len;
19766 char * sec_name;
19767 size_t sec_name_len;
19768 int type;
19769 int flags;
19770 int linkonce;
19771
19772 if (idx)
19773 {
19774 prefix = ELF_STRING_ARM_unwind;
19775 prefix_once = ELF_STRING_ARM_unwind_once;
19776 type = SHT_ARM_EXIDX;
19777 }
19778 else
19779 {
19780 prefix = ELF_STRING_ARM_unwind_info;
19781 prefix_once = ELF_STRING_ARM_unwind_info_once;
19782 type = SHT_PROGBITS;
19783 }
19784
19785 text_name = segment_name (text_seg);
19786 if (streq (text_name, ".text"))
19787 text_name = "";
19788
19789 if (strncmp (text_name, ".gnu.linkonce.t.",
19790 strlen (".gnu.linkonce.t.")) == 0)
19791 {
19792 prefix = prefix_once;
19793 text_name += strlen (".gnu.linkonce.t.");
19794 }
19795
19796 prefix_len = strlen (prefix);
19797 text_len = strlen (text_name);
19798 sec_name_len = prefix_len + text_len;
19799 sec_name = (char *) xmalloc (sec_name_len + 1);
19800 memcpy (sec_name, prefix, prefix_len);
19801 memcpy (sec_name + prefix_len, text_name, text_len);
19802 sec_name[prefix_len + text_len] = '\0';
19803
19804 flags = SHF_ALLOC;
19805 linkonce = 0;
19806 group_name = 0;
19807
19808 /* Handle COMDAT group. */
19809 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
19810 {
19811 group_name = elf_group_name (text_seg);
19812 if (group_name == NULL)
19813 {
19814 as_bad (_("Group section `%s' has no group signature"),
19815 segment_name (text_seg));
19816 ignore_rest_of_line ();
19817 return;
19818 }
19819 flags |= SHF_GROUP;
19820 linkonce = 1;
19821 }
19822
19823 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
19824
19825 /* Set the section link for index tables. */
19826 if (idx)
19827 elf_linked_to_section (now_seg) = text_seg;
19828 }
19829
19830
19831 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19832 personality routine data. Returns zero, or the index table value for
19833 and inline entry. */
19834
19835 static valueT
19836 create_unwind_entry (int have_data)
19837 {
19838 int size;
19839 addressT where;
19840 char *ptr;
19841 /* The current word of data. */
19842 valueT data;
19843 /* The number of bytes left in this word. */
19844 int n;
19845
19846 finish_unwind_opcodes ();
19847
19848 /* Remember the current text section. */
19849 unwind.saved_seg = now_seg;
19850 unwind.saved_subseg = now_subseg;
19851
19852 start_unwind_section (now_seg, 0);
19853
19854 if (unwind.personality_routine == NULL)
19855 {
19856 if (unwind.personality_index == -2)
19857 {
19858 if (have_data)
19859 as_bad (_("handlerdata in cantunwind frame"));
19860 return 1; /* EXIDX_CANTUNWIND. */
19861 }
19862
19863 /* Use a default personality routine if none is specified. */
19864 if (unwind.personality_index == -1)
19865 {
19866 if (unwind.opcode_count > 3)
19867 unwind.personality_index = 1;
19868 else
19869 unwind.personality_index = 0;
19870 }
19871
19872 /* Space for the personality routine entry. */
19873 if (unwind.personality_index == 0)
19874 {
19875 if (unwind.opcode_count > 3)
19876 as_bad (_("too many unwind opcodes for personality routine 0"));
19877
19878 if (!have_data)
19879 {
19880 /* All the data is inline in the index table. */
19881 data = 0x80;
19882 n = 3;
19883 while (unwind.opcode_count > 0)
19884 {
19885 unwind.opcode_count--;
19886 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19887 n--;
19888 }
19889
19890 /* Pad with "finish" opcodes. */
19891 while (n--)
19892 data = (data << 8) | 0xb0;
19893
19894 return data;
19895 }
19896 size = 0;
19897 }
19898 else
19899 /* We get two opcodes "free" in the first word. */
19900 size = unwind.opcode_count - 2;
19901 }
19902 else
19903 /* An extra byte is required for the opcode count. */
19904 size = unwind.opcode_count + 1;
19905
19906 size = (size + 3) >> 2;
19907 if (size > 0xff)
19908 as_bad (_("too many unwind opcodes"));
19909
19910 frag_align (2, 0, 0);
19911 record_alignment (now_seg, 2);
19912 unwind.table_entry = expr_build_dot ();
19913
19914 /* Allocate the table entry. */
19915 ptr = frag_more ((size << 2) + 4);
19916 where = frag_now_fix () - ((size << 2) + 4);
19917
19918 switch (unwind.personality_index)
19919 {
19920 case -1:
19921 /* ??? Should this be a PLT generating relocation? */
19922 /* Custom personality routine. */
19923 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19924 BFD_RELOC_ARM_PREL31);
19925
19926 where += 4;
19927 ptr += 4;
19928
19929 /* Set the first byte to the number of additional words. */
19930 data = size - 1;
19931 n = 3;
19932 break;
19933
19934 /* ABI defined personality routines. */
19935 case 0:
19936 /* Three opcodes bytes are packed into the first word. */
19937 data = 0x80;
19938 n = 3;
19939 break;
19940
19941 case 1:
19942 case 2:
19943 /* The size and first two opcode bytes go in the first word. */
19944 data = ((0x80 + unwind.personality_index) << 8) | size;
19945 n = 2;
19946 break;
19947
19948 default:
19949 /* Should never happen. */
19950 abort ();
19951 }
19952
19953 /* Pack the opcodes into words (MSB first), reversing the list at the same
19954 time. */
19955 while (unwind.opcode_count > 0)
19956 {
19957 if (n == 0)
19958 {
19959 md_number_to_chars (ptr, data, 4);
19960 ptr += 4;
19961 n = 4;
19962 data = 0;
19963 }
19964 unwind.opcode_count--;
19965 n--;
19966 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19967 }
19968
19969 /* Finish off the last word. */
19970 if (n < 4)
19971 {
19972 /* Pad with "finish" opcodes. */
19973 while (n--)
19974 data = (data << 8) | 0xb0;
19975
19976 md_number_to_chars (ptr, data, 4);
19977 }
19978
19979 if (!have_data)
19980 {
19981 /* Add an empty descriptor if there is no user-specified data. */
19982 ptr = frag_more (4);
19983 md_number_to_chars (ptr, 0, 4);
19984 }
19985
19986 return 0;
19987 }
19988
19989
19990 /* Initialize the DWARF-2 unwind information for this procedure. */
19991
19992 void
19993 tc_arm_frame_initial_instructions (void)
19994 {
19995 cfi_add_CFA_def_cfa (REG_SP, 0);
19996 }
19997 #endif /* OBJ_ELF */
19998
19999 /* Convert REGNAME to a DWARF-2 register number. */
20000
20001 int
20002 tc_arm_regname_to_dw2regnum (char *regname)
20003 {
20004 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
20005
20006 if (reg == FAIL)
20007 return -1;
20008
20009 return reg;
20010 }
20011
20012 #ifdef TE_PE
20013 void
20014 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
20015 {
20016 expressionS exp;
20017
20018 exp.X_op = O_secrel;
20019 exp.X_add_symbol = symbol;
20020 exp.X_add_number = 0;
20021 emit_expr (&exp, size);
20022 }
20023 #endif
20024
20025 /* MD interface: Symbol and relocation handling. */
20026
20027 /* Return the address within the segment that a PC-relative fixup is
20028 relative to. For ARM, PC-relative fixups applied to instructions
20029 are generally relative to the location of the fixup plus 8 bytes.
20030 Thumb branches are offset by 4, and Thumb loads relative to PC
20031 require special handling. */
20032
20033 long
20034 md_pcrel_from_section (fixS * fixP, segT seg)
20035 {
20036 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20037
20038 /* If this is pc-relative and we are going to emit a relocation
20039 then we just want to put out any pipeline compensation that the linker
20040 will need. Otherwise we want to use the calculated base.
20041 For WinCE we skip the bias for externals as well, since this
20042 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20043 if (fixP->fx_pcrel
20044 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
20045 || (arm_force_relocation (fixP)
20046 #ifdef TE_WINCE
20047 && !S_IS_EXTERNAL (fixP->fx_addsy)
20048 #endif
20049 )))
20050 base = 0;
20051
20052
20053 switch (fixP->fx_r_type)
20054 {
20055 /* PC relative addressing on the Thumb is slightly odd as the
20056 bottom two bits of the PC are forced to zero for the
20057 calculation. This happens *after* application of the
20058 pipeline offset. However, Thumb adrl already adjusts for
20059 this, so we need not do it again. */
20060 case BFD_RELOC_ARM_THUMB_ADD:
20061 return base & ~3;
20062
20063 case BFD_RELOC_ARM_THUMB_OFFSET:
20064 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20065 case BFD_RELOC_ARM_T32_ADD_PC12:
20066 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20067 return (base + 4) & ~3;
20068
20069 /* Thumb branches are simply offset by +4. */
20070 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20071 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20072 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20073 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20074 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20075 return base + 4;
20076
20077 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20078 if (fixP->fx_addsy
20079 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20080 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20081 && ARM_IS_FUNC (fixP->fx_addsy)
20082 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20083 base = fixP->fx_where + fixP->fx_frag->fr_address;
20084 return base + 4;
20085
20086 /* BLX is like branches above, but forces the low two bits of PC to
20087 zero. */
20088 case BFD_RELOC_THUMB_PCREL_BLX:
20089 if (fixP->fx_addsy
20090 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20091 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20092 && THUMB_IS_FUNC (fixP->fx_addsy)
20093 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20094 base = fixP->fx_where + fixP->fx_frag->fr_address;
20095 return (base + 4) & ~3;
20096
20097 /* ARM mode branches are offset by +8. However, the Windows CE
20098 loader expects the relocation not to take this into account. */
20099 case BFD_RELOC_ARM_PCREL_BLX:
20100 if (fixP->fx_addsy
20101 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20102 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20103 && ARM_IS_FUNC (fixP->fx_addsy)
20104 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20105 base = fixP->fx_where + fixP->fx_frag->fr_address;
20106 return base + 8;
20107
20108 case BFD_RELOC_ARM_PCREL_CALL:
20109 if (fixP->fx_addsy
20110 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20111 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20112 && THUMB_IS_FUNC (fixP->fx_addsy)
20113 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20114 base = fixP->fx_where + fixP->fx_frag->fr_address;
20115 return base + 8;
20116
20117 case BFD_RELOC_ARM_PCREL_BRANCH:
20118 case BFD_RELOC_ARM_PCREL_JUMP:
20119 case BFD_RELOC_ARM_PLT32:
20120 #ifdef TE_WINCE
20121 /* When handling fixups immediately, because we have already
20122 discovered the value of a symbol, or the address of the frag involved
20123 we must account for the offset by +8, as the OS loader will never see the reloc.
20124 see fixup_segment() in write.c
20125 The S_IS_EXTERNAL test handles the case of global symbols.
20126 Those need the calculated base, not just the pipe compensation the linker will need. */
20127 if (fixP->fx_pcrel
20128 && fixP->fx_addsy != NULL
20129 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20130 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20131 return base + 8;
20132 return base;
20133 #else
20134 return base + 8;
20135 #endif
20136
20137
20138 /* ARM mode loads relative to PC are also offset by +8. Unlike
20139 branches, the Windows CE loader *does* expect the relocation
20140 to take this into account. */
20141 case BFD_RELOC_ARM_OFFSET_IMM:
20142 case BFD_RELOC_ARM_OFFSET_IMM8:
20143 case BFD_RELOC_ARM_HWLITERAL:
20144 case BFD_RELOC_ARM_LITERAL:
20145 case BFD_RELOC_ARM_CP_OFF_IMM:
20146 return base + 8;
20147
20148
20149 /* Other PC-relative relocations are un-offset. */
20150 default:
20151 return base;
20152 }
20153 }
20154
20155 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20156 Otherwise we have no need to default values of symbols. */
20157
20158 symbolS *
20159 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
20160 {
20161 #ifdef OBJ_ELF
20162 if (name[0] == '_' && name[1] == 'G'
20163 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20164 {
20165 if (!GOT_symbol)
20166 {
20167 if (symbol_find (name))
20168 as_bad (_("GOT already in the symbol table"));
20169
20170 GOT_symbol = symbol_new (name, undefined_section,
20171 (valueT) 0, & zero_address_frag);
20172 }
20173
20174 return GOT_symbol;
20175 }
20176 #endif
20177
20178 return NULL;
20179 }
20180
20181 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20182 computed as two separate immediate values, added together. We
20183 already know that this value cannot be computed by just one ARM
20184 instruction. */
20185
20186 static unsigned int
20187 validate_immediate_twopart (unsigned int val,
20188 unsigned int * highpart)
20189 {
20190 unsigned int a;
20191 unsigned int i;
20192
20193 for (i = 0; i < 32; i += 2)
20194 if (((a = rotate_left (val, i)) & 0xff) != 0)
20195 {
20196 if (a & 0xff00)
20197 {
20198 if (a & ~ 0xffff)
20199 continue;
20200 * highpart = (a >> 8) | ((i + 24) << 7);
20201 }
20202 else if (a & 0xff0000)
20203 {
20204 if (a & 0xff000000)
20205 continue;
20206 * highpart = (a >> 16) | ((i + 16) << 7);
20207 }
20208 else
20209 {
20210 gas_assert (a & 0xff000000);
20211 * highpart = (a >> 24) | ((i + 8) << 7);
20212 }
20213
20214 return (a & 0xff) | (i << 7);
20215 }
20216
20217 return FAIL;
20218 }
20219
20220 static int
20221 validate_offset_imm (unsigned int val, int hwse)
20222 {
20223 if ((hwse && val > 255) || val > 4095)
20224 return FAIL;
20225 return val;
20226 }
20227
20228 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20229 negative immediate constant by altering the instruction. A bit of
20230 a hack really.
20231 MOV <-> MVN
20232 AND <-> BIC
20233 ADC <-> SBC
20234 by inverting the second operand, and
20235 ADD <-> SUB
20236 CMP <-> CMN
20237 by negating the second operand. */
20238
20239 static int
20240 negate_data_op (unsigned long * instruction,
20241 unsigned long value)
20242 {
20243 int op, new_inst;
20244 unsigned long negated, inverted;
20245
20246 negated = encode_arm_immediate (-value);
20247 inverted = encode_arm_immediate (~value);
20248
20249 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20250 switch (op)
20251 {
20252 /* First negates. */
20253 case OPCODE_SUB: /* ADD <-> SUB */
20254 new_inst = OPCODE_ADD;
20255 value = negated;
20256 break;
20257
20258 case OPCODE_ADD:
20259 new_inst = OPCODE_SUB;
20260 value = negated;
20261 break;
20262
20263 case OPCODE_CMP: /* CMP <-> CMN */
20264 new_inst = OPCODE_CMN;
20265 value = negated;
20266 break;
20267
20268 case OPCODE_CMN:
20269 new_inst = OPCODE_CMP;
20270 value = negated;
20271 break;
20272
20273 /* Now Inverted ops. */
20274 case OPCODE_MOV: /* MOV <-> MVN */
20275 new_inst = OPCODE_MVN;
20276 value = inverted;
20277 break;
20278
20279 case OPCODE_MVN:
20280 new_inst = OPCODE_MOV;
20281 value = inverted;
20282 break;
20283
20284 case OPCODE_AND: /* AND <-> BIC */
20285 new_inst = OPCODE_BIC;
20286 value = inverted;
20287 break;
20288
20289 case OPCODE_BIC:
20290 new_inst = OPCODE_AND;
20291 value = inverted;
20292 break;
20293
20294 case OPCODE_ADC: /* ADC <-> SBC */
20295 new_inst = OPCODE_SBC;
20296 value = inverted;
20297 break;
20298
20299 case OPCODE_SBC:
20300 new_inst = OPCODE_ADC;
20301 value = inverted;
20302 break;
20303
20304 /* We cannot do anything. */
20305 default:
20306 return FAIL;
20307 }
20308
20309 if (value == (unsigned) FAIL)
20310 return FAIL;
20311
20312 *instruction &= OPCODE_MASK;
20313 *instruction |= new_inst << DATA_OP_SHIFT;
20314 return value;
20315 }
20316
20317 /* Like negate_data_op, but for Thumb-2. */
20318
20319 static unsigned int
20320 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
20321 {
20322 int op, new_inst;
20323 int rd;
20324 unsigned int negated, inverted;
20325
20326 negated = encode_thumb32_immediate (-value);
20327 inverted = encode_thumb32_immediate (~value);
20328
20329 rd = (*instruction >> 8) & 0xf;
20330 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20331 switch (op)
20332 {
20333 /* ADD <-> SUB. Includes CMP <-> CMN. */
20334 case T2_OPCODE_SUB:
20335 new_inst = T2_OPCODE_ADD;
20336 value = negated;
20337 break;
20338
20339 case T2_OPCODE_ADD:
20340 new_inst = T2_OPCODE_SUB;
20341 value = negated;
20342 break;
20343
20344 /* ORR <-> ORN. Includes MOV <-> MVN. */
20345 case T2_OPCODE_ORR:
20346 new_inst = T2_OPCODE_ORN;
20347 value = inverted;
20348 break;
20349
20350 case T2_OPCODE_ORN:
20351 new_inst = T2_OPCODE_ORR;
20352 value = inverted;
20353 break;
20354
20355 /* AND <-> BIC. TST has no inverted equivalent. */
20356 case T2_OPCODE_AND:
20357 new_inst = T2_OPCODE_BIC;
20358 if (rd == 15)
20359 value = FAIL;
20360 else
20361 value = inverted;
20362 break;
20363
20364 case T2_OPCODE_BIC:
20365 new_inst = T2_OPCODE_AND;
20366 value = inverted;
20367 break;
20368
20369 /* ADC <-> SBC */
20370 case T2_OPCODE_ADC:
20371 new_inst = T2_OPCODE_SBC;
20372 value = inverted;
20373 break;
20374
20375 case T2_OPCODE_SBC:
20376 new_inst = T2_OPCODE_ADC;
20377 value = inverted;
20378 break;
20379
20380 /* We cannot do anything. */
20381 default:
20382 return FAIL;
20383 }
20384
20385 if (value == (unsigned int)FAIL)
20386 return FAIL;
20387
20388 *instruction &= T2_OPCODE_MASK;
20389 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20390 return value;
20391 }
20392
20393 /* Read a 32-bit thumb instruction from buf. */
20394 static unsigned long
20395 get_thumb32_insn (char * buf)
20396 {
20397 unsigned long insn;
20398 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20399 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20400
20401 return insn;
20402 }
20403
20404
20405 /* We usually want to set the low bit on the address of thumb function
20406 symbols. In particular .word foo - . should have the low bit set.
20407 Generic code tries to fold the difference of two symbols to
20408 a constant. Prevent this and force a relocation when the first symbols
20409 is a thumb function. */
20410
20411 bfd_boolean
20412 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20413 {
20414 if (op == O_subtract
20415 && l->X_op == O_symbol
20416 && r->X_op == O_symbol
20417 && THUMB_IS_FUNC (l->X_add_symbol))
20418 {
20419 l->X_op = O_subtract;
20420 l->X_op_symbol = r->X_add_symbol;
20421 l->X_add_number -= r->X_add_number;
20422 return TRUE;
20423 }
20424
20425 /* Process as normal. */
20426 return FALSE;
20427 }
20428
20429 /* Encode Thumb2 unconditional branches and calls. The encoding
20430 for the 2 are identical for the immediate values. */
20431
20432 static void
20433 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20434 {
20435 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20436 offsetT newval;
20437 offsetT newval2;
20438 addressT S, I1, I2, lo, hi;
20439
20440 S = (value >> 24) & 0x01;
20441 I1 = (value >> 23) & 0x01;
20442 I2 = (value >> 22) & 0x01;
20443 hi = (value >> 12) & 0x3ff;
20444 lo = (value >> 1) & 0x7ff;
20445 newval = md_chars_to_number (buf, THUMB_SIZE);
20446 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20447 newval |= (S << 10) | hi;
20448 newval2 &= ~T2I1I2MASK;
20449 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20450 md_number_to_chars (buf, newval, THUMB_SIZE);
20451 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20452 }
20453
20454 void
20455 md_apply_fix (fixS * fixP,
20456 valueT * valP,
20457 segT seg)
20458 {
20459 offsetT value = * valP;
20460 offsetT newval;
20461 unsigned int newimm;
20462 unsigned long temp;
20463 int sign;
20464 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20465
20466 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20467
20468 /* Note whether this will delete the relocation. */
20469
20470 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20471 fixP->fx_done = 1;
20472
20473 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20474 consistency with the behaviour on 32-bit hosts. Remember value
20475 for emit_reloc. */
20476 value &= 0xffffffff;
20477 value ^= 0x80000000;
20478 value -= 0x80000000;
20479
20480 *valP = value;
20481 fixP->fx_addnumber = value;
20482
20483 /* Same treatment for fixP->fx_offset. */
20484 fixP->fx_offset &= 0xffffffff;
20485 fixP->fx_offset ^= 0x80000000;
20486 fixP->fx_offset -= 0x80000000;
20487
20488 switch (fixP->fx_r_type)
20489 {
20490 case BFD_RELOC_NONE:
20491 /* This will need to go in the object file. */
20492 fixP->fx_done = 0;
20493 break;
20494
20495 case BFD_RELOC_ARM_IMMEDIATE:
20496 /* We claim that this fixup has been processed here,
20497 even if in fact we generate an error because we do
20498 not have a reloc for it, so tc_gen_reloc will reject it. */
20499 fixP->fx_done = 1;
20500
20501 if (fixP->fx_addsy)
20502 {
20503 const char *msg = 0;
20504
20505 if (! S_IS_DEFINED (fixP->fx_addsy))
20506 msg = _("undefined symbol %s used as an immediate value");
20507 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20508 msg = _("symbol %s is in a different section");
20509 else if (S_IS_WEAK (fixP->fx_addsy))
20510 msg = _("symbol %s is weak and may be overridden later");
20511
20512 if (msg)
20513 {
20514 as_bad_where (fixP->fx_file, fixP->fx_line,
20515 msg, S_GET_NAME (fixP->fx_addsy));
20516 break;
20517 }
20518 }
20519
20520 newimm = encode_arm_immediate (value);
20521 temp = md_chars_to_number (buf, INSN_SIZE);
20522
20523 /* If the instruction will fail, see if we can fix things up by
20524 changing the opcode. */
20525 if (newimm == (unsigned int) FAIL
20526 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
20527 {
20528 as_bad_where (fixP->fx_file, fixP->fx_line,
20529 _("invalid constant (%lx) after fixup"),
20530 (unsigned long) value);
20531 break;
20532 }
20533
20534 newimm |= (temp & 0xfffff000);
20535 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20536 break;
20537
20538 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20539 {
20540 unsigned int highpart = 0;
20541 unsigned int newinsn = 0xe1a00000; /* nop. */
20542
20543 if (fixP->fx_addsy)
20544 {
20545 const char *msg = 0;
20546
20547 if (! S_IS_DEFINED (fixP->fx_addsy))
20548 msg = _("undefined symbol %s used as an immediate value");
20549 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20550 msg = _("symbol %s is in a different section");
20551 else if (S_IS_WEAK (fixP->fx_addsy))
20552 msg = _("symbol %s is weak and may be overridden later");
20553
20554 if (msg)
20555 {
20556 as_bad_where (fixP->fx_file, fixP->fx_line,
20557 msg, S_GET_NAME (fixP->fx_addsy));
20558 break;
20559 }
20560 }
20561
20562 newimm = encode_arm_immediate (value);
20563 temp = md_chars_to_number (buf, INSN_SIZE);
20564
20565 /* If the instruction will fail, see if we can fix things up by
20566 changing the opcode. */
20567 if (newimm == (unsigned int) FAIL
20568 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20569 {
20570 /* No ? OK - try using two ADD instructions to generate
20571 the value. */
20572 newimm = validate_immediate_twopart (value, & highpart);
20573
20574 /* Yes - then make sure that the second instruction is
20575 also an add. */
20576 if (newimm != (unsigned int) FAIL)
20577 newinsn = temp;
20578 /* Still No ? Try using a negated value. */
20579 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20580 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20581 /* Otherwise - give up. */
20582 else
20583 {
20584 as_bad_where (fixP->fx_file, fixP->fx_line,
20585 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20586 (long) value);
20587 break;
20588 }
20589
20590 /* Replace the first operand in the 2nd instruction (which
20591 is the PC) with the destination register. We have
20592 already added in the PC in the first instruction and we
20593 do not want to do it again. */
20594 newinsn &= ~ 0xf0000;
20595 newinsn |= ((newinsn & 0x0f000) << 4);
20596 }
20597
20598 newimm |= (temp & 0xfffff000);
20599 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20600
20601 highpart |= (newinsn & 0xfffff000);
20602 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20603 }
20604 break;
20605
20606 case BFD_RELOC_ARM_OFFSET_IMM:
20607 if (!fixP->fx_done && seg->use_rela_p)
20608 value = 0;
20609
20610 case BFD_RELOC_ARM_LITERAL:
20611 sign = value > 0;
20612
20613 if (value < 0)
20614 value = - value;
20615
20616 if (validate_offset_imm (value, 0) == FAIL)
20617 {
20618 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20619 as_bad_where (fixP->fx_file, fixP->fx_line,
20620 _("invalid literal constant: pool needs to be closer"));
20621 else
20622 as_bad_where (fixP->fx_file, fixP->fx_line,
20623 _("bad immediate value for offset (%ld)"),
20624 (long) value);
20625 break;
20626 }
20627
20628 newval = md_chars_to_number (buf, INSN_SIZE);
20629 if (value == 0)
20630 newval &= 0xfffff000;
20631 else
20632 {
20633 newval &= 0xff7ff000;
20634 newval |= value | (sign ? INDEX_UP : 0);
20635 }
20636 md_number_to_chars (buf, newval, INSN_SIZE);
20637 break;
20638
20639 case BFD_RELOC_ARM_OFFSET_IMM8:
20640 case BFD_RELOC_ARM_HWLITERAL:
20641 sign = value > 0;
20642
20643 if (value < 0)
20644 value = - value;
20645
20646 if (validate_offset_imm (value, 1) == FAIL)
20647 {
20648 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20649 as_bad_where (fixP->fx_file, fixP->fx_line,
20650 _("invalid literal constant: pool needs to be closer"));
20651 else
20652 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20653 (long) value);
20654 break;
20655 }
20656
20657 newval = md_chars_to_number (buf, INSN_SIZE);
20658 if (value == 0)
20659 newval &= 0xfffff0f0;
20660 else
20661 {
20662 newval &= 0xff7ff0f0;
20663 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20664 }
20665 md_number_to_chars (buf, newval, INSN_SIZE);
20666 break;
20667
20668 case BFD_RELOC_ARM_T32_OFFSET_U8:
20669 if (value < 0 || value > 1020 || value % 4 != 0)
20670 as_bad_where (fixP->fx_file, fixP->fx_line,
20671 _("bad immediate value for offset (%ld)"), (long) value);
20672 value /= 4;
20673
20674 newval = md_chars_to_number (buf+2, THUMB_SIZE);
20675 newval |= value;
20676 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20677 break;
20678
20679 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20680 /* This is a complicated relocation used for all varieties of Thumb32
20681 load/store instruction with immediate offset:
20682
20683 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20684 *4, optional writeback(W)
20685 (doubleword load/store)
20686
20687 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20688 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20689 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20690 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20691 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20692
20693 Uppercase letters indicate bits that are already encoded at
20694 this point. Lowercase letters are our problem. For the
20695 second block of instructions, the secondary opcode nybble
20696 (bits 8..11) is present, and bit 23 is zero, even if this is
20697 a PC-relative operation. */
20698 newval = md_chars_to_number (buf, THUMB_SIZE);
20699 newval <<= 16;
20700 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
20701
20702 if ((newval & 0xf0000000) == 0xe0000000)
20703 {
20704 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20705 if (value >= 0)
20706 newval |= (1 << 23);
20707 else
20708 value = -value;
20709 if (value % 4 != 0)
20710 {
20711 as_bad_where (fixP->fx_file, fixP->fx_line,
20712 _("offset not a multiple of 4"));
20713 break;
20714 }
20715 value /= 4;
20716 if (value > 0xff)
20717 {
20718 as_bad_where (fixP->fx_file, fixP->fx_line,
20719 _("offset out of range"));
20720 break;
20721 }
20722 newval &= ~0xff;
20723 }
20724 else if ((newval & 0x000f0000) == 0x000f0000)
20725 {
20726 /* PC-relative, 12-bit offset. */
20727 if (value >= 0)
20728 newval |= (1 << 23);
20729 else
20730 value = -value;
20731 if (value > 0xfff)
20732 {
20733 as_bad_where (fixP->fx_file, fixP->fx_line,
20734 _("offset out of range"));
20735 break;
20736 }
20737 newval &= ~0xfff;
20738 }
20739 else if ((newval & 0x00000100) == 0x00000100)
20740 {
20741 /* Writeback: 8-bit, +/- offset. */
20742 if (value >= 0)
20743 newval |= (1 << 9);
20744 else
20745 value = -value;
20746 if (value > 0xff)
20747 {
20748 as_bad_where (fixP->fx_file, fixP->fx_line,
20749 _("offset out of range"));
20750 break;
20751 }
20752 newval &= ~0xff;
20753 }
20754 else if ((newval & 0x00000f00) == 0x00000e00)
20755 {
20756 /* T-instruction: positive 8-bit offset. */
20757 if (value < 0 || value > 0xff)
20758 {
20759 as_bad_where (fixP->fx_file, fixP->fx_line,
20760 _("offset out of range"));
20761 break;
20762 }
20763 newval &= ~0xff;
20764 newval |= value;
20765 }
20766 else
20767 {
20768 /* Positive 12-bit or negative 8-bit offset. */
20769 int limit;
20770 if (value >= 0)
20771 {
20772 newval |= (1 << 23);
20773 limit = 0xfff;
20774 }
20775 else
20776 {
20777 value = -value;
20778 limit = 0xff;
20779 }
20780 if (value > limit)
20781 {
20782 as_bad_where (fixP->fx_file, fixP->fx_line,
20783 _("offset out of range"));
20784 break;
20785 }
20786 newval &= ~limit;
20787 }
20788
20789 newval |= value;
20790 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20791 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20792 break;
20793
20794 case BFD_RELOC_ARM_SHIFT_IMM:
20795 newval = md_chars_to_number (buf, INSN_SIZE);
20796 if (((unsigned long) value) > 32
20797 || (value == 32
20798 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20799 {
20800 as_bad_where (fixP->fx_file, fixP->fx_line,
20801 _("shift expression is too large"));
20802 break;
20803 }
20804
20805 if (value == 0)
20806 /* Shifts of zero must be done as lsl. */
20807 newval &= ~0x60;
20808 else if (value == 32)
20809 value = 0;
20810 newval &= 0xfffff07f;
20811 newval |= (value & 0x1f) << 7;
20812 md_number_to_chars (buf, newval, INSN_SIZE);
20813 break;
20814
20815 case BFD_RELOC_ARM_T32_IMMEDIATE:
20816 case BFD_RELOC_ARM_T32_ADD_IMM:
20817 case BFD_RELOC_ARM_T32_IMM12:
20818 case BFD_RELOC_ARM_T32_ADD_PC12:
20819 /* We claim that this fixup has been processed here,
20820 even if in fact we generate an error because we do
20821 not have a reloc for it, so tc_gen_reloc will reject it. */
20822 fixP->fx_done = 1;
20823
20824 if (fixP->fx_addsy
20825 && ! S_IS_DEFINED (fixP->fx_addsy))
20826 {
20827 as_bad_where (fixP->fx_file, fixP->fx_line,
20828 _("undefined symbol %s used as an immediate value"),
20829 S_GET_NAME (fixP->fx_addsy));
20830 break;
20831 }
20832
20833 newval = md_chars_to_number (buf, THUMB_SIZE);
20834 newval <<= 16;
20835 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
20836
20837 newimm = FAIL;
20838 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20839 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20840 {
20841 newimm = encode_thumb32_immediate (value);
20842 if (newimm == (unsigned int) FAIL)
20843 newimm = thumb32_negate_data_op (&newval, value);
20844 }
20845 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20846 && newimm == (unsigned int) FAIL)
20847 {
20848 /* Turn add/sum into addw/subw. */
20849 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20850 newval = (newval & 0xfeffffff) | 0x02000000;
20851 /* No flat 12-bit imm encoding for addsw/subsw. */
20852 if ((newval & 0x00100000) == 0)
20853 {
20854 /* 12 bit immediate for addw/subw. */
20855 if (value < 0)
20856 {
20857 value = -value;
20858 newval ^= 0x00a00000;
20859 }
20860 if (value > 0xfff)
20861 newimm = (unsigned int) FAIL;
20862 else
20863 newimm = value;
20864 }
20865 }
20866
20867 if (newimm == (unsigned int)FAIL)
20868 {
20869 as_bad_where (fixP->fx_file, fixP->fx_line,
20870 _("invalid constant (%lx) after fixup"),
20871 (unsigned long) value);
20872 break;
20873 }
20874
20875 newval |= (newimm & 0x800) << 15;
20876 newval |= (newimm & 0x700) << 4;
20877 newval |= (newimm & 0x0ff);
20878
20879 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20880 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20881 break;
20882
20883 case BFD_RELOC_ARM_SMC:
20884 if (((unsigned long) value) > 0xffff)
20885 as_bad_where (fixP->fx_file, fixP->fx_line,
20886 _("invalid smc expression"));
20887 newval = md_chars_to_number (buf, INSN_SIZE);
20888 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20889 md_number_to_chars (buf, newval, INSN_SIZE);
20890 break;
20891
20892 case BFD_RELOC_ARM_HVC:
20893 if (((unsigned long) value) > 0xffff)
20894 as_bad_where (fixP->fx_file, fixP->fx_line,
20895 _("invalid hvc expression"));
20896 newval = md_chars_to_number (buf, INSN_SIZE);
20897 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20898 md_number_to_chars (buf, newval, INSN_SIZE);
20899 break;
20900
20901 case BFD_RELOC_ARM_SWI:
20902 if (fixP->tc_fix_data != 0)
20903 {
20904 if (((unsigned long) value) > 0xff)
20905 as_bad_where (fixP->fx_file, fixP->fx_line,
20906 _("invalid swi expression"));
20907 newval = md_chars_to_number (buf, THUMB_SIZE);
20908 newval |= value;
20909 md_number_to_chars (buf, newval, THUMB_SIZE);
20910 }
20911 else
20912 {
20913 if (((unsigned long) value) > 0x00ffffff)
20914 as_bad_where (fixP->fx_file, fixP->fx_line,
20915 _("invalid swi expression"));
20916 newval = md_chars_to_number (buf, INSN_SIZE);
20917 newval |= value;
20918 md_number_to_chars (buf, newval, INSN_SIZE);
20919 }
20920 break;
20921
20922 case BFD_RELOC_ARM_MULTI:
20923 if (((unsigned long) value) > 0xffff)
20924 as_bad_where (fixP->fx_file, fixP->fx_line,
20925 _("invalid expression in load/store multiple"));
20926 newval = value | md_chars_to_number (buf, INSN_SIZE);
20927 md_number_to_chars (buf, newval, INSN_SIZE);
20928 break;
20929
20930 #ifdef OBJ_ELF
20931 case BFD_RELOC_ARM_PCREL_CALL:
20932
20933 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20934 && fixP->fx_addsy
20935 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20936 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20937 && THUMB_IS_FUNC (fixP->fx_addsy))
20938 /* Flip the bl to blx. This is a simple flip
20939 bit here because we generate PCREL_CALL for
20940 unconditional bls. */
20941 {
20942 newval = md_chars_to_number (buf, INSN_SIZE);
20943 newval = newval | 0x10000000;
20944 md_number_to_chars (buf, newval, INSN_SIZE);
20945 temp = 1;
20946 fixP->fx_done = 1;
20947 }
20948 else
20949 temp = 3;
20950 goto arm_branch_common;
20951
20952 case BFD_RELOC_ARM_PCREL_JUMP:
20953 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20954 && fixP->fx_addsy
20955 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20956 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20957 && THUMB_IS_FUNC (fixP->fx_addsy))
20958 {
20959 /* This would map to a bl<cond>, b<cond>,
20960 b<always> to a Thumb function. We
20961 need to force a relocation for this particular
20962 case. */
20963 newval = md_chars_to_number (buf, INSN_SIZE);
20964 fixP->fx_done = 0;
20965 }
20966
20967 case BFD_RELOC_ARM_PLT32:
20968 #endif
20969 case BFD_RELOC_ARM_PCREL_BRANCH:
20970 temp = 3;
20971 goto arm_branch_common;
20972
20973 case BFD_RELOC_ARM_PCREL_BLX:
20974
20975 temp = 1;
20976 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20977 && fixP->fx_addsy
20978 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20979 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20980 && ARM_IS_FUNC (fixP->fx_addsy))
20981 {
20982 /* Flip the blx to a bl and warn. */
20983 const char *name = S_GET_NAME (fixP->fx_addsy);
20984 newval = 0xeb000000;
20985 as_warn_where (fixP->fx_file, fixP->fx_line,
20986 _("blx to '%s' an ARM ISA state function changed to bl"),
20987 name);
20988 md_number_to_chars (buf, newval, INSN_SIZE);
20989 temp = 3;
20990 fixP->fx_done = 1;
20991 }
20992
20993 #ifdef OBJ_ELF
20994 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20995 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20996 #endif
20997
20998 arm_branch_common:
20999 /* We are going to store value (shifted right by two) in the
21000 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21001 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21002 also be be clear. */
21003 if (value & temp)
21004 as_bad_where (fixP->fx_file, fixP->fx_line,
21005 _("misaligned branch destination"));
21006 if ((value & (offsetT)0xfe000000) != (offsetT)0
21007 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
21008 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21009
21010 if (fixP->fx_done || !seg->use_rela_p)
21011 {
21012 newval = md_chars_to_number (buf, INSN_SIZE);
21013 newval |= (value >> 2) & 0x00ffffff;
21014 /* Set the H bit on BLX instructions. */
21015 if (temp == 1)
21016 {
21017 if (value & 2)
21018 newval |= 0x01000000;
21019 else
21020 newval &= ~0x01000000;
21021 }
21022 md_number_to_chars (buf, newval, INSN_SIZE);
21023 }
21024 break;
21025
21026 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21027 /* CBZ can only branch forward. */
21028
21029 /* Attempts to use CBZ to branch to the next instruction
21030 (which, strictly speaking, are prohibited) will be turned into
21031 no-ops.
21032
21033 FIXME: It may be better to remove the instruction completely and
21034 perform relaxation. */
21035 if (value == -2)
21036 {
21037 newval = md_chars_to_number (buf, THUMB_SIZE);
21038 newval = 0xbf00; /* NOP encoding T1 */
21039 md_number_to_chars (buf, newval, THUMB_SIZE);
21040 }
21041 else
21042 {
21043 if (value & ~0x7e)
21044 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21045
21046 if (fixP->fx_done || !seg->use_rela_p)
21047 {
21048 newval = md_chars_to_number (buf, THUMB_SIZE);
21049 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21050 md_number_to_chars (buf, newval, THUMB_SIZE);
21051 }
21052 }
21053 break;
21054
21055 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
21056 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
21057 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21058
21059 if (fixP->fx_done || !seg->use_rela_p)
21060 {
21061 newval = md_chars_to_number (buf, THUMB_SIZE);
21062 newval |= (value & 0x1ff) >> 1;
21063 md_number_to_chars (buf, newval, THUMB_SIZE);
21064 }
21065 break;
21066
21067 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
21068 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
21069 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21070
21071 if (fixP->fx_done || !seg->use_rela_p)
21072 {
21073 newval = md_chars_to_number (buf, THUMB_SIZE);
21074 newval |= (value & 0xfff) >> 1;
21075 md_number_to_chars (buf, newval, THUMB_SIZE);
21076 }
21077 break;
21078
21079 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21080 if (fixP->fx_addsy
21081 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21082 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21083 && ARM_IS_FUNC (fixP->fx_addsy)
21084 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21085 {
21086 /* Force a relocation for a branch 20 bits wide. */
21087 fixP->fx_done = 0;
21088 }
21089 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
21090 as_bad_where (fixP->fx_file, fixP->fx_line,
21091 _("conditional branch out of range"));
21092
21093 if (fixP->fx_done || !seg->use_rela_p)
21094 {
21095 offsetT newval2;
21096 addressT S, J1, J2, lo, hi;
21097
21098 S = (value & 0x00100000) >> 20;
21099 J2 = (value & 0x00080000) >> 19;
21100 J1 = (value & 0x00040000) >> 18;
21101 hi = (value & 0x0003f000) >> 12;
21102 lo = (value & 0x00000ffe) >> 1;
21103
21104 newval = md_chars_to_number (buf, THUMB_SIZE);
21105 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21106 newval |= (S << 10) | hi;
21107 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21108 md_number_to_chars (buf, newval, THUMB_SIZE);
21109 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21110 }
21111 break;
21112
21113 case BFD_RELOC_THUMB_PCREL_BLX:
21114 /* If there is a blx from a thumb state function to
21115 another thumb function flip this to a bl and warn
21116 about it. */
21117
21118 if (fixP->fx_addsy
21119 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21120 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21121 && THUMB_IS_FUNC (fixP->fx_addsy))
21122 {
21123 const char *name = S_GET_NAME (fixP->fx_addsy);
21124 as_warn_where (fixP->fx_file, fixP->fx_line,
21125 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21126 name);
21127 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21128 newval = newval | 0x1000;
21129 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21130 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21131 fixP->fx_done = 1;
21132 }
21133
21134
21135 goto thumb_bl_common;
21136
21137 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21138 /* A bl from Thumb state ISA to an internal ARM state function
21139 is converted to a blx. */
21140 if (fixP->fx_addsy
21141 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21142 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21143 && ARM_IS_FUNC (fixP->fx_addsy)
21144 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21145 {
21146 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21147 newval = newval & ~0x1000;
21148 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21149 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21150 fixP->fx_done = 1;
21151 }
21152
21153 thumb_bl_common:
21154
21155 #ifdef OBJ_ELF
21156 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
21157 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21158 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21159 #endif
21160
21161 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21162 /* For a BLX instruction, make sure that the relocation is rounded up
21163 to a word boundary. This follows the semantics of the instruction
21164 which specifies that bit 1 of the target address will come from bit
21165 1 of the base address. */
21166 value = (value + 1) & ~ 1;
21167
21168 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21169 {
21170 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21171 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21172 else if ((value & ~0x1ffffff)
21173 && ((value & ~0x1ffffff) != ~0x1ffffff))
21174 as_bad_where (fixP->fx_file, fixP->fx_line,
21175 _("Thumb2 branch out of range"));
21176 }
21177
21178 if (fixP->fx_done || !seg->use_rela_p)
21179 encode_thumb2_b_bl_offset (buf, value);
21180
21181 break;
21182
21183 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21184 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21185 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21186
21187 if (fixP->fx_done || !seg->use_rela_p)
21188 encode_thumb2_b_bl_offset (buf, value);
21189
21190 break;
21191
21192 case BFD_RELOC_8:
21193 if (fixP->fx_done || !seg->use_rela_p)
21194 md_number_to_chars (buf, value, 1);
21195 break;
21196
21197 case BFD_RELOC_16:
21198 if (fixP->fx_done || !seg->use_rela_p)
21199 md_number_to_chars (buf, value, 2);
21200 break;
21201
21202 #ifdef OBJ_ELF
21203 case BFD_RELOC_ARM_TLS_CALL:
21204 case BFD_RELOC_ARM_THM_TLS_CALL:
21205 case BFD_RELOC_ARM_TLS_DESCSEQ:
21206 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21207 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21208 break;
21209
21210 case BFD_RELOC_ARM_TLS_GOTDESC:
21211 case BFD_RELOC_ARM_TLS_GD32:
21212 case BFD_RELOC_ARM_TLS_LE32:
21213 case BFD_RELOC_ARM_TLS_IE32:
21214 case BFD_RELOC_ARM_TLS_LDM32:
21215 case BFD_RELOC_ARM_TLS_LDO32:
21216 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21217 /* fall through */
21218
21219 case BFD_RELOC_ARM_GOT32:
21220 case BFD_RELOC_ARM_GOTOFF:
21221 if (fixP->fx_done || !seg->use_rela_p)
21222 md_number_to_chars (buf, 0, 4);
21223 break;
21224
21225 case BFD_RELOC_ARM_GOT_PREL:
21226 if (fixP->fx_done || !seg->use_rela_p)
21227 md_number_to_chars (buf, value, 4);
21228 break;
21229
21230 case BFD_RELOC_ARM_TARGET2:
21231 /* TARGET2 is not partial-inplace, so we need to write the
21232 addend here for REL targets, because it won't be written out
21233 during reloc processing later. */
21234 if (fixP->fx_done || !seg->use_rela_p)
21235 md_number_to_chars (buf, fixP->fx_offset, 4);
21236 break;
21237 #endif
21238
21239 case BFD_RELOC_RVA:
21240 case BFD_RELOC_32:
21241 case BFD_RELOC_ARM_TARGET1:
21242 case BFD_RELOC_ARM_ROSEGREL32:
21243 case BFD_RELOC_ARM_SBREL32:
21244 case BFD_RELOC_32_PCREL:
21245 #ifdef TE_PE
21246 case BFD_RELOC_32_SECREL:
21247 #endif
21248 if (fixP->fx_done || !seg->use_rela_p)
21249 #ifdef TE_WINCE
21250 /* For WinCE we only do this for pcrel fixups. */
21251 if (fixP->fx_done || fixP->fx_pcrel)
21252 #endif
21253 md_number_to_chars (buf, value, 4);
21254 break;
21255
21256 #ifdef OBJ_ELF
21257 case BFD_RELOC_ARM_PREL31:
21258 if (fixP->fx_done || !seg->use_rela_p)
21259 {
21260 newval = md_chars_to_number (buf, 4) & 0x80000000;
21261 if ((value ^ (value >> 1)) & 0x40000000)
21262 {
21263 as_bad_where (fixP->fx_file, fixP->fx_line,
21264 _("rel31 relocation overflow"));
21265 }
21266 newval |= value & 0x7fffffff;
21267 md_number_to_chars (buf, newval, 4);
21268 }
21269 break;
21270 #endif
21271
21272 case BFD_RELOC_ARM_CP_OFF_IMM:
21273 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21274 if (value < -1023 || value > 1023 || (value & 3))
21275 as_bad_where (fixP->fx_file, fixP->fx_line,
21276 _("co-processor offset out of range"));
21277 cp_off_common:
21278 sign = value > 0;
21279 if (value < 0)
21280 value = -value;
21281 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21282 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21283 newval = md_chars_to_number (buf, INSN_SIZE);
21284 else
21285 newval = get_thumb32_insn (buf);
21286 if (value == 0)
21287 newval &= 0xffffff00;
21288 else
21289 {
21290 newval &= 0xff7fff00;
21291 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21292 }
21293 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21294 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21295 md_number_to_chars (buf, newval, INSN_SIZE);
21296 else
21297 put_thumb32_insn (buf, newval);
21298 break;
21299
21300 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
21301 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
21302 if (value < -255 || value > 255)
21303 as_bad_where (fixP->fx_file, fixP->fx_line,
21304 _("co-processor offset out of range"));
21305 value *= 4;
21306 goto cp_off_common;
21307
21308 case BFD_RELOC_ARM_THUMB_OFFSET:
21309 newval = md_chars_to_number (buf, THUMB_SIZE);
21310 /* Exactly what ranges, and where the offset is inserted depends
21311 on the type of instruction, we can establish this from the
21312 top 4 bits. */
21313 switch (newval >> 12)
21314 {
21315 case 4: /* PC load. */
21316 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21317 forced to zero for these loads; md_pcrel_from has already
21318 compensated for this. */
21319 if (value & 3)
21320 as_bad_where (fixP->fx_file, fixP->fx_line,
21321 _("invalid offset, target not word aligned (0x%08lX)"),
21322 (((unsigned long) fixP->fx_frag->fr_address
21323 + (unsigned long) fixP->fx_where) & ~3)
21324 + (unsigned long) value);
21325
21326 if (value & ~0x3fc)
21327 as_bad_where (fixP->fx_file, fixP->fx_line,
21328 _("invalid offset, value too big (0x%08lX)"),
21329 (long) value);
21330
21331 newval |= value >> 2;
21332 break;
21333
21334 case 9: /* SP load/store. */
21335 if (value & ~0x3fc)
21336 as_bad_where (fixP->fx_file, fixP->fx_line,
21337 _("invalid offset, value too big (0x%08lX)"),
21338 (long) value);
21339 newval |= value >> 2;
21340 break;
21341
21342 case 6: /* Word load/store. */
21343 if (value & ~0x7c)
21344 as_bad_where (fixP->fx_file, fixP->fx_line,
21345 _("invalid offset, value too big (0x%08lX)"),
21346 (long) value);
21347 newval |= value << 4; /* 6 - 2. */
21348 break;
21349
21350 case 7: /* Byte load/store. */
21351 if (value & ~0x1f)
21352 as_bad_where (fixP->fx_file, fixP->fx_line,
21353 _("invalid offset, value too big (0x%08lX)"),
21354 (long) value);
21355 newval |= value << 6;
21356 break;
21357
21358 case 8: /* Halfword load/store. */
21359 if (value & ~0x3e)
21360 as_bad_where (fixP->fx_file, fixP->fx_line,
21361 _("invalid offset, value too big (0x%08lX)"),
21362 (long) value);
21363 newval |= value << 5; /* 6 - 1. */
21364 break;
21365
21366 default:
21367 as_bad_where (fixP->fx_file, fixP->fx_line,
21368 "Unable to process relocation for thumb opcode: %lx",
21369 (unsigned long) newval);
21370 break;
21371 }
21372 md_number_to_chars (buf, newval, THUMB_SIZE);
21373 break;
21374
21375 case BFD_RELOC_ARM_THUMB_ADD:
21376 /* This is a complicated relocation, since we use it for all of
21377 the following immediate relocations:
21378
21379 3bit ADD/SUB
21380 8bit ADD/SUB
21381 9bit ADD/SUB SP word-aligned
21382 10bit ADD PC/SP word-aligned
21383
21384 The type of instruction being processed is encoded in the
21385 instruction field:
21386
21387 0x8000 SUB
21388 0x00F0 Rd
21389 0x000F Rs
21390 */
21391 newval = md_chars_to_number (buf, THUMB_SIZE);
21392 {
21393 int rd = (newval >> 4) & 0xf;
21394 int rs = newval & 0xf;
21395 int subtract = !!(newval & 0x8000);
21396
21397 /* Check for HI regs, only very restricted cases allowed:
21398 Adjusting SP, and using PC or SP to get an address. */
21399 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21400 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21401 as_bad_where (fixP->fx_file, fixP->fx_line,
21402 _("invalid Hi register with immediate"));
21403
21404 /* If value is negative, choose the opposite instruction. */
21405 if (value < 0)
21406 {
21407 value = -value;
21408 subtract = !subtract;
21409 if (value < 0)
21410 as_bad_where (fixP->fx_file, fixP->fx_line,
21411 _("immediate value out of range"));
21412 }
21413
21414 if (rd == REG_SP)
21415 {
21416 if (value & ~0x1fc)
21417 as_bad_where (fixP->fx_file, fixP->fx_line,
21418 _("invalid immediate for stack address calculation"));
21419 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21420 newval |= value >> 2;
21421 }
21422 else if (rs == REG_PC || rs == REG_SP)
21423 {
21424 if (subtract || value & ~0x3fc)
21425 as_bad_where (fixP->fx_file, fixP->fx_line,
21426 _("invalid immediate for address calculation (value = 0x%08lX)"),
21427 (unsigned long) value);
21428 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21429 newval |= rd << 8;
21430 newval |= value >> 2;
21431 }
21432 else if (rs == rd)
21433 {
21434 if (value & ~0xff)
21435 as_bad_where (fixP->fx_file, fixP->fx_line,
21436 _("immediate value out of range"));
21437 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21438 newval |= (rd << 8) | value;
21439 }
21440 else
21441 {
21442 if (value & ~0x7)
21443 as_bad_where (fixP->fx_file, fixP->fx_line,
21444 _("immediate value out of range"));
21445 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21446 newval |= rd | (rs << 3) | (value << 6);
21447 }
21448 }
21449 md_number_to_chars (buf, newval, THUMB_SIZE);
21450 break;
21451
21452 case BFD_RELOC_ARM_THUMB_IMM:
21453 newval = md_chars_to_number (buf, THUMB_SIZE);
21454 if (value < 0 || value > 255)
21455 as_bad_where (fixP->fx_file, fixP->fx_line,
21456 _("invalid immediate: %ld is out of range"),
21457 (long) value);
21458 newval |= value;
21459 md_number_to_chars (buf, newval, THUMB_SIZE);
21460 break;
21461
21462 case BFD_RELOC_ARM_THUMB_SHIFT:
21463 /* 5bit shift value (0..32). LSL cannot take 32. */
21464 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21465 temp = newval & 0xf800;
21466 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21467 as_bad_where (fixP->fx_file, fixP->fx_line,
21468 _("invalid shift value: %ld"), (long) value);
21469 /* Shifts of zero must be encoded as LSL. */
21470 if (value == 0)
21471 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21472 /* Shifts of 32 are encoded as zero. */
21473 else if (value == 32)
21474 value = 0;
21475 newval |= value << 6;
21476 md_number_to_chars (buf, newval, THUMB_SIZE);
21477 break;
21478
21479 case BFD_RELOC_VTABLE_INHERIT:
21480 case BFD_RELOC_VTABLE_ENTRY:
21481 fixP->fx_done = 0;
21482 return;
21483
21484 case BFD_RELOC_ARM_MOVW:
21485 case BFD_RELOC_ARM_MOVT:
21486 case BFD_RELOC_ARM_THUMB_MOVW:
21487 case BFD_RELOC_ARM_THUMB_MOVT:
21488 if (fixP->fx_done || !seg->use_rela_p)
21489 {
21490 /* REL format relocations are limited to a 16-bit addend. */
21491 if (!fixP->fx_done)
21492 {
21493 if (value < -0x8000 || value > 0x7fff)
21494 as_bad_where (fixP->fx_file, fixP->fx_line,
21495 _("offset out of range"));
21496 }
21497 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21498 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21499 {
21500 value >>= 16;
21501 }
21502
21503 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21504 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21505 {
21506 newval = get_thumb32_insn (buf);
21507 newval &= 0xfbf08f00;
21508 newval |= (value & 0xf000) << 4;
21509 newval |= (value & 0x0800) << 15;
21510 newval |= (value & 0x0700) << 4;
21511 newval |= (value & 0x00ff);
21512 put_thumb32_insn (buf, newval);
21513 }
21514 else
21515 {
21516 newval = md_chars_to_number (buf, 4);
21517 newval &= 0xfff0f000;
21518 newval |= value & 0x0fff;
21519 newval |= (value & 0xf000) << 4;
21520 md_number_to_chars (buf, newval, 4);
21521 }
21522 }
21523 return;
21524
21525 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21526 case BFD_RELOC_ARM_ALU_PC_G0:
21527 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21528 case BFD_RELOC_ARM_ALU_PC_G1:
21529 case BFD_RELOC_ARM_ALU_PC_G2:
21530 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21531 case BFD_RELOC_ARM_ALU_SB_G0:
21532 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21533 case BFD_RELOC_ARM_ALU_SB_G1:
21534 case BFD_RELOC_ARM_ALU_SB_G2:
21535 gas_assert (!fixP->fx_done);
21536 if (!seg->use_rela_p)
21537 {
21538 bfd_vma insn;
21539 bfd_vma encoded_addend;
21540 bfd_vma addend_abs = abs (value);
21541
21542 /* Check that the absolute value of the addend can be
21543 expressed as an 8-bit constant plus a rotation. */
21544 encoded_addend = encode_arm_immediate (addend_abs);
21545 if (encoded_addend == (unsigned int) FAIL)
21546 as_bad_where (fixP->fx_file, fixP->fx_line,
21547 _("the offset 0x%08lX is not representable"),
21548 (unsigned long) addend_abs);
21549
21550 /* Extract the instruction. */
21551 insn = md_chars_to_number (buf, INSN_SIZE);
21552
21553 /* If the addend is positive, use an ADD instruction.
21554 Otherwise use a SUB. Take care not to destroy the S bit. */
21555 insn &= 0xff1fffff;
21556 if (value < 0)
21557 insn |= 1 << 22;
21558 else
21559 insn |= 1 << 23;
21560
21561 /* Place the encoded addend into the first 12 bits of the
21562 instruction. */
21563 insn &= 0xfffff000;
21564 insn |= encoded_addend;
21565
21566 /* Update the instruction. */
21567 md_number_to_chars (buf, insn, INSN_SIZE);
21568 }
21569 break;
21570
21571 case BFD_RELOC_ARM_LDR_PC_G0:
21572 case BFD_RELOC_ARM_LDR_PC_G1:
21573 case BFD_RELOC_ARM_LDR_PC_G2:
21574 case BFD_RELOC_ARM_LDR_SB_G0:
21575 case BFD_RELOC_ARM_LDR_SB_G1:
21576 case BFD_RELOC_ARM_LDR_SB_G2:
21577 gas_assert (!fixP->fx_done);
21578 if (!seg->use_rela_p)
21579 {
21580 bfd_vma insn;
21581 bfd_vma addend_abs = abs (value);
21582
21583 /* Check that the absolute value of the addend can be
21584 encoded in 12 bits. */
21585 if (addend_abs >= 0x1000)
21586 as_bad_where (fixP->fx_file, fixP->fx_line,
21587 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21588 (unsigned long) addend_abs);
21589
21590 /* Extract the instruction. */
21591 insn = md_chars_to_number (buf, INSN_SIZE);
21592
21593 /* If the addend is negative, clear bit 23 of the instruction.
21594 Otherwise set it. */
21595 if (value < 0)
21596 insn &= ~(1 << 23);
21597 else
21598 insn |= 1 << 23;
21599
21600 /* Place the absolute value of the addend into the first 12 bits
21601 of the instruction. */
21602 insn &= 0xfffff000;
21603 insn |= addend_abs;
21604
21605 /* Update the instruction. */
21606 md_number_to_chars (buf, insn, INSN_SIZE);
21607 }
21608 break;
21609
21610 case BFD_RELOC_ARM_LDRS_PC_G0:
21611 case BFD_RELOC_ARM_LDRS_PC_G1:
21612 case BFD_RELOC_ARM_LDRS_PC_G2:
21613 case BFD_RELOC_ARM_LDRS_SB_G0:
21614 case BFD_RELOC_ARM_LDRS_SB_G1:
21615 case BFD_RELOC_ARM_LDRS_SB_G2:
21616 gas_assert (!fixP->fx_done);
21617 if (!seg->use_rela_p)
21618 {
21619 bfd_vma insn;
21620 bfd_vma addend_abs = abs (value);
21621
21622 /* Check that the absolute value of the addend can be
21623 encoded in 8 bits. */
21624 if (addend_abs >= 0x100)
21625 as_bad_where (fixP->fx_file, fixP->fx_line,
21626 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21627 (unsigned long) addend_abs);
21628
21629 /* Extract the instruction. */
21630 insn = md_chars_to_number (buf, INSN_SIZE);
21631
21632 /* If the addend is negative, clear bit 23 of the instruction.
21633 Otherwise set it. */
21634 if (value < 0)
21635 insn &= ~(1 << 23);
21636 else
21637 insn |= 1 << 23;
21638
21639 /* Place the first four bits of the absolute value of the addend
21640 into the first 4 bits of the instruction, and the remaining
21641 four into bits 8 .. 11. */
21642 insn &= 0xfffff0f0;
21643 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
21644
21645 /* Update the instruction. */
21646 md_number_to_chars (buf, insn, INSN_SIZE);
21647 }
21648 break;
21649
21650 case BFD_RELOC_ARM_LDC_PC_G0:
21651 case BFD_RELOC_ARM_LDC_PC_G1:
21652 case BFD_RELOC_ARM_LDC_PC_G2:
21653 case BFD_RELOC_ARM_LDC_SB_G0:
21654 case BFD_RELOC_ARM_LDC_SB_G1:
21655 case BFD_RELOC_ARM_LDC_SB_G2:
21656 gas_assert (!fixP->fx_done);
21657 if (!seg->use_rela_p)
21658 {
21659 bfd_vma insn;
21660 bfd_vma addend_abs = abs (value);
21661
21662 /* Check that the absolute value of the addend is a multiple of
21663 four and, when divided by four, fits in 8 bits. */
21664 if (addend_abs & 0x3)
21665 as_bad_where (fixP->fx_file, fixP->fx_line,
21666 _("bad offset 0x%08lX (must be word-aligned)"),
21667 (unsigned long) addend_abs);
21668
21669 if ((addend_abs >> 2) > 0xff)
21670 as_bad_where (fixP->fx_file, fixP->fx_line,
21671 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
21672 (unsigned long) addend_abs);
21673
21674 /* Extract the instruction. */
21675 insn = md_chars_to_number (buf, INSN_SIZE);
21676
21677 /* If the addend is negative, clear bit 23 of the instruction.
21678 Otherwise set it. */
21679 if (value < 0)
21680 insn &= ~(1 << 23);
21681 else
21682 insn |= 1 << 23;
21683
21684 /* Place the addend (divided by four) into the first eight
21685 bits of the instruction. */
21686 insn &= 0xfffffff0;
21687 insn |= addend_abs >> 2;
21688
21689 /* Update the instruction. */
21690 md_number_to_chars (buf, insn, INSN_SIZE);
21691 }
21692 break;
21693
21694 case BFD_RELOC_ARM_V4BX:
21695 /* This will need to go in the object file. */
21696 fixP->fx_done = 0;
21697 break;
21698
21699 case BFD_RELOC_UNUSED:
21700 default:
21701 as_bad_where (fixP->fx_file, fixP->fx_line,
21702 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21703 }
21704 }
21705
21706 /* Translate internal representation of relocation info to BFD target
21707 format. */
21708
21709 arelent *
21710 tc_gen_reloc (asection *section, fixS *fixp)
21711 {
21712 arelent * reloc;
21713 bfd_reloc_code_real_type code;
21714
21715 reloc = (arelent *) xmalloc (sizeof (arelent));
21716
21717 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
21718 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21719 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
21720
21721 if (fixp->fx_pcrel)
21722 {
21723 if (section->use_rela_p)
21724 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21725 else
21726 fixp->fx_offset = reloc->address;
21727 }
21728 reloc->addend = fixp->fx_offset;
21729
21730 switch (fixp->fx_r_type)
21731 {
21732 case BFD_RELOC_8:
21733 if (fixp->fx_pcrel)
21734 {
21735 code = BFD_RELOC_8_PCREL;
21736 break;
21737 }
21738
21739 case BFD_RELOC_16:
21740 if (fixp->fx_pcrel)
21741 {
21742 code = BFD_RELOC_16_PCREL;
21743 break;
21744 }
21745
21746 case BFD_RELOC_32:
21747 if (fixp->fx_pcrel)
21748 {
21749 code = BFD_RELOC_32_PCREL;
21750 break;
21751 }
21752
21753 case BFD_RELOC_ARM_MOVW:
21754 if (fixp->fx_pcrel)
21755 {
21756 code = BFD_RELOC_ARM_MOVW_PCREL;
21757 break;
21758 }
21759
21760 case BFD_RELOC_ARM_MOVT:
21761 if (fixp->fx_pcrel)
21762 {
21763 code = BFD_RELOC_ARM_MOVT_PCREL;
21764 break;
21765 }
21766
21767 case BFD_RELOC_ARM_THUMB_MOVW:
21768 if (fixp->fx_pcrel)
21769 {
21770 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21771 break;
21772 }
21773
21774 case BFD_RELOC_ARM_THUMB_MOVT:
21775 if (fixp->fx_pcrel)
21776 {
21777 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21778 break;
21779 }
21780
21781 case BFD_RELOC_NONE:
21782 case BFD_RELOC_ARM_PCREL_BRANCH:
21783 case BFD_RELOC_ARM_PCREL_BLX:
21784 case BFD_RELOC_RVA:
21785 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21786 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21787 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21788 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21789 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21790 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21791 case BFD_RELOC_VTABLE_ENTRY:
21792 case BFD_RELOC_VTABLE_INHERIT:
21793 #ifdef TE_PE
21794 case BFD_RELOC_32_SECREL:
21795 #endif
21796 code = fixp->fx_r_type;
21797 break;
21798
21799 case BFD_RELOC_THUMB_PCREL_BLX:
21800 #ifdef OBJ_ELF
21801 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21802 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21803 else
21804 #endif
21805 code = BFD_RELOC_THUMB_PCREL_BLX;
21806 break;
21807
21808 case BFD_RELOC_ARM_LITERAL:
21809 case BFD_RELOC_ARM_HWLITERAL:
21810 /* If this is called then the a literal has
21811 been referenced across a section boundary. */
21812 as_bad_where (fixp->fx_file, fixp->fx_line,
21813 _("literal referenced across section boundary"));
21814 return NULL;
21815
21816 #ifdef OBJ_ELF
21817 case BFD_RELOC_ARM_TLS_CALL:
21818 case BFD_RELOC_ARM_THM_TLS_CALL:
21819 case BFD_RELOC_ARM_TLS_DESCSEQ:
21820 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21821 case BFD_RELOC_ARM_GOT32:
21822 case BFD_RELOC_ARM_GOTOFF:
21823 case BFD_RELOC_ARM_GOT_PREL:
21824 case BFD_RELOC_ARM_PLT32:
21825 case BFD_RELOC_ARM_TARGET1:
21826 case BFD_RELOC_ARM_ROSEGREL32:
21827 case BFD_RELOC_ARM_SBREL32:
21828 case BFD_RELOC_ARM_PREL31:
21829 case BFD_RELOC_ARM_TARGET2:
21830 case BFD_RELOC_ARM_TLS_LE32:
21831 case BFD_RELOC_ARM_TLS_LDO32:
21832 case BFD_RELOC_ARM_PCREL_CALL:
21833 case BFD_RELOC_ARM_PCREL_JUMP:
21834 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21835 case BFD_RELOC_ARM_ALU_PC_G0:
21836 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21837 case BFD_RELOC_ARM_ALU_PC_G1:
21838 case BFD_RELOC_ARM_ALU_PC_G2:
21839 case BFD_RELOC_ARM_LDR_PC_G0:
21840 case BFD_RELOC_ARM_LDR_PC_G1:
21841 case BFD_RELOC_ARM_LDR_PC_G2:
21842 case BFD_RELOC_ARM_LDRS_PC_G0:
21843 case BFD_RELOC_ARM_LDRS_PC_G1:
21844 case BFD_RELOC_ARM_LDRS_PC_G2:
21845 case BFD_RELOC_ARM_LDC_PC_G0:
21846 case BFD_RELOC_ARM_LDC_PC_G1:
21847 case BFD_RELOC_ARM_LDC_PC_G2:
21848 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21849 case BFD_RELOC_ARM_ALU_SB_G0:
21850 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21851 case BFD_RELOC_ARM_ALU_SB_G1:
21852 case BFD_RELOC_ARM_ALU_SB_G2:
21853 case BFD_RELOC_ARM_LDR_SB_G0:
21854 case BFD_RELOC_ARM_LDR_SB_G1:
21855 case BFD_RELOC_ARM_LDR_SB_G2:
21856 case BFD_RELOC_ARM_LDRS_SB_G0:
21857 case BFD_RELOC_ARM_LDRS_SB_G1:
21858 case BFD_RELOC_ARM_LDRS_SB_G2:
21859 case BFD_RELOC_ARM_LDC_SB_G0:
21860 case BFD_RELOC_ARM_LDC_SB_G1:
21861 case BFD_RELOC_ARM_LDC_SB_G2:
21862 case BFD_RELOC_ARM_V4BX:
21863 code = fixp->fx_r_type;
21864 break;
21865
21866 case BFD_RELOC_ARM_TLS_GOTDESC:
21867 case BFD_RELOC_ARM_TLS_GD32:
21868 case BFD_RELOC_ARM_TLS_IE32:
21869 case BFD_RELOC_ARM_TLS_LDM32:
21870 /* BFD will include the symbol's address in the addend.
21871 But we don't want that, so subtract it out again here. */
21872 if (!S_IS_COMMON (fixp->fx_addsy))
21873 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21874 code = fixp->fx_r_type;
21875 break;
21876 #endif
21877
21878 case BFD_RELOC_ARM_IMMEDIATE:
21879 as_bad_where (fixp->fx_file, fixp->fx_line,
21880 _("internal relocation (type: IMMEDIATE) not fixed up"));
21881 return NULL;
21882
21883 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21884 as_bad_where (fixp->fx_file, fixp->fx_line,
21885 _("ADRL used for a symbol not defined in the same file"));
21886 return NULL;
21887
21888 case BFD_RELOC_ARM_OFFSET_IMM:
21889 if (section->use_rela_p)
21890 {
21891 code = fixp->fx_r_type;
21892 break;
21893 }
21894
21895 if (fixp->fx_addsy != NULL
21896 && !S_IS_DEFINED (fixp->fx_addsy)
21897 && S_IS_LOCAL (fixp->fx_addsy))
21898 {
21899 as_bad_where (fixp->fx_file, fixp->fx_line,
21900 _("undefined local label `%s'"),
21901 S_GET_NAME (fixp->fx_addsy));
21902 return NULL;
21903 }
21904
21905 as_bad_where (fixp->fx_file, fixp->fx_line,
21906 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21907 return NULL;
21908
21909 default:
21910 {
21911 char * type;
21912
21913 switch (fixp->fx_r_type)
21914 {
21915 case BFD_RELOC_NONE: type = "NONE"; break;
21916 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21917 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21918 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21919 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21920 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21921 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21922 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
21923 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21924 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21925 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21926 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21927 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21928 default: type = _("<unknown>"); break;
21929 }
21930 as_bad_where (fixp->fx_file, fixp->fx_line,
21931 _("cannot represent %s relocation in this object file format"),
21932 type);
21933 return NULL;
21934 }
21935 }
21936
21937 #ifdef OBJ_ELF
21938 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21939 && GOT_symbol
21940 && fixp->fx_addsy == GOT_symbol)
21941 {
21942 code = BFD_RELOC_ARM_GOTPC;
21943 reloc->addend = fixp->fx_offset = reloc->address;
21944 }
21945 #endif
21946
21947 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21948
21949 if (reloc->howto == NULL)
21950 {
21951 as_bad_where (fixp->fx_file, fixp->fx_line,
21952 _("cannot represent %s relocation in this object file format"),
21953 bfd_get_reloc_code_name (code));
21954 return NULL;
21955 }
21956
21957 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21958 vtable entry to be used in the relocation's section offset. */
21959 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21960 reloc->address = fixp->fx_offset;
21961
21962 return reloc;
21963 }
21964
21965 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21966
21967 void
21968 cons_fix_new_arm (fragS * frag,
21969 int where,
21970 int size,
21971 expressionS * exp)
21972 {
21973 bfd_reloc_code_real_type type;
21974 int pcrel = 0;
21975
21976 /* Pick a reloc.
21977 FIXME: @@ Should look at CPU word size. */
21978 switch (size)
21979 {
21980 case 1:
21981 type = BFD_RELOC_8;
21982 break;
21983 case 2:
21984 type = BFD_RELOC_16;
21985 break;
21986 case 4:
21987 default:
21988 type = BFD_RELOC_32;
21989 break;
21990 case 8:
21991 type = BFD_RELOC_64;
21992 break;
21993 }
21994
21995 #ifdef TE_PE
21996 if (exp->X_op == O_secrel)
21997 {
21998 exp->X_op = O_symbol;
21999 type = BFD_RELOC_32_SECREL;
22000 }
22001 #endif
22002
22003 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22004 }
22005
22006 #if defined (OBJ_COFF)
22007 void
22008 arm_validate_fix (fixS * fixP)
22009 {
22010 /* If the destination of the branch is a defined symbol which does not have
22011 the THUMB_FUNC attribute, then we must be calling a function which has
22012 the (interfacearm) attribute. We look for the Thumb entry point to that
22013 function and change the branch to refer to that function instead. */
22014 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22015 && fixP->fx_addsy != NULL
22016 && S_IS_DEFINED (fixP->fx_addsy)
22017 && ! THUMB_IS_FUNC (fixP->fx_addsy))
22018 {
22019 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
22020 }
22021 }
22022 #endif
22023
22024
22025 int
22026 arm_force_relocation (struct fix * fixp)
22027 {
22028 #if defined (OBJ_COFF) && defined (TE_PE)
22029 if (fixp->fx_r_type == BFD_RELOC_RVA)
22030 return 1;
22031 #endif
22032
22033 /* In case we have a call or a branch to a function in ARM ISA mode from
22034 a thumb function or vice-versa force the relocation. These relocations
22035 are cleared off for some cores that might have blx and simple transformations
22036 are possible. */
22037
22038 #ifdef OBJ_ELF
22039 switch (fixp->fx_r_type)
22040 {
22041 case BFD_RELOC_ARM_PCREL_JUMP:
22042 case BFD_RELOC_ARM_PCREL_CALL:
22043 case BFD_RELOC_THUMB_PCREL_BLX:
22044 if (THUMB_IS_FUNC (fixp->fx_addsy))
22045 return 1;
22046 break;
22047
22048 case BFD_RELOC_ARM_PCREL_BLX:
22049 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22050 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22051 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22052 if (ARM_IS_FUNC (fixp->fx_addsy))
22053 return 1;
22054 break;
22055
22056 default:
22057 break;
22058 }
22059 #endif
22060
22061 /* Resolve these relocations even if the symbol is extern or weak.
22062 Technically this is probably wrong due to symbol preemption.
22063 In practice these relocations do not have enough range to be useful
22064 at dynamic link time, and some code (e.g. in the Linux kernel)
22065 expects these references to be resolved. */
22066 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22067 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
22068 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
22069 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
22070 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22071 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22072 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
22073 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
22074 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22075 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
22076 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22077 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22078 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22079 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
22080 return 0;
22081
22082 /* Always leave these relocations for the linker. */
22083 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22084 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22085 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22086 return 1;
22087
22088 /* Always generate relocations against function symbols. */
22089 if (fixp->fx_r_type == BFD_RELOC_32
22090 && fixp->fx_addsy
22091 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22092 return 1;
22093
22094 return generic_force_reloc (fixp);
22095 }
22096
22097 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22098 /* Relocations against function names must be left unadjusted,
22099 so that the linker can use this information to generate interworking
22100 stubs. The MIPS version of this function
22101 also prevents relocations that are mips-16 specific, but I do not
22102 know why it does this.
22103
22104 FIXME:
22105 There is one other problem that ought to be addressed here, but
22106 which currently is not: Taking the address of a label (rather
22107 than a function) and then later jumping to that address. Such
22108 addresses also ought to have their bottom bit set (assuming that
22109 they reside in Thumb code), but at the moment they will not. */
22110
22111 bfd_boolean
22112 arm_fix_adjustable (fixS * fixP)
22113 {
22114 if (fixP->fx_addsy == NULL)
22115 return 1;
22116
22117 /* Preserve relocations against symbols with function type. */
22118 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
22119 return FALSE;
22120
22121 if (THUMB_IS_FUNC (fixP->fx_addsy)
22122 && fixP->fx_subsy == NULL)
22123 return FALSE;
22124
22125 /* We need the symbol name for the VTABLE entries. */
22126 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22127 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22128 return FALSE;
22129
22130 /* Don't allow symbols to be discarded on GOT related relocs. */
22131 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22132 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22133 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22134 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22135 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22136 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22137 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22138 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
22139 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22140 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22141 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22142 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22143 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
22144 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
22145 return FALSE;
22146
22147 /* Similarly for group relocations. */
22148 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22149 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22150 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22151 return FALSE;
22152
22153 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22154 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22155 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22156 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22157 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22158 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22159 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22160 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22161 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
22162 return FALSE;
22163
22164 return TRUE;
22165 }
22166 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22167
22168 #ifdef OBJ_ELF
22169
22170 const char *
22171 elf32_arm_target_format (void)
22172 {
22173 #ifdef TE_SYMBIAN
22174 return (target_big_endian
22175 ? "elf32-bigarm-symbian"
22176 : "elf32-littlearm-symbian");
22177 #elif defined (TE_VXWORKS)
22178 return (target_big_endian
22179 ? "elf32-bigarm-vxworks"
22180 : "elf32-littlearm-vxworks");
22181 #else
22182 if (target_big_endian)
22183 return "elf32-bigarm";
22184 else
22185 return "elf32-littlearm";
22186 #endif
22187 }
22188
22189 void
22190 armelf_frob_symbol (symbolS * symp,
22191 int * puntp)
22192 {
22193 elf_frob_symbol (symp, puntp);
22194 }
22195 #endif
22196
22197 /* MD interface: Finalization. */
22198
22199 void
22200 arm_cleanup (void)
22201 {
22202 literal_pool * pool;
22203
22204 /* Ensure that all the IT blocks are properly closed. */
22205 check_it_blocks_finished ();
22206
22207 for (pool = list_of_pools; pool; pool = pool->next)
22208 {
22209 /* Put it at the end of the relevant section. */
22210 subseg_set (pool->section, pool->sub_section);
22211 #ifdef OBJ_ELF
22212 arm_elf_change_section ();
22213 #endif
22214 s_ltorg (0);
22215 }
22216 }
22217
22218 #ifdef OBJ_ELF
22219 /* Remove any excess mapping symbols generated for alignment frags in
22220 SEC. We may have created a mapping symbol before a zero byte
22221 alignment; remove it if there's a mapping symbol after the
22222 alignment. */
22223 static void
22224 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22225 void *dummy ATTRIBUTE_UNUSED)
22226 {
22227 segment_info_type *seginfo = seg_info (sec);
22228 fragS *fragp;
22229
22230 if (seginfo == NULL || seginfo->frchainP == NULL)
22231 return;
22232
22233 for (fragp = seginfo->frchainP->frch_root;
22234 fragp != NULL;
22235 fragp = fragp->fr_next)
22236 {
22237 symbolS *sym = fragp->tc_frag_data.last_map;
22238 fragS *next = fragp->fr_next;
22239
22240 /* Variable-sized frags have been converted to fixed size by
22241 this point. But if this was variable-sized to start with,
22242 there will be a fixed-size frag after it. So don't handle
22243 next == NULL. */
22244 if (sym == NULL || next == NULL)
22245 continue;
22246
22247 if (S_GET_VALUE (sym) < next->fr_address)
22248 /* Not at the end of this frag. */
22249 continue;
22250 know (S_GET_VALUE (sym) == next->fr_address);
22251
22252 do
22253 {
22254 if (next->tc_frag_data.first_map != NULL)
22255 {
22256 /* Next frag starts with a mapping symbol. Discard this
22257 one. */
22258 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22259 break;
22260 }
22261
22262 if (next->fr_next == NULL)
22263 {
22264 /* This mapping symbol is at the end of the section. Discard
22265 it. */
22266 know (next->fr_fix == 0 && next->fr_var == 0);
22267 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22268 break;
22269 }
22270
22271 /* As long as we have empty frags without any mapping symbols,
22272 keep looking. */
22273 /* If the next frag is non-empty and does not start with a
22274 mapping symbol, then this mapping symbol is required. */
22275 if (next->fr_address != next->fr_next->fr_address)
22276 break;
22277
22278 next = next->fr_next;
22279 }
22280 while (next != NULL);
22281 }
22282 }
22283 #endif
22284
22285 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22286 ARM ones. */
22287
22288 void
22289 arm_adjust_symtab (void)
22290 {
22291 #ifdef OBJ_COFF
22292 symbolS * sym;
22293
22294 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22295 {
22296 if (ARM_IS_THUMB (sym))
22297 {
22298 if (THUMB_IS_FUNC (sym))
22299 {
22300 /* Mark the symbol as a Thumb function. */
22301 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22302 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22303 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
22304
22305 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22306 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22307 else
22308 as_bad (_("%s: unexpected function type: %d"),
22309 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22310 }
22311 else switch (S_GET_STORAGE_CLASS (sym))
22312 {
22313 case C_EXT:
22314 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22315 break;
22316 case C_STAT:
22317 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22318 break;
22319 case C_LABEL:
22320 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22321 break;
22322 default:
22323 /* Do nothing. */
22324 break;
22325 }
22326 }
22327
22328 if (ARM_IS_INTERWORK (sym))
22329 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
22330 }
22331 #endif
22332 #ifdef OBJ_ELF
22333 symbolS * sym;
22334 char bind;
22335
22336 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22337 {
22338 if (ARM_IS_THUMB (sym))
22339 {
22340 elf_symbol_type * elf_sym;
22341
22342 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22343 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22344
22345 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22346 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22347 {
22348 /* If it's a .thumb_func, declare it as so,
22349 otherwise tag label as .code 16. */
22350 if (THUMB_IS_FUNC (sym))
22351 elf_sym->internal_elf_sym.st_target_internal
22352 = ST_BRANCH_TO_THUMB;
22353 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22354 elf_sym->internal_elf_sym.st_info =
22355 ELF_ST_INFO (bind, STT_ARM_16BIT);
22356 }
22357 }
22358 }
22359
22360 /* Remove any overlapping mapping symbols generated by alignment frags. */
22361 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22362 /* Now do generic ELF adjustments. */
22363 elf_adjust_symtab ();
22364 #endif
22365 }
22366
22367 /* MD interface: Initialization. */
22368
22369 static void
22370 set_constant_flonums (void)
22371 {
22372 int i;
22373
22374 for (i = 0; i < NUM_FLOAT_VALS; i++)
22375 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22376 abort ();
22377 }
22378
22379 /* Auto-select Thumb mode if it's the only available instruction set for the
22380 given architecture. */
22381
22382 static void
22383 autoselect_thumb_from_cpu_variant (void)
22384 {
22385 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22386 opcode_select (16);
22387 }
22388
22389 void
22390 md_begin (void)
22391 {
22392 unsigned mach;
22393 unsigned int i;
22394
22395 if ( (arm_ops_hsh = hash_new ()) == NULL
22396 || (arm_cond_hsh = hash_new ()) == NULL
22397 || (arm_shift_hsh = hash_new ()) == NULL
22398 || (arm_psr_hsh = hash_new ()) == NULL
22399 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22400 || (arm_reg_hsh = hash_new ()) == NULL
22401 || (arm_reloc_hsh = hash_new ()) == NULL
22402 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22403 as_fatal (_("virtual memory exhausted"));
22404
22405 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22406 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22407 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22408 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22409 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22410 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22411 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22412 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22413 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22414 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22415 (void *) (v7m_psrs + i));
22416 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22417 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22418 for (i = 0;
22419 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22420 i++)
22421 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22422 (void *) (barrier_opt_names + i));
22423 #ifdef OBJ_ELF
22424 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
22425 {
22426 struct reloc_entry * entry = reloc_names + i;
22427
22428 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
22429 /* This makes encode_branch() use the EABI versions of this relocation. */
22430 entry->reloc = BFD_RELOC_UNUSED;
22431
22432 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
22433 }
22434 #endif
22435
22436 set_constant_flonums ();
22437
22438 /* Set the cpu variant based on the command-line options. We prefer
22439 -mcpu= over -march= if both are set (as for GCC); and we prefer
22440 -mfpu= over any other way of setting the floating point unit.
22441 Use of legacy options with new options are faulted. */
22442 if (legacy_cpu)
22443 {
22444 if (mcpu_cpu_opt || march_cpu_opt)
22445 as_bad (_("use of old and new-style options to set CPU type"));
22446
22447 mcpu_cpu_opt = legacy_cpu;
22448 }
22449 else if (!mcpu_cpu_opt)
22450 mcpu_cpu_opt = march_cpu_opt;
22451
22452 if (legacy_fpu)
22453 {
22454 if (mfpu_opt)
22455 as_bad (_("use of old and new-style options to set FPU type"));
22456
22457 mfpu_opt = legacy_fpu;
22458 }
22459 else if (!mfpu_opt)
22460 {
22461 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22462 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22463 /* Some environments specify a default FPU. If they don't, infer it
22464 from the processor. */
22465 if (mcpu_fpu_opt)
22466 mfpu_opt = mcpu_fpu_opt;
22467 else
22468 mfpu_opt = march_fpu_opt;
22469 #else
22470 mfpu_opt = &fpu_default;
22471 #endif
22472 }
22473
22474 if (!mfpu_opt)
22475 {
22476 if (mcpu_cpu_opt != NULL)
22477 mfpu_opt = &fpu_default;
22478 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22479 mfpu_opt = &fpu_arch_vfp_v2;
22480 else
22481 mfpu_opt = &fpu_arch_fpa;
22482 }
22483
22484 #ifdef CPU_DEFAULT
22485 if (!mcpu_cpu_opt)
22486 {
22487 mcpu_cpu_opt = &cpu_default;
22488 selected_cpu = cpu_default;
22489 }
22490 #else
22491 if (mcpu_cpu_opt)
22492 selected_cpu = *mcpu_cpu_opt;
22493 else
22494 mcpu_cpu_opt = &arm_arch_any;
22495 #endif
22496
22497 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22498
22499 autoselect_thumb_from_cpu_variant ();
22500
22501 arm_arch_used = thumb_arch_used = arm_arch_none;
22502
22503 #if defined OBJ_COFF || defined OBJ_ELF
22504 {
22505 unsigned int flags = 0;
22506
22507 #if defined OBJ_ELF
22508 flags = meabi_flags;
22509
22510 switch (meabi_flags)
22511 {
22512 case EF_ARM_EABI_UNKNOWN:
22513 #endif
22514 /* Set the flags in the private structure. */
22515 if (uses_apcs_26) flags |= F_APCS26;
22516 if (support_interwork) flags |= F_INTERWORK;
22517 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22518 if (pic_code) flags |= F_PIC;
22519 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22520 flags |= F_SOFT_FLOAT;
22521
22522 switch (mfloat_abi_opt)
22523 {
22524 case ARM_FLOAT_ABI_SOFT:
22525 case ARM_FLOAT_ABI_SOFTFP:
22526 flags |= F_SOFT_FLOAT;
22527 break;
22528
22529 case ARM_FLOAT_ABI_HARD:
22530 if (flags & F_SOFT_FLOAT)
22531 as_bad (_("hard-float conflicts with specified fpu"));
22532 break;
22533 }
22534
22535 /* Using pure-endian doubles (even if soft-float). */
22536 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22537 flags |= F_VFP_FLOAT;
22538
22539 #if defined OBJ_ELF
22540 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22541 flags |= EF_ARM_MAVERICK_FLOAT;
22542 break;
22543
22544 case EF_ARM_EABI_VER4:
22545 case EF_ARM_EABI_VER5:
22546 /* No additional flags to set. */
22547 break;
22548
22549 default:
22550 abort ();
22551 }
22552 #endif
22553 bfd_set_private_flags (stdoutput, flags);
22554
22555 /* We have run out flags in the COFF header to encode the
22556 status of ATPCS support, so instead we create a dummy,
22557 empty, debug section called .arm.atpcs. */
22558 if (atpcs)
22559 {
22560 asection * sec;
22561
22562 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22563
22564 if (sec != NULL)
22565 {
22566 bfd_set_section_flags
22567 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22568 bfd_set_section_size (stdoutput, sec, 0);
22569 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22570 }
22571 }
22572 }
22573 #endif
22574
22575 /* Record the CPU type as well. */
22576 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22577 mach = bfd_mach_arm_iWMMXt2;
22578 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22579 mach = bfd_mach_arm_iWMMXt;
22580 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22581 mach = bfd_mach_arm_XScale;
22582 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22583 mach = bfd_mach_arm_ep9312;
22584 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
22585 mach = bfd_mach_arm_5TE;
22586 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
22587 {
22588 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22589 mach = bfd_mach_arm_5T;
22590 else
22591 mach = bfd_mach_arm_5;
22592 }
22593 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
22594 {
22595 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22596 mach = bfd_mach_arm_4T;
22597 else
22598 mach = bfd_mach_arm_4;
22599 }
22600 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
22601 mach = bfd_mach_arm_3M;
22602 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22603 mach = bfd_mach_arm_3;
22604 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22605 mach = bfd_mach_arm_2a;
22606 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22607 mach = bfd_mach_arm_2;
22608 else
22609 mach = bfd_mach_arm_unknown;
22610
22611 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22612 }
22613
22614 /* Command line processing. */
22615
22616 /* md_parse_option
22617 Invocation line includes a switch not recognized by the base assembler.
22618 See if it's a processor-specific option.
22619
22620 This routine is somewhat complicated by the need for backwards
22621 compatibility (since older releases of gcc can't be changed).
22622 The new options try to make the interface as compatible as
22623 possible with GCC.
22624
22625 New options (supported) are:
22626
22627 -mcpu=<cpu name> Assemble for selected processor
22628 -march=<architecture name> Assemble for selected architecture
22629 -mfpu=<fpu architecture> Assemble for selected FPU.
22630 -EB/-mbig-endian Big-endian
22631 -EL/-mlittle-endian Little-endian
22632 -k Generate PIC code
22633 -mthumb Start in Thumb mode
22634 -mthumb-interwork Code supports ARM/Thumb interworking
22635
22636 -m[no-]warn-deprecated Warn about deprecated features
22637
22638 For now we will also provide support for:
22639
22640 -mapcs-32 32-bit Program counter
22641 -mapcs-26 26-bit Program counter
22642 -macps-float Floats passed in FP registers
22643 -mapcs-reentrant Reentrant code
22644 -matpcs
22645 (sometime these will probably be replaced with -mapcs=<list of options>
22646 and -matpcs=<list of options>)
22647
22648 The remaining options are only supported for back-wards compatibility.
22649 Cpu variants, the arm part is optional:
22650 -m[arm]1 Currently not supported.
22651 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22652 -m[arm]3 Arm 3 processor
22653 -m[arm]6[xx], Arm 6 processors
22654 -m[arm]7[xx][t][[d]m] Arm 7 processors
22655 -m[arm]8[10] Arm 8 processors
22656 -m[arm]9[20][tdmi] Arm 9 processors
22657 -mstrongarm[110[0]] StrongARM processors
22658 -mxscale XScale processors
22659 -m[arm]v[2345[t[e]]] Arm architectures
22660 -mall All (except the ARM1)
22661 FP variants:
22662 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22663 -mfpe-old (No float load/store multiples)
22664 -mvfpxd VFP Single precision
22665 -mvfp All VFP
22666 -mno-fpu Disable all floating point instructions
22667
22668 The following CPU names are recognized:
22669 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22670 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22671 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22672 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22673 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22674 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22675 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
22676
22677 */
22678
22679 const char * md_shortopts = "m:k";
22680
22681 #ifdef ARM_BI_ENDIAN
22682 #define OPTION_EB (OPTION_MD_BASE + 0)
22683 #define OPTION_EL (OPTION_MD_BASE + 1)
22684 #else
22685 #if TARGET_BYTES_BIG_ENDIAN
22686 #define OPTION_EB (OPTION_MD_BASE + 0)
22687 #else
22688 #define OPTION_EL (OPTION_MD_BASE + 1)
22689 #endif
22690 #endif
22691 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
22692
22693 struct option md_longopts[] =
22694 {
22695 #ifdef OPTION_EB
22696 {"EB", no_argument, NULL, OPTION_EB},
22697 #endif
22698 #ifdef OPTION_EL
22699 {"EL", no_argument, NULL, OPTION_EL},
22700 #endif
22701 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
22702 {NULL, no_argument, NULL, 0}
22703 };
22704
22705 size_t md_longopts_size = sizeof (md_longopts);
22706
22707 struct arm_option_table
22708 {
22709 char *option; /* Option name to match. */
22710 char *help; /* Help information. */
22711 int *var; /* Variable to change. */
22712 int value; /* What to change it to. */
22713 char *deprecated; /* If non-null, print this message. */
22714 };
22715
22716 struct arm_option_table arm_opts[] =
22717 {
22718 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22719 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22720 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22721 &support_interwork, 1, NULL},
22722 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22723 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22724 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22725 1, NULL},
22726 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22727 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22728 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22729 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22730 NULL},
22731
22732 /* These are recognized by the assembler, but have no affect on code. */
22733 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22734 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
22735
22736 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22737 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22738 &warn_on_deprecated, 0, NULL},
22739 {NULL, NULL, NULL, 0, NULL}
22740 };
22741
22742 struct arm_legacy_option_table
22743 {
22744 char *option; /* Option name to match. */
22745 const arm_feature_set **var; /* Variable to change. */
22746 const arm_feature_set value; /* What to change it to. */
22747 char *deprecated; /* If non-null, print this message. */
22748 };
22749
22750 const struct arm_legacy_option_table arm_legacy_opts[] =
22751 {
22752 /* DON'T add any new processors to this list -- we want the whole list
22753 to go away... Add them to the processors table instead. */
22754 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22755 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22756 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22757 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22758 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22759 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22760 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22761 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22762 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22763 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22764 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22765 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22766 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22767 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22768 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22769 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22770 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22771 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22772 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22773 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22774 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22775 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22776 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22777 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22778 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22779 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22780 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22781 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22782 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22783 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22784 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22785 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22786 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22787 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22788 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22789 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22790 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22791 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22792 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22793 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22794 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22795 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22796 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22797 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22798 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22799 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22800 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22801 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22802 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22803 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22804 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22805 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22806 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22807 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22808 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22809 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22810 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22811 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22812 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22813 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22814 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22815 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22816 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22817 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22818 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22819 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22820 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22821 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22822 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22823 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
22824 N_("use -mcpu=strongarm110")},
22825 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
22826 N_("use -mcpu=strongarm1100")},
22827 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
22828 N_("use -mcpu=strongarm1110")},
22829 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22830 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22831 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
22832
22833 /* Architecture variants -- don't add any more to this list either. */
22834 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22835 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22836 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22837 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22838 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22839 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22840 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22841 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22842 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22843 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22844 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22845 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22846 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22847 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22848 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22849 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22850 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22851 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22852
22853 /* Floating point variants -- don't add any more to this list either. */
22854 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22855 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22856 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22857 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
22858 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22859
22860 {NULL, NULL, ARM_ARCH_NONE, NULL}
22861 };
22862
22863 struct arm_cpu_option_table
22864 {
22865 char *name;
22866 const arm_feature_set value;
22867 /* For some CPUs we assume an FPU unless the user explicitly sets
22868 -mfpu=... */
22869 const arm_feature_set default_fpu;
22870 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22871 case. */
22872 const char *canonical_name;
22873 };
22874
22875 /* This list should, at a minimum, contain all the cpu names
22876 recognized by GCC. */
22877 static const struct arm_cpu_option_table arm_cpus[] =
22878 {
22879 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22880 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22881 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22882 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22883 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22884 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22885 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22886 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22887 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22888 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22889 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22890 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22891 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22892 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22893 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22894 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22895 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22896 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22897 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22898 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22899 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22900 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22901 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22902 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22903 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22904 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22905 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22906 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22907 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22908 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22909 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22910 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22911 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22912 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22913 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22914 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22915 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22916 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22917 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22918 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22919 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22920 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22921 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22922 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22923 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22924 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22925 /* For V5 or later processors we default to using VFP; but the user
22926 should really set the FPU type explicitly. */
22927 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22928 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22929 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22930 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22931 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22932 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22933 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22934 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22935 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22936 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22937 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22938 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22939 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22940 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22941 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22942 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22943 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22944 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22945 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22946 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22947 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22948 {"fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22949 {"fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22950 {"fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22951 {"fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22952 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22953 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22954 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22955 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22956 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22957 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22958 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
22959 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22960 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22961 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22962 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
22963 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22964 FPU_NONE, "Cortex-A5"},
22965 {"cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22966 FPU_ARCH_NEON_VFP_V4,
22967 "Cortex-A7"},
22968 {"cortex-a8", ARM_ARCH_V7A_SEC,
22969 ARM_FEATURE (0, FPU_VFP_V3
22970 | FPU_NEON_EXT_V1),
22971 "Cortex-A8"},
22972 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22973 ARM_FEATURE (0, FPU_VFP_V3
22974 | FPU_NEON_EXT_V1),
22975 "Cortex-A9"},
22976 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22977 FPU_ARCH_NEON_VFP_V4,
22978 "Cortex-A15"},
22979 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22980 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22981 "Cortex-R4F"},
22982 {"cortex-r5", ARM_ARCH_V7R_IDIV,
22983 FPU_NONE, "Cortex-R5"},
22984 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22985 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
22986 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22987 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
22988 /* ??? XSCALE is really an architecture. */
22989 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22990 /* ??? iwmmxt is not a processor. */
22991 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
22992 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
22993 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22994 /* Maverick */
22995 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
22996 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
22997 };
22998
22999 struct arm_arch_option_table
23000 {
23001 char *name;
23002 const arm_feature_set value;
23003 const arm_feature_set default_fpu;
23004 };
23005
23006 /* This list should, at a minimum, contain all the architecture names
23007 recognized by GCC. */
23008 static const struct arm_arch_option_table arm_archs[] =
23009 {
23010 {"all", ARM_ANY, FPU_ARCH_FPA},
23011 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
23012 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
23013 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
23014 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
23015 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
23016 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
23017 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
23018 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
23019 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
23020 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
23021 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
23022 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
23023 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
23024 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
23025 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
23026 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
23027 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
23028 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
23029 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
23030 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
23031 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
23032 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
23033 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
23034 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
23035 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
23036 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
23037 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
23038 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
23039 /* The official spelling of the ARMv7 profile variants is the dashed form.
23040 Accept the non-dashed form for compatibility with old toolchains. */
23041 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
23042 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
23043 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
23044 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
23045 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
23046 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
23047 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
23048 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
23049 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
23050 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
23051 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
23052 };
23053
23054 /* ISA extensions in the co-processor and main instruction set space. */
23055 struct arm_option_extension_value_table
23056 {
23057 char *name;
23058 const arm_feature_set value;
23059 const arm_feature_set allowed_archs;
23060 };
23061
23062 /* The following table must be in alphabetical order with a NULL last entry.
23063 */
23064 static const struct arm_option_extension_value_table arm_extensions[] =
23065 {
23066 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23067 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
23068 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
23069 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
23070 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
23071 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
23072 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
23073 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
23074 ARM_FEATURE (ARM_EXT_V6M, 0)},
23075 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23076 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
23077 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23078 ARM_FEATURE (ARM_EXT_V7A, 0)},
23079 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
23080 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
23081 };
23082
23083 /* ISA floating-point and Advanced SIMD extensions. */
23084 struct arm_option_fpu_value_table
23085 {
23086 char *name;
23087 const arm_feature_set value;
23088 };
23089
23090 /* This list should, at a minimum, contain all the fpu names
23091 recognized by GCC. */
23092 static const struct arm_option_fpu_value_table arm_fpus[] =
23093 {
23094 {"softfpa", FPU_NONE},
23095 {"fpe", FPU_ARCH_FPE},
23096 {"fpe2", FPU_ARCH_FPE},
23097 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23098 {"fpa", FPU_ARCH_FPA},
23099 {"fpa10", FPU_ARCH_FPA},
23100 {"fpa11", FPU_ARCH_FPA},
23101 {"arm7500fe", FPU_ARCH_FPA},
23102 {"softvfp", FPU_ARCH_VFP},
23103 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23104 {"vfp", FPU_ARCH_VFP_V2},
23105 {"vfp9", FPU_ARCH_VFP_V2},
23106 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
23107 {"vfp10", FPU_ARCH_VFP_V2},
23108 {"vfp10-r0", FPU_ARCH_VFP_V1},
23109 {"vfpxd", FPU_ARCH_VFP_V1xD},
23110 {"vfpv2", FPU_ARCH_VFP_V2},
23111 {"vfpv3", FPU_ARCH_VFP_V3},
23112 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
23113 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
23114 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23115 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23116 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
23117 {"arm1020t", FPU_ARCH_VFP_V1},
23118 {"arm1020e", FPU_ARCH_VFP_V2},
23119 {"arm1136jfs", FPU_ARCH_VFP_V2},
23120 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23121 {"maverick", FPU_ARCH_MAVERICK},
23122 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
23123 {"neon-fp16", FPU_ARCH_NEON_FP16},
23124 {"vfpv4", FPU_ARCH_VFP_V4},
23125 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
23126 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
23127 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
23128 {NULL, ARM_ARCH_NONE}
23129 };
23130
23131 struct arm_option_value_table
23132 {
23133 char *name;
23134 long value;
23135 };
23136
23137 static const struct arm_option_value_table arm_float_abis[] =
23138 {
23139 {"hard", ARM_FLOAT_ABI_HARD},
23140 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23141 {"soft", ARM_FLOAT_ABI_SOFT},
23142 {NULL, 0}
23143 };
23144
23145 #ifdef OBJ_ELF
23146 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23147 static const struct arm_option_value_table arm_eabis[] =
23148 {
23149 {"gnu", EF_ARM_EABI_UNKNOWN},
23150 {"4", EF_ARM_EABI_VER4},
23151 {"5", EF_ARM_EABI_VER5},
23152 {NULL, 0}
23153 };
23154 #endif
23155
23156 struct arm_long_option_table
23157 {
23158 char * option; /* Substring to match. */
23159 char * help; /* Help information. */
23160 int (* func) (char * subopt); /* Function to decode sub-option. */
23161 char * deprecated; /* If non-null, print this message. */
23162 };
23163
23164 static bfd_boolean
23165 arm_parse_extension (char * str, const arm_feature_set **opt_p)
23166 {
23167 arm_feature_set *ext_set = (arm_feature_set *)
23168 xmalloc (sizeof (arm_feature_set));
23169
23170 /* We insist on extensions being specified in alphabetical order, and with
23171 extensions being added before being removed. We achieve this by having
23172 the global ARM_EXTENSIONS table in alphabetical order, and using the
23173 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23174 or removing it (0) and only allowing it to change in the order
23175 -1 -> 1 -> 0. */
23176 const struct arm_option_extension_value_table * opt = NULL;
23177 int adding_value = -1;
23178
23179 /* Copy the feature set, so that we can modify it. */
23180 *ext_set = **opt_p;
23181 *opt_p = ext_set;
23182
23183 while (str != NULL && *str != 0)
23184 {
23185 char * ext;
23186 size_t optlen;
23187
23188 if (*str != '+')
23189 {
23190 as_bad (_("invalid architectural extension"));
23191 return FALSE;
23192 }
23193
23194 str++;
23195 ext = strchr (str, '+');
23196
23197 if (ext != NULL)
23198 optlen = ext - str;
23199 else
23200 optlen = strlen (str);
23201
23202 if (optlen >= 2
23203 && strncmp (str, "no", 2) == 0)
23204 {
23205 if (adding_value != 0)
23206 {
23207 adding_value = 0;
23208 opt = arm_extensions;
23209 }
23210
23211 optlen -= 2;
23212 str += 2;
23213 }
23214 else if (optlen > 0)
23215 {
23216 if (adding_value == -1)
23217 {
23218 adding_value = 1;
23219 opt = arm_extensions;
23220 }
23221 else if (adding_value != 1)
23222 {
23223 as_bad (_("must specify extensions to add before specifying "
23224 "those to remove"));
23225 return FALSE;
23226 }
23227 }
23228
23229 if (optlen == 0)
23230 {
23231 as_bad (_("missing architectural extension"));
23232 return FALSE;
23233 }
23234
23235 gas_assert (adding_value != -1);
23236 gas_assert (opt != NULL);
23237
23238 /* Scan over the options table trying to find an exact match. */
23239 for (; opt->name != NULL; opt++)
23240 if (strncmp (opt->name, str, optlen) == 0
23241 && strlen (opt->name) == optlen)
23242 {
23243 /* Check we can apply the extension to this architecture. */
23244 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23245 {
23246 as_bad (_("extension does not apply to the base architecture"));
23247 return FALSE;
23248 }
23249
23250 /* Add or remove the extension. */
23251 if (adding_value)
23252 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23253 else
23254 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23255
23256 break;
23257 }
23258
23259 if (opt->name == NULL)
23260 {
23261 /* Did we fail to find an extension because it wasn't specified in
23262 alphabetical order, or because it does not exist? */
23263
23264 for (opt = arm_extensions; opt->name != NULL; opt++)
23265 if (strncmp (opt->name, str, optlen) == 0)
23266 break;
23267
23268 if (opt->name == NULL)
23269 as_bad (_("unknown architectural extension `%s'"), str);
23270 else
23271 as_bad (_("architectural extensions must be specified in "
23272 "alphabetical order"));
23273
23274 return FALSE;
23275 }
23276 else
23277 {
23278 /* We should skip the extension we've just matched the next time
23279 round. */
23280 opt++;
23281 }
23282
23283 str = ext;
23284 };
23285
23286 return TRUE;
23287 }
23288
23289 static bfd_boolean
23290 arm_parse_cpu (char * str)
23291 {
23292 const struct arm_cpu_option_table * opt;
23293 char * ext = strchr (str, '+');
23294 int optlen;
23295
23296 if (ext != NULL)
23297 optlen = ext - str;
23298 else
23299 optlen = strlen (str);
23300
23301 if (optlen == 0)
23302 {
23303 as_bad (_("missing cpu name `%s'"), str);
23304 return FALSE;
23305 }
23306
23307 for (opt = arm_cpus; opt->name != NULL; opt++)
23308 if (strncmp (opt->name, str, optlen) == 0)
23309 {
23310 mcpu_cpu_opt = &opt->value;
23311 mcpu_fpu_opt = &opt->default_fpu;
23312 if (opt->canonical_name)
23313 strcpy (selected_cpu_name, opt->canonical_name);
23314 else
23315 {
23316 int i;
23317
23318 for (i = 0; i < optlen; i++)
23319 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23320 selected_cpu_name[i] = 0;
23321 }
23322
23323 if (ext != NULL)
23324 return arm_parse_extension (ext, &mcpu_cpu_opt);
23325
23326 return TRUE;
23327 }
23328
23329 as_bad (_("unknown cpu `%s'"), str);
23330 return FALSE;
23331 }
23332
23333 static bfd_boolean
23334 arm_parse_arch (char * str)
23335 {
23336 const struct arm_arch_option_table *opt;
23337 char *ext = strchr (str, '+');
23338 int optlen;
23339
23340 if (ext != NULL)
23341 optlen = ext - str;
23342 else
23343 optlen = strlen (str);
23344
23345 if (optlen == 0)
23346 {
23347 as_bad (_("missing architecture name `%s'"), str);
23348 return FALSE;
23349 }
23350
23351 for (opt = arm_archs; opt->name != NULL; opt++)
23352 if (strncmp (opt->name, str, optlen) == 0)
23353 {
23354 march_cpu_opt = &opt->value;
23355 march_fpu_opt = &opt->default_fpu;
23356 strcpy (selected_cpu_name, opt->name);
23357
23358 if (ext != NULL)
23359 return arm_parse_extension (ext, &march_cpu_opt);
23360
23361 return TRUE;
23362 }
23363
23364 as_bad (_("unknown architecture `%s'\n"), str);
23365 return FALSE;
23366 }
23367
23368 static bfd_boolean
23369 arm_parse_fpu (char * str)
23370 {
23371 const struct arm_option_fpu_value_table * opt;
23372
23373 for (opt = arm_fpus; opt->name != NULL; opt++)
23374 if (streq (opt->name, str))
23375 {
23376 mfpu_opt = &opt->value;
23377 return TRUE;
23378 }
23379
23380 as_bad (_("unknown floating point format `%s'\n"), str);
23381 return FALSE;
23382 }
23383
23384 static bfd_boolean
23385 arm_parse_float_abi (char * str)
23386 {
23387 const struct arm_option_value_table * opt;
23388
23389 for (opt = arm_float_abis; opt->name != NULL; opt++)
23390 if (streq (opt->name, str))
23391 {
23392 mfloat_abi_opt = opt->value;
23393 return TRUE;
23394 }
23395
23396 as_bad (_("unknown floating point abi `%s'\n"), str);
23397 return FALSE;
23398 }
23399
23400 #ifdef OBJ_ELF
23401 static bfd_boolean
23402 arm_parse_eabi (char * str)
23403 {
23404 const struct arm_option_value_table *opt;
23405
23406 for (opt = arm_eabis; opt->name != NULL; opt++)
23407 if (streq (opt->name, str))
23408 {
23409 meabi_flags = opt->value;
23410 return TRUE;
23411 }
23412 as_bad (_("unknown EABI `%s'\n"), str);
23413 return FALSE;
23414 }
23415 #endif
23416
23417 static bfd_boolean
23418 arm_parse_it_mode (char * str)
23419 {
23420 bfd_boolean ret = TRUE;
23421
23422 if (streq ("arm", str))
23423 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23424 else if (streq ("thumb", str))
23425 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23426 else if (streq ("always", str))
23427 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23428 else if (streq ("never", str))
23429 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23430 else
23431 {
23432 as_bad (_("unknown implicit IT mode `%s', should be "\
23433 "arm, thumb, always, or never."), str);
23434 ret = FALSE;
23435 }
23436
23437 return ret;
23438 }
23439
23440 struct arm_long_option_table arm_long_opts[] =
23441 {
23442 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23443 arm_parse_cpu, NULL},
23444 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23445 arm_parse_arch, NULL},
23446 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23447 arm_parse_fpu, NULL},
23448 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23449 arm_parse_float_abi, NULL},
23450 #ifdef OBJ_ELF
23451 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23452 arm_parse_eabi, NULL},
23453 #endif
23454 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23455 arm_parse_it_mode, NULL},
23456 {NULL, NULL, 0, NULL}
23457 };
23458
23459 int
23460 md_parse_option (int c, char * arg)
23461 {
23462 struct arm_option_table *opt;
23463 const struct arm_legacy_option_table *fopt;
23464 struct arm_long_option_table *lopt;
23465
23466 switch (c)
23467 {
23468 #ifdef OPTION_EB
23469 case OPTION_EB:
23470 target_big_endian = 1;
23471 break;
23472 #endif
23473
23474 #ifdef OPTION_EL
23475 case OPTION_EL:
23476 target_big_endian = 0;
23477 break;
23478 #endif
23479
23480 case OPTION_FIX_V4BX:
23481 fix_v4bx = TRUE;
23482 break;
23483
23484 case 'a':
23485 /* Listing option. Just ignore these, we don't support additional
23486 ones. */
23487 return 0;
23488
23489 default:
23490 for (opt = arm_opts; opt->option != NULL; opt++)
23491 {
23492 if (c == opt->option[0]
23493 && ((arg == NULL && opt->option[1] == 0)
23494 || streq (arg, opt->option + 1)))
23495 {
23496 /* If the option is deprecated, tell the user. */
23497 if (warn_on_deprecated && opt->deprecated != NULL)
23498 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23499 arg ? arg : "", _(opt->deprecated));
23500
23501 if (opt->var != NULL)
23502 *opt->var = opt->value;
23503
23504 return 1;
23505 }
23506 }
23507
23508 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23509 {
23510 if (c == fopt->option[0]
23511 && ((arg == NULL && fopt->option[1] == 0)
23512 || streq (arg, fopt->option + 1)))
23513 {
23514 /* If the option is deprecated, tell the user. */
23515 if (warn_on_deprecated && fopt->deprecated != NULL)
23516 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23517 arg ? arg : "", _(fopt->deprecated));
23518
23519 if (fopt->var != NULL)
23520 *fopt->var = &fopt->value;
23521
23522 return 1;
23523 }
23524 }
23525
23526 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23527 {
23528 /* These options are expected to have an argument. */
23529 if (c == lopt->option[0]
23530 && arg != NULL
23531 && strncmp (arg, lopt->option + 1,
23532 strlen (lopt->option + 1)) == 0)
23533 {
23534 /* If the option is deprecated, tell the user. */
23535 if (warn_on_deprecated && lopt->deprecated != NULL)
23536 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23537 _(lopt->deprecated));
23538
23539 /* Call the sup-option parser. */
23540 return lopt->func (arg + strlen (lopt->option) - 1);
23541 }
23542 }
23543
23544 return 0;
23545 }
23546
23547 return 1;
23548 }
23549
23550 void
23551 md_show_usage (FILE * fp)
23552 {
23553 struct arm_option_table *opt;
23554 struct arm_long_option_table *lopt;
23555
23556 fprintf (fp, _(" ARM-specific assembler options:\n"));
23557
23558 for (opt = arm_opts; opt->option != NULL; opt++)
23559 if (opt->help != NULL)
23560 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
23561
23562 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23563 if (lopt->help != NULL)
23564 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
23565
23566 #ifdef OPTION_EB
23567 fprintf (fp, _("\
23568 -EB assemble code for a big-endian cpu\n"));
23569 #endif
23570
23571 #ifdef OPTION_EL
23572 fprintf (fp, _("\
23573 -EL assemble code for a little-endian cpu\n"));
23574 #endif
23575
23576 fprintf (fp, _("\
23577 --fix-v4bx Allow BX in ARMv4 code\n"));
23578 }
23579
23580
23581 #ifdef OBJ_ELF
23582 typedef struct
23583 {
23584 int val;
23585 arm_feature_set flags;
23586 } cpu_arch_ver_table;
23587
23588 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23589 least features first. */
23590 static const cpu_arch_ver_table cpu_arch_ver[] =
23591 {
23592 {1, ARM_ARCH_V4},
23593 {2, ARM_ARCH_V4T},
23594 {3, ARM_ARCH_V5},
23595 {3, ARM_ARCH_V5T},
23596 {4, ARM_ARCH_V5TE},
23597 {5, ARM_ARCH_V5TEJ},
23598 {6, ARM_ARCH_V6},
23599 {9, ARM_ARCH_V6K},
23600 {7, ARM_ARCH_V6Z},
23601 {11, ARM_ARCH_V6M},
23602 {12, ARM_ARCH_V6SM},
23603 {8, ARM_ARCH_V6T2},
23604 {10, ARM_ARCH_V7A},
23605 {10, ARM_ARCH_V7R},
23606 {10, ARM_ARCH_V7M},
23607 {0, ARM_ARCH_NONE}
23608 };
23609
23610 /* Set an attribute if it has not already been set by the user. */
23611 static void
23612 aeabi_set_attribute_int (int tag, int value)
23613 {
23614 if (tag < 1
23615 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23616 || !attributes_set_explicitly[tag])
23617 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23618 }
23619
23620 static void
23621 aeabi_set_attribute_string (int tag, const char *value)
23622 {
23623 if (tag < 1
23624 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23625 || !attributes_set_explicitly[tag])
23626 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23627 }
23628
23629 /* Set the public EABI object attributes. */
23630 static void
23631 aeabi_set_public_attributes (void)
23632 {
23633 int arch;
23634 int virt_sec = 0;
23635 arm_feature_set flags;
23636 arm_feature_set tmp;
23637 const cpu_arch_ver_table *p;
23638
23639 /* Choose the architecture based on the capabilities of the requested cpu
23640 (if any) and/or the instructions actually used. */
23641 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23642 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23643 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
23644 /*Allow the user to override the reported architecture. */
23645 if (object_arch)
23646 {
23647 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23648 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23649 }
23650
23651 /* We need to make sure that the attributes do not identify us as v6S-M
23652 when the only v6S-M feature in use is the Operating System Extensions. */
23653 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23654 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23655 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23656
23657 tmp = flags;
23658 arch = 0;
23659 for (p = cpu_arch_ver; p->val; p++)
23660 {
23661 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23662 {
23663 arch = p->val;
23664 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23665 }
23666 }
23667
23668 /* The table lookup above finds the last architecture to contribute
23669 a new feature. Unfortunately, Tag13 is a subset of the union of
23670 v6T2 and v7-M, so it is never seen as contributing a new feature.
23671 We can not search for the last entry which is entirely used,
23672 because if no CPU is specified we build up only those flags
23673 actually used. Perhaps we should separate out the specified
23674 and implicit cases. Avoid taking this path for -march=all by
23675 checking for contradictory v7-A / v7-M features. */
23676 if (arch == 10
23677 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23678 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23679 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23680 arch = 13;
23681
23682 /* Tag_CPU_name. */
23683 if (selected_cpu_name[0])
23684 {
23685 char *q;
23686
23687 q = selected_cpu_name;
23688 if (strncmp (q, "armv", 4) == 0)
23689 {
23690 int i;
23691
23692 q += 4;
23693 for (i = 0; q[i]; i++)
23694 q[i] = TOUPPER (q[i]);
23695 }
23696 aeabi_set_attribute_string (Tag_CPU_name, q);
23697 }
23698
23699 /* Tag_CPU_arch. */
23700 aeabi_set_attribute_int (Tag_CPU_arch, arch);
23701
23702 /* Tag_CPU_arch_profile. */
23703 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
23704 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
23705 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
23706 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
23707 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
23708 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
23709
23710 /* Tag_ARM_ISA_use. */
23711 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23712 || arch == 0)
23713 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
23714
23715 /* Tag_THUMB_ISA_use. */
23716 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23717 || arch == 0)
23718 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23719 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
23720
23721 /* Tag_VFP_arch. */
23722 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23723 aeabi_set_attribute_int (Tag_VFP_arch,
23724 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23725 ? 5 : 6);
23726 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
23727 aeabi_set_attribute_int (Tag_VFP_arch, 3);
23728 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
23729 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23730 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23731 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23732 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23733 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23734 aeabi_set_attribute_int (Tag_VFP_arch, 1);
23735
23736 /* Tag_ABI_HardFP_use. */
23737 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23738 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23739 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23740
23741 /* Tag_WMMX_arch. */
23742 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23743 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23744 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23745 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
23746
23747 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
23748 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
23749 aeabi_set_attribute_int
23750 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23751 ? 2 : 1));
23752
23753 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
23754 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
23755 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
23756
23757 /* Tag_DIV_use. */
23758 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23759 aeabi_set_attribute_int (Tag_DIV_use, 2);
23760 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
23761 aeabi_set_attribute_int (Tag_DIV_use, 0);
23762 else
23763 aeabi_set_attribute_int (Tag_DIV_use, 1);
23764
23765 /* Tag_MP_extension_use. */
23766 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23767 aeabi_set_attribute_int (Tag_MPextension_use, 1);
23768
23769 /* Tag Virtualization_use. */
23770 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
23771 virt_sec |= 1;
23772 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23773 virt_sec |= 2;
23774 if (virt_sec != 0)
23775 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
23776 }
23777
23778 /* Add the default contents for the .ARM.attributes section. */
23779 void
23780 arm_md_end (void)
23781 {
23782 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23783 return;
23784
23785 aeabi_set_public_attributes ();
23786 }
23787 #endif /* OBJ_ELF */
23788
23789
23790 /* Parse a .cpu directive. */
23791
23792 static void
23793 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23794 {
23795 const struct arm_cpu_option_table *opt;
23796 char *name;
23797 char saved_char;
23798
23799 name = input_line_pointer;
23800 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23801 input_line_pointer++;
23802 saved_char = *input_line_pointer;
23803 *input_line_pointer = 0;
23804
23805 /* Skip the first "all" entry. */
23806 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23807 if (streq (opt->name, name))
23808 {
23809 mcpu_cpu_opt = &opt->value;
23810 selected_cpu = opt->value;
23811 if (opt->canonical_name)
23812 strcpy (selected_cpu_name, opt->canonical_name);
23813 else
23814 {
23815 int i;
23816 for (i = 0; opt->name[i]; i++)
23817 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23818 selected_cpu_name[i] = 0;
23819 }
23820 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23821 *input_line_pointer = saved_char;
23822 demand_empty_rest_of_line ();
23823 return;
23824 }
23825 as_bad (_("unknown cpu `%s'"), name);
23826 *input_line_pointer = saved_char;
23827 ignore_rest_of_line ();
23828 }
23829
23830
23831 /* Parse a .arch directive. */
23832
23833 static void
23834 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23835 {
23836 const struct arm_arch_option_table *opt;
23837 char saved_char;
23838 char *name;
23839
23840 name = input_line_pointer;
23841 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23842 input_line_pointer++;
23843 saved_char = *input_line_pointer;
23844 *input_line_pointer = 0;
23845
23846 /* Skip the first "all" entry. */
23847 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23848 if (streq (opt->name, name))
23849 {
23850 mcpu_cpu_opt = &opt->value;
23851 selected_cpu = opt->value;
23852 strcpy (selected_cpu_name, opt->name);
23853 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23854 *input_line_pointer = saved_char;
23855 demand_empty_rest_of_line ();
23856 return;
23857 }
23858
23859 as_bad (_("unknown architecture `%s'\n"), name);
23860 *input_line_pointer = saved_char;
23861 ignore_rest_of_line ();
23862 }
23863
23864
23865 /* Parse a .object_arch directive. */
23866
23867 static void
23868 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23869 {
23870 const struct arm_arch_option_table *opt;
23871 char saved_char;
23872 char *name;
23873
23874 name = input_line_pointer;
23875 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23876 input_line_pointer++;
23877 saved_char = *input_line_pointer;
23878 *input_line_pointer = 0;
23879
23880 /* Skip the first "all" entry. */
23881 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23882 if (streq (opt->name, name))
23883 {
23884 object_arch = &opt->value;
23885 *input_line_pointer = saved_char;
23886 demand_empty_rest_of_line ();
23887 return;
23888 }
23889
23890 as_bad (_("unknown architecture `%s'\n"), name);
23891 *input_line_pointer = saved_char;
23892 ignore_rest_of_line ();
23893 }
23894
23895 /* Parse a .arch_extension directive. */
23896
23897 static void
23898 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23899 {
23900 const struct arm_option_extension_value_table *opt;
23901 char saved_char;
23902 char *name;
23903 int adding_value = 1;
23904
23905 name = input_line_pointer;
23906 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23907 input_line_pointer++;
23908 saved_char = *input_line_pointer;
23909 *input_line_pointer = 0;
23910
23911 if (strlen (name) >= 2
23912 && strncmp (name, "no", 2) == 0)
23913 {
23914 adding_value = 0;
23915 name += 2;
23916 }
23917
23918 for (opt = arm_extensions; opt->name != NULL; opt++)
23919 if (streq (opt->name, name))
23920 {
23921 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23922 {
23923 as_bad (_("architectural extension `%s' is not allowed for the "
23924 "current base architecture"), name);
23925 break;
23926 }
23927
23928 if (adding_value)
23929 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23930 else
23931 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23932
23933 mcpu_cpu_opt = &selected_cpu;
23934 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23935 *input_line_pointer = saved_char;
23936 demand_empty_rest_of_line ();
23937 return;
23938 }
23939
23940 if (opt->name == NULL)
23941 as_bad (_("unknown architecture `%s'\n"), name);
23942
23943 *input_line_pointer = saved_char;
23944 ignore_rest_of_line ();
23945 }
23946
23947 /* Parse a .fpu directive. */
23948
23949 static void
23950 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23951 {
23952 const struct arm_option_fpu_value_table *opt;
23953 char saved_char;
23954 char *name;
23955
23956 name = input_line_pointer;
23957 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23958 input_line_pointer++;
23959 saved_char = *input_line_pointer;
23960 *input_line_pointer = 0;
23961
23962 for (opt = arm_fpus; opt->name != NULL; opt++)
23963 if (streq (opt->name, name))
23964 {
23965 mfpu_opt = &opt->value;
23966 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23967 *input_line_pointer = saved_char;
23968 demand_empty_rest_of_line ();
23969 return;
23970 }
23971
23972 as_bad (_("unknown floating point format `%s'\n"), name);
23973 *input_line_pointer = saved_char;
23974 ignore_rest_of_line ();
23975 }
23976
23977 /* Copy symbol information. */
23978
23979 void
23980 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23981 {
23982 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23983 }
23984
23985 #ifdef OBJ_ELF
23986 /* Given a symbolic attribute NAME, return the proper integer value.
23987 Returns -1 if the attribute is not known. */
23988
23989 int
23990 arm_convert_symbolic_attribute (const char *name)
23991 {
23992 static const struct
23993 {
23994 const char * name;
23995 const int tag;
23996 }
23997 attribute_table[] =
23998 {
23999 /* When you modify this table you should
24000 also modify the list in doc/c-arm.texi. */
24001 #define T(tag) {#tag, tag}
24002 T (Tag_CPU_raw_name),
24003 T (Tag_CPU_name),
24004 T (Tag_CPU_arch),
24005 T (Tag_CPU_arch_profile),
24006 T (Tag_ARM_ISA_use),
24007 T (Tag_THUMB_ISA_use),
24008 T (Tag_FP_arch),
24009 T (Tag_VFP_arch),
24010 T (Tag_WMMX_arch),
24011 T (Tag_Advanced_SIMD_arch),
24012 T (Tag_PCS_config),
24013 T (Tag_ABI_PCS_R9_use),
24014 T (Tag_ABI_PCS_RW_data),
24015 T (Tag_ABI_PCS_RO_data),
24016 T (Tag_ABI_PCS_GOT_use),
24017 T (Tag_ABI_PCS_wchar_t),
24018 T (Tag_ABI_FP_rounding),
24019 T (Tag_ABI_FP_denormal),
24020 T (Tag_ABI_FP_exceptions),
24021 T (Tag_ABI_FP_user_exceptions),
24022 T (Tag_ABI_FP_number_model),
24023 T (Tag_ABI_align_needed),
24024 T (Tag_ABI_align8_needed),
24025 T (Tag_ABI_align_preserved),
24026 T (Tag_ABI_align8_preserved),
24027 T (Tag_ABI_enum_size),
24028 T (Tag_ABI_HardFP_use),
24029 T (Tag_ABI_VFP_args),
24030 T (Tag_ABI_WMMX_args),
24031 T (Tag_ABI_optimization_goals),
24032 T (Tag_ABI_FP_optimization_goals),
24033 T (Tag_compatibility),
24034 T (Tag_CPU_unaligned_access),
24035 T (Tag_FP_HP_extension),
24036 T (Tag_VFP_HP_extension),
24037 T (Tag_ABI_FP_16bit_format),
24038 T (Tag_MPextension_use),
24039 T (Tag_DIV_use),
24040 T (Tag_nodefaults),
24041 T (Tag_also_compatible_with),
24042 T (Tag_conformance),
24043 T (Tag_T2EE_use),
24044 T (Tag_Virtualization_use),
24045 /* We deliberately do not include Tag_MPextension_use_legacy. */
24046 #undef T
24047 };
24048 unsigned int i;
24049
24050 if (name == NULL)
24051 return -1;
24052
24053 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
24054 if (streq (name, attribute_table[i].name))
24055 return attribute_table[i].tag;
24056
24057 return -1;
24058 }
24059
24060
24061 /* Apply sym value for relocations only in the case that
24062 they are for local symbols and you have the respective
24063 architectural feature for blx and simple switches. */
24064 int
24065 arm_apply_sym_value (struct fix * fixP)
24066 {
24067 if (fixP->fx_addsy
24068 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
24069 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
24070 {
24071 switch (fixP->fx_r_type)
24072 {
24073 case BFD_RELOC_ARM_PCREL_BLX:
24074 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24075 if (ARM_IS_FUNC (fixP->fx_addsy))
24076 return 1;
24077 break;
24078
24079 case BFD_RELOC_ARM_PCREL_CALL:
24080 case BFD_RELOC_THUMB_PCREL_BLX:
24081 if (THUMB_IS_FUNC (fixP->fx_addsy))
24082 return 1;
24083 break;
24084
24085 default:
24086 break;
24087 }
24088
24089 }
24090 return 0;
24091 }
24092 #endif /* OBJ_ELF */
This page took 0.617636 seconds and 4 git commands to generate.