f7749b3ee94139eb3d4bba12addf930d5c9fb5b1
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35 #include "libiberty.h"
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
199 static const arm_feature_set arm_ext_m =
200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
201 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
202 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
203 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
204 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
205 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
206
207 static const arm_feature_set arm_arch_any = ARM_ANY;
208 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
211 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
212
213 static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
215 static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217 static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219 static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223 static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
227 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
228 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
229 static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
231 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
234 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
237 static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239 static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241 static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
243
244 static int mfloat_abi_opt = -1;
245 /* Record user cpu selection for object attributes. */
246 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
247 /* Must be long enough to hold any of the names in arm_cpus. */
248 static char selected_cpu_name[16];
249
250 /* Return if no cpu was selected on command-line. */
251 static bfd_boolean
252 no_cpu_selected (void)
253 {
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256 }
257
258 #ifdef OBJ_ELF
259 # ifdef EABI_DEFAULT
260 static int meabi_flags = EABI_DEFAULT;
261 # else
262 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
263 # endif
264
265 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
267 bfd_boolean
268 arm_is_eabi (void)
269 {
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271 }
272 #endif
273
274 #ifdef OBJ_ELF
275 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
276 symbolS * GOT_symbol;
277 #endif
278
279 /* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283 static int thumb_mode = 0;
284 /* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287 #define MODE_RECORDED (1 << 4)
288
289 /* Specifies the intrinsic IT insn behavior mode. */
290 enum implicit_it_mode
291 {
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296 };
297 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
299 /* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322 static bfd_boolean unified_syntax = FALSE;
323
324 enum neon_el_type
325 {
326 NT_invtype,
327 NT_untyped,
328 NT_integer,
329 NT_float,
330 NT_poly,
331 NT_signed,
332 NT_unsigned
333 };
334
335 struct neon_type_el
336 {
337 enum neon_el_type type;
338 unsigned size;
339 };
340
341 #define NEON_MAX_TYPE_ELS 4
342
343 struct neon_type
344 {
345 struct neon_type_el el[NEON_MAX_TYPE_ELS];
346 unsigned elems;
347 };
348
349 enum it_instruction_type
350 {
351 OUTSIDE_IT_INSN,
352 INSIDE_IT_INSN,
353 INSIDE_IT_LAST_INSN,
354 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN /* The IT insn has been parsed. */
359 };
360
361 /* The maximum number of operands we need. */
362 #define ARM_IT_MAX_OPERANDS 6
363
364 struct arm_it
365 {
366 const char * error;
367 unsigned long instruction;
368 int size;
369 int size_req;
370 int cond;
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
373 appropriate. */
374 int uncond_value;
375 struct neon_type vectype;
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
378 int is_neon;
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
381 unsigned long relax;
382 struct
383 {
384 bfd_reloc_code_real_type type;
385 expressionS exp;
386 int pc_rel;
387 } reloc;
388
389 enum it_instruction_type it_insn_type;
390
391 struct
392 {
393 unsigned reg;
394 signed int imm;
395 struct neon_type_el vectype;
396 unsigned present : 1; /* Operand present. */
397 unsigned isreg : 1; /* Operand was a register. */
398 unsigned immisreg : 1; /* .imm field is a second register. */
399 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
401 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
405 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
406 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
407 unsigned issingle : 1; /* Operand is VFP single-precision register. */
408 unsigned hasreloc : 1; /* Operand has relocation suffix. */
409 unsigned writeback : 1; /* Operand has trailing ! */
410 unsigned preind : 1; /* Preindexed address. */
411 unsigned postind : 1; /* Postindexed address. */
412 unsigned negative : 1; /* Index register was negated. */
413 unsigned shifted : 1; /* Shift applied to operation. */
414 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
415 } operands[ARM_IT_MAX_OPERANDS];
416 };
417
418 static struct arm_it inst;
419
420 #define NUM_FLOAT_VALS 8
421
422 const char * fp_const[] =
423 {
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
425 };
426
427 /* Number of littlenums required to hold an extended precision number. */
428 #define MAX_LITTLENUMS 6
429
430 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
431
432 #define FAIL (-1)
433 #define SUCCESS (0)
434
435 #define SUFF_S 1
436 #define SUFF_D 2
437 #define SUFF_E 3
438 #define SUFF_P 4
439
440 #define CP_T_X 0x00008000
441 #define CP_T_Y 0x00400000
442
443 #define CONDS_BIT 0x00100000
444 #define LOAD_BIT 0x00100000
445
446 #define DOUBLE_LOAD_FLAG 0x00000001
447
448 struct asm_cond
449 {
450 const char * template_name;
451 unsigned long value;
452 };
453
454 #define COND_ALWAYS 0xE
455
456 struct asm_psr
457 {
458 const char * template_name;
459 unsigned long field;
460 };
461
462 struct asm_barrier_opt
463 {
464 const char * template_name;
465 unsigned long value;
466 const arm_feature_set arch;
467 };
468
469 /* The bit that distinguishes CPSR and SPSR. */
470 #define SPSR_BIT (1 << 22)
471
472 /* The individual PSR flag bits. */
473 #define PSR_c (1 << 16)
474 #define PSR_x (1 << 17)
475 #define PSR_s (1 << 18)
476 #define PSR_f (1 << 19)
477
478 struct reloc_entry
479 {
480 char * name;
481 bfd_reloc_code_real_type reloc;
482 };
483
484 enum vfp_reg_pos
485 {
486 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
487 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
488 };
489
490 enum vfp_ldstm_type
491 {
492 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
493 };
494
495 /* Bits for DEFINED field in neon_typed_alias. */
496 #define NTA_HASTYPE 1
497 #define NTA_HASINDEX 2
498
499 struct neon_typed_alias
500 {
501 unsigned char defined;
502 unsigned char index;
503 struct neon_type_el eltype;
504 };
505
506 /* ARM register categories. This includes coprocessor numbers and various
507 architecture extensions' registers. */
508 enum arm_reg_type
509 {
510 REG_TYPE_RN,
511 REG_TYPE_CP,
512 REG_TYPE_CN,
513 REG_TYPE_FN,
514 REG_TYPE_VFS,
515 REG_TYPE_VFD,
516 REG_TYPE_NQ,
517 REG_TYPE_VFSD,
518 REG_TYPE_NDQ,
519 REG_TYPE_NSDQ,
520 REG_TYPE_VFC,
521 REG_TYPE_MVF,
522 REG_TYPE_MVD,
523 REG_TYPE_MVFX,
524 REG_TYPE_MVDX,
525 REG_TYPE_MVAX,
526 REG_TYPE_DSPSC,
527 REG_TYPE_MMXWR,
528 REG_TYPE_MMXWC,
529 REG_TYPE_MMXWCG,
530 REG_TYPE_XSCALE,
531 REG_TYPE_RNB
532 };
533
534 /* Structure for a hash table entry for a register.
535 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
536 information which states whether a vector type or index is specified (for a
537 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
538 struct reg_entry
539 {
540 const char * name;
541 unsigned int number;
542 unsigned char type;
543 unsigned char builtin;
544 struct neon_typed_alias * neon;
545 };
546
547 /* Diagnostics used when we don't get a register of the expected type. */
548 const char * const reg_expected_msgs[] =
549 {
550 N_("ARM register expected"),
551 N_("bad or missing co-processor number"),
552 N_("co-processor register expected"),
553 N_("FPA register expected"),
554 N_("VFP single precision register expected"),
555 N_("VFP/Neon double precision register expected"),
556 N_("Neon quad precision register expected"),
557 N_("VFP single or double precision register expected"),
558 N_("Neon double or quad precision register expected"),
559 N_("VFP single, double or Neon quad precision register expected"),
560 N_("VFP system register expected"),
561 N_("Maverick MVF register expected"),
562 N_("Maverick MVD register expected"),
563 N_("Maverick MVFX register expected"),
564 N_("Maverick MVDX register expected"),
565 N_("Maverick MVAX register expected"),
566 N_("Maverick DSPSC register expected"),
567 N_("iWMMXt data register expected"),
568 N_("iWMMXt control register expected"),
569 N_("iWMMXt scalar register expected"),
570 N_("XScale accumulator register expected"),
571 };
572
573 /* Some well known registers that we refer to directly elsewhere. */
574 #define REG_R12 12
575 #define REG_SP 13
576 #define REG_LR 14
577 #define REG_PC 15
578
579 /* ARM instructions take 4bytes in the object file, Thumb instructions
580 take 2: */
581 #define INSN_SIZE 4
582
583 struct asm_opcode
584 {
585 /* Basic string to match. */
586 const char * template_name;
587
588 /* Parameters to instruction. */
589 unsigned int operands[8];
590
591 /* Conditional tag - see opcode_lookup. */
592 unsigned int tag : 4;
593
594 /* Basic instruction code. */
595 unsigned int avalue : 28;
596
597 /* Thumb-format instruction code. */
598 unsigned int tvalue;
599
600 /* Which architecture variant provides this instruction. */
601 const arm_feature_set * avariant;
602 const arm_feature_set * tvariant;
603
604 /* Function to call to encode instruction in ARM format. */
605 void (* aencode) (void);
606
607 /* Function to call to encode instruction in Thumb format. */
608 void (* tencode) (void);
609 };
610
611 /* Defines for various bits that we will want to toggle. */
612 #define INST_IMMEDIATE 0x02000000
613 #define OFFSET_REG 0x02000000
614 #define HWOFFSET_IMM 0x00400000
615 #define SHIFT_BY_REG 0x00000010
616 #define PRE_INDEX 0x01000000
617 #define INDEX_UP 0x00800000
618 #define WRITE_BACK 0x00200000
619 #define LDM_TYPE_2_OR_3 0x00400000
620 #define CPSI_MMOD 0x00020000
621
622 #define LITERAL_MASK 0xf000f000
623 #define OPCODE_MASK 0xfe1fffff
624 #define V4_STR_BIT 0x00000020
625
626 #define T2_SUBS_PC_LR 0xf3de8f00
627
628 #define DATA_OP_SHIFT 21
629
630 #define T2_OPCODE_MASK 0xfe1fffff
631 #define T2_DATA_OP_SHIFT 21
632
633 #define A_COND_MASK 0xf0000000
634 #define A_PUSH_POP_OP_MASK 0x0fff0000
635
636 /* Opcodes for pushing/poping registers to/from the stack. */
637 #define A1_OPCODE_PUSH 0x092d0000
638 #define A2_OPCODE_PUSH 0x052d0004
639 #define A2_OPCODE_POP 0x049d0004
640
641 /* Codes to distinguish the arithmetic instructions. */
642 #define OPCODE_AND 0
643 #define OPCODE_EOR 1
644 #define OPCODE_SUB 2
645 #define OPCODE_RSB 3
646 #define OPCODE_ADD 4
647 #define OPCODE_ADC 5
648 #define OPCODE_SBC 6
649 #define OPCODE_RSC 7
650 #define OPCODE_TST 8
651 #define OPCODE_TEQ 9
652 #define OPCODE_CMP 10
653 #define OPCODE_CMN 11
654 #define OPCODE_ORR 12
655 #define OPCODE_MOV 13
656 #define OPCODE_BIC 14
657 #define OPCODE_MVN 15
658
659 #define T2_OPCODE_AND 0
660 #define T2_OPCODE_BIC 1
661 #define T2_OPCODE_ORR 2
662 #define T2_OPCODE_ORN 3
663 #define T2_OPCODE_EOR 4
664 #define T2_OPCODE_ADD 8
665 #define T2_OPCODE_ADC 10
666 #define T2_OPCODE_SBC 11
667 #define T2_OPCODE_SUB 13
668 #define T2_OPCODE_RSB 14
669
670 #define T_OPCODE_MUL 0x4340
671 #define T_OPCODE_TST 0x4200
672 #define T_OPCODE_CMN 0x42c0
673 #define T_OPCODE_NEG 0x4240
674 #define T_OPCODE_MVN 0x43c0
675
676 #define T_OPCODE_ADD_R3 0x1800
677 #define T_OPCODE_SUB_R3 0x1a00
678 #define T_OPCODE_ADD_HI 0x4400
679 #define T_OPCODE_ADD_ST 0xb000
680 #define T_OPCODE_SUB_ST 0xb080
681 #define T_OPCODE_ADD_SP 0xa800
682 #define T_OPCODE_ADD_PC 0xa000
683 #define T_OPCODE_ADD_I8 0x3000
684 #define T_OPCODE_SUB_I8 0x3800
685 #define T_OPCODE_ADD_I3 0x1c00
686 #define T_OPCODE_SUB_I3 0x1e00
687
688 #define T_OPCODE_ASR_R 0x4100
689 #define T_OPCODE_LSL_R 0x4080
690 #define T_OPCODE_LSR_R 0x40c0
691 #define T_OPCODE_ROR_R 0x41c0
692 #define T_OPCODE_ASR_I 0x1000
693 #define T_OPCODE_LSL_I 0x0000
694 #define T_OPCODE_LSR_I 0x0800
695
696 #define T_OPCODE_MOV_I8 0x2000
697 #define T_OPCODE_CMP_I8 0x2800
698 #define T_OPCODE_CMP_LR 0x4280
699 #define T_OPCODE_MOV_HR 0x4600
700 #define T_OPCODE_CMP_HR 0x4500
701
702 #define T_OPCODE_LDR_PC 0x4800
703 #define T_OPCODE_LDR_SP 0x9800
704 #define T_OPCODE_STR_SP 0x9000
705 #define T_OPCODE_LDR_IW 0x6800
706 #define T_OPCODE_STR_IW 0x6000
707 #define T_OPCODE_LDR_IH 0x8800
708 #define T_OPCODE_STR_IH 0x8000
709 #define T_OPCODE_LDR_IB 0x7800
710 #define T_OPCODE_STR_IB 0x7000
711 #define T_OPCODE_LDR_RW 0x5800
712 #define T_OPCODE_STR_RW 0x5000
713 #define T_OPCODE_LDR_RH 0x5a00
714 #define T_OPCODE_STR_RH 0x5200
715 #define T_OPCODE_LDR_RB 0x5c00
716 #define T_OPCODE_STR_RB 0x5400
717
718 #define T_OPCODE_PUSH 0xb400
719 #define T_OPCODE_POP 0xbc00
720
721 #define T_OPCODE_BRANCH 0xe000
722
723 #define THUMB_SIZE 2 /* Size of thumb instruction. */
724 #define THUMB_PP_PC_LR 0x0100
725 #define THUMB_LOAD_BIT 0x0800
726 #define THUMB2_LOAD_BIT 0x00100000
727
728 #define BAD_ARGS _("bad arguments to instruction")
729 #define BAD_SP _("r13 not allowed here")
730 #define BAD_PC _("r15 not allowed here")
731 #define BAD_COND _("instruction cannot be conditional")
732 #define BAD_OVERLAP _("registers may not be the same")
733 #define BAD_HIREG _("lo register required")
734 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
735 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
736 #define BAD_BRANCH _("branch must be last instruction in IT block")
737 #define BAD_NOT_IT _("instruction not allowed in IT block")
738 #define BAD_FPU _("selected FPU does not support instruction")
739 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
740 #define BAD_IT_COND _("incorrect condition in IT block")
741 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
742 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
743 #define BAD_PC_ADDRESSING \
744 _("cannot use register index with PC-relative addressing")
745 #define BAD_PC_WRITEBACK \
746 _("cannot use writeback with PC-relative addressing")
747 #define BAD_RANGE _("branch out of range")
748
749 static struct hash_control * arm_ops_hsh;
750 static struct hash_control * arm_cond_hsh;
751 static struct hash_control * arm_shift_hsh;
752 static struct hash_control * arm_psr_hsh;
753 static struct hash_control * arm_v7m_psr_hsh;
754 static struct hash_control * arm_reg_hsh;
755 static struct hash_control * arm_reloc_hsh;
756 static struct hash_control * arm_barrier_opt_hsh;
757
758 /* Stuff needed to resolve the label ambiguity
759 As:
760 ...
761 label: <insn>
762 may differ from:
763 ...
764 label:
765 <insn> */
766
767 symbolS * last_label_seen;
768 static int label_is_thumb_function_name = FALSE;
769
770 /* Literal pool structure. Held on a per-section
771 and per-sub-section basis. */
772
773 #define MAX_LITERAL_POOL_SIZE 1024
774 typedef struct literal_pool
775 {
776 expressionS literals [MAX_LITERAL_POOL_SIZE];
777 unsigned int next_free_entry;
778 unsigned int id;
779 symbolS * symbol;
780 segT section;
781 subsegT sub_section;
782 #ifdef OBJ_ELF
783 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
784 #endif
785 struct literal_pool * next;
786 } literal_pool;
787
788 /* Pointer to a linked list of literal pools. */
789 literal_pool * list_of_pools = NULL;
790
791 #ifdef OBJ_ELF
792 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
793 #else
794 static struct current_it now_it;
795 #endif
796
797 static inline int
798 now_it_compatible (int cond)
799 {
800 return (cond & ~1) == (now_it.cc & ~1);
801 }
802
803 static inline int
804 conditional_insn (void)
805 {
806 return inst.cond != COND_ALWAYS;
807 }
808
809 static int in_it_block (void);
810
811 static int handle_it_state (void);
812
813 static void force_automatic_it_block_close (void);
814
815 static void it_fsm_post_encode (void);
816
817 #define set_it_insn_type(type) \
818 do \
819 { \
820 inst.it_insn_type = type; \
821 if (handle_it_state () == FAIL) \
822 return; \
823 } \
824 while (0)
825
826 #define set_it_insn_type_nonvoid(type, failret) \
827 do \
828 { \
829 inst.it_insn_type = type; \
830 if (handle_it_state () == FAIL) \
831 return failret; \
832 } \
833 while(0)
834
835 #define set_it_insn_type_last() \
836 do \
837 { \
838 if (inst.cond == COND_ALWAYS) \
839 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
840 else \
841 set_it_insn_type (INSIDE_IT_LAST_INSN); \
842 } \
843 while (0)
844
845 /* Pure syntax. */
846
847 /* This array holds the chars that always start a comment. If the
848 pre-processor is disabled, these aren't very useful. */
849 const char comment_chars[] = "@";
850
851 /* This array holds the chars that only start a comment at the beginning of
852 a line. If the line seems to have the form '# 123 filename'
853 .line and .file directives will appear in the pre-processed output. */
854 /* Note that input_file.c hand checks for '#' at the beginning of the
855 first line of the input file. This is because the compiler outputs
856 #NO_APP at the beginning of its output. */
857 /* Also note that comments like this one will always work. */
858 const char line_comment_chars[] = "#";
859
860 const char line_separator_chars[] = ";";
861
862 /* Chars that can be used to separate mant
863 from exp in floating point numbers. */
864 const char EXP_CHARS[] = "eE";
865
866 /* Chars that mean this number is a floating point constant. */
867 /* As in 0f12.456 */
868 /* or 0d1.2345e12 */
869
870 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
871
872 /* Prefix characters that indicate the start of an immediate
873 value. */
874 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
875
876 /* Separator character handling. */
877
878 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
879
880 static inline int
881 skip_past_char (char ** str, char c)
882 {
883 if (**str == c)
884 {
885 (*str)++;
886 return SUCCESS;
887 }
888 else
889 return FAIL;
890 }
891
892 #define skip_past_comma(str) skip_past_char (str, ',')
893
894 /* Arithmetic expressions (possibly involving symbols). */
895
896 /* Return TRUE if anything in the expression is a bignum. */
897
898 static int
899 walk_no_bignums (symbolS * sp)
900 {
901 if (symbol_get_value_expression (sp)->X_op == O_big)
902 return 1;
903
904 if (symbol_get_value_expression (sp)->X_add_symbol)
905 {
906 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
907 || (symbol_get_value_expression (sp)->X_op_symbol
908 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
909 }
910
911 return 0;
912 }
913
914 static int in_my_get_expression = 0;
915
916 /* Third argument to my_get_expression. */
917 #define GE_NO_PREFIX 0
918 #define GE_IMM_PREFIX 1
919 #define GE_OPT_PREFIX 2
920 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
921 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
922 #define GE_OPT_PREFIX_BIG 3
923
924 static int
925 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
926 {
927 char * save_in;
928 segT seg;
929
930 /* In unified syntax, all prefixes are optional. */
931 if (unified_syntax)
932 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
933 : GE_OPT_PREFIX;
934
935 switch (prefix_mode)
936 {
937 case GE_NO_PREFIX: break;
938 case GE_IMM_PREFIX:
939 if (!is_immediate_prefix (**str))
940 {
941 inst.error = _("immediate expression requires a # prefix");
942 return FAIL;
943 }
944 (*str)++;
945 break;
946 case GE_OPT_PREFIX:
947 case GE_OPT_PREFIX_BIG:
948 if (is_immediate_prefix (**str))
949 (*str)++;
950 break;
951 default: abort ();
952 }
953
954 memset (ep, 0, sizeof (expressionS));
955
956 save_in = input_line_pointer;
957 input_line_pointer = *str;
958 in_my_get_expression = 1;
959 seg = expression (ep);
960 in_my_get_expression = 0;
961
962 if (ep->X_op == O_illegal || ep->X_op == O_absent)
963 {
964 /* We found a bad or missing expression in md_operand(). */
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 if (inst.error == NULL)
968 inst.error = (ep->X_op == O_absent
969 ? _("missing expression") :_("bad expression"));
970 return 1;
971 }
972
973 #ifdef OBJ_AOUT
974 if (seg != absolute_section
975 && seg != text_section
976 && seg != data_section
977 && seg != bss_section
978 && seg != undefined_section)
979 {
980 inst.error = _("bad segment");
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 1;
984 }
985 #else
986 (void) seg;
987 #endif
988
989 /* Get rid of any bignums now, so that we don't generate an error for which
990 we can't establish a line number later on. Big numbers are never valid
991 in instructions, which is where this routine is always called. */
992 if (prefix_mode != GE_OPT_PREFIX_BIG
993 && (ep->X_op == O_big
994 || (ep->X_add_symbol
995 && (walk_no_bignums (ep->X_add_symbol)
996 || (ep->X_op_symbol
997 && walk_no_bignums (ep->X_op_symbol))))))
998 {
999 inst.error = _("invalid constant");
1000 *str = input_line_pointer;
1001 input_line_pointer = save_in;
1002 return 1;
1003 }
1004
1005 *str = input_line_pointer;
1006 input_line_pointer = save_in;
1007 return 0;
1008 }
1009
1010 /* Turn a string in input_line_pointer into a floating point constant
1011 of type TYPE, and store the appropriate bytes in *LITP. The number
1012 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1013 returned, or NULL on OK.
1014
1015 Note that fp constants aren't represent in the normal way on the ARM.
1016 In big endian mode, things are as expected. However, in little endian
1017 mode fp constants are big-endian word-wise, and little-endian byte-wise
1018 within the words. For example, (double) 1.1 in big endian mode is
1019 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1020 the byte sequence 99 99 f1 3f 9a 99 99 99.
1021
1022 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1023
1024 char *
1025 md_atof (int type, char * litP, int * sizeP)
1026 {
1027 int prec;
1028 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1029 char *t;
1030 int i;
1031
1032 switch (type)
1033 {
1034 case 'f':
1035 case 'F':
1036 case 's':
1037 case 'S':
1038 prec = 2;
1039 break;
1040
1041 case 'd':
1042 case 'D':
1043 case 'r':
1044 case 'R':
1045 prec = 4;
1046 break;
1047
1048 case 'x':
1049 case 'X':
1050 prec = 5;
1051 break;
1052
1053 case 'p':
1054 case 'P':
1055 prec = 5;
1056 break;
1057
1058 default:
1059 *sizeP = 0;
1060 return _("Unrecognized or unsupported floating point constant");
1061 }
1062
1063 t = atof_ieee (input_line_pointer, type, words);
1064 if (t)
1065 input_line_pointer = t;
1066 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1067
1068 if (target_big_endian)
1069 {
1070 for (i = 0; i < prec; i++)
1071 {
1072 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += sizeof (LITTLENUM_TYPE);
1074 }
1075 }
1076 else
1077 {
1078 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1079 for (i = prec - 1; i >= 0; i--)
1080 {
1081 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1082 litP += sizeof (LITTLENUM_TYPE);
1083 }
1084 else
1085 /* For a 4 byte float the order of elements in `words' is 1 0.
1086 For an 8 byte float the order is 1 0 3 2. */
1087 for (i = 0; i < prec; i += 2)
1088 {
1089 md_number_to_chars (litP, (valueT) words[i + 1],
1090 sizeof (LITTLENUM_TYPE));
1091 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1092 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1093 litP += 2 * sizeof (LITTLENUM_TYPE);
1094 }
1095 }
1096
1097 return NULL;
1098 }
1099
1100 /* We handle all bad expressions here, so that we can report the faulty
1101 instruction in the error message. */
1102 void
1103 md_operand (expressionS * exp)
1104 {
1105 if (in_my_get_expression)
1106 exp->X_op = O_illegal;
1107 }
1108
1109 /* Immediate values. */
1110
1111 /* Generic immediate-value read function for use in directives.
1112 Accepts anything that 'expression' can fold to a constant.
1113 *val receives the number. */
1114 #ifdef OBJ_ELF
1115 static int
1116 immediate_for_directive (int *val)
1117 {
1118 expressionS exp;
1119 exp.X_op = O_illegal;
1120
1121 if (is_immediate_prefix (*input_line_pointer))
1122 {
1123 input_line_pointer++;
1124 expression (&exp);
1125 }
1126
1127 if (exp.X_op != O_constant)
1128 {
1129 as_bad (_("expected #constant"));
1130 ignore_rest_of_line ();
1131 return FAIL;
1132 }
1133 *val = exp.X_add_number;
1134 return SUCCESS;
1135 }
1136 #endif
1137
1138 /* Register parsing. */
1139
1140 /* Generic register parser. CCP points to what should be the
1141 beginning of a register name. If it is indeed a valid register
1142 name, advance CCP over it and return the reg_entry structure;
1143 otherwise return NULL. Does not issue diagnostics. */
1144
1145 static struct reg_entry *
1146 arm_reg_parse_multi (char **ccp)
1147 {
1148 char *start = *ccp;
1149 char *p;
1150 struct reg_entry *reg;
1151
1152 #ifdef REGISTER_PREFIX
1153 if (*start != REGISTER_PREFIX)
1154 return NULL;
1155 start++;
1156 #endif
1157 #ifdef OPTIONAL_REGISTER_PREFIX
1158 if (*start == OPTIONAL_REGISTER_PREFIX)
1159 start++;
1160 #endif
1161
1162 p = start;
1163 if (!ISALPHA (*p) || !is_name_beginner (*p))
1164 return NULL;
1165
1166 do
1167 p++;
1168 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1169
1170 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1171
1172 if (!reg)
1173 return NULL;
1174
1175 *ccp = p;
1176 return reg;
1177 }
1178
1179 static int
1180 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1181 enum arm_reg_type type)
1182 {
1183 /* Alternative syntaxes are accepted for a few register classes. */
1184 switch (type)
1185 {
1186 case REG_TYPE_MVF:
1187 case REG_TYPE_MVD:
1188 case REG_TYPE_MVFX:
1189 case REG_TYPE_MVDX:
1190 /* Generic coprocessor register names are allowed for these. */
1191 if (reg && reg->type == REG_TYPE_CN)
1192 return reg->number;
1193 break;
1194
1195 case REG_TYPE_CP:
1196 /* For backward compatibility, a bare number is valid here. */
1197 {
1198 unsigned long processor = strtoul (start, ccp, 10);
1199 if (*ccp != start && processor <= 15)
1200 return processor;
1201 }
1202
1203 case REG_TYPE_MMXWC:
1204 /* WC includes WCG. ??? I'm not sure this is true for all
1205 instructions that take WC registers. */
1206 if (reg && reg->type == REG_TYPE_MMXWCG)
1207 return reg->number;
1208 break;
1209
1210 default:
1211 break;
1212 }
1213
1214 return FAIL;
1215 }
1216
1217 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1218 return value is the register number or FAIL. */
1219
1220 static int
1221 arm_reg_parse (char **ccp, enum arm_reg_type type)
1222 {
1223 char *start = *ccp;
1224 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1225 int ret;
1226
1227 /* Do not allow a scalar (reg+index) to parse as a register. */
1228 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1229 return FAIL;
1230
1231 if (reg && reg->type == type)
1232 return reg->number;
1233
1234 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1235 return ret;
1236
1237 *ccp = start;
1238 return FAIL;
1239 }
1240
1241 /* Parse a Neon type specifier. *STR should point at the leading '.'
1242 character. Does no verification at this stage that the type fits the opcode
1243 properly. E.g.,
1244
1245 .i32.i32.s16
1246 .s32.f32
1247 .u16
1248
1249 Can all be legally parsed by this function.
1250
1251 Fills in neon_type struct pointer with parsed information, and updates STR
1252 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1253 type, FAIL if not. */
1254
1255 static int
1256 parse_neon_type (struct neon_type *type, char **str)
1257 {
1258 char *ptr = *str;
1259
1260 if (type)
1261 type->elems = 0;
1262
1263 while (type->elems < NEON_MAX_TYPE_ELS)
1264 {
1265 enum neon_el_type thistype = NT_untyped;
1266 unsigned thissize = -1u;
1267
1268 if (*ptr != '.')
1269 break;
1270
1271 ptr++;
1272
1273 /* Just a size without an explicit type. */
1274 if (ISDIGIT (*ptr))
1275 goto parsesize;
1276
1277 switch (TOLOWER (*ptr))
1278 {
1279 case 'i': thistype = NT_integer; break;
1280 case 'f': thistype = NT_float; break;
1281 case 'p': thistype = NT_poly; break;
1282 case 's': thistype = NT_signed; break;
1283 case 'u': thistype = NT_unsigned; break;
1284 case 'd':
1285 thistype = NT_float;
1286 thissize = 64;
1287 ptr++;
1288 goto done;
1289 default:
1290 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1291 return FAIL;
1292 }
1293
1294 ptr++;
1295
1296 /* .f is an abbreviation for .f32. */
1297 if (thistype == NT_float && !ISDIGIT (*ptr))
1298 thissize = 32;
1299 else
1300 {
1301 parsesize:
1302 thissize = strtoul (ptr, &ptr, 10);
1303
1304 if (thissize != 8 && thissize != 16 && thissize != 32
1305 && thissize != 64)
1306 {
1307 as_bad (_("bad size %d in type specifier"), thissize);
1308 return FAIL;
1309 }
1310 }
1311
1312 done:
1313 if (type)
1314 {
1315 type->el[type->elems].type = thistype;
1316 type->el[type->elems].size = thissize;
1317 type->elems++;
1318 }
1319 }
1320
1321 /* Empty/missing type is not a successful parse. */
1322 if (type->elems == 0)
1323 return FAIL;
1324
1325 *str = ptr;
1326
1327 return SUCCESS;
1328 }
1329
1330 /* Errors may be set multiple times during parsing or bit encoding
1331 (particularly in the Neon bits), but usually the earliest error which is set
1332 will be the most meaningful. Avoid overwriting it with later (cascading)
1333 errors by calling this function. */
1334
1335 static void
1336 first_error (const char *err)
1337 {
1338 if (!inst.error)
1339 inst.error = err;
1340 }
1341
1342 /* Parse a single type, e.g. ".s32", leading period included. */
1343 static int
1344 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1345 {
1346 char *str = *ccp;
1347 struct neon_type optype;
1348
1349 if (*str == '.')
1350 {
1351 if (parse_neon_type (&optype, &str) == SUCCESS)
1352 {
1353 if (optype.elems == 1)
1354 *vectype = optype.el[0];
1355 else
1356 {
1357 first_error (_("only one type should be specified for operand"));
1358 return FAIL;
1359 }
1360 }
1361 else
1362 {
1363 first_error (_("vector type expected"));
1364 return FAIL;
1365 }
1366 }
1367 else
1368 return FAIL;
1369
1370 *ccp = str;
1371
1372 return SUCCESS;
1373 }
1374
1375 /* Special meanings for indices (which have a range of 0-7), which will fit into
1376 a 4-bit integer. */
1377
1378 #define NEON_ALL_LANES 15
1379 #define NEON_INTERLEAVE_LANES 14
1380
1381 /* Parse either a register or a scalar, with an optional type. Return the
1382 register number, and optionally fill in the actual type of the register
1383 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1384 type/index information in *TYPEINFO. */
1385
1386 static int
1387 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1388 enum arm_reg_type *rtype,
1389 struct neon_typed_alias *typeinfo)
1390 {
1391 char *str = *ccp;
1392 struct reg_entry *reg = arm_reg_parse_multi (&str);
1393 struct neon_typed_alias atype;
1394 struct neon_type_el parsetype;
1395
1396 atype.defined = 0;
1397 atype.index = -1;
1398 atype.eltype.type = NT_invtype;
1399 atype.eltype.size = -1;
1400
1401 /* Try alternate syntax for some types of register. Note these are mutually
1402 exclusive with the Neon syntax extensions. */
1403 if (reg == NULL)
1404 {
1405 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1406 if (altreg != FAIL)
1407 *ccp = str;
1408 if (typeinfo)
1409 *typeinfo = atype;
1410 return altreg;
1411 }
1412
1413 /* Undo polymorphism when a set of register types may be accepted. */
1414 if ((type == REG_TYPE_NDQ
1415 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1416 || (type == REG_TYPE_VFSD
1417 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1418 || (type == REG_TYPE_NSDQ
1419 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1420 || reg->type == REG_TYPE_NQ))
1421 || (type == REG_TYPE_MMXWC
1422 && (reg->type == REG_TYPE_MMXWCG)))
1423 type = (enum arm_reg_type) reg->type;
1424
1425 if (type != reg->type)
1426 return FAIL;
1427
1428 if (reg->neon)
1429 atype = *reg->neon;
1430
1431 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1432 {
1433 if ((atype.defined & NTA_HASTYPE) != 0)
1434 {
1435 first_error (_("can't redefine type for operand"));
1436 return FAIL;
1437 }
1438 atype.defined |= NTA_HASTYPE;
1439 atype.eltype = parsetype;
1440 }
1441
1442 if (skip_past_char (&str, '[') == SUCCESS)
1443 {
1444 if (type != REG_TYPE_VFD)
1445 {
1446 first_error (_("only D registers may be indexed"));
1447 return FAIL;
1448 }
1449
1450 if ((atype.defined & NTA_HASINDEX) != 0)
1451 {
1452 first_error (_("can't change index for operand"));
1453 return FAIL;
1454 }
1455
1456 atype.defined |= NTA_HASINDEX;
1457
1458 if (skip_past_char (&str, ']') == SUCCESS)
1459 atype.index = NEON_ALL_LANES;
1460 else
1461 {
1462 expressionS exp;
1463
1464 my_get_expression (&exp, &str, GE_NO_PREFIX);
1465
1466 if (exp.X_op != O_constant)
1467 {
1468 first_error (_("constant expression required"));
1469 return FAIL;
1470 }
1471
1472 if (skip_past_char (&str, ']') == FAIL)
1473 return FAIL;
1474
1475 atype.index = exp.X_add_number;
1476 }
1477 }
1478
1479 if (typeinfo)
1480 *typeinfo = atype;
1481
1482 if (rtype)
1483 *rtype = type;
1484
1485 *ccp = str;
1486
1487 return reg->number;
1488 }
1489
1490 /* Like arm_reg_parse, but allow allow the following extra features:
1491 - If RTYPE is non-zero, return the (possibly restricted) type of the
1492 register (e.g. Neon double or quad reg when either has been requested).
1493 - If this is a Neon vector type with additional type information, fill
1494 in the struct pointed to by VECTYPE (if non-NULL).
1495 This function will fault on encountering a scalar. */
1496
1497 static int
1498 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1499 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1500 {
1501 struct neon_typed_alias atype;
1502 char *str = *ccp;
1503 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1504
1505 if (reg == FAIL)
1506 return FAIL;
1507
1508 /* Do not allow regname(... to parse as a register. */
1509 if (*str == '(')
1510 return FAIL;
1511
1512 /* Do not allow a scalar (reg+index) to parse as a register. */
1513 if ((atype.defined & NTA_HASINDEX) != 0)
1514 {
1515 first_error (_("register operand expected, but got scalar"));
1516 return FAIL;
1517 }
1518
1519 if (vectype)
1520 *vectype = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg;
1525 }
1526
1527 #define NEON_SCALAR_REG(X) ((X) >> 4)
1528 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1529
1530 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1531 have enough information to be able to do a good job bounds-checking. So, we
1532 just do easy checks here, and do further checks later. */
1533
1534 static int
1535 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1536 {
1537 int reg;
1538 char *str = *ccp;
1539 struct neon_typed_alias atype;
1540
1541 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1542
1543 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1544 return FAIL;
1545
1546 if (atype.index == NEON_ALL_LANES)
1547 {
1548 first_error (_("scalar must have an index"));
1549 return FAIL;
1550 }
1551 else if (atype.index >= 64 / elsize)
1552 {
1553 first_error (_("scalar index out of range"));
1554 return FAIL;
1555 }
1556
1557 if (type)
1558 *type = atype.eltype;
1559
1560 *ccp = str;
1561
1562 return reg * 16 + atype.index;
1563 }
1564
1565 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1566
1567 static long
1568 parse_reg_list (char ** strp)
1569 {
1570 char * str = * strp;
1571 long range = 0;
1572 int another_range;
1573
1574 /* We come back here if we get ranges concatenated by '+' or '|'. */
1575 do
1576 {
1577 another_range = 0;
1578
1579 if (*str == '{')
1580 {
1581 int in_range = 0;
1582 int cur_reg = -1;
1583
1584 str++;
1585 do
1586 {
1587 int reg;
1588
1589 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1590 {
1591 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1592 return FAIL;
1593 }
1594
1595 if (in_range)
1596 {
1597 int i;
1598
1599 if (reg <= cur_reg)
1600 {
1601 first_error (_("bad range in register list"));
1602 return FAIL;
1603 }
1604
1605 for (i = cur_reg + 1; i < reg; i++)
1606 {
1607 if (range & (1 << i))
1608 as_tsktsk
1609 (_("Warning: duplicated register (r%d) in register list"),
1610 i);
1611 else
1612 range |= 1 << i;
1613 }
1614 in_range = 0;
1615 }
1616
1617 if (range & (1 << reg))
1618 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1619 reg);
1620 else if (reg <= cur_reg)
1621 as_tsktsk (_("Warning: register range not in ascending order"));
1622
1623 range |= 1 << reg;
1624 cur_reg = reg;
1625 }
1626 while (skip_past_comma (&str) != FAIL
1627 || (in_range = 1, *str++ == '-'));
1628 str--;
1629
1630 if (*str++ != '}')
1631 {
1632 first_error (_("missing `}'"));
1633 return FAIL;
1634 }
1635 }
1636 else
1637 {
1638 expressionS exp;
1639
1640 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1641 return FAIL;
1642
1643 if (exp.X_op == O_constant)
1644 {
1645 if (exp.X_add_number
1646 != (exp.X_add_number & 0x0000ffff))
1647 {
1648 inst.error = _("invalid register mask");
1649 return FAIL;
1650 }
1651
1652 if ((range & exp.X_add_number) != 0)
1653 {
1654 int regno = range & exp.X_add_number;
1655
1656 regno &= -regno;
1657 regno = (1 << regno) - 1;
1658 as_tsktsk
1659 (_("Warning: duplicated register (r%d) in register list"),
1660 regno);
1661 }
1662
1663 range |= exp.X_add_number;
1664 }
1665 else
1666 {
1667 if (inst.reloc.type != 0)
1668 {
1669 inst.error = _("expression too complex");
1670 return FAIL;
1671 }
1672
1673 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1674 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1675 inst.reloc.pc_rel = 0;
1676 }
1677 }
1678
1679 if (*str == '|' || *str == '+')
1680 {
1681 str++;
1682 another_range = 1;
1683 }
1684 }
1685 while (another_range);
1686
1687 *strp = str;
1688 return range;
1689 }
1690
1691 /* Types of registers in a list. */
1692
1693 enum reg_list_els
1694 {
1695 REGLIST_VFP_S,
1696 REGLIST_VFP_D,
1697 REGLIST_NEON_D
1698 };
1699
1700 /* Parse a VFP register list. If the string is invalid return FAIL.
1701 Otherwise return the number of registers, and set PBASE to the first
1702 register. Parses registers of type ETYPE.
1703 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1704 - Q registers can be used to specify pairs of D registers
1705 - { } can be omitted from around a singleton register list
1706 FIXME: This is not implemented, as it would require backtracking in
1707 some cases, e.g.:
1708 vtbl.8 d3,d4,d5
1709 This could be done (the meaning isn't really ambiguous), but doesn't
1710 fit in well with the current parsing framework.
1711 - 32 D registers may be used (also true for VFPv3).
1712 FIXME: Types are ignored in these register lists, which is probably a
1713 bug. */
1714
1715 static int
1716 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1717 {
1718 char *str = *ccp;
1719 int base_reg;
1720 int new_base;
1721 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1722 int max_regs = 0;
1723 int count = 0;
1724 int warned = 0;
1725 unsigned long mask = 0;
1726 int i;
1727
1728 if (*str != '{')
1729 {
1730 inst.error = _("expecting {");
1731 return FAIL;
1732 }
1733
1734 str++;
1735
1736 switch (etype)
1737 {
1738 case REGLIST_VFP_S:
1739 regtype = REG_TYPE_VFS;
1740 max_regs = 32;
1741 break;
1742
1743 case REGLIST_VFP_D:
1744 regtype = REG_TYPE_VFD;
1745 break;
1746
1747 case REGLIST_NEON_D:
1748 regtype = REG_TYPE_NDQ;
1749 break;
1750 }
1751
1752 if (etype != REGLIST_VFP_S)
1753 {
1754 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1755 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1756 {
1757 max_regs = 32;
1758 if (thumb_mode)
1759 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1760 fpu_vfp_ext_d32);
1761 else
1762 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1763 fpu_vfp_ext_d32);
1764 }
1765 else
1766 max_regs = 16;
1767 }
1768
1769 base_reg = max_regs;
1770
1771 do
1772 {
1773 int setmask = 1, addregs = 1;
1774
1775 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1776
1777 if (new_base == FAIL)
1778 {
1779 first_error (_(reg_expected_msgs[regtype]));
1780 return FAIL;
1781 }
1782
1783 if (new_base >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
1788
1789 /* Note: a value of 2 * n is returned for the register Q<n>. */
1790 if (regtype == REG_TYPE_NQ)
1791 {
1792 setmask = 3;
1793 addregs = 2;
1794 }
1795
1796 if (new_base < base_reg)
1797 base_reg = new_base;
1798
1799 if (mask & (setmask << new_base))
1800 {
1801 first_error (_("invalid register list"));
1802 return FAIL;
1803 }
1804
1805 if ((mask >> new_base) != 0 && ! warned)
1806 {
1807 as_tsktsk (_("register list not in ascending order"));
1808 warned = 1;
1809 }
1810
1811 mask |= setmask << new_base;
1812 count += addregs;
1813
1814 if (*str == '-') /* We have the start of a range expression */
1815 {
1816 int high_range;
1817
1818 str++;
1819
1820 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1821 == FAIL)
1822 {
1823 inst.error = gettext (reg_expected_msgs[regtype]);
1824 return FAIL;
1825 }
1826
1827 if (high_range >= max_regs)
1828 {
1829 first_error (_("register out of range in list"));
1830 return FAIL;
1831 }
1832
1833 if (regtype == REG_TYPE_NQ)
1834 high_range = high_range + 1;
1835
1836 if (high_range <= new_base)
1837 {
1838 inst.error = _("register range not in ascending order");
1839 return FAIL;
1840 }
1841
1842 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1843 {
1844 if (mask & (setmask << new_base))
1845 {
1846 inst.error = _("invalid register list");
1847 return FAIL;
1848 }
1849
1850 mask |= setmask << new_base;
1851 count += addregs;
1852 }
1853 }
1854 }
1855 while (skip_past_comma (&str) != FAIL);
1856
1857 str++;
1858
1859 /* Sanity check -- should have raised a parse error above. */
1860 if (count == 0 || count > max_regs)
1861 abort ();
1862
1863 *pbase = base_reg;
1864
1865 /* Final test -- the registers must be consecutive. */
1866 mask >>= base_reg;
1867 for (i = 0; i < count; i++)
1868 {
1869 if ((mask & (1u << i)) == 0)
1870 {
1871 inst.error = _("non-contiguous register range");
1872 return FAIL;
1873 }
1874 }
1875
1876 *ccp = str;
1877
1878 return count;
1879 }
1880
1881 /* True if two alias types are the same. */
1882
1883 static bfd_boolean
1884 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1885 {
1886 if (!a && !b)
1887 return TRUE;
1888
1889 if (!a || !b)
1890 return FALSE;
1891
1892 if (a->defined != b->defined)
1893 return FALSE;
1894
1895 if ((a->defined & NTA_HASTYPE) != 0
1896 && (a->eltype.type != b->eltype.type
1897 || a->eltype.size != b->eltype.size))
1898 return FALSE;
1899
1900 if ((a->defined & NTA_HASINDEX) != 0
1901 && (a->index != b->index))
1902 return FALSE;
1903
1904 return TRUE;
1905 }
1906
1907 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1908 The base register is put in *PBASE.
1909 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1910 the return value.
1911 The register stride (minus one) is put in bit 4 of the return value.
1912 Bits [6:5] encode the list length (minus one).
1913 The type of the list elements is put in *ELTYPE, if non-NULL. */
1914
1915 #define NEON_LANE(X) ((X) & 0xf)
1916 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1917 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1918
1919 static int
1920 parse_neon_el_struct_list (char **str, unsigned *pbase,
1921 struct neon_type_el *eltype)
1922 {
1923 char *ptr = *str;
1924 int base_reg = -1;
1925 int reg_incr = -1;
1926 int count = 0;
1927 int lane = -1;
1928 int leading_brace = 0;
1929 enum arm_reg_type rtype = REG_TYPE_NDQ;
1930 const char *const incr_error = _("register stride must be 1 or 2");
1931 const char *const type_error = _("mismatched element/structure types in list");
1932 struct neon_typed_alias firsttype;
1933
1934 if (skip_past_char (&ptr, '{') == SUCCESS)
1935 leading_brace = 1;
1936
1937 do
1938 {
1939 struct neon_typed_alias atype;
1940 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1941
1942 if (getreg == FAIL)
1943 {
1944 first_error (_(reg_expected_msgs[rtype]));
1945 return FAIL;
1946 }
1947
1948 if (base_reg == -1)
1949 {
1950 base_reg = getreg;
1951 if (rtype == REG_TYPE_NQ)
1952 {
1953 reg_incr = 1;
1954 }
1955 firsttype = atype;
1956 }
1957 else if (reg_incr == -1)
1958 {
1959 reg_incr = getreg - base_reg;
1960 if (reg_incr < 1 || reg_incr > 2)
1961 {
1962 first_error (_(incr_error));
1963 return FAIL;
1964 }
1965 }
1966 else if (getreg != base_reg + reg_incr * count)
1967 {
1968 first_error (_(incr_error));
1969 return FAIL;
1970 }
1971
1972 if (! neon_alias_types_same (&atype, &firsttype))
1973 {
1974 first_error (_(type_error));
1975 return FAIL;
1976 }
1977
1978 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1979 modes. */
1980 if (ptr[0] == '-')
1981 {
1982 struct neon_typed_alias htype;
1983 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1984 if (lane == -1)
1985 lane = NEON_INTERLEAVE_LANES;
1986 else if (lane != NEON_INTERLEAVE_LANES)
1987 {
1988 first_error (_(type_error));
1989 return FAIL;
1990 }
1991 if (reg_incr == -1)
1992 reg_incr = 1;
1993 else if (reg_incr != 1)
1994 {
1995 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1996 return FAIL;
1997 }
1998 ptr++;
1999 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2000 if (hireg == FAIL)
2001 {
2002 first_error (_(reg_expected_msgs[rtype]));
2003 return FAIL;
2004 }
2005 if (! neon_alias_types_same (&htype, &firsttype))
2006 {
2007 first_error (_(type_error));
2008 return FAIL;
2009 }
2010 count += hireg + dregs - getreg;
2011 continue;
2012 }
2013
2014 /* If we're using Q registers, we can't use [] or [n] syntax. */
2015 if (rtype == REG_TYPE_NQ)
2016 {
2017 count += 2;
2018 continue;
2019 }
2020
2021 if ((atype.defined & NTA_HASINDEX) != 0)
2022 {
2023 if (lane == -1)
2024 lane = atype.index;
2025 else if (lane != atype.index)
2026 {
2027 first_error (_(type_error));
2028 return FAIL;
2029 }
2030 }
2031 else if (lane == -1)
2032 lane = NEON_INTERLEAVE_LANES;
2033 else if (lane != NEON_INTERLEAVE_LANES)
2034 {
2035 first_error (_(type_error));
2036 return FAIL;
2037 }
2038 count++;
2039 }
2040 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2041
2042 /* No lane set by [x]. We must be interleaving structures. */
2043 if (lane == -1)
2044 lane = NEON_INTERLEAVE_LANES;
2045
2046 /* Sanity check. */
2047 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2048 || (count > 1 && reg_incr == -1))
2049 {
2050 first_error (_("error parsing element/structure list"));
2051 return FAIL;
2052 }
2053
2054 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2055 {
2056 first_error (_("expected }"));
2057 return FAIL;
2058 }
2059
2060 if (reg_incr == -1)
2061 reg_incr = 1;
2062
2063 if (eltype)
2064 *eltype = firsttype.eltype;
2065
2066 *pbase = base_reg;
2067 *str = ptr;
2068
2069 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2070 }
2071
2072 /* Parse an explicit relocation suffix on an expression. This is
2073 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2074 arm_reloc_hsh contains no entries, so this function can only
2075 succeed if there is no () after the word. Returns -1 on error,
2076 BFD_RELOC_UNUSED if there wasn't any suffix. */
2077
2078 static int
2079 parse_reloc (char **str)
2080 {
2081 struct reloc_entry *r;
2082 char *p, *q;
2083
2084 if (**str != '(')
2085 return BFD_RELOC_UNUSED;
2086
2087 p = *str + 1;
2088 q = p;
2089
2090 while (*q && *q != ')' && *q != ',')
2091 q++;
2092 if (*q != ')')
2093 return -1;
2094
2095 if ((r = (struct reloc_entry *)
2096 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2097 return -1;
2098
2099 *str = q + 1;
2100 return r->reloc;
2101 }
2102
2103 /* Directives: register aliases. */
2104
2105 static struct reg_entry *
2106 insert_reg_alias (char *str, unsigned number, int type)
2107 {
2108 struct reg_entry *new_reg;
2109 const char *name;
2110
2111 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2112 {
2113 if (new_reg->builtin)
2114 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2115
2116 /* Only warn about a redefinition if it's not defined as the
2117 same register. */
2118 else if (new_reg->number != number || new_reg->type != type)
2119 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2120
2121 return NULL;
2122 }
2123
2124 name = xstrdup (str);
2125 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2126
2127 new_reg->name = name;
2128 new_reg->number = number;
2129 new_reg->type = type;
2130 new_reg->builtin = FALSE;
2131 new_reg->neon = NULL;
2132
2133 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2134 abort ();
2135
2136 return new_reg;
2137 }
2138
2139 static void
2140 insert_neon_reg_alias (char *str, int number, int type,
2141 struct neon_typed_alias *atype)
2142 {
2143 struct reg_entry *reg = insert_reg_alias (str, number, type);
2144
2145 if (!reg)
2146 {
2147 first_error (_("attempt to redefine typed alias"));
2148 return;
2149 }
2150
2151 if (atype)
2152 {
2153 reg->neon = (struct neon_typed_alias *)
2154 xmalloc (sizeof (struct neon_typed_alias));
2155 *reg->neon = *atype;
2156 }
2157 }
2158
2159 /* Look for the .req directive. This is of the form:
2160
2161 new_register_name .req existing_register_name
2162
2163 If we find one, or if it looks sufficiently like one that we want to
2164 handle any error here, return TRUE. Otherwise return FALSE. */
2165
2166 static bfd_boolean
2167 create_register_alias (char * newname, char *p)
2168 {
2169 struct reg_entry *old;
2170 char *oldname, *nbuf;
2171 size_t nlen;
2172
2173 /* The input scrubber ensures that whitespace after the mnemonic is
2174 collapsed to single spaces. */
2175 oldname = p;
2176 if (strncmp (oldname, " .req ", 6) != 0)
2177 return FALSE;
2178
2179 oldname += 6;
2180 if (*oldname == '\0')
2181 return FALSE;
2182
2183 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2184 if (!old)
2185 {
2186 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2187 return TRUE;
2188 }
2189
2190 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2191 the desired alias name, and p points to its end. If not, then
2192 the desired alias name is in the global original_case_string. */
2193 #ifdef TC_CASE_SENSITIVE
2194 nlen = p - newname;
2195 #else
2196 newname = original_case_string;
2197 nlen = strlen (newname);
2198 #endif
2199
2200 nbuf = (char *) alloca (nlen + 1);
2201 memcpy (nbuf, newname, nlen);
2202 nbuf[nlen] = '\0';
2203
2204 /* Create aliases under the new name as stated; an all-lowercase
2205 version of the new name; and an all-uppercase version of the new
2206 name. */
2207 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2208 {
2209 for (p = nbuf; *p; p++)
2210 *p = TOUPPER (*p);
2211
2212 if (strncmp (nbuf, newname, nlen))
2213 {
2214 /* If this attempt to create an additional alias fails, do not bother
2215 trying to create the all-lower case alias. We will fail and issue
2216 a second, duplicate error message. This situation arises when the
2217 programmer does something like:
2218 foo .req r0
2219 Foo .req r1
2220 The second .req creates the "Foo" alias but then fails to create
2221 the artificial FOO alias because it has already been created by the
2222 first .req. */
2223 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2224 return TRUE;
2225 }
2226
2227 for (p = nbuf; *p; p++)
2228 *p = TOLOWER (*p);
2229
2230 if (strncmp (nbuf, newname, nlen))
2231 insert_reg_alias (nbuf, old->number, old->type);
2232 }
2233
2234 return TRUE;
2235 }
2236
2237 /* Create a Neon typed/indexed register alias using directives, e.g.:
2238 X .dn d5.s32[1]
2239 Y .qn 6.s16
2240 Z .dn d7
2241 T .dn Z[0]
2242 These typed registers can be used instead of the types specified after the
2243 Neon mnemonic, so long as all operands given have types. Types can also be
2244 specified directly, e.g.:
2245 vadd d0.s32, d1.s32, d2.s32 */
2246
2247 static bfd_boolean
2248 create_neon_reg_alias (char *newname, char *p)
2249 {
2250 enum arm_reg_type basetype;
2251 struct reg_entry *basereg;
2252 struct reg_entry mybasereg;
2253 struct neon_type ntype;
2254 struct neon_typed_alias typeinfo;
2255 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2256 int namelen;
2257
2258 typeinfo.defined = 0;
2259 typeinfo.eltype.type = NT_invtype;
2260 typeinfo.eltype.size = -1;
2261 typeinfo.index = -1;
2262
2263 nameend = p;
2264
2265 if (strncmp (p, " .dn ", 5) == 0)
2266 basetype = REG_TYPE_VFD;
2267 else if (strncmp (p, " .qn ", 5) == 0)
2268 basetype = REG_TYPE_NQ;
2269 else
2270 return FALSE;
2271
2272 p += 5;
2273
2274 if (*p == '\0')
2275 return FALSE;
2276
2277 basereg = arm_reg_parse_multi (&p);
2278
2279 if (basereg && basereg->type != basetype)
2280 {
2281 as_bad (_("bad type for register"));
2282 return FALSE;
2283 }
2284
2285 if (basereg == NULL)
2286 {
2287 expressionS exp;
2288 /* Try parsing as an integer. */
2289 my_get_expression (&exp, &p, GE_NO_PREFIX);
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("expression must be constant"));
2293 return FALSE;
2294 }
2295 basereg = &mybasereg;
2296 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2297 : exp.X_add_number;
2298 basereg->neon = 0;
2299 }
2300
2301 if (basereg->neon)
2302 typeinfo = *basereg->neon;
2303
2304 if (parse_neon_type (&ntype, &p) == SUCCESS)
2305 {
2306 /* We got a type. */
2307 if (typeinfo.defined & NTA_HASTYPE)
2308 {
2309 as_bad (_("can't redefine the type of a register alias"));
2310 return FALSE;
2311 }
2312
2313 typeinfo.defined |= NTA_HASTYPE;
2314 if (ntype.elems != 1)
2315 {
2316 as_bad (_("you must specify a single type only"));
2317 return FALSE;
2318 }
2319 typeinfo.eltype = ntype.el[0];
2320 }
2321
2322 if (skip_past_char (&p, '[') == SUCCESS)
2323 {
2324 expressionS exp;
2325 /* We got a scalar index. */
2326
2327 if (typeinfo.defined & NTA_HASINDEX)
2328 {
2329 as_bad (_("can't redefine the index of a scalar alias"));
2330 return FALSE;
2331 }
2332
2333 my_get_expression (&exp, &p, GE_NO_PREFIX);
2334
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("scalar index must be constant"));
2338 return FALSE;
2339 }
2340
2341 typeinfo.defined |= NTA_HASINDEX;
2342 typeinfo.index = exp.X_add_number;
2343
2344 if (skip_past_char (&p, ']') == FAIL)
2345 {
2346 as_bad (_("expecting ]"));
2347 return FALSE;
2348 }
2349 }
2350
2351 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2352 the desired alias name, and p points to its end. If not, then
2353 the desired alias name is in the global original_case_string. */
2354 #ifdef TC_CASE_SENSITIVE
2355 namelen = nameend - newname;
2356 #else
2357 newname = original_case_string;
2358 namelen = strlen (newname);
2359 #endif
2360
2361 namebuf = (char *) alloca (namelen + 1);
2362 strncpy (namebuf, newname, namelen);
2363 namebuf[namelen] = '\0';
2364
2365 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2366 typeinfo.defined != 0 ? &typeinfo : NULL);
2367
2368 /* Insert name in all uppercase. */
2369 for (p = namebuf; *p; p++)
2370 *p = TOUPPER (*p);
2371
2372 if (strncmp (namebuf, newname, namelen))
2373 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2374 typeinfo.defined != 0 ? &typeinfo : NULL);
2375
2376 /* Insert name in all lowercase. */
2377 for (p = namebuf; *p; p++)
2378 *p = TOLOWER (*p);
2379
2380 if (strncmp (namebuf, newname, namelen))
2381 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2382 typeinfo.defined != 0 ? &typeinfo : NULL);
2383
2384 return TRUE;
2385 }
2386
2387 /* Should never be called, as .req goes between the alias and the
2388 register name, not at the beginning of the line. */
2389
2390 static void
2391 s_req (int a ATTRIBUTE_UNUSED)
2392 {
2393 as_bad (_("invalid syntax for .req directive"));
2394 }
2395
2396 static void
2397 s_dn (int a ATTRIBUTE_UNUSED)
2398 {
2399 as_bad (_("invalid syntax for .dn directive"));
2400 }
2401
2402 static void
2403 s_qn (int a ATTRIBUTE_UNUSED)
2404 {
2405 as_bad (_("invalid syntax for .qn directive"));
2406 }
2407
2408 /* The .unreq directive deletes an alias which was previously defined
2409 by .req. For example:
2410
2411 my_alias .req r11
2412 .unreq my_alias */
2413
2414 static void
2415 s_unreq (int a ATTRIBUTE_UNUSED)
2416 {
2417 char * name;
2418 char saved_char;
2419
2420 name = input_line_pointer;
2421
2422 while (*input_line_pointer != 0
2423 && *input_line_pointer != ' '
2424 && *input_line_pointer != '\n')
2425 ++input_line_pointer;
2426
2427 saved_char = *input_line_pointer;
2428 *input_line_pointer = 0;
2429
2430 if (!*name)
2431 as_bad (_("invalid syntax for .unreq directive"));
2432 else
2433 {
2434 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2435 name);
2436
2437 if (!reg)
2438 as_bad (_("unknown register alias '%s'"), name);
2439 else if (reg->builtin)
2440 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2441 name);
2442 else
2443 {
2444 char * p;
2445 char * nbuf;
2446
2447 hash_delete (arm_reg_hsh, name, FALSE);
2448 free ((char *) reg->name);
2449 if (reg->neon)
2450 free (reg->neon);
2451 free (reg);
2452
2453 /* Also locate the all upper case and all lower case versions.
2454 Do not complain if we cannot find one or the other as it
2455 was probably deleted above. */
2456
2457 nbuf = strdup (name);
2458 for (p = nbuf; *p; p++)
2459 *p = TOUPPER (*p);
2460 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2461 if (reg)
2462 {
2463 hash_delete (arm_reg_hsh, nbuf, FALSE);
2464 free ((char *) reg->name);
2465 if (reg->neon)
2466 free (reg->neon);
2467 free (reg);
2468 }
2469
2470 for (p = nbuf; *p; p++)
2471 *p = TOLOWER (*p);
2472 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2473 if (reg)
2474 {
2475 hash_delete (arm_reg_hsh, nbuf, FALSE);
2476 free ((char *) reg->name);
2477 if (reg->neon)
2478 free (reg->neon);
2479 free (reg);
2480 }
2481
2482 free (nbuf);
2483 }
2484 }
2485
2486 *input_line_pointer = saved_char;
2487 demand_empty_rest_of_line ();
2488 }
2489
2490 /* Directives: Instruction set selection. */
2491
2492 #ifdef OBJ_ELF
2493 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2494 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2495 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2496 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2497
2498 /* Create a new mapping symbol for the transition to STATE. */
2499
2500 static void
2501 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2502 {
2503 symbolS * symbolP;
2504 const char * symname;
2505 int type;
2506
2507 switch (state)
2508 {
2509 case MAP_DATA:
2510 symname = "$d";
2511 type = BSF_NO_FLAGS;
2512 break;
2513 case MAP_ARM:
2514 symname = "$a";
2515 type = BSF_NO_FLAGS;
2516 break;
2517 case MAP_THUMB:
2518 symname = "$t";
2519 type = BSF_NO_FLAGS;
2520 break;
2521 default:
2522 abort ();
2523 }
2524
2525 symbolP = symbol_new (symname, now_seg, value, frag);
2526 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2527
2528 switch (state)
2529 {
2530 case MAP_ARM:
2531 THUMB_SET_FUNC (symbolP, 0);
2532 ARM_SET_THUMB (symbolP, 0);
2533 ARM_SET_INTERWORK (symbolP, support_interwork);
2534 break;
2535
2536 case MAP_THUMB:
2537 THUMB_SET_FUNC (symbolP, 1);
2538 ARM_SET_THUMB (symbolP, 1);
2539 ARM_SET_INTERWORK (symbolP, support_interwork);
2540 break;
2541
2542 case MAP_DATA:
2543 default:
2544 break;
2545 }
2546
2547 /* Save the mapping symbols for future reference. Also check that
2548 we do not place two mapping symbols at the same offset within a
2549 frag. We'll handle overlap between frags in
2550 check_mapping_symbols.
2551
2552 If .fill or other data filling directive generates zero sized data,
2553 the mapping symbol for the following code will have the same value
2554 as the one generated for the data filling directive. In this case,
2555 we replace the old symbol with the new one at the same address. */
2556 if (value == 0)
2557 {
2558 if (frag->tc_frag_data.first_map != NULL)
2559 {
2560 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2561 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2562 }
2563 frag->tc_frag_data.first_map = symbolP;
2564 }
2565 if (frag->tc_frag_data.last_map != NULL)
2566 {
2567 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2568 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2569 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2570 }
2571 frag->tc_frag_data.last_map = symbolP;
2572 }
2573
2574 /* We must sometimes convert a region marked as code to data during
2575 code alignment, if an odd number of bytes have to be padded. The
2576 code mapping symbol is pushed to an aligned address. */
2577
2578 static void
2579 insert_data_mapping_symbol (enum mstate state,
2580 valueT value, fragS *frag, offsetT bytes)
2581 {
2582 /* If there was already a mapping symbol, remove it. */
2583 if (frag->tc_frag_data.last_map != NULL
2584 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2585 {
2586 symbolS *symp = frag->tc_frag_data.last_map;
2587
2588 if (value == 0)
2589 {
2590 know (frag->tc_frag_data.first_map == symp);
2591 frag->tc_frag_data.first_map = NULL;
2592 }
2593 frag->tc_frag_data.last_map = NULL;
2594 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2595 }
2596
2597 make_mapping_symbol (MAP_DATA, value, frag);
2598 make_mapping_symbol (state, value + bytes, frag);
2599 }
2600
2601 static void mapping_state_2 (enum mstate state, int max_chars);
2602
2603 /* Set the mapping state to STATE. Only call this when about to
2604 emit some STATE bytes to the file. */
2605
2606 void
2607 mapping_state (enum mstate state)
2608 {
2609 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2610
2611 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2612
2613 if (mapstate == state)
2614 /* The mapping symbol has already been emitted.
2615 There is nothing else to do. */
2616 return;
2617
2618 if (state == MAP_ARM || state == MAP_THUMB)
2619 /* PR gas/12931
2620 All ARM instructions require 4-byte alignment.
2621 (Almost) all Thumb instructions require 2-byte alignment.
2622
2623 When emitting instructions into any section, mark the section
2624 appropriately.
2625
2626 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2627 but themselves require 2-byte alignment; this applies to some
2628 PC- relative forms. However, these cases will invovle implicit
2629 literal pool generation or an explicit .align >=2, both of
2630 which will cause the section to me marked with sufficient
2631 alignment. Thus, we don't handle those cases here. */
2632 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2633
2634 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2635 /* This case will be evaluated later in the next else. */
2636 return;
2637 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2638 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2639 {
2640 /* Only add the symbol if the offset is > 0:
2641 if we're at the first frag, check it's size > 0;
2642 if we're not at the first frag, then for sure
2643 the offset is > 0. */
2644 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2645 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2646
2647 if (add_symbol)
2648 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2649 }
2650
2651 mapping_state_2 (state, 0);
2652 #undef TRANSITION
2653 }
2654
2655 /* Same as mapping_state, but MAX_CHARS bytes have already been
2656 allocated. Put the mapping symbol that far back. */
2657
2658 static void
2659 mapping_state_2 (enum mstate state, int max_chars)
2660 {
2661 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2662
2663 if (!SEG_NORMAL (now_seg))
2664 return;
2665
2666 if (mapstate == state)
2667 /* The mapping symbol has already been emitted.
2668 There is nothing else to do. */
2669 return;
2670
2671 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2672 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2673 }
2674 #else
2675 #define mapping_state(x) ((void)0)
2676 #define mapping_state_2(x, y) ((void)0)
2677 #endif
2678
2679 /* Find the real, Thumb encoded start of a Thumb function. */
2680
2681 #ifdef OBJ_COFF
2682 static symbolS *
2683 find_real_start (symbolS * symbolP)
2684 {
2685 char * real_start;
2686 const char * name = S_GET_NAME (symbolP);
2687 symbolS * new_target;
2688
2689 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2690 #define STUB_NAME ".real_start_of"
2691
2692 if (name == NULL)
2693 abort ();
2694
2695 /* The compiler may generate BL instructions to local labels because
2696 it needs to perform a branch to a far away location. These labels
2697 do not have a corresponding ".real_start_of" label. We check
2698 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2699 the ".real_start_of" convention for nonlocal branches. */
2700 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2701 return symbolP;
2702
2703 real_start = ACONCAT ((STUB_NAME, name, NULL));
2704 new_target = symbol_find (real_start);
2705
2706 if (new_target == NULL)
2707 {
2708 as_warn (_("Failed to find real start of function: %s\n"), name);
2709 new_target = symbolP;
2710 }
2711
2712 return new_target;
2713 }
2714 #endif
2715
2716 static void
2717 opcode_select (int width)
2718 {
2719 switch (width)
2720 {
2721 case 16:
2722 if (! thumb_mode)
2723 {
2724 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2725 as_bad (_("selected processor does not support THUMB opcodes"));
2726
2727 thumb_mode = 1;
2728 /* No need to force the alignment, since we will have been
2729 coming from ARM mode, which is word-aligned. */
2730 record_alignment (now_seg, 1);
2731 }
2732 break;
2733
2734 case 32:
2735 if (thumb_mode)
2736 {
2737 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2738 as_bad (_("selected processor does not support ARM opcodes"));
2739
2740 thumb_mode = 0;
2741
2742 if (!need_pass_2)
2743 frag_align (2, 0, 0);
2744
2745 record_alignment (now_seg, 1);
2746 }
2747 break;
2748
2749 default:
2750 as_bad (_("invalid instruction size selected (%d)"), width);
2751 }
2752 }
2753
2754 static void
2755 s_arm (int ignore ATTRIBUTE_UNUSED)
2756 {
2757 opcode_select (32);
2758 demand_empty_rest_of_line ();
2759 }
2760
2761 static void
2762 s_thumb (int ignore ATTRIBUTE_UNUSED)
2763 {
2764 opcode_select (16);
2765 demand_empty_rest_of_line ();
2766 }
2767
2768 static void
2769 s_code (int unused ATTRIBUTE_UNUSED)
2770 {
2771 int temp;
2772
2773 temp = get_absolute_expression ();
2774 switch (temp)
2775 {
2776 case 16:
2777 case 32:
2778 opcode_select (temp);
2779 break;
2780
2781 default:
2782 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2783 }
2784 }
2785
2786 static void
2787 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2788 {
2789 /* If we are not already in thumb mode go into it, EVEN if
2790 the target processor does not support thumb instructions.
2791 This is used by gcc/config/arm/lib1funcs.asm for example
2792 to compile interworking support functions even if the
2793 target processor should not support interworking. */
2794 if (! thumb_mode)
2795 {
2796 thumb_mode = 2;
2797 record_alignment (now_seg, 1);
2798 }
2799
2800 demand_empty_rest_of_line ();
2801 }
2802
2803 static void
2804 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2805 {
2806 s_thumb (0);
2807
2808 /* The following label is the name/address of the start of a Thumb function.
2809 We need to know this for the interworking support. */
2810 label_is_thumb_function_name = TRUE;
2811 }
2812
2813 /* Perform a .set directive, but also mark the alias as
2814 being a thumb function. */
2815
2816 static void
2817 s_thumb_set (int equiv)
2818 {
2819 /* XXX the following is a duplicate of the code for s_set() in read.c
2820 We cannot just call that code as we need to get at the symbol that
2821 is created. */
2822 char * name;
2823 char delim;
2824 char * end_name;
2825 symbolS * symbolP;
2826
2827 /* Especial apologies for the random logic:
2828 This just grew, and could be parsed much more simply!
2829 Dean - in haste. */
2830 name = input_line_pointer;
2831 delim = get_symbol_end ();
2832 end_name = input_line_pointer;
2833 *end_name = delim;
2834
2835 if (*input_line_pointer != ',')
2836 {
2837 *end_name = 0;
2838 as_bad (_("expected comma after name \"%s\""), name);
2839 *end_name = delim;
2840 ignore_rest_of_line ();
2841 return;
2842 }
2843
2844 input_line_pointer++;
2845 *end_name = 0;
2846
2847 if (name[0] == '.' && name[1] == '\0')
2848 {
2849 /* XXX - this should not happen to .thumb_set. */
2850 abort ();
2851 }
2852
2853 if ((symbolP = symbol_find (name)) == NULL
2854 && (symbolP = md_undefined_symbol (name)) == NULL)
2855 {
2856 #ifndef NO_LISTING
2857 /* When doing symbol listings, play games with dummy fragments living
2858 outside the normal fragment chain to record the file and line info
2859 for this symbol. */
2860 if (listing & LISTING_SYMBOLS)
2861 {
2862 extern struct list_info_struct * listing_tail;
2863 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2864
2865 memset (dummy_frag, 0, sizeof (fragS));
2866 dummy_frag->fr_type = rs_fill;
2867 dummy_frag->line = listing_tail;
2868 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2869 dummy_frag->fr_symbol = symbolP;
2870 }
2871 else
2872 #endif
2873 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2874
2875 #ifdef OBJ_COFF
2876 /* "set" symbols are local unless otherwise specified. */
2877 SF_SET_LOCAL (symbolP);
2878 #endif /* OBJ_COFF */
2879 } /* Make a new symbol. */
2880
2881 symbol_table_insert (symbolP);
2882
2883 * end_name = delim;
2884
2885 if (equiv
2886 && S_IS_DEFINED (symbolP)
2887 && S_GET_SEGMENT (symbolP) != reg_section)
2888 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2889
2890 pseudo_set (symbolP);
2891
2892 demand_empty_rest_of_line ();
2893
2894 /* XXX Now we come to the Thumb specific bit of code. */
2895
2896 THUMB_SET_FUNC (symbolP, 1);
2897 ARM_SET_THUMB (symbolP, 1);
2898 #if defined OBJ_ELF || defined OBJ_COFF
2899 ARM_SET_INTERWORK (symbolP, support_interwork);
2900 #endif
2901 }
2902
2903 /* Directives: Mode selection. */
2904
2905 /* .syntax [unified|divided] - choose the new unified syntax
2906 (same for Arm and Thumb encoding, modulo slight differences in what
2907 can be represented) or the old divergent syntax for each mode. */
2908 static void
2909 s_syntax (int unused ATTRIBUTE_UNUSED)
2910 {
2911 char *name, delim;
2912
2913 name = input_line_pointer;
2914 delim = get_symbol_end ();
2915
2916 if (!strcasecmp (name, "unified"))
2917 unified_syntax = TRUE;
2918 else if (!strcasecmp (name, "divided"))
2919 unified_syntax = FALSE;
2920 else
2921 {
2922 as_bad (_("unrecognized syntax mode \"%s\""), name);
2923 return;
2924 }
2925 *input_line_pointer = delim;
2926 demand_empty_rest_of_line ();
2927 }
2928
2929 /* Directives: sectioning and alignment. */
2930
2931 /* Same as s_align_ptwo but align 0 => align 2. */
2932
2933 static void
2934 s_align (int unused ATTRIBUTE_UNUSED)
2935 {
2936 int temp;
2937 bfd_boolean fill_p;
2938 long temp_fill;
2939 long max_alignment = 15;
2940
2941 temp = get_absolute_expression ();
2942 if (temp > max_alignment)
2943 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2944 else if (temp < 0)
2945 {
2946 as_bad (_("alignment negative. 0 assumed."));
2947 temp = 0;
2948 }
2949
2950 if (*input_line_pointer == ',')
2951 {
2952 input_line_pointer++;
2953 temp_fill = get_absolute_expression ();
2954 fill_p = TRUE;
2955 }
2956 else
2957 {
2958 fill_p = FALSE;
2959 temp_fill = 0;
2960 }
2961
2962 if (!temp)
2963 temp = 2;
2964
2965 /* Only make a frag if we HAVE to. */
2966 if (temp && !need_pass_2)
2967 {
2968 if (!fill_p && subseg_text_p (now_seg))
2969 frag_align_code (temp, 0);
2970 else
2971 frag_align (temp, (int) temp_fill, 0);
2972 }
2973 demand_empty_rest_of_line ();
2974
2975 record_alignment (now_seg, temp);
2976 }
2977
2978 static void
2979 s_bss (int ignore ATTRIBUTE_UNUSED)
2980 {
2981 /* We don't support putting frags in the BSS segment, we fake it by
2982 marking in_bss, then looking at s_skip for clues. */
2983 subseg_set (bss_section, 0);
2984 demand_empty_rest_of_line ();
2985
2986 #ifdef md_elf_section_change_hook
2987 md_elf_section_change_hook ();
2988 #endif
2989 }
2990
2991 static void
2992 s_even (int ignore ATTRIBUTE_UNUSED)
2993 {
2994 /* Never make frag if expect extra pass. */
2995 if (!need_pass_2)
2996 frag_align (1, 0, 0);
2997
2998 record_alignment (now_seg, 1);
2999
3000 demand_empty_rest_of_line ();
3001 }
3002
3003 /* Directives: Literal pools. */
3004
3005 static literal_pool *
3006 find_literal_pool (void)
3007 {
3008 literal_pool * pool;
3009
3010 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3011 {
3012 if (pool->section == now_seg
3013 && pool->sub_section == now_subseg)
3014 break;
3015 }
3016
3017 return pool;
3018 }
3019
3020 static literal_pool *
3021 find_or_make_literal_pool (void)
3022 {
3023 /* Next literal pool ID number. */
3024 static unsigned int latest_pool_num = 1;
3025 literal_pool * pool;
3026
3027 pool = find_literal_pool ();
3028
3029 if (pool == NULL)
3030 {
3031 /* Create a new pool. */
3032 pool = (literal_pool *) xmalloc (sizeof (* pool));
3033 if (! pool)
3034 return NULL;
3035
3036 pool->next_free_entry = 0;
3037 pool->section = now_seg;
3038 pool->sub_section = now_subseg;
3039 pool->next = list_of_pools;
3040 pool->symbol = NULL;
3041
3042 /* Add it to the list. */
3043 list_of_pools = pool;
3044 }
3045
3046 /* New pools, and emptied pools, will have a NULL symbol. */
3047 if (pool->symbol == NULL)
3048 {
3049 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3050 (valueT) 0, &zero_address_frag);
3051 pool->id = latest_pool_num ++;
3052 }
3053
3054 /* Done. */
3055 return pool;
3056 }
3057
3058 /* Add the literal in the global 'inst'
3059 structure to the relevant literal pool. */
3060
3061 static int
3062 add_to_lit_pool (void)
3063 {
3064 literal_pool * pool;
3065 unsigned int entry;
3066
3067 pool = find_or_make_literal_pool ();
3068
3069 /* Check if this literal value is already in the pool. */
3070 for (entry = 0; entry < pool->next_free_entry; entry ++)
3071 {
3072 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3073 && (inst.reloc.exp.X_op == O_constant)
3074 && (pool->literals[entry].X_add_number
3075 == inst.reloc.exp.X_add_number)
3076 && (pool->literals[entry].X_unsigned
3077 == inst.reloc.exp.X_unsigned))
3078 break;
3079
3080 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3081 && (inst.reloc.exp.X_op == O_symbol)
3082 && (pool->literals[entry].X_add_number
3083 == inst.reloc.exp.X_add_number)
3084 && (pool->literals[entry].X_add_symbol
3085 == inst.reloc.exp.X_add_symbol)
3086 && (pool->literals[entry].X_op_symbol
3087 == inst.reloc.exp.X_op_symbol))
3088 break;
3089 }
3090
3091 /* Do we need to create a new entry? */
3092 if (entry == pool->next_free_entry)
3093 {
3094 if (entry >= MAX_LITERAL_POOL_SIZE)
3095 {
3096 inst.error = _("literal pool overflow");
3097 return FAIL;
3098 }
3099
3100 pool->literals[entry] = inst.reloc.exp;
3101 #ifdef OBJ_ELF
3102 /* PR ld/12974: Record the location of the first source line to reference
3103 this entry in the literal pool. If it turns out during linking that the
3104 symbol does not exist we will be able to give an accurate line number for
3105 the (first use of the) missing reference. */
3106 if (debug_type == DEBUG_DWARF2)
3107 dwarf2_where (pool->locs + entry);
3108 #endif
3109 pool->next_free_entry += 1;
3110 }
3111
3112 inst.reloc.exp.X_op = O_symbol;
3113 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3114 inst.reloc.exp.X_add_symbol = pool->symbol;
3115
3116 return SUCCESS;
3117 }
3118
3119 /* Can't use symbol_new here, so have to create a symbol and then at
3120 a later date assign it a value. Thats what these functions do. */
3121
3122 static void
3123 symbol_locate (symbolS * symbolP,
3124 const char * name, /* It is copied, the caller can modify. */
3125 segT segment, /* Segment identifier (SEG_<something>). */
3126 valueT valu, /* Symbol value. */
3127 fragS * frag) /* Associated fragment. */
3128 {
3129 unsigned int name_length;
3130 char * preserved_copy_of_name;
3131
3132 name_length = strlen (name) + 1; /* +1 for \0. */
3133 obstack_grow (&notes, name, name_length);
3134 preserved_copy_of_name = (char *) obstack_finish (&notes);
3135
3136 #ifdef tc_canonicalize_symbol_name
3137 preserved_copy_of_name =
3138 tc_canonicalize_symbol_name (preserved_copy_of_name);
3139 #endif
3140
3141 S_SET_NAME (symbolP, preserved_copy_of_name);
3142
3143 S_SET_SEGMENT (symbolP, segment);
3144 S_SET_VALUE (symbolP, valu);
3145 symbol_clear_list_pointers (symbolP);
3146
3147 symbol_set_frag (symbolP, frag);
3148
3149 /* Link to end of symbol chain. */
3150 {
3151 extern int symbol_table_frozen;
3152
3153 if (symbol_table_frozen)
3154 abort ();
3155 }
3156
3157 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3158
3159 obj_symbol_new_hook (symbolP);
3160
3161 #ifdef tc_symbol_new_hook
3162 tc_symbol_new_hook (symbolP);
3163 #endif
3164
3165 #ifdef DEBUG_SYMS
3166 verify_symbol_chain (symbol_rootP, symbol_lastP);
3167 #endif /* DEBUG_SYMS */
3168 }
3169
3170
3171 static void
3172 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3173 {
3174 unsigned int entry;
3175 literal_pool * pool;
3176 char sym_name[20];
3177
3178 pool = find_literal_pool ();
3179 if (pool == NULL
3180 || pool->symbol == NULL
3181 || pool->next_free_entry == 0)
3182 return;
3183
3184 mapping_state (MAP_DATA);
3185
3186 /* Align pool as you have word accesses.
3187 Only make a frag if we have to. */
3188 if (!need_pass_2)
3189 frag_align (2, 0, 0);
3190
3191 record_alignment (now_seg, 2);
3192
3193 sprintf (sym_name, "$$lit_\002%x", pool->id);
3194
3195 symbol_locate (pool->symbol, sym_name, now_seg,
3196 (valueT) frag_now_fix (), frag_now);
3197 symbol_table_insert (pool->symbol);
3198
3199 ARM_SET_THUMB (pool->symbol, thumb_mode);
3200
3201 #if defined OBJ_COFF || defined OBJ_ELF
3202 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3203 #endif
3204
3205 for (entry = 0; entry < pool->next_free_entry; entry ++)
3206 {
3207 #ifdef OBJ_ELF
3208 if (debug_type == DEBUG_DWARF2)
3209 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3210 #endif
3211 /* First output the expression in the instruction to the pool. */
3212 emit_expr (&(pool->literals[entry]), 4); /* .word */
3213 }
3214
3215 /* Mark the pool as empty. */
3216 pool->next_free_entry = 0;
3217 pool->symbol = NULL;
3218 }
3219
3220 #ifdef OBJ_ELF
3221 /* Forward declarations for functions below, in the MD interface
3222 section. */
3223 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3224 static valueT create_unwind_entry (int);
3225 static void start_unwind_section (const segT, int);
3226 static void add_unwind_opcode (valueT, int);
3227 static void flush_pending_unwind (void);
3228
3229 /* Directives: Data. */
3230
3231 static void
3232 s_arm_elf_cons (int nbytes)
3233 {
3234 expressionS exp;
3235
3236 #ifdef md_flush_pending_output
3237 md_flush_pending_output ();
3238 #endif
3239
3240 if (is_it_end_of_statement ())
3241 {
3242 demand_empty_rest_of_line ();
3243 return;
3244 }
3245
3246 #ifdef md_cons_align
3247 md_cons_align (nbytes);
3248 #endif
3249
3250 mapping_state (MAP_DATA);
3251 do
3252 {
3253 int reloc;
3254 char *base = input_line_pointer;
3255
3256 expression (& exp);
3257
3258 if (exp.X_op != O_symbol)
3259 emit_expr (&exp, (unsigned int) nbytes);
3260 else
3261 {
3262 char *before_reloc = input_line_pointer;
3263 reloc = parse_reloc (&input_line_pointer);
3264 if (reloc == -1)
3265 {
3266 as_bad (_("unrecognized relocation suffix"));
3267 ignore_rest_of_line ();
3268 return;
3269 }
3270 else if (reloc == BFD_RELOC_UNUSED)
3271 emit_expr (&exp, (unsigned int) nbytes);
3272 else
3273 {
3274 reloc_howto_type *howto = (reloc_howto_type *)
3275 bfd_reloc_type_lookup (stdoutput,
3276 (bfd_reloc_code_real_type) reloc);
3277 int size = bfd_get_reloc_size (howto);
3278
3279 if (reloc == BFD_RELOC_ARM_PLT32)
3280 {
3281 as_bad (_("(plt) is only valid on branch targets"));
3282 reloc = BFD_RELOC_UNUSED;
3283 size = 0;
3284 }
3285
3286 if (size > nbytes)
3287 as_bad (_("%s relocations do not fit in %d bytes"),
3288 howto->name, nbytes);
3289 else
3290 {
3291 /* We've parsed an expression stopping at O_symbol.
3292 But there may be more expression left now that we
3293 have parsed the relocation marker. Parse it again.
3294 XXX Surely there is a cleaner way to do this. */
3295 char *p = input_line_pointer;
3296 int offset;
3297 char *save_buf = (char *) alloca (input_line_pointer - base);
3298 memcpy (save_buf, base, input_line_pointer - base);
3299 memmove (base + (input_line_pointer - before_reloc),
3300 base, before_reloc - base);
3301
3302 input_line_pointer = base + (input_line_pointer-before_reloc);
3303 expression (&exp);
3304 memcpy (base, save_buf, p - base);
3305
3306 offset = nbytes - size;
3307 p = frag_more ((int) nbytes);
3308 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3309 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3310 }
3311 }
3312 }
3313 }
3314 while (*input_line_pointer++ == ',');
3315
3316 /* Put terminator back into stream. */
3317 input_line_pointer --;
3318 demand_empty_rest_of_line ();
3319 }
3320
3321 /* Emit an expression containing a 32-bit thumb instruction.
3322 Implementation based on put_thumb32_insn. */
3323
3324 static void
3325 emit_thumb32_expr (expressionS * exp)
3326 {
3327 expressionS exp_high = *exp;
3328
3329 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3330 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3331 exp->X_add_number &= 0xffff;
3332 emit_expr (exp, (unsigned int) THUMB_SIZE);
3333 }
3334
3335 /* Guess the instruction size based on the opcode. */
3336
3337 static int
3338 thumb_insn_size (int opcode)
3339 {
3340 if ((unsigned int) opcode < 0xe800u)
3341 return 2;
3342 else if ((unsigned int) opcode >= 0xe8000000u)
3343 return 4;
3344 else
3345 return 0;
3346 }
3347
3348 static bfd_boolean
3349 emit_insn (expressionS *exp, int nbytes)
3350 {
3351 int size = 0;
3352
3353 if (exp->X_op == O_constant)
3354 {
3355 size = nbytes;
3356
3357 if (size == 0)
3358 size = thumb_insn_size (exp->X_add_number);
3359
3360 if (size != 0)
3361 {
3362 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3363 {
3364 as_bad (_(".inst.n operand too big. "\
3365 "Use .inst.w instead"));
3366 size = 0;
3367 }
3368 else
3369 {
3370 if (now_it.state == AUTOMATIC_IT_BLOCK)
3371 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3372 else
3373 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3374
3375 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3376 emit_thumb32_expr (exp);
3377 else
3378 emit_expr (exp, (unsigned int) size);
3379
3380 it_fsm_post_encode ();
3381 }
3382 }
3383 else
3384 as_bad (_("cannot determine Thumb instruction size. " \
3385 "Use .inst.n/.inst.w instead"));
3386 }
3387 else
3388 as_bad (_("constant expression required"));
3389
3390 return (size != 0);
3391 }
3392
3393 /* Like s_arm_elf_cons but do not use md_cons_align and
3394 set the mapping state to MAP_ARM/MAP_THUMB. */
3395
3396 static void
3397 s_arm_elf_inst (int nbytes)
3398 {
3399 if (is_it_end_of_statement ())
3400 {
3401 demand_empty_rest_of_line ();
3402 return;
3403 }
3404
3405 /* Calling mapping_state () here will not change ARM/THUMB,
3406 but will ensure not to be in DATA state. */
3407
3408 if (thumb_mode)
3409 mapping_state (MAP_THUMB);
3410 else
3411 {
3412 if (nbytes != 0)
3413 {
3414 as_bad (_("width suffixes are invalid in ARM mode"));
3415 ignore_rest_of_line ();
3416 return;
3417 }
3418
3419 nbytes = 4;
3420
3421 mapping_state (MAP_ARM);
3422 }
3423
3424 do
3425 {
3426 expressionS exp;
3427
3428 expression (& exp);
3429
3430 if (! emit_insn (& exp, nbytes))
3431 {
3432 ignore_rest_of_line ();
3433 return;
3434 }
3435 }
3436 while (*input_line_pointer++ == ',');
3437
3438 /* Put terminator back into stream. */
3439 input_line_pointer --;
3440 demand_empty_rest_of_line ();
3441 }
3442
3443 /* Parse a .rel31 directive. */
3444
3445 static void
3446 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3447 {
3448 expressionS exp;
3449 char *p;
3450 valueT highbit;
3451
3452 highbit = 0;
3453 if (*input_line_pointer == '1')
3454 highbit = 0x80000000;
3455 else if (*input_line_pointer != '0')
3456 as_bad (_("expected 0 or 1"));
3457
3458 input_line_pointer++;
3459 if (*input_line_pointer != ',')
3460 as_bad (_("missing comma"));
3461 input_line_pointer++;
3462
3463 #ifdef md_flush_pending_output
3464 md_flush_pending_output ();
3465 #endif
3466
3467 #ifdef md_cons_align
3468 md_cons_align (4);
3469 #endif
3470
3471 mapping_state (MAP_DATA);
3472
3473 expression (&exp);
3474
3475 p = frag_more (4);
3476 md_number_to_chars (p, highbit, 4);
3477 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3478 BFD_RELOC_ARM_PREL31);
3479
3480 demand_empty_rest_of_line ();
3481 }
3482
3483 /* Directives: AEABI stack-unwind tables. */
3484
3485 /* Parse an unwind_fnstart directive. Simply records the current location. */
3486
3487 static void
3488 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3489 {
3490 demand_empty_rest_of_line ();
3491 if (unwind.proc_start)
3492 {
3493 as_bad (_("duplicate .fnstart directive"));
3494 return;
3495 }
3496
3497 /* Mark the start of the function. */
3498 unwind.proc_start = expr_build_dot ();
3499
3500 /* Reset the rest of the unwind info. */
3501 unwind.opcode_count = 0;
3502 unwind.table_entry = NULL;
3503 unwind.personality_routine = NULL;
3504 unwind.personality_index = -1;
3505 unwind.frame_size = 0;
3506 unwind.fp_offset = 0;
3507 unwind.fp_reg = REG_SP;
3508 unwind.fp_used = 0;
3509 unwind.sp_restored = 0;
3510 }
3511
3512
3513 /* Parse a handlerdata directive. Creates the exception handling table entry
3514 for the function. */
3515
3516 static void
3517 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3518 {
3519 demand_empty_rest_of_line ();
3520 if (!unwind.proc_start)
3521 as_bad (MISSING_FNSTART);
3522
3523 if (unwind.table_entry)
3524 as_bad (_("duplicate .handlerdata directive"));
3525
3526 create_unwind_entry (1);
3527 }
3528
3529 /* Parse an unwind_fnend directive. Generates the index table entry. */
3530
3531 static void
3532 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3533 {
3534 long where;
3535 char *ptr;
3536 valueT val;
3537 unsigned int marked_pr_dependency;
3538
3539 demand_empty_rest_of_line ();
3540
3541 if (!unwind.proc_start)
3542 {
3543 as_bad (_(".fnend directive without .fnstart"));
3544 return;
3545 }
3546
3547 /* Add eh table entry. */
3548 if (unwind.table_entry == NULL)
3549 val = create_unwind_entry (0);
3550 else
3551 val = 0;
3552
3553 /* Add index table entry. This is two words. */
3554 start_unwind_section (unwind.saved_seg, 1);
3555 frag_align (2, 0, 0);
3556 record_alignment (now_seg, 2);
3557
3558 ptr = frag_more (8);
3559 memset (ptr, 0, 8);
3560 where = frag_now_fix () - 8;
3561
3562 /* Self relative offset of the function start. */
3563 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3564 BFD_RELOC_ARM_PREL31);
3565
3566 /* Indicate dependency on EHABI-defined personality routines to the
3567 linker, if it hasn't been done already. */
3568 marked_pr_dependency
3569 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3570 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3571 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3572 {
3573 static const char *const name[] =
3574 {
3575 "__aeabi_unwind_cpp_pr0",
3576 "__aeabi_unwind_cpp_pr1",
3577 "__aeabi_unwind_cpp_pr2"
3578 };
3579 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3580 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3581 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3582 |= 1 << unwind.personality_index;
3583 }
3584
3585 if (val)
3586 /* Inline exception table entry. */
3587 md_number_to_chars (ptr + 4, val, 4);
3588 else
3589 /* Self relative offset of the table entry. */
3590 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3591 BFD_RELOC_ARM_PREL31);
3592
3593 /* Restore the original section. */
3594 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3595
3596 unwind.proc_start = NULL;
3597 }
3598
3599
3600 /* Parse an unwind_cantunwind directive. */
3601
3602 static void
3603 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3604 {
3605 demand_empty_rest_of_line ();
3606 if (!unwind.proc_start)
3607 as_bad (MISSING_FNSTART);
3608
3609 if (unwind.personality_routine || unwind.personality_index != -1)
3610 as_bad (_("personality routine specified for cantunwind frame"));
3611
3612 unwind.personality_index = -2;
3613 }
3614
3615
3616 /* Parse a personalityindex directive. */
3617
3618 static void
3619 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3620 {
3621 expressionS exp;
3622
3623 if (!unwind.proc_start)
3624 as_bad (MISSING_FNSTART);
3625
3626 if (unwind.personality_routine || unwind.personality_index != -1)
3627 as_bad (_("duplicate .personalityindex directive"));
3628
3629 expression (&exp);
3630
3631 if (exp.X_op != O_constant
3632 || exp.X_add_number < 0 || exp.X_add_number > 15)
3633 {
3634 as_bad (_("bad personality routine number"));
3635 ignore_rest_of_line ();
3636 return;
3637 }
3638
3639 unwind.personality_index = exp.X_add_number;
3640
3641 demand_empty_rest_of_line ();
3642 }
3643
3644
3645 /* Parse a personality directive. */
3646
3647 static void
3648 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3649 {
3650 char *name, *p, c;
3651
3652 if (!unwind.proc_start)
3653 as_bad (MISSING_FNSTART);
3654
3655 if (unwind.personality_routine || unwind.personality_index != -1)
3656 as_bad (_("duplicate .personality directive"));
3657
3658 name = input_line_pointer;
3659 c = get_symbol_end ();
3660 p = input_line_pointer;
3661 unwind.personality_routine = symbol_find_or_make (name);
3662 *p = c;
3663 demand_empty_rest_of_line ();
3664 }
3665
3666
3667 /* Parse a directive saving core registers. */
3668
3669 static void
3670 s_arm_unwind_save_core (void)
3671 {
3672 valueT op;
3673 long range;
3674 int n;
3675
3676 range = parse_reg_list (&input_line_pointer);
3677 if (range == FAIL)
3678 {
3679 as_bad (_("expected register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
3683
3684 demand_empty_rest_of_line ();
3685
3686 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3687 into .unwind_save {..., sp...}. We aren't bothered about the value of
3688 ip because it is clobbered by calls. */
3689 if (unwind.sp_restored && unwind.fp_reg == 12
3690 && (range & 0x3000) == 0x1000)
3691 {
3692 unwind.opcode_count--;
3693 unwind.sp_restored = 0;
3694 range = (range | 0x2000) & ~0x1000;
3695 unwind.pending_offset = 0;
3696 }
3697
3698 /* Pop r4-r15. */
3699 if (range & 0xfff0)
3700 {
3701 /* See if we can use the short opcodes. These pop a block of up to 8
3702 registers starting with r4, plus maybe r14. */
3703 for (n = 0; n < 8; n++)
3704 {
3705 /* Break at the first non-saved register. */
3706 if ((range & (1 << (n + 4))) == 0)
3707 break;
3708 }
3709 /* See if there are any other bits set. */
3710 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3711 {
3712 /* Use the long form. */
3713 op = 0x8000 | ((range >> 4) & 0xfff);
3714 add_unwind_opcode (op, 2);
3715 }
3716 else
3717 {
3718 /* Use the short form. */
3719 if (range & 0x4000)
3720 op = 0xa8; /* Pop r14. */
3721 else
3722 op = 0xa0; /* Do not pop r14. */
3723 op |= (n - 1);
3724 add_unwind_opcode (op, 1);
3725 }
3726 }
3727
3728 /* Pop r0-r3. */
3729 if (range & 0xf)
3730 {
3731 op = 0xb100 | (range & 0xf);
3732 add_unwind_opcode (op, 2);
3733 }
3734
3735 /* Record the number of bytes pushed. */
3736 for (n = 0; n < 16; n++)
3737 {
3738 if (range & (1 << n))
3739 unwind.frame_size += 4;
3740 }
3741 }
3742
3743
3744 /* Parse a directive saving FPA registers. */
3745
3746 static void
3747 s_arm_unwind_save_fpa (int reg)
3748 {
3749 expressionS exp;
3750 int num_regs;
3751 valueT op;
3752
3753 /* Get Number of registers to transfer. */
3754 if (skip_past_comma (&input_line_pointer) != FAIL)
3755 expression (&exp);
3756 else
3757 exp.X_op = O_illegal;
3758
3759 if (exp.X_op != O_constant)
3760 {
3761 as_bad (_("expected , <constant>"));
3762 ignore_rest_of_line ();
3763 return;
3764 }
3765
3766 num_regs = exp.X_add_number;
3767
3768 if (num_regs < 1 || num_regs > 4)
3769 {
3770 as_bad (_("number of registers must be in the range [1:4]"));
3771 ignore_rest_of_line ();
3772 return;
3773 }
3774
3775 demand_empty_rest_of_line ();
3776
3777 if (reg == 4)
3778 {
3779 /* Short form. */
3780 op = 0xb4 | (num_regs - 1);
3781 add_unwind_opcode (op, 1);
3782 }
3783 else
3784 {
3785 /* Long form. */
3786 op = 0xc800 | (reg << 4) | (num_regs - 1);
3787 add_unwind_opcode (op, 2);
3788 }
3789 unwind.frame_size += num_regs * 12;
3790 }
3791
3792
3793 /* Parse a directive saving VFP registers for ARMv6 and above. */
3794
3795 static void
3796 s_arm_unwind_save_vfp_armv6 (void)
3797 {
3798 int count;
3799 unsigned int start;
3800 valueT op;
3801 int num_vfpv3_regs = 0;
3802 int num_regs_below_16;
3803
3804 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3805 if (count == FAIL)
3806 {
3807 as_bad (_("expected register list"));
3808 ignore_rest_of_line ();
3809 return;
3810 }
3811
3812 demand_empty_rest_of_line ();
3813
3814 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3815 than FSTMX/FLDMX-style ones). */
3816
3817 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3818 if (start >= 16)
3819 num_vfpv3_regs = count;
3820 else if (start + count > 16)
3821 num_vfpv3_regs = start + count - 16;
3822
3823 if (num_vfpv3_regs > 0)
3824 {
3825 int start_offset = start > 16 ? start - 16 : 0;
3826 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3827 add_unwind_opcode (op, 2);
3828 }
3829
3830 /* Generate opcode for registers numbered in the range 0 .. 15. */
3831 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3832 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3833 if (num_regs_below_16 > 0)
3834 {
3835 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3836 add_unwind_opcode (op, 2);
3837 }
3838
3839 unwind.frame_size += count * 8;
3840 }
3841
3842
3843 /* Parse a directive saving VFP registers for pre-ARMv6. */
3844
3845 static void
3846 s_arm_unwind_save_vfp (void)
3847 {
3848 int count;
3849 unsigned int reg;
3850 valueT op;
3851
3852 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3853 if (count == FAIL)
3854 {
3855 as_bad (_("expected register list"));
3856 ignore_rest_of_line ();
3857 return;
3858 }
3859
3860 demand_empty_rest_of_line ();
3861
3862 if (reg == 8)
3863 {
3864 /* Short form. */
3865 op = 0xb8 | (count - 1);
3866 add_unwind_opcode (op, 1);
3867 }
3868 else
3869 {
3870 /* Long form. */
3871 op = 0xb300 | (reg << 4) | (count - 1);
3872 add_unwind_opcode (op, 2);
3873 }
3874 unwind.frame_size += count * 8 + 4;
3875 }
3876
3877
3878 /* Parse a directive saving iWMMXt data registers. */
3879
3880 static void
3881 s_arm_unwind_save_mmxwr (void)
3882 {
3883 int reg;
3884 int hi_reg;
3885 int i;
3886 unsigned mask = 0;
3887 valueT op;
3888
3889 if (*input_line_pointer == '{')
3890 input_line_pointer++;
3891
3892 do
3893 {
3894 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3895
3896 if (reg == FAIL)
3897 {
3898 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3899 goto error;
3900 }
3901
3902 if (mask >> reg)
3903 as_tsktsk (_("register list not in ascending order"));
3904 mask |= 1 << reg;
3905
3906 if (*input_line_pointer == '-')
3907 {
3908 input_line_pointer++;
3909 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3910 if (hi_reg == FAIL)
3911 {
3912 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3913 goto error;
3914 }
3915 else if (reg >= hi_reg)
3916 {
3917 as_bad (_("bad register range"));
3918 goto error;
3919 }
3920 for (; reg < hi_reg; reg++)
3921 mask |= 1 << reg;
3922 }
3923 }
3924 while (skip_past_comma (&input_line_pointer) != FAIL);
3925
3926 if (*input_line_pointer == '}')
3927 input_line_pointer++;
3928
3929 demand_empty_rest_of_line ();
3930
3931 /* Generate any deferred opcodes because we're going to be looking at
3932 the list. */
3933 flush_pending_unwind ();
3934
3935 for (i = 0; i < 16; i++)
3936 {
3937 if (mask & (1 << i))
3938 unwind.frame_size += 8;
3939 }
3940
3941 /* Attempt to combine with a previous opcode. We do this because gcc
3942 likes to output separate unwind directives for a single block of
3943 registers. */
3944 if (unwind.opcode_count > 0)
3945 {
3946 i = unwind.opcodes[unwind.opcode_count - 1];
3947 if ((i & 0xf8) == 0xc0)
3948 {
3949 i &= 7;
3950 /* Only merge if the blocks are contiguous. */
3951 if (i < 6)
3952 {
3953 if ((mask & 0xfe00) == (1 << 9))
3954 {
3955 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3956 unwind.opcode_count--;
3957 }
3958 }
3959 else if (i == 6 && unwind.opcode_count >= 2)
3960 {
3961 i = unwind.opcodes[unwind.opcode_count - 2];
3962 reg = i >> 4;
3963 i &= 0xf;
3964
3965 op = 0xffff << (reg - 1);
3966 if (reg > 0
3967 && ((mask & op) == (1u << (reg - 1))))
3968 {
3969 op = (1 << (reg + i + 1)) - 1;
3970 op &= ~((1 << reg) - 1);
3971 mask |= op;
3972 unwind.opcode_count -= 2;
3973 }
3974 }
3975 }
3976 }
3977
3978 hi_reg = 15;
3979 /* We want to generate opcodes in the order the registers have been
3980 saved, ie. descending order. */
3981 for (reg = 15; reg >= -1; reg--)
3982 {
3983 /* Save registers in blocks. */
3984 if (reg < 0
3985 || !(mask & (1 << reg)))
3986 {
3987 /* We found an unsaved reg. Generate opcodes to save the
3988 preceding block. */
3989 if (reg != hi_reg)
3990 {
3991 if (reg == 9)
3992 {
3993 /* Short form. */
3994 op = 0xc0 | (hi_reg - 10);
3995 add_unwind_opcode (op, 1);
3996 }
3997 else
3998 {
3999 /* Long form. */
4000 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4001 add_unwind_opcode (op, 2);
4002 }
4003 }
4004 hi_reg = reg - 1;
4005 }
4006 }
4007
4008 return;
4009 error:
4010 ignore_rest_of_line ();
4011 }
4012
4013 static void
4014 s_arm_unwind_save_mmxwcg (void)
4015 {
4016 int reg;
4017 int hi_reg;
4018 unsigned mask = 0;
4019 valueT op;
4020
4021 if (*input_line_pointer == '{')
4022 input_line_pointer++;
4023
4024 do
4025 {
4026 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4027
4028 if (reg == FAIL)
4029 {
4030 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4031 goto error;
4032 }
4033
4034 reg -= 8;
4035 if (mask >> reg)
4036 as_tsktsk (_("register list not in ascending order"));
4037 mask |= 1 << reg;
4038
4039 if (*input_line_pointer == '-')
4040 {
4041 input_line_pointer++;
4042 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4043 if (hi_reg == FAIL)
4044 {
4045 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4046 goto error;
4047 }
4048 else if (reg >= hi_reg)
4049 {
4050 as_bad (_("bad register range"));
4051 goto error;
4052 }
4053 for (; reg < hi_reg; reg++)
4054 mask |= 1 << reg;
4055 }
4056 }
4057 while (skip_past_comma (&input_line_pointer) != FAIL);
4058
4059 if (*input_line_pointer == '}')
4060 input_line_pointer++;
4061
4062 demand_empty_rest_of_line ();
4063
4064 /* Generate any deferred opcodes because we're going to be looking at
4065 the list. */
4066 flush_pending_unwind ();
4067
4068 for (reg = 0; reg < 16; reg++)
4069 {
4070 if (mask & (1 << reg))
4071 unwind.frame_size += 4;
4072 }
4073 op = 0xc700 | mask;
4074 add_unwind_opcode (op, 2);
4075 return;
4076 error:
4077 ignore_rest_of_line ();
4078 }
4079
4080
4081 /* Parse an unwind_save directive.
4082 If the argument is non-zero, this is a .vsave directive. */
4083
4084 static void
4085 s_arm_unwind_save (int arch_v6)
4086 {
4087 char *peek;
4088 struct reg_entry *reg;
4089 bfd_boolean had_brace = FALSE;
4090
4091 if (!unwind.proc_start)
4092 as_bad (MISSING_FNSTART);
4093
4094 /* Figure out what sort of save we have. */
4095 peek = input_line_pointer;
4096
4097 if (*peek == '{')
4098 {
4099 had_brace = TRUE;
4100 peek++;
4101 }
4102
4103 reg = arm_reg_parse_multi (&peek);
4104
4105 if (!reg)
4106 {
4107 as_bad (_("register expected"));
4108 ignore_rest_of_line ();
4109 return;
4110 }
4111
4112 switch (reg->type)
4113 {
4114 case REG_TYPE_FN:
4115 if (had_brace)
4116 {
4117 as_bad (_("FPA .unwind_save does not take a register list"));
4118 ignore_rest_of_line ();
4119 return;
4120 }
4121 input_line_pointer = peek;
4122 s_arm_unwind_save_fpa (reg->number);
4123 return;
4124
4125 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4126 case REG_TYPE_VFD:
4127 if (arch_v6)
4128 s_arm_unwind_save_vfp_armv6 ();
4129 else
4130 s_arm_unwind_save_vfp ();
4131 return;
4132 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4133 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4134
4135 default:
4136 as_bad (_(".unwind_save does not support this kind of register"));
4137 ignore_rest_of_line ();
4138 }
4139 }
4140
4141
4142 /* Parse an unwind_movsp directive. */
4143
4144 static void
4145 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4146 {
4147 int reg;
4148 valueT op;
4149 int offset;
4150
4151 if (!unwind.proc_start)
4152 as_bad (MISSING_FNSTART);
4153
4154 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4155 if (reg == FAIL)
4156 {
4157 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4158 ignore_rest_of_line ();
4159 return;
4160 }
4161
4162 /* Optional constant. */
4163 if (skip_past_comma (&input_line_pointer) != FAIL)
4164 {
4165 if (immediate_for_directive (&offset) == FAIL)
4166 return;
4167 }
4168 else
4169 offset = 0;
4170
4171 demand_empty_rest_of_line ();
4172
4173 if (reg == REG_SP || reg == REG_PC)
4174 {
4175 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4176 return;
4177 }
4178
4179 if (unwind.fp_reg != REG_SP)
4180 as_bad (_("unexpected .unwind_movsp directive"));
4181
4182 /* Generate opcode to restore the value. */
4183 op = 0x90 | reg;
4184 add_unwind_opcode (op, 1);
4185
4186 /* Record the information for later. */
4187 unwind.fp_reg = reg;
4188 unwind.fp_offset = unwind.frame_size - offset;
4189 unwind.sp_restored = 1;
4190 }
4191
4192 /* Parse an unwind_pad directive. */
4193
4194 static void
4195 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4196 {
4197 int offset;
4198
4199 if (!unwind.proc_start)
4200 as_bad (MISSING_FNSTART);
4201
4202 if (immediate_for_directive (&offset) == FAIL)
4203 return;
4204
4205 if (offset & 3)
4206 {
4207 as_bad (_("stack increment must be multiple of 4"));
4208 ignore_rest_of_line ();
4209 return;
4210 }
4211
4212 /* Don't generate any opcodes, just record the details for later. */
4213 unwind.frame_size += offset;
4214 unwind.pending_offset += offset;
4215
4216 demand_empty_rest_of_line ();
4217 }
4218
4219 /* Parse an unwind_setfp directive. */
4220
4221 static void
4222 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4223 {
4224 int sp_reg;
4225 int fp_reg;
4226 int offset;
4227
4228 if (!unwind.proc_start)
4229 as_bad (MISSING_FNSTART);
4230
4231 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4232 if (skip_past_comma (&input_line_pointer) == FAIL)
4233 sp_reg = FAIL;
4234 else
4235 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4236
4237 if (fp_reg == FAIL || sp_reg == FAIL)
4238 {
4239 as_bad (_("expected <reg>, <reg>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
4243
4244 /* Optional constant. */
4245 if (skip_past_comma (&input_line_pointer) != FAIL)
4246 {
4247 if (immediate_for_directive (&offset) == FAIL)
4248 return;
4249 }
4250 else
4251 offset = 0;
4252
4253 demand_empty_rest_of_line ();
4254
4255 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4256 {
4257 as_bad (_("register must be either sp or set by a previous"
4258 "unwind_movsp directive"));
4259 return;
4260 }
4261
4262 /* Don't generate any opcodes, just record the information for later. */
4263 unwind.fp_reg = fp_reg;
4264 unwind.fp_used = 1;
4265 if (sp_reg == REG_SP)
4266 unwind.fp_offset = unwind.frame_size - offset;
4267 else
4268 unwind.fp_offset -= offset;
4269 }
4270
4271 /* Parse an unwind_raw directive. */
4272
4273 static void
4274 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4275 {
4276 expressionS exp;
4277 /* This is an arbitrary limit. */
4278 unsigned char op[16];
4279 int count;
4280
4281 if (!unwind.proc_start)
4282 as_bad (MISSING_FNSTART);
4283
4284 expression (&exp);
4285 if (exp.X_op == O_constant
4286 && skip_past_comma (&input_line_pointer) != FAIL)
4287 {
4288 unwind.frame_size += exp.X_add_number;
4289 expression (&exp);
4290 }
4291 else
4292 exp.X_op = O_illegal;
4293
4294 if (exp.X_op != O_constant)
4295 {
4296 as_bad (_("expected <offset>, <opcode>"));
4297 ignore_rest_of_line ();
4298 return;
4299 }
4300
4301 count = 0;
4302
4303 /* Parse the opcode. */
4304 for (;;)
4305 {
4306 if (count >= 16)
4307 {
4308 as_bad (_("unwind opcode too long"));
4309 ignore_rest_of_line ();
4310 }
4311 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4312 {
4313 as_bad (_("invalid unwind opcode"));
4314 ignore_rest_of_line ();
4315 return;
4316 }
4317 op[count++] = exp.X_add_number;
4318
4319 /* Parse the next byte. */
4320 if (skip_past_comma (&input_line_pointer) == FAIL)
4321 break;
4322
4323 expression (&exp);
4324 }
4325
4326 /* Add the opcode bytes in reverse order. */
4327 while (count--)
4328 add_unwind_opcode (op[count], 1);
4329
4330 demand_empty_rest_of_line ();
4331 }
4332
4333
4334 /* Parse a .eabi_attribute directive. */
4335
4336 static void
4337 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4338 {
4339 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4340
4341 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4342 attributes_set_explicitly[tag] = 1;
4343 }
4344
4345 /* Emit a tls fix for the symbol. */
4346
4347 static void
4348 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4349 {
4350 char *p;
4351 expressionS exp;
4352 #ifdef md_flush_pending_output
4353 md_flush_pending_output ();
4354 #endif
4355
4356 #ifdef md_cons_align
4357 md_cons_align (4);
4358 #endif
4359
4360 /* Since we're just labelling the code, there's no need to define a
4361 mapping symbol. */
4362 expression (&exp);
4363 p = obstack_next_free (&frchain_now->frch_obstack);
4364 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4365 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4366 : BFD_RELOC_ARM_TLS_DESCSEQ);
4367 }
4368 #endif /* OBJ_ELF */
4369
4370 static void s_arm_arch (int);
4371 static void s_arm_object_arch (int);
4372 static void s_arm_cpu (int);
4373 static void s_arm_fpu (int);
4374 static void s_arm_arch_extension (int);
4375
4376 #ifdef TE_PE
4377
4378 static void
4379 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4380 {
4381 expressionS exp;
4382
4383 do
4384 {
4385 expression (&exp);
4386 if (exp.X_op == O_symbol)
4387 exp.X_op = O_secrel;
4388
4389 emit_expr (&exp, 4);
4390 }
4391 while (*input_line_pointer++ == ',');
4392
4393 input_line_pointer--;
4394 demand_empty_rest_of_line ();
4395 }
4396 #endif /* TE_PE */
4397
4398 /* This table describes all the machine specific pseudo-ops the assembler
4399 has to support. The fields are:
4400 pseudo-op name without dot
4401 function to call to execute this pseudo-op
4402 Integer arg to pass to the function. */
4403
4404 const pseudo_typeS md_pseudo_table[] =
4405 {
4406 /* Never called because '.req' does not start a line. */
4407 { "req", s_req, 0 },
4408 /* Following two are likewise never called. */
4409 { "dn", s_dn, 0 },
4410 { "qn", s_qn, 0 },
4411 { "unreq", s_unreq, 0 },
4412 { "bss", s_bss, 0 },
4413 { "align", s_align, 0 },
4414 { "arm", s_arm, 0 },
4415 { "thumb", s_thumb, 0 },
4416 { "code", s_code, 0 },
4417 { "force_thumb", s_force_thumb, 0 },
4418 { "thumb_func", s_thumb_func, 0 },
4419 { "thumb_set", s_thumb_set, 0 },
4420 { "even", s_even, 0 },
4421 { "ltorg", s_ltorg, 0 },
4422 { "pool", s_ltorg, 0 },
4423 { "syntax", s_syntax, 0 },
4424 { "cpu", s_arm_cpu, 0 },
4425 { "arch", s_arm_arch, 0 },
4426 { "object_arch", s_arm_object_arch, 0 },
4427 { "fpu", s_arm_fpu, 0 },
4428 { "arch_extension", s_arm_arch_extension, 0 },
4429 #ifdef OBJ_ELF
4430 { "word", s_arm_elf_cons, 4 },
4431 { "long", s_arm_elf_cons, 4 },
4432 { "inst.n", s_arm_elf_inst, 2 },
4433 { "inst.w", s_arm_elf_inst, 4 },
4434 { "inst", s_arm_elf_inst, 0 },
4435 { "rel31", s_arm_rel31, 0 },
4436 { "fnstart", s_arm_unwind_fnstart, 0 },
4437 { "fnend", s_arm_unwind_fnend, 0 },
4438 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4439 { "personality", s_arm_unwind_personality, 0 },
4440 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4441 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4442 { "save", s_arm_unwind_save, 0 },
4443 { "vsave", s_arm_unwind_save, 1 },
4444 { "movsp", s_arm_unwind_movsp, 0 },
4445 { "pad", s_arm_unwind_pad, 0 },
4446 { "setfp", s_arm_unwind_setfp, 0 },
4447 { "unwind_raw", s_arm_unwind_raw, 0 },
4448 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4449 { "tlsdescseq", s_arm_tls_descseq, 0 },
4450 #else
4451 { "word", cons, 4},
4452
4453 /* These are used for dwarf. */
4454 {"2byte", cons, 2},
4455 {"4byte", cons, 4},
4456 {"8byte", cons, 8},
4457 /* These are used for dwarf2. */
4458 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4459 { "loc", dwarf2_directive_loc, 0 },
4460 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4461 #endif
4462 { "extend", float_cons, 'x' },
4463 { "ldouble", float_cons, 'x' },
4464 { "packed", float_cons, 'p' },
4465 #ifdef TE_PE
4466 {"secrel32", pe_directive_secrel, 0},
4467 #endif
4468 { 0, 0, 0 }
4469 };
4470 \f
4471 /* Parser functions used exclusively in instruction operands. */
4472
4473 /* Generic immediate-value read function for use in insn parsing.
4474 STR points to the beginning of the immediate (the leading #);
4475 VAL receives the value; if the value is outside [MIN, MAX]
4476 issue an error. PREFIX_OPT is true if the immediate prefix is
4477 optional. */
4478
4479 static int
4480 parse_immediate (char **str, int *val, int min, int max,
4481 bfd_boolean prefix_opt)
4482 {
4483 expressionS exp;
4484 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4485 if (exp.X_op != O_constant)
4486 {
4487 inst.error = _("constant expression required");
4488 return FAIL;
4489 }
4490
4491 if (exp.X_add_number < min || exp.X_add_number > max)
4492 {
4493 inst.error = _("immediate value out of range");
4494 return FAIL;
4495 }
4496
4497 *val = exp.X_add_number;
4498 return SUCCESS;
4499 }
4500
4501 /* Less-generic immediate-value read function with the possibility of loading a
4502 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4503 instructions. Puts the result directly in inst.operands[i]. */
4504
4505 static int
4506 parse_big_immediate (char **str, int i)
4507 {
4508 expressionS exp;
4509 char *ptr = *str;
4510
4511 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4512
4513 if (exp.X_op == O_constant)
4514 {
4515 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4516 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4517 O_constant. We have to be careful not to break compilation for
4518 32-bit X_add_number, though. */
4519 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4520 {
4521 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4522 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4523 inst.operands[i].regisimm = 1;
4524 }
4525 }
4526 else if (exp.X_op == O_big
4527 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4528 {
4529 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4530
4531 /* Bignums have their least significant bits in
4532 generic_bignum[0]. Make sure we put 32 bits in imm and
4533 32 bits in reg, in a (hopefully) portable way. */
4534 gas_assert (parts != 0);
4535
4536 /* Make sure that the number is not too big.
4537 PR 11972: Bignums can now be sign-extended to the
4538 size of a .octa so check that the out of range bits
4539 are all zero or all one. */
4540 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4541 {
4542 LITTLENUM_TYPE m = -1;
4543
4544 if (generic_bignum[parts * 2] != 0
4545 && generic_bignum[parts * 2] != m)
4546 return FAIL;
4547
4548 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4549 if (generic_bignum[j] != generic_bignum[j-1])
4550 return FAIL;
4551 }
4552
4553 inst.operands[i].imm = 0;
4554 for (j = 0; j < parts; j++, idx++)
4555 inst.operands[i].imm |= generic_bignum[idx]
4556 << (LITTLENUM_NUMBER_OF_BITS * j);
4557 inst.operands[i].reg = 0;
4558 for (j = 0; j < parts; j++, idx++)
4559 inst.operands[i].reg |= generic_bignum[idx]
4560 << (LITTLENUM_NUMBER_OF_BITS * j);
4561 inst.operands[i].regisimm = 1;
4562 }
4563 else
4564 return FAIL;
4565
4566 *str = ptr;
4567
4568 return SUCCESS;
4569 }
4570
4571 /* Returns the pseudo-register number of an FPA immediate constant,
4572 or FAIL if there isn't a valid constant here. */
4573
4574 static int
4575 parse_fpa_immediate (char ** str)
4576 {
4577 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4578 char * save_in;
4579 expressionS exp;
4580 int i;
4581 int j;
4582
4583 /* First try and match exact strings, this is to guarantee
4584 that some formats will work even for cross assembly. */
4585
4586 for (i = 0; fp_const[i]; i++)
4587 {
4588 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4589 {
4590 char *start = *str;
4591
4592 *str += strlen (fp_const[i]);
4593 if (is_end_of_line[(unsigned char) **str])
4594 return i + 8;
4595 *str = start;
4596 }
4597 }
4598
4599 /* Just because we didn't get a match doesn't mean that the constant
4600 isn't valid, just that it is in a format that we don't
4601 automatically recognize. Try parsing it with the standard
4602 expression routines. */
4603
4604 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4605
4606 /* Look for a raw floating point number. */
4607 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4608 && is_end_of_line[(unsigned char) *save_in])
4609 {
4610 for (i = 0; i < NUM_FLOAT_VALS; i++)
4611 {
4612 for (j = 0; j < MAX_LITTLENUMS; j++)
4613 {
4614 if (words[j] != fp_values[i][j])
4615 break;
4616 }
4617
4618 if (j == MAX_LITTLENUMS)
4619 {
4620 *str = save_in;
4621 return i + 8;
4622 }
4623 }
4624 }
4625
4626 /* Try and parse a more complex expression, this will probably fail
4627 unless the code uses a floating point prefix (eg "0f"). */
4628 save_in = input_line_pointer;
4629 input_line_pointer = *str;
4630 if (expression (&exp) == absolute_section
4631 && exp.X_op == O_big
4632 && exp.X_add_number < 0)
4633 {
4634 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4635 Ditto for 15. */
4636 if (gen_to_words (words, 5, (long) 15) == 0)
4637 {
4638 for (i = 0; i < NUM_FLOAT_VALS; i++)
4639 {
4640 for (j = 0; j < MAX_LITTLENUMS; j++)
4641 {
4642 if (words[j] != fp_values[i][j])
4643 break;
4644 }
4645
4646 if (j == MAX_LITTLENUMS)
4647 {
4648 *str = input_line_pointer;
4649 input_line_pointer = save_in;
4650 return i + 8;
4651 }
4652 }
4653 }
4654 }
4655
4656 *str = input_line_pointer;
4657 input_line_pointer = save_in;
4658 inst.error = _("invalid FPA immediate expression");
4659 return FAIL;
4660 }
4661
4662 /* Returns 1 if a number has "quarter-precision" float format
4663 0baBbbbbbc defgh000 00000000 00000000. */
4664
4665 static int
4666 is_quarter_float (unsigned imm)
4667 {
4668 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4669 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4670 }
4671
4672 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4673 0baBbbbbbc defgh000 00000000 00000000.
4674 The zero and minus-zero cases need special handling, since they can't be
4675 encoded in the "quarter-precision" float format, but can nonetheless be
4676 loaded as integer constants. */
4677
4678 static unsigned
4679 parse_qfloat_immediate (char **ccp, int *immed)
4680 {
4681 char *str = *ccp;
4682 char *fpnum;
4683 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4684 int found_fpchar = 0;
4685
4686 skip_past_char (&str, '#');
4687
4688 /* We must not accidentally parse an integer as a floating-point number. Make
4689 sure that the value we parse is not an integer by checking for special
4690 characters '.' or 'e'.
4691 FIXME: This is a horrible hack, but doing better is tricky because type
4692 information isn't in a very usable state at parse time. */
4693 fpnum = str;
4694 skip_whitespace (fpnum);
4695
4696 if (strncmp (fpnum, "0x", 2) == 0)
4697 return FAIL;
4698 else
4699 {
4700 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4701 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4702 {
4703 found_fpchar = 1;
4704 break;
4705 }
4706
4707 if (!found_fpchar)
4708 return FAIL;
4709 }
4710
4711 if ((str = atof_ieee (str, 's', words)) != NULL)
4712 {
4713 unsigned fpword = 0;
4714 int i;
4715
4716 /* Our FP word must be 32 bits (single-precision FP). */
4717 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4718 {
4719 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4720 fpword |= words[i];
4721 }
4722
4723 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4724 *immed = fpword;
4725 else
4726 return FAIL;
4727
4728 *ccp = str;
4729
4730 return SUCCESS;
4731 }
4732
4733 return FAIL;
4734 }
4735
4736 /* Shift operands. */
4737 enum shift_kind
4738 {
4739 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4740 };
4741
4742 struct asm_shift_name
4743 {
4744 const char *name;
4745 enum shift_kind kind;
4746 };
4747
4748 /* Third argument to parse_shift. */
4749 enum parse_shift_mode
4750 {
4751 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4752 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4753 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4754 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4755 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4756 };
4757
4758 /* Parse a <shift> specifier on an ARM data processing instruction.
4759 This has three forms:
4760
4761 (LSL|LSR|ASL|ASR|ROR) Rs
4762 (LSL|LSR|ASL|ASR|ROR) #imm
4763 RRX
4764
4765 Note that ASL is assimilated to LSL in the instruction encoding, and
4766 RRX to ROR #0 (which cannot be written as such). */
4767
4768 static int
4769 parse_shift (char **str, int i, enum parse_shift_mode mode)
4770 {
4771 const struct asm_shift_name *shift_name;
4772 enum shift_kind shift;
4773 char *s = *str;
4774 char *p = s;
4775 int reg;
4776
4777 for (p = *str; ISALPHA (*p); p++)
4778 ;
4779
4780 if (p == *str)
4781 {
4782 inst.error = _("shift expression expected");
4783 return FAIL;
4784 }
4785
4786 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4787 p - *str);
4788
4789 if (shift_name == NULL)
4790 {
4791 inst.error = _("shift expression expected");
4792 return FAIL;
4793 }
4794
4795 shift = shift_name->kind;
4796
4797 switch (mode)
4798 {
4799 case NO_SHIFT_RESTRICT:
4800 case SHIFT_IMMEDIATE: break;
4801
4802 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4803 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4804 {
4805 inst.error = _("'LSL' or 'ASR' required");
4806 return FAIL;
4807 }
4808 break;
4809
4810 case SHIFT_LSL_IMMEDIATE:
4811 if (shift != SHIFT_LSL)
4812 {
4813 inst.error = _("'LSL' required");
4814 return FAIL;
4815 }
4816 break;
4817
4818 case SHIFT_ASR_IMMEDIATE:
4819 if (shift != SHIFT_ASR)
4820 {
4821 inst.error = _("'ASR' required");
4822 return FAIL;
4823 }
4824 break;
4825
4826 default: abort ();
4827 }
4828
4829 if (shift != SHIFT_RRX)
4830 {
4831 /* Whitespace can appear here if the next thing is a bare digit. */
4832 skip_whitespace (p);
4833
4834 if (mode == NO_SHIFT_RESTRICT
4835 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4836 {
4837 inst.operands[i].imm = reg;
4838 inst.operands[i].immisreg = 1;
4839 }
4840 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4841 return FAIL;
4842 }
4843 inst.operands[i].shift_kind = shift;
4844 inst.operands[i].shifted = 1;
4845 *str = p;
4846 return SUCCESS;
4847 }
4848
4849 /* Parse a <shifter_operand> for an ARM data processing instruction:
4850
4851 #<immediate>
4852 #<immediate>, <rotate>
4853 <Rm>
4854 <Rm>, <shift>
4855
4856 where <shift> is defined by parse_shift above, and <rotate> is a
4857 multiple of 2 between 0 and 30. Validation of immediate operands
4858 is deferred to md_apply_fix. */
4859
4860 static int
4861 parse_shifter_operand (char **str, int i)
4862 {
4863 int value;
4864 expressionS exp;
4865
4866 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4867 {
4868 inst.operands[i].reg = value;
4869 inst.operands[i].isreg = 1;
4870
4871 /* parse_shift will override this if appropriate */
4872 inst.reloc.exp.X_op = O_constant;
4873 inst.reloc.exp.X_add_number = 0;
4874
4875 if (skip_past_comma (str) == FAIL)
4876 return SUCCESS;
4877
4878 /* Shift operation on register. */
4879 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4880 }
4881
4882 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4883 return FAIL;
4884
4885 if (skip_past_comma (str) == SUCCESS)
4886 {
4887 /* #x, y -- ie explicit rotation by Y. */
4888 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4889 return FAIL;
4890
4891 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4892 {
4893 inst.error = _("constant expression expected");
4894 return FAIL;
4895 }
4896
4897 value = exp.X_add_number;
4898 if (value < 0 || value > 30 || value % 2 != 0)
4899 {
4900 inst.error = _("invalid rotation");
4901 return FAIL;
4902 }
4903 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4904 {
4905 inst.error = _("invalid constant");
4906 return FAIL;
4907 }
4908
4909 /* Encode as specified. */
4910 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4911 return SUCCESS;
4912 }
4913
4914 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4915 inst.reloc.pc_rel = 0;
4916 return SUCCESS;
4917 }
4918
4919 /* Group relocation information. Each entry in the table contains the
4920 textual name of the relocation as may appear in assembler source
4921 and must end with a colon.
4922 Along with this textual name are the relocation codes to be used if
4923 the corresponding instruction is an ALU instruction (ADD or SUB only),
4924 an LDR, an LDRS, or an LDC. */
4925
4926 struct group_reloc_table_entry
4927 {
4928 const char *name;
4929 int alu_code;
4930 int ldr_code;
4931 int ldrs_code;
4932 int ldc_code;
4933 };
4934
4935 typedef enum
4936 {
4937 /* Varieties of non-ALU group relocation. */
4938
4939 GROUP_LDR,
4940 GROUP_LDRS,
4941 GROUP_LDC
4942 } group_reloc_type;
4943
4944 static struct group_reloc_table_entry group_reloc_table[] =
4945 { /* Program counter relative: */
4946 { "pc_g0_nc",
4947 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4948 0, /* LDR */
4949 0, /* LDRS */
4950 0 }, /* LDC */
4951 { "pc_g0",
4952 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4953 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4954 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4955 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4956 { "pc_g1_nc",
4957 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4958 0, /* LDR */
4959 0, /* LDRS */
4960 0 }, /* LDC */
4961 { "pc_g1",
4962 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4963 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4964 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4965 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4966 { "pc_g2",
4967 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4968 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4969 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4970 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4971 /* Section base relative */
4972 { "sb_g0_nc",
4973 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4974 0, /* LDR */
4975 0, /* LDRS */
4976 0 }, /* LDC */
4977 { "sb_g0",
4978 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4979 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4980 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4981 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4982 { "sb_g1_nc",
4983 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4984 0, /* LDR */
4985 0, /* LDRS */
4986 0 }, /* LDC */
4987 { "sb_g1",
4988 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4989 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4990 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4991 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4992 { "sb_g2",
4993 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4994 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4995 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4996 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4997
4998 /* Given the address of a pointer pointing to the textual name of a group
4999 relocation as may appear in assembler source, attempt to find its details
5000 in group_reloc_table. The pointer will be updated to the character after
5001 the trailing colon. On failure, FAIL will be returned; SUCCESS
5002 otherwise. On success, *entry will be updated to point at the relevant
5003 group_reloc_table entry. */
5004
5005 static int
5006 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5007 {
5008 unsigned int i;
5009 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5010 {
5011 int length = strlen (group_reloc_table[i].name);
5012
5013 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5014 && (*str)[length] == ':')
5015 {
5016 *out = &group_reloc_table[i];
5017 *str += (length + 1);
5018 return SUCCESS;
5019 }
5020 }
5021
5022 return FAIL;
5023 }
5024
5025 /* Parse a <shifter_operand> for an ARM data processing instruction
5026 (as for parse_shifter_operand) where group relocations are allowed:
5027
5028 #<immediate>
5029 #<immediate>, <rotate>
5030 #:<group_reloc>:<expression>
5031 <Rm>
5032 <Rm>, <shift>
5033
5034 where <group_reloc> is one of the strings defined in group_reloc_table.
5035 The hashes are optional.
5036
5037 Everything else is as for parse_shifter_operand. */
5038
5039 static parse_operand_result
5040 parse_shifter_operand_group_reloc (char **str, int i)
5041 {
5042 /* Determine if we have the sequence of characters #: or just :
5043 coming next. If we do, then we check for a group relocation.
5044 If we don't, punt the whole lot to parse_shifter_operand. */
5045
5046 if (((*str)[0] == '#' && (*str)[1] == ':')
5047 || (*str)[0] == ':')
5048 {
5049 struct group_reloc_table_entry *entry;
5050
5051 if ((*str)[0] == '#')
5052 (*str) += 2;
5053 else
5054 (*str)++;
5055
5056 /* Try to parse a group relocation. Anything else is an error. */
5057 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5058 {
5059 inst.error = _("unknown group relocation");
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061 }
5062
5063 /* We now have the group relocation table entry corresponding to
5064 the name in the assembler source. Next, we parse the expression. */
5065 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5066 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5067
5068 /* Record the relocation type (always the ALU variant here). */
5069 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5070 gas_assert (inst.reloc.type != 0);
5071
5072 return PARSE_OPERAND_SUCCESS;
5073 }
5074 else
5075 return parse_shifter_operand (str, i) == SUCCESS
5076 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5077
5078 /* Never reached. */
5079 }
5080
5081 /* Parse a Neon alignment expression. Information is written to
5082 inst.operands[i]. We assume the initial ':' has been skipped.
5083
5084 align .imm = align << 8, .immisalign=1, .preind=0 */
5085 static parse_operand_result
5086 parse_neon_alignment (char **str, int i)
5087 {
5088 char *p = *str;
5089 expressionS exp;
5090
5091 my_get_expression (&exp, &p, GE_NO_PREFIX);
5092
5093 if (exp.X_op != O_constant)
5094 {
5095 inst.error = _("alignment must be constant");
5096 return PARSE_OPERAND_FAIL;
5097 }
5098
5099 inst.operands[i].imm = exp.X_add_number << 8;
5100 inst.operands[i].immisalign = 1;
5101 /* Alignments are not pre-indexes. */
5102 inst.operands[i].preind = 0;
5103
5104 *str = p;
5105 return PARSE_OPERAND_SUCCESS;
5106 }
5107
5108 /* Parse all forms of an ARM address expression. Information is written
5109 to inst.operands[i] and/or inst.reloc.
5110
5111 Preindexed addressing (.preind=1):
5112
5113 [Rn, #offset] .reg=Rn .reloc.exp=offset
5114 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5116 .shift_kind=shift .reloc.exp=shift_imm
5117
5118 These three may have a trailing ! which causes .writeback to be set also.
5119
5120 Postindexed addressing (.postind=1, .writeback=1):
5121
5122 [Rn], #offset .reg=Rn .reloc.exp=offset
5123 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
5126
5127 Unindexed addressing (.preind=0, .postind=0):
5128
5129 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5130
5131 Other:
5132
5133 [Rn]{!} shorthand for [Rn,#0]{!}
5134 =immediate .isreg=0 .reloc.exp=immediate
5135 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5136
5137 It is the caller's responsibility to check for addressing modes not
5138 supported by the instruction, and to set inst.reloc.type. */
5139
5140 static parse_operand_result
5141 parse_address_main (char **str, int i, int group_relocations,
5142 group_reloc_type group_type)
5143 {
5144 char *p = *str;
5145 int reg;
5146
5147 if (skip_past_char (&p, '[') == FAIL)
5148 {
5149 if (skip_past_char (&p, '=') == FAIL)
5150 {
5151 /* Bare address - translate to PC-relative offset. */
5152 inst.reloc.pc_rel = 1;
5153 inst.operands[i].reg = REG_PC;
5154 inst.operands[i].isreg = 1;
5155 inst.operands[i].preind = 1;
5156 }
5157 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5158
5159 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5160 return PARSE_OPERAND_FAIL;
5161
5162 *str = p;
5163 return PARSE_OPERAND_SUCCESS;
5164 }
5165
5166 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5167 {
5168 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5169 return PARSE_OPERAND_FAIL;
5170 }
5171 inst.operands[i].reg = reg;
5172 inst.operands[i].isreg = 1;
5173
5174 if (skip_past_comma (&p) == SUCCESS)
5175 {
5176 inst.operands[i].preind = 1;
5177
5178 if (*p == '+') p++;
5179 else if (*p == '-') p++, inst.operands[i].negative = 1;
5180
5181 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5182 {
5183 inst.operands[i].imm = reg;
5184 inst.operands[i].immisreg = 1;
5185
5186 if (skip_past_comma (&p) == SUCCESS)
5187 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5188 return PARSE_OPERAND_FAIL;
5189 }
5190 else if (skip_past_char (&p, ':') == SUCCESS)
5191 {
5192 /* FIXME: '@' should be used here, but it's filtered out by generic
5193 code before we get to see it here. This may be subject to
5194 change. */
5195 parse_operand_result result = parse_neon_alignment (&p, i);
5196
5197 if (result != PARSE_OPERAND_SUCCESS)
5198 return result;
5199 }
5200 else
5201 {
5202 if (inst.operands[i].negative)
5203 {
5204 inst.operands[i].negative = 0;
5205 p--;
5206 }
5207
5208 if (group_relocations
5209 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5210 {
5211 struct group_reloc_table_entry *entry;
5212
5213 /* Skip over the #: or : sequence. */
5214 if (*p == '#')
5215 p += 2;
5216 else
5217 p++;
5218
5219 /* Try to parse a group relocation. Anything else is an
5220 error. */
5221 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5222 {
5223 inst.error = _("unknown group relocation");
5224 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5225 }
5226
5227 /* We now have the group relocation table entry corresponding to
5228 the name in the assembler source. Next, we parse the
5229 expression. */
5230 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5231 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5232
5233 /* Record the relocation type. */
5234 switch (group_type)
5235 {
5236 case GROUP_LDR:
5237 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5238 break;
5239
5240 case GROUP_LDRS:
5241 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5242 break;
5243
5244 case GROUP_LDC:
5245 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5246 break;
5247
5248 default:
5249 gas_assert (0);
5250 }
5251
5252 if (inst.reloc.type == 0)
5253 {
5254 inst.error = _("this group relocation is not allowed on this instruction");
5255 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5256 }
5257 }
5258 else
5259 {
5260 char *q = p;
5261 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5262 return PARSE_OPERAND_FAIL;
5263 /* If the offset is 0, find out if it's a +0 or -0. */
5264 if (inst.reloc.exp.X_op == O_constant
5265 && inst.reloc.exp.X_add_number == 0)
5266 {
5267 skip_whitespace (q);
5268 if (*q == '#')
5269 {
5270 q++;
5271 skip_whitespace (q);
5272 }
5273 if (*q == '-')
5274 inst.operands[i].negative = 1;
5275 }
5276 }
5277 }
5278 }
5279 else if (skip_past_char (&p, ':') == SUCCESS)
5280 {
5281 /* FIXME: '@' should be used here, but it's filtered out by generic code
5282 before we get to see it here. This may be subject to change. */
5283 parse_operand_result result = parse_neon_alignment (&p, i);
5284
5285 if (result != PARSE_OPERAND_SUCCESS)
5286 return result;
5287 }
5288
5289 if (skip_past_char (&p, ']') == FAIL)
5290 {
5291 inst.error = _("']' expected");
5292 return PARSE_OPERAND_FAIL;
5293 }
5294
5295 if (skip_past_char (&p, '!') == SUCCESS)
5296 inst.operands[i].writeback = 1;
5297
5298 else if (skip_past_comma (&p) == SUCCESS)
5299 {
5300 if (skip_past_char (&p, '{') == SUCCESS)
5301 {
5302 /* [Rn], {expr} - unindexed, with option */
5303 if (parse_immediate (&p, &inst.operands[i].imm,
5304 0, 255, TRUE) == FAIL)
5305 return PARSE_OPERAND_FAIL;
5306
5307 if (skip_past_char (&p, '}') == FAIL)
5308 {
5309 inst.error = _("'}' expected at end of 'option' field");
5310 return PARSE_OPERAND_FAIL;
5311 }
5312 if (inst.operands[i].preind)
5313 {
5314 inst.error = _("cannot combine index with option");
5315 return PARSE_OPERAND_FAIL;
5316 }
5317 *str = p;
5318 return PARSE_OPERAND_SUCCESS;
5319 }
5320 else
5321 {
5322 inst.operands[i].postind = 1;
5323 inst.operands[i].writeback = 1;
5324
5325 if (inst.operands[i].preind)
5326 {
5327 inst.error = _("cannot combine pre- and post-indexing");
5328 return PARSE_OPERAND_FAIL;
5329 }
5330
5331 if (*p == '+') p++;
5332 else if (*p == '-') p++, inst.operands[i].negative = 1;
5333
5334 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5335 {
5336 /* We might be using the immediate for alignment already. If we
5337 are, OR the register number into the low-order bits. */
5338 if (inst.operands[i].immisalign)
5339 inst.operands[i].imm |= reg;
5340 else
5341 inst.operands[i].imm = reg;
5342 inst.operands[i].immisreg = 1;
5343
5344 if (skip_past_comma (&p) == SUCCESS)
5345 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5346 return PARSE_OPERAND_FAIL;
5347 }
5348 else
5349 {
5350 char *q = p;
5351 if (inst.operands[i].negative)
5352 {
5353 inst.operands[i].negative = 0;
5354 p--;
5355 }
5356 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5357 return PARSE_OPERAND_FAIL;
5358 /* If the offset is 0, find out if it's a +0 or -0. */
5359 if (inst.reloc.exp.X_op == O_constant
5360 && inst.reloc.exp.X_add_number == 0)
5361 {
5362 skip_whitespace (q);
5363 if (*q == '#')
5364 {
5365 q++;
5366 skip_whitespace (q);
5367 }
5368 if (*q == '-')
5369 inst.operands[i].negative = 1;
5370 }
5371 }
5372 }
5373 }
5374
5375 /* If at this point neither .preind nor .postind is set, we have a
5376 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5377 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5378 {
5379 inst.operands[i].preind = 1;
5380 inst.reloc.exp.X_op = O_constant;
5381 inst.reloc.exp.X_add_number = 0;
5382 }
5383 *str = p;
5384 return PARSE_OPERAND_SUCCESS;
5385 }
5386
5387 static int
5388 parse_address (char **str, int i)
5389 {
5390 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5391 ? SUCCESS : FAIL;
5392 }
5393
5394 static parse_operand_result
5395 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5396 {
5397 return parse_address_main (str, i, 1, type);
5398 }
5399
5400 /* Parse an operand for a MOVW or MOVT instruction. */
5401 static int
5402 parse_half (char **str)
5403 {
5404 char * p;
5405
5406 p = *str;
5407 skip_past_char (&p, '#');
5408 if (strncasecmp (p, ":lower16:", 9) == 0)
5409 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5410 else if (strncasecmp (p, ":upper16:", 9) == 0)
5411 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5412
5413 if (inst.reloc.type != BFD_RELOC_UNUSED)
5414 {
5415 p += 9;
5416 skip_whitespace (p);
5417 }
5418
5419 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5420 return FAIL;
5421
5422 if (inst.reloc.type == BFD_RELOC_UNUSED)
5423 {
5424 if (inst.reloc.exp.X_op != O_constant)
5425 {
5426 inst.error = _("constant expression expected");
5427 return FAIL;
5428 }
5429 if (inst.reloc.exp.X_add_number < 0
5430 || inst.reloc.exp.X_add_number > 0xffff)
5431 {
5432 inst.error = _("immediate value out of range");
5433 return FAIL;
5434 }
5435 }
5436 *str = p;
5437 return SUCCESS;
5438 }
5439
5440 /* Miscellaneous. */
5441
5442 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5443 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5444 static int
5445 parse_psr (char **str, bfd_boolean lhs)
5446 {
5447 char *p;
5448 unsigned long psr_field;
5449 const struct asm_psr *psr;
5450 char *start;
5451 bfd_boolean is_apsr = FALSE;
5452 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5453
5454 /* PR gas/12698: If the user has specified -march=all then m_profile will
5455 be TRUE, but we want to ignore it in this case as we are building for any
5456 CPU type, including non-m variants. */
5457 if (selected_cpu.core == arm_arch_any.core)
5458 m_profile = FALSE;
5459
5460 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5461 feature for ease of use and backwards compatibility. */
5462 p = *str;
5463 if (strncasecmp (p, "SPSR", 4) == 0)
5464 {
5465 if (m_profile)
5466 goto unsupported_psr;
5467
5468 psr_field = SPSR_BIT;
5469 }
5470 else if (strncasecmp (p, "CPSR", 4) == 0)
5471 {
5472 if (m_profile)
5473 goto unsupported_psr;
5474
5475 psr_field = 0;
5476 }
5477 else if (strncasecmp (p, "APSR", 4) == 0)
5478 {
5479 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5480 and ARMv7-R architecture CPUs. */
5481 is_apsr = TRUE;
5482 psr_field = 0;
5483 }
5484 else if (m_profile)
5485 {
5486 start = p;
5487 do
5488 p++;
5489 while (ISALNUM (*p) || *p == '_');
5490
5491 if (strncasecmp (start, "iapsr", 5) == 0
5492 || strncasecmp (start, "eapsr", 5) == 0
5493 || strncasecmp (start, "xpsr", 4) == 0
5494 || strncasecmp (start, "psr", 3) == 0)
5495 p = start + strcspn (start, "rR") + 1;
5496
5497 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5498 p - start);
5499
5500 if (!psr)
5501 return FAIL;
5502
5503 /* If APSR is being written, a bitfield may be specified. Note that
5504 APSR itself is handled above. */
5505 if (psr->field <= 3)
5506 {
5507 psr_field = psr->field;
5508 is_apsr = TRUE;
5509 goto check_suffix;
5510 }
5511
5512 *str = p;
5513 /* M-profile MSR instructions have the mask field set to "10", except
5514 *PSR variants which modify APSR, which may use a different mask (and
5515 have been handled already). Do that by setting the PSR_f field
5516 here. */
5517 return psr->field | (lhs ? PSR_f : 0);
5518 }
5519 else
5520 goto unsupported_psr;
5521
5522 p += 4;
5523 check_suffix:
5524 if (*p == '_')
5525 {
5526 /* A suffix follows. */
5527 p++;
5528 start = p;
5529
5530 do
5531 p++;
5532 while (ISALNUM (*p) || *p == '_');
5533
5534 if (is_apsr)
5535 {
5536 /* APSR uses a notation for bits, rather than fields. */
5537 unsigned int nzcvq_bits = 0;
5538 unsigned int g_bit = 0;
5539 char *bit;
5540
5541 for (bit = start; bit != p; bit++)
5542 {
5543 switch (TOLOWER (*bit))
5544 {
5545 case 'n':
5546 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5547 break;
5548
5549 case 'z':
5550 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5551 break;
5552
5553 case 'c':
5554 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5555 break;
5556
5557 case 'v':
5558 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5559 break;
5560
5561 case 'q':
5562 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5563 break;
5564
5565 case 'g':
5566 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5567 break;
5568
5569 default:
5570 inst.error = _("unexpected bit specified after APSR");
5571 return FAIL;
5572 }
5573 }
5574
5575 if (nzcvq_bits == 0x1f)
5576 psr_field |= PSR_f;
5577
5578 if (g_bit == 0x1)
5579 {
5580 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5581 {
5582 inst.error = _("selected processor does not "
5583 "support DSP extension");
5584 return FAIL;
5585 }
5586
5587 psr_field |= PSR_s;
5588 }
5589
5590 if ((nzcvq_bits & 0x20) != 0
5591 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5592 || (g_bit & 0x2) != 0)
5593 {
5594 inst.error = _("bad bitmask specified after APSR");
5595 return FAIL;
5596 }
5597 }
5598 else
5599 {
5600 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5601 p - start);
5602 if (!psr)
5603 goto error;
5604
5605 psr_field |= psr->field;
5606 }
5607 }
5608 else
5609 {
5610 if (ISALNUM (*p))
5611 goto error; /* Garbage after "[CS]PSR". */
5612
5613 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5614 is deprecated, but allow it anyway. */
5615 if (is_apsr && lhs)
5616 {
5617 psr_field |= PSR_f;
5618 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5619 "deprecated"));
5620 }
5621 else if (!m_profile)
5622 /* These bits are never right for M-profile devices: don't set them
5623 (only code paths which read/write APSR reach here). */
5624 psr_field |= (PSR_c | PSR_f);
5625 }
5626 *str = p;
5627 return psr_field;
5628
5629 unsupported_psr:
5630 inst.error = _("selected processor does not support requested special "
5631 "purpose register");
5632 return FAIL;
5633
5634 error:
5635 inst.error = _("flag for {c}psr instruction expected");
5636 return FAIL;
5637 }
5638
5639 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5640 value suitable for splatting into the AIF field of the instruction. */
5641
5642 static int
5643 parse_cps_flags (char **str)
5644 {
5645 int val = 0;
5646 int saw_a_flag = 0;
5647 char *s = *str;
5648
5649 for (;;)
5650 switch (*s++)
5651 {
5652 case '\0': case ',':
5653 goto done;
5654
5655 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5656 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5657 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5658
5659 default:
5660 inst.error = _("unrecognized CPS flag");
5661 return FAIL;
5662 }
5663
5664 done:
5665 if (saw_a_flag == 0)
5666 {
5667 inst.error = _("missing CPS flags");
5668 return FAIL;
5669 }
5670
5671 *str = s - 1;
5672 return val;
5673 }
5674
5675 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5676 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5677
5678 static int
5679 parse_endian_specifier (char **str)
5680 {
5681 int little_endian;
5682 char *s = *str;
5683
5684 if (strncasecmp (s, "BE", 2))
5685 little_endian = 0;
5686 else if (strncasecmp (s, "LE", 2))
5687 little_endian = 1;
5688 else
5689 {
5690 inst.error = _("valid endian specifiers are be or le");
5691 return FAIL;
5692 }
5693
5694 if (ISALNUM (s[2]) || s[2] == '_')
5695 {
5696 inst.error = _("valid endian specifiers are be or le");
5697 return FAIL;
5698 }
5699
5700 *str = s + 2;
5701 return little_endian;
5702 }
5703
5704 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5705 value suitable for poking into the rotate field of an sxt or sxta
5706 instruction, or FAIL on error. */
5707
5708 static int
5709 parse_ror (char **str)
5710 {
5711 int rot;
5712 char *s = *str;
5713
5714 if (strncasecmp (s, "ROR", 3) == 0)
5715 s += 3;
5716 else
5717 {
5718 inst.error = _("missing rotation field after comma");
5719 return FAIL;
5720 }
5721
5722 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5723 return FAIL;
5724
5725 switch (rot)
5726 {
5727 case 0: *str = s; return 0x0;
5728 case 8: *str = s; return 0x1;
5729 case 16: *str = s; return 0x2;
5730 case 24: *str = s; return 0x3;
5731
5732 default:
5733 inst.error = _("rotation can only be 0, 8, 16, or 24");
5734 return FAIL;
5735 }
5736 }
5737
5738 /* Parse a conditional code (from conds[] below). The value returned is in the
5739 range 0 .. 14, or FAIL. */
5740 static int
5741 parse_cond (char **str)
5742 {
5743 char *q;
5744 const struct asm_cond *c;
5745 int n;
5746 /* Condition codes are always 2 characters, so matching up to
5747 3 characters is sufficient. */
5748 char cond[3];
5749
5750 q = *str;
5751 n = 0;
5752 while (ISALPHA (*q) && n < 3)
5753 {
5754 cond[n] = TOLOWER (*q);
5755 q++;
5756 n++;
5757 }
5758
5759 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5760 if (!c)
5761 {
5762 inst.error = _("condition required");
5763 return FAIL;
5764 }
5765
5766 *str = q;
5767 return c->value;
5768 }
5769
5770 /* If the given feature available in the selected CPU, mark it as used.
5771 Returns TRUE iff feature is available. */
5772 static bfd_boolean
5773 mark_feature_used (const arm_feature_set *feature)
5774 {
5775 /* Ensure the option is valid on the current architecture. */
5776 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5777 return FALSE;
5778
5779 /* Add the appropriate architecture feature for the barrier option used.
5780 */
5781 if (thumb_mode)
5782 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5783 else
5784 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5785
5786 return TRUE;
5787 }
5788
5789 /* Parse an option for a barrier instruction. Returns the encoding for the
5790 option, or FAIL. */
5791 static int
5792 parse_barrier (char **str)
5793 {
5794 char *p, *q;
5795 const struct asm_barrier_opt *o;
5796
5797 p = q = *str;
5798 while (ISALPHA (*q))
5799 q++;
5800
5801 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5802 q - p);
5803 if (!o)
5804 return FAIL;
5805
5806 if (!mark_feature_used (&o->arch))
5807 return FAIL;
5808
5809 *str = q;
5810 return o->value;
5811 }
5812
5813 /* Parse the operands of a table branch instruction. Similar to a memory
5814 operand. */
5815 static int
5816 parse_tb (char **str)
5817 {
5818 char * p = *str;
5819 int reg;
5820
5821 if (skip_past_char (&p, '[') == FAIL)
5822 {
5823 inst.error = _("'[' expected");
5824 return FAIL;
5825 }
5826
5827 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5828 {
5829 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5830 return FAIL;
5831 }
5832 inst.operands[0].reg = reg;
5833
5834 if (skip_past_comma (&p) == FAIL)
5835 {
5836 inst.error = _("',' expected");
5837 return FAIL;
5838 }
5839
5840 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5841 {
5842 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5843 return FAIL;
5844 }
5845 inst.operands[0].imm = reg;
5846
5847 if (skip_past_comma (&p) == SUCCESS)
5848 {
5849 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5850 return FAIL;
5851 if (inst.reloc.exp.X_add_number != 1)
5852 {
5853 inst.error = _("invalid shift");
5854 return FAIL;
5855 }
5856 inst.operands[0].shifted = 1;
5857 }
5858
5859 if (skip_past_char (&p, ']') == FAIL)
5860 {
5861 inst.error = _("']' expected");
5862 return FAIL;
5863 }
5864 *str = p;
5865 return SUCCESS;
5866 }
5867
5868 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5869 information on the types the operands can take and how they are encoded.
5870 Up to four operands may be read; this function handles setting the
5871 ".present" field for each read operand itself.
5872 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5873 else returns FAIL. */
5874
5875 static int
5876 parse_neon_mov (char **str, int *which_operand)
5877 {
5878 int i = *which_operand, val;
5879 enum arm_reg_type rtype;
5880 char *ptr = *str;
5881 struct neon_type_el optype;
5882
5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5884 {
5885 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
5888 inst.operands[i].vectype = optype;
5889 inst.operands[i++].present = 1;
5890
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5893
5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5895 goto wanted_arm;
5896
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i].present = 1;
5900 }
5901 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5902 != FAIL)
5903 {
5904 /* Cases 0, 1, 2, 3, 5 (D only). */
5905 if (skip_past_comma (&ptr) == FAIL)
5906 goto wanted_comma;
5907
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
5910 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5912 inst.operands[i].isvec = 1;
5913 inst.operands[i].vectype = optype;
5914 inst.operands[i++].present = 1;
5915
5916 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5917 {
5918 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5919 Case 13: VMOV <Sd>, <Rm> */
5920 inst.operands[i].reg = val;
5921 inst.operands[i].isreg = 1;
5922 inst.operands[i].present = 1;
5923
5924 if (rtype == REG_TYPE_NQ)
5925 {
5926 first_error (_("can't use Neon quad register here"));
5927 return FAIL;
5928 }
5929 else if (rtype != REG_TYPE_VFS)
5930 {
5931 i++;
5932 if (skip_past_comma (&ptr) == FAIL)
5933 goto wanted_comma;
5934 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5935 goto wanted_arm;
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].present = 1;
5939 }
5940 }
5941 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5942 &optype)) != FAIL)
5943 {
5944 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5945 Case 1: VMOV<c><q> <Dd>, <Dm>
5946 Case 8: VMOV.F32 <Sd>, <Sm>
5947 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5948
5949 inst.operands[i].reg = val;
5950 inst.operands[i].isreg = 1;
5951 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5952 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5953 inst.operands[i].isvec = 1;
5954 inst.operands[i].vectype = optype;
5955 inst.operands[i].present = 1;
5956
5957 if (skip_past_comma (&ptr) == SUCCESS)
5958 {
5959 /* Case 15. */
5960 i++;
5961
5962 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5963 goto wanted_arm;
5964
5965 inst.operands[i].reg = val;
5966 inst.operands[i].isreg = 1;
5967 inst.operands[i++].present = 1;
5968
5969 if (skip_past_comma (&ptr) == FAIL)
5970 goto wanted_comma;
5971
5972 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5973 goto wanted_arm;
5974
5975 inst.operands[i].reg = val;
5976 inst.operands[i].isreg = 1;
5977 inst.operands[i].present = 1;
5978 }
5979 }
5980 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5981 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5982 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5983 Case 10: VMOV.F32 <Sd>, #<imm>
5984 Case 11: VMOV.F64 <Dd>, #<imm> */
5985 inst.operands[i].immisfloat = 1;
5986 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5987 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5988 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5989 ;
5990 else
5991 {
5992 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5993 return FAIL;
5994 }
5995 }
5996 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5997 {
5998 /* Cases 6, 7. */
5999 inst.operands[i].reg = val;
6000 inst.operands[i].isreg = 1;
6001 inst.operands[i++].present = 1;
6002
6003 if (skip_past_comma (&ptr) == FAIL)
6004 goto wanted_comma;
6005
6006 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6007 {
6008 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6009 inst.operands[i].reg = val;
6010 inst.operands[i].isscalar = 1;
6011 inst.operands[i].present = 1;
6012 inst.operands[i].vectype = optype;
6013 }
6014 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6015 {
6016 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6017 inst.operands[i].reg = val;
6018 inst.operands[i].isreg = 1;
6019 inst.operands[i++].present = 1;
6020
6021 if (skip_past_comma (&ptr) == FAIL)
6022 goto wanted_comma;
6023
6024 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6025 == FAIL)
6026 {
6027 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6028 return FAIL;
6029 }
6030
6031 inst.operands[i].reg = val;
6032 inst.operands[i].isreg = 1;
6033 inst.operands[i].isvec = 1;
6034 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6035 inst.operands[i].vectype = optype;
6036 inst.operands[i].present = 1;
6037
6038 if (rtype == REG_TYPE_VFS)
6039 {
6040 /* Case 14. */
6041 i++;
6042 if (skip_past_comma (&ptr) == FAIL)
6043 goto wanted_comma;
6044 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6045 &optype)) == FAIL)
6046 {
6047 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6048 return FAIL;
6049 }
6050 inst.operands[i].reg = val;
6051 inst.operands[i].isreg = 1;
6052 inst.operands[i].isvec = 1;
6053 inst.operands[i].issingle = 1;
6054 inst.operands[i].vectype = optype;
6055 inst.operands[i].present = 1;
6056 }
6057 }
6058 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6059 != FAIL)
6060 {
6061 /* Case 13. */
6062 inst.operands[i].reg = val;
6063 inst.operands[i].isreg = 1;
6064 inst.operands[i].isvec = 1;
6065 inst.operands[i].issingle = 1;
6066 inst.operands[i].vectype = optype;
6067 inst.operands[i].present = 1;
6068 }
6069 }
6070 else
6071 {
6072 first_error (_("parse error"));
6073 return FAIL;
6074 }
6075
6076 /* Successfully parsed the operands. Update args. */
6077 *which_operand = i;
6078 *str = ptr;
6079 return SUCCESS;
6080
6081 wanted_comma:
6082 first_error (_("expected comma"));
6083 return FAIL;
6084
6085 wanted_arm:
6086 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6087 return FAIL;
6088 }
6089
6090 /* Use this macro when the operand constraints are different
6091 for ARM and THUMB (e.g. ldrd). */
6092 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6093 ((arm_operand) | ((thumb_operand) << 16))
6094
6095 /* Matcher codes for parse_operands. */
6096 enum operand_parse_code
6097 {
6098 OP_stop, /* end of line */
6099
6100 OP_RR, /* ARM register */
6101 OP_RRnpc, /* ARM register, not r15 */
6102 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6103 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6104 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6105 optional trailing ! */
6106 OP_RRw, /* ARM register, not r15, optional trailing ! */
6107 OP_RCP, /* Coprocessor number */
6108 OP_RCN, /* Coprocessor register */
6109 OP_RF, /* FPA register */
6110 OP_RVS, /* VFP single precision register */
6111 OP_RVD, /* VFP double precision register (0..15) */
6112 OP_RND, /* Neon double precision register (0..31) */
6113 OP_RNQ, /* Neon quad precision register */
6114 OP_RVSD, /* VFP single or double precision register */
6115 OP_RNDQ, /* Neon double or quad precision register */
6116 OP_RNSDQ, /* Neon single, double or quad precision register */
6117 OP_RNSC, /* Neon scalar D[X] */
6118 OP_RVC, /* VFP control register */
6119 OP_RMF, /* Maverick F register */
6120 OP_RMD, /* Maverick D register */
6121 OP_RMFX, /* Maverick FX register */
6122 OP_RMDX, /* Maverick DX register */
6123 OP_RMAX, /* Maverick AX register */
6124 OP_RMDS, /* Maverick DSPSC register */
6125 OP_RIWR, /* iWMMXt wR register */
6126 OP_RIWC, /* iWMMXt wC register */
6127 OP_RIWG, /* iWMMXt wCG register */
6128 OP_RXA, /* XScale accumulator register */
6129
6130 OP_REGLST, /* ARM register list */
6131 OP_VRSLST, /* VFP single-precision register list */
6132 OP_VRDLST, /* VFP double-precision register list */
6133 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6134 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6135 OP_NSTRLST, /* Neon element/structure list */
6136
6137 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6138 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6139 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6140 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6141 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6142 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6143 OP_VMOV, /* Neon VMOV operands. */
6144 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6145 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6146 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6147
6148 OP_I0, /* immediate zero */
6149 OP_I7, /* immediate value 0 .. 7 */
6150 OP_I15, /* 0 .. 15 */
6151 OP_I16, /* 1 .. 16 */
6152 OP_I16z, /* 0 .. 16 */
6153 OP_I31, /* 0 .. 31 */
6154 OP_I31w, /* 0 .. 31, optional trailing ! */
6155 OP_I32, /* 1 .. 32 */
6156 OP_I32z, /* 0 .. 32 */
6157 OP_I63, /* 0 .. 63 */
6158 OP_I63s, /* -64 .. 63 */
6159 OP_I64, /* 1 .. 64 */
6160 OP_I64z, /* 0 .. 64 */
6161 OP_I255, /* 0 .. 255 */
6162
6163 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6164 OP_I7b, /* 0 .. 7 */
6165 OP_I15b, /* 0 .. 15 */
6166 OP_I31b, /* 0 .. 31 */
6167
6168 OP_SH, /* shifter operand */
6169 OP_SHG, /* shifter operand with possible group relocation */
6170 OP_ADDR, /* Memory address expression (any mode) */
6171 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6172 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6173 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6174 OP_EXP, /* arbitrary expression */
6175 OP_EXPi, /* same, with optional immediate prefix */
6176 OP_EXPr, /* same, with optional relocation suffix */
6177 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6178
6179 OP_CPSF, /* CPS flags */
6180 OP_ENDI, /* Endianness specifier */
6181 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6182 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6183 OP_COND, /* conditional code */
6184 OP_TB, /* Table branch. */
6185
6186 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6187
6188 OP_RRnpc_I0, /* ARM register or literal 0 */
6189 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6190 OP_RR_EXi, /* ARM register or expression with imm prefix */
6191 OP_RF_IF, /* FPA register or immediate */
6192 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6193 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6194
6195 /* Optional operands. */
6196 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6197 OP_oI31b, /* 0 .. 31 */
6198 OP_oI32b, /* 1 .. 32 */
6199 OP_oI32z, /* 0 .. 32 */
6200 OP_oIffffb, /* 0 .. 65535 */
6201 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6202
6203 OP_oRR, /* ARM register */
6204 OP_oRRnpc, /* ARM register, not the PC */
6205 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6206 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6207 OP_oRND, /* Optional Neon double precision register */
6208 OP_oRNQ, /* Optional Neon quad precision register */
6209 OP_oRNDQ, /* Optional Neon double or quad precision register */
6210 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6211 OP_oSHll, /* LSL immediate */
6212 OP_oSHar, /* ASR immediate */
6213 OP_oSHllar, /* LSL or ASR immediate */
6214 OP_oROR, /* ROR 0/8/16/24 */
6215 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6216
6217 /* Some pre-defined mixed (ARM/THUMB) operands. */
6218 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6219 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6220 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6221
6222 OP_FIRST_OPTIONAL = OP_oI7b
6223 };
6224
6225 /* Generic instruction operand parser. This does no encoding and no
6226 semantic validation; it merely squirrels values away in the inst
6227 structure. Returns SUCCESS or FAIL depending on whether the
6228 specified grammar matched. */
6229 static int
6230 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6231 {
6232 unsigned const int *upat = pattern;
6233 char *backtrack_pos = 0;
6234 const char *backtrack_error = 0;
6235 int i, val = 0, backtrack_index = 0;
6236 enum arm_reg_type rtype;
6237 parse_operand_result result;
6238 unsigned int op_parse_code;
6239
6240 #define po_char_or_fail(chr) \
6241 do \
6242 { \
6243 if (skip_past_char (&str, chr) == FAIL) \
6244 goto bad_args; \
6245 } \
6246 while (0)
6247
6248 #define po_reg_or_fail(regtype) \
6249 do \
6250 { \
6251 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6252 & inst.operands[i].vectype); \
6253 if (val == FAIL) \
6254 { \
6255 first_error (_(reg_expected_msgs[regtype])); \
6256 goto failure; \
6257 } \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isreg = 1; \
6260 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6261 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6262 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6263 || rtype == REG_TYPE_VFD \
6264 || rtype == REG_TYPE_NQ); \
6265 } \
6266 while (0)
6267
6268 #define po_reg_or_goto(regtype, label) \
6269 do \
6270 { \
6271 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6272 & inst.operands[i].vectype); \
6273 if (val == FAIL) \
6274 goto label; \
6275 \
6276 inst.operands[i].reg = val; \
6277 inst.operands[i].isreg = 1; \
6278 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6279 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6280 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6281 || rtype == REG_TYPE_VFD \
6282 || rtype == REG_TYPE_NQ); \
6283 } \
6284 while (0)
6285
6286 #define po_imm_or_fail(min, max, popt) \
6287 do \
6288 { \
6289 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6290 goto failure; \
6291 inst.operands[i].imm = val; \
6292 } \
6293 while (0)
6294
6295 #define po_scalar_or_goto(elsz, label) \
6296 do \
6297 { \
6298 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6299 if (val == FAIL) \
6300 goto label; \
6301 inst.operands[i].reg = val; \
6302 inst.operands[i].isscalar = 1; \
6303 } \
6304 while (0)
6305
6306 #define po_misc_or_fail(expr) \
6307 do \
6308 { \
6309 if (expr) \
6310 goto failure; \
6311 } \
6312 while (0)
6313
6314 #define po_misc_or_fail_no_backtrack(expr) \
6315 do \
6316 { \
6317 result = expr; \
6318 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6319 backtrack_pos = 0; \
6320 if (result != PARSE_OPERAND_SUCCESS) \
6321 goto failure; \
6322 } \
6323 while (0)
6324
6325 #define po_barrier_or_imm(str) \
6326 do \
6327 { \
6328 val = parse_barrier (&str); \
6329 if (val == FAIL) \
6330 { \
6331 if (ISALPHA (*str)) \
6332 goto failure; \
6333 else \
6334 goto immediate; \
6335 } \
6336 else \
6337 { \
6338 if ((inst.instruction & 0xf0) == 0x60 \
6339 && val != 0xf) \
6340 { \
6341 /* ISB can only take SY as an option. */ \
6342 inst.error = _("invalid barrier type"); \
6343 goto failure; \
6344 } \
6345 } \
6346 } \
6347 while (0)
6348
6349 skip_whitespace (str);
6350
6351 for (i = 0; upat[i] != OP_stop; i++)
6352 {
6353 op_parse_code = upat[i];
6354 if (op_parse_code >= 1<<16)
6355 op_parse_code = thumb ? (op_parse_code >> 16)
6356 : (op_parse_code & ((1<<16)-1));
6357
6358 if (op_parse_code >= OP_FIRST_OPTIONAL)
6359 {
6360 /* Remember where we are in case we need to backtrack. */
6361 gas_assert (!backtrack_pos);
6362 backtrack_pos = str;
6363 backtrack_error = inst.error;
6364 backtrack_index = i;
6365 }
6366
6367 if (i > 0 && (i > 1 || inst.operands[0].present))
6368 po_char_or_fail (',');
6369
6370 switch (op_parse_code)
6371 {
6372 /* Registers */
6373 case OP_oRRnpc:
6374 case OP_oRRnpcsp:
6375 case OP_RRnpc:
6376 case OP_RRnpcsp:
6377 case OP_oRR:
6378 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6379 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6380 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6381 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6382 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6383 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6384 case OP_oRND:
6385 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6386 case OP_RVC:
6387 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6388 break;
6389 /* Also accept generic coprocessor regs for unknown registers. */
6390 coproc_reg:
6391 po_reg_or_fail (REG_TYPE_CN);
6392 break;
6393 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6394 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6395 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6396 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6397 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6398 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6399 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6400 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6401 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6402 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6403 case OP_oRNQ:
6404 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6405 case OP_oRNDQ:
6406 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6407 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6408 case OP_oRNSDQ:
6409 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6410
6411 /* Neon scalar. Using an element size of 8 means that some invalid
6412 scalars are accepted here, so deal with those in later code. */
6413 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6414
6415 case OP_RNDQ_I0:
6416 {
6417 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6418 break;
6419 try_imm0:
6420 po_imm_or_fail (0, 0, TRUE);
6421 }
6422 break;
6423
6424 case OP_RVSD_I0:
6425 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6426 break;
6427
6428 case OP_RR_RNSC:
6429 {
6430 po_scalar_or_goto (8, try_rr);
6431 break;
6432 try_rr:
6433 po_reg_or_fail (REG_TYPE_RN);
6434 }
6435 break;
6436
6437 case OP_RNSDQ_RNSC:
6438 {
6439 po_scalar_or_goto (8, try_nsdq);
6440 break;
6441 try_nsdq:
6442 po_reg_or_fail (REG_TYPE_NSDQ);
6443 }
6444 break;
6445
6446 case OP_RNDQ_RNSC:
6447 {
6448 po_scalar_or_goto (8, try_ndq);
6449 break;
6450 try_ndq:
6451 po_reg_or_fail (REG_TYPE_NDQ);
6452 }
6453 break;
6454
6455 case OP_RND_RNSC:
6456 {
6457 po_scalar_or_goto (8, try_vfd);
6458 break;
6459 try_vfd:
6460 po_reg_or_fail (REG_TYPE_VFD);
6461 }
6462 break;
6463
6464 case OP_VMOV:
6465 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6466 not careful then bad things might happen. */
6467 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6468 break;
6469
6470 case OP_RNDQ_Ibig:
6471 {
6472 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6473 break;
6474 try_immbig:
6475 /* There's a possibility of getting a 64-bit immediate here, so
6476 we need special handling. */
6477 if (parse_big_immediate (&str, i) == FAIL)
6478 {
6479 inst.error = _("immediate value is out of range");
6480 goto failure;
6481 }
6482 }
6483 break;
6484
6485 case OP_RNDQ_I63b:
6486 {
6487 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6488 break;
6489 try_shimm:
6490 po_imm_or_fail (0, 63, TRUE);
6491 }
6492 break;
6493
6494 case OP_RRnpcb:
6495 po_char_or_fail ('[');
6496 po_reg_or_fail (REG_TYPE_RN);
6497 po_char_or_fail (']');
6498 break;
6499
6500 case OP_RRnpctw:
6501 case OP_RRw:
6502 case OP_oRRw:
6503 po_reg_or_fail (REG_TYPE_RN);
6504 if (skip_past_char (&str, '!') == SUCCESS)
6505 inst.operands[i].writeback = 1;
6506 break;
6507
6508 /* Immediates */
6509 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6510 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6511 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6512 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6513 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6514 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6515 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6516 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6517 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6518 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6519 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6520 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6521
6522 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6523 case OP_oI7b:
6524 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6525 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6526 case OP_oI31b:
6527 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6528 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6529 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6530 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6531
6532 /* Immediate variants */
6533 case OP_oI255c:
6534 po_char_or_fail ('{');
6535 po_imm_or_fail (0, 255, TRUE);
6536 po_char_or_fail ('}');
6537 break;
6538
6539 case OP_I31w:
6540 /* The expression parser chokes on a trailing !, so we have
6541 to find it first and zap it. */
6542 {
6543 char *s = str;
6544 while (*s && *s != ',')
6545 s++;
6546 if (s[-1] == '!')
6547 {
6548 s[-1] = '\0';
6549 inst.operands[i].writeback = 1;
6550 }
6551 po_imm_or_fail (0, 31, TRUE);
6552 if (str == s - 1)
6553 str = s;
6554 }
6555 break;
6556
6557 /* Expressions */
6558 case OP_EXPi: EXPi:
6559 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6560 GE_OPT_PREFIX));
6561 break;
6562
6563 case OP_EXP:
6564 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6565 GE_NO_PREFIX));
6566 break;
6567
6568 case OP_EXPr: EXPr:
6569 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6570 GE_NO_PREFIX));
6571 if (inst.reloc.exp.X_op == O_symbol)
6572 {
6573 val = parse_reloc (&str);
6574 if (val == -1)
6575 {
6576 inst.error = _("unrecognized relocation suffix");
6577 goto failure;
6578 }
6579 else if (val != BFD_RELOC_UNUSED)
6580 {
6581 inst.operands[i].imm = val;
6582 inst.operands[i].hasreloc = 1;
6583 }
6584 }
6585 break;
6586
6587 /* Operand for MOVW or MOVT. */
6588 case OP_HALF:
6589 po_misc_or_fail (parse_half (&str));
6590 break;
6591
6592 /* Register or expression. */
6593 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6594 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6595
6596 /* Register or immediate. */
6597 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6598 I0: po_imm_or_fail (0, 0, FALSE); break;
6599
6600 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6601 IF:
6602 if (!is_immediate_prefix (*str))
6603 goto bad_args;
6604 str++;
6605 val = parse_fpa_immediate (&str);
6606 if (val == FAIL)
6607 goto failure;
6608 /* FPA immediates are encoded as registers 8-15.
6609 parse_fpa_immediate has already applied the offset. */
6610 inst.operands[i].reg = val;
6611 inst.operands[i].isreg = 1;
6612 break;
6613
6614 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6615 I32z: po_imm_or_fail (0, 32, FALSE); break;
6616
6617 /* Two kinds of register. */
6618 case OP_RIWR_RIWC:
6619 {
6620 struct reg_entry *rege = arm_reg_parse_multi (&str);
6621 if (!rege
6622 || (rege->type != REG_TYPE_MMXWR
6623 && rege->type != REG_TYPE_MMXWC
6624 && rege->type != REG_TYPE_MMXWCG))
6625 {
6626 inst.error = _("iWMMXt data or control register expected");
6627 goto failure;
6628 }
6629 inst.operands[i].reg = rege->number;
6630 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6631 }
6632 break;
6633
6634 case OP_RIWC_RIWG:
6635 {
6636 struct reg_entry *rege = arm_reg_parse_multi (&str);
6637 if (!rege
6638 || (rege->type != REG_TYPE_MMXWC
6639 && rege->type != REG_TYPE_MMXWCG))
6640 {
6641 inst.error = _("iWMMXt control register expected");
6642 goto failure;
6643 }
6644 inst.operands[i].reg = rege->number;
6645 inst.operands[i].isreg = 1;
6646 }
6647 break;
6648
6649 /* Misc */
6650 case OP_CPSF: val = parse_cps_flags (&str); break;
6651 case OP_ENDI: val = parse_endian_specifier (&str); break;
6652 case OP_oROR: val = parse_ror (&str); break;
6653 case OP_COND: val = parse_cond (&str); break;
6654 case OP_oBARRIER_I15:
6655 po_barrier_or_imm (str); break;
6656 immediate:
6657 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6658 goto failure;
6659 break;
6660
6661 case OP_wPSR:
6662 case OP_rPSR:
6663 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6664 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6665 {
6666 inst.error = _("Banked registers are not available with this "
6667 "architecture.");
6668 goto failure;
6669 }
6670 break;
6671 try_psr:
6672 val = parse_psr (&str, op_parse_code == OP_wPSR);
6673 break;
6674
6675 case OP_APSR_RR:
6676 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6677 break;
6678 try_apsr:
6679 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6680 instruction). */
6681 if (strncasecmp (str, "APSR_", 5) == 0)
6682 {
6683 unsigned found = 0;
6684 str += 5;
6685 while (found < 15)
6686 switch (*str++)
6687 {
6688 case 'c': found = (found & 1) ? 16 : found | 1; break;
6689 case 'n': found = (found & 2) ? 16 : found | 2; break;
6690 case 'z': found = (found & 4) ? 16 : found | 4; break;
6691 case 'v': found = (found & 8) ? 16 : found | 8; break;
6692 default: found = 16;
6693 }
6694 if (found != 15)
6695 goto failure;
6696 inst.operands[i].isvec = 1;
6697 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6698 inst.operands[i].reg = REG_PC;
6699 }
6700 else
6701 goto failure;
6702 break;
6703
6704 case OP_TB:
6705 po_misc_or_fail (parse_tb (&str));
6706 break;
6707
6708 /* Register lists. */
6709 case OP_REGLST:
6710 val = parse_reg_list (&str);
6711 if (*str == '^')
6712 {
6713 inst.operands[1].writeback = 1;
6714 str++;
6715 }
6716 break;
6717
6718 case OP_VRSLST:
6719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6720 break;
6721
6722 case OP_VRDLST:
6723 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6724 break;
6725
6726 case OP_VRSDLST:
6727 /* Allow Q registers too. */
6728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6729 REGLIST_NEON_D);
6730 if (val == FAIL)
6731 {
6732 inst.error = NULL;
6733 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6734 REGLIST_VFP_S);
6735 inst.operands[i].issingle = 1;
6736 }
6737 break;
6738
6739 case OP_NRDLST:
6740 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6741 REGLIST_NEON_D);
6742 break;
6743
6744 case OP_NSTRLST:
6745 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6746 &inst.operands[i].vectype);
6747 break;
6748
6749 /* Addressing modes */
6750 case OP_ADDR:
6751 po_misc_or_fail (parse_address (&str, i));
6752 break;
6753
6754 case OP_ADDRGLDR:
6755 po_misc_or_fail_no_backtrack (
6756 parse_address_group_reloc (&str, i, GROUP_LDR));
6757 break;
6758
6759 case OP_ADDRGLDRS:
6760 po_misc_or_fail_no_backtrack (
6761 parse_address_group_reloc (&str, i, GROUP_LDRS));
6762 break;
6763
6764 case OP_ADDRGLDC:
6765 po_misc_or_fail_no_backtrack (
6766 parse_address_group_reloc (&str, i, GROUP_LDC));
6767 break;
6768
6769 case OP_SH:
6770 po_misc_or_fail (parse_shifter_operand (&str, i));
6771 break;
6772
6773 case OP_SHG:
6774 po_misc_or_fail_no_backtrack (
6775 parse_shifter_operand_group_reloc (&str, i));
6776 break;
6777
6778 case OP_oSHll:
6779 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6780 break;
6781
6782 case OP_oSHar:
6783 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6784 break;
6785
6786 case OP_oSHllar:
6787 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6788 break;
6789
6790 default:
6791 as_fatal (_("unhandled operand code %d"), op_parse_code);
6792 }
6793
6794 /* Various value-based sanity checks and shared operations. We
6795 do not signal immediate failures for the register constraints;
6796 this allows a syntax error to take precedence. */
6797 switch (op_parse_code)
6798 {
6799 case OP_oRRnpc:
6800 case OP_RRnpc:
6801 case OP_RRnpcb:
6802 case OP_RRw:
6803 case OP_oRRw:
6804 case OP_RRnpc_I0:
6805 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6806 inst.error = BAD_PC;
6807 break;
6808
6809 case OP_oRRnpcsp:
6810 case OP_RRnpcsp:
6811 if (inst.operands[i].isreg)
6812 {
6813 if (inst.operands[i].reg == REG_PC)
6814 inst.error = BAD_PC;
6815 else if (inst.operands[i].reg == REG_SP)
6816 inst.error = BAD_SP;
6817 }
6818 break;
6819
6820 case OP_RRnpctw:
6821 if (inst.operands[i].isreg
6822 && inst.operands[i].reg == REG_PC
6823 && (inst.operands[i].writeback || thumb))
6824 inst.error = BAD_PC;
6825 break;
6826
6827 case OP_CPSF:
6828 case OP_ENDI:
6829 case OP_oROR:
6830 case OP_wPSR:
6831 case OP_rPSR:
6832 case OP_COND:
6833 case OP_oBARRIER_I15:
6834 case OP_REGLST:
6835 case OP_VRSLST:
6836 case OP_VRDLST:
6837 case OP_VRSDLST:
6838 case OP_NRDLST:
6839 case OP_NSTRLST:
6840 if (val == FAIL)
6841 goto failure;
6842 inst.operands[i].imm = val;
6843 break;
6844
6845 default:
6846 break;
6847 }
6848
6849 /* If we get here, this operand was successfully parsed. */
6850 inst.operands[i].present = 1;
6851 continue;
6852
6853 bad_args:
6854 inst.error = BAD_ARGS;
6855
6856 failure:
6857 if (!backtrack_pos)
6858 {
6859 /* The parse routine should already have set inst.error, but set a
6860 default here just in case. */
6861 if (!inst.error)
6862 inst.error = _("syntax error");
6863 return FAIL;
6864 }
6865
6866 /* Do not backtrack over a trailing optional argument that
6867 absorbed some text. We will only fail again, with the
6868 'garbage following instruction' error message, which is
6869 probably less helpful than the current one. */
6870 if (backtrack_index == i && backtrack_pos != str
6871 && upat[i+1] == OP_stop)
6872 {
6873 if (!inst.error)
6874 inst.error = _("syntax error");
6875 return FAIL;
6876 }
6877
6878 /* Try again, skipping the optional argument at backtrack_pos. */
6879 str = backtrack_pos;
6880 inst.error = backtrack_error;
6881 inst.operands[backtrack_index].present = 0;
6882 i = backtrack_index;
6883 backtrack_pos = 0;
6884 }
6885
6886 /* Check that we have parsed all the arguments. */
6887 if (*str != '\0' && !inst.error)
6888 inst.error = _("garbage following instruction");
6889
6890 return inst.error ? FAIL : SUCCESS;
6891 }
6892
6893 #undef po_char_or_fail
6894 #undef po_reg_or_fail
6895 #undef po_reg_or_goto
6896 #undef po_imm_or_fail
6897 #undef po_scalar_or_fail
6898 #undef po_barrier_or_imm
6899
6900 /* Shorthand macro for instruction encoding functions issuing errors. */
6901 #define constraint(expr, err) \
6902 do \
6903 { \
6904 if (expr) \
6905 { \
6906 inst.error = err; \
6907 return; \
6908 } \
6909 } \
6910 while (0)
6911
6912 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6913 instructions are unpredictable if these registers are used. This
6914 is the BadReg predicate in ARM's Thumb-2 documentation. */
6915 #define reject_bad_reg(reg) \
6916 do \
6917 if (reg == REG_SP || reg == REG_PC) \
6918 { \
6919 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6920 return; \
6921 } \
6922 while (0)
6923
6924 /* If REG is R13 (the stack pointer), warn that its use is
6925 deprecated. */
6926 #define warn_deprecated_sp(reg) \
6927 do \
6928 if (warn_on_deprecated && reg == REG_SP) \
6929 as_warn (_("use of r13 is deprecated")); \
6930 while (0)
6931
6932 /* Functions for operand encoding. ARM, then Thumb. */
6933
6934 #define rotate_left(v, n) (v << n | v >> (32 - n))
6935
6936 /* If VAL can be encoded in the immediate field of an ARM instruction,
6937 return the encoded form. Otherwise, return FAIL. */
6938
6939 static unsigned int
6940 encode_arm_immediate (unsigned int val)
6941 {
6942 unsigned int a, i;
6943
6944 for (i = 0; i < 32; i += 2)
6945 if ((a = rotate_left (val, i)) <= 0xff)
6946 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6947
6948 return FAIL;
6949 }
6950
6951 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6952 return the encoded form. Otherwise, return FAIL. */
6953 static unsigned int
6954 encode_thumb32_immediate (unsigned int val)
6955 {
6956 unsigned int a, i;
6957
6958 if (val <= 0xff)
6959 return val;
6960
6961 for (i = 1; i <= 24; i++)
6962 {
6963 a = val >> i;
6964 if ((val & ~(0xff << i)) == 0)
6965 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6966 }
6967
6968 a = val & 0xff;
6969 if (val == ((a << 16) | a))
6970 return 0x100 | a;
6971 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6972 return 0x300 | a;
6973
6974 a = val & 0xff00;
6975 if (val == ((a << 16) | a))
6976 return 0x200 | (a >> 8);
6977
6978 return FAIL;
6979 }
6980 /* Encode a VFP SP or DP register number into inst.instruction. */
6981
6982 static void
6983 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6984 {
6985 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6986 && reg > 15)
6987 {
6988 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6989 {
6990 if (thumb_mode)
6991 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6992 fpu_vfp_ext_d32);
6993 else
6994 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6995 fpu_vfp_ext_d32);
6996 }
6997 else
6998 {
6999 first_error (_("D register out of range for selected VFP version"));
7000 return;
7001 }
7002 }
7003
7004 switch (pos)
7005 {
7006 case VFP_REG_Sd:
7007 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7008 break;
7009
7010 case VFP_REG_Sn:
7011 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7012 break;
7013
7014 case VFP_REG_Sm:
7015 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7016 break;
7017
7018 case VFP_REG_Dd:
7019 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7020 break;
7021
7022 case VFP_REG_Dn:
7023 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7024 break;
7025
7026 case VFP_REG_Dm:
7027 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7028 break;
7029
7030 default:
7031 abort ();
7032 }
7033 }
7034
7035 /* Encode a <shift> in an ARM-format instruction. The immediate,
7036 if any, is handled by md_apply_fix. */
7037 static void
7038 encode_arm_shift (int i)
7039 {
7040 if (inst.operands[i].shift_kind == SHIFT_RRX)
7041 inst.instruction |= SHIFT_ROR << 5;
7042 else
7043 {
7044 inst.instruction |= inst.operands[i].shift_kind << 5;
7045 if (inst.operands[i].immisreg)
7046 {
7047 inst.instruction |= SHIFT_BY_REG;
7048 inst.instruction |= inst.operands[i].imm << 8;
7049 }
7050 else
7051 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7052 }
7053 }
7054
7055 static void
7056 encode_arm_shifter_operand (int i)
7057 {
7058 if (inst.operands[i].isreg)
7059 {
7060 inst.instruction |= inst.operands[i].reg;
7061 encode_arm_shift (i);
7062 }
7063 else
7064 {
7065 inst.instruction |= INST_IMMEDIATE;
7066 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7067 inst.instruction |= inst.operands[i].imm;
7068 }
7069 }
7070
7071 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7072 static void
7073 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7074 {
7075 /* PR 14260:
7076 Generate an error if the operand is not a register. */
7077 constraint (!inst.operands[i].isreg,
7078 _("Instruction does not support =N addresses"));
7079
7080 inst.instruction |= inst.operands[i].reg << 16;
7081
7082 if (inst.operands[i].preind)
7083 {
7084 if (is_t)
7085 {
7086 inst.error = _("instruction does not accept preindexed addressing");
7087 return;
7088 }
7089 inst.instruction |= PRE_INDEX;
7090 if (inst.operands[i].writeback)
7091 inst.instruction |= WRITE_BACK;
7092
7093 }
7094 else if (inst.operands[i].postind)
7095 {
7096 gas_assert (inst.operands[i].writeback);
7097 if (is_t)
7098 inst.instruction |= WRITE_BACK;
7099 }
7100 else /* unindexed - only for coprocessor */
7101 {
7102 inst.error = _("instruction does not accept unindexed addressing");
7103 return;
7104 }
7105
7106 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7107 && (((inst.instruction & 0x000f0000) >> 16)
7108 == ((inst.instruction & 0x0000f000) >> 12)))
7109 as_warn ((inst.instruction & LOAD_BIT)
7110 ? _("destination register same as write-back base")
7111 : _("source register same as write-back base"));
7112 }
7113
7114 /* inst.operands[i] was set up by parse_address. Encode it into an
7115 ARM-format mode 2 load or store instruction. If is_t is true,
7116 reject forms that cannot be used with a T instruction (i.e. not
7117 post-indexed). */
7118 static void
7119 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7120 {
7121 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7122
7123 encode_arm_addr_mode_common (i, is_t);
7124
7125 if (inst.operands[i].immisreg)
7126 {
7127 constraint ((inst.operands[i].imm == REG_PC
7128 || (is_pc && inst.operands[i].writeback)),
7129 BAD_PC_ADDRESSING);
7130 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7131 inst.instruction |= inst.operands[i].imm;
7132 if (!inst.operands[i].negative)
7133 inst.instruction |= INDEX_UP;
7134 if (inst.operands[i].shifted)
7135 {
7136 if (inst.operands[i].shift_kind == SHIFT_RRX)
7137 inst.instruction |= SHIFT_ROR << 5;
7138 else
7139 {
7140 inst.instruction |= inst.operands[i].shift_kind << 5;
7141 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7142 }
7143 }
7144 }
7145 else /* immediate offset in inst.reloc */
7146 {
7147 if (is_pc && !inst.reloc.pc_rel)
7148 {
7149 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7150
7151 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7152 cannot use PC in addressing.
7153 PC cannot be used in writeback addressing, either. */
7154 constraint ((is_t || inst.operands[i].writeback),
7155 BAD_PC_ADDRESSING);
7156
7157 /* Use of PC in str is deprecated for ARMv7. */
7158 if (warn_on_deprecated
7159 && !is_load
7160 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7161 as_warn (_("use of PC in this instruction is deprecated"));
7162 }
7163
7164 if (inst.reloc.type == BFD_RELOC_UNUSED)
7165 {
7166 /* Prefer + for zero encoded value. */
7167 if (!inst.operands[i].negative)
7168 inst.instruction |= INDEX_UP;
7169 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7170 }
7171 }
7172 }
7173
7174 /* inst.operands[i] was set up by parse_address. Encode it into an
7175 ARM-format mode 3 load or store instruction. Reject forms that
7176 cannot be used with such instructions. If is_t is true, reject
7177 forms that cannot be used with a T instruction (i.e. not
7178 post-indexed). */
7179 static void
7180 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7181 {
7182 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7183 {
7184 inst.error = _("instruction does not accept scaled register index");
7185 return;
7186 }
7187
7188 encode_arm_addr_mode_common (i, is_t);
7189
7190 if (inst.operands[i].immisreg)
7191 {
7192 constraint ((inst.operands[i].imm == REG_PC
7193 || inst.operands[i].reg == REG_PC),
7194 BAD_PC_ADDRESSING);
7195 inst.instruction |= inst.operands[i].imm;
7196 if (!inst.operands[i].negative)
7197 inst.instruction |= INDEX_UP;
7198 }
7199 else /* immediate offset in inst.reloc */
7200 {
7201 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7202 && inst.operands[i].writeback),
7203 BAD_PC_WRITEBACK);
7204 inst.instruction |= HWOFFSET_IMM;
7205 if (inst.reloc.type == BFD_RELOC_UNUSED)
7206 {
7207 /* Prefer + for zero encoded value. */
7208 if (!inst.operands[i].negative)
7209 inst.instruction |= INDEX_UP;
7210
7211 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7212 }
7213 }
7214 }
7215
7216 /* inst.operands[i] was set up by parse_address. Encode it into an
7217 ARM-format instruction. Reject all forms which cannot be encoded
7218 into a coprocessor load/store instruction. If wb_ok is false,
7219 reject use of writeback; if unind_ok is false, reject use of
7220 unindexed addressing. If reloc_override is not 0, use it instead
7221 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7222 (in which case it is preserved). */
7223
7224 static int
7225 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7226 {
7227 inst.instruction |= inst.operands[i].reg << 16;
7228
7229 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7230
7231 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7232 {
7233 gas_assert (!inst.operands[i].writeback);
7234 if (!unind_ok)
7235 {
7236 inst.error = _("instruction does not support unindexed addressing");
7237 return FAIL;
7238 }
7239 inst.instruction |= inst.operands[i].imm;
7240 inst.instruction |= INDEX_UP;
7241 return SUCCESS;
7242 }
7243
7244 if (inst.operands[i].preind)
7245 inst.instruction |= PRE_INDEX;
7246
7247 if (inst.operands[i].writeback)
7248 {
7249 if (inst.operands[i].reg == REG_PC)
7250 {
7251 inst.error = _("pc may not be used with write-back");
7252 return FAIL;
7253 }
7254 if (!wb_ok)
7255 {
7256 inst.error = _("instruction does not support writeback");
7257 return FAIL;
7258 }
7259 inst.instruction |= WRITE_BACK;
7260 }
7261
7262 if (reloc_override)
7263 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7264 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7265 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7266 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7267 {
7268 if (thumb_mode)
7269 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7270 else
7271 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7272 }
7273
7274 /* Prefer + for zero encoded value. */
7275 if (!inst.operands[i].negative)
7276 inst.instruction |= INDEX_UP;
7277
7278 return SUCCESS;
7279 }
7280
7281 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7282 Determine whether it can be performed with a move instruction; if
7283 it can, convert inst.instruction to that move instruction and
7284 return TRUE; if it can't, convert inst.instruction to a literal-pool
7285 load and return FALSE. If this is not a valid thing to do in the
7286 current context, set inst.error and return TRUE.
7287
7288 inst.operands[i] describes the destination register. */
7289
7290 static bfd_boolean
7291 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7292 {
7293 unsigned long tbit;
7294
7295 if (thumb_p)
7296 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7297 else
7298 tbit = LOAD_BIT;
7299
7300 if ((inst.instruction & tbit) == 0)
7301 {
7302 inst.error = _("invalid pseudo operation");
7303 return TRUE;
7304 }
7305 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7306 {
7307 inst.error = _("constant expression expected");
7308 return TRUE;
7309 }
7310 if (inst.reloc.exp.X_op == O_constant)
7311 {
7312 if (thumb_p)
7313 {
7314 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7315 {
7316 /* This can be done with a mov(1) instruction. */
7317 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7318 inst.instruction |= inst.reloc.exp.X_add_number;
7319 return TRUE;
7320 }
7321 }
7322 else
7323 {
7324 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7325 if (value != FAIL)
7326 {
7327 /* This can be done with a mov instruction. */
7328 inst.instruction &= LITERAL_MASK;
7329 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7330 inst.instruction |= value & 0xfff;
7331 return TRUE;
7332 }
7333
7334 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7335 if (value != FAIL)
7336 {
7337 /* This can be done with a mvn instruction. */
7338 inst.instruction &= LITERAL_MASK;
7339 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7340 inst.instruction |= value & 0xfff;
7341 return TRUE;
7342 }
7343 }
7344 }
7345
7346 if (add_to_lit_pool () == FAIL)
7347 {
7348 inst.error = _("literal pool insertion failed");
7349 return TRUE;
7350 }
7351 inst.operands[1].reg = REG_PC;
7352 inst.operands[1].isreg = 1;
7353 inst.operands[1].preind = 1;
7354 inst.reloc.pc_rel = 1;
7355 inst.reloc.type = (thumb_p
7356 ? BFD_RELOC_ARM_THUMB_OFFSET
7357 : (mode_3
7358 ? BFD_RELOC_ARM_HWLITERAL
7359 : BFD_RELOC_ARM_LITERAL));
7360 return FALSE;
7361 }
7362
7363 /* Functions for instruction encoding, sorted by sub-architecture.
7364 First some generics; their names are taken from the conventional
7365 bit positions for register arguments in ARM format instructions. */
7366
7367 static void
7368 do_noargs (void)
7369 {
7370 }
7371
7372 static void
7373 do_rd (void)
7374 {
7375 inst.instruction |= inst.operands[0].reg << 12;
7376 }
7377
7378 static void
7379 do_rd_rm (void)
7380 {
7381 inst.instruction |= inst.operands[0].reg << 12;
7382 inst.instruction |= inst.operands[1].reg;
7383 }
7384
7385 static void
7386 do_rm_rn (void)
7387 {
7388 inst.instruction |= inst.operands[0].reg;
7389 inst.instruction |= inst.operands[1].reg << 16;
7390 }
7391
7392 static void
7393 do_rd_rn (void)
7394 {
7395 inst.instruction |= inst.operands[0].reg << 12;
7396 inst.instruction |= inst.operands[1].reg << 16;
7397 }
7398
7399 static void
7400 do_rn_rd (void)
7401 {
7402 inst.instruction |= inst.operands[0].reg << 16;
7403 inst.instruction |= inst.operands[1].reg << 12;
7404 }
7405
7406 static bfd_boolean
7407 check_obsolete (const arm_feature_set *feature, const char *msg)
7408 {
7409 if (ARM_CPU_IS_ANY (cpu_variant))
7410 {
7411 as_warn ("%s", msg);
7412 return TRUE;
7413 }
7414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7415 {
7416 as_bad ("%s", msg);
7417 return TRUE;
7418 }
7419
7420 return FALSE;
7421 }
7422
7423 static void
7424 do_rd_rm_rn (void)
7425 {
7426 unsigned Rn = inst.operands[2].reg;
7427 /* Enforce restrictions on SWP instruction. */
7428 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7429 {
7430 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7431 _("Rn must not overlap other operands"));
7432
7433 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7434 */
7435 if (!check_obsolete (&arm_ext_v8,
7436 _("swp{b} use is obsoleted for ARMv8 and later"))
7437 && warn_on_deprecated
7438 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7439 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
7440 }
7441
7442 inst.instruction |= inst.operands[0].reg << 12;
7443 inst.instruction |= inst.operands[1].reg;
7444 inst.instruction |= Rn << 16;
7445 }
7446
7447 static void
7448 do_rd_rn_rm (void)
7449 {
7450 inst.instruction |= inst.operands[0].reg << 12;
7451 inst.instruction |= inst.operands[1].reg << 16;
7452 inst.instruction |= inst.operands[2].reg;
7453 }
7454
7455 static void
7456 do_rm_rd_rn (void)
7457 {
7458 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7459 constraint (((inst.reloc.exp.X_op != O_constant
7460 && inst.reloc.exp.X_op != O_illegal)
7461 || inst.reloc.exp.X_add_number != 0),
7462 BAD_ADDR_MODE);
7463 inst.instruction |= inst.operands[0].reg;
7464 inst.instruction |= inst.operands[1].reg << 12;
7465 inst.instruction |= inst.operands[2].reg << 16;
7466 }
7467
7468 static void
7469 do_imm0 (void)
7470 {
7471 inst.instruction |= inst.operands[0].imm;
7472 }
7473
7474 static void
7475 do_rd_cpaddr (void)
7476 {
7477 inst.instruction |= inst.operands[0].reg << 12;
7478 encode_arm_cp_address (1, TRUE, TRUE, 0);
7479 }
7480
7481 /* ARM instructions, in alphabetical order by function name (except
7482 that wrapper functions appear immediately after the function they
7483 wrap). */
7484
7485 /* This is a pseudo-op of the form "adr rd, label" to be converted
7486 into a relative address of the form "add rd, pc, #label-.-8". */
7487
7488 static void
7489 do_adr (void)
7490 {
7491 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7492
7493 /* Frag hacking will turn this into a sub instruction if the offset turns
7494 out to be negative. */
7495 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7496 inst.reloc.pc_rel = 1;
7497 inst.reloc.exp.X_add_number -= 8;
7498 }
7499
7500 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7501 into a relative address of the form:
7502 add rd, pc, #low(label-.-8)"
7503 add rd, rd, #high(label-.-8)" */
7504
7505 static void
7506 do_adrl (void)
7507 {
7508 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7509
7510 /* Frag hacking will turn this into a sub instruction if the offset turns
7511 out to be negative. */
7512 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7513 inst.reloc.pc_rel = 1;
7514 inst.size = INSN_SIZE * 2;
7515 inst.reloc.exp.X_add_number -= 8;
7516 }
7517
7518 static void
7519 do_arit (void)
7520 {
7521 if (!inst.operands[1].present)
7522 inst.operands[1].reg = inst.operands[0].reg;
7523 inst.instruction |= inst.operands[0].reg << 12;
7524 inst.instruction |= inst.operands[1].reg << 16;
7525 encode_arm_shifter_operand (2);
7526 }
7527
7528 static void
7529 do_barrier (void)
7530 {
7531 if (inst.operands[0].present)
7532 {
7533 constraint ((inst.instruction & 0xf0) != 0x40
7534 && inst.operands[0].imm > 0xf
7535 && inst.operands[0].imm < 0x0,
7536 _("bad barrier type"));
7537 inst.instruction |= inst.operands[0].imm;
7538 }
7539 else
7540 inst.instruction |= 0xf;
7541 }
7542
7543 static void
7544 do_bfc (void)
7545 {
7546 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7547 constraint (msb > 32, _("bit-field extends past end of register"));
7548 /* The instruction encoding stores the LSB and MSB,
7549 not the LSB and width. */
7550 inst.instruction |= inst.operands[0].reg << 12;
7551 inst.instruction |= inst.operands[1].imm << 7;
7552 inst.instruction |= (msb - 1) << 16;
7553 }
7554
7555 static void
7556 do_bfi (void)
7557 {
7558 unsigned int msb;
7559
7560 /* #0 in second position is alternative syntax for bfc, which is
7561 the same instruction but with REG_PC in the Rm field. */
7562 if (!inst.operands[1].isreg)
7563 inst.operands[1].reg = REG_PC;
7564
7565 msb = inst.operands[2].imm + inst.operands[3].imm;
7566 constraint (msb > 32, _("bit-field extends past end of register"));
7567 /* The instruction encoding stores the LSB and MSB,
7568 not the LSB and width. */
7569 inst.instruction |= inst.operands[0].reg << 12;
7570 inst.instruction |= inst.operands[1].reg;
7571 inst.instruction |= inst.operands[2].imm << 7;
7572 inst.instruction |= (msb - 1) << 16;
7573 }
7574
7575 static void
7576 do_bfx (void)
7577 {
7578 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7579 _("bit-field extends past end of register"));
7580 inst.instruction |= inst.operands[0].reg << 12;
7581 inst.instruction |= inst.operands[1].reg;
7582 inst.instruction |= inst.operands[2].imm << 7;
7583 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7584 }
7585
7586 /* ARM V5 breakpoint instruction (argument parse)
7587 BKPT <16 bit unsigned immediate>
7588 Instruction is not conditional.
7589 The bit pattern given in insns[] has the COND_ALWAYS condition,
7590 and it is an error if the caller tried to override that. */
7591
7592 static void
7593 do_bkpt (void)
7594 {
7595 /* Top 12 of 16 bits to bits 19:8. */
7596 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7597
7598 /* Bottom 4 of 16 bits to bits 3:0. */
7599 inst.instruction |= inst.operands[0].imm & 0xf;
7600 }
7601
7602 static void
7603 encode_branch (int default_reloc)
7604 {
7605 if (inst.operands[0].hasreloc)
7606 {
7607 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7608 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7609 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7610 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7611 ? BFD_RELOC_ARM_PLT32
7612 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7613 }
7614 else
7615 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7616 inst.reloc.pc_rel = 1;
7617 }
7618
7619 static void
7620 do_branch (void)
7621 {
7622 #ifdef OBJ_ELF
7623 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7624 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7625 else
7626 #endif
7627 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7628 }
7629
7630 static void
7631 do_bl (void)
7632 {
7633 #ifdef OBJ_ELF
7634 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7635 {
7636 if (inst.cond == COND_ALWAYS)
7637 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7638 else
7639 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7640 }
7641 else
7642 #endif
7643 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7644 }
7645
7646 /* ARM V5 branch-link-exchange instruction (argument parse)
7647 BLX <target_addr> ie BLX(1)
7648 BLX{<condition>} <Rm> ie BLX(2)
7649 Unfortunately, there are two different opcodes for this mnemonic.
7650 So, the insns[].value is not used, and the code here zaps values
7651 into inst.instruction.
7652 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7653
7654 static void
7655 do_blx (void)
7656 {
7657 if (inst.operands[0].isreg)
7658 {
7659 /* Arg is a register; the opcode provided by insns[] is correct.
7660 It is not illegal to do "blx pc", just useless. */
7661 if (inst.operands[0].reg == REG_PC)
7662 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7663
7664 inst.instruction |= inst.operands[0].reg;
7665 }
7666 else
7667 {
7668 /* Arg is an address; this instruction cannot be executed
7669 conditionally, and the opcode must be adjusted.
7670 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7671 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7672 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7673 inst.instruction = 0xfa000000;
7674 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7675 }
7676 }
7677
7678 static void
7679 do_bx (void)
7680 {
7681 bfd_boolean want_reloc;
7682
7683 if (inst.operands[0].reg == REG_PC)
7684 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7685
7686 inst.instruction |= inst.operands[0].reg;
7687 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7688 it is for ARMv4t or earlier. */
7689 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7690 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7691 want_reloc = TRUE;
7692
7693 #ifdef OBJ_ELF
7694 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7695 #endif
7696 want_reloc = FALSE;
7697
7698 if (want_reloc)
7699 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7700 }
7701
7702
7703 /* ARM v5TEJ. Jump to Jazelle code. */
7704
7705 static void
7706 do_bxj (void)
7707 {
7708 if (inst.operands[0].reg == REG_PC)
7709 as_tsktsk (_("use of r15 in bxj is not really useful"));
7710
7711 inst.instruction |= inst.operands[0].reg;
7712 }
7713
7714 /* Co-processor data operation:
7715 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7716 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7717 static void
7718 do_cdp (void)
7719 {
7720 inst.instruction |= inst.operands[0].reg << 8;
7721 inst.instruction |= inst.operands[1].imm << 20;
7722 inst.instruction |= inst.operands[2].reg << 12;
7723 inst.instruction |= inst.operands[3].reg << 16;
7724 inst.instruction |= inst.operands[4].reg;
7725 inst.instruction |= inst.operands[5].imm << 5;
7726 }
7727
7728 static void
7729 do_cmp (void)
7730 {
7731 inst.instruction |= inst.operands[0].reg << 16;
7732 encode_arm_shifter_operand (1);
7733 }
7734
7735 /* Transfer between coprocessor and ARM registers.
7736 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7737 MRC2
7738 MCR{cond}
7739 MCR2
7740
7741 No special properties. */
7742
7743 struct deprecated_coproc_regs_s
7744 {
7745 unsigned cp;
7746 int opc1;
7747 unsigned crn;
7748 unsigned crm;
7749 int opc2;
7750 arm_feature_set deprecated;
7751 arm_feature_set obsoleted;
7752 const char *dep_msg;
7753 const char *obs_msg;
7754 };
7755
7756 #define DEPR_ACCESS_V8 \
7757 N_("This coprocessor register access is deprecated in ARMv8")
7758
7759 /* Table of all deprecated coprocessor registers. */
7760 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7761 {
7762 {15, 0, 7, 10, 5, /* CP15DMB. */
7763 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7764 DEPR_ACCESS_V8, NULL},
7765 {15, 0, 7, 10, 4, /* CP15DSB. */
7766 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7767 DEPR_ACCESS_V8, NULL},
7768 {15, 0, 7, 5, 4, /* CP15ISB. */
7769 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7770 DEPR_ACCESS_V8, NULL},
7771 {14, 6, 1, 0, 0, /* TEEHBR. */
7772 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7773 DEPR_ACCESS_V8, NULL},
7774 {14, 6, 0, 0, 0, /* TEECR. */
7775 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7776 DEPR_ACCESS_V8, NULL},
7777 };
7778
7779 #undef DEPR_ACCESS_V8
7780
7781 static const size_t deprecated_coproc_reg_count =
7782 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7783
7784 static void
7785 do_co_reg (void)
7786 {
7787 unsigned Rd;
7788 size_t i;
7789
7790 Rd = inst.operands[2].reg;
7791 if (thumb_mode)
7792 {
7793 if (inst.instruction == 0xee000010
7794 || inst.instruction == 0xfe000010)
7795 /* MCR, MCR2 */
7796 reject_bad_reg (Rd);
7797 else
7798 /* MRC, MRC2 */
7799 constraint (Rd == REG_SP, BAD_SP);
7800 }
7801 else
7802 {
7803 /* MCR */
7804 if (inst.instruction == 0xe000010)
7805 constraint (Rd == REG_PC, BAD_PC);
7806 }
7807
7808 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7809 {
7810 const struct deprecated_coproc_regs_s *r =
7811 deprecated_coproc_regs + i;
7812
7813 if (inst.operands[0].reg == r->cp
7814 && inst.operands[1].imm == r->opc1
7815 && inst.operands[3].reg == r->crn
7816 && inst.operands[4].reg == r->crm
7817 && inst.operands[5].imm == r->opc2)
7818 {
7819 if (!check_obsolete (&r->obsoleted, r->obs_msg)
7820 && warn_on_deprecated
7821 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7822 as_warn ("%s", r->dep_msg);
7823 }
7824 }
7825
7826 inst.instruction |= inst.operands[0].reg << 8;
7827 inst.instruction |= inst.operands[1].imm << 21;
7828 inst.instruction |= Rd << 12;
7829 inst.instruction |= inst.operands[3].reg << 16;
7830 inst.instruction |= inst.operands[4].reg;
7831 inst.instruction |= inst.operands[5].imm << 5;
7832 }
7833
7834 /* Transfer between coprocessor register and pair of ARM registers.
7835 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7836 MCRR2
7837 MRRC{cond}
7838 MRRC2
7839
7840 Two XScale instructions are special cases of these:
7841
7842 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7843 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7844
7845 Result unpredictable if Rd or Rn is R15. */
7846
7847 static void
7848 do_co_reg2c (void)
7849 {
7850 unsigned Rd, Rn;
7851
7852 Rd = inst.operands[2].reg;
7853 Rn = inst.operands[3].reg;
7854
7855 if (thumb_mode)
7856 {
7857 reject_bad_reg (Rd);
7858 reject_bad_reg (Rn);
7859 }
7860 else
7861 {
7862 constraint (Rd == REG_PC, BAD_PC);
7863 constraint (Rn == REG_PC, BAD_PC);
7864 }
7865
7866 inst.instruction |= inst.operands[0].reg << 8;
7867 inst.instruction |= inst.operands[1].imm << 4;
7868 inst.instruction |= Rd << 12;
7869 inst.instruction |= Rn << 16;
7870 inst.instruction |= inst.operands[4].reg;
7871 }
7872
7873 static void
7874 do_cpsi (void)
7875 {
7876 inst.instruction |= inst.operands[0].imm << 6;
7877 if (inst.operands[1].present)
7878 {
7879 inst.instruction |= CPSI_MMOD;
7880 inst.instruction |= inst.operands[1].imm;
7881 }
7882 }
7883
7884 static void
7885 do_dbg (void)
7886 {
7887 inst.instruction |= inst.operands[0].imm;
7888 }
7889
7890 static void
7891 do_div (void)
7892 {
7893 unsigned Rd, Rn, Rm;
7894
7895 Rd = inst.operands[0].reg;
7896 Rn = (inst.operands[1].present
7897 ? inst.operands[1].reg : Rd);
7898 Rm = inst.operands[2].reg;
7899
7900 constraint ((Rd == REG_PC), BAD_PC);
7901 constraint ((Rn == REG_PC), BAD_PC);
7902 constraint ((Rm == REG_PC), BAD_PC);
7903
7904 inst.instruction |= Rd << 16;
7905 inst.instruction |= Rn << 0;
7906 inst.instruction |= Rm << 8;
7907 }
7908
7909 static void
7910 do_it (void)
7911 {
7912 /* There is no IT instruction in ARM mode. We
7913 process it to do the validation as if in
7914 thumb mode, just in case the code gets
7915 assembled for thumb using the unified syntax. */
7916
7917 inst.size = 0;
7918 if (unified_syntax)
7919 {
7920 set_it_insn_type (IT_INSN);
7921 now_it.mask = (inst.instruction & 0xf) | 0x10;
7922 now_it.cc = inst.operands[0].imm;
7923 }
7924 }
7925
7926 /* If there is only one register in the register list,
7927 then return its register number. Otherwise return -1. */
7928 static int
7929 only_one_reg_in_list (int range)
7930 {
7931 int i = ffs (range) - 1;
7932 return (i > 15 || range != (1 << i)) ? -1 : i;
7933 }
7934
7935 static void
7936 encode_ldmstm(int from_push_pop_mnem)
7937 {
7938 int base_reg = inst.operands[0].reg;
7939 int range = inst.operands[1].imm;
7940 int one_reg;
7941
7942 inst.instruction |= base_reg << 16;
7943 inst.instruction |= range;
7944
7945 if (inst.operands[1].writeback)
7946 inst.instruction |= LDM_TYPE_2_OR_3;
7947
7948 if (inst.operands[0].writeback)
7949 {
7950 inst.instruction |= WRITE_BACK;
7951 /* Check for unpredictable uses of writeback. */
7952 if (inst.instruction & LOAD_BIT)
7953 {
7954 /* Not allowed in LDM type 2. */
7955 if ((inst.instruction & LDM_TYPE_2_OR_3)
7956 && ((range & (1 << REG_PC)) == 0))
7957 as_warn (_("writeback of base register is UNPREDICTABLE"));
7958 /* Only allowed if base reg not in list for other types. */
7959 else if (range & (1 << base_reg))
7960 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7961 }
7962 else /* STM. */
7963 {
7964 /* Not allowed for type 2. */
7965 if (inst.instruction & LDM_TYPE_2_OR_3)
7966 as_warn (_("writeback of base register is UNPREDICTABLE"));
7967 /* Only allowed if base reg not in list, or first in list. */
7968 else if ((range & (1 << base_reg))
7969 && (range & ((1 << base_reg) - 1)))
7970 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7971 }
7972 }
7973
7974 /* If PUSH/POP has only one register, then use the A2 encoding. */
7975 one_reg = only_one_reg_in_list (range);
7976 if (from_push_pop_mnem && one_reg >= 0)
7977 {
7978 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7979
7980 inst.instruction &= A_COND_MASK;
7981 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7982 inst.instruction |= one_reg << 12;
7983 }
7984 }
7985
7986 static void
7987 do_ldmstm (void)
7988 {
7989 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
7990 }
7991
7992 /* ARMv5TE load-consecutive (argument parse)
7993 Mode is like LDRH.
7994
7995 LDRccD R, mode
7996 STRccD R, mode. */
7997
7998 static void
7999 do_ldrd (void)
8000 {
8001 constraint (inst.operands[0].reg % 2 != 0,
8002 _("first transfer register must be even"));
8003 constraint (inst.operands[1].present
8004 && inst.operands[1].reg != inst.operands[0].reg + 1,
8005 _("can only transfer two consecutive registers"));
8006 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8007 constraint (!inst.operands[2].isreg, _("'[' expected"));
8008
8009 if (!inst.operands[1].present)
8010 inst.operands[1].reg = inst.operands[0].reg + 1;
8011
8012 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8013 register and the first register written; we have to diagnose
8014 overlap between the base and the second register written here. */
8015
8016 if (inst.operands[2].reg == inst.operands[1].reg
8017 && (inst.operands[2].writeback || inst.operands[2].postind))
8018 as_warn (_("base register written back, and overlaps "
8019 "second transfer register"));
8020
8021 if (!(inst.instruction & V4_STR_BIT))
8022 {
8023 /* For an index-register load, the index register must not overlap the
8024 destination (even if not write-back). */
8025 if (inst.operands[2].immisreg
8026 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8027 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8028 as_warn (_("index register overlaps transfer register"));
8029 }
8030 inst.instruction |= inst.operands[0].reg << 12;
8031 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8032 }
8033
8034 static void
8035 do_ldrex (void)
8036 {
8037 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8038 || inst.operands[1].postind || inst.operands[1].writeback
8039 || inst.operands[1].immisreg || inst.operands[1].shifted
8040 || inst.operands[1].negative
8041 /* This can arise if the programmer has written
8042 strex rN, rM, foo
8043 or if they have mistakenly used a register name as the last
8044 operand, eg:
8045 strex rN, rM, rX
8046 It is very difficult to distinguish between these two cases
8047 because "rX" might actually be a label. ie the register
8048 name has been occluded by a symbol of the same name. So we
8049 just generate a general 'bad addressing mode' type error
8050 message and leave it up to the programmer to discover the
8051 true cause and fix their mistake. */
8052 || (inst.operands[1].reg == REG_PC),
8053 BAD_ADDR_MODE);
8054
8055 constraint (inst.reloc.exp.X_op != O_constant
8056 || inst.reloc.exp.X_add_number != 0,
8057 _("offset must be zero in ARM encoding"));
8058
8059 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8060
8061 inst.instruction |= inst.operands[0].reg << 12;
8062 inst.instruction |= inst.operands[1].reg << 16;
8063 inst.reloc.type = BFD_RELOC_UNUSED;
8064 }
8065
8066 static void
8067 do_ldrexd (void)
8068 {
8069 constraint (inst.operands[0].reg % 2 != 0,
8070 _("even register required"));
8071 constraint (inst.operands[1].present
8072 && inst.operands[1].reg != inst.operands[0].reg + 1,
8073 _("can only load two consecutive registers"));
8074 /* If op 1 were present and equal to PC, this function wouldn't
8075 have been called in the first place. */
8076 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8077
8078 inst.instruction |= inst.operands[0].reg << 12;
8079 inst.instruction |= inst.operands[2].reg << 16;
8080 }
8081
8082 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8083 which is not a multiple of four is UNPREDICTABLE. */
8084 static void
8085 check_ldr_r15_aligned (void)
8086 {
8087 constraint (!(inst.operands[1].immisreg)
8088 && (inst.operands[0].reg == REG_PC
8089 && inst.operands[1].reg == REG_PC
8090 && (inst.reloc.exp.X_add_number & 0x3)),
8091 _("ldr to register 15 must be 4-byte alligned"));
8092 }
8093
8094 static void
8095 do_ldst (void)
8096 {
8097 inst.instruction |= inst.operands[0].reg << 12;
8098 if (!inst.operands[1].isreg)
8099 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
8100 return;
8101 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8102 check_ldr_r15_aligned ();
8103 }
8104
8105 static void
8106 do_ldstt (void)
8107 {
8108 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8109 reject [Rn,...]. */
8110 if (inst.operands[1].preind)
8111 {
8112 constraint (inst.reloc.exp.X_op != O_constant
8113 || inst.reloc.exp.X_add_number != 0,
8114 _("this instruction requires a post-indexed address"));
8115
8116 inst.operands[1].preind = 0;
8117 inst.operands[1].postind = 1;
8118 inst.operands[1].writeback = 1;
8119 }
8120 inst.instruction |= inst.operands[0].reg << 12;
8121 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8122 }
8123
8124 /* Halfword and signed-byte load/store operations. */
8125
8126 static void
8127 do_ldstv4 (void)
8128 {
8129 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8130 inst.instruction |= inst.operands[0].reg << 12;
8131 if (!inst.operands[1].isreg)
8132 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
8133 return;
8134 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8135 }
8136
8137 static void
8138 do_ldsttv4 (void)
8139 {
8140 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8141 reject [Rn,...]. */
8142 if (inst.operands[1].preind)
8143 {
8144 constraint (inst.reloc.exp.X_op != O_constant
8145 || inst.reloc.exp.X_add_number != 0,
8146 _("this instruction requires a post-indexed address"));
8147
8148 inst.operands[1].preind = 0;
8149 inst.operands[1].postind = 1;
8150 inst.operands[1].writeback = 1;
8151 }
8152 inst.instruction |= inst.operands[0].reg << 12;
8153 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8154 }
8155
8156 /* Co-processor register load/store.
8157 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8158 static void
8159 do_lstc (void)
8160 {
8161 inst.instruction |= inst.operands[0].reg << 8;
8162 inst.instruction |= inst.operands[1].reg << 12;
8163 encode_arm_cp_address (2, TRUE, TRUE, 0);
8164 }
8165
8166 static void
8167 do_mlas (void)
8168 {
8169 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8170 if (inst.operands[0].reg == inst.operands[1].reg
8171 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8172 && !(inst.instruction & 0x00400000))
8173 as_tsktsk (_("Rd and Rm should be different in mla"));
8174
8175 inst.instruction |= inst.operands[0].reg << 16;
8176 inst.instruction |= inst.operands[1].reg;
8177 inst.instruction |= inst.operands[2].reg << 8;
8178 inst.instruction |= inst.operands[3].reg << 12;
8179 }
8180
8181 static void
8182 do_mov (void)
8183 {
8184 inst.instruction |= inst.operands[0].reg << 12;
8185 encode_arm_shifter_operand (1);
8186 }
8187
8188 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8189 static void
8190 do_mov16 (void)
8191 {
8192 bfd_vma imm;
8193 bfd_boolean top;
8194
8195 top = (inst.instruction & 0x00400000) != 0;
8196 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8197 _(":lower16: not allowed this instruction"));
8198 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8199 _(":upper16: not allowed instruction"));
8200 inst.instruction |= inst.operands[0].reg << 12;
8201 if (inst.reloc.type == BFD_RELOC_UNUSED)
8202 {
8203 imm = inst.reloc.exp.X_add_number;
8204 /* The value is in two pieces: 0:11, 16:19. */
8205 inst.instruction |= (imm & 0x00000fff);
8206 inst.instruction |= (imm & 0x0000f000) << 4;
8207 }
8208 }
8209
8210 static void do_vfp_nsyn_opcode (const char *);
8211
8212 static int
8213 do_vfp_nsyn_mrs (void)
8214 {
8215 if (inst.operands[0].isvec)
8216 {
8217 if (inst.operands[1].reg != 1)
8218 first_error (_("operand 1 must be FPSCR"));
8219 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8220 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8221 do_vfp_nsyn_opcode ("fmstat");
8222 }
8223 else if (inst.operands[1].isvec)
8224 do_vfp_nsyn_opcode ("fmrx");
8225 else
8226 return FAIL;
8227
8228 return SUCCESS;
8229 }
8230
8231 static int
8232 do_vfp_nsyn_msr (void)
8233 {
8234 if (inst.operands[0].isvec)
8235 do_vfp_nsyn_opcode ("fmxr");
8236 else
8237 return FAIL;
8238
8239 return SUCCESS;
8240 }
8241
8242 static void
8243 do_vmrs (void)
8244 {
8245 unsigned Rt = inst.operands[0].reg;
8246
8247 if (thumb_mode && inst.operands[0].reg == REG_SP)
8248 {
8249 inst.error = BAD_SP;
8250 return;
8251 }
8252
8253 /* APSR_ sets isvec. All other refs to PC are illegal. */
8254 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8255 {
8256 inst.error = BAD_PC;
8257 return;
8258 }
8259
8260 switch (inst.operands[1].reg)
8261 {
8262 case 0: /* FPSID */
8263 case 1: /* FPSCR */
8264 case 6: /* MVFR1 */
8265 case 7: /* MVFR0 */
8266 case 8: /* FPEXC */
8267 inst.instruction |= (inst.operands[1].reg << 16);
8268 break;
8269 default:
8270 first_error (_("operand 1 must be a VFP extension System Register"));
8271 }
8272
8273 inst.instruction |= (Rt << 12);
8274 }
8275
8276 static void
8277 do_vmsr (void)
8278 {
8279 unsigned Rt = inst.operands[1].reg;
8280
8281 if (thumb_mode)
8282 reject_bad_reg (Rt);
8283 else if (Rt == REG_PC)
8284 {
8285 inst.error = BAD_PC;
8286 return;
8287 }
8288
8289 switch (inst.operands[0].reg)
8290 {
8291 case 0: /* FPSID */
8292 case 1: /* FPSCR */
8293 case 8: /* FPEXC */
8294 inst.instruction |= (inst.operands[0].reg << 16);
8295 break;
8296 default:
8297 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8298 }
8299
8300 inst.instruction |= (Rt << 12);
8301 }
8302
8303 static void
8304 do_mrs (void)
8305 {
8306 unsigned br;
8307
8308 if (do_vfp_nsyn_mrs () == SUCCESS)
8309 return;
8310
8311 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8312 inst.instruction |= inst.operands[0].reg << 12;
8313
8314 if (inst.operands[1].isreg)
8315 {
8316 br = inst.operands[1].reg;
8317 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8318 as_bad (_("bad register for mrs"));
8319 }
8320 else
8321 {
8322 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8323 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8324 != (PSR_c|PSR_f),
8325 _("'APSR', 'CPSR' or 'SPSR' expected"));
8326 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8327 }
8328
8329 inst.instruction |= br;
8330 }
8331
8332 /* Two possible forms:
8333 "{C|S}PSR_<field>, Rm",
8334 "{C|S}PSR_f, #expression". */
8335
8336 static void
8337 do_msr (void)
8338 {
8339 if (do_vfp_nsyn_msr () == SUCCESS)
8340 return;
8341
8342 inst.instruction |= inst.operands[0].imm;
8343 if (inst.operands[1].isreg)
8344 inst.instruction |= inst.operands[1].reg;
8345 else
8346 {
8347 inst.instruction |= INST_IMMEDIATE;
8348 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8349 inst.reloc.pc_rel = 0;
8350 }
8351 }
8352
8353 static void
8354 do_mul (void)
8355 {
8356 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8357
8358 if (!inst.operands[2].present)
8359 inst.operands[2].reg = inst.operands[0].reg;
8360 inst.instruction |= inst.operands[0].reg << 16;
8361 inst.instruction |= inst.operands[1].reg;
8362 inst.instruction |= inst.operands[2].reg << 8;
8363
8364 if (inst.operands[0].reg == inst.operands[1].reg
8365 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8366 as_tsktsk (_("Rd and Rm should be different in mul"));
8367 }
8368
8369 /* Long Multiply Parser
8370 UMULL RdLo, RdHi, Rm, Rs
8371 SMULL RdLo, RdHi, Rm, Rs
8372 UMLAL RdLo, RdHi, Rm, Rs
8373 SMLAL RdLo, RdHi, Rm, Rs. */
8374
8375 static void
8376 do_mull (void)
8377 {
8378 inst.instruction |= inst.operands[0].reg << 12;
8379 inst.instruction |= inst.operands[1].reg << 16;
8380 inst.instruction |= inst.operands[2].reg;
8381 inst.instruction |= inst.operands[3].reg << 8;
8382
8383 /* rdhi and rdlo must be different. */
8384 if (inst.operands[0].reg == inst.operands[1].reg)
8385 as_tsktsk (_("rdhi and rdlo must be different"));
8386
8387 /* rdhi, rdlo and rm must all be different before armv6. */
8388 if ((inst.operands[0].reg == inst.operands[2].reg
8389 || inst.operands[1].reg == inst.operands[2].reg)
8390 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8391 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8392 }
8393
8394 static void
8395 do_nop (void)
8396 {
8397 if (inst.operands[0].present
8398 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8399 {
8400 /* Architectural NOP hints are CPSR sets with no bits selected. */
8401 inst.instruction &= 0xf0000000;
8402 inst.instruction |= 0x0320f000;
8403 if (inst.operands[0].present)
8404 inst.instruction |= inst.operands[0].imm;
8405 }
8406 }
8407
8408 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8409 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8410 Condition defaults to COND_ALWAYS.
8411 Error if Rd, Rn or Rm are R15. */
8412
8413 static void
8414 do_pkhbt (void)
8415 {
8416 inst.instruction |= inst.operands[0].reg << 12;
8417 inst.instruction |= inst.operands[1].reg << 16;
8418 inst.instruction |= inst.operands[2].reg;
8419 if (inst.operands[3].present)
8420 encode_arm_shift (3);
8421 }
8422
8423 /* ARM V6 PKHTB (Argument Parse). */
8424
8425 static void
8426 do_pkhtb (void)
8427 {
8428 if (!inst.operands[3].present)
8429 {
8430 /* If the shift specifier is omitted, turn the instruction
8431 into pkhbt rd, rm, rn. */
8432 inst.instruction &= 0xfff00010;
8433 inst.instruction |= inst.operands[0].reg << 12;
8434 inst.instruction |= inst.operands[1].reg;
8435 inst.instruction |= inst.operands[2].reg << 16;
8436 }
8437 else
8438 {
8439 inst.instruction |= inst.operands[0].reg << 12;
8440 inst.instruction |= inst.operands[1].reg << 16;
8441 inst.instruction |= inst.operands[2].reg;
8442 encode_arm_shift (3);
8443 }
8444 }
8445
8446 /* ARMv5TE: Preload-Cache
8447 MP Extensions: Preload for write
8448
8449 PLD(W) <addr_mode>
8450
8451 Syntactically, like LDR with B=1, W=0, L=1. */
8452
8453 static void
8454 do_pld (void)
8455 {
8456 constraint (!inst.operands[0].isreg,
8457 _("'[' expected after PLD mnemonic"));
8458 constraint (inst.operands[0].postind,
8459 _("post-indexed expression used in preload instruction"));
8460 constraint (inst.operands[0].writeback,
8461 _("writeback used in preload instruction"));
8462 constraint (!inst.operands[0].preind,
8463 _("unindexed addressing used in preload instruction"));
8464 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8465 }
8466
8467 /* ARMv7: PLI <addr_mode> */
8468 static void
8469 do_pli (void)
8470 {
8471 constraint (!inst.operands[0].isreg,
8472 _("'[' expected after PLI mnemonic"));
8473 constraint (inst.operands[0].postind,
8474 _("post-indexed expression used in preload instruction"));
8475 constraint (inst.operands[0].writeback,
8476 _("writeback used in preload instruction"));
8477 constraint (!inst.operands[0].preind,
8478 _("unindexed addressing used in preload instruction"));
8479 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8480 inst.instruction &= ~PRE_INDEX;
8481 }
8482
8483 static void
8484 do_push_pop (void)
8485 {
8486 inst.operands[1] = inst.operands[0];
8487 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8488 inst.operands[0].isreg = 1;
8489 inst.operands[0].writeback = 1;
8490 inst.operands[0].reg = REG_SP;
8491 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
8492 }
8493
8494 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8495 word at the specified address and the following word
8496 respectively.
8497 Unconditionally executed.
8498 Error if Rn is R15. */
8499
8500 static void
8501 do_rfe (void)
8502 {
8503 inst.instruction |= inst.operands[0].reg << 16;
8504 if (inst.operands[0].writeback)
8505 inst.instruction |= WRITE_BACK;
8506 }
8507
8508 /* ARM V6 ssat (argument parse). */
8509
8510 static void
8511 do_ssat (void)
8512 {
8513 inst.instruction |= inst.operands[0].reg << 12;
8514 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8515 inst.instruction |= inst.operands[2].reg;
8516
8517 if (inst.operands[3].present)
8518 encode_arm_shift (3);
8519 }
8520
8521 /* ARM V6 usat (argument parse). */
8522
8523 static void
8524 do_usat (void)
8525 {
8526 inst.instruction |= inst.operands[0].reg << 12;
8527 inst.instruction |= inst.operands[1].imm << 16;
8528 inst.instruction |= inst.operands[2].reg;
8529
8530 if (inst.operands[3].present)
8531 encode_arm_shift (3);
8532 }
8533
8534 /* ARM V6 ssat16 (argument parse). */
8535
8536 static void
8537 do_ssat16 (void)
8538 {
8539 inst.instruction |= inst.operands[0].reg << 12;
8540 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8541 inst.instruction |= inst.operands[2].reg;
8542 }
8543
8544 static void
8545 do_usat16 (void)
8546 {
8547 inst.instruction |= inst.operands[0].reg << 12;
8548 inst.instruction |= inst.operands[1].imm << 16;
8549 inst.instruction |= inst.operands[2].reg;
8550 }
8551
8552 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8553 preserving the other bits.
8554
8555 setend <endian_specifier>, where <endian_specifier> is either
8556 BE or LE. */
8557
8558 static void
8559 do_setend (void)
8560 {
8561 if (warn_on_deprecated
8562 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8563 as_warn (_("setend use is deprecated for ARMv8"));
8564
8565 if (inst.operands[0].imm)
8566 inst.instruction |= 0x200;
8567 }
8568
8569 static void
8570 do_shift (void)
8571 {
8572 unsigned int Rm = (inst.operands[1].present
8573 ? inst.operands[1].reg
8574 : inst.operands[0].reg);
8575
8576 inst.instruction |= inst.operands[0].reg << 12;
8577 inst.instruction |= Rm;
8578 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8579 {
8580 inst.instruction |= inst.operands[2].reg << 8;
8581 inst.instruction |= SHIFT_BY_REG;
8582 /* PR 12854: Error on extraneous shifts. */
8583 constraint (inst.operands[2].shifted,
8584 _("extraneous shift as part of operand to shift insn"));
8585 }
8586 else
8587 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8588 }
8589
8590 static void
8591 do_smc (void)
8592 {
8593 inst.reloc.type = BFD_RELOC_ARM_SMC;
8594 inst.reloc.pc_rel = 0;
8595 }
8596
8597 static void
8598 do_hvc (void)
8599 {
8600 inst.reloc.type = BFD_RELOC_ARM_HVC;
8601 inst.reloc.pc_rel = 0;
8602 }
8603
8604 static void
8605 do_swi (void)
8606 {
8607 inst.reloc.type = BFD_RELOC_ARM_SWI;
8608 inst.reloc.pc_rel = 0;
8609 }
8610
8611 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8612 SMLAxy{cond} Rd,Rm,Rs,Rn
8613 SMLAWy{cond} Rd,Rm,Rs,Rn
8614 Error if any register is R15. */
8615
8616 static void
8617 do_smla (void)
8618 {
8619 inst.instruction |= inst.operands[0].reg << 16;
8620 inst.instruction |= inst.operands[1].reg;
8621 inst.instruction |= inst.operands[2].reg << 8;
8622 inst.instruction |= inst.operands[3].reg << 12;
8623 }
8624
8625 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8626 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8627 Error if any register is R15.
8628 Warning if Rdlo == Rdhi. */
8629
8630 static void
8631 do_smlal (void)
8632 {
8633 inst.instruction |= inst.operands[0].reg << 12;
8634 inst.instruction |= inst.operands[1].reg << 16;
8635 inst.instruction |= inst.operands[2].reg;
8636 inst.instruction |= inst.operands[3].reg << 8;
8637
8638 if (inst.operands[0].reg == inst.operands[1].reg)
8639 as_tsktsk (_("rdhi and rdlo must be different"));
8640 }
8641
8642 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8643 SMULxy{cond} Rd,Rm,Rs
8644 Error if any register is R15. */
8645
8646 static void
8647 do_smul (void)
8648 {
8649 inst.instruction |= inst.operands[0].reg << 16;
8650 inst.instruction |= inst.operands[1].reg;
8651 inst.instruction |= inst.operands[2].reg << 8;
8652 }
8653
8654 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8655 the same for both ARM and Thumb-2. */
8656
8657 static void
8658 do_srs (void)
8659 {
8660 int reg;
8661
8662 if (inst.operands[0].present)
8663 {
8664 reg = inst.operands[0].reg;
8665 constraint (reg != REG_SP, _("SRS base register must be r13"));
8666 }
8667 else
8668 reg = REG_SP;
8669
8670 inst.instruction |= reg << 16;
8671 inst.instruction |= inst.operands[1].imm;
8672 if (inst.operands[0].writeback || inst.operands[1].writeback)
8673 inst.instruction |= WRITE_BACK;
8674 }
8675
8676 /* ARM V6 strex (argument parse). */
8677
8678 static void
8679 do_strex (void)
8680 {
8681 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8682 || inst.operands[2].postind || inst.operands[2].writeback
8683 || inst.operands[2].immisreg || inst.operands[2].shifted
8684 || inst.operands[2].negative
8685 /* See comment in do_ldrex(). */
8686 || (inst.operands[2].reg == REG_PC),
8687 BAD_ADDR_MODE);
8688
8689 constraint (inst.operands[0].reg == inst.operands[1].reg
8690 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8691
8692 constraint (inst.reloc.exp.X_op != O_constant
8693 || inst.reloc.exp.X_add_number != 0,
8694 _("offset must be zero in ARM encoding"));
8695
8696 inst.instruction |= inst.operands[0].reg << 12;
8697 inst.instruction |= inst.operands[1].reg;
8698 inst.instruction |= inst.operands[2].reg << 16;
8699 inst.reloc.type = BFD_RELOC_UNUSED;
8700 }
8701
8702 static void
8703 do_t_strexbh (void)
8704 {
8705 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8706 || inst.operands[2].postind || inst.operands[2].writeback
8707 || inst.operands[2].immisreg || inst.operands[2].shifted
8708 || inst.operands[2].negative,
8709 BAD_ADDR_MODE);
8710
8711 constraint (inst.operands[0].reg == inst.operands[1].reg
8712 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8713
8714 do_rm_rd_rn ();
8715 }
8716
8717 static void
8718 do_strexd (void)
8719 {
8720 constraint (inst.operands[1].reg % 2 != 0,
8721 _("even register required"));
8722 constraint (inst.operands[2].present
8723 && inst.operands[2].reg != inst.operands[1].reg + 1,
8724 _("can only store two consecutive registers"));
8725 /* If op 2 were present and equal to PC, this function wouldn't
8726 have been called in the first place. */
8727 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8728
8729 constraint (inst.operands[0].reg == inst.operands[1].reg
8730 || inst.operands[0].reg == inst.operands[1].reg + 1
8731 || inst.operands[0].reg == inst.operands[3].reg,
8732 BAD_OVERLAP);
8733
8734 inst.instruction |= inst.operands[0].reg << 12;
8735 inst.instruction |= inst.operands[1].reg;
8736 inst.instruction |= inst.operands[3].reg << 16;
8737 }
8738
8739 /* ARM V8 STRL. */
8740 static void
8741 do_strlex (void)
8742 {
8743 constraint (inst.operands[0].reg == inst.operands[1].reg
8744 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8745
8746 do_rd_rm_rn ();
8747 }
8748
8749 static void
8750 do_t_strlex (void)
8751 {
8752 constraint (inst.operands[0].reg == inst.operands[1].reg
8753 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8754
8755 do_rm_rd_rn ();
8756 }
8757
8758 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8759 extends it to 32-bits, and adds the result to a value in another
8760 register. You can specify a rotation by 0, 8, 16, or 24 bits
8761 before extracting the 16-bit value.
8762 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8763 Condition defaults to COND_ALWAYS.
8764 Error if any register uses R15. */
8765
8766 static void
8767 do_sxtah (void)
8768 {
8769 inst.instruction |= inst.operands[0].reg << 12;
8770 inst.instruction |= inst.operands[1].reg << 16;
8771 inst.instruction |= inst.operands[2].reg;
8772 inst.instruction |= inst.operands[3].imm << 10;
8773 }
8774
8775 /* ARM V6 SXTH.
8776
8777 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8778 Condition defaults to COND_ALWAYS.
8779 Error if any register uses R15. */
8780
8781 static void
8782 do_sxth (void)
8783 {
8784 inst.instruction |= inst.operands[0].reg << 12;
8785 inst.instruction |= inst.operands[1].reg;
8786 inst.instruction |= inst.operands[2].imm << 10;
8787 }
8788 \f
8789 /* VFP instructions. In a logical order: SP variant first, monad
8790 before dyad, arithmetic then move then load/store. */
8791
8792 static void
8793 do_vfp_sp_monadic (void)
8794 {
8795 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8796 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8797 }
8798
8799 static void
8800 do_vfp_sp_dyadic (void)
8801 {
8802 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8803 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8804 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8805 }
8806
8807 static void
8808 do_vfp_sp_compare_z (void)
8809 {
8810 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8811 }
8812
8813 static void
8814 do_vfp_dp_sp_cvt (void)
8815 {
8816 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8817 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8818 }
8819
8820 static void
8821 do_vfp_sp_dp_cvt (void)
8822 {
8823 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8824 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8825 }
8826
8827 static void
8828 do_vfp_reg_from_sp (void)
8829 {
8830 inst.instruction |= inst.operands[0].reg << 12;
8831 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8832 }
8833
8834 static void
8835 do_vfp_reg2_from_sp2 (void)
8836 {
8837 constraint (inst.operands[2].imm != 2,
8838 _("only two consecutive VFP SP registers allowed here"));
8839 inst.instruction |= inst.operands[0].reg << 12;
8840 inst.instruction |= inst.operands[1].reg << 16;
8841 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8842 }
8843
8844 static void
8845 do_vfp_sp_from_reg (void)
8846 {
8847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8848 inst.instruction |= inst.operands[1].reg << 12;
8849 }
8850
8851 static void
8852 do_vfp_sp2_from_reg2 (void)
8853 {
8854 constraint (inst.operands[0].imm != 2,
8855 _("only two consecutive VFP SP registers allowed here"));
8856 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8857 inst.instruction |= inst.operands[1].reg << 12;
8858 inst.instruction |= inst.operands[2].reg << 16;
8859 }
8860
8861 static void
8862 do_vfp_sp_ldst (void)
8863 {
8864 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8865 encode_arm_cp_address (1, FALSE, TRUE, 0);
8866 }
8867
8868 static void
8869 do_vfp_dp_ldst (void)
8870 {
8871 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8872 encode_arm_cp_address (1, FALSE, TRUE, 0);
8873 }
8874
8875
8876 static void
8877 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8878 {
8879 if (inst.operands[0].writeback)
8880 inst.instruction |= WRITE_BACK;
8881 else
8882 constraint (ldstm_type != VFP_LDSTMIA,
8883 _("this addressing mode requires base-register writeback"));
8884 inst.instruction |= inst.operands[0].reg << 16;
8885 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8886 inst.instruction |= inst.operands[1].imm;
8887 }
8888
8889 static void
8890 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8891 {
8892 int count;
8893
8894 if (inst.operands[0].writeback)
8895 inst.instruction |= WRITE_BACK;
8896 else
8897 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8898 _("this addressing mode requires base-register writeback"));
8899
8900 inst.instruction |= inst.operands[0].reg << 16;
8901 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8902
8903 count = inst.operands[1].imm << 1;
8904 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8905 count += 1;
8906
8907 inst.instruction |= count;
8908 }
8909
8910 static void
8911 do_vfp_sp_ldstmia (void)
8912 {
8913 vfp_sp_ldstm (VFP_LDSTMIA);
8914 }
8915
8916 static void
8917 do_vfp_sp_ldstmdb (void)
8918 {
8919 vfp_sp_ldstm (VFP_LDSTMDB);
8920 }
8921
8922 static void
8923 do_vfp_dp_ldstmia (void)
8924 {
8925 vfp_dp_ldstm (VFP_LDSTMIA);
8926 }
8927
8928 static void
8929 do_vfp_dp_ldstmdb (void)
8930 {
8931 vfp_dp_ldstm (VFP_LDSTMDB);
8932 }
8933
8934 static void
8935 do_vfp_xp_ldstmia (void)
8936 {
8937 vfp_dp_ldstm (VFP_LDSTMIAX);
8938 }
8939
8940 static void
8941 do_vfp_xp_ldstmdb (void)
8942 {
8943 vfp_dp_ldstm (VFP_LDSTMDBX);
8944 }
8945
8946 static void
8947 do_vfp_dp_rd_rm (void)
8948 {
8949 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8950 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8951 }
8952
8953 static void
8954 do_vfp_dp_rn_rd (void)
8955 {
8956 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8957 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8958 }
8959
8960 static void
8961 do_vfp_dp_rd_rn (void)
8962 {
8963 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8964 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8965 }
8966
8967 static void
8968 do_vfp_dp_rd_rn_rm (void)
8969 {
8970 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8971 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8972 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8973 }
8974
8975 static void
8976 do_vfp_dp_rd (void)
8977 {
8978 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8979 }
8980
8981 static void
8982 do_vfp_dp_rm_rd_rn (void)
8983 {
8984 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8985 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8986 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8987 }
8988
8989 /* VFPv3 instructions. */
8990 static void
8991 do_vfp_sp_const (void)
8992 {
8993 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8994 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8995 inst.instruction |= (inst.operands[1].imm & 0x0f);
8996 }
8997
8998 static void
8999 do_vfp_dp_const (void)
9000 {
9001 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9002 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9003 inst.instruction |= (inst.operands[1].imm & 0x0f);
9004 }
9005
9006 static void
9007 vfp_conv (int srcsize)
9008 {
9009 int immbits = srcsize - inst.operands[1].imm;
9010
9011 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9012 {
9013 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9014 i.e. immbits must be in range 0 - 16. */
9015 inst.error = _("immediate value out of range, expected range [0, 16]");
9016 return;
9017 }
9018 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9019 {
9020 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9021 i.e. immbits must be in range 0 - 31. */
9022 inst.error = _("immediate value out of range, expected range [1, 32]");
9023 return;
9024 }
9025
9026 inst.instruction |= (immbits & 1) << 5;
9027 inst.instruction |= (immbits >> 1);
9028 }
9029
9030 static void
9031 do_vfp_sp_conv_16 (void)
9032 {
9033 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9034 vfp_conv (16);
9035 }
9036
9037 static void
9038 do_vfp_dp_conv_16 (void)
9039 {
9040 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9041 vfp_conv (16);
9042 }
9043
9044 static void
9045 do_vfp_sp_conv_32 (void)
9046 {
9047 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9048 vfp_conv (32);
9049 }
9050
9051 static void
9052 do_vfp_dp_conv_32 (void)
9053 {
9054 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9055 vfp_conv (32);
9056 }
9057 \f
9058 /* FPA instructions. Also in a logical order. */
9059
9060 static void
9061 do_fpa_cmp (void)
9062 {
9063 inst.instruction |= inst.operands[0].reg << 16;
9064 inst.instruction |= inst.operands[1].reg;
9065 }
9066
9067 static void
9068 do_fpa_ldmstm (void)
9069 {
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 switch (inst.operands[1].imm)
9072 {
9073 case 1: inst.instruction |= CP_T_X; break;
9074 case 2: inst.instruction |= CP_T_Y; break;
9075 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9076 case 4: break;
9077 default: abort ();
9078 }
9079
9080 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9081 {
9082 /* The instruction specified "ea" or "fd", so we can only accept
9083 [Rn]{!}. The instruction does not really support stacking or
9084 unstacking, so we have to emulate these by setting appropriate
9085 bits and offsets. */
9086 constraint (inst.reloc.exp.X_op != O_constant
9087 || inst.reloc.exp.X_add_number != 0,
9088 _("this instruction does not support indexing"));
9089
9090 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9091 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9092
9093 if (!(inst.instruction & INDEX_UP))
9094 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9095
9096 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9097 {
9098 inst.operands[2].preind = 0;
9099 inst.operands[2].postind = 1;
9100 }
9101 }
9102
9103 encode_arm_cp_address (2, TRUE, TRUE, 0);
9104 }
9105 \f
9106 /* iWMMXt instructions: strictly in alphabetical order. */
9107
9108 static void
9109 do_iwmmxt_tandorc (void)
9110 {
9111 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9112 }
9113
9114 static void
9115 do_iwmmxt_textrc (void)
9116 {
9117 inst.instruction |= inst.operands[0].reg << 12;
9118 inst.instruction |= inst.operands[1].imm;
9119 }
9120
9121 static void
9122 do_iwmmxt_textrm (void)
9123 {
9124 inst.instruction |= inst.operands[0].reg << 12;
9125 inst.instruction |= inst.operands[1].reg << 16;
9126 inst.instruction |= inst.operands[2].imm;
9127 }
9128
9129 static void
9130 do_iwmmxt_tinsr (void)
9131 {
9132 inst.instruction |= inst.operands[0].reg << 16;
9133 inst.instruction |= inst.operands[1].reg << 12;
9134 inst.instruction |= inst.operands[2].imm;
9135 }
9136
9137 static void
9138 do_iwmmxt_tmia (void)
9139 {
9140 inst.instruction |= inst.operands[0].reg << 5;
9141 inst.instruction |= inst.operands[1].reg;
9142 inst.instruction |= inst.operands[2].reg << 12;
9143 }
9144
9145 static void
9146 do_iwmmxt_waligni (void)
9147 {
9148 inst.instruction |= inst.operands[0].reg << 12;
9149 inst.instruction |= inst.operands[1].reg << 16;
9150 inst.instruction |= inst.operands[2].reg;
9151 inst.instruction |= inst.operands[3].imm << 20;
9152 }
9153
9154 static void
9155 do_iwmmxt_wmerge (void)
9156 {
9157 inst.instruction |= inst.operands[0].reg << 12;
9158 inst.instruction |= inst.operands[1].reg << 16;
9159 inst.instruction |= inst.operands[2].reg;
9160 inst.instruction |= inst.operands[3].imm << 21;
9161 }
9162
9163 static void
9164 do_iwmmxt_wmov (void)
9165 {
9166 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9167 inst.instruction |= inst.operands[0].reg << 12;
9168 inst.instruction |= inst.operands[1].reg << 16;
9169 inst.instruction |= inst.operands[1].reg;
9170 }
9171
9172 static void
9173 do_iwmmxt_wldstbh (void)
9174 {
9175 int reloc;
9176 inst.instruction |= inst.operands[0].reg << 12;
9177 if (thumb_mode)
9178 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9179 else
9180 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9181 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9182 }
9183
9184 static void
9185 do_iwmmxt_wldstw (void)
9186 {
9187 /* RIWR_RIWC clears .isreg for a control register. */
9188 if (!inst.operands[0].isreg)
9189 {
9190 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9191 inst.instruction |= 0xf0000000;
9192 }
9193
9194 inst.instruction |= inst.operands[0].reg << 12;
9195 encode_arm_cp_address (1, TRUE, TRUE, 0);
9196 }
9197
9198 static void
9199 do_iwmmxt_wldstd (void)
9200 {
9201 inst.instruction |= inst.operands[0].reg << 12;
9202 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9203 && inst.operands[1].immisreg)
9204 {
9205 inst.instruction &= ~0x1a000ff;
9206 inst.instruction |= (0xf << 28);
9207 if (inst.operands[1].preind)
9208 inst.instruction |= PRE_INDEX;
9209 if (!inst.operands[1].negative)
9210 inst.instruction |= INDEX_UP;
9211 if (inst.operands[1].writeback)
9212 inst.instruction |= WRITE_BACK;
9213 inst.instruction |= inst.operands[1].reg << 16;
9214 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9215 inst.instruction |= inst.operands[1].imm;
9216 }
9217 else
9218 encode_arm_cp_address (1, TRUE, FALSE, 0);
9219 }
9220
9221 static void
9222 do_iwmmxt_wshufh (void)
9223 {
9224 inst.instruction |= inst.operands[0].reg << 12;
9225 inst.instruction |= inst.operands[1].reg << 16;
9226 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9227 inst.instruction |= (inst.operands[2].imm & 0x0f);
9228 }
9229
9230 static void
9231 do_iwmmxt_wzero (void)
9232 {
9233 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9234 inst.instruction |= inst.operands[0].reg;
9235 inst.instruction |= inst.operands[0].reg << 12;
9236 inst.instruction |= inst.operands[0].reg << 16;
9237 }
9238
9239 static void
9240 do_iwmmxt_wrwrwr_or_imm5 (void)
9241 {
9242 if (inst.operands[2].isreg)
9243 do_rd_rn_rm ();
9244 else {
9245 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9246 _("immediate operand requires iWMMXt2"));
9247 do_rd_rn ();
9248 if (inst.operands[2].imm == 0)
9249 {
9250 switch ((inst.instruction >> 20) & 0xf)
9251 {
9252 case 4:
9253 case 5:
9254 case 6:
9255 case 7:
9256 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9257 inst.operands[2].imm = 16;
9258 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9259 break;
9260 case 8:
9261 case 9:
9262 case 10:
9263 case 11:
9264 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9265 inst.operands[2].imm = 32;
9266 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9267 break;
9268 case 12:
9269 case 13:
9270 case 14:
9271 case 15:
9272 {
9273 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9274 unsigned long wrn;
9275 wrn = (inst.instruction >> 16) & 0xf;
9276 inst.instruction &= 0xff0fff0f;
9277 inst.instruction |= wrn;
9278 /* Bail out here; the instruction is now assembled. */
9279 return;
9280 }
9281 }
9282 }
9283 /* Map 32 -> 0, etc. */
9284 inst.operands[2].imm &= 0x1f;
9285 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9286 }
9287 }
9288 \f
9289 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9290 operations first, then control, shift, and load/store. */
9291
9292 /* Insns like "foo X,Y,Z". */
9293
9294 static void
9295 do_mav_triple (void)
9296 {
9297 inst.instruction |= inst.operands[0].reg << 16;
9298 inst.instruction |= inst.operands[1].reg;
9299 inst.instruction |= inst.operands[2].reg << 12;
9300 }
9301
9302 /* Insns like "foo W,X,Y,Z".
9303 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9304
9305 static void
9306 do_mav_quad (void)
9307 {
9308 inst.instruction |= inst.operands[0].reg << 5;
9309 inst.instruction |= inst.operands[1].reg << 12;
9310 inst.instruction |= inst.operands[2].reg << 16;
9311 inst.instruction |= inst.operands[3].reg;
9312 }
9313
9314 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9315 static void
9316 do_mav_dspsc (void)
9317 {
9318 inst.instruction |= inst.operands[1].reg << 12;
9319 }
9320
9321 /* Maverick shift immediate instructions.
9322 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9323 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9324
9325 static void
9326 do_mav_shift (void)
9327 {
9328 int imm = inst.operands[2].imm;
9329
9330 inst.instruction |= inst.operands[0].reg << 12;
9331 inst.instruction |= inst.operands[1].reg << 16;
9332
9333 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9334 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9335 Bit 4 should be 0. */
9336 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9337
9338 inst.instruction |= imm;
9339 }
9340 \f
9341 /* XScale instructions. Also sorted arithmetic before move. */
9342
9343 /* Xscale multiply-accumulate (argument parse)
9344 MIAcc acc0,Rm,Rs
9345 MIAPHcc acc0,Rm,Rs
9346 MIAxycc acc0,Rm,Rs. */
9347
9348 static void
9349 do_xsc_mia (void)
9350 {
9351 inst.instruction |= inst.operands[1].reg;
9352 inst.instruction |= inst.operands[2].reg << 12;
9353 }
9354
9355 /* Xscale move-accumulator-register (argument parse)
9356
9357 MARcc acc0,RdLo,RdHi. */
9358
9359 static void
9360 do_xsc_mar (void)
9361 {
9362 inst.instruction |= inst.operands[1].reg << 12;
9363 inst.instruction |= inst.operands[2].reg << 16;
9364 }
9365
9366 /* Xscale move-register-accumulator (argument parse)
9367
9368 MRAcc RdLo,RdHi,acc0. */
9369
9370 static void
9371 do_xsc_mra (void)
9372 {
9373 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9374 inst.instruction |= inst.operands[0].reg << 12;
9375 inst.instruction |= inst.operands[1].reg << 16;
9376 }
9377 \f
9378 /* Encoding functions relevant only to Thumb. */
9379
9380 /* inst.operands[i] is a shifted-register operand; encode
9381 it into inst.instruction in the format used by Thumb32. */
9382
9383 static void
9384 encode_thumb32_shifted_operand (int i)
9385 {
9386 unsigned int value = inst.reloc.exp.X_add_number;
9387 unsigned int shift = inst.operands[i].shift_kind;
9388
9389 constraint (inst.operands[i].immisreg,
9390 _("shift by register not allowed in thumb mode"));
9391 inst.instruction |= inst.operands[i].reg;
9392 if (shift == SHIFT_RRX)
9393 inst.instruction |= SHIFT_ROR << 4;
9394 else
9395 {
9396 constraint (inst.reloc.exp.X_op != O_constant,
9397 _("expression too complex"));
9398
9399 constraint (value > 32
9400 || (value == 32 && (shift == SHIFT_LSL
9401 || shift == SHIFT_ROR)),
9402 _("shift expression is too large"));
9403
9404 if (value == 0)
9405 shift = SHIFT_LSL;
9406 else if (value == 32)
9407 value = 0;
9408
9409 inst.instruction |= shift << 4;
9410 inst.instruction |= (value & 0x1c) << 10;
9411 inst.instruction |= (value & 0x03) << 6;
9412 }
9413 }
9414
9415
9416 /* inst.operands[i] was set up by parse_address. Encode it into a
9417 Thumb32 format load or store instruction. Reject forms that cannot
9418 be used with such instructions. If is_t is true, reject forms that
9419 cannot be used with a T instruction; if is_d is true, reject forms
9420 that cannot be used with a D instruction. If it is a store insn,
9421 reject PC in Rn. */
9422
9423 static void
9424 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9425 {
9426 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9427
9428 constraint (!inst.operands[i].isreg,
9429 _("Instruction does not support =N addresses"));
9430
9431 inst.instruction |= inst.operands[i].reg << 16;
9432 if (inst.operands[i].immisreg)
9433 {
9434 constraint (is_pc, BAD_PC_ADDRESSING);
9435 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9436 constraint (inst.operands[i].negative,
9437 _("Thumb does not support negative register indexing"));
9438 constraint (inst.operands[i].postind,
9439 _("Thumb does not support register post-indexing"));
9440 constraint (inst.operands[i].writeback,
9441 _("Thumb does not support register indexing with writeback"));
9442 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9443 _("Thumb supports only LSL in shifted register indexing"));
9444
9445 inst.instruction |= inst.operands[i].imm;
9446 if (inst.operands[i].shifted)
9447 {
9448 constraint (inst.reloc.exp.X_op != O_constant,
9449 _("expression too complex"));
9450 constraint (inst.reloc.exp.X_add_number < 0
9451 || inst.reloc.exp.X_add_number > 3,
9452 _("shift out of range"));
9453 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9454 }
9455 inst.reloc.type = BFD_RELOC_UNUSED;
9456 }
9457 else if (inst.operands[i].preind)
9458 {
9459 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9460 constraint (is_t && inst.operands[i].writeback,
9461 _("cannot use writeback with this instruction"));
9462 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9463 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9464
9465 if (is_d)
9466 {
9467 inst.instruction |= 0x01000000;
9468 if (inst.operands[i].writeback)
9469 inst.instruction |= 0x00200000;
9470 }
9471 else
9472 {
9473 inst.instruction |= 0x00000c00;
9474 if (inst.operands[i].writeback)
9475 inst.instruction |= 0x00000100;
9476 }
9477 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9478 }
9479 else if (inst.operands[i].postind)
9480 {
9481 gas_assert (inst.operands[i].writeback);
9482 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9483 constraint (is_t, _("cannot use post-indexing with this instruction"));
9484
9485 if (is_d)
9486 inst.instruction |= 0x00200000;
9487 else
9488 inst.instruction |= 0x00000900;
9489 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9490 }
9491 else /* unindexed - only for coprocessor */
9492 inst.error = _("instruction does not accept unindexed addressing");
9493 }
9494
9495 /* Table of Thumb instructions which exist in both 16- and 32-bit
9496 encodings (the latter only in post-V6T2 cores). The index is the
9497 value used in the insns table below. When there is more than one
9498 possible 16-bit encoding for the instruction, this table always
9499 holds variant (1).
9500 Also contains several pseudo-instructions used during relaxation. */
9501 #define T16_32_TAB \
9502 X(_adc, 4140, eb400000), \
9503 X(_adcs, 4140, eb500000), \
9504 X(_add, 1c00, eb000000), \
9505 X(_adds, 1c00, eb100000), \
9506 X(_addi, 0000, f1000000), \
9507 X(_addis, 0000, f1100000), \
9508 X(_add_pc,000f, f20f0000), \
9509 X(_add_sp,000d, f10d0000), \
9510 X(_adr, 000f, f20f0000), \
9511 X(_and, 4000, ea000000), \
9512 X(_ands, 4000, ea100000), \
9513 X(_asr, 1000, fa40f000), \
9514 X(_asrs, 1000, fa50f000), \
9515 X(_b, e000, f000b000), \
9516 X(_bcond, d000, f0008000), \
9517 X(_bic, 4380, ea200000), \
9518 X(_bics, 4380, ea300000), \
9519 X(_cmn, 42c0, eb100f00), \
9520 X(_cmp, 2800, ebb00f00), \
9521 X(_cpsie, b660, f3af8400), \
9522 X(_cpsid, b670, f3af8600), \
9523 X(_cpy, 4600, ea4f0000), \
9524 X(_dec_sp,80dd, f1ad0d00), \
9525 X(_eor, 4040, ea800000), \
9526 X(_eors, 4040, ea900000), \
9527 X(_inc_sp,00dd, f10d0d00), \
9528 X(_ldmia, c800, e8900000), \
9529 X(_ldr, 6800, f8500000), \
9530 X(_ldrb, 7800, f8100000), \
9531 X(_ldrh, 8800, f8300000), \
9532 X(_ldrsb, 5600, f9100000), \
9533 X(_ldrsh, 5e00, f9300000), \
9534 X(_ldr_pc,4800, f85f0000), \
9535 X(_ldr_pc2,4800, f85f0000), \
9536 X(_ldr_sp,9800, f85d0000), \
9537 X(_lsl, 0000, fa00f000), \
9538 X(_lsls, 0000, fa10f000), \
9539 X(_lsr, 0800, fa20f000), \
9540 X(_lsrs, 0800, fa30f000), \
9541 X(_mov, 2000, ea4f0000), \
9542 X(_movs, 2000, ea5f0000), \
9543 X(_mul, 4340, fb00f000), \
9544 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9545 X(_mvn, 43c0, ea6f0000), \
9546 X(_mvns, 43c0, ea7f0000), \
9547 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9548 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9549 X(_orr, 4300, ea400000), \
9550 X(_orrs, 4300, ea500000), \
9551 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9552 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9553 X(_rev, ba00, fa90f080), \
9554 X(_rev16, ba40, fa90f090), \
9555 X(_revsh, bac0, fa90f0b0), \
9556 X(_ror, 41c0, fa60f000), \
9557 X(_rors, 41c0, fa70f000), \
9558 X(_sbc, 4180, eb600000), \
9559 X(_sbcs, 4180, eb700000), \
9560 X(_stmia, c000, e8800000), \
9561 X(_str, 6000, f8400000), \
9562 X(_strb, 7000, f8000000), \
9563 X(_strh, 8000, f8200000), \
9564 X(_str_sp,9000, f84d0000), \
9565 X(_sub, 1e00, eba00000), \
9566 X(_subs, 1e00, ebb00000), \
9567 X(_subi, 8000, f1a00000), \
9568 X(_subis, 8000, f1b00000), \
9569 X(_sxtb, b240, fa4ff080), \
9570 X(_sxth, b200, fa0ff080), \
9571 X(_tst, 4200, ea100f00), \
9572 X(_uxtb, b2c0, fa5ff080), \
9573 X(_uxth, b280, fa1ff080), \
9574 X(_nop, bf00, f3af8000), \
9575 X(_yield, bf10, f3af8001), \
9576 X(_wfe, bf20, f3af8002), \
9577 X(_wfi, bf30, f3af8003), \
9578 X(_sev, bf40, f3af8004), \
9579 X(_sevl, bf50, f3af8005)
9580
9581 /* To catch errors in encoding functions, the codes are all offset by
9582 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9583 as 16-bit instructions. */
9584 #define X(a,b,c) T_MNEM##a
9585 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9586 #undef X
9587
9588 #define X(a,b,c) 0x##b
9589 static const unsigned short thumb_op16[] = { T16_32_TAB };
9590 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9591 #undef X
9592
9593 #define X(a,b,c) 0x##c
9594 static const unsigned int thumb_op32[] = { T16_32_TAB };
9595 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9596 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9597 #undef X
9598 #undef T16_32_TAB
9599
9600 /* Thumb instruction encoders, in alphabetical order. */
9601
9602 /* ADDW or SUBW. */
9603
9604 static void
9605 do_t_add_sub_w (void)
9606 {
9607 int Rd, Rn;
9608
9609 Rd = inst.operands[0].reg;
9610 Rn = inst.operands[1].reg;
9611
9612 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9613 is the SP-{plus,minus}-immediate form of the instruction. */
9614 if (Rn == REG_SP)
9615 constraint (Rd == REG_PC, BAD_PC);
9616 else
9617 reject_bad_reg (Rd);
9618
9619 inst.instruction |= (Rn << 16) | (Rd << 8);
9620 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9621 }
9622
9623 /* Parse an add or subtract instruction. We get here with inst.instruction
9624 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9625
9626 static void
9627 do_t_add_sub (void)
9628 {
9629 int Rd, Rs, Rn;
9630
9631 Rd = inst.operands[0].reg;
9632 Rs = (inst.operands[1].present
9633 ? inst.operands[1].reg /* Rd, Rs, foo */
9634 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9635
9636 if (Rd == REG_PC)
9637 set_it_insn_type_last ();
9638
9639 if (unified_syntax)
9640 {
9641 bfd_boolean flags;
9642 bfd_boolean narrow;
9643 int opcode;
9644
9645 flags = (inst.instruction == T_MNEM_adds
9646 || inst.instruction == T_MNEM_subs);
9647 if (flags)
9648 narrow = !in_it_block ();
9649 else
9650 narrow = in_it_block ();
9651 if (!inst.operands[2].isreg)
9652 {
9653 int add;
9654
9655 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9656
9657 add = (inst.instruction == T_MNEM_add
9658 || inst.instruction == T_MNEM_adds);
9659 opcode = 0;
9660 if (inst.size_req != 4)
9661 {
9662 /* Attempt to use a narrow opcode, with relaxation if
9663 appropriate. */
9664 if (Rd == REG_SP && Rs == REG_SP && !flags)
9665 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9666 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9667 opcode = T_MNEM_add_sp;
9668 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9669 opcode = T_MNEM_add_pc;
9670 else if (Rd <= 7 && Rs <= 7 && narrow)
9671 {
9672 if (flags)
9673 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9674 else
9675 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9676 }
9677 if (opcode)
9678 {
9679 inst.instruction = THUMB_OP16(opcode);
9680 inst.instruction |= (Rd << 4) | Rs;
9681 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9682 if (inst.size_req != 2)
9683 inst.relax = opcode;
9684 }
9685 else
9686 constraint (inst.size_req == 2, BAD_HIREG);
9687 }
9688 if (inst.size_req == 4
9689 || (inst.size_req != 2 && !opcode))
9690 {
9691 if (Rd == REG_PC)
9692 {
9693 constraint (add, BAD_PC);
9694 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9695 _("only SUBS PC, LR, #const allowed"));
9696 constraint (inst.reloc.exp.X_op != O_constant,
9697 _("expression too complex"));
9698 constraint (inst.reloc.exp.X_add_number < 0
9699 || inst.reloc.exp.X_add_number > 0xff,
9700 _("immediate value out of range"));
9701 inst.instruction = T2_SUBS_PC_LR
9702 | inst.reloc.exp.X_add_number;
9703 inst.reloc.type = BFD_RELOC_UNUSED;
9704 return;
9705 }
9706 else if (Rs == REG_PC)
9707 {
9708 /* Always use addw/subw. */
9709 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9710 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9711 }
9712 else
9713 {
9714 inst.instruction = THUMB_OP32 (inst.instruction);
9715 inst.instruction = (inst.instruction & 0xe1ffffff)
9716 | 0x10000000;
9717 if (flags)
9718 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9719 else
9720 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9721 }
9722 inst.instruction |= Rd << 8;
9723 inst.instruction |= Rs << 16;
9724 }
9725 }
9726 else
9727 {
9728 unsigned int value = inst.reloc.exp.X_add_number;
9729 unsigned int shift = inst.operands[2].shift_kind;
9730
9731 Rn = inst.operands[2].reg;
9732 /* See if we can do this with a 16-bit instruction. */
9733 if (!inst.operands[2].shifted && inst.size_req != 4)
9734 {
9735 if (Rd > 7 || Rs > 7 || Rn > 7)
9736 narrow = FALSE;
9737
9738 if (narrow)
9739 {
9740 inst.instruction = ((inst.instruction == T_MNEM_adds
9741 || inst.instruction == T_MNEM_add)
9742 ? T_OPCODE_ADD_R3
9743 : T_OPCODE_SUB_R3);
9744 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9745 return;
9746 }
9747
9748 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9749 {
9750 /* Thumb-1 cores (except v6-M) require at least one high
9751 register in a narrow non flag setting add. */
9752 if (Rd > 7 || Rn > 7
9753 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9754 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9755 {
9756 if (Rd == Rn)
9757 {
9758 Rn = Rs;
9759 Rs = Rd;
9760 }
9761 inst.instruction = T_OPCODE_ADD_HI;
9762 inst.instruction |= (Rd & 8) << 4;
9763 inst.instruction |= (Rd & 7);
9764 inst.instruction |= Rn << 3;
9765 return;
9766 }
9767 }
9768 }
9769
9770 constraint (Rd == REG_PC, BAD_PC);
9771 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9772 constraint (Rs == REG_PC, BAD_PC);
9773 reject_bad_reg (Rn);
9774
9775 /* If we get here, it can't be done in 16 bits. */
9776 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9777 _("shift must be constant"));
9778 inst.instruction = THUMB_OP32 (inst.instruction);
9779 inst.instruction |= Rd << 8;
9780 inst.instruction |= Rs << 16;
9781 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9782 _("shift value over 3 not allowed in thumb mode"));
9783 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9784 _("only LSL shift allowed in thumb mode"));
9785 encode_thumb32_shifted_operand (2);
9786 }
9787 }
9788 else
9789 {
9790 constraint (inst.instruction == T_MNEM_adds
9791 || inst.instruction == T_MNEM_subs,
9792 BAD_THUMB32);
9793
9794 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9795 {
9796 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9797 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9798 BAD_HIREG);
9799
9800 inst.instruction = (inst.instruction == T_MNEM_add
9801 ? 0x0000 : 0x8000);
9802 inst.instruction |= (Rd << 4) | Rs;
9803 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9804 return;
9805 }
9806
9807 Rn = inst.operands[2].reg;
9808 constraint (inst.operands[2].shifted, _("unshifted register required"));
9809
9810 /* We now have Rd, Rs, and Rn set to registers. */
9811 if (Rd > 7 || Rs > 7 || Rn > 7)
9812 {
9813 /* Can't do this for SUB. */
9814 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9815 inst.instruction = T_OPCODE_ADD_HI;
9816 inst.instruction |= (Rd & 8) << 4;
9817 inst.instruction |= (Rd & 7);
9818 if (Rs == Rd)
9819 inst.instruction |= Rn << 3;
9820 else if (Rn == Rd)
9821 inst.instruction |= Rs << 3;
9822 else
9823 constraint (1, _("dest must overlap one source register"));
9824 }
9825 else
9826 {
9827 inst.instruction = (inst.instruction == T_MNEM_add
9828 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9829 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9830 }
9831 }
9832 }
9833
9834 static void
9835 do_t_adr (void)
9836 {
9837 unsigned Rd;
9838
9839 Rd = inst.operands[0].reg;
9840 reject_bad_reg (Rd);
9841
9842 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9843 {
9844 /* Defer to section relaxation. */
9845 inst.relax = inst.instruction;
9846 inst.instruction = THUMB_OP16 (inst.instruction);
9847 inst.instruction |= Rd << 4;
9848 }
9849 else if (unified_syntax && inst.size_req != 2)
9850 {
9851 /* Generate a 32-bit opcode. */
9852 inst.instruction = THUMB_OP32 (inst.instruction);
9853 inst.instruction |= Rd << 8;
9854 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9855 inst.reloc.pc_rel = 1;
9856 }
9857 else
9858 {
9859 /* Generate a 16-bit opcode. */
9860 inst.instruction = THUMB_OP16 (inst.instruction);
9861 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9862 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9863 inst.reloc.pc_rel = 1;
9864
9865 inst.instruction |= Rd << 4;
9866 }
9867 }
9868
9869 /* Arithmetic instructions for which there is just one 16-bit
9870 instruction encoding, and it allows only two low registers.
9871 For maximal compatibility with ARM syntax, we allow three register
9872 operands even when Thumb-32 instructions are not available, as long
9873 as the first two are identical. For instance, both "sbc r0,r1" and
9874 "sbc r0,r0,r1" are allowed. */
9875 static void
9876 do_t_arit3 (void)
9877 {
9878 int Rd, Rs, Rn;
9879
9880 Rd = inst.operands[0].reg;
9881 Rs = (inst.operands[1].present
9882 ? inst.operands[1].reg /* Rd, Rs, foo */
9883 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9884 Rn = inst.operands[2].reg;
9885
9886 reject_bad_reg (Rd);
9887 reject_bad_reg (Rs);
9888 if (inst.operands[2].isreg)
9889 reject_bad_reg (Rn);
9890
9891 if (unified_syntax)
9892 {
9893 if (!inst.operands[2].isreg)
9894 {
9895 /* For an immediate, we always generate a 32-bit opcode;
9896 section relaxation will shrink it later if possible. */
9897 inst.instruction = THUMB_OP32 (inst.instruction);
9898 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9899 inst.instruction |= Rd << 8;
9900 inst.instruction |= Rs << 16;
9901 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9902 }
9903 else
9904 {
9905 bfd_boolean narrow;
9906
9907 /* See if we can do this with a 16-bit instruction. */
9908 if (THUMB_SETS_FLAGS (inst.instruction))
9909 narrow = !in_it_block ();
9910 else
9911 narrow = in_it_block ();
9912
9913 if (Rd > 7 || Rn > 7 || Rs > 7)
9914 narrow = FALSE;
9915 if (inst.operands[2].shifted)
9916 narrow = FALSE;
9917 if (inst.size_req == 4)
9918 narrow = FALSE;
9919
9920 if (narrow
9921 && Rd == Rs)
9922 {
9923 inst.instruction = THUMB_OP16 (inst.instruction);
9924 inst.instruction |= Rd;
9925 inst.instruction |= Rn << 3;
9926 return;
9927 }
9928
9929 /* If we get here, it can't be done in 16 bits. */
9930 constraint (inst.operands[2].shifted
9931 && inst.operands[2].immisreg,
9932 _("shift must be constant"));
9933 inst.instruction = THUMB_OP32 (inst.instruction);
9934 inst.instruction |= Rd << 8;
9935 inst.instruction |= Rs << 16;
9936 encode_thumb32_shifted_operand (2);
9937 }
9938 }
9939 else
9940 {
9941 /* On its face this is a lie - the instruction does set the
9942 flags. However, the only supported mnemonic in this mode
9943 says it doesn't. */
9944 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9945
9946 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9947 _("unshifted register required"));
9948 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9949 constraint (Rd != Rs,
9950 _("dest and source1 must be the same register"));
9951
9952 inst.instruction = THUMB_OP16 (inst.instruction);
9953 inst.instruction |= Rd;
9954 inst.instruction |= Rn << 3;
9955 }
9956 }
9957
9958 /* Similarly, but for instructions where the arithmetic operation is
9959 commutative, so we can allow either of them to be different from
9960 the destination operand in a 16-bit instruction. For instance, all
9961 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9962 accepted. */
9963 static void
9964 do_t_arit3c (void)
9965 {
9966 int Rd, Rs, Rn;
9967
9968 Rd = inst.operands[0].reg;
9969 Rs = (inst.operands[1].present
9970 ? inst.operands[1].reg /* Rd, Rs, foo */
9971 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9972 Rn = inst.operands[2].reg;
9973
9974 reject_bad_reg (Rd);
9975 reject_bad_reg (Rs);
9976 if (inst.operands[2].isreg)
9977 reject_bad_reg (Rn);
9978
9979 if (unified_syntax)
9980 {
9981 if (!inst.operands[2].isreg)
9982 {
9983 /* For an immediate, we always generate a 32-bit opcode;
9984 section relaxation will shrink it later if possible. */
9985 inst.instruction = THUMB_OP32 (inst.instruction);
9986 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9987 inst.instruction |= Rd << 8;
9988 inst.instruction |= Rs << 16;
9989 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9990 }
9991 else
9992 {
9993 bfd_boolean narrow;
9994
9995 /* See if we can do this with a 16-bit instruction. */
9996 if (THUMB_SETS_FLAGS (inst.instruction))
9997 narrow = !in_it_block ();
9998 else
9999 narrow = in_it_block ();
10000
10001 if (Rd > 7 || Rn > 7 || Rs > 7)
10002 narrow = FALSE;
10003 if (inst.operands[2].shifted)
10004 narrow = FALSE;
10005 if (inst.size_req == 4)
10006 narrow = FALSE;
10007
10008 if (narrow)
10009 {
10010 if (Rd == Rs)
10011 {
10012 inst.instruction = THUMB_OP16 (inst.instruction);
10013 inst.instruction |= Rd;
10014 inst.instruction |= Rn << 3;
10015 return;
10016 }
10017 if (Rd == Rn)
10018 {
10019 inst.instruction = THUMB_OP16 (inst.instruction);
10020 inst.instruction |= Rd;
10021 inst.instruction |= Rs << 3;
10022 return;
10023 }
10024 }
10025
10026 /* If we get here, it can't be done in 16 bits. */
10027 constraint (inst.operands[2].shifted
10028 && inst.operands[2].immisreg,
10029 _("shift must be constant"));
10030 inst.instruction = THUMB_OP32 (inst.instruction);
10031 inst.instruction |= Rd << 8;
10032 inst.instruction |= Rs << 16;
10033 encode_thumb32_shifted_operand (2);
10034 }
10035 }
10036 else
10037 {
10038 /* On its face this is a lie - the instruction does set the
10039 flags. However, the only supported mnemonic in this mode
10040 says it doesn't. */
10041 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10042
10043 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10044 _("unshifted register required"));
10045 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10046
10047 inst.instruction = THUMB_OP16 (inst.instruction);
10048 inst.instruction |= Rd;
10049
10050 if (Rd == Rs)
10051 inst.instruction |= Rn << 3;
10052 else if (Rd == Rn)
10053 inst.instruction |= Rs << 3;
10054 else
10055 constraint (1, _("dest must overlap one source register"));
10056 }
10057 }
10058
10059 static void
10060 do_t_barrier (void)
10061 {
10062 if (inst.operands[0].present)
10063 {
10064 constraint ((inst.instruction & 0xf0) != 0x40
10065 && inst.operands[0].imm > 0xf
10066 && inst.operands[0].imm < 0x0,
10067 _("bad barrier type"));
10068 inst.instruction |= inst.operands[0].imm;
10069 }
10070 else
10071 inst.instruction |= 0xf;
10072 }
10073
10074 static void
10075 do_t_bfc (void)
10076 {
10077 unsigned Rd;
10078 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10079 constraint (msb > 32, _("bit-field extends past end of register"));
10080 /* The instruction encoding stores the LSB and MSB,
10081 not the LSB and width. */
10082 Rd = inst.operands[0].reg;
10083 reject_bad_reg (Rd);
10084 inst.instruction |= Rd << 8;
10085 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10086 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10087 inst.instruction |= msb - 1;
10088 }
10089
10090 static void
10091 do_t_bfi (void)
10092 {
10093 int Rd, Rn;
10094 unsigned int msb;
10095
10096 Rd = inst.operands[0].reg;
10097 reject_bad_reg (Rd);
10098
10099 /* #0 in second position is alternative syntax for bfc, which is
10100 the same instruction but with REG_PC in the Rm field. */
10101 if (!inst.operands[1].isreg)
10102 Rn = REG_PC;
10103 else
10104 {
10105 Rn = inst.operands[1].reg;
10106 reject_bad_reg (Rn);
10107 }
10108
10109 msb = inst.operands[2].imm + inst.operands[3].imm;
10110 constraint (msb > 32, _("bit-field extends past end of register"));
10111 /* The instruction encoding stores the LSB and MSB,
10112 not the LSB and width. */
10113 inst.instruction |= Rd << 8;
10114 inst.instruction |= Rn << 16;
10115 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10116 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10117 inst.instruction |= msb - 1;
10118 }
10119
10120 static void
10121 do_t_bfx (void)
10122 {
10123 unsigned Rd, Rn;
10124
10125 Rd = inst.operands[0].reg;
10126 Rn = inst.operands[1].reg;
10127
10128 reject_bad_reg (Rd);
10129 reject_bad_reg (Rn);
10130
10131 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10132 _("bit-field extends past end of register"));
10133 inst.instruction |= Rd << 8;
10134 inst.instruction |= Rn << 16;
10135 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10136 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10137 inst.instruction |= inst.operands[3].imm - 1;
10138 }
10139
10140 /* ARM V5 Thumb BLX (argument parse)
10141 BLX <target_addr> which is BLX(1)
10142 BLX <Rm> which is BLX(2)
10143 Unfortunately, there are two different opcodes for this mnemonic.
10144 So, the insns[].value is not used, and the code here zaps values
10145 into inst.instruction.
10146
10147 ??? How to take advantage of the additional two bits of displacement
10148 available in Thumb32 mode? Need new relocation? */
10149
10150 static void
10151 do_t_blx (void)
10152 {
10153 set_it_insn_type_last ();
10154
10155 if (inst.operands[0].isreg)
10156 {
10157 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10158 /* We have a register, so this is BLX(2). */
10159 inst.instruction |= inst.operands[0].reg << 3;
10160 }
10161 else
10162 {
10163 /* No register. This must be BLX(1). */
10164 inst.instruction = 0xf000e800;
10165 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10166 }
10167 }
10168
10169 static void
10170 do_t_branch (void)
10171 {
10172 int opcode;
10173 int cond;
10174 int reloc;
10175
10176 cond = inst.cond;
10177 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10178
10179 if (in_it_block ())
10180 {
10181 /* Conditional branches inside IT blocks are encoded as unconditional
10182 branches. */
10183 cond = COND_ALWAYS;
10184 }
10185 else
10186 cond = inst.cond;
10187
10188 if (cond != COND_ALWAYS)
10189 opcode = T_MNEM_bcond;
10190 else
10191 opcode = inst.instruction;
10192
10193 if (unified_syntax
10194 && (inst.size_req == 4
10195 || (inst.size_req != 2
10196 && (inst.operands[0].hasreloc
10197 || inst.reloc.exp.X_op == O_constant))))
10198 {
10199 inst.instruction = THUMB_OP32(opcode);
10200 if (cond == COND_ALWAYS)
10201 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10202 else
10203 {
10204 gas_assert (cond != 0xF);
10205 inst.instruction |= cond << 22;
10206 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10207 }
10208 }
10209 else
10210 {
10211 inst.instruction = THUMB_OP16(opcode);
10212 if (cond == COND_ALWAYS)
10213 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10214 else
10215 {
10216 inst.instruction |= cond << 8;
10217 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10218 }
10219 /* Allow section relaxation. */
10220 if (unified_syntax && inst.size_req != 2)
10221 inst.relax = opcode;
10222 }
10223 inst.reloc.type = reloc;
10224 inst.reloc.pc_rel = 1;
10225 }
10226
10227 /* Actually do the work for Thumb state bkpt and hlt. The only difference
10228 between the two is the maximum immediate allowed - which is passed in
10229 RANGE. */
10230 static void
10231 do_t_bkpt_hlt1 (int range)
10232 {
10233 constraint (inst.cond != COND_ALWAYS,
10234 _("instruction is always unconditional"));
10235 if (inst.operands[0].present)
10236 {
10237 constraint (inst.operands[0].imm > range,
10238 _("immediate value out of range"));
10239 inst.instruction |= inst.operands[0].imm;
10240 }
10241
10242 set_it_insn_type (NEUTRAL_IT_INSN);
10243 }
10244
10245 static void
10246 do_t_hlt (void)
10247 {
10248 do_t_bkpt_hlt1 (63);
10249 }
10250
10251 static void
10252 do_t_bkpt (void)
10253 {
10254 do_t_bkpt_hlt1 (255);
10255 }
10256
10257 static void
10258 do_t_branch23 (void)
10259 {
10260 set_it_insn_type_last ();
10261 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10262
10263 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10264 this file. We used to simply ignore the PLT reloc type here --
10265 the branch encoding is now needed to deal with TLSCALL relocs.
10266 So if we see a PLT reloc now, put it back to how it used to be to
10267 keep the preexisting behaviour. */
10268 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10269 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10270
10271 #if defined(OBJ_COFF)
10272 /* If the destination of the branch is a defined symbol which does not have
10273 the THUMB_FUNC attribute, then we must be calling a function which has
10274 the (interfacearm) attribute. We look for the Thumb entry point to that
10275 function and change the branch to refer to that function instead. */
10276 if ( inst.reloc.exp.X_op == O_symbol
10277 && inst.reloc.exp.X_add_symbol != NULL
10278 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10279 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10280 inst.reloc.exp.X_add_symbol =
10281 find_real_start (inst.reloc.exp.X_add_symbol);
10282 #endif
10283 }
10284
10285 static void
10286 do_t_bx (void)
10287 {
10288 set_it_insn_type_last ();
10289 inst.instruction |= inst.operands[0].reg << 3;
10290 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10291 should cause the alignment to be checked once it is known. This is
10292 because BX PC only works if the instruction is word aligned. */
10293 }
10294
10295 static void
10296 do_t_bxj (void)
10297 {
10298 int Rm;
10299
10300 set_it_insn_type_last ();
10301 Rm = inst.operands[0].reg;
10302 reject_bad_reg (Rm);
10303 inst.instruction |= Rm << 16;
10304 }
10305
10306 static void
10307 do_t_clz (void)
10308 {
10309 unsigned Rd;
10310 unsigned Rm;
10311
10312 Rd = inst.operands[0].reg;
10313 Rm = inst.operands[1].reg;
10314
10315 reject_bad_reg (Rd);
10316 reject_bad_reg (Rm);
10317
10318 inst.instruction |= Rd << 8;
10319 inst.instruction |= Rm << 16;
10320 inst.instruction |= Rm;
10321 }
10322
10323 static void
10324 do_t_cps (void)
10325 {
10326 set_it_insn_type (OUTSIDE_IT_INSN);
10327 inst.instruction |= inst.operands[0].imm;
10328 }
10329
10330 static void
10331 do_t_cpsi (void)
10332 {
10333 set_it_insn_type (OUTSIDE_IT_INSN);
10334 if (unified_syntax
10335 && (inst.operands[1].present || inst.size_req == 4)
10336 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10337 {
10338 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10339 inst.instruction = 0xf3af8000;
10340 inst.instruction |= imod << 9;
10341 inst.instruction |= inst.operands[0].imm << 5;
10342 if (inst.operands[1].present)
10343 inst.instruction |= 0x100 | inst.operands[1].imm;
10344 }
10345 else
10346 {
10347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10348 && (inst.operands[0].imm & 4),
10349 _("selected processor does not support 'A' form "
10350 "of this instruction"));
10351 constraint (inst.operands[1].present || inst.size_req == 4,
10352 _("Thumb does not support the 2-argument "
10353 "form of this instruction"));
10354 inst.instruction |= inst.operands[0].imm;
10355 }
10356 }
10357
10358 /* THUMB CPY instruction (argument parse). */
10359
10360 static void
10361 do_t_cpy (void)
10362 {
10363 if (inst.size_req == 4)
10364 {
10365 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10366 inst.instruction |= inst.operands[0].reg << 8;
10367 inst.instruction |= inst.operands[1].reg;
10368 }
10369 else
10370 {
10371 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10372 inst.instruction |= (inst.operands[0].reg & 0x7);
10373 inst.instruction |= inst.operands[1].reg << 3;
10374 }
10375 }
10376
10377 static void
10378 do_t_cbz (void)
10379 {
10380 set_it_insn_type (OUTSIDE_IT_INSN);
10381 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10382 inst.instruction |= inst.operands[0].reg;
10383 inst.reloc.pc_rel = 1;
10384 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10385 }
10386
10387 static void
10388 do_t_dbg (void)
10389 {
10390 inst.instruction |= inst.operands[0].imm;
10391 }
10392
10393 static void
10394 do_t_div (void)
10395 {
10396 unsigned Rd, Rn, Rm;
10397
10398 Rd = inst.operands[0].reg;
10399 Rn = (inst.operands[1].present
10400 ? inst.operands[1].reg : Rd);
10401 Rm = inst.operands[2].reg;
10402
10403 reject_bad_reg (Rd);
10404 reject_bad_reg (Rn);
10405 reject_bad_reg (Rm);
10406
10407 inst.instruction |= Rd << 8;
10408 inst.instruction |= Rn << 16;
10409 inst.instruction |= Rm;
10410 }
10411
10412 static void
10413 do_t_hint (void)
10414 {
10415 if (unified_syntax && inst.size_req == 4)
10416 inst.instruction = THUMB_OP32 (inst.instruction);
10417 else
10418 inst.instruction = THUMB_OP16 (inst.instruction);
10419 }
10420
10421 static void
10422 do_t_it (void)
10423 {
10424 unsigned int cond = inst.operands[0].imm;
10425
10426 set_it_insn_type (IT_INSN);
10427 now_it.mask = (inst.instruction & 0xf) | 0x10;
10428 now_it.cc = cond;
10429 now_it.warn_deprecated = FALSE;
10430
10431 /* If the condition is a negative condition, invert the mask. */
10432 if ((cond & 0x1) == 0x0)
10433 {
10434 unsigned int mask = inst.instruction & 0x000f;
10435
10436 if ((mask & 0x7) == 0)
10437 {
10438 /* No conversion needed. */
10439 now_it.block_length = 1;
10440 }
10441 else if ((mask & 0x3) == 0)
10442 {
10443 mask ^= 0x8;
10444 now_it.block_length = 2;
10445 }
10446 else if ((mask & 0x1) == 0)
10447 {
10448 mask ^= 0xC;
10449 now_it.block_length = 3;
10450 }
10451 else
10452 {
10453 mask ^= 0xE;
10454 now_it.block_length = 4;
10455 }
10456
10457 inst.instruction &= 0xfff0;
10458 inst.instruction |= mask;
10459 }
10460
10461 inst.instruction |= cond << 4;
10462 }
10463
10464 /* Helper function used for both push/pop and ldm/stm. */
10465 static void
10466 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10467 {
10468 bfd_boolean load;
10469
10470 load = (inst.instruction & (1 << 20)) != 0;
10471
10472 if (mask & (1 << 13))
10473 inst.error = _("SP not allowed in register list");
10474
10475 if ((mask & (1 << base)) != 0
10476 && writeback)
10477 inst.error = _("having the base register in the register list when "
10478 "using write back is UNPREDICTABLE");
10479
10480 if (load)
10481 {
10482 if (mask & (1 << 15))
10483 {
10484 if (mask & (1 << 14))
10485 inst.error = _("LR and PC should not both be in register list");
10486 else
10487 set_it_insn_type_last ();
10488 }
10489 }
10490 else
10491 {
10492 if (mask & (1 << 15))
10493 inst.error = _("PC not allowed in register list");
10494 }
10495
10496 if ((mask & (mask - 1)) == 0)
10497 {
10498 /* Single register transfers implemented as str/ldr. */
10499 if (writeback)
10500 {
10501 if (inst.instruction & (1 << 23))
10502 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10503 else
10504 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10505 }
10506 else
10507 {
10508 if (inst.instruction & (1 << 23))
10509 inst.instruction = 0x00800000; /* ia -> [base] */
10510 else
10511 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10512 }
10513
10514 inst.instruction |= 0xf8400000;
10515 if (load)
10516 inst.instruction |= 0x00100000;
10517
10518 mask = ffs (mask) - 1;
10519 mask <<= 12;
10520 }
10521 else if (writeback)
10522 inst.instruction |= WRITE_BACK;
10523
10524 inst.instruction |= mask;
10525 inst.instruction |= base << 16;
10526 }
10527
10528 static void
10529 do_t_ldmstm (void)
10530 {
10531 /* This really doesn't seem worth it. */
10532 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10533 _("expression too complex"));
10534 constraint (inst.operands[1].writeback,
10535 _("Thumb load/store multiple does not support {reglist}^"));
10536
10537 if (unified_syntax)
10538 {
10539 bfd_boolean narrow;
10540 unsigned mask;
10541
10542 narrow = FALSE;
10543 /* See if we can use a 16-bit instruction. */
10544 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10545 && inst.size_req != 4
10546 && !(inst.operands[1].imm & ~0xff))
10547 {
10548 mask = 1 << inst.operands[0].reg;
10549
10550 if (inst.operands[0].reg <= 7)
10551 {
10552 if (inst.instruction == T_MNEM_stmia
10553 ? inst.operands[0].writeback
10554 : (inst.operands[0].writeback
10555 == !(inst.operands[1].imm & mask)))
10556 {
10557 if (inst.instruction == T_MNEM_stmia
10558 && (inst.operands[1].imm & mask)
10559 && (inst.operands[1].imm & (mask - 1)))
10560 as_warn (_("value stored for r%d is UNKNOWN"),
10561 inst.operands[0].reg);
10562
10563 inst.instruction = THUMB_OP16 (inst.instruction);
10564 inst.instruction |= inst.operands[0].reg << 8;
10565 inst.instruction |= inst.operands[1].imm;
10566 narrow = TRUE;
10567 }
10568 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10569 {
10570 /* This means 1 register in reg list one of 3 situations:
10571 1. Instruction is stmia, but without writeback.
10572 2. lmdia without writeback, but with Rn not in
10573 reglist.
10574 3. ldmia with writeback, but with Rn in reglist.
10575 Case 3 is UNPREDICTABLE behaviour, so we handle
10576 case 1 and 2 which can be converted into a 16-bit
10577 str or ldr. The SP cases are handled below. */
10578 unsigned long opcode;
10579 /* First, record an error for Case 3. */
10580 if (inst.operands[1].imm & mask
10581 && inst.operands[0].writeback)
10582 inst.error =
10583 _("having the base register in the register list when "
10584 "using write back is UNPREDICTABLE");
10585
10586 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10587 : T_MNEM_ldr);
10588 inst.instruction = THUMB_OP16 (opcode);
10589 inst.instruction |= inst.operands[0].reg << 3;
10590 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10591 narrow = TRUE;
10592 }
10593 }
10594 else if (inst.operands[0] .reg == REG_SP)
10595 {
10596 if (inst.operands[0].writeback)
10597 {
10598 inst.instruction =
10599 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10600 ? T_MNEM_push : T_MNEM_pop);
10601 inst.instruction |= inst.operands[1].imm;
10602 narrow = TRUE;
10603 }
10604 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10605 {
10606 inst.instruction =
10607 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10608 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10609 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10610 narrow = TRUE;
10611 }
10612 }
10613 }
10614
10615 if (!narrow)
10616 {
10617 if (inst.instruction < 0xffff)
10618 inst.instruction = THUMB_OP32 (inst.instruction);
10619
10620 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10621 inst.operands[0].writeback);
10622 }
10623 }
10624 else
10625 {
10626 constraint (inst.operands[0].reg > 7
10627 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10628 constraint (inst.instruction != T_MNEM_ldmia
10629 && inst.instruction != T_MNEM_stmia,
10630 _("Thumb-2 instruction only valid in unified syntax"));
10631 if (inst.instruction == T_MNEM_stmia)
10632 {
10633 if (!inst.operands[0].writeback)
10634 as_warn (_("this instruction will write back the base register"));
10635 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10636 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10637 as_warn (_("value stored for r%d is UNKNOWN"),
10638 inst.operands[0].reg);
10639 }
10640 else
10641 {
10642 if (!inst.operands[0].writeback
10643 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10644 as_warn (_("this instruction will write back the base register"));
10645 else if (inst.operands[0].writeback
10646 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10647 as_warn (_("this instruction will not write back the base register"));
10648 }
10649
10650 inst.instruction = THUMB_OP16 (inst.instruction);
10651 inst.instruction |= inst.operands[0].reg << 8;
10652 inst.instruction |= inst.operands[1].imm;
10653 }
10654 }
10655
10656 static void
10657 do_t_ldrex (void)
10658 {
10659 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10660 || inst.operands[1].postind || inst.operands[1].writeback
10661 || inst.operands[1].immisreg || inst.operands[1].shifted
10662 || inst.operands[1].negative,
10663 BAD_ADDR_MODE);
10664
10665 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10666
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 inst.instruction |= inst.operands[1].reg << 16;
10669 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10670 }
10671
10672 static void
10673 do_t_ldrexd (void)
10674 {
10675 if (!inst.operands[1].present)
10676 {
10677 constraint (inst.operands[0].reg == REG_LR,
10678 _("r14 not allowed as first register "
10679 "when second register is omitted"));
10680 inst.operands[1].reg = inst.operands[0].reg + 1;
10681 }
10682 constraint (inst.operands[0].reg == inst.operands[1].reg,
10683 BAD_OVERLAP);
10684
10685 inst.instruction |= inst.operands[0].reg << 12;
10686 inst.instruction |= inst.operands[1].reg << 8;
10687 inst.instruction |= inst.operands[2].reg << 16;
10688 }
10689
10690 static void
10691 do_t_ldst (void)
10692 {
10693 unsigned long opcode;
10694 int Rn;
10695
10696 if (inst.operands[0].isreg
10697 && !inst.operands[0].preind
10698 && inst.operands[0].reg == REG_PC)
10699 set_it_insn_type_last ();
10700
10701 opcode = inst.instruction;
10702 if (unified_syntax)
10703 {
10704 if (!inst.operands[1].isreg)
10705 {
10706 if (opcode <= 0xffff)
10707 inst.instruction = THUMB_OP32 (opcode);
10708 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10709 return;
10710 }
10711 if (inst.operands[1].isreg
10712 && !inst.operands[1].writeback
10713 && !inst.operands[1].shifted && !inst.operands[1].postind
10714 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10715 && opcode <= 0xffff
10716 && inst.size_req != 4)
10717 {
10718 /* Insn may have a 16-bit form. */
10719 Rn = inst.operands[1].reg;
10720 if (inst.operands[1].immisreg)
10721 {
10722 inst.instruction = THUMB_OP16 (opcode);
10723 /* [Rn, Rik] */
10724 if (Rn <= 7 && inst.operands[1].imm <= 7)
10725 goto op16;
10726 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10727 reject_bad_reg (inst.operands[1].imm);
10728 }
10729 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10730 && opcode != T_MNEM_ldrsb)
10731 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10732 || (Rn == REG_SP && opcode == T_MNEM_str))
10733 {
10734 /* [Rn, #const] */
10735 if (Rn > 7)
10736 {
10737 if (Rn == REG_PC)
10738 {
10739 if (inst.reloc.pc_rel)
10740 opcode = T_MNEM_ldr_pc2;
10741 else
10742 opcode = T_MNEM_ldr_pc;
10743 }
10744 else
10745 {
10746 if (opcode == T_MNEM_ldr)
10747 opcode = T_MNEM_ldr_sp;
10748 else
10749 opcode = T_MNEM_str_sp;
10750 }
10751 inst.instruction = inst.operands[0].reg << 8;
10752 }
10753 else
10754 {
10755 inst.instruction = inst.operands[0].reg;
10756 inst.instruction |= inst.operands[1].reg << 3;
10757 }
10758 inst.instruction |= THUMB_OP16 (opcode);
10759 if (inst.size_req == 2)
10760 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10761 else
10762 inst.relax = opcode;
10763 return;
10764 }
10765 }
10766 /* Definitely a 32-bit variant. */
10767
10768 /* Warning for Erratum 752419. */
10769 if (opcode == T_MNEM_ldr
10770 && inst.operands[0].reg == REG_SP
10771 && inst.operands[1].writeback == 1
10772 && !inst.operands[1].immisreg)
10773 {
10774 if (no_cpu_selected ()
10775 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10776 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10777 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10778 as_warn (_("This instruction may be unpredictable "
10779 "if executed on M-profile cores "
10780 "with interrupts enabled."));
10781 }
10782
10783 /* Do some validations regarding addressing modes. */
10784 if (inst.operands[1].immisreg)
10785 reject_bad_reg (inst.operands[1].imm);
10786
10787 constraint (inst.operands[1].writeback == 1
10788 && inst.operands[0].reg == inst.operands[1].reg,
10789 BAD_OVERLAP);
10790
10791 inst.instruction = THUMB_OP32 (opcode);
10792 inst.instruction |= inst.operands[0].reg << 12;
10793 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10794 check_ldr_r15_aligned ();
10795 return;
10796 }
10797
10798 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10799
10800 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10801 {
10802 /* Only [Rn,Rm] is acceptable. */
10803 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10804 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10805 || inst.operands[1].postind || inst.operands[1].shifted
10806 || inst.operands[1].negative,
10807 _("Thumb does not support this addressing mode"));
10808 inst.instruction = THUMB_OP16 (inst.instruction);
10809 goto op16;
10810 }
10811
10812 inst.instruction = THUMB_OP16 (inst.instruction);
10813 if (!inst.operands[1].isreg)
10814 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10815 return;
10816
10817 constraint (!inst.operands[1].preind
10818 || inst.operands[1].shifted
10819 || inst.operands[1].writeback,
10820 _("Thumb does not support this addressing mode"));
10821 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10822 {
10823 constraint (inst.instruction & 0x0600,
10824 _("byte or halfword not valid for base register"));
10825 constraint (inst.operands[1].reg == REG_PC
10826 && !(inst.instruction & THUMB_LOAD_BIT),
10827 _("r15 based store not allowed"));
10828 constraint (inst.operands[1].immisreg,
10829 _("invalid base register for register offset"));
10830
10831 if (inst.operands[1].reg == REG_PC)
10832 inst.instruction = T_OPCODE_LDR_PC;
10833 else if (inst.instruction & THUMB_LOAD_BIT)
10834 inst.instruction = T_OPCODE_LDR_SP;
10835 else
10836 inst.instruction = T_OPCODE_STR_SP;
10837
10838 inst.instruction |= inst.operands[0].reg << 8;
10839 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10840 return;
10841 }
10842
10843 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10844 if (!inst.operands[1].immisreg)
10845 {
10846 /* Immediate offset. */
10847 inst.instruction |= inst.operands[0].reg;
10848 inst.instruction |= inst.operands[1].reg << 3;
10849 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10850 return;
10851 }
10852
10853 /* Register offset. */
10854 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10855 constraint (inst.operands[1].negative,
10856 _("Thumb does not support this addressing mode"));
10857
10858 op16:
10859 switch (inst.instruction)
10860 {
10861 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10862 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10863 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10864 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10865 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10866 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10867 case 0x5600 /* ldrsb */:
10868 case 0x5e00 /* ldrsh */: break;
10869 default: abort ();
10870 }
10871
10872 inst.instruction |= inst.operands[0].reg;
10873 inst.instruction |= inst.operands[1].reg << 3;
10874 inst.instruction |= inst.operands[1].imm << 6;
10875 }
10876
10877 static void
10878 do_t_ldstd (void)
10879 {
10880 if (!inst.operands[1].present)
10881 {
10882 inst.operands[1].reg = inst.operands[0].reg + 1;
10883 constraint (inst.operands[0].reg == REG_LR,
10884 _("r14 not allowed here"));
10885 constraint (inst.operands[0].reg == REG_R12,
10886 _("r12 not allowed here"));
10887 }
10888
10889 if (inst.operands[2].writeback
10890 && (inst.operands[0].reg == inst.operands[2].reg
10891 || inst.operands[1].reg == inst.operands[2].reg))
10892 as_warn (_("base register written back, and overlaps "
10893 "one of transfer registers"));
10894
10895 inst.instruction |= inst.operands[0].reg << 12;
10896 inst.instruction |= inst.operands[1].reg << 8;
10897 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10898 }
10899
10900 static void
10901 do_t_ldstt (void)
10902 {
10903 inst.instruction |= inst.operands[0].reg << 12;
10904 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10905 }
10906
10907 static void
10908 do_t_mla (void)
10909 {
10910 unsigned Rd, Rn, Rm, Ra;
10911
10912 Rd = inst.operands[0].reg;
10913 Rn = inst.operands[1].reg;
10914 Rm = inst.operands[2].reg;
10915 Ra = inst.operands[3].reg;
10916
10917 reject_bad_reg (Rd);
10918 reject_bad_reg (Rn);
10919 reject_bad_reg (Rm);
10920 reject_bad_reg (Ra);
10921
10922 inst.instruction |= Rd << 8;
10923 inst.instruction |= Rn << 16;
10924 inst.instruction |= Rm;
10925 inst.instruction |= Ra << 12;
10926 }
10927
10928 static void
10929 do_t_mlal (void)
10930 {
10931 unsigned RdLo, RdHi, Rn, Rm;
10932
10933 RdLo = inst.operands[0].reg;
10934 RdHi = inst.operands[1].reg;
10935 Rn = inst.operands[2].reg;
10936 Rm = inst.operands[3].reg;
10937
10938 reject_bad_reg (RdLo);
10939 reject_bad_reg (RdHi);
10940 reject_bad_reg (Rn);
10941 reject_bad_reg (Rm);
10942
10943 inst.instruction |= RdLo << 12;
10944 inst.instruction |= RdHi << 8;
10945 inst.instruction |= Rn << 16;
10946 inst.instruction |= Rm;
10947 }
10948
10949 static void
10950 do_t_mov_cmp (void)
10951 {
10952 unsigned Rn, Rm;
10953
10954 Rn = inst.operands[0].reg;
10955 Rm = inst.operands[1].reg;
10956
10957 if (Rn == REG_PC)
10958 set_it_insn_type_last ();
10959
10960 if (unified_syntax)
10961 {
10962 int r0off = (inst.instruction == T_MNEM_mov
10963 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10964 unsigned long opcode;
10965 bfd_boolean narrow;
10966 bfd_boolean low_regs;
10967
10968 low_regs = (Rn <= 7 && Rm <= 7);
10969 opcode = inst.instruction;
10970 if (in_it_block ())
10971 narrow = opcode != T_MNEM_movs;
10972 else
10973 narrow = opcode != T_MNEM_movs || low_regs;
10974 if (inst.size_req == 4
10975 || inst.operands[1].shifted)
10976 narrow = FALSE;
10977
10978 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10979 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10980 && !inst.operands[1].shifted
10981 && Rn == REG_PC
10982 && Rm == REG_LR)
10983 {
10984 inst.instruction = T2_SUBS_PC_LR;
10985 return;
10986 }
10987
10988 if (opcode == T_MNEM_cmp)
10989 {
10990 constraint (Rn == REG_PC, BAD_PC);
10991 if (narrow)
10992 {
10993 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10994 but valid. */
10995 warn_deprecated_sp (Rm);
10996 /* R15 was documented as a valid choice for Rm in ARMv6,
10997 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10998 tools reject R15, so we do too. */
10999 constraint (Rm == REG_PC, BAD_PC);
11000 }
11001 else
11002 reject_bad_reg (Rm);
11003 }
11004 else if (opcode == T_MNEM_mov
11005 || opcode == T_MNEM_movs)
11006 {
11007 if (inst.operands[1].isreg)
11008 {
11009 if (opcode == T_MNEM_movs)
11010 {
11011 reject_bad_reg (Rn);
11012 reject_bad_reg (Rm);
11013 }
11014 else if (narrow)
11015 {
11016 /* This is mov.n. */
11017 if ((Rn == REG_SP || Rn == REG_PC)
11018 && (Rm == REG_SP || Rm == REG_PC))
11019 {
11020 as_warn (_("Use of r%u as a source register is "
11021 "deprecated when r%u is the destination "
11022 "register."), Rm, Rn);
11023 }
11024 }
11025 else
11026 {
11027 /* This is mov.w. */
11028 constraint (Rn == REG_PC, BAD_PC);
11029 constraint (Rm == REG_PC, BAD_PC);
11030 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11031 }
11032 }
11033 else
11034 reject_bad_reg (Rn);
11035 }
11036
11037 if (!inst.operands[1].isreg)
11038 {
11039 /* Immediate operand. */
11040 if (!in_it_block () && opcode == T_MNEM_mov)
11041 narrow = 0;
11042 if (low_regs && narrow)
11043 {
11044 inst.instruction = THUMB_OP16 (opcode);
11045 inst.instruction |= Rn << 8;
11046 if (inst.size_req == 2)
11047 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11048 else
11049 inst.relax = opcode;
11050 }
11051 else
11052 {
11053 inst.instruction = THUMB_OP32 (inst.instruction);
11054 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11055 inst.instruction |= Rn << r0off;
11056 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11057 }
11058 }
11059 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11060 && (inst.instruction == T_MNEM_mov
11061 || inst.instruction == T_MNEM_movs))
11062 {
11063 /* Register shifts are encoded as separate shift instructions. */
11064 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11065
11066 if (in_it_block ())
11067 narrow = !flags;
11068 else
11069 narrow = flags;
11070
11071 if (inst.size_req == 4)
11072 narrow = FALSE;
11073
11074 if (!low_regs || inst.operands[1].imm > 7)
11075 narrow = FALSE;
11076
11077 if (Rn != Rm)
11078 narrow = FALSE;
11079
11080 switch (inst.operands[1].shift_kind)
11081 {
11082 case SHIFT_LSL:
11083 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11084 break;
11085 case SHIFT_ASR:
11086 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11087 break;
11088 case SHIFT_LSR:
11089 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11090 break;
11091 case SHIFT_ROR:
11092 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11093 break;
11094 default:
11095 abort ();
11096 }
11097
11098 inst.instruction = opcode;
11099 if (narrow)
11100 {
11101 inst.instruction |= Rn;
11102 inst.instruction |= inst.operands[1].imm << 3;
11103 }
11104 else
11105 {
11106 if (flags)
11107 inst.instruction |= CONDS_BIT;
11108
11109 inst.instruction |= Rn << 8;
11110 inst.instruction |= Rm << 16;
11111 inst.instruction |= inst.operands[1].imm;
11112 }
11113 }
11114 else if (!narrow)
11115 {
11116 /* Some mov with immediate shift have narrow variants.
11117 Register shifts are handled above. */
11118 if (low_regs && inst.operands[1].shifted
11119 && (inst.instruction == T_MNEM_mov
11120 || inst.instruction == T_MNEM_movs))
11121 {
11122 if (in_it_block ())
11123 narrow = (inst.instruction == T_MNEM_mov);
11124 else
11125 narrow = (inst.instruction == T_MNEM_movs);
11126 }
11127
11128 if (narrow)
11129 {
11130 switch (inst.operands[1].shift_kind)
11131 {
11132 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11133 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11134 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11135 default: narrow = FALSE; break;
11136 }
11137 }
11138
11139 if (narrow)
11140 {
11141 inst.instruction |= Rn;
11142 inst.instruction |= Rm << 3;
11143 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11144 }
11145 else
11146 {
11147 inst.instruction = THUMB_OP32 (inst.instruction);
11148 inst.instruction |= Rn << r0off;
11149 encode_thumb32_shifted_operand (1);
11150 }
11151 }
11152 else
11153 switch (inst.instruction)
11154 {
11155 case T_MNEM_mov:
11156 /* In v4t or v5t a move of two lowregs produces unpredictable
11157 results. Don't allow this. */
11158 if (low_regs)
11159 {
11160 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11161 "MOV Rd, Rs with two low registers is not "
11162 "permitted on this architecture");
11163 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11164 arm_ext_v6);
11165 }
11166
11167 inst.instruction = T_OPCODE_MOV_HR;
11168 inst.instruction |= (Rn & 0x8) << 4;
11169 inst.instruction |= (Rn & 0x7);
11170 inst.instruction |= Rm << 3;
11171 break;
11172
11173 case T_MNEM_movs:
11174 /* We know we have low registers at this point.
11175 Generate LSLS Rd, Rs, #0. */
11176 inst.instruction = T_OPCODE_LSL_I;
11177 inst.instruction |= Rn;
11178 inst.instruction |= Rm << 3;
11179 break;
11180
11181 case T_MNEM_cmp:
11182 if (low_regs)
11183 {
11184 inst.instruction = T_OPCODE_CMP_LR;
11185 inst.instruction |= Rn;
11186 inst.instruction |= Rm << 3;
11187 }
11188 else
11189 {
11190 inst.instruction = T_OPCODE_CMP_HR;
11191 inst.instruction |= (Rn & 0x8) << 4;
11192 inst.instruction |= (Rn & 0x7);
11193 inst.instruction |= Rm << 3;
11194 }
11195 break;
11196 }
11197 return;
11198 }
11199
11200 inst.instruction = THUMB_OP16 (inst.instruction);
11201
11202 /* PR 10443: Do not silently ignore shifted operands. */
11203 constraint (inst.operands[1].shifted,
11204 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11205
11206 if (inst.operands[1].isreg)
11207 {
11208 if (Rn < 8 && Rm < 8)
11209 {
11210 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11211 since a MOV instruction produces unpredictable results. */
11212 if (inst.instruction == T_OPCODE_MOV_I8)
11213 inst.instruction = T_OPCODE_ADD_I3;
11214 else
11215 inst.instruction = T_OPCODE_CMP_LR;
11216
11217 inst.instruction |= Rn;
11218 inst.instruction |= Rm << 3;
11219 }
11220 else
11221 {
11222 if (inst.instruction == T_OPCODE_MOV_I8)
11223 inst.instruction = T_OPCODE_MOV_HR;
11224 else
11225 inst.instruction = T_OPCODE_CMP_HR;
11226 do_t_cpy ();
11227 }
11228 }
11229 else
11230 {
11231 constraint (Rn > 7,
11232 _("only lo regs allowed with immediate"));
11233 inst.instruction |= Rn << 8;
11234 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11235 }
11236 }
11237
11238 static void
11239 do_t_mov16 (void)
11240 {
11241 unsigned Rd;
11242 bfd_vma imm;
11243 bfd_boolean top;
11244
11245 top = (inst.instruction & 0x00800000) != 0;
11246 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11247 {
11248 constraint (top, _(":lower16: not allowed this instruction"));
11249 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11250 }
11251 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11252 {
11253 constraint (!top, _(":upper16: not allowed this instruction"));
11254 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11255 }
11256
11257 Rd = inst.operands[0].reg;
11258 reject_bad_reg (Rd);
11259
11260 inst.instruction |= Rd << 8;
11261 if (inst.reloc.type == BFD_RELOC_UNUSED)
11262 {
11263 imm = inst.reloc.exp.X_add_number;
11264 inst.instruction |= (imm & 0xf000) << 4;
11265 inst.instruction |= (imm & 0x0800) << 15;
11266 inst.instruction |= (imm & 0x0700) << 4;
11267 inst.instruction |= (imm & 0x00ff);
11268 }
11269 }
11270
11271 static void
11272 do_t_mvn_tst (void)
11273 {
11274 unsigned Rn, Rm;
11275
11276 Rn = inst.operands[0].reg;
11277 Rm = inst.operands[1].reg;
11278
11279 if (inst.instruction == T_MNEM_cmp
11280 || inst.instruction == T_MNEM_cmn)
11281 constraint (Rn == REG_PC, BAD_PC);
11282 else
11283 reject_bad_reg (Rn);
11284 reject_bad_reg (Rm);
11285
11286 if (unified_syntax)
11287 {
11288 int r0off = (inst.instruction == T_MNEM_mvn
11289 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11290 bfd_boolean narrow;
11291
11292 if (inst.size_req == 4
11293 || inst.instruction > 0xffff
11294 || inst.operands[1].shifted
11295 || Rn > 7 || Rm > 7)
11296 narrow = FALSE;
11297 else if (inst.instruction == T_MNEM_cmn)
11298 narrow = TRUE;
11299 else if (THUMB_SETS_FLAGS (inst.instruction))
11300 narrow = !in_it_block ();
11301 else
11302 narrow = in_it_block ();
11303
11304 if (!inst.operands[1].isreg)
11305 {
11306 /* For an immediate, we always generate a 32-bit opcode;
11307 section relaxation will shrink it later if possible. */
11308 if (inst.instruction < 0xffff)
11309 inst.instruction = THUMB_OP32 (inst.instruction);
11310 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11311 inst.instruction |= Rn << r0off;
11312 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11313 }
11314 else
11315 {
11316 /* See if we can do this with a 16-bit instruction. */
11317 if (narrow)
11318 {
11319 inst.instruction = THUMB_OP16 (inst.instruction);
11320 inst.instruction |= Rn;
11321 inst.instruction |= Rm << 3;
11322 }
11323 else
11324 {
11325 constraint (inst.operands[1].shifted
11326 && inst.operands[1].immisreg,
11327 _("shift must be constant"));
11328 if (inst.instruction < 0xffff)
11329 inst.instruction = THUMB_OP32 (inst.instruction);
11330 inst.instruction |= Rn << r0off;
11331 encode_thumb32_shifted_operand (1);
11332 }
11333 }
11334 }
11335 else
11336 {
11337 constraint (inst.instruction > 0xffff
11338 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11339 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11340 _("unshifted register required"));
11341 constraint (Rn > 7 || Rm > 7,
11342 BAD_HIREG);
11343
11344 inst.instruction = THUMB_OP16 (inst.instruction);
11345 inst.instruction |= Rn;
11346 inst.instruction |= Rm << 3;
11347 }
11348 }
11349
11350 static void
11351 do_t_mrs (void)
11352 {
11353 unsigned Rd;
11354
11355 if (do_vfp_nsyn_mrs () == SUCCESS)
11356 return;
11357
11358 Rd = inst.operands[0].reg;
11359 reject_bad_reg (Rd);
11360 inst.instruction |= Rd << 8;
11361
11362 if (inst.operands[1].isreg)
11363 {
11364 unsigned br = inst.operands[1].reg;
11365 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11366 as_bad (_("bad register for mrs"));
11367
11368 inst.instruction |= br & (0xf << 16);
11369 inst.instruction |= (br & 0x300) >> 4;
11370 inst.instruction |= (br & SPSR_BIT) >> 2;
11371 }
11372 else
11373 {
11374 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11375
11376 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11377 {
11378 /* PR gas/12698: The constraint is only applied for m_profile.
11379 If the user has specified -march=all, we want to ignore it as
11380 we are building for any CPU type, including non-m variants. */
11381 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11382 constraint ((flags != 0) && m_profile, _("selected processor does "
11383 "not support requested special purpose register"));
11384 }
11385 else
11386 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11387 devices). */
11388 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11389 _("'APSR', 'CPSR' or 'SPSR' expected"));
11390
11391 inst.instruction |= (flags & SPSR_BIT) >> 2;
11392 inst.instruction |= inst.operands[1].imm & 0xff;
11393 inst.instruction |= 0xf0000;
11394 }
11395 }
11396
11397 static void
11398 do_t_msr (void)
11399 {
11400 int flags;
11401 unsigned Rn;
11402
11403 if (do_vfp_nsyn_msr () == SUCCESS)
11404 return;
11405
11406 constraint (!inst.operands[1].isreg,
11407 _("Thumb encoding does not support an immediate here"));
11408
11409 if (inst.operands[0].isreg)
11410 flags = (int)(inst.operands[0].reg);
11411 else
11412 flags = inst.operands[0].imm;
11413
11414 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11415 {
11416 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11417
11418 /* PR gas/12698: The constraint is only applied for m_profile.
11419 If the user has specified -march=all, we want to ignore it as
11420 we are building for any CPU type, including non-m variants. */
11421 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11422 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11423 && (bits & ~(PSR_s | PSR_f)) != 0)
11424 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11425 && bits != PSR_f)) && m_profile,
11426 _("selected processor does not support requested special "
11427 "purpose register"));
11428 }
11429 else
11430 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11431 "requested special purpose register"));
11432
11433 Rn = inst.operands[1].reg;
11434 reject_bad_reg (Rn);
11435
11436 inst.instruction |= (flags & SPSR_BIT) >> 2;
11437 inst.instruction |= (flags & 0xf0000) >> 8;
11438 inst.instruction |= (flags & 0x300) >> 4;
11439 inst.instruction |= (flags & 0xff);
11440 inst.instruction |= Rn << 16;
11441 }
11442
11443 static void
11444 do_t_mul (void)
11445 {
11446 bfd_boolean narrow;
11447 unsigned Rd, Rn, Rm;
11448
11449 if (!inst.operands[2].present)
11450 inst.operands[2].reg = inst.operands[0].reg;
11451
11452 Rd = inst.operands[0].reg;
11453 Rn = inst.operands[1].reg;
11454 Rm = inst.operands[2].reg;
11455
11456 if (unified_syntax)
11457 {
11458 if (inst.size_req == 4
11459 || (Rd != Rn
11460 && Rd != Rm)
11461 || Rn > 7
11462 || Rm > 7)
11463 narrow = FALSE;
11464 else if (inst.instruction == T_MNEM_muls)
11465 narrow = !in_it_block ();
11466 else
11467 narrow = in_it_block ();
11468 }
11469 else
11470 {
11471 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11472 constraint (Rn > 7 || Rm > 7,
11473 BAD_HIREG);
11474 narrow = TRUE;
11475 }
11476
11477 if (narrow)
11478 {
11479 /* 16-bit MULS/Conditional MUL. */
11480 inst.instruction = THUMB_OP16 (inst.instruction);
11481 inst.instruction |= Rd;
11482
11483 if (Rd == Rn)
11484 inst.instruction |= Rm << 3;
11485 else if (Rd == Rm)
11486 inst.instruction |= Rn << 3;
11487 else
11488 constraint (1, _("dest must overlap one source register"));
11489 }
11490 else
11491 {
11492 constraint (inst.instruction != T_MNEM_mul,
11493 _("Thumb-2 MUL must not set flags"));
11494 /* 32-bit MUL. */
11495 inst.instruction = THUMB_OP32 (inst.instruction);
11496 inst.instruction |= Rd << 8;
11497 inst.instruction |= Rn << 16;
11498 inst.instruction |= Rm << 0;
11499
11500 reject_bad_reg (Rd);
11501 reject_bad_reg (Rn);
11502 reject_bad_reg (Rm);
11503 }
11504 }
11505
11506 static void
11507 do_t_mull (void)
11508 {
11509 unsigned RdLo, RdHi, Rn, Rm;
11510
11511 RdLo = inst.operands[0].reg;
11512 RdHi = inst.operands[1].reg;
11513 Rn = inst.operands[2].reg;
11514 Rm = inst.operands[3].reg;
11515
11516 reject_bad_reg (RdLo);
11517 reject_bad_reg (RdHi);
11518 reject_bad_reg (Rn);
11519 reject_bad_reg (Rm);
11520
11521 inst.instruction |= RdLo << 12;
11522 inst.instruction |= RdHi << 8;
11523 inst.instruction |= Rn << 16;
11524 inst.instruction |= Rm;
11525
11526 if (RdLo == RdHi)
11527 as_tsktsk (_("rdhi and rdlo must be different"));
11528 }
11529
11530 static void
11531 do_t_nop (void)
11532 {
11533 set_it_insn_type (NEUTRAL_IT_INSN);
11534
11535 if (unified_syntax)
11536 {
11537 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11538 {
11539 inst.instruction = THUMB_OP32 (inst.instruction);
11540 inst.instruction |= inst.operands[0].imm;
11541 }
11542 else
11543 {
11544 /* PR9722: Check for Thumb2 availability before
11545 generating a thumb2 nop instruction. */
11546 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11547 {
11548 inst.instruction = THUMB_OP16 (inst.instruction);
11549 inst.instruction |= inst.operands[0].imm << 4;
11550 }
11551 else
11552 inst.instruction = 0x46c0;
11553 }
11554 }
11555 else
11556 {
11557 constraint (inst.operands[0].present,
11558 _("Thumb does not support NOP with hints"));
11559 inst.instruction = 0x46c0;
11560 }
11561 }
11562
11563 static void
11564 do_t_neg (void)
11565 {
11566 if (unified_syntax)
11567 {
11568 bfd_boolean narrow;
11569
11570 if (THUMB_SETS_FLAGS (inst.instruction))
11571 narrow = !in_it_block ();
11572 else
11573 narrow = in_it_block ();
11574 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11575 narrow = FALSE;
11576 if (inst.size_req == 4)
11577 narrow = FALSE;
11578
11579 if (!narrow)
11580 {
11581 inst.instruction = THUMB_OP32 (inst.instruction);
11582 inst.instruction |= inst.operands[0].reg << 8;
11583 inst.instruction |= inst.operands[1].reg << 16;
11584 }
11585 else
11586 {
11587 inst.instruction = THUMB_OP16 (inst.instruction);
11588 inst.instruction |= inst.operands[0].reg;
11589 inst.instruction |= inst.operands[1].reg << 3;
11590 }
11591 }
11592 else
11593 {
11594 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11595 BAD_HIREG);
11596 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11597
11598 inst.instruction = THUMB_OP16 (inst.instruction);
11599 inst.instruction |= inst.operands[0].reg;
11600 inst.instruction |= inst.operands[1].reg << 3;
11601 }
11602 }
11603
11604 static void
11605 do_t_orn (void)
11606 {
11607 unsigned Rd, Rn;
11608
11609 Rd = inst.operands[0].reg;
11610 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11611
11612 reject_bad_reg (Rd);
11613 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11614 reject_bad_reg (Rn);
11615
11616 inst.instruction |= Rd << 8;
11617 inst.instruction |= Rn << 16;
11618
11619 if (!inst.operands[2].isreg)
11620 {
11621 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11622 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11623 }
11624 else
11625 {
11626 unsigned Rm;
11627
11628 Rm = inst.operands[2].reg;
11629 reject_bad_reg (Rm);
11630
11631 constraint (inst.operands[2].shifted
11632 && inst.operands[2].immisreg,
11633 _("shift must be constant"));
11634 encode_thumb32_shifted_operand (2);
11635 }
11636 }
11637
11638 static void
11639 do_t_pkhbt (void)
11640 {
11641 unsigned Rd, Rn, Rm;
11642
11643 Rd = inst.operands[0].reg;
11644 Rn = inst.operands[1].reg;
11645 Rm = inst.operands[2].reg;
11646
11647 reject_bad_reg (Rd);
11648 reject_bad_reg (Rn);
11649 reject_bad_reg (Rm);
11650
11651 inst.instruction |= Rd << 8;
11652 inst.instruction |= Rn << 16;
11653 inst.instruction |= Rm;
11654 if (inst.operands[3].present)
11655 {
11656 unsigned int val = inst.reloc.exp.X_add_number;
11657 constraint (inst.reloc.exp.X_op != O_constant,
11658 _("expression too complex"));
11659 inst.instruction |= (val & 0x1c) << 10;
11660 inst.instruction |= (val & 0x03) << 6;
11661 }
11662 }
11663
11664 static void
11665 do_t_pkhtb (void)
11666 {
11667 if (!inst.operands[3].present)
11668 {
11669 unsigned Rtmp;
11670
11671 inst.instruction &= ~0x00000020;
11672
11673 /* PR 10168. Swap the Rm and Rn registers. */
11674 Rtmp = inst.operands[1].reg;
11675 inst.operands[1].reg = inst.operands[2].reg;
11676 inst.operands[2].reg = Rtmp;
11677 }
11678 do_t_pkhbt ();
11679 }
11680
11681 static void
11682 do_t_pld (void)
11683 {
11684 if (inst.operands[0].immisreg)
11685 reject_bad_reg (inst.operands[0].imm);
11686
11687 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11688 }
11689
11690 static void
11691 do_t_push_pop (void)
11692 {
11693 unsigned mask;
11694
11695 constraint (inst.operands[0].writeback,
11696 _("push/pop do not support {reglist}^"));
11697 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11698 _("expression too complex"));
11699
11700 mask = inst.operands[0].imm;
11701 if ((mask & ~0xff) == 0)
11702 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11703 else if ((inst.instruction == T_MNEM_push
11704 && (mask & ~0xff) == 1 << REG_LR)
11705 || (inst.instruction == T_MNEM_pop
11706 && (mask & ~0xff) == 1 << REG_PC))
11707 {
11708 inst.instruction = THUMB_OP16 (inst.instruction);
11709 inst.instruction |= THUMB_PP_PC_LR;
11710 inst.instruction |= mask & 0xff;
11711 }
11712 else if (unified_syntax)
11713 {
11714 inst.instruction = THUMB_OP32 (inst.instruction);
11715 encode_thumb2_ldmstm (13, mask, TRUE);
11716 }
11717 else
11718 {
11719 inst.error = _("invalid register list to push/pop instruction");
11720 return;
11721 }
11722 }
11723
11724 static void
11725 do_t_rbit (void)
11726 {
11727 unsigned Rd, Rm;
11728
11729 Rd = inst.operands[0].reg;
11730 Rm = inst.operands[1].reg;
11731
11732 reject_bad_reg (Rd);
11733 reject_bad_reg (Rm);
11734
11735 inst.instruction |= Rd << 8;
11736 inst.instruction |= Rm << 16;
11737 inst.instruction |= Rm;
11738 }
11739
11740 static void
11741 do_t_rev (void)
11742 {
11743 unsigned Rd, Rm;
11744
11745 Rd = inst.operands[0].reg;
11746 Rm = inst.operands[1].reg;
11747
11748 reject_bad_reg (Rd);
11749 reject_bad_reg (Rm);
11750
11751 if (Rd <= 7 && Rm <= 7
11752 && inst.size_req != 4)
11753 {
11754 inst.instruction = THUMB_OP16 (inst.instruction);
11755 inst.instruction |= Rd;
11756 inst.instruction |= Rm << 3;
11757 }
11758 else if (unified_syntax)
11759 {
11760 inst.instruction = THUMB_OP32 (inst.instruction);
11761 inst.instruction |= Rd << 8;
11762 inst.instruction |= Rm << 16;
11763 inst.instruction |= Rm;
11764 }
11765 else
11766 inst.error = BAD_HIREG;
11767 }
11768
11769 static void
11770 do_t_rrx (void)
11771 {
11772 unsigned Rd, Rm;
11773
11774 Rd = inst.operands[0].reg;
11775 Rm = inst.operands[1].reg;
11776
11777 reject_bad_reg (Rd);
11778 reject_bad_reg (Rm);
11779
11780 inst.instruction |= Rd << 8;
11781 inst.instruction |= Rm;
11782 }
11783
11784 static void
11785 do_t_rsb (void)
11786 {
11787 unsigned Rd, Rs;
11788
11789 Rd = inst.operands[0].reg;
11790 Rs = (inst.operands[1].present
11791 ? inst.operands[1].reg /* Rd, Rs, foo */
11792 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11793
11794 reject_bad_reg (Rd);
11795 reject_bad_reg (Rs);
11796 if (inst.operands[2].isreg)
11797 reject_bad_reg (inst.operands[2].reg);
11798
11799 inst.instruction |= Rd << 8;
11800 inst.instruction |= Rs << 16;
11801 if (!inst.operands[2].isreg)
11802 {
11803 bfd_boolean narrow;
11804
11805 if ((inst.instruction & 0x00100000) != 0)
11806 narrow = !in_it_block ();
11807 else
11808 narrow = in_it_block ();
11809
11810 if (Rd > 7 || Rs > 7)
11811 narrow = FALSE;
11812
11813 if (inst.size_req == 4 || !unified_syntax)
11814 narrow = FALSE;
11815
11816 if (inst.reloc.exp.X_op != O_constant
11817 || inst.reloc.exp.X_add_number != 0)
11818 narrow = FALSE;
11819
11820 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11821 relaxation, but it doesn't seem worth the hassle. */
11822 if (narrow)
11823 {
11824 inst.reloc.type = BFD_RELOC_UNUSED;
11825 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11826 inst.instruction |= Rs << 3;
11827 inst.instruction |= Rd;
11828 }
11829 else
11830 {
11831 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11832 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11833 }
11834 }
11835 else
11836 encode_thumb32_shifted_operand (2);
11837 }
11838
11839 static void
11840 do_t_setend (void)
11841 {
11842 if (warn_on_deprecated
11843 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11844 as_warn (_("setend use is deprecated for ARMv8"));
11845
11846 set_it_insn_type (OUTSIDE_IT_INSN);
11847 if (inst.operands[0].imm)
11848 inst.instruction |= 0x8;
11849 }
11850
11851 static void
11852 do_t_shift (void)
11853 {
11854 if (!inst.operands[1].present)
11855 inst.operands[1].reg = inst.operands[0].reg;
11856
11857 if (unified_syntax)
11858 {
11859 bfd_boolean narrow;
11860 int shift_kind;
11861
11862 switch (inst.instruction)
11863 {
11864 case T_MNEM_asr:
11865 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11866 case T_MNEM_lsl:
11867 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11868 case T_MNEM_lsr:
11869 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11870 case T_MNEM_ror:
11871 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11872 default: abort ();
11873 }
11874
11875 if (THUMB_SETS_FLAGS (inst.instruction))
11876 narrow = !in_it_block ();
11877 else
11878 narrow = in_it_block ();
11879 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11880 narrow = FALSE;
11881 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11882 narrow = FALSE;
11883 if (inst.operands[2].isreg
11884 && (inst.operands[1].reg != inst.operands[0].reg
11885 || inst.operands[2].reg > 7))
11886 narrow = FALSE;
11887 if (inst.size_req == 4)
11888 narrow = FALSE;
11889
11890 reject_bad_reg (inst.operands[0].reg);
11891 reject_bad_reg (inst.operands[1].reg);
11892
11893 if (!narrow)
11894 {
11895 if (inst.operands[2].isreg)
11896 {
11897 reject_bad_reg (inst.operands[2].reg);
11898 inst.instruction = THUMB_OP32 (inst.instruction);
11899 inst.instruction |= inst.operands[0].reg << 8;
11900 inst.instruction |= inst.operands[1].reg << 16;
11901 inst.instruction |= inst.operands[2].reg;
11902
11903 /* PR 12854: Error on extraneous shifts. */
11904 constraint (inst.operands[2].shifted,
11905 _("extraneous shift as part of operand to shift insn"));
11906 }
11907 else
11908 {
11909 inst.operands[1].shifted = 1;
11910 inst.operands[1].shift_kind = shift_kind;
11911 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11912 ? T_MNEM_movs : T_MNEM_mov);
11913 inst.instruction |= inst.operands[0].reg << 8;
11914 encode_thumb32_shifted_operand (1);
11915 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11916 inst.reloc.type = BFD_RELOC_UNUSED;
11917 }
11918 }
11919 else
11920 {
11921 if (inst.operands[2].isreg)
11922 {
11923 switch (shift_kind)
11924 {
11925 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11926 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11927 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11928 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11929 default: abort ();
11930 }
11931
11932 inst.instruction |= inst.operands[0].reg;
11933 inst.instruction |= inst.operands[2].reg << 3;
11934
11935 /* PR 12854: Error on extraneous shifts. */
11936 constraint (inst.operands[2].shifted,
11937 _("extraneous shift as part of operand to shift insn"));
11938 }
11939 else
11940 {
11941 switch (shift_kind)
11942 {
11943 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11944 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11945 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11946 default: abort ();
11947 }
11948 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11949 inst.instruction |= inst.operands[0].reg;
11950 inst.instruction |= inst.operands[1].reg << 3;
11951 }
11952 }
11953 }
11954 else
11955 {
11956 constraint (inst.operands[0].reg > 7
11957 || inst.operands[1].reg > 7, BAD_HIREG);
11958 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11959
11960 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11961 {
11962 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11963 constraint (inst.operands[0].reg != inst.operands[1].reg,
11964 _("source1 and dest must be same register"));
11965
11966 switch (inst.instruction)
11967 {
11968 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11969 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11970 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11971 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11972 default: abort ();
11973 }
11974
11975 inst.instruction |= inst.operands[0].reg;
11976 inst.instruction |= inst.operands[2].reg << 3;
11977
11978 /* PR 12854: Error on extraneous shifts. */
11979 constraint (inst.operands[2].shifted,
11980 _("extraneous shift as part of operand to shift insn"));
11981 }
11982 else
11983 {
11984 switch (inst.instruction)
11985 {
11986 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11987 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11988 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11989 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11990 default: abort ();
11991 }
11992 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11993 inst.instruction |= inst.operands[0].reg;
11994 inst.instruction |= inst.operands[1].reg << 3;
11995 }
11996 }
11997 }
11998
11999 static void
12000 do_t_simd (void)
12001 {
12002 unsigned Rd, Rn, Rm;
12003
12004 Rd = inst.operands[0].reg;
12005 Rn = inst.operands[1].reg;
12006 Rm = inst.operands[2].reg;
12007
12008 reject_bad_reg (Rd);
12009 reject_bad_reg (Rn);
12010 reject_bad_reg (Rm);
12011
12012 inst.instruction |= Rd << 8;
12013 inst.instruction |= Rn << 16;
12014 inst.instruction |= Rm;
12015 }
12016
12017 static void
12018 do_t_simd2 (void)
12019 {
12020 unsigned Rd, Rn, Rm;
12021
12022 Rd = inst.operands[0].reg;
12023 Rm = inst.operands[1].reg;
12024 Rn = inst.operands[2].reg;
12025
12026 reject_bad_reg (Rd);
12027 reject_bad_reg (Rn);
12028 reject_bad_reg (Rm);
12029
12030 inst.instruction |= Rd << 8;
12031 inst.instruction |= Rn << 16;
12032 inst.instruction |= Rm;
12033 }
12034
12035 static void
12036 do_t_smc (void)
12037 {
12038 unsigned int value = inst.reloc.exp.X_add_number;
12039 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12040 _("SMC is not permitted on this architecture"));
12041 constraint (inst.reloc.exp.X_op != O_constant,
12042 _("expression too complex"));
12043 inst.reloc.type = BFD_RELOC_UNUSED;
12044 inst.instruction |= (value & 0xf000) >> 12;
12045 inst.instruction |= (value & 0x0ff0);
12046 inst.instruction |= (value & 0x000f) << 16;
12047 }
12048
12049 static void
12050 do_t_hvc (void)
12051 {
12052 unsigned int value = inst.reloc.exp.X_add_number;
12053
12054 inst.reloc.type = BFD_RELOC_UNUSED;
12055 inst.instruction |= (value & 0x0fff);
12056 inst.instruction |= (value & 0xf000) << 4;
12057 }
12058
12059 static void
12060 do_t_ssat_usat (int bias)
12061 {
12062 unsigned Rd, Rn;
12063
12064 Rd = inst.operands[0].reg;
12065 Rn = inst.operands[2].reg;
12066
12067 reject_bad_reg (Rd);
12068 reject_bad_reg (Rn);
12069
12070 inst.instruction |= Rd << 8;
12071 inst.instruction |= inst.operands[1].imm - bias;
12072 inst.instruction |= Rn << 16;
12073
12074 if (inst.operands[3].present)
12075 {
12076 offsetT shift_amount = inst.reloc.exp.X_add_number;
12077
12078 inst.reloc.type = BFD_RELOC_UNUSED;
12079
12080 constraint (inst.reloc.exp.X_op != O_constant,
12081 _("expression too complex"));
12082
12083 if (shift_amount != 0)
12084 {
12085 constraint (shift_amount > 31,
12086 _("shift expression is too large"));
12087
12088 if (inst.operands[3].shift_kind == SHIFT_ASR)
12089 inst.instruction |= 0x00200000; /* sh bit. */
12090
12091 inst.instruction |= (shift_amount & 0x1c) << 10;
12092 inst.instruction |= (shift_amount & 0x03) << 6;
12093 }
12094 }
12095 }
12096
12097 static void
12098 do_t_ssat (void)
12099 {
12100 do_t_ssat_usat (1);
12101 }
12102
12103 static void
12104 do_t_ssat16 (void)
12105 {
12106 unsigned Rd, Rn;
12107
12108 Rd = inst.operands[0].reg;
12109 Rn = inst.operands[2].reg;
12110
12111 reject_bad_reg (Rd);
12112 reject_bad_reg (Rn);
12113
12114 inst.instruction |= Rd << 8;
12115 inst.instruction |= inst.operands[1].imm - 1;
12116 inst.instruction |= Rn << 16;
12117 }
12118
12119 static void
12120 do_t_strex (void)
12121 {
12122 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12123 || inst.operands[2].postind || inst.operands[2].writeback
12124 || inst.operands[2].immisreg || inst.operands[2].shifted
12125 || inst.operands[2].negative,
12126 BAD_ADDR_MODE);
12127
12128 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12129
12130 inst.instruction |= inst.operands[0].reg << 8;
12131 inst.instruction |= inst.operands[1].reg << 12;
12132 inst.instruction |= inst.operands[2].reg << 16;
12133 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12134 }
12135
12136 static void
12137 do_t_strexd (void)
12138 {
12139 if (!inst.operands[2].present)
12140 inst.operands[2].reg = inst.operands[1].reg + 1;
12141
12142 constraint (inst.operands[0].reg == inst.operands[1].reg
12143 || inst.operands[0].reg == inst.operands[2].reg
12144 || inst.operands[0].reg == inst.operands[3].reg,
12145 BAD_OVERLAP);
12146
12147 inst.instruction |= inst.operands[0].reg;
12148 inst.instruction |= inst.operands[1].reg << 12;
12149 inst.instruction |= inst.operands[2].reg << 8;
12150 inst.instruction |= inst.operands[3].reg << 16;
12151 }
12152
12153 static void
12154 do_t_sxtah (void)
12155 {
12156 unsigned Rd, Rn, Rm;
12157
12158 Rd = inst.operands[0].reg;
12159 Rn = inst.operands[1].reg;
12160 Rm = inst.operands[2].reg;
12161
12162 reject_bad_reg (Rd);
12163 reject_bad_reg (Rn);
12164 reject_bad_reg (Rm);
12165
12166 inst.instruction |= Rd << 8;
12167 inst.instruction |= Rn << 16;
12168 inst.instruction |= Rm;
12169 inst.instruction |= inst.operands[3].imm << 4;
12170 }
12171
12172 static void
12173 do_t_sxth (void)
12174 {
12175 unsigned Rd, Rm;
12176
12177 Rd = inst.operands[0].reg;
12178 Rm = inst.operands[1].reg;
12179
12180 reject_bad_reg (Rd);
12181 reject_bad_reg (Rm);
12182
12183 if (inst.instruction <= 0xffff
12184 && inst.size_req != 4
12185 && Rd <= 7 && Rm <= 7
12186 && (!inst.operands[2].present || inst.operands[2].imm == 0))
12187 {
12188 inst.instruction = THUMB_OP16 (inst.instruction);
12189 inst.instruction |= Rd;
12190 inst.instruction |= Rm << 3;
12191 }
12192 else if (unified_syntax)
12193 {
12194 if (inst.instruction <= 0xffff)
12195 inst.instruction = THUMB_OP32 (inst.instruction);
12196 inst.instruction |= Rd << 8;
12197 inst.instruction |= Rm;
12198 inst.instruction |= inst.operands[2].imm << 4;
12199 }
12200 else
12201 {
12202 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12203 _("Thumb encoding does not support rotation"));
12204 constraint (1, BAD_HIREG);
12205 }
12206 }
12207
12208 static void
12209 do_t_swi (void)
12210 {
12211 /* We have to do the following check manually as ARM_EXT_OS only applies
12212 to ARM_EXT_V6M. */
12213 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12214 {
12215 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12216 /* This only applies to the v6m howver, not later architectures. */
12217 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
12218 as_bad (_("SVC is not permitted on this architecture"));
12219 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12220 }
12221
12222 inst.reloc.type = BFD_RELOC_ARM_SWI;
12223 }
12224
12225 static void
12226 do_t_tb (void)
12227 {
12228 unsigned Rn, Rm;
12229 int half;
12230
12231 half = (inst.instruction & 0x10) != 0;
12232 set_it_insn_type_last ();
12233 constraint (inst.operands[0].immisreg,
12234 _("instruction requires register index"));
12235
12236 Rn = inst.operands[0].reg;
12237 Rm = inst.operands[0].imm;
12238
12239 constraint (Rn == REG_SP, BAD_SP);
12240 reject_bad_reg (Rm);
12241
12242 constraint (!half && inst.operands[0].shifted,
12243 _("instruction does not allow shifted index"));
12244 inst.instruction |= (Rn << 16) | Rm;
12245 }
12246
12247 static void
12248 do_t_usat (void)
12249 {
12250 do_t_ssat_usat (0);
12251 }
12252
12253 static void
12254 do_t_usat16 (void)
12255 {
12256 unsigned Rd, Rn;
12257
12258 Rd = inst.operands[0].reg;
12259 Rn = inst.operands[2].reg;
12260
12261 reject_bad_reg (Rd);
12262 reject_bad_reg (Rn);
12263
12264 inst.instruction |= Rd << 8;
12265 inst.instruction |= inst.operands[1].imm;
12266 inst.instruction |= Rn << 16;
12267 }
12268
12269 /* Neon instruction encoder helpers. */
12270
12271 /* Encodings for the different types for various Neon opcodes. */
12272
12273 /* An "invalid" code for the following tables. */
12274 #define N_INV -1u
12275
12276 struct neon_tab_entry
12277 {
12278 unsigned integer;
12279 unsigned float_or_poly;
12280 unsigned scalar_or_imm;
12281 };
12282
12283 /* Map overloaded Neon opcodes to their respective encodings. */
12284 #define NEON_ENC_TAB \
12285 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12286 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12287 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12288 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12289 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12290 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12291 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12292 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12293 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12294 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12295 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12296 /* Register variants of the following two instructions are encoded as
12297 vcge / vcgt with the operands reversed. */ \
12298 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12299 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12300 X(vfma, N_INV, 0x0000c10, N_INV), \
12301 X(vfms, N_INV, 0x0200c10, N_INV), \
12302 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12303 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12304 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12305 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12306 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12307 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12308 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12309 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12310 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12311 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12312 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12313 X(vshl, 0x0000400, N_INV, 0x0800510), \
12314 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12315 X(vand, 0x0000110, N_INV, 0x0800030), \
12316 X(vbic, 0x0100110, N_INV, 0x0800030), \
12317 X(veor, 0x1000110, N_INV, N_INV), \
12318 X(vorn, 0x0300110, N_INV, 0x0800010), \
12319 X(vorr, 0x0200110, N_INV, 0x0800010), \
12320 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12321 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12322 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12323 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12324 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12325 X(vst1, 0x0000000, 0x0800000, N_INV), \
12326 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12327 X(vst2, 0x0000100, 0x0800100, N_INV), \
12328 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12329 X(vst3, 0x0000200, 0x0800200, N_INV), \
12330 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12331 X(vst4, 0x0000300, 0x0800300, N_INV), \
12332 X(vmovn, 0x1b20200, N_INV, N_INV), \
12333 X(vtrn, 0x1b20080, N_INV, N_INV), \
12334 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12335 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12336 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12337 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12338 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12339 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12340 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12341 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12342 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12343 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12344 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
12345 X(vseleq, 0xe000a00, N_INV, N_INV), \
12346 X(vselvs, 0xe100a00, N_INV, N_INV), \
12347 X(vselge, 0xe200a00, N_INV, N_INV), \
12348 X(vselgt, 0xe300a00, N_INV, N_INV), \
12349 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
12350 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
12351 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV)
12352
12353 enum neon_opc
12354 {
12355 #define X(OPC,I,F,S) N_MNEM_##OPC
12356 NEON_ENC_TAB
12357 #undef X
12358 };
12359
12360 static const struct neon_tab_entry neon_enc_tab[] =
12361 {
12362 #define X(OPC,I,F,S) { (I), (F), (S) }
12363 NEON_ENC_TAB
12364 #undef X
12365 };
12366
12367 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12368 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12369 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12370 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12371 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12372 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12373 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12374 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12375 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12376 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12377 #define NEON_ENC_SINGLE_(X) \
12378 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12379 #define NEON_ENC_DOUBLE_(X) \
12380 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12381 #define NEON_ENC_FPV8_(X) \
12382 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
12383
12384 #define NEON_ENCODE(type, inst) \
12385 do \
12386 { \
12387 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12388 inst.is_neon = 1; \
12389 } \
12390 while (0)
12391
12392 #define check_neon_suffixes \
12393 do \
12394 { \
12395 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12396 { \
12397 as_bad (_("invalid neon suffix for non neon instruction")); \
12398 return; \
12399 } \
12400 } \
12401 while (0)
12402
12403 /* Define shapes for instruction operands. The following mnemonic characters
12404 are used in this table:
12405
12406 F - VFP S<n> register
12407 D - Neon D<n> register
12408 Q - Neon Q<n> register
12409 I - Immediate
12410 S - Scalar
12411 R - ARM register
12412 L - D<n> register list
12413
12414 This table is used to generate various data:
12415 - enumerations of the form NS_DDR to be used as arguments to
12416 neon_select_shape.
12417 - a table classifying shapes into single, double, quad, mixed.
12418 - a table used to drive neon_select_shape. */
12419
12420 #define NEON_SHAPE_DEF \
12421 X(3, (D, D, D), DOUBLE), \
12422 X(3, (Q, Q, Q), QUAD), \
12423 X(3, (D, D, I), DOUBLE), \
12424 X(3, (Q, Q, I), QUAD), \
12425 X(3, (D, D, S), DOUBLE), \
12426 X(3, (Q, Q, S), QUAD), \
12427 X(2, (D, D), DOUBLE), \
12428 X(2, (Q, Q), QUAD), \
12429 X(2, (D, S), DOUBLE), \
12430 X(2, (Q, S), QUAD), \
12431 X(2, (D, R), DOUBLE), \
12432 X(2, (Q, R), QUAD), \
12433 X(2, (D, I), DOUBLE), \
12434 X(2, (Q, I), QUAD), \
12435 X(3, (D, L, D), DOUBLE), \
12436 X(2, (D, Q), MIXED), \
12437 X(2, (Q, D), MIXED), \
12438 X(3, (D, Q, I), MIXED), \
12439 X(3, (Q, D, I), MIXED), \
12440 X(3, (Q, D, D), MIXED), \
12441 X(3, (D, Q, Q), MIXED), \
12442 X(3, (Q, Q, D), MIXED), \
12443 X(3, (Q, D, S), MIXED), \
12444 X(3, (D, Q, S), MIXED), \
12445 X(4, (D, D, D, I), DOUBLE), \
12446 X(4, (Q, Q, Q, I), QUAD), \
12447 X(2, (F, F), SINGLE), \
12448 X(3, (F, F, F), SINGLE), \
12449 X(2, (F, I), SINGLE), \
12450 X(2, (F, D), MIXED), \
12451 X(2, (D, F), MIXED), \
12452 X(3, (F, F, I), MIXED), \
12453 X(4, (R, R, F, F), SINGLE), \
12454 X(4, (F, F, R, R), SINGLE), \
12455 X(3, (D, R, R), DOUBLE), \
12456 X(3, (R, R, D), DOUBLE), \
12457 X(2, (S, R), SINGLE), \
12458 X(2, (R, S), SINGLE), \
12459 X(2, (F, R), SINGLE), \
12460 X(2, (R, F), SINGLE)
12461
12462 #define S2(A,B) NS_##A##B
12463 #define S3(A,B,C) NS_##A##B##C
12464 #define S4(A,B,C,D) NS_##A##B##C##D
12465
12466 #define X(N, L, C) S##N L
12467
12468 enum neon_shape
12469 {
12470 NEON_SHAPE_DEF,
12471 NS_NULL
12472 };
12473
12474 #undef X
12475 #undef S2
12476 #undef S3
12477 #undef S4
12478
12479 enum neon_shape_class
12480 {
12481 SC_SINGLE,
12482 SC_DOUBLE,
12483 SC_QUAD,
12484 SC_MIXED
12485 };
12486
12487 #define X(N, L, C) SC_##C
12488
12489 static enum neon_shape_class neon_shape_class[] =
12490 {
12491 NEON_SHAPE_DEF
12492 };
12493
12494 #undef X
12495
12496 enum neon_shape_el
12497 {
12498 SE_F,
12499 SE_D,
12500 SE_Q,
12501 SE_I,
12502 SE_S,
12503 SE_R,
12504 SE_L
12505 };
12506
12507 /* Register widths of above. */
12508 static unsigned neon_shape_el_size[] =
12509 {
12510 32,
12511 64,
12512 128,
12513 0,
12514 32,
12515 32,
12516 0
12517 };
12518
12519 struct neon_shape_info
12520 {
12521 unsigned els;
12522 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12523 };
12524
12525 #define S2(A,B) { SE_##A, SE_##B }
12526 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12527 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12528
12529 #define X(N, L, C) { N, S##N L }
12530
12531 static struct neon_shape_info neon_shape_tab[] =
12532 {
12533 NEON_SHAPE_DEF
12534 };
12535
12536 #undef X
12537 #undef S2
12538 #undef S3
12539 #undef S4
12540
12541 /* Bit masks used in type checking given instructions.
12542 'N_EQK' means the type must be the same as (or based on in some way) the key
12543 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12544 set, various other bits can be set as well in order to modify the meaning of
12545 the type constraint. */
12546
12547 enum neon_type_mask
12548 {
12549 N_S8 = 0x0000001,
12550 N_S16 = 0x0000002,
12551 N_S32 = 0x0000004,
12552 N_S64 = 0x0000008,
12553 N_U8 = 0x0000010,
12554 N_U16 = 0x0000020,
12555 N_U32 = 0x0000040,
12556 N_U64 = 0x0000080,
12557 N_I8 = 0x0000100,
12558 N_I16 = 0x0000200,
12559 N_I32 = 0x0000400,
12560 N_I64 = 0x0000800,
12561 N_8 = 0x0001000,
12562 N_16 = 0x0002000,
12563 N_32 = 0x0004000,
12564 N_64 = 0x0008000,
12565 N_P8 = 0x0010000,
12566 N_P16 = 0x0020000,
12567 N_F16 = 0x0040000,
12568 N_F32 = 0x0080000,
12569 N_F64 = 0x0100000,
12570 N_KEY = 0x1000000, /* Key element (main type specifier). */
12571 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12572 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12573 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12574 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12575 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12576 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12577 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12578 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12579 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12580 N_UTYP = 0,
12581 N_MAX_NONSPECIAL = N_F64
12582 };
12583
12584 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12585
12586 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12587 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12588 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12589 #define N_SUF_32 (N_SU_32 | N_F32)
12590 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12591 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12592
12593 /* Pass this as the first type argument to neon_check_type to ignore types
12594 altogether. */
12595 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12596
12597 /* Select a "shape" for the current instruction (describing register types or
12598 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12599 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12600 function of operand parsing, so this function doesn't need to be called.
12601 Shapes should be listed in order of decreasing length. */
12602
12603 static enum neon_shape
12604 neon_select_shape (enum neon_shape shape, ...)
12605 {
12606 va_list ap;
12607 enum neon_shape first_shape = shape;
12608
12609 /* Fix missing optional operands. FIXME: we don't know at this point how
12610 many arguments we should have, so this makes the assumption that we have
12611 > 1. This is true of all current Neon opcodes, I think, but may not be
12612 true in the future. */
12613 if (!inst.operands[1].present)
12614 inst.operands[1] = inst.operands[0];
12615
12616 va_start (ap, shape);
12617
12618 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12619 {
12620 unsigned j;
12621 int matches = 1;
12622
12623 for (j = 0; j < neon_shape_tab[shape].els; j++)
12624 {
12625 if (!inst.operands[j].present)
12626 {
12627 matches = 0;
12628 break;
12629 }
12630
12631 switch (neon_shape_tab[shape].el[j])
12632 {
12633 case SE_F:
12634 if (!(inst.operands[j].isreg
12635 && inst.operands[j].isvec
12636 && inst.operands[j].issingle
12637 && !inst.operands[j].isquad))
12638 matches = 0;
12639 break;
12640
12641 case SE_D:
12642 if (!(inst.operands[j].isreg
12643 && inst.operands[j].isvec
12644 && !inst.operands[j].isquad
12645 && !inst.operands[j].issingle))
12646 matches = 0;
12647 break;
12648
12649 case SE_R:
12650 if (!(inst.operands[j].isreg
12651 && !inst.operands[j].isvec))
12652 matches = 0;
12653 break;
12654
12655 case SE_Q:
12656 if (!(inst.operands[j].isreg
12657 && inst.operands[j].isvec
12658 && inst.operands[j].isquad
12659 && !inst.operands[j].issingle))
12660 matches = 0;
12661 break;
12662
12663 case SE_I:
12664 if (!(!inst.operands[j].isreg
12665 && !inst.operands[j].isscalar))
12666 matches = 0;
12667 break;
12668
12669 case SE_S:
12670 if (!(!inst.operands[j].isreg
12671 && inst.operands[j].isscalar))
12672 matches = 0;
12673 break;
12674
12675 case SE_L:
12676 break;
12677 }
12678 if (!matches)
12679 break;
12680 }
12681 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12682 /* We've matched all the entries in the shape table, and we don't
12683 have any left over operands which have not been matched. */
12684 break;
12685 }
12686
12687 va_end (ap);
12688
12689 if (shape == NS_NULL && first_shape != NS_NULL)
12690 first_error (_("invalid instruction shape"));
12691
12692 return shape;
12693 }
12694
12695 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12696 means the Q bit should be set). */
12697
12698 static int
12699 neon_quad (enum neon_shape shape)
12700 {
12701 return neon_shape_class[shape] == SC_QUAD;
12702 }
12703
12704 static void
12705 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12706 unsigned *g_size)
12707 {
12708 /* Allow modification to be made to types which are constrained to be
12709 based on the key element, based on bits set alongside N_EQK. */
12710 if ((typebits & N_EQK) != 0)
12711 {
12712 if ((typebits & N_HLF) != 0)
12713 *g_size /= 2;
12714 else if ((typebits & N_DBL) != 0)
12715 *g_size *= 2;
12716 if ((typebits & N_SGN) != 0)
12717 *g_type = NT_signed;
12718 else if ((typebits & N_UNS) != 0)
12719 *g_type = NT_unsigned;
12720 else if ((typebits & N_INT) != 0)
12721 *g_type = NT_integer;
12722 else if ((typebits & N_FLT) != 0)
12723 *g_type = NT_float;
12724 else if ((typebits & N_SIZ) != 0)
12725 *g_type = NT_untyped;
12726 }
12727 }
12728
12729 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12730 operand type, i.e. the single type specified in a Neon instruction when it
12731 is the only one given. */
12732
12733 static struct neon_type_el
12734 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12735 {
12736 struct neon_type_el dest = *key;
12737
12738 gas_assert ((thisarg & N_EQK) != 0);
12739
12740 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12741
12742 return dest;
12743 }
12744
12745 /* Convert Neon type and size into compact bitmask representation. */
12746
12747 static enum neon_type_mask
12748 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12749 {
12750 switch (type)
12751 {
12752 case NT_untyped:
12753 switch (size)
12754 {
12755 case 8: return N_8;
12756 case 16: return N_16;
12757 case 32: return N_32;
12758 case 64: return N_64;
12759 default: ;
12760 }
12761 break;
12762
12763 case NT_integer:
12764 switch (size)
12765 {
12766 case 8: return N_I8;
12767 case 16: return N_I16;
12768 case 32: return N_I32;
12769 case 64: return N_I64;
12770 default: ;
12771 }
12772 break;
12773
12774 case NT_float:
12775 switch (size)
12776 {
12777 case 16: return N_F16;
12778 case 32: return N_F32;
12779 case 64: return N_F64;
12780 default: ;
12781 }
12782 break;
12783
12784 case NT_poly:
12785 switch (size)
12786 {
12787 case 8: return N_P8;
12788 case 16: return N_P16;
12789 default: ;
12790 }
12791 break;
12792
12793 case NT_signed:
12794 switch (size)
12795 {
12796 case 8: return N_S8;
12797 case 16: return N_S16;
12798 case 32: return N_S32;
12799 case 64: return N_S64;
12800 default: ;
12801 }
12802 break;
12803
12804 case NT_unsigned:
12805 switch (size)
12806 {
12807 case 8: return N_U8;
12808 case 16: return N_U16;
12809 case 32: return N_U32;
12810 case 64: return N_U64;
12811 default: ;
12812 }
12813 break;
12814
12815 default: ;
12816 }
12817
12818 return N_UTYP;
12819 }
12820
12821 /* Convert compact Neon bitmask type representation to a type and size. Only
12822 handles the case where a single bit is set in the mask. */
12823
12824 static int
12825 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12826 enum neon_type_mask mask)
12827 {
12828 if ((mask & N_EQK) != 0)
12829 return FAIL;
12830
12831 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12832 *size = 8;
12833 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12834 *size = 16;
12835 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12836 *size = 32;
12837 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12838 *size = 64;
12839 else
12840 return FAIL;
12841
12842 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12843 *type = NT_signed;
12844 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12845 *type = NT_unsigned;
12846 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12847 *type = NT_integer;
12848 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12849 *type = NT_untyped;
12850 else if ((mask & (N_P8 | N_P16)) != 0)
12851 *type = NT_poly;
12852 else if ((mask & (N_F32 | N_F64)) != 0)
12853 *type = NT_float;
12854 else
12855 return FAIL;
12856
12857 return SUCCESS;
12858 }
12859
12860 /* Modify a bitmask of allowed types. This is only needed for type
12861 relaxation. */
12862
12863 static unsigned
12864 modify_types_allowed (unsigned allowed, unsigned mods)
12865 {
12866 unsigned size;
12867 enum neon_el_type type;
12868 unsigned destmask;
12869 int i;
12870
12871 destmask = 0;
12872
12873 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12874 {
12875 if (el_type_of_type_chk (&type, &size,
12876 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12877 {
12878 neon_modify_type_size (mods, &type, &size);
12879 destmask |= type_chk_of_el_type (type, size);
12880 }
12881 }
12882
12883 return destmask;
12884 }
12885
12886 /* Check type and return type classification.
12887 The manual states (paraphrase): If one datatype is given, it indicates the
12888 type given in:
12889 - the second operand, if there is one
12890 - the operand, if there is no second operand
12891 - the result, if there are no operands.
12892 This isn't quite good enough though, so we use a concept of a "key" datatype
12893 which is set on a per-instruction basis, which is the one which matters when
12894 only one data type is written.
12895 Note: this function has side-effects (e.g. filling in missing operands). All
12896 Neon instructions should call it before performing bit encoding. */
12897
12898 static struct neon_type_el
12899 neon_check_type (unsigned els, enum neon_shape ns, ...)
12900 {
12901 va_list ap;
12902 unsigned i, pass, key_el = 0;
12903 unsigned types[NEON_MAX_TYPE_ELS];
12904 enum neon_el_type k_type = NT_invtype;
12905 unsigned k_size = -1u;
12906 struct neon_type_el badtype = {NT_invtype, -1};
12907 unsigned key_allowed = 0;
12908
12909 /* Optional registers in Neon instructions are always (not) in operand 1.
12910 Fill in the missing operand here, if it was omitted. */
12911 if (els > 1 && !inst.operands[1].present)
12912 inst.operands[1] = inst.operands[0];
12913
12914 /* Suck up all the varargs. */
12915 va_start (ap, ns);
12916 for (i = 0; i < els; i++)
12917 {
12918 unsigned thisarg = va_arg (ap, unsigned);
12919 if (thisarg == N_IGNORE_TYPE)
12920 {
12921 va_end (ap);
12922 return badtype;
12923 }
12924 types[i] = thisarg;
12925 if ((thisarg & N_KEY) != 0)
12926 key_el = i;
12927 }
12928 va_end (ap);
12929
12930 if (inst.vectype.elems > 0)
12931 for (i = 0; i < els; i++)
12932 if (inst.operands[i].vectype.type != NT_invtype)
12933 {
12934 first_error (_("types specified in both the mnemonic and operands"));
12935 return badtype;
12936 }
12937
12938 /* Duplicate inst.vectype elements here as necessary.
12939 FIXME: No idea if this is exactly the same as the ARM assembler,
12940 particularly when an insn takes one register and one non-register
12941 operand. */
12942 if (inst.vectype.elems == 1 && els > 1)
12943 {
12944 unsigned j;
12945 inst.vectype.elems = els;
12946 inst.vectype.el[key_el] = inst.vectype.el[0];
12947 for (j = 0; j < els; j++)
12948 if (j != key_el)
12949 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12950 types[j]);
12951 }
12952 else if (inst.vectype.elems == 0 && els > 0)
12953 {
12954 unsigned j;
12955 /* No types were given after the mnemonic, so look for types specified
12956 after each operand. We allow some flexibility here; as long as the
12957 "key" operand has a type, we can infer the others. */
12958 for (j = 0; j < els; j++)
12959 if (inst.operands[j].vectype.type != NT_invtype)
12960 inst.vectype.el[j] = inst.operands[j].vectype;
12961
12962 if (inst.operands[key_el].vectype.type != NT_invtype)
12963 {
12964 for (j = 0; j < els; j++)
12965 if (inst.operands[j].vectype.type == NT_invtype)
12966 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12967 types[j]);
12968 }
12969 else
12970 {
12971 first_error (_("operand types can't be inferred"));
12972 return badtype;
12973 }
12974 }
12975 else if (inst.vectype.elems != els)
12976 {
12977 first_error (_("type specifier has the wrong number of parts"));
12978 return badtype;
12979 }
12980
12981 for (pass = 0; pass < 2; pass++)
12982 {
12983 for (i = 0; i < els; i++)
12984 {
12985 unsigned thisarg = types[i];
12986 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12987 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12988 enum neon_el_type g_type = inst.vectype.el[i].type;
12989 unsigned g_size = inst.vectype.el[i].size;
12990
12991 /* Decay more-specific signed & unsigned types to sign-insensitive
12992 integer types if sign-specific variants are unavailable. */
12993 if ((g_type == NT_signed || g_type == NT_unsigned)
12994 && (types_allowed & N_SU_ALL) == 0)
12995 g_type = NT_integer;
12996
12997 /* If only untyped args are allowed, decay any more specific types to
12998 them. Some instructions only care about signs for some element
12999 sizes, so handle that properly. */
13000 if ((g_size == 8 && (types_allowed & N_8) != 0)
13001 || (g_size == 16 && (types_allowed & N_16) != 0)
13002 || (g_size == 32 && (types_allowed & N_32) != 0)
13003 || (g_size == 64 && (types_allowed & N_64) != 0))
13004 g_type = NT_untyped;
13005
13006 if (pass == 0)
13007 {
13008 if ((thisarg & N_KEY) != 0)
13009 {
13010 k_type = g_type;
13011 k_size = g_size;
13012 key_allowed = thisarg & ~N_KEY;
13013 }
13014 }
13015 else
13016 {
13017 if ((thisarg & N_VFP) != 0)
13018 {
13019 enum neon_shape_el regshape;
13020 unsigned regwidth, match;
13021
13022 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13023 if (ns == NS_NULL)
13024 {
13025 first_error (_("invalid instruction shape"));
13026 return badtype;
13027 }
13028 regshape = neon_shape_tab[ns].el[i];
13029 regwidth = neon_shape_el_size[regshape];
13030
13031 /* In VFP mode, operands must match register widths. If we
13032 have a key operand, use its width, else use the width of
13033 the current operand. */
13034 if (k_size != -1u)
13035 match = k_size;
13036 else
13037 match = g_size;
13038
13039 if (regwidth != match)
13040 {
13041 first_error (_("operand size must match register width"));
13042 return badtype;
13043 }
13044 }
13045
13046 if ((thisarg & N_EQK) == 0)
13047 {
13048 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13049
13050 if ((given_type & types_allowed) == 0)
13051 {
13052 first_error (_("bad type in Neon instruction"));
13053 return badtype;
13054 }
13055 }
13056 else
13057 {
13058 enum neon_el_type mod_k_type = k_type;
13059 unsigned mod_k_size = k_size;
13060 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13061 if (g_type != mod_k_type || g_size != mod_k_size)
13062 {
13063 first_error (_("inconsistent types in Neon instruction"));
13064 return badtype;
13065 }
13066 }
13067 }
13068 }
13069 }
13070
13071 return inst.vectype.el[key_el];
13072 }
13073
13074 /* Neon-style VFP instruction forwarding. */
13075
13076 /* Thumb VFP instructions have 0xE in the condition field. */
13077
13078 static void
13079 do_vfp_cond_or_thumb (void)
13080 {
13081 inst.is_neon = 1;
13082
13083 if (thumb_mode)
13084 inst.instruction |= 0xe0000000;
13085 else
13086 inst.instruction |= inst.cond << 28;
13087 }
13088
13089 /* Look up and encode a simple mnemonic, for use as a helper function for the
13090 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13091 etc. It is assumed that operand parsing has already been done, and that the
13092 operands are in the form expected by the given opcode (this isn't necessarily
13093 the same as the form in which they were parsed, hence some massaging must
13094 take place before this function is called).
13095 Checks current arch version against that in the looked-up opcode. */
13096
13097 static void
13098 do_vfp_nsyn_opcode (const char *opname)
13099 {
13100 const struct asm_opcode *opcode;
13101
13102 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
13103
13104 if (!opcode)
13105 abort ();
13106
13107 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13108 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13109 _(BAD_FPU));
13110
13111 inst.is_neon = 1;
13112
13113 if (thumb_mode)
13114 {
13115 inst.instruction = opcode->tvalue;
13116 opcode->tencode ();
13117 }
13118 else
13119 {
13120 inst.instruction = (inst.cond << 28) | opcode->avalue;
13121 opcode->aencode ();
13122 }
13123 }
13124
13125 static void
13126 do_vfp_nsyn_add_sub (enum neon_shape rs)
13127 {
13128 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13129
13130 if (rs == NS_FFF)
13131 {
13132 if (is_add)
13133 do_vfp_nsyn_opcode ("fadds");
13134 else
13135 do_vfp_nsyn_opcode ("fsubs");
13136 }
13137 else
13138 {
13139 if (is_add)
13140 do_vfp_nsyn_opcode ("faddd");
13141 else
13142 do_vfp_nsyn_opcode ("fsubd");
13143 }
13144 }
13145
13146 /* Check operand types to see if this is a VFP instruction, and if so call
13147 PFN (). */
13148
13149 static int
13150 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13151 {
13152 enum neon_shape rs;
13153 struct neon_type_el et;
13154
13155 switch (args)
13156 {
13157 case 2:
13158 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13159 et = neon_check_type (2, rs,
13160 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13161 break;
13162
13163 case 3:
13164 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13165 et = neon_check_type (3, rs,
13166 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13167 break;
13168
13169 default:
13170 abort ();
13171 }
13172
13173 if (et.type != NT_invtype)
13174 {
13175 pfn (rs);
13176 return SUCCESS;
13177 }
13178
13179 inst.error = NULL;
13180 return FAIL;
13181 }
13182
13183 static void
13184 do_vfp_nsyn_mla_mls (enum neon_shape rs)
13185 {
13186 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
13187
13188 if (rs == NS_FFF)
13189 {
13190 if (is_mla)
13191 do_vfp_nsyn_opcode ("fmacs");
13192 else
13193 do_vfp_nsyn_opcode ("fnmacs");
13194 }
13195 else
13196 {
13197 if (is_mla)
13198 do_vfp_nsyn_opcode ("fmacd");
13199 else
13200 do_vfp_nsyn_opcode ("fnmacd");
13201 }
13202 }
13203
13204 static void
13205 do_vfp_nsyn_fma_fms (enum neon_shape rs)
13206 {
13207 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13208
13209 if (rs == NS_FFF)
13210 {
13211 if (is_fma)
13212 do_vfp_nsyn_opcode ("ffmas");
13213 else
13214 do_vfp_nsyn_opcode ("ffnmas");
13215 }
13216 else
13217 {
13218 if (is_fma)
13219 do_vfp_nsyn_opcode ("ffmad");
13220 else
13221 do_vfp_nsyn_opcode ("ffnmad");
13222 }
13223 }
13224
13225 static void
13226 do_vfp_nsyn_mul (enum neon_shape rs)
13227 {
13228 if (rs == NS_FFF)
13229 do_vfp_nsyn_opcode ("fmuls");
13230 else
13231 do_vfp_nsyn_opcode ("fmuld");
13232 }
13233
13234 static void
13235 do_vfp_nsyn_abs_neg (enum neon_shape rs)
13236 {
13237 int is_neg = (inst.instruction & 0x80) != 0;
13238 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13239
13240 if (rs == NS_FF)
13241 {
13242 if (is_neg)
13243 do_vfp_nsyn_opcode ("fnegs");
13244 else
13245 do_vfp_nsyn_opcode ("fabss");
13246 }
13247 else
13248 {
13249 if (is_neg)
13250 do_vfp_nsyn_opcode ("fnegd");
13251 else
13252 do_vfp_nsyn_opcode ("fabsd");
13253 }
13254 }
13255
13256 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13257 insns belong to Neon, and are handled elsewhere. */
13258
13259 static void
13260 do_vfp_nsyn_ldm_stm (int is_dbmode)
13261 {
13262 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13263 if (is_ldm)
13264 {
13265 if (is_dbmode)
13266 do_vfp_nsyn_opcode ("fldmdbs");
13267 else
13268 do_vfp_nsyn_opcode ("fldmias");
13269 }
13270 else
13271 {
13272 if (is_dbmode)
13273 do_vfp_nsyn_opcode ("fstmdbs");
13274 else
13275 do_vfp_nsyn_opcode ("fstmias");
13276 }
13277 }
13278
13279 static void
13280 do_vfp_nsyn_sqrt (void)
13281 {
13282 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13283 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13284
13285 if (rs == NS_FF)
13286 do_vfp_nsyn_opcode ("fsqrts");
13287 else
13288 do_vfp_nsyn_opcode ("fsqrtd");
13289 }
13290
13291 static void
13292 do_vfp_nsyn_div (void)
13293 {
13294 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13295 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13296 N_F32 | N_F64 | N_KEY | N_VFP);
13297
13298 if (rs == NS_FFF)
13299 do_vfp_nsyn_opcode ("fdivs");
13300 else
13301 do_vfp_nsyn_opcode ("fdivd");
13302 }
13303
13304 static void
13305 do_vfp_nsyn_nmul (void)
13306 {
13307 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13308 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13309 N_F32 | N_F64 | N_KEY | N_VFP);
13310
13311 if (rs == NS_FFF)
13312 {
13313 NEON_ENCODE (SINGLE, inst);
13314 do_vfp_sp_dyadic ();
13315 }
13316 else
13317 {
13318 NEON_ENCODE (DOUBLE, inst);
13319 do_vfp_dp_rd_rn_rm ();
13320 }
13321 do_vfp_cond_or_thumb ();
13322 }
13323
13324 static void
13325 do_vfp_nsyn_cmp (void)
13326 {
13327 if (inst.operands[1].isreg)
13328 {
13329 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13330 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13331
13332 if (rs == NS_FF)
13333 {
13334 NEON_ENCODE (SINGLE, inst);
13335 do_vfp_sp_monadic ();
13336 }
13337 else
13338 {
13339 NEON_ENCODE (DOUBLE, inst);
13340 do_vfp_dp_rd_rm ();
13341 }
13342 }
13343 else
13344 {
13345 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13346 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13347
13348 switch (inst.instruction & 0x0fffffff)
13349 {
13350 case N_MNEM_vcmp:
13351 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13352 break;
13353 case N_MNEM_vcmpe:
13354 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13355 break;
13356 default:
13357 abort ();
13358 }
13359
13360 if (rs == NS_FI)
13361 {
13362 NEON_ENCODE (SINGLE, inst);
13363 do_vfp_sp_compare_z ();
13364 }
13365 else
13366 {
13367 NEON_ENCODE (DOUBLE, inst);
13368 do_vfp_dp_rd ();
13369 }
13370 }
13371 do_vfp_cond_or_thumb ();
13372 }
13373
13374 static void
13375 nsyn_insert_sp (void)
13376 {
13377 inst.operands[1] = inst.operands[0];
13378 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13379 inst.operands[0].reg = REG_SP;
13380 inst.operands[0].isreg = 1;
13381 inst.operands[0].writeback = 1;
13382 inst.operands[0].present = 1;
13383 }
13384
13385 static void
13386 do_vfp_nsyn_push (void)
13387 {
13388 nsyn_insert_sp ();
13389 if (inst.operands[1].issingle)
13390 do_vfp_nsyn_opcode ("fstmdbs");
13391 else
13392 do_vfp_nsyn_opcode ("fstmdbd");
13393 }
13394
13395 static void
13396 do_vfp_nsyn_pop (void)
13397 {
13398 nsyn_insert_sp ();
13399 if (inst.operands[1].issingle)
13400 do_vfp_nsyn_opcode ("fldmias");
13401 else
13402 do_vfp_nsyn_opcode ("fldmiad");
13403 }
13404
13405 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13406 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13407
13408 static void
13409 neon_dp_fixup (struct arm_it* insn)
13410 {
13411 unsigned int i = insn->instruction;
13412 insn->is_neon = 1;
13413
13414 if (thumb_mode)
13415 {
13416 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13417 if (i & (1 << 24))
13418 i |= 1 << 28;
13419
13420 i &= ~(1 << 24);
13421
13422 i |= 0xef000000;
13423 }
13424 else
13425 i |= 0xf2000000;
13426
13427 insn->instruction = i;
13428 }
13429
13430 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13431 (0, 1, 2, 3). */
13432
13433 static unsigned
13434 neon_logbits (unsigned x)
13435 {
13436 return ffs (x) - 4;
13437 }
13438
13439 #define LOW4(R) ((R) & 0xf)
13440 #define HI1(R) (((R) >> 4) & 1)
13441
13442 /* Encode insns with bit pattern:
13443
13444 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13445 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13446
13447 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13448 different meaning for some instruction. */
13449
13450 static void
13451 neon_three_same (int isquad, int ubit, int size)
13452 {
13453 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13454 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13455 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13456 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13457 inst.instruction |= LOW4 (inst.operands[2].reg);
13458 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13459 inst.instruction |= (isquad != 0) << 6;
13460 inst.instruction |= (ubit != 0) << 24;
13461 if (size != -1)
13462 inst.instruction |= neon_logbits (size) << 20;
13463
13464 neon_dp_fixup (&inst);
13465 }
13466
13467 /* Encode instructions of the form:
13468
13469 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13470 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13471
13472 Don't write size if SIZE == -1. */
13473
13474 static void
13475 neon_two_same (int qbit, int ubit, int size)
13476 {
13477 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13478 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13479 inst.instruction |= LOW4 (inst.operands[1].reg);
13480 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13481 inst.instruction |= (qbit != 0) << 6;
13482 inst.instruction |= (ubit != 0) << 24;
13483
13484 if (size != -1)
13485 inst.instruction |= neon_logbits (size) << 18;
13486
13487 neon_dp_fixup (&inst);
13488 }
13489
13490 /* Neon instruction encoders, in approximate order of appearance. */
13491
13492 static void
13493 do_neon_dyadic_i_su (void)
13494 {
13495 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13496 struct neon_type_el et = neon_check_type (3, rs,
13497 N_EQK, N_EQK, N_SU_32 | N_KEY);
13498 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13499 }
13500
13501 static void
13502 do_neon_dyadic_i64_su (void)
13503 {
13504 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13505 struct neon_type_el et = neon_check_type (3, rs,
13506 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13507 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13508 }
13509
13510 static void
13511 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13512 unsigned immbits)
13513 {
13514 unsigned size = et.size >> 3;
13515 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13516 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13517 inst.instruction |= LOW4 (inst.operands[1].reg);
13518 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13519 inst.instruction |= (isquad != 0) << 6;
13520 inst.instruction |= immbits << 16;
13521 inst.instruction |= (size >> 3) << 7;
13522 inst.instruction |= (size & 0x7) << 19;
13523 if (write_ubit)
13524 inst.instruction |= (uval != 0) << 24;
13525
13526 neon_dp_fixup (&inst);
13527 }
13528
13529 static void
13530 do_neon_shl_imm (void)
13531 {
13532 if (!inst.operands[2].isreg)
13533 {
13534 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13535 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13536 NEON_ENCODE (IMMED, inst);
13537 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13538 }
13539 else
13540 {
13541 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13542 struct neon_type_el et = neon_check_type (3, rs,
13543 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13544 unsigned int tmp;
13545
13546 /* VSHL/VQSHL 3-register variants have syntax such as:
13547 vshl.xx Dd, Dm, Dn
13548 whereas other 3-register operations encoded by neon_three_same have
13549 syntax like:
13550 vadd.xx Dd, Dn, Dm
13551 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13552 here. */
13553 tmp = inst.operands[2].reg;
13554 inst.operands[2].reg = inst.operands[1].reg;
13555 inst.operands[1].reg = tmp;
13556 NEON_ENCODE (INTEGER, inst);
13557 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13558 }
13559 }
13560
13561 static void
13562 do_neon_qshl_imm (void)
13563 {
13564 if (!inst.operands[2].isreg)
13565 {
13566 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13567 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13568
13569 NEON_ENCODE (IMMED, inst);
13570 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13571 inst.operands[2].imm);
13572 }
13573 else
13574 {
13575 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13576 struct neon_type_el et = neon_check_type (3, rs,
13577 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13578 unsigned int tmp;
13579
13580 /* See note in do_neon_shl_imm. */
13581 tmp = inst.operands[2].reg;
13582 inst.operands[2].reg = inst.operands[1].reg;
13583 inst.operands[1].reg = tmp;
13584 NEON_ENCODE (INTEGER, inst);
13585 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13586 }
13587 }
13588
13589 static void
13590 do_neon_rshl (void)
13591 {
13592 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13593 struct neon_type_el et = neon_check_type (3, rs,
13594 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13595 unsigned int tmp;
13596
13597 tmp = inst.operands[2].reg;
13598 inst.operands[2].reg = inst.operands[1].reg;
13599 inst.operands[1].reg = tmp;
13600 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13601 }
13602
13603 static int
13604 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13605 {
13606 /* Handle .I8 pseudo-instructions. */
13607 if (size == 8)
13608 {
13609 /* Unfortunately, this will make everything apart from zero out-of-range.
13610 FIXME is this the intended semantics? There doesn't seem much point in
13611 accepting .I8 if so. */
13612 immediate |= immediate << 8;
13613 size = 16;
13614 }
13615
13616 if (size >= 32)
13617 {
13618 if (immediate == (immediate & 0x000000ff))
13619 {
13620 *immbits = immediate;
13621 return 0x1;
13622 }
13623 else if (immediate == (immediate & 0x0000ff00))
13624 {
13625 *immbits = immediate >> 8;
13626 return 0x3;
13627 }
13628 else if (immediate == (immediate & 0x00ff0000))
13629 {
13630 *immbits = immediate >> 16;
13631 return 0x5;
13632 }
13633 else if (immediate == (immediate & 0xff000000))
13634 {
13635 *immbits = immediate >> 24;
13636 return 0x7;
13637 }
13638 if ((immediate & 0xffff) != (immediate >> 16))
13639 goto bad_immediate;
13640 immediate &= 0xffff;
13641 }
13642
13643 if (immediate == (immediate & 0x000000ff))
13644 {
13645 *immbits = immediate;
13646 return 0x9;
13647 }
13648 else if (immediate == (immediate & 0x0000ff00))
13649 {
13650 *immbits = immediate >> 8;
13651 return 0xb;
13652 }
13653
13654 bad_immediate:
13655 first_error (_("immediate value out of range"));
13656 return FAIL;
13657 }
13658
13659 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13660 A, B, C, D. */
13661
13662 static int
13663 neon_bits_same_in_bytes (unsigned imm)
13664 {
13665 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13666 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13667 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13668 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13669 }
13670
13671 /* For immediate of above form, return 0bABCD. */
13672
13673 static unsigned
13674 neon_squash_bits (unsigned imm)
13675 {
13676 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13677 | ((imm & 0x01000000) >> 21);
13678 }
13679
13680 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13681
13682 static unsigned
13683 neon_qfloat_bits (unsigned imm)
13684 {
13685 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13686 }
13687
13688 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13689 the instruction. *OP is passed as the initial value of the op field, and
13690 may be set to a different value depending on the constant (i.e.
13691 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13692 MVN). If the immediate looks like a repeated pattern then also
13693 try smaller element sizes. */
13694
13695 static int
13696 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13697 unsigned *immbits, int *op, int size,
13698 enum neon_el_type type)
13699 {
13700 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13701 float. */
13702 if (type == NT_float && !float_p)
13703 return FAIL;
13704
13705 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13706 {
13707 if (size != 32 || *op == 1)
13708 return FAIL;
13709 *immbits = neon_qfloat_bits (immlo);
13710 return 0xf;
13711 }
13712
13713 if (size == 64)
13714 {
13715 if (neon_bits_same_in_bytes (immhi)
13716 && neon_bits_same_in_bytes (immlo))
13717 {
13718 if (*op == 1)
13719 return FAIL;
13720 *immbits = (neon_squash_bits (immhi) << 4)
13721 | neon_squash_bits (immlo);
13722 *op = 1;
13723 return 0xe;
13724 }
13725
13726 if (immhi != immlo)
13727 return FAIL;
13728 }
13729
13730 if (size >= 32)
13731 {
13732 if (immlo == (immlo & 0x000000ff))
13733 {
13734 *immbits = immlo;
13735 return 0x0;
13736 }
13737 else if (immlo == (immlo & 0x0000ff00))
13738 {
13739 *immbits = immlo >> 8;
13740 return 0x2;
13741 }
13742 else if (immlo == (immlo & 0x00ff0000))
13743 {
13744 *immbits = immlo >> 16;
13745 return 0x4;
13746 }
13747 else if (immlo == (immlo & 0xff000000))
13748 {
13749 *immbits = immlo >> 24;
13750 return 0x6;
13751 }
13752 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13753 {
13754 *immbits = (immlo >> 8) & 0xff;
13755 return 0xc;
13756 }
13757 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13758 {
13759 *immbits = (immlo >> 16) & 0xff;
13760 return 0xd;
13761 }
13762
13763 if ((immlo & 0xffff) != (immlo >> 16))
13764 return FAIL;
13765 immlo &= 0xffff;
13766 }
13767
13768 if (size >= 16)
13769 {
13770 if (immlo == (immlo & 0x000000ff))
13771 {
13772 *immbits = immlo;
13773 return 0x8;
13774 }
13775 else if (immlo == (immlo & 0x0000ff00))
13776 {
13777 *immbits = immlo >> 8;
13778 return 0xa;
13779 }
13780
13781 if ((immlo & 0xff) != (immlo >> 8))
13782 return FAIL;
13783 immlo &= 0xff;
13784 }
13785
13786 if (immlo == (immlo & 0x000000ff))
13787 {
13788 /* Don't allow MVN with 8-bit immediate. */
13789 if (*op == 1)
13790 return FAIL;
13791 *immbits = immlo;
13792 return 0xe;
13793 }
13794
13795 return FAIL;
13796 }
13797
13798 /* Write immediate bits [7:0] to the following locations:
13799
13800 |28/24|23 19|18 16|15 4|3 0|
13801 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13802
13803 This function is used by VMOV/VMVN/VORR/VBIC. */
13804
13805 static void
13806 neon_write_immbits (unsigned immbits)
13807 {
13808 inst.instruction |= immbits & 0xf;
13809 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13810 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13811 }
13812
13813 /* Invert low-order SIZE bits of XHI:XLO. */
13814
13815 static void
13816 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13817 {
13818 unsigned immlo = xlo ? *xlo : 0;
13819 unsigned immhi = xhi ? *xhi : 0;
13820
13821 switch (size)
13822 {
13823 case 8:
13824 immlo = (~immlo) & 0xff;
13825 break;
13826
13827 case 16:
13828 immlo = (~immlo) & 0xffff;
13829 break;
13830
13831 case 64:
13832 immhi = (~immhi) & 0xffffffff;
13833 /* fall through. */
13834
13835 case 32:
13836 immlo = (~immlo) & 0xffffffff;
13837 break;
13838
13839 default:
13840 abort ();
13841 }
13842
13843 if (xlo)
13844 *xlo = immlo;
13845
13846 if (xhi)
13847 *xhi = immhi;
13848 }
13849
13850 static void
13851 do_neon_logic (void)
13852 {
13853 if (inst.operands[2].present && inst.operands[2].isreg)
13854 {
13855 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13856 neon_check_type (3, rs, N_IGNORE_TYPE);
13857 /* U bit and size field were set as part of the bitmask. */
13858 NEON_ENCODE (INTEGER, inst);
13859 neon_three_same (neon_quad (rs), 0, -1);
13860 }
13861 else
13862 {
13863 const int three_ops_form = (inst.operands[2].present
13864 && !inst.operands[2].isreg);
13865 const int immoperand = (three_ops_form ? 2 : 1);
13866 enum neon_shape rs = (three_ops_form
13867 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13868 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13869 struct neon_type_el et = neon_check_type (2, rs,
13870 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13871 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13872 unsigned immbits;
13873 int cmode;
13874
13875 if (et.type == NT_invtype)
13876 return;
13877
13878 if (three_ops_form)
13879 constraint (inst.operands[0].reg != inst.operands[1].reg,
13880 _("first and second operands shall be the same register"));
13881
13882 NEON_ENCODE (IMMED, inst);
13883
13884 immbits = inst.operands[immoperand].imm;
13885 if (et.size == 64)
13886 {
13887 /* .i64 is a pseudo-op, so the immediate must be a repeating
13888 pattern. */
13889 if (immbits != (inst.operands[immoperand].regisimm ?
13890 inst.operands[immoperand].reg : 0))
13891 {
13892 /* Set immbits to an invalid constant. */
13893 immbits = 0xdeadbeef;
13894 }
13895 }
13896
13897 switch (opcode)
13898 {
13899 case N_MNEM_vbic:
13900 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13901 break;
13902
13903 case N_MNEM_vorr:
13904 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13905 break;
13906
13907 case N_MNEM_vand:
13908 /* Pseudo-instruction for VBIC. */
13909 neon_invert_size (&immbits, 0, et.size);
13910 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13911 break;
13912
13913 case N_MNEM_vorn:
13914 /* Pseudo-instruction for VORR. */
13915 neon_invert_size (&immbits, 0, et.size);
13916 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13917 break;
13918
13919 default:
13920 abort ();
13921 }
13922
13923 if (cmode == FAIL)
13924 return;
13925
13926 inst.instruction |= neon_quad (rs) << 6;
13927 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13928 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13929 inst.instruction |= cmode << 8;
13930 neon_write_immbits (immbits);
13931
13932 neon_dp_fixup (&inst);
13933 }
13934 }
13935
13936 static void
13937 do_neon_bitfield (void)
13938 {
13939 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13940 neon_check_type (3, rs, N_IGNORE_TYPE);
13941 neon_three_same (neon_quad (rs), 0, -1);
13942 }
13943
13944 static void
13945 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13946 unsigned destbits)
13947 {
13948 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13949 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13950 types | N_KEY);
13951 if (et.type == NT_float)
13952 {
13953 NEON_ENCODE (FLOAT, inst);
13954 neon_three_same (neon_quad (rs), 0, -1);
13955 }
13956 else
13957 {
13958 NEON_ENCODE (INTEGER, inst);
13959 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13960 }
13961 }
13962
13963 static void
13964 do_neon_dyadic_if_su (void)
13965 {
13966 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13967 }
13968
13969 static void
13970 do_neon_dyadic_if_su_d (void)
13971 {
13972 /* This version only allow D registers, but that constraint is enforced during
13973 operand parsing so we don't need to do anything extra here. */
13974 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13975 }
13976
13977 static void
13978 do_neon_dyadic_if_i_d (void)
13979 {
13980 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13981 affected if we specify unsigned args. */
13982 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13983 }
13984
13985 enum vfp_or_neon_is_neon_bits
13986 {
13987 NEON_CHECK_CC = 1,
13988 NEON_CHECK_ARCH = 2,
13989 NEON_CHECK_ARCH8 = 4
13990 };
13991
13992 /* Call this function if an instruction which may have belonged to the VFP or
13993 Neon instruction sets, but turned out to be a Neon instruction (due to the
13994 operand types involved, etc.). We have to check and/or fix-up a couple of
13995 things:
13996
13997 - Make sure the user hasn't attempted to make a Neon instruction
13998 conditional.
13999 - Alter the value in the condition code field if necessary.
14000 - Make sure that the arch supports Neon instructions.
14001
14002 Which of these operations take place depends on bits from enum
14003 vfp_or_neon_is_neon_bits.
14004
14005 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14006 current instruction's condition is COND_ALWAYS, the condition field is
14007 changed to inst.uncond_value. This is necessary because instructions shared
14008 between VFP and Neon may be conditional for the VFP variants only, and the
14009 unconditional Neon version must have, e.g., 0xF in the condition field. */
14010
14011 static int
14012 vfp_or_neon_is_neon (unsigned check)
14013 {
14014 /* Conditions are always legal in Thumb mode (IT blocks). */
14015 if (!thumb_mode && (check & NEON_CHECK_CC))
14016 {
14017 if (inst.cond != COND_ALWAYS)
14018 {
14019 first_error (_(BAD_COND));
14020 return FAIL;
14021 }
14022 if (inst.uncond_value != -1)
14023 inst.instruction |= inst.uncond_value << 28;
14024 }
14025
14026 if ((check & NEON_CHECK_ARCH)
14027 && !mark_feature_used (&fpu_neon_ext_v1))
14028 {
14029 first_error (_(BAD_FPU));
14030 return FAIL;
14031 }
14032
14033 if ((check & NEON_CHECK_ARCH8)
14034 && !mark_feature_used (&fpu_neon_ext_armv8))
14035 {
14036 first_error (_(BAD_FPU));
14037 return FAIL;
14038 }
14039
14040 return SUCCESS;
14041 }
14042
14043 static void
14044 do_neon_addsub_if_i (void)
14045 {
14046 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14047 return;
14048
14049 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14050 return;
14051
14052 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14053 affected if we specify unsigned args. */
14054 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
14055 }
14056
14057 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14058 result to be:
14059 V<op> A,B (A is operand 0, B is operand 2)
14060 to mean:
14061 V<op> A,B,A
14062 not:
14063 V<op> A,B,B
14064 so handle that case specially. */
14065
14066 static void
14067 neon_exchange_operands (void)
14068 {
14069 void *scratch = alloca (sizeof (inst.operands[0]));
14070 if (inst.operands[1].present)
14071 {
14072 /* Swap operands[1] and operands[2]. */
14073 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14074 inst.operands[1] = inst.operands[2];
14075 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14076 }
14077 else
14078 {
14079 inst.operands[1] = inst.operands[2];
14080 inst.operands[2] = inst.operands[0];
14081 }
14082 }
14083
14084 static void
14085 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14086 {
14087 if (inst.operands[2].isreg)
14088 {
14089 if (invert)
14090 neon_exchange_operands ();
14091 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14092 }
14093 else
14094 {
14095 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14096 struct neon_type_el et = neon_check_type (2, rs,
14097 N_EQK | N_SIZ, immtypes | N_KEY);
14098
14099 NEON_ENCODE (IMMED, inst);
14100 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14101 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14102 inst.instruction |= LOW4 (inst.operands[1].reg);
14103 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14104 inst.instruction |= neon_quad (rs) << 6;
14105 inst.instruction |= (et.type == NT_float) << 10;
14106 inst.instruction |= neon_logbits (et.size) << 18;
14107
14108 neon_dp_fixup (&inst);
14109 }
14110 }
14111
14112 static void
14113 do_neon_cmp (void)
14114 {
14115 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14116 }
14117
14118 static void
14119 do_neon_cmp_inv (void)
14120 {
14121 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14122 }
14123
14124 static void
14125 do_neon_ceq (void)
14126 {
14127 neon_compare (N_IF_32, N_IF_32, FALSE);
14128 }
14129
14130 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14131 scalars, which are encoded in 5 bits, M : Rm.
14132 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14133 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14134 index in M. */
14135
14136 static unsigned
14137 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14138 {
14139 unsigned regno = NEON_SCALAR_REG (scalar);
14140 unsigned elno = NEON_SCALAR_INDEX (scalar);
14141
14142 switch (elsize)
14143 {
14144 case 16:
14145 if (regno > 7 || elno > 3)
14146 goto bad_scalar;
14147 return regno | (elno << 3);
14148
14149 case 32:
14150 if (regno > 15 || elno > 1)
14151 goto bad_scalar;
14152 return regno | (elno << 4);
14153
14154 default:
14155 bad_scalar:
14156 first_error (_("scalar out of range for multiply instruction"));
14157 }
14158
14159 return 0;
14160 }
14161
14162 /* Encode multiply / multiply-accumulate scalar instructions. */
14163
14164 static void
14165 neon_mul_mac (struct neon_type_el et, int ubit)
14166 {
14167 unsigned scalar;
14168
14169 /* Give a more helpful error message if we have an invalid type. */
14170 if (et.type == NT_invtype)
14171 return;
14172
14173 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14174 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14175 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14176 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14177 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14178 inst.instruction |= LOW4 (scalar);
14179 inst.instruction |= HI1 (scalar) << 5;
14180 inst.instruction |= (et.type == NT_float) << 8;
14181 inst.instruction |= neon_logbits (et.size) << 20;
14182 inst.instruction |= (ubit != 0) << 24;
14183
14184 neon_dp_fixup (&inst);
14185 }
14186
14187 static void
14188 do_neon_mac_maybe_scalar (void)
14189 {
14190 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14191 return;
14192
14193 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14194 return;
14195
14196 if (inst.operands[2].isscalar)
14197 {
14198 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14199 struct neon_type_el et = neon_check_type (3, rs,
14200 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14201 NEON_ENCODE (SCALAR, inst);
14202 neon_mul_mac (et, neon_quad (rs));
14203 }
14204 else
14205 {
14206 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14207 affected if we specify unsigned args. */
14208 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14209 }
14210 }
14211
14212 static void
14213 do_neon_fmac (void)
14214 {
14215 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14216 return;
14217
14218 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14219 return;
14220
14221 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14222 }
14223
14224 static void
14225 do_neon_tst (void)
14226 {
14227 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14228 struct neon_type_el et = neon_check_type (3, rs,
14229 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
14230 neon_three_same (neon_quad (rs), 0, et.size);
14231 }
14232
14233 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14234 same types as the MAC equivalents. The polynomial type for this instruction
14235 is encoded the same as the integer type. */
14236
14237 static void
14238 do_neon_mul (void)
14239 {
14240 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14241 return;
14242
14243 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14244 return;
14245
14246 if (inst.operands[2].isscalar)
14247 do_neon_mac_maybe_scalar ();
14248 else
14249 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
14250 }
14251
14252 static void
14253 do_neon_qdmulh (void)
14254 {
14255 if (inst.operands[2].isscalar)
14256 {
14257 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14258 struct neon_type_el et = neon_check_type (3, rs,
14259 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14260 NEON_ENCODE (SCALAR, inst);
14261 neon_mul_mac (et, neon_quad (rs));
14262 }
14263 else
14264 {
14265 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14266 struct neon_type_el et = neon_check_type (3, rs,
14267 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14268 NEON_ENCODE (INTEGER, inst);
14269 /* The U bit (rounding) comes from bit mask. */
14270 neon_three_same (neon_quad (rs), 0, et.size);
14271 }
14272 }
14273
14274 static void
14275 do_neon_fcmp_absolute (void)
14276 {
14277 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14278 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14279 /* Size field comes from bit mask. */
14280 neon_three_same (neon_quad (rs), 1, -1);
14281 }
14282
14283 static void
14284 do_neon_fcmp_absolute_inv (void)
14285 {
14286 neon_exchange_operands ();
14287 do_neon_fcmp_absolute ();
14288 }
14289
14290 static void
14291 do_neon_step (void)
14292 {
14293 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14294 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14295 neon_three_same (neon_quad (rs), 0, -1);
14296 }
14297
14298 static void
14299 do_neon_abs_neg (void)
14300 {
14301 enum neon_shape rs;
14302 struct neon_type_el et;
14303
14304 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14305 return;
14306
14307 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14308 return;
14309
14310 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14311 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14312
14313 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14314 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14315 inst.instruction |= LOW4 (inst.operands[1].reg);
14316 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14317 inst.instruction |= neon_quad (rs) << 6;
14318 inst.instruction |= (et.type == NT_float) << 10;
14319 inst.instruction |= neon_logbits (et.size) << 18;
14320
14321 neon_dp_fixup (&inst);
14322 }
14323
14324 static void
14325 do_neon_sli (void)
14326 {
14327 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14328 struct neon_type_el et = neon_check_type (2, rs,
14329 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14330 int imm = inst.operands[2].imm;
14331 constraint (imm < 0 || (unsigned)imm >= et.size,
14332 _("immediate out of range for insert"));
14333 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14334 }
14335
14336 static void
14337 do_neon_sri (void)
14338 {
14339 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14340 struct neon_type_el et = neon_check_type (2, rs,
14341 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14342 int imm = inst.operands[2].imm;
14343 constraint (imm < 1 || (unsigned)imm > et.size,
14344 _("immediate out of range for insert"));
14345 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14346 }
14347
14348 static void
14349 do_neon_qshlu_imm (void)
14350 {
14351 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14352 struct neon_type_el et = neon_check_type (2, rs,
14353 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14354 int imm = inst.operands[2].imm;
14355 constraint (imm < 0 || (unsigned)imm >= et.size,
14356 _("immediate out of range for shift"));
14357 /* Only encodes the 'U present' variant of the instruction.
14358 In this case, signed types have OP (bit 8) set to 0.
14359 Unsigned types have OP set to 1. */
14360 inst.instruction |= (et.type == NT_unsigned) << 8;
14361 /* The rest of the bits are the same as other immediate shifts. */
14362 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14363 }
14364
14365 static void
14366 do_neon_qmovn (void)
14367 {
14368 struct neon_type_el et = neon_check_type (2, NS_DQ,
14369 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14370 /* Saturating move where operands can be signed or unsigned, and the
14371 destination has the same signedness. */
14372 NEON_ENCODE (INTEGER, inst);
14373 if (et.type == NT_unsigned)
14374 inst.instruction |= 0xc0;
14375 else
14376 inst.instruction |= 0x80;
14377 neon_two_same (0, 1, et.size / 2);
14378 }
14379
14380 static void
14381 do_neon_qmovun (void)
14382 {
14383 struct neon_type_el et = neon_check_type (2, NS_DQ,
14384 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14385 /* Saturating move with unsigned results. Operands must be signed. */
14386 NEON_ENCODE (INTEGER, inst);
14387 neon_two_same (0, 1, et.size / 2);
14388 }
14389
14390 static void
14391 do_neon_rshift_sat_narrow (void)
14392 {
14393 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14394 or unsigned. If operands are unsigned, results must also be unsigned. */
14395 struct neon_type_el et = neon_check_type (2, NS_DQI,
14396 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14397 int imm = inst.operands[2].imm;
14398 /* This gets the bounds check, size encoding and immediate bits calculation
14399 right. */
14400 et.size /= 2;
14401
14402 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14403 VQMOVN.I<size> <Dd>, <Qm>. */
14404 if (imm == 0)
14405 {
14406 inst.operands[2].present = 0;
14407 inst.instruction = N_MNEM_vqmovn;
14408 do_neon_qmovn ();
14409 return;
14410 }
14411
14412 constraint (imm < 1 || (unsigned)imm > et.size,
14413 _("immediate out of range"));
14414 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14415 }
14416
14417 static void
14418 do_neon_rshift_sat_narrow_u (void)
14419 {
14420 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14421 or unsigned. If operands are unsigned, results must also be unsigned. */
14422 struct neon_type_el et = neon_check_type (2, NS_DQI,
14423 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14424 int imm = inst.operands[2].imm;
14425 /* This gets the bounds check, size encoding and immediate bits calculation
14426 right. */
14427 et.size /= 2;
14428
14429 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14430 VQMOVUN.I<size> <Dd>, <Qm>. */
14431 if (imm == 0)
14432 {
14433 inst.operands[2].present = 0;
14434 inst.instruction = N_MNEM_vqmovun;
14435 do_neon_qmovun ();
14436 return;
14437 }
14438
14439 constraint (imm < 1 || (unsigned)imm > et.size,
14440 _("immediate out of range"));
14441 /* FIXME: The manual is kind of unclear about what value U should have in
14442 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14443 must be 1. */
14444 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14445 }
14446
14447 static void
14448 do_neon_movn (void)
14449 {
14450 struct neon_type_el et = neon_check_type (2, NS_DQ,
14451 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14452 NEON_ENCODE (INTEGER, inst);
14453 neon_two_same (0, 1, et.size / 2);
14454 }
14455
14456 static void
14457 do_neon_rshift_narrow (void)
14458 {
14459 struct neon_type_el et = neon_check_type (2, NS_DQI,
14460 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14461 int imm = inst.operands[2].imm;
14462 /* This gets the bounds check, size encoding and immediate bits calculation
14463 right. */
14464 et.size /= 2;
14465
14466 /* If immediate is zero then we are a pseudo-instruction for
14467 VMOVN.I<size> <Dd>, <Qm> */
14468 if (imm == 0)
14469 {
14470 inst.operands[2].present = 0;
14471 inst.instruction = N_MNEM_vmovn;
14472 do_neon_movn ();
14473 return;
14474 }
14475
14476 constraint (imm < 1 || (unsigned)imm > et.size,
14477 _("immediate out of range for narrowing operation"));
14478 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14479 }
14480
14481 static void
14482 do_neon_shll (void)
14483 {
14484 /* FIXME: Type checking when lengthening. */
14485 struct neon_type_el et = neon_check_type (2, NS_QDI,
14486 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14487 unsigned imm = inst.operands[2].imm;
14488
14489 if (imm == et.size)
14490 {
14491 /* Maximum shift variant. */
14492 NEON_ENCODE (INTEGER, inst);
14493 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14494 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14495 inst.instruction |= LOW4 (inst.operands[1].reg);
14496 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14497 inst.instruction |= neon_logbits (et.size) << 18;
14498
14499 neon_dp_fixup (&inst);
14500 }
14501 else
14502 {
14503 /* A more-specific type check for non-max versions. */
14504 et = neon_check_type (2, NS_QDI,
14505 N_EQK | N_DBL, N_SU_32 | N_KEY);
14506 NEON_ENCODE (IMMED, inst);
14507 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14508 }
14509 }
14510
14511 /* Check the various types for the VCVT instruction, and return which version
14512 the current instruction is. */
14513
14514 #define CVT_FLAVOUR_VAR \
14515 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
14516 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
14517 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
14518 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
14519 /* Half-precision conversions. */ \
14520 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
14521 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
14522 /* VFP instructions. */ \
14523 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
14524 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
14525 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
14526 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
14527 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
14528 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
14529 /* VFP instructions with bitshift. */ \
14530 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
14531 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
14532 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
14533 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
14534 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
14535 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
14536 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
14537 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
14538
14539 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
14540 neon_cvt_flavour_##C,
14541
14542 /* The different types of conversions we can do. */
14543 enum neon_cvt_flavour
14544 {
14545 CVT_FLAVOUR_VAR
14546 neon_cvt_flavour_invalid,
14547 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
14548 };
14549
14550 #undef CVT_VAR
14551
14552 static enum neon_cvt_flavour
14553 get_neon_cvt_flavour (enum neon_shape rs)
14554 {
14555 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
14556 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
14557 if (et.type != NT_invtype) \
14558 { \
14559 inst.error = NULL; \
14560 return (neon_cvt_flavour_##C); \
14561 }
14562
14563 struct neon_type_el et;
14564 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14565 || rs == NS_FF) ? N_VFP : 0;
14566 /* The instruction versions which take an immediate take one register
14567 argument, which is extended to the width of the full register. Thus the
14568 "source" and "destination" registers must have the same width. Hack that
14569 here by making the size equal to the key (wider, in this case) operand. */
14570 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14571
14572 CVT_FLAVOUR_VAR;
14573
14574 return neon_cvt_flavour_invalid;
14575 #undef CVT_VAR
14576 }
14577
14578 enum neon_cvt_mode
14579 {
14580 neon_cvt_mode_a,
14581 neon_cvt_mode_n,
14582 neon_cvt_mode_p,
14583 neon_cvt_mode_m,
14584 neon_cvt_mode_z,
14585 neon_cvt_mode_x
14586 };
14587
14588 /* Neon-syntax VFP conversions. */
14589
14590 static void
14591 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
14592 {
14593 const char *opname = 0;
14594
14595 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14596 {
14597 /* Conversions with immediate bitshift. */
14598 const char *enc[] =
14599 {
14600 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
14601 CVT_FLAVOUR_VAR
14602 NULL
14603 #undef CVT_VAR
14604 };
14605
14606 if (flavour < (int) ARRAY_SIZE (enc))
14607 {
14608 opname = enc[flavour];
14609 constraint (inst.operands[0].reg != inst.operands[1].reg,
14610 _("operands 0 and 1 must be the same register"));
14611 inst.operands[1] = inst.operands[2];
14612 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14613 }
14614 }
14615 else
14616 {
14617 /* Conversions without bitshift. */
14618 const char *enc[] =
14619 {
14620 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
14621 CVT_FLAVOUR_VAR
14622 NULL
14623 #undef CVT_VAR
14624 };
14625
14626 if (flavour < (int) ARRAY_SIZE (enc))
14627 opname = enc[flavour];
14628 }
14629
14630 if (opname)
14631 do_vfp_nsyn_opcode (opname);
14632 }
14633
14634 static void
14635 do_vfp_nsyn_cvtz (void)
14636 {
14637 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14638 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
14639 const char *enc[] =
14640 {
14641 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
14642 CVT_FLAVOUR_VAR
14643 NULL
14644 #undef CVT_VAR
14645 };
14646
14647 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14648 do_vfp_nsyn_opcode (enc[flavour]);
14649 }
14650
14651 static void
14652 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
14653 enum neon_cvt_mode mode)
14654 {
14655 int sz, op;
14656 int rm;
14657
14658 set_it_insn_type (OUTSIDE_IT_INSN);
14659
14660 switch (flavour)
14661 {
14662 case neon_cvt_flavour_s32_f64:
14663 sz = 1;
14664 op = 0;
14665 break;
14666 case neon_cvt_flavour_s32_f32:
14667 sz = 0;
14668 op = 1;
14669 break;
14670 case neon_cvt_flavour_u32_f64:
14671 sz = 1;
14672 op = 0;
14673 break;
14674 case neon_cvt_flavour_u32_f32:
14675 sz = 0;
14676 op = 0;
14677 break;
14678 default:
14679 first_error (_("invalid instruction shape"));
14680 return;
14681 }
14682
14683 switch (mode)
14684 {
14685 case neon_cvt_mode_a: rm = 0; break;
14686 case neon_cvt_mode_n: rm = 1; break;
14687 case neon_cvt_mode_p: rm = 2; break;
14688 case neon_cvt_mode_m: rm = 3; break;
14689 default: first_error (_("invalid rounding mode")); return;
14690 }
14691
14692 NEON_ENCODE (FPV8, inst);
14693 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14694 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
14695 inst.instruction |= sz << 8;
14696 inst.instruction |= op << 7;
14697 inst.instruction |= rm << 16;
14698 inst.instruction |= 0xf0000000;
14699 inst.is_neon = TRUE;
14700 }
14701
14702 static void
14703 do_neon_cvt_1 (enum neon_cvt_mode mode)
14704 {
14705 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14706 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14707 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
14708
14709 /* PR11109: Handle round-to-zero for VCVT conversions. */
14710 if (mode == neon_cvt_mode_z
14711 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14712 && (flavour == neon_cvt_flavour_s32_f32
14713 || flavour == neon_cvt_flavour_u32_f32
14714 || flavour == neon_cvt_flavour_s32_f64
14715 || flavour == neon_cvt_flavour_u32_f64)
14716 && (rs == NS_FD || rs == NS_FF))
14717 {
14718 do_vfp_nsyn_cvtz ();
14719 return;
14720 }
14721
14722 /* VFP rather than Neon conversions. */
14723 if (flavour >= neon_cvt_flavour_first_fp)
14724 {
14725 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
14726 do_vfp_nsyn_cvt (rs, flavour);
14727 else
14728 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
14729
14730 return;
14731 }
14732
14733 switch (rs)
14734 {
14735 case NS_DDI:
14736 case NS_QQI:
14737 {
14738 unsigned immbits;
14739 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14740
14741 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14742 return;
14743
14744 /* Fixed-point conversion with #0 immediate is encoded as an
14745 integer conversion. */
14746 if (inst.operands[2].present && inst.operands[2].imm == 0)
14747 goto int_encode;
14748 immbits = 32 - inst.operands[2].imm;
14749 NEON_ENCODE (IMMED, inst);
14750 if (flavour != neon_cvt_flavour_invalid)
14751 inst.instruction |= enctab[flavour];
14752 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14753 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14754 inst.instruction |= LOW4 (inst.operands[1].reg);
14755 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14756 inst.instruction |= neon_quad (rs) << 6;
14757 inst.instruction |= 1 << 21;
14758 inst.instruction |= immbits << 16;
14759
14760 neon_dp_fixup (&inst);
14761 }
14762 break;
14763
14764 case NS_DD:
14765 case NS_QQ:
14766 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
14767 {
14768 NEON_ENCODE (FLOAT, inst);
14769 set_it_insn_type (OUTSIDE_IT_INSN);
14770
14771 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
14772 return;
14773
14774 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14775 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14776 inst.instruction |= LOW4 (inst.operands[1].reg);
14777 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14778 inst.instruction |= neon_quad (rs) << 6;
14779 inst.instruction |= (flavour == neon_cvt_flavour_u32_f32) << 7;
14780 inst.instruction |= mode << 8;
14781 if (thumb_mode)
14782 inst.instruction |= 0xfc000000;
14783 else
14784 inst.instruction |= 0xf0000000;
14785 }
14786 else
14787 {
14788 int_encode:
14789 {
14790 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14791
14792 NEON_ENCODE (INTEGER, inst);
14793
14794 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14795 return;
14796
14797 if (flavour != neon_cvt_flavour_invalid)
14798 inst.instruction |= enctab[flavour];
14799
14800 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14801 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14802 inst.instruction |= LOW4 (inst.operands[1].reg);
14803 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14804 inst.instruction |= neon_quad (rs) << 6;
14805 inst.instruction |= 2 << 18;
14806
14807 neon_dp_fixup (&inst);
14808 }
14809 }
14810 break;
14811
14812 /* Half-precision conversions for Advanced SIMD -- neon. */
14813 case NS_QD:
14814 case NS_DQ:
14815
14816 if ((rs == NS_DQ)
14817 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14818 {
14819 as_bad (_("operand size must match register width"));
14820 break;
14821 }
14822
14823 if ((rs == NS_QD)
14824 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14825 {
14826 as_bad (_("operand size must match register width"));
14827 break;
14828 }
14829
14830 if (rs == NS_DQ)
14831 inst.instruction = 0x3b60600;
14832 else
14833 inst.instruction = 0x3b60700;
14834
14835 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14836 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14837 inst.instruction |= LOW4 (inst.operands[1].reg);
14838 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14839 neon_dp_fixup (&inst);
14840 break;
14841
14842 default:
14843 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14844 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
14845 do_vfp_nsyn_cvt (rs, flavour);
14846 else
14847 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
14848 }
14849 }
14850
14851 static void
14852 do_neon_cvtr (void)
14853 {
14854 do_neon_cvt_1 (neon_cvt_mode_x);
14855 }
14856
14857 static void
14858 do_neon_cvt (void)
14859 {
14860 do_neon_cvt_1 (neon_cvt_mode_z);
14861 }
14862
14863 static void
14864 do_neon_cvta (void)
14865 {
14866 do_neon_cvt_1 (neon_cvt_mode_a);
14867 }
14868
14869 static void
14870 do_neon_cvtn (void)
14871 {
14872 do_neon_cvt_1 (neon_cvt_mode_n);
14873 }
14874
14875 static void
14876 do_neon_cvtp (void)
14877 {
14878 do_neon_cvt_1 (neon_cvt_mode_p);
14879 }
14880
14881 static void
14882 do_neon_cvtm (void)
14883 {
14884 do_neon_cvt_1 (neon_cvt_mode_m);
14885 }
14886
14887 static void
14888 do_neon_cvtb (void)
14889 {
14890 inst.instruction = 0xeb20a40;
14891
14892 /* The sizes are attached to the mnemonic. */
14893 if (inst.vectype.el[0].type != NT_invtype
14894 && inst.vectype.el[0].size == 16)
14895 inst.instruction |= 0x00010000;
14896
14897 /* Programmer's syntax: the sizes are attached to the operands. */
14898 else if (inst.operands[0].vectype.type != NT_invtype
14899 && inst.operands[0].vectype.size == 16)
14900 inst.instruction |= 0x00010000;
14901
14902 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14903 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14904 do_vfp_cond_or_thumb ();
14905 }
14906
14907
14908 static void
14909 do_neon_cvtt (void)
14910 {
14911 do_neon_cvtb ();
14912 inst.instruction |= 0x80;
14913 }
14914
14915 static void
14916 neon_move_immediate (void)
14917 {
14918 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14919 struct neon_type_el et = neon_check_type (2, rs,
14920 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14921 unsigned immlo, immhi = 0, immbits;
14922 int op, cmode, float_p;
14923
14924 constraint (et.type == NT_invtype,
14925 _("operand size must be specified for immediate VMOV"));
14926
14927 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14928 op = (inst.instruction & (1 << 5)) != 0;
14929
14930 immlo = inst.operands[1].imm;
14931 if (inst.operands[1].regisimm)
14932 immhi = inst.operands[1].reg;
14933
14934 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14935 _("immediate has bits set outside the operand size"));
14936
14937 float_p = inst.operands[1].immisfloat;
14938
14939 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14940 et.size, et.type)) == FAIL)
14941 {
14942 /* Invert relevant bits only. */
14943 neon_invert_size (&immlo, &immhi, et.size);
14944 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14945 with one or the other; those cases are caught by
14946 neon_cmode_for_move_imm. */
14947 op = !op;
14948 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14949 &op, et.size, et.type)) == FAIL)
14950 {
14951 first_error (_("immediate out of range"));
14952 return;
14953 }
14954 }
14955
14956 inst.instruction &= ~(1 << 5);
14957 inst.instruction |= op << 5;
14958
14959 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14960 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14961 inst.instruction |= neon_quad (rs) << 6;
14962 inst.instruction |= cmode << 8;
14963
14964 neon_write_immbits (immbits);
14965 }
14966
14967 static void
14968 do_neon_mvn (void)
14969 {
14970 if (inst.operands[1].isreg)
14971 {
14972 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14973
14974 NEON_ENCODE (INTEGER, inst);
14975 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14976 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14977 inst.instruction |= LOW4 (inst.operands[1].reg);
14978 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14979 inst.instruction |= neon_quad (rs) << 6;
14980 }
14981 else
14982 {
14983 NEON_ENCODE (IMMED, inst);
14984 neon_move_immediate ();
14985 }
14986
14987 neon_dp_fixup (&inst);
14988 }
14989
14990 /* Encode instructions of form:
14991
14992 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14993 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14994
14995 static void
14996 neon_mixed_length (struct neon_type_el et, unsigned size)
14997 {
14998 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14999 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15000 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15001 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15002 inst.instruction |= LOW4 (inst.operands[2].reg);
15003 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15004 inst.instruction |= (et.type == NT_unsigned) << 24;
15005 inst.instruction |= neon_logbits (size) << 20;
15006
15007 neon_dp_fixup (&inst);
15008 }
15009
15010 static void
15011 do_neon_dyadic_long (void)
15012 {
15013 /* FIXME: Type checking for lengthening op. */
15014 struct neon_type_el et = neon_check_type (3, NS_QDD,
15015 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
15016 neon_mixed_length (et, et.size);
15017 }
15018
15019 static void
15020 do_neon_abal (void)
15021 {
15022 struct neon_type_el et = neon_check_type (3, NS_QDD,
15023 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
15024 neon_mixed_length (et, et.size);
15025 }
15026
15027 static void
15028 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
15029 {
15030 if (inst.operands[2].isscalar)
15031 {
15032 struct neon_type_el et = neon_check_type (3, NS_QDS,
15033 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
15034 NEON_ENCODE (SCALAR, inst);
15035 neon_mul_mac (et, et.type == NT_unsigned);
15036 }
15037 else
15038 {
15039 struct neon_type_el et = neon_check_type (3, NS_QDD,
15040 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
15041 NEON_ENCODE (INTEGER, inst);
15042 neon_mixed_length (et, et.size);
15043 }
15044 }
15045
15046 static void
15047 do_neon_mac_maybe_scalar_long (void)
15048 {
15049 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
15050 }
15051
15052 static void
15053 do_neon_dyadic_wide (void)
15054 {
15055 struct neon_type_el et = neon_check_type (3, NS_QQD,
15056 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
15057 neon_mixed_length (et, et.size);
15058 }
15059
15060 static void
15061 do_neon_dyadic_narrow (void)
15062 {
15063 struct neon_type_el et = neon_check_type (3, NS_QDD,
15064 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
15065 /* Operand sign is unimportant, and the U bit is part of the opcode,
15066 so force the operand type to integer. */
15067 et.type = NT_integer;
15068 neon_mixed_length (et, et.size / 2);
15069 }
15070
15071 static void
15072 do_neon_mul_sat_scalar_long (void)
15073 {
15074 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
15075 }
15076
15077 static void
15078 do_neon_vmull (void)
15079 {
15080 if (inst.operands[2].isscalar)
15081 do_neon_mac_maybe_scalar_long ();
15082 else
15083 {
15084 struct neon_type_el et = neon_check_type (3, NS_QDD,
15085 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
15086 if (et.type == NT_poly)
15087 NEON_ENCODE (POLY, inst);
15088 else
15089 NEON_ENCODE (INTEGER, inst);
15090 /* For polynomial encoding, size field must be 0b00 and the U bit must be
15091 zero. Should be OK as-is. */
15092 neon_mixed_length (et, et.size);
15093 }
15094 }
15095
15096 static void
15097 do_neon_ext (void)
15098 {
15099 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
15100 struct neon_type_el et = neon_check_type (3, rs,
15101 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15102 unsigned imm = (inst.operands[3].imm * et.size) / 8;
15103
15104 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
15105 _("shift out of range"));
15106 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15107 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15108 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15109 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15110 inst.instruction |= LOW4 (inst.operands[2].reg);
15111 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15112 inst.instruction |= neon_quad (rs) << 6;
15113 inst.instruction |= imm << 8;
15114
15115 neon_dp_fixup (&inst);
15116 }
15117
15118 static void
15119 do_neon_rev (void)
15120 {
15121 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15122 struct neon_type_el et = neon_check_type (2, rs,
15123 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15124 unsigned op = (inst.instruction >> 7) & 3;
15125 /* N (width of reversed regions) is encoded as part of the bitmask. We
15126 extract it here to check the elements to be reversed are smaller.
15127 Otherwise we'd get a reserved instruction. */
15128 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
15129 gas_assert (elsize != 0);
15130 constraint (et.size >= elsize,
15131 _("elements must be smaller than reversal region"));
15132 neon_two_same (neon_quad (rs), 1, et.size);
15133 }
15134
15135 static void
15136 do_neon_dup (void)
15137 {
15138 if (inst.operands[1].isscalar)
15139 {
15140 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
15141 struct neon_type_el et = neon_check_type (2, rs,
15142 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15143 unsigned sizebits = et.size >> 3;
15144 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
15145 int logsize = neon_logbits (et.size);
15146 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
15147
15148 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15149 return;
15150
15151 NEON_ENCODE (SCALAR, inst);
15152 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15153 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15154 inst.instruction |= LOW4 (dm);
15155 inst.instruction |= HI1 (dm) << 5;
15156 inst.instruction |= neon_quad (rs) << 6;
15157 inst.instruction |= x << 17;
15158 inst.instruction |= sizebits << 16;
15159
15160 neon_dp_fixup (&inst);
15161 }
15162 else
15163 {
15164 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15165 struct neon_type_el et = neon_check_type (2, rs,
15166 N_8 | N_16 | N_32 | N_KEY, N_EQK);
15167 /* Duplicate ARM register to lanes of vector. */
15168 NEON_ENCODE (ARMREG, inst);
15169 switch (et.size)
15170 {
15171 case 8: inst.instruction |= 0x400000; break;
15172 case 16: inst.instruction |= 0x000020; break;
15173 case 32: inst.instruction |= 0x000000; break;
15174 default: break;
15175 }
15176 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15177 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15178 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
15179 inst.instruction |= neon_quad (rs) << 21;
15180 /* The encoding for this instruction is identical for the ARM and Thumb
15181 variants, except for the condition field. */
15182 do_vfp_cond_or_thumb ();
15183 }
15184 }
15185
15186 /* VMOV has particularly many variations. It can be one of:
15187 0. VMOV<c><q> <Qd>, <Qm>
15188 1. VMOV<c><q> <Dd>, <Dm>
15189 (Register operations, which are VORR with Rm = Rn.)
15190 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15191 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15192 (Immediate loads.)
15193 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15194 (ARM register to scalar.)
15195 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15196 (Two ARM registers to vector.)
15197 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15198 (Scalar to ARM register.)
15199 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15200 (Vector to two ARM registers.)
15201 8. VMOV.F32 <Sd>, <Sm>
15202 9. VMOV.F64 <Dd>, <Dm>
15203 (VFP register moves.)
15204 10. VMOV.F32 <Sd>, #imm
15205 11. VMOV.F64 <Dd>, #imm
15206 (VFP float immediate load.)
15207 12. VMOV <Rd>, <Sm>
15208 (VFP single to ARM reg.)
15209 13. VMOV <Sd>, <Rm>
15210 (ARM reg to VFP single.)
15211 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15212 (Two ARM regs to two VFP singles.)
15213 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15214 (Two VFP singles to two ARM regs.)
15215
15216 These cases can be disambiguated using neon_select_shape, except cases 1/9
15217 and 3/11 which depend on the operand type too.
15218
15219 All the encoded bits are hardcoded by this function.
15220
15221 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15222 Cases 5, 7 may be used with VFPv2 and above.
15223
15224 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15225 can specify a type where it doesn't make sense to, and is ignored). */
15226
15227 static void
15228 do_neon_mov (void)
15229 {
15230 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15231 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15232 NS_NULL);
15233 struct neon_type_el et;
15234 const char *ldconst = 0;
15235
15236 switch (rs)
15237 {
15238 case NS_DD: /* case 1/9. */
15239 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15240 /* It is not an error here if no type is given. */
15241 inst.error = NULL;
15242 if (et.type == NT_float && et.size == 64)
15243 {
15244 do_vfp_nsyn_opcode ("fcpyd");
15245 break;
15246 }
15247 /* fall through. */
15248
15249 case NS_QQ: /* case 0/1. */
15250 {
15251 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15252 return;
15253 /* The architecture manual I have doesn't explicitly state which
15254 value the U bit should have for register->register moves, but
15255 the equivalent VORR instruction has U = 0, so do that. */
15256 inst.instruction = 0x0200110;
15257 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15258 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15259 inst.instruction |= LOW4 (inst.operands[1].reg);
15260 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15261 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15262 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15263 inst.instruction |= neon_quad (rs) << 6;
15264
15265 neon_dp_fixup (&inst);
15266 }
15267 break;
15268
15269 case NS_DI: /* case 3/11. */
15270 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15271 inst.error = NULL;
15272 if (et.type == NT_float && et.size == 64)
15273 {
15274 /* case 11 (fconstd). */
15275 ldconst = "fconstd";
15276 goto encode_fconstd;
15277 }
15278 /* fall through. */
15279
15280 case NS_QI: /* case 2/3. */
15281 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15282 return;
15283 inst.instruction = 0x0800010;
15284 neon_move_immediate ();
15285 neon_dp_fixup (&inst);
15286 break;
15287
15288 case NS_SR: /* case 4. */
15289 {
15290 unsigned bcdebits = 0;
15291 int logsize;
15292 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15293 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15294
15295 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15296 logsize = neon_logbits (et.size);
15297
15298 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15299 _(BAD_FPU));
15300 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15301 && et.size != 32, _(BAD_FPU));
15302 constraint (et.type == NT_invtype, _("bad type for scalar"));
15303 constraint (x >= 64 / et.size, _("scalar index out of range"));
15304
15305 switch (et.size)
15306 {
15307 case 8: bcdebits = 0x8; break;
15308 case 16: bcdebits = 0x1; break;
15309 case 32: bcdebits = 0x0; break;
15310 default: ;
15311 }
15312
15313 bcdebits |= x << logsize;
15314
15315 inst.instruction = 0xe000b10;
15316 do_vfp_cond_or_thumb ();
15317 inst.instruction |= LOW4 (dn) << 16;
15318 inst.instruction |= HI1 (dn) << 7;
15319 inst.instruction |= inst.operands[1].reg << 12;
15320 inst.instruction |= (bcdebits & 3) << 5;
15321 inst.instruction |= (bcdebits >> 2) << 21;
15322 }
15323 break;
15324
15325 case NS_DRR: /* case 5 (fmdrr). */
15326 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15327 _(BAD_FPU));
15328
15329 inst.instruction = 0xc400b10;
15330 do_vfp_cond_or_thumb ();
15331 inst.instruction |= LOW4 (inst.operands[0].reg);
15332 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15333 inst.instruction |= inst.operands[1].reg << 12;
15334 inst.instruction |= inst.operands[2].reg << 16;
15335 break;
15336
15337 case NS_RS: /* case 6. */
15338 {
15339 unsigned logsize;
15340 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15341 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15342 unsigned abcdebits = 0;
15343
15344 et = neon_check_type (2, NS_NULL,
15345 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15346 logsize = neon_logbits (et.size);
15347
15348 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15349 _(BAD_FPU));
15350 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15351 && et.size != 32, _(BAD_FPU));
15352 constraint (et.type == NT_invtype, _("bad type for scalar"));
15353 constraint (x >= 64 / et.size, _("scalar index out of range"));
15354
15355 switch (et.size)
15356 {
15357 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15358 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15359 case 32: abcdebits = 0x00; break;
15360 default: ;
15361 }
15362
15363 abcdebits |= x << logsize;
15364 inst.instruction = 0xe100b10;
15365 do_vfp_cond_or_thumb ();
15366 inst.instruction |= LOW4 (dn) << 16;
15367 inst.instruction |= HI1 (dn) << 7;
15368 inst.instruction |= inst.operands[0].reg << 12;
15369 inst.instruction |= (abcdebits & 3) << 5;
15370 inst.instruction |= (abcdebits >> 2) << 21;
15371 }
15372 break;
15373
15374 case NS_RRD: /* case 7 (fmrrd). */
15375 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15376 _(BAD_FPU));
15377
15378 inst.instruction = 0xc500b10;
15379 do_vfp_cond_or_thumb ();
15380 inst.instruction |= inst.operands[0].reg << 12;
15381 inst.instruction |= inst.operands[1].reg << 16;
15382 inst.instruction |= LOW4 (inst.operands[2].reg);
15383 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15384 break;
15385
15386 case NS_FF: /* case 8 (fcpys). */
15387 do_vfp_nsyn_opcode ("fcpys");
15388 break;
15389
15390 case NS_FI: /* case 10 (fconsts). */
15391 ldconst = "fconsts";
15392 encode_fconstd:
15393 if (is_quarter_float (inst.operands[1].imm))
15394 {
15395 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15396 do_vfp_nsyn_opcode (ldconst);
15397 }
15398 else
15399 first_error (_("immediate out of range"));
15400 break;
15401
15402 case NS_RF: /* case 12 (fmrs). */
15403 do_vfp_nsyn_opcode ("fmrs");
15404 break;
15405
15406 case NS_FR: /* case 13 (fmsr). */
15407 do_vfp_nsyn_opcode ("fmsr");
15408 break;
15409
15410 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15411 (one of which is a list), but we have parsed four. Do some fiddling to
15412 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15413 expect. */
15414 case NS_RRFF: /* case 14 (fmrrs). */
15415 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15416 _("VFP registers must be adjacent"));
15417 inst.operands[2].imm = 2;
15418 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15419 do_vfp_nsyn_opcode ("fmrrs");
15420 break;
15421
15422 case NS_FFRR: /* case 15 (fmsrr). */
15423 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15424 _("VFP registers must be adjacent"));
15425 inst.operands[1] = inst.operands[2];
15426 inst.operands[2] = inst.operands[3];
15427 inst.operands[0].imm = 2;
15428 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15429 do_vfp_nsyn_opcode ("fmsrr");
15430 break;
15431
15432 default:
15433 abort ();
15434 }
15435 }
15436
15437 static void
15438 do_neon_rshift_round_imm (void)
15439 {
15440 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15441 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15442 int imm = inst.operands[2].imm;
15443
15444 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15445 if (imm == 0)
15446 {
15447 inst.operands[2].present = 0;
15448 do_neon_mov ();
15449 return;
15450 }
15451
15452 constraint (imm < 1 || (unsigned)imm > et.size,
15453 _("immediate out of range for shift"));
15454 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15455 et.size - imm);
15456 }
15457
15458 static void
15459 do_neon_movl (void)
15460 {
15461 struct neon_type_el et = neon_check_type (2, NS_QD,
15462 N_EQK | N_DBL, N_SU_32 | N_KEY);
15463 unsigned sizebits = et.size >> 3;
15464 inst.instruction |= sizebits << 19;
15465 neon_two_same (0, et.type == NT_unsigned, -1);
15466 }
15467
15468 static void
15469 do_neon_trn (void)
15470 {
15471 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15472 struct neon_type_el et = neon_check_type (2, rs,
15473 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15474 NEON_ENCODE (INTEGER, inst);
15475 neon_two_same (neon_quad (rs), 1, et.size);
15476 }
15477
15478 static void
15479 do_neon_zip_uzp (void)
15480 {
15481 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15482 struct neon_type_el et = neon_check_type (2, rs,
15483 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15484 if (rs == NS_DD && et.size == 32)
15485 {
15486 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15487 inst.instruction = N_MNEM_vtrn;
15488 do_neon_trn ();
15489 return;
15490 }
15491 neon_two_same (neon_quad (rs), 1, et.size);
15492 }
15493
15494 static void
15495 do_neon_sat_abs_neg (void)
15496 {
15497 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15498 struct neon_type_el et = neon_check_type (2, rs,
15499 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15500 neon_two_same (neon_quad (rs), 1, et.size);
15501 }
15502
15503 static void
15504 do_neon_pair_long (void)
15505 {
15506 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15507 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15508 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15509 inst.instruction |= (et.type == NT_unsigned) << 7;
15510 neon_two_same (neon_quad (rs), 1, et.size);
15511 }
15512
15513 static void
15514 do_neon_recip_est (void)
15515 {
15516 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15517 struct neon_type_el et = neon_check_type (2, rs,
15518 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15519 inst.instruction |= (et.type == NT_float) << 8;
15520 neon_two_same (neon_quad (rs), 1, et.size);
15521 }
15522
15523 static void
15524 do_neon_cls (void)
15525 {
15526 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15527 struct neon_type_el et = neon_check_type (2, rs,
15528 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15529 neon_two_same (neon_quad (rs), 1, et.size);
15530 }
15531
15532 static void
15533 do_neon_clz (void)
15534 {
15535 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15536 struct neon_type_el et = neon_check_type (2, rs,
15537 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15538 neon_two_same (neon_quad (rs), 1, et.size);
15539 }
15540
15541 static void
15542 do_neon_cnt (void)
15543 {
15544 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15545 struct neon_type_el et = neon_check_type (2, rs,
15546 N_EQK | N_INT, N_8 | N_KEY);
15547 neon_two_same (neon_quad (rs), 1, et.size);
15548 }
15549
15550 static void
15551 do_neon_swp (void)
15552 {
15553 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15554 neon_two_same (neon_quad (rs), 1, -1);
15555 }
15556
15557 static void
15558 do_neon_tbl_tbx (void)
15559 {
15560 unsigned listlenbits;
15561 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15562
15563 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15564 {
15565 first_error (_("bad list length for table lookup"));
15566 return;
15567 }
15568
15569 listlenbits = inst.operands[1].imm - 1;
15570 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15571 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15572 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15573 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15574 inst.instruction |= LOW4 (inst.operands[2].reg);
15575 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15576 inst.instruction |= listlenbits << 8;
15577
15578 neon_dp_fixup (&inst);
15579 }
15580
15581 static void
15582 do_neon_ldm_stm (void)
15583 {
15584 /* P, U and L bits are part of bitmask. */
15585 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15586 unsigned offsetbits = inst.operands[1].imm * 2;
15587
15588 if (inst.operands[1].issingle)
15589 {
15590 do_vfp_nsyn_ldm_stm (is_dbmode);
15591 return;
15592 }
15593
15594 constraint (is_dbmode && !inst.operands[0].writeback,
15595 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15596
15597 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15598 _("register list must contain at least 1 and at most 16 "
15599 "registers"));
15600
15601 inst.instruction |= inst.operands[0].reg << 16;
15602 inst.instruction |= inst.operands[0].writeback << 21;
15603 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15604 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15605
15606 inst.instruction |= offsetbits;
15607
15608 do_vfp_cond_or_thumb ();
15609 }
15610
15611 static void
15612 do_neon_ldr_str (void)
15613 {
15614 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15615
15616 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15617 And is UNPREDICTABLE in thumb mode. */
15618 if (!is_ldr
15619 && inst.operands[1].reg == REG_PC
15620 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15621 {
15622 if (!thumb_mode && warn_on_deprecated)
15623 as_warn (_("Use of PC here is deprecated"));
15624 else
15625 inst.error = _("Use of PC here is UNPREDICTABLE");
15626 }
15627
15628 if (inst.operands[0].issingle)
15629 {
15630 if (is_ldr)
15631 do_vfp_nsyn_opcode ("flds");
15632 else
15633 do_vfp_nsyn_opcode ("fsts");
15634 }
15635 else
15636 {
15637 if (is_ldr)
15638 do_vfp_nsyn_opcode ("fldd");
15639 else
15640 do_vfp_nsyn_opcode ("fstd");
15641 }
15642 }
15643
15644 /* "interleave" version also handles non-interleaving register VLD1/VST1
15645 instructions. */
15646
15647 static void
15648 do_neon_ld_st_interleave (void)
15649 {
15650 struct neon_type_el et = neon_check_type (1, NS_NULL,
15651 N_8 | N_16 | N_32 | N_64);
15652 unsigned alignbits = 0;
15653 unsigned idx;
15654 /* The bits in this table go:
15655 0: register stride of one (0) or two (1)
15656 1,2: register list length, minus one (1, 2, 3, 4).
15657 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15658 We use -1 for invalid entries. */
15659 const int typetable[] =
15660 {
15661 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15662 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15663 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15664 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15665 };
15666 int typebits;
15667
15668 if (et.type == NT_invtype)
15669 return;
15670
15671 if (inst.operands[1].immisalign)
15672 switch (inst.operands[1].imm >> 8)
15673 {
15674 case 64: alignbits = 1; break;
15675 case 128:
15676 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15677 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15678 goto bad_alignment;
15679 alignbits = 2;
15680 break;
15681 case 256:
15682 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15683 goto bad_alignment;
15684 alignbits = 3;
15685 break;
15686 default:
15687 bad_alignment:
15688 first_error (_("bad alignment"));
15689 return;
15690 }
15691
15692 inst.instruction |= alignbits << 4;
15693 inst.instruction |= neon_logbits (et.size) << 6;
15694
15695 /* Bits [4:6] of the immediate in a list specifier encode register stride
15696 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15697 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15698 up the right value for "type" in a table based on this value and the given
15699 list style, then stick it back. */
15700 idx = ((inst.operands[0].imm >> 4) & 7)
15701 | (((inst.instruction >> 8) & 3) << 3);
15702
15703 typebits = typetable[idx];
15704
15705 constraint (typebits == -1, _("bad list type for instruction"));
15706
15707 inst.instruction &= ~0xf00;
15708 inst.instruction |= typebits << 8;
15709 }
15710
15711 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15712 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15713 otherwise. The variable arguments are a list of pairs of legal (size, align)
15714 values, terminated with -1. */
15715
15716 static int
15717 neon_alignment_bit (int size, int align, int *do_align, ...)
15718 {
15719 va_list ap;
15720 int result = FAIL, thissize, thisalign;
15721
15722 if (!inst.operands[1].immisalign)
15723 {
15724 *do_align = 0;
15725 return SUCCESS;
15726 }
15727
15728 va_start (ap, do_align);
15729
15730 do
15731 {
15732 thissize = va_arg (ap, int);
15733 if (thissize == -1)
15734 break;
15735 thisalign = va_arg (ap, int);
15736
15737 if (size == thissize && align == thisalign)
15738 result = SUCCESS;
15739 }
15740 while (result != SUCCESS);
15741
15742 va_end (ap);
15743
15744 if (result == SUCCESS)
15745 *do_align = 1;
15746 else
15747 first_error (_("unsupported alignment for instruction"));
15748
15749 return result;
15750 }
15751
15752 static void
15753 do_neon_ld_st_lane (void)
15754 {
15755 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15756 int align_good, do_align = 0;
15757 int logsize = neon_logbits (et.size);
15758 int align = inst.operands[1].imm >> 8;
15759 int n = (inst.instruction >> 8) & 3;
15760 int max_el = 64 / et.size;
15761
15762 if (et.type == NT_invtype)
15763 return;
15764
15765 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15766 _("bad list length"));
15767 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15768 _("scalar index out of range"));
15769 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15770 && et.size == 8,
15771 _("stride of 2 unavailable when element size is 8"));
15772
15773 switch (n)
15774 {
15775 case 0: /* VLD1 / VST1. */
15776 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15777 32, 32, -1);
15778 if (align_good == FAIL)
15779 return;
15780 if (do_align)
15781 {
15782 unsigned alignbits = 0;
15783 switch (et.size)
15784 {
15785 case 16: alignbits = 0x1; break;
15786 case 32: alignbits = 0x3; break;
15787 default: ;
15788 }
15789 inst.instruction |= alignbits << 4;
15790 }
15791 break;
15792
15793 case 1: /* VLD2 / VST2. */
15794 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15795 32, 64, -1);
15796 if (align_good == FAIL)
15797 return;
15798 if (do_align)
15799 inst.instruction |= 1 << 4;
15800 break;
15801
15802 case 2: /* VLD3 / VST3. */
15803 constraint (inst.operands[1].immisalign,
15804 _("can't use alignment with this instruction"));
15805 break;
15806
15807 case 3: /* VLD4 / VST4. */
15808 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15809 16, 64, 32, 64, 32, 128, -1);
15810 if (align_good == FAIL)
15811 return;
15812 if (do_align)
15813 {
15814 unsigned alignbits = 0;
15815 switch (et.size)
15816 {
15817 case 8: alignbits = 0x1; break;
15818 case 16: alignbits = 0x1; break;
15819 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15820 default: ;
15821 }
15822 inst.instruction |= alignbits << 4;
15823 }
15824 break;
15825
15826 default: ;
15827 }
15828
15829 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15830 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15831 inst.instruction |= 1 << (4 + logsize);
15832
15833 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15834 inst.instruction |= logsize << 10;
15835 }
15836
15837 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15838
15839 static void
15840 do_neon_ld_dup (void)
15841 {
15842 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15843 int align_good, do_align = 0;
15844
15845 if (et.type == NT_invtype)
15846 return;
15847
15848 switch ((inst.instruction >> 8) & 3)
15849 {
15850 case 0: /* VLD1. */
15851 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15852 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15853 &do_align, 16, 16, 32, 32, -1);
15854 if (align_good == FAIL)
15855 return;
15856 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15857 {
15858 case 1: break;
15859 case 2: inst.instruction |= 1 << 5; break;
15860 default: first_error (_("bad list length")); return;
15861 }
15862 inst.instruction |= neon_logbits (et.size) << 6;
15863 break;
15864
15865 case 1: /* VLD2. */
15866 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15867 &do_align, 8, 16, 16, 32, 32, 64, -1);
15868 if (align_good == FAIL)
15869 return;
15870 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15871 _("bad list length"));
15872 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15873 inst.instruction |= 1 << 5;
15874 inst.instruction |= neon_logbits (et.size) << 6;
15875 break;
15876
15877 case 2: /* VLD3. */
15878 constraint (inst.operands[1].immisalign,
15879 _("can't use alignment with this instruction"));
15880 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15881 _("bad list length"));
15882 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15883 inst.instruction |= 1 << 5;
15884 inst.instruction |= neon_logbits (et.size) << 6;
15885 break;
15886
15887 case 3: /* VLD4. */
15888 {
15889 int align = inst.operands[1].imm >> 8;
15890 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15891 16, 64, 32, 64, 32, 128, -1);
15892 if (align_good == FAIL)
15893 return;
15894 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15895 _("bad list length"));
15896 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15897 inst.instruction |= 1 << 5;
15898 if (et.size == 32 && align == 128)
15899 inst.instruction |= 0x3 << 6;
15900 else
15901 inst.instruction |= neon_logbits (et.size) << 6;
15902 }
15903 break;
15904
15905 default: ;
15906 }
15907
15908 inst.instruction |= do_align << 4;
15909 }
15910
15911 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15912 apart from bits [11:4]. */
15913
15914 static void
15915 do_neon_ldx_stx (void)
15916 {
15917 if (inst.operands[1].isreg)
15918 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15919
15920 switch (NEON_LANE (inst.operands[0].imm))
15921 {
15922 case NEON_INTERLEAVE_LANES:
15923 NEON_ENCODE (INTERLV, inst);
15924 do_neon_ld_st_interleave ();
15925 break;
15926
15927 case NEON_ALL_LANES:
15928 NEON_ENCODE (DUP, inst);
15929 do_neon_ld_dup ();
15930 break;
15931
15932 default:
15933 NEON_ENCODE (LANE, inst);
15934 do_neon_ld_st_lane ();
15935 }
15936
15937 /* L bit comes from bit mask. */
15938 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15939 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15940 inst.instruction |= inst.operands[1].reg << 16;
15941
15942 if (inst.operands[1].postind)
15943 {
15944 int postreg = inst.operands[1].imm & 0xf;
15945 constraint (!inst.operands[1].immisreg,
15946 _("post-index must be a register"));
15947 constraint (postreg == 0xd || postreg == 0xf,
15948 _("bad register for post-index"));
15949 inst.instruction |= postreg;
15950 }
15951 else if (inst.operands[1].writeback)
15952 {
15953 inst.instruction |= 0xd;
15954 }
15955 else
15956 inst.instruction |= 0xf;
15957
15958 if (thumb_mode)
15959 inst.instruction |= 0xf9000000;
15960 else
15961 inst.instruction |= 0xf4000000;
15962 }
15963
15964 /* FP v8. */
15965 static void
15966 do_vfp_nsyn_fpv8 (enum neon_shape rs)
15967 {
15968 NEON_ENCODE (FPV8, inst);
15969
15970 if (rs == NS_FFF)
15971 do_vfp_sp_dyadic ();
15972 else
15973 do_vfp_dp_rd_rn_rm ();
15974
15975 if (rs == NS_DDD)
15976 inst.instruction |= 0x100;
15977
15978 inst.instruction |= 0xf0000000;
15979 }
15980
15981 static void
15982 do_vsel (void)
15983 {
15984 set_it_insn_type (OUTSIDE_IT_INSN);
15985
15986 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
15987 first_error (_("invalid instruction shape"));
15988 }
15989
15990 static void
15991 do_vmaxnm (void)
15992 {
15993 set_it_insn_type (OUTSIDE_IT_INSN);
15994
15995 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
15996 return;
15997
15998 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15999 return;
16000
16001 neon_dyadic_misc (NT_untyped, N_F32, 0);
16002 }
16003
16004 \f
16005 /* Overall per-instruction processing. */
16006
16007 /* We need to be able to fix up arbitrary expressions in some statements.
16008 This is so that we can handle symbols that are an arbitrary distance from
16009 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
16010 which returns part of an address in a form which will be valid for
16011 a data instruction. We do this by pushing the expression into a symbol
16012 in the expr_section, and creating a fix for that. */
16013
16014 static void
16015 fix_new_arm (fragS * frag,
16016 int where,
16017 short int size,
16018 expressionS * exp,
16019 int pc_rel,
16020 int reloc)
16021 {
16022 fixS * new_fix;
16023
16024 switch (exp->X_op)
16025 {
16026 case O_constant:
16027 if (pc_rel)
16028 {
16029 /* Create an absolute valued symbol, so we have something to
16030 refer to in the object file. Unfortunately for us, gas's
16031 generic expression parsing will already have folded out
16032 any use of .set foo/.type foo %function that may have
16033 been used to set type information of the target location,
16034 that's being specified symbolically. We have to presume
16035 the user knows what they are doing. */
16036 char name[16 + 8];
16037 symbolS *symbol;
16038
16039 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
16040
16041 symbol = symbol_find_or_make (name);
16042 S_SET_SEGMENT (symbol, absolute_section);
16043 symbol_set_frag (symbol, &zero_address_frag);
16044 S_SET_VALUE (symbol, exp->X_add_number);
16045 exp->X_op = O_symbol;
16046 exp->X_add_symbol = symbol;
16047 exp->X_add_number = 0;
16048 }
16049 /* FALLTHROUGH */
16050 case O_symbol:
16051 case O_add:
16052 case O_subtract:
16053 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
16054 (enum bfd_reloc_code_real) reloc);
16055 break;
16056
16057 default:
16058 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
16059 pc_rel, (enum bfd_reloc_code_real) reloc);
16060 break;
16061 }
16062
16063 /* Mark whether the fix is to a THUMB instruction, or an ARM
16064 instruction. */
16065 new_fix->tc_fix_data = thumb_mode;
16066 }
16067
16068 /* Create a frg for an instruction requiring relaxation. */
16069 static void
16070 output_relax_insn (void)
16071 {
16072 char * to;
16073 symbolS *sym;
16074 int offset;
16075
16076 /* The size of the instruction is unknown, so tie the debug info to the
16077 start of the instruction. */
16078 dwarf2_emit_insn (0);
16079
16080 switch (inst.reloc.exp.X_op)
16081 {
16082 case O_symbol:
16083 sym = inst.reloc.exp.X_add_symbol;
16084 offset = inst.reloc.exp.X_add_number;
16085 break;
16086 case O_constant:
16087 sym = NULL;
16088 offset = inst.reloc.exp.X_add_number;
16089 break;
16090 default:
16091 sym = make_expr_symbol (&inst.reloc.exp);
16092 offset = 0;
16093 break;
16094 }
16095 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
16096 inst.relax, sym, offset, NULL/*offset, opcode*/);
16097 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
16098 }
16099
16100 /* Write a 32-bit thumb instruction to buf. */
16101 static void
16102 put_thumb32_insn (char * buf, unsigned long insn)
16103 {
16104 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
16105 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
16106 }
16107
16108 static void
16109 output_inst (const char * str)
16110 {
16111 char * to = NULL;
16112
16113 if (inst.error)
16114 {
16115 as_bad ("%s -- `%s'", inst.error, str);
16116 return;
16117 }
16118 if (inst.relax)
16119 {
16120 output_relax_insn ();
16121 return;
16122 }
16123 if (inst.size == 0)
16124 return;
16125
16126 to = frag_more (inst.size);
16127 /* PR 9814: Record the thumb mode into the current frag so that we know
16128 what type of NOP padding to use, if necessary. We override any previous
16129 setting so that if the mode has changed then the NOPS that we use will
16130 match the encoding of the last instruction in the frag. */
16131 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
16132
16133 if (thumb_mode && (inst.size > THUMB_SIZE))
16134 {
16135 gas_assert (inst.size == (2 * THUMB_SIZE));
16136 put_thumb32_insn (to, inst.instruction);
16137 }
16138 else if (inst.size > INSN_SIZE)
16139 {
16140 gas_assert (inst.size == (2 * INSN_SIZE));
16141 md_number_to_chars (to, inst.instruction, INSN_SIZE);
16142 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
16143 }
16144 else
16145 md_number_to_chars (to, inst.instruction, inst.size);
16146
16147 if (inst.reloc.type != BFD_RELOC_UNUSED)
16148 fix_new_arm (frag_now, to - frag_now->fr_literal,
16149 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
16150 inst.reloc.type);
16151
16152 dwarf2_emit_insn (inst.size);
16153 }
16154
16155 static char *
16156 output_it_inst (int cond, int mask, char * to)
16157 {
16158 unsigned long instruction = 0xbf00;
16159
16160 mask &= 0xf;
16161 instruction |= mask;
16162 instruction |= cond << 4;
16163
16164 if (to == NULL)
16165 {
16166 to = frag_more (2);
16167 #ifdef OBJ_ELF
16168 dwarf2_emit_insn (2);
16169 #endif
16170 }
16171
16172 md_number_to_chars (to, instruction, 2);
16173
16174 return to;
16175 }
16176
16177 /* Tag values used in struct asm_opcode's tag field. */
16178 enum opcode_tag
16179 {
16180 OT_unconditional, /* Instruction cannot be conditionalized.
16181 The ARM condition field is still 0xE. */
16182 OT_unconditionalF, /* Instruction cannot be conditionalized
16183 and carries 0xF in its ARM condition field. */
16184 OT_csuffix, /* Instruction takes a conditional suffix. */
16185 OT_csuffixF, /* Some forms of the instruction take a conditional
16186 suffix, others place 0xF where the condition field
16187 would be. */
16188 OT_cinfix3, /* Instruction takes a conditional infix,
16189 beginning at character index 3. (In
16190 unified mode, it becomes a suffix.) */
16191 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
16192 tsts, cmps, cmns, and teqs. */
16193 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
16194 character index 3, even in unified mode. Used for
16195 legacy instructions where suffix and infix forms
16196 may be ambiguous. */
16197 OT_csuf_or_in3, /* Instruction takes either a conditional
16198 suffix or an infix at character index 3. */
16199 OT_odd_infix_unc, /* This is the unconditional variant of an
16200 instruction that takes a conditional infix
16201 at an unusual position. In unified mode,
16202 this variant will accept a suffix. */
16203 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16204 are the conditional variants of instructions that
16205 take conditional infixes in unusual positions.
16206 The infix appears at character index
16207 (tag - OT_odd_infix_0). These are not accepted
16208 in unified mode. */
16209 };
16210
16211 /* Subroutine of md_assemble, responsible for looking up the primary
16212 opcode from the mnemonic the user wrote. STR points to the
16213 beginning of the mnemonic.
16214
16215 This is not simply a hash table lookup, because of conditional
16216 variants. Most instructions have conditional variants, which are
16217 expressed with a _conditional affix_ to the mnemonic. If we were
16218 to encode each conditional variant as a literal string in the opcode
16219 table, it would have approximately 20,000 entries.
16220
16221 Most mnemonics take this affix as a suffix, and in unified syntax,
16222 'most' is upgraded to 'all'. However, in the divided syntax, some
16223 instructions take the affix as an infix, notably the s-variants of
16224 the arithmetic instructions. Of those instructions, all but six
16225 have the infix appear after the third character of the mnemonic.
16226
16227 Accordingly, the algorithm for looking up primary opcodes given
16228 an identifier is:
16229
16230 1. Look up the identifier in the opcode table.
16231 If we find a match, go to step U.
16232
16233 2. Look up the last two characters of the identifier in the
16234 conditions table. If we find a match, look up the first N-2
16235 characters of the identifier in the opcode table. If we
16236 find a match, go to step CE.
16237
16238 3. Look up the fourth and fifth characters of the identifier in
16239 the conditions table. If we find a match, extract those
16240 characters from the identifier, and look up the remaining
16241 characters in the opcode table. If we find a match, go
16242 to step CM.
16243
16244 4. Fail.
16245
16246 U. Examine the tag field of the opcode structure, in case this is
16247 one of the six instructions with its conditional infix in an
16248 unusual place. If it is, the tag tells us where to find the
16249 infix; look it up in the conditions table and set inst.cond
16250 accordingly. Otherwise, this is an unconditional instruction.
16251 Again set inst.cond accordingly. Return the opcode structure.
16252
16253 CE. Examine the tag field to make sure this is an instruction that
16254 should receive a conditional suffix. If it is not, fail.
16255 Otherwise, set inst.cond from the suffix we already looked up,
16256 and return the opcode structure.
16257
16258 CM. Examine the tag field to make sure this is an instruction that
16259 should receive a conditional infix after the third character.
16260 If it is not, fail. Otherwise, undo the edits to the current
16261 line of input and proceed as for case CE. */
16262
16263 static const struct asm_opcode *
16264 opcode_lookup (char **str)
16265 {
16266 char *end, *base;
16267 char *affix;
16268 const struct asm_opcode *opcode;
16269 const struct asm_cond *cond;
16270 char save[2];
16271
16272 /* Scan up to the end of the mnemonic, which must end in white space,
16273 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
16274 for (base = end = *str; *end != '\0'; end++)
16275 if (*end == ' ' || *end == '.')
16276 break;
16277
16278 if (end == base)
16279 return NULL;
16280
16281 /* Handle a possible width suffix and/or Neon type suffix. */
16282 if (end[0] == '.')
16283 {
16284 int offset = 2;
16285
16286 /* The .w and .n suffixes are only valid if the unified syntax is in
16287 use. */
16288 if (unified_syntax && end[1] == 'w')
16289 inst.size_req = 4;
16290 else if (unified_syntax && end[1] == 'n')
16291 inst.size_req = 2;
16292 else
16293 offset = 0;
16294
16295 inst.vectype.elems = 0;
16296
16297 *str = end + offset;
16298
16299 if (end[offset] == '.')
16300 {
16301 /* See if we have a Neon type suffix (possible in either unified or
16302 non-unified ARM syntax mode). */
16303 if (parse_neon_type (&inst.vectype, str) == FAIL)
16304 return NULL;
16305 }
16306 else if (end[offset] != '\0' && end[offset] != ' ')
16307 return NULL;
16308 }
16309 else
16310 *str = end;
16311
16312 /* Look for unaffixed or special-case affixed mnemonic. */
16313 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16314 end - base);
16315 if (opcode)
16316 {
16317 /* step U */
16318 if (opcode->tag < OT_odd_infix_0)
16319 {
16320 inst.cond = COND_ALWAYS;
16321 return opcode;
16322 }
16323
16324 if (warn_on_deprecated && unified_syntax)
16325 as_warn (_("conditional infixes are deprecated in unified syntax"));
16326 affix = base + (opcode->tag - OT_odd_infix_0);
16327 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16328 gas_assert (cond);
16329
16330 inst.cond = cond->value;
16331 return opcode;
16332 }
16333
16334 /* Cannot have a conditional suffix on a mnemonic of less than two
16335 characters. */
16336 if (end - base < 3)
16337 return NULL;
16338
16339 /* Look for suffixed mnemonic. */
16340 affix = end - 2;
16341 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16342 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16343 affix - base);
16344 if (opcode && cond)
16345 {
16346 /* step CE */
16347 switch (opcode->tag)
16348 {
16349 case OT_cinfix3_legacy:
16350 /* Ignore conditional suffixes matched on infix only mnemonics. */
16351 break;
16352
16353 case OT_cinfix3:
16354 case OT_cinfix3_deprecated:
16355 case OT_odd_infix_unc:
16356 if (!unified_syntax)
16357 return 0;
16358 /* else fall through */
16359
16360 case OT_csuffix:
16361 case OT_csuffixF:
16362 case OT_csuf_or_in3:
16363 inst.cond = cond->value;
16364 return opcode;
16365
16366 case OT_unconditional:
16367 case OT_unconditionalF:
16368 if (thumb_mode)
16369 inst.cond = cond->value;
16370 else
16371 {
16372 /* Delayed diagnostic. */
16373 inst.error = BAD_COND;
16374 inst.cond = COND_ALWAYS;
16375 }
16376 return opcode;
16377
16378 default:
16379 return NULL;
16380 }
16381 }
16382
16383 /* Cannot have a usual-position infix on a mnemonic of less than
16384 six characters (five would be a suffix). */
16385 if (end - base < 6)
16386 return NULL;
16387
16388 /* Look for infixed mnemonic in the usual position. */
16389 affix = base + 3;
16390 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16391 if (!cond)
16392 return NULL;
16393
16394 memcpy (save, affix, 2);
16395 memmove (affix, affix + 2, (end - affix) - 2);
16396 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16397 (end - base) - 2);
16398 memmove (affix + 2, affix, (end - affix) - 2);
16399 memcpy (affix, save, 2);
16400
16401 if (opcode
16402 && (opcode->tag == OT_cinfix3
16403 || opcode->tag == OT_cinfix3_deprecated
16404 || opcode->tag == OT_csuf_or_in3
16405 || opcode->tag == OT_cinfix3_legacy))
16406 {
16407 /* Step CM. */
16408 if (warn_on_deprecated && unified_syntax
16409 && (opcode->tag == OT_cinfix3
16410 || opcode->tag == OT_cinfix3_deprecated))
16411 as_warn (_("conditional infixes are deprecated in unified syntax"));
16412
16413 inst.cond = cond->value;
16414 return opcode;
16415 }
16416
16417 return NULL;
16418 }
16419
16420 /* This function generates an initial IT instruction, leaving its block
16421 virtually open for the new instructions. Eventually,
16422 the mask will be updated by now_it_add_mask () each time
16423 a new instruction needs to be included in the IT block.
16424 Finally, the block is closed with close_automatic_it_block ().
16425 The block closure can be requested either from md_assemble (),
16426 a tencode (), or due to a label hook. */
16427
16428 static void
16429 new_automatic_it_block (int cond)
16430 {
16431 now_it.state = AUTOMATIC_IT_BLOCK;
16432 now_it.mask = 0x18;
16433 now_it.cc = cond;
16434 now_it.block_length = 1;
16435 mapping_state (MAP_THUMB);
16436 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16437 now_it.warn_deprecated = FALSE;
16438 now_it.insn_cond = TRUE;
16439 }
16440
16441 /* Close an automatic IT block.
16442 See comments in new_automatic_it_block (). */
16443
16444 static void
16445 close_automatic_it_block (void)
16446 {
16447 now_it.mask = 0x10;
16448 now_it.block_length = 0;
16449 }
16450
16451 /* Update the mask of the current automatically-generated IT
16452 instruction. See comments in new_automatic_it_block (). */
16453
16454 static void
16455 now_it_add_mask (int cond)
16456 {
16457 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16458 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16459 | ((bitvalue) << (nbit)))
16460 const int resulting_bit = (cond & 1);
16461
16462 now_it.mask &= 0xf;
16463 now_it.mask = SET_BIT_VALUE (now_it.mask,
16464 resulting_bit,
16465 (5 - now_it.block_length));
16466 now_it.mask = SET_BIT_VALUE (now_it.mask,
16467 1,
16468 ((5 - now_it.block_length) - 1) );
16469 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16470
16471 #undef CLEAR_BIT
16472 #undef SET_BIT_VALUE
16473 }
16474
16475 /* The IT blocks handling machinery is accessed through the these functions:
16476 it_fsm_pre_encode () from md_assemble ()
16477 set_it_insn_type () optional, from the tencode functions
16478 set_it_insn_type_last () ditto
16479 in_it_block () ditto
16480 it_fsm_post_encode () from md_assemble ()
16481 force_automatic_it_block_close () from label habdling functions
16482
16483 Rationale:
16484 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16485 initializing the IT insn type with a generic initial value depending
16486 on the inst.condition.
16487 2) During the tencode function, two things may happen:
16488 a) The tencode function overrides the IT insn type by
16489 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16490 b) The tencode function queries the IT block state by
16491 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16492
16493 Both set_it_insn_type and in_it_block run the internal FSM state
16494 handling function (handle_it_state), because: a) setting the IT insn
16495 type may incur in an invalid state (exiting the function),
16496 and b) querying the state requires the FSM to be updated.
16497 Specifically we want to avoid creating an IT block for conditional
16498 branches, so it_fsm_pre_encode is actually a guess and we can't
16499 determine whether an IT block is required until the tencode () routine
16500 has decided what type of instruction this actually it.
16501 Because of this, if set_it_insn_type and in_it_block have to be used,
16502 set_it_insn_type has to be called first.
16503
16504 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16505 determines the insn IT type depending on the inst.cond code.
16506 When a tencode () routine encodes an instruction that can be
16507 either outside an IT block, or, in the case of being inside, has to be
16508 the last one, set_it_insn_type_last () will determine the proper
16509 IT instruction type based on the inst.cond code. Otherwise,
16510 set_it_insn_type can be called for overriding that logic or
16511 for covering other cases.
16512
16513 Calling handle_it_state () may not transition the IT block state to
16514 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16515 still queried. Instead, if the FSM determines that the state should
16516 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16517 after the tencode () function: that's what it_fsm_post_encode () does.
16518
16519 Since in_it_block () calls the state handling function to get an
16520 updated state, an error may occur (due to invalid insns combination).
16521 In that case, inst.error is set.
16522 Therefore, inst.error has to be checked after the execution of
16523 the tencode () routine.
16524
16525 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16526 any pending state change (if any) that didn't take place in
16527 handle_it_state () as explained above. */
16528
16529 static void
16530 it_fsm_pre_encode (void)
16531 {
16532 if (inst.cond != COND_ALWAYS)
16533 inst.it_insn_type = INSIDE_IT_INSN;
16534 else
16535 inst.it_insn_type = OUTSIDE_IT_INSN;
16536
16537 now_it.state_handled = 0;
16538 }
16539
16540 /* IT state FSM handling function. */
16541
16542 static int
16543 handle_it_state (void)
16544 {
16545 now_it.state_handled = 1;
16546 now_it.insn_cond = FALSE;
16547
16548 switch (now_it.state)
16549 {
16550 case OUTSIDE_IT_BLOCK:
16551 switch (inst.it_insn_type)
16552 {
16553 case OUTSIDE_IT_INSN:
16554 break;
16555
16556 case INSIDE_IT_INSN:
16557 case INSIDE_IT_LAST_INSN:
16558 if (thumb_mode == 0)
16559 {
16560 if (unified_syntax
16561 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16562 as_tsktsk (_("Warning: conditional outside an IT block"\
16563 " for Thumb."));
16564 }
16565 else
16566 {
16567 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16568 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16569 {
16570 /* Automatically generate the IT instruction. */
16571 new_automatic_it_block (inst.cond);
16572 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16573 close_automatic_it_block ();
16574 }
16575 else
16576 {
16577 inst.error = BAD_OUT_IT;
16578 return FAIL;
16579 }
16580 }
16581 break;
16582
16583 case IF_INSIDE_IT_LAST_INSN:
16584 case NEUTRAL_IT_INSN:
16585 break;
16586
16587 case IT_INSN:
16588 now_it.state = MANUAL_IT_BLOCK;
16589 now_it.block_length = 0;
16590 break;
16591 }
16592 break;
16593
16594 case AUTOMATIC_IT_BLOCK:
16595 /* Three things may happen now:
16596 a) We should increment current it block size;
16597 b) We should close current it block (closing insn or 4 insns);
16598 c) We should close current it block and start a new one (due
16599 to incompatible conditions or
16600 4 insns-length block reached). */
16601
16602 switch (inst.it_insn_type)
16603 {
16604 case OUTSIDE_IT_INSN:
16605 /* The closure of the block shall happen immediatelly,
16606 so any in_it_block () call reports the block as closed. */
16607 force_automatic_it_block_close ();
16608 break;
16609
16610 case INSIDE_IT_INSN:
16611 case INSIDE_IT_LAST_INSN:
16612 case IF_INSIDE_IT_LAST_INSN:
16613 now_it.block_length++;
16614
16615 if (now_it.block_length > 4
16616 || !now_it_compatible (inst.cond))
16617 {
16618 force_automatic_it_block_close ();
16619 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16620 new_automatic_it_block (inst.cond);
16621 }
16622 else
16623 {
16624 now_it.insn_cond = TRUE;
16625 now_it_add_mask (inst.cond);
16626 }
16627
16628 if (now_it.state == AUTOMATIC_IT_BLOCK
16629 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16630 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16631 close_automatic_it_block ();
16632 break;
16633
16634 case NEUTRAL_IT_INSN:
16635 now_it.block_length++;
16636 now_it.insn_cond = TRUE;
16637
16638 if (now_it.block_length > 4)
16639 force_automatic_it_block_close ();
16640 else
16641 now_it_add_mask (now_it.cc & 1);
16642 break;
16643
16644 case IT_INSN:
16645 close_automatic_it_block ();
16646 now_it.state = MANUAL_IT_BLOCK;
16647 break;
16648 }
16649 break;
16650
16651 case MANUAL_IT_BLOCK:
16652 {
16653 /* Check conditional suffixes. */
16654 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16655 int is_last;
16656 now_it.mask <<= 1;
16657 now_it.mask &= 0x1f;
16658 is_last = (now_it.mask == 0x10);
16659 now_it.insn_cond = TRUE;
16660
16661 switch (inst.it_insn_type)
16662 {
16663 case OUTSIDE_IT_INSN:
16664 inst.error = BAD_NOT_IT;
16665 return FAIL;
16666
16667 case INSIDE_IT_INSN:
16668 if (cond != inst.cond)
16669 {
16670 inst.error = BAD_IT_COND;
16671 return FAIL;
16672 }
16673 break;
16674
16675 case INSIDE_IT_LAST_INSN:
16676 case IF_INSIDE_IT_LAST_INSN:
16677 if (cond != inst.cond)
16678 {
16679 inst.error = BAD_IT_COND;
16680 return FAIL;
16681 }
16682 if (!is_last)
16683 {
16684 inst.error = BAD_BRANCH;
16685 return FAIL;
16686 }
16687 break;
16688
16689 case NEUTRAL_IT_INSN:
16690 /* The BKPT instruction is unconditional even in an IT block. */
16691 break;
16692
16693 case IT_INSN:
16694 inst.error = BAD_IT_IT;
16695 return FAIL;
16696 }
16697 }
16698 break;
16699 }
16700
16701 return SUCCESS;
16702 }
16703
16704 struct depr_insn_mask
16705 {
16706 unsigned long pattern;
16707 unsigned long mask;
16708 const char* description;
16709 };
16710
16711 /* List of 16-bit instruction patterns deprecated in an IT block in
16712 ARMv8. */
16713 static const struct depr_insn_mask depr_it_insns[] = {
16714 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
16715 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
16716 { 0xa000, 0xb800, N_("ADR") },
16717 { 0x4800, 0xf800, N_("Literal loads") },
16718 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
16719 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
16720 { 0, 0, NULL }
16721 };
16722
16723 static void
16724 it_fsm_post_encode (void)
16725 {
16726 int is_last;
16727
16728 if (!now_it.state_handled)
16729 handle_it_state ();
16730
16731 if (now_it.insn_cond
16732 && !now_it.warn_deprecated
16733 && warn_on_deprecated
16734 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
16735 {
16736 if (inst.instruction >= 0x10000)
16737 {
16738 as_warn (_("it blocks containing wide Thumb instructions are "
16739 "deprecated in ARMv8"));
16740 now_it.warn_deprecated = TRUE;
16741 }
16742 else
16743 {
16744 const struct depr_insn_mask *p = depr_it_insns;
16745
16746 while (p->mask != 0)
16747 {
16748 if ((inst.instruction & p->mask) == p->pattern)
16749 {
16750 as_warn (_("it blocks containing 16-bit Thumb intsructions "
16751 "of the following class are deprecated in ARMv8: "
16752 "%s"), p->description);
16753 now_it.warn_deprecated = TRUE;
16754 break;
16755 }
16756
16757 ++p;
16758 }
16759 }
16760
16761 if (now_it.block_length > 1)
16762 {
16763 as_warn (_("it blocks of more than one conditional instruction are "
16764 "deprecated in ARMv8"));
16765 now_it.warn_deprecated = TRUE;
16766 }
16767 }
16768
16769 is_last = (now_it.mask == 0x10);
16770 if (is_last)
16771 {
16772 now_it.state = OUTSIDE_IT_BLOCK;
16773 now_it.mask = 0;
16774 }
16775 }
16776
16777 static void
16778 force_automatic_it_block_close (void)
16779 {
16780 if (now_it.state == AUTOMATIC_IT_BLOCK)
16781 {
16782 close_automatic_it_block ();
16783 now_it.state = OUTSIDE_IT_BLOCK;
16784 now_it.mask = 0;
16785 }
16786 }
16787
16788 static int
16789 in_it_block (void)
16790 {
16791 if (!now_it.state_handled)
16792 handle_it_state ();
16793
16794 return now_it.state != OUTSIDE_IT_BLOCK;
16795 }
16796
16797 void
16798 md_assemble (char *str)
16799 {
16800 char *p = str;
16801 const struct asm_opcode * opcode;
16802
16803 /* Align the previous label if needed. */
16804 if (last_label_seen != NULL)
16805 {
16806 symbol_set_frag (last_label_seen, frag_now);
16807 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16808 S_SET_SEGMENT (last_label_seen, now_seg);
16809 }
16810
16811 memset (&inst, '\0', sizeof (inst));
16812 inst.reloc.type = BFD_RELOC_UNUSED;
16813
16814 opcode = opcode_lookup (&p);
16815 if (!opcode)
16816 {
16817 /* It wasn't an instruction, but it might be a register alias of
16818 the form alias .req reg, or a Neon .dn/.qn directive. */
16819 if (! create_register_alias (str, p)
16820 && ! create_neon_reg_alias (str, p))
16821 as_bad (_("bad instruction `%s'"), str);
16822
16823 return;
16824 }
16825
16826 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16827 as_warn (_("s suffix on comparison instruction is deprecated"));
16828
16829 /* The value which unconditional instructions should have in place of the
16830 condition field. */
16831 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16832
16833 if (thumb_mode)
16834 {
16835 arm_feature_set variant;
16836
16837 variant = cpu_variant;
16838 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16839 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16840 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16841 /* Check that this instruction is supported for this CPU. */
16842 if (!opcode->tvariant
16843 || (thumb_mode == 1
16844 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16845 {
16846 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16847 return;
16848 }
16849 if (inst.cond != COND_ALWAYS && !unified_syntax
16850 && opcode->tencode != do_t_branch)
16851 {
16852 as_bad (_("Thumb does not support conditional execution"));
16853 return;
16854 }
16855
16856 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16857 {
16858 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16859 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16860 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16861 {
16862 /* Two things are addressed here.
16863 1) Implicit require narrow instructions on Thumb-1.
16864 This avoids relaxation accidentally introducing Thumb-2
16865 instructions.
16866 2) Reject wide instructions in non Thumb-2 cores. */
16867 if (inst.size_req == 0)
16868 inst.size_req = 2;
16869 else if (inst.size_req == 4)
16870 {
16871 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16872 return;
16873 }
16874 }
16875 }
16876
16877 inst.instruction = opcode->tvalue;
16878
16879 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16880 {
16881 /* Prepare the it_insn_type for those encodings that don't set
16882 it. */
16883 it_fsm_pre_encode ();
16884
16885 opcode->tencode ();
16886
16887 it_fsm_post_encode ();
16888 }
16889
16890 if (!(inst.error || inst.relax))
16891 {
16892 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16893 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16894 if (inst.size_req && inst.size_req != inst.size)
16895 {
16896 as_bad (_("cannot honor width suffix -- `%s'"), str);
16897 return;
16898 }
16899 }
16900
16901 /* Something has gone badly wrong if we try to relax a fixed size
16902 instruction. */
16903 gas_assert (inst.size_req == 0 || !inst.relax);
16904
16905 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16906 *opcode->tvariant);
16907 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16908 set those bits when Thumb-2 32-bit instructions are seen. ie.
16909 anything other than bl/blx and v6-M instructions.
16910 This is overly pessimistic for relaxable instructions. */
16911 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16912 || inst.relax)
16913 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16914 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16915 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16916 arm_ext_v6t2);
16917
16918 check_neon_suffixes;
16919
16920 if (!inst.error)
16921 {
16922 mapping_state (MAP_THUMB);
16923 }
16924 }
16925 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16926 {
16927 bfd_boolean is_bx;
16928
16929 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16930 is_bx = (opcode->aencode == do_bx);
16931
16932 /* Check that this instruction is supported for this CPU. */
16933 if (!(is_bx && fix_v4bx)
16934 && !(opcode->avariant &&
16935 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16936 {
16937 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16938 return;
16939 }
16940 if (inst.size_req)
16941 {
16942 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16943 return;
16944 }
16945
16946 inst.instruction = opcode->avalue;
16947 if (opcode->tag == OT_unconditionalF)
16948 inst.instruction |= 0xF << 28;
16949 else
16950 inst.instruction |= inst.cond << 28;
16951 inst.size = INSN_SIZE;
16952 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16953 {
16954 it_fsm_pre_encode ();
16955 opcode->aencode ();
16956 it_fsm_post_encode ();
16957 }
16958 /* Arm mode bx is marked as both v4T and v5 because it's still required
16959 on a hypothetical non-thumb v5 core. */
16960 if (is_bx)
16961 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16962 else
16963 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16964 *opcode->avariant);
16965
16966 check_neon_suffixes;
16967
16968 if (!inst.error)
16969 {
16970 mapping_state (MAP_ARM);
16971 }
16972 }
16973 else
16974 {
16975 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16976 "-- `%s'"), str);
16977 return;
16978 }
16979 output_inst (str);
16980 }
16981
16982 static void
16983 check_it_blocks_finished (void)
16984 {
16985 #ifdef OBJ_ELF
16986 asection *sect;
16987
16988 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16989 if (seg_info (sect)->tc_segment_info_data.current_it.state
16990 == MANUAL_IT_BLOCK)
16991 {
16992 as_warn (_("section '%s' finished with an open IT block."),
16993 sect->name);
16994 }
16995 #else
16996 if (now_it.state == MANUAL_IT_BLOCK)
16997 as_warn (_("file finished with an open IT block."));
16998 #endif
16999 }
17000
17001 /* Various frobbings of labels and their addresses. */
17002
17003 void
17004 arm_start_line_hook (void)
17005 {
17006 last_label_seen = NULL;
17007 }
17008
17009 void
17010 arm_frob_label (symbolS * sym)
17011 {
17012 last_label_seen = sym;
17013
17014 ARM_SET_THUMB (sym, thumb_mode);
17015
17016 #if defined OBJ_COFF || defined OBJ_ELF
17017 ARM_SET_INTERWORK (sym, support_interwork);
17018 #endif
17019
17020 force_automatic_it_block_close ();
17021
17022 /* Note - do not allow local symbols (.Lxxx) to be labelled
17023 as Thumb functions. This is because these labels, whilst
17024 they exist inside Thumb code, are not the entry points for
17025 possible ARM->Thumb calls. Also, these labels can be used
17026 as part of a computed goto or switch statement. eg gcc
17027 can generate code that looks like this:
17028
17029 ldr r2, [pc, .Laaa]
17030 lsl r3, r3, #2
17031 ldr r2, [r3, r2]
17032 mov pc, r2
17033
17034 .Lbbb: .word .Lxxx
17035 .Lccc: .word .Lyyy
17036 ..etc...
17037 .Laaa: .word Lbbb
17038
17039 The first instruction loads the address of the jump table.
17040 The second instruction converts a table index into a byte offset.
17041 The third instruction gets the jump address out of the table.
17042 The fourth instruction performs the jump.
17043
17044 If the address stored at .Laaa is that of a symbol which has the
17045 Thumb_Func bit set, then the linker will arrange for this address
17046 to have the bottom bit set, which in turn would mean that the
17047 address computation performed by the third instruction would end
17048 up with the bottom bit set. Since the ARM is capable of unaligned
17049 word loads, the instruction would then load the incorrect address
17050 out of the jump table, and chaos would ensue. */
17051 if (label_is_thumb_function_name
17052 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
17053 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
17054 {
17055 /* When the address of a Thumb function is taken the bottom
17056 bit of that address should be set. This will allow
17057 interworking between Arm and Thumb functions to work
17058 correctly. */
17059
17060 THUMB_SET_FUNC (sym, 1);
17061
17062 label_is_thumb_function_name = FALSE;
17063 }
17064
17065 dwarf2_emit_label (sym);
17066 }
17067
17068 bfd_boolean
17069 arm_data_in_code (void)
17070 {
17071 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
17072 {
17073 *input_line_pointer = '/';
17074 input_line_pointer += 5;
17075 *input_line_pointer = 0;
17076 return TRUE;
17077 }
17078
17079 return FALSE;
17080 }
17081
17082 char *
17083 arm_canonicalize_symbol_name (char * name)
17084 {
17085 int len;
17086
17087 if (thumb_mode && (len = strlen (name)) > 5
17088 && streq (name + len - 5, "/data"))
17089 *(name + len - 5) = 0;
17090
17091 return name;
17092 }
17093 \f
17094 /* Table of all register names defined by default. The user can
17095 define additional names with .req. Note that all register names
17096 should appear in both upper and lowercase variants. Some registers
17097 also have mixed-case names. */
17098
17099 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
17100 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
17101 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
17102 #define REGSET(p,t) \
17103 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
17104 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
17105 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
17106 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
17107 #define REGSETH(p,t) \
17108 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
17109 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
17110 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
17111 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
17112 #define REGSET2(p,t) \
17113 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
17114 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
17115 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
17116 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
17117 #define SPLRBANK(base,bank,t) \
17118 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
17119 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
17120 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
17121 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
17122 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
17123 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
17124
17125 static const struct reg_entry reg_names[] =
17126 {
17127 /* ARM integer registers. */
17128 REGSET(r, RN), REGSET(R, RN),
17129
17130 /* ATPCS synonyms. */
17131 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
17132 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
17133 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
17134
17135 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
17136 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
17137 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
17138
17139 /* Well-known aliases. */
17140 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
17141 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
17142
17143 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
17144 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
17145
17146 /* Coprocessor numbers. */
17147 REGSET(p, CP), REGSET(P, CP),
17148
17149 /* Coprocessor register numbers. The "cr" variants are for backward
17150 compatibility. */
17151 REGSET(c, CN), REGSET(C, CN),
17152 REGSET(cr, CN), REGSET(CR, CN),
17153
17154 /* ARM banked registers. */
17155 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
17156 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
17157 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
17158 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
17159 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
17160 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
17161 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
17162
17163 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
17164 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
17165 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
17166 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
17167 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
17168 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
17169 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
17170 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
17171
17172 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
17173 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
17174 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
17175 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
17176 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
17177 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
17178 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
17179 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
17180 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
17181
17182 /* FPA registers. */
17183 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
17184 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
17185
17186 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
17187 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
17188
17189 /* VFP SP registers. */
17190 REGSET(s,VFS), REGSET(S,VFS),
17191 REGSETH(s,VFS), REGSETH(S,VFS),
17192
17193 /* VFP DP Registers. */
17194 REGSET(d,VFD), REGSET(D,VFD),
17195 /* Extra Neon DP registers. */
17196 REGSETH(d,VFD), REGSETH(D,VFD),
17197
17198 /* Neon QP registers. */
17199 REGSET2(q,NQ), REGSET2(Q,NQ),
17200
17201 /* VFP control registers. */
17202 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17203 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
17204 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17205 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17206 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17207 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
17208
17209 /* Maverick DSP coprocessor registers. */
17210 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17211 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17212
17213 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17214 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17215 REGDEF(dspsc,0,DSPSC),
17216
17217 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17218 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17219 REGDEF(DSPSC,0,DSPSC),
17220
17221 /* iWMMXt data registers - p0, c0-15. */
17222 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17223
17224 /* iWMMXt control registers - p1, c0-3. */
17225 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17226 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17227 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17228 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17229
17230 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17231 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17232 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17233 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17234 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17235
17236 /* XScale accumulator registers. */
17237 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17238 };
17239 #undef REGDEF
17240 #undef REGNUM
17241 #undef REGSET
17242
17243 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17244 within psr_required_here. */
17245 static const struct asm_psr psrs[] =
17246 {
17247 /* Backward compatibility notation. Note that "all" is no longer
17248 truly all possible PSR bits. */
17249 {"all", PSR_c | PSR_f},
17250 {"flg", PSR_f},
17251 {"ctl", PSR_c},
17252
17253 /* Individual flags. */
17254 {"f", PSR_f},
17255 {"c", PSR_c},
17256 {"x", PSR_x},
17257 {"s", PSR_s},
17258
17259 /* Combinations of flags. */
17260 {"fs", PSR_f | PSR_s},
17261 {"fx", PSR_f | PSR_x},
17262 {"fc", PSR_f | PSR_c},
17263 {"sf", PSR_s | PSR_f},
17264 {"sx", PSR_s | PSR_x},
17265 {"sc", PSR_s | PSR_c},
17266 {"xf", PSR_x | PSR_f},
17267 {"xs", PSR_x | PSR_s},
17268 {"xc", PSR_x | PSR_c},
17269 {"cf", PSR_c | PSR_f},
17270 {"cs", PSR_c | PSR_s},
17271 {"cx", PSR_c | PSR_x},
17272 {"fsx", PSR_f | PSR_s | PSR_x},
17273 {"fsc", PSR_f | PSR_s | PSR_c},
17274 {"fxs", PSR_f | PSR_x | PSR_s},
17275 {"fxc", PSR_f | PSR_x | PSR_c},
17276 {"fcs", PSR_f | PSR_c | PSR_s},
17277 {"fcx", PSR_f | PSR_c | PSR_x},
17278 {"sfx", PSR_s | PSR_f | PSR_x},
17279 {"sfc", PSR_s | PSR_f | PSR_c},
17280 {"sxf", PSR_s | PSR_x | PSR_f},
17281 {"sxc", PSR_s | PSR_x | PSR_c},
17282 {"scf", PSR_s | PSR_c | PSR_f},
17283 {"scx", PSR_s | PSR_c | PSR_x},
17284 {"xfs", PSR_x | PSR_f | PSR_s},
17285 {"xfc", PSR_x | PSR_f | PSR_c},
17286 {"xsf", PSR_x | PSR_s | PSR_f},
17287 {"xsc", PSR_x | PSR_s | PSR_c},
17288 {"xcf", PSR_x | PSR_c | PSR_f},
17289 {"xcs", PSR_x | PSR_c | PSR_s},
17290 {"cfs", PSR_c | PSR_f | PSR_s},
17291 {"cfx", PSR_c | PSR_f | PSR_x},
17292 {"csf", PSR_c | PSR_s | PSR_f},
17293 {"csx", PSR_c | PSR_s | PSR_x},
17294 {"cxf", PSR_c | PSR_x | PSR_f},
17295 {"cxs", PSR_c | PSR_x | PSR_s},
17296 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17297 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17298 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17299 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17300 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17301 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17302 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17303 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17304 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17305 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17306 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17307 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17308 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17309 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17310 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17311 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17312 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17313 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17314 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17315 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17316 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17317 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17318 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17319 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17320 };
17321
17322 /* Table of V7M psr names. */
17323 static const struct asm_psr v7m_psrs[] =
17324 {
17325 {"apsr", 0 }, {"APSR", 0 },
17326 {"iapsr", 1 }, {"IAPSR", 1 },
17327 {"eapsr", 2 }, {"EAPSR", 2 },
17328 {"psr", 3 }, {"PSR", 3 },
17329 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17330 {"ipsr", 5 }, {"IPSR", 5 },
17331 {"epsr", 6 }, {"EPSR", 6 },
17332 {"iepsr", 7 }, {"IEPSR", 7 },
17333 {"msp", 8 }, {"MSP", 8 },
17334 {"psp", 9 }, {"PSP", 9 },
17335 {"primask", 16}, {"PRIMASK", 16},
17336 {"basepri", 17}, {"BASEPRI", 17},
17337 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17338 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
17339 {"faultmask", 19}, {"FAULTMASK", 19},
17340 {"control", 20}, {"CONTROL", 20}
17341 };
17342
17343 /* Table of all shift-in-operand names. */
17344 static const struct asm_shift_name shift_names [] =
17345 {
17346 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17347 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17348 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17349 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17350 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17351 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17352 };
17353
17354 /* Table of all explicit relocation names. */
17355 #ifdef OBJ_ELF
17356 static struct reloc_entry reloc_names[] =
17357 {
17358 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17359 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17360 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17361 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17362 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17363 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17364 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17365 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17366 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17367 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
17368 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
17369 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17370 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17371 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17372 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17373 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17374 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17375 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
17376 };
17377 #endif
17378
17379 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
17380 static const struct asm_cond conds[] =
17381 {
17382 {"eq", 0x0},
17383 {"ne", 0x1},
17384 {"cs", 0x2}, {"hs", 0x2},
17385 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17386 {"mi", 0x4},
17387 {"pl", 0x5},
17388 {"vs", 0x6},
17389 {"vc", 0x7},
17390 {"hi", 0x8},
17391 {"ls", 0x9},
17392 {"ge", 0xa},
17393 {"lt", 0xb},
17394 {"gt", 0xc},
17395 {"le", 0xd},
17396 {"al", 0xe}
17397 };
17398
17399 #define UL_BARRIER(L,U,CODE,FEAT) \
17400 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17401 { U, CODE, ARM_FEATURE (FEAT, 0) }
17402
17403 static struct asm_barrier_opt barrier_opt_names[] =
17404 {
17405 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17406 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17407 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17408 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17409 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17410 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17411 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17412 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17413 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17414 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17415 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17416 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17417 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17418 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17419 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17420 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
17421 };
17422
17423 #undef UL_BARRIER
17424
17425 /* Table of ARM-format instructions. */
17426
17427 /* Macros for gluing together operand strings. N.B. In all cases
17428 other than OPS0, the trailing OP_stop comes from default
17429 zero-initialization of the unspecified elements of the array. */
17430 #define OPS0() { OP_stop, }
17431 #define OPS1(a) { OP_##a, }
17432 #define OPS2(a,b) { OP_##a,OP_##b, }
17433 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17434 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17435 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17436 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17437
17438 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17439 This is useful when mixing operands for ARM and THUMB, i.e. using the
17440 MIX_ARM_THUMB_OPERANDS macro.
17441 In order to use these macros, prefix the number of operands with _
17442 e.g. _3. */
17443 #define OPS_1(a) { a, }
17444 #define OPS_2(a,b) { a,b, }
17445 #define OPS_3(a,b,c) { a,b,c, }
17446 #define OPS_4(a,b,c,d) { a,b,c,d, }
17447 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17448 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17449
17450 /* These macros abstract out the exact format of the mnemonic table and
17451 save some repeated characters. */
17452
17453 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17454 #define TxCE(mnem, op, top, nops, ops, ae, te) \
17455 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
17456 THUMB_VARIANT, do_##ae, do_##te }
17457
17458 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17459 a T_MNEM_xyz enumerator. */
17460 #define TCE(mnem, aop, top, nops, ops, ae, te) \
17461 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
17462 #define tCE(mnem, aop, top, nops, ops, ae, te) \
17463 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17464
17465 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17466 infix after the third character. */
17467 #define TxC3(mnem, op, top, nops, ops, ae, te) \
17468 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
17469 THUMB_VARIANT, do_##ae, do_##te }
17470 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
17471 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
17472 THUMB_VARIANT, do_##ae, do_##te }
17473 #define TC3(mnem, aop, top, nops, ops, ae, te) \
17474 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
17475 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
17476 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
17477 #define tC3(mnem, aop, top, nops, ops, ae, te) \
17478 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17479 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
17480 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17481
17482 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17483 appear in the condition table. */
17484 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
17485 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17486 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
17487
17488 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
17489 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17490 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17491 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17492 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17493 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17494 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17495 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17496 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17497 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17498 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17499 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17500 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17501 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17502 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17503 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17504 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17505 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17506 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17507 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
17508
17509 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
17510 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17511 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
17512 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
17513
17514 /* Mnemonic that cannot be conditionalized. The ARM condition-code
17515 field is still 0xE. Many of the Thumb variants can be executed
17516 conditionally, so this is checked separately. */
17517 #define TUE(mnem, op, top, nops, ops, ae, te) \
17518 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17519 THUMB_VARIANT, do_##ae, do_##te }
17520
17521 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17522 condition code field. */
17523 #define TUF(mnem, op, top, nops, ops, ae, te) \
17524 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17525 THUMB_VARIANT, do_##ae, do_##te }
17526
17527 /* ARM-only variants of all the above. */
17528 #define CE(mnem, op, nops, ops, ae) \
17529 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17530
17531 #define C3(mnem, op, nops, ops, ae) \
17532 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17533
17534 /* Legacy mnemonics that always have conditional infix after the third
17535 character. */
17536 #define CL(mnem, op, nops, ops, ae) \
17537 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17538 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17539
17540 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17541 #define cCE(mnem, op, nops, ops, ae) \
17542 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17543
17544 /* Legacy coprocessor instructions where conditional infix and conditional
17545 suffix are ambiguous. For consistency this includes all FPA instructions,
17546 not just the potentially ambiguous ones. */
17547 #define cCL(mnem, op, nops, ops, ae) \
17548 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17549 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17550
17551 /* Coprocessor, takes either a suffix or a position-3 infix
17552 (for an FPA corner case). */
17553 #define C3E(mnem, op, nops, ops, ae) \
17554 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17555 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17556
17557 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17558 { m1 #m2 m3, OPS##nops ops, \
17559 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17560 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17561
17562 #define CM(m1, m2, op, nops, ops, ae) \
17563 xCM_ (m1, , m2, op, nops, ops, ae), \
17564 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17565 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17566 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17567 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17568 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17569 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17570 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17571 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17572 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17573 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17574 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17575 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17576 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17577 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17578 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17579 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17580 xCM_ (m1, le, m2, op, nops, ops, ae), \
17581 xCM_ (m1, al, m2, op, nops, ops, ae)
17582
17583 #define UE(mnem, op, nops, ops, ae) \
17584 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17585
17586 #define UF(mnem, op, nops, ops, ae) \
17587 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17588
17589 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17590 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17591 use the same encoding function for each. */
17592 #define NUF(mnem, op, nops, ops, enc) \
17593 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17594 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17595
17596 /* Neon data processing, version which indirects through neon_enc_tab for
17597 the various overloaded versions of opcodes. */
17598 #define nUF(mnem, op, nops, ops, enc) \
17599 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17600 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17601
17602 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17603 version. */
17604 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17605 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17606 THUMB_VARIANT, do_##enc, do_##enc }
17607
17608 #define NCE(mnem, op, nops, ops, enc) \
17609 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17610
17611 #define NCEF(mnem, op, nops, ops, enc) \
17612 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17613
17614 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17615 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17616 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17617 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17618
17619 #define nCE(mnem, op, nops, ops, enc) \
17620 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17621
17622 #define nCEF(mnem, op, nops, ops, enc) \
17623 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17624
17625 #define do_0 0
17626
17627 static const struct asm_opcode insns[] =
17628 {
17629 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17630 #define THUMB_VARIANT &arm_ext_v4t
17631 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17632 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17633 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17634 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17635 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17636 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17637 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17638 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17639 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17640 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17641 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17642 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17643 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17644 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17645 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17646 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17647
17648 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17649 for setting PSR flag bits. They are obsolete in V6 and do not
17650 have Thumb equivalents. */
17651 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17652 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17653 CL("tstp", 110f000, 2, (RR, SH), cmp),
17654 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17655 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17656 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17657 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17658 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17659 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17660
17661 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17662 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17663 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17664 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17665
17666 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17667 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17668 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17669 OP_RRnpc),
17670 OP_ADDRGLDR),ldst, t_ldst),
17671 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17672
17673 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17674 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17675 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17676 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17677 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17678 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17679
17680 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17681 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17682 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17683 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17684
17685 /* Pseudo ops. */
17686 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17687 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17688 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17689
17690 /* Thumb-compatibility pseudo ops. */
17691 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17692 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17693 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17694 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17695 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17696 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17697 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17698 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17699 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17700 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17701 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17702 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17703
17704 /* These may simplify to neg. */
17705 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17706 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17707
17708 #undef THUMB_VARIANT
17709 #define THUMB_VARIANT & arm_ext_v6
17710
17711 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17712
17713 /* V1 instructions with no Thumb analogue prior to V6T2. */
17714 #undef THUMB_VARIANT
17715 #define THUMB_VARIANT & arm_ext_v6t2
17716
17717 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17718 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17719 CL("teqp", 130f000, 2, (RR, SH), cmp),
17720
17721 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17722 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17723 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17724 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17725
17726 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17727 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17728
17729 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17730 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17731
17732 /* V1 instructions with no Thumb analogue at all. */
17733 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17734 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17735
17736 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17737 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17738 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17739 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17740 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17741 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17742 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17743 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17744
17745 #undef ARM_VARIANT
17746 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17747 #undef THUMB_VARIANT
17748 #define THUMB_VARIANT & arm_ext_v4t
17749
17750 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17751 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17752
17753 #undef THUMB_VARIANT
17754 #define THUMB_VARIANT & arm_ext_v6t2
17755
17756 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17757 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17758
17759 /* Generic coprocessor instructions. */
17760 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17761 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17762 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17763 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17764 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17765 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17766 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17767
17768 #undef ARM_VARIANT
17769 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17770
17771 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17772 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17773
17774 #undef ARM_VARIANT
17775 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17776 #undef THUMB_VARIANT
17777 #define THUMB_VARIANT & arm_ext_msr
17778
17779 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17780 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17781
17782 #undef ARM_VARIANT
17783 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17784 #undef THUMB_VARIANT
17785 #define THUMB_VARIANT & arm_ext_v6t2
17786
17787 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17788 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17789 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17790 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17791 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17792 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17793 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17794 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17795
17796 #undef ARM_VARIANT
17797 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17798 #undef THUMB_VARIANT
17799 #define THUMB_VARIANT & arm_ext_v4t
17800
17801 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17802 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17803 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17804 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17805 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17806 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17807
17808 #undef ARM_VARIANT
17809 #define ARM_VARIANT & arm_ext_v4t_5
17810
17811 /* ARM Architecture 4T. */
17812 /* Note: bx (and blx) are required on V5, even if the processor does
17813 not support Thumb. */
17814 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17815
17816 #undef ARM_VARIANT
17817 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17818 #undef THUMB_VARIANT
17819 #define THUMB_VARIANT & arm_ext_v5t
17820
17821 /* Note: blx has 2 variants; the .value coded here is for
17822 BLX(2). Only this variant has conditional execution. */
17823 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17824 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17825
17826 #undef THUMB_VARIANT
17827 #define THUMB_VARIANT & arm_ext_v6t2
17828
17829 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17830 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17831 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17832 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17833 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17834 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17835 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17836 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17837
17838 #undef ARM_VARIANT
17839 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17840 #undef THUMB_VARIANT
17841 #define THUMB_VARIANT &arm_ext_v5exp
17842
17843 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17844 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17845 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17846 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17847
17848 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17849 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17850
17851 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17852 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17853 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17854 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17855
17856 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17857 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17858 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17859 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17860
17861 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17862 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17863
17864 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17865 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17866 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17867 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17868
17869 #undef ARM_VARIANT
17870 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17871 #undef THUMB_VARIANT
17872 #define THUMB_VARIANT &arm_ext_v6t2
17873
17874 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17875 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17876 ldrd, t_ldstd),
17877 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17878 ADDRGLDRS), ldrd, t_ldstd),
17879
17880 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17881 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17882
17883 #undef ARM_VARIANT
17884 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17885
17886 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17887
17888 #undef ARM_VARIANT
17889 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17890 #undef THUMB_VARIANT
17891 #define THUMB_VARIANT & arm_ext_v6
17892
17893 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17894 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17895 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17896 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17897 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17898 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17899 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17900 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17901 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17902 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17903
17904 #undef THUMB_VARIANT
17905 #define THUMB_VARIANT & arm_ext_v6t2
17906
17907 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17908 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17909 strex, t_strex),
17910 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17911 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17912
17913 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17914 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17915
17916 /* ARM V6 not included in V7M. */
17917 #undef THUMB_VARIANT
17918 #define THUMB_VARIANT & arm_ext_v6_notm
17919 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17920 UF(rfeib, 9900a00, 1, (RRw), rfe),
17921 UF(rfeda, 8100a00, 1, (RRw), rfe),
17922 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17923 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17924 UF(rfefa, 9900a00, 1, (RRw), rfe),
17925 UF(rfeea, 8100a00, 1, (RRw), rfe),
17926 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17927 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17928 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17929 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17930 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17931
17932 /* ARM V6 not included in V7M (eg. integer SIMD). */
17933 #undef THUMB_VARIANT
17934 #define THUMB_VARIANT & arm_ext_v6_dsp
17935 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17936 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17937 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17938 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17939 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17940 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17941 /* Old name for QASX. */
17942 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17943 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17944 /* Old name for QSAX. */
17945 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17946 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17947 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17948 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17949 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17950 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17951 /* Old name for SASX. */
17952 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17953 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17954 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17955 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17956 /* Old name for SHASX. */
17957 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17958 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17959 /* Old name for SHSAX. */
17960 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17961 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17962 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17963 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17964 /* Old name for SSAX. */
17965 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17966 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17967 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17968 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17969 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17970 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17971 /* Old name for UASX. */
17972 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17973 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17974 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17975 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17976 /* Old name for UHASX. */
17977 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17978 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17979 /* Old name for UHSAX. */
17980 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17981 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17982 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17983 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17984 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17985 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17986 /* Old name for UQASX. */
17987 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17988 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17989 /* Old name for UQSAX. */
17990 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17991 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17992 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17993 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17994 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17995 /* Old name for USAX. */
17996 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17997 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17998 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17999 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18000 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18001 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18002 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18003 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18004 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18005 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18006 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18007 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18008 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18009 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18010 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18011 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18012 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18013 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18014 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18015 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18016 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18017 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18018 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18019 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18020 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18021 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18022 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18023 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18024 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18025 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
18026 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
18027 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18028 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18029 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
18030
18031 #undef ARM_VARIANT
18032 #define ARM_VARIANT & arm_ext_v6k
18033 #undef THUMB_VARIANT
18034 #define THUMB_VARIANT & arm_ext_v6k
18035
18036 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
18037 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
18038 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
18039 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
18040
18041 #undef THUMB_VARIANT
18042 #define THUMB_VARIANT & arm_ext_v6_notm
18043 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
18044 ldrexd, t_ldrexd),
18045 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
18046 RRnpcb), strexd, t_strexd),
18047
18048 #undef THUMB_VARIANT
18049 #define THUMB_VARIANT & arm_ext_v6t2
18050 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
18051 rd_rn, rd_rn),
18052 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
18053 rd_rn, rd_rn),
18054 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18055 strex, t_strexbh),
18056 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18057 strex, t_strexbh),
18058 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
18059
18060 #undef ARM_VARIANT
18061 #define ARM_VARIANT & arm_ext_sec
18062 #undef THUMB_VARIANT
18063 #define THUMB_VARIANT & arm_ext_sec
18064
18065 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
18066
18067 #undef ARM_VARIANT
18068 #define ARM_VARIANT & arm_ext_virt
18069 #undef THUMB_VARIANT
18070 #define THUMB_VARIANT & arm_ext_virt
18071
18072 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
18073 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
18074
18075 #undef ARM_VARIANT
18076 #define ARM_VARIANT & arm_ext_v6t2
18077 #undef THUMB_VARIANT
18078 #define THUMB_VARIANT & arm_ext_v6t2
18079
18080 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
18081 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
18082 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
18083 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
18084
18085 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
18086 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
18087 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
18088 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
18089
18090 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18091 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18092 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18093 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18094
18095 /* Thumb-only instructions. */
18096 #undef ARM_VARIANT
18097 #define ARM_VARIANT NULL
18098 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
18099 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
18100
18101 /* ARM does not really have an IT instruction, so always allow it.
18102 The opcode is copied from Thumb in order to allow warnings in
18103 -mimplicit-it=[never | arm] modes. */
18104 #undef ARM_VARIANT
18105 #define ARM_VARIANT & arm_ext_v1
18106
18107 TUE("it", bf08, bf08, 1, (COND), it, t_it),
18108 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
18109 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
18110 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
18111 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
18112 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
18113 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
18114 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
18115 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
18116 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
18117 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
18118 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
18119 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
18120 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
18121 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
18122 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
18123 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
18124 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
18125
18126 /* Thumb2 only instructions. */
18127 #undef ARM_VARIANT
18128 #define ARM_VARIANT NULL
18129
18130 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18131 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18132 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
18133 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
18134 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
18135 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
18136
18137 /* Hardware division instructions. */
18138 #undef ARM_VARIANT
18139 #define ARM_VARIANT & arm_ext_adiv
18140 #undef THUMB_VARIANT
18141 #define THUMB_VARIANT & arm_ext_div
18142
18143 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
18144 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
18145
18146 /* ARM V6M/V7 instructions. */
18147 #undef ARM_VARIANT
18148 #define ARM_VARIANT & arm_ext_barrier
18149 #undef THUMB_VARIANT
18150 #define THUMB_VARIANT & arm_ext_barrier
18151
18152 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
18153 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
18154 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
18155
18156 /* ARM V7 instructions. */
18157 #undef ARM_VARIANT
18158 #define ARM_VARIANT & arm_ext_v7
18159 #undef THUMB_VARIANT
18160 #define THUMB_VARIANT & arm_ext_v7
18161
18162 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
18163 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
18164
18165 #undef ARM_VARIANT
18166 #define ARM_VARIANT & arm_ext_mp
18167 #undef THUMB_VARIANT
18168 #define THUMB_VARIANT & arm_ext_mp
18169
18170 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
18171
18172 /* AArchv8 instructions. */
18173 #undef ARM_VARIANT
18174 #define ARM_VARIANT & arm_ext_v8
18175 #undef THUMB_VARIANT
18176 #define THUMB_VARIANT & arm_ext_v8
18177
18178 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
18179 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
18180 TCE("ldraex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18181 TCE("ldraexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
18182 ldrexd, t_ldrexd),
18183 TCE("ldraexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
18184 TCE("ldraexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18185 TCE("strlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
18186 strlex, t_strlex),
18187 TCE("strlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
18188 strexd, t_strexd),
18189 TCE("strlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
18190 strlex, t_strlex),
18191 TCE("strlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
18192 strlex, t_strlex),
18193 TCE("ldra", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18194 TCE("ldrab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18195 TCE("ldrah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18196 TCE("strl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18197 TCE("strlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18198 TCE("strlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18199
18200 /* ARMv8 T32 only. */
18201 #undef ARM_VARIANT
18202 #define ARM_VARIANT NULL
18203 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
18204 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
18205 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
18206
18207 /* FP for ARMv8. */
18208 #undef ARM_VARIANT
18209 #define ARM_VARIANT & fpu_vfp_ext_armv8
18210 #undef THUMB_VARIANT
18211 #define THUMB_VARIANT & fpu_vfp_ext_armv8
18212
18213 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
18214 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
18215 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
18216 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
18217 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
18218 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
18219 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
18220 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
18221 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
18222 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
18223
18224 #undef ARM_VARIANT
18225 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
18226 #undef THUMB_VARIANT
18227 #define THUMB_VARIANT NULL
18228
18229 cCE("wfs", e200110, 1, (RR), rd),
18230 cCE("rfs", e300110, 1, (RR), rd),
18231 cCE("wfc", e400110, 1, (RR), rd),
18232 cCE("rfc", e500110, 1, (RR), rd),
18233
18234 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
18235 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
18236 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
18237 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
18238
18239 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
18240 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
18241 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
18242 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
18243
18244 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
18245 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
18246 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
18247 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
18248 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
18249 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
18250 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
18251 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
18252 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
18253 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
18254 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
18255 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
18256
18257 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18258 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18259 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18260 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18261 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18262 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18263 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18264 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18265 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18266 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18267 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18268 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18269
18270 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18271 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18272 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18273 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18274 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18275 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18276 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18277 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18278 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18279 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18280 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18281 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18282
18283 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18284 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18285 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18286 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18287 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18288 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18289 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18290 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18291 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18292 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18293 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18294 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18295
18296 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18297 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18298 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18299 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18300 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18301 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18302 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18303 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18304 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18305 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18306 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18307 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18308
18309 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18310 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18311 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18312 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18313 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18314 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18315 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18316 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18317 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18318 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18319 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18320 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18321
18322 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18323 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18324 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18325 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18326 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18327 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18328 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18329 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18330 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18331 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18332 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18333 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18334
18335 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18336 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18337 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18338 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18339 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18340 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18341 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18342 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18343 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18344 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18345 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18346 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18347
18348 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18349 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18350 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18351 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18352 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18353 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18354 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18355 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18356 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18357 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18358 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18359 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18360
18361 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18362 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18363 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18364 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18365 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18366 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18367 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18368 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18369 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18370 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18371 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18372 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18373
18374 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18375 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18376 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18377 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18378 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18379 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18380 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18381 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18382 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18383 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18384 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18385 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18386
18387 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18388 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18389 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18390 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18391 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18392 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18393 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18394 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18395 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18396 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18397 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18398 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18399
18400 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18401 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18402 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18403 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18404 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18405 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18406 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18407 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18408 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18409 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18410 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18411 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18412
18413 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18414 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18415 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18416 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18417 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18418 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18419 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18420 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18421 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18422 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18423 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18424 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18425
18426 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18427 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18428 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18429 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18430 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18431 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18432 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18433 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18434 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18435 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18436 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18437 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18438
18439 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18440 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18441 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18442 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18443 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18444 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18445 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18446 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18447 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18448 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18449 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18450 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18451
18452 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18453 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18454 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18455 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18456 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18457 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18458 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18459 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18460 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18461 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18462 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18463 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18464
18465 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18466 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18467 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18468 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18469 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18470 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18471 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18472 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18473 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18474 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18475 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18476 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18477
18478 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18479 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18480 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18481 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18482 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18483 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18484 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18485 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18486 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18487 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18488 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18489 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18490
18491 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18492 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18493 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18494 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18495 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18496 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18497 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18498 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18499 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18500 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18501 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18502 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18503
18504 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18505 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18506 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18507 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18508 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18509 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18510 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18511 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18512 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18513 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18514 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18515 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18516
18517 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18518 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18519 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18520 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18521 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18522 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18523 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18524 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18525 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18526 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18527 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18528 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18529
18530 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18531 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18532 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18533 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18534 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18535 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18536 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18537 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18538 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18539 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18540 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18541 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18542
18543 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18544 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18545 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18546 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18547 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18548 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18549 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18550 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18551 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18552 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18553 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18554 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18555
18556 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18557 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18558 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18559 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18560 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18561 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18562 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18563 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18564 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18565 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18566 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18567 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18568
18569 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18570 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18571 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18572 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18573 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18574 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18575 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18576 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18577 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18578 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18579 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18580 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18581
18582 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18583 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18584 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18585 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18586 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18587 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18588 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18589 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18590 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18591 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18592 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18593 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18594
18595 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18596 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18597 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18598 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18599 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18600 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18601 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18602 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18603 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18604 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18605 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18606 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18607
18608 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18609 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18610 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18611 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18612 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18613 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18614 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18615 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18616 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18617 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18618 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18619 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18620
18621 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18622 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18623 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18624 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18625
18626 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18627 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18628 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18629 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18630 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18631 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18632 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18633 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18634 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18635 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18636 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18637 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
18638
18639 /* The implementation of the FIX instruction is broken on some
18640 assemblers, in that it accepts a precision specifier as well as a
18641 rounding specifier, despite the fact that this is meaningless.
18642 To be more compatible, we accept it as well, though of course it
18643 does not set any bits. */
18644 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18645 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18646 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18647 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18648 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18649 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18650 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18651 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18652 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18653 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18654 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18655 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18656 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
18657
18658 /* Instructions that were new with the real FPA, call them V2. */
18659 #undef ARM_VARIANT
18660 #define ARM_VARIANT & fpu_fpa_ext_v2
18661
18662 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18663 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18664 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18665 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18666 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18667 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18668
18669 #undef ARM_VARIANT
18670 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18671
18672 /* Moves and type conversions. */
18673 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18674 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18675 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18676 cCE("fmstat", ef1fa10, 0, (), noargs),
18677 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
18678 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
18679 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18680 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18681 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18682 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18683 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18684 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18685 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18686 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
18687
18688 /* Memory operations. */
18689 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18690 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18691 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18692 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18693 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18694 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18695 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18696 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18697 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18698 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18699 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18700 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18701 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18702 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18703 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18704 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18705 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18706 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18707
18708 /* Monadic operations. */
18709 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18710 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18711 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
18712
18713 /* Dyadic operations. */
18714 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18715 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18716 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18717 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18718 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18719 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18720 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18721 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18722 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18723
18724 /* Comparisons. */
18725 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18726 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18727 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18728 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18729
18730 /* Double precision load/store are still present on single precision
18731 implementations. */
18732 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18733 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18734 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18735 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18736 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18737 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18738 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18739 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18740 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18741 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18742
18743 #undef ARM_VARIANT
18744 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18745
18746 /* Moves and type conversions. */
18747 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18748 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18749 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18750 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18751 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18752 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18753 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18754 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18755 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18756 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18757 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18758 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18759 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18760
18761 /* Monadic operations. */
18762 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18763 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18764 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18765
18766 /* Dyadic operations. */
18767 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18768 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18769 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18770 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18771 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18772 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18773 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18774 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18775 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18776
18777 /* Comparisons. */
18778 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18779 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18780 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18781 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18782
18783 #undef ARM_VARIANT
18784 #define ARM_VARIANT & fpu_vfp_ext_v2
18785
18786 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18787 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18788 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18789 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18790
18791 /* Instructions which may belong to either the Neon or VFP instruction sets.
18792 Individual encoder functions perform additional architecture checks. */
18793 #undef ARM_VARIANT
18794 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18795 #undef THUMB_VARIANT
18796 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18797
18798 /* These mnemonics are unique to VFP. */
18799 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18800 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18801 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18802 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18803 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18804 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18805 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18806 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18807 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18808 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18809
18810 /* Mnemonics shared by Neon and VFP. */
18811 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18812 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18813 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18814
18815 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18816 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18817
18818 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18819 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18820
18821 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18822 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18823 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18824 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18825 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18826 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18827 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18828 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18829
18830 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
18831 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18832 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18833 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18834
18835
18836 /* NOTE: All VMOV encoding is special-cased! */
18837 NCE(vmov, 0, 1, (VMOV), neon_mov),
18838 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18839
18840 #undef THUMB_VARIANT
18841 #define THUMB_VARIANT & fpu_neon_ext_v1
18842 #undef ARM_VARIANT
18843 #define ARM_VARIANT & fpu_neon_ext_v1
18844
18845 /* Data processing with three registers of the same length. */
18846 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18847 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18848 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18849 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18850 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18851 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18852 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18853 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18854 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18855 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18856 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18857 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18858 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18859 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18860 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18861 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18862 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18863 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18864 /* If not immediate, fall back to neon_dyadic_i64_su.
18865 shl_imm should accept I8 I16 I32 I64,
18866 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18867 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18868 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18869 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18870 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
18871 /* Logic ops, types optional & ignored. */
18872 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18873 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18874 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18875 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18876 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18877 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18878 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18879 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18880 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18881 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18882 /* Bitfield ops, untyped. */
18883 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18884 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18885 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18886 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18887 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18888 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18889 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18890 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18891 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18892 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18893 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18894 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18895 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18896 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18897 back to neon_dyadic_if_su. */
18898 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18899 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18900 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18901 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18902 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18903 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18904 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18905 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18906 /* Comparison. Type I8 I16 I32 F32. */
18907 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18908 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18909 /* As above, D registers only. */
18910 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18911 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18912 /* Int and float variants, signedness unimportant. */
18913 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18914 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18915 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18916 /* Add/sub take types I8 I16 I32 I64 F32. */
18917 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18918 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18919 /* vtst takes sizes 8, 16, 32. */
18920 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18921 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18922 /* VMUL takes I8 I16 I32 F32 P8. */
18923 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18924 /* VQD{R}MULH takes S16 S32. */
18925 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18926 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18927 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18928 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18929 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18930 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18931 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18932 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18933 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18934 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18935 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18936 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18937 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18938 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18939 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18940 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18941
18942 /* Two address, int/float. Types S8 S16 S32 F32. */
18943 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18944 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18945
18946 /* Data processing with two registers and a shift amount. */
18947 /* Right shifts, and variants with rounding.
18948 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18949 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18950 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18951 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18952 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18953 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18954 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18955 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18956 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18957 /* Shift and insert. Sizes accepted 8 16 32 64. */
18958 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18959 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18960 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18961 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18962 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18963 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18964 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18965 /* Right shift immediate, saturating & narrowing, with rounding variants.
18966 Types accepted S16 S32 S64 U16 U32 U64. */
18967 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18968 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18969 /* As above, unsigned. Types accepted S16 S32 S64. */
18970 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18971 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18972 /* Right shift narrowing. Types accepted I16 I32 I64. */
18973 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18974 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18975 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18976 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18977 /* CVT with optional immediate for fixed-point variant. */
18978 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18979
18980 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18981 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18982
18983 /* Data processing, three registers of different lengths. */
18984 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18985 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18986 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18987 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18988 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18989 /* If not scalar, fall back to neon_dyadic_long.
18990 Vector types as above, scalar types S16 S32 U16 U32. */
18991 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18992 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18993 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18994 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18995 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18996 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18997 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18998 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18999 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19000 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19001 /* Saturating doubling multiplies. Types S16 S32. */
19002 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19003 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19004 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19005 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
19006 S16 S32 U16 U32. */
19007 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
19008
19009 /* Extract. Size 8. */
19010 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
19011 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
19012
19013 /* Two registers, miscellaneous. */
19014 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
19015 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
19016 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
19017 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
19018 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
19019 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
19020 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
19021 /* Vector replicate. Sizes 8 16 32. */
19022 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
19023 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
19024 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
19025 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
19026 /* VMOVN. Types I16 I32 I64. */
19027 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
19028 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
19029 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
19030 /* VQMOVUN. Types S16 S32 S64. */
19031 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
19032 /* VZIP / VUZP. Sizes 8 16 32. */
19033 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
19034 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
19035 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
19036 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
19037 /* VQABS / VQNEG. Types S8 S16 S32. */
19038 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19039 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
19040 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19041 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
19042 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
19043 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
19044 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
19045 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
19046 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
19047 /* Reciprocal estimates. Types U32 F32. */
19048 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
19049 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
19050 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
19051 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
19052 /* VCLS. Types S8 S16 S32. */
19053 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
19054 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
19055 /* VCLZ. Types I8 I16 I32. */
19056 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
19057 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
19058 /* VCNT. Size 8. */
19059 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
19060 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
19061 /* Two address, untyped. */
19062 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
19063 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
19064 /* VTRN. Sizes 8 16 32. */
19065 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
19066 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
19067
19068 /* Table lookup. Size 8. */
19069 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19070 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19071
19072 #undef THUMB_VARIANT
19073 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
19074 #undef ARM_VARIANT
19075 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
19076
19077 /* Neon element/structure load/store. */
19078 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19079 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19080 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19081 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19082 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19083 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19084 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
19085 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
19086
19087 #undef THUMB_VARIANT
19088 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
19089 #undef ARM_VARIANT
19090 #define ARM_VARIANT &fpu_vfp_ext_v3xd
19091 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
19092 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19093 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19094 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19095 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19096 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19097 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19098 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19099 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19100
19101 #undef THUMB_VARIANT
19102 #define THUMB_VARIANT & fpu_vfp_ext_v3
19103 #undef ARM_VARIANT
19104 #define ARM_VARIANT & fpu_vfp_ext_v3
19105
19106 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
19107 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19108 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19109 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19110 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19111 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19112 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19113 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19114 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19115
19116 #undef ARM_VARIANT
19117 #define ARM_VARIANT &fpu_vfp_ext_fma
19118 #undef THUMB_VARIANT
19119 #define THUMB_VARIANT &fpu_vfp_ext_fma
19120 /* Mnemonics shared by Neon and VFP. These are included in the
19121 VFP FMA variant; NEON and VFP FMA always includes the NEON
19122 FMA instructions. */
19123 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19124 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19125 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
19126 the v form should always be used. */
19127 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19128 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19129 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19130 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19131 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19132 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19133
19134 #undef THUMB_VARIANT
19135 #undef ARM_VARIANT
19136 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
19137
19138 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19139 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19140 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19141 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19142 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19143 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19144 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
19145 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
19146
19147 #undef ARM_VARIANT
19148 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
19149
19150 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
19151 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
19152 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
19153 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
19154 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
19155 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
19156 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
19157 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
19158 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
19159 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19160 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19161 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19162 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19163 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19164 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19165 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19166 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19167 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19168 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
19169 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
19170 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19171 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19172 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19173 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19174 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19175 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19176 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
19177 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
19178 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
19179 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
19180 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
19181 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
19182 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
19183 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
19184 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
19185 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
19186 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
19187 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19188 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19189 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19190 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19191 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19192 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19193 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19194 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19195 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19196 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
19197 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19198 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19199 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19200 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19201 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19202 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19203 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19204 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19205 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19206 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19207 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19208 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19209 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19210 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19211 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19212 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19213 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19214 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19215 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19216 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19217 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19218 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19219 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19220 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19221 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19222 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19223 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19224 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19225 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19226 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19227 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19228 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19229 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19230 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19231 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19232 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19233 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19234 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19235 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19236 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19237 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19238 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
19239 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19240 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19241 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19242 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19243 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19244 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19245 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19246 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19247 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19248 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19249 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19250 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19251 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19252 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19253 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19254 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19255 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19256 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19257 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19258 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19259 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19260 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19261 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19262 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19263 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19264 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19265 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19266 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19267 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19268 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19269 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19270 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19271 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19272 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19273 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19274 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19275 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19276 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19277 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19278 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19279 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19280 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19281 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19282 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19283 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19284 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19285 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19286 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19287 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19288 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19289 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19290 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19291 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19292 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19293 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19294 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19295 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19296 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19297 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19298 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19299 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19300 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19301 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19302 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19303 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19304 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19305 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19306 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19307 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19308 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19309 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19310 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19311 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
19312
19313 #undef ARM_VARIANT
19314 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19315
19316 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19317 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19318 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19319 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19320 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19321 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19322 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19323 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19324 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19325 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19326 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19327 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19328 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19329 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19330 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19331 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19332 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19333 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19334 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19335 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19336 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19337 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19338 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19339 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19340 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19341 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19342 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19343 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19344 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19345 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19346 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19347 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19348 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19349 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19350 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19351 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19352 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19353 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19354 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19355 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19356 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19357 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19358 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19359 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19360 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19361 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19362 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19363 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19364 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19365 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19366 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19367 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19368 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19369 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19370 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19371 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19372 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19373
19374 #undef ARM_VARIANT
19375 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19376
19377 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19378 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19379 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19380 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19381 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19382 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19383 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19384 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19385 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19386 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19387 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19388 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19389 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19390 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19391 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19392 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19393 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19394 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19395 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19396 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19397 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19398 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19399 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19400 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19401 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19402 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19403 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19404 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19405 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19406 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19407 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19408 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19409 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19410 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19411 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19412 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19413 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19414 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19415 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19416 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19417 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19418 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19419 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19420 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19421 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19422 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19423 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19424 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19425 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19426 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19427 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19428 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19429 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19430 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19431 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19432 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19433 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19434 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19435 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19436 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19437 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19438 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19439 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19440 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19441 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19442 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19443 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19444 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19445 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19446 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19447 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19448 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19449 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19450 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19451 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19452 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19453 };
19454 #undef ARM_VARIANT
19455 #undef THUMB_VARIANT
19456 #undef TCE
19457 #undef TCM
19458 #undef TUE
19459 #undef TUF
19460 #undef TCC
19461 #undef cCE
19462 #undef cCL
19463 #undef C3E
19464 #undef CE
19465 #undef CM
19466 #undef UE
19467 #undef UF
19468 #undef UT
19469 #undef NUF
19470 #undef nUF
19471 #undef NCE
19472 #undef nCE
19473 #undef OPS0
19474 #undef OPS1
19475 #undef OPS2
19476 #undef OPS3
19477 #undef OPS4
19478 #undef OPS5
19479 #undef OPS6
19480 #undef do_0
19481 \f
19482 /* MD interface: bits in the object file. */
19483
19484 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19485 for use in the a.out file, and stores them in the array pointed to by buf.
19486 This knows about the endian-ness of the target machine and does
19487 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19488 2 (short) and 4 (long) Floating numbers are put out as a series of
19489 LITTLENUMS (shorts, here at least). */
19490
19491 void
19492 md_number_to_chars (char * buf, valueT val, int n)
19493 {
19494 if (target_big_endian)
19495 number_to_chars_bigendian (buf, val, n);
19496 else
19497 number_to_chars_littleendian (buf, val, n);
19498 }
19499
19500 static valueT
19501 md_chars_to_number (char * buf, int n)
19502 {
19503 valueT result = 0;
19504 unsigned char * where = (unsigned char *) buf;
19505
19506 if (target_big_endian)
19507 {
19508 while (n--)
19509 {
19510 result <<= 8;
19511 result |= (*where++ & 255);
19512 }
19513 }
19514 else
19515 {
19516 while (n--)
19517 {
19518 result <<= 8;
19519 result |= (where[n] & 255);
19520 }
19521 }
19522
19523 return result;
19524 }
19525
19526 /* MD interface: Sections. */
19527
19528 /* Calculate the maximum variable size (i.e., excluding fr_fix)
19529 that an rs_machine_dependent frag may reach. */
19530
19531 unsigned int
19532 arm_frag_max_var (fragS *fragp)
19533 {
19534 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19535 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19536
19537 Note that we generate relaxable instructions even for cases that don't
19538 really need it, like an immediate that's a trivial constant. So we're
19539 overestimating the instruction size for some of those cases. Rather
19540 than putting more intelligence here, it would probably be better to
19541 avoid generating a relaxation frag in the first place when it can be
19542 determined up front that a short instruction will suffice. */
19543
19544 gas_assert (fragp->fr_type == rs_machine_dependent);
19545 return INSN_SIZE;
19546 }
19547
19548 /* Estimate the size of a frag before relaxing. Assume everything fits in
19549 2 bytes. */
19550
19551 int
19552 md_estimate_size_before_relax (fragS * fragp,
19553 segT segtype ATTRIBUTE_UNUSED)
19554 {
19555 fragp->fr_var = 2;
19556 return 2;
19557 }
19558
19559 /* Convert a machine dependent frag. */
19560
19561 void
19562 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19563 {
19564 unsigned long insn;
19565 unsigned long old_op;
19566 char *buf;
19567 expressionS exp;
19568 fixS *fixp;
19569 int reloc_type;
19570 int pc_rel;
19571 int opcode;
19572
19573 buf = fragp->fr_literal + fragp->fr_fix;
19574
19575 old_op = bfd_get_16(abfd, buf);
19576 if (fragp->fr_symbol)
19577 {
19578 exp.X_op = O_symbol;
19579 exp.X_add_symbol = fragp->fr_symbol;
19580 }
19581 else
19582 {
19583 exp.X_op = O_constant;
19584 }
19585 exp.X_add_number = fragp->fr_offset;
19586 opcode = fragp->fr_subtype;
19587 switch (opcode)
19588 {
19589 case T_MNEM_ldr_pc:
19590 case T_MNEM_ldr_pc2:
19591 case T_MNEM_ldr_sp:
19592 case T_MNEM_str_sp:
19593 case T_MNEM_ldr:
19594 case T_MNEM_ldrb:
19595 case T_MNEM_ldrh:
19596 case T_MNEM_str:
19597 case T_MNEM_strb:
19598 case T_MNEM_strh:
19599 if (fragp->fr_var == 4)
19600 {
19601 insn = THUMB_OP32 (opcode);
19602 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19603 {
19604 insn |= (old_op & 0x700) << 4;
19605 }
19606 else
19607 {
19608 insn |= (old_op & 7) << 12;
19609 insn |= (old_op & 0x38) << 13;
19610 }
19611 insn |= 0x00000c00;
19612 put_thumb32_insn (buf, insn);
19613 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19614 }
19615 else
19616 {
19617 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19618 }
19619 pc_rel = (opcode == T_MNEM_ldr_pc2);
19620 break;
19621 case T_MNEM_adr:
19622 if (fragp->fr_var == 4)
19623 {
19624 insn = THUMB_OP32 (opcode);
19625 insn |= (old_op & 0xf0) << 4;
19626 put_thumb32_insn (buf, insn);
19627 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19628 }
19629 else
19630 {
19631 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19632 exp.X_add_number -= 4;
19633 }
19634 pc_rel = 1;
19635 break;
19636 case T_MNEM_mov:
19637 case T_MNEM_movs:
19638 case T_MNEM_cmp:
19639 case T_MNEM_cmn:
19640 if (fragp->fr_var == 4)
19641 {
19642 int r0off = (opcode == T_MNEM_mov
19643 || opcode == T_MNEM_movs) ? 0 : 8;
19644 insn = THUMB_OP32 (opcode);
19645 insn = (insn & 0xe1ffffff) | 0x10000000;
19646 insn |= (old_op & 0x700) << r0off;
19647 put_thumb32_insn (buf, insn);
19648 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19649 }
19650 else
19651 {
19652 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19653 }
19654 pc_rel = 0;
19655 break;
19656 case T_MNEM_b:
19657 if (fragp->fr_var == 4)
19658 {
19659 insn = THUMB_OP32(opcode);
19660 put_thumb32_insn (buf, insn);
19661 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19662 }
19663 else
19664 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19665 pc_rel = 1;
19666 break;
19667 case T_MNEM_bcond:
19668 if (fragp->fr_var == 4)
19669 {
19670 insn = THUMB_OP32(opcode);
19671 insn |= (old_op & 0xf00) << 14;
19672 put_thumb32_insn (buf, insn);
19673 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19674 }
19675 else
19676 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19677 pc_rel = 1;
19678 break;
19679 case T_MNEM_add_sp:
19680 case T_MNEM_add_pc:
19681 case T_MNEM_inc_sp:
19682 case T_MNEM_dec_sp:
19683 if (fragp->fr_var == 4)
19684 {
19685 /* ??? Choose between add and addw. */
19686 insn = THUMB_OP32 (opcode);
19687 insn |= (old_op & 0xf0) << 4;
19688 put_thumb32_insn (buf, insn);
19689 if (opcode == T_MNEM_add_pc)
19690 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19691 else
19692 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19693 }
19694 else
19695 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19696 pc_rel = 0;
19697 break;
19698
19699 case T_MNEM_addi:
19700 case T_MNEM_addis:
19701 case T_MNEM_subi:
19702 case T_MNEM_subis:
19703 if (fragp->fr_var == 4)
19704 {
19705 insn = THUMB_OP32 (opcode);
19706 insn |= (old_op & 0xf0) << 4;
19707 insn |= (old_op & 0xf) << 16;
19708 put_thumb32_insn (buf, insn);
19709 if (insn & (1 << 20))
19710 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19711 else
19712 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19713 }
19714 else
19715 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19716 pc_rel = 0;
19717 break;
19718 default:
19719 abort ();
19720 }
19721 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
19722 (enum bfd_reloc_code_real) reloc_type);
19723 fixp->fx_file = fragp->fr_file;
19724 fixp->fx_line = fragp->fr_line;
19725 fragp->fr_fix += fragp->fr_var;
19726 }
19727
19728 /* Return the size of a relaxable immediate operand instruction.
19729 SHIFT and SIZE specify the form of the allowable immediate. */
19730 static int
19731 relax_immediate (fragS *fragp, int size, int shift)
19732 {
19733 offsetT offset;
19734 offsetT mask;
19735 offsetT low;
19736
19737 /* ??? Should be able to do better than this. */
19738 if (fragp->fr_symbol)
19739 return 4;
19740
19741 low = (1 << shift) - 1;
19742 mask = (1 << (shift + size)) - (1 << shift);
19743 offset = fragp->fr_offset;
19744 /* Force misaligned offsets to 32-bit variant. */
19745 if (offset & low)
19746 return 4;
19747 if (offset & ~mask)
19748 return 4;
19749 return 2;
19750 }
19751
19752 /* Get the address of a symbol during relaxation. */
19753 static addressT
19754 relaxed_symbol_addr (fragS *fragp, long stretch)
19755 {
19756 fragS *sym_frag;
19757 addressT addr;
19758 symbolS *sym;
19759
19760 sym = fragp->fr_symbol;
19761 sym_frag = symbol_get_frag (sym);
19762 know (S_GET_SEGMENT (sym) != absolute_section
19763 || sym_frag == &zero_address_frag);
19764 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19765
19766 /* If frag has yet to be reached on this pass, assume it will
19767 move by STRETCH just as we did. If this is not so, it will
19768 be because some frag between grows, and that will force
19769 another pass. */
19770
19771 if (stretch != 0
19772 && sym_frag->relax_marker != fragp->relax_marker)
19773 {
19774 fragS *f;
19775
19776 /* Adjust stretch for any alignment frag. Note that if have
19777 been expanding the earlier code, the symbol may be
19778 defined in what appears to be an earlier frag. FIXME:
19779 This doesn't handle the fr_subtype field, which specifies
19780 a maximum number of bytes to skip when doing an
19781 alignment. */
19782 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19783 {
19784 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19785 {
19786 if (stretch < 0)
19787 stretch = - ((- stretch)
19788 & ~ ((1 << (int) f->fr_offset) - 1));
19789 else
19790 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19791 if (stretch == 0)
19792 break;
19793 }
19794 }
19795 if (f != NULL)
19796 addr += stretch;
19797 }
19798
19799 return addr;
19800 }
19801
19802 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19803 load. */
19804 static int
19805 relax_adr (fragS *fragp, asection *sec, long stretch)
19806 {
19807 addressT addr;
19808 offsetT val;
19809
19810 /* Assume worst case for symbols not known to be in the same section. */
19811 if (fragp->fr_symbol == NULL
19812 || !S_IS_DEFINED (fragp->fr_symbol)
19813 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19814 || S_IS_WEAK (fragp->fr_symbol))
19815 return 4;
19816
19817 val = relaxed_symbol_addr (fragp, stretch);
19818 addr = fragp->fr_address + fragp->fr_fix;
19819 addr = (addr + 4) & ~3;
19820 /* Force misaligned targets to 32-bit variant. */
19821 if (val & 3)
19822 return 4;
19823 val -= addr;
19824 if (val < 0 || val > 1020)
19825 return 4;
19826 return 2;
19827 }
19828
19829 /* Return the size of a relaxable add/sub immediate instruction. */
19830 static int
19831 relax_addsub (fragS *fragp, asection *sec)
19832 {
19833 char *buf;
19834 int op;
19835
19836 buf = fragp->fr_literal + fragp->fr_fix;
19837 op = bfd_get_16(sec->owner, buf);
19838 if ((op & 0xf) == ((op >> 4) & 0xf))
19839 return relax_immediate (fragp, 8, 0);
19840 else
19841 return relax_immediate (fragp, 3, 0);
19842 }
19843
19844
19845 /* Return the size of a relaxable branch instruction. BITS is the
19846 size of the offset field in the narrow instruction. */
19847
19848 static int
19849 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19850 {
19851 addressT addr;
19852 offsetT val;
19853 offsetT limit;
19854
19855 /* Assume worst case for symbols not known to be in the same section. */
19856 if (!S_IS_DEFINED (fragp->fr_symbol)
19857 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19858 || S_IS_WEAK (fragp->fr_symbol))
19859 return 4;
19860
19861 #ifdef OBJ_ELF
19862 if (S_IS_DEFINED (fragp->fr_symbol)
19863 && ARM_IS_FUNC (fragp->fr_symbol))
19864 return 4;
19865
19866 /* PR 12532. Global symbols with default visibility might
19867 be preempted, so do not relax relocations to them. */
19868 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19869 && (! S_IS_LOCAL (fragp->fr_symbol)))
19870 return 4;
19871 #endif
19872
19873 val = relaxed_symbol_addr (fragp, stretch);
19874 addr = fragp->fr_address + fragp->fr_fix + 4;
19875 val -= addr;
19876
19877 /* Offset is a signed value *2 */
19878 limit = 1 << bits;
19879 if (val >= limit || val < -limit)
19880 return 4;
19881 return 2;
19882 }
19883
19884
19885 /* Relax a machine dependent frag. This returns the amount by which
19886 the current size of the frag should change. */
19887
19888 int
19889 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
19890 {
19891 int oldsize;
19892 int newsize;
19893
19894 oldsize = fragp->fr_var;
19895 switch (fragp->fr_subtype)
19896 {
19897 case T_MNEM_ldr_pc2:
19898 newsize = relax_adr (fragp, sec, stretch);
19899 break;
19900 case T_MNEM_ldr_pc:
19901 case T_MNEM_ldr_sp:
19902 case T_MNEM_str_sp:
19903 newsize = relax_immediate (fragp, 8, 2);
19904 break;
19905 case T_MNEM_ldr:
19906 case T_MNEM_str:
19907 newsize = relax_immediate (fragp, 5, 2);
19908 break;
19909 case T_MNEM_ldrh:
19910 case T_MNEM_strh:
19911 newsize = relax_immediate (fragp, 5, 1);
19912 break;
19913 case T_MNEM_ldrb:
19914 case T_MNEM_strb:
19915 newsize = relax_immediate (fragp, 5, 0);
19916 break;
19917 case T_MNEM_adr:
19918 newsize = relax_adr (fragp, sec, stretch);
19919 break;
19920 case T_MNEM_mov:
19921 case T_MNEM_movs:
19922 case T_MNEM_cmp:
19923 case T_MNEM_cmn:
19924 newsize = relax_immediate (fragp, 8, 0);
19925 break;
19926 case T_MNEM_b:
19927 newsize = relax_branch (fragp, sec, 11, stretch);
19928 break;
19929 case T_MNEM_bcond:
19930 newsize = relax_branch (fragp, sec, 8, stretch);
19931 break;
19932 case T_MNEM_add_sp:
19933 case T_MNEM_add_pc:
19934 newsize = relax_immediate (fragp, 8, 2);
19935 break;
19936 case T_MNEM_inc_sp:
19937 case T_MNEM_dec_sp:
19938 newsize = relax_immediate (fragp, 7, 2);
19939 break;
19940 case T_MNEM_addi:
19941 case T_MNEM_addis:
19942 case T_MNEM_subi:
19943 case T_MNEM_subis:
19944 newsize = relax_addsub (fragp, sec);
19945 break;
19946 default:
19947 abort ();
19948 }
19949
19950 fragp->fr_var = newsize;
19951 /* Freeze wide instructions that are at or before the same location as
19952 in the previous pass. This avoids infinite loops.
19953 Don't freeze them unconditionally because targets may be artificially
19954 misaligned by the expansion of preceding frags. */
19955 if (stretch <= 0 && newsize > 2)
19956 {
19957 md_convert_frag (sec->owner, sec, fragp);
19958 frag_wane (fragp);
19959 }
19960
19961 return newsize - oldsize;
19962 }
19963
19964 /* Round up a section size to the appropriate boundary. */
19965
19966 valueT
19967 md_section_align (segT segment ATTRIBUTE_UNUSED,
19968 valueT size)
19969 {
19970 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19971 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19972 {
19973 /* For a.out, force the section size to be aligned. If we don't do
19974 this, BFD will align it for us, but it will not write out the
19975 final bytes of the section. This may be a bug in BFD, but it is
19976 easier to fix it here since that is how the other a.out targets
19977 work. */
19978 int align;
19979
19980 align = bfd_get_section_alignment (stdoutput, segment);
19981 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19982 }
19983 #endif
19984
19985 return size;
19986 }
19987
19988 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19989 of an rs_align_code fragment. */
19990
19991 void
19992 arm_handle_align (fragS * fragP)
19993 {
19994 static char const arm_noop[2][2][4] =
19995 {
19996 { /* ARMv1 */
19997 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19998 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19999 },
20000 { /* ARMv6k */
20001 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
20002 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
20003 },
20004 };
20005 static char const thumb_noop[2][2][2] =
20006 {
20007 { /* Thumb-1 */
20008 {0xc0, 0x46}, /* LE */
20009 {0x46, 0xc0}, /* BE */
20010 },
20011 { /* Thumb-2 */
20012 {0x00, 0xbf}, /* LE */
20013 {0xbf, 0x00} /* BE */
20014 }
20015 };
20016 static char const wide_thumb_noop[2][4] =
20017 { /* Wide Thumb-2 */
20018 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
20019 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
20020 };
20021
20022 unsigned bytes, fix, noop_size;
20023 char * p;
20024 const char * noop;
20025 const char *narrow_noop = NULL;
20026 #ifdef OBJ_ELF
20027 enum mstate state;
20028 #endif
20029
20030 if (fragP->fr_type != rs_align_code)
20031 return;
20032
20033 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
20034 p = fragP->fr_literal + fragP->fr_fix;
20035 fix = 0;
20036
20037 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
20038 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
20039
20040 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
20041
20042 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
20043 {
20044 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
20045 {
20046 narrow_noop = thumb_noop[1][target_big_endian];
20047 noop = wide_thumb_noop[target_big_endian];
20048 }
20049 else
20050 noop = thumb_noop[0][target_big_endian];
20051 noop_size = 2;
20052 #ifdef OBJ_ELF
20053 state = MAP_THUMB;
20054 #endif
20055 }
20056 else
20057 {
20058 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
20059 [target_big_endian];
20060 noop_size = 4;
20061 #ifdef OBJ_ELF
20062 state = MAP_ARM;
20063 #endif
20064 }
20065
20066 fragP->fr_var = noop_size;
20067
20068 if (bytes & (noop_size - 1))
20069 {
20070 fix = bytes & (noop_size - 1);
20071 #ifdef OBJ_ELF
20072 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
20073 #endif
20074 memset (p, 0, fix);
20075 p += fix;
20076 bytes -= fix;
20077 }
20078
20079 if (narrow_noop)
20080 {
20081 if (bytes & noop_size)
20082 {
20083 /* Insert a narrow noop. */
20084 memcpy (p, narrow_noop, noop_size);
20085 p += noop_size;
20086 bytes -= noop_size;
20087 fix += noop_size;
20088 }
20089
20090 /* Use wide noops for the remainder */
20091 noop_size = 4;
20092 }
20093
20094 while (bytes >= noop_size)
20095 {
20096 memcpy (p, noop, noop_size);
20097 p += noop_size;
20098 bytes -= noop_size;
20099 fix += noop_size;
20100 }
20101
20102 fragP->fr_fix += fix;
20103 }
20104
20105 /* Called from md_do_align. Used to create an alignment
20106 frag in a code section. */
20107
20108 void
20109 arm_frag_align_code (int n, int max)
20110 {
20111 char * p;
20112
20113 /* We assume that there will never be a requirement
20114 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
20115 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
20116 {
20117 char err_msg[128];
20118
20119 sprintf (err_msg,
20120 _("alignments greater than %d bytes not supported in .text sections."),
20121 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20122 as_fatal ("%s", err_msg);
20123 }
20124
20125 p = frag_var (rs_align_code,
20126 MAX_MEM_FOR_RS_ALIGN_CODE,
20127 1,
20128 (relax_substateT) max,
20129 (symbolS *) NULL,
20130 (offsetT) n,
20131 (char *) NULL);
20132 *p = 0;
20133 }
20134
20135 /* Perform target specific initialisation of a frag.
20136 Note - despite the name this initialisation is not done when the frag
20137 is created, but only when its type is assigned. A frag can be created
20138 and used a long time before its type is set, so beware of assuming that
20139 this initialisationis performed first. */
20140
20141 #ifndef OBJ_ELF
20142 void
20143 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
20144 {
20145 /* Record whether this frag is in an ARM or a THUMB area. */
20146 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20147 }
20148
20149 #else /* OBJ_ELF is defined. */
20150 void
20151 arm_init_frag (fragS * fragP, int max_chars)
20152 {
20153 /* If the current ARM vs THUMB mode has not already
20154 been recorded into this frag then do so now. */
20155 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
20156 {
20157 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20158
20159 /* Record a mapping symbol for alignment frags. We will delete this
20160 later if the alignment ends up empty. */
20161 switch (fragP->fr_type)
20162 {
20163 case rs_align:
20164 case rs_align_test:
20165 case rs_fill:
20166 mapping_state_2 (MAP_DATA, max_chars);
20167 break;
20168 case rs_align_code:
20169 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
20170 break;
20171 default:
20172 break;
20173 }
20174 }
20175 }
20176
20177 /* When we change sections we need to issue a new mapping symbol. */
20178
20179 void
20180 arm_elf_change_section (void)
20181 {
20182 /* Link an unlinked unwind index table section to the .text section. */
20183 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
20184 && elf_linked_to_section (now_seg) == NULL)
20185 elf_linked_to_section (now_seg) = text_section;
20186 }
20187
20188 int
20189 arm_elf_section_type (const char * str, size_t len)
20190 {
20191 if (len == 5 && strncmp (str, "exidx", 5) == 0)
20192 return SHT_ARM_EXIDX;
20193
20194 return -1;
20195 }
20196 \f
20197 /* Code to deal with unwinding tables. */
20198
20199 static void add_unwind_adjustsp (offsetT);
20200
20201 /* Generate any deferred unwind frame offset. */
20202
20203 static void
20204 flush_pending_unwind (void)
20205 {
20206 offsetT offset;
20207
20208 offset = unwind.pending_offset;
20209 unwind.pending_offset = 0;
20210 if (offset != 0)
20211 add_unwind_adjustsp (offset);
20212 }
20213
20214 /* Add an opcode to this list for this function. Two-byte opcodes should
20215 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
20216 order. */
20217
20218 static void
20219 add_unwind_opcode (valueT op, int length)
20220 {
20221 /* Add any deferred stack adjustment. */
20222 if (unwind.pending_offset)
20223 flush_pending_unwind ();
20224
20225 unwind.sp_restored = 0;
20226
20227 if (unwind.opcode_count + length > unwind.opcode_alloc)
20228 {
20229 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
20230 if (unwind.opcodes)
20231 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
20232 unwind.opcode_alloc);
20233 else
20234 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
20235 }
20236 while (length > 0)
20237 {
20238 length--;
20239 unwind.opcodes[unwind.opcode_count] = op & 0xff;
20240 op >>= 8;
20241 unwind.opcode_count++;
20242 }
20243 }
20244
20245 /* Add unwind opcodes to adjust the stack pointer. */
20246
20247 static void
20248 add_unwind_adjustsp (offsetT offset)
20249 {
20250 valueT op;
20251
20252 if (offset > 0x200)
20253 {
20254 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20255 char bytes[5];
20256 int n;
20257 valueT o;
20258
20259 /* Long form: 0xb2, uleb128. */
20260 /* This might not fit in a word so add the individual bytes,
20261 remembering the list is built in reverse order. */
20262 o = (valueT) ((offset - 0x204) >> 2);
20263 if (o == 0)
20264 add_unwind_opcode (0, 1);
20265
20266 /* Calculate the uleb128 encoding of the offset. */
20267 n = 0;
20268 while (o)
20269 {
20270 bytes[n] = o & 0x7f;
20271 o >>= 7;
20272 if (o)
20273 bytes[n] |= 0x80;
20274 n++;
20275 }
20276 /* Add the insn. */
20277 for (; n; n--)
20278 add_unwind_opcode (bytes[n - 1], 1);
20279 add_unwind_opcode (0xb2, 1);
20280 }
20281 else if (offset > 0x100)
20282 {
20283 /* Two short opcodes. */
20284 add_unwind_opcode (0x3f, 1);
20285 op = (offset - 0x104) >> 2;
20286 add_unwind_opcode (op, 1);
20287 }
20288 else if (offset > 0)
20289 {
20290 /* Short opcode. */
20291 op = (offset - 4) >> 2;
20292 add_unwind_opcode (op, 1);
20293 }
20294 else if (offset < 0)
20295 {
20296 offset = -offset;
20297 while (offset > 0x100)
20298 {
20299 add_unwind_opcode (0x7f, 1);
20300 offset -= 0x100;
20301 }
20302 op = ((offset - 4) >> 2) | 0x40;
20303 add_unwind_opcode (op, 1);
20304 }
20305 }
20306
20307 /* Finish the list of unwind opcodes for this function. */
20308 static void
20309 finish_unwind_opcodes (void)
20310 {
20311 valueT op;
20312
20313 if (unwind.fp_used)
20314 {
20315 /* Adjust sp as necessary. */
20316 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20317 flush_pending_unwind ();
20318
20319 /* After restoring sp from the frame pointer. */
20320 op = 0x90 | unwind.fp_reg;
20321 add_unwind_opcode (op, 1);
20322 }
20323 else
20324 flush_pending_unwind ();
20325 }
20326
20327
20328 /* Start an exception table entry. If idx is nonzero this is an index table
20329 entry. */
20330
20331 static void
20332 start_unwind_section (const segT text_seg, int idx)
20333 {
20334 const char * text_name;
20335 const char * prefix;
20336 const char * prefix_once;
20337 const char * group_name;
20338 size_t prefix_len;
20339 size_t text_len;
20340 char * sec_name;
20341 size_t sec_name_len;
20342 int type;
20343 int flags;
20344 int linkonce;
20345
20346 if (idx)
20347 {
20348 prefix = ELF_STRING_ARM_unwind;
20349 prefix_once = ELF_STRING_ARM_unwind_once;
20350 type = SHT_ARM_EXIDX;
20351 }
20352 else
20353 {
20354 prefix = ELF_STRING_ARM_unwind_info;
20355 prefix_once = ELF_STRING_ARM_unwind_info_once;
20356 type = SHT_PROGBITS;
20357 }
20358
20359 text_name = segment_name (text_seg);
20360 if (streq (text_name, ".text"))
20361 text_name = "";
20362
20363 if (strncmp (text_name, ".gnu.linkonce.t.",
20364 strlen (".gnu.linkonce.t.")) == 0)
20365 {
20366 prefix = prefix_once;
20367 text_name += strlen (".gnu.linkonce.t.");
20368 }
20369
20370 prefix_len = strlen (prefix);
20371 text_len = strlen (text_name);
20372 sec_name_len = prefix_len + text_len;
20373 sec_name = (char *) xmalloc (sec_name_len + 1);
20374 memcpy (sec_name, prefix, prefix_len);
20375 memcpy (sec_name + prefix_len, text_name, text_len);
20376 sec_name[prefix_len + text_len] = '\0';
20377
20378 flags = SHF_ALLOC;
20379 linkonce = 0;
20380 group_name = 0;
20381
20382 /* Handle COMDAT group. */
20383 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
20384 {
20385 group_name = elf_group_name (text_seg);
20386 if (group_name == NULL)
20387 {
20388 as_bad (_("Group section `%s' has no group signature"),
20389 segment_name (text_seg));
20390 ignore_rest_of_line ();
20391 return;
20392 }
20393 flags |= SHF_GROUP;
20394 linkonce = 1;
20395 }
20396
20397 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
20398
20399 /* Set the section link for index tables. */
20400 if (idx)
20401 elf_linked_to_section (now_seg) = text_seg;
20402 }
20403
20404
20405 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20406 personality routine data. Returns zero, or the index table value for
20407 and inline entry. */
20408
20409 static valueT
20410 create_unwind_entry (int have_data)
20411 {
20412 int size;
20413 addressT where;
20414 char *ptr;
20415 /* The current word of data. */
20416 valueT data;
20417 /* The number of bytes left in this word. */
20418 int n;
20419
20420 finish_unwind_opcodes ();
20421
20422 /* Remember the current text section. */
20423 unwind.saved_seg = now_seg;
20424 unwind.saved_subseg = now_subseg;
20425
20426 start_unwind_section (now_seg, 0);
20427
20428 if (unwind.personality_routine == NULL)
20429 {
20430 if (unwind.personality_index == -2)
20431 {
20432 if (have_data)
20433 as_bad (_("handlerdata in cantunwind frame"));
20434 return 1; /* EXIDX_CANTUNWIND. */
20435 }
20436
20437 /* Use a default personality routine if none is specified. */
20438 if (unwind.personality_index == -1)
20439 {
20440 if (unwind.opcode_count > 3)
20441 unwind.personality_index = 1;
20442 else
20443 unwind.personality_index = 0;
20444 }
20445
20446 /* Space for the personality routine entry. */
20447 if (unwind.personality_index == 0)
20448 {
20449 if (unwind.opcode_count > 3)
20450 as_bad (_("too many unwind opcodes for personality routine 0"));
20451
20452 if (!have_data)
20453 {
20454 /* All the data is inline in the index table. */
20455 data = 0x80;
20456 n = 3;
20457 while (unwind.opcode_count > 0)
20458 {
20459 unwind.opcode_count--;
20460 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20461 n--;
20462 }
20463
20464 /* Pad with "finish" opcodes. */
20465 while (n--)
20466 data = (data << 8) | 0xb0;
20467
20468 return data;
20469 }
20470 size = 0;
20471 }
20472 else
20473 /* We get two opcodes "free" in the first word. */
20474 size = unwind.opcode_count - 2;
20475 }
20476 else
20477 {
20478 gas_assert (unwind.personality_index == -1);
20479
20480 /* An extra byte is required for the opcode count. */
20481 size = unwind.opcode_count + 1;
20482 }
20483
20484 size = (size + 3) >> 2;
20485 if (size > 0xff)
20486 as_bad (_("too many unwind opcodes"));
20487
20488 frag_align (2, 0, 0);
20489 record_alignment (now_seg, 2);
20490 unwind.table_entry = expr_build_dot ();
20491
20492 /* Allocate the table entry. */
20493 ptr = frag_more ((size << 2) + 4);
20494 /* PR 13449: Zero the table entries in case some of them are not used. */
20495 memset (ptr, 0, (size << 2) + 4);
20496 where = frag_now_fix () - ((size << 2) + 4);
20497
20498 switch (unwind.personality_index)
20499 {
20500 case -1:
20501 /* ??? Should this be a PLT generating relocation? */
20502 /* Custom personality routine. */
20503 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20504 BFD_RELOC_ARM_PREL31);
20505
20506 where += 4;
20507 ptr += 4;
20508
20509 /* Set the first byte to the number of additional words. */
20510 data = size > 0 ? size - 1 : 0;
20511 n = 3;
20512 break;
20513
20514 /* ABI defined personality routines. */
20515 case 0:
20516 /* Three opcodes bytes are packed into the first word. */
20517 data = 0x80;
20518 n = 3;
20519 break;
20520
20521 case 1:
20522 case 2:
20523 /* The size and first two opcode bytes go in the first word. */
20524 data = ((0x80 + unwind.personality_index) << 8) | size;
20525 n = 2;
20526 break;
20527
20528 default:
20529 /* Should never happen. */
20530 abort ();
20531 }
20532
20533 /* Pack the opcodes into words (MSB first), reversing the list at the same
20534 time. */
20535 while (unwind.opcode_count > 0)
20536 {
20537 if (n == 0)
20538 {
20539 md_number_to_chars (ptr, data, 4);
20540 ptr += 4;
20541 n = 4;
20542 data = 0;
20543 }
20544 unwind.opcode_count--;
20545 n--;
20546 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20547 }
20548
20549 /* Finish off the last word. */
20550 if (n < 4)
20551 {
20552 /* Pad with "finish" opcodes. */
20553 while (n--)
20554 data = (data << 8) | 0xb0;
20555
20556 md_number_to_chars (ptr, data, 4);
20557 }
20558
20559 if (!have_data)
20560 {
20561 /* Add an empty descriptor if there is no user-specified data. */
20562 ptr = frag_more (4);
20563 md_number_to_chars (ptr, 0, 4);
20564 }
20565
20566 return 0;
20567 }
20568
20569
20570 /* Initialize the DWARF-2 unwind information for this procedure. */
20571
20572 void
20573 tc_arm_frame_initial_instructions (void)
20574 {
20575 cfi_add_CFA_def_cfa (REG_SP, 0);
20576 }
20577 #endif /* OBJ_ELF */
20578
20579 /* Convert REGNAME to a DWARF-2 register number. */
20580
20581 int
20582 tc_arm_regname_to_dw2regnum (char *regname)
20583 {
20584 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
20585
20586 if (reg == FAIL)
20587 return -1;
20588
20589 return reg;
20590 }
20591
20592 #ifdef TE_PE
20593 void
20594 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
20595 {
20596 expressionS exp;
20597
20598 exp.X_op = O_secrel;
20599 exp.X_add_symbol = symbol;
20600 exp.X_add_number = 0;
20601 emit_expr (&exp, size);
20602 }
20603 #endif
20604
20605 /* MD interface: Symbol and relocation handling. */
20606
20607 /* Return the address within the segment that a PC-relative fixup is
20608 relative to. For ARM, PC-relative fixups applied to instructions
20609 are generally relative to the location of the fixup plus 8 bytes.
20610 Thumb branches are offset by 4, and Thumb loads relative to PC
20611 require special handling. */
20612
20613 long
20614 md_pcrel_from_section (fixS * fixP, segT seg)
20615 {
20616 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20617
20618 /* If this is pc-relative and we are going to emit a relocation
20619 then we just want to put out any pipeline compensation that the linker
20620 will need. Otherwise we want to use the calculated base.
20621 For WinCE we skip the bias for externals as well, since this
20622 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20623 if (fixP->fx_pcrel
20624 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
20625 || (arm_force_relocation (fixP)
20626 #ifdef TE_WINCE
20627 && !S_IS_EXTERNAL (fixP->fx_addsy)
20628 #endif
20629 )))
20630 base = 0;
20631
20632
20633 switch (fixP->fx_r_type)
20634 {
20635 /* PC relative addressing on the Thumb is slightly odd as the
20636 bottom two bits of the PC are forced to zero for the
20637 calculation. This happens *after* application of the
20638 pipeline offset. However, Thumb adrl already adjusts for
20639 this, so we need not do it again. */
20640 case BFD_RELOC_ARM_THUMB_ADD:
20641 return base & ~3;
20642
20643 case BFD_RELOC_ARM_THUMB_OFFSET:
20644 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20645 case BFD_RELOC_ARM_T32_ADD_PC12:
20646 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20647 return (base + 4) & ~3;
20648
20649 /* Thumb branches are simply offset by +4. */
20650 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20651 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20652 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20653 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20654 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20655 return base + 4;
20656
20657 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20658 if (fixP->fx_addsy
20659 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20660 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20661 && ARM_IS_FUNC (fixP->fx_addsy)
20662 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20663 base = fixP->fx_where + fixP->fx_frag->fr_address;
20664 return base + 4;
20665
20666 /* BLX is like branches above, but forces the low two bits of PC to
20667 zero. */
20668 case BFD_RELOC_THUMB_PCREL_BLX:
20669 if (fixP->fx_addsy
20670 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20671 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20672 && THUMB_IS_FUNC (fixP->fx_addsy)
20673 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20674 base = fixP->fx_where + fixP->fx_frag->fr_address;
20675 return (base + 4) & ~3;
20676
20677 /* ARM mode branches are offset by +8. However, the Windows CE
20678 loader expects the relocation not to take this into account. */
20679 case BFD_RELOC_ARM_PCREL_BLX:
20680 if (fixP->fx_addsy
20681 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20682 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20683 && ARM_IS_FUNC (fixP->fx_addsy)
20684 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20685 base = fixP->fx_where + fixP->fx_frag->fr_address;
20686 return base + 8;
20687
20688 case BFD_RELOC_ARM_PCREL_CALL:
20689 if (fixP->fx_addsy
20690 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20691 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20692 && THUMB_IS_FUNC (fixP->fx_addsy)
20693 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20694 base = fixP->fx_where + fixP->fx_frag->fr_address;
20695 return base + 8;
20696
20697 case BFD_RELOC_ARM_PCREL_BRANCH:
20698 case BFD_RELOC_ARM_PCREL_JUMP:
20699 case BFD_RELOC_ARM_PLT32:
20700 #ifdef TE_WINCE
20701 /* When handling fixups immediately, because we have already
20702 discovered the value of a symbol, or the address of the frag involved
20703 we must account for the offset by +8, as the OS loader will never see the reloc.
20704 see fixup_segment() in write.c
20705 The S_IS_EXTERNAL test handles the case of global symbols.
20706 Those need the calculated base, not just the pipe compensation the linker will need. */
20707 if (fixP->fx_pcrel
20708 && fixP->fx_addsy != NULL
20709 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20710 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20711 return base + 8;
20712 return base;
20713 #else
20714 return base + 8;
20715 #endif
20716
20717
20718 /* ARM mode loads relative to PC are also offset by +8. Unlike
20719 branches, the Windows CE loader *does* expect the relocation
20720 to take this into account. */
20721 case BFD_RELOC_ARM_OFFSET_IMM:
20722 case BFD_RELOC_ARM_OFFSET_IMM8:
20723 case BFD_RELOC_ARM_HWLITERAL:
20724 case BFD_RELOC_ARM_LITERAL:
20725 case BFD_RELOC_ARM_CP_OFF_IMM:
20726 return base + 8;
20727
20728
20729 /* Other PC-relative relocations are un-offset. */
20730 default:
20731 return base;
20732 }
20733 }
20734
20735 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20736 Otherwise we have no need to default values of symbols. */
20737
20738 symbolS *
20739 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
20740 {
20741 #ifdef OBJ_ELF
20742 if (name[0] == '_' && name[1] == 'G'
20743 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20744 {
20745 if (!GOT_symbol)
20746 {
20747 if (symbol_find (name))
20748 as_bad (_("GOT already in the symbol table"));
20749
20750 GOT_symbol = symbol_new (name, undefined_section,
20751 (valueT) 0, & zero_address_frag);
20752 }
20753
20754 return GOT_symbol;
20755 }
20756 #endif
20757
20758 return NULL;
20759 }
20760
20761 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20762 computed as two separate immediate values, added together. We
20763 already know that this value cannot be computed by just one ARM
20764 instruction. */
20765
20766 static unsigned int
20767 validate_immediate_twopart (unsigned int val,
20768 unsigned int * highpart)
20769 {
20770 unsigned int a;
20771 unsigned int i;
20772
20773 for (i = 0; i < 32; i += 2)
20774 if (((a = rotate_left (val, i)) & 0xff) != 0)
20775 {
20776 if (a & 0xff00)
20777 {
20778 if (a & ~ 0xffff)
20779 continue;
20780 * highpart = (a >> 8) | ((i + 24) << 7);
20781 }
20782 else if (a & 0xff0000)
20783 {
20784 if (a & 0xff000000)
20785 continue;
20786 * highpart = (a >> 16) | ((i + 16) << 7);
20787 }
20788 else
20789 {
20790 gas_assert (a & 0xff000000);
20791 * highpart = (a >> 24) | ((i + 8) << 7);
20792 }
20793
20794 return (a & 0xff) | (i << 7);
20795 }
20796
20797 return FAIL;
20798 }
20799
20800 static int
20801 validate_offset_imm (unsigned int val, int hwse)
20802 {
20803 if ((hwse && val > 255) || val > 4095)
20804 return FAIL;
20805 return val;
20806 }
20807
20808 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20809 negative immediate constant by altering the instruction. A bit of
20810 a hack really.
20811 MOV <-> MVN
20812 AND <-> BIC
20813 ADC <-> SBC
20814 by inverting the second operand, and
20815 ADD <-> SUB
20816 CMP <-> CMN
20817 by negating the second operand. */
20818
20819 static int
20820 negate_data_op (unsigned long * instruction,
20821 unsigned long value)
20822 {
20823 int op, new_inst;
20824 unsigned long negated, inverted;
20825
20826 negated = encode_arm_immediate (-value);
20827 inverted = encode_arm_immediate (~value);
20828
20829 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20830 switch (op)
20831 {
20832 /* First negates. */
20833 case OPCODE_SUB: /* ADD <-> SUB */
20834 new_inst = OPCODE_ADD;
20835 value = negated;
20836 break;
20837
20838 case OPCODE_ADD:
20839 new_inst = OPCODE_SUB;
20840 value = negated;
20841 break;
20842
20843 case OPCODE_CMP: /* CMP <-> CMN */
20844 new_inst = OPCODE_CMN;
20845 value = negated;
20846 break;
20847
20848 case OPCODE_CMN:
20849 new_inst = OPCODE_CMP;
20850 value = negated;
20851 break;
20852
20853 /* Now Inverted ops. */
20854 case OPCODE_MOV: /* MOV <-> MVN */
20855 new_inst = OPCODE_MVN;
20856 value = inverted;
20857 break;
20858
20859 case OPCODE_MVN:
20860 new_inst = OPCODE_MOV;
20861 value = inverted;
20862 break;
20863
20864 case OPCODE_AND: /* AND <-> BIC */
20865 new_inst = OPCODE_BIC;
20866 value = inverted;
20867 break;
20868
20869 case OPCODE_BIC:
20870 new_inst = OPCODE_AND;
20871 value = inverted;
20872 break;
20873
20874 case OPCODE_ADC: /* ADC <-> SBC */
20875 new_inst = OPCODE_SBC;
20876 value = inverted;
20877 break;
20878
20879 case OPCODE_SBC:
20880 new_inst = OPCODE_ADC;
20881 value = inverted;
20882 break;
20883
20884 /* We cannot do anything. */
20885 default:
20886 return FAIL;
20887 }
20888
20889 if (value == (unsigned) FAIL)
20890 return FAIL;
20891
20892 *instruction &= OPCODE_MASK;
20893 *instruction |= new_inst << DATA_OP_SHIFT;
20894 return value;
20895 }
20896
20897 /* Like negate_data_op, but for Thumb-2. */
20898
20899 static unsigned int
20900 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
20901 {
20902 int op, new_inst;
20903 int rd;
20904 unsigned int negated, inverted;
20905
20906 negated = encode_thumb32_immediate (-value);
20907 inverted = encode_thumb32_immediate (~value);
20908
20909 rd = (*instruction >> 8) & 0xf;
20910 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20911 switch (op)
20912 {
20913 /* ADD <-> SUB. Includes CMP <-> CMN. */
20914 case T2_OPCODE_SUB:
20915 new_inst = T2_OPCODE_ADD;
20916 value = negated;
20917 break;
20918
20919 case T2_OPCODE_ADD:
20920 new_inst = T2_OPCODE_SUB;
20921 value = negated;
20922 break;
20923
20924 /* ORR <-> ORN. Includes MOV <-> MVN. */
20925 case T2_OPCODE_ORR:
20926 new_inst = T2_OPCODE_ORN;
20927 value = inverted;
20928 break;
20929
20930 case T2_OPCODE_ORN:
20931 new_inst = T2_OPCODE_ORR;
20932 value = inverted;
20933 break;
20934
20935 /* AND <-> BIC. TST has no inverted equivalent. */
20936 case T2_OPCODE_AND:
20937 new_inst = T2_OPCODE_BIC;
20938 if (rd == 15)
20939 value = FAIL;
20940 else
20941 value = inverted;
20942 break;
20943
20944 case T2_OPCODE_BIC:
20945 new_inst = T2_OPCODE_AND;
20946 value = inverted;
20947 break;
20948
20949 /* ADC <-> SBC */
20950 case T2_OPCODE_ADC:
20951 new_inst = T2_OPCODE_SBC;
20952 value = inverted;
20953 break;
20954
20955 case T2_OPCODE_SBC:
20956 new_inst = T2_OPCODE_ADC;
20957 value = inverted;
20958 break;
20959
20960 /* We cannot do anything. */
20961 default:
20962 return FAIL;
20963 }
20964
20965 if (value == (unsigned int)FAIL)
20966 return FAIL;
20967
20968 *instruction &= T2_OPCODE_MASK;
20969 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20970 return value;
20971 }
20972
20973 /* Read a 32-bit thumb instruction from buf. */
20974 static unsigned long
20975 get_thumb32_insn (char * buf)
20976 {
20977 unsigned long insn;
20978 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20979 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20980
20981 return insn;
20982 }
20983
20984
20985 /* We usually want to set the low bit on the address of thumb function
20986 symbols. In particular .word foo - . should have the low bit set.
20987 Generic code tries to fold the difference of two symbols to
20988 a constant. Prevent this and force a relocation when the first symbols
20989 is a thumb function. */
20990
20991 bfd_boolean
20992 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20993 {
20994 if (op == O_subtract
20995 && l->X_op == O_symbol
20996 && r->X_op == O_symbol
20997 && THUMB_IS_FUNC (l->X_add_symbol))
20998 {
20999 l->X_op = O_subtract;
21000 l->X_op_symbol = r->X_add_symbol;
21001 l->X_add_number -= r->X_add_number;
21002 return TRUE;
21003 }
21004
21005 /* Process as normal. */
21006 return FALSE;
21007 }
21008
21009 /* Encode Thumb2 unconditional branches and calls. The encoding
21010 for the 2 are identical for the immediate values. */
21011
21012 static void
21013 encode_thumb2_b_bl_offset (char * buf, offsetT value)
21014 {
21015 #define T2I1I2MASK ((1 << 13) | (1 << 11))
21016 offsetT newval;
21017 offsetT newval2;
21018 addressT S, I1, I2, lo, hi;
21019
21020 S = (value >> 24) & 0x01;
21021 I1 = (value >> 23) & 0x01;
21022 I2 = (value >> 22) & 0x01;
21023 hi = (value >> 12) & 0x3ff;
21024 lo = (value >> 1) & 0x7ff;
21025 newval = md_chars_to_number (buf, THUMB_SIZE);
21026 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21027 newval |= (S << 10) | hi;
21028 newval2 &= ~T2I1I2MASK;
21029 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
21030 md_number_to_chars (buf, newval, THUMB_SIZE);
21031 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21032 }
21033
21034 void
21035 md_apply_fix (fixS * fixP,
21036 valueT * valP,
21037 segT seg)
21038 {
21039 offsetT value = * valP;
21040 offsetT newval;
21041 unsigned int newimm;
21042 unsigned long temp;
21043 int sign;
21044 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
21045
21046 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
21047
21048 /* Note whether this will delete the relocation. */
21049
21050 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
21051 fixP->fx_done = 1;
21052
21053 /* On a 64-bit host, silently truncate 'value' to 32 bits for
21054 consistency with the behaviour on 32-bit hosts. Remember value
21055 for emit_reloc. */
21056 value &= 0xffffffff;
21057 value ^= 0x80000000;
21058 value -= 0x80000000;
21059
21060 *valP = value;
21061 fixP->fx_addnumber = value;
21062
21063 /* Same treatment for fixP->fx_offset. */
21064 fixP->fx_offset &= 0xffffffff;
21065 fixP->fx_offset ^= 0x80000000;
21066 fixP->fx_offset -= 0x80000000;
21067
21068 switch (fixP->fx_r_type)
21069 {
21070 case BFD_RELOC_NONE:
21071 /* This will need to go in the object file. */
21072 fixP->fx_done = 0;
21073 break;
21074
21075 case BFD_RELOC_ARM_IMMEDIATE:
21076 /* We claim that this fixup has been processed here,
21077 even if in fact we generate an error because we do
21078 not have a reloc for it, so tc_gen_reloc will reject it. */
21079 fixP->fx_done = 1;
21080
21081 if (fixP->fx_addsy)
21082 {
21083 const char *msg = 0;
21084
21085 if (! S_IS_DEFINED (fixP->fx_addsy))
21086 msg = _("undefined symbol %s used as an immediate value");
21087 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21088 msg = _("symbol %s is in a different section");
21089 else if (S_IS_WEAK (fixP->fx_addsy))
21090 msg = _("symbol %s is weak and may be overridden later");
21091
21092 if (msg)
21093 {
21094 as_bad_where (fixP->fx_file, fixP->fx_line,
21095 msg, S_GET_NAME (fixP->fx_addsy));
21096 break;
21097 }
21098 }
21099
21100 temp = md_chars_to_number (buf, INSN_SIZE);
21101
21102 /* If the offset is negative, we should use encoding A2 for ADR. */
21103 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
21104 newimm = negate_data_op (&temp, value);
21105 else
21106 {
21107 newimm = encode_arm_immediate (value);
21108
21109 /* If the instruction will fail, see if we can fix things up by
21110 changing the opcode. */
21111 if (newimm == (unsigned int) FAIL)
21112 newimm = negate_data_op (&temp, value);
21113 }
21114
21115 if (newimm == (unsigned int) FAIL)
21116 {
21117 as_bad_where (fixP->fx_file, fixP->fx_line,
21118 _("invalid constant (%lx) after fixup"),
21119 (unsigned long) value);
21120 break;
21121 }
21122
21123 newimm |= (temp & 0xfffff000);
21124 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21125 break;
21126
21127 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21128 {
21129 unsigned int highpart = 0;
21130 unsigned int newinsn = 0xe1a00000; /* nop. */
21131
21132 if (fixP->fx_addsy)
21133 {
21134 const char *msg = 0;
21135
21136 if (! S_IS_DEFINED (fixP->fx_addsy))
21137 msg = _("undefined symbol %s used as an immediate value");
21138 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21139 msg = _("symbol %s is in a different section");
21140 else if (S_IS_WEAK (fixP->fx_addsy))
21141 msg = _("symbol %s is weak and may be overridden later");
21142
21143 if (msg)
21144 {
21145 as_bad_where (fixP->fx_file, fixP->fx_line,
21146 msg, S_GET_NAME (fixP->fx_addsy));
21147 break;
21148 }
21149 }
21150
21151 newimm = encode_arm_immediate (value);
21152 temp = md_chars_to_number (buf, INSN_SIZE);
21153
21154 /* If the instruction will fail, see if we can fix things up by
21155 changing the opcode. */
21156 if (newimm == (unsigned int) FAIL
21157 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
21158 {
21159 /* No ? OK - try using two ADD instructions to generate
21160 the value. */
21161 newimm = validate_immediate_twopart (value, & highpart);
21162
21163 /* Yes - then make sure that the second instruction is
21164 also an add. */
21165 if (newimm != (unsigned int) FAIL)
21166 newinsn = temp;
21167 /* Still No ? Try using a negated value. */
21168 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
21169 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
21170 /* Otherwise - give up. */
21171 else
21172 {
21173 as_bad_where (fixP->fx_file, fixP->fx_line,
21174 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
21175 (long) value);
21176 break;
21177 }
21178
21179 /* Replace the first operand in the 2nd instruction (which
21180 is the PC) with the destination register. We have
21181 already added in the PC in the first instruction and we
21182 do not want to do it again. */
21183 newinsn &= ~ 0xf0000;
21184 newinsn |= ((newinsn & 0x0f000) << 4);
21185 }
21186
21187 newimm |= (temp & 0xfffff000);
21188 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21189
21190 highpart |= (newinsn & 0xfffff000);
21191 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
21192 }
21193 break;
21194
21195 case BFD_RELOC_ARM_OFFSET_IMM:
21196 if (!fixP->fx_done && seg->use_rela_p)
21197 value = 0;
21198
21199 case BFD_RELOC_ARM_LITERAL:
21200 sign = value > 0;
21201
21202 if (value < 0)
21203 value = - value;
21204
21205 if (validate_offset_imm (value, 0) == FAIL)
21206 {
21207 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
21208 as_bad_where (fixP->fx_file, fixP->fx_line,
21209 _("invalid literal constant: pool needs to be closer"));
21210 else
21211 as_bad_where (fixP->fx_file, fixP->fx_line,
21212 _("bad immediate value for offset (%ld)"),
21213 (long) value);
21214 break;
21215 }
21216
21217 newval = md_chars_to_number (buf, INSN_SIZE);
21218 if (value == 0)
21219 newval &= 0xfffff000;
21220 else
21221 {
21222 newval &= 0xff7ff000;
21223 newval |= value | (sign ? INDEX_UP : 0);
21224 }
21225 md_number_to_chars (buf, newval, INSN_SIZE);
21226 break;
21227
21228 case BFD_RELOC_ARM_OFFSET_IMM8:
21229 case BFD_RELOC_ARM_HWLITERAL:
21230 sign = value > 0;
21231
21232 if (value < 0)
21233 value = - value;
21234
21235 if (validate_offset_imm (value, 1) == FAIL)
21236 {
21237 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
21238 as_bad_where (fixP->fx_file, fixP->fx_line,
21239 _("invalid literal constant: pool needs to be closer"));
21240 else
21241 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
21242 (long) value);
21243 break;
21244 }
21245
21246 newval = md_chars_to_number (buf, INSN_SIZE);
21247 if (value == 0)
21248 newval &= 0xfffff0f0;
21249 else
21250 {
21251 newval &= 0xff7ff0f0;
21252 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
21253 }
21254 md_number_to_chars (buf, newval, INSN_SIZE);
21255 break;
21256
21257 case BFD_RELOC_ARM_T32_OFFSET_U8:
21258 if (value < 0 || value > 1020 || value % 4 != 0)
21259 as_bad_where (fixP->fx_file, fixP->fx_line,
21260 _("bad immediate value for offset (%ld)"), (long) value);
21261 value /= 4;
21262
21263 newval = md_chars_to_number (buf+2, THUMB_SIZE);
21264 newval |= value;
21265 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21266 break;
21267
21268 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21269 /* This is a complicated relocation used for all varieties of Thumb32
21270 load/store instruction with immediate offset:
21271
21272 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21273 *4, optional writeback(W)
21274 (doubleword load/store)
21275
21276 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21277 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21278 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21279 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21280 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21281
21282 Uppercase letters indicate bits that are already encoded at
21283 this point. Lowercase letters are our problem. For the
21284 second block of instructions, the secondary opcode nybble
21285 (bits 8..11) is present, and bit 23 is zero, even if this is
21286 a PC-relative operation. */
21287 newval = md_chars_to_number (buf, THUMB_SIZE);
21288 newval <<= 16;
21289 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
21290
21291 if ((newval & 0xf0000000) == 0xe0000000)
21292 {
21293 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21294 if (value >= 0)
21295 newval |= (1 << 23);
21296 else
21297 value = -value;
21298 if (value % 4 != 0)
21299 {
21300 as_bad_where (fixP->fx_file, fixP->fx_line,
21301 _("offset not a multiple of 4"));
21302 break;
21303 }
21304 value /= 4;
21305 if (value > 0xff)
21306 {
21307 as_bad_where (fixP->fx_file, fixP->fx_line,
21308 _("offset out of range"));
21309 break;
21310 }
21311 newval &= ~0xff;
21312 }
21313 else if ((newval & 0x000f0000) == 0x000f0000)
21314 {
21315 /* PC-relative, 12-bit offset. */
21316 if (value >= 0)
21317 newval |= (1 << 23);
21318 else
21319 value = -value;
21320 if (value > 0xfff)
21321 {
21322 as_bad_where (fixP->fx_file, fixP->fx_line,
21323 _("offset out of range"));
21324 break;
21325 }
21326 newval &= ~0xfff;
21327 }
21328 else if ((newval & 0x00000100) == 0x00000100)
21329 {
21330 /* Writeback: 8-bit, +/- offset. */
21331 if (value >= 0)
21332 newval |= (1 << 9);
21333 else
21334 value = -value;
21335 if (value > 0xff)
21336 {
21337 as_bad_where (fixP->fx_file, fixP->fx_line,
21338 _("offset out of range"));
21339 break;
21340 }
21341 newval &= ~0xff;
21342 }
21343 else if ((newval & 0x00000f00) == 0x00000e00)
21344 {
21345 /* T-instruction: positive 8-bit offset. */
21346 if (value < 0 || value > 0xff)
21347 {
21348 as_bad_where (fixP->fx_file, fixP->fx_line,
21349 _("offset out of range"));
21350 break;
21351 }
21352 newval &= ~0xff;
21353 newval |= value;
21354 }
21355 else
21356 {
21357 /* Positive 12-bit or negative 8-bit offset. */
21358 int limit;
21359 if (value >= 0)
21360 {
21361 newval |= (1 << 23);
21362 limit = 0xfff;
21363 }
21364 else
21365 {
21366 value = -value;
21367 limit = 0xff;
21368 }
21369 if (value > limit)
21370 {
21371 as_bad_where (fixP->fx_file, fixP->fx_line,
21372 _("offset out of range"));
21373 break;
21374 }
21375 newval &= ~limit;
21376 }
21377
21378 newval |= value;
21379 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21380 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21381 break;
21382
21383 case BFD_RELOC_ARM_SHIFT_IMM:
21384 newval = md_chars_to_number (buf, INSN_SIZE);
21385 if (((unsigned long) value) > 32
21386 || (value == 32
21387 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21388 {
21389 as_bad_where (fixP->fx_file, fixP->fx_line,
21390 _("shift expression is too large"));
21391 break;
21392 }
21393
21394 if (value == 0)
21395 /* Shifts of zero must be done as lsl. */
21396 newval &= ~0x60;
21397 else if (value == 32)
21398 value = 0;
21399 newval &= 0xfffff07f;
21400 newval |= (value & 0x1f) << 7;
21401 md_number_to_chars (buf, newval, INSN_SIZE);
21402 break;
21403
21404 case BFD_RELOC_ARM_T32_IMMEDIATE:
21405 case BFD_RELOC_ARM_T32_ADD_IMM:
21406 case BFD_RELOC_ARM_T32_IMM12:
21407 case BFD_RELOC_ARM_T32_ADD_PC12:
21408 /* We claim that this fixup has been processed here,
21409 even if in fact we generate an error because we do
21410 not have a reloc for it, so tc_gen_reloc will reject it. */
21411 fixP->fx_done = 1;
21412
21413 if (fixP->fx_addsy
21414 && ! S_IS_DEFINED (fixP->fx_addsy))
21415 {
21416 as_bad_where (fixP->fx_file, fixP->fx_line,
21417 _("undefined symbol %s used as an immediate value"),
21418 S_GET_NAME (fixP->fx_addsy));
21419 break;
21420 }
21421
21422 newval = md_chars_to_number (buf, THUMB_SIZE);
21423 newval <<= 16;
21424 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
21425
21426 newimm = FAIL;
21427 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21428 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21429 {
21430 newimm = encode_thumb32_immediate (value);
21431 if (newimm == (unsigned int) FAIL)
21432 newimm = thumb32_negate_data_op (&newval, value);
21433 }
21434 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21435 && newimm == (unsigned int) FAIL)
21436 {
21437 /* Turn add/sum into addw/subw. */
21438 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21439 newval = (newval & 0xfeffffff) | 0x02000000;
21440 /* No flat 12-bit imm encoding for addsw/subsw. */
21441 if ((newval & 0x00100000) == 0)
21442 {
21443 /* 12 bit immediate for addw/subw. */
21444 if (value < 0)
21445 {
21446 value = -value;
21447 newval ^= 0x00a00000;
21448 }
21449 if (value > 0xfff)
21450 newimm = (unsigned int) FAIL;
21451 else
21452 newimm = value;
21453 }
21454 }
21455
21456 if (newimm == (unsigned int)FAIL)
21457 {
21458 as_bad_where (fixP->fx_file, fixP->fx_line,
21459 _("invalid constant (%lx) after fixup"),
21460 (unsigned long) value);
21461 break;
21462 }
21463
21464 newval |= (newimm & 0x800) << 15;
21465 newval |= (newimm & 0x700) << 4;
21466 newval |= (newimm & 0x0ff);
21467
21468 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21469 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21470 break;
21471
21472 case BFD_RELOC_ARM_SMC:
21473 if (((unsigned long) value) > 0xffff)
21474 as_bad_where (fixP->fx_file, fixP->fx_line,
21475 _("invalid smc expression"));
21476 newval = md_chars_to_number (buf, INSN_SIZE);
21477 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21478 md_number_to_chars (buf, newval, INSN_SIZE);
21479 break;
21480
21481 case BFD_RELOC_ARM_HVC:
21482 if (((unsigned long) value) > 0xffff)
21483 as_bad_where (fixP->fx_file, fixP->fx_line,
21484 _("invalid hvc expression"));
21485 newval = md_chars_to_number (buf, INSN_SIZE);
21486 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21487 md_number_to_chars (buf, newval, INSN_SIZE);
21488 break;
21489
21490 case BFD_RELOC_ARM_SWI:
21491 if (fixP->tc_fix_data != 0)
21492 {
21493 if (((unsigned long) value) > 0xff)
21494 as_bad_where (fixP->fx_file, fixP->fx_line,
21495 _("invalid swi expression"));
21496 newval = md_chars_to_number (buf, THUMB_SIZE);
21497 newval |= value;
21498 md_number_to_chars (buf, newval, THUMB_SIZE);
21499 }
21500 else
21501 {
21502 if (((unsigned long) value) > 0x00ffffff)
21503 as_bad_where (fixP->fx_file, fixP->fx_line,
21504 _("invalid swi expression"));
21505 newval = md_chars_to_number (buf, INSN_SIZE);
21506 newval |= value;
21507 md_number_to_chars (buf, newval, INSN_SIZE);
21508 }
21509 break;
21510
21511 case BFD_RELOC_ARM_MULTI:
21512 if (((unsigned long) value) > 0xffff)
21513 as_bad_where (fixP->fx_file, fixP->fx_line,
21514 _("invalid expression in load/store multiple"));
21515 newval = value | md_chars_to_number (buf, INSN_SIZE);
21516 md_number_to_chars (buf, newval, INSN_SIZE);
21517 break;
21518
21519 #ifdef OBJ_ELF
21520 case BFD_RELOC_ARM_PCREL_CALL:
21521
21522 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21523 && fixP->fx_addsy
21524 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21525 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21526 && THUMB_IS_FUNC (fixP->fx_addsy))
21527 /* Flip the bl to blx. This is a simple flip
21528 bit here because we generate PCREL_CALL for
21529 unconditional bls. */
21530 {
21531 newval = md_chars_to_number (buf, INSN_SIZE);
21532 newval = newval | 0x10000000;
21533 md_number_to_chars (buf, newval, INSN_SIZE);
21534 temp = 1;
21535 fixP->fx_done = 1;
21536 }
21537 else
21538 temp = 3;
21539 goto arm_branch_common;
21540
21541 case BFD_RELOC_ARM_PCREL_JUMP:
21542 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21543 && fixP->fx_addsy
21544 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21545 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21546 && THUMB_IS_FUNC (fixP->fx_addsy))
21547 {
21548 /* This would map to a bl<cond>, b<cond>,
21549 b<always> to a Thumb function. We
21550 need to force a relocation for this particular
21551 case. */
21552 newval = md_chars_to_number (buf, INSN_SIZE);
21553 fixP->fx_done = 0;
21554 }
21555
21556 case BFD_RELOC_ARM_PLT32:
21557 #endif
21558 case BFD_RELOC_ARM_PCREL_BRANCH:
21559 temp = 3;
21560 goto arm_branch_common;
21561
21562 case BFD_RELOC_ARM_PCREL_BLX:
21563
21564 temp = 1;
21565 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21566 && fixP->fx_addsy
21567 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21568 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21569 && ARM_IS_FUNC (fixP->fx_addsy))
21570 {
21571 /* Flip the blx to a bl and warn. */
21572 const char *name = S_GET_NAME (fixP->fx_addsy);
21573 newval = 0xeb000000;
21574 as_warn_where (fixP->fx_file, fixP->fx_line,
21575 _("blx to '%s' an ARM ISA state function changed to bl"),
21576 name);
21577 md_number_to_chars (buf, newval, INSN_SIZE);
21578 temp = 3;
21579 fixP->fx_done = 1;
21580 }
21581
21582 #ifdef OBJ_ELF
21583 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21584 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21585 #endif
21586
21587 arm_branch_common:
21588 /* We are going to store value (shifted right by two) in the
21589 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21590 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21591 also be be clear. */
21592 if (value & temp)
21593 as_bad_where (fixP->fx_file, fixP->fx_line,
21594 _("misaligned branch destination"));
21595 if ((value & (offsetT)0xfe000000) != (offsetT)0
21596 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
21597 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21598
21599 if (fixP->fx_done || !seg->use_rela_p)
21600 {
21601 newval = md_chars_to_number (buf, INSN_SIZE);
21602 newval |= (value >> 2) & 0x00ffffff;
21603 /* Set the H bit on BLX instructions. */
21604 if (temp == 1)
21605 {
21606 if (value & 2)
21607 newval |= 0x01000000;
21608 else
21609 newval &= ~0x01000000;
21610 }
21611 md_number_to_chars (buf, newval, INSN_SIZE);
21612 }
21613 break;
21614
21615 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21616 /* CBZ can only branch forward. */
21617
21618 /* Attempts to use CBZ to branch to the next instruction
21619 (which, strictly speaking, are prohibited) will be turned into
21620 no-ops.
21621
21622 FIXME: It may be better to remove the instruction completely and
21623 perform relaxation. */
21624 if (value == -2)
21625 {
21626 newval = md_chars_to_number (buf, THUMB_SIZE);
21627 newval = 0xbf00; /* NOP encoding T1 */
21628 md_number_to_chars (buf, newval, THUMB_SIZE);
21629 }
21630 else
21631 {
21632 if (value & ~0x7e)
21633 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21634
21635 if (fixP->fx_done || !seg->use_rela_p)
21636 {
21637 newval = md_chars_to_number (buf, THUMB_SIZE);
21638 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21639 md_number_to_chars (buf, newval, THUMB_SIZE);
21640 }
21641 }
21642 break;
21643
21644 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
21645 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
21646 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21647
21648 if (fixP->fx_done || !seg->use_rela_p)
21649 {
21650 newval = md_chars_to_number (buf, THUMB_SIZE);
21651 newval |= (value & 0x1ff) >> 1;
21652 md_number_to_chars (buf, newval, THUMB_SIZE);
21653 }
21654 break;
21655
21656 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
21657 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
21658 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21659
21660 if (fixP->fx_done || !seg->use_rela_p)
21661 {
21662 newval = md_chars_to_number (buf, THUMB_SIZE);
21663 newval |= (value & 0xfff) >> 1;
21664 md_number_to_chars (buf, newval, THUMB_SIZE);
21665 }
21666 break;
21667
21668 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21669 if (fixP->fx_addsy
21670 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21671 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21672 && ARM_IS_FUNC (fixP->fx_addsy)
21673 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21674 {
21675 /* Force a relocation for a branch 20 bits wide. */
21676 fixP->fx_done = 0;
21677 }
21678 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
21679 as_bad_where (fixP->fx_file, fixP->fx_line,
21680 _("conditional branch out of range"));
21681
21682 if (fixP->fx_done || !seg->use_rela_p)
21683 {
21684 offsetT newval2;
21685 addressT S, J1, J2, lo, hi;
21686
21687 S = (value & 0x00100000) >> 20;
21688 J2 = (value & 0x00080000) >> 19;
21689 J1 = (value & 0x00040000) >> 18;
21690 hi = (value & 0x0003f000) >> 12;
21691 lo = (value & 0x00000ffe) >> 1;
21692
21693 newval = md_chars_to_number (buf, THUMB_SIZE);
21694 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21695 newval |= (S << 10) | hi;
21696 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21697 md_number_to_chars (buf, newval, THUMB_SIZE);
21698 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21699 }
21700 break;
21701
21702 case BFD_RELOC_THUMB_PCREL_BLX:
21703 /* If there is a blx from a thumb state function to
21704 another thumb function flip this to a bl and warn
21705 about it. */
21706
21707 if (fixP->fx_addsy
21708 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21709 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21710 && THUMB_IS_FUNC (fixP->fx_addsy))
21711 {
21712 const char *name = S_GET_NAME (fixP->fx_addsy);
21713 as_warn_where (fixP->fx_file, fixP->fx_line,
21714 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21715 name);
21716 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21717 newval = newval | 0x1000;
21718 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21719 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21720 fixP->fx_done = 1;
21721 }
21722
21723
21724 goto thumb_bl_common;
21725
21726 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21727 /* A bl from Thumb state ISA to an internal ARM state function
21728 is converted to a blx. */
21729 if (fixP->fx_addsy
21730 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21731 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21732 && ARM_IS_FUNC (fixP->fx_addsy)
21733 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21734 {
21735 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21736 newval = newval & ~0x1000;
21737 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21738 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21739 fixP->fx_done = 1;
21740 }
21741
21742 thumb_bl_common:
21743
21744 #ifdef OBJ_ELF
21745 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
21746 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21747 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21748 #endif
21749
21750 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21751 /* For a BLX instruction, make sure that the relocation is rounded up
21752 to a word boundary. This follows the semantics of the instruction
21753 which specifies that bit 1 of the target address will come from bit
21754 1 of the base address. */
21755 value = (value + 1) & ~ 1;
21756
21757 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21758 {
21759 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21760 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21761 else if ((value & ~0x1ffffff)
21762 && ((value & ~0x1ffffff) != ~0x1ffffff))
21763 as_bad_where (fixP->fx_file, fixP->fx_line,
21764 _("Thumb2 branch out of range"));
21765 }
21766
21767 if (fixP->fx_done || !seg->use_rela_p)
21768 encode_thumb2_b_bl_offset (buf, value);
21769
21770 break;
21771
21772 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21773 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21774 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21775
21776 if (fixP->fx_done || !seg->use_rela_p)
21777 encode_thumb2_b_bl_offset (buf, value);
21778
21779 break;
21780
21781 case BFD_RELOC_8:
21782 if (fixP->fx_done || !seg->use_rela_p)
21783 md_number_to_chars (buf, value, 1);
21784 break;
21785
21786 case BFD_RELOC_16:
21787 if (fixP->fx_done || !seg->use_rela_p)
21788 md_number_to_chars (buf, value, 2);
21789 break;
21790
21791 #ifdef OBJ_ELF
21792 case BFD_RELOC_ARM_TLS_CALL:
21793 case BFD_RELOC_ARM_THM_TLS_CALL:
21794 case BFD_RELOC_ARM_TLS_DESCSEQ:
21795 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21796 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21797 break;
21798
21799 case BFD_RELOC_ARM_TLS_GOTDESC:
21800 case BFD_RELOC_ARM_TLS_GD32:
21801 case BFD_RELOC_ARM_TLS_LE32:
21802 case BFD_RELOC_ARM_TLS_IE32:
21803 case BFD_RELOC_ARM_TLS_LDM32:
21804 case BFD_RELOC_ARM_TLS_LDO32:
21805 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21806 /* fall through */
21807
21808 case BFD_RELOC_ARM_GOT32:
21809 case BFD_RELOC_ARM_GOTOFF:
21810 if (fixP->fx_done || !seg->use_rela_p)
21811 md_number_to_chars (buf, 0, 4);
21812 break;
21813
21814 case BFD_RELOC_ARM_GOT_PREL:
21815 if (fixP->fx_done || !seg->use_rela_p)
21816 md_number_to_chars (buf, value, 4);
21817 break;
21818
21819 case BFD_RELOC_ARM_TARGET2:
21820 /* TARGET2 is not partial-inplace, so we need to write the
21821 addend here for REL targets, because it won't be written out
21822 during reloc processing later. */
21823 if (fixP->fx_done || !seg->use_rela_p)
21824 md_number_to_chars (buf, fixP->fx_offset, 4);
21825 break;
21826 #endif
21827
21828 case BFD_RELOC_RVA:
21829 case BFD_RELOC_32:
21830 case BFD_RELOC_ARM_TARGET1:
21831 case BFD_RELOC_ARM_ROSEGREL32:
21832 case BFD_RELOC_ARM_SBREL32:
21833 case BFD_RELOC_32_PCREL:
21834 #ifdef TE_PE
21835 case BFD_RELOC_32_SECREL:
21836 #endif
21837 if (fixP->fx_done || !seg->use_rela_p)
21838 #ifdef TE_WINCE
21839 /* For WinCE we only do this for pcrel fixups. */
21840 if (fixP->fx_done || fixP->fx_pcrel)
21841 #endif
21842 md_number_to_chars (buf, value, 4);
21843 break;
21844
21845 #ifdef OBJ_ELF
21846 case BFD_RELOC_ARM_PREL31:
21847 if (fixP->fx_done || !seg->use_rela_p)
21848 {
21849 newval = md_chars_to_number (buf, 4) & 0x80000000;
21850 if ((value ^ (value >> 1)) & 0x40000000)
21851 {
21852 as_bad_where (fixP->fx_file, fixP->fx_line,
21853 _("rel31 relocation overflow"));
21854 }
21855 newval |= value & 0x7fffffff;
21856 md_number_to_chars (buf, newval, 4);
21857 }
21858 break;
21859 #endif
21860
21861 case BFD_RELOC_ARM_CP_OFF_IMM:
21862 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21863 if (value < -1023 || value > 1023 || (value & 3))
21864 as_bad_where (fixP->fx_file, fixP->fx_line,
21865 _("co-processor offset out of range"));
21866 cp_off_common:
21867 sign = value > 0;
21868 if (value < 0)
21869 value = -value;
21870 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21871 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21872 newval = md_chars_to_number (buf, INSN_SIZE);
21873 else
21874 newval = get_thumb32_insn (buf);
21875 if (value == 0)
21876 newval &= 0xffffff00;
21877 else
21878 {
21879 newval &= 0xff7fff00;
21880 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21881 }
21882 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21883 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21884 md_number_to_chars (buf, newval, INSN_SIZE);
21885 else
21886 put_thumb32_insn (buf, newval);
21887 break;
21888
21889 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
21890 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
21891 if (value < -255 || value > 255)
21892 as_bad_where (fixP->fx_file, fixP->fx_line,
21893 _("co-processor offset out of range"));
21894 value *= 4;
21895 goto cp_off_common;
21896
21897 case BFD_RELOC_ARM_THUMB_OFFSET:
21898 newval = md_chars_to_number (buf, THUMB_SIZE);
21899 /* Exactly what ranges, and where the offset is inserted depends
21900 on the type of instruction, we can establish this from the
21901 top 4 bits. */
21902 switch (newval >> 12)
21903 {
21904 case 4: /* PC load. */
21905 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21906 forced to zero for these loads; md_pcrel_from has already
21907 compensated for this. */
21908 if (value & 3)
21909 as_bad_where (fixP->fx_file, fixP->fx_line,
21910 _("invalid offset, target not word aligned (0x%08lX)"),
21911 (((unsigned long) fixP->fx_frag->fr_address
21912 + (unsigned long) fixP->fx_where) & ~3)
21913 + (unsigned long) value);
21914
21915 if (value & ~0x3fc)
21916 as_bad_where (fixP->fx_file, fixP->fx_line,
21917 _("invalid offset, value too big (0x%08lX)"),
21918 (long) value);
21919
21920 newval |= value >> 2;
21921 break;
21922
21923 case 9: /* SP load/store. */
21924 if (value & ~0x3fc)
21925 as_bad_where (fixP->fx_file, fixP->fx_line,
21926 _("invalid offset, value too big (0x%08lX)"),
21927 (long) value);
21928 newval |= value >> 2;
21929 break;
21930
21931 case 6: /* Word load/store. */
21932 if (value & ~0x7c)
21933 as_bad_where (fixP->fx_file, fixP->fx_line,
21934 _("invalid offset, value too big (0x%08lX)"),
21935 (long) value);
21936 newval |= value << 4; /* 6 - 2. */
21937 break;
21938
21939 case 7: /* Byte load/store. */
21940 if (value & ~0x1f)
21941 as_bad_where (fixP->fx_file, fixP->fx_line,
21942 _("invalid offset, value too big (0x%08lX)"),
21943 (long) value);
21944 newval |= value << 6;
21945 break;
21946
21947 case 8: /* Halfword load/store. */
21948 if (value & ~0x3e)
21949 as_bad_where (fixP->fx_file, fixP->fx_line,
21950 _("invalid offset, value too big (0x%08lX)"),
21951 (long) value);
21952 newval |= value << 5; /* 6 - 1. */
21953 break;
21954
21955 default:
21956 as_bad_where (fixP->fx_file, fixP->fx_line,
21957 "Unable to process relocation for thumb opcode: %lx",
21958 (unsigned long) newval);
21959 break;
21960 }
21961 md_number_to_chars (buf, newval, THUMB_SIZE);
21962 break;
21963
21964 case BFD_RELOC_ARM_THUMB_ADD:
21965 /* This is a complicated relocation, since we use it for all of
21966 the following immediate relocations:
21967
21968 3bit ADD/SUB
21969 8bit ADD/SUB
21970 9bit ADD/SUB SP word-aligned
21971 10bit ADD PC/SP word-aligned
21972
21973 The type of instruction being processed is encoded in the
21974 instruction field:
21975
21976 0x8000 SUB
21977 0x00F0 Rd
21978 0x000F Rs
21979 */
21980 newval = md_chars_to_number (buf, THUMB_SIZE);
21981 {
21982 int rd = (newval >> 4) & 0xf;
21983 int rs = newval & 0xf;
21984 int subtract = !!(newval & 0x8000);
21985
21986 /* Check for HI regs, only very restricted cases allowed:
21987 Adjusting SP, and using PC or SP to get an address. */
21988 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21989 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21990 as_bad_where (fixP->fx_file, fixP->fx_line,
21991 _("invalid Hi register with immediate"));
21992
21993 /* If value is negative, choose the opposite instruction. */
21994 if (value < 0)
21995 {
21996 value = -value;
21997 subtract = !subtract;
21998 if (value < 0)
21999 as_bad_where (fixP->fx_file, fixP->fx_line,
22000 _("immediate value out of range"));
22001 }
22002
22003 if (rd == REG_SP)
22004 {
22005 if (value & ~0x1fc)
22006 as_bad_where (fixP->fx_file, fixP->fx_line,
22007 _("invalid immediate for stack address calculation"));
22008 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
22009 newval |= value >> 2;
22010 }
22011 else if (rs == REG_PC || rs == REG_SP)
22012 {
22013 if (subtract || value & ~0x3fc)
22014 as_bad_where (fixP->fx_file, fixP->fx_line,
22015 _("invalid immediate for address calculation (value = 0x%08lX)"),
22016 (unsigned long) value);
22017 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
22018 newval |= rd << 8;
22019 newval |= value >> 2;
22020 }
22021 else if (rs == rd)
22022 {
22023 if (value & ~0xff)
22024 as_bad_where (fixP->fx_file, fixP->fx_line,
22025 _("immediate value out of range"));
22026 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
22027 newval |= (rd << 8) | value;
22028 }
22029 else
22030 {
22031 if (value & ~0x7)
22032 as_bad_where (fixP->fx_file, fixP->fx_line,
22033 _("immediate value out of range"));
22034 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
22035 newval |= rd | (rs << 3) | (value << 6);
22036 }
22037 }
22038 md_number_to_chars (buf, newval, THUMB_SIZE);
22039 break;
22040
22041 case BFD_RELOC_ARM_THUMB_IMM:
22042 newval = md_chars_to_number (buf, THUMB_SIZE);
22043 if (value < 0 || value > 255)
22044 as_bad_where (fixP->fx_file, fixP->fx_line,
22045 _("invalid immediate: %ld is out of range"),
22046 (long) value);
22047 newval |= value;
22048 md_number_to_chars (buf, newval, THUMB_SIZE);
22049 break;
22050
22051 case BFD_RELOC_ARM_THUMB_SHIFT:
22052 /* 5bit shift value (0..32). LSL cannot take 32. */
22053 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
22054 temp = newval & 0xf800;
22055 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
22056 as_bad_where (fixP->fx_file, fixP->fx_line,
22057 _("invalid shift value: %ld"), (long) value);
22058 /* Shifts of zero must be encoded as LSL. */
22059 if (value == 0)
22060 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
22061 /* Shifts of 32 are encoded as zero. */
22062 else if (value == 32)
22063 value = 0;
22064 newval |= value << 6;
22065 md_number_to_chars (buf, newval, THUMB_SIZE);
22066 break;
22067
22068 case BFD_RELOC_VTABLE_INHERIT:
22069 case BFD_RELOC_VTABLE_ENTRY:
22070 fixP->fx_done = 0;
22071 return;
22072
22073 case BFD_RELOC_ARM_MOVW:
22074 case BFD_RELOC_ARM_MOVT:
22075 case BFD_RELOC_ARM_THUMB_MOVW:
22076 case BFD_RELOC_ARM_THUMB_MOVT:
22077 if (fixP->fx_done || !seg->use_rela_p)
22078 {
22079 /* REL format relocations are limited to a 16-bit addend. */
22080 if (!fixP->fx_done)
22081 {
22082 if (value < -0x8000 || value > 0x7fff)
22083 as_bad_where (fixP->fx_file, fixP->fx_line,
22084 _("offset out of range"));
22085 }
22086 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22087 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22088 {
22089 value >>= 16;
22090 }
22091
22092 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22093 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22094 {
22095 newval = get_thumb32_insn (buf);
22096 newval &= 0xfbf08f00;
22097 newval |= (value & 0xf000) << 4;
22098 newval |= (value & 0x0800) << 15;
22099 newval |= (value & 0x0700) << 4;
22100 newval |= (value & 0x00ff);
22101 put_thumb32_insn (buf, newval);
22102 }
22103 else
22104 {
22105 newval = md_chars_to_number (buf, 4);
22106 newval &= 0xfff0f000;
22107 newval |= value & 0x0fff;
22108 newval |= (value & 0xf000) << 4;
22109 md_number_to_chars (buf, newval, 4);
22110 }
22111 }
22112 return;
22113
22114 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22115 case BFD_RELOC_ARM_ALU_PC_G0:
22116 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22117 case BFD_RELOC_ARM_ALU_PC_G1:
22118 case BFD_RELOC_ARM_ALU_PC_G2:
22119 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22120 case BFD_RELOC_ARM_ALU_SB_G0:
22121 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22122 case BFD_RELOC_ARM_ALU_SB_G1:
22123 case BFD_RELOC_ARM_ALU_SB_G2:
22124 gas_assert (!fixP->fx_done);
22125 if (!seg->use_rela_p)
22126 {
22127 bfd_vma insn;
22128 bfd_vma encoded_addend;
22129 bfd_vma addend_abs = abs (value);
22130
22131 /* Check that the absolute value of the addend can be
22132 expressed as an 8-bit constant plus a rotation. */
22133 encoded_addend = encode_arm_immediate (addend_abs);
22134 if (encoded_addend == (unsigned int) FAIL)
22135 as_bad_where (fixP->fx_file, fixP->fx_line,
22136 _("the offset 0x%08lX is not representable"),
22137 (unsigned long) addend_abs);
22138
22139 /* Extract the instruction. */
22140 insn = md_chars_to_number (buf, INSN_SIZE);
22141
22142 /* If the addend is positive, use an ADD instruction.
22143 Otherwise use a SUB. Take care not to destroy the S bit. */
22144 insn &= 0xff1fffff;
22145 if (value < 0)
22146 insn |= 1 << 22;
22147 else
22148 insn |= 1 << 23;
22149
22150 /* Place the encoded addend into the first 12 bits of the
22151 instruction. */
22152 insn &= 0xfffff000;
22153 insn |= encoded_addend;
22154
22155 /* Update the instruction. */
22156 md_number_to_chars (buf, insn, INSN_SIZE);
22157 }
22158 break;
22159
22160 case BFD_RELOC_ARM_LDR_PC_G0:
22161 case BFD_RELOC_ARM_LDR_PC_G1:
22162 case BFD_RELOC_ARM_LDR_PC_G2:
22163 case BFD_RELOC_ARM_LDR_SB_G0:
22164 case BFD_RELOC_ARM_LDR_SB_G1:
22165 case BFD_RELOC_ARM_LDR_SB_G2:
22166 gas_assert (!fixP->fx_done);
22167 if (!seg->use_rela_p)
22168 {
22169 bfd_vma insn;
22170 bfd_vma addend_abs = abs (value);
22171
22172 /* Check that the absolute value of the addend can be
22173 encoded in 12 bits. */
22174 if (addend_abs >= 0x1000)
22175 as_bad_where (fixP->fx_file, fixP->fx_line,
22176 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
22177 (unsigned long) addend_abs);
22178
22179 /* Extract the instruction. */
22180 insn = md_chars_to_number (buf, INSN_SIZE);
22181
22182 /* If the addend is negative, clear bit 23 of the instruction.
22183 Otherwise set it. */
22184 if (value < 0)
22185 insn &= ~(1 << 23);
22186 else
22187 insn |= 1 << 23;
22188
22189 /* Place the absolute value of the addend into the first 12 bits
22190 of the instruction. */
22191 insn &= 0xfffff000;
22192 insn |= addend_abs;
22193
22194 /* Update the instruction. */
22195 md_number_to_chars (buf, insn, INSN_SIZE);
22196 }
22197 break;
22198
22199 case BFD_RELOC_ARM_LDRS_PC_G0:
22200 case BFD_RELOC_ARM_LDRS_PC_G1:
22201 case BFD_RELOC_ARM_LDRS_PC_G2:
22202 case BFD_RELOC_ARM_LDRS_SB_G0:
22203 case BFD_RELOC_ARM_LDRS_SB_G1:
22204 case BFD_RELOC_ARM_LDRS_SB_G2:
22205 gas_assert (!fixP->fx_done);
22206 if (!seg->use_rela_p)
22207 {
22208 bfd_vma insn;
22209 bfd_vma addend_abs = abs (value);
22210
22211 /* Check that the absolute value of the addend can be
22212 encoded in 8 bits. */
22213 if (addend_abs >= 0x100)
22214 as_bad_where (fixP->fx_file, fixP->fx_line,
22215 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
22216 (unsigned long) addend_abs);
22217
22218 /* Extract the instruction. */
22219 insn = md_chars_to_number (buf, INSN_SIZE);
22220
22221 /* If the addend is negative, clear bit 23 of the instruction.
22222 Otherwise set it. */
22223 if (value < 0)
22224 insn &= ~(1 << 23);
22225 else
22226 insn |= 1 << 23;
22227
22228 /* Place the first four bits of the absolute value of the addend
22229 into the first 4 bits of the instruction, and the remaining
22230 four into bits 8 .. 11. */
22231 insn &= 0xfffff0f0;
22232 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
22233
22234 /* Update the instruction. */
22235 md_number_to_chars (buf, insn, INSN_SIZE);
22236 }
22237 break;
22238
22239 case BFD_RELOC_ARM_LDC_PC_G0:
22240 case BFD_RELOC_ARM_LDC_PC_G1:
22241 case BFD_RELOC_ARM_LDC_PC_G2:
22242 case BFD_RELOC_ARM_LDC_SB_G0:
22243 case BFD_RELOC_ARM_LDC_SB_G1:
22244 case BFD_RELOC_ARM_LDC_SB_G2:
22245 gas_assert (!fixP->fx_done);
22246 if (!seg->use_rela_p)
22247 {
22248 bfd_vma insn;
22249 bfd_vma addend_abs = abs (value);
22250
22251 /* Check that the absolute value of the addend is a multiple of
22252 four and, when divided by four, fits in 8 bits. */
22253 if (addend_abs & 0x3)
22254 as_bad_where (fixP->fx_file, fixP->fx_line,
22255 _("bad offset 0x%08lX (must be word-aligned)"),
22256 (unsigned long) addend_abs);
22257
22258 if ((addend_abs >> 2) > 0xff)
22259 as_bad_where (fixP->fx_file, fixP->fx_line,
22260 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
22261 (unsigned long) addend_abs);
22262
22263 /* Extract the instruction. */
22264 insn = md_chars_to_number (buf, INSN_SIZE);
22265
22266 /* If the addend is negative, clear bit 23 of the instruction.
22267 Otherwise set it. */
22268 if (value < 0)
22269 insn &= ~(1 << 23);
22270 else
22271 insn |= 1 << 23;
22272
22273 /* Place the addend (divided by four) into the first eight
22274 bits of the instruction. */
22275 insn &= 0xfffffff0;
22276 insn |= addend_abs >> 2;
22277
22278 /* Update the instruction. */
22279 md_number_to_chars (buf, insn, INSN_SIZE);
22280 }
22281 break;
22282
22283 case BFD_RELOC_ARM_V4BX:
22284 /* This will need to go in the object file. */
22285 fixP->fx_done = 0;
22286 break;
22287
22288 case BFD_RELOC_UNUSED:
22289 default:
22290 as_bad_where (fixP->fx_file, fixP->fx_line,
22291 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22292 }
22293 }
22294
22295 /* Translate internal representation of relocation info to BFD target
22296 format. */
22297
22298 arelent *
22299 tc_gen_reloc (asection *section, fixS *fixp)
22300 {
22301 arelent * reloc;
22302 bfd_reloc_code_real_type code;
22303
22304 reloc = (arelent *) xmalloc (sizeof (arelent));
22305
22306 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
22307 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22308 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
22309
22310 if (fixp->fx_pcrel)
22311 {
22312 if (section->use_rela_p)
22313 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22314 else
22315 fixp->fx_offset = reloc->address;
22316 }
22317 reloc->addend = fixp->fx_offset;
22318
22319 switch (fixp->fx_r_type)
22320 {
22321 case BFD_RELOC_8:
22322 if (fixp->fx_pcrel)
22323 {
22324 code = BFD_RELOC_8_PCREL;
22325 break;
22326 }
22327
22328 case BFD_RELOC_16:
22329 if (fixp->fx_pcrel)
22330 {
22331 code = BFD_RELOC_16_PCREL;
22332 break;
22333 }
22334
22335 case BFD_RELOC_32:
22336 if (fixp->fx_pcrel)
22337 {
22338 code = BFD_RELOC_32_PCREL;
22339 break;
22340 }
22341
22342 case BFD_RELOC_ARM_MOVW:
22343 if (fixp->fx_pcrel)
22344 {
22345 code = BFD_RELOC_ARM_MOVW_PCREL;
22346 break;
22347 }
22348
22349 case BFD_RELOC_ARM_MOVT:
22350 if (fixp->fx_pcrel)
22351 {
22352 code = BFD_RELOC_ARM_MOVT_PCREL;
22353 break;
22354 }
22355
22356 case BFD_RELOC_ARM_THUMB_MOVW:
22357 if (fixp->fx_pcrel)
22358 {
22359 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22360 break;
22361 }
22362
22363 case BFD_RELOC_ARM_THUMB_MOVT:
22364 if (fixp->fx_pcrel)
22365 {
22366 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22367 break;
22368 }
22369
22370 case BFD_RELOC_NONE:
22371 case BFD_RELOC_ARM_PCREL_BRANCH:
22372 case BFD_RELOC_ARM_PCREL_BLX:
22373 case BFD_RELOC_RVA:
22374 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22375 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22376 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22377 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22378 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22379 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22380 case BFD_RELOC_VTABLE_ENTRY:
22381 case BFD_RELOC_VTABLE_INHERIT:
22382 #ifdef TE_PE
22383 case BFD_RELOC_32_SECREL:
22384 #endif
22385 code = fixp->fx_r_type;
22386 break;
22387
22388 case BFD_RELOC_THUMB_PCREL_BLX:
22389 #ifdef OBJ_ELF
22390 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22391 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22392 else
22393 #endif
22394 code = BFD_RELOC_THUMB_PCREL_BLX;
22395 break;
22396
22397 case BFD_RELOC_ARM_LITERAL:
22398 case BFD_RELOC_ARM_HWLITERAL:
22399 /* If this is called then the a literal has
22400 been referenced across a section boundary. */
22401 as_bad_where (fixp->fx_file, fixp->fx_line,
22402 _("literal referenced across section boundary"));
22403 return NULL;
22404
22405 #ifdef OBJ_ELF
22406 case BFD_RELOC_ARM_TLS_CALL:
22407 case BFD_RELOC_ARM_THM_TLS_CALL:
22408 case BFD_RELOC_ARM_TLS_DESCSEQ:
22409 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22410 case BFD_RELOC_ARM_GOT32:
22411 case BFD_RELOC_ARM_GOTOFF:
22412 case BFD_RELOC_ARM_GOT_PREL:
22413 case BFD_RELOC_ARM_PLT32:
22414 case BFD_RELOC_ARM_TARGET1:
22415 case BFD_RELOC_ARM_ROSEGREL32:
22416 case BFD_RELOC_ARM_SBREL32:
22417 case BFD_RELOC_ARM_PREL31:
22418 case BFD_RELOC_ARM_TARGET2:
22419 case BFD_RELOC_ARM_TLS_LE32:
22420 case BFD_RELOC_ARM_TLS_LDO32:
22421 case BFD_RELOC_ARM_PCREL_CALL:
22422 case BFD_RELOC_ARM_PCREL_JUMP:
22423 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22424 case BFD_RELOC_ARM_ALU_PC_G0:
22425 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22426 case BFD_RELOC_ARM_ALU_PC_G1:
22427 case BFD_RELOC_ARM_ALU_PC_G2:
22428 case BFD_RELOC_ARM_LDR_PC_G0:
22429 case BFD_RELOC_ARM_LDR_PC_G1:
22430 case BFD_RELOC_ARM_LDR_PC_G2:
22431 case BFD_RELOC_ARM_LDRS_PC_G0:
22432 case BFD_RELOC_ARM_LDRS_PC_G1:
22433 case BFD_RELOC_ARM_LDRS_PC_G2:
22434 case BFD_RELOC_ARM_LDC_PC_G0:
22435 case BFD_RELOC_ARM_LDC_PC_G1:
22436 case BFD_RELOC_ARM_LDC_PC_G2:
22437 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22438 case BFD_RELOC_ARM_ALU_SB_G0:
22439 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22440 case BFD_RELOC_ARM_ALU_SB_G1:
22441 case BFD_RELOC_ARM_ALU_SB_G2:
22442 case BFD_RELOC_ARM_LDR_SB_G0:
22443 case BFD_RELOC_ARM_LDR_SB_G1:
22444 case BFD_RELOC_ARM_LDR_SB_G2:
22445 case BFD_RELOC_ARM_LDRS_SB_G0:
22446 case BFD_RELOC_ARM_LDRS_SB_G1:
22447 case BFD_RELOC_ARM_LDRS_SB_G2:
22448 case BFD_RELOC_ARM_LDC_SB_G0:
22449 case BFD_RELOC_ARM_LDC_SB_G1:
22450 case BFD_RELOC_ARM_LDC_SB_G2:
22451 case BFD_RELOC_ARM_V4BX:
22452 code = fixp->fx_r_type;
22453 break;
22454
22455 case BFD_RELOC_ARM_TLS_GOTDESC:
22456 case BFD_RELOC_ARM_TLS_GD32:
22457 case BFD_RELOC_ARM_TLS_IE32:
22458 case BFD_RELOC_ARM_TLS_LDM32:
22459 /* BFD will include the symbol's address in the addend.
22460 But we don't want that, so subtract it out again here. */
22461 if (!S_IS_COMMON (fixp->fx_addsy))
22462 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22463 code = fixp->fx_r_type;
22464 break;
22465 #endif
22466
22467 case BFD_RELOC_ARM_IMMEDIATE:
22468 as_bad_where (fixp->fx_file, fixp->fx_line,
22469 _("internal relocation (type: IMMEDIATE) not fixed up"));
22470 return NULL;
22471
22472 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22473 as_bad_where (fixp->fx_file, fixp->fx_line,
22474 _("ADRL used for a symbol not defined in the same file"));
22475 return NULL;
22476
22477 case BFD_RELOC_ARM_OFFSET_IMM:
22478 if (section->use_rela_p)
22479 {
22480 code = fixp->fx_r_type;
22481 break;
22482 }
22483
22484 if (fixp->fx_addsy != NULL
22485 && !S_IS_DEFINED (fixp->fx_addsy)
22486 && S_IS_LOCAL (fixp->fx_addsy))
22487 {
22488 as_bad_where (fixp->fx_file, fixp->fx_line,
22489 _("undefined local label `%s'"),
22490 S_GET_NAME (fixp->fx_addsy));
22491 return NULL;
22492 }
22493
22494 as_bad_where (fixp->fx_file, fixp->fx_line,
22495 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22496 return NULL;
22497
22498 default:
22499 {
22500 char * type;
22501
22502 switch (fixp->fx_r_type)
22503 {
22504 case BFD_RELOC_NONE: type = "NONE"; break;
22505 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22506 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
22507 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
22508 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22509 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22510 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
22511 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
22512 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
22513 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22514 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22515 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22516 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22517 default: type = _("<unknown>"); break;
22518 }
22519 as_bad_where (fixp->fx_file, fixp->fx_line,
22520 _("cannot represent %s relocation in this object file format"),
22521 type);
22522 return NULL;
22523 }
22524 }
22525
22526 #ifdef OBJ_ELF
22527 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22528 && GOT_symbol
22529 && fixp->fx_addsy == GOT_symbol)
22530 {
22531 code = BFD_RELOC_ARM_GOTPC;
22532 reloc->addend = fixp->fx_offset = reloc->address;
22533 }
22534 #endif
22535
22536 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
22537
22538 if (reloc->howto == NULL)
22539 {
22540 as_bad_where (fixp->fx_file, fixp->fx_line,
22541 _("cannot represent %s relocation in this object file format"),
22542 bfd_get_reloc_code_name (code));
22543 return NULL;
22544 }
22545
22546 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22547 vtable entry to be used in the relocation's section offset. */
22548 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22549 reloc->address = fixp->fx_offset;
22550
22551 return reloc;
22552 }
22553
22554 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
22555
22556 void
22557 cons_fix_new_arm (fragS * frag,
22558 int where,
22559 int size,
22560 expressionS * exp)
22561 {
22562 bfd_reloc_code_real_type type;
22563 int pcrel = 0;
22564
22565 /* Pick a reloc.
22566 FIXME: @@ Should look at CPU word size. */
22567 switch (size)
22568 {
22569 case 1:
22570 type = BFD_RELOC_8;
22571 break;
22572 case 2:
22573 type = BFD_RELOC_16;
22574 break;
22575 case 4:
22576 default:
22577 type = BFD_RELOC_32;
22578 break;
22579 case 8:
22580 type = BFD_RELOC_64;
22581 break;
22582 }
22583
22584 #ifdef TE_PE
22585 if (exp->X_op == O_secrel)
22586 {
22587 exp->X_op = O_symbol;
22588 type = BFD_RELOC_32_SECREL;
22589 }
22590 #endif
22591
22592 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22593 }
22594
22595 #if defined (OBJ_COFF)
22596 void
22597 arm_validate_fix (fixS * fixP)
22598 {
22599 /* If the destination of the branch is a defined symbol which does not have
22600 the THUMB_FUNC attribute, then we must be calling a function which has
22601 the (interfacearm) attribute. We look for the Thumb entry point to that
22602 function and change the branch to refer to that function instead. */
22603 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22604 && fixP->fx_addsy != NULL
22605 && S_IS_DEFINED (fixP->fx_addsy)
22606 && ! THUMB_IS_FUNC (fixP->fx_addsy))
22607 {
22608 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
22609 }
22610 }
22611 #endif
22612
22613
22614 int
22615 arm_force_relocation (struct fix * fixp)
22616 {
22617 #if defined (OBJ_COFF) && defined (TE_PE)
22618 if (fixp->fx_r_type == BFD_RELOC_RVA)
22619 return 1;
22620 #endif
22621
22622 /* In case we have a call or a branch to a function in ARM ISA mode from
22623 a thumb function or vice-versa force the relocation. These relocations
22624 are cleared off for some cores that might have blx and simple transformations
22625 are possible. */
22626
22627 #ifdef OBJ_ELF
22628 switch (fixp->fx_r_type)
22629 {
22630 case BFD_RELOC_ARM_PCREL_JUMP:
22631 case BFD_RELOC_ARM_PCREL_CALL:
22632 case BFD_RELOC_THUMB_PCREL_BLX:
22633 if (THUMB_IS_FUNC (fixp->fx_addsy))
22634 return 1;
22635 break;
22636
22637 case BFD_RELOC_ARM_PCREL_BLX:
22638 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22639 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22640 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22641 if (ARM_IS_FUNC (fixp->fx_addsy))
22642 return 1;
22643 break;
22644
22645 default:
22646 break;
22647 }
22648 #endif
22649
22650 /* Resolve these relocations even if the symbol is extern or weak.
22651 Technically this is probably wrong due to symbol preemption.
22652 In practice these relocations do not have enough range to be useful
22653 at dynamic link time, and some code (e.g. in the Linux kernel)
22654 expects these references to be resolved. */
22655 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22656 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
22657 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
22658 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
22659 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22660 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22661 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
22662 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
22663 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22664 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
22665 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22666 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22667 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22668 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
22669 return 0;
22670
22671 /* Always leave these relocations for the linker. */
22672 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22673 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22674 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22675 return 1;
22676
22677 /* Always generate relocations against function symbols. */
22678 if (fixp->fx_r_type == BFD_RELOC_32
22679 && fixp->fx_addsy
22680 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22681 return 1;
22682
22683 return generic_force_reloc (fixp);
22684 }
22685
22686 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22687 /* Relocations against function names must be left unadjusted,
22688 so that the linker can use this information to generate interworking
22689 stubs. The MIPS version of this function
22690 also prevents relocations that are mips-16 specific, but I do not
22691 know why it does this.
22692
22693 FIXME:
22694 There is one other problem that ought to be addressed here, but
22695 which currently is not: Taking the address of a label (rather
22696 than a function) and then later jumping to that address. Such
22697 addresses also ought to have their bottom bit set (assuming that
22698 they reside in Thumb code), but at the moment they will not. */
22699
22700 bfd_boolean
22701 arm_fix_adjustable (fixS * fixP)
22702 {
22703 if (fixP->fx_addsy == NULL)
22704 return 1;
22705
22706 /* Preserve relocations against symbols with function type. */
22707 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
22708 return FALSE;
22709
22710 if (THUMB_IS_FUNC (fixP->fx_addsy)
22711 && fixP->fx_subsy == NULL)
22712 return FALSE;
22713
22714 /* We need the symbol name for the VTABLE entries. */
22715 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22716 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22717 return FALSE;
22718
22719 /* Don't allow symbols to be discarded on GOT related relocs. */
22720 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22721 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22722 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22723 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22724 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22725 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22726 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22727 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
22728 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22729 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22730 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22731 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22732 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
22733 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
22734 return FALSE;
22735
22736 /* Similarly for group relocations. */
22737 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22738 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22739 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22740 return FALSE;
22741
22742 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22743 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22744 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22745 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22746 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22747 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22748 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22749 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22750 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
22751 return FALSE;
22752
22753 return TRUE;
22754 }
22755 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22756
22757 #ifdef OBJ_ELF
22758
22759 const char *
22760 elf32_arm_target_format (void)
22761 {
22762 #ifdef TE_SYMBIAN
22763 return (target_big_endian
22764 ? "elf32-bigarm-symbian"
22765 : "elf32-littlearm-symbian");
22766 #elif defined (TE_VXWORKS)
22767 return (target_big_endian
22768 ? "elf32-bigarm-vxworks"
22769 : "elf32-littlearm-vxworks");
22770 #elif defined (TE_NACL)
22771 return (target_big_endian
22772 ? "elf32-bigarm-nacl"
22773 : "elf32-littlearm-nacl");
22774 #else
22775 if (target_big_endian)
22776 return "elf32-bigarm";
22777 else
22778 return "elf32-littlearm";
22779 #endif
22780 }
22781
22782 void
22783 armelf_frob_symbol (symbolS * symp,
22784 int * puntp)
22785 {
22786 elf_frob_symbol (symp, puntp);
22787 }
22788 #endif
22789
22790 /* MD interface: Finalization. */
22791
22792 void
22793 arm_cleanup (void)
22794 {
22795 literal_pool * pool;
22796
22797 /* Ensure that all the IT blocks are properly closed. */
22798 check_it_blocks_finished ();
22799
22800 for (pool = list_of_pools; pool; pool = pool->next)
22801 {
22802 /* Put it at the end of the relevant section. */
22803 subseg_set (pool->section, pool->sub_section);
22804 #ifdef OBJ_ELF
22805 arm_elf_change_section ();
22806 #endif
22807 s_ltorg (0);
22808 }
22809 }
22810
22811 #ifdef OBJ_ELF
22812 /* Remove any excess mapping symbols generated for alignment frags in
22813 SEC. We may have created a mapping symbol before a zero byte
22814 alignment; remove it if there's a mapping symbol after the
22815 alignment. */
22816 static void
22817 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22818 void *dummy ATTRIBUTE_UNUSED)
22819 {
22820 segment_info_type *seginfo = seg_info (sec);
22821 fragS *fragp;
22822
22823 if (seginfo == NULL || seginfo->frchainP == NULL)
22824 return;
22825
22826 for (fragp = seginfo->frchainP->frch_root;
22827 fragp != NULL;
22828 fragp = fragp->fr_next)
22829 {
22830 symbolS *sym = fragp->tc_frag_data.last_map;
22831 fragS *next = fragp->fr_next;
22832
22833 /* Variable-sized frags have been converted to fixed size by
22834 this point. But if this was variable-sized to start with,
22835 there will be a fixed-size frag after it. So don't handle
22836 next == NULL. */
22837 if (sym == NULL || next == NULL)
22838 continue;
22839
22840 if (S_GET_VALUE (sym) < next->fr_address)
22841 /* Not at the end of this frag. */
22842 continue;
22843 know (S_GET_VALUE (sym) == next->fr_address);
22844
22845 do
22846 {
22847 if (next->tc_frag_data.first_map != NULL)
22848 {
22849 /* Next frag starts with a mapping symbol. Discard this
22850 one. */
22851 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22852 break;
22853 }
22854
22855 if (next->fr_next == NULL)
22856 {
22857 /* This mapping symbol is at the end of the section. Discard
22858 it. */
22859 know (next->fr_fix == 0 && next->fr_var == 0);
22860 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22861 break;
22862 }
22863
22864 /* As long as we have empty frags without any mapping symbols,
22865 keep looking. */
22866 /* If the next frag is non-empty and does not start with a
22867 mapping symbol, then this mapping symbol is required. */
22868 if (next->fr_address != next->fr_next->fr_address)
22869 break;
22870
22871 next = next->fr_next;
22872 }
22873 while (next != NULL);
22874 }
22875 }
22876 #endif
22877
22878 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22879 ARM ones. */
22880
22881 void
22882 arm_adjust_symtab (void)
22883 {
22884 #ifdef OBJ_COFF
22885 symbolS * sym;
22886
22887 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22888 {
22889 if (ARM_IS_THUMB (sym))
22890 {
22891 if (THUMB_IS_FUNC (sym))
22892 {
22893 /* Mark the symbol as a Thumb function. */
22894 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22895 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22896 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
22897
22898 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22899 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22900 else
22901 as_bad (_("%s: unexpected function type: %d"),
22902 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22903 }
22904 else switch (S_GET_STORAGE_CLASS (sym))
22905 {
22906 case C_EXT:
22907 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22908 break;
22909 case C_STAT:
22910 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22911 break;
22912 case C_LABEL:
22913 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22914 break;
22915 default:
22916 /* Do nothing. */
22917 break;
22918 }
22919 }
22920
22921 if (ARM_IS_INTERWORK (sym))
22922 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
22923 }
22924 #endif
22925 #ifdef OBJ_ELF
22926 symbolS * sym;
22927 char bind;
22928
22929 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22930 {
22931 if (ARM_IS_THUMB (sym))
22932 {
22933 elf_symbol_type * elf_sym;
22934
22935 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22936 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22937
22938 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22939 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22940 {
22941 /* If it's a .thumb_func, declare it as so,
22942 otherwise tag label as .code 16. */
22943 if (THUMB_IS_FUNC (sym))
22944 elf_sym->internal_elf_sym.st_target_internal
22945 = ST_BRANCH_TO_THUMB;
22946 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22947 elf_sym->internal_elf_sym.st_info =
22948 ELF_ST_INFO (bind, STT_ARM_16BIT);
22949 }
22950 }
22951 }
22952
22953 /* Remove any overlapping mapping symbols generated by alignment frags. */
22954 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22955 /* Now do generic ELF adjustments. */
22956 elf_adjust_symtab ();
22957 #endif
22958 }
22959
22960 /* MD interface: Initialization. */
22961
22962 static void
22963 set_constant_flonums (void)
22964 {
22965 int i;
22966
22967 for (i = 0; i < NUM_FLOAT_VALS; i++)
22968 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22969 abort ();
22970 }
22971
22972 /* Auto-select Thumb mode if it's the only available instruction set for the
22973 given architecture. */
22974
22975 static void
22976 autoselect_thumb_from_cpu_variant (void)
22977 {
22978 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22979 opcode_select (16);
22980 }
22981
22982 void
22983 md_begin (void)
22984 {
22985 unsigned mach;
22986 unsigned int i;
22987
22988 if ( (arm_ops_hsh = hash_new ()) == NULL
22989 || (arm_cond_hsh = hash_new ()) == NULL
22990 || (arm_shift_hsh = hash_new ()) == NULL
22991 || (arm_psr_hsh = hash_new ()) == NULL
22992 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22993 || (arm_reg_hsh = hash_new ()) == NULL
22994 || (arm_reloc_hsh = hash_new ()) == NULL
22995 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22996 as_fatal (_("virtual memory exhausted"));
22997
22998 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22999 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
23000 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
23001 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
23002 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
23003 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
23004 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
23005 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
23006 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
23007 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
23008 (void *) (v7m_psrs + i));
23009 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
23010 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
23011 for (i = 0;
23012 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
23013 i++)
23014 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
23015 (void *) (barrier_opt_names + i));
23016 #ifdef OBJ_ELF
23017 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
23018 {
23019 struct reloc_entry * entry = reloc_names + i;
23020
23021 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
23022 /* This makes encode_branch() use the EABI versions of this relocation. */
23023 entry->reloc = BFD_RELOC_UNUSED;
23024
23025 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
23026 }
23027 #endif
23028
23029 set_constant_flonums ();
23030
23031 /* Set the cpu variant based on the command-line options. We prefer
23032 -mcpu= over -march= if both are set (as for GCC); and we prefer
23033 -mfpu= over any other way of setting the floating point unit.
23034 Use of legacy options with new options are faulted. */
23035 if (legacy_cpu)
23036 {
23037 if (mcpu_cpu_opt || march_cpu_opt)
23038 as_bad (_("use of old and new-style options to set CPU type"));
23039
23040 mcpu_cpu_opt = legacy_cpu;
23041 }
23042 else if (!mcpu_cpu_opt)
23043 mcpu_cpu_opt = march_cpu_opt;
23044
23045 if (legacy_fpu)
23046 {
23047 if (mfpu_opt)
23048 as_bad (_("use of old and new-style options to set FPU type"));
23049
23050 mfpu_opt = legacy_fpu;
23051 }
23052 else if (!mfpu_opt)
23053 {
23054 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
23055 || defined (TE_NetBSD) || defined (TE_VXWORKS))
23056 /* Some environments specify a default FPU. If they don't, infer it
23057 from the processor. */
23058 if (mcpu_fpu_opt)
23059 mfpu_opt = mcpu_fpu_opt;
23060 else
23061 mfpu_opt = march_fpu_opt;
23062 #else
23063 mfpu_opt = &fpu_default;
23064 #endif
23065 }
23066
23067 if (!mfpu_opt)
23068 {
23069 if (mcpu_cpu_opt != NULL)
23070 mfpu_opt = &fpu_default;
23071 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
23072 mfpu_opt = &fpu_arch_vfp_v2;
23073 else
23074 mfpu_opt = &fpu_arch_fpa;
23075 }
23076
23077 #ifdef CPU_DEFAULT
23078 if (!mcpu_cpu_opt)
23079 {
23080 mcpu_cpu_opt = &cpu_default;
23081 selected_cpu = cpu_default;
23082 }
23083 #else
23084 if (mcpu_cpu_opt)
23085 selected_cpu = *mcpu_cpu_opt;
23086 else
23087 mcpu_cpu_opt = &arm_arch_any;
23088 #endif
23089
23090 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23091
23092 autoselect_thumb_from_cpu_variant ();
23093
23094 arm_arch_used = thumb_arch_used = arm_arch_none;
23095
23096 #if defined OBJ_COFF || defined OBJ_ELF
23097 {
23098 unsigned int flags = 0;
23099
23100 #if defined OBJ_ELF
23101 flags = meabi_flags;
23102
23103 switch (meabi_flags)
23104 {
23105 case EF_ARM_EABI_UNKNOWN:
23106 #endif
23107 /* Set the flags in the private structure. */
23108 if (uses_apcs_26) flags |= F_APCS26;
23109 if (support_interwork) flags |= F_INTERWORK;
23110 if (uses_apcs_float) flags |= F_APCS_FLOAT;
23111 if (pic_code) flags |= F_PIC;
23112 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
23113 flags |= F_SOFT_FLOAT;
23114
23115 switch (mfloat_abi_opt)
23116 {
23117 case ARM_FLOAT_ABI_SOFT:
23118 case ARM_FLOAT_ABI_SOFTFP:
23119 flags |= F_SOFT_FLOAT;
23120 break;
23121
23122 case ARM_FLOAT_ABI_HARD:
23123 if (flags & F_SOFT_FLOAT)
23124 as_bad (_("hard-float conflicts with specified fpu"));
23125 break;
23126 }
23127
23128 /* Using pure-endian doubles (even if soft-float). */
23129 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
23130 flags |= F_VFP_FLOAT;
23131
23132 #if defined OBJ_ELF
23133 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
23134 flags |= EF_ARM_MAVERICK_FLOAT;
23135 break;
23136
23137 case EF_ARM_EABI_VER4:
23138 case EF_ARM_EABI_VER5:
23139 /* No additional flags to set. */
23140 break;
23141
23142 default:
23143 abort ();
23144 }
23145 #endif
23146 bfd_set_private_flags (stdoutput, flags);
23147
23148 /* We have run out flags in the COFF header to encode the
23149 status of ATPCS support, so instead we create a dummy,
23150 empty, debug section called .arm.atpcs. */
23151 if (atpcs)
23152 {
23153 asection * sec;
23154
23155 sec = bfd_make_section (stdoutput, ".arm.atpcs");
23156
23157 if (sec != NULL)
23158 {
23159 bfd_set_section_flags
23160 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
23161 bfd_set_section_size (stdoutput, sec, 0);
23162 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
23163 }
23164 }
23165 }
23166 #endif
23167
23168 /* Record the CPU type as well. */
23169 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
23170 mach = bfd_mach_arm_iWMMXt2;
23171 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
23172 mach = bfd_mach_arm_iWMMXt;
23173 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
23174 mach = bfd_mach_arm_XScale;
23175 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
23176 mach = bfd_mach_arm_ep9312;
23177 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
23178 mach = bfd_mach_arm_5TE;
23179 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
23180 {
23181 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
23182 mach = bfd_mach_arm_5T;
23183 else
23184 mach = bfd_mach_arm_5;
23185 }
23186 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
23187 {
23188 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
23189 mach = bfd_mach_arm_4T;
23190 else
23191 mach = bfd_mach_arm_4;
23192 }
23193 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
23194 mach = bfd_mach_arm_3M;
23195 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
23196 mach = bfd_mach_arm_3;
23197 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
23198 mach = bfd_mach_arm_2a;
23199 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
23200 mach = bfd_mach_arm_2;
23201 else
23202 mach = bfd_mach_arm_unknown;
23203
23204 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
23205 }
23206
23207 /* Command line processing. */
23208
23209 /* md_parse_option
23210 Invocation line includes a switch not recognized by the base assembler.
23211 See if it's a processor-specific option.
23212
23213 This routine is somewhat complicated by the need for backwards
23214 compatibility (since older releases of gcc can't be changed).
23215 The new options try to make the interface as compatible as
23216 possible with GCC.
23217
23218 New options (supported) are:
23219
23220 -mcpu=<cpu name> Assemble for selected processor
23221 -march=<architecture name> Assemble for selected architecture
23222 -mfpu=<fpu architecture> Assemble for selected FPU.
23223 -EB/-mbig-endian Big-endian
23224 -EL/-mlittle-endian Little-endian
23225 -k Generate PIC code
23226 -mthumb Start in Thumb mode
23227 -mthumb-interwork Code supports ARM/Thumb interworking
23228
23229 -m[no-]warn-deprecated Warn about deprecated features
23230
23231 For now we will also provide support for:
23232
23233 -mapcs-32 32-bit Program counter
23234 -mapcs-26 26-bit Program counter
23235 -macps-float Floats passed in FP registers
23236 -mapcs-reentrant Reentrant code
23237 -matpcs
23238 (sometime these will probably be replaced with -mapcs=<list of options>
23239 and -matpcs=<list of options>)
23240
23241 The remaining options are only supported for back-wards compatibility.
23242 Cpu variants, the arm part is optional:
23243 -m[arm]1 Currently not supported.
23244 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
23245 -m[arm]3 Arm 3 processor
23246 -m[arm]6[xx], Arm 6 processors
23247 -m[arm]7[xx][t][[d]m] Arm 7 processors
23248 -m[arm]8[10] Arm 8 processors
23249 -m[arm]9[20][tdmi] Arm 9 processors
23250 -mstrongarm[110[0]] StrongARM processors
23251 -mxscale XScale processors
23252 -m[arm]v[2345[t[e]]] Arm architectures
23253 -mall All (except the ARM1)
23254 FP variants:
23255 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23256 -mfpe-old (No float load/store multiples)
23257 -mvfpxd VFP Single precision
23258 -mvfp All VFP
23259 -mno-fpu Disable all floating point instructions
23260
23261 The following CPU names are recognized:
23262 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23263 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23264 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23265 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23266 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23267 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23268 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
23269
23270 */
23271
23272 const char * md_shortopts = "m:k";
23273
23274 #ifdef ARM_BI_ENDIAN
23275 #define OPTION_EB (OPTION_MD_BASE + 0)
23276 #define OPTION_EL (OPTION_MD_BASE + 1)
23277 #else
23278 #if TARGET_BYTES_BIG_ENDIAN
23279 #define OPTION_EB (OPTION_MD_BASE + 0)
23280 #else
23281 #define OPTION_EL (OPTION_MD_BASE + 1)
23282 #endif
23283 #endif
23284 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
23285
23286 struct option md_longopts[] =
23287 {
23288 #ifdef OPTION_EB
23289 {"EB", no_argument, NULL, OPTION_EB},
23290 #endif
23291 #ifdef OPTION_EL
23292 {"EL", no_argument, NULL, OPTION_EL},
23293 #endif
23294 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
23295 {NULL, no_argument, NULL, 0}
23296 };
23297
23298 size_t md_longopts_size = sizeof (md_longopts);
23299
23300 struct arm_option_table
23301 {
23302 char *option; /* Option name to match. */
23303 char *help; /* Help information. */
23304 int *var; /* Variable to change. */
23305 int value; /* What to change it to. */
23306 char *deprecated; /* If non-null, print this message. */
23307 };
23308
23309 struct arm_option_table arm_opts[] =
23310 {
23311 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23312 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23313 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23314 &support_interwork, 1, NULL},
23315 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23316 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23317 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23318 1, NULL},
23319 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23320 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23321 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23322 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23323 NULL},
23324
23325 /* These are recognized by the assembler, but have no affect on code. */
23326 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23327 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
23328
23329 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23330 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23331 &warn_on_deprecated, 0, NULL},
23332 {NULL, NULL, NULL, 0, NULL}
23333 };
23334
23335 struct arm_legacy_option_table
23336 {
23337 char *option; /* Option name to match. */
23338 const arm_feature_set **var; /* Variable to change. */
23339 const arm_feature_set value; /* What to change it to. */
23340 char *deprecated; /* If non-null, print this message. */
23341 };
23342
23343 const struct arm_legacy_option_table arm_legacy_opts[] =
23344 {
23345 /* DON'T add any new processors to this list -- we want the whole list
23346 to go away... Add them to the processors table instead. */
23347 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23348 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23349 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23350 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23351 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23352 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23353 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23354 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23355 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23356 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23357 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23358 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23359 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23360 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23361 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23362 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23363 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23364 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23365 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23366 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23367 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23368 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23369 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23370 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23371 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23372 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23373 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23374 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23375 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23376 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23377 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23378 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23379 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23380 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23381 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23382 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23383 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23384 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23385 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23386 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23387 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23388 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23389 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23390 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23391 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23392 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23393 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23394 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23395 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23396 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23397 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23398 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23399 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23400 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23401 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23402 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23403 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23404 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23405 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23406 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23407 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23408 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23409 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23410 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23411 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23412 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23413 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23414 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23415 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23416 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
23417 N_("use -mcpu=strongarm110")},
23418 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
23419 N_("use -mcpu=strongarm1100")},
23420 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
23421 N_("use -mcpu=strongarm1110")},
23422 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23423 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23424 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
23425
23426 /* Architecture variants -- don't add any more to this list either. */
23427 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23428 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23429 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23430 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23431 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23432 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23433 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23434 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23435 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23436 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23437 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23438 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23439 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23440 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23441 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23442 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23443 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23444 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23445
23446 /* Floating point variants -- don't add any more to this list either. */
23447 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23448 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23449 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23450 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
23451 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
23452
23453 {NULL, NULL, ARM_ARCH_NONE, NULL}
23454 };
23455
23456 struct arm_cpu_option_table
23457 {
23458 char *name;
23459 size_t name_len;
23460 const arm_feature_set value;
23461 /* For some CPUs we assume an FPU unless the user explicitly sets
23462 -mfpu=... */
23463 const arm_feature_set default_fpu;
23464 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23465 case. */
23466 const char *canonical_name;
23467 };
23468
23469 /* This list should, at a minimum, contain all the cpu names
23470 recognized by GCC. */
23471 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
23472 static const struct arm_cpu_option_table arm_cpus[] =
23473 {
23474 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23475 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23476 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23477 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23478 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23479 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23480 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23481 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23482 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23483 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23484 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23485 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23486 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23487 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23488 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23489 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23490 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23491 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23492 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23493 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23494 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23495 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23496 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23497 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23498 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23499 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23500 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23501 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23502 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23503 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23504 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23505 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23506 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23507 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23508 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23509 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23510 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23511 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23512 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23513 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23514 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23515 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23516 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23517 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23518 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23519 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23520 /* For V5 or later processors we default to using VFP; but the user
23521 should really set the FPU type explicitly. */
23522 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23523 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23524 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23525 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23526 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23527 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23528 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23529 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23530 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23531 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23532 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23533 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23534 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23535 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23536 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23537 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23538 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23539 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23540 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23541 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23542 "ARM1026EJ-S"),
23543 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23544 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23545 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23546 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23547 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23548 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23549 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23550 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23551 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23552 "ARM1136JF-S"),
23553 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23554 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23555 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23556 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23557 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23558 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23559 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23560 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23561 FPU_NONE, "Cortex-A5"),
23562 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23563 FPU_ARCH_NEON_VFP_V4,
23564 "Cortex-A7"),
23565 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23566 ARM_FEATURE (0, FPU_VFP_V3
23567 | FPU_NEON_EXT_V1),
23568 "Cortex-A8"),
23569 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23570 ARM_FEATURE (0, FPU_VFP_V3
23571 | FPU_NEON_EXT_V1),
23572 "Cortex-A9"),
23573 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23574 FPU_ARCH_NEON_VFP_V4,
23575 "Cortex-A15"),
23576 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23577 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23578 "Cortex-R4F"),
23579 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23580 FPU_NONE, "Cortex-R5"),
23581 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23582 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23583 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23584 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
23585 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
23586 /* ??? XSCALE is really an architecture. */
23587 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23588 /* ??? iwmmxt is not a processor. */
23589 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23590 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23591 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23592 /* Maverick */
23593 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23594 FPU_ARCH_MAVERICK,
23595 "ARM920T"),
23596 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
23597 };
23598 #undef ARM_CPU_OPT
23599
23600 struct arm_arch_option_table
23601 {
23602 char *name;
23603 size_t name_len;
23604 const arm_feature_set value;
23605 const arm_feature_set default_fpu;
23606 };
23607
23608 /* This list should, at a minimum, contain all the architecture names
23609 recognized by GCC. */
23610 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
23611 static const struct arm_arch_option_table arm_archs[] =
23612 {
23613 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23614 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23615 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23616 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23617 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23618 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23619 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23620 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23621 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23622 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23623 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23624 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23625 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23626 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23627 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23628 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23629 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23630 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23631 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23632 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23633 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23634 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23635 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23636 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23637 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23638 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23639 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23640 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23641 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
23642 /* The official spelling of the ARMv7 profile variants is the dashed form.
23643 Accept the non-dashed form for compatibility with old toolchains. */
23644 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23645 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23646 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23647 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23648 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23649 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23650 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
23651 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
23652 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23653 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23654 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23655 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23656 };
23657 #undef ARM_ARCH_OPT
23658
23659 /* ISA extensions in the co-processor and main instruction set space. */
23660 struct arm_option_extension_value_table
23661 {
23662 char *name;
23663 size_t name_len;
23664 const arm_feature_set value;
23665 const arm_feature_set allowed_archs;
23666 };
23667
23668 /* The following table must be in alphabetical order with a NULL last entry.
23669 */
23670 #define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
23671 static const struct arm_option_extension_value_table arm_extensions[] =
23672 {
23673 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23674 ARM_FEATURE (ARM_EXT_V8, 0)),
23675 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
23676 ARM_FEATURE (ARM_EXT_V8, 0)),
23677 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23678 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23679 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23680 ARM_EXT_OPT ("iwmmxt2",
23681 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23682 ARM_EXT_OPT ("maverick",
23683 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23684 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23685 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23686 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
23687 ARM_FEATURE (ARM_EXT_V8, 0)),
23688 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23689 ARM_FEATURE (ARM_EXT_V6M, 0)),
23690 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23691 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23692 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23693 | ARM_EXT_DIV, 0),
23694 ARM_FEATURE (ARM_EXT_V7A, 0)),
23695 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23696 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23697 };
23698 #undef ARM_EXT_OPT
23699
23700 /* ISA floating-point and Advanced SIMD extensions. */
23701 struct arm_option_fpu_value_table
23702 {
23703 char *name;
23704 const arm_feature_set value;
23705 };
23706
23707 /* This list should, at a minimum, contain all the fpu names
23708 recognized by GCC. */
23709 static const struct arm_option_fpu_value_table arm_fpus[] =
23710 {
23711 {"softfpa", FPU_NONE},
23712 {"fpe", FPU_ARCH_FPE},
23713 {"fpe2", FPU_ARCH_FPE},
23714 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23715 {"fpa", FPU_ARCH_FPA},
23716 {"fpa10", FPU_ARCH_FPA},
23717 {"fpa11", FPU_ARCH_FPA},
23718 {"arm7500fe", FPU_ARCH_FPA},
23719 {"softvfp", FPU_ARCH_VFP},
23720 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23721 {"vfp", FPU_ARCH_VFP_V2},
23722 {"vfp9", FPU_ARCH_VFP_V2},
23723 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
23724 {"vfp10", FPU_ARCH_VFP_V2},
23725 {"vfp10-r0", FPU_ARCH_VFP_V1},
23726 {"vfpxd", FPU_ARCH_VFP_V1xD},
23727 {"vfpv2", FPU_ARCH_VFP_V2},
23728 {"vfpv3", FPU_ARCH_VFP_V3},
23729 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
23730 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
23731 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23732 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23733 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
23734 {"arm1020t", FPU_ARCH_VFP_V1},
23735 {"arm1020e", FPU_ARCH_VFP_V2},
23736 {"arm1136jfs", FPU_ARCH_VFP_V2},
23737 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23738 {"maverick", FPU_ARCH_MAVERICK},
23739 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
23740 {"neon-fp16", FPU_ARCH_NEON_FP16},
23741 {"vfpv4", FPU_ARCH_VFP_V4},
23742 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
23743 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
23744 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
23745 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
23746 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
23747 {"crypto-neon-fp-armv8",
23748 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
23749 {NULL, ARM_ARCH_NONE}
23750 };
23751
23752 struct arm_option_value_table
23753 {
23754 char *name;
23755 long value;
23756 };
23757
23758 static const struct arm_option_value_table arm_float_abis[] =
23759 {
23760 {"hard", ARM_FLOAT_ABI_HARD},
23761 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23762 {"soft", ARM_FLOAT_ABI_SOFT},
23763 {NULL, 0}
23764 };
23765
23766 #ifdef OBJ_ELF
23767 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23768 static const struct arm_option_value_table arm_eabis[] =
23769 {
23770 {"gnu", EF_ARM_EABI_UNKNOWN},
23771 {"4", EF_ARM_EABI_VER4},
23772 {"5", EF_ARM_EABI_VER5},
23773 {NULL, 0}
23774 };
23775 #endif
23776
23777 struct arm_long_option_table
23778 {
23779 char * option; /* Substring to match. */
23780 char * help; /* Help information. */
23781 int (* func) (char * subopt); /* Function to decode sub-option. */
23782 char * deprecated; /* If non-null, print this message. */
23783 };
23784
23785 static bfd_boolean
23786 arm_parse_extension (char *str, const arm_feature_set **opt_p)
23787 {
23788 arm_feature_set *ext_set = (arm_feature_set *)
23789 xmalloc (sizeof (arm_feature_set));
23790
23791 /* We insist on extensions being specified in alphabetical order, and with
23792 extensions being added before being removed. We achieve this by having
23793 the global ARM_EXTENSIONS table in alphabetical order, and using the
23794 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23795 or removing it (0) and only allowing it to change in the order
23796 -1 -> 1 -> 0. */
23797 const struct arm_option_extension_value_table * opt = NULL;
23798 int adding_value = -1;
23799
23800 /* Copy the feature set, so that we can modify it. */
23801 *ext_set = **opt_p;
23802 *opt_p = ext_set;
23803
23804 while (str != NULL && *str != 0)
23805 {
23806 char *ext;
23807 size_t len;
23808
23809 if (*str != '+')
23810 {
23811 as_bad (_("invalid architectural extension"));
23812 return FALSE;
23813 }
23814
23815 str++;
23816 ext = strchr (str, '+');
23817
23818 if (ext != NULL)
23819 len = ext - str;
23820 else
23821 len = strlen (str);
23822
23823 if (len >= 2 && strncmp (str, "no", 2) == 0)
23824 {
23825 if (adding_value != 0)
23826 {
23827 adding_value = 0;
23828 opt = arm_extensions;
23829 }
23830
23831 len -= 2;
23832 str += 2;
23833 }
23834 else if (len > 0)
23835 {
23836 if (adding_value == -1)
23837 {
23838 adding_value = 1;
23839 opt = arm_extensions;
23840 }
23841 else if (adding_value != 1)
23842 {
23843 as_bad (_("must specify extensions to add before specifying "
23844 "those to remove"));
23845 return FALSE;
23846 }
23847 }
23848
23849 if (len == 0)
23850 {
23851 as_bad (_("missing architectural extension"));
23852 return FALSE;
23853 }
23854
23855 gas_assert (adding_value != -1);
23856 gas_assert (opt != NULL);
23857
23858 /* Scan over the options table trying to find an exact match. */
23859 for (; opt->name != NULL; opt++)
23860 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23861 {
23862 /* Check we can apply the extension to this architecture. */
23863 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23864 {
23865 as_bad (_("extension does not apply to the base architecture"));
23866 return FALSE;
23867 }
23868
23869 /* Add or remove the extension. */
23870 if (adding_value)
23871 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23872 else
23873 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23874
23875 break;
23876 }
23877
23878 if (opt->name == NULL)
23879 {
23880 /* Did we fail to find an extension because it wasn't specified in
23881 alphabetical order, or because it does not exist? */
23882
23883 for (opt = arm_extensions; opt->name != NULL; opt++)
23884 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23885 break;
23886
23887 if (opt->name == NULL)
23888 as_bad (_("unknown architectural extension `%s'"), str);
23889 else
23890 as_bad (_("architectural extensions must be specified in "
23891 "alphabetical order"));
23892
23893 return FALSE;
23894 }
23895 else
23896 {
23897 /* We should skip the extension we've just matched the next time
23898 round. */
23899 opt++;
23900 }
23901
23902 str = ext;
23903 };
23904
23905 return TRUE;
23906 }
23907
23908 static bfd_boolean
23909 arm_parse_cpu (char *str)
23910 {
23911 const struct arm_cpu_option_table *opt;
23912 char *ext = strchr (str, '+');
23913 size_t len;
23914
23915 if (ext != NULL)
23916 len = ext - str;
23917 else
23918 len = strlen (str);
23919
23920 if (len == 0)
23921 {
23922 as_bad (_("missing cpu name `%s'"), str);
23923 return FALSE;
23924 }
23925
23926 for (opt = arm_cpus; opt->name != NULL; opt++)
23927 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23928 {
23929 mcpu_cpu_opt = &opt->value;
23930 mcpu_fpu_opt = &opt->default_fpu;
23931 if (opt->canonical_name)
23932 strcpy (selected_cpu_name, opt->canonical_name);
23933 else
23934 {
23935 size_t i;
23936
23937 for (i = 0; i < len; i++)
23938 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23939 selected_cpu_name[i] = 0;
23940 }
23941
23942 if (ext != NULL)
23943 return arm_parse_extension (ext, &mcpu_cpu_opt);
23944
23945 return TRUE;
23946 }
23947
23948 as_bad (_("unknown cpu `%s'"), str);
23949 return FALSE;
23950 }
23951
23952 static bfd_boolean
23953 arm_parse_arch (char *str)
23954 {
23955 const struct arm_arch_option_table *opt;
23956 char *ext = strchr (str, '+');
23957 size_t len;
23958
23959 if (ext != NULL)
23960 len = ext - str;
23961 else
23962 len = strlen (str);
23963
23964 if (len == 0)
23965 {
23966 as_bad (_("missing architecture name `%s'"), str);
23967 return FALSE;
23968 }
23969
23970 for (opt = arm_archs; opt->name != NULL; opt++)
23971 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23972 {
23973 march_cpu_opt = &opt->value;
23974 march_fpu_opt = &opt->default_fpu;
23975 strcpy (selected_cpu_name, opt->name);
23976
23977 if (ext != NULL)
23978 return arm_parse_extension (ext, &march_cpu_opt);
23979
23980 return TRUE;
23981 }
23982
23983 as_bad (_("unknown architecture `%s'\n"), str);
23984 return FALSE;
23985 }
23986
23987 static bfd_boolean
23988 arm_parse_fpu (char * str)
23989 {
23990 const struct arm_option_fpu_value_table * opt;
23991
23992 for (opt = arm_fpus; opt->name != NULL; opt++)
23993 if (streq (opt->name, str))
23994 {
23995 mfpu_opt = &opt->value;
23996 return TRUE;
23997 }
23998
23999 as_bad (_("unknown floating point format `%s'\n"), str);
24000 return FALSE;
24001 }
24002
24003 static bfd_boolean
24004 arm_parse_float_abi (char * str)
24005 {
24006 const struct arm_option_value_table * opt;
24007
24008 for (opt = arm_float_abis; opt->name != NULL; opt++)
24009 if (streq (opt->name, str))
24010 {
24011 mfloat_abi_opt = opt->value;
24012 return TRUE;
24013 }
24014
24015 as_bad (_("unknown floating point abi `%s'\n"), str);
24016 return FALSE;
24017 }
24018
24019 #ifdef OBJ_ELF
24020 static bfd_boolean
24021 arm_parse_eabi (char * str)
24022 {
24023 const struct arm_option_value_table *opt;
24024
24025 for (opt = arm_eabis; opt->name != NULL; opt++)
24026 if (streq (opt->name, str))
24027 {
24028 meabi_flags = opt->value;
24029 return TRUE;
24030 }
24031 as_bad (_("unknown EABI `%s'\n"), str);
24032 return FALSE;
24033 }
24034 #endif
24035
24036 static bfd_boolean
24037 arm_parse_it_mode (char * str)
24038 {
24039 bfd_boolean ret = TRUE;
24040
24041 if (streq ("arm", str))
24042 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
24043 else if (streq ("thumb", str))
24044 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
24045 else if (streq ("always", str))
24046 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
24047 else if (streq ("never", str))
24048 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
24049 else
24050 {
24051 as_bad (_("unknown implicit IT mode `%s', should be "\
24052 "arm, thumb, always, or never."), str);
24053 ret = FALSE;
24054 }
24055
24056 return ret;
24057 }
24058
24059 struct arm_long_option_table arm_long_opts[] =
24060 {
24061 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
24062 arm_parse_cpu, NULL},
24063 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
24064 arm_parse_arch, NULL},
24065 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
24066 arm_parse_fpu, NULL},
24067 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
24068 arm_parse_float_abi, NULL},
24069 #ifdef OBJ_ELF
24070 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
24071 arm_parse_eabi, NULL},
24072 #endif
24073 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
24074 arm_parse_it_mode, NULL},
24075 {NULL, NULL, 0, NULL}
24076 };
24077
24078 int
24079 md_parse_option (int c, char * arg)
24080 {
24081 struct arm_option_table *opt;
24082 const struct arm_legacy_option_table *fopt;
24083 struct arm_long_option_table *lopt;
24084
24085 switch (c)
24086 {
24087 #ifdef OPTION_EB
24088 case OPTION_EB:
24089 target_big_endian = 1;
24090 break;
24091 #endif
24092
24093 #ifdef OPTION_EL
24094 case OPTION_EL:
24095 target_big_endian = 0;
24096 break;
24097 #endif
24098
24099 case OPTION_FIX_V4BX:
24100 fix_v4bx = TRUE;
24101 break;
24102
24103 case 'a':
24104 /* Listing option. Just ignore these, we don't support additional
24105 ones. */
24106 return 0;
24107
24108 default:
24109 for (opt = arm_opts; opt->option != NULL; opt++)
24110 {
24111 if (c == opt->option[0]
24112 && ((arg == NULL && opt->option[1] == 0)
24113 || streq (arg, opt->option + 1)))
24114 {
24115 /* If the option is deprecated, tell the user. */
24116 if (warn_on_deprecated && opt->deprecated != NULL)
24117 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24118 arg ? arg : "", _(opt->deprecated));
24119
24120 if (opt->var != NULL)
24121 *opt->var = opt->value;
24122
24123 return 1;
24124 }
24125 }
24126
24127 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
24128 {
24129 if (c == fopt->option[0]
24130 && ((arg == NULL && fopt->option[1] == 0)
24131 || streq (arg, fopt->option + 1)))
24132 {
24133 /* If the option is deprecated, tell the user. */
24134 if (warn_on_deprecated && fopt->deprecated != NULL)
24135 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24136 arg ? arg : "", _(fopt->deprecated));
24137
24138 if (fopt->var != NULL)
24139 *fopt->var = &fopt->value;
24140
24141 return 1;
24142 }
24143 }
24144
24145 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24146 {
24147 /* These options are expected to have an argument. */
24148 if (c == lopt->option[0]
24149 && arg != NULL
24150 && strncmp (arg, lopt->option + 1,
24151 strlen (lopt->option + 1)) == 0)
24152 {
24153 /* If the option is deprecated, tell the user. */
24154 if (warn_on_deprecated && lopt->deprecated != NULL)
24155 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
24156 _(lopt->deprecated));
24157
24158 /* Call the sup-option parser. */
24159 return lopt->func (arg + strlen (lopt->option) - 1);
24160 }
24161 }
24162
24163 return 0;
24164 }
24165
24166 return 1;
24167 }
24168
24169 void
24170 md_show_usage (FILE * fp)
24171 {
24172 struct arm_option_table *opt;
24173 struct arm_long_option_table *lopt;
24174
24175 fprintf (fp, _(" ARM-specific assembler options:\n"));
24176
24177 for (opt = arm_opts; opt->option != NULL; opt++)
24178 if (opt->help != NULL)
24179 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
24180
24181 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24182 if (lopt->help != NULL)
24183 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
24184
24185 #ifdef OPTION_EB
24186 fprintf (fp, _("\
24187 -EB assemble code for a big-endian cpu\n"));
24188 #endif
24189
24190 #ifdef OPTION_EL
24191 fprintf (fp, _("\
24192 -EL assemble code for a little-endian cpu\n"));
24193 #endif
24194
24195 fprintf (fp, _("\
24196 --fix-v4bx Allow BX in ARMv4 code\n"));
24197 }
24198
24199
24200 #ifdef OBJ_ELF
24201 typedef struct
24202 {
24203 int val;
24204 arm_feature_set flags;
24205 } cpu_arch_ver_table;
24206
24207 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
24208 least features first. */
24209 static const cpu_arch_ver_table cpu_arch_ver[] =
24210 {
24211 {1, ARM_ARCH_V4},
24212 {2, ARM_ARCH_V4T},
24213 {3, ARM_ARCH_V5},
24214 {3, ARM_ARCH_V5T},
24215 {4, ARM_ARCH_V5TE},
24216 {5, ARM_ARCH_V5TEJ},
24217 {6, ARM_ARCH_V6},
24218 {9, ARM_ARCH_V6K},
24219 {7, ARM_ARCH_V6Z},
24220 {11, ARM_ARCH_V6M},
24221 {12, ARM_ARCH_V6SM},
24222 {8, ARM_ARCH_V6T2},
24223 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
24224 {10, ARM_ARCH_V7R},
24225 {10, ARM_ARCH_V7M},
24226 {14, ARM_ARCH_V8A},
24227 {0, ARM_ARCH_NONE}
24228 };
24229
24230 /* Set an attribute if it has not already been set by the user. */
24231 static void
24232 aeabi_set_attribute_int (int tag, int value)
24233 {
24234 if (tag < 1
24235 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24236 || !attributes_set_explicitly[tag])
24237 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
24238 }
24239
24240 static void
24241 aeabi_set_attribute_string (int tag, const char *value)
24242 {
24243 if (tag < 1
24244 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24245 || !attributes_set_explicitly[tag])
24246 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
24247 }
24248
24249 /* Set the public EABI object attributes. */
24250 static void
24251 aeabi_set_public_attributes (void)
24252 {
24253 int arch;
24254 char profile;
24255 int virt_sec = 0;
24256 int fp16_optional = 0;
24257 arm_feature_set flags;
24258 arm_feature_set tmp;
24259 const cpu_arch_ver_table *p;
24260
24261 /* Choose the architecture based on the capabilities of the requested cpu
24262 (if any) and/or the instructions actually used. */
24263 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24264 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24265 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
24266
24267 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24268 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24269
24270 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24271 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24272
24273 /* Allow the user to override the reported architecture. */
24274 if (object_arch)
24275 {
24276 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24277 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24278 }
24279
24280 /* We need to make sure that the attributes do not identify us as v6S-M
24281 when the only v6S-M feature in use is the Operating System Extensions. */
24282 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24283 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24284 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24285
24286 tmp = flags;
24287 arch = 0;
24288 for (p = cpu_arch_ver; p->val; p++)
24289 {
24290 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24291 {
24292 arch = p->val;
24293 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24294 }
24295 }
24296
24297 /* The table lookup above finds the last architecture to contribute
24298 a new feature. Unfortunately, Tag13 is a subset of the union of
24299 v6T2 and v7-M, so it is never seen as contributing a new feature.
24300 We can not search for the last entry which is entirely used,
24301 because if no CPU is specified we build up only those flags
24302 actually used. Perhaps we should separate out the specified
24303 and implicit cases. Avoid taking this path for -march=all by
24304 checking for contradictory v7-A / v7-M features. */
24305 if (arch == 10
24306 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24307 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24308 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24309 arch = 13;
24310
24311 /* Tag_CPU_name. */
24312 if (selected_cpu_name[0])
24313 {
24314 char *q;
24315
24316 q = selected_cpu_name;
24317 if (strncmp (q, "armv", 4) == 0)
24318 {
24319 int i;
24320
24321 q += 4;
24322 for (i = 0; q[i]; i++)
24323 q[i] = TOUPPER (q[i]);
24324 }
24325 aeabi_set_attribute_string (Tag_CPU_name, q);
24326 }
24327
24328 /* Tag_CPU_arch. */
24329 aeabi_set_attribute_int (Tag_CPU_arch, arch);
24330
24331 /* Tag_CPU_arch_profile. */
24332 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
24333 profile = 'A';
24334 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
24335 profile = 'R';
24336 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
24337 profile = 'M';
24338 else
24339 profile = '\0';
24340
24341 if (profile != '\0')
24342 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
24343
24344 /* Tag_ARM_ISA_use. */
24345 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24346 || arch == 0)
24347 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
24348
24349 /* Tag_THUMB_ISA_use. */
24350 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24351 || arch == 0)
24352 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24353 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
24354
24355 /* Tag_VFP_arch. */
24356 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24357 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24358 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
24359 aeabi_set_attribute_int (Tag_VFP_arch,
24360 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24361 ? 5 : 6);
24362 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
24363 {
24364 fp16_optional = 1;
24365 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24366 }
24367 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
24368 {
24369 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24370 fp16_optional = 1;
24371 }
24372 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24373 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24374 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24375 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24376 aeabi_set_attribute_int (Tag_VFP_arch, 1);
24377
24378 /* Tag_ABI_HardFP_use. */
24379 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24380 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24381 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24382
24383 /* Tag_WMMX_arch. */
24384 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24385 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24386 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24387 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
24388
24389 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
24390 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24391 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24392 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24393 {
24394 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24395 {
24396 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24397 }
24398 else
24399 {
24400 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24401 fp16_optional = 1;
24402 }
24403 }
24404
24405 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
24406 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
24407 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
24408
24409 /* Tag_DIV_use.
24410
24411 We set Tag_DIV_use to two when integer divide instructions have been used
24412 in ARM state, or when Thumb integer divide instructions have been used,
24413 but we have no architecture profile set, nor have we any ARM instructions.
24414
24415 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24416 architecture.
24417
24418 For new architectures we will have to check these tests. */
24419 gas_assert (arch <= TAG_CPU_ARCH_V8);
24420 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24421 aeabi_set_attribute_int (Tag_DIV_use, 0);
24422 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24423 || (profile == '\0'
24424 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24425 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
24426 aeabi_set_attribute_int (Tag_DIV_use, 2);
24427
24428 /* Tag_MP_extension_use. */
24429 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24430 aeabi_set_attribute_int (Tag_MPextension_use, 1);
24431
24432 /* Tag Virtualization_use. */
24433 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
24434 virt_sec |= 1;
24435 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24436 virt_sec |= 2;
24437 if (virt_sec != 0)
24438 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
24439 }
24440
24441 /* Add the default contents for the .ARM.attributes section. */
24442 void
24443 arm_md_end (void)
24444 {
24445 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24446 return;
24447
24448 aeabi_set_public_attributes ();
24449 }
24450 #endif /* OBJ_ELF */
24451
24452
24453 /* Parse a .cpu directive. */
24454
24455 static void
24456 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24457 {
24458 const struct arm_cpu_option_table *opt;
24459 char *name;
24460 char saved_char;
24461
24462 name = input_line_pointer;
24463 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24464 input_line_pointer++;
24465 saved_char = *input_line_pointer;
24466 *input_line_pointer = 0;
24467
24468 /* Skip the first "all" entry. */
24469 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24470 if (streq (opt->name, name))
24471 {
24472 mcpu_cpu_opt = &opt->value;
24473 selected_cpu = opt->value;
24474 if (opt->canonical_name)
24475 strcpy (selected_cpu_name, opt->canonical_name);
24476 else
24477 {
24478 int i;
24479 for (i = 0; opt->name[i]; i++)
24480 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24481
24482 selected_cpu_name[i] = 0;
24483 }
24484 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24485 *input_line_pointer = saved_char;
24486 demand_empty_rest_of_line ();
24487 return;
24488 }
24489 as_bad (_("unknown cpu `%s'"), name);
24490 *input_line_pointer = saved_char;
24491 ignore_rest_of_line ();
24492 }
24493
24494
24495 /* Parse a .arch directive. */
24496
24497 static void
24498 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24499 {
24500 const struct arm_arch_option_table *opt;
24501 char saved_char;
24502 char *name;
24503
24504 name = input_line_pointer;
24505 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24506 input_line_pointer++;
24507 saved_char = *input_line_pointer;
24508 *input_line_pointer = 0;
24509
24510 /* Skip the first "all" entry. */
24511 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24512 if (streq (opt->name, name))
24513 {
24514 mcpu_cpu_opt = &opt->value;
24515 selected_cpu = opt->value;
24516 strcpy (selected_cpu_name, opt->name);
24517 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24518 *input_line_pointer = saved_char;
24519 demand_empty_rest_of_line ();
24520 return;
24521 }
24522
24523 as_bad (_("unknown architecture `%s'\n"), name);
24524 *input_line_pointer = saved_char;
24525 ignore_rest_of_line ();
24526 }
24527
24528
24529 /* Parse a .object_arch directive. */
24530
24531 static void
24532 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24533 {
24534 const struct arm_arch_option_table *opt;
24535 char saved_char;
24536 char *name;
24537
24538 name = input_line_pointer;
24539 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24540 input_line_pointer++;
24541 saved_char = *input_line_pointer;
24542 *input_line_pointer = 0;
24543
24544 /* Skip the first "all" entry. */
24545 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24546 if (streq (opt->name, name))
24547 {
24548 object_arch = &opt->value;
24549 *input_line_pointer = saved_char;
24550 demand_empty_rest_of_line ();
24551 return;
24552 }
24553
24554 as_bad (_("unknown architecture `%s'\n"), name);
24555 *input_line_pointer = saved_char;
24556 ignore_rest_of_line ();
24557 }
24558
24559 /* Parse a .arch_extension directive. */
24560
24561 static void
24562 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24563 {
24564 const struct arm_option_extension_value_table *opt;
24565 char saved_char;
24566 char *name;
24567 int adding_value = 1;
24568
24569 name = input_line_pointer;
24570 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24571 input_line_pointer++;
24572 saved_char = *input_line_pointer;
24573 *input_line_pointer = 0;
24574
24575 if (strlen (name) >= 2
24576 && strncmp (name, "no", 2) == 0)
24577 {
24578 adding_value = 0;
24579 name += 2;
24580 }
24581
24582 for (opt = arm_extensions; opt->name != NULL; opt++)
24583 if (streq (opt->name, name))
24584 {
24585 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24586 {
24587 as_bad (_("architectural extension `%s' is not allowed for the "
24588 "current base architecture"), name);
24589 break;
24590 }
24591
24592 if (adding_value)
24593 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24594 else
24595 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24596
24597 mcpu_cpu_opt = &selected_cpu;
24598 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24599 *input_line_pointer = saved_char;
24600 demand_empty_rest_of_line ();
24601 return;
24602 }
24603
24604 if (opt->name == NULL)
24605 as_bad (_("unknown architecture `%s'\n"), name);
24606
24607 *input_line_pointer = saved_char;
24608 ignore_rest_of_line ();
24609 }
24610
24611 /* Parse a .fpu directive. */
24612
24613 static void
24614 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
24615 {
24616 const struct arm_option_fpu_value_table *opt;
24617 char saved_char;
24618 char *name;
24619
24620 name = input_line_pointer;
24621 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24622 input_line_pointer++;
24623 saved_char = *input_line_pointer;
24624 *input_line_pointer = 0;
24625
24626 for (opt = arm_fpus; opt->name != NULL; opt++)
24627 if (streq (opt->name, name))
24628 {
24629 mfpu_opt = &opt->value;
24630 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24631 *input_line_pointer = saved_char;
24632 demand_empty_rest_of_line ();
24633 return;
24634 }
24635
24636 as_bad (_("unknown floating point format `%s'\n"), name);
24637 *input_line_pointer = saved_char;
24638 ignore_rest_of_line ();
24639 }
24640
24641 /* Copy symbol information. */
24642
24643 void
24644 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24645 {
24646 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24647 }
24648
24649 #ifdef OBJ_ELF
24650 /* Given a symbolic attribute NAME, return the proper integer value.
24651 Returns -1 if the attribute is not known. */
24652
24653 int
24654 arm_convert_symbolic_attribute (const char *name)
24655 {
24656 static const struct
24657 {
24658 const char * name;
24659 const int tag;
24660 }
24661 attribute_table[] =
24662 {
24663 /* When you modify this table you should
24664 also modify the list in doc/c-arm.texi. */
24665 #define T(tag) {#tag, tag}
24666 T (Tag_CPU_raw_name),
24667 T (Tag_CPU_name),
24668 T (Tag_CPU_arch),
24669 T (Tag_CPU_arch_profile),
24670 T (Tag_ARM_ISA_use),
24671 T (Tag_THUMB_ISA_use),
24672 T (Tag_FP_arch),
24673 T (Tag_VFP_arch),
24674 T (Tag_WMMX_arch),
24675 T (Tag_Advanced_SIMD_arch),
24676 T (Tag_PCS_config),
24677 T (Tag_ABI_PCS_R9_use),
24678 T (Tag_ABI_PCS_RW_data),
24679 T (Tag_ABI_PCS_RO_data),
24680 T (Tag_ABI_PCS_GOT_use),
24681 T (Tag_ABI_PCS_wchar_t),
24682 T (Tag_ABI_FP_rounding),
24683 T (Tag_ABI_FP_denormal),
24684 T (Tag_ABI_FP_exceptions),
24685 T (Tag_ABI_FP_user_exceptions),
24686 T (Tag_ABI_FP_number_model),
24687 T (Tag_ABI_align_needed),
24688 T (Tag_ABI_align8_needed),
24689 T (Tag_ABI_align_preserved),
24690 T (Tag_ABI_align8_preserved),
24691 T (Tag_ABI_enum_size),
24692 T (Tag_ABI_HardFP_use),
24693 T (Tag_ABI_VFP_args),
24694 T (Tag_ABI_WMMX_args),
24695 T (Tag_ABI_optimization_goals),
24696 T (Tag_ABI_FP_optimization_goals),
24697 T (Tag_compatibility),
24698 T (Tag_CPU_unaligned_access),
24699 T (Tag_FP_HP_extension),
24700 T (Tag_VFP_HP_extension),
24701 T (Tag_ABI_FP_16bit_format),
24702 T (Tag_MPextension_use),
24703 T (Tag_DIV_use),
24704 T (Tag_nodefaults),
24705 T (Tag_also_compatible_with),
24706 T (Tag_conformance),
24707 T (Tag_T2EE_use),
24708 T (Tag_Virtualization_use),
24709 /* We deliberately do not include Tag_MPextension_use_legacy. */
24710 #undef T
24711 };
24712 unsigned int i;
24713
24714 if (name == NULL)
24715 return -1;
24716
24717 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
24718 if (streq (name, attribute_table[i].name))
24719 return attribute_table[i].tag;
24720
24721 return -1;
24722 }
24723
24724
24725 /* Apply sym value for relocations only in the case that
24726 they are for local symbols and you have the respective
24727 architectural feature for blx and simple switches. */
24728 int
24729 arm_apply_sym_value (struct fix * fixP)
24730 {
24731 if (fixP->fx_addsy
24732 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
24733 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
24734 {
24735 switch (fixP->fx_r_type)
24736 {
24737 case BFD_RELOC_ARM_PCREL_BLX:
24738 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24739 if (ARM_IS_FUNC (fixP->fx_addsy))
24740 return 1;
24741 break;
24742
24743 case BFD_RELOC_ARM_PCREL_CALL:
24744 case BFD_RELOC_THUMB_PCREL_BLX:
24745 if (THUMB_IS_FUNC (fixP->fx_addsy))
24746 return 1;
24747 break;
24748
24749 default:
24750 break;
24751 }
24752
24753 }
24754 return 0;
24755 }
24756 #endif /* OBJ_ELF */
This page took 0.599516 seconds and 4 git commands to generate.