* config/tc-arm.c (v7m_psrs): Revert previous delta.
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
200 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
201 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
202 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
203 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
204 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
205
206 static const arm_feature_set arm_arch_any = ARM_ANY;
207 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
210 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
211
212 static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
214 static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216 static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218 static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222 static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
226 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
227 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
228 static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
230 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
233 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
236
237 static int mfloat_abi_opt = -1;
238 /* Record user cpu selection for object attributes. */
239 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
240 /* Must be long enough to hold any of the names in arm_cpus. */
241 static char selected_cpu_name[16];
242 #ifdef OBJ_ELF
243 # ifdef EABI_DEFAULT
244 static int meabi_flags = EABI_DEFAULT;
245 # else
246 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
247 # endif
248
249 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
250
251 bfd_boolean
252 arm_is_eabi (void)
253 {
254 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
255 }
256 #endif
257
258 #ifdef OBJ_ELF
259 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
260 symbolS * GOT_symbol;
261 #endif
262
263 /* 0: assemble for ARM,
264 1: assemble for Thumb,
265 2: assemble for Thumb even though target CPU does not support thumb
266 instructions. */
267 static int thumb_mode = 0;
268 /* A value distinct from the possible values for thumb_mode that we
269 can use to record whether thumb_mode has been copied into the
270 tc_frag_data field of a frag. */
271 #define MODE_RECORDED (1 << 4)
272
273 /* Specifies the intrinsic IT insn behavior mode. */
274 enum implicit_it_mode
275 {
276 IMPLICIT_IT_MODE_NEVER = 0x00,
277 IMPLICIT_IT_MODE_ARM = 0x01,
278 IMPLICIT_IT_MODE_THUMB = 0x02,
279 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
280 };
281 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
282
283 /* If unified_syntax is true, we are processing the new unified
284 ARM/Thumb syntax. Important differences from the old ARM mode:
285
286 - Immediate operands do not require a # prefix.
287 - Conditional affixes always appear at the end of the
288 instruction. (For backward compatibility, those instructions
289 that formerly had them in the middle, continue to accept them
290 there.)
291 - The IT instruction may appear, and if it does is validated
292 against subsequent conditional affixes. It does not generate
293 machine code.
294
295 Important differences from the old Thumb mode:
296
297 - Immediate operands do not require a # prefix.
298 - Most of the V6T2 instructions are only available in unified mode.
299 - The .N and .W suffixes are recognized and honored (it is an error
300 if they cannot be honored).
301 - All instructions set the flags if and only if they have an 's' affix.
302 - Conditional affixes may be used. They are validated against
303 preceding IT instructions. Unlike ARM mode, you cannot use a
304 conditional affix except in the scope of an IT instruction. */
305
306 static bfd_boolean unified_syntax = FALSE;
307
308 enum neon_el_type
309 {
310 NT_invtype,
311 NT_untyped,
312 NT_integer,
313 NT_float,
314 NT_poly,
315 NT_signed,
316 NT_unsigned
317 };
318
319 struct neon_type_el
320 {
321 enum neon_el_type type;
322 unsigned size;
323 };
324
325 #define NEON_MAX_TYPE_ELS 4
326
327 struct neon_type
328 {
329 struct neon_type_el el[NEON_MAX_TYPE_ELS];
330 unsigned elems;
331 };
332
333 enum it_instruction_type
334 {
335 OUTSIDE_IT_INSN,
336 INSIDE_IT_INSN,
337 INSIDE_IT_LAST_INSN,
338 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
339 if inside, should be the last one. */
340 NEUTRAL_IT_INSN, /* This could be either inside or outside,
341 i.e. BKPT and NOP. */
342 IT_INSN /* The IT insn has been parsed. */
343 };
344
345 struct arm_it
346 {
347 const char * error;
348 unsigned long instruction;
349 int size;
350 int size_req;
351 int cond;
352 /* "uncond_value" is set to the value in place of the conditional field in
353 unconditional versions of the instruction, or -1 if nothing is
354 appropriate. */
355 int uncond_value;
356 struct neon_type vectype;
357 /* This does not indicate an actual NEON instruction, only that
358 the mnemonic accepts neon-style type suffixes. */
359 int is_neon;
360 /* Set to the opcode if the instruction needs relaxation.
361 Zero if the instruction is not relaxed. */
362 unsigned long relax;
363 struct
364 {
365 bfd_reloc_code_real_type type;
366 expressionS exp;
367 int pc_rel;
368 } reloc;
369
370 enum it_instruction_type it_insn_type;
371
372 struct
373 {
374 unsigned reg;
375 signed int imm;
376 struct neon_type_el vectype;
377 unsigned present : 1; /* Operand present. */
378 unsigned isreg : 1; /* Operand was a register. */
379 unsigned immisreg : 1; /* .imm field is a second register. */
380 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
381 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
382 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
383 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
384 instructions. This allows us to disambiguate ARM <-> vector insns. */
385 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
386 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
387 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
388 unsigned issingle : 1; /* Operand is VFP single-precision register. */
389 unsigned hasreloc : 1; /* Operand has relocation suffix. */
390 unsigned writeback : 1; /* Operand has trailing ! */
391 unsigned preind : 1; /* Preindexed address. */
392 unsigned postind : 1; /* Postindexed address. */
393 unsigned negative : 1; /* Index register was negated. */
394 unsigned shifted : 1; /* Shift applied to operation. */
395 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
396 } operands[6];
397 };
398
399 static struct arm_it inst;
400
401 #define NUM_FLOAT_VALS 8
402
403 const char * fp_const[] =
404 {
405 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
406 };
407
408 /* Number of littlenums required to hold an extended precision number. */
409 #define MAX_LITTLENUMS 6
410
411 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
412
413 #define FAIL (-1)
414 #define SUCCESS (0)
415
416 #define SUFF_S 1
417 #define SUFF_D 2
418 #define SUFF_E 3
419 #define SUFF_P 4
420
421 #define CP_T_X 0x00008000
422 #define CP_T_Y 0x00400000
423
424 #define CONDS_BIT 0x00100000
425 #define LOAD_BIT 0x00100000
426
427 #define DOUBLE_LOAD_FLAG 0x00000001
428
429 struct asm_cond
430 {
431 const char * template_name;
432 unsigned long value;
433 };
434
435 #define COND_ALWAYS 0xE
436
437 struct asm_psr
438 {
439 const char * template_name;
440 unsigned long field;
441 };
442
443 struct asm_barrier_opt
444 {
445 const char * template_name;
446 unsigned long value;
447 };
448
449 /* The bit that distinguishes CPSR and SPSR. */
450 #define SPSR_BIT (1 << 22)
451
452 /* The individual PSR flag bits. */
453 #define PSR_c (1 << 16)
454 #define PSR_x (1 << 17)
455 #define PSR_s (1 << 18)
456 #define PSR_f (1 << 19)
457
458 struct reloc_entry
459 {
460 char * name;
461 bfd_reloc_code_real_type reloc;
462 };
463
464 enum vfp_reg_pos
465 {
466 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
467 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
468 };
469
470 enum vfp_ldstm_type
471 {
472 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
473 };
474
475 /* Bits for DEFINED field in neon_typed_alias. */
476 #define NTA_HASTYPE 1
477 #define NTA_HASINDEX 2
478
479 struct neon_typed_alias
480 {
481 unsigned char defined;
482 unsigned char index;
483 struct neon_type_el eltype;
484 };
485
486 /* ARM register categories. This includes coprocessor numbers and various
487 architecture extensions' registers. */
488 enum arm_reg_type
489 {
490 REG_TYPE_RN,
491 REG_TYPE_CP,
492 REG_TYPE_CN,
493 REG_TYPE_FN,
494 REG_TYPE_VFS,
495 REG_TYPE_VFD,
496 REG_TYPE_NQ,
497 REG_TYPE_VFSD,
498 REG_TYPE_NDQ,
499 REG_TYPE_NSDQ,
500 REG_TYPE_VFC,
501 REG_TYPE_MVF,
502 REG_TYPE_MVD,
503 REG_TYPE_MVFX,
504 REG_TYPE_MVDX,
505 REG_TYPE_MVAX,
506 REG_TYPE_DSPSC,
507 REG_TYPE_MMXWR,
508 REG_TYPE_MMXWC,
509 REG_TYPE_MMXWCG,
510 REG_TYPE_XSCALE,
511 REG_TYPE_RNB
512 };
513
514 /* Structure for a hash table entry for a register.
515 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
516 information which states whether a vector type or index is specified (for a
517 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
518 struct reg_entry
519 {
520 const char * name;
521 unsigned int number;
522 unsigned char type;
523 unsigned char builtin;
524 struct neon_typed_alias * neon;
525 };
526
527 /* Diagnostics used when we don't get a register of the expected type. */
528 const char * const reg_expected_msgs[] =
529 {
530 N_("ARM register expected"),
531 N_("bad or missing co-processor number"),
532 N_("co-processor register expected"),
533 N_("FPA register expected"),
534 N_("VFP single precision register expected"),
535 N_("VFP/Neon double precision register expected"),
536 N_("Neon quad precision register expected"),
537 N_("VFP single or double precision register expected"),
538 N_("Neon double or quad precision register expected"),
539 N_("VFP single, double or Neon quad precision register expected"),
540 N_("VFP system register expected"),
541 N_("Maverick MVF register expected"),
542 N_("Maverick MVD register expected"),
543 N_("Maverick MVFX register expected"),
544 N_("Maverick MVDX register expected"),
545 N_("Maverick MVAX register expected"),
546 N_("Maverick DSPSC register expected"),
547 N_("iWMMXt data register expected"),
548 N_("iWMMXt control register expected"),
549 N_("iWMMXt scalar register expected"),
550 N_("XScale accumulator register expected"),
551 };
552
553 /* Some well known registers that we refer to directly elsewhere. */
554 #define REG_SP 13
555 #define REG_LR 14
556 #define REG_PC 15
557
558 /* ARM instructions take 4bytes in the object file, Thumb instructions
559 take 2: */
560 #define INSN_SIZE 4
561
562 struct asm_opcode
563 {
564 /* Basic string to match. */
565 const char * template_name;
566
567 /* Parameters to instruction. */
568 unsigned int operands[8];
569
570 /* Conditional tag - see opcode_lookup. */
571 unsigned int tag : 4;
572
573 /* Basic instruction code. */
574 unsigned int avalue : 28;
575
576 /* Thumb-format instruction code. */
577 unsigned int tvalue;
578
579 /* Which architecture variant provides this instruction. */
580 const arm_feature_set * avariant;
581 const arm_feature_set * tvariant;
582
583 /* Function to call to encode instruction in ARM format. */
584 void (* aencode) (void);
585
586 /* Function to call to encode instruction in Thumb format. */
587 void (* tencode) (void);
588 };
589
590 /* Defines for various bits that we will want to toggle. */
591 #define INST_IMMEDIATE 0x02000000
592 #define OFFSET_REG 0x02000000
593 #define HWOFFSET_IMM 0x00400000
594 #define SHIFT_BY_REG 0x00000010
595 #define PRE_INDEX 0x01000000
596 #define INDEX_UP 0x00800000
597 #define WRITE_BACK 0x00200000
598 #define LDM_TYPE_2_OR_3 0x00400000
599 #define CPSI_MMOD 0x00020000
600
601 #define LITERAL_MASK 0xf000f000
602 #define OPCODE_MASK 0xfe1fffff
603 #define V4_STR_BIT 0x00000020
604
605 #define T2_SUBS_PC_LR 0xf3de8f00
606
607 #define DATA_OP_SHIFT 21
608
609 #define T2_OPCODE_MASK 0xfe1fffff
610 #define T2_DATA_OP_SHIFT 21
611
612 /* Codes to distinguish the arithmetic instructions. */
613 #define OPCODE_AND 0
614 #define OPCODE_EOR 1
615 #define OPCODE_SUB 2
616 #define OPCODE_RSB 3
617 #define OPCODE_ADD 4
618 #define OPCODE_ADC 5
619 #define OPCODE_SBC 6
620 #define OPCODE_RSC 7
621 #define OPCODE_TST 8
622 #define OPCODE_TEQ 9
623 #define OPCODE_CMP 10
624 #define OPCODE_CMN 11
625 #define OPCODE_ORR 12
626 #define OPCODE_MOV 13
627 #define OPCODE_BIC 14
628 #define OPCODE_MVN 15
629
630 #define T2_OPCODE_AND 0
631 #define T2_OPCODE_BIC 1
632 #define T2_OPCODE_ORR 2
633 #define T2_OPCODE_ORN 3
634 #define T2_OPCODE_EOR 4
635 #define T2_OPCODE_ADD 8
636 #define T2_OPCODE_ADC 10
637 #define T2_OPCODE_SBC 11
638 #define T2_OPCODE_SUB 13
639 #define T2_OPCODE_RSB 14
640
641 #define T_OPCODE_MUL 0x4340
642 #define T_OPCODE_TST 0x4200
643 #define T_OPCODE_CMN 0x42c0
644 #define T_OPCODE_NEG 0x4240
645 #define T_OPCODE_MVN 0x43c0
646
647 #define T_OPCODE_ADD_R3 0x1800
648 #define T_OPCODE_SUB_R3 0x1a00
649 #define T_OPCODE_ADD_HI 0x4400
650 #define T_OPCODE_ADD_ST 0xb000
651 #define T_OPCODE_SUB_ST 0xb080
652 #define T_OPCODE_ADD_SP 0xa800
653 #define T_OPCODE_ADD_PC 0xa000
654 #define T_OPCODE_ADD_I8 0x3000
655 #define T_OPCODE_SUB_I8 0x3800
656 #define T_OPCODE_ADD_I3 0x1c00
657 #define T_OPCODE_SUB_I3 0x1e00
658
659 #define T_OPCODE_ASR_R 0x4100
660 #define T_OPCODE_LSL_R 0x4080
661 #define T_OPCODE_LSR_R 0x40c0
662 #define T_OPCODE_ROR_R 0x41c0
663 #define T_OPCODE_ASR_I 0x1000
664 #define T_OPCODE_LSL_I 0x0000
665 #define T_OPCODE_LSR_I 0x0800
666
667 #define T_OPCODE_MOV_I8 0x2000
668 #define T_OPCODE_CMP_I8 0x2800
669 #define T_OPCODE_CMP_LR 0x4280
670 #define T_OPCODE_MOV_HR 0x4600
671 #define T_OPCODE_CMP_HR 0x4500
672
673 #define T_OPCODE_LDR_PC 0x4800
674 #define T_OPCODE_LDR_SP 0x9800
675 #define T_OPCODE_STR_SP 0x9000
676 #define T_OPCODE_LDR_IW 0x6800
677 #define T_OPCODE_STR_IW 0x6000
678 #define T_OPCODE_LDR_IH 0x8800
679 #define T_OPCODE_STR_IH 0x8000
680 #define T_OPCODE_LDR_IB 0x7800
681 #define T_OPCODE_STR_IB 0x7000
682 #define T_OPCODE_LDR_RW 0x5800
683 #define T_OPCODE_STR_RW 0x5000
684 #define T_OPCODE_LDR_RH 0x5a00
685 #define T_OPCODE_STR_RH 0x5200
686 #define T_OPCODE_LDR_RB 0x5c00
687 #define T_OPCODE_STR_RB 0x5400
688
689 #define T_OPCODE_PUSH 0xb400
690 #define T_OPCODE_POP 0xbc00
691
692 #define T_OPCODE_BRANCH 0xe000
693
694 #define THUMB_SIZE 2 /* Size of thumb instruction. */
695 #define THUMB_PP_PC_LR 0x0100
696 #define THUMB_LOAD_BIT 0x0800
697 #define THUMB2_LOAD_BIT 0x00100000
698
699 #define BAD_ARGS _("bad arguments to instruction")
700 #define BAD_SP _("r13 not allowed here")
701 #define BAD_PC _("r15 not allowed here")
702 #define BAD_COND _("instruction cannot be conditional")
703 #define BAD_OVERLAP _("registers may not be the same")
704 #define BAD_HIREG _("lo register required")
705 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
706 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
707 #define BAD_BRANCH _("branch must be last instruction in IT block")
708 #define BAD_NOT_IT _("instruction not allowed in IT block")
709 #define BAD_FPU _("selected FPU does not support instruction")
710 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
711 #define BAD_IT_COND _("incorrect condition in IT block")
712 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
713 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
714 #define BAD_PC_ADDRESSING \
715 _("cannot use register index with PC-relative addressing")
716 #define BAD_PC_WRITEBACK \
717 _("cannot use writeback with PC-relative addressing")
718
719 static struct hash_control * arm_ops_hsh;
720 static struct hash_control * arm_cond_hsh;
721 static struct hash_control * arm_shift_hsh;
722 static struct hash_control * arm_psr_hsh;
723 static struct hash_control * arm_v7m_psr_hsh;
724 static struct hash_control * arm_reg_hsh;
725 static struct hash_control * arm_reloc_hsh;
726 static struct hash_control * arm_barrier_opt_hsh;
727
728 /* Stuff needed to resolve the label ambiguity
729 As:
730 ...
731 label: <insn>
732 may differ from:
733 ...
734 label:
735 <insn> */
736
737 symbolS * last_label_seen;
738 static int label_is_thumb_function_name = FALSE;
739
740 /* Literal pool structure. Held on a per-section
741 and per-sub-section basis. */
742
743 #define MAX_LITERAL_POOL_SIZE 1024
744 typedef struct literal_pool
745 {
746 expressionS literals [MAX_LITERAL_POOL_SIZE];
747 unsigned int next_free_entry;
748 unsigned int id;
749 symbolS * symbol;
750 segT section;
751 subsegT sub_section;
752 struct literal_pool * next;
753 } literal_pool;
754
755 /* Pointer to a linked list of literal pools. */
756 literal_pool * list_of_pools = NULL;
757
758 #ifdef OBJ_ELF
759 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
760 #else
761 static struct current_it now_it;
762 #endif
763
764 static inline int
765 now_it_compatible (int cond)
766 {
767 return (cond & ~1) == (now_it.cc & ~1);
768 }
769
770 static inline int
771 conditional_insn (void)
772 {
773 return inst.cond != COND_ALWAYS;
774 }
775
776 static int in_it_block (void);
777
778 static int handle_it_state (void);
779
780 static void force_automatic_it_block_close (void);
781
782 static void it_fsm_post_encode (void);
783
784 #define set_it_insn_type(type) \
785 do \
786 { \
787 inst.it_insn_type = type; \
788 if (handle_it_state () == FAIL) \
789 return; \
790 } \
791 while (0)
792
793 #define set_it_insn_type_nonvoid(type, failret) \
794 do \
795 { \
796 inst.it_insn_type = type; \
797 if (handle_it_state () == FAIL) \
798 return failret; \
799 } \
800 while(0)
801
802 #define set_it_insn_type_last() \
803 do \
804 { \
805 if (inst.cond == COND_ALWAYS) \
806 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
807 else \
808 set_it_insn_type (INSIDE_IT_LAST_INSN); \
809 } \
810 while (0)
811
812 /* Pure syntax. */
813
814 /* This array holds the chars that always start a comment. If the
815 pre-processor is disabled, these aren't very useful. */
816 const char comment_chars[] = "@";
817
818 /* This array holds the chars that only start a comment at the beginning of
819 a line. If the line seems to have the form '# 123 filename'
820 .line and .file directives will appear in the pre-processed output. */
821 /* Note that input_file.c hand checks for '#' at the beginning of the
822 first line of the input file. This is because the compiler outputs
823 #NO_APP at the beginning of its output. */
824 /* Also note that comments like this one will always work. */
825 const char line_comment_chars[] = "#";
826
827 const char line_separator_chars[] = ";";
828
829 /* Chars that can be used to separate mant
830 from exp in floating point numbers. */
831 const char EXP_CHARS[] = "eE";
832
833 /* Chars that mean this number is a floating point constant. */
834 /* As in 0f12.456 */
835 /* or 0d1.2345e12 */
836
837 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
838
839 /* Prefix characters that indicate the start of an immediate
840 value. */
841 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
842
843 /* Separator character handling. */
844
845 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
846
847 static inline int
848 skip_past_char (char ** str, char c)
849 {
850 if (**str == c)
851 {
852 (*str)++;
853 return SUCCESS;
854 }
855 else
856 return FAIL;
857 }
858
859 #define skip_past_comma(str) skip_past_char (str, ',')
860
861 /* Arithmetic expressions (possibly involving symbols). */
862
863 /* Return TRUE if anything in the expression is a bignum. */
864
865 static int
866 walk_no_bignums (symbolS * sp)
867 {
868 if (symbol_get_value_expression (sp)->X_op == O_big)
869 return 1;
870
871 if (symbol_get_value_expression (sp)->X_add_symbol)
872 {
873 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
874 || (symbol_get_value_expression (sp)->X_op_symbol
875 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
876 }
877
878 return 0;
879 }
880
881 static int in_my_get_expression = 0;
882
883 /* Third argument to my_get_expression. */
884 #define GE_NO_PREFIX 0
885 #define GE_IMM_PREFIX 1
886 #define GE_OPT_PREFIX 2
887 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
888 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
889 #define GE_OPT_PREFIX_BIG 3
890
891 static int
892 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
893 {
894 char * save_in;
895 segT seg;
896
897 /* In unified syntax, all prefixes are optional. */
898 if (unified_syntax)
899 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
900 : GE_OPT_PREFIX;
901
902 switch (prefix_mode)
903 {
904 case GE_NO_PREFIX: break;
905 case GE_IMM_PREFIX:
906 if (!is_immediate_prefix (**str))
907 {
908 inst.error = _("immediate expression requires a # prefix");
909 return FAIL;
910 }
911 (*str)++;
912 break;
913 case GE_OPT_PREFIX:
914 case GE_OPT_PREFIX_BIG:
915 if (is_immediate_prefix (**str))
916 (*str)++;
917 break;
918 default: abort ();
919 }
920
921 memset (ep, 0, sizeof (expressionS));
922
923 save_in = input_line_pointer;
924 input_line_pointer = *str;
925 in_my_get_expression = 1;
926 seg = expression (ep);
927 in_my_get_expression = 0;
928
929 if (ep->X_op == O_illegal || ep->X_op == O_absent)
930 {
931 /* We found a bad or missing expression in md_operand(). */
932 *str = input_line_pointer;
933 input_line_pointer = save_in;
934 if (inst.error == NULL)
935 inst.error = (ep->X_op == O_absent
936 ? _("missing expression") :_("bad expression"));
937 return 1;
938 }
939
940 #ifdef OBJ_AOUT
941 if (seg != absolute_section
942 && seg != text_section
943 && seg != data_section
944 && seg != bss_section
945 && seg != undefined_section)
946 {
947 inst.error = _("bad segment");
948 *str = input_line_pointer;
949 input_line_pointer = save_in;
950 return 1;
951 }
952 #else
953 (void) seg;
954 #endif
955
956 /* Get rid of any bignums now, so that we don't generate an error for which
957 we can't establish a line number later on. Big numbers are never valid
958 in instructions, which is where this routine is always called. */
959 if (prefix_mode != GE_OPT_PREFIX_BIG
960 && (ep->X_op == O_big
961 || (ep->X_add_symbol
962 && (walk_no_bignums (ep->X_add_symbol)
963 || (ep->X_op_symbol
964 && walk_no_bignums (ep->X_op_symbol))))))
965 {
966 inst.error = _("invalid constant");
967 *str = input_line_pointer;
968 input_line_pointer = save_in;
969 return 1;
970 }
971
972 *str = input_line_pointer;
973 input_line_pointer = save_in;
974 return 0;
975 }
976
977 /* Turn a string in input_line_pointer into a floating point constant
978 of type TYPE, and store the appropriate bytes in *LITP. The number
979 of LITTLENUMS emitted is stored in *SIZEP. An error message is
980 returned, or NULL on OK.
981
982 Note that fp constants aren't represent in the normal way on the ARM.
983 In big endian mode, things are as expected. However, in little endian
984 mode fp constants are big-endian word-wise, and little-endian byte-wise
985 within the words. For example, (double) 1.1 in big endian mode is
986 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
987 the byte sequence 99 99 f1 3f 9a 99 99 99.
988
989 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
990
991 char *
992 md_atof (int type, char * litP, int * sizeP)
993 {
994 int prec;
995 LITTLENUM_TYPE words[MAX_LITTLENUMS];
996 char *t;
997 int i;
998
999 switch (type)
1000 {
1001 case 'f':
1002 case 'F':
1003 case 's':
1004 case 'S':
1005 prec = 2;
1006 break;
1007
1008 case 'd':
1009 case 'D':
1010 case 'r':
1011 case 'R':
1012 prec = 4;
1013 break;
1014
1015 case 'x':
1016 case 'X':
1017 prec = 5;
1018 break;
1019
1020 case 'p':
1021 case 'P':
1022 prec = 5;
1023 break;
1024
1025 default:
1026 *sizeP = 0;
1027 return _("Unrecognized or unsupported floating point constant");
1028 }
1029
1030 t = atof_ieee (input_line_pointer, type, words);
1031 if (t)
1032 input_line_pointer = t;
1033 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1034
1035 if (target_big_endian)
1036 {
1037 for (i = 0; i < prec; i++)
1038 {
1039 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1040 litP += sizeof (LITTLENUM_TYPE);
1041 }
1042 }
1043 else
1044 {
1045 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1046 for (i = prec - 1; i >= 0; i--)
1047 {
1048 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1049 litP += sizeof (LITTLENUM_TYPE);
1050 }
1051 else
1052 /* For a 4 byte float the order of elements in `words' is 1 0.
1053 For an 8 byte float the order is 1 0 3 2. */
1054 for (i = 0; i < prec; i += 2)
1055 {
1056 md_number_to_chars (litP, (valueT) words[i + 1],
1057 sizeof (LITTLENUM_TYPE));
1058 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1059 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1060 litP += 2 * sizeof (LITTLENUM_TYPE);
1061 }
1062 }
1063
1064 return NULL;
1065 }
1066
1067 /* We handle all bad expressions here, so that we can report the faulty
1068 instruction in the error message. */
1069 void
1070 md_operand (expressionS * exp)
1071 {
1072 if (in_my_get_expression)
1073 exp->X_op = O_illegal;
1074 }
1075
1076 /* Immediate values. */
1077
1078 /* Generic immediate-value read function for use in directives.
1079 Accepts anything that 'expression' can fold to a constant.
1080 *val receives the number. */
1081 #ifdef OBJ_ELF
1082 static int
1083 immediate_for_directive (int *val)
1084 {
1085 expressionS exp;
1086 exp.X_op = O_illegal;
1087
1088 if (is_immediate_prefix (*input_line_pointer))
1089 {
1090 input_line_pointer++;
1091 expression (&exp);
1092 }
1093
1094 if (exp.X_op != O_constant)
1095 {
1096 as_bad (_("expected #constant"));
1097 ignore_rest_of_line ();
1098 return FAIL;
1099 }
1100 *val = exp.X_add_number;
1101 return SUCCESS;
1102 }
1103 #endif
1104
1105 /* Register parsing. */
1106
1107 /* Generic register parser. CCP points to what should be the
1108 beginning of a register name. If it is indeed a valid register
1109 name, advance CCP over it and return the reg_entry structure;
1110 otherwise return NULL. Does not issue diagnostics. */
1111
1112 static struct reg_entry *
1113 arm_reg_parse_multi (char **ccp)
1114 {
1115 char *start = *ccp;
1116 char *p;
1117 struct reg_entry *reg;
1118
1119 #ifdef REGISTER_PREFIX
1120 if (*start != REGISTER_PREFIX)
1121 return NULL;
1122 start++;
1123 #endif
1124 #ifdef OPTIONAL_REGISTER_PREFIX
1125 if (*start == OPTIONAL_REGISTER_PREFIX)
1126 start++;
1127 #endif
1128
1129 p = start;
1130 if (!ISALPHA (*p) || !is_name_beginner (*p))
1131 return NULL;
1132
1133 do
1134 p++;
1135 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1136
1137 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1138
1139 if (!reg)
1140 return NULL;
1141
1142 *ccp = p;
1143 return reg;
1144 }
1145
1146 static int
1147 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1148 enum arm_reg_type type)
1149 {
1150 /* Alternative syntaxes are accepted for a few register classes. */
1151 switch (type)
1152 {
1153 case REG_TYPE_MVF:
1154 case REG_TYPE_MVD:
1155 case REG_TYPE_MVFX:
1156 case REG_TYPE_MVDX:
1157 /* Generic coprocessor register names are allowed for these. */
1158 if (reg && reg->type == REG_TYPE_CN)
1159 return reg->number;
1160 break;
1161
1162 case REG_TYPE_CP:
1163 /* For backward compatibility, a bare number is valid here. */
1164 {
1165 unsigned long processor = strtoul (start, ccp, 10);
1166 if (*ccp != start && processor <= 15)
1167 return processor;
1168 }
1169
1170 case REG_TYPE_MMXWC:
1171 /* WC includes WCG. ??? I'm not sure this is true for all
1172 instructions that take WC registers. */
1173 if (reg && reg->type == REG_TYPE_MMXWCG)
1174 return reg->number;
1175 break;
1176
1177 default:
1178 break;
1179 }
1180
1181 return FAIL;
1182 }
1183
1184 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1185 return value is the register number or FAIL. */
1186
1187 static int
1188 arm_reg_parse (char **ccp, enum arm_reg_type type)
1189 {
1190 char *start = *ccp;
1191 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1192 int ret;
1193
1194 /* Do not allow a scalar (reg+index) to parse as a register. */
1195 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1196 return FAIL;
1197
1198 if (reg && reg->type == type)
1199 return reg->number;
1200
1201 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1202 return ret;
1203
1204 *ccp = start;
1205 return FAIL;
1206 }
1207
1208 /* Parse a Neon type specifier. *STR should point at the leading '.'
1209 character. Does no verification at this stage that the type fits the opcode
1210 properly. E.g.,
1211
1212 .i32.i32.s16
1213 .s32.f32
1214 .u16
1215
1216 Can all be legally parsed by this function.
1217
1218 Fills in neon_type struct pointer with parsed information, and updates STR
1219 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1220 type, FAIL if not. */
1221
1222 static int
1223 parse_neon_type (struct neon_type *type, char **str)
1224 {
1225 char *ptr = *str;
1226
1227 if (type)
1228 type->elems = 0;
1229
1230 while (type->elems < NEON_MAX_TYPE_ELS)
1231 {
1232 enum neon_el_type thistype = NT_untyped;
1233 unsigned thissize = -1u;
1234
1235 if (*ptr != '.')
1236 break;
1237
1238 ptr++;
1239
1240 /* Just a size without an explicit type. */
1241 if (ISDIGIT (*ptr))
1242 goto parsesize;
1243
1244 switch (TOLOWER (*ptr))
1245 {
1246 case 'i': thistype = NT_integer; break;
1247 case 'f': thistype = NT_float; break;
1248 case 'p': thistype = NT_poly; break;
1249 case 's': thistype = NT_signed; break;
1250 case 'u': thistype = NT_unsigned; break;
1251 case 'd':
1252 thistype = NT_float;
1253 thissize = 64;
1254 ptr++;
1255 goto done;
1256 default:
1257 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1258 return FAIL;
1259 }
1260
1261 ptr++;
1262
1263 /* .f is an abbreviation for .f32. */
1264 if (thistype == NT_float && !ISDIGIT (*ptr))
1265 thissize = 32;
1266 else
1267 {
1268 parsesize:
1269 thissize = strtoul (ptr, &ptr, 10);
1270
1271 if (thissize != 8 && thissize != 16 && thissize != 32
1272 && thissize != 64)
1273 {
1274 as_bad (_("bad size %d in type specifier"), thissize);
1275 return FAIL;
1276 }
1277 }
1278
1279 done:
1280 if (type)
1281 {
1282 type->el[type->elems].type = thistype;
1283 type->el[type->elems].size = thissize;
1284 type->elems++;
1285 }
1286 }
1287
1288 /* Empty/missing type is not a successful parse. */
1289 if (type->elems == 0)
1290 return FAIL;
1291
1292 *str = ptr;
1293
1294 return SUCCESS;
1295 }
1296
1297 /* Errors may be set multiple times during parsing or bit encoding
1298 (particularly in the Neon bits), but usually the earliest error which is set
1299 will be the most meaningful. Avoid overwriting it with later (cascading)
1300 errors by calling this function. */
1301
1302 static void
1303 first_error (const char *err)
1304 {
1305 if (!inst.error)
1306 inst.error = err;
1307 }
1308
1309 /* Parse a single type, e.g. ".s32", leading period included. */
1310 static int
1311 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1312 {
1313 char *str = *ccp;
1314 struct neon_type optype;
1315
1316 if (*str == '.')
1317 {
1318 if (parse_neon_type (&optype, &str) == SUCCESS)
1319 {
1320 if (optype.elems == 1)
1321 *vectype = optype.el[0];
1322 else
1323 {
1324 first_error (_("only one type should be specified for operand"));
1325 return FAIL;
1326 }
1327 }
1328 else
1329 {
1330 first_error (_("vector type expected"));
1331 return FAIL;
1332 }
1333 }
1334 else
1335 return FAIL;
1336
1337 *ccp = str;
1338
1339 return SUCCESS;
1340 }
1341
1342 /* Special meanings for indices (which have a range of 0-7), which will fit into
1343 a 4-bit integer. */
1344
1345 #define NEON_ALL_LANES 15
1346 #define NEON_INTERLEAVE_LANES 14
1347
1348 /* Parse either a register or a scalar, with an optional type. Return the
1349 register number, and optionally fill in the actual type of the register
1350 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1351 type/index information in *TYPEINFO. */
1352
1353 static int
1354 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1355 enum arm_reg_type *rtype,
1356 struct neon_typed_alias *typeinfo)
1357 {
1358 char *str = *ccp;
1359 struct reg_entry *reg = arm_reg_parse_multi (&str);
1360 struct neon_typed_alias atype;
1361 struct neon_type_el parsetype;
1362
1363 atype.defined = 0;
1364 atype.index = -1;
1365 atype.eltype.type = NT_invtype;
1366 atype.eltype.size = -1;
1367
1368 /* Try alternate syntax for some types of register. Note these are mutually
1369 exclusive with the Neon syntax extensions. */
1370 if (reg == NULL)
1371 {
1372 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1373 if (altreg != FAIL)
1374 *ccp = str;
1375 if (typeinfo)
1376 *typeinfo = atype;
1377 return altreg;
1378 }
1379
1380 /* Undo polymorphism when a set of register types may be accepted. */
1381 if ((type == REG_TYPE_NDQ
1382 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1383 || (type == REG_TYPE_VFSD
1384 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1385 || (type == REG_TYPE_NSDQ
1386 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1387 || reg->type == REG_TYPE_NQ))
1388 || (type == REG_TYPE_MMXWC
1389 && (reg->type == REG_TYPE_MMXWCG)))
1390 type = (enum arm_reg_type) reg->type;
1391
1392 if (type != reg->type)
1393 return FAIL;
1394
1395 if (reg->neon)
1396 atype = *reg->neon;
1397
1398 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1399 {
1400 if ((atype.defined & NTA_HASTYPE) != 0)
1401 {
1402 first_error (_("can't redefine type for operand"));
1403 return FAIL;
1404 }
1405 atype.defined |= NTA_HASTYPE;
1406 atype.eltype = parsetype;
1407 }
1408
1409 if (skip_past_char (&str, '[') == SUCCESS)
1410 {
1411 if (type != REG_TYPE_VFD)
1412 {
1413 first_error (_("only D registers may be indexed"));
1414 return FAIL;
1415 }
1416
1417 if ((atype.defined & NTA_HASINDEX) != 0)
1418 {
1419 first_error (_("can't change index for operand"));
1420 return FAIL;
1421 }
1422
1423 atype.defined |= NTA_HASINDEX;
1424
1425 if (skip_past_char (&str, ']') == SUCCESS)
1426 atype.index = NEON_ALL_LANES;
1427 else
1428 {
1429 expressionS exp;
1430
1431 my_get_expression (&exp, &str, GE_NO_PREFIX);
1432
1433 if (exp.X_op != O_constant)
1434 {
1435 first_error (_("constant expression required"));
1436 return FAIL;
1437 }
1438
1439 if (skip_past_char (&str, ']') == FAIL)
1440 return FAIL;
1441
1442 atype.index = exp.X_add_number;
1443 }
1444 }
1445
1446 if (typeinfo)
1447 *typeinfo = atype;
1448
1449 if (rtype)
1450 *rtype = type;
1451
1452 *ccp = str;
1453
1454 return reg->number;
1455 }
1456
1457 /* Like arm_reg_parse, but allow allow the following extra features:
1458 - If RTYPE is non-zero, return the (possibly restricted) type of the
1459 register (e.g. Neon double or quad reg when either has been requested).
1460 - If this is a Neon vector type with additional type information, fill
1461 in the struct pointed to by VECTYPE (if non-NULL).
1462 This function will fault on encountering a scalar. */
1463
1464 static int
1465 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1466 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1467 {
1468 struct neon_typed_alias atype;
1469 char *str = *ccp;
1470 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1471
1472 if (reg == FAIL)
1473 return FAIL;
1474
1475 /* Do not allow regname(... to parse as a register. */
1476 if (*str == '(')
1477 return FAIL;
1478
1479 /* Do not allow a scalar (reg+index) to parse as a register. */
1480 if ((atype.defined & NTA_HASINDEX) != 0)
1481 {
1482 first_error (_("register operand expected, but got scalar"));
1483 return FAIL;
1484 }
1485
1486 if (vectype)
1487 *vectype = atype.eltype;
1488
1489 *ccp = str;
1490
1491 return reg;
1492 }
1493
1494 #define NEON_SCALAR_REG(X) ((X) >> 4)
1495 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1496
1497 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1498 have enough information to be able to do a good job bounds-checking. So, we
1499 just do easy checks here, and do further checks later. */
1500
1501 static int
1502 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1503 {
1504 int reg;
1505 char *str = *ccp;
1506 struct neon_typed_alias atype;
1507
1508 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1509
1510 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1511 return FAIL;
1512
1513 if (atype.index == NEON_ALL_LANES)
1514 {
1515 first_error (_("scalar must have an index"));
1516 return FAIL;
1517 }
1518 else if (atype.index >= 64 / elsize)
1519 {
1520 first_error (_("scalar index out of range"));
1521 return FAIL;
1522 }
1523
1524 if (type)
1525 *type = atype.eltype;
1526
1527 *ccp = str;
1528
1529 return reg * 16 + atype.index;
1530 }
1531
1532 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1533
1534 static long
1535 parse_reg_list (char ** strp)
1536 {
1537 char * str = * strp;
1538 long range = 0;
1539 int another_range;
1540
1541 /* We come back here if we get ranges concatenated by '+' or '|'. */
1542 do
1543 {
1544 another_range = 0;
1545
1546 if (*str == '{')
1547 {
1548 int in_range = 0;
1549 int cur_reg = -1;
1550
1551 str++;
1552 do
1553 {
1554 int reg;
1555
1556 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1557 {
1558 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1559 return FAIL;
1560 }
1561
1562 if (in_range)
1563 {
1564 int i;
1565
1566 if (reg <= cur_reg)
1567 {
1568 first_error (_("bad range in register list"));
1569 return FAIL;
1570 }
1571
1572 for (i = cur_reg + 1; i < reg; i++)
1573 {
1574 if (range & (1 << i))
1575 as_tsktsk
1576 (_("Warning: duplicated register (r%d) in register list"),
1577 i);
1578 else
1579 range |= 1 << i;
1580 }
1581 in_range = 0;
1582 }
1583
1584 if (range & (1 << reg))
1585 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1586 reg);
1587 else if (reg <= cur_reg)
1588 as_tsktsk (_("Warning: register range not in ascending order"));
1589
1590 range |= 1 << reg;
1591 cur_reg = reg;
1592 }
1593 while (skip_past_comma (&str) != FAIL
1594 || (in_range = 1, *str++ == '-'));
1595 str--;
1596
1597 if (*str++ != '}')
1598 {
1599 first_error (_("missing `}'"));
1600 return FAIL;
1601 }
1602 }
1603 else
1604 {
1605 expressionS exp;
1606
1607 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1608 return FAIL;
1609
1610 if (exp.X_op == O_constant)
1611 {
1612 if (exp.X_add_number
1613 != (exp.X_add_number & 0x0000ffff))
1614 {
1615 inst.error = _("invalid register mask");
1616 return FAIL;
1617 }
1618
1619 if ((range & exp.X_add_number) != 0)
1620 {
1621 int regno = range & exp.X_add_number;
1622
1623 regno &= -regno;
1624 regno = (1 << regno) - 1;
1625 as_tsktsk
1626 (_("Warning: duplicated register (r%d) in register list"),
1627 regno);
1628 }
1629
1630 range |= exp.X_add_number;
1631 }
1632 else
1633 {
1634 if (inst.reloc.type != 0)
1635 {
1636 inst.error = _("expression too complex");
1637 return FAIL;
1638 }
1639
1640 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1641 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1642 inst.reloc.pc_rel = 0;
1643 }
1644 }
1645
1646 if (*str == '|' || *str == '+')
1647 {
1648 str++;
1649 another_range = 1;
1650 }
1651 }
1652 while (another_range);
1653
1654 *strp = str;
1655 return range;
1656 }
1657
1658 /* Types of registers in a list. */
1659
1660 enum reg_list_els
1661 {
1662 REGLIST_VFP_S,
1663 REGLIST_VFP_D,
1664 REGLIST_NEON_D
1665 };
1666
1667 /* Parse a VFP register list. If the string is invalid return FAIL.
1668 Otherwise return the number of registers, and set PBASE to the first
1669 register. Parses registers of type ETYPE.
1670 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1671 - Q registers can be used to specify pairs of D registers
1672 - { } can be omitted from around a singleton register list
1673 FIXME: This is not implemented, as it would require backtracking in
1674 some cases, e.g.:
1675 vtbl.8 d3,d4,d5
1676 This could be done (the meaning isn't really ambiguous), but doesn't
1677 fit in well with the current parsing framework.
1678 - 32 D registers may be used (also true for VFPv3).
1679 FIXME: Types are ignored in these register lists, which is probably a
1680 bug. */
1681
1682 static int
1683 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1684 {
1685 char *str = *ccp;
1686 int base_reg;
1687 int new_base;
1688 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1689 int max_regs = 0;
1690 int count = 0;
1691 int warned = 0;
1692 unsigned long mask = 0;
1693 int i;
1694
1695 if (*str != '{')
1696 {
1697 inst.error = _("expecting {");
1698 return FAIL;
1699 }
1700
1701 str++;
1702
1703 switch (etype)
1704 {
1705 case REGLIST_VFP_S:
1706 regtype = REG_TYPE_VFS;
1707 max_regs = 32;
1708 break;
1709
1710 case REGLIST_VFP_D:
1711 regtype = REG_TYPE_VFD;
1712 break;
1713
1714 case REGLIST_NEON_D:
1715 regtype = REG_TYPE_NDQ;
1716 break;
1717 }
1718
1719 if (etype != REGLIST_VFP_S)
1720 {
1721 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1722 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1723 {
1724 max_regs = 32;
1725 if (thumb_mode)
1726 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1727 fpu_vfp_ext_d32);
1728 else
1729 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1730 fpu_vfp_ext_d32);
1731 }
1732 else
1733 max_regs = 16;
1734 }
1735
1736 base_reg = max_regs;
1737
1738 do
1739 {
1740 int setmask = 1, addregs = 1;
1741
1742 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1743
1744 if (new_base == FAIL)
1745 {
1746 first_error (_(reg_expected_msgs[regtype]));
1747 return FAIL;
1748 }
1749
1750 if (new_base >= max_regs)
1751 {
1752 first_error (_("register out of range in list"));
1753 return FAIL;
1754 }
1755
1756 /* Note: a value of 2 * n is returned for the register Q<n>. */
1757 if (regtype == REG_TYPE_NQ)
1758 {
1759 setmask = 3;
1760 addregs = 2;
1761 }
1762
1763 if (new_base < base_reg)
1764 base_reg = new_base;
1765
1766 if (mask & (setmask << new_base))
1767 {
1768 first_error (_("invalid register list"));
1769 return FAIL;
1770 }
1771
1772 if ((mask >> new_base) != 0 && ! warned)
1773 {
1774 as_tsktsk (_("register list not in ascending order"));
1775 warned = 1;
1776 }
1777
1778 mask |= setmask << new_base;
1779 count += addregs;
1780
1781 if (*str == '-') /* We have the start of a range expression */
1782 {
1783 int high_range;
1784
1785 str++;
1786
1787 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1788 == FAIL)
1789 {
1790 inst.error = gettext (reg_expected_msgs[regtype]);
1791 return FAIL;
1792 }
1793
1794 if (high_range >= max_regs)
1795 {
1796 first_error (_("register out of range in list"));
1797 return FAIL;
1798 }
1799
1800 if (regtype == REG_TYPE_NQ)
1801 high_range = high_range + 1;
1802
1803 if (high_range <= new_base)
1804 {
1805 inst.error = _("register range not in ascending order");
1806 return FAIL;
1807 }
1808
1809 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1810 {
1811 if (mask & (setmask << new_base))
1812 {
1813 inst.error = _("invalid register list");
1814 return FAIL;
1815 }
1816
1817 mask |= setmask << new_base;
1818 count += addregs;
1819 }
1820 }
1821 }
1822 while (skip_past_comma (&str) != FAIL);
1823
1824 str++;
1825
1826 /* Sanity check -- should have raised a parse error above. */
1827 if (count == 0 || count > max_regs)
1828 abort ();
1829
1830 *pbase = base_reg;
1831
1832 /* Final test -- the registers must be consecutive. */
1833 mask >>= base_reg;
1834 for (i = 0; i < count; i++)
1835 {
1836 if ((mask & (1u << i)) == 0)
1837 {
1838 inst.error = _("non-contiguous register range");
1839 return FAIL;
1840 }
1841 }
1842
1843 *ccp = str;
1844
1845 return count;
1846 }
1847
1848 /* True if two alias types are the same. */
1849
1850 static bfd_boolean
1851 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1852 {
1853 if (!a && !b)
1854 return TRUE;
1855
1856 if (!a || !b)
1857 return FALSE;
1858
1859 if (a->defined != b->defined)
1860 return FALSE;
1861
1862 if ((a->defined & NTA_HASTYPE) != 0
1863 && (a->eltype.type != b->eltype.type
1864 || a->eltype.size != b->eltype.size))
1865 return FALSE;
1866
1867 if ((a->defined & NTA_HASINDEX) != 0
1868 && (a->index != b->index))
1869 return FALSE;
1870
1871 return TRUE;
1872 }
1873
1874 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1875 The base register is put in *PBASE.
1876 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1877 the return value.
1878 The register stride (minus one) is put in bit 4 of the return value.
1879 Bits [6:5] encode the list length (minus one).
1880 The type of the list elements is put in *ELTYPE, if non-NULL. */
1881
1882 #define NEON_LANE(X) ((X) & 0xf)
1883 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1884 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1885
1886 static int
1887 parse_neon_el_struct_list (char **str, unsigned *pbase,
1888 struct neon_type_el *eltype)
1889 {
1890 char *ptr = *str;
1891 int base_reg = -1;
1892 int reg_incr = -1;
1893 int count = 0;
1894 int lane = -1;
1895 int leading_brace = 0;
1896 enum arm_reg_type rtype = REG_TYPE_NDQ;
1897 const char *const incr_error = _("register stride must be 1 or 2");
1898 const char *const type_error = _("mismatched element/structure types in list");
1899 struct neon_typed_alias firsttype;
1900
1901 if (skip_past_char (&ptr, '{') == SUCCESS)
1902 leading_brace = 1;
1903
1904 do
1905 {
1906 struct neon_typed_alias atype;
1907 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1908
1909 if (getreg == FAIL)
1910 {
1911 first_error (_(reg_expected_msgs[rtype]));
1912 return FAIL;
1913 }
1914
1915 if (base_reg == -1)
1916 {
1917 base_reg = getreg;
1918 if (rtype == REG_TYPE_NQ)
1919 {
1920 reg_incr = 1;
1921 }
1922 firsttype = atype;
1923 }
1924 else if (reg_incr == -1)
1925 {
1926 reg_incr = getreg - base_reg;
1927 if (reg_incr < 1 || reg_incr > 2)
1928 {
1929 first_error (_(incr_error));
1930 return FAIL;
1931 }
1932 }
1933 else if (getreg != base_reg + reg_incr * count)
1934 {
1935 first_error (_(incr_error));
1936 return FAIL;
1937 }
1938
1939 if (! neon_alias_types_same (&atype, &firsttype))
1940 {
1941 first_error (_(type_error));
1942 return FAIL;
1943 }
1944
1945 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1946 modes. */
1947 if (ptr[0] == '-')
1948 {
1949 struct neon_typed_alias htype;
1950 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1951 if (lane == -1)
1952 lane = NEON_INTERLEAVE_LANES;
1953 else if (lane != NEON_INTERLEAVE_LANES)
1954 {
1955 first_error (_(type_error));
1956 return FAIL;
1957 }
1958 if (reg_incr == -1)
1959 reg_incr = 1;
1960 else if (reg_incr != 1)
1961 {
1962 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1963 return FAIL;
1964 }
1965 ptr++;
1966 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1967 if (hireg == FAIL)
1968 {
1969 first_error (_(reg_expected_msgs[rtype]));
1970 return FAIL;
1971 }
1972 if (! neon_alias_types_same (&htype, &firsttype))
1973 {
1974 first_error (_(type_error));
1975 return FAIL;
1976 }
1977 count += hireg + dregs - getreg;
1978 continue;
1979 }
1980
1981 /* If we're using Q registers, we can't use [] or [n] syntax. */
1982 if (rtype == REG_TYPE_NQ)
1983 {
1984 count += 2;
1985 continue;
1986 }
1987
1988 if ((atype.defined & NTA_HASINDEX) != 0)
1989 {
1990 if (lane == -1)
1991 lane = atype.index;
1992 else if (lane != atype.index)
1993 {
1994 first_error (_(type_error));
1995 return FAIL;
1996 }
1997 }
1998 else if (lane == -1)
1999 lane = NEON_INTERLEAVE_LANES;
2000 else if (lane != NEON_INTERLEAVE_LANES)
2001 {
2002 first_error (_(type_error));
2003 return FAIL;
2004 }
2005 count++;
2006 }
2007 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2008
2009 /* No lane set by [x]. We must be interleaving structures. */
2010 if (lane == -1)
2011 lane = NEON_INTERLEAVE_LANES;
2012
2013 /* Sanity check. */
2014 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2015 || (count > 1 && reg_incr == -1))
2016 {
2017 first_error (_("error parsing element/structure list"));
2018 return FAIL;
2019 }
2020
2021 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2022 {
2023 first_error (_("expected }"));
2024 return FAIL;
2025 }
2026
2027 if (reg_incr == -1)
2028 reg_incr = 1;
2029
2030 if (eltype)
2031 *eltype = firsttype.eltype;
2032
2033 *pbase = base_reg;
2034 *str = ptr;
2035
2036 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2037 }
2038
2039 /* Parse an explicit relocation suffix on an expression. This is
2040 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2041 arm_reloc_hsh contains no entries, so this function can only
2042 succeed if there is no () after the word. Returns -1 on error,
2043 BFD_RELOC_UNUSED if there wasn't any suffix. */
2044 static int
2045 parse_reloc (char **str)
2046 {
2047 struct reloc_entry *r;
2048 char *p, *q;
2049
2050 if (**str != '(')
2051 return BFD_RELOC_UNUSED;
2052
2053 p = *str + 1;
2054 q = p;
2055
2056 while (*q && *q != ')' && *q != ',')
2057 q++;
2058 if (*q != ')')
2059 return -1;
2060
2061 if ((r = (struct reloc_entry *)
2062 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2063 return -1;
2064
2065 *str = q + 1;
2066 return r->reloc;
2067 }
2068
2069 /* Directives: register aliases. */
2070
2071 static struct reg_entry *
2072 insert_reg_alias (char *str, unsigned number, int type)
2073 {
2074 struct reg_entry *new_reg;
2075 const char *name;
2076
2077 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2078 {
2079 if (new_reg->builtin)
2080 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2081
2082 /* Only warn about a redefinition if it's not defined as the
2083 same register. */
2084 else if (new_reg->number != number || new_reg->type != type)
2085 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2086
2087 return NULL;
2088 }
2089
2090 name = xstrdup (str);
2091 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2092
2093 new_reg->name = name;
2094 new_reg->number = number;
2095 new_reg->type = type;
2096 new_reg->builtin = FALSE;
2097 new_reg->neon = NULL;
2098
2099 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2100 abort ();
2101
2102 return new_reg;
2103 }
2104
2105 static void
2106 insert_neon_reg_alias (char *str, int number, int type,
2107 struct neon_typed_alias *atype)
2108 {
2109 struct reg_entry *reg = insert_reg_alias (str, number, type);
2110
2111 if (!reg)
2112 {
2113 first_error (_("attempt to redefine typed alias"));
2114 return;
2115 }
2116
2117 if (atype)
2118 {
2119 reg->neon = (struct neon_typed_alias *)
2120 xmalloc (sizeof (struct neon_typed_alias));
2121 *reg->neon = *atype;
2122 }
2123 }
2124
2125 /* Look for the .req directive. This is of the form:
2126
2127 new_register_name .req existing_register_name
2128
2129 If we find one, or if it looks sufficiently like one that we want to
2130 handle any error here, return TRUE. Otherwise return FALSE. */
2131
2132 static bfd_boolean
2133 create_register_alias (char * newname, char *p)
2134 {
2135 struct reg_entry *old;
2136 char *oldname, *nbuf;
2137 size_t nlen;
2138
2139 /* The input scrubber ensures that whitespace after the mnemonic is
2140 collapsed to single spaces. */
2141 oldname = p;
2142 if (strncmp (oldname, " .req ", 6) != 0)
2143 return FALSE;
2144
2145 oldname += 6;
2146 if (*oldname == '\0')
2147 return FALSE;
2148
2149 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2150 if (!old)
2151 {
2152 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2153 return TRUE;
2154 }
2155
2156 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2157 the desired alias name, and p points to its end. If not, then
2158 the desired alias name is in the global original_case_string. */
2159 #ifdef TC_CASE_SENSITIVE
2160 nlen = p - newname;
2161 #else
2162 newname = original_case_string;
2163 nlen = strlen (newname);
2164 #endif
2165
2166 nbuf = (char *) alloca (nlen + 1);
2167 memcpy (nbuf, newname, nlen);
2168 nbuf[nlen] = '\0';
2169
2170 /* Create aliases under the new name as stated; an all-lowercase
2171 version of the new name; and an all-uppercase version of the new
2172 name. */
2173 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2174 {
2175 for (p = nbuf; *p; p++)
2176 *p = TOUPPER (*p);
2177
2178 if (strncmp (nbuf, newname, nlen))
2179 {
2180 /* If this attempt to create an additional alias fails, do not bother
2181 trying to create the all-lower case alias. We will fail and issue
2182 a second, duplicate error message. This situation arises when the
2183 programmer does something like:
2184 foo .req r0
2185 Foo .req r1
2186 The second .req creates the "Foo" alias but then fails to create
2187 the artificial FOO alias because it has already been created by the
2188 first .req. */
2189 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2190 return TRUE;
2191 }
2192
2193 for (p = nbuf; *p; p++)
2194 *p = TOLOWER (*p);
2195
2196 if (strncmp (nbuf, newname, nlen))
2197 insert_reg_alias (nbuf, old->number, old->type);
2198 }
2199
2200 return TRUE;
2201 }
2202
2203 /* Create a Neon typed/indexed register alias using directives, e.g.:
2204 X .dn d5.s32[1]
2205 Y .qn 6.s16
2206 Z .dn d7
2207 T .dn Z[0]
2208 These typed registers can be used instead of the types specified after the
2209 Neon mnemonic, so long as all operands given have types. Types can also be
2210 specified directly, e.g.:
2211 vadd d0.s32, d1.s32, d2.s32 */
2212
2213 static bfd_boolean
2214 create_neon_reg_alias (char *newname, char *p)
2215 {
2216 enum arm_reg_type basetype;
2217 struct reg_entry *basereg;
2218 struct reg_entry mybasereg;
2219 struct neon_type ntype;
2220 struct neon_typed_alias typeinfo;
2221 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2222 int namelen;
2223
2224 typeinfo.defined = 0;
2225 typeinfo.eltype.type = NT_invtype;
2226 typeinfo.eltype.size = -1;
2227 typeinfo.index = -1;
2228
2229 nameend = p;
2230
2231 if (strncmp (p, " .dn ", 5) == 0)
2232 basetype = REG_TYPE_VFD;
2233 else if (strncmp (p, " .qn ", 5) == 0)
2234 basetype = REG_TYPE_NQ;
2235 else
2236 return FALSE;
2237
2238 p += 5;
2239
2240 if (*p == '\0')
2241 return FALSE;
2242
2243 basereg = arm_reg_parse_multi (&p);
2244
2245 if (basereg && basereg->type != basetype)
2246 {
2247 as_bad (_("bad type for register"));
2248 return FALSE;
2249 }
2250
2251 if (basereg == NULL)
2252 {
2253 expressionS exp;
2254 /* Try parsing as an integer. */
2255 my_get_expression (&exp, &p, GE_NO_PREFIX);
2256 if (exp.X_op != O_constant)
2257 {
2258 as_bad (_("expression must be constant"));
2259 return FALSE;
2260 }
2261 basereg = &mybasereg;
2262 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2263 : exp.X_add_number;
2264 basereg->neon = 0;
2265 }
2266
2267 if (basereg->neon)
2268 typeinfo = *basereg->neon;
2269
2270 if (parse_neon_type (&ntype, &p) == SUCCESS)
2271 {
2272 /* We got a type. */
2273 if (typeinfo.defined & NTA_HASTYPE)
2274 {
2275 as_bad (_("can't redefine the type of a register alias"));
2276 return FALSE;
2277 }
2278
2279 typeinfo.defined |= NTA_HASTYPE;
2280 if (ntype.elems != 1)
2281 {
2282 as_bad (_("you must specify a single type only"));
2283 return FALSE;
2284 }
2285 typeinfo.eltype = ntype.el[0];
2286 }
2287
2288 if (skip_past_char (&p, '[') == SUCCESS)
2289 {
2290 expressionS exp;
2291 /* We got a scalar index. */
2292
2293 if (typeinfo.defined & NTA_HASINDEX)
2294 {
2295 as_bad (_("can't redefine the index of a scalar alias"));
2296 return FALSE;
2297 }
2298
2299 my_get_expression (&exp, &p, GE_NO_PREFIX);
2300
2301 if (exp.X_op != O_constant)
2302 {
2303 as_bad (_("scalar index must be constant"));
2304 return FALSE;
2305 }
2306
2307 typeinfo.defined |= NTA_HASINDEX;
2308 typeinfo.index = exp.X_add_number;
2309
2310 if (skip_past_char (&p, ']') == FAIL)
2311 {
2312 as_bad (_("expecting ]"));
2313 return FALSE;
2314 }
2315 }
2316
2317 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2318 the desired alias name, and p points to its end. If not, then
2319 the desired alias name is in the global original_case_string. */
2320 #ifdef TC_CASE_SENSITIVE
2321 namelen = nameend - newname;
2322 #else
2323 newname = original_case_string;
2324 namelen = strlen (newname);
2325 #endif
2326
2327 namebuf = (char *) alloca (namelen + 1);
2328 strncpy (namebuf, newname, namelen);
2329 namebuf[namelen] = '\0';
2330
2331 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2332 typeinfo.defined != 0 ? &typeinfo : NULL);
2333
2334 /* Insert name in all uppercase. */
2335 for (p = namebuf; *p; p++)
2336 *p = TOUPPER (*p);
2337
2338 if (strncmp (namebuf, newname, namelen))
2339 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2340 typeinfo.defined != 0 ? &typeinfo : NULL);
2341
2342 /* Insert name in all lowercase. */
2343 for (p = namebuf; *p; p++)
2344 *p = TOLOWER (*p);
2345
2346 if (strncmp (namebuf, newname, namelen))
2347 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2348 typeinfo.defined != 0 ? &typeinfo : NULL);
2349
2350 return TRUE;
2351 }
2352
2353 /* Should never be called, as .req goes between the alias and the
2354 register name, not at the beginning of the line. */
2355
2356 static void
2357 s_req (int a ATTRIBUTE_UNUSED)
2358 {
2359 as_bad (_("invalid syntax for .req directive"));
2360 }
2361
2362 static void
2363 s_dn (int a ATTRIBUTE_UNUSED)
2364 {
2365 as_bad (_("invalid syntax for .dn directive"));
2366 }
2367
2368 static void
2369 s_qn (int a ATTRIBUTE_UNUSED)
2370 {
2371 as_bad (_("invalid syntax for .qn directive"));
2372 }
2373
2374 /* The .unreq directive deletes an alias which was previously defined
2375 by .req. For example:
2376
2377 my_alias .req r11
2378 .unreq my_alias */
2379
2380 static void
2381 s_unreq (int a ATTRIBUTE_UNUSED)
2382 {
2383 char * name;
2384 char saved_char;
2385
2386 name = input_line_pointer;
2387
2388 while (*input_line_pointer != 0
2389 && *input_line_pointer != ' '
2390 && *input_line_pointer != '\n')
2391 ++input_line_pointer;
2392
2393 saved_char = *input_line_pointer;
2394 *input_line_pointer = 0;
2395
2396 if (!*name)
2397 as_bad (_("invalid syntax for .unreq directive"));
2398 else
2399 {
2400 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2401 name);
2402
2403 if (!reg)
2404 as_bad (_("unknown register alias '%s'"), name);
2405 else if (reg->builtin)
2406 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2407 name);
2408 else
2409 {
2410 char * p;
2411 char * nbuf;
2412
2413 hash_delete (arm_reg_hsh, name, FALSE);
2414 free ((char *) reg->name);
2415 if (reg->neon)
2416 free (reg->neon);
2417 free (reg);
2418
2419 /* Also locate the all upper case and all lower case versions.
2420 Do not complain if we cannot find one or the other as it
2421 was probably deleted above. */
2422
2423 nbuf = strdup (name);
2424 for (p = nbuf; *p; p++)
2425 *p = TOUPPER (*p);
2426 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2427 if (reg)
2428 {
2429 hash_delete (arm_reg_hsh, nbuf, FALSE);
2430 free ((char *) reg->name);
2431 if (reg->neon)
2432 free (reg->neon);
2433 free (reg);
2434 }
2435
2436 for (p = nbuf; *p; p++)
2437 *p = TOLOWER (*p);
2438 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2439 if (reg)
2440 {
2441 hash_delete (arm_reg_hsh, nbuf, FALSE);
2442 free ((char *) reg->name);
2443 if (reg->neon)
2444 free (reg->neon);
2445 free (reg);
2446 }
2447
2448 free (nbuf);
2449 }
2450 }
2451
2452 *input_line_pointer = saved_char;
2453 demand_empty_rest_of_line ();
2454 }
2455
2456 /* Directives: Instruction set selection. */
2457
2458 #ifdef OBJ_ELF
2459 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2460 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2461 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2462 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2463
2464 /* Create a new mapping symbol for the transition to STATE. */
2465
2466 static void
2467 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2468 {
2469 symbolS * symbolP;
2470 const char * symname;
2471 int type;
2472
2473 switch (state)
2474 {
2475 case MAP_DATA:
2476 symname = "$d";
2477 type = BSF_NO_FLAGS;
2478 break;
2479 case MAP_ARM:
2480 symname = "$a";
2481 type = BSF_NO_FLAGS;
2482 break;
2483 case MAP_THUMB:
2484 symname = "$t";
2485 type = BSF_NO_FLAGS;
2486 break;
2487 default:
2488 abort ();
2489 }
2490
2491 symbolP = symbol_new (symname, now_seg, value, frag);
2492 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2493
2494 switch (state)
2495 {
2496 case MAP_ARM:
2497 THUMB_SET_FUNC (symbolP, 0);
2498 ARM_SET_THUMB (symbolP, 0);
2499 ARM_SET_INTERWORK (symbolP, support_interwork);
2500 break;
2501
2502 case MAP_THUMB:
2503 THUMB_SET_FUNC (symbolP, 1);
2504 ARM_SET_THUMB (symbolP, 1);
2505 ARM_SET_INTERWORK (symbolP, support_interwork);
2506 break;
2507
2508 case MAP_DATA:
2509 default:
2510 break;
2511 }
2512
2513 /* Save the mapping symbols for future reference. Also check that
2514 we do not place two mapping symbols at the same offset within a
2515 frag. We'll handle overlap between frags in
2516 check_mapping_symbols.
2517
2518 If .fill or other data filling directive generates zero sized data,
2519 the mapping symbol for the following code will have the same value
2520 as the one generated for the data filling directive. In this case,
2521 we replace the old symbol with the new one at the same address. */
2522 if (value == 0)
2523 {
2524 if (frag->tc_frag_data.first_map != NULL)
2525 {
2526 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2527 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2528 }
2529 frag->tc_frag_data.first_map = symbolP;
2530 }
2531 if (frag->tc_frag_data.last_map != NULL)
2532 {
2533 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2534 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2535 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2536 }
2537 frag->tc_frag_data.last_map = symbolP;
2538 }
2539
2540 /* We must sometimes convert a region marked as code to data during
2541 code alignment, if an odd number of bytes have to be padded. The
2542 code mapping symbol is pushed to an aligned address. */
2543
2544 static void
2545 insert_data_mapping_symbol (enum mstate state,
2546 valueT value, fragS *frag, offsetT bytes)
2547 {
2548 /* If there was already a mapping symbol, remove it. */
2549 if (frag->tc_frag_data.last_map != NULL
2550 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2551 {
2552 symbolS *symp = frag->tc_frag_data.last_map;
2553
2554 if (value == 0)
2555 {
2556 know (frag->tc_frag_data.first_map == symp);
2557 frag->tc_frag_data.first_map = NULL;
2558 }
2559 frag->tc_frag_data.last_map = NULL;
2560 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2561 }
2562
2563 make_mapping_symbol (MAP_DATA, value, frag);
2564 make_mapping_symbol (state, value + bytes, frag);
2565 }
2566
2567 static void mapping_state_2 (enum mstate state, int max_chars);
2568
2569 /* Set the mapping state to STATE. Only call this when about to
2570 emit some STATE bytes to the file. */
2571
2572 void
2573 mapping_state (enum mstate state)
2574 {
2575 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2576
2577 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2578
2579 if (mapstate == state)
2580 /* The mapping symbol has already been emitted.
2581 There is nothing else to do. */
2582 return;
2583 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2584 /* This case will be evaluated later in the next else. */
2585 return;
2586 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2587 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2588 {
2589 /* Only add the symbol if the offset is > 0:
2590 if we're at the first frag, check it's size > 0;
2591 if we're not at the first frag, then for sure
2592 the offset is > 0. */
2593 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2594 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2595
2596 if (add_symbol)
2597 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2598 }
2599
2600 mapping_state_2 (state, 0);
2601 #undef TRANSITION
2602 }
2603
2604 /* Same as mapping_state, but MAX_CHARS bytes have already been
2605 allocated. Put the mapping symbol that far back. */
2606
2607 static void
2608 mapping_state_2 (enum mstate state, int max_chars)
2609 {
2610 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2611
2612 if (!SEG_NORMAL (now_seg))
2613 return;
2614
2615 if (mapstate == state)
2616 /* The mapping symbol has already been emitted.
2617 There is nothing else to do. */
2618 return;
2619
2620 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2621 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2622 }
2623 #else
2624 #define mapping_state(x) ((void)0)
2625 #define mapping_state_2(x, y) ((void)0)
2626 #endif
2627
2628 /* Find the real, Thumb encoded start of a Thumb function. */
2629
2630 #ifdef OBJ_COFF
2631 static symbolS *
2632 find_real_start (symbolS * symbolP)
2633 {
2634 char * real_start;
2635 const char * name = S_GET_NAME (symbolP);
2636 symbolS * new_target;
2637
2638 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2639 #define STUB_NAME ".real_start_of"
2640
2641 if (name == NULL)
2642 abort ();
2643
2644 /* The compiler may generate BL instructions to local labels because
2645 it needs to perform a branch to a far away location. These labels
2646 do not have a corresponding ".real_start_of" label. We check
2647 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2648 the ".real_start_of" convention for nonlocal branches. */
2649 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2650 return symbolP;
2651
2652 real_start = ACONCAT ((STUB_NAME, name, NULL));
2653 new_target = symbol_find (real_start);
2654
2655 if (new_target == NULL)
2656 {
2657 as_warn (_("Failed to find real start of function: %s\n"), name);
2658 new_target = symbolP;
2659 }
2660
2661 return new_target;
2662 }
2663 #endif
2664
2665 static void
2666 opcode_select (int width)
2667 {
2668 switch (width)
2669 {
2670 case 16:
2671 if (! thumb_mode)
2672 {
2673 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2674 as_bad (_("selected processor does not support THUMB opcodes"));
2675
2676 thumb_mode = 1;
2677 /* No need to force the alignment, since we will have been
2678 coming from ARM mode, which is word-aligned. */
2679 record_alignment (now_seg, 1);
2680 }
2681 break;
2682
2683 case 32:
2684 if (thumb_mode)
2685 {
2686 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2687 as_bad (_("selected processor does not support ARM opcodes"));
2688
2689 thumb_mode = 0;
2690
2691 if (!need_pass_2)
2692 frag_align (2, 0, 0);
2693
2694 record_alignment (now_seg, 1);
2695 }
2696 break;
2697
2698 default:
2699 as_bad (_("invalid instruction size selected (%d)"), width);
2700 }
2701 }
2702
2703 static void
2704 s_arm (int ignore ATTRIBUTE_UNUSED)
2705 {
2706 opcode_select (32);
2707 demand_empty_rest_of_line ();
2708 }
2709
2710 static void
2711 s_thumb (int ignore ATTRIBUTE_UNUSED)
2712 {
2713 opcode_select (16);
2714 demand_empty_rest_of_line ();
2715 }
2716
2717 static void
2718 s_code (int unused ATTRIBUTE_UNUSED)
2719 {
2720 int temp;
2721
2722 temp = get_absolute_expression ();
2723 switch (temp)
2724 {
2725 case 16:
2726 case 32:
2727 opcode_select (temp);
2728 break;
2729
2730 default:
2731 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2732 }
2733 }
2734
2735 static void
2736 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2737 {
2738 /* If we are not already in thumb mode go into it, EVEN if
2739 the target processor does not support thumb instructions.
2740 This is used by gcc/config/arm/lib1funcs.asm for example
2741 to compile interworking support functions even if the
2742 target processor should not support interworking. */
2743 if (! thumb_mode)
2744 {
2745 thumb_mode = 2;
2746 record_alignment (now_seg, 1);
2747 }
2748
2749 demand_empty_rest_of_line ();
2750 }
2751
2752 static void
2753 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2754 {
2755 s_thumb (0);
2756
2757 /* The following label is the name/address of the start of a Thumb function.
2758 We need to know this for the interworking support. */
2759 label_is_thumb_function_name = TRUE;
2760 }
2761
2762 /* Perform a .set directive, but also mark the alias as
2763 being a thumb function. */
2764
2765 static void
2766 s_thumb_set (int equiv)
2767 {
2768 /* XXX the following is a duplicate of the code for s_set() in read.c
2769 We cannot just call that code as we need to get at the symbol that
2770 is created. */
2771 char * name;
2772 char delim;
2773 char * end_name;
2774 symbolS * symbolP;
2775
2776 /* Especial apologies for the random logic:
2777 This just grew, and could be parsed much more simply!
2778 Dean - in haste. */
2779 name = input_line_pointer;
2780 delim = get_symbol_end ();
2781 end_name = input_line_pointer;
2782 *end_name = delim;
2783
2784 if (*input_line_pointer != ',')
2785 {
2786 *end_name = 0;
2787 as_bad (_("expected comma after name \"%s\""), name);
2788 *end_name = delim;
2789 ignore_rest_of_line ();
2790 return;
2791 }
2792
2793 input_line_pointer++;
2794 *end_name = 0;
2795
2796 if (name[0] == '.' && name[1] == '\0')
2797 {
2798 /* XXX - this should not happen to .thumb_set. */
2799 abort ();
2800 }
2801
2802 if ((symbolP = symbol_find (name)) == NULL
2803 && (symbolP = md_undefined_symbol (name)) == NULL)
2804 {
2805 #ifndef NO_LISTING
2806 /* When doing symbol listings, play games with dummy fragments living
2807 outside the normal fragment chain to record the file and line info
2808 for this symbol. */
2809 if (listing & LISTING_SYMBOLS)
2810 {
2811 extern struct list_info_struct * listing_tail;
2812 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2813
2814 memset (dummy_frag, 0, sizeof (fragS));
2815 dummy_frag->fr_type = rs_fill;
2816 dummy_frag->line = listing_tail;
2817 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2818 dummy_frag->fr_symbol = symbolP;
2819 }
2820 else
2821 #endif
2822 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2823
2824 #ifdef OBJ_COFF
2825 /* "set" symbols are local unless otherwise specified. */
2826 SF_SET_LOCAL (symbolP);
2827 #endif /* OBJ_COFF */
2828 } /* Make a new symbol. */
2829
2830 symbol_table_insert (symbolP);
2831
2832 * end_name = delim;
2833
2834 if (equiv
2835 && S_IS_DEFINED (symbolP)
2836 && S_GET_SEGMENT (symbolP) != reg_section)
2837 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2838
2839 pseudo_set (symbolP);
2840
2841 demand_empty_rest_of_line ();
2842
2843 /* XXX Now we come to the Thumb specific bit of code. */
2844
2845 THUMB_SET_FUNC (symbolP, 1);
2846 ARM_SET_THUMB (symbolP, 1);
2847 #if defined OBJ_ELF || defined OBJ_COFF
2848 ARM_SET_INTERWORK (symbolP, support_interwork);
2849 #endif
2850 }
2851
2852 /* Directives: Mode selection. */
2853
2854 /* .syntax [unified|divided] - choose the new unified syntax
2855 (same for Arm and Thumb encoding, modulo slight differences in what
2856 can be represented) or the old divergent syntax for each mode. */
2857 static void
2858 s_syntax (int unused ATTRIBUTE_UNUSED)
2859 {
2860 char *name, delim;
2861
2862 name = input_line_pointer;
2863 delim = get_symbol_end ();
2864
2865 if (!strcasecmp (name, "unified"))
2866 unified_syntax = TRUE;
2867 else if (!strcasecmp (name, "divided"))
2868 unified_syntax = FALSE;
2869 else
2870 {
2871 as_bad (_("unrecognized syntax mode \"%s\""), name);
2872 return;
2873 }
2874 *input_line_pointer = delim;
2875 demand_empty_rest_of_line ();
2876 }
2877
2878 /* Directives: sectioning and alignment. */
2879
2880 /* Same as s_align_ptwo but align 0 => align 2. */
2881
2882 static void
2883 s_align (int unused ATTRIBUTE_UNUSED)
2884 {
2885 int temp;
2886 bfd_boolean fill_p;
2887 long temp_fill;
2888 long max_alignment = 15;
2889
2890 temp = get_absolute_expression ();
2891 if (temp > max_alignment)
2892 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2893 else if (temp < 0)
2894 {
2895 as_bad (_("alignment negative. 0 assumed."));
2896 temp = 0;
2897 }
2898
2899 if (*input_line_pointer == ',')
2900 {
2901 input_line_pointer++;
2902 temp_fill = get_absolute_expression ();
2903 fill_p = TRUE;
2904 }
2905 else
2906 {
2907 fill_p = FALSE;
2908 temp_fill = 0;
2909 }
2910
2911 if (!temp)
2912 temp = 2;
2913
2914 /* Only make a frag if we HAVE to. */
2915 if (temp && !need_pass_2)
2916 {
2917 if (!fill_p && subseg_text_p (now_seg))
2918 frag_align_code (temp, 0);
2919 else
2920 frag_align (temp, (int) temp_fill, 0);
2921 }
2922 demand_empty_rest_of_line ();
2923
2924 record_alignment (now_seg, temp);
2925 }
2926
2927 static void
2928 s_bss (int ignore ATTRIBUTE_UNUSED)
2929 {
2930 /* We don't support putting frags in the BSS segment, we fake it by
2931 marking in_bss, then looking at s_skip for clues. */
2932 subseg_set (bss_section, 0);
2933 demand_empty_rest_of_line ();
2934
2935 #ifdef md_elf_section_change_hook
2936 md_elf_section_change_hook ();
2937 #endif
2938 }
2939
2940 static void
2941 s_even (int ignore ATTRIBUTE_UNUSED)
2942 {
2943 /* Never make frag if expect extra pass. */
2944 if (!need_pass_2)
2945 frag_align (1, 0, 0);
2946
2947 record_alignment (now_seg, 1);
2948
2949 demand_empty_rest_of_line ();
2950 }
2951
2952 /* Directives: Literal pools. */
2953
2954 static literal_pool *
2955 find_literal_pool (void)
2956 {
2957 literal_pool * pool;
2958
2959 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2960 {
2961 if (pool->section == now_seg
2962 && pool->sub_section == now_subseg)
2963 break;
2964 }
2965
2966 return pool;
2967 }
2968
2969 static literal_pool *
2970 find_or_make_literal_pool (void)
2971 {
2972 /* Next literal pool ID number. */
2973 static unsigned int latest_pool_num = 1;
2974 literal_pool * pool;
2975
2976 pool = find_literal_pool ();
2977
2978 if (pool == NULL)
2979 {
2980 /* Create a new pool. */
2981 pool = (literal_pool *) xmalloc (sizeof (* pool));
2982 if (! pool)
2983 return NULL;
2984
2985 pool->next_free_entry = 0;
2986 pool->section = now_seg;
2987 pool->sub_section = now_subseg;
2988 pool->next = list_of_pools;
2989 pool->symbol = NULL;
2990
2991 /* Add it to the list. */
2992 list_of_pools = pool;
2993 }
2994
2995 /* New pools, and emptied pools, will have a NULL symbol. */
2996 if (pool->symbol == NULL)
2997 {
2998 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2999 (valueT) 0, &zero_address_frag);
3000 pool->id = latest_pool_num ++;
3001 }
3002
3003 /* Done. */
3004 return pool;
3005 }
3006
3007 /* Add the literal in the global 'inst'
3008 structure to the relevant literal pool. */
3009
3010 static int
3011 add_to_lit_pool (void)
3012 {
3013 literal_pool * pool;
3014 unsigned int entry;
3015
3016 pool = find_or_make_literal_pool ();
3017
3018 /* Check if this literal value is already in the pool. */
3019 for (entry = 0; entry < pool->next_free_entry; entry ++)
3020 {
3021 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3022 && (inst.reloc.exp.X_op == O_constant)
3023 && (pool->literals[entry].X_add_number
3024 == inst.reloc.exp.X_add_number)
3025 && (pool->literals[entry].X_unsigned
3026 == inst.reloc.exp.X_unsigned))
3027 break;
3028
3029 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3030 && (inst.reloc.exp.X_op == O_symbol)
3031 && (pool->literals[entry].X_add_number
3032 == inst.reloc.exp.X_add_number)
3033 && (pool->literals[entry].X_add_symbol
3034 == inst.reloc.exp.X_add_symbol)
3035 && (pool->literals[entry].X_op_symbol
3036 == inst.reloc.exp.X_op_symbol))
3037 break;
3038 }
3039
3040 /* Do we need to create a new entry? */
3041 if (entry == pool->next_free_entry)
3042 {
3043 if (entry >= MAX_LITERAL_POOL_SIZE)
3044 {
3045 inst.error = _("literal pool overflow");
3046 return FAIL;
3047 }
3048
3049 pool->literals[entry] = inst.reloc.exp;
3050 pool->next_free_entry += 1;
3051 }
3052
3053 inst.reloc.exp.X_op = O_symbol;
3054 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3055 inst.reloc.exp.X_add_symbol = pool->symbol;
3056
3057 return SUCCESS;
3058 }
3059
3060 /* Can't use symbol_new here, so have to create a symbol and then at
3061 a later date assign it a value. Thats what these functions do. */
3062
3063 static void
3064 symbol_locate (symbolS * symbolP,
3065 const char * name, /* It is copied, the caller can modify. */
3066 segT segment, /* Segment identifier (SEG_<something>). */
3067 valueT valu, /* Symbol value. */
3068 fragS * frag) /* Associated fragment. */
3069 {
3070 unsigned int name_length;
3071 char * preserved_copy_of_name;
3072
3073 name_length = strlen (name) + 1; /* +1 for \0. */
3074 obstack_grow (&notes, name, name_length);
3075 preserved_copy_of_name = (char *) obstack_finish (&notes);
3076
3077 #ifdef tc_canonicalize_symbol_name
3078 preserved_copy_of_name =
3079 tc_canonicalize_symbol_name (preserved_copy_of_name);
3080 #endif
3081
3082 S_SET_NAME (symbolP, preserved_copy_of_name);
3083
3084 S_SET_SEGMENT (symbolP, segment);
3085 S_SET_VALUE (symbolP, valu);
3086 symbol_clear_list_pointers (symbolP);
3087
3088 symbol_set_frag (symbolP, frag);
3089
3090 /* Link to end of symbol chain. */
3091 {
3092 extern int symbol_table_frozen;
3093
3094 if (symbol_table_frozen)
3095 abort ();
3096 }
3097
3098 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3099
3100 obj_symbol_new_hook (symbolP);
3101
3102 #ifdef tc_symbol_new_hook
3103 tc_symbol_new_hook (symbolP);
3104 #endif
3105
3106 #ifdef DEBUG_SYMS
3107 verify_symbol_chain (symbol_rootP, symbol_lastP);
3108 #endif /* DEBUG_SYMS */
3109 }
3110
3111
3112 static void
3113 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3114 {
3115 unsigned int entry;
3116 literal_pool * pool;
3117 char sym_name[20];
3118
3119 pool = find_literal_pool ();
3120 if (pool == NULL
3121 || pool->symbol == NULL
3122 || pool->next_free_entry == 0)
3123 return;
3124
3125 mapping_state (MAP_DATA);
3126
3127 /* Align pool as you have word accesses.
3128 Only make a frag if we have to. */
3129 if (!need_pass_2)
3130 frag_align (2, 0, 0);
3131
3132 record_alignment (now_seg, 2);
3133
3134 sprintf (sym_name, "$$lit_\002%x", pool->id);
3135
3136 symbol_locate (pool->symbol, sym_name, now_seg,
3137 (valueT) frag_now_fix (), frag_now);
3138 symbol_table_insert (pool->symbol);
3139
3140 ARM_SET_THUMB (pool->symbol, thumb_mode);
3141
3142 #if defined OBJ_COFF || defined OBJ_ELF
3143 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3144 #endif
3145
3146 for (entry = 0; entry < pool->next_free_entry; entry ++)
3147 /* First output the expression in the instruction to the pool. */
3148 emit_expr (&(pool->literals[entry]), 4); /* .word */
3149
3150 /* Mark the pool as empty. */
3151 pool->next_free_entry = 0;
3152 pool->symbol = NULL;
3153 }
3154
3155 #ifdef OBJ_ELF
3156 /* Forward declarations for functions below, in the MD interface
3157 section. */
3158 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3159 static valueT create_unwind_entry (int);
3160 static void start_unwind_section (const segT, int);
3161 static void add_unwind_opcode (valueT, int);
3162 static void flush_pending_unwind (void);
3163
3164 /* Directives: Data. */
3165
3166 static void
3167 s_arm_elf_cons (int nbytes)
3168 {
3169 expressionS exp;
3170
3171 #ifdef md_flush_pending_output
3172 md_flush_pending_output ();
3173 #endif
3174
3175 if (is_it_end_of_statement ())
3176 {
3177 demand_empty_rest_of_line ();
3178 return;
3179 }
3180
3181 #ifdef md_cons_align
3182 md_cons_align (nbytes);
3183 #endif
3184
3185 mapping_state (MAP_DATA);
3186 do
3187 {
3188 int reloc;
3189 char *base = input_line_pointer;
3190
3191 expression (& exp);
3192
3193 if (exp.X_op != O_symbol)
3194 emit_expr (&exp, (unsigned int) nbytes);
3195 else
3196 {
3197 char *before_reloc = input_line_pointer;
3198 reloc = parse_reloc (&input_line_pointer);
3199 if (reloc == -1)
3200 {
3201 as_bad (_("unrecognized relocation suffix"));
3202 ignore_rest_of_line ();
3203 return;
3204 }
3205 else if (reloc == BFD_RELOC_UNUSED)
3206 emit_expr (&exp, (unsigned int) nbytes);
3207 else
3208 {
3209 reloc_howto_type *howto = (reloc_howto_type *)
3210 bfd_reloc_type_lookup (stdoutput,
3211 (bfd_reloc_code_real_type) reloc);
3212 int size = bfd_get_reloc_size (howto);
3213
3214 if (reloc == BFD_RELOC_ARM_PLT32)
3215 {
3216 as_bad (_("(plt) is only valid on branch targets"));
3217 reloc = BFD_RELOC_UNUSED;
3218 size = 0;
3219 }
3220
3221 if (size > nbytes)
3222 as_bad (_("%s relocations do not fit in %d bytes"),
3223 howto->name, nbytes);
3224 else
3225 {
3226 /* We've parsed an expression stopping at O_symbol.
3227 But there may be more expression left now that we
3228 have parsed the relocation marker. Parse it again.
3229 XXX Surely there is a cleaner way to do this. */
3230 char *p = input_line_pointer;
3231 int offset;
3232 char *save_buf = (char *) alloca (input_line_pointer - base);
3233 memcpy (save_buf, base, input_line_pointer - base);
3234 memmove (base + (input_line_pointer - before_reloc),
3235 base, before_reloc - base);
3236
3237 input_line_pointer = base + (input_line_pointer-before_reloc);
3238 expression (&exp);
3239 memcpy (base, save_buf, p - base);
3240
3241 offset = nbytes - size;
3242 p = frag_more ((int) nbytes);
3243 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3244 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3245 }
3246 }
3247 }
3248 }
3249 while (*input_line_pointer++ == ',');
3250
3251 /* Put terminator back into stream. */
3252 input_line_pointer --;
3253 demand_empty_rest_of_line ();
3254 }
3255
3256 /* Emit an expression containing a 32-bit thumb instruction.
3257 Implementation based on put_thumb32_insn. */
3258
3259 static void
3260 emit_thumb32_expr (expressionS * exp)
3261 {
3262 expressionS exp_high = *exp;
3263
3264 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3265 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3266 exp->X_add_number &= 0xffff;
3267 emit_expr (exp, (unsigned int) THUMB_SIZE);
3268 }
3269
3270 /* Guess the instruction size based on the opcode. */
3271
3272 static int
3273 thumb_insn_size (int opcode)
3274 {
3275 if ((unsigned int) opcode < 0xe800u)
3276 return 2;
3277 else if ((unsigned int) opcode >= 0xe8000000u)
3278 return 4;
3279 else
3280 return 0;
3281 }
3282
3283 static bfd_boolean
3284 emit_insn (expressionS *exp, int nbytes)
3285 {
3286 int size = 0;
3287
3288 if (exp->X_op == O_constant)
3289 {
3290 size = nbytes;
3291
3292 if (size == 0)
3293 size = thumb_insn_size (exp->X_add_number);
3294
3295 if (size != 0)
3296 {
3297 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3298 {
3299 as_bad (_(".inst.n operand too big. "\
3300 "Use .inst.w instead"));
3301 size = 0;
3302 }
3303 else
3304 {
3305 if (now_it.state == AUTOMATIC_IT_BLOCK)
3306 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3307 else
3308 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3309
3310 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3311 emit_thumb32_expr (exp);
3312 else
3313 emit_expr (exp, (unsigned int) size);
3314
3315 it_fsm_post_encode ();
3316 }
3317 }
3318 else
3319 as_bad (_("cannot determine Thumb instruction size. " \
3320 "Use .inst.n/.inst.w instead"));
3321 }
3322 else
3323 as_bad (_("constant expression required"));
3324
3325 return (size != 0);
3326 }
3327
3328 /* Like s_arm_elf_cons but do not use md_cons_align and
3329 set the mapping state to MAP_ARM/MAP_THUMB. */
3330
3331 static void
3332 s_arm_elf_inst (int nbytes)
3333 {
3334 if (is_it_end_of_statement ())
3335 {
3336 demand_empty_rest_of_line ();
3337 return;
3338 }
3339
3340 /* Calling mapping_state () here will not change ARM/THUMB,
3341 but will ensure not to be in DATA state. */
3342
3343 if (thumb_mode)
3344 mapping_state (MAP_THUMB);
3345 else
3346 {
3347 if (nbytes != 0)
3348 {
3349 as_bad (_("width suffixes are invalid in ARM mode"));
3350 ignore_rest_of_line ();
3351 return;
3352 }
3353
3354 nbytes = 4;
3355
3356 mapping_state (MAP_ARM);
3357 }
3358
3359 do
3360 {
3361 expressionS exp;
3362
3363 expression (& exp);
3364
3365 if (! emit_insn (& exp, nbytes))
3366 {
3367 ignore_rest_of_line ();
3368 return;
3369 }
3370 }
3371 while (*input_line_pointer++ == ',');
3372
3373 /* Put terminator back into stream. */
3374 input_line_pointer --;
3375 demand_empty_rest_of_line ();
3376 }
3377
3378 /* Parse a .rel31 directive. */
3379
3380 static void
3381 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3382 {
3383 expressionS exp;
3384 char *p;
3385 valueT highbit;
3386
3387 highbit = 0;
3388 if (*input_line_pointer == '1')
3389 highbit = 0x80000000;
3390 else if (*input_line_pointer != '0')
3391 as_bad (_("expected 0 or 1"));
3392
3393 input_line_pointer++;
3394 if (*input_line_pointer != ',')
3395 as_bad (_("missing comma"));
3396 input_line_pointer++;
3397
3398 #ifdef md_flush_pending_output
3399 md_flush_pending_output ();
3400 #endif
3401
3402 #ifdef md_cons_align
3403 md_cons_align (4);
3404 #endif
3405
3406 mapping_state (MAP_DATA);
3407
3408 expression (&exp);
3409
3410 p = frag_more (4);
3411 md_number_to_chars (p, highbit, 4);
3412 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3413 BFD_RELOC_ARM_PREL31);
3414
3415 demand_empty_rest_of_line ();
3416 }
3417
3418 /* Directives: AEABI stack-unwind tables. */
3419
3420 /* Parse an unwind_fnstart directive. Simply records the current location. */
3421
3422 static void
3423 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3424 {
3425 demand_empty_rest_of_line ();
3426 if (unwind.proc_start)
3427 {
3428 as_bad (_("duplicate .fnstart directive"));
3429 return;
3430 }
3431
3432 /* Mark the start of the function. */
3433 unwind.proc_start = expr_build_dot ();
3434
3435 /* Reset the rest of the unwind info. */
3436 unwind.opcode_count = 0;
3437 unwind.table_entry = NULL;
3438 unwind.personality_routine = NULL;
3439 unwind.personality_index = -1;
3440 unwind.frame_size = 0;
3441 unwind.fp_offset = 0;
3442 unwind.fp_reg = REG_SP;
3443 unwind.fp_used = 0;
3444 unwind.sp_restored = 0;
3445 }
3446
3447
3448 /* Parse a handlerdata directive. Creates the exception handling table entry
3449 for the function. */
3450
3451 static void
3452 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3453 {
3454 demand_empty_rest_of_line ();
3455 if (!unwind.proc_start)
3456 as_bad (MISSING_FNSTART);
3457
3458 if (unwind.table_entry)
3459 as_bad (_("duplicate .handlerdata directive"));
3460
3461 create_unwind_entry (1);
3462 }
3463
3464 /* Parse an unwind_fnend directive. Generates the index table entry. */
3465
3466 static void
3467 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3468 {
3469 long where;
3470 char *ptr;
3471 valueT val;
3472 unsigned int marked_pr_dependency;
3473
3474 demand_empty_rest_of_line ();
3475
3476 if (!unwind.proc_start)
3477 {
3478 as_bad (_(".fnend directive without .fnstart"));
3479 return;
3480 }
3481
3482 /* Add eh table entry. */
3483 if (unwind.table_entry == NULL)
3484 val = create_unwind_entry (0);
3485 else
3486 val = 0;
3487
3488 /* Add index table entry. This is two words. */
3489 start_unwind_section (unwind.saved_seg, 1);
3490 frag_align (2, 0, 0);
3491 record_alignment (now_seg, 2);
3492
3493 ptr = frag_more (8);
3494 where = frag_now_fix () - 8;
3495
3496 /* Self relative offset of the function start. */
3497 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3498 BFD_RELOC_ARM_PREL31);
3499
3500 /* Indicate dependency on EHABI-defined personality routines to the
3501 linker, if it hasn't been done already. */
3502 marked_pr_dependency
3503 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3504 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3505 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3506 {
3507 static const char *const name[] =
3508 {
3509 "__aeabi_unwind_cpp_pr0",
3510 "__aeabi_unwind_cpp_pr1",
3511 "__aeabi_unwind_cpp_pr2"
3512 };
3513 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3514 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3515 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3516 |= 1 << unwind.personality_index;
3517 }
3518
3519 if (val)
3520 /* Inline exception table entry. */
3521 md_number_to_chars (ptr + 4, val, 4);
3522 else
3523 /* Self relative offset of the table entry. */
3524 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3525 BFD_RELOC_ARM_PREL31);
3526
3527 /* Restore the original section. */
3528 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3529
3530 unwind.proc_start = NULL;
3531 }
3532
3533
3534 /* Parse an unwind_cantunwind directive. */
3535
3536 static void
3537 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3538 {
3539 demand_empty_rest_of_line ();
3540 if (!unwind.proc_start)
3541 as_bad (MISSING_FNSTART);
3542
3543 if (unwind.personality_routine || unwind.personality_index != -1)
3544 as_bad (_("personality routine specified for cantunwind frame"));
3545
3546 unwind.personality_index = -2;
3547 }
3548
3549
3550 /* Parse a personalityindex directive. */
3551
3552 static void
3553 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3554 {
3555 expressionS exp;
3556
3557 if (!unwind.proc_start)
3558 as_bad (MISSING_FNSTART);
3559
3560 if (unwind.personality_routine || unwind.personality_index != -1)
3561 as_bad (_("duplicate .personalityindex directive"));
3562
3563 expression (&exp);
3564
3565 if (exp.X_op != O_constant
3566 || exp.X_add_number < 0 || exp.X_add_number > 15)
3567 {
3568 as_bad (_("bad personality routine number"));
3569 ignore_rest_of_line ();
3570 return;
3571 }
3572
3573 unwind.personality_index = exp.X_add_number;
3574
3575 demand_empty_rest_of_line ();
3576 }
3577
3578
3579 /* Parse a personality directive. */
3580
3581 static void
3582 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3583 {
3584 char *name, *p, c;
3585
3586 if (!unwind.proc_start)
3587 as_bad (MISSING_FNSTART);
3588
3589 if (unwind.personality_routine || unwind.personality_index != -1)
3590 as_bad (_("duplicate .personality directive"));
3591
3592 name = input_line_pointer;
3593 c = get_symbol_end ();
3594 p = input_line_pointer;
3595 unwind.personality_routine = symbol_find_or_make (name);
3596 *p = c;
3597 demand_empty_rest_of_line ();
3598 }
3599
3600
3601 /* Parse a directive saving core registers. */
3602
3603 static void
3604 s_arm_unwind_save_core (void)
3605 {
3606 valueT op;
3607 long range;
3608 int n;
3609
3610 range = parse_reg_list (&input_line_pointer);
3611 if (range == FAIL)
3612 {
3613 as_bad (_("expected register list"));
3614 ignore_rest_of_line ();
3615 return;
3616 }
3617
3618 demand_empty_rest_of_line ();
3619
3620 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3621 into .unwind_save {..., sp...}. We aren't bothered about the value of
3622 ip because it is clobbered by calls. */
3623 if (unwind.sp_restored && unwind.fp_reg == 12
3624 && (range & 0x3000) == 0x1000)
3625 {
3626 unwind.opcode_count--;
3627 unwind.sp_restored = 0;
3628 range = (range | 0x2000) & ~0x1000;
3629 unwind.pending_offset = 0;
3630 }
3631
3632 /* Pop r4-r15. */
3633 if (range & 0xfff0)
3634 {
3635 /* See if we can use the short opcodes. These pop a block of up to 8
3636 registers starting with r4, plus maybe r14. */
3637 for (n = 0; n < 8; n++)
3638 {
3639 /* Break at the first non-saved register. */
3640 if ((range & (1 << (n + 4))) == 0)
3641 break;
3642 }
3643 /* See if there are any other bits set. */
3644 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3645 {
3646 /* Use the long form. */
3647 op = 0x8000 | ((range >> 4) & 0xfff);
3648 add_unwind_opcode (op, 2);
3649 }
3650 else
3651 {
3652 /* Use the short form. */
3653 if (range & 0x4000)
3654 op = 0xa8; /* Pop r14. */
3655 else
3656 op = 0xa0; /* Do not pop r14. */
3657 op |= (n - 1);
3658 add_unwind_opcode (op, 1);
3659 }
3660 }
3661
3662 /* Pop r0-r3. */
3663 if (range & 0xf)
3664 {
3665 op = 0xb100 | (range & 0xf);
3666 add_unwind_opcode (op, 2);
3667 }
3668
3669 /* Record the number of bytes pushed. */
3670 for (n = 0; n < 16; n++)
3671 {
3672 if (range & (1 << n))
3673 unwind.frame_size += 4;
3674 }
3675 }
3676
3677
3678 /* Parse a directive saving FPA registers. */
3679
3680 static void
3681 s_arm_unwind_save_fpa (int reg)
3682 {
3683 expressionS exp;
3684 int num_regs;
3685 valueT op;
3686
3687 /* Get Number of registers to transfer. */
3688 if (skip_past_comma (&input_line_pointer) != FAIL)
3689 expression (&exp);
3690 else
3691 exp.X_op = O_illegal;
3692
3693 if (exp.X_op != O_constant)
3694 {
3695 as_bad (_("expected , <constant>"));
3696 ignore_rest_of_line ();
3697 return;
3698 }
3699
3700 num_regs = exp.X_add_number;
3701
3702 if (num_regs < 1 || num_regs > 4)
3703 {
3704 as_bad (_("number of registers must be in the range [1:4]"));
3705 ignore_rest_of_line ();
3706 return;
3707 }
3708
3709 demand_empty_rest_of_line ();
3710
3711 if (reg == 4)
3712 {
3713 /* Short form. */
3714 op = 0xb4 | (num_regs - 1);
3715 add_unwind_opcode (op, 1);
3716 }
3717 else
3718 {
3719 /* Long form. */
3720 op = 0xc800 | (reg << 4) | (num_regs - 1);
3721 add_unwind_opcode (op, 2);
3722 }
3723 unwind.frame_size += num_regs * 12;
3724 }
3725
3726
3727 /* Parse a directive saving VFP registers for ARMv6 and above. */
3728
3729 static void
3730 s_arm_unwind_save_vfp_armv6 (void)
3731 {
3732 int count;
3733 unsigned int start;
3734 valueT op;
3735 int num_vfpv3_regs = 0;
3736 int num_regs_below_16;
3737
3738 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3739 if (count == FAIL)
3740 {
3741 as_bad (_("expected register list"));
3742 ignore_rest_of_line ();
3743 return;
3744 }
3745
3746 demand_empty_rest_of_line ();
3747
3748 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3749 than FSTMX/FLDMX-style ones). */
3750
3751 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3752 if (start >= 16)
3753 num_vfpv3_regs = count;
3754 else if (start + count > 16)
3755 num_vfpv3_regs = start + count - 16;
3756
3757 if (num_vfpv3_regs > 0)
3758 {
3759 int start_offset = start > 16 ? start - 16 : 0;
3760 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3761 add_unwind_opcode (op, 2);
3762 }
3763
3764 /* Generate opcode for registers numbered in the range 0 .. 15. */
3765 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3766 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3767 if (num_regs_below_16 > 0)
3768 {
3769 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3770 add_unwind_opcode (op, 2);
3771 }
3772
3773 unwind.frame_size += count * 8;
3774 }
3775
3776
3777 /* Parse a directive saving VFP registers for pre-ARMv6. */
3778
3779 static void
3780 s_arm_unwind_save_vfp (void)
3781 {
3782 int count;
3783 unsigned int reg;
3784 valueT op;
3785
3786 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3787 if (count == FAIL)
3788 {
3789 as_bad (_("expected register list"));
3790 ignore_rest_of_line ();
3791 return;
3792 }
3793
3794 demand_empty_rest_of_line ();
3795
3796 if (reg == 8)
3797 {
3798 /* Short form. */
3799 op = 0xb8 | (count - 1);
3800 add_unwind_opcode (op, 1);
3801 }
3802 else
3803 {
3804 /* Long form. */
3805 op = 0xb300 | (reg << 4) | (count - 1);
3806 add_unwind_opcode (op, 2);
3807 }
3808 unwind.frame_size += count * 8 + 4;
3809 }
3810
3811
3812 /* Parse a directive saving iWMMXt data registers. */
3813
3814 static void
3815 s_arm_unwind_save_mmxwr (void)
3816 {
3817 int reg;
3818 int hi_reg;
3819 int i;
3820 unsigned mask = 0;
3821 valueT op;
3822
3823 if (*input_line_pointer == '{')
3824 input_line_pointer++;
3825
3826 do
3827 {
3828 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3829
3830 if (reg == FAIL)
3831 {
3832 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3833 goto error;
3834 }
3835
3836 if (mask >> reg)
3837 as_tsktsk (_("register list not in ascending order"));
3838 mask |= 1 << reg;
3839
3840 if (*input_line_pointer == '-')
3841 {
3842 input_line_pointer++;
3843 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3844 if (hi_reg == FAIL)
3845 {
3846 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3847 goto error;
3848 }
3849 else if (reg >= hi_reg)
3850 {
3851 as_bad (_("bad register range"));
3852 goto error;
3853 }
3854 for (; reg < hi_reg; reg++)
3855 mask |= 1 << reg;
3856 }
3857 }
3858 while (skip_past_comma (&input_line_pointer) != FAIL);
3859
3860 if (*input_line_pointer == '}')
3861 input_line_pointer++;
3862
3863 demand_empty_rest_of_line ();
3864
3865 /* Generate any deferred opcodes because we're going to be looking at
3866 the list. */
3867 flush_pending_unwind ();
3868
3869 for (i = 0; i < 16; i++)
3870 {
3871 if (mask & (1 << i))
3872 unwind.frame_size += 8;
3873 }
3874
3875 /* Attempt to combine with a previous opcode. We do this because gcc
3876 likes to output separate unwind directives for a single block of
3877 registers. */
3878 if (unwind.opcode_count > 0)
3879 {
3880 i = unwind.opcodes[unwind.opcode_count - 1];
3881 if ((i & 0xf8) == 0xc0)
3882 {
3883 i &= 7;
3884 /* Only merge if the blocks are contiguous. */
3885 if (i < 6)
3886 {
3887 if ((mask & 0xfe00) == (1 << 9))
3888 {
3889 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3890 unwind.opcode_count--;
3891 }
3892 }
3893 else if (i == 6 && unwind.opcode_count >= 2)
3894 {
3895 i = unwind.opcodes[unwind.opcode_count - 2];
3896 reg = i >> 4;
3897 i &= 0xf;
3898
3899 op = 0xffff << (reg - 1);
3900 if (reg > 0
3901 && ((mask & op) == (1u << (reg - 1))))
3902 {
3903 op = (1 << (reg + i + 1)) - 1;
3904 op &= ~((1 << reg) - 1);
3905 mask |= op;
3906 unwind.opcode_count -= 2;
3907 }
3908 }
3909 }
3910 }
3911
3912 hi_reg = 15;
3913 /* We want to generate opcodes in the order the registers have been
3914 saved, ie. descending order. */
3915 for (reg = 15; reg >= -1; reg--)
3916 {
3917 /* Save registers in blocks. */
3918 if (reg < 0
3919 || !(mask & (1 << reg)))
3920 {
3921 /* We found an unsaved reg. Generate opcodes to save the
3922 preceding block. */
3923 if (reg != hi_reg)
3924 {
3925 if (reg == 9)
3926 {
3927 /* Short form. */
3928 op = 0xc0 | (hi_reg - 10);
3929 add_unwind_opcode (op, 1);
3930 }
3931 else
3932 {
3933 /* Long form. */
3934 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3935 add_unwind_opcode (op, 2);
3936 }
3937 }
3938 hi_reg = reg - 1;
3939 }
3940 }
3941
3942 return;
3943 error:
3944 ignore_rest_of_line ();
3945 }
3946
3947 static void
3948 s_arm_unwind_save_mmxwcg (void)
3949 {
3950 int reg;
3951 int hi_reg;
3952 unsigned mask = 0;
3953 valueT op;
3954
3955 if (*input_line_pointer == '{')
3956 input_line_pointer++;
3957
3958 do
3959 {
3960 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3961
3962 if (reg == FAIL)
3963 {
3964 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3965 goto error;
3966 }
3967
3968 reg -= 8;
3969 if (mask >> reg)
3970 as_tsktsk (_("register list not in ascending order"));
3971 mask |= 1 << reg;
3972
3973 if (*input_line_pointer == '-')
3974 {
3975 input_line_pointer++;
3976 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3977 if (hi_reg == FAIL)
3978 {
3979 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3980 goto error;
3981 }
3982 else if (reg >= hi_reg)
3983 {
3984 as_bad (_("bad register range"));
3985 goto error;
3986 }
3987 for (; reg < hi_reg; reg++)
3988 mask |= 1 << reg;
3989 }
3990 }
3991 while (skip_past_comma (&input_line_pointer) != FAIL);
3992
3993 if (*input_line_pointer == '}')
3994 input_line_pointer++;
3995
3996 demand_empty_rest_of_line ();
3997
3998 /* Generate any deferred opcodes because we're going to be looking at
3999 the list. */
4000 flush_pending_unwind ();
4001
4002 for (reg = 0; reg < 16; reg++)
4003 {
4004 if (mask & (1 << reg))
4005 unwind.frame_size += 4;
4006 }
4007 op = 0xc700 | mask;
4008 add_unwind_opcode (op, 2);
4009 return;
4010 error:
4011 ignore_rest_of_line ();
4012 }
4013
4014
4015 /* Parse an unwind_save directive.
4016 If the argument is non-zero, this is a .vsave directive. */
4017
4018 static void
4019 s_arm_unwind_save (int arch_v6)
4020 {
4021 char *peek;
4022 struct reg_entry *reg;
4023 bfd_boolean had_brace = FALSE;
4024
4025 if (!unwind.proc_start)
4026 as_bad (MISSING_FNSTART);
4027
4028 /* Figure out what sort of save we have. */
4029 peek = input_line_pointer;
4030
4031 if (*peek == '{')
4032 {
4033 had_brace = TRUE;
4034 peek++;
4035 }
4036
4037 reg = arm_reg_parse_multi (&peek);
4038
4039 if (!reg)
4040 {
4041 as_bad (_("register expected"));
4042 ignore_rest_of_line ();
4043 return;
4044 }
4045
4046 switch (reg->type)
4047 {
4048 case REG_TYPE_FN:
4049 if (had_brace)
4050 {
4051 as_bad (_("FPA .unwind_save does not take a register list"));
4052 ignore_rest_of_line ();
4053 return;
4054 }
4055 input_line_pointer = peek;
4056 s_arm_unwind_save_fpa (reg->number);
4057 return;
4058
4059 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4060 case REG_TYPE_VFD:
4061 if (arch_v6)
4062 s_arm_unwind_save_vfp_armv6 ();
4063 else
4064 s_arm_unwind_save_vfp ();
4065 return;
4066 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4067 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4068
4069 default:
4070 as_bad (_(".unwind_save does not support this kind of register"));
4071 ignore_rest_of_line ();
4072 }
4073 }
4074
4075
4076 /* Parse an unwind_movsp directive. */
4077
4078 static void
4079 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4080 {
4081 int reg;
4082 valueT op;
4083 int offset;
4084
4085 if (!unwind.proc_start)
4086 as_bad (MISSING_FNSTART);
4087
4088 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4089 if (reg == FAIL)
4090 {
4091 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4092 ignore_rest_of_line ();
4093 return;
4094 }
4095
4096 /* Optional constant. */
4097 if (skip_past_comma (&input_line_pointer) != FAIL)
4098 {
4099 if (immediate_for_directive (&offset) == FAIL)
4100 return;
4101 }
4102 else
4103 offset = 0;
4104
4105 demand_empty_rest_of_line ();
4106
4107 if (reg == REG_SP || reg == REG_PC)
4108 {
4109 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4110 return;
4111 }
4112
4113 if (unwind.fp_reg != REG_SP)
4114 as_bad (_("unexpected .unwind_movsp directive"));
4115
4116 /* Generate opcode to restore the value. */
4117 op = 0x90 | reg;
4118 add_unwind_opcode (op, 1);
4119
4120 /* Record the information for later. */
4121 unwind.fp_reg = reg;
4122 unwind.fp_offset = unwind.frame_size - offset;
4123 unwind.sp_restored = 1;
4124 }
4125
4126 /* Parse an unwind_pad directive. */
4127
4128 static void
4129 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4130 {
4131 int offset;
4132
4133 if (!unwind.proc_start)
4134 as_bad (MISSING_FNSTART);
4135
4136 if (immediate_for_directive (&offset) == FAIL)
4137 return;
4138
4139 if (offset & 3)
4140 {
4141 as_bad (_("stack increment must be multiple of 4"));
4142 ignore_rest_of_line ();
4143 return;
4144 }
4145
4146 /* Don't generate any opcodes, just record the details for later. */
4147 unwind.frame_size += offset;
4148 unwind.pending_offset += offset;
4149
4150 demand_empty_rest_of_line ();
4151 }
4152
4153 /* Parse an unwind_setfp directive. */
4154
4155 static void
4156 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4157 {
4158 int sp_reg;
4159 int fp_reg;
4160 int offset;
4161
4162 if (!unwind.proc_start)
4163 as_bad (MISSING_FNSTART);
4164
4165 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4166 if (skip_past_comma (&input_line_pointer) == FAIL)
4167 sp_reg = FAIL;
4168 else
4169 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4170
4171 if (fp_reg == FAIL || sp_reg == FAIL)
4172 {
4173 as_bad (_("expected <reg>, <reg>"));
4174 ignore_rest_of_line ();
4175 return;
4176 }
4177
4178 /* Optional constant. */
4179 if (skip_past_comma (&input_line_pointer) != FAIL)
4180 {
4181 if (immediate_for_directive (&offset) == FAIL)
4182 return;
4183 }
4184 else
4185 offset = 0;
4186
4187 demand_empty_rest_of_line ();
4188
4189 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4190 {
4191 as_bad (_("register must be either sp or set by a previous"
4192 "unwind_movsp directive"));
4193 return;
4194 }
4195
4196 /* Don't generate any opcodes, just record the information for later. */
4197 unwind.fp_reg = fp_reg;
4198 unwind.fp_used = 1;
4199 if (sp_reg == REG_SP)
4200 unwind.fp_offset = unwind.frame_size - offset;
4201 else
4202 unwind.fp_offset -= offset;
4203 }
4204
4205 /* Parse an unwind_raw directive. */
4206
4207 static void
4208 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4209 {
4210 expressionS exp;
4211 /* This is an arbitrary limit. */
4212 unsigned char op[16];
4213 int count;
4214
4215 if (!unwind.proc_start)
4216 as_bad (MISSING_FNSTART);
4217
4218 expression (&exp);
4219 if (exp.X_op == O_constant
4220 && skip_past_comma (&input_line_pointer) != FAIL)
4221 {
4222 unwind.frame_size += exp.X_add_number;
4223 expression (&exp);
4224 }
4225 else
4226 exp.X_op = O_illegal;
4227
4228 if (exp.X_op != O_constant)
4229 {
4230 as_bad (_("expected <offset>, <opcode>"));
4231 ignore_rest_of_line ();
4232 return;
4233 }
4234
4235 count = 0;
4236
4237 /* Parse the opcode. */
4238 for (;;)
4239 {
4240 if (count >= 16)
4241 {
4242 as_bad (_("unwind opcode too long"));
4243 ignore_rest_of_line ();
4244 }
4245 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4246 {
4247 as_bad (_("invalid unwind opcode"));
4248 ignore_rest_of_line ();
4249 return;
4250 }
4251 op[count++] = exp.X_add_number;
4252
4253 /* Parse the next byte. */
4254 if (skip_past_comma (&input_line_pointer) == FAIL)
4255 break;
4256
4257 expression (&exp);
4258 }
4259
4260 /* Add the opcode bytes in reverse order. */
4261 while (count--)
4262 add_unwind_opcode (op[count], 1);
4263
4264 demand_empty_rest_of_line ();
4265 }
4266
4267
4268 /* Parse a .eabi_attribute directive. */
4269
4270 static void
4271 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4272 {
4273 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4274
4275 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4276 attributes_set_explicitly[tag] = 1;
4277 }
4278
4279 /* Emit a tls fix for the symbol. */
4280
4281 static void
4282 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4283 {
4284 char *p;
4285 expressionS exp;
4286 #ifdef md_flush_pending_output
4287 md_flush_pending_output ();
4288 #endif
4289
4290 #ifdef md_cons_align
4291 md_cons_align (4);
4292 #endif
4293
4294 /* Since we're just labelling the code, there's no need to define a
4295 mapping symbol. */
4296 expression (&exp);
4297 p = obstack_next_free (&frchain_now->frch_obstack);
4298 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4299 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4300 : BFD_RELOC_ARM_TLS_DESCSEQ);
4301 }
4302 #endif /* OBJ_ELF */
4303
4304 static void s_arm_arch (int);
4305 static void s_arm_object_arch (int);
4306 static void s_arm_cpu (int);
4307 static void s_arm_fpu (int);
4308 static void s_arm_arch_extension (int);
4309
4310 #ifdef TE_PE
4311
4312 static void
4313 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4314 {
4315 expressionS exp;
4316
4317 do
4318 {
4319 expression (&exp);
4320 if (exp.X_op == O_symbol)
4321 exp.X_op = O_secrel;
4322
4323 emit_expr (&exp, 4);
4324 }
4325 while (*input_line_pointer++ == ',');
4326
4327 input_line_pointer--;
4328 demand_empty_rest_of_line ();
4329 }
4330 #endif /* TE_PE */
4331
4332 /* This table describes all the machine specific pseudo-ops the assembler
4333 has to support. The fields are:
4334 pseudo-op name without dot
4335 function to call to execute this pseudo-op
4336 Integer arg to pass to the function. */
4337
4338 const pseudo_typeS md_pseudo_table[] =
4339 {
4340 /* Never called because '.req' does not start a line. */
4341 { "req", s_req, 0 },
4342 /* Following two are likewise never called. */
4343 { "dn", s_dn, 0 },
4344 { "qn", s_qn, 0 },
4345 { "unreq", s_unreq, 0 },
4346 { "bss", s_bss, 0 },
4347 { "align", s_align, 0 },
4348 { "arm", s_arm, 0 },
4349 { "thumb", s_thumb, 0 },
4350 { "code", s_code, 0 },
4351 { "force_thumb", s_force_thumb, 0 },
4352 { "thumb_func", s_thumb_func, 0 },
4353 { "thumb_set", s_thumb_set, 0 },
4354 { "even", s_even, 0 },
4355 { "ltorg", s_ltorg, 0 },
4356 { "pool", s_ltorg, 0 },
4357 { "syntax", s_syntax, 0 },
4358 { "cpu", s_arm_cpu, 0 },
4359 { "arch", s_arm_arch, 0 },
4360 { "object_arch", s_arm_object_arch, 0 },
4361 { "fpu", s_arm_fpu, 0 },
4362 { "arch_extension", s_arm_arch_extension, 0 },
4363 #ifdef OBJ_ELF
4364 { "word", s_arm_elf_cons, 4 },
4365 { "long", s_arm_elf_cons, 4 },
4366 { "inst.n", s_arm_elf_inst, 2 },
4367 { "inst.w", s_arm_elf_inst, 4 },
4368 { "inst", s_arm_elf_inst, 0 },
4369 { "rel31", s_arm_rel31, 0 },
4370 { "fnstart", s_arm_unwind_fnstart, 0 },
4371 { "fnend", s_arm_unwind_fnend, 0 },
4372 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4373 { "personality", s_arm_unwind_personality, 0 },
4374 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4375 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4376 { "save", s_arm_unwind_save, 0 },
4377 { "vsave", s_arm_unwind_save, 1 },
4378 { "movsp", s_arm_unwind_movsp, 0 },
4379 { "pad", s_arm_unwind_pad, 0 },
4380 { "setfp", s_arm_unwind_setfp, 0 },
4381 { "unwind_raw", s_arm_unwind_raw, 0 },
4382 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4383 { "tlsdescseq", s_arm_tls_descseq, 0 },
4384 #else
4385 { "word", cons, 4},
4386
4387 /* These are used for dwarf. */
4388 {"2byte", cons, 2},
4389 {"4byte", cons, 4},
4390 {"8byte", cons, 8},
4391 /* These are used for dwarf2. */
4392 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4393 { "loc", dwarf2_directive_loc, 0 },
4394 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4395 #endif
4396 { "extend", float_cons, 'x' },
4397 { "ldouble", float_cons, 'x' },
4398 { "packed", float_cons, 'p' },
4399 #ifdef TE_PE
4400 {"secrel32", pe_directive_secrel, 0},
4401 #endif
4402 { 0, 0, 0 }
4403 };
4404 \f
4405 /* Parser functions used exclusively in instruction operands. */
4406
4407 /* Generic immediate-value read function for use in insn parsing.
4408 STR points to the beginning of the immediate (the leading #);
4409 VAL receives the value; if the value is outside [MIN, MAX]
4410 issue an error. PREFIX_OPT is true if the immediate prefix is
4411 optional. */
4412
4413 static int
4414 parse_immediate (char **str, int *val, int min, int max,
4415 bfd_boolean prefix_opt)
4416 {
4417 expressionS exp;
4418 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4419 if (exp.X_op != O_constant)
4420 {
4421 inst.error = _("constant expression required");
4422 return FAIL;
4423 }
4424
4425 if (exp.X_add_number < min || exp.X_add_number > max)
4426 {
4427 inst.error = _("immediate value out of range");
4428 return FAIL;
4429 }
4430
4431 *val = exp.X_add_number;
4432 return SUCCESS;
4433 }
4434
4435 /* Less-generic immediate-value read function with the possibility of loading a
4436 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4437 instructions. Puts the result directly in inst.operands[i]. */
4438
4439 static int
4440 parse_big_immediate (char **str, int i)
4441 {
4442 expressionS exp;
4443 char *ptr = *str;
4444
4445 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4446
4447 if (exp.X_op == O_constant)
4448 {
4449 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4450 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4451 O_constant. We have to be careful not to break compilation for
4452 32-bit X_add_number, though. */
4453 if ((exp.X_add_number & ~0xffffffffl) != 0)
4454 {
4455 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4456 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4457 inst.operands[i].regisimm = 1;
4458 }
4459 }
4460 else if (exp.X_op == O_big
4461 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4462 {
4463 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4464
4465 /* Bignums have their least significant bits in
4466 generic_bignum[0]. Make sure we put 32 bits in imm and
4467 32 bits in reg, in a (hopefully) portable way. */
4468 gas_assert (parts != 0);
4469
4470 /* Make sure that the number is not too big.
4471 PR 11972: Bignums can now be sign-extended to the
4472 size of a .octa so check that the out of range bits
4473 are all zero or all one. */
4474 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4475 {
4476 LITTLENUM_TYPE m = -1;
4477
4478 if (generic_bignum[parts * 2] != 0
4479 && generic_bignum[parts * 2] != m)
4480 return FAIL;
4481
4482 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4483 if (generic_bignum[j] != generic_bignum[j-1])
4484 return FAIL;
4485 }
4486
4487 inst.operands[i].imm = 0;
4488 for (j = 0; j < parts; j++, idx++)
4489 inst.operands[i].imm |= generic_bignum[idx]
4490 << (LITTLENUM_NUMBER_OF_BITS * j);
4491 inst.operands[i].reg = 0;
4492 for (j = 0; j < parts; j++, idx++)
4493 inst.operands[i].reg |= generic_bignum[idx]
4494 << (LITTLENUM_NUMBER_OF_BITS * j);
4495 inst.operands[i].regisimm = 1;
4496 }
4497 else
4498 return FAIL;
4499
4500 *str = ptr;
4501
4502 return SUCCESS;
4503 }
4504
4505 /* Returns the pseudo-register number of an FPA immediate constant,
4506 or FAIL if there isn't a valid constant here. */
4507
4508 static int
4509 parse_fpa_immediate (char ** str)
4510 {
4511 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4512 char * save_in;
4513 expressionS exp;
4514 int i;
4515 int j;
4516
4517 /* First try and match exact strings, this is to guarantee
4518 that some formats will work even for cross assembly. */
4519
4520 for (i = 0; fp_const[i]; i++)
4521 {
4522 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4523 {
4524 char *start = *str;
4525
4526 *str += strlen (fp_const[i]);
4527 if (is_end_of_line[(unsigned char) **str])
4528 return i + 8;
4529 *str = start;
4530 }
4531 }
4532
4533 /* Just because we didn't get a match doesn't mean that the constant
4534 isn't valid, just that it is in a format that we don't
4535 automatically recognize. Try parsing it with the standard
4536 expression routines. */
4537
4538 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4539
4540 /* Look for a raw floating point number. */
4541 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4542 && is_end_of_line[(unsigned char) *save_in])
4543 {
4544 for (i = 0; i < NUM_FLOAT_VALS; i++)
4545 {
4546 for (j = 0; j < MAX_LITTLENUMS; j++)
4547 {
4548 if (words[j] != fp_values[i][j])
4549 break;
4550 }
4551
4552 if (j == MAX_LITTLENUMS)
4553 {
4554 *str = save_in;
4555 return i + 8;
4556 }
4557 }
4558 }
4559
4560 /* Try and parse a more complex expression, this will probably fail
4561 unless the code uses a floating point prefix (eg "0f"). */
4562 save_in = input_line_pointer;
4563 input_line_pointer = *str;
4564 if (expression (&exp) == absolute_section
4565 && exp.X_op == O_big
4566 && exp.X_add_number < 0)
4567 {
4568 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4569 Ditto for 15. */
4570 if (gen_to_words (words, 5, (long) 15) == 0)
4571 {
4572 for (i = 0; i < NUM_FLOAT_VALS; i++)
4573 {
4574 for (j = 0; j < MAX_LITTLENUMS; j++)
4575 {
4576 if (words[j] != fp_values[i][j])
4577 break;
4578 }
4579
4580 if (j == MAX_LITTLENUMS)
4581 {
4582 *str = input_line_pointer;
4583 input_line_pointer = save_in;
4584 return i + 8;
4585 }
4586 }
4587 }
4588 }
4589
4590 *str = input_line_pointer;
4591 input_line_pointer = save_in;
4592 inst.error = _("invalid FPA immediate expression");
4593 return FAIL;
4594 }
4595
4596 /* Returns 1 if a number has "quarter-precision" float format
4597 0baBbbbbbc defgh000 00000000 00000000. */
4598
4599 static int
4600 is_quarter_float (unsigned imm)
4601 {
4602 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4603 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4604 }
4605
4606 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4607 0baBbbbbbc defgh000 00000000 00000000.
4608 The zero and minus-zero cases need special handling, since they can't be
4609 encoded in the "quarter-precision" float format, but can nonetheless be
4610 loaded as integer constants. */
4611
4612 static unsigned
4613 parse_qfloat_immediate (char **ccp, int *immed)
4614 {
4615 char *str = *ccp;
4616 char *fpnum;
4617 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4618 int found_fpchar = 0;
4619
4620 skip_past_char (&str, '#');
4621
4622 /* We must not accidentally parse an integer as a floating-point number. Make
4623 sure that the value we parse is not an integer by checking for special
4624 characters '.' or 'e'.
4625 FIXME: This is a horrible hack, but doing better is tricky because type
4626 information isn't in a very usable state at parse time. */
4627 fpnum = str;
4628 skip_whitespace (fpnum);
4629
4630 if (strncmp (fpnum, "0x", 2) == 0)
4631 return FAIL;
4632 else
4633 {
4634 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4635 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4636 {
4637 found_fpchar = 1;
4638 break;
4639 }
4640
4641 if (!found_fpchar)
4642 return FAIL;
4643 }
4644
4645 if ((str = atof_ieee (str, 's', words)) != NULL)
4646 {
4647 unsigned fpword = 0;
4648 int i;
4649
4650 /* Our FP word must be 32 bits (single-precision FP). */
4651 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4652 {
4653 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4654 fpword |= words[i];
4655 }
4656
4657 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4658 *immed = fpword;
4659 else
4660 return FAIL;
4661
4662 *ccp = str;
4663
4664 return SUCCESS;
4665 }
4666
4667 return FAIL;
4668 }
4669
4670 /* Shift operands. */
4671 enum shift_kind
4672 {
4673 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4674 };
4675
4676 struct asm_shift_name
4677 {
4678 const char *name;
4679 enum shift_kind kind;
4680 };
4681
4682 /* Third argument to parse_shift. */
4683 enum parse_shift_mode
4684 {
4685 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4686 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4687 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4688 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4689 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4690 };
4691
4692 /* Parse a <shift> specifier on an ARM data processing instruction.
4693 This has three forms:
4694
4695 (LSL|LSR|ASL|ASR|ROR) Rs
4696 (LSL|LSR|ASL|ASR|ROR) #imm
4697 RRX
4698
4699 Note that ASL is assimilated to LSL in the instruction encoding, and
4700 RRX to ROR #0 (which cannot be written as such). */
4701
4702 static int
4703 parse_shift (char **str, int i, enum parse_shift_mode mode)
4704 {
4705 const struct asm_shift_name *shift_name;
4706 enum shift_kind shift;
4707 char *s = *str;
4708 char *p = s;
4709 int reg;
4710
4711 for (p = *str; ISALPHA (*p); p++)
4712 ;
4713
4714 if (p == *str)
4715 {
4716 inst.error = _("shift expression expected");
4717 return FAIL;
4718 }
4719
4720 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4721 p - *str);
4722
4723 if (shift_name == NULL)
4724 {
4725 inst.error = _("shift expression expected");
4726 return FAIL;
4727 }
4728
4729 shift = shift_name->kind;
4730
4731 switch (mode)
4732 {
4733 case NO_SHIFT_RESTRICT:
4734 case SHIFT_IMMEDIATE: break;
4735
4736 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4737 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4738 {
4739 inst.error = _("'LSL' or 'ASR' required");
4740 return FAIL;
4741 }
4742 break;
4743
4744 case SHIFT_LSL_IMMEDIATE:
4745 if (shift != SHIFT_LSL)
4746 {
4747 inst.error = _("'LSL' required");
4748 return FAIL;
4749 }
4750 break;
4751
4752 case SHIFT_ASR_IMMEDIATE:
4753 if (shift != SHIFT_ASR)
4754 {
4755 inst.error = _("'ASR' required");
4756 return FAIL;
4757 }
4758 break;
4759
4760 default: abort ();
4761 }
4762
4763 if (shift != SHIFT_RRX)
4764 {
4765 /* Whitespace can appear here if the next thing is a bare digit. */
4766 skip_whitespace (p);
4767
4768 if (mode == NO_SHIFT_RESTRICT
4769 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4770 {
4771 inst.operands[i].imm = reg;
4772 inst.operands[i].immisreg = 1;
4773 }
4774 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4775 return FAIL;
4776 }
4777 inst.operands[i].shift_kind = shift;
4778 inst.operands[i].shifted = 1;
4779 *str = p;
4780 return SUCCESS;
4781 }
4782
4783 /* Parse a <shifter_operand> for an ARM data processing instruction:
4784
4785 #<immediate>
4786 #<immediate>, <rotate>
4787 <Rm>
4788 <Rm>, <shift>
4789
4790 where <shift> is defined by parse_shift above, and <rotate> is a
4791 multiple of 2 between 0 and 30. Validation of immediate operands
4792 is deferred to md_apply_fix. */
4793
4794 static int
4795 parse_shifter_operand (char **str, int i)
4796 {
4797 int value;
4798 expressionS exp;
4799
4800 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4801 {
4802 inst.operands[i].reg = value;
4803 inst.operands[i].isreg = 1;
4804
4805 /* parse_shift will override this if appropriate */
4806 inst.reloc.exp.X_op = O_constant;
4807 inst.reloc.exp.X_add_number = 0;
4808
4809 if (skip_past_comma (str) == FAIL)
4810 return SUCCESS;
4811
4812 /* Shift operation on register. */
4813 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4814 }
4815
4816 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4817 return FAIL;
4818
4819 if (skip_past_comma (str) == SUCCESS)
4820 {
4821 /* #x, y -- ie explicit rotation by Y. */
4822 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4823 return FAIL;
4824
4825 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4826 {
4827 inst.error = _("constant expression expected");
4828 return FAIL;
4829 }
4830
4831 value = exp.X_add_number;
4832 if (value < 0 || value > 30 || value % 2 != 0)
4833 {
4834 inst.error = _("invalid rotation");
4835 return FAIL;
4836 }
4837 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4838 {
4839 inst.error = _("invalid constant");
4840 return FAIL;
4841 }
4842
4843 /* Convert to decoded value. md_apply_fix will put it back. */
4844 inst.reloc.exp.X_add_number
4845 = (((inst.reloc.exp.X_add_number << (32 - value))
4846 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4847 }
4848
4849 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4850 inst.reloc.pc_rel = 0;
4851 return SUCCESS;
4852 }
4853
4854 /* Group relocation information. Each entry in the table contains the
4855 textual name of the relocation as may appear in assembler source
4856 and must end with a colon.
4857 Along with this textual name are the relocation codes to be used if
4858 the corresponding instruction is an ALU instruction (ADD or SUB only),
4859 an LDR, an LDRS, or an LDC. */
4860
4861 struct group_reloc_table_entry
4862 {
4863 const char *name;
4864 int alu_code;
4865 int ldr_code;
4866 int ldrs_code;
4867 int ldc_code;
4868 };
4869
4870 typedef enum
4871 {
4872 /* Varieties of non-ALU group relocation. */
4873
4874 GROUP_LDR,
4875 GROUP_LDRS,
4876 GROUP_LDC
4877 } group_reloc_type;
4878
4879 static struct group_reloc_table_entry group_reloc_table[] =
4880 { /* Program counter relative: */
4881 { "pc_g0_nc",
4882 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4883 0, /* LDR */
4884 0, /* LDRS */
4885 0 }, /* LDC */
4886 { "pc_g0",
4887 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4888 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4889 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4890 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4891 { "pc_g1_nc",
4892 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4893 0, /* LDR */
4894 0, /* LDRS */
4895 0 }, /* LDC */
4896 { "pc_g1",
4897 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4898 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4899 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4900 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4901 { "pc_g2",
4902 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4903 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4904 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4905 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4906 /* Section base relative */
4907 { "sb_g0_nc",
4908 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4909 0, /* LDR */
4910 0, /* LDRS */
4911 0 }, /* LDC */
4912 { "sb_g0",
4913 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4914 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4915 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4916 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4917 { "sb_g1_nc",
4918 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4919 0, /* LDR */
4920 0, /* LDRS */
4921 0 }, /* LDC */
4922 { "sb_g1",
4923 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4924 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4925 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4926 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4927 { "sb_g2",
4928 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4929 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4930 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4931 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4932
4933 /* Given the address of a pointer pointing to the textual name of a group
4934 relocation as may appear in assembler source, attempt to find its details
4935 in group_reloc_table. The pointer will be updated to the character after
4936 the trailing colon. On failure, FAIL will be returned; SUCCESS
4937 otherwise. On success, *entry will be updated to point at the relevant
4938 group_reloc_table entry. */
4939
4940 static int
4941 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4942 {
4943 unsigned int i;
4944 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4945 {
4946 int length = strlen (group_reloc_table[i].name);
4947
4948 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4949 && (*str)[length] == ':')
4950 {
4951 *out = &group_reloc_table[i];
4952 *str += (length + 1);
4953 return SUCCESS;
4954 }
4955 }
4956
4957 return FAIL;
4958 }
4959
4960 /* Parse a <shifter_operand> for an ARM data processing instruction
4961 (as for parse_shifter_operand) where group relocations are allowed:
4962
4963 #<immediate>
4964 #<immediate>, <rotate>
4965 #:<group_reloc>:<expression>
4966 <Rm>
4967 <Rm>, <shift>
4968
4969 where <group_reloc> is one of the strings defined in group_reloc_table.
4970 The hashes are optional.
4971
4972 Everything else is as for parse_shifter_operand. */
4973
4974 static parse_operand_result
4975 parse_shifter_operand_group_reloc (char **str, int i)
4976 {
4977 /* Determine if we have the sequence of characters #: or just :
4978 coming next. If we do, then we check for a group relocation.
4979 If we don't, punt the whole lot to parse_shifter_operand. */
4980
4981 if (((*str)[0] == '#' && (*str)[1] == ':')
4982 || (*str)[0] == ':')
4983 {
4984 struct group_reloc_table_entry *entry;
4985
4986 if ((*str)[0] == '#')
4987 (*str) += 2;
4988 else
4989 (*str)++;
4990
4991 /* Try to parse a group relocation. Anything else is an error. */
4992 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4993 {
4994 inst.error = _("unknown group relocation");
4995 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4996 }
4997
4998 /* We now have the group relocation table entry corresponding to
4999 the name in the assembler source. Next, we parse the expression. */
5000 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5001 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5002
5003 /* Record the relocation type (always the ALU variant here). */
5004 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5005 gas_assert (inst.reloc.type != 0);
5006
5007 return PARSE_OPERAND_SUCCESS;
5008 }
5009 else
5010 return parse_shifter_operand (str, i) == SUCCESS
5011 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5012
5013 /* Never reached. */
5014 }
5015
5016 /* Parse a Neon alignment expression. Information is written to
5017 inst.operands[i]. We assume the initial ':' has been skipped.
5018
5019 align .imm = align << 8, .immisalign=1, .preind=0 */
5020 static parse_operand_result
5021 parse_neon_alignment (char **str, int i)
5022 {
5023 char *p = *str;
5024 expressionS exp;
5025
5026 my_get_expression (&exp, &p, GE_NO_PREFIX);
5027
5028 if (exp.X_op != O_constant)
5029 {
5030 inst.error = _("alignment must be constant");
5031 return PARSE_OPERAND_FAIL;
5032 }
5033
5034 inst.operands[i].imm = exp.X_add_number << 8;
5035 inst.operands[i].immisalign = 1;
5036 /* Alignments are not pre-indexes. */
5037 inst.operands[i].preind = 0;
5038
5039 *str = p;
5040 return PARSE_OPERAND_SUCCESS;
5041 }
5042
5043 /* Parse all forms of an ARM address expression. Information is written
5044 to inst.operands[i] and/or inst.reloc.
5045
5046 Preindexed addressing (.preind=1):
5047
5048 [Rn, #offset] .reg=Rn .reloc.exp=offset
5049 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5050 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5051 .shift_kind=shift .reloc.exp=shift_imm
5052
5053 These three may have a trailing ! which causes .writeback to be set also.
5054
5055 Postindexed addressing (.postind=1, .writeback=1):
5056
5057 [Rn], #offset .reg=Rn .reloc.exp=offset
5058 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5059 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5060 .shift_kind=shift .reloc.exp=shift_imm
5061
5062 Unindexed addressing (.preind=0, .postind=0):
5063
5064 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5065
5066 Other:
5067
5068 [Rn]{!} shorthand for [Rn,#0]{!}
5069 =immediate .isreg=0 .reloc.exp=immediate
5070 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5071
5072 It is the caller's responsibility to check for addressing modes not
5073 supported by the instruction, and to set inst.reloc.type. */
5074
5075 static parse_operand_result
5076 parse_address_main (char **str, int i, int group_relocations,
5077 group_reloc_type group_type)
5078 {
5079 char *p = *str;
5080 int reg;
5081
5082 if (skip_past_char (&p, '[') == FAIL)
5083 {
5084 if (skip_past_char (&p, '=') == FAIL)
5085 {
5086 /* Bare address - translate to PC-relative offset. */
5087 inst.reloc.pc_rel = 1;
5088 inst.operands[i].reg = REG_PC;
5089 inst.operands[i].isreg = 1;
5090 inst.operands[i].preind = 1;
5091 }
5092 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5093
5094 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5095 return PARSE_OPERAND_FAIL;
5096
5097 *str = p;
5098 return PARSE_OPERAND_SUCCESS;
5099 }
5100
5101 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5102 {
5103 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5104 return PARSE_OPERAND_FAIL;
5105 }
5106 inst.operands[i].reg = reg;
5107 inst.operands[i].isreg = 1;
5108
5109 if (skip_past_comma (&p) == SUCCESS)
5110 {
5111 inst.operands[i].preind = 1;
5112
5113 if (*p == '+') p++;
5114 else if (*p == '-') p++, inst.operands[i].negative = 1;
5115
5116 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5117 {
5118 inst.operands[i].imm = reg;
5119 inst.operands[i].immisreg = 1;
5120
5121 if (skip_past_comma (&p) == SUCCESS)
5122 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5123 return PARSE_OPERAND_FAIL;
5124 }
5125 else if (skip_past_char (&p, ':') == SUCCESS)
5126 {
5127 /* FIXME: '@' should be used here, but it's filtered out by generic
5128 code before we get to see it here. This may be subject to
5129 change. */
5130 parse_operand_result result = parse_neon_alignment (&p, i);
5131
5132 if (result != PARSE_OPERAND_SUCCESS)
5133 return result;
5134 }
5135 else
5136 {
5137 if (inst.operands[i].negative)
5138 {
5139 inst.operands[i].negative = 0;
5140 p--;
5141 }
5142
5143 if (group_relocations
5144 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5145 {
5146 struct group_reloc_table_entry *entry;
5147
5148 /* Skip over the #: or : sequence. */
5149 if (*p == '#')
5150 p += 2;
5151 else
5152 p++;
5153
5154 /* Try to parse a group relocation. Anything else is an
5155 error. */
5156 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5157 {
5158 inst.error = _("unknown group relocation");
5159 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5160 }
5161
5162 /* We now have the group relocation table entry corresponding to
5163 the name in the assembler source. Next, we parse the
5164 expression. */
5165 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5166 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5167
5168 /* Record the relocation type. */
5169 switch (group_type)
5170 {
5171 case GROUP_LDR:
5172 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5173 break;
5174
5175 case GROUP_LDRS:
5176 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5177 break;
5178
5179 case GROUP_LDC:
5180 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5181 break;
5182
5183 default:
5184 gas_assert (0);
5185 }
5186
5187 if (inst.reloc.type == 0)
5188 {
5189 inst.error = _("this group relocation is not allowed on this instruction");
5190 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5191 }
5192 }
5193 else
5194 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5195 return PARSE_OPERAND_FAIL;
5196 }
5197 }
5198 else if (skip_past_char (&p, ':') == SUCCESS)
5199 {
5200 /* FIXME: '@' should be used here, but it's filtered out by generic code
5201 before we get to see it here. This may be subject to change. */
5202 parse_operand_result result = parse_neon_alignment (&p, i);
5203
5204 if (result != PARSE_OPERAND_SUCCESS)
5205 return result;
5206 }
5207
5208 if (skip_past_char (&p, ']') == FAIL)
5209 {
5210 inst.error = _("']' expected");
5211 return PARSE_OPERAND_FAIL;
5212 }
5213
5214 if (skip_past_char (&p, '!') == SUCCESS)
5215 inst.operands[i].writeback = 1;
5216
5217 else if (skip_past_comma (&p) == SUCCESS)
5218 {
5219 if (skip_past_char (&p, '{') == SUCCESS)
5220 {
5221 /* [Rn], {expr} - unindexed, with option */
5222 if (parse_immediate (&p, &inst.operands[i].imm,
5223 0, 255, TRUE) == FAIL)
5224 return PARSE_OPERAND_FAIL;
5225
5226 if (skip_past_char (&p, '}') == FAIL)
5227 {
5228 inst.error = _("'}' expected at end of 'option' field");
5229 return PARSE_OPERAND_FAIL;
5230 }
5231 if (inst.operands[i].preind)
5232 {
5233 inst.error = _("cannot combine index with option");
5234 return PARSE_OPERAND_FAIL;
5235 }
5236 *str = p;
5237 return PARSE_OPERAND_SUCCESS;
5238 }
5239 else
5240 {
5241 inst.operands[i].postind = 1;
5242 inst.operands[i].writeback = 1;
5243
5244 if (inst.operands[i].preind)
5245 {
5246 inst.error = _("cannot combine pre- and post-indexing");
5247 return PARSE_OPERAND_FAIL;
5248 }
5249
5250 if (*p == '+') p++;
5251 else if (*p == '-') p++, inst.operands[i].negative = 1;
5252
5253 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5254 {
5255 /* We might be using the immediate for alignment already. If we
5256 are, OR the register number into the low-order bits. */
5257 if (inst.operands[i].immisalign)
5258 inst.operands[i].imm |= reg;
5259 else
5260 inst.operands[i].imm = reg;
5261 inst.operands[i].immisreg = 1;
5262
5263 if (skip_past_comma (&p) == SUCCESS)
5264 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5265 return PARSE_OPERAND_FAIL;
5266 }
5267 else
5268 {
5269 if (inst.operands[i].negative)
5270 {
5271 inst.operands[i].negative = 0;
5272 p--;
5273 }
5274 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5275 return PARSE_OPERAND_FAIL;
5276 }
5277 }
5278 }
5279
5280 /* If at this point neither .preind nor .postind is set, we have a
5281 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5282 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5283 {
5284 inst.operands[i].preind = 1;
5285 inst.reloc.exp.X_op = O_constant;
5286 inst.reloc.exp.X_add_number = 0;
5287 }
5288 *str = p;
5289 return PARSE_OPERAND_SUCCESS;
5290 }
5291
5292 static int
5293 parse_address (char **str, int i)
5294 {
5295 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5296 ? SUCCESS : FAIL;
5297 }
5298
5299 static parse_operand_result
5300 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5301 {
5302 return parse_address_main (str, i, 1, type);
5303 }
5304
5305 /* Parse an operand for a MOVW or MOVT instruction. */
5306 static int
5307 parse_half (char **str)
5308 {
5309 char * p;
5310
5311 p = *str;
5312 skip_past_char (&p, '#');
5313 if (strncasecmp (p, ":lower16:", 9) == 0)
5314 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5315 else if (strncasecmp (p, ":upper16:", 9) == 0)
5316 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5317
5318 if (inst.reloc.type != BFD_RELOC_UNUSED)
5319 {
5320 p += 9;
5321 skip_whitespace (p);
5322 }
5323
5324 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5325 return FAIL;
5326
5327 if (inst.reloc.type == BFD_RELOC_UNUSED)
5328 {
5329 if (inst.reloc.exp.X_op != O_constant)
5330 {
5331 inst.error = _("constant expression expected");
5332 return FAIL;
5333 }
5334 if (inst.reloc.exp.X_add_number < 0
5335 || inst.reloc.exp.X_add_number > 0xffff)
5336 {
5337 inst.error = _("immediate value out of range");
5338 return FAIL;
5339 }
5340 }
5341 *str = p;
5342 return SUCCESS;
5343 }
5344
5345 /* Miscellaneous. */
5346
5347 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5348 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5349 static int
5350 parse_psr (char **str, bfd_boolean lhs)
5351 {
5352 char *p;
5353 unsigned long psr_field;
5354 const struct asm_psr *psr;
5355 char *start;
5356 bfd_boolean is_apsr = FALSE;
5357 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5358
5359 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5360 feature for ease of use and backwards compatibility. */
5361 p = *str;
5362 if (strncasecmp (p, "SPSR", 4) == 0)
5363 {
5364 if (m_profile)
5365 goto unsupported_psr;
5366
5367 psr_field = SPSR_BIT;
5368 }
5369 else if (strncasecmp (p, "CPSR", 4) == 0)
5370 {
5371 if (m_profile)
5372 goto unsupported_psr;
5373
5374 psr_field = 0;
5375 }
5376 else if (strncasecmp (p, "APSR", 4) == 0)
5377 {
5378 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5379 and ARMv7-R architecture CPUs. */
5380 is_apsr = TRUE;
5381 psr_field = 0;
5382 }
5383 else if (m_profile)
5384 {
5385 start = p;
5386 do
5387 p++;
5388 while (ISALNUM (*p) || *p == '_');
5389
5390 if (strncasecmp (start, "iapsr", 5) == 0
5391 || strncasecmp (start, "eapsr", 5) == 0
5392 || strncasecmp (start, "xpsr", 4) == 0
5393 || strncasecmp (start, "psr", 3) == 0)
5394 p = start + strcspn (start, "rR") + 1;
5395
5396 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5397 p - start);
5398
5399 if (!psr)
5400 return FAIL;
5401
5402 /* If APSR is being written, a bitfield may be specified. Note that
5403 APSR itself is handled above. */
5404 if (psr->field <= 3)
5405 {
5406 psr_field = psr->field;
5407 is_apsr = TRUE;
5408 goto check_suffix;
5409 }
5410
5411 *str = p;
5412 /* M-profile MSR instructions have the mask field set to "10", except
5413 *PSR variants which modify APSR, which may use a different mask (and
5414 have been handled already). Do that by setting the PSR_f field
5415 here. */
5416 return psr->field | (lhs ? PSR_f : 0);
5417 }
5418 else
5419 goto unsupported_psr;
5420
5421 p += 4;
5422 check_suffix:
5423 if (*p == '_')
5424 {
5425 /* A suffix follows. */
5426 p++;
5427 start = p;
5428
5429 do
5430 p++;
5431 while (ISALNUM (*p) || *p == '_');
5432
5433 if (is_apsr)
5434 {
5435 /* APSR uses a notation for bits, rather than fields. */
5436 unsigned int nzcvq_bits = 0;
5437 unsigned int g_bit = 0;
5438 char *bit;
5439
5440 for (bit = start; bit != p; bit++)
5441 {
5442 switch (TOLOWER (*bit))
5443 {
5444 case 'n':
5445 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5446 break;
5447
5448 case 'z':
5449 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5450 break;
5451
5452 case 'c':
5453 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5454 break;
5455
5456 case 'v':
5457 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5458 break;
5459
5460 case 'q':
5461 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5462 break;
5463
5464 case 'g':
5465 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5466 break;
5467
5468 default:
5469 inst.error = _("unexpected bit specified after APSR");
5470 return FAIL;
5471 }
5472 }
5473
5474 if (nzcvq_bits == 0x1f)
5475 psr_field |= PSR_f;
5476
5477 if (g_bit == 0x1)
5478 {
5479 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5480 {
5481 inst.error = _("selected processor does not "
5482 "support DSP extension");
5483 return FAIL;
5484 }
5485
5486 psr_field |= PSR_s;
5487 }
5488
5489 if ((nzcvq_bits & 0x20) != 0
5490 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5491 || (g_bit & 0x2) != 0)
5492 {
5493 inst.error = _("bad bitmask specified after APSR");
5494 return FAIL;
5495 }
5496 }
5497 else
5498 {
5499 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5500 p - start);
5501 if (!psr)
5502 goto error;
5503
5504 psr_field |= psr->field;
5505 }
5506 }
5507 else
5508 {
5509 if (ISALNUM (*p))
5510 goto error; /* Garbage after "[CS]PSR". */
5511
5512 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5513 is deprecated, but allow it anyway. */
5514 if (is_apsr && lhs)
5515 {
5516 psr_field |= PSR_f;
5517 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5518 "deprecated"));
5519 }
5520 else if (!m_profile)
5521 /* These bits are never right for M-profile devices: don't set them
5522 (only code paths which read/write APSR reach here). */
5523 psr_field |= (PSR_c | PSR_f);
5524 }
5525 *str = p;
5526 return psr_field;
5527
5528 unsupported_psr:
5529 inst.error = _("selected processor does not support requested special "
5530 "purpose register");
5531 return FAIL;
5532
5533 error:
5534 inst.error = _("flag for {c}psr instruction expected");
5535 return FAIL;
5536 }
5537
5538 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5539 value suitable for splatting into the AIF field of the instruction. */
5540
5541 static int
5542 parse_cps_flags (char **str)
5543 {
5544 int val = 0;
5545 int saw_a_flag = 0;
5546 char *s = *str;
5547
5548 for (;;)
5549 switch (*s++)
5550 {
5551 case '\0': case ',':
5552 goto done;
5553
5554 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5555 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5556 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5557
5558 default:
5559 inst.error = _("unrecognized CPS flag");
5560 return FAIL;
5561 }
5562
5563 done:
5564 if (saw_a_flag == 0)
5565 {
5566 inst.error = _("missing CPS flags");
5567 return FAIL;
5568 }
5569
5570 *str = s - 1;
5571 return val;
5572 }
5573
5574 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5575 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5576
5577 static int
5578 parse_endian_specifier (char **str)
5579 {
5580 int little_endian;
5581 char *s = *str;
5582
5583 if (strncasecmp (s, "BE", 2))
5584 little_endian = 0;
5585 else if (strncasecmp (s, "LE", 2))
5586 little_endian = 1;
5587 else
5588 {
5589 inst.error = _("valid endian specifiers are be or le");
5590 return FAIL;
5591 }
5592
5593 if (ISALNUM (s[2]) || s[2] == '_')
5594 {
5595 inst.error = _("valid endian specifiers are be or le");
5596 return FAIL;
5597 }
5598
5599 *str = s + 2;
5600 return little_endian;
5601 }
5602
5603 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5604 value suitable for poking into the rotate field of an sxt or sxta
5605 instruction, or FAIL on error. */
5606
5607 static int
5608 parse_ror (char **str)
5609 {
5610 int rot;
5611 char *s = *str;
5612
5613 if (strncasecmp (s, "ROR", 3) == 0)
5614 s += 3;
5615 else
5616 {
5617 inst.error = _("missing rotation field after comma");
5618 return FAIL;
5619 }
5620
5621 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5622 return FAIL;
5623
5624 switch (rot)
5625 {
5626 case 0: *str = s; return 0x0;
5627 case 8: *str = s; return 0x1;
5628 case 16: *str = s; return 0x2;
5629 case 24: *str = s; return 0x3;
5630
5631 default:
5632 inst.error = _("rotation can only be 0, 8, 16, or 24");
5633 return FAIL;
5634 }
5635 }
5636
5637 /* Parse a conditional code (from conds[] below). The value returned is in the
5638 range 0 .. 14, or FAIL. */
5639 static int
5640 parse_cond (char **str)
5641 {
5642 char *q;
5643 const struct asm_cond *c;
5644 int n;
5645 /* Condition codes are always 2 characters, so matching up to
5646 3 characters is sufficient. */
5647 char cond[3];
5648
5649 q = *str;
5650 n = 0;
5651 while (ISALPHA (*q) && n < 3)
5652 {
5653 cond[n] = TOLOWER (*q);
5654 q++;
5655 n++;
5656 }
5657
5658 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5659 if (!c)
5660 {
5661 inst.error = _("condition required");
5662 return FAIL;
5663 }
5664
5665 *str = q;
5666 return c->value;
5667 }
5668
5669 /* Parse an option for a barrier instruction. Returns the encoding for the
5670 option, or FAIL. */
5671 static int
5672 parse_barrier (char **str)
5673 {
5674 char *p, *q;
5675 const struct asm_barrier_opt *o;
5676
5677 p = q = *str;
5678 while (ISALPHA (*q))
5679 q++;
5680
5681 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5682 q - p);
5683 if (!o)
5684 return FAIL;
5685
5686 *str = q;
5687 return o->value;
5688 }
5689
5690 /* Parse the operands of a table branch instruction. Similar to a memory
5691 operand. */
5692 static int
5693 parse_tb (char **str)
5694 {
5695 char * p = *str;
5696 int reg;
5697
5698 if (skip_past_char (&p, '[') == FAIL)
5699 {
5700 inst.error = _("'[' expected");
5701 return FAIL;
5702 }
5703
5704 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5705 {
5706 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5707 return FAIL;
5708 }
5709 inst.operands[0].reg = reg;
5710
5711 if (skip_past_comma (&p) == FAIL)
5712 {
5713 inst.error = _("',' expected");
5714 return FAIL;
5715 }
5716
5717 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5718 {
5719 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5720 return FAIL;
5721 }
5722 inst.operands[0].imm = reg;
5723
5724 if (skip_past_comma (&p) == SUCCESS)
5725 {
5726 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5727 return FAIL;
5728 if (inst.reloc.exp.X_add_number != 1)
5729 {
5730 inst.error = _("invalid shift");
5731 return FAIL;
5732 }
5733 inst.operands[0].shifted = 1;
5734 }
5735
5736 if (skip_past_char (&p, ']') == FAIL)
5737 {
5738 inst.error = _("']' expected");
5739 return FAIL;
5740 }
5741 *str = p;
5742 return SUCCESS;
5743 }
5744
5745 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5746 information on the types the operands can take and how they are encoded.
5747 Up to four operands may be read; this function handles setting the
5748 ".present" field for each read operand itself.
5749 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5750 else returns FAIL. */
5751
5752 static int
5753 parse_neon_mov (char **str, int *which_operand)
5754 {
5755 int i = *which_operand, val;
5756 enum arm_reg_type rtype;
5757 char *ptr = *str;
5758 struct neon_type_el optype;
5759
5760 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5761 {
5762 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5763 inst.operands[i].reg = val;
5764 inst.operands[i].isscalar = 1;
5765 inst.operands[i].vectype = optype;
5766 inst.operands[i++].present = 1;
5767
5768 if (skip_past_comma (&ptr) == FAIL)
5769 goto wanted_comma;
5770
5771 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5772 goto wanted_arm;
5773
5774 inst.operands[i].reg = val;
5775 inst.operands[i].isreg = 1;
5776 inst.operands[i].present = 1;
5777 }
5778 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5779 != FAIL)
5780 {
5781 /* Cases 0, 1, 2, 3, 5 (D only). */
5782 if (skip_past_comma (&ptr) == FAIL)
5783 goto wanted_comma;
5784
5785 inst.operands[i].reg = val;
5786 inst.operands[i].isreg = 1;
5787 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5788 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5789 inst.operands[i].isvec = 1;
5790 inst.operands[i].vectype = optype;
5791 inst.operands[i++].present = 1;
5792
5793 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5794 {
5795 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5796 Case 13: VMOV <Sd>, <Rm> */
5797 inst.operands[i].reg = val;
5798 inst.operands[i].isreg = 1;
5799 inst.operands[i].present = 1;
5800
5801 if (rtype == REG_TYPE_NQ)
5802 {
5803 first_error (_("can't use Neon quad register here"));
5804 return FAIL;
5805 }
5806 else if (rtype != REG_TYPE_VFS)
5807 {
5808 i++;
5809 if (skip_past_comma (&ptr) == FAIL)
5810 goto wanted_comma;
5811 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5812 goto wanted_arm;
5813 inst.operands[i].reg = val;
5814 inst.operands[i].isreg = 1;
5815 inst.operands[i].present = 1;
5816 }
5817 }
5818 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5819 &optype)) != FAIL)
5820 {
5821 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5822 Case 1: VMOV<c><q> <Dd>, <Dm>
5823 Case 8: VMOV.F32 <Sd>, <Sm>
5824 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5825
5826 inst.operands[i].reg = val;
5827 inst.operands[i].isreg = 1;
5828 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5829 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5830 inst.operands[i].isvec = 1;
5831 inst.operands[i].vectype = optype;
5832 inst.operands[i].present = 1;
5833
5834 if (skip_past_comma (&ptr) == SUCCESS)
5835 {
5836 /* Case 15. */
5837 i++;
5838
5839 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5840 goto wanted_arm;
5841
5842 inst.operands[i].reg = val;
5843 inst.operands[i].isreg = 1;
5844 inst.operands[i++].present = 1;
5845
5846 if (skip_past_comma (&ptr) == FAIL)
5847 goto wanted_comma;
5848
5849 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5850 goto wanted_arm;
5851
5852 inst.operands[i].reg = val;
5853 inst.operands[i].isreg = 1;
5854 inst.operands[i++].present = 1;
5855 }
5856 }
5857 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5858 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5859 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5860 Case 10: VMOV.F32 <Sd>, #<imm>
5861 Case 11: VMOV.F64 <Dd>, #<imm> */
5862 inst.operands[i].immisfloat = 1;
5863 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5864 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5865 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5866 ;
5867 else
5868 {
5869 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5870 return FAIL;
5871 }
5872 }
5873 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5874 {
5875 /* Cases 6, 7. */
5876 inst.operands[i].reg = val;
5877 inst.operands[i].isreg = 1;
5878 inst.operands[i++].present = 1;
5879
5880 if (skip_past_comma (&ptr) == FAIL)
5881 goto wanted_comma;
5882
5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5884 {
5885 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
5888 inst.operands[i].present = 1;
5889 inst.operands[i].vectype = optype;
5890 }
5891 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5892 {
5893 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5894 inst.operands[i].reg = val;
5895 inst.operands[i].isreg = 1;
5896 inst.operands[i++].present = 1;
5897
5898 if (skip_past_comma (&ptr) == FAIL)
5899 goto wanted_comma;
5900
5901 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5902 == FAIL)
5903 {
5904 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5905 return FAIL;
5906 }
5907
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
5910 inst.operands[i].isvec = 1;
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5912 inst.operands[i].vectype = optype;
5913 inst.operands[i].present = 1;
5914
5915 if (rtype == REG_TYPE_VFS)
5916 {
5917 /* Case 14. */
5918 i++;
5919 if (skip_past_comma (&ptr) == FAIL)
5920 goto wanted_comma;
5921 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5922 &optype)) == FAIL)
5923 {
5924 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5925 return FAIL;
5926 }
5927 inst.operands[i].reg = val;
5928 inst.operands[i].isreg = 1;
5929 inst.operands[i].isvec = 1;
5930 inst.operands[i].issingle = 1;
5931 inst.operands[i].vectype = optype;
5932 inst.operands[i].present = 1;
5933 }
5934 }
5935 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5936 != FAIL)
5937 {
5938 /* Case 13. */
5939 inst.operands[i].reg = val;
5940 inst.operands[i].isreg = 1;
5941 inst.operands[i].isvec = 1;
5942 inst.operands[i].issingle = 1;
5943 inst.operands[i].vectype = optype;
5944 inst.operands[i++].present = 1;
5945 }
5946 }
5947 else
5948 {
5949 first_error (_("parse error"));
5950 return FAIL;
5951 }
5952
5953 /* Successfully parsed the operands. Update args. */
5954 *which_operand = i;
5955 *str = ptr;
5956 return SUCCESS;
5957
5958 wanted_comma:
5959 first_error (_("expected comma"));
5960 return FAIL;
5961
5962 wanted_arm:
5963 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5964 return FAIL;
5965 }
5966
5967 /* Use this macro when the operand constraints are different
5968 for ARM and THUMB (e.g. ldrd). */
5969 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5970 ((arm_operand) | ((thumb_operand) << 16))
5971
5972 /* Matcher codes for parse_operands. */
5973 enum operand_parse_code
5974 {
5975 OP_stop, /* end of line */
5976
5977 OP_RR, /* ARM register */
5978 OP_RRnpc, /* ARM register, not r15 */
5979 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
5980 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5981 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
5982 optional trailing ! */
5983 OP_RRw, /* ARM register, not r15, optional trailing ! */
5984 OP_RCP, /* Coprocessor number */
5985 OP_RCN, /* Coprocessor register */
5986 OP_RF, /* FPA register */
5987 OP_RVS, /* VFP single precision register */
5988 OP_RVD, /* VFP double precision register (0..15) */
5989 OP_RND, /* Neon double precision register (0..31) */
5990 OP_RNQ, /* Neon quad precision register */
5991 OP_RVSD, /* VFP single or double precision register */
5992 OP_RNDQ, /* Neon double or quad precision register */
5993 OP_RNSDQ, /* Neon single, double or quad precision register */
5994 OP_RNSC, /* Neon scalar D[X] */
5995 OP_RVC, /* VFP control register */
5996 OP_RMF, /* Maverick F register */
5997 OP_RMD, /* Maverick D register */
5998 OP_RMFX, /* Maverick FX register */
5999 OP_RMDX, /* Maverick DX register */
6000 OP_RMAX, /* Maverick AX register */
6001 OP_RMDS, /* Maverick DSPSC register */
6002 OP_RIWR, /* iWMMXt wR register */
6003 OP_RIWC, /* iWMMXt wC register */
6004 OP_RIWG, /* iWMMXt wCG register */
6005 OP_RXA, /* XScale accumulator register */
6006
6007 OP_REGLST, /* ARM register list */
6008 OP_VRSLST, /* VFP single-precision register list */
6009 OP_VRDLST, /* VFP double-precision register list */
6010 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6011 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6012 OP_NSTRLST, /* Neon element/structure list */
6013
6014 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6015 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6016 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6017 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6018 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6019 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6020 OP_VMOV, /* Neon VMOV operands. */
6021 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6022 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6023 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6024
6025 OP_I0, /* immediate zero */
6026 OP_I7, /* immediate value 0 .. 7 */
6027 OP_I15, /* 0 .. 15 */
6028 OP_I16, /* 1 .. 16 */
6029 OP_I16z, /* 0 .. 16 */
6030 OP_I31, /* 0 .. 31 */
6031 OP_I31w, /* 0 .. 31, optional trailing ! */
6032 OP_I32, /* 1 .. 32 */
6033 OP_I32z, /* 0 .. 32 */
6034 OP_I63, /* 0 .. 63 */
6035 OP_I63s, /* -64 .. 63 */
6036 OP_I64, /* 1 .. 64 */
6037 OP_I64z, /* 0 .. 64 */
6038 OP_I255, /* 0 .. 255 */
6039
6040 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6041 OP_I7b, /* 0 .. 7 */
6042 OP_I15b, /* 0 .. 15 */
6043 OP_I31b, /* 0 .. 31 */
6044
6045 OP_SH, /* shifter operand */
6046 OP_SHG, /* shifter operand with possible group relocation */
6047 OP_ADDR, /* Memory address expression (any mode) */
6048 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6049 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6050 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6051 OP_EXP, /* arbitrary expression */
6052 OP_EXPi, /* same, with optional immediate prefix */
6053 OP_EXPr, /* same, with optional relocation suffix */
6054 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6055
6056 OP_CPSF, /* CPS flags */
6057 OP_ENDI, /* Endianness specifier */
6058 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6059 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6060 OP_COND, /* conditional code */
6061 OP_TB, /* Table branch. */
6062
6063 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6064
6065 OP_RRnpc_I0, /* ARM register or literal 0 */
6066 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6067 OP_RR_EXi, /* ARM register or expression with imm prefix */
6068 OP_RF_IF, /* FPA register or immediate */
6069 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6070 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6071
6072 /* Optional operands. */
6073 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6074 OP_oI31b, /* 0 .. 31 */
6075 OP_oI32b, /* 1 .. 32 */
6076 OP_oIffffb, /* 0 .. 65535 */
6077 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6078
6079 OP_oRR, /* ARM register */
6080 OP_oRRnpc, /* ARM register, not the PC */
6081 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6082 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6083 OP_oRND, /* Optional Neon double precision register */
6084 OP_oRNQ, /* Optional Neon quad precision register */
6085 OP_oRNDQ, /* Optional Neon double or quad precision register */
6086 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6087 OP_oSHll, /* LSL immediate */
6088 OP_oSHar, /* ASR immediate */
6089 OP_oSHllar, /* LSL or ASR immediate */
6090 OP_oROR, /* ROR 0/8/16/24 */
6091 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6092
6093 /* Some pre-defined mixed (ARM/THUMB) operands. */
6094 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6095 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6096 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6097
6098 OP_FIRST_OPTIONAL = OP_oI7b
6099 };
6100
6101 /* Generic instruction operand parser. This does no encoding and no
6102 semantic validation; it merely squirrels values away in the inst
6103 structure. Returns SUCCESS or FAIL depending on whether the
6104 specified grammar matched. */
6105 static int
6106 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6107 {
6108 unsigned const int *upat = pattern;
6109 char *backtrack_pos = 0;
6110 const char *backtrack_error = 0;
6111 int i, val, backtrack_index = 0;
6112 enum arm_reg_type rtype;
6113 parse_operand_result result;
6114 unsigned int op_parse_code;
6115
6116 #define po_char_or_fail(chr) \
6117 do \
6118 { \
6119 if (skip_past_char (&str, chr) == FAIL) \
6120 goto bad_args; \
6121 } \
6122 while (0)
6123
6124 #define po_reg_or_fail(regtype) \
6125 do \
6126 { \
6127 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6128 & inst.operands[i].vectype); \
6129 if (val == FAIL) \
6130 { \
6131 first_error (_(reg_expected_msgs[regtype])); \
6132 goto failure; \
6133 } \
6134 inst.operands[i].reg = val; \
6135 inst.operands[i].isreg = 1; \
6136 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6137 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6138 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6139 || rtype == REG_TYPE_VFD \
6140 || rtype == REG_TYPE_NQ); \
6141 } \
6142 while (0)
6143
6144 #define po_reg_or_goto(regtype, label) \
6145 do \
6146 { \
6147 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6148 & inst.operands[i].vectype); \
6149 if (val == FAIL) \
6150 goto label; \
6151 \
6152 inst.operands[i].reg = val; \
6153 inst.operands[i].isreg = 1; \
6154 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6155 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6156 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6157 || rtype == REG_TYPE_VFD \
6158 || rtype == REG_TYPE_NQ); \
6159 } \
6160 while (0)
6161
6162 #define po_imm_or_fail(min, max, popt) \
6163 do \
6164 { \
6165 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6166 goto failure; \
6167 inst.operands[i].imm = val; \
6168 } \
6169 while (0)
6170
6171 #define po_scalar_or_goto(elsz, label) \
6172 do \
6173 { \
6174 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6175 if (val == FAIL) \
6176 goto label; \
6177 inst.operands[i].reg = val; \
6178 inst.operands[i].isscalar = 1; \
6179 } \
6180 while (0)
6181
6182 #define po_misc_or_fail(expr) \
6183 do \
6184 { \
6185 if (expr) \
6186 goto failure; \
6187 } \
6188 while (0)
6189
6190 #define po_misc_or_fail_no_backtrack(expr) \
6191 do \
6192 { \
6193 result = expr; \
6194 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6195 backtrack_pos = 0; \
6196 if (result != PARSE_OPERAND_SUCCESS) \
6197 goto failure; \
6198 } \
6199 while (0)
6200
6201 #define po_barrier_or_imm(str) \
6202 do \
6203 { \
6204 val = parse_barrier (&str); \
6205 if (val == FAIL) \
6206 { \
6207 if (ISALPHA (*str)) \
6208 goto failure; \
6209 else \
6210 goto immediate; \
6211 } \
6212 else \
6213 { \
6214 if ((inst.instruction & 0xf0) == 0x60 \
6215 && val != 0xf) \
6216 { \
6217 /* ISB can only take SY as an option. */ \
6218 inst.error = _("invalid barrier type"); \
6219 goto failure; \
6220 } \
6221 } \
6222 } \
6223 while (0)
6224
6225 skip_whitespace (str);
6226
6227 for (i = 0; upat[i] != OP_stop; i++)
6228 {
6229 op_parse_code = upat[i];
6230 if (op_parse_code >= 1<<16)
6231 op_parse_code = thumb ? (op_parse_code >> 16)
6232 : (op_parse_code & ((1<<16)-1));
6233
6234 if (op_parse_code >= OP_FIRST_OPTIONAL)
6235 {
6236 /* Remember where we are in case we need to backtrack. */
6237 gas_assert (!backtrack_pos);
6238 backtrack_pos = str;
6239 backtrack_error = inst.error;
6240 backtrack_index = i;
6241 }
6242
6243 if (i > 0 && (i > 1 || inst.operands[0].present))
6244 po_char_or_fail (',');
6245
6246 switch (op_parse_code)
6247 {
6248 /* Registers */
6249 case OP_oRRnpc:
6250 case OP_oRRnpcsp:
6251 case OP_RRnpc:
6252 case OP_RRnpcsp:
6253 case OP_oRR:
6254 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6255 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6256 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6257 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6258 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6259 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6260 case OP_oRND:
6261 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6262 case OP_RVC:
6263 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6264 break;
6265 /* Also accept generic coprocessor regs for unknown registers. */
6266 coproc_reg:
6267 po_reg_or_fail (REG_TYPE_CN);
6268 break;
6269 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6270 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6271 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6272 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6273 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6274 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6275 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6276 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6277 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6278 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6279 case OP_oRNQ:
6280 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6281 case OP_oRNDQ:
6282 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6283 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6284 case OP_oRNSDQ:
6285 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6286
6287 /* Neon scalar. Using an element size of 8 means that some invalid
6288 scalars are accepted here, so deal with those in later code. */
6289 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6290
6291 case OP_RNDQ_I0:
6292 {
6293 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6294 break;
6295 try_imm0:
6296 po_imm_or_fail (0, 0, TRUE);
6297 }
6298 break;
6299
6300 case OP_RVSD_I0:
6301 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6302 break;
6303
6304 case OP_RR_RNSC:
6305 {
6306 po_scalar_or_goto (8, try_rr);
6307 break;
6308 try_rr:
6309 po_reg_or_fail (REG_TYPE_RN);
6310 }
6311 break;
6312
6313 case OP_RNSDQ_RNSC:
6314 {
6315 po_scalar_or_goto (8, try_nsdq);
6316 break;
6317 try_nsdq:
6318 po_reg_or_fail (REG_TYPE_NSDQ);
6319 }
6320 break;
6321
6322 case OP_RNDQ_RNSC:
6323 {
6324 po_scalar_or_goto (8, try_ndq);
6325 break;
6326 try_ndq:
6327 po_reg_or_fail (REG_TYPE_NDQ);
6328 }
6329 break;
6330
6331 case OP_RND_RNSC:
6332 {
6333 po_scalar_or_goto (8, try_vfd);
6334 break;
6335 try_vfd:
6336 po_reg_or_fail (REG_TYPE_VFD);
6337 }
6338 break;
6339
6340 case OP_VMOV:
6341 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6342 not careful then bad things might happen. */
6343 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6344 break;
6345
6346 case OP_RNDQ_Ibig:
6347 {
6348 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6349 break;
6350 try_immbig:
6351 /* There's a possibility of getting a 64-bit immediate here, so
6352 we need special handling. */
6353 if (parse_big_immediate (&str, i) == FAIL)
6354 {
6355 inst.error = _("immediate value is out of range");
6356 goto failure;
6357 }
6358 }
6359 break;
6360
6361 case OP_RNDQ_I63b:
6362 {
6363 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6364 break;
6365 try_shimm:
6366 po_imm_or_fail (0, 63, TRUE);
6367 }
6368 break;
6369
6370 case OP_RRnpcb:
6371 po_char_or_fail ('[');
6372 po_reg_or_fail (REG_TYPE_RN);
6373 po_char_or_fail (']');
6374 break;
6375
6376 case OP_RRnpctw:
6377 case OP_RRw:
6378 case OP_oRRw:
6379 po_reg_or_fail (REG_TYPE_RN);
6380 if (skip_past_char (&str, '!') == SUCCESS)
6381 inst.operands[i].writeback = 1;
6382 break;
6383
6384 /* Immediates */
6385 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6386 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6387 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6388 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6389 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6390 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6391 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6392 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6393 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6394 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6395 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6396 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6397
6398 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6399 case OP_oI7b:
6400 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6401 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6402 case OP_oI31b:
6403 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6404 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6405 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6406
6407 /* Immediate variants */
6408 case OP_oI255c:
6409 po_char_or_fail ('{');
6410 po_imm_or_fail (0, 255, TRUE);
6411 po_char_or_fail ('}');
6412 break;
6413
6414 case OP_I31w:
6415 /* The expression parser chokes on a trailing !, so we have
6416 to find it first and zap it. */
6417 {
6418 char *s = str;
6419 while (*s && *s != ',')
6420 s++;
6421 if (s[-1] == '!')
6422 {
6423 s[-1] = '\0';
6424 inst.operands[i].writeback = 1;
6425 }
6426 po_imm_or_fail (0, 31, TRUE);
6427 if (str == s - 1)
6428 str = s;
6429 }
6430 break;
6431
6432 /* Expressions */
6433 case OP_EXPi: EXPi:
6434 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6435 GE_OPT_PREFIX));
6436 break;
6437
6438 case OP_EXP:
6439 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6440 GE_NO_PREFIX));
6441 break;
6442
6443 case OP_EXPr: EXPr:
6444 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6445 GE_NO_PREFIX));
6446 if (inst.reloc.exp.X_op == O_symbol)
6447 {
6448 val = parse_reloc (&str);
6449 if (val == -1)
6450 {
6451 inst.error = _("unrecognized relocation suffix");
6452 goto failure;
6453 }
6454 else if (val != BFD_RELOC_UNUSED)
6455 {
6456 inst.operands[i].imm = val;
6457 inst.operands[i].hasreloc = 1;
6458 }
6459 }
6460 break;
6461
6462 /* Operand for MOVW or MOVT. */
6463 case OP_HALF:
6464 po_misc_or_fail (parse_half (&str));
6465 break;
6466
6467 /* Register or expression. */
6468 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6469 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6470
6471 /* Register or immediate. */
6472 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6473 I0: po_imm_or_fail (0, 0, FALSE); break;
6474
6475 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6476 IF:
6477 if (!is_immediate_prefix (*str))
6478 goto bad_args;
6479 str++;
6480 val = parse_fpa_immediate (&str);
6481 if (val == FAIL)
6482 goto failure;
6483 /* FPA immediates are encoded as registers 8-15.
6484 parse_fpa_immediate has already applied the offset. */
6485 inst.operands[i].reg = val;
6486 inst.operands[i].isreg = 1;
6487 break;
6488
6489 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6490 I32z: po_imm_or_fail (0, 32, FALSE); break;
6491
6492 /* Two kinds of register. */
6493 case OP_RIWR_RIWC:
6494 {
6495 struct reg_entry *rege = arm_reg_parse_multi (&str);
6496 if (!rege
6497 || (rege->type != REG_TYPE_MMXWR
6498 && rege->type != REG_TYPE_MMXWC
6499 && rege->type != REG_TYPE_MMXWCG))
6500 {
6501 inst.error = _("iWMMXt data or control register expected");
6502 goto failure;
6503 }
6504 inst.operands[i].reg = rege->number;
6505 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6506 }
6507 break;
6508
6509 case OP_RIWC_RIWG:
6510 {
6511 struct reg_entry *rege = arm_reg_parse_multi (&str);
6512 if (!rege
6513 || (rege->type != REG_TYPE_MMXWC
6514 && rege->type != REG_TYPE_MMXWCG))
6515 {
6516 inst.error = _("iWMMXt control register expected");
6517 goto failure;
6518 }
6519 inst.operands[i].reg = rege->number;
6520 inst.operands[i].isreg = 1;
6521 }
6522 break;
6523
6524 /* Misc */
6525 case OP_CPSF: val = parse_cps_flags (&str); break;
6526 case OP_ENDI: val = parse_endian_specifier (&str); break;
6527 case OP_oROR: val = parse_ror (&str); break;
6528 case OP_COND: val = parse_cond (&str); break;
6529 case OP_oBARRIER_I15:
6530 po_barrier_or_imm (str); break;
6531 immediate:
6532 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6533 goto failure;
6534 break;
6535
6536 case OP_wPSR:
6537 case OP_rPSR:
6538 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6539 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6540 {
6541 inst.error = _("Banked registers are not available with this "
6542 "architecture.");
6543 goto failure;
6544 }
6545 break;
6546 try_psr:
6547 val = parse_psr (&str, op_parse_code == OP_wPSR);
6548 break;
6549
6550 case OP_APSR_RR:
6551 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6552 break;
6553 try_apsr:
6554 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6555 instruction). */
6556 if (strncasecmp (str, "APSR_", 5) == 0)
6557 {
6558 unsigned found = 0;
6559 str += 5;
6560 while (found < 15)
6561 switch (*str++)
6562 {
6563 case 'c': found = (found & 1) ? 16 : found | 1; break;
6564 case 'n': found = (found & 2) ? 16 : found | 2; break;
6565 case 'z': found = (found & 4) ? 16 : found | 4; break;
6566 case 'v': found = (found & 8) ? 16 : found | 8; break;
6567 default: found = 16;
6568 }
6569 if (found != 15)
6570 goto failure;
6571 inst.operands[i].isvec = 1;
6572 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6573 inst.operands[i].reg = REG_PC;
6574 }
6575 else
6576 goto failure;
6577 break;
6578
6579 case OP_TB:
6580 po_misc_or_fail (parse_tb (&str));
6581 break;
6582
6583 /* Register lists. */
6584 case OP_REGLST:
6585 val = parse_reg_list (&str);
6586 if (*str == '^')
6587 {
6588 inst.operands[1].writeback = 1;
6589 str++;
6590 }
6591 break;
6592
6593 case OP_VRSLST:
6594 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6595 break;
6596
6597 case OP_VRDLST:
6598 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6599 break;
6600
6601 case OP_VRSDLST:
6602 /* Allow Q registers too. */
6603 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6604 REGLIST_NEON_D);
6605 if (val == FAIL)
6606 {
6607 inst.error = NULL;
6608 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6609 REGLIST_VFP_S);
6610 inst.operands[i].issingle = 1;
6611 }
6612 break;
6613
6614 case OP_NRDLST:
6615 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6616 REGLIST_NEON_D);
6617 break;
6618
6619 case OP_NSTRLST:
6620 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6621 &inst.operands[i].vectype);
6622 break;
6623
6624 /* Addressing modes */
6625 case OP_ADDR:
6626 po_misc_or_fail (parse_address (&str, i));
6627 break;
6628
6629 case OP_ADDRGLDR:
6630 po_misc_or_fail_no_backtrack (
6631 parse_address_group_reloc (&str, i, GROUP_LDR));
6632 break;
6633
6634 case OP_ADDRGLDRS:
6635 po_misc_or_fail_no_backtrack (
6636 parse_address_group_reloc (&str, i, GROUP_LDRS));
6637 break;
6638
6639 case OP_ADDRGLDC:
6640 po_misc_or_fail_no_backtrack (
6641 parse_address_group_reloc (&str, i, GROUP_LDC));
6642 break;
6643
6644 case OP_SH:
6645 po_misc_or_fail (parse_shifter_operand (&str, i));
6646 break;
6647
6648 case OP_SHG:
6649 po_misc_or_fail_no_backtrack (
6650 parse_shifter_operand_group_reloc (&str, i));
6651 break;
6652
6653 case OP_oSHll:
6654 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6655 break;
6656
6657 case OP_oSHar:
6658 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6659 break;
6660
6661 case OP_oSHllar:
6662 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6663 break;
6664
6665 default:
6666 as_fatal (_("unhandled operand code %d"), op_parse_code);
6667 }
6668
6669 /* Various value-based sanity checks and shared operations. We
6670 do not signal immediate failures for the register constraints;
6671 this allows a syntax error to take precedence. */
6672 switch (op_parse_code)
6673 {
6674 case OP_oRRnpc:
6675 case OP_RRnpc:
6676 case OP_RRnpcb:
6677 case OP_RRw:
6678 case OP_oRRw:
6679 case OP_RRnpc_I0:
6680 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6681 inst.error = BAD_PC;
6682 break;
6683
6684 case OP_oRRnpcsp:
6685 case OP_RRnpcsp:
6686 if (inst.operands[i].isreg)
6687 {
6688 if (inst.operands[i].reg == REG_PC)
6689 inst.error = BAD_PC;
6690 else if (inst.operands[i].reg == REG_SP)
6691 inst.error = BAD_SP;
6692 }
6693 break;
6694
6695 case OP_RRnpctw:
6696 if (inst.operands[i].isreg
6697 && inst.operands[i].reg == REG_PC
6698 && (inst.operands[i].writeback || thumb))
6699 inst.error = BAD_PC;
6700 break;
6701
6702 case OP_CPSF:
6703 case OP_ENDI:
6704 case OP_oROR:
6705 case OP_wPSR:
6706 case OP_rPSR:
6707 case OP_COND:
6708 case OP_oBARRIER_I15:
6709 case OP_REGLST:
6710 case OP_VRSLST:
6711 case OP_VRDLST:
6712 case OP_VRSDLST:
6713 case OP_NRDLST:
6714 case OP_NSTRLST:
6715 if (val == FAIL)
6716 goto failure;
6717 inst.operands[i].imm = val;
6718 break;
6719
6720 default:
6721 break;
6722 }
6723
6724 /* If we get here, this operand was successfully parsed. */
6725 inst.operands[i].present = 1;
6726 continue;
6727
6728 bad_args:
6729 inst.error = BAD_ARGS;
6730
6731 failure:
6732 if (!backtrack_pos)
6733 {
6734 /* The parse routine should already have set inst.error, but set a
6735 default here just in case. */
6736 if (!inst.error)
6737 inst.error = _("syntax error");
6738 return FAIL;
6739 }
6740
6741 /* Do not backtrack over a trailing optional argument that
6742 absorbed some text. We will only fail again, with the
6743 'garbage following instruction' error message, which is
6744 probably less helpful than the current one. */
6745 if (backtrack_index == i && backtrack_pos != str
6746 && upat[i+1] == OP_stop)
6747 {
6748 if (!inst.error)
6749 inst.error = _("syntax error");
6750 return FAIL;
6751 }
6752
6753 /* Try again, skipping the optional argument at backtrack_pos. */
6754 str = backtrack_pos;
6755 inst.error = backtrack_error;
6756 inst.operands[backtrack_index].present = 0;
6757 i = backtrack_index;
6758 backtrack_pos = 0;
6759 }
6760
6761 /* Check that we have parsed all the arguments. */
6762 if (*str != '\0' && !inst.error)
6763 inst.error = _("garbage following instruction");
6764
6765 return inst.error ? FAIL : SUCCESS;
6766 }
6767
6768 #undef po_char_or_fail
6769 #undef po_reg_or_fail
6770 #undef po_reg_or_goto
6771 #undef po_imm_or_fail
6772 #undef po_scalar_or_fail
6773 #undef po_barrier_or_imm
6774
6775 /* Shorthand macro for instruction encoding functions issuing errors. */
6776 #define constraint(expr, err) \
6777 do \
6778 { \
6779 if (expr) \
6780 { \
6781 inst.error = err; \
6782 return; \
6783 } \
6784 } \
6785 while (0)
6786
6787 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6788 instructions are unpredictable if these registers are used. This
6789 is the BadReg predicate in ARM's Thumb-2 documentation. */
6790 #define reject_bad_reg(reg) \
6791 do \
6792 if (reg == REG_SP || reg == REG_PC) \
6793 { \
6794 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6795 return; \
6796 } \
6797 while (0)
6798
6799 /* If REG is R13 (the stack pointer), warn that its use is
6800 deprecated. */
6801 #define warn_deprecated_sp(reg) \
6802 do \
6803 if (warn_on_deprecated && reg == REG_SP) \
6804 as_warn (_("use of r13 is deprecated")); \
6805 while (0)
6806
6807 /* Functions for operand encoding. ARM, then Thumb. */
6808
6809 #define rotate_left(v, n) (v << n | v >> (32 - n))
6810
6811 /* If VAL can be encoded in the immediate field of an ARM instruction,
6812 return the encoded form. Otherwise, return FAIL. */
6813
6814 static unsigned int
6815 encode_arm_immediate (unsigned int val)
6816 {
6817 unsigned int a, i;
6818
6819 for (i = 0; i < 32; i += 2)
6820 if ((a = rotate_left (val, i)) <= 0xff)
6821 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6822
6823 return FAIL;
6824 }
6825
6826 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6827 return the encoded form. Otherwise, return FAIL. */
6828 static unsigned int
6829 encode_thumb32_immediate (unsigned int val)
6830 {
6831 unsigned int a, i;
6832
6833 if (val <= 0xff)
6834 return val;
6835
6836 for (i = 1; i <= 24; i++)
6837 {
6838 a = val >> i;
6839 if ((val & ~(0xff << i)) == 0)
6840 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6841 }
6842
6843 a = val & 0xff;
6844 if (val == ((a << 16) | a))
6845 return 0x100 | a;
6846 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6847 return 0x300 | a;
6848
6849 a = val & 0xff00;
6850 if (val == ((a << 16) | a))
6851 return 0x200 | (a >> 8);
6852
6853 return FAIL;
6854 }
6855 /* Encode a VFP SP or DP register number into inst.instruction. */
6856
6857 static void
6858 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6859 {
6860 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6861 && reg > 15)
6862 {
6863 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6864 {
6865 if (thumb_mode)
6866 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6867 fpu_vfp_ext_d32);
6868 else
6869 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6870 fpu_vfp_ext_d32);
6871 }
6872 else
6873 {
6874 first_error (_("D register out of range for selected VFP version"));
6875 return;
6876 }
6877 }
6878
6879 switch (pos)
6880 {
6881 case VFP_REG_Sd:
6882 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6883 break;
6884
6885 case VFP_REG_Sn:
6886 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6887 break;
6888
6889 case VFP_REG_Sm:
6890 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6891 break;
6892
6893 case VFP_REG_Dd:
6894 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6895 break;
6896
6897 case VFP_REG_Dn:
6898 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6899 break;
6900
6901 case VFP_REG_Dm:
6902 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6903 break;
6904
6905 default:
6906 abort ();
6907 }
6908 }
6909
6910 /* Encode a <shift> in an ARM-format instruction. The immediate,
6911 if any, is handled by md_apply_fix. */
6912 static void
6913 encode_arm_shift (int i)
6914 {
6915 if (inst.operands[i].shift_kind == SHIFT_RRX)
6916 inst.instruction |= SHIFT_ROR << 5;
6917 else
6918 {
6919 inst.instruction |= inst.operands[i].shift_kind << 5;
6920 if (inst.operands[i].immisreg)
6921 {
6922 inst.instruction |= SHIFT_BY_REG;
6923 inst.instruction |= inst.operands[i].imm << 8;
6924 }
6925 else
6926 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6927 }
6928 }
6929
6930 static void
6931 encode_arm_shifter_operand (int i)
6932 {
6933 if (inst.operands[i].isreg)
6934 {
6935 inst.instruction |= inst.operands[i].reg;
6936 encode_arm_shift (i);
6937 }
6938 else
6939 inst.instruction |= INST_IMMEDIATE;
6940 }
6941
6942 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6943 static void
6944 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6945 {
6946 gas_assert (inst.operands[i].isreg);
6947 inst.instruction |= inst.operands[i].reg << 16;
6948
6949 if (inst.operands[i].preind)
6950 {
6951 if (is_t)
6952 {
6953 inst.error = _("instruction does not accept preindexed addressing");
6954 return;
6955 }
6956 inst.instruction |= PRE_INDEX;
6957 if (inst.operands[i].writeback)
6958 inst.instruction |= WRITE_BACK;
6959
6960 }
6961 else if (inst.operands[i].postind)
6962 {
6963 gas_assert (inst.operands[i].writeback);
6964 if (is_t)
6965 inst.instruction |= WRITE_BACK;
6966 }
6967 else /* unindexed - only for coprocessor */
6968 {
6969 inst.error = _("instruction does not accept unindexed addressing");
6970 return;
6971 }
6972
6973 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6974 && (((inst.instruction & 0x000f0000) >> 16)
6975 == ((inst.instruction & 0x0000f000) >> 12)))
6976 as_warn ((inst.instruction & LOAD_BIT)
6977 ? _("destination register same as write-back base")
6978 : _("source register same as write-back base"));
6979 }
6980
6981 /* inst.operands[i] was set up by parse_address. Encode it into an
6982 ARM-format mode 2 load or store instruction. If is_t is true,
6983 reject forms that cannot be used with a T instruction (i.e. not
6984 post-indexed). */
6985 static void
6986 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6987 {
6988 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6989
6990 encode_arm_addr_mode_common (i, is_t);
6991
6992 if (inst.operands[i].immisreg)
6993 {
6994 constraint ((inst.operands[i].imm == REG_PC
6995 || (is_pc && inst.operands[i].writeback)),
6996 BAD_PC_ADDRESSING);
6997 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6998 inst.instruction |= inst.operands[i].imm;
6999 if (!inst.operands[i].negative)
7000 inst.instruction |= INDEX_UP;
7001 if (inst.operands[i].shifted)
7002 {
7003 if (inst.operands[i].shift_kind == SHIFT_RRX)
7004 inst.instruction |= SHIFT_ROR << 5;
7005 else
7006 {
7007 inst.instruction |= inst.operands[i].shift_kind << 5;
7008 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7009 }
7010 }
7011 }
7012 else /* immediate offset in inst.reloc */
7013 {
7014 if (is_pc && !inst.reloc.pc_rel)
7015 {
7016 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7017
7018 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7019 cannot use PC in addressing.
7020 PC cannot be used in writeback addressing, either. */
7021 constraint ((is_t || inst.operands[i].writeback),
7022 BAD_PC_ADDRESSING);
7023
7024 /* Use of PC in str is deprecated for ARMv7. */
7025 if (warn_on_deprecated
7026 && !is_load
7027 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7028 as_warn (_("use of PC in this instruction is deprecated"));
7029 }
7030
7031 if (inst.reloc.type == BFD_RELOC_UNUSED)
7032 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7033 }
7034 }
7035
7036 /* inst.operands[i] was set up by parse_address. Encode it into an
7037 ARM-format mode 3 load or store instruction. Reject forms that
7038 cannot be used with such instructions. If is_t is true, reject
7039 forms that cannot be used with a T instruction (i.e. not
7040 post-indexed). */
7041 static void
7042 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7043 {
7044 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7045 {
7046 inst.error = _("instruction does not accept scaled register index");
7047 return;
7048 }
7049
7050 encode_arm_addr_mode_common (i, is_t);
7051
7052 if (inst.operands[i].immisreg)
7053 {
7054 constraint ((inst.operands[i].imm == REG_PC
7055 || inst.operands[i].reg == REG_PC),
7056 BAD_PC_ADDRESSING);
7057 inst.instruction |= inst.operands[i].imm;
7058 if (!inst.operands[i].negative)
7059 inst.instruction |= INDEX_UP;
7060 }
7061 else /* immediate offset in inst.reloc */
7062 {
7063 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7064 && inst.operands[i].writeback),
7065 BAD_PC_WRITEBACK);
7066 inst.instruction |= HWOFFSET_IMM;
7067 if (inst.reloc.type == BFD_RELOC_UNUSED)
7068 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7069 }
7070 }
7071
7072 /* inst.operands[i] was set up by parse_address. Encode it into an
7073 ARM-format instruction. Reject all forms which cannot be encoded
7074 into a coprocessor load/store instruction. If wb_ok is false,
7075 reject use of writeback; if unind_ok is false, reject use of
7076 unindexed addressing. If reloc_override is not 0, use it instead
7077 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7078 (in which case it is preserved). */
7079
7080 static int
7081 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7082 {
7083 inst.instruction |= inst.operands[i].reg << 16;
7084
7085 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7086
7087 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7088 {
7089 gas_assert (!inst.operands[i].writeback);
7090 if (!unind_ok)
7091 {
7092 inst.error = _("instruction does not support unindexed addressing");
7093 return FAIL;
7094 }
7095 inst.instruction |= inst.operands[i].imm;
7096 inst.instruction |= INDEX_UP;
7097 return SUCCESS;
7098 }
7099
7100 if (inst.operands[i].preind)
7101 inst.instruction |= PRE_INDEX;
7102
7103 if (inst.operands[i].writeback)
7104 {
7105 if (inst.operands[i].reg == REG_PC)
7106 {
7107 inst.error = _("pc may not be used with write-back");
7108 return FAIL;
7109 }
7110 if (!wb_ok)
7111 {
7112 inst.error = _("instruction does not support writeback");
7113 return FAIL;
7114 }
7115 inst.instruction |= WRITE_BACK;
7116 }
7117
7118 if (reloc_override)
7119 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7120 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7121 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7122 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7123 {
7124 if (thumb_mode)
7125 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7126 else
7127 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7128 }
7129
7130 return SUCCESS;
7131 }
7132
7133 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7134 Determine whether it can be performed with a move instruction; if
7135 it can, convert inst.instruction to that move instruction and
7136 return TRUE; if it can't, convert inst.instruction to a literal-pool
7137 load and return FALSE. If this is not a valid thing to do in the
7138 current context, set inst.error and return TRUE.
7139
7140 inst.operands[i] describes the destination register. */
7141
7142 static bfd_boolean
7143 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7144 {
7145 unsigned long tbit;
7146
7147 if (thumb_p)
7148 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7149 else
7150 tbit = LOAD_BIT;
7151
7152 if ((inst.instruction & tbit) == 0)
7153 {
7154 inst.error = _("invalid pseudo operation");
7155 return TRUE;
7156 }
7157 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7158 {
7159 inst.error = _("constant expression expected");
7160 return TRUE;
7161 }
7162 if (inst.reloc.exp.X_op == O_constant)
7163 {
7164 if (thumb_p)
7165 {
7166 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7167 {
7168 /* This can be done with a mov(1) instruction. */
7169 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7170 inst.instruction |= inst.reloc.exp.X_add_number;
7171 return TRUE;
7172 }
7173 }
7174 else
7175 {
7176 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7177 if (value != FAIL)
7178 {
7179 /* This can be done with a mov instruction. */
7180 inst.instruction &= LITERAL_MASK;
7181 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7182 inst.instruction |= value & 0xfff;
7183 return TRUE;
7184 }
7185
7186 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7187 if (value != FAIL)
7188 {
7189 /* This can be done with a mvn instruction. */
7190 inst.instruction &= LITERAL_MASK;
7191 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7192 inst.instruction |= value & 0xfff;
7193 return TRUE;
7194 }
7195 }
7196 }
7197
7198 if (add_to_lit_pool () == FAIL)
7199 {
7200 inst.error = _("literal pool insertion failed");
7201 return TRUE;
7202 }
7203 inst.operands[1].reg = REG_PC;
7204 inst.operands[1].isreg = 1;
7205 inst.operands[1].preind = 1;
7206 inst.reloc.pc_rel = 1;
7207 inst.reloc.type = (thumb_p
7208 ? BFD_RELOC_ARM_THUMB_OFFSET
7209 : (mode_3
7210 ? BFD_RELOC_ARM_HWLITERAL
7211 : BFD_RELOC_ARM_LITERAL));
7212 return FALSE;
7213 }
7214
7215 /* Functions for instruction encoding, sorted by sub-architecture.
7216 First some generics; their names are taken from the conventional
7217 bit positions for register arguments in ARM format instructions. */
7218
7219 static void
7220 do_noargs (void)
7221 {
7222 }
7223
7224 static void
7225 do_rd (void)
7226 {
7227 inst.instruction |= inst.operands[0].reg << 12;
7228 }
7229
7230 static void
7231 do_rd_rm (void)
7232 {
7233 inst.instruction |= inst.operands[0].reg << 12;
7234 inst.instruction |= inst.operands[1].reg;
7235 }
7236
7237 static void
7238 do_rd_rn (void)
7239 {
7240 inst.instruction |= inst.operands[0].reg << 12;
7241 inst.instruction |= inst.operands[1].reg << 16;
7242 }
7243
7244 static void
7245 do_rn_rd (void)
7246 {
7247 inst.instruction |= inst.operands[0].reg << 16;
7248 inst.instruction |= inst.operands[1].reg << 12;
7249 }
7250
7251 static void
7252 do_rd_rm_rn (void)
7253 {
7254 unsigned Rn = inst.operands[2].reg;
7255 /* Enforce restrictions on SWP instruction. */
7256 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7257 {
7258 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7259 _("Rn must not overlap other operands"));
7260
7261 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7262 if (warn_on_deprecated
7263 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7264 as_warn (_("swp{b} use is deprecated for this architecture"));
7265
7266 }
7267 inst.instruction |= inst.operands[0].reg << 12;
7268 inst.instruction |= inst.operands[1].reg;
7269 inst.instruction |= Rn << 16;
7270 }
7271
7272 static void
7273 do_rd_rn_rm (void)
7274 {
7275 inst.instruction |= inst.operands[0].reg << 12;
7276 inst.instruction |= inst.operands[1].reg << 16;
7277 inst.instruction |= inst.operands[2].reg;
7278 }
7279
7280 static void
7281 do_rm_rd_rn (void)
7282 {
7283 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7284 constraint (((inst.reloc.exp.X_op != O_constant
7285 && inst.reloc.exp.X_op != O_illegal)
7286 || inst.reloc.exp.X_add_number != 0),
7287 BAD_ADDR_MODE);
7288 inst.instruction |= inst.operands[0].reg;
7289 inst.instruction |= inst.operands[1].reg << 12;
7290 inst.instruction |= inst.operands[2].reg << 16;
7291 }
7292
7293 static void
7294 do_imm0 (void)
7295 {
7296 inst.instruction |= inst.operands[0].imm;
7297 }
7298
7299 static void
7300 do_rd_cpaddr (void)
7301 {
7302 inst.instruction |= inst.operands[0].reg << 12;
7303 encode_arm_cp_address (1, TRUE, TRUE, 0);
7304 }
7305
7306 /* ARM instructions, in alphabetical order by function name (except
7307 that wrapper functions appear immediately after the function they
7308 wrap). */
7309
7310 /* This is a pseudo-op of the form "adr rd, label" to be converted
7311 into a relative address of the form "add rd, pc, #label-.-8". */
7312
7313 static void
7314 do_adr (void)
7315 {
7316 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7317
7318 /* Frag hacking will turn this into a sub instruction if the offset turns
7319 out to be negative. */
7320 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7321 inst.reloc.pc_rel = 1;
7322 inst.reloc.exp.X_add_number -= 8;
7323 }
7324
7325 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7326 into a relative address of the form:
7327 add rd, pc, #low(label-.-8)"
7328 add rd, rd, #high(label-.-8)" */
7329
7330 static void
7331 do_adrl (void)
7332 {
7333 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7334
7335 /* Frag hacking will turn this into a sub instruction if the offset turns
7336 out to be negative. */
7337 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7338 inst.reloc.pc_rel = 1;
7339 inst.size = INSN_SIZE * 2;
7340 inst.reloc.exp.X_add_number -= 8;
7341 }
7342
7343 static void
7344 do_arit (void)
7345 {
7346 if (!inst.operands[1].present)
7347 inst.operands[1].reg = inst.operands[0].reg;
7348 inst.instruction |= inst.operands[0].reg << 12;
7349 inst.instruction |= inst.operands[1].reg << 16;
7350 encode_arm_shifter_operand (2);
7351 }
7352
7353 static void
7354 do_barrier (void)
7355 {
7356 if (inst.operands[0].present)
7357 {
7358 constraint ((inst.instruction & 0xf0) != 0x40
7359 && inst.operands[0].imm > 0xf
7360 && inst.operands[0].imm < 0x0,
7361 _("bad barrier type"));
7362 inst.instruction |= inst.operands[0].imm;
7363 }
7364 else
7365 inst.instruction |= 0xf;
7366 }
7367
7368 static void
7369 do_bfc (void)
7370 {
7371 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7372 constraint (msb > 32, _("bit-field extends past end of register"));
7373 /* The instruction encoding stores the LSB and MSB,
7374 not the LSB and width. */
7375 inst.instruction |= inst.operands[0].reg << 12;
7376 inst.instruction |= inst.operands[1].imm << 7;
7377 inst.instruction |= (msb - 1) << 16;
7378 }
7379
7380 static void
7381 do_bfi (void)
7382 {
7383 unsigned int msb;
7384
7385 /* #0 in second position is alternative syntax for bfc, which is
7386 the same instruction but with REG_PC in the Rm field. */
7387 if (!inst.operands[1].isreg)
7388 inst.operands[1].reg = REG_PC;
7389
7390 msb = inst.operands[2].imm + inst.operands[3].imm;
7391 constraint (msb > 32, _("bit-field extends past end of register"));
7392 /* The instruction encoding stores the LSB and MSB,
7393 not the LSB and width. */
7394 inst.instruction |= inst.operands[0].reg << 12;
7395 inst.instruction |= inst.operands[1].reg;
7396 inst.instruction |= inst.operands[2].imm << 7;
7397 inst.instruction |= (msb - 1) << 16;
7398 }
7399
7400 static void
7401 do_bfx (void)
7402 {
7403 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7404 _("bit-field extends past end of register"));
7405 inst.instruction |= inst.operands[0].reg << 12;
7406 inst.instruction |= inst.operands[1].reg;
7407 inst.instruction |= inst.operands[2].imm << 7;
7408 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7409 }
7410
7411 /* ARM V5 breakpoint instruction (argument parse)
7412 BKPT <16 bit unsigned immediate>
7413 Instruction is not conditional.
7414 The bit pattern given in insns[] has the COND_ALWAYS condition,
7415 and it is an error if the caller tried to override that. */
7416
7417 static void
7418 do_bkpt (void)
7419 {
7420 /* Top 12 of 16 bits to bits 19:8. */
7421 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7422
7423 /* Bottom 4 of 16 bits to bits 3:0. */
7424 inst.instruction |= inst.operands[0].imm & 0xf;
7425 }
7426
7427 static void
7428 encode_branch (int default_reloc)
7429 {
7430 if (inst.operands[0].hasreloc)
7431 {
7432 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7433 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7434 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7435 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7436 ? BFD_RELOC_ARM_PLT32
7437 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7438 }
7439 else
7440 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7441 inst.reloc.pc_rel = 1;
7442 }
7443
7444 static void
7445 do_branch (void)
7446 {
7447 #ifdef OBJ_ELF
7448 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7449 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7450 else
7451 #endif
7452 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7453 }
7454
7455 static void
7456 do_bl (void)
7457 {
7458 #ifdef OBJ_ELF
7459 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7460 {
7461 if (inst.cond == COND_ALWAYS)
7462 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7463 else
7464 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7465 }
7466 else
7467 #endif
7468 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7469 }
7470
7471 /* ARM V5 branch-link-exchange instruction (argument parse)
7472 BLX <target_addr> ie BLX(1)
7473 BLX{<condition>} <Rm> ie BLX(2)
7474 Unfortunately, there are two different opcodes for this mnemonic.
7475 So, the insns[].value is not used, and the code here zaps values
7476 into inst.instruction.
7477 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7478
7479 static void
7480 do_blx (void)
7481 {
7482 if (inst.operands[0].isreg)
7483 {
7484 /* Arg is a register; the opcode provided by insns[] is correct.
7485 It is not illegal to do "blx pc", just useless. */
7486 if (inst.operands[0].reg == REG_PC)
7487 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7488
7489 inst.instruction |= inst.operands[0].reg;
7490 }
7491 else
7492 {
7493 /* Arg is an address; this instruction cannot be executed
7494 conditionally, and the opcode must be adjusted.
7495 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7496 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7497 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7498 inst.instruction = 0xfa000000;
7499 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7500 }
7501 }
7502
7503 static void
7504 do_bx (void)
7505 {
7506 bfd_boolean want_reloc;
7507
7508 if (inst.operands[0].reg == REG_PC)
7509 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7510
7511 inst.instruction |= inst.operands[0].reg;
7512 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7513 it is for ARMv4t or earlier. */
7514 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7515 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7516 want_reloc = TRUE;
7517
7518 #ifdef OBJ_ELF
7519 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7520 #endif
7521 want_reloc = FALSE;
7522
7523 if (want_reloc)
7524 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7525 }
7526
7527
7528 /* ARM v5TEJ. Jump to Jazelle code. */
7529
7530 static void
7531 do_bxj (void)
7532 {
7533 if (inst.operands[0].reg == REG_PC)
7534 as_tsktsk (_("use of r15 in bxj is not really useful"));
7535
7536 inst.instruction |= inst.operands[0].reg;
7537 }
7538
7539 /* Co-processor data operation:
7540 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7541 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7542 static void
7543 do_cdp (void)
7544 {
7545 inst.instruction |= inst.operands[0].reg << 8;
7546 inst.instruction |= inst.operands[1].imm << 20;
7547 inst.instruction |= inst.operands[2].reg << 12;
7548 inst.instruction |= inst.operands[3].reg << 16;
7549 inst.instruction |= inst.operands[4].reg;
7550 inst.instruction |= inst.operands[5].imm << 5;
7551 }
7552
7553 static void
7554 do_cmp (void)
7555 {
7556 inst.instruction |= inst.operands[0].reg << 16;
7557 encode_arm_shifter_operand (1);
7558 }
7559
7560 /* Transfer between coprocessor and ARM registers.
7561 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7562 MRC2
7563 MCR{cond}
7564 MCR2
7565
7566 No special properties. */
7567
7568 static void
7569 do_co_reg (void)
7570 {
7571 unsigned Rd;
7572
7573 Rd = inst.operands[2].reg;
7574 if (thumb_mode)
7575 {
7576 if (inst.instruction == 0xee000010
7577 || inst.instruction == 0xfe000010)
7578 /* MCR, MCR2 */
7579 reject_bad_reg (Rd);
7580 else
7581 /* MRC, MRC2 */
7582 constraint (Rd == REG_SP, BAD_SP);
7583 }
7584 else
7585 {
7586 /* MCR */
7587 if (inst.instruction == 0xe000010)
7588 constraint (Rd == REG_PC, BAD_PC);
7589 }
7590
7591
7592 inst.instruction |= inst.operands[0].reg << 8;
7593 inst.instruction |= inst.operands[1].imm << 21;
7594 inst.instruction |= Rd << 12;
7595 inst.instruction |= inst.operands[3].reg << 16;
7596 inst.instruction |= inst.operands[4].reg;
7597 inst.instruction |= inst.operands[5].imm << 5;
7598 }
7599
7600 /* Transfer between coprocessor register and pair of ARM registers.
7601 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7602 MCRR2
7603 MRRC{cond}
7604 MRRC2
7605
7606 Two XScale instructions are special cases of these:
7607
7608 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7609 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7610
7611 Result unpredictable if Rd or Rn is R15. */
7612
7613 static void
7614 do_co_reg2c (void)
7615 {
7616 unsigned Rd, Rn;
7617
7618 Rd = inst.operands[2].reg;
7619 Rn = inst.operands[3].reg;
7620
7621 if (thumb_mode)
7622 {
7623 reject_bad_reg (Rd);
7624 reject_bad_reg (Rn);
7625 }
7626 else
7627 {
7628 constraint (Rd == REG_PC, BAD_PC);
7629 constraint (Rn == REG_PC, BAD_PC);
7630 }
7631
7632 inst.instruction |= inst.operands[0].reg << 8;
7633 inst.instruction |= inst.operands[1].imm << 4;
7634 inst.instruction |= Rd << 12;
7635 inst.instruction |= Rn << 16;
7636 inst.instruction |= inst.operands[4].reg;
7637 }
7638
7639 static void
7640 do_cpsi (void)
7641 {
7642 inst.instruction |= inst.operands[0].imm << 6;
7643 if (inst.operands[1].present)
7644 {
7645 inst.instruction |= CPSI_MMOD;
7646 inst.instruction |= inst.operands[1].imm;
7647 }
7648 }
7649
7650 static void
7651 do_dbg (void)
7652 {
7653 inst.instruction |= inst.operands[0].imm;
7654 }
7655
7656 static void
7657 do_div (void)
7658 {
7659 unsigned Rd, Rn, Rm;
7660
7661 Rd = inst.operands[0].reg;
7662 Rn = (inst.operands[1].present
7663 ? inst.operands[1].reg : Rd);
7664 Rm = inst.operands[2].reg;
7665
7666 constraint ((Rd == REG_PC), BAD_PC);
7667 constraint ((Rn == REG_PC), BAD_PC);
7668 constraint ((Rm == REG_PC), BAD_PC);
7669
7670 inst.instruction |= Rd << 16;
7671 inst.instruction |= Rn << 0;
7672 inst.instruction |= Rm << 8;
7673 }
7674
7675 static void
7676 do_it (void)
7677 {
7678 /* There is no IT instruction in ARM mode. We
7679 process it to do the validation as if in
7680 thumb mode, just in case the code gets
7681 assembled for thumb using the unified syntax. */
7682
7683 inst.size = 0;
7684 if (unified_syntax)
7685 {
7686 set_it_insn_type (IT_INSN);
7687 now_it.mask = (inst.instruction & 0xf) | 0x10;
7688 now_it.cc = inst.operands[0].imm;
7689 }
7690 }
7691
7692 static void
7693 do_ldmstm (void)
7694 {
7695 int base_reg = inst.operands[0].reg;
7696 int range = inst.operands[1].imm;
7697
7698 inst.instruction |= base_reg << 16;
7699 inst.instruction |= range;
7700
7701 if (inst.operands[1].writeback)
7702 inst.instruction |= LDM_TYPE_2_OR_3;
7703
7704 if (inst.operands[0].writeback)
7705 {
7706 inst.instruction |= WRITE_BACK;
7707 /* Check for unpredictable uses of writeback. */
7708 if (inst.instruction & LOAD_BIT)
7709 {
7710 /* Not allowed in LDM type 2. */
7711 if ((inst.instruction & LDM_TYPE_2_OR_3)
7712 && ((range & (1 << REG_PC)) == 0))
7713 as_warn (_("writeback of base register is UNPREDICTABLE"));
7714 /* Only allowed if base reg not in list for other types. */
7715 else if (range & (1 << base_reg))
7716 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7717 }
7718 else /* STM. */
7719 {
7720 /* Not allowed for type 2. */
7721 if (inst.instruction & LDM_TYPE_2_OR_3)
7722 as_warn (_("writeback of base register is UNPREDICTABLE"));
7723 /* Only allowed if base reg not in list, or first in list. */
7724 else if ((range & (1 << base_reg))
7725 && (range & ((1 << base_reg) - 1)))
7726 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7727 }
7728 }
7729 }
7730
7731 /* ARMv5TE load-consecutive (argument parse)
7732 Mode is like LDRH.
7733
7734 LDRccD R, mode
7735 STRccD R, mode. */
7736
7737 static void
7738 do_ldrd (void)
7739 {
7740 constraint (inst.operands[0].reg % 2 != 0,
7741 _("first destination register must be even"));
7742 constraint (inst.operands[1].present
7743 && inst.operands[1].reg != inst.operands[0].reg + 1,
7744 _("can only load two consecutive registers"));
7745 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7746 constraint (!inst.operands[2].isreg, _("'[' expected"));
7747
7748 if (!inst.operands[1].present)
7749 inst.operands[1].reg = inst.operands[0].reg + 1;
7750
7751 if (inst.instruction & LOAD_BIT)
7752 {
7753 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7754 register and the first register written; we have to diagnose
7755 overlap between the base and the second register written here. */
7756
7757 if (inst.operands[2].reg == inst.operands[1].reg
7758 && (inst.operands[2].writeback || inst.operands[2].postind))
7759 as_warn (_("base register written back, and overlaps "
7760 "second destination register"));
7761
7762 /* For an index-register load, the index register must not overlap the
7763 destination (even if not write-back). */
7764 else if (inst.operands[2].immisreg
7765 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7766 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7767 as_warn (_("index register overlaps destination register"));
7768 }
7769
7770 inst.instruction |= inst.operands[0].reg << 12;
7771 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7772 }
7773
7774 static void
7775 do_ldrex (void)
7776 {
7777 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7778 || inst.operands[1].postind || inst.operands[1].writeback
7779 || inst.operands[1].immisreg || inst.operands[1].shifted
7780 || inst.operands[1].negative
7781 /* This can arise if the programmer has written
7782 strex rN, rM, foo
7783 or if they have mistakenly used a register name as the last
7784 operand, eg:
7785 strex rN, rM, rX
7786 It is very difficult to distinguish between these two cases
7787 because "rX" might actually be a label. ie the register
7788 name has been occluded by a symbol of the same name. So we
7789 just generate a general 'bad addressing mode' type error
7790 message and leave it up to the programmer to discover the
7791 true cause and fix their mistake. */
7792 || (inst.operands[1].reg == REG_PC),
7793 BAD_ADDR_MODE);
7794
7795 constraint (inst.reloc.exp.X_op != O_constant
7796 || inst.reloc.exp.X_add_number != 0,
7797 _("offset must be zero in ARM encoding"));
7798
7799 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7800
7801 inst.instruction |= inst.operands[0].reg << 12;
7802 inst.instruction |= inst.operands[1].reg << 16;
7803 inst.reloc.type = BFD_RELOC_UNUSED;
7804 }
7805
7806 static void
7807 do_ldrexd (void)
7808 {
7809 constraint (inst.operands[0].reg % 2 != 0,
7810 _("even register required"));
7811 constraint (inst.operands[1].present
7812 && inst.operands[1].reg != inst.operands[0].reg + 1,
7813 _("can only load two consecutive registers"));
7814 /* If op 1 were present and equal to PC, this function wouldn't
7815 have been called in the first place. */
7816 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7817
7818 inst.instruction |= inst.operands[0].reg << 12;
7819 inst.instruction |= inst.operands[2].reg << 16;
7820 }
7821
7822 static void
7823 do_ldst (void)
7824 {
7825 inst.instruction |= inst.operands[0].reg << 12;
7826 if (!inst.operands[1].isreg)
7827 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7828 return;
7829 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7830 }
7831
7832 static void
7833 do_ldstt (void)
7834 {
7835 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7836 reject [Rn,...]. */
7837 if (inst.operands[1].preind)
7838 {
7839 constraint (inst.reloc.exp.X_op != O_constant
7840 || inst.reloc.exp.X_add_number != 0,
7841 _("this instruction requires a post-indexed address"));
7842
7843 inst.operands[1].preind = 0;
7844 inst.operands[1].postind = 1;
7845 inst.operands[1].writeback = 1;
7846 }
7847 inst.instruction |= inst.operands[0].reg << 12;
7848 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7849 }
7850
7851 /* Halfword and signed-byte load/store operations. */
7852
7853 static void
7854 do_ldstv4 (void)
7855 {
7856 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7857 inst.instruction |= inst.operands[0].reg << 12;
7858 if (!inst.operands[1].isreg)
7859 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7860 return;
7861 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7862 }
7863
7864 static void
7865 do_ldsttv4 (void)
7866 {
7867 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7868 reject [Rn,...]. */
7869 if (inst.operands[1].preind)
7870 {
7871 constraint (inst.reloc.exp.X_op != O_constant
7872 || inst.reloc.exp.X_add_number != 0,
7873 _("this instruction requires a post-indexed address"));
7874
7875 inst.operands[1].preind = 0;
7876 inst.operands[1].postind = 1;
7877 inst.operands[1].writeback = 1;
7878 }
7879 inst.instruction |= inst.operands[0].reg << 12;
7880 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7881 }
7882
7883 /* Co-processor register load/store.
7884 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7885 static void
7886 do_lstc (void)
7887 {
7888 inst.instruction |= inst.operands[0].reg << 8;
7889 inst.instruction |= inst.operands[1].reg << 12;
7890 encode_arm_cp_address (2, TRUE, TRUE, 0);
7891 }
7892
7893 static void
7894 do_mlas (void)
7895 {
7896 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7897 if (inst.operands[0].reg == inst.operands[1].reg
7898 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7899 && !(inst.instruction & 0x00400000))
7900 as_tsktsk (_("Rd and Rm should be different in mla"));
7901
7902 inst.instruction |= inst.operands[0].reg << 16;
7903 inst.instruction |= inst.operands[1].reg;
7904 inst.instruction |= inst.operands[2].reg << 8;
7905 inst.instruction |= inst.operands[3].reg << 12;
7906 }
7907
7908 static void
7909 do_mov (void)
7910 {
7911 inst.instruction |= inst.operands[0].reg << 12;
7912 encode_arm_shifter_operand (1);
7913 }
7914
7915 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7916 static void
7917 do_mov16 (void)
7918 {
7919 bfd_vma imm;
7920 bfd_boolean top;
7921
7922 top = (inst.instruction & 0x00400000) != 0;
7923 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7924 _(":lower16: not allowed this instruction"));
7925 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7926 _(":upper16: not allowed instruction"));
7927 inst.instruction |= inst.operands[0].reg << 12;
7928 if (inst.reloc.type == BFD_RELOC_UNUSED)
7929 {
7930 imm = inst.reloc.exp.X_add_number;
7931 /* The value is in two pieces: 0:11, 16:19. */
7932 inst.instruction |= (imm & 0x00000fff);
7933 inst.instruction |= (imm & 0x0000f000) << 4;
7934 }
7935 }
7936
7937 static void do_vfp_nsyn_opcode (const char *);
7938
7939 static int
7940 do_vfp_nsyn_mrs (void)
7941 {
7942 if (inst.operands[0].isvec)
7943 {
7944 if (inst.operands[1].reg != 1)
7945 first_error (_("operand 1 must be FPSCR"));
7946 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7947 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7948 do_vfp_nsyn_opcode ("fmstat");
7949 }
7950 else if (inst.operands[1].isvec)
7951 do_vfp_nsyn_opcode ("fmrx");
7952 else
7953 return FAIL;
7954
7955 return SUCCESS;
7956 }
7957
7958 static int
7959 do_vfp_nsyn_msr (void)
7960 {
7961 if (inst.operands[0].isvec)
7962 do_vfp_nsyn_opcode ("fmxr");
7963 else
7964 return FAIL;
7965
7966 return SUCCESS;
7967 }
7968
7969 static void
7970 do_vmrs (void)
7971 {
7972 unsigned Rt = inst.operands[0].reg;
7973
7974 if (thumb_mode && inst.operands[0].reg == REG_SP)
7975 {
7976 inst.error = BAD_SP;
7977 return;
7978 }
7979
7980 /* APSR_ sets isvec. All other refs to PC are illegal. */
7981 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7982 {
7983 inst.error = BAD_PC;
7984 return;
7985 }
7986
7987 if (inst.operands[1].reg != 1)
7988 first_error (_("operand 1 must be FPSCR"));
7989
7990 inst.instruction |= (Rt << 12);
7991 }
7992
7993 static void
7994 do_vmsr (void)
7995 {
7996 unsigned Rt = inst.operands[1].reg;
7997
7998 if (thumb_mode)
7999 reject_bad_reg (Rt);
8000 else if (Rt == REG_PC)
8001 {
8002 inst.error = BAD_PC;
8003 return;
8004 }
8005
8006 if (inst.operands[0].reg != 1)
8007 first_error (_("operand 0 must be FPSCR"));
8008
8009 inst.instruction |= (Rt << 12);
8010 }
8011
8012 static void
8013 do_mrs (void)
8014 {
8015 unsigned br;
8016
8017 if (do_vfp_nsyn_mrs () == SUCCESS)
8018 return;
8019
8020 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8021 inst.instruction |= inst.operands[0].reg << 12;
8022
8023 if (inst.operands[1].isreg)
8024 {
8025 br = inst.operands[1].reg;
8026 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8027 as_bad (_("bad register for mrs"));
8028 }
8029 else
8030 {
8031 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8032 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8033 != (PSR_c|PSR_f),
8034 _("'APSR', 'CPSR' or 'SPSR' expected"));
8035 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8036 }
8037
8038 inst.instruction |= br;
8039 }
8040
8041 /* Two possible forms:
8042 "{C|S}PSR_<field>, Rm",
8043 "{C|S}PSR_f, #expression". */
8044
8045 static void
8046 do_msr (void)
8047 {
8048 if (do_vfp_nsyn_msr () == SUCCESS)
8049 return;
8050
8051 inst.instruction |= inst.operands[0].imm;
8052 if (inst.operands[1].isreg)
8053 inst.instruction |= inst.operands[1].reg;
8054 else
8055 {
8056 inst.instruction |= INST_IMMEDIATE;
8057 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8058 inst.reloc.pc_rel = 0;
8059 }
8060 }
8061
8062 static void
8063 do_mul (void)
8064 {
8065 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8066
8067 if (!inst.operands[2].present)
8068 inst.operands[2].reg = inst.operands[0].reg;
8069 inst.instruction |= inst.operands[0].reg << 16;
8070 inst.instruction |= inst.operands[1].reg;
8071 inst.instruction |= inst.operands[2].reg << 8;
8072
8073 if (inst.operands[0].reg == inst.operands[1].reg
8074 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8075 as_tsktsk (_("Rd and Rm should be different in mul"));
8076 }
8077
8078 /* Long Multiply Parser
8079 UMULL RdLo, RdHi, Rm, Rs
8080 SMULL RdLo, RdHi, Rm, Rs
8081 UMLAL RdLo, RdHi, Rm, Rs
8082 SMLAL RdLo, RdHi, Rm, Rs. */
8083
8084 static void
8085 do_mull (void)
8086 {
8087 inst.instruction |= inst.operands[0].reg << 12;
8088 inst.instruction |= inst.operands[1].reg << 16;
8089 inst.instruction |= inst.operands[2].reg;
8090 inst.instruction |= inst.operands[3].reg << 8;
8091
8092 /* rdhi and rdlo must be different. */
8093 if (inst.operands[0].reg == inst.operands[1].reg)
8094 as_tsktsk (_("rdhi and rdlo must be different"));
8095
8096 /* rdhi, rdlo and rm must all be different before armv6. */
8097 if ((inst.operands[0].reg == inst.operands[2].reg
8098 || inst.operands[1].reg == inst.operands[2].reg)
8099 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8100 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8101 }
8102
8103 static void
8104 do_nop (void)
8105 {
8106 if (inst.operands[0].present
8107 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8108 {
8109 /* Architectural NOP hints are CPSR sets with no bits selected. */
8110 inst.instruction &= 0xf0000000;
8111 inst.instruction |= 0x0320f000;
8112 if (inst.operands[0].present)
8113 inst.instruction |= inst.operands[0].imm;
8114 }
8115 }
8116
8117 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8118 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8119 Condition defaults to COND_ALWAYS.
8120 Error if Rd, Rn or Rm are R15. */
8121
8122 static void
8123 do_pkhbt (void)
8124 {
8125 inst.instruction |= inst.operands[0].reg << 12;
8126 inst.instruction |= inst.operands[1].reg << 16;
8127 inst.instruction |= inst.operands[2].reg;
8128 if (inst.operands[3].present)
8129 encode_arm_shift (3);
8130 }
8131
8132 /* ARM V6 PKHTB (Argument Parse). */
8133
8134 static void
8135 do_pkhtb (void)
8136 {
8137 if (!inst.operands[3].present)
8138 {
8139 /* If the shift specifier is omitted, turn the instruction
8140 into pkhbt rd, rm, rn. */
8141 inst.instruction &= 0xfff00010;
8142 inst.instruction |= inst.operands[0].reg << 12;
8143 inst.instruction |= inst.operands[1].reg;
8144 inst.instruction |= inst.operands[2].reg << 16;
8145 }
8146 else
8147 {
8148 inst.instruction |= inst.operands[0].reg << 12;
8149 inst.instruction |= inst.operands[1].reg << 16;
8150 inst.instruction |= inst.operands[2].reg;
8151 encode_arm_shift (3);
8152 }
8153 }
8154
8155 /* ARMv5TE: Preload-Cache
8156 MP Extensions: Preload for write
8157
8158 PLD(W) <addr_mode>
8159
8160 Syntactically, like LDR with B=1, W=0, L=1. */
8161
8162 static void
8163 do_pld (void)
8164 {
8165 constraint (!inst.operands[0].isreg,
8166 _("'[' expected after PLD mnemonic"));
8167 constraint (inst.operands[0].postind,
8168 _("post-indexed expression used in preload instruction"));
8169 constraint (inst.operands[0].writeback,
8170 _("writeback used in preload instruction"));
8171 constraint (!inst.operands[0].preind,
8172 _("unindexed addressing used in preload instruction"));
8173 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8174 }
8175
8176 /* ARMv7: PLI <addr_mode> */
8177 static void
8178 do_pli (void)
8179 {
8180 constraint (!inst.operands[0].isreg,
8181 _("'[' expected after PLI mnemonic"));
8182 constraint (inst.operands[0].postind,
8183 _("post-indexed expression used in preload instruction"));
8184 constraint (inst.operands[0].writeback,
8185 _("writeback used in preload instruction"));
8186 constraint (!inst.operands[0].preind,
8187 _("unindexed addressing used in preload instruction"));
8188 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8189 inst.instruction &= ~PRE_INDEX;
8190 }
8191
8192 static void
8193 do_push_pop (void)
8194 {
8195 inst.operands[1] = inst.operands[0];
8196 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8197 inst.operands[0].isreg = 1;
8198 inst.operands[0].writeback = 1;
8199 inst.operands[0].reg = REG_SP;
8200 do_ldmstm ();
8201 }
8202
8203 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8204 word at the specified address and the following word
8205 respectively.
8206 Unconditionally executed.
8207 Error if Rn is R15. */
8208
8209 static void
8210 do_rfe (void)
8211 {
8212 inst.instruction |= inst.operands[0].reg << 16;
8213 if (inst.operands[0].writeback)
8214 inst.instruction |= WRITE_BACK;
8215 }
8216
8217 /* ARM V6 ssat (argument parse). */
8218
8219 static void
8220 do_ssat (void)
8221 {
8222 inst.instruction |= inst.operands[0].reg << 12;
8223 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8224 inst.instruction |= inst.operands[2].reg;
8225
8226 if (inst.operands[3].present)
8227 encode_arm_shift (3);
8228 }
8229
8230 /* ARM V6 usat (argument parse). */
8231
8232 static void
8233 do_usat (void)
8234 {
8235 inst.instruction |= inst.operands[0].reg << 12;
8236 inst.instruction |= inst.operands[1].imm << 16;
8237 inst.instruction |= inst.operands[2].reg;
8238
8239 if (inst.operands[3].present)
8240 encode_arm_shift (3);
8241 }
8242
8243 /* ARM V6 ssat16 (argument parse). */
8244
8245 static void
8246 do_ssat16 (void)
8247 {
8248 inst.instruction |= inst.operands[0].reg << 12;
8249 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8250 inst.instruction |= inst.operands[2].reg;
8251 }
8252
8253 static void
8254 do_usat16 (void)
8255 {
8256 inst.instruction |= inst.operands[0].reg << 12;
8257 inst.instruction |= inst.operands[1].imm << 16;
8258 inst.instruction |= inst.operands[2].reg;
8259 }
8260
8261 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8262 preserving the other bits.
8263
8264 setend <endian_specifier>, where <endian_specifier> is either
8265 BE or LE. */
8266
8267 static void
8268 do_setend (void)
8269 {
8270 if (inst.operands[0].imm)
8271 inst.instruction |= 0x200;
8272 }
8273
8274 static void
8275 do_shift (void)
8276 {
8277 unsigned int Rm = (inst.operands[1].present
8278 ? inst.operands[1].reg
8279 : inst.operands[0].reg);
8280
8281 inst.instruction |= inst.operands[0].reg << 12;
8282 inst.instruction |= Rm;
8283 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8284 {
8285 inst.instruction |= inst.operands[2].reg << 8;
8286 inst.instruction |= SHIFT_BY_REG;
8287 }
8288 else
8289 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8290 }
8291
8292 static void
8293 do_smc (void)
8294 {
8295 inst.reloc.type = BFD_RELOC_ARM_SMC;
8296 inst.reloc.pc_rel = 0;
8297 }
8298
8299 static void
8300 do_hvc (void)
8301 {
8302 inst.reloc.type = BFD_RELOC_ARM_HVC;
8303 inst.reloc.pc_rel = 0;
8304 }
8305
8306 static void
8307 do_swi (void)
8308 {
8309 inst.reloc.type = BFD_RELOC_ARM_SWI;
8310 inst.reloc.pc_rel = 0;
8311 }
8312
8313 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8314 SMLAxy{cond} Rd,Rm,Rs,Rn
8315 SMLAWy{cond} Rd,Rm,Rs,Rn
8316 Error if any register is R15. */
8317
8318 static void
8319 do_smla (void)
8320 {
8321 inst.instruction |= inst.operands[0].reg << 16;
8322 inst.instruction |= inst.operands[1].reg;
8323 inst.instruction |= inst.operands[2].reg << 8;
8324 inst.instruction |= inst.operands[3].reg << 12;
8325 }
8326
8327 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8328 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8329 Error if any register is R15.
8330 Warning if Rdlo == Rdhi. */
8331
8332 static void
8333 do_smlal (void)
8334 {
8335 inst.instruction |= inst.operands[0].reg << 12;
8336 inst.instruction |= inst.operands[1].reg << 16;
8337 inst.instruction |= inst.operands[2].reg;
8338 inst.instruction |= inst.operands[3].reg << 8;
8339
8340 if (inst.operands[0].reg == inst.operands[1].reg)
8341 as_tsktsk (_("rdhi and rdlo must be different"));
8342 }
8343
8344 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8345 SMULxy{cond} Rd,Rm,Rs
8346 Error if any register is R15. */
8347
8348 static void
8349 do_smul (void)
8350 {
8351 inst.instruction |= inst.operands[0].reg << 16;
8352 inst.instruction |= inst.operands[1].reg;
8353 inst.instruction |= inst.operands[2].reg << 8;
8354 }
8355
8356 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8357 the same for both ARM and Thumb-2. */
8358
8359 static void
8360 do_srs (void)
8361 {
8362 int reg;
8363
8364 if (inst.operands[0].present)
8365 {
8366 reg = inst.operands[0].reg;
8367 constraint (reg != REG_SP, _("SRS base register must be r13"));
8368 }
8369 else
8370 reg = REG_SP;
8371
8372 inst.instruction |= reg << 16;
8373 inst.instruction |= inst.operands[1].imm;
8374 if (inst.operands[0].writeback || inst.operands[1].writeback)
8375 inst.instruction |= WRITE_BACK;
8376 }
8377
8378 /* ARM V6 strex (argument parse). */
8379
8380 static void
8381 do_strex (void)
8382 {
8383 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8384 || inst.operands[2].postind || inst.operands[2].writeback
8385 || inst.operands[2].immisreg || inst.operands[2].shifted
8386 || inst.operands[2].negative
8387 /* See comment in do_ldrex(). */
8388 || (inst.operands[2].reg == REG_PC),
8389 BAD_ADDR_MODE);
8390
8391 constraint (inst.operands[0].reg == inst.operands[1].reg
8392 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8393
8394 constraint (inst.reloc.exp.X_op != O_constant
8395 || inst.reloc.exp.X_add_number != 0,
8396 _("offset must be zero in ARM encoding"));
8397
8398 inst.instruction |= inst.operands[0].reg << 12;
8399 inst.instruction |= inst.operands[1].reg;
8400 inst.instruction |= inst.operands[2].reg << 16;
8401 inst.reloc.type = BFD_RELOC_UNUSED;
8402 }
8403
8404 static void
8405 do_strexd (void)
8406 {
8407 constraint (inst.operands[1].reg % 2 != 0,
8408 _("even register required"));
8409 constraint (inst.operands[2].present
8410 && inst.operands[2].reg != inst.operands[1].reg + 1,
8411 _("can only store two consecutive registers"));
8412 /* If op 2 were present and equal to PC, this function wouldn't
8413 have been called in the first place. */
8414 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8415
8416 constraint (inst.operands[0].reg == inst.operands[1].reg
8417 || inst.operands[0].reg == inst.operands[1].reg + 1
8418 || inst.operands[0].reg == inst.operands[3].reg,
8419 BAD_OVERLAP);
8420
8421 inst.instruction |= inst.operands[0].reg << 12;
8422 inst.instruction |= inst.operands[1].reg;
8423 inst.instruction |= inst.operands[3].reg << 16;
8424 }
8425
8426 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8427 extends it to 32-bits, and adds the result to a value in another
8428 register. You can specify a rotation by 0, 8, 16, or 24 bits
8429 before extracting the 16-bit value.
8430 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8431 Condition defaults to COND_ALWAYS.
8432 Error if any register uses R15. */
8433
8434 static void
8435 do_sxtah (void)
8436 {
8437 inst.instruction |= inst.operands[0].reg << 12;
8438 inst.instruction |= inst.operands[1].reg << 16;
8439 inst.instruction |= inst.operands[2].reg;
8440 inst.instruction |= inst.operands[3].imm << 10;
8441 }
8442
8443 /* ARM V6 SXTH.
8444
8445 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8446 Condition defaults to COND_ALWAYS.
8447 Error if any register uses R15. */
8448
8449 static void
8450 do_sxth (void)
8451 {
8452 inst.instruction |= inst.operands[0].reg << 12;
8453 inst.instruction |= inst.operands[1].reg;
8454 inst.instruction |= inst.operands[2].imm << 10;
8455 }
8456 \f
8457 /* VFP instructions. In a logical order: SP variant first, monad
8458 before dyad, arithmetic then move then load/store. */
8459
8460 static void
8461 do_vfp_sp_monadic (void)
8462 {
8463 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8464 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8465 }
8466
8467 static void
8468 do_vfp_sp_dyadic (void)
8469 {
8470 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8471 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8472 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8473 }
8474
8475 static void
8476 do_vfp_sp_compare_z (void)
8477 {
8478 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8479 }
8480
8481 static void
8482 do_vfp_dp_sp_cvt (void)
8483 {
8484 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8485 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8486 }
8487
8488 static void
8489 do_vfp_sp_dp_cvt (void)
8490 {
8491 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8492 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8493 }
8494
8495 static void
8496 do_vfp_reg_from_sp (void)
8497 {
8498 inst.instruction |= inst.operands[0].reg << 12;
8499 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8500 }
8501
8502 static void
8503 do_vfp_reg2_from_sp2 (void)
8504 {
8505 constraint (inst.operands[2].imm != 2,
8506 _("only two consecutive VFP SP registers allowed here"));
8507 inst.instruction |= inst.operands[0].reg << 12;
8508 inst.instruction |= inst.operands[1].reg << 16;
8509 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8510 }
8511
8512 static void
8513 do_vfp_sp_from_reg (void)
8514 {
8515 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8516 inst.instruction |= inst.operands[1].reg << 12;
8517 }
8518
8519 static void
8520 do_vfp_sp2_from_reg2 (void)
8521 {
8522 constraint (inst.operands[0].imm != 2,
8523 _("only two consecutive VFP SP registers allowed here"));
8524 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8525 inst.instruction |= inst.operands[1].reg << 12;
8526 inst.instruction |= inst.operands[2].reg << 16;
8527 }
8528
8529 static void
8530 do_vfp_sp_ldst (void)
8531 {
8532 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8533 encode_arm_cp_address (1, FALSE, TRUE, 0);
8534 }
8535
8536 static void
8537 do_vfp_dp_ldst (void)
8538 {
8539 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8540 encode_arm_cp_address (1, FALSE, TRUE, 0);
8541 }
8542
8543
8544 static void
8545 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8546 {
8547 if (inst.operands[0].writeback)
8548 inst.instruction |= WRITE_BACK;
8549 else
8550 constraint (ldstm_type != VFP_LDSTMIA,
8551 _("this addressing mode requires base-register writeback"));
8552 inst.instruction |= inst.operands[0].reg << 16;
8553 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8554 inst.instruction |= inst.operands[1].imm;
8555 }
8556
8557 static void
8558 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8559 {
8560 int count;
8561
8562 if (inst.operands[0].writeback)
8563 inst.instruction |= WRITE_BACK;
8564 else
8565 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8566 _("this addressing mode requires base-register writeback"));
8567
8568 inst.instruction |= inst.operands[0].reg << 16;
8569 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8570
8571 count = inst.operands[1].imm << 1;
8572 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8573 count += 1;
8574
8575 inst.instruction |= count;
8576 }
8577
8578 static void
8579 do_vfp_sp_ldstmia (void)
8580 {
8581 vfp_sp_ldstm (VFP_LDSTMIA);
8582 }
8583
8584 static void
8585 do_vfp_sp_ldstmdb (void)
8586 {
8587 vfp_sp_ldstm (VFP_LDSTMDB);
8588 }
8589
8590 static void
8591 do_vfp_dp_ldstmia (void)
8592 {
8593 vfp_dp_ldstm (VFP_LDSTMIA);
8594 }
8595
8596 static void
8597 do_vfp_dp_ldstmdb (void)
8598 {
8599 vfp_dp_ldstm (VFP_LDSTMDB);
8600 }
8601
8602 static void
8603 do_vfp_xp_ldstmia (void)
8604 {
8605 vfp_dp_ldstm (VFP_LDSTMIAX);
8606 }
8607
8608 static void
8609 do_vfp_xp_ldstmdb (void)
8610 {
8611 vfp_dp_ldstm (VFP_LDSTMDBX);
8612 }
8613
8614 static void
8615 do_vfp_dp_rd_rm (void)
8616 {
8617 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8618 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8619 }
8620
8621 static void
8622 do_vfp_dp_rn_rd (void)
8623 {
8624 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8625 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8626 }
8627
8628 static void
8629 do_vfp_dp_rd_rn (void)
8630 {
8631 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8632 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8633 }
8634
8635 static void
8636 do_vfp_dp_rd_rn_rm (void)
8637 {
8638 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8639 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8640 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8641 }
8642
8643 static void
8644 do_vfp_dp_rd (void)
8645 {
8646 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8647 }
8648
8649 static void
8650 do_vfp_dp_rm_rd_rn (void)
8651 {
8652 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8653 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8654 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8655 }
8656
8657 /* VFPv3 instructions. */
8658 static void
8659 do_vfp_sp_const (void)
8660 {
8661 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8662 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8663 inst.instruction |= (inst.operands[1].imm & 0x0f);
8664 }
8665
8666 static void
8667 do_vfp_dp_const (void)
8668 {
8669 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8670 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8671 inst.instruction |= (inst.operands[1].imm & 0x0f);
8672 }
8673
8674 static void
8675 vfp_conv (int srcsize)
8676 {
8677 unsigned immbits = srcsize - inst.operands[1].imm;
8678 inst.instruction |= (immbits & 1) << 5;
8679 inst.instruction |= (immbits >> 1);
8680 }
8681
8682 static void
8683 do_vfp_sp_conv_16 (void)
8684 {
8685 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8686 vfp_conv (16);
8687 }
8688
8689 static void
8690 do_vfp_dp_conv_16 (void)
8691 {
8692 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8693 vfp_conv (16);
8694 }
8695
8696 static void
8697 do_vfp_sp_conv_32 (void)
8698 {
8699 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8700 vfp_conv (32);
8701 }
8702
8703 static void
8704 do_vfp_dp_conv_32 (void)
8705 {
8706 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8707 vfp_conv (32);
8708 }
8709 \f
8710 /* FPA instructions. Also in a logical order. */
8711
8712 static void
8713 do_fpa_cmp (void)
8714 {
8715 inst.instruction |= inst.operands[0].reg << 16;
8716 inst.instruction |= inst.operands[1].reg;
8717 }
8718
8719 static void
8720 do_fpa_ldmstm (void)
8721 {
8722 inst.instruction |= inst.operands[0].reg << 12;
8723 switch (inst.operands[1].imm)
8724 {
8725 case 1: inst.instruction |= CP_T_X; break;
8726 case 2: inst.instruction |= CP_T_Y; break;
8727 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8728 case 4: break;
8729 default: abort ();
8730 }
8731
8732 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8733 {
8734 /* The instruction specified "ea" or "fd", so we can only accept
8735 [Rn]{!}. The instruction does not really support stacking or
8736 unstacking, so we have to emulate these by setting appropriate
8737 bits and offsets. */
8738 constraint (inst.reloc.exp.X_op != O_constant
8739 || inst.reloc.exp.X_add_number != 0,
8740 _("this instruction does not support indexing"));
8741
8742 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8743 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8744
8745 if (!(inst.instruction & INDEX_UP))
8746 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8747
8748 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8749 {
8750 inst.operands[2].preind = 0;
8751 inst.operands[2].postind = 1;
8752 }
8753 }
8754
8755 encode_arm_cp_address (2, TRUE, TRUE, 0);
8756 }
8757 \f
8758 /* iWMMXt instructions: strictly in alphabetical order. */
8759
8760 static void
8761 do_iwmmxt_tandorc (void)
8762 {
8763 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8764 }
8765
8766 static void
8767 do_iwmmxt_textrc (void)
8768 {
8769 inst.instruction |= inst.operands[0].reg << 12;
8770 inst.instruction |= inst.operands[1].imm;
8771 }
8772
8773 static void
8774 do_iwmmxt_textrm (void)
8775 {
8776 inst.instruction |= inst.operands[0].reg << 12;
8777 inst.instruction |= inst.operands[1].reg << 16;
8778 inst.instruction |= inst.operands[2].imm;
8779 }
8780
8781 static void
8782 do_iwmmxt_tinsr (void)
8783 {
8784 inst.instruction |= inst.operands[0].reg << 16;
8785 inst.instruction |= inst.operands[1].reg << 12;
8786 inst.instruction |= inst.operands[2].imm;
8787 }
8788
8789 static void
8790 do_iwmmxt_tmia (void)
8791 {
8792 inst.instruction |= inst.operands[0].reg << 5;
8793 inst.instruction |= inst.operands[1].reg;
8794 inst.instruction |= inst.operands[2].reg << 12;
8795 }
8796
8797 static void
8798 do_iwmmxt_waligni (void)
8799 {
8800 inst.instruction |= inst.operands[0].reg << 12;
8801 inst.instruction |= inst.operands[1].reg << 16;
8802 inst.instruction |= inst.operands[2].reg;
8803 inst.instruction |= inst.operands[3].imm << 20;
8804 }
8805
8806 static void
8807 do_iwmmxt_wmerge (void)
8808 {
8809 inst.instruction |= inst.operands[0].reg << 12;
8810 inst.instruction |= inst.operands[1].reg << 16;
8811 inst.instruction |= inst.operands[2].reg;
8812 inst.instruction |= inst.operands[3].imm << 21;
8813 }
8814
8815 static void
8816 do_iwmmxt_wmov (void)
8817 {
8818 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8819 inst.instruction |= inst.operands[0].reg << 12;
8820 inst.instruction |= inst.operands[1].reg << 16;
8821 inst.instruction |= inst.operands[1].reg;
8822 }
8823
8824 static void
8825 do_iwmmxt_wldstbh (void)
8826 {
8827 int reloc;
8828 inst.instruction |= inst.operands[0].reg << 12;
8829 if (thumb_mode)
8830 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8831 else
8832 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8833 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8834 }
8835
8836 static void
8837 do_iwmmxt_wldstw (void)
8838 {
8839 /* RIWR_RIWC clears .isreg for a control register. */
8840 if (!inst.operands[0].isreg)
8841 {
8842 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8843 inst.instruction |= 0xf0000000;
8844 }
8845
8846 inst.instruction |= inst.operands[0].reg << 12;
8847 encode_arm_cp_address (1, TRUE, TRUE, 0);
8848 }
8849
8850 static void
8851 do_iwmmxt_wldstd (void)
8852 {
8853 inst.instruction |= inst.operands[0].reg << 12;
8854 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8855 && inst.operands[1].immisreg)
8856 {
8857 inst.instruction &= ~0x1a000ff;
8858 inst.instruction |= (0xf << 28);
8859 if (inst.operands[1].preind)
8860 inst.instruction |= PRE_INDEX;
8861 if (!inst.operands[1].negative)
8862 inst.instruction |= INDEX_UP;
8863 if (inst.operands[1].writeback)
8864 inst.instruction |= WRITE_BACK;
8865 inst.instruction |= inst.operands[1].reg << 16;
8866 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8867 inst.instruction |= inst.operands[1].imm;
8868 }
8869 else
8870 encode_arm_cp_address (1, TRUE, FALSE, 0);
8871 }
8872
8873 static void
8874 do_iwmmxt_wshufh (void)
8875 {
8876 inst.instruction |= inst.operands[0].reg << 12;
8877 inst.instruction |= inst.operands[1].reg << 16;
8878 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8879 inst.instruction |= (inst.operands[2].imm & 0x0f);
8880 }
8881
8882 static void
8883 do_iwmmxt_wzero (void)
8884 {
8885 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8886 inst.instruction |= inst.operands[0].reg;
8887 inst.instruction |= inst.operands[0].reg << 12;
8888 inst.instruction |= inst.operands[0].reg << 16;
8889 }
8890
8891 static void
8892 do_iwmmxt_wrwrwr_or_imm5 (void)
8893 {
8894 if (inst.operands[2].isreg)
8895 do_rd_rn_rm ();
8896 else {
8897 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8898 _("immediate operand requires iWMMXt2"));
8899 do_rd_rn ();
8900 if (inst.operands[2].imm == 0)
8901 {
8902 switch ((inst.instruction >> 20) & 0xf)
8903 {
8904 case 4:
8905 case 5:
8906 case 6:
8907 case 7:
8908 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8909 inst.operands[2].imm = 16;
8910 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8911 break;
8912 case 8:
8913 case 9:
8914 case 10:
8915 case 11:
8916 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8917 inst.operands[2].imm = 32;
8918 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8919 break;
8920 case 12:
8921 case 13:
8922 case 14:
8923 case 15:
8924 {
8925 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8926 unsigned long wrn;
8927 wrn = (inst.instruction >> 16) & 0xf;
8928 inst.instruction &= 0xff0fff0f;
8929 inst.instruction |= wrn;
8930 /* Bail out here; the instruction is now assembled. */
8931 return;
8932 }
8933 }
8934 }
8935 /* Map 32 -> 0, etc. */
8936 inst.operands[2].imm &= 0x1f;
8937 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8938 }
8939 }
8940 \f
8941 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8942 operations first, then control, shift, and load/store. */
8943
8944 /* Insns like "foo X,Y,Z". */
8945
8946 static void
8947 do_mav_triple (void)
8948 {
8949 inst.instruction |= inst.operands[0].reg << 16;
8950 inst.instruction |= inst.operands[1].reg;
8951 inst.instruction |= inst.operands[2].reg << 12;
8952 }
8953
8954 /* Insns like "foo W,X,Y,Z".
8955 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8956
8957 static void
8958 do_mav_quad (void)
8959 {
8960 inst.instruction |= inst.operands[0].reg << 5;
8961 inst.instruction |= inst.operands[1].reg << 12;
8962 inst.instruction |= inst.operands[2].reg << 16;
8963 inst.instruction |= inst.operands[3].reg;
8964 }
8965
8966 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8967 static void
8968 do_mav_dspsc (void)
8969 {
8970 inst.instruction |= inst.operands[1].reg << 12;
8971 }
8972
8973 /* Maverick shift immediate instructions.
8974 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8975 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8976
8977 static void
8978 do_mav_shift (void)
8979 {
8980 int imm = inst.operands[2].imm;
8981
8982 inst.instruction |= inst.operands[0].reg << 12;
8983 inst.instruction |= inst.operands[1].reg << 16;
8984
8985 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8986 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8987 Bit 4 should be 0. */
8988 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8989
8990 inst.instruction |= imm;
8991 }
8992 \f
8993 /* XScale instructions. Also sorted arithmetic before move. */
8994
8995 /* Xscale multiply-accumulate (argument parse)
8996 MIAcc acc0,Rm,Rs
8997 MIAPHcc acc0,Rm,Rs
8998 MIAxycc acc0,Rm,Rs. */
8999
9000 static void
9001 do_xsc_mia (void)
9002 {
9003 inst.instruction |= inst.operands[1].reg;
9004 inst.instruction |= inst.operands[2].reg << 12;
9005 }
9006
9007 /* Xscale move-accumulator-register (argument parse)
9008
9009 MARcc acc0,RdLo,RdHi. */
9010
9011 static void
9012 do_xsc_mar (void)
9013 {
9014 inst.instruction |= inst.operands[1].reg << 12;
9015 inst.instruction |= inst.operands[2].reg << 16;
9016 }
9017
9018 /* Xscale move-register-accumulator (argument parse)
9019
9020 MRAcc RdLo,RdHi,acc0. */
9021
9022 static void
9023 do_xsc_mra (void)
9024 {
9025 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9026 inst.instruction |= inst.operands[0].reg << 12;
9027 inst.instruction |= inst.operands[1].reg << 16;
9028 }
9029 \f
9030 /* Encoding functions relevant only to Thumb. */
9031
9032 /* inst.operands[i] is a shifted-register operand; encode
9033 it into inst.instruction in the format used by Thumb32. */
9034
9035 static void
9036 encode_thumb32_shifted_operand (int i)
9037 {
9038 unsigned int value = inst.reloc.exp.X_add_number;
9039 unsigned int shift = inst.operands[i].shift_kind;
9040
9041 constraint (inst.operands[i].immisreg,
9042 _("shift by register not allowed in thumb mode"));
9043 inst.instruction |= inst.operands[i].reg;
9044 if (shift == SHIFT_RRX)
9045 inst.instruction |= SHIFT_ROR << 4;
9046 else
9047 {
9048 constraint (inst.reloc.exp.X_op != O_constant,
9049 _("expression too complex"));
9050
9051 constraint (value > 32
9052 || (value == 32 && (shift == SHIFT_LSL
9053 || shift == SHIFT_ROR)),
9054 _("shift expression is too large"));
9055
9056 if (value == 0)
9057 shift = SHIFT_LSL;
9058 else if (value == 32)
9059 value = 0;
9060
9061 inst.instruction |= shift << 4;
9062 inst.instruction |= (value & 0x1c) << 10;
9063 inst.instruction |= (value & 0x03) << 6;
9064 }
9065 }
9066
9067
9068 /* inst.operands[i] was set up by parse_address. Encode it into a
9069 Thumb32 format load or store instruction. Reject forms that cannot
9070 be used with such instructions. If is_t is true, reject forms that
9071 cannot be used with a T instruction; if is_d is true, reject forms
9072 that cannot be used with a D instruction. If it is a store insn,
9073 reject PC in Rn. */
9074
9075 static void
9076 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9077 {
9078 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9079
9080 constraint (!inst.operands[i].isreg,
9081 _("Instruction does not support =N addresses"));
9082
9083 inst.instruction |= inst.operands[i].reg << 16;
9084 if (inst.operands[i].immisreg)
9085 {
9086 constraint (is_pc, BAD_PC_ADDRESSING);
9087 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9088 constraint (inst.operands[i].negative,
9089 _("Thumb does not support negative register indexing"));
9090 constraint (inst.operands[i].postind,
9091 _("Thumb does not support register post-indexing"));
9092 constraint (inst.operands[i].writeback,
9093 _("Thumb does not support register indexing with writeback"));
9094 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9095 _("Thumb supports only LSL in shifted register indexing"));
9096
9097 inst.instruction |= inst.operands[i].imm;
9098 if (inst.operands[i].shifted)
9099 {
9100 constraint (inst.reloc.exp.X_op != O_constant,
9101 _("expression too complex"));
9102 constraint (inst.reloc.exp.X_add_number < 0
9103 || inst.reloc.exp.X_add_number > 3,
9104 _("shift out of range"));
9105 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9106 }
9107 inst.reloc.type = BFD_RELOC_UNUSED;
9108 }
9109 else if (inst.operands[i].preind)
9110 {
9111 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9112 constraint (is_t && inst.operands[i].writeback,
9113 _("cannot use writeback with this instruction"));
9114 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9115 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9116
9117 if (is_d)
9118 {
9119 inst.instruction |= 0x01000000;
9120 if (inst.operands[i].writeback)
9121 inst.instruction |= 0x00200000;
9122 }
9123 else
9124 {
9125 inst.instruction |= 0x00000c00;
9126 if (inst.operands[i].writeback)
9127 inst.instruction |= 0x00000100;
9128 }
9129 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9130 }
9131 else if (inst.operands[i].postind)
9132 {
9133 gas_assert (inst.operands[i].writeback);
9134 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9135 constraint (is_t, _("cannot use post-indexing with this instruction"));
9136
9137 if (is_d)
9138 inst.instruction |= 0x00200000;
9139 else
9140 inst.instruction |= 0x00000900;
9141 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9142 }
9143 else /* unindexed - only for coprocessor */
9144 inst.error = _("instruction does not accept unindexed addressing");
9145 }
9146
9147 /* Table of Thumb instructions which exist in both 16- and 32-bit
9148 encodings (the latter only in post-V6T2 cores). The index is the
9149 value used in the insns table below. When there is more than one
9150 possible 16-bit encoding for the instruction, this table always
9151 holds variant (1).
9152 Also contains several pseudo-instructions used during relaxation. */
9153 #define T16_32_TAB \
9154 X(_adc, 4140, eb400000), \
9155 X(_adcs, 4140, eb500000), \
9156 X(_add, 1c00, eb000000), \
9157 X(_adds, 1c00, eb100000), \
9158 X(_addi, 0000, f1000000), \
9159 X(_addis, 0000, f1100000), \
9160 X(_add_pc,000f, f20f0000), \
9161 X(_add_sp,000d, f10d0000), \
9162 X(_adr, 000f, f20f0000), \
9163 X(_and, 4000, ea000000), \
9164 X(_ands, 4000, ea100000), \
9165 X(_asr, 1000, fa40f000), \
9166 X(_asrs, 1000, fa50f000), \
9167 X(_b, e000, f000b000), \
9168 X(_bcond, d000, f0008000), \
9169 X(_bic, 4380, ea200000), \
9170 X(_bics, 4380, ea300000), \
9171 X(_cmn, 42c0, eb100f00), \
9172 X(_cmp, 2800, ebb00f00), \
9173 X(_cpsie, b660, f3af8400), \
9174 X(_cpsid, b670, f3af8600), \
9175 X(_cpy, 4600, ea4f0000), \
9176 X(_dec_sp,80dd, f1ad0d00), \
9177 X(_eor, 4040, ea800000), \
9178 X(_eors, 4040, ea900000), \
9179 X(_inc_sp,00dd, f10d0d00), \
9180 X(_ldmia, c800, e8900000), \
9181 X(_ldr, 6800, f8500000), \
9182 X(_ldrb, 7800, f8100000), \
9183 X(_ldrh, 8800, f8300000), \
9184 X(_ldrsb, 5600, f9100000), \
9185 X(_ldrsh, 5e00, f9300000), \
9186 X(_ldr_pc,4800, f85f0000), \
9187 X(_ldr_pc2,4800, f85f0000), \
9188 X(_ldr_sp,9800, f85d0000), \
9189 X(_lsl, 0000, fa00f000), \
9190 X(_lsls, 0000, fa10f000), \
9191 X(_lsr, 0800, fa20f000), \
9192 X(_lsrs, 0800, fa30f000), \
9193 X(_mov, 2000, ea4f0000), \
9194 X(_movs, 2000, ea5f0000), \
9195 X(_mul, 4340, fb00f000), \
9196 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9197 X(_mvn, 43c0, ea6f0000), \
9198 X(_mvns, 43c0, ea7f0000), \
9199 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9200 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9201 X(_orr, 4300, ea400000), \
9202 X(_orrs, 4300, ea500000), \
9203 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9204 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9205 X(_rev, ba00, fa90f080), \
9206 X(_rev16, ba40, fa90f090), \
9207 X(_revsh, bac0, fa90f0b0), \
9208 X(_ror, 41c0, fa60f000), \
9209 X(_rors, 41c0, fa70f000), \
9210 X(_sbc, 4180, eb600000), \
9211 X(_sbcs, 4180, eb700000), \
9212 X(_stmia, c000, e8800000), \
9213 X(_str, 6000, f8400000), \
9214 X(_strb, 7000, f8000000), \
9215 X(_strh, 8000, f8200000), \
9216 X(_str_sp,9000, f84d0000), \
9217 X(_sub, 1e00, eba00000), \
9218 X(_subs, 1e00, ebb00000), \
9219 X(_subi, 8000, f1a00000), \
9220 X(_subis, 8000, f1b00000), \
9221 X(_sxtb, b240, fa4ff080), \
9222 X(_sxth, b200, fa0ff080), \
9223 X(_tst, 4200, ea100f00), \
9224 X(_uxtb, b2c0, fa5ff080), \
9225 X(_uxth, b280, fa1ff080), \
9226 X(_nop, bf00, f3af8000), \
9227 X(_yield, bf10, f3af8001), \
9228 X(_wfe, bf20, f3af8002), \
9229 X(_wfi, bf30, f3af8003), \
9230 X(_sev, bf40, f3af8004),
9231
9232 /* To catch errors in encoding functions, the codes are all offset by
9233 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9234 as 16-bit instructions. */
9235 #define X(a,b,c) T_MNEM##a
9236 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9237 #undef X
9238
9239 #define X(a,b,c) 0x##b
9240 static const unsigned short thumb_op16[] = { T16_32_TAB };
9241 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9242 #undef X
9243
9244 #define X(a,b,c) 0x##c
9245 static const unsigned int thumb_op32[] = { T16_32_TAB };
9246 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9247 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9248 #undef X
9249 #undef T16_32_TAB
9250
9251 /* Thumb instruction encoders, in alphabetical order. */
9252
9253 /* ADDW or SUBW. */
9254
9255 static void
9256 do_t_add_sub_w (void)
9257 {
9258 int Rd, Rn;
9259
9260 Rd = inst.operands[0].reg;
9261 Rn = inst.operands[1].reg;
9262
9263 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9264 is the SP-{plus,minus}-immediate form of the instruction. */
9265 if (Rn == REG_SP)
9266 constraint (Rd == REG_PC, BAD_PC);
9267 else
9268 reject_bad_reg (Rd);
9269
9270 inst.instruction |= (Rn << 16) | (Rd << 8);
9271 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9272 }
9273
9274 /* Parse an add or subtract instruction. We get here with inst.instruction
9275 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9276
9277 static void
9278 do_t_add_sub (void)
9279 {
9280 int Rd, Rs, Rn;
9281
9282 Rd = inst.operands[0].reg;
9283 Rs = (inst.operands[1].present
9284 ? inst.operands[1].reg /* Rd, Rs, foo */
9285 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9286
9287 if (Rd == REG_PC)
9288 set_it_insn_type_last ();
9289
9290 if (unified_syntax)
9291 {
9292 bfd_boolean flags;
9293 bfd_boolean narrow;
9294 int opcode;
9295
9296 flags = (inst.instruction == T_MNEM_adds
9297 || inst.instruction == T_MNEM_subs);
9298 if (flags)
9299 narrow = !in_it_block ();
9300 else
9301 narrow = in_it_block ();
9302 if (!inst.operands[2].isreg)
9303 {
9304 int add;
9305
9306 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9307
9308 add = (inst.instruction == T_MNEM_add
9309 || inst.instruction == T_MNEM_adds);
9310 opcode = 0;
9311 if (inst.size_req != 4)
9312 {
9313 /* Attempt to use a narrow opcode, with relaxation if
9314 appropriate. */
9315 if (Rd == REG_SP && Rs == REG_SP && !flags)
9316 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9317 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9318 opcode = T_MNEM_add_sp;
9319 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9320 opcode = T_MNEM_add_pc;
9321 else if (Rd <= 7 && Rs <= 7 && narrow)
9322 {
9323 if (flags)
9324 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9325 else
9326 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9327 }
9328 if (opcode)
9329 {
9330 inst.instruction = THUMB_OP16(opcode);
9331 inst.instruction |= (Rd << 4) | Rs;
9332 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9333 if (inst.size_req != 2)
9334 inst.relax = opcode;
9335 }
9336 else
9337 constraint (inst.size_req == 2, BAD_HIREG);
9338 }
9339 if (inst.size_req == 4
9340 || (inst.size_req != 2 && !opcode))
9341 {
9342 if (Rd == REG_PC)
9343 {
9344 constraint (add, BAD_PC);
9345 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9346 _("only SUBS PC, LR, #const allowed"));
9347 constraint (inst.reloc.exp.X_op != O_constant,
9348 _("expression too complex"));
9349 constraint (inst.reloc.exp.X_add_number < 0
9350 || inst.reloc.exp.X_add_number > 0xff,
9351 _("immediate value out of range"));
9352 inst.instruction = T2_SUBS_PC_LR
9353 | inst.reloc.exp.X_add_number;
9354 inst.reloc.type = BFD_RELOC_UNUSED;
9355 return;
9356 }
9357 else if (Rs == REG_PC)
9358 {
9359 /* Always use addw/subw. */
9360 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9361 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9362 }
9363 else
9364 {
9365 inst.instruction = THUMB_OP32 (inst.instruction);
9366 inst.instruction = (inst.instruction & 0xe1ffffff)
9367 | 0x10000000;
9368 if (flags)
9369 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9370 else
9371 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9372 }
9373 inst.instruction |= Rd << 8;
9374 inst.instruction |= Rs << 16;
9375 }
9376 }
9377 else
9378 {
9379 Rn = inst.operands[2].reg;
9380 /* See if we can do this with a 16-bit instruction. */
9381 if (!inst.operands[2].shifted && inst.size_req != 4)
9382 {
9383 if (Rd > 7 || Rs > 7 || Rn > 7)
9384 narrow = FALSE;
9385
9386 if (narrow)
9387 {
9388 inst.instruction = ((inst.instruction == T_MNEM_adds
9389 || inst.instruction == T_MNEM_add)
9390 ? T_OPCODE_ADD_R3
9391 : T_OPCODE_SUB_R3);
9392 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9393 return;
9394 }
9395
9396 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9397 {
9398 /* Thumb-1 cores (except v6-M) require at least one high
9399 register in a narrow non flag setting add. */
9400 if (Rd > 7 || Rn > 7
9401 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9402 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9403 {
9404 if (Rd == Rn)
9405 {
9406 Rn = Rs;
9407 Rs = Rd;
9408 }
9409 inst.instruction = T_OPCODE_ADD_HI;
9410 inst.instruction |= (Rd & 8) << 4;
9411 inst.instruction |= (Rd & 7);
9412 inst.instruction |= Rn << 3;
9413 return;
9414 }
9415 }
9416 }
9417
9418 constraint (Rd == REG_PC, BAD_PC);
9419 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9420 constraint (Rs == REG_PC, BAD_PC);
9421 reject_bad_reg (Rn);
9422
9423 /* If we get here, it can't be done in 16 bits. */
9424 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9425 _("shift must be constant"));
9426 inst.instruction = THUMB_OP32 (inst.instruction);
9427 inst.instruction |= Rd << 8;
9428 inst.instruction |= Rs << 16;
9429 encode_thumb32_shifted_operand (2);
9430 }
9431 }
9432 else
9433 {
9434 constraint (inst.instruction == T_MNEM_adds
9435 || inst.instruction == T_MNEM_subs,
9436 BAD_THUMB32);
9437
9438 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9439 {
9440 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9441 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9442 BAD_HIREG);
9443
9444 inst.instruction = (inst.instruction == T_MNEM_add
9445 ? 0x0000 : 0x8000);
9446 inst.instruction |= (Rd << 4) | Rs;
9447 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9448 return;
9449 }
9450
9451 Rn = inst.operands[2].reg;
9452 constraint (inst.operands[2].shifted, _("unshifted register required"));
9453
9454 /* We now have Rd, Rs, and Rn set to registers. */
9455 if (Rd > 7 || Rs > 7 || Rn > 7)
9456 {
9457 /* Can't do this for SUB. */
9458 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9459 inst.instruction = T_OPCODE_ADD_HI;
9460 inst.instruction |= (Rd & 8) << 4;
9461 inst.instruction |= (Rd & 7);
9462 if (Rs == Rd)
9463 inst.instruction |= Rn << 3;
9464 else if (Rn == Rd)
9465 inst.instruction |= Rs << 3;
9466 else
9467 constraint (1, _("dest must overlap one source register"));
9468 }
9469 else
9470 {
9471 inst.instruction = (inst.instruction == T_MNEM_add
9472 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9473 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9474 }
9475 }
9476 }
9477
9478 static void
9479 do_t_adr (void)
9480 {
9481 unsigned Rd;
9482
9483 Rd = inst.operands[0].reg;
9484 reject_bad_reg (Rd);
9485
9486 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9487 {
9488 /* Defer to section relaxation. */
9489 inst.relax = inst.instruction;
9490 inst.instruction = THUMB_OP16 (inst.instruction);
9491 inst.instruction |= Rd << 4;
9492 }
9493 else if (unified_syntax && inst.size_req != 2)
9494 {
9495 /* Generate a 32-bit opcode. */
9496 inst.instruction = THUMB_OP32 (inst.instruction);
9497 inst.instruction |= Rd << 8;
9498 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9499 inst.reloc.pc_rel = 1;
9500 }
9501 else
9502 {
9503 /* Generate a 16-bit opcode. */
9504 inst.instruction = THUMB_OP16 (inst.instruction);
9505 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9506 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9507 inst.reloc.pc_rel = 1;
9508
9509 inst.instruction |= Rd << 4;
9510 }
9511 }
9512
9513 /* Arithmetic instructions for which there is just one 16-bit
9514 instruction encoding, and it allows only two low registers.
9515 For maximal compatibility with ARM syntax, we allow three register
9516 operands even when Thumb-32 instructions are not available, as long
9517 as the first two are identical. For instance, both "sbc r0,r1" and
9518 "sbc r0,r0,r1" are allowed. */
9519 static void
9520 do_t_arit3 (void)
9521 {
9522 int Rd, Rs, Rn;
9523
9524 Rd = inst.operands[0].reg;
9525 Rs = (inst.operands[1].present
9526 ? inst.operands[1].reg /* Rd, Rs, foo */
9527 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9528 Rn = inst.operands[2].reg;
9529
9530 reject_bad_reg (Rd);
9531 reject_bad_reg (Rs);
9532 if (inst.operands[2].isreg)
9533 reject_bad_reg (Rn);
9534
9535 if (unified_syntax)
9536 {
9537 if (!inst.operands[2].isreg)
9538 {
9539 /* For an immediate, we always generate a 32-bit opcode;
9540 section relaxation will shrink it later if possible. */
9541 inst.instruction = THUMB_OP32 (inst.instruction);
9542 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9543 inst.instruction |= Rd << 8;
9544 inst.instruction |= Rs << 16;
9545 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9546 }
9547 else
9548 {
9549 bfd_boolean narrow;
9550
9551 /* See if we can do this with a 16-bit instruction. */
9552 if (THUMB_SETS_FLAGS (inst.instruction))
9553 narrow = !in_it_block ();
9554 else
9555 narrow = in_it_block ();
9556
9557 if (Rd > 7 || Rn > 7 || Rs > 7)
9558 narrow = FALSE;
9559 if (inst.operands[2].shifted)
9560 narrow = FALSE;
9561 if (inst.size_req == 4)
9562 narrow = FALSE;
9563
9564 if (narrow
9565 && Rd == Rs)
9566 {
9567 inst.instruction = THUMB_OP16 (inst.instruction);
9568 inst.instruction |= Rd;
9569 inst.instruction |= Rn << 3;
9570 return;
9571 }
9572
9573 /* If we get here, it can't be done in 16 bits. */
9574 constraint (inst.operands[2].shifted
9575 && inst.operands[2].immisreg,
9576 _("shift must be constant"));
9577 inst.instruction = THUMB_OP32 (inst.instruction);
9578 inst.instruction |= Rd << 8;
9579 inst.instruction |= Rs << 16;
9580 encode_thumb32_shifted_operand (2);
9581 }
9582 }
9583 else
9584 {
9585 /* On its face this is a lie - the instruction does set the
9586 flags. However, the only supported mnemonic in this mode
9587 says it doesn't. */
9588 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9589
9590 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9591 _("unshifted register required"));
9592 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9593 constraint (Rd != Rs,
9594 _("dest and source1 must be the same register"));
9595
9596 inst.instruction = THUMB_OP16 (inst.instruction);
9597 inst.instruction |= Rd;
9598 inst.instruction |= Rn << 3;
9599 }
9600 }
9601
9602 /* Similarly, but for instructions where the arithmetic operation is
9603 commutative, so we can allow either of them to be different from
9604 the destination operand in a 16-bit instruction. For instance, all
9605 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9606 accepted. */
9607 static void
9608 do_t_arit3c (void)
9609 {
9610 int Rd, Rs, Rn;
9611
9612 Rd = inst.operands[0].reg;
9613 Rs = (inst.operands[1].present
9614 ? inst.operands[1].reg /* Rd, Rs, foo */
9615 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9616 Rn = inst.operands[2].reg;
9617
9618 reject_bad_reg (Rd);
9619 reject_bad_reg (Rs);
9620 if (inst.operands[2].isreg)
9621 reject_bad_reg (Rn);
9622
9623 if (unified_syntax)
9624 {
9625 if (!inst.operands[2].isreg)
9626 {
9627 /* For an immediate, we always generate a 32-bit opcode;
9628 section relaxation will shrink it later if possible. */
9629 inst.instruction = THUMB_OP32 (inst.instruction);
9630 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9631 inst.instruction |= Rd << 8;
9632 inst.instruction |= Rs << 16;
9633 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9634 }
9635 else
9636 {
9637 bfd_boolean narrow;
9638
9639 /* See if we can do this with a 16-bit instruction. */
9640 if (THUMB_SETS_FLAGS (inst.instruction))
9641 narrow = !in_it_block ();
9642 else
9643 narrow = in_it_block ();
9644
9645 if (Rd > 7 || Rn > 7 || Rs > 7)
9646 narrow = FALSE;
9647 if (inst.operands[2].shifted)
9648 narrow = FALSE;
9649 if (inst.size_req == 4)
9650 narrow = FALSE;
9651
9652 if (narrow)
9653 {
9654 if (Rd == Rs)
9655 {
9656 inst.instruction = THUMB_OP16 (inst.instruction);
9657 inst.instruction |= Rd;
9658 inst.instruction |= Rn << 3;
9659 return;
9660 }
9661 if (Rd == Rn)
9662 {
9663 inst.instruction = THUMB_OP16 (inst.instruction);
9664 inst.instruction |= Rd;
9665 inst.instruction |= Rs << 3;
9666 return;
9667 }
9668 }
9669
9670 /* If we get here, it can't be done in 16 bits. */
9671 constraint (inst.operands[2].shifted
9672 && inst.operands[2].immisreg,
9673 _("shift must be constant"));
9674 inst.instruction = THUMB_OP32 (inst.instruction);
9675 inst.instruction |= Rd << 8;
9676 inst.instruction |= Rs << 16;
9677 encode_thumb32_shifted_operand (2);
9678 }
9679 }
9680 else
9681 {
9682 /* On its face this is a lie - the instruction does set the
9683 flags. However, the only supported mnemonic in this mode
9684 says it doesn't. */
9685 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9686
9687 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9688 _("unshifted register required"));
9689 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9690
9691 inst.instruction = THUMB_OP16 (inst.instruction);
9692 inst.instruction |= Rd;
9693
9694 if (Rd == Rs)
9695 inst.instruction |= Rn << 3;
9696 else if (Rd == Rn)
9697 inst.instruction |= Rs << 3;
9698 else
9699 constraint (1, _("dest must overlap one source register"));
9700 }
9701 }
9702
9703 static void
9704 do_t_barrier (void)
9705 {
9706 if (inst.operands[0].present)
9707 {
9708 constraint ((inst.instruction & 0xf0) != 0x40
9709 && inst.operands[0].imm > 0xf
9710 && inst.operands[0].imm < 0x0,
9711 _("bad barrier type"));
9712 inst.instruction |= inst.operands[0].imm;
9713 }
9714 else
9715 inst.instruction |= 0xf;
9716 }
9717
9718 static void
9719 do_t_bfc (void)
9720 {
9721 unsigned Rd;
9722 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9723 constraint (msb > 32, _("bit-field extends past end of register"));
9724 /* The instruction encoding stores the LSB and MSB,
9725 not the LSB and width. */
9726 Rd = inst.operands[0].reg;
9727 reject_bad_reg (Rd);
9728 inst.instruction |= Rd << 8;
9729 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9730 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9731 inst.instruction |= msb - 1;
9732 }
9733
9734 static void
9735 do_t_bfi (void)
9736 {
9737 int Rd, Rn;
9738 unsigned int msb;
9739
9740 Rd = inst.operands[0].reg;
9741 reject_bad_reg (Rd);
9742
9743 /* #0 in second position is alternative syntax for bfc, which is
9744 the same instruction but with REG_PC in the Rm field. */
9745 if (!inst.operands[1].isreg)
9746 Rn = REG_PC;
9747 else
9748 {
9749 Rn = inst.operands[1].reg;
9750 reject_bad_reg (Rn);
9751 }
9752
9753 msb = inst.operands[2].imm + inst.operands[3].imm;
9754 constraint (msb > 32, _("bit-field extends past end of register"));
9755 /* The instruction encoding stores the LSB and MSB,
9756 not the LSB and width. */
9757 inst.instruction |= Rd << 8;
9758 inst.instruction |= Rn << 16;
9759 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9760 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9761 inst.instruction |= msb - 1;
9762 }
9763
9764 static void
9765 do_t_bfx (void)
9766 {
9767 unsigned Rd, Rn;
9768
9769 Rd = inst.operands[0].reg;
9770 Rn = inst.operands[1].reg;
9771
9772 reject_bad_reg (Rd);
9773 reject_bad_reg (Rn);
9774
9775 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9776 _("bit-field extends past end of register"));
9777 inst.instruction |= Rd << 8;
9778 inst.instruction |= Rn << 16;
9779 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9780 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9781 inst.instruction |= inst.operands[3].imm - 1;
9782 }
9783
9784 /* ARM V5 Thumb BLX (argument parse)
9785 BLX <target_addr> which is BLX(1)
9786 BLX <Rm> which is BLX(2)
9787 Unfortunately, there are two different opcodes for this mnemonic.
9788 So, the insns[].value is not used, and the code here zaps values
9789 into inst.instruction.
9790
9791 ??? How to take advantage of the additional two bits of displacement
9792 available in Thumb32 mode? Need new relocation? */
9793
9794 static void
9795 do_t_blx (void)
9796 {
9797 set_it_insn_type_last ();
9798
9799 if (inst.operands[0].isreg)
9800 {
9801 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9802 /* We have a register, so this is BLX(2). */
9803 inst.instruction |= inst.operands[0].reg << 3;
9804 }
9805 else
9806 {
9807 /* No register. This must be BLX(1). */
9808 inst.instruction = 0xf000e800;
9809 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
9810 }
9811 }
9812
9813 static void
9814 do_t_branch (void)
9815 {
9816 int opcode;
9817 int cond;
9818 int reloc;
9819
9820 cond = inst.cond;
9821 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9822
9823 if (in_it_block ())
9824 {
9825 /* Conditional branches inside IT blocks are encoded as unconditional
9826 branches. */
9827 cond = COND_ALWAYS;
9828 }
9829 else
9830 cond = inst.cond;
9831
9832 if (cond != COND_ALWAYS)
9833 opcode = T_MNEM_bcond;
9834 else
9835 opcode = inst.instruction;
9836
9837 if (unified_syntax
9838 && (inst.size_req == 4
9839 || (inst.size_req != 2 && inst.operands[0].hasreloc)))
9840 {
9841 inst.instruction = THUMB_OP32(opcode);
9842 if (cond == COND_ALWAYS)
9843 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
9844 else
9845 {
9846 gas_assert (cond != 0xF);
9847 inst.instruction |= cond << 22;
9848 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
9849 }
9850 }
9851 else
9852 {
9853 inst.instruction = THUMB_OP16(opcode);
9854 if (cond == COND_ALWAYS)
9855 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
9856 else
9857 {
9858 inst.instruction |= cond << 8;
9859 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
9860 }
9861 /* Allow section relaxation. */
9862 if (unified_syntax && inst.size_req != 2)
9863 inst.relax = opcode;
9864 }
9865 inst.reloc.type = reloc;
9866 inst.reloc.pc_rel = 1;
9867 }
9868
9869 static void
9870 do_t_bkpt (void)
9871 {
9872 constraint (inst.cond != COND_ALWAYS,
9873 _("instruction is always unconditional"));
9874 if (inst.operands[0].present)
9875 {
9876 constraint (inst.operands[0].imm > 255,
9877 _("immediate value out of range"));
9878 inst.instruction |= inst.operands[0].imm;
9879 set_it_insn_type (NEUTRAL_IT_INSN);
9880 }
9881 }
9882
9883 static void
9884 do_t_branch23 (void)
9885 {
9886 set_it_insn_type_last ();
9887 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
9888
9889 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
9890 this file. We used to simply ignore the PLT reloc type here --
9891 the branch encoding is now needed to deal with TLSCALL relocs.
9892 So if we see a PLT reloc now, put it back to how it used to be to
9893 keep the preexisting behaviour. */
9894 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
9895 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9896
9897 #if defined(OBJ_COFF)
9898 /* If the destination of the branch is a defined symbol which does not have
9899 the THUMB_FUNC attribute, then we must be calling a function which has
9900 the (interfacearm) attribute. We look for the Thumb entry point to that
9901 function and change the branch to refer to that function instead. */
9902 if ( inst.reloc.exp.X_op == O_symbol
9903 && inst.reloc.exp.X_add_symbol != NULL
9904 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9905 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9906 inst.reloc.exp.X_add_symbol =
9907 find_real_start (inst.reloc.exp.X_add_symbol);
9908 #endif
9909 }
9910
9911 static void
9912 do_t_bx (void)
9913 {
9914 set_it_insn_type_last ();
9915 inst.instruction |= inst.operands[0].reg << 3;
9916 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9917 should cause the alignment to be checked once it is known. This is
9918 because BX PC only works if the instruction is word aligned. */
9919 }
9920
9921 static void
9922 do_t_bxj (void)
9923 {
9924 int Rm;
9925
9926 set_it_insn_type_last ();
9927 Rm = inst.operands[0].reg;
9928 reject_bad_reg (Rm);
9929 inst.instruction |= Rm << 16;
9930 }
9931
9932 static void
9933 do_t_clz (void)
9934 {
9935 unsigned Rd;
9936 unsigned Rm;
9937
9938 Rd = inst.operands[0].reg;
9939 Rm = inst.operands[1].reg;
9940
9941 reject_bad_reg (Rd);
9942 reject_bad_reg (Rm);
9943
9944 inst.instruction |= Rd << 8;
9945 inst.instruction |= Rm << 16;
9946 inst.instruction |= Rm;
9947 }
9948
9949 static void
9950 do_t_cps (void)
9951 {
9952 set_it_insn_type (OUTSIDE_IT_INSN);
9953 inst.instruction |= inst.operands[0].imm;
9954 }
9955
9956 static void
9957 do_t_cpsi (void)
9958 {
9959 set_it_insn_type (OUTSIDE_IT_INSN);
9960 if (unified_syntax
9961 && (inst.operands[1].present || inst.size_req == 4)
9962 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9963 {
9964 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9965 inst.instruction = 0xf3af8000;
9966 inst.instruction |= imod << 9;
9967 inst.instruction |= inst.operands[0].imm << 5;
9968 if (inst.operands[1].present)
9969 inst.instruction |= 0x100 | inst.operands[1].imm;
9970 }
9971 else
9972 {
9973 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9974 && (inst.operands[0].imm & 4),
9975 _("selected processor does not support 'A' form "
9976 "of this instruction"));
9977 constraint (inst.operands[1].present || inst.size_req == 4,
9978 _("Thumb does not support the 2-argument "
9979 "form of this instruction"));
9980 inst.instruction |= inst.operands[0].imm;
9981 }
9982 }
9983
9984 /* THUMB CPY instruction (argument parse). */
9985
9986 static void
9987 do_t_cpy (void)
9988 {
9989 if (inst.size_req == 4)
9990 {
9991 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9992 inst.instruction |= inst.operands[0].reg << 8;
9993 inst.instruction |= inst.operands[1].reg;
9994 }
9995 else
9996 {
9997 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9998 inst.instruction |= (inst.operands[0].reg & 0x7);
9999 inst.instruction |= inst.operands[1].reg << 3;
10000 }
10001 }
10002
10003 static void
10004 do_t_cbz (void)
10005 {
10006 set_it_insn_type (OUTSIDE_IT_INSN);
10007 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10008 inst.instruction |= inst.operands[0].reg;
10009 inst.reloc.pc_rel = 1;
10010 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10011 }
10012
10013 static void
10014 do_t_dbg (void)
10015 {
10016 inst.instruction |= inst.operands[0].imm;
10017 }
10018
10019 static void
10020 do_t_div (void)
10021 {
10022 unsigned Rd, Rn, Rm;
10023
10024 Rd = inst.operands[0].reg;
10025 Rn = (inst.operands[1].present
10026 ? inst.operands[1].reg : Rd);
10027 Rm = inst.operands[2].reg;
10028
10029 reject_bad_reg (Rd);
10030 reject_bad_reg (Rn);
10031 reject_bad_reg (Rm);
10032
10033 inst.instruction |= Rd << 8;
10034 inst.instruction |= Rn << 16;
10035 inst.instruction |= Rm;
10036 }
10037
10038 static void
10039 do_t_hint (void)
10040 {
10041 if (unified_syntax && inst.size_req == 4)
10042 inst.instruction = THUMB_OP32 (inst.instruction);
10043 else
10044 inst.instruction = THUMB_OP16 (inst.instruction);
10045 }
10046
10047 static void
10048 do_t_it (void)
10049 {
10050 unsigned int cond = inst.operands[0].imm;
10051
10052 set_it_insn_type (IT_INSN);
10053 now_it.mask = (inst.instruction & 0xf) | 0x10;
10054 now_it.cc = cond;
10055
10056 /* If the condition is a negative condition, invert the mask. */
10057 if ((cond & 0x1) == 0x0)
10058 {
10059 unsigned int mask = inst.instruction & 0x000f;
10060
10061 if ((mask & 0x7) == 0)
10062 /* no conversion needed */;
10063 else if ((mask & 0x3) == 0)
10064 mask ^= 0x8;
10065 else if ((mask & 0x1) == 0)
10066 mask ^= 0xC;
10067 else
10068 mask ^= 0xE;
10069
10070 inst.instruction &= 0xfff0;
10071 inst.instruction |= mask;
10072 }
10073
10074 inst.instruction |= cond << 4;
10075 }
10076
10077 /* Helper function used for both push/pop and ldm/stm. */
10078 static void
10079 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10080 {
10081 bfd_boolean load;
10082
10083 load = (inst.instruction & (1 << 20)) != 0;
10084
10085 if (mask & (1 << 13))
10086 inst.error = _("SP not allowed in register list");
10087
10088 if ((mask & (1 << base)) != 0
10089 && writeback)
10090 inst.error = _("having the base register in the register list when "
10091 "using write back is UNPREDICTABLE");
10092
10093 if (load)
10094 {
10095 if (mask & (1 << 15))
10096 {
10097 if (mask & (1 << 14))
10098 inst.error = _("LR and PC should not both be in register list");
10099 else
10100 set_it_insn_type_last ();
10101 }
10102 }
10103 else
10104 {
10105 if (mask & (1 << 15))
10106 inst.error = _("PC not allowed in register list");
10107 }
10108
10109 if ((mask & (mask - 1)) == 0)
10110 {
10111 /* Single register transfers implemented as str/ldr. */
10112 if (writeback)
10113 {
10114 if (inst.instruction & (1 << 23))
10115 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10116 else
10117 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10118 }
10119 else
10120 {
10121 if (inst.instruction & (1 << 23))
10122 inst.instruction = 0x00800000; /* ia -> [base] */
10123 else
10124 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10125 }
10126
10127 inst.instruction |= 0xf8400000;
10128 if (load)
10129 inst.instruction |= 0x00100000;
10130
10131 mask = ffs (mask) - 1;
10132 mask <<= 12;
10133 }
10134 else if (writeback)
10135 inst.instruction |= WRITE_BACK;
10136
10137 inst.instruction |= mask;
10138 inst.instruction |= base << 16;
10139 }
10140
10141 static void
10142 do_t_ldmstm (void)
10143 {
10144 /* This really doesn't seem worth it. */
10145 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10146 _("expression too complex"));
10147 constraint (inst.operands[1].writeback,
10148 _("Thumb load/store multiple does not support {reglist}^"));
10149
10150 if (unified_syntax)
10151 {
10152 bfd_boolean narrow;
10153 unsigned mask;
10154
10155 narrow = FALSE;
10156 /* See if we can use a 16-bit instruction. */
10157 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10158 && inst.size_req != 4
10159 && !(inst.operands[1].imm & ~0xff))
10160 {
10161 mask = 1 << inst.operands[0].reg;
10162
10163 if (inst.operands[0].reg <= 7)
10164 {
10165 if (inst.instruction == T_MNEM_stmia
10166 ? inst.operands[0].writeback
10167 : (inst.operands[0].writeback
10168 == !(inst.operands[1].imm & mask)))
10169 {
10170 if (inst.instruction == T_MNEM_stmia
10171 && (inst.operands[1].imm & mask)
10172 && (inst.operands[1].imm & (mask - 1)))
10173 as_warn (_("value stored for r%d is UNKNOWN"),
10174 inst.operands[0].reg);
10175
10176 inst.instruction = THUMB_OP16 (inst.instruction);
10177 inst.instruction |= inst.operands[0].reg << 8;
10178 inst.instruction |= inst.operands[1].imm;
10179 narrow = TRUE;
10180 }
10181 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10182 {
10183 /* This means 1 register in reg list one of 3 situations:
10184 1. Instruction is stmia, but without writeback.
10185 2. lmdia without writeback, but with Rn not in
10186 reglist.
10187 3. ldmia with writeback, but with Rn in reglist.
10188 Case 3 is UNPREDICTABLE behaviour, so we handle
10189 case 1 and 2 which can be converted into a 16-bit
10190 str or ldr. The SP cases are handled below. */
10191 unsigned long opcode;
10192 /* First, record an error for Case 3. */
10193 if (inst.operands[1].imm & mask
10194 && inst.operands[0].writeback)
10195 inst.error =
10196 _("having the base register in the register list when "
10197 "using write back is UNPREDICTABLE");
10198
10199 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10200 : T_MNEM_ldr);
10201 inst.instruction = THUMB_OP16 (opcode);
10202 inst.instruction |= inst.operands[0].reg << 3;
10203 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10204 narrow = TRUE;
10205 }
10206 }
10207 else if (inst.operands[0] .reg == REG_SP)
10208 {
10209 if (inst.operands[0].writeback)
10210 {
10211 inst.instruction =
10212 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10213 ? T_MNEM_push : T_MNEM_pop);
10214 inst.instruction |= inst.operands[1].imm;
10215 narrow = TRUE;
10216 }
10217 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10218 {
10219 inst.instruction =
10220 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10221 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10222 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10223 narrow = TRUE;
10224 }
10225 }
10226 }
10227
10228 if (!narrow)
10229 {
10230 if (inst.instruction < 0xffff)
10231 inst.instruction = THUMB_OP32 (inst.instruction);
10232
10233 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10234 inst.operands[0].writeback);
10235 }
10236 }
10237 else
10238 {
10239 constraint (inst.operands[0].reg > 7
10240 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10241 constraint (inst.instruction != T_MNEM_ldmia
10242 && inst.instruction != T_MNEM_stmia,
10243 _("Thumb-2 instruction only valid in unified syntax"));
10244 if (inst.instruction == T_MNEM_stmia)
10245 {
10246 if (!inst.operands[0].writeback)
10247 as_warn (_("this instruction will write back the base register"));
10248 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10249 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10250 as_warn (_("value stored for r%d is UNKNOWN"),
10251 inst.operands[0].reg);
10252 }
10253 else
10254 {
10255 if (!inst.operands[0].writeback
10256 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10257 as_warn (_("this instruction will write back the base register"));
10258 else if (inst.operands[0].writeback
10259 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10260 as_warn (_("this instruction will not write back the base register"));
10261 }
10262
10263 inst.instruction = THUMB_OP16 (inst.instruction);
10264 inst.instruction |= inst.operands[0].reg << 8;
10265 inst.instruction |= inst.operands[1].imm;
10266 }
10267 }
10268
10269 static void
10270 do_t_ldrex (void)
10271 {
10272 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10273 || inst.operands[1].postind || inst.operands[1].writeback
10274 || inst.operands[1].immisreg || inst.operands[1].shifted
10275 || inst.operands[1].negative,
10276 BAD_ADDR_MODE);
10277
10278 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10279
10280 inst.instruction |= inst.operands[0].reg << 12;
10281 inst.instruction |= inst.operands[1].reg << 16;
10282 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10283 }
10284
10285 static void
10286 do_t_ldrexd (void)
10287 {
10288 if (!inst.operands[1].present)
10289 {
10290 constraint (inst.operands[0].reg == REG_LR,
10291 _("r14 not allowed as first register "
10292 "when second register is omitted"));
10293 inst.operands[1].reg = inst.operands[0].reg + 1;
10294 }
10295 constraint (inst.operands[0].reg == inst.operands[1].reg,
10296 BAD_OVERLAP);
10297
10298 inst.instruction |= inst.operands[0].reg << 12;
10299 inst.instruction |= inst.operands[1].reg << 8;
10300 inst.instruction |= inst.operands[2].reg << 16;
10301 }
10302
10303 static void
10304 do_t_ldst (void)
10305 {
10306 unsigned long opcode;
10307 int Rn;
10308
10309 if (inst.operands[0].isreg
10310 && !inst.operands[0].preind
10311 && inst.operands[0].reg == REG_PC)
10312 set_it_insn_type_last ();
10313
10314 opcode = inst.instruction;
10315 if (unified_syntax)
10316 {
10317 if (!inst.operands[1].isreg)
10318 {
10319 if (opcode <= 0xffff)
10320 inst.instruction = THUMB_OP32 (opcode);
10321 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10322 return;
10323 }
10324 if (inst.operands[1].isreg
10325 && !inst.operands[1].writeback
10326 && !inst.operands[1].shifted && !inst.operands[1].postind
10327 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10328 && opcode <= 0xffff
10329 && inst.size_req != 4)
10330 {
10331 /* Insn may have a 16-bit form. */
10332 Rn = inst.operands[1].reg;
10333 if (inst.operands[1].immisreg)
10334 {
10335 inst.instruction = THUMB_OP16 (opcode);
10336 /* [Rn, Rik] */
10337 if (Rn <= 7 && inst.operands[1].imm <= 7)
10338 goto op16;
10339 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10340 reject_bad_reg (inst.operands[1].imm);
10341 }
10342 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10343 && opcode != T_MNEM_ldrsb)
10344 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10345 || (Rn == REG_SP && opcode == T_MNEM_str))
10346 {
10347 /* [Rn, #const] */
10348 if (Rn > 7)
10349 {
10350 if (Rn == REG_PC)
10351 {
10352 if (inst.reloc.pc_rel)
10353 opcode = T_MNEM_ldr_pc2;
10354 else
10355 opcode = T_MNEM_ldr_pc;
10356 }
10357 else
10358 {
10359 if (opcode == T_MNEM_ldr)
10360 opcode = T_MNEM_ldr_sp;
10361 else
10362 opcode = T_MNEM_str_sp;
10363 }
10364 inst.instruction = inst.operands[0].reg << 8;
10365 }
10366 else
10367 {
10368 inst.instruction = inst.operands[0].reg;
10369 inst.instruction |= inst.operands[1].reg << 3;
10370 }
10371 inst.instruction |= THUMB_OP16 (opcode);
10372 if (inst.size_req == 2)
10373 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10374 else
10375 inst.relax = opcode;
10376 return;
10377 }
10378 }
10379 /* Definitely a 32-bit variant. */
10380
10381 /* Do some validations regarding addressing modes. */
10382 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10383 && opcode != T_MNEM_str)
10384 reject_bad_reg (inst.operands[1].imm);
10385
10386 inst.instruction = THUMB_OP32 (opcode);
10387 inst.instruction |= inst.operands[0].reg << 12;
10388 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10389 return;
10390 }
10391
10392 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10393
10394 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10395 {
10396 /* Only [Rn,Rm] is acceptable. */
10397 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10398 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10399 || inst.operands[1].postind || inst.operands[1].shifted
10400 || inst.operands[1].negative,
10401 _("Thumb does not support this addressing mode"));
10402 inst.instruction = THUMB_OP16 (inst.instruction);
10403 goto op16;
10404 }
10405
10406 inst.instruction = THUMB_OP16 (inst.instruction);
10407 if (!inst.operands[1].isreg)
10408 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10409 return;
10410
10411 constraint (!inst.operands[1].preind
10412 || inst.operands[1].shifted
10413 || inst.operands[1].writeback,
10414 _("Thumb does not support this addressing mode"));
10415 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10416 {
10417 constraint (inst.instruction & 0x0600,
10418 _("byte or halfword not valid for base register"));
10419 constraint (inst.operands[1].reg == REG_PC
10420 && !(inst.instruction & THUMB_LOAD_BIT),
10421 _("r15 based store not allowed"));
10422 constraint (inst.operands[1].immisreg,
10423 _("invalid base register for register offset"));
10424
10425 if (inst.operands[1].reg == REG_PC)
10426 inst.instruction = T_OPCODE_LDR_PC;
10427 else if (inst.instruction & THUMB_LOAD_BIT)
10428 inst.instruction = T_OPCODE_LDR_SP;
10429 else
10430 inst.instruction = T_OPCODE_STR_SP;
10431
10432 inst.instruction |= inst.operands[0].reg << 8;
10433 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10434 return;
10435 }
10436
10437 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10438 if (!inst.operands[1].immisreg)
10439 {
10440 /* Immediate offset. */
10441 inst.instruction |= inst.operands[0].reg;
10442 inst.instruction |= inst.operands[1].reg << 3;
10443 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10444 return;
10445 }
10446
10447 /* Register offset. */
10448 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10449 constraint (inst.operands[1].negative,
10450 _("Thumb does not support this addressing mode"));
10451
10452 op16:
10453 switch (inst.instruction)
10454 {
10455 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10456 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10457 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10458 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10459 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10460 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10461 case 0x5600 /* ldrsb */:
10462 case 0x5e00 /* ldrsh */: break;
10463 default: abort ();
10464 }
10465
10466 inst.instruction |= inst.operands[0].reg;
10467 inst.instruction |= inst.operands[1].reg << 3;
10468 inst.instruction |= inst.operands[1].imm << 6;
10469 }
10470
10471 static void
10472 do_t_ldstd (void)
10473 {
10474 if (!inst.operands[1].present)
10475 {
10476 inst.operands[1].reg = inst.operands[0].reg + 1;
10477 constraint (inst.operands[0].reg == REG_LR,
10478 _("r14 not allowed here"));
10479 }
10480 inst.instruction |= inst.operands[0].reg << 12;
10481 inst.instruction |= inst.operands[1].reg << 8;
10482 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10483 }
10484
10485 static void
10486 do_t_ldstt (void)
10487 {
10488 inst.instruction |= inst.operands[0].reg << 12;
10489 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10490 }
10491
10492 static void
10493 do_t_mla (void)
10494 {
10495 unsigned Rd, Rn, Rm, Ra;
10496
10497 Rd = inst.operands[0].reg;
10498 Rn = inst.operands[1].reg;
10499 Rm = inst.operands[2].reg;
10500 Ra = inst.operands[3].reg;
10501
10502 reject_bad_reg (Rd);
10503 reject_bad_reg (Rn);
10504 reject_bad_reg (Rm);
10505 reject_bad_reg (Ra);
10506
10507 inst.instruction |= Rd << 8;
10508 inst.instruction |= Rn << 16;
10509 inst.instruction |= Rm;
10510 inst.instruction |= Ra << 12;
10511 }
10512
10513 static void
10514 do_t_mlal (void)
10515 {
10516 unsigned RdLo, RdHi, Rn, Rm;
10517
10518 RdLo = inst.operands[0].reg;
10519 RdHi = inst.operands[1].reg;
10520 Rn = inst.operands[2].reg;
10521 Rm = inst.operands[3].reg;
10522
10523 reject_bad_reg (RdLo);
10524 reject_bad_reg (RdHi);
10525 reject_bad_reg (Rn);
10526 reject_bad_reg (Rm);
10527
10528 inst.instruction |= RdLo << 12;
10529 inst.instruction |= RdHi << 8;
10530 inst.instruction |= Rn << 16;
10531 inst.instruction |= Rm;
10532 }
10533
10534 static void
10535 do_t_mov_cmp (void)
10536 {
10537 unsigned Rn, Rm;
10538
10539 Rn = inst.operands[0].reg;
10540 Rm = inst.operands[1].reg;
10541
10542 if (Rn == REG_PC)
10543 set_it_insn_type_last ();
10544
10545 if (unified_syntax)
10546 {
10547 int r0off = (inst.instruction == T_MNEM_mov
10548 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10549 unsigned long opcode;
10550 bfd_boolean narrow;
10551 bfd_boolean low_regs;
10552
10553 low_regs = (Rn <= 7 && Rm <= 7);
10554 opcode = inst.instruction;
10555 if (in_it_block ())
10556 narrow = opcode != T_MNEM_movs;
10557 else
10558 narrow = opcode != T_MNEM_movs || low_regs;
10559 if (inst.size_req == 4
10560 || inst.operands[1].shifted)
10561 narrow = FALSE;
10562
10563 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10564 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10565 && !inst.operands[1].shifted
10566 && Rn == REG_PC
10567 && Rm == REG_LR)
10568 {
10569 inst.instruction = T2_SUBS_PC_LR;
10570 return;
10571 }
10572
10573 if (opcode == T_MNEM_cmp)
10574 {
10575 constraint (Rn == REG_PC, BAD_PC);
10576 if (narrow)
10577 {
10578 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10579 but valid. */
10580 warn_deprecated_sp (Rm);
10581 /* R15 was documented as a valid choice for Rm in ARMv6,
10582 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10583 tools reject R15, so we do too. */
10584 constraint (Rm == REG_PC, BAD_PC);
10585 }
10586 else
10587 reject_bad_reg (Rm);
10588 }
10589 else if (opcode == T_MNEM_mov
10590 || opcode == T_MNEM_movs)
10591 {
10592 if (inst.operands[1].isreg)
10593 {
10594 if (opcode == T_MNEM_movs)
10595 {
10596 reject_bad_reg (Rn);
10597 reject_bad_reg (Rm);
10598 }
10599 else if (narrow)
10600 {
10601 /* This is mov.n. */
10602 if ((Rn == REG_SP || Rn == REG_PC)
10603 && (Rm == REG_SP || Rm == REG_PC))
10604 {
10605 as_warn (_("Use of r%u as a source register is "
10606 "deprecated when r%u is the destination "
10607 "register."), Rm, Rn);
10608 }
10609 }
10610 else
10611 {
10612 /* This is mov.w. */
10613 constraint (Rn == REG_PC, BAD_PC);
10614 constraint (Rm == REG_PC, BAD_PC);
10615 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10616 }
10617 }
10618 else
10619 reject_bad_reg (Rn);
10620 }
10621
10622 if (!inst.operands[1].isreg)
10623 {
10624 /* Immediate operand. */
10625 if (!in_it_block () && opcode == T_MNEM_mov)
10626 narrow = 0;
10627 if (low_regs && narrow)
10628 {
10629 inst.instruction = THUMB_OP16 (opcode);
10630 inst.instruction |= Rn << 8;
10631 if (inst.size_req == 2)
10632 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10633 else
10634 inst.relax = opcode;
10635 }
10636 else
10637 {
10638 inst.instruction = THUMB_OP32 (inst.instruction);
10639 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10640 inst.instruction |= Rn << r0off;
10641 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10642 }
10643 }
10644 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10645 && (inst.instruction == T_MNEM_mov
10646 || inst.instruction == T_MNEM_movs))
10647 {
10648 /* Register shifts are encoded as separate shift instructions. */
10649 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10650
10651 if (in_it_block ())
10652 narrow = !flags;
10653 else
10654 narrow = flags;
10655
10656 if (inst.size_req == 4)
10657 narrow = FALSE;
10658
10659 if (!low_regs || inst.operands[1].imm > 7)
10660 narrow = FALSE;
10661
10662 if (Rn != Rm)
10663 narrow = FALSE;
10664
10665 switch (inst.operands[1].shift_kind)
10666 {
10667 case SHIFT_LSL:
10668 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10669 break;
10670 case SHIFT_ASR:
10671 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10672 break;
10673 case SHIFT_LSR:
10674 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10675 break;
10676 case SHIFT_ROR:
10677 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10678 break;
10679 default:
10680 abort ();
10681 }
10682
10683 inst.instruction = opcode;
10684 if (narrow)
10685 {
10686 inst.instruction |= Rn;
10687 inst.instruction |= inst.operands[1].imm << 3;
10688 }
10689 else
10690 {
10691 if (flags)
10692 inst.instruction |= CONDS_BIT;
10693
10694 inst.instruction |= Rn << 8;
10695 inst.instruction |= Rm << 16;
10696 inst.instruction |= inst.operands[1].imm;
10697 }
10698 }
10699 else if (!narrow)
10700 {
10701 /* Some mov with immediate shift have narrow variants.
10702 Register shifts are handled above. */
10703 if (low_regs && inst.operands[1].shifted
10704 && (inst.instruction == T_MNEM_mov
10705 || inst.instruction == T_MNEM_movs))
10706 {
10707 if (in_it_block ())
10708 narrow = (inst.instruction == T_MNEM_mov);
10709 else
10710 narrow = (inst.instruction == T_MNEM_movs);
10711 }
10712
10713 if (narrow)
10714 {
10715 switch (inst.operands[1].shift_kind)
10716 {
10717 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10718 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10719 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10720 default: narrow = FALSE; break;
10721 }
10722 }
10723
10724 if (narrow)
10725 {
10726 inst.instruction |= Rn;
10727 inst.instruction |= Rm << 3;
10728 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10729 }
10730 else
10731 {
10732 inst.instruction = THUMB_OP32 (inst.instruction);
10733 inst.instruction |= Rn << r0off;
10734 encode_thumb32_shifted_operand (1);
10735 }
10736 }
10737 else
10738 switch (inst.instruction)
10739 {
10740 case T_MNEM_mov:
10741 inst.instruction = T_OPCODE_MOV_HR;
10742 inst.instruction |= (Rn & 0x8) << 4;
10743 inst.instruction |= (Rn & 0x7);
10744 inst.instruction |= Rm << 3;
10745 break;
10746
10747 case T_MNEM_movs:
10748 /* We know we have low registers at this point.
10749 Generate LSLS Rd, Rs, #0. */
10750 inst.instruction = T_OPCODE_LSL_I;
10751 inst.instruction |= Rn;
10752 inst.instruction |= Rm << 3;
10753 break;
10754
10755 case T_MNEM_cmp:
10756 if (low_regs)
10757 {
10758 inst.instruction = T_OPCODE_CMP_LR;
10759 inst.instruction |= Rn;
10760 inst.instruction |= Rm << 3;
10761 }
10762 else
10763 {
10764 inst.instruction = T_OPCODE_CMP_HR;
10765 inst.instruction |= (Rn & 0x8) << 4;
10766 inst.instruction |= (Rn & 0x7);
10767 inst.instruction |= Rm << 3;
10768 }
10769 break;
10770 }
10771 return;
10772 }
10773
10774 inst.instruction = THUMB_OP16 (inst.instruction);
10775
10776 /* PR 10443: Do not silently ignore shifted operands. */
10777 constraint (inst.operands[1].shifted,
10778 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10779
10780 if (inst.operands[1].isreg)
10781 {
10782 if (Rn < 8 && Rm < 8)
10783 {
10784 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10785 since a MOV instruction produces unpredictable results. */
10786 if (inst.instruction == T_OPCODE_MOV_I8)
10787 inst.instruction = T_OPCODE_ADD_I3;
10788 else
10789 inst.instruction = T_OPCODE_CMP_LR;
10790
10791 inst.instruction |= Rn;
10792 inst.instruction |= Rm << 3;
10793 }
10794 else
10795 {
10796 if (inst.instruction == T_OPCODE_MOV_I8)
10797 inst.instruction = T_OPCODE_MOV_HR;
10798 else
10799 inst.instruction = T_OPCODE_CMP_HR;
10800 do_t_cpy ();
10801 }
10802 }
10803 else
10804 {
10805 constraint (Rn > 7,
10806 _("only lo regs allowed with immediate"));
10807 inst.instruction |= Rn << 8;
10808 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10809 }
10810 }
10811
10812 static void
10813 do_t_mov16 (void)
10814 {
10815 unsigned Rd;
10816 bfd_vma imm;
10817 bfd_boolean top;
10818
10819 top = (inst.instruction & 0x00800000) != 0;
10820 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10821 {
10822 constraint (top, _(":lower16: not allowed this instruction"));
10823 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10824 }
10825 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10826 {
10827 constraint (!top, _(":upper16: not allowed this instruction"));
10828 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10829 }
10830
10831 Rd = inst.operands[0].reg;
10832 reject_bad_reg (Rd);
10833
10834 inst.instruction |= Rd << 8;
10835 if (inst.reloc.type == BFD_RELOC_UNUSED)
10836 {
10837 imm = inst.reloc.exp.X_add_number;
10838 inst.instruction |= (imm & 0xf000) << 4;
10839 inst.instruction |= (imm & 0x0800) << 15;
10840 inst.instruction |= (imm & 0x0700) << 4;
10841 inst.instruction |= (imm & 0x00ff);
10842 }
10843 }
10844
10845 static void
10846 do_t_mvn_tst (void)
10847 {
10848 unsigned Rn, Rm;
10849
10850 Rn = inst.operands[0].reg;
10851 Rm = inst.operands[1].reg;
10852
10853 if (inst.instruction == T_MNEM_cmp
10854 || inst.instruction == T_MNEM_cmn)
10855 constraint (Rn == REG_PC, BAD_PC);
10856 else
10857 reject_bad_reg (Rn);
10858 reject_bad_reg (Rm);
10859
10860 if (unified_syntax)
10861 {
10862 int r0off = (inst.instruction == T_MNEM_mvn
10863 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10864 bfd_boolean narrow;
10865
10866 if (inst.size_req == 4
10867 || inst.instruction > 0xffff
10868 || inst.operands[1].shifted
10869 || Rn > 7 || Rm > 7)
10870 narrow = FALSE;
10871 else if (inst.instruction == T_MNEM_cmn)
10872 narrow = TRUE;
10873 else if (THUMB_SETS_FLAGS (inst.instruction))
10874 narrow = !in_it_block ();
10875 else
10876 narrow = in_it_block ();
10877
10878 if (!inst.operands[1].isreg)
10879 {
10880 /* For an immediate, we always generate a 32-bit opcode;
10881 section relaxation will shrink it later if possible. */
10882 if (inst.instruction < 0xffff)
10883 inst.instruction = THUMB_OP32 (inst.instruction);
10884 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10885 inst.instruction |= Rn << r0off;
10886 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10887 }
10888 else
10889 {
10890 /* See if we can do this with a 16-bit instruction. */
10891 if (narrow)
10892 {
10893 inst.instruction = THUMB_OP16 (inst.instruction);
10894 inst.instruction |= Rn;
10895 inst.instruction |= Rm << 3;
10896 }
10897 else
10898 {
10899 constraint (inst.operands[1].shifted
10900 && inst.operands[1].immisreg,
10901 _("shift must be constant"));
10902 if (inst.instruction < 0xffff)
10903 inst.instruction = THUMB_OP32 (inst.instruction);
10904 inst.instruction |= Rn << r0off;
10905 encode_thumb32_shifted_operand (1);
10906 }
10907 }
10908 }
10909 else
10910 {
10911 constraint (inst.instruction > 0xffff
10912 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10913 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10914 _("unshifted register required"));
10915 constraint (Rn > 7 || Rm > 7,
10916 BAD_HIREG);
10917
10918 inst.instruction = THUMB_OP16 (inst.instruction);
10919 inst.instruction |= Rn;
10920 inst.instruction |= Rm << 3;
10921 }
10922 }
10923
10924 static void
10925 do_t_mrs (void)
10926 {
10927 unsigned Rd;
10928
10929 if (do_vfp_nsyn_mrs () == SUCCESS)
10930 return;
10931
10932 Rd = inst.operands[0].reg;
10933 reject_bad_reg (Rd);
10934 inst.instruction |= Rd << 8;
10935
10936 if (inst.operands[1].isreg)
10937 {
10938 unsigned br = inst.operands[1].reg;
10939 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
10940 as_bad (_("bad register for mrs"));
10941
10942 inst.instruction |= br & (0xf << 16);
10943 inst.instruction |= (br & 0x300) >> 4;
10944 inst.instruction |= (br & SPSR_BIT) >> 2;
10945 }
10946 else
10947 {
10948 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10949
10950 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
10951 constraint (flags != 0, _("selected processor does not support "
10952 "requested special purpose register"));
10953 else
10954 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
10955 devices). */
10956 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10957 _("'APSR', 'CPSR' or 'SPSR' expected"));
10958
10959 inst.instruction |= (flags & SPSR_BIT) >> 2;
10960 inst.instruction |= inst.operands[1].imm & 0xff;
10961 inst.instruction |= 0xf0000;
10962 }
10963 }
10964
10965 static void
10966 do_t_msr (void)
10967 {
10968 int flags;
10969 unsigned Rn;
10970
10971 if (do_vfp_nsyn_msr () == SUCCESS)
10972 return;
10973
10974 constraint (!inst.operands[1].isreg,
10975 _("Thumb encoding does not support an immediate here"));
10976
10977 if (inst.operands[0].isreg)
10978 flags = (int)(inst.operands[0].reg);
10979 else
10980 flags = inst.operands[0].imm;
10981
10982 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
10983 {
10984 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10985
10986 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
10987 && (bits & ~(PSR_s | PSR_f)) != 0)
10988 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
10989 && bits != PSR_f),
10990 _("selected processor does not support requested special "
10991 "purpose register"));
10992 }
10993 else
10994 constraint ((flags & 0xff) != 0, _("selected processor does not support "
10995 "requested special purpose register"));
10996
10997 Rn = inst.operands[1].reg;
10998 reject_bad_reg (Rn);
10999
11000 inst.instruction |= (flags & SPSR_BIT) >> 2;
11001 inst.instruction |= (flags & 0xf0000) >> 8;
11002 inst.instruction |= (flags & 0x300) >> 4;
11003 inst.instruction |= (flags & 0xff);
11004 inst.instruction |= Rn << 16;
11005 }
11006
11007 static void
11008 do_t_mul (void)
11009 {
11010 bfd_boolean narrow;
11011 unsigned Rd, Rn, Rm;
11012
11013 if (!inst.operands[2].present)
11014 inst.operands[2].reg = inst.operands[0].reg;
11015
11016 Rd = inst.operands[0].reg;
11017 Rn = inst.operands[1].reg;
11018 Rm = inst.operands[2].reg;
11019
11020 if (unified_syntax)
11021 {
11022 if (inst.size_req == 4
11023 || (Rd != Rn
11024 && Rd != Rm)
11025 || Rn > 7
11026 || Rm > 7)
11027 narrow = FALSE;
11028 else if (inst.instruction == T_MNEM_muls)
11029 narrow = !in_it_block ();
11030 else
11031 narrow = in_it_block ();
11032 }
11033 else
11034 {
11035 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11036 constraint (Rn > 7 || Rm > 7,
11037 BAD_HIREG);
11038 narrow = TRUE;
11039 }
11040
11041 if (narrow)
11042 {
11043 /* 16-bit MULS/Conditional MUL. */
11044 inst.instruction = THUMB_OP16 (inst.instruction);
11045 inst.instruction |= Rd;
11046
11047 if (Rd == Rn)
11048 inst.instruction |= Rm << 3;
11049 else if (Rd == Rm)
11050 inst.instruction |= Rn << 3;
11051 else
11052 constraint (1, _("dest must overlap one source register"));
11053 }
11054 else
11055 {
11056 constraint (inst.instruction != T_MNEM_mul,
11057 _("Thumb-2 MUL must not set flags"));
11058 /* 32-bit MUL. */
11059 inst.instruction = THUMB_OP32 (inst.instruction);
11060 inst.instruction |= Rd << 8;
11061 inst.instruction |= Rn << 16;
11062 inst.instruction |= Rm << 0;
11063
11064 reject_bad_reg (Rd);
11065 reject_bad_reg (Rn);
11066 reject_bad_reg (Rm);
11067 }
11068 }
11069
11070 static void
11071 do_t_mull (void)
11072 {
11073 unsigned RdLo, RdHi, Rn, Rm;
11074
11075 RdLo = inst.operands[0].reg;
11076 RdHi = inst.operands[1].reg;
11077 Rn = inst.operands[2].reg;
11078 Rm = inst.operands[3].reg;
11079
11080 reject_bad_reg (RdLo);
11081 reject_bad_reg (RdHi);
11082 reject_bad_reg (Rn);
11083 reject_bad_reg (Rm);
11084
11085 inst.instruction |= RdLo << 12;
11086 inst.instruction |= RdHi << 8;
11087 inst.instruction |= Rn << 16;
11088 inst.instruction |= Rm;
11089
11090 if (RdLo == RdHi)
11091 as_tsktsk (_("rdhi and rdlo must be different"));
11092 }
11093
11094 static void
11095 do_t_nop (void)
11096 {
11097 set_it_insn_type (NEUTRAL_IT_INSN);
11098
11099 if (unified_syntax)
11100 {
11101 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11102 {
11103 inst.instruction = THUMB_OP32 (inst.instruction);
11104 inst.instruction |= inst.operands[0].imm;
11105 }
11106 else
11107 {
11108 /* PR9722: Check for Thumb2 availability before
11109 generating a thumb2 nop instruction. */
11110 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11111 {
11112 inst.instruction = THUMB_OP16 (inst.instruction);
11113 inst.instruction |= inst.operands[0].imm << 4;
11114 }
11115 else
11116 inst.instruction = 0x46c0;
11117 }
11118 }
11119 else
11120 {
11121 constraint (inst.operands[0].present,
11122 _("Thumb does not support NOP with hints"));
11123 inst.instruction = 0x46c0;
11124 }
11125 }
11126
11127 static void
11128 do_t_neg (void)
11129 {
11130 if (unified_syntax)
11131 {
11132 bfd_boolean narrow;
11133
11134 if (THUMB_SETS_FLAGS (inst.instruction))
11135 narrow = !in_it_block ();
11136 else
11137 narrow = in_it_block ();
11138 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11139 narrow = FALSE;
11140 if (inst.size_req == 4)
11141 narrow = FALSE;
11142
11143 if (!narrow)
11144 {
11145 inst.instruction = THUMB_OP32 (inst.instruction);
11146 inst.instruction |= inst.operands[0].reg << 8;
11147 inst.instruction |= inst.operands[1].reg << 16;
11148 }
11149 else
11150 {
11151 inst.instruction = THUMB_OP16 (inst.instruction);
11152 inst.instruction |= inst.operands[0].reg;
11153 inst.instruction |= inst.operands[1].reg << 3;
11154 }
11155 }
11156 else
11157 {
11158 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11159 BAD_HIREG);
11160 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11161
11162 inst.instruction = THUMB_OP16 (inst.instruction);
11163 inst.instruction |= inst.operands[0].reg;
11164 inst.instruction |= inst.operands[1].reg << 3;
11165 }
11166 }
11167
11168 static void
11169 do_t_orn (void)
11170 {
11171 unsigned Rd, Rn;
11172
11173 Rd = inst.operands[0].reg;
11174 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11175
11176 reject_bad_reg (Rd);
11177 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11178 reject_bad_reg (Rn);
11179
11180 inst.instruction |= Rd << 8;
11181 inst.instruction |= Rn << 16;
11182
11183 if (!inst.operands[2].isreg)
11184 {
11185 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11186 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11187 }
11188 else
11189 {
11190 unsigned Rm;
11191
11192 Rm = inst.operands[2].reg;
11193 reject_bad_reg (Rm);
11194
11195 constraint (inst.operands[2].shifted
11196 && inst.operands[2].immisreg,
11197 _("shift must be constant"));
11198 encode_thumb32_shifted_operand (2);
11199 }
11200 }
11201
11202 static void
11203 do_t_pkhbt (void)
11204 {
11205 unsigned Rd, Rn, Rm;
11206
11207 Rd = inst.operands[0].reg;
11208 Rn = inst.operands[1].reg;
11209 Rm = inst.operands[2].reg;
11210
11211 reject_bad_reg (Rd);
11212 reject_bad_reg (Rn);
11213 reject_bad_reg (Rm);
11214
11215 inst.instruction |= Rd << 8;
11216 inst.instruction |= Rn << 16;
11217 inst.instruction |= Rm;
11218 if (inst.operands[3].present)
11219 {
11220 unsigned int val = inst.reloc.exp.X_add_number;
11221 constraint (inst.reloc.exp.X_op != O_constant,
11222 _("expression too complex"));
11223 inst.instruction |= (val & 0x1c) << 10;
11224 inst.instruction |= (val & 0x03) << 6;
11225 }
11226 }
11227
11228 static void
11229 do_t_pkhtb (void)
11230 {
11231 if (!inst.operands[3].present)
11232 {
11233 unsigned Rtmp;
11234
11235 inst.instruction &= ~0x00000020;
11236
11237 /* PR 10168. Swap the Rm and Rn registers. */
11238 Rtmp = inst.operands[1].reg;
11239 inst.operands[1].reg = inst.operands[2].reg;
11240 inst.operands[2].reg = Rtmp;
11241 }
11242 do_t_pkhbt ();
11243 }
11244
11245 static void
11246 do_t_pld (void)
11247 {
11248 if (inst.operands[0].immisreg)
11249 reject_bad_reg (inst.operands[0].imm);
11250
11251 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11252 }
11253
11254 static void
11255 do_t_push_pop (void)
11256 {
11257 unsigned mask;
11258
11259 constraint (inst.operands[0].writeback,
11260 _("push/pop do not support {reglist}^"));
11261 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11262 _("expression too complex"));
11263
11264 mask = inst.operands[0].imm;
11265 if ((mask & ~0xff) == 0)
11266 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11267 else if ((inst.instruction == T_MNEM_push
11268 && (mask & ~0xff) == 1 << REG_LR)
11269 || (inst.instruction == T_MNEM_pop
11270 && (mask & ~0xff) == 1 << REG_PC))
11271 {
11272 inst.instruction = THUMB_OP16 (inst.instruction);
11273 inst.instruction |= THUMB_PP_PC_LR;
11274 inst.instruction |= mask & 0xff;
11275 }
11276 else if (unified_syntax)
11277 {
11278 inst.instruction = THUMB_OP32 (inst.instruction);
11279 encode_thumb2_ldmstm (13, mask, TRUE);
11280 }
11281 else
11282 {
11283 inst.error = _("invalid register list to push/pop instruction");
11284 return;
11285 }
11286 }
11287
11288 static void
11289 do_t_rbit (void)
11290 {
11291 unsigned Rd, Rm;
11292
11293 Rd = inst.operands[0].reg;
11294 Rm = inst.operands[1].reg;
11295
11296 reject_bad_reg (Rd);
11297 reject_bad_reg (Rm);
11298
11299 inst.instruction |= Rd << 8;
11300 inst.instruction |= Rm << 16;
11301 inst.instruction |= Rm;
11302 }
11303
11304 static void
11305 do_t_rev (void)
11306 {
11307 unsigned Rd, Rm;
11308
11309 Rd = inst.operands[0].reg;
11310 Rm = inst.operands[1].reg;
11311
11312 reject_bad_reg (Rd);
11313 reject_bad_reg (Rm);
11314
11315 if (Rd <= 7 && Rm <= 7
11316 && inst.size_req != 4)
11317 {
11318 inst.instruction = THUMB_OP16 (inst.instruction);
11319 inst.instruction |= Rd;
11320 inst.instruction |= Rm << 3;
11321 }
11322 else if (unified_syntax)
11323 {
11324 inst.instruction = THUMB_OP32 (inst.instruction);
11325 inst.instruction |= Rd << 8;
11326 inst.instruction |= Rm << 16;
11327 inst.instruction |= Rm;
11328 }
11329 else
11330 inst.error = BAD_HIREG;
11331 }
11332
11333 static void
11334 do_t_rrx (void)
11335 {
11336 unsigned Rd, Rm;
11337
11338 Rd = inst.operands[0].reg;
11339 Rm = inst.operands[1].reg;
11340
11341 reject_bad_reg (Rd);
11342 reject_bad_reg (Rm);
11343
11344 inst.instruction |= Rd << 8;
11345 inst.instruction |= Rm;
11346 }
11347
11348 static void
11349 do_t_rsb (void)
11350 {
11351 unsigned Rd, Rs;
11352
11353 Rd = inst.operands[0].reg;
11354 Rs = (inst.operands[1].present
11355 ? inst.operands[1].reg /* Rd, Rs, foo */
11356 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11357
11358 reject_bad_reg (Rd);
11359 reject_bad_reg (Rs);
11360 if (inst.operands[2].isreg)
11361 reject_bad_reg (inst.operands[2].reg);
11362
11363 inst.instruction |= Rd << 8;
11364 inst.instruction |= Rs << 16;
11365 if (!inst.operands[2].isreg)
11366 {
11367 bfd_boolean narrow;
11368
11369 if ((inst.instruction & 0x00100000) != 0)
11370 narrow = !in_it_block ();
11371 else
11372 narrow = in_it_block ();
11373
11374 if (Rd > 7 || Rs > 7)
11375 narrow = FALSE;
11376
11377 if (inst.size_req == 4 || !unified_syntax)
11378 narrow = FALSE;
11379
11380 if (inst.reloc.exp.X_op != O_constant
11381 || inst.reloc.exp.X_add_number != 0)
11382 narrow = FALSE;
11383
11384 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11385 relaxation, but it doesn't seem worth the hassle. */
11386 if (narrow)
11387 {
11388 inst.reloc.type = BFD_RELOC_UNUSED;
11389 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11390 inst.instruction |= Rs << 3;
11391 inst.instruction |= Rd;
11392 }
11393 else
11394 {
11395 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11396 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11397 }
11398 }
11399 else
11400 encode_thumb32_shifted_operand (2);
11401 }
11402
11403 static void
11404 do_t_setend (void)
11405 {
11406 set_it_insn_type (OUTSIDE_IT_INSN);
11407 if (inst.operands[0].imm)
11408 inst.instruction |= 0x8;
11409 }
11410
11411 static void
11412 do_t_shift (void)
11413 {
11414 if (!inst.operands[1].present)
11415 inst.operands[1].reg = inst.operands[0].reg;
11416
11417 if (unified_syntax)
11418 {
11419 bfd_boolean narrow;
11420 int shift_kind;
11421
11422 switch (inst.instruction)
11423 {
11424 case T_MNEM_asr:
11425 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11426 case T_MNEM_lsl:
11427 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11428 case T_MNEM_lsr:
11429 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11430 case T_MNEM_ror:
11431 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11432 default: abort ();
11433 }
11434
11435 if (THUMB_SETS_FLAGS (inst.instruction))
11436 narrow = !in_it_block ();
11437 else
11438 narrow = in_it_block ();
11439 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11440 narrow = FALSE;
11441 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11442 narrow = FALSE;
11443 if (inst.operands[2].isreg
11444 && (inst.operands[1].reg != inst.operands[0].reg
11445 || inst.operands[2].reg > 7))
11446 narrow = FALSE;
11447 if (inst.size_req == 4)
11448 narrow = FALSE;
11449
11450 reject_bad_reg (inst.operands[0].reg);
11451 reject_bad_reg (inst.operands[1].reg);
11452
11453 if (!narrow)
11454 {
11455 if (inst.operands[2].isreg)
11456 {
11457 reject_bad_reg (inst.operands[2].reg);
11458 inst.instruction = THUMB_OP32 (inst.instruction);
11459 inst.instruction |= inst.operands[0].reg << 8;
11460 inst.instruction |= inst.operands[1].reg << 16;
11461 inst.instruction |= inst.operands[2].reg;
11462 }
11463 else
11464 {
11465 inst.operands[1].shifted = 1;
11466 inst.operands[1].shift_kind = shift_kind;
11467 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11468 ? T_MNEM_movs : T_MNEM_mov);
11469 inst.instruction |= inst.operands[0].reg << 8;
11470 encode_thumb32_shifted_operand (1);
11471 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11472 inst.reloc.type = BFD_RELOC_UNUSED;
11473 }
11474 }
11475 else
11476 {
11477 if (inst.operands[2].isreg)
11478 {
11479 switch (shift_kind)
11480 {
11481 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11482 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11483 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11484 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11485 default: abort ();
11486 }
11487
11488 inst.instruction |= inst.operands[0].reg;
11489 inst.instruction |= inst.operands[2].reg << 3;
11490 }
11491 else
11492 {
11493 switch (shift_kind)
11494 {
11495 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11496 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11497 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11498 default: abort ();
11499 }
11500 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11501 inst.instruction |= inst.operands[0].reg;
11502 inst.instruction |= inst.operands[1].reg << 3;
11503 }
11504 }
11505 }
11506 else
11507 {
11508 constraint (inst.operands[0].reg > 7
11509 || inst.operands[1].reg > 7, BAD_HIREG);
11510 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11511
11512 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11513 {
11514 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11515 constraint (inst.operands[0].reg != inst.operands[1].reg,
11516 _("source1 and dest must be same register"));
11517
11518 switch (inst.instruction)
11519 {
11520 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11521 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11522 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11523 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11524 default: abort ();
11525 }
11526
11527 inst.instruction |= inst.operands[0].reg;
11528 inst.instruction |= inst.operands[2].reg << 3;
11529 }
11530 else
11531 {
11532 switch (inst.instruction)
11533 {
11534 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11535 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11536 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11537 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11538 default: abort ();
11539 }
11540 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11541 inst.instruction |= inst.operands[0].reg;
11542 inst.instruction |= inst.operands[1].reg << 3;
11543 }
11544 }
11545 }
11546
11547 static void
11548 do_t_simd (void)
11549 {
11550 unsigned Rd, Rn, Rm;
11551
11552 Rd = inst.operands[0].reg;
11553 Rn = inst.operands[1].reg;
11554 Rm = inst.operands[2].reg;
11555
11556 reject_bad_reg (Rd);
11557 reject_bad_reg (Rn);
11558 reject_bad_reg (Rm);
11559
11560 inst.instruction |= Rd << 8;
11561 inst.instruction |= Rn << 16;
11562 inst.instruction |= Rm;
11563 }
11564
11565 static void
11566 do_t_simd2 (void)
11567 {
11568 unsigned Rd, Rn, Rm;
11569
11570 Rd = inst.operands[0].reg;
11571 Rm = inst.operands[1].reg;
11572 Rn = inst.operands[2].reg;
11573
11574 reject_bad_reg (Rd);
11575 reject_bad_reg (Rn);
11576 reject_bad_reg (Rm);
11577
11578 inst.instruction |= Rd << 8;
11579 inst.instruction |= Rn << 16;
11580 inst.instruction |= Rm;
11581 }
11582
11583 static void
11584 do_t_smc (void)
11585 {
11586 unsigned int value = inst.reloc.exp.X_add_number;
11587 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11588 _("SMC is not permitted on this architecture"));
11589 constraint (inst.reloc.exp.X_op != O_constant,
11590 _("expression too complex"));
11591 inst.reloc.type = BFD_RELOC_UNUSED;
11592 inst.instruction |= (value & 0xf000) >> 12;
11593 inst.instruction |= (value & 0x0ff0);
11594 inst.instruction |= (value & 0x000f) << 16;
11595 }
11596
11597 static void
11598 do_t_hvc (void)
11599 {
11600 unsigned int value = inst.reloc.exp.X_add_number;
11601
11602 inst.reloc.type = BFD_RELOC_UNUSED;
11603 inst.instruction |= (value & 0x0fff);
11604 inst.instruction |= (value & 0xf000) << 4;
11605 }
11606
11607 static void
11608 do_t_ssat_usat (int bias)
11609 {
11610 unsigned Rd, Rn;
11611
11612 Rd = inst.operands[0].reg;
11613 Rn = inst.operands[2].reg;
11614
11615 reject_bad_reg (Rd);
11616 reject_bad_reg (Rn);
11617
11618 inst.instruction |= Rd << 8;
11619 inst.instruction |= inst.operands[1].imm - bias;
11620 inst.instruction |= Rn << 16;
11621
11622 if (inst.operands[3].present)
11623 {
11624 offsetT shift_amount = inst.reloc.exp.X_add_number;
11625
11626 inst.reloc.type = BFD_RELOC_UNUSED;
11627
11628 constraint (inst.reloc.exp.X_op != O_constant,
11629 _("expression too complex"));
11630
11631 if (shift_amount != 0)
11632 {
11633 constraint (shift_amount > 31,
11634 _("shift expression is too large"));
11635
11636 if (inst.operands[3].shift_kind == SHIFT_ASR)
11637 inst.instruction |= 0x00200000; /* sh bit. */
11638
11639 inst.instruction |= (shift_amount & 0x1c) << 10;
11640 inst.instruction |= (shift_amount & 0x03) << 6;
11641 }
11642 }
11643 }
11644
11645 static void
11646 do_t_ssat (void)
11647 {
11648 do_t_ssat_usat (1);
11649 }
11650
11651 static void
11652 do_t_ssat16 (void)
11653 {
11654 unsigned Rd, Rn;
11655
11656 Rd = inst.operands[0].reg;
11657 Rn = inst.operands[2].reg;
11658
11659 reject_bad_reg (Rd);
11660 reject_bad_reg (Rn);
11661
11662 inst.instruction |= Rd << 8;
11663 inst.instruction |= inst.operands[1].imm - 1;
11664 inst.instruction |= Rn << 16;
11665 }
11666
11667 static void
11668 do_t_strex (void)
11669 {
11670 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11671 || inst.operands[2].postind || inst.operands[2].writeback
11672 || inst.operands[2].immisreg || inst.operands[2].shifted
11673 || inst.operands[2].negative,
11674 BAD_ADDR_MODE);
11675
11676 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11677
11678 inst.instruction |= inst.operands[0].reg << 8;
11679 inst.instruction |= inst.operands[1].reg << 12;
11680 inst.instruction |= inst.operands[2].reg << 16;
11681 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11682 }
11683
11684 static void
11685 do_t_strexd (void)
11686 {
11687 if (!inst.operands[2].present)
11688 inst.operands[2].reg = inst.operands[1].reg + 1;
11689
11690 constraint (inst.operands[0].reg == inst.operands[1].reg
11691 || inst.operands[0].reg == inst.operands[2].reg
11692 || inst.operands[0].reg == inst.operands[3].reg,
11693 BAD_OVERLAP);
11694
11695 inst.instruction |= inst.operands[0].reg;
11696 inst.instruction |= inst.operands[1].reg << 12;
11697 inst.instruction |= inst.operands[2].reg << 8;
11698 inst.instruction |= inst.operands[3].reg << 16;
11699 }
11700
11701 static void
11702 do_t_sxtah (void)
11703 {
11704 unsigned Rd, Rn, Rm;
11705
11706 Rd = inst.operands[0].reg;
11707 Rn = inst.operands[1].reg;
11708 Rm = inst.operands[2].reg;
11709
11710 reject_bad_reg (Rd);
11711 reject_bad_reg (Rn);
11712 reject_bad_reg (Rm);
11713
11714 inst.instruction |= Rd << 8;
11715 inst.instruction |= Rn << 16;
11716 inst.instruction |= Rm;
11717 inst.instruction |= inst.operands[3].imm << 4;
11718 }
11719
11720 static void
11721 do_t_sxth (void)
11722 {
11723 unsigned Rd, Rm;
11724
11725 Rd = inst.operands[0].reg;
11726 Rm = inst.operands[1].reg;
11727
11728 reject_bad_reg (Rd);
11729 reject_bad_reg (Rm);
11730
11731 if (inst.instruction <= 0xffff
11732 && inst.size_req != 4
11733 && Rd <= 7 && Rm <= 7
11734 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11735 {
11736 inst.instruction = THUMB_OP16 (inst.instruction);
11737 inst.instruction |= Rd;
11738 inst.instruction |= Rm << 3;
11739 }
11740 else if (unified_syntax)
11741 {
11742 if (inst.instruction <= 0xffff)
11743 inst.instruction = THUMB_OP32 (inst.instruction);
11744 inst.instruction |= Rd << 8;
11745 inst.instruction |= Rm;
11746 inst.instruction |= inst.operands[2].imm << 4;
11747 }
11748 else
11749 {
11750 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11751 _("Thumb encoding does not support rotation"));
11752 constraint (1, BAD_HIREG);
11753 }
11754 }
11755
11756 static void
11757 do_t_swi (void)
11758 {
11759 /* We have to do the following check manually as ARM_EXT_OS only applies
11760 to ARM_EXT_V6M. */
11761 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11762 {
11763 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
11764 /* This only applies to the v6m howver, not later architectures. */
11765 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
11766 as_bad (_("SVC is not permitted on this architecture"));
11767 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11768 }
11769
11770 inst.reloc.type = BFD_RELOC_ARM_SWI;
11771 }
11772
11773 static void
11774 do_t_tb (void)
11775 {
11776 unsigned Rn, Rm;
11777 int half;
11778
11779 half = (inst.instruction & 0x10) != 0;
11780 set_it_insn_type_last ();
11781 constraint (inst.operands[0].immisreg,
11782 _("instruction requires register index"));
11783
11784 Rn = inst.operands[0].reg;
11785 Rm = inst.operands[0].imm;
11786
11787 constraint (Rn == REG_SP, BAD_SP);
11788 reject_bad_reg (Rm);
11789
11790 constraint (!half && inst.operands[0].shifted,
11791 _("instruction does not allow shifted index"));
11792 inst.instruction |= (Rn << 16) | Rm;
11793 }
11794
11795 static void
11796 do_t_usat (void)
11797 {
11798 do_t_ssat_usat (0);
11799 }
11800
11801 static void
11802 do_t_usat16 (void)
11803 {
11804 unsigned Rd, Rn;
11805
11806 Rd = inst.operands[0].reg;
11807 Rn = inst.operands[2].reg;
11808
11809 reject_bad_reg (Rd);
11810 reject_bad_reg (Rn);
11811
11812 inst.instruction |= Rd << 8;
11813 inst.instruction |= inst.operands[1].imm;
11814 inst.instruction |= Rn << 16;
11815 }
11816
11817 /* Neon instruction encoder helpers. */
11818
11819 /* Encodings for the different types for various Neon opcodes. */
11820
11821 /* An "invalid" code for the following tables. */
11822 #define N_INV -1u
11823
11824 struct neon_tab_entry
11825 {
11826 unsigned integer;
11827 unsigned float_or_poly;
11828 unsigned scalar_or_imm;
11829 };
11830
11831 /* Map overloaded Neon opcodes to their respective encodings. */
11832 #define NEON_ENC_TAB \
11833 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11834 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11835 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11836 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11837 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11838 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11839 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11840 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11841 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11842 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11843 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11844 /* Register variants of the following two instructions are encoded as
11845 vcge / vcgt with the operands reversed. */ \
11846 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11847 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11848 X(vfma, N_INV, 0x0000c10, N_INV), \
11849 X(vfms, N_INV, 0x0200c10, N_INV), \
11850 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11851 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11852 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11853 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11854 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11855 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11856 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11857 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11858 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11859 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11860 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11861 X(vshl, 0x0000400, N_INV, 0x0800510), \
11862 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11863 X(vand, 0x0000110, N_INV, 0x0800030), \
11864 X(vbic, 0x0100110, N_INV, 0x0800030), \
11865 X(veor, 0x1000110, N_INV, N_INV), \
11866 X(vorn, 0x0300110, N_INV, 0x0800010), \
11867 X(vorr, 0x0200110, N_INV, 0x0800010), \
11868 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11869 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11870 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11871 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11872 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11873 X(vst1, 0x0000000, 0x0800000, N_INV), \
11874 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11875 X(vst2, 0x0000100, 0x0800100, N_INV), \
11876 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11877 X(vst3, 0x0000200, 0x0800200, N_INV), \
11878 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11879 X(vst4, 0x0000300, 0x0800300, N_INV), \
11880 X(vmovn, 0x1b20200, N_INV, N_INV), \
11881 X(vtrn, 0x1b20080, N_INV, N_INV), \
11882 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11883 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11884 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11885 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11886 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11887 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11888 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11889 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11890 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11891 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11892 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11893
11894 enum neon_opc
11895 {
11896 #define X(OPC,I,F,S) N_MNEM_##OPC
11897 NEON_ENC_TAB
11898 #undef X
11899 };
11900
11901 static const struct neon_tab_entry neon_enc_tab[] =
11902 {
11903 #define X(OPC,I,F,S) { (I), (F), (S) }
11904 NEON_ENC_TAB
11905 #undef X
11906 };
11907
11908 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
11909 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11910 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11911 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11912 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11913 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11914 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11915 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11916 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11917 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11918 #define NEON_ENC_SINGLE_(X) \
11919 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11920 #define NEON_ENC_DOUBLE_(X) \
11921 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11922
11923 #define NEON_ENCODE(type, inst) \
11924 do \
11925 { \
11926 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11927 inst.is_neon = 1; \
11928 } \
11929 while (0)
11930
11931 #define check_neon_suffixes \
11932 do \
11933 { \
11934 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11935 { \
11936 as_bad (_("invalid neon suffix for non neon instruction")); \
11937 return; \
11938 } \
11939 } \
11940 while (0)
11941
11942 /* Define shapes for instruction operands. The following mnemonic characters
11943 are used in this table:
11944
11945 F - VFP S<n> register
11946 D - Neon D<n> register
11947 Q - Neon Q<n> register
11948 I - Immediate
11949 S - Scalar
11950 R - ARM register
11951 L - D<n> register list
11952
11953 This table is used to generate various data:
11954 - enumerations of the form NS_DDR to be used as arguments to
11955 neon_select_shape.
11956 - a table classifying shapes into single, double, quad, mixed.
11957 - a table used to drive neon_select_shape. */
11958
11959 #define NEON_SHAPE_DEF \
11960 X(3, (D, D, D), DOUBLE), \
11961 X(3, (Q, Q, Q), QUAD), \
11962 X(3, (D, D, I), DOUBLE), \
11963 X(3, (Q, Q, I), QUAD), \
11964 X(3, (D, D, S), DOUBLE), \
11965 X(3, (Q, Q, S), QUAD), \
11966 X(2, (D, D), DOUBLE), \
11967 X(2, (Q, Q), QUAD), \
11968 X(2, (D, S), DOUBLE), \
11969 X(2, (Q, S), QUAD), \
11970 X(2, (D, R), DOUBLE), \
11971 X(2, (Q, R), QUAD), \
11972 X(2, (D, I), DOUBLE), \
11973 X(2, (Q, I), QUAD), \
11974 X(3, (D, L, D), DOUBLE), \
11975 X(2, (D, Q), MIXED), \
11976 X(2, (Q, D), MIXED), \
11977 X(3, (D, Q, I), MIXED), \
11978 X(3, (Q, D, I), MIXED), \
11979 X(3, (Q, D, D), MIXED), \
11980 X(3, (D, Q, Q), MIXED), \
11981 X(3, (Q, Q, D), MIXED), \
11982 X(3, (Q, D, S), MIXED), \
11983 X(3, (D, Q, S), MIXED), \
11984 X(4, (D, D, D, I), DOUBLE), \
11985 X(4, (Q, Q, Q, I), QUAD), \
11986 X(2, (F, F), SINGLE), \
11987 X(3, (F, F, F), SINGLE), \
11988 X(2, (F, I), SINGLE), \
11989 X(2, (F, D), MIXED), \
11990 X(2, (D, F), MIXED), \
11991 X(3, (F, F, I), MIXED), \
11992 X(4, (R, R, F, F), SINGLE), \
11993 X(4, (F, F, R, R), SINGLE), \
11994 X(3, (D, R, R), DOUBLE), \
11995 X(3, (R, R, D), DOUBLE), \
11996 X(2, (S, R), SINGLE), \
11997 X(2, (R, S), SINGLE), \
11998 X(2, (F, R), SINGLE), \
11999 X(2, (R, F), SINGLE)
12000
12001 #define S2(A,B) NS_##A##B
12002 #define S3(A,B,C) NS_##A##B##C
12003 #define S4(A,B,C,D) NS_##A##B##C##D
12004
12005 #define X(N, L, C) S##N L
12006
12007 enum neon_shape
12008 {
12009 NEON_SHAPE_DEF,
12010 NS_NULL
12011 };
12012
12013 #undef X
12014 #undef S2
12015 #undef S3
12016 #undef S4
12017
12018 enum neon_shape_class
12019 {
12020 SC_SINGLE,
12021 SC_DOUBLE,
12022 SC_QUAD,
12023 SC_MIXED
12024 };
12025
12026 #define X(N, L, C) SC_##C
12027
12028 static enum neon_shape_class neon_shape_class[] =
12029 {
12030 NEON_SHAPE_DEF
12031 };
12032
12033 #undef X
12034
12035 enum neon_shape_el
12036 {
12037 SE_F,
12038 SE_D,
12039 SE_Q,
12040 SE_I,
12041 SE_S,
12042 SE_R,
12043 SE_L
12044 };
12045
12046 /* Register widths of above. */
12047 static unsigned neon_shape_el_size[] =
12048 {
12049 32,
12050 64,
12051 128,
12052 0,
12053 32,
12054 32,
12055 0
12056 };
12057
12058 struct neon_shape_info
12059 {
12060 unsigned els;
12061 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12062 };
12063
12064 #define S2(A,B) { SE_##A, SE_##B }
12065 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12066 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12067
12068 #define X(N, L, C) { N, S##N L }
12069
12070 static struct neon_shape_info neon_shape_tab[] =
12071 {
12072 NEON_SHAPE_DEF
12073 };
12074
12075 #undef X
12076 #undef S2
12077 #undef S3
12078 #undef S4
12079
12080 /* Bit masks used in type checking given instructions.
12081 'N_EQK' means the type must be the same as (or based on in some way) the key
12082 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12083 set, various other bits can be set as well in order to modify the meaning of
12084 the type constraint. */
12085
12086 enum neon_type_mask
12087 {
12088 N_S8 = 0x0000001,
12089 N_S16 = 0x0000002,
12090 N_S32 = 0x0000004,
12091 N_S64 = 0x0000008,
12092 N_U8 = 0x0000010,
12093 N_U16 = 0x0000020,
12094 N_U32 = 0x0000040,
12095 N_U64 = 0x0000080,
12096 N_I8 = 0x0000100,
12097 N_I16 = 0x0000200,
12098 N_I32 = 0x0000400,
12099 N_I64 = 0x0000800,
12100 N_8 = 0x0001000,
12101 N_16 = 0x0002000,
12102 N_32 = 0x0004000,
12103 N_64 = 0x0008000,
12104 N_P8 = 0x0010000,
12105 N_P16 = 0x0020000,
12106 N_F16 = 0x0040000,
12107 N_F32 = 0x0080000,
12108 N_F64 = 0x0100000,
12109 N_KEY = 0x1000000, /* Key element (main type specifier). */
12110 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12111 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12112 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12113 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12114 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12115 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12116 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12117 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12118 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12119 N_UTYP = 0,
12120 N_MAX_NONSPECIAL = N_F64
12121 };
12122
12123 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12124
12125 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12126 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12127 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12128 #define N_SUF_32 (N_SU_32 | N_F32)
12129 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12130 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12131
12132 /* Pass this as the first type argument to neon_check_type to ignore types
12133 altogether. */
12134 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12135
12136 /* Select a "shape" for the current instruction (describing register types or
12137 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12138 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12139 function of operand parsing, so this function doesn't need to be called.
12140 Shapes should be listed in order of decreasing length. */
12141
12142 static enum neon_shape
12143 neon_select_shape (enum neon_shape shape, ...)
12144 {
12145 va_list ap;
12146 enum neon_shape first_shape = shape;
12147
12148 /* Fix missing optional operands. FIXME: we don't know at this point how
12149 many arguments we should have, so this makes the assumption that we have
12150 > 1. This is true of all current Neon opcodes, I think, but may not be
12151 true in the future. */
12152 if (!inst.operands[1].present)
12153 inst.operands[1] = inst.operands[0];
12154
12155 va_start (ap, shape);
12156
12157 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12158 {
12159 unsigned j;
12160 int matches = 1;
12161
12162 for (j = 0; j < neon_shape_tab[shape].els; j++)
12163 {
12164 if (!inst.operands[j].present)
12165 {
12166 matches = 0;
12167 break;
12168 }
12169
12170 switch (neon_shape_tab[shape].el[j])
12171 {
12172 case SE_F:
12173 if (!(inst.operands[j].isreg
12174 && inst.operands[j].isvec
12175 && inst.operands[j].issingle
12176 && !inst.operands[j].isquad))
12177 matches = 0;
12178 break;
12179
12180 case SE_D:
12181 if (!(inst.operands[j].isreg
12182 && inst.operands[j].isvec
12183 && !inst.operands[j].isquad
12184 && !inst.operands[j].issingle))
12185 matches = 0;
12186 break;
12187
12188 case SE_R:
12189 if (!(inst.operands[j].isreg
12190 && !inst.operands[j].isvec))
12191 matches = 0;
12192 break;
12193
12194 case SE_Q:
12195 if (!(inst.operands[j].isreg
12196 && inst.operands[j].isvec
12197 && inst.operands[j].isquad
12198 && !inst.operands[j].issingle))
12199 matches = 0;
12200 break;
12201
12202 case SE_I:
12203 if (!(!inst.operands[j].isreg
12204 && !inst.operands[j].isscalar))
12205 matches = 0;
12206 break;
12207
12208 case SE_S:
12209 if (!(!inst.operands[j].isreg
12210 && inst.operands[j].isscalar))
12211 matches = 0;
12212 break;
12213
12214 case SE_L:
12215 break;
12216 }
12217 if (!matches)
12218 break;
12219 }
12220 if (matches)
12221 break;
12222 }
12223
12224 va_end (ap);
12225
12226 if (shape == NS_NULL && first_shape != NS_NULL)
12227 first_error (_("invalid instruction shape"));
12228
12229 return shape;
12230 }
12231
12232 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12233 means the Q bit should be set). */
12234
12235 static int
12236 neon_quad (enum neon_shape shape)
12237 {
12238 return neon_shape_class[shape] == SC_QUAD;
12239 }
12240
12241 static void
12242 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12243 unsigned *g_size)
12244 {
12245 /* Allow modification to be made to types which are constrained to be
12246 based on the key element, based on bits set alongside N_EQK. */
12247 if ((typebits & N_EQK) != 0)
12248 {
12249 if ((typebits & N_HLF) != 0)
12250 *g_size /= 2;
12251 else if ((typebits & N_DBL) != 0)
12252 *g_size *= 2;
12253 if ((typebits & N_SGN) != 0)
12254 *g_type = NT_signed;
12255 else if ((typebits & N_UNS) != 0)
12256 *g_type = NT_unsigned;
12257 else if ((typebits & N_INT) != 0)
12258 *g_type = NT_integer;
12259 else if ((typebits & N_FLT) != 0)
12260 *g_type = NT_float;
12261 else if ((typebits & N_SIZ) != 0)
12262 *g_type = NT_untyped;
12263 }
12264 }
12265
12266 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12267 operand type, i.e. the single type specified in a Neon instruction when it
12268 is the only one given. */
12269
12270 static struct neon_type_el
12271 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12272 {
12273 struct neon_type_el dest = *key;
12274
12275 gas_assert ((thisarg & N_EQK) != 0);
12276
12277 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12278
12279 return dest;
12280 }
12281
12282 /* Convert Neon type and size into compact bitmask representation. */
12283
12284 static enum neon_type_mask
12285 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12286 {
12287 switch (type)
12288 {
12289 case NT_untyped:
12290 switch (size)
12291 {
12292 case 8: return N_8;
12293 case 16: return N_16;
12294 case 32: return N_32;
12295 case 64: return N_64;
12296 default: ;
12297 }
12298 break;
12299
12300 case NT_integer:
12301 switch (size)
12302 {
12303 case 8: return N_I8;
12304 case 16: return N_I16;
12305 case 32: return N_I32;
12306 case 64: return N_I64;
12307 default: ;
12308 }
12309 break;
12310
12311 case NT_float:
12312 switch (size)
12313 {
12314 case 16: return N_F16;
12315 case 32: return N_F32;
12316 case 64: return N_F64;
12317 default: ;
12318 }
12319 break;
12320
12321 case NT_poly:
12322 switch (size)
12323 {
12324 case 8: return N_P8;
12325 case 16: return N_P16;
12326 default: ;
12327 }
12328 break;
12329
12330 case NT_signed:
12331 switch (size)
12332 {
12333 case 8: return N_S8;
12334 case 16: return N_S16;
12335 case 32: return N_S32;
12336 case 64: return N_S64;
12337 default: ;
12338 }
12339 break;
12340
12341 case NT_unsigned:
12342 switch (size)
12343 {
12344 case 8: return N_U8;
12345 case 16: return N_U16;
12346 case 32: return N_U32;
12347 case 64: return N_U64;
12348 default: ;
12349 }
12350 break;
12351
12352 default: ;
12353 }
12354
12355 return N_UTYP;
12356 }
12357
12358 /* Convert compact Neon bitmask type representation to a type and size. Only
12359 handles the case where a single bit is set in the mask. */
12360
12361 static int
12362 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12363 enum neon_type_mask mask)
12364 {
12365 if ((mask & N_EQK) != 0)
12366 return FAIL;
12367
12368 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12369 *size = 8;
12370 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12371 *size = 16;
12372 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12373 *size = 32;
12374 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12375 *size = 64;
12376 else
12377 return FAIL;
12378
12379 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12380 *type = NT_signed;
12381 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12382 *type = NT_unsigned;
12383 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12384 *type = NT_integer;
12385 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12386 *type = NT_untyped;
12387 else if ((mask & (N_P8 | N_P16)) != 0)
12388 *type = NT_poly;
12389 else if ((mask & (N_F32 | N_F64)) != 0)
12390 *type = NT_float;
12391 else
12392 return FAIL;
12393
12394 return SUCCESS;
12395 }
12396
12397 /* Modify a bitmask of allowed types. This is only needed for type
12398 relaxation. */
12399
12400 static unsigned
12401 modify_types_allowed (unsigned allowed, unsigned mods)
12402 {
12403 unsigned size;
12404 enum neon_el_type type;
12405 unsigned destmask;
12406 int i;
12407
12408 destmask = 0;
12409
12410 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12411 {
12412 if (el_type_of_type_chk (&type, &size,
12413 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12414 {
12415 neon_modify_type_size (mods, &type, &size);
12416 destmask |= type_chk_of_el_type (type, size);
12417 }
12418 }
12419
12420 return destmask;
12421 }
12422
12423 /* Check type and return type classification.
12424 The manual states (paraphrase): If one datatype is given, it indicates the
12425 type given in:
12426 - the second operand, if there is one
12427 - the operand, if there is no second operand
12428 - the result, if there are no operands.
12429 This isn't quite good enough though, so we use a concept of a "key" datatype
12430 which is set on a per-instruction basis, which is the one which matters when
12431 only one data type is written.
12432 Note: this function has side-effects (e.g. filling in missing operands). All
12433 Neon instructions should call it before performing bit encoding. */
12434
12435 static struct neon_type_el
12436 neon_check_type (unsigned els, enum neon_shape ns, ...)
12437 {
12438 va_list ap;
12439 unsigned i, pass, key_el = 0;
12440 unsigned types[NEON_MAX_TYPE_ELS];
12441 enum neon_el_type k_type = NT_invtype;
12442 unsigned k_size = -1u;
12443 struct neon_type_el badtype = {NT_invtype, -1};
12444 unsigned key_allowed = 0;
12445
12446 /* Optional registers in Neon instructions are always (not) in operand 1.
12447 Fill in the missing operand here, if it was omitted. */
12448 if (els > 1 && !inst.operands[1].present)
12449 inst.operands[1] = inst.operands[0];
12450
12451 /* Suck up all the varargs. */
12452 va_start (ap, ns);
12453 for (i = 0; i < els; i++)
12454 {
12455 unsigned thisarg = va_arg (ap, unsigned);
12456 if (thisarg == N_IGNORE_TYPE)
12457 {
12458 va_end (ap);
12459 return badtype;
12460 }
12461 types[i] = thisarg;
12462 if ((thisarg & N_KEY) != 0)
12463 key_el = i;
12464 }
12465 va_end (ap);
12466
12467 if (inst.vectype.elems > 0)
12468 for (i = 0; i < els; i++)
12469 if (inst.operands[i].vectype.type != NT_invtype)
12470 {
12471 first_error (_("types specified in both the mnemonic and operands"));
12472 return badtype;
12473 }
12474
12475 /* Duplicate inst.vectype elements here as necessary.
12476 FIXME: No idea if this is exactly the same as the ARM assembler,
12477 particularly when an insn takes one register and one non-register
12478 operand. */
12479 if (inst.vectype.elems == 1 && els > 1)
12480 {
12481 unsigned j;
12482 inst.vectype.elems = els;
12483 inst.vectype.el[key_el] = inst.vectype.el[0];
12484 for (j = 0; j < els; j++)
12485 if (j != key_el)
12486 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12487 types[j]);
12488 }
12489 else if (inst.vectype.elems == 0 && els > 0)
12490 {
12491 unsigned j;
12492 /* No types were given after the mnemonic, so look for types specified
12493 after each operand. We allow some flexibility here; as long as the
12494 "key" operand has a type, we can infer the others. */
12495 for (j = 0; j < els; j++)
12496 if (inst.operands[j].vectype.type != NT_invtype)
12497 inst.vectype.el[j] = inst.operands[j].vectype;
12498
12499 if (inst.operands[key_el].vectype.type != NT_invtype)
12500 {
12501 for (j = 0; j < els; j++)
12502 if (inst.operands[j].vectype.type == NT_invtype)
12503 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12504 types[j]);
12505 }
12506 else
12507 {
12508 first_error (_("operand types can't be inferred"));
12509 return badtype;
12510 }
12511 }
12512 else if (inst.vectype.elems != els)
12513 {
12514 first_error (_("type specifier has the wrong number of parts"));
12515 return badtype;
12516 }
12517
12518 for (pass = 0; pass < 2; pass++)
12519 {
12520 for (i = 0; i < els; i++)
12521 {
12522 unsigned thisarg = types[i];
12523 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12524 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12525 enum neon_el_type g_type = inst.vectype.el[i].type;
12526 unsigned g_size = inst.vectype.el[i].size;
12527
12528 /* Decay more-specific signed & unsigned types to sign-insensitive
12529 integer types if sign-specific variants are unavailable. */
12530 if ((g_type == NT_signed || g_type == NT_unsigned)
12531 && (types_allowed & N_SU_ALL) == 0)
12532 g_type = NT_integer;
12533
12534 /* If only untyped args are allowed, decay any more specific types to
12535 them. Some instructions only care about signs for some element
12536 sizes, so handle that properly. */
12537 if ((g_size == 8 && (types_allowed & N_8) != 0)
12538 || (g_size == 16 && (types_allowed & N_16) != 0)
12539 || (g_size == 32 && (types_allowed & N_32) != 0)
12540 || (g_size == 64 && (types_allowed & N_64) != 0))
12541 g_type = NT_untyped;
12542
12543 if (pass == 0)
12544 {
12545 if ((thisarg & N_KEY) != 0)
12546 {
12547 k_type = g_type;
12548 k_size = g_size;
12549 key_allowed = thisarg & ~N_KEY;
12550 }
12551 }
12552 else
12553 {
12554 if ((thisarg & N_VFP) != 0)
12555 {
12556 enum neon_shape_el regshape;
12557 unsigned regwidth, match;
12558
12559 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12560 if (ns == NS_NULL)
12561 {
12562 first_error (_("invalid instruction shape"));
12563 return badtype;
12564 }
12565 regshape = neon_shape_tab[ns].el[i];
12566 regwidth = neon_shape_el_size[regshape];
12567
12568 /* In VFP mode, operands must match register widths. If we
12569 have a key operand, use its width, else use the width of
12570 the current operand. */
12571 if (k_size != -1u)
12572 match = k_size;
12573 else
12574 match = g_size;
12575
12576 if (regwidth != match)
12577 {
12578 first_error (_("operand size must match register width"));
12579 return badtype;
12580 }
12581 }
12582
12583 if ((thisarg & N_EQK) == 0)
12584 {
12585 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12586
12587 if ((given_type & types_allowed) == 0)
12588 {
12589 first_error (_("bad type in Neon instruction"));
12590 return badtype;
12591 }
12592 }
12593 else
12594 {
12595 enum neon_el_type mod_k_type = k_type;
12596 unsigned mod_k_size = k_size;
12597 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12598 if (g_type != mod_k_type || g_size != mod_k_size)
12599 {
12600 first_error (_("inconsistent types in Neon instruction"));
12601 return badtype;
12602 }
12603 }
12604 }
12605 }
12606 }
12607
12608 return inst.vectype.el[key_el];
12609 }
12610
12611 /* Neon-style VFP instruction forwarding. */
12612
12613 /* Thumb VFP instructions have 0xE in the condition field. */
12614
12615 static void
12616 do_vfp_cond_or_thumb (void)
12617 {
12618 inst.is_neon = 1;
12619
12620 if (thumb_mode)
12621 inst.instruction |= 0xe0000000;
12622 else
12623 inst.instruction |= inst.cond << 28;
12624 }
12625
12626 /* Look up and encode a simple mnemonic, for use as a helper function for the
12627 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12628 etc. It is assumed that operand parsing has already been done, and that the
12629 operands are in the form expected by the given opcode (this isn't necessarily
12630 the same as the form in which they were parsed, hence some massaging must
12631 take place before this function is called).
12632 Checks current arch version against that in the looked-up opcode. */
12633
12634 static void
12635 do_vfp_nsyn_opcode (const char *opname)
12636 {
12637 const struct asm_opcode *opcode;
12638
12639 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12640
12641 if (!opcode)
12642 abort ();
12643
12644 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12645 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12646 _(BAD_FPU));
12647
12648 inst.is_neon = 1;
12649
12650 if (thumb_mode)
12651 {
12652 inst.instruction = opcode->tvalue;
12653 opcode->tencode ();
12654 }
12655 else
12656 {
12657 inst.instruction = (inst.cond << 28) | opcode->avalue;
12658 opcode->aencode ();
12659 }
12660 }
12661
12662 static void
12663 do_vfp_nsyn_add_sub (enum neon_shape rs)
12664 {
12665 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12666
12667 if (rs == NS_FFF)
12668 {
12669 if (is_add)
12670 do_vfp_nsyn_opcode ("fadds");
12671 else
12672 do_vfp_nsyn_opcode ("fsubs");
12673 }
12674 else
12675 {
12676 if (is_add)
12677 do_vfp_nsyn_opcode ("faddd");
12678 else
12679 do_vfp_nsyn_opcode ("fsubd");
12680 }
12681 }
12682
12683 /* Check operand types to see if this is a VFP instruction, and if so call
12684 PFN (). */
12685
12686 static int
12687 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12688 {
12689 enum neon_shape rs;
12690 struct neon_type_el et;
12691
12692 switch (args)
12693 {
12694 case 2:
12695 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12696 et = neon_check_type (2, rs,
12697 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12698 break;
12699
12700 case 3:
12701 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12702 et = neon_check_type (3, rs,
12703 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12704 break;
12705
12706 default:
12707 abort ();
12708 }
12709
12710 if (et.type != NT_invtype)
12711 {
12712 pfn (rs);
12713 return SUCCESS;
12714 }
12715
12716 inst.error = NULL;
12717 return FAIL;
12718 }
12719
12720 static void
12721 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12722 {
12723 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12724
12725 if (rs == NS_FFF)
12726 {
12727 if (is_mla)
12728 do_vfp_nsyn_opcode ("fmacs");
12729 else
12730 do_vfp_nsyn_opcode ("fnmacs");
12731 }
12732 else
12733 {
12734 if (is_mla)
12735 do_vfp_nsyn_opcode ("fmacd");
12736 else
12737 do_vfp_nsyn_opcode ("fnmacd");
12738 }
12739 }
12740
12741 static void
12742 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12743 {
12744 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12745
12746 if (rs == NS_FFF)
12747 {
12748 if (is_fma)
12749 do_vfp_nsyn_opcode ("ffmas");
12750 else
12751 do_vfp_nsyn_opcode ("ffnmas");
12752 }
12753 else
12754 {
12755 if (is_fma)
12756 do_vfp_nsyn_opcode ("ffmad");
12757 else
12758 do_vfp_nsyn_opcode ("ffnmad");
12759 }
12760 }
12761
12762 static void
12763 do_vfp_nsyn_mul (enum neon_shape rs)
12764 {
12765 if (rs == NS_FFF)
12766 do_vfp_nsyn_opcode ("fmuls");
12767 else
12768 do_vfp_nsyn_opcode ("fmuld");
12769 }
12770
12771 static void
12772 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12773 {
12774 int is_neg = (inst.instruction & 0x80) != 0;
12775 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12776
12777 if (rs == NS_FF)
12778 {
12779 if (is_neg)
12780 do_vfp_nsyn_opcode ("fnegs");
12781 else
12782 do_vfp_nsyn_opcode ("fabss");
12783 }
12784 else
12785 {
12786 if (is_neg)
12787 do_vfp_nsyn_opcode ("fnegd");
12788 else
12789 do_vfp_nsyn_opcode ("fabsd");
12790 }
12791 }
12792
12793 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12794 insns belong to Neon, and are handled elsewhere. */
12795
12796 static void
12797 do_vfp_nsyn_ldm_stm (int is_dbmode)
12798 {
12799 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12800 if (is_ldm)
12801 {
12802 if (is_dbmode)
12803 do_vfp_nsyn_opcode ("fldmdbs");
12804 else
12805 do_vfp_nsyn_opcode ("fldmias");
12806 }
12807 else
12808 {
12809 if (is_dbmode)
12810 do_vfp_nsyn_opcode ("fstmdbs");
12811 else
12812 do_vfp_nsyn_opcode ("fstmias");
12813 }
12814 }
12815
12816 static void
12817 do_vfp_nsyn_sqrt (void)
12818 {
12819 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12820 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12821
12822 if (rs == NS_FF)
12823 do_vfp_nsyn_opcode ("fsqrts");
12824 else
12825 do_vfp_nsyn_opcode ("fsqrtd");
12826 }
12827
12828 static void
12829 do_vfp_nsyn_div (void)
12830 {
12831 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12832 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12833 N_F32 | N_F64 | N_KEY | N_VFP);
12834
12835 if (rs == NS_FFF)
12836 do_vfp_nsyn_opcode ("fdivs");
12837 else
12838 do_vfp_nsyn_opcode ("fdivd");
12839 }
12840
12841 static void
12842 do_vfp_nsyn_nmul (void)
12843 {
12844 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12845 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12846 N_F32 | N_F64 | N_KEY | N_VFP);
12847
12848 if (rs == NS_FFF)
12849 {
12850 NEON_ENCODE (SINGLE, inst);
12851 do_vfp_sp_dyadic ();
12852 }
12853 else
12854 {
12855 NEON_ENCODE (DOUBLE, inst);
12856 do_vfp_dp_rd_rn_rm ();
12857 }
12858 do_vfp_cond_or_thumb ();
12859 }
12860
12861 static void
12862 do_vfp_nsyn_cmp (void)
12863 {
12864 if (inst.operands[1].isreg)
12865 {
12866 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12867 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12868
12869 if (rs == NS_FF)
12870 {
12871 NEON_ENCODE (SINGLE, inst);
12872 do_vfp_sp_monadic ();
12873 }
12874 else
12875 {
12876 NEON_ENCODE (DOUBLE, inst);
12877 do_vfp_dp_rd_rm ();
12878 }
12879 }
12880 else
12881 {
12882 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12883 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12884
12885 switch (inst.instruction & 0x0fffffff)
12886 {
12887 case N_MNEM_vcmp:
12888 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12889 break;
12890 case N_MNEM_vcmpe:
12891 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12892 break;
12893 default:
12894 abort ();
12895 }
12896
12897 if (rs == NS_FI)
12898 {
12899 NEON_ENCODE (SINGLE, inst);
12900 do_vfp_sp_compare_z ();
12901 }
12902 else
12903 {
12904 NEON_ENCODE (DOUBLE, inst);
12905 do_vfp_dp_rd ();
12906 }
12907 }
12908 do_vfp_cond_or_thumb ();
12909 }
12910
12911 static void
12912 nsyn_insert_sp (void)
12913 {
12914 inst.operands[1] = inst.operands[0];
12915 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12916 inst.operands[0].reg = REG_SP;
12917 inst.operands[0].isreg = 1;
12918 inst.operands[0].writeback = 1;
12919 inst.operands[0].present = 1;
12920 }
12921
12922 static void
12923 do_vfp_nsyn_push (void)
12924 {
12925 nsyn_insert_sp ();
12926 if (inst.operands[1].issingle)
12927 do_vfp_nsyn_opcode ("fstmdbs");
12928 else
12929 do_vfp_nsyn_opcode ("fstmdbd");
12930 }
12931
12932 static void
12933 do_vfp_nsyn_pop (void)
12934 {
12935 nsyn_insert_sp ();
12936 if (inst.operands[1].issingle)
12937 do_vfp_nsyn_opcode ("fldmias");
12938 else
12939 do_vfp_nsyn_opcode ("fldmiad");
12940 }
12941
12942 /* Fix up Neon data-processing instructions, ORing in the correct bits for
12943 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12944
12945 static void
12946 neon_dp_fixup (struct arm_it* insn)
12947 {
12948 unsigned int i = insn->instruction;
12949 insn->is_neon = 1;
12950
12951 if (thumb_mode)
12952 {
12953 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12954 if (i & (1 << 24))
12955 i |= 1 << 28;
12956
12957 i &= ~(1 << 24);
12958
12959 i |= 0xef000000;
12960 }
12961 else
12962 i |= 0xf2000000;
12963
12964 insn->instruction = i;
12965 }
12966
12967 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12968 (0, 1, 2, 3). */
12969
12970 static unsigned
12971 neon_logbits (unsigned x)
12972 {
12973 return ffs (x) - 4;
12974 }
12975
12976 #define LOW4(R) ((R) & 0xf)
12977 #define HI1(R) (((R) >> 4) & 1)
12978
12979 /* Encode insns with bit pattern:
12980
12981 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12982 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
12983
12984 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12985 different meaning for some instruction. */
12986
12987 static void
12988 neon_three_same (int isquad, int ubit, int size)
12989 {
12990 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12991 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12992 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12993 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12994 inst.instruction |= LOW4 (inst.operands[2].reg);
12995 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12996 inst.instruction |= (isquad != 0) << 6;
12997 inst.instruction |= (ubit != 0) << 24;
12998 if (size != -1)
12999 inst.instruction |= neon_logbits (size) << 20;
13000
13001 neon_dp_fixup (&inst);
13002 }
13003
13004 /* Encode instructions of the form:
13005
13006 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13007 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13008
13009 Don't write size if SIZE == -1. */
13010
13011 static void
13012 neon_two_same (int qbit, int ubit, int size)
13013 {
13014 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13015 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13016 inst.instruction |= LOW4 (inst.operands[1].reg);
13017 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13018 inst.instruction |= (qbit != 0) << 6;
13019 inst.instruction |= (ubit != 0) << 24;
13020
13021 if (size != -1)
13022 inst.instruction |= neon_logbits (size) << 18;
13023
13024 neon_dp_fixup (&inst);
13025 }
13026
13027 /* Neon instruction encoders, in approximate order of appearance. */
13028
13029 static void
13030 do_neon_dyadic_i_su (void)
13031 {
13032 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13033 struct neon_type_el et = neon_check_type (3, rs,
13034 N_EQK, N_EQK, N_SU_32 | N_KEY);
13035 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13036 }
13037
13038 static void
13039 do_neon_dyadic_i64_su (void)
13040 {
13041 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13042 struct neon_type_el et = neon_check_type (3, rs,
13043 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13044 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13045 }
13046
13047 static void
13048 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13049 unsigned immbits)
13050 {
13051 unsigned size = et.size >> 3;
13052 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13053 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13054 inst.instruction |= LOW4 (inst.operands[1].reg);
13055 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13056 inst.instruction |= (isquad != 0) << 6;
13057 inst.instruction |= immbits << 16;
13058 inst.instruction |= (size >> 3) << 7;
13059 inst.instruction |= (size & 0x7) << 19;
13060 if (write_ubit)
13061 inst.instruction |= (uval != 0) << 24;
13062
13063 neon_dp_fixup (&inst);
13064 }
13065
13066 static void
13067 do_neon_shl_imm (void)
13068 {
13069 if (!inst.operands[2].isreg)
13070 {
13071 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13072 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13073 NEON_ENCODE (IMMED, inst);
13074 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13075 }
13076 else
13077 {
13078 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13079 struct neon_type_el et = neon_check_type (3, rs,
13080 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13081 unsigned int tmp;
13082
13083 /* VSHL/VQSHL 3-register variants have syntax such as:
13084 vshl.xx Dd, Dm, Dn
13085 whereas other 3-register operations encoded by neon_three_same have
13086 syntax like:
13087 vadd.xx Dd, Dn, Dm
13088 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13089 here. */
13090 tmp = inst.operands[2].reg;
13091 inst.operands[2].reg = inst.operands[1].reg;
13092 inst.operands[1].reg = tmp;
13093 NEON_ENCODE (INTEGER, inst);
13094 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13095 }
13096 }
13097
13098 static void
13099 do_neon_qshl_imm (void)
13100 {
13101 if (!inst.operands[2].isreg)
13102 {
13103 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13104 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13105
13106 NEON_ENCODE (IMMED, inst);
13107 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13108 inst.operands[2].imm);
13109 }
13110 else
13111 {
13112 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13113 struct neon_type_el et = neon_check_type (3, rs,
13114 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13115 unsigned int tmp;
13116
13117 /* See note in do_neon_shl_imm. */
13118 tmp = inst.operands[2].reg;
13119 inst.operands[2].reg = inst.operands[1].reg;
13120 inst.operands[1].reg = tmp;
13121 NEON_ENCODE (INTEGER, inst);
13122 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13123 }
13124 }
13125
13126 static void
13127 do_neon_rshl (void)
13128 {
13129 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13130 struct neon_type_el et = neon_check_type (3, rs,
13131 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13132 unsigned int tmp;
13133
13134 tmp = inst.operands[2].reg;
13135 inst.operands[2].reg = inst.operands[1].reg;
13136 inst.operands[1].reg = tmp;
13137 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13138 }
13139
13140 static int
13141 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13142 {
13143 /* Handle .I8 pseudo-instructions. */
13144 if (size == 8)
13145 {
13146 /* Unfortunately, this will make everything apart from zero out-of-range.
13147 FIXME is this the intended semantics? There doesn't seem much point in
13148 accepting .I8 if so. */
13149 immediate |= immediate << 8;
13150 size = 16;
13151 }
13152
13153 if (size >= 32)
13154 {
13155 if (immediate == (immediate & 0x000000ff))
13156 {
13157 *immbits = immediate;
13158 return 0x1;
13159 }
13160 else if (immediate == (immediate & 0x0000ff00))
13161 {
13162 *immbits = immediate >> 8;
13163 return 0x3;
13164 }
13165 else if (immediate == (immediate & 0x00ff0000))
13166 {
13167 *immbits = immediate >> 16;
13168 return 0x5;
13169 }
13170 else if (immediate == (immediate & 0xff000000))
13171 {
13172 *immbits = immediate >> 24;
13173 return 0x7;
13174 }
13175 if ((immediate & 0xffff) != (immediate >> 16))
13176 goto bad_immediate;
13177 immediate &= 0xffff;
13178 }
13179
13180 if (immediate == (immediate & 0x000000ff))
13181 {
13182 *immbits = immediate;
13183 return 0x9;
13184 }
13185 else if (immediate == (immediate & 0x0000ff00))
13186 {
13187 *immbits = immediate >> 8;
13188 return 0xb;
13189 }
13190
13191 bad_immediate:
13192 first_error (_("immediate value out of range"));
13193 return FAIL;
13194 }
13195
13196 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13197 A, B, C, D. */
13198
13199 static int
13200 neon_bits_same_in_bytes (unsigned imm)
13201 {
13202 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13203 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13204 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13205 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13206 }
13207
13208 /* For immediate of above form, return 0bABCD. */
13209
13210 static unsigned
13211 neon_squash_bits (unsigned imm)
13212 {
13213 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13214 | ((imm & 0x01000000) >> 21);
13215 }
13216
13217 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13218
13219 static unsigned
13220 neon_qfloat_bits (unsigned imm)
13221 {
13222 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13223 }
13224
13225 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13226 the instruction. *OP is passed as the initial value of the op field, and
13227 may be set to a different value depending on the constant (i.e.
13228 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13229 MVN). If the immediate looks like a repeated pattern then also
13230 try smaller element sizes. */
13231
13232 static int
13233 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13234 unsigned *immbits, int *op, int size,
13235 enum neon_el_type type)
13236 {
13237 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13238 float. */
13239 if (type == NT_float && !float_p)
13240 return FAIL;
13241
13242 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13243 {
13244 if (size != 32 || *op == 1)
13245 return FAIL;
13246 *immbits = neon_qfloat_bits (immlo);
13247 return 0xf;
13248 }
13249
13250 if (size == 64)
13251 {
13252 if (neon_bits_same_in_bytes (immhi)
13253 && neon_bits_same_in_bytes (immlo))
13254 {
13255 if (*op == 1)
13256 return FAIL;
13257 *immbits = (neon_squash_bits (immhi) << 4)
13258 | neon_squash_bits (immlo);
13259 *op = 1;
13260 return 0xe;
13261 }
13262
13263 if (immhi != immlo)
13264 return FAIL;
13265 }
13266
13267 if (size >= 32)
13268 {
13269 if (immlo == (immlo & 0x000000ff))
13270 {
13271 *immbits = immlo;
13272 return 0x0;
13273 }
13274 else if (immlo == (immlo & 0x0000ff00))
13275 {
13276 *immbits = immlo >> 8;
13277 return 0x2;
13278 }
13279 else if (immlo == (immlo & 0x00ff0000))
13280 {
13281 *immbits = immlo >> 16;
13282 return 0x4;
13283 }
13284 else if (immlo == (immlo & 0xff000000))
13285 {
13286 *immbits = immlo >> 24;
13287 return 0x6;
13288 }
13289 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13290 {
13291 *immbits = (immlo >> 8) & 0xff;
13292 return 0xc;
13293 }
13294 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13295 {
13296 *immbits = (immlo >> 16) & 0xff;
13297 return 0xd;
13298 }
13299
13300 if ((immlo & 0xffff) != (immlo >> 16))
13301 return FAIL;
13302 immlo &= 0xffff;
13303 }
13304
13305 if (size >= 16)
13306 {
13307 if (immlo == (immlo & 0x000000ff))
13308 {
13309 *immbits = immlo;
13310 return 0x8;
13311 }
13312 else if (immlo == (immlo & 0x0000ff00))
13313 {
13314 *immbits = immlo >> 8;
13315 return 0xa;
13316 }
13317
13318 if ((immlo & 0xff) != (immlo >> 8))
13319 return FAIL;
13320 immlo &= 0xff;
13321 }
13322
13323 if (immlo == (immlo & 0x000000ff))
13324 {
13325 /* Don't allow MVN with 8-bit immediate. */
13326 if (*op == 1)
13327 return FAIL;
13328 *immbits = immlo;
13329 return 0xe;
13330 }
13331
13332 return FAIL;
13333 }
13334
13335 /* Write immediate bits [7:0] to the following locations:
13336
13337 |28/24|23 19|18 16|15 4|3 0|
13338 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13339
13340 This function is used by VMOV/VMVN/VORR/VBIC. */
13341
13342 static void
13343 neon_write_immbits (unsigned immbits)
13344 {
13345 inst.instruction |= immbits & 0xf;
13346 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13347 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13348 }
13349
13350 /* Invert low-order SIZE bits of XHI:XLO. */
13351
13352 static void
13353 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13354 {
13355 unsigned immlo = xlo ? *xlo : 0;
13356 unsigned immhi = xhi ? *xhi : 0;
13357
13358 switch (size)
13359 {
13360 case 8:
13361 immlo = (~immlo) & 0xff;
13362 break;
13363
13364 case 16:
13365 immlo = (~immlo) & 0xffff;
13366 break;
13367
13368 case 64:
13369 immhi = (~immhi) & 0xffffffff;
13370 /* fall through. */
13371
13372 case 32:
13373 immlo = (~immlo) & 0xffffffff;
13374 break;
13375
13376 default:
13377 abort ();
13378 }
13379
13380 if (xlo)
13381 *xlo = immlo;
13382
13383 if (xhi)
13384 *xhi = immhi;
13385 }
13386
13387 static void
13388 do_neon_logic (void)
13389 {
13390 if (inst.operands[2].present && inst.operands[2].isreg)
13391 {
13392 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13393 neon_check_type (3, rs, N_IGNORE_TYPE);
13394 /* U bit and size field were set as part of the bitmask. */
13395 NEON_ENCODE (INTEGER, inst);
13396 neon_three_same (neon_quad (rs), 0, -1);
13397 }
13398 else
13399 {
13400 const int three_ops_form = (inst.operands[2].present
13401 && !inst.operands[2].isreg);
13402 const int immoperand = (three_ops_form ? 2 : 1);
13403 enum neon_shape rs = (three_ops_form
13404 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13405 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13406 struct neon_type_el et = neon_check_type (2, rs,
13407 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13408 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13409 unsigned immbits;
13410 int cmode;
13411
13412 if (et.type == NT_invtype)
13413 return;
13414
13415 if (three_ops_form)
13416 constraint (inst.operands[0].reg != inst.operands[1].reg,
13417 _("first and second operands shall be the same register"));
13418
13419 NEON_ENCODE (IMMED, inst);
13420
13421 immbits = inst.operands[immoperand].imm;
13422 if (et.size == 64)
13423 {
13424 /* .i64 is a pseudo-op, so the immediate must be a repeating
13425 pattern. */
13426 if (immbits != (inst.operands[immoperand].regisimm ?
13427 inst.operands[immoperand].reg : 0))
13428 {
13429 /* Set immbits to an invalid constant. */
13430 immbits = 0xdeadbeef;
13431 }
13432 }
13433
13434 switch (opcode)
13435 {
13436 case N_MNEM_vbic:
13437 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13438 break;
13439
13440 case N_MNEM_vorr:
13441 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13442 break;
13443
13444 case N_MNEM_vand:
13445 /* Pseudo-instruction for VBIC. */
13446 neon_invert_size (&immbits, 0, et.size);
13447 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13448 break;
13449
13450 case N_MNEM_vorn:
13451 /* Pseudo-instruction for VORR. */
13452 neon_invert_size (&immbits, 0, et.size);
13453 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13454 break;
13455
13456 default:
13457 abort ();
13458 }
13459
13460 if (cmode == FAIL)
13461 return;
13462
13463 inst.instruction |= neon_quad (rs) << 6;
13464 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13465 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13466 inst.instruction |= cmode << 8;
13467 neon_write_immbits (immbits);
13468
13469 neon_dp_fixup (&inst);
13470 }
13471 }
13472
13473 static void
13474 do_neon_bitfield (void)
13475 {
13476 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13477 neon_check_type (3, rs, N_IGNORE_TYPE);
13478 neon_three_same (neon_quad (rs), 0, -1);
13479 }
13480
13481 static void
13482 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13483 unsigned destbits)
13484 {
13485 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13486 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13487 types | N_KEY);
13488 if (et.type == NT_float)
13489 {
13490 NEON_ENCODE (FLOAT, inst);
13491 neon_three_same (neon_quad (rs), 0, -1);
13492 }
13493 else
13494 {
13495 NEON_ENCODE (INTEGER, inst);
13496 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13497 }
13498 }
13499
13500 static void
13501 do_neon_dyadic_if_su (void)
13502 {
13503 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13504 }
13505
13506 static void
13507 do_neon_dyadic_if_su_d (void)
13508 {
13509 /* This version only allow D registers, but that constraint is enforced during
13510 operand parsing so we don't need to do anything extra here. */
13511 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13512 }
13513
13514 static void
13515 do_neon_dyadic_if_i_d (void)
13516 {
13517 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13518 affected if we specify unsigned args. */
13519 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13520 }
13521
13522 enum vfp_or_neon_is_neon_bits
13523 {
13524 NEON_CHECK_CC = 1,
13525 NEON_CHECK_ARCH = 2
13526 };
13527
13528 /* Call this function if an instruction which may have belonged to the VFP or
13529 Neon instruction sets, but turned out to be a Neon instruction (due to the
13530 operand types involved, etc.). We have to check and/or fix-up a couple of
13531 things:
13532
13533 - Make sure the user hasn't attempted to make a Neon instruction
13534 conditional.
13535 - Alter the value in the condition code field if necessary.
13536 - Make sure that the arch supports Neon instructions.
13537
13538 Which of these operations take place depends on bits from enum
13539 vfp_or_neon_is_neon_bits.
13540
13541 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13542 current instruction's condition is COND_ALWAYS, the condition field is
13543 changed to inst.uncond_value. This is necessary because instructions shared
13544 between VFP and Neon may be conditional for the VFP variants only, and the
13545 unconditional Neon version must have, e.g., 0xF in the condition field. */
13546
13547 static int
13548 vfp_or_neon_is_neon (unsigned check)
13549 {
13550 /* Conditions are always legal in Thumb mode (IT blocks). */
13551 if (!thumb_mode && (check & NEON_CHECK_CC))
13552 {
13553 if (inst.cond != COND_ALWAYS)
13554 {
13555 first_error (_(BAD_COND));
13556 return FAIL;
13557 }
13558 if (inst.uncond_value != -1)
13559 inst.instruction |= inst.uncond_value << 28;
13560 }
13561
13562 if ((check & NEON_CHECK_ARCH)
13563 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13564 {
13565 first_error (_(BAD_FPU));
13566 return FAIL;
13567 }
13568
13569 return SUCCESS;
13570 }
13571
13572 static void
13573 do_neon_addsub_if_i (void)
13574 {
13575 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13576 return;
13577
13578 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13579 return;
13580
13581 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13582 affected if we specify unsigned args. */
13583 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13584 }
13585
13586 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13587 result to be:
13588 V<op> A,B (A is operand 0, B is operand 2)
13589 to mean:
13590 V<op> A,B,A
13591 not:
13592 V<op> A,B,B
13593 so handle that case specially. */
13594
13595 static void
13596 neon_exchange_operands (void)
13597 {
13598 void *scratch = alloca (sizeof (inst.operands[0]));
13599 if (inst.operands[1].present)
13600 {
13601 /* Swap operands[1] and operands[2]. */
13602 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13603 inst.operands[1] = inst.operands[2];
13604 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13605 }
13606 else
13607 {
13608 inst.operands[1] = inst.operands[2];
13609 inst.operands[2] = inst.operands[0];
13610 }
13611 }
13612
13613 static void
13614 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13615 {
13616 if (inst.operands[2].isreg)
13617 {
13618 if (invert)
13619 neon_exchange_operands ();
13620 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13621 }
13622 else
13623 {
13624 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13625 struct neon_type_el et = neon_check_type (2, rs,
13626 N_EQK | N_SIZ, immtypes | N_KEY);
13627
13628 NEON_ENCODE (IMMED, inst);
13629 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13630 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13631 inst.instruction |= LOW4 (inst.operands[1].reg);
13632 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13633 inst.instruction |= neon_quad (rs) << 6;
13634 inst.instruction |= (et.type == NT_float) << 10;
13635 inst.instruction |= neon_logbits (et.size) << 18;
13636
13637 neon_dp_fixup (&inst);
13638 }
13639 }
13640
13641 static void
13642 do_neon_cmp (void)
13643 {
13644 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13645 }
13646
13647 static void
13648 do_neon_cmp_inv (void)
13649 {
13650 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13651 }
13652
13653 static void
13654 do_neon_ceq (void)
13655 {
13656 neon_compare (N_IF_32, N_IF_32, FALSE);
13657 }
13658
13659 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13660 scalars, which are encoded in 5 bits, M : Rm.
13661 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13662 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13663 index in M. */
13664
13665 static unsigned
13666 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13667 {
13668 unsigned regno = NEON_SCALAR_REG (scalar);
13669 unsigned elno = NEON_SCALAR_INDEX (scalar);
13670
13671 switch (elsize)
13672 {
13673 case 16:
13674 if (regno > 7 || elno > 3)
13675 goto bad_scalar;
13676 return regno | (elno << 3);
13677
13678 case 32:
13679 if (regno > 15 || elno > 1)
13680 goto bad_scalar;
13681 return regno | (elno << 4);
13682
13683 default:
13684 bad_scalar:
13685 first_error (_("scalar out of range for multiply instruction"));
13686 }
13687
13688 return 0;
13689 }
13690
13691 /* Encode multiply / multiply-accumulate scalar instructions. */
13692
13693 static void
13694 neon_mul_mac (struct neon_type_el et, int ubit)
13695 {
13696 unsigned scalar;
13697
13698 /* Give a more helpful error message if we have an invalid type. */
13699 if (et.type == NT_invtype)
13700 return;
13701
13702 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13703 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13704 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13705 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13706 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13707 inst.instruction |= LOW4 (scalar);
13708 inst.instruction |= HI1 (scalar) << 5;
13709 inst.instruction |= (et.type == NT_float) << 8;
13710 inst.instruction |= neon_logbits (et.size) << 20;
13711 inst.instruction |= (ubit != 0) << 24;
13712
13713 neon_dp_fixup (&inst);
13714 }
13715
13716 static void
13717 do_neon_mac_maybe_scalar (void)
13718 {
13719 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13720 return;
13721
13722 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13723 return;
13724
13725 if (inst.operands[2].isscalar)
13726 {
13727 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13728 struct neon_type_el et = neon_check_type (3, rs,
13729 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13730 NEON_ENCODE (SCALAR, inst);
13731 neon_mul_mac (et, neon_quad (rs));
13732 }
13733 else
13734 {
13735 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13736 affected if we specify unsigned args. */
13737 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13738 }
13739 }
13740
13741 static void
13742 do_neon_fmac (void)
13743 {
13744 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13745 return;
13746
13747 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13748 return;
13749
13750 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13751 }
13752
13753 static void
13754 do_neon_tst (void)
13755 {
13756 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13757 struct neon_type_el et = neon_check_type (3, rs,
13758 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13759 neon_three_same (neon_quad (rs), 0, et.size);
13760 }
13761
13762 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13763 same types as the MAC equivalents. The polynomial type for this instruction
13764 is encoded the same as the integer type. */
13765
13766 static void
13767 do_neon_mul (void)
13768 {
13769 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13770 return;
13771
13772 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13773 return;
13774
13775 if (inst.operands[2].isscalar)
13776 do_neon_mac_maybe_scalar ();
13777 else
13778 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13779 }
13780
13781 static void
13782 do_neon_qdmulh (void)
13783 {
13784 if (inst.operands[2].isscalar)
13785 {
13786 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13787 struct neon_type_el et = neon_check_type (3, rs,
13788 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13789 NEON_ENCODE (SCALAR, inst);
13790 neon_mul_mac (et, neon_quad (rs));
13791 }
13792 else
13793 {
13794 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13795 struct neon_type_el et = neon_check_type (3, rs,
13796 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13797 NEON_ENCODE (INTEGER, inst);
13798 /* The U bit (rounding) comes from bit mask. */
13799 neon_three_same (neon_quad (rs), 0, et.size);
13800 }
13801 }
13802
13803 static void
13804 do_neon_fcmp_absolute (void)
13805 {
13806 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13807 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13808 /* Size field comes from bit mask. */
13809 neon_three_same (neon_quad (rs), 1, -1);
13810 }
13811
13812 static void
13813 do_neon_fcmp_absolute_inv (void)
13814 {
13815 neon_exchange_operands ();
13816 do_neon_fcmp_absolute ();
13817 }
13818
13819 static void
13820 do_neon_step (void)
13821 {
13822 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13823 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13824 neon_three_same (neon_quad (rs), 0, -1);
13825 }
13826
13827 static void
13828 do_neon_abs_neg (void)
13829 {
13830 enum neon_shape rs;
13831 struct neon_type_el et;
13832
13833 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13834 return;
13835
13836 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13837 return;
13838
13839 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13840 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13841
13842 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13843 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13844 inst.instruction |= LOW4 (inst.operands[1].reg);
13845 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13846 inst.instruction |= neon_quad (rs) << 6;
13847 inst.instruction |= (et.type == NT_float) << 10;
13848 inst.instruction |= neon_logbits (et.size) << 18;
13849
13850 neon_dp_fixup (&inst);
13851 }
13852
13853 static void
13854 do_neon_sli (void)
13855 {
13856 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13857 struct neon_type_el et = neon_check_type (2, rs,
13858 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13859 int imm = inst.operands[2].imm;
13860 constraint (imm < 0 || (unsigned)imm >= et.size,
13861 _("immediate out of range for insert"));
13862 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13863 }
13864
13865 static void
13866 do_neon_sri (void)
13867 {
13868 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13869 struct neon_type_el et = neon_check_type (2, rs,
13870 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13871 int imm = inst.operands[2].imm;
13872 constraint (imm < 1 || (unsigned)imm > et.size,
13873 _("immediate out of range for insert"));
13874 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13875 }
13876
13877 static void
13878 do_neon_qshlu_imm (void)
13879 {
13880 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13881 struct neon_type_el et = neon_check_type (2, rs,
13882 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13883 int imm = inst.operands[2].imm;
13884 constraint (imm < 0 || (unsigned)imm >= et.size,
13885 _("immediate out of range for shift"));
13886 /* Only encodes the 'U present' variant of the instruction.
13887 In this case, signed types have OP (bit 8) set to 0.
13888 Unsigned types have OP set to 1. */
13889 inst.instruction |= (et.type == NT_unsigned) << 8;
13890 /* The rest of the bits are the same as other immediate shifts. */
13891 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13892 }
13893
13894 static void
13895 do_neon_qmovn (void)
13896 {
13897 struct neon_type_el et = neon_check_type (2, NS_DQ,
13898 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13899 /* Saturating move where operands can be signed or unsigned, and the
13900 destination has the same signedness. */
13901 NEON_ENCODE (INTEGER, inst);
13902 if (et.type == NT_unsigned)
13903 inst.instruction |= 0xc0;
13904 else
13905 inst.instruction |= 0x80;
13906 neon_two_same (0, 1, et.size / 2);
13907 }
13908
13909 static void
13910 do_neon_qmovun (void)
13911 {
13912 struct neon_type_el et = neon_check_type (2, NS_DQ,
13913 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13914 /* Saturating move with unsigned results. Operands must be signed. */
13915 NEON_ENCODE (INTEGER, inst);
13916 neon_two_same (0, 1, et.size / 2);
13917 }
13918
13919 static void
13920 do_neon_rshift_sat_narrow (void)
13921 {
13922 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13923 or unsigned. If operands are unsigned, results must also be unsigned. */
13924 struct neon_type_el et = neon_check_type (2, NS_DQI,
13925 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13926 int imm = inst.operands[2].imm;
13927 /* This gets the bounds check, size encoding and immediate bits calculation
13928 right. */
13929 et.size /= 2;
13930
13931 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13932 VQMOVN.I<size> <Dd>, <Qm>. */
13933 if (imm == 0)
13934 {
13935 inst.operands[2].present = 0;
13936 inst.instruction = N_MNEM_vqmovn;
13937 do_neon_qmovn ();
13938 return;
13939 }
13940
13941 constraint (imm < 1 || (unsigned)imm > et.size,
13942 _("immediate out of range"));
13943 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13944 }
13945
13946 static void
13947 do_neon_rshift_sat_narrow_u (void)
13948 {
13949 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13950 or unsigned. If operands are unsigned, results must also be unsigned. */
13951 struct neon_type_el et = neon_check_type (2, NS_DQI,
13952 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13953 int imm = inst.operands[2].imm;
13954 /* This gets the bounds check, size encoding and immediate bits calculation
13955 right. */
13956 et.size /= 2;
13957
13958 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13959 VQMOVUN.I<size> <Dd>, <Qm>. */
13960 if (imm == 0)
13961 {
13962 inst.operands[2].present = 0;
13963 inst.instruction = N_MNEM_vqmovun;
13964 do_neon_qmovun ();
13965 return;
13966 }
13967
13968 constraint (imm < 1 || (unsigned)imm > et.size,
13969 _("immediate out of range"));
13970 /* FIXME: The manual is kind of unclear about what value U should have in
13971 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13972 must be 1. */
13973 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13974 }
13975
13976 static void
13977 do_neon_movn (void)
13978 {
13979 struct neon_type_el et = neon_check_type (2, NS_DQ,
13980 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13981 NEON_ENCODE (INTEGER, inst);
13982 neon_two_same (0, 1, et.size / 2);
13983 }
13984
13985 static void
13986 do_neon_rshift_narrow (void)
13987 {
13988 struct neon_type_el et = neon_check_type (2, NS_DQI,
13989 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13990 int imm = inst.operands[2].imm;
13991 /* This gets the bounds check, size encoding and immediate bits calculation
13992 right. */
13993 et.size /= 2;
13994
13995 /* If immediate is zero then we are a pseudo-instruction for
13996 VMOVN.I<size> <Dd>, <Qm> */
13997 if (imm == 0)
13998 {
13999 inst.operands[2].present = 0;
14000 inst.instruction = N_MNEM_vmovn;
14001 do_neon_movn ();
14002 return;
14003 }
14004
14005 constraint (imm < 1 || (unsigned)imm > et.size,
14006 _("immediate out of range for narrowing operation"));
14007 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14008 }
14009
14010 static void
14011 do_neon_shll (void)
14012 {
14013 /* FIXME: Type checking when lengthening. */
14014 struct neon_type_el et = neon_check_type (2, NS_QDI,
14015 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14016 unsigned imm = inst.operands[2].imm;
14017
14018 if (imm == et.size)
14019 {
14020 /* Maximum shift variant. */
14021 NEON_ENCODE (INTEGER, inst);
14022 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14023 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14024 inst.instruction |= LOW4 (inst.operands[1].reg);
14025 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14026 inst.instruction |= neon_logbits (et.size) << 18;
14027
14028 neon_dp_fixup (&inst);
14029 }
14030 else
14031 {
14032 /* A more-specific type check for non-max versions. */
14033 et = neon_check_type (2, NS_QDI,
14034 N_EQK | N_DBL, N_SU_32 | N_KEY);
14035 NEON_ENCODE (IMMED, inst);
14036 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14037 }
14038 }
14039
14040 /* Check the various types for the VCVT instruction, and return which version
14041 the current instruction is. */
14042
14043 static int
14044 neon_cvt_flavour (enum neon_shape rs)
14045 {
14046 #define CVT_VAR(C,X,Y) \
14047 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14048 if (et.type != NT_invtype) \
14049 { \
14050 inst.error = NULL; \
14051 return (C); \
14052 }
14053 struct neon_type_el et;
14054 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14055 || rs == NS_FF) ? N_VFP : 0;
14056 /* The instruction versions which take an immediate take one register
14057 argument, which is extended to the width of the full register. Thus the
14058 "source" and "destination" registers must have the same width. Hack that
14059 here by making the size equal to the key (wider, in this case) operand. */
14060 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14061
14062 CVT_VAR (0, N_S32, N_F32);
14063 CVT_VAR (1, N_U32, N_F32);
14064 CVT_VAR (2, N_F32, N_S32);
14065 CVT_VAR (3, N_F32, N_U32);
14066 /* Half-precision conversions. */
14067 CVT_VAR (4, N_F32, N_F16);
14068 CVT_VAR (5, N_F16, N_F32);
14069
14070 whole_reg = N_VFP;
14071
14072 /* VFP instructions. */
14073 CVT_VAR (6, N_F32, N_F64);
14074 CVT_VAR (7, N_F64, N_F32);
14075 CVT_VAR (8, N_S32, N_F64 | key);
14076 CVT_VAR (9, N_U32, N_F64 | key);
14077 CVT_VAR (10, N_F64 | key, N_S32);
14078 CVT_VAR (11, N_F64 | key, N_U32);
14079 /* VFP instructions with bitshift. */
14080 CVT_VAR (12, N_F32 | key, N_S16);
14081 CVT_VAR (13, N_F32 | key, N_U16);
14082 CVT_VAR (14, N_F64 | key, N_S16);
14083 CVT_VAR (15, N_F64 | key, N_U16);
14084 CVT_VAR (16, N_S16, N_F32 | key);
14085 CVT_VAR (17, N_U16, N_F32 | key);
14086 CVT_VAR (18, N_S16, N_F64 | key);
14087 CVT_VAR (19, N_U16, N_F64 | key);
14088
14089 return -1;
14090 #undef CVT_VAR
14091 }
14092
14093 /* Neon-syntax VFP conversions. */
14094
14095 static void
14096 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
14097 {
14098 const char *opname = 0;
14099
14100 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14101 {
14102 /* Conversions with immediate bitshift. */
14103 const char *enc[] =
14104 {
14105 "ftosls",
14106 "ftouls",
14107 "fsltos",
14108 "fultos",
14109 NULL,
14110 NULL,
14111 NULL,
14112 NULL,
14113 "ftosld",
14114 "ftould",
14115 "fsltod",
14116 "fultod",
14117 "fshtos",
14118 "fuhtos",
14119 "fshtod",
14120 "fuhtod",
14121 "ftoshs",
14122 "ftouhs",
14123 "ftoshd",
14124 "ftouhd"
14125 };
14126
14127 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14128 {
14129 opname = enc[flavour];
14130 constraint (inst.operands[0].reg != inst.operands[1].reg,
14131 _("operands 0 and 1 must be the same register"));
14132 inst.operands[1] = inst.operands[2];
14133 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14134 }
14135 }
14136 else
14137 {
14138 /* Conversions without bitshift. */
14139 const char *enc[] =
14140 {
14141 "ftosis",
14142 "ftouis",
14143 "fsitos",
14144 "fuitos",
14145 "NULL",
14146 "NULL",
14147 "fcvtsd",
14148 "fcvtds",
14149 "ftosid",
14150 "ftouid",
14151 "fsitod",
14152 "fuitod"
14153 };
14154
14155 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14156 opname = enc[flavour];
14157 }
14158
14159 if (opname)
14160 do_vfp_nsyn_opcode (opname);
14161 }
14162
14163 static void
14164 do_vfp_nsyn_cvtz (void)
14165 {
14166 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14167 int flavour = neon_cvt_flavour (rs);
14168 const char *enc[] =
14169 {
14170 "ftosizs",
14171 "ftouizs",
14172 NULL,
14173 NULL,
14174 NULL,
14175 NULL,
14176 NULL,
14177 NULL,
14178 "ftosizd",
14179 "ftouizd"
14180 };
14181
14182 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14183 do_vfp_nsyn_opcode (enc[flavour]);
14184 }
14185
14186 static void
14187 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14188 {
14189 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14190 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14191 int flavour = neon_cvt_flavour (rs);
14192
14193 /* PR11109: Handle round-to-zero for VCVT conversions. */
14194 if (round_to_zero
14195 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14196 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14197 && (rs == NS_FD || rs == NS_FF))
14198 {
14199 do_vfp_nsyn_cvtz ();
14200 return;
14201 }
14202
14203 /* VFP rather than Neon conversions. */
14204 if (flavour >= 6)
14205 {
14206 do_vfp_nsyn_cvt (rs, flavour);
14207 return;
14208 }
14209
14210 switch (rs)
14211 {
14212 case NS_DDI:
14213 case NS_QQI:
14214 {
14215 unsigned immbits;
14216 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14217
14218 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14219 return;
14220
14221 /* Fixed-point conversion with #0 immediate is encoded as an
14222 integer conversion. */
14223 if (inst.operands[2].present && inst.operands[2].imm == 0)
14224 goto int_encode;
14225 immbits = 32 - inst.operands[2].imm;
14226 NEON_ENCODE (IMMED, inst);
14227 if (flavour != -1)
14228 inst.instruction |= enctab[flavour];
14229 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14230 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14231 inst.instruction |= LOW4 (inst.operands[1].reg);
14232 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14233 inst.instruction |= neon_quad (rs) << 6;
14234 inst.instruction |= 1 << 21;
14235 inst.instruction |= immbits << 16;
14236
14237 neon_dp_fixup (&inst);
14238 }
14239 break;
14240
14241 case NS_DD:
14242 case NS_QQ:
14243 int_encode:
14244 {
14245 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14246
14247 NEON_ENCODE (INTEGER, inst);
14248
14249 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14250 return;
14251
14252 if (flavour != -1)
14253 inst.instruction |= enctab[flavour];
14254
14255 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14256 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14257 inst.instruction |= LOW4 (inst.operands[1].reg);
14258 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14259 inst.instruction |= neon_quad (rs) << 6;
14260 inst.instruction |= 2 << 18;
14261
14262 neon_dp_fixup (&inst);
14263 }
14264 break;
14265
14266 /* Half-precision conversions for Advanced SIMD -- neon. */
14267 case NS_QD:
14268 case NS_DQ:
14269
14270 if ((rs == NS_DQ)
14271 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14272 {
14273 as_bad (_("operand size must match register width"));
14274 break;
14275 }
14276
14277 if ((rs == NS_QD)
14278 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14279 {
14280 as_bad (_("operand size must match register width"));
14281 break;
14282 }
14283
14284 if (rs == NS_DQ)
14285 inst.instruction = 0x3b60600;
14286 else
14287 inst.instruction = 0x3b60700;
14288
14289 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14290 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14291 inst.instruction |= LOW4 (inst.operands[1].reg);
14292 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14293 neon_dp_fixup (&inst);
14294 break;
14295
14296 default:
14297 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14298 do_vfp_nsyn_cvt (rs, flavour);
14299 }
14300 }
14301
14302 static void
14303 do_neon_cvtr (void)
14304 {
14305 do_neon_cvt_1 (FALSE);
14306 }
14307
14308 static void
14309 do_neon_cvt (void)
14310 {
14311 do_neon_cvt_1 (TRUE);
14312 }
14313
14314 static void
14315 do_neon_cvtb (void)
14316 {
14317 inst.instruction = 0xeb20a40;
14318
14319 /* The sizes are attached to the mnemonic. */
14320 if (inst.vectype.el[0].type != NT_invtype
14321 && inst.vectype.el[0].size == 16)
14322 inst.instruction |= 0x00010000;
14323
14324 /* Programmer's syntax: the sizes are attached to the operands. */
14325 else if (inst.operands[0].vectype.type != NT_invtype
14326 && inst.operands[0].vectype.size == 16)
14327 inst.instruction |= 0x00010000;
14328
14329 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14330 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14331 do_vfp_cond_or_thumb ();
14332 }
14333
14334
14335 static void
14336 do_neon_cvtt (void)
14337 {
14338 do_neon_cvtb ();
14339 inst.instruction |= 0x80;
14340 }
14341
14342 static void
14343 neon_move_immediate (void)
14344 {
14345 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14346 struct neon_type_el et = neon_check_type (2, rs,
14347 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14348 unsigned immlo, immhi = 0, immbits;
14349 int op, cmode, float_p;
14350
14351 constraint (et.type == NT_invtype,
14352 _("operand size must be specified for immediate VMOV"));
14353
14354 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14355 op = (inst.instruction & (1 << 5)) != 0;
14356
14357 immlo = inst.operands[1].imm;
14358 if (inst.operands[1].regisimm)
14359 immhi = inst.operands[1].reg;
14360
14361 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14362 _("immediate has bits set outside the operand size"));
14363
14364 float_p = inst.operands[1].immisfloat;
14365
14366 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14367 et.size, et.type)) == FAIL)
14368 {
14369 /* Invert relevant bits only. */
14370 neon_invert_size (&immlo, &immhi, et.size);
14371 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14372 with one or the other; those cases are caught by
14373 neon_cmode_for_move_imm. */
14374 op = !op;
14375 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14376 &op, et.size, et.type)) == FAIL)
14377 {
14378 first_error (_("immediate out of range"));
14379 return;
14380 }
14381 }
14382
14383 inst.instruction &= ~(1 << 5);
14384 inst.instruction |= op << 5;
14385
14386 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14387 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14388 inst.instruction |= neon_quad (rs) << 6;
14389 inst.instruction |= cmode << 8;
14390
14391 neon_write_immbits (immbits);
14392 }
14393
14394 static void
14395 do_neon_mvn (void)
14396 {
14397 if (inst.operands[1].isreg)
14398 {
14399 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14400
14401 NEON_ENCODE (INTEGER, inst);
14402 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14403 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14404 inst.instruction |= LOW4 (inst.operands[1].reg);
14405 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14406 inst.instruction |= neon_quad (rs) << 6;
14407 }
14408 else
14409 {
14410 NEON_ENCODE (IMMED, inst);
14411 neon_move_immediate ();
14412 }
14413
14414 neon_dp_fixup (&inst);
14415 }
14416
14417 /* Encode instructions of form:
14418
14419 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14420 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14421
14422 static void
14423 neon_mixed_length (struct neon_type_el et, unsigned size)
14424 {
14425 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14426 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14427 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14428 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14429 inst.instruction |= LOW4 (inst.operands[2].reg);
14430 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14431 inst.instruction |= (et.type == NT_unsigned) << 24;
14432 inst.instruction |= neon_logbits (size) << 20;
14433
14434 neon_dp_fixup (&inst);
14435 }
14436
14437 static void
14438 do_neon_dyadic_long (void)
14439 {
14440 /* FIXME: Type checking for lengthening op. */
14441 struct neon_type_el et = neon_check_type (3, NS_QDD,
14442 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14443 neon_mixed_length (et, et.size);
14444 }
14445
14446 static void
14447 do_neon_abal (void)
14448 {
14449 struct neon_type_el et = neon_check_type (3, NS_QDD,
14450 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14451 neon_mixed_length (et, et.size);
14452 }
14453
14454 static void
14455 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14456 {
14457 if (inst.operands[2].isscalar)
14458 {
14459 struct neon_type_el et = neon_check_type (3, NS_QDS,
14460 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14461 NEON_ENCODE (SCALAR, inst);
14462 neon_mul_mac (et, et.type == NT_unsigned);
14463 }
14464 else
14465 {
14466 struct neon_type_el et = neon_check_type (3, NS_QDD,
14467 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14468 NEON_ENCODE (INTEGER, inst);
14469 neon_mixed_length (et, et.size);
14470 }
14471 }
14472
14473 static void
14474 do_neon_mac_maybe_scalar_long (void)
14475 {
14476 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14477 }
14478
14479 static void
14480 do_neon_dyadic_wide (void)
14481 {
14482 struct neon_type_el et = neon_check_type (3, NS_QQD,
14483 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14484 neon_mixed_length (et, et.size);
14485 }
14486
14487 static void
14488 do_neon_dyadic_narrow (void)
14489 {
14490 struct neon_type_el et = neon_check_type (3, NS_QDD,
14491 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14492 /* Operand sign is unimportant, and the U bit is part of the opcode,
14493 so force the operand type to integer. */
14494 et.type = NT_integer;
14495 neon_mixed_length (et, et.size / 2);
14496 }
14497
14498 static void
14499 do_neon_mul_sat_scalar_long (void)
14500 {
14501 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14502 }
14503
14504 static void
14505 do_neon_vmull (void)
14506 {
14507 if (inst.operands[2].isscalar)
14508 do_neon_mac_maybe_scalar_long ();
14509 else
14510 {
14511 struct neon_type_el et = neon_check_type (3, NS_QDD,
14512 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14513 if (et.type == NT_poly)
14514 NEON_ENCODE (POLY, inst);
14515 else
14516 NEON_ENCODE (INTEGER, inst);
14517 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14518 zero. Should be OK as-is. */
14519 neon_mixed_length (et, et.size);
14520 }
14521 }
14522
14523 static void
14524 do_neon_ext (void)
14525 {
14526 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14527 struct neon_type_el et = neon_check_type (3, rs,
14528 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14529 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14530
14531 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14532 _("shift out of range"));
14533 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14534 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14535 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14536 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14537 inst.instruction |= LOW4 (inst.operands[2].reg);
14538 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14539 inst.instruction |= neon_quad (rs) << 6;
14540 inst.instruction |= imm << 8;
14541
14542 neon_dp_fixup (&inst);
14543 }
14544
14545 static void
14546 do_neon_rev (void)
14547 {
14548 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14549 struct neon_type_el et = neon_check_type (2, rs,
14550 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14551 unsigned op = (inst.instruction >> 7) & 3;
14552 /* N (width of reversed regions) is encoded as part of the bitmask. We
14553 extract it here to check the elements to be reversed are smaller.
14554 Otherwise we'd get a reserved instruction. */
14555 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14556 gas_assert (elsize != 0);
14557 constraint (et.size >= elsize,
14558 _("elements must be smaller than reversal region"));
14559 neon_two_same (neon_quad (rs), 1, et.size);
14560 }
14561
14562 static void
14563 do_neon_dup (void)
14564 {
14565 if (inst.operands[1].isscalar)
14566 {
14567 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14568 struct neon_type_el et = neon_check_type (2, rs,
14569 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14570 unsigned sizebits = et.size >> 3;
14571 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14572 int logsize = neon_logbits (et.size);
14573 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14574
14575 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14576 return;
14577
14578 NEON_ENCODE (SCALAR, inst);
14579 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14580 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14581 inst.instruction |= LOW4 (dm);
14582 inst.instruction |= HI1 (dm) << 5;
14583 inst.instruction |= neon_quad (rs) << 6;
14584 inst.instruction |= x << 17;
14585 inst.instruction |= sizebits << 16;
14586
14587 neon_dp_fixup (&inst);
14588 }
14589 else
14590 {
14591 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14592 struct neon_type_el et = neon_check_type (2, rs,
14593 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14594 /* Duplicate ARM register to lanes of vector. */
14595 NEON_ENCODE (ARMREG, inst);
14596 switch (et.size)
14597 {
14598 case 8: inst.instruction |= 0x400000; break;
14599 case 16: inst.instruction |= 0x000020; break;
14600 case 32: inst.instruction |= 0x000000; break;
14601 default: break;
14602 }
14603 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14604 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14605 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14606 inst.instruction |= neon_quad (rs) << 21;
14607 /* The encoding for this instruction is identical for the ARM and Thumb
14608 variants, except for the condition field. */
14609 do_vfp_cond_or_thumb ();
14610 }
14611 }
14612
14613 /* VMOV has particularly many variations. It can be one of:
14614 0. VMOV<c><q> <Qd>, <Qm>
14615 1. VMOV<c><q> <Dd>, <Dm>
14616 (Register operations, which are VORR with Rm = Rn.)
14617 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14618 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14619 (Immediate loads.)
14620 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14621 (ARM register to scalar.)
14622 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14623 (Two ARM registers to vector.)
14624 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14625 (Scalar to ARM register.)
14626 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14627 (Vector to two ARM registers.)
14628 8. VMOV.F32 <Sd>, <Sm>
14629 9. VMOV.F64 <Dd>, <Dm>
14630 (VFP register moves.)
14631 10. VMOV.F32 <Sd>, #imm
14632 11. VMOV.F64 <Dd>, #imm
14633 (VFP float immediate load.)
14634 12. VMOV <Rd>, <Sm>
14635 (VFP single to ARM reg.)
14636 13. VMOV <Sd>, <Rm>
14637 (ARM reg to VFP single.)
14638 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14639 (Two ARM regs to two VFP singles.)
14640 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14641 (Two VFP singles to two ARM regs.)
14642
14643 These cases can be disambiguated using neon_select_shape, except cases 1/9
14644 and 3/11 which depend on the operand type too.
14645
14646 All the encoded bits are hardcoded by this function.
14647
14648 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14649 Cases 5, 7 may be used with VFPv2 and above.
14650
14651 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14652 can specify a type where it doesn't make sense to, and is ignored). */
14653
14654 static void
14655 do_neon_mov (void)
14656 {
14657 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14658 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14659 NS_NULL);
14660 struct neon_type_el et;
14661 const char *ldconst = 0;
14662
14663 switch (rs)
14664 {
14665 case NS_DD: /* case 1/9. */
14666 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14667 /* It is not an error here if no type is given. */
14668 inst.error = NULL;
14669 if (et.type == NT_float && et.size == 64)
14670 {
14671 do_vfp_nsyn_opcode ("fcpyd");
14672 break;
14673 }
14674 /* fall through. */
14675
14676 case NS_QQ: /* case 0/1. */
14677 {
14678 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14679 return;
14680 /* The architecture manual I have doesn't explicitly state which
14681 value the U bit should have for register->register moves, but
14682 the equivalent VORR instruction has U = 0, so do that. */
14683 inst.instruction = 0x0200110;
14684 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14685 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14686 inst.instruction |= LOW4 (inst.operands[1].reg);
14687 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14688 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14689 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14690 inst.instruction |= neon_quad (rs) << 6;
14691
14692 neon_dp_fixup (&inst);
14693 }
14694 break;
14695
14696 case NS_DI: /* case 3/11. */
14697 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14698 inst.error = NULL;
14699 if (et.type == NT_float && et.size == 64)
14700 {
14701 /* case 11 (fconstd). */
14702 ldconst = "fconstd";
14703 goto encode_fconstd;
14704 }
14705 /* fall through. */
14706
14707 case NS_QI: /* case 2/3. */
14708 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14709 return;
14710 inst.instruction = 0x0800010;
14711 neon_move_immediate ();
14712 neon_dp_fixup (&inst);
14713 break;
14714
14715 case NS_SR: /* case 4. */
14716 {
14717 unsigned bcdebits = 0;
14718 int logsize;
14719 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14720 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14721
14722 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14723 logsize = neon_logbits (et.size);
14724
14725 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14726 _(BAD_FPU));
14727 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14728 && et.size != 32, _(BAD_FPU));
14729 constraint (et.type == NT_invtype, _("bad type for scalar"));
14730 constraint (x >= 64 / et.size, _("scalar index out of range"));
14731
14732 switch (et.size)
14733 {
14734 case 8: bcdebits = 0x8; break;
14735 case 16: bcdebits = 0x1; break;
14736 case 32: bcdebits = 0x0; break;
14737 default: ;
14738 }
14739
14740 bcdebits |= x << logsize;
14741
14742 inst.instruction = 0xe000b10;
14743 do_vfp_cond_or_thumb ();
14744 inst.instruction |= LOW4 (dn) << 16;
14745 inst.instruction |= HI1 (dn) << 7;
14746 inst.instruction |= inst.operands[1].reg << 12;
14747 inst.instruction |= (bcdebits & 3) << 5;
14748 inst.instruction |= (bcdebits >> 2) << 21;
14749 }
14750 break;
14751
14752 case NS_DRR: /* case 5 (fmdrr). */
14753 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14754 _(BAD_FPU));
14755
14756 inst.instruction = 0xc400b10;
14757 do_vfp_cond_or_thumb ();
14758 inst.instruction |= LOW4 (inst.operands[0].reg);
14759 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14760 inst.instruction |= inst.operands[1].reg << 12;
14761 inst.instruction |= inst.operands[2].reg << 16;
14762 break;
14763
14764 case NS_RS: /* case 6. */
14765 {
14766 unsigned logsize;
14767 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14768 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14769 unsigned abcdebits = 0;
14770
14771 et = neon_check_type (2, NS_NULL,
14772 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14773 logsize = neon_logbits (et.size);
14774
14775 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14776 _(BAD_FPU));
14777 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14778 && et.size != 32, _(BAD_FPU));
14779 constraint (et.type == NT_invtype, _("bad type for scalar"));
14780 constraint (x >= 64 / et.size, _("scalar index out of range"));
14781
14782 switch (et.size)
14783 {
14784 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14785 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14786 case 32: abcdebits = 0x00; break;
14787 default: ;
14788 }
14789
14790 abcdebits |= x << logsize;
14791 inst.instruction = 0xe100b10;
14792 do_vfp_cond_or_thumb ();
14793 inst.instruction |= LOW4 (dn) << 16;
14794 inst.instruction |= HI1 (dn) << 7;
14795 inst.instruction |= inst.operands[0].reg << 12;
14796 inst.instruction |= (abcdebits & 3) << 5;
14797 inst.instruction |= (abcdebits >> 2) << 21;
14798 }
14799 break;
14800
14801 case NS_RRD: /* case 7 (fmrrd). */
14802 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14803 _(BAD_FPU));
14804
14805 inst.instruction = 0xc500b10;
14806 do_vfp_cond_or_thumb ();
14807 inst.instruction |= inst.operands[0].reg << 12;
14808 inst.instruction |= inst.operands[1].reg << 16;
14809 inst.instruction |= LOW4 (inst.operands[2].reg);
14810 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14811 break;
14812
14813 case NS_FF: /* case 8 (fcpys). */
14814 do_vfp_nsyn_opcode ("fcpys");
14815 break;
14816
14817 case NS_FI: /* case 10 (fconsts). */
14818 ldconst = "fconsts";
14819 encode_fconstd:
14820 if (is_quarter_float (inst.operands[1].imm))
14821 {
14822 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14823 do_vfp_nsyn_opcode (ldconst);
14824 }
14825 else
14826 first_error (_("immediate out of range"));
14827 break;
14828
14829 case NS_RF: /* case 12 (fmrs). */
14830 do_vfp_nsyn_opcode ("fmrs");
14831 break;
14832
14833 case NS_FR: /* case 13 (fmsr). */
14834 do_vfp_nsyn_opcode ("fmsr");
14835 break;
14836
14837 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14838 (one of which is a list), but we have parsed four. Do some fiddling to
14839 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14840 expect. */
14841 case NS_RRFF: /* case 14 (fmrrs). */
14842 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14843 _("VFP registers must be adjacent"));
14844 inst.operands[2].imm = 2;
14845 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14846 do_vfp_nsyn_opcode ("fmrrs");
14847 break;
14848
14849 case NS_FFRR: /* case 15 (fmsrr). */
14850 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14851 _("VFP registers must be adjacent"));
14852 inst.operands[1] = inst.operands[2];
14853 inst.operands[2] = inst.operands[3];
14854 inst.operands[0].imm = 2;
14855 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14856 do_vfp_nsyn_opcode ("fmsrr");
14857 break;
14858
14859 default:
14860 abort ();
14861 }
14862 }
14863
14864 static void
14865 do_neon_rshift_round_imm (void)
14866 {
14867 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14868 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14869 int imm = inst.operands[2].imm;
14870
14871 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14872 if (imm == 0)
14873 {
14874 inst.operands[2].present = 0;
14875 do_neon_mov ();
14876 return;
14877 }
14878
14879 constraint (imm < 1 || (unsigned)imm > et.size,
14880 _("immediate out of range for shift"));
14881 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14882 et.size - imm);
14883 }
14884
14885 static void
14886 do_neon_movl (void)
14887 {
14888 struct neon_type_el et = neon_check_type (2, NS_QD,
14889 N_EQK | N_DBL, N_SU_32 | N_KEY);
14890 unsigned sizebits = et.size >> 3;
14891 inst.instruction |= sizebits << 19;
14892 neon_two_same (0, et.type == NT_unsigned, -1);
14893 }
14894
14895 static void
14896 do_neon_trn (void)
14897 {
14898 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14899 struct neon_type_el et = neon_check_type (2, rs,
14900 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14901 NEON_ENCODE (INTEGER, inst);
14902 neon_two_same (neon_quad (rs), 1, et.size);
14903 }
14904
14905 static void
14906 do_neon_zip_uzp (void)
14907 {
14908 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14909 struct neon_type_el et = neon_check_type (2, rs,
14910 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14911 if (rs == NS_DD && et.size == 32)
14912 {
14913 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14914 inst.instruction = N_MNEM_vtrn;
14915 do_neon_trn ();
14916 return;
14917 }
14918 neon_two_same (neon_quad (rs), 1, et.size);
14919 }
14920
14921 static void
14922 do_neon_sat_abs_neg (void)
14923 {
14924 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14925 struct neon_type_el et = neon_check_type (2, rs,
14926 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14927 neon_two_same (neon_quad (rs), 1, et.size);
14928 }
14929
14930 static void
14931 do_neon_pair_long (void)
14932 {
14933 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14934 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14935 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14936 inst.instruction |= (et.type == NT_unsigned) << 7;
14937 neon_two_same (neon_quad (rs), 1, et.size);
14938 }
14939
14940 static void
14941 do_neon_recip_est (void)
14942 {
14943 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14944 struct neon_type_el et = neon_check_type (2, rs,
14945 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14946 inst.instruction |= (et.type == NT_float) << 8;
14947 neon_two_same (neon_quad (rs), 1, et.size);
14948 }
14949
14950 static void
14951 do_neon_cls (void)
14952 {
14953 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14954 struct neon_type_el et = neon_check_type (2, rs,
14955 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14956 neon_two_same (neon_quad (rs), 1, et.size);
14957 }
14958
14959 static void
14960 do_neon_clz (void)
14961 {
14962 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14963 struct neon_type_el et = neon_check_type (2, rs,
14964 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
14965 neon_two_same (neon_quad (rs), 1, et.size);
14966 }
14967
14968 static void
14969 do_neon_cnt (void)
14970 {
14971 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14972 struct neon_type_el et = neon_check_type (2, rs,
14973 N_EQK | N_INT, N_8 | N_KEY);
14974 neon_two_same (neon_quad (rs), 1, et.size);
14975 }
14976
14977 static void
14978 do_neon_swp (void)
14979 {
14980 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14981 neon_two_same (neon_quad (rs), 1, -1);
14982 }
14983
14984 static void
14985 do_neon_tbl_tbx (void)
14986 {
14987 unsigned listlenbits;
14988 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
14989
14990 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14991 {
14992 first_error (_("bad list length for table lookup"));
14993 return;
14994 }
14995
14996 listlenbits = inst.operands[1].imm - 1;
14997 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14998 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14999 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15000 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15001 inst.instruction |= LOW4 (inst.operands[2].reg);
15002 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15003 inst.instruction |= listlenbits << 8;
15004
15005 neon_dp_fixup (&inst);
15006 }
15007
15008 static void
15009 do_neon_ldm_stm (void)
15010 {
15011 /* P, U and L bits are part of bitmask. */
15012 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15013 unsigned offsetbits = inst.operands[1].imm * 2;
15014
15015 if (inst.operands[1].issingle)
15016 {
15017 do_vfp_nsyn_ldm_stm (is_dbmode);
15018 return;
15019 }
15020
15021 constraint (is_dbmode && !inst.operands[0].writeback,
15022 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15023
15024 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15025 _("register list must contain at least 1 and at most 16 "
15026 "registers"));
15027
15028 inst.instruction |= inst.operands[0].reg << 16;
15029 inst.instruction |= inst.operands[0].writeback << 21;
15030 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15031 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15032
15033 inst.instruction |= offsetbits;
15034
15035 do_vfp_cond_or_thumb ();
15036 }
15037
15038 static void
15039 do_neon_ldr_str (void)
15040 {
15041 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15042
15043 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15044 And is UNPREDICTABLE in thumb mode. */
15045 if (!is_ldr
15046 && inst.operands[1].reg == REG_PC
15047 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15048 {
15049 if (!thumb_mode && warn_on_deprecated)
15050 as_warn (_("Use of PC here is deprecated"));
15051 else
15052 inst.error = _("Use of PC here is UNPREDICTABLE");
15053 }
15054
15055 if (inst.operands[0].issingle)
15056 {
15057 if (is_ldr)
15058 do_vfp_nsyn_opcode ("flds");
15059 else
15060 do_vfp_nsyn_opcode ("fsts");
15061 }
15062 else
15063 {
15064 if (is_ldr)
15065 do_vfp_nsyn_opcode ("fldd");
15066 else
15067 do_vfp_nsyn_opcode ("fstd");
15068 }
15069 }
15070
15071 /* "interleave" version also handles non-interleaving register VLD1/VST1
15072 instructions. */
15073
15074 static void
15075 do_neon_ld_st_interleave (void)
15076 {
15077 struct neon_type_el et = neon_check_type (1, NS_NULL,
15078 N_8 | N_16 | N_32 | N_64);
15079 unsigned alignbits = 0;
15080 unsigned idx;
15081 /* The bits in this table go:
15082 0: register stride of one (0) or two (1)
15083 1,2: register list length, minus one (1, 2, 3, 4).
15084 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15085 We use -1 for invalid entries. */
15086 const int typetable[] =
15087 {
15088 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15089 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15090 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15091 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15092 };
15093 int typebits;
15094
15095 if (et.type == NT_invtype)
15096 return;
15097
15098 if (inst.operands[1].immisalign)
15099 switch (inst.operands[1].imm >> 8)
15100 {
15101 case 64: alignbits = 1; break;
15102 case 128:
15103 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15104 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15105 goto bad_alignment;
15106 alignbits = 2;
15107 break;
15108 case 256:
15109 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15110 goto bad_alignment;
15111 alignbits = 3;
15112 break;
15113 default:
15114 bad_alignment:
15115 first_error (_("bad alignment"));
15116 return;
15117 }
15118
15119 inst.instruction |= alignbits << 4;
15120 inst.instruction |= neon_logbits (et.size) << 6;
15121
15122 /* Bits [4:6] of the immediate in a list specifier encode register stride
15123 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15124 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15125 up the right value for "type" in a table based on this value and the given
15126 list style, then stick it back. */
15127 idx = ((inst.operands[0].imm >> 4) & 7)
15128 | (((inst.instruction >> 8) & 3) << 3);
15129
15130 typebits = typetable[idx];
15131
15132 constraint (typebits == -1, _("bad list type for instruction"));
15133
15134 inst.instruction &= ~0xf00;
15135 inst.instruction |= typebits << 8;
15136 }
15137
15138 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15139 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15140 otherwise. The variable arguments are a list of pairs of legal (size, align)
15141 values, terminated with -1. */
15142
15143 static int
15144 neon_alignment_bit (int size, int align, int *do_align, ...)
15145 {
15146 va_list ap;
15147 int result = FAIL, thissize, thisalign;
15148
15149 if (!inst.operands[1].immisalign)
15150 {
15151 *do_align = 0;
15152 return SUCCESS;
15153 }
15154
15155 va_start (ap, do_align);
15156
15157 do
15158 {
15159 thissize = va_arg (ap, int);
15160 if (thissize == -1)
15161 break;
15162 thisalign = va_arg (ap, int);
15163
15164 if (size == thissize && align == thisalign)
15165 result = SUCCESS;
15166 }
15167 while (result != SUCCESS);
15168
15169 va_end (ap);
15170
15171 if (result == SUCCESS)
15172 *do_align = 1;
15173 else
15174 first_error (_("unsupported alignment for instruction"));
15175
15176 return result;
15177 }
15178
15179 static void
15180 do_neon_ld_st_lane (void)
15181 {
15182 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15183 int align_good, do_align = 0;
15184 int logsize = neon_logbits (et.size);
15185 int align = inst.operands[1].imm >> 8;
15186 int n = (inst.instruction >> 8) & 3;
15187 int max_el = 64 / et.size;
15188
15189 if (et.type == NT_invtype)
15190 return;
15191
15192 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15193 _("bad list length"));
15194 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15195 _("scalar index out of range"));
15196 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15197 && et.size == 8,
15198 _("stride of 2 unavailable when element size is 8"));
15199
15200 switch (n)
15201 {
15202 case 0: /* VLD1 / VST1. */
15203 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15204 32, 32, -1);
15205 if (align_good == FAIL)
15206 return;
15207 if (do_align)
15208 {
15209 unsigned alignbits = 0;
15210 switch (et.size)
15211 {
15212 case 16: alignbits = 0x1; break;
15213 case 32: alignbits = 0x3; break;
15214 default: ;
15215 }
15216 inst.instruction |= alignbits << 4;
15217 }
15218 break;
15219
15220 case 1: /* VLD2 / VST2. */
15221 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15222 32, 64, -1);
15223 if (align_good == FAIL)
15224 return;
15225 if (do_align)
15226 inst.instruction |= 1 << 4;
15227 break;
15228
15229 case 2: /* VLD3 / VST3. */
15230 constraint (inst.operands[1].immisalign,
15231 _("can't use alignment with this instruction"));
15232 break;
15233
15234 case 3: /* VLD4 / VST4. */
15235 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15236 16, 64, 32, 64, 32, 128, -1);
15237 if (align_good == FAIL)
15238 return;
15239 if (do_align)
15240 {
15241 unsigned alignbits = 0;
15242 switch (et.size)
15243 {
15244 case 8: alignbits = 0x1; break;
15245 case 16: alignbits = 0x1; break;
15246 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15247 default: ;
15248 }
15249 inst.instruction |= alignbits << 4;
15250 }
15251 break;
15252
15253 default: ;
15254 }
15255
15256 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15257 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15258 inst.instruction |= 1 << (4 + logsize);
15259
15260 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15261 inst.instruction |= logsize << 10;
15262 }
15263
15264 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15265
15266 static void
15267 do_neon_ld_dup (void)
15268 {
15269 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15270 int align_good, do_align = 0;
15271
15272 if (et.type == NT_invtype)
15273 return;
15274
15275 switch ((inst.instruction >> 8) & 3)
15276 {
15277 case 0: /* VLD1. */
15278 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15279 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15280 &do_align, 16, 16, 32, 32, -1);
15281 if (align_good == FAIL)
15282 return;
15283 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15284 {
15285 case 1: break;
15286 case 2: inst.instruction |= 1 << 5; break;
15287 default: first_error (_("bad list length")); return;
15288 }
15289 inst.instruction |= neon_logbits (et.size) << 6;
15290 break;
15291
15292 case 1: /* VLD2. */
15293 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15294 &do_align, 8, 16, 16, 32, 32, 64, -1);
15295 if (align_good == FAIL)
15296 return;
15297 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15298 _("bad list length"));
15299 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15300 inst.instruction |= 1 << 5;
15301 inst.instruction |= neon_logbits (et.size) << 6;
15302 break;
15303
15304 case 2: /* VLD3. */
15305 constraint (inst.operands[1].immisalign,
15306 _("can't use alignment with this instruction"));
15307 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15308 _("bad list length"));
15309 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15310 inst.instruction |= 1 << 5;
15311 inst.instruction |= neon_logbits (et.size) << 6;
15312 break;
15313
15314 case 3: /* VLD4. */
15315 {
15316 int align = inst.operands[1].imm >> 8;
15317 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15318 16, 64, 32, 64, 32, 128, -1);
15319 if (align_good == FAIL)
15320 return;
15321 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15322 _("bad list length"));
15323 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15324 inst.instruction |= 1 << 5;
15325 if (et.size == 32 && align == 128)
15326 inst.instruction |= 0x3 << 6;
15327 else
15328 inst.instruction |= neon_logbits (et.size) << 6;
15329 }
15330 break;
15331
15332 default: ;
15333 }
15334
15335 inst.instruction |= do_align << 4;
15336 }
15337
15338 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15339 apart from bits [11:4]. */
15340
15341 static void
15342 do_neon_ldx_stx (void)
15343 {
15344 if (inst.operands[1].isreg)
15345 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15346
15347 switch (NEON_LANE (inst.operands[0].imm))
15348 {
15349 case NEON_INTERLEAVE_LANES:
15350 NEON_ENCODE (INTERLV, inst);
15351 do_neon_ld_st_interleave ();
15352 break;
15353
15354 case NEON_ALL_LANES:
15355 NEON_ENCODE (DUP, inst);
15356 do_neon_ld_dup ();
15357 break;
15358
15359 default:
15360 NEON_ENCODE (LANE, inst);
15361 do_neon_ld_st_lane ();
15362 }
15363
15364 /* L bit comes from bit mask. */
15365 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15366 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15367 inst.instruction |= inst.operands[1].reg << 16;
15368
15369 if (inst.operands[1].postind)
15370 {
15371 int postreg = inst.operands[1].imm & 0xf;
15372 constraint (!inst.operands[1].immisreg,
15373 _("post-index must be a register"));
15374 constraint (postreg == 0xd || postreg == 0xf,
15375 _("bad register for post-index"));
15376 inst.instruction |= postreg;
15377 }
15378 else if (inst.operands[1].writeback)
15379 {
15380 inst.instruction |= 0xd;
15381 }
15382 else
15383 inst.instruction |= 0xf;
15384
15385 if (thumb_mode)
15386 inst.instruction |= 0xf9000000;
15387 else
15388 inst.instruction |= 0xf4000000;
15389 }
15390 \f
15391 /* Overall per-instruction processing. */
15392
15393 /* We need to be able to fix up arbitrary expressions in some statements.
15394 This is so that we can handle symbols that are an arbitrary distance from
15395 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15396 which returns part of an address in a form which will be valid for
15397 a data instruction. We do this by pushing the expression into a symbol
15398 in the expr_section, and creating a fix for that. */
15399
15400 static void
15401 fix_new_arm (fragS * frag,
15402 int where,
15403 short int size,
15404 expressionS * exp,
15405 int pc_rel,
15406 int reloc)
15407 {
15408 fixS * new_fix;
15409
15410 switch (exp->X_op)
15411 {
15412 case O_constant:
15413 case O_symbol:
15414 case O_add:
15415 case O_subtract:
15416 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15417 (enum bfd_reloc_code_real) reloc);
15418 break;
15419
15420 default:
15421 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15422 pc_rel, (enum bfd_reloc_code_real) reloc);
15423 break;
15424 }
15425
15426 /* Mark whether the fix is to a THUMB instruction, or an ARM
15427 instruction. */
15428 new_fix->tc_fix_data = thumb_mode;
15429 }
15430
15431 /* Create a frg for an instruction requiring relaxation. */
15432 static void
15433 output_relax_insn (void)
15434 {
15435 char * to;
15436 symbolS *sym;
15437 int offset;
15438
15439 /* The size of the instruction is unknown, so tie the debug info to the
15440 start of the instruction. */
15441 dwarf2_emit_insn (0);
15442
15443 switch (inst.reloc.exp.X_op)
15444 {
15445 case O_symbol:
15446 sym = inst.reloc.exp.X_add_symbol;
15447 offset = inst.reloc.exp.X_add_number;
15448 break;
15449 case O_constant:
15450 sym = NULL;
15451 offset = inst.reloc.exp.X_add_number;
15452 break;
15453 default:
15454 sym = make_expr_symbol (&inst.reloc.exp);
15455 offset = 0;
15456 break;
15457 }
15458 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15459 inst.relax, sym, offset, NULL/*offset, opcode*/);
15460 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15461 }
15462
15463 /* Write a 32-bit thumb instruction to buf. */
15464 static void
15465 put_thumb32_insn (char * buf, unsigned long insn)
15466 {
15467 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15468 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15469 }
15470
15471 static void
15472 output_inst (const char * str)
15473 {
15474 char * to = NULL;
15475
15476 if (inst.error)
15477 {
15478 as_bad ("%s -- `%s'", inst.error, str);
15479 return;
15480 }
15481 if (inst.relax)
15482 {
15483 output_relax_insn ();
15484 return;
15485 }
15486 if (inst.size == 0)
15487 return;
15488
15489 to = frag_more (inst.size);
15490 /* PR 9814: Record the thumb mode into the current frag so that we know
15491 what type of NOP padding to use, if necessary. We override any previous
15492 setting so that if the mode has changed then the NOPS that we use will
15493 match the encoding of the last instruction in the frag. */
15494 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15495
15496 if (thumb_mode && (inst.size > THUMB_SIZE))
15497 {
15498 gas_assert (inst.size == (2 * THUMB_SIZE));
15499 put_thumb32_insn (to, inst.instruction);
15500 }
15501 else if (inst.size > INSN_SIZE)
15502 {
15503 gas_assert (inst.size == (2 * INSN_SIZE));
15504 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15505 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15506 }
15507 else
15508 md_number_to_chars (to, inst.instruction, inst.size);
15509
15510 if (inst.reloc.type != BFD_RELOC_UNUSED)
15511 fix_new_arm (frag_now, to - frag_now->fr_literal,
15512 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15513 inst.reloc.type);
15514
15515 dwarf2_emit_insn (inst.size);
15516 }
15517
15518 static char *
15519 output_it_inst (int cond, int mask, char * to)
15520 {
15521 unsigned long instruction = 0xbf00;
15522
15523 mask &= 0xf;
15524 instruction |= mask;
15525 instruction |= cond << 4;
15526
15527 if (to == NULL)
15528 {
15529 to = frag_more (2);
15530 #ifdef OBJ_ELF
15531 dwarf2_emit_insn (2);
15532 #endif
15533 }
15534
15535 md_number_to_chars (to, instruction, 2);
15536
15537 return to;
15538 }
15539
15540 /* Tag values used in struct asm_opcode's tag field. */
15541 enum opcode_tag
15542 {
15543 OT_unconditional, /* Instruction cannot be conditionalized.
15544 The ARM condition field is still 0xE. */
15545 OT_unconditionalF, /* Instruction cannot be conditionalized
15546 and carries 0xF in its ARM condition field. */
15547 OT_csuffix, /* Instruction takes a conditional suffix. */
15548 OT_csuffixF, /* Some forms of the instruction take a conditional
15549 suffix, others place 0xF where the condition field
15550 would be. */
15551 OT_cinfix3, /* Instruction takes a conditional infix,
15552 beginning at character index 3. (In
15553 unified mode, it becomes a suffix.) */
15554 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15555 tsts, cmps, cmns, and teqs. */
15556 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15557 character index 3, even in unified mode. Used for
15558 legacy instructions where suffix and infix forms
15559 may be ambiguous. */
15560 OT_csuf_or_in3, /* Instruction takes either a conditional
15561 suffix or an infix at character index 3. */
15562 OT_odd_infix_unc, /* This is the unconditional variant of an
15563 instruction that takes a conditional infix
15564 at an unusual position. In unified mode,
15565 this variant will accept a suffix. */
15566 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15567 are the conditional variants of instructions that
15568 take conditional infixes in unusual positions.
15569 The infix appears at character index
15570 (tag - OT_odd_infix_0). These are not accepted
15571 in unified mode. */
15572 };
15573
15574 /* Subroutine of md_assemble, responsible for looking up the primary
15575 opcode from the mnemonic the user wrote. STR points to the
15576 beginning of the mnemonic.
15577
15578 This is not simply a hash table lookup, because of conditional
15579 variants. Most instructions have conditional variants, which are
15580 expressed with a _conditional affix_ to the mnemonic. If we were
15581 to encode each conditional variant as a literal string in the opcode
15582 table, it would have approximately 20,000 entries.
15583
15584 Most mnemonics take this affix as a suffix, and in unified syntax,
15585 'most' is upgraded to 'all'. However, in the divided syntax, some
15586 instructions take the affix as an infix, notably the s-variants of
15587 the arithmetic instructions. Of those instructions, all but six
15588 have the infix appear after the third character of the mnemonic.
15589
15590 Accordingly, the algorithm for looking up primary opcodes given
15591 an identifier is:
15592
15593 1. Look up the identifier in the opcode table.
15594 If we find a match, go to step U.
15595
15596 2. Look up the last two characters of the identifier in the
15597 conditions table. If we find a match, look up the first N-2
15598 characters of the identifier in the opcode table. If we
15599 find a match, go to step CE.
15600
15601 3. Look up the fourth and fifth characters of the identifier in
15602 the conditions table. If we find a match, extract those
15603 characters from the identifier, and look up the remaining
15604 characters in the opcode table. If we find a match, go
15605 to step CM.
15606
15607 4. Fail.
15608
15609 U. Examine the tag field of the opcode structure, in case this is
15610 one of the six instructions with its conditional infix in an
15611 unusual place. If it is, the tag tells us where to find the
15612 infix; look it up in the conditions table and set inst.cond
15613 accordingly. Otherwise, this is an unconditional instruction.
15614 Again set inst.cond accordingly. Return the opcode structure.
15615
15616 CE. Examine the tag field to make sure this is an instruction that
15617 should receive a conditional suffix. If it is not, fail.
15618 Otherwise, set inst.cond from the suffix we already looked up,
15619 and return the opcode structure.
15620
15621 CM. Examine the tag field to make sure this is an instruction that
15622 should receive a conditional infix after the third character.
15623 If it is not, fail. Otherwise, undo the edits to the current
15624 line of input and proceed as for case CE. */
15625
15626 static const struct asm_opcode *
15627 opcode_lookup (char **str)
15628 {
15629 char *end, *base;
15630 char *affix;
15631 const struct asm_opcode *opcode;
15632 const struct asm_cond *cond;
15633 char save[2];
15634
15635 /* Scan up to the end of the mnemonic, which must end in white space,
15636 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15637 for (base = end = *str; *end != '\0'; end++)
15638 if (*end == ' ' || *end == '.')
15639 break;
15640
15641 if (end == base)
15642 return NULL;
15643
15644 /* Handle a possible width suffix and/or Neon type suffix. */
15645 if (end[0] == '.')
15646 {
15647 int offset = 2;
15648
15649 /* The .w and .n suffixes are only valid if the unified syntax is in
15650 use. */
15651 if (unified_syntax && end[1] == 'w')
15652 inst.size_req = 4;
15653 else if (unified_syntax && end[1] == 'n')
15654 inst.size_req = 2;
15655 else
15656 offset = 0;
15657
15658 inst.vectype.elems = 0;
15659
15660 *str = end + offset;
15661
15662 if (end[offset] == '.')
15663 {
15664 /* See if we have a Neon type suffix (possible in either unified or
15665 non-unified ARM syntax mode). */
15666 if (parse_neon_type (&inst.vectype, str) == FAIL)
15667 return NULL;
15668 }
15669 else if (end[offset] != '\0' && end[offset] != ' ')
15670 return NULL;
15671 }
15672 else
15673 *str = end;
15674
15675 /* Look for unaffixed or special-case affixed mnemonic. */
15676 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15677 end - base);
15678 if (opcode)
15679 {
15680 /* step U */
15681 if (opcode->tag < OT_odd_infix_0)
15682 {
15683 inst.cond = COND_ALWAYS;
15684 return opcode;
15685 }
15686
15687 if (warn_on_deprecated && unified_syntax)
15688 as_warn (_("conditional infixes are deprecated in unified syntax"));
15689 affix = base + (opcode->tag - OT_odd_infix_0);
15690 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15691 gas_assert (cond);
15692
15693 inst.cond = cond->value;
15694 return opcode;
15695 }
15696
15697 /* Cannot have a conditional suffix on a mnemonic of less than two
15698 characters. */
15699 if (end - base < 3)
15700 return NULL;
15701
15702 /* Look for suffixed mnemonic. */
15703 affix = end - 2;
15704 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15705 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15706 affix - base);
15707 if (opcode && cond)
15708 {
15709 /* step CE */
15710 switch (opcode->tag)
15711 {
15712 case OT_cinfix3_legacy:
15713 /* Ignore conditional suffixes matched on infix only mnemonics. */
15714 break;
15715
15716 case OT_cinfix3:
15717 case OT_cinfix3_deprecated:
15718 case OT_odd_infix_unc:
15719 if (!unified_syntax)
15720 return 0;
15721 /* else fall through */
15722
15723 case OT_csuffix:
15724 case OT_csuffixF:
15725 case OT_csuf_or_in3:
15726 inst.cond = cond->value;
15727 return opcode;
15728
15729 case OT_unconditional:
15730 case OT_unconditionalF:
15731 if (thumb_mode)
15732 inst.cond = cond->value;
15733 else
15734 {
15735 /* Delayed diagnostic. */
15736 inst.error = BAD_COND;
15737 inst.cond = COND_ALWAYS;
15738 }
15739 return opcode;
15740
15741 default:
15742 return NULL;
15743 }
15744 }
15745
15746 /* Cannot have a usual-position infix on a mnemonic of less than
15747 six characters (five would be a suffix). */
15748 if (end - base < 6)
15749 return NULL;
15750
15751 /* Look for infixed mnemonic in the usual position. */
15752 affix = base + 3;
15753 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15754 if (!cond)
15755 return NULL;
15756
15757 memcpy (save, affix, 2);
15758 memmove (affix, affix + 2, (end - affix) - 2);
15759 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15760 (end - base) - 2);
15761 memmove (affix + 2, affix, (end - affix) - 2);
15762 memcpy (affix, save, 2);
15763
15764 if (opcode
15765 && (opcode->tag == OT_cinfix3
15766 || opcode->tag == OT_cinfix3_deprecated
15767 || opcode->tag == OT_csuf_or_in3
15768 || opcode->tag == OT_cinfix3_legacy))
15769 {
15770 /* Step CM. */
15771 if (warn_on_deprecated && unified_syntax
15772 && (opcode->tag == OT_cinfix3
15773 || opcode->tag == OT_cinfix3_deprecated))
15774 as_warn (_("conditional infixes are deprecated in unified syntax"));
15775
15776 inst.cond = cond->value;
15777 return opcode;
15778 }
15779
15780 return NULL;
15781 }
15782
15783 /* This function generates an initial IT instruction, leaving its block
15784 virtually open for the new instructions. Eventually,
15785 the mask will be updated by now_it_add_mask () each time
15786 a new instruction needs to be included in the IT block.
15787 Finally, the block is closed with close_automatic_it_block ().
15788 The block closure can be requested either from md_assemble (),
15789 a tencode (), or due to a label hook. */
15790
15791 static void
15792 new_automatic_it_block (int cond)
15793 {
15794 now_it.state = AUTOMATIC_IT_BLOCK;
15795 now_it.mask = 0x18;
15796 now_it.cc = cond;
15797 now_it.block_length = 1;
15798 mapping_state (MAP_THUMB);
15799 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15800 }
15801
15802 /* Close an automatic IT block.
15803 See comments in new_automatic_it_block (). */
15804
15805 static void
15806 close_automatic_it_block (void)
15807 {
15808 now_it.mask = 0x10;
15809 now_it.block_length = 0;
15810 }
15811
15812 /* Update the mask of the current automatically-generated IT
15813 instruction. See comments in new_automatic_it_block (). */
15814
15815 static void
15816 now_it_add_mask (int cond)
15817 {
15818 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15819 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15820 | ((bitvalue) << (nbit)))
15821 const int resulting_bit = (cond & 1);
15822
15823 now_it.mask &= 0xf;
15824 now_it.mask = SET_BIT_VALUE (now_it.mask,
15825 resulting_bit,
15826 (5 - now_it.block_length));
15827 now_it.mask = SET_BIT_VALUE (now_it.mask,
15828 1,
15829 ((5 - now_it.block_length) - 1) );
15830 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15831
15832 #undef CLEAR_BIT
15833 #undef SET_BIT_VALUE
15834 }
15835
15836 /* The IT blocks handling machinery is accessed through the these functions:
15837 it_fsm_pre_encode () from md_assemble ()
15838 set_it_insn_type () optional, from the tencode functions
15839 set_it_insn_type_last () ditto
15840 in_it_block () ditto
15841 it_fsm_post_encode () from md_assemble ()
15842 force_automatic_it_block_close () from label habdling functions
15843
15844 Rationale:
15845 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15846 initializing the IT insn type with a generic initial value depending
15847 on the inst.condition.
15848 2) During the tencode function, two things may happen:
15849 a) The tencode function overrides the IT insn type by
15850 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15851 b) The tencode function queries the IT block state by
15852 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15853
15854 Both set_it_insn_type and in_it_block run the internal FSM state
15855 handling function (handle_it_state), because: a) setting the IT insn
15856 type may incur in an invalid state (exiting the function),
15857 and b) querying the state requires the FSM to be updated.
15858 Specifically we want to avoid creating an IT block for conditional
15859 branches, so it_fsm_pre_encode is actually a guess and we can't
15860 determine whether an IT block is required until the tencode () routine
15861 has decided what type of instruction this actually it.
15862 Because of this, if set_it_insn_type and in_it_block have to be used,
15863 set_it_insn_type has to be called first.
15864
15865 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15866 determines the insn IT type depending on the inst.cond code.
15867 When a tencode () routine encodes an instruction that can be
15868 either outside an IT block, or, in the case of being inside, has to be
15869 the last one, set_it_insn_type_last () will determine the proper
15870 IT instruction type based on the inst.cond code. Otherwise,
15871 set_it_insn_type can be called for overriding that logic or
15872 for covering other cases.
15873
15874 Calling handle_it_state () may not transition the IT block state to
15875 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15876 still queried. Instead, if the FSM determines that the state should
15877 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15878 after the tencode () function: that's what it_fsm_post_encode () does.
15879
15880 Since in_it_block () calls the state handling function to get an
15881 updated state, an error may occur (due to invalid insns combination).
15882 In that case, inst.error is set.
15883 Therefore, inst.error has to be checked after the execution of
15884 the tencode () routine.
15885
15886 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15887 any pending state change (if any) that didn't take place in
15888 handle_it_state () as explained above. */
15889
15890 static void
15891 it_fsm_pre_encode (void)
15892 {
15893 if (inst.cond != COND_ALWAYS)
15894 inst.it_insn_type = INSIDE_IT_INSN;
15895 else
15896 inst.it_insn_type = OUTSIDE_IT_INSN;
15897
15898 now_it.state_handled = 0;
15899 }
15900
15901 /* IT state FSM handling function. */
15902
15903 static int
15904 handle_it_state (void)
15905 {
15906 now_it.state_handled = 1;
15907
15908 switch (now_it.state)
15909 {
15910 case OUTSIDE_IT_BLOCK:
15911 switch (inst.it_insn_type)
15912 {
15913 case OUTSIDE_IT_INSN:
15914 break;
15915
15916 case INSIDE_IT_INSN:
15917 case INSIDE_IT_LAST_INSN:
15918 if (thumb_mode == 0)
15919 {
15920 if (unified_syntax
15921 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15922 as_tsktsk (_("Warning: conditional outside an IT block"\
15923 " for Thumb."));
15924 }
15925 else
15926 {
15927 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15928 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15929 {
15930 /* Automatically generate the IT instruction. */
15931 new_automatic_it_block (inst.cond);
15932 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15933 close_automatic_it_block ();
15934 }
15935 else
15936 {
15937 inst.error = BAD_OUT_IT;
15938 return FAIL;
15939 }
15940 }
15941 break;
15942
15943 case IF_INSIDE_IT_LAST_INSN:
15944 case NEUTRAL_IT_INSN:
15945 break;
15946
15947 case IT_INSN:
15948 now_it.state = MANUAL_IT_BLOCK;
15949 now_it.block_length = 0;
15950 break;
15951 }
15952 break;
15953
15954 case AUTOMATIC_IT_BLOCK:
15955 /* Three things may happen now:
15956 a) We should increment current it block size;
15957 b) We should close current it block (closing insn or 4 insns);
15958 c) We should close current it block and start a new one (due
15959 to incompatible conditions or
15960 4 insns-length block reached). */
15961
15962 switch (inst.it_insn_type)
15963 {
15964 case OUTSIDE_IT_INSN:
15965 /* The closure of the block shall happen immediatelly,
15966 so any in_it_block () call reports the block as closed. */
15967 force_automatic_it_block_close ();
15968 break;
15969
15970 case INSIDE_IT_INSN:
15971 case INSIDE_IT_LAST_INSN:
15972 case IF_INSIDE_IT_LAST_INSN:
15973 now_it.block_length++;
15974
15975 if (now_it.block_length > 4
15976 || !now_it_compatible (inst.cond))
15977 {
15978 force_automatic_it_block_close ();
15979 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15980 new_automatic_it_block (inst.cond);
15981 }
15982 else
15983 {
15984 now_it_add_mask (inst.cond);
15985 }
15986
15987 if (now_it.state == AUTOMATIC_IT_BLOCK
15988 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15989 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15990 close_automatic_it_block ();
15991 break;
15992
15993 case NEUTRAL_IT_INSN:
15994 now_it.block_length++;
15995
15996 if (now_it.block_length > 4)
15997 force_automatic_it_block_close ();
15998 else
15999 now_it_add_mask (now_it.cc & 1);
16000 break;
16001
16002 case IT_INSN:
16003 close_automatic_it_block ();
16004 now_it.state = MANUAL_IT_BLOCK;
16005 break;
16006 }
16007 break;
16008
16009 case MANUAL_IT_BLOCK:
16010 {
16011 /* Check conditional suffixes. */
16012 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16013 int is_last;
16014 now_it.mask <<= 1;
16015 now_it.mask &= 0x1f;
16016 is_last = (now_it.mask == 0x10);
16017
16018 switch (inst.it_insn_type)
16019 {
16020 case OUTSIDE_IT_INSN:
16021 inst.error = BAD_NOT_IT;
16022 return FAIL;
16023
16024 case INSIDE_IT_INSN:
16025 if (cond != inst.cond)
16026 {
16027 inst.error = BAD_IT_COND;
16028 return FAIL;
16029 }
16030 break;
16031
16032 case INSIDE_IT_LAST_INSN:
16033 case IF_INSIDE_IT_LAST_INSN:
16034 if (cond != inst.cond)
16035 {
16036 inst.error = BAD_IT_COND;
16037 return FAIL;
16038 }
16039 if (!is_last)
16040 {
16041 inst.error = BAD_BRANCH;
16042 return FAIL;
16043 }
16044 break;
16045
16046 case NEUTRAL_IT_INSN:
16047 /* The BKPT instruction is unconditional even in an IT block. */
16048 break;
16049
16050 case IT_INSN:
16051 inst.error = BAD_IT_IT;
16052 return FAIL;
16053 }
16054 }
16055 break;
16056 }
16057
16058 return SUCCESS;
16059 }
16060
16061 static void
16062 it_fsm_post_encode (void)
16063 {
16064 int is_last;
16065
16066 if (!now_it.state_handled)
16067 handle_it_state ();
16068
16069 is_last = (now_it.mask == 0x10);
16070 if (is_last)
16071 {
16072 now_it.state = OUTSIDE_IT_BLOCK;
16073 now_it.mask = 0;
16074 }
16075 }
16076
16077 static void
16078 force_automatic_it_block_close (void)
16079 {
16080 if (now_it.state == AUTOMATIC_IT_BLOCK)
16081 {
16082 close_automatic_it_block ();
16083 now_it.state = OUTSIDE_IT_BLOCK;
16084 now_it.mask = 0;
16085 }
16086 }
16087
16088 static int
16089 in_it_block (void)
16090 {
16091 if (!now_it.state_handled)
16092 handle_it_state ();
16093
16094 return now_it.state != OUTSIDE_IT_BLOCK;
16095 }
16096
16097 void
16098 md_assemble (char *str)
16099 {
16100 char *p = str;
16101 const struct asm_opcode * opcode;
16102
16103 /* Align the previous label if needed. */
16104 if (last_label_seen != NULL)
16105 {
16106 symbol_set_frag (last_label_seen, frag_now);
16107 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16108 S_SET_SEGMENT (last_label_seen, now_seg);
16109 }
16110
16111 memset (&inst, '\0', sizeof (inst));
16112 inst.reloc.type = BFD_RELOC_UNUSED;
16113
16114 opcode = opcode_lookup (&p);
16115 if (!opcode)
16116 {
16117 /* It wasn't an instruction, but it might be a register alias of
16118 the form alias .req reg, or a Neon .dn/.qn directive. */
16119 if (! create_register_alias (str, p)
16120 && ! create_neon_reg_alias (str, p))
16121 as_bad (_("bad instruction `%s'"), str);
16122
16123 return;
16124 }
16125
16126 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16127 as_warn (_("s suffix on comparison instruction is deprecated"));
16128
16129 /* The value which unconditional instructions should have in place of the
16130 condition field. */
16131 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16132
16133 if (thumb_mode)
16134 {
16135 arm_feature_set variant;
16136
16137 variant = cpu_variant;
16138 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16139 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16140 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16141 /* Check that this instruction is supported for this CPU. */
16142 if (!opcode->tvariant
16143 || (thumb_mode == 1
16144 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16145 {
16146 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16147 return;
16148 }
16149 if (inst.cond != COND_ALWAYS && !unified_syntax
16150 && opcode->tencode != do_t_branch)
16151 {
16152 as_bad (_("Thumb does not support conditional execution"));
16153 return;
16154 }
16155
16156 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16157 {
16158 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16159 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16160 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16161 {
16162 /* Two things are addressed here.
16163 1) Implicit require narrow instructions on Thumb-1.
16164 This avoids relaxation accidentally introducing Thumb-2
16165 instructions.
16166 2) Reject wide instructions in non Thumb-2 cores. */
16167 if (inst.size_req == 0)
16168 inst.size_req = 2;
16169 else if (inst.size_req == 4)
16170 {
16171 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16172 return;
16173 }
16174 }
16175 }
16176
16177 inst.instruction = opcode->tvalue;
16178
16179 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16180 {
16181 /* Prepare the it_insn_type for those encodings that don't set
16182 it. */
16183 it_fsm_pre_encode ();
16184
16185 opcode->tencode ();
16186
16187 it_fsm_post_encode ();
16188 }
16189
16190 if (!(inst.error || inst.relax))
16191 {
16192 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16193 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16194 if (inst.size_req && inst.size_req != inst.size)
16195 {
16196 as_bad (_("cannot honor width suffix -- `%s'"), str);
16197 return;
16198 }
16199 }
16200
16201 /* Something has gone badly wrong if we try to relax a fixed size
16202 instruction. */
16203 gas_assert (inst.size_req == 0 || !inst.relax);
16204
16205 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16206 *opcode->tvariant);
16207 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16208 set those bits when Thumb-2 32-bit instructions are seen. ie.
16209 anything other than bl/blx and v6-M instructions.
16210 This is overly pessimistic for relaxable instructions. */
16211 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16212 || inst.relax)
16213 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16214 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16215 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16216 arm_ext_v6t2);
16217
16218 check_neon_suffixes;
16219
16220 if (!inst.error)
16221 {
16222 mapping_state (MAP_THUMB);
16223 }
16224 }
16225 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16226 {
16227 bfd_boolean is_bx;
16228
16229 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16230 is_bx = (opcode->aencode == do_bx);
16231
16232 /* Check that this instruction is supported for this CPU. */
16233 if (!(is_bx && fix_v4bx)
16234 && !(opcode->avariant &&
16235 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16236 {
16237 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16238 return;
16239 }
16240 if (inst.size_req)
16241 {
16242 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16243 return;
16244 }
16245
16246 inst.instruction = opcode->avalue;
16247 if (opcode->tag == OT_unconditionalF)
16248 inst.instruction |= 0xF << 28;
16249 else
16250 inst.instruction |= inst.cond << 28;
16251 inst.size = INSN_SIZE;
16252 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16253 {
16254 it_fsm_pre_encode ();
16255 opcode->aencode ();
16256 it_fsm_post_encode ();
16257 }
16258 /* Arm mode bx is marked as both v4T and v5 because it's still required
16259 on a hypothetical non-thumb v5 core. */
16260 if (is_bx)
16261 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16262 else
16263 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16264 *opcode->avariant);
16265
16266 check_neon_suffixes;
16267
16268 if (!inst.error)
16269 {
16270 mapping_state (MAP_ARM);
16271 }
16272 }
16273 else
16274 {
16275 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16276 "-- `%s'"), str);
16277 return;
16278 }
16279 output_inst (str);
16280 }
16281
16282 static void
16283 check_it_blocks_finished (void)
16284 {
16285 #ifdef OBJ_ELF
16286 asection *sect;
16287
16288 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16289 if (seg_info (sect)->tc_segment_info_data.current_it.state
16290 == MANUAL_IT_BLOCK)
16291 {
16292 as_warn (_("section '%s' finished with an open IT block."),
16293 sect->name);
16294 }
16295 #else
16296 if (now_it.state == MANUAL_IT_BLOCK)
16297 as_warn (_("file finished with an open IT block."));
16298 #endif
16299 }
16300
16301 /* Various frobbings of labels and their addresses. */
16302
16303 void
16304 arm_start_line_hook (void)
16305 {
16306 last_label_seen = NULL;
16307 }
16308
16309 void
16310 arm_frob_label (symbolS * sym)
16311 {
16312 last_label_seen = sym;
16313
16314 ARM_SET_THUMB (sym, thumb_mode);
16315
16316 #if defined OBJ_COFF || defined OBJ_ELF
16317 ARM_SET_INTERWORK (sym, support_interwork);
16318 #endif
16319
16320 force_automatic_it_block_close ();
16321
16322 /* Note - do not allow local symbols (.Lxxx) to be labelled
16323 as Thumb functions. This is because these labels, whilst
16324 they exist inside Thumb code, are not the entry points for
16325 possible ARM->Thumb calls. Also, these labels can be used
16326 as part of a computed goto or switch statement. eg gcc
16327 can generate code that looks like this:
16328
16329 ldr r2, [pc, .Laaa]
16330 lsl r3, r3, #2
16331 ldr r2, [r3, r2]
16332 mov pc, r2
16333
16334 .Lbbb: .word .Lxxx
16335 .Lccc: .word .Lyyy
16336 ..etc...
16337 .Laaa: .word Lbbb
16338
16339 The first instruction loads the address of the jump table.
16340 The second instruction converts a table index into a byte offset.
16341 The third instruction gets the jump address out of the table.
16342 The fourth instruction performs the jump.
16343
16344 If the address stored at .Laaa is that of a symbol which has the
16345 Thumb_Func bit set, then the linker will arrange for this address
16346 to have the bottom bit set, which in turn would mean that the
16347 address computation performed by the third instruction would end
16348 up with the bottom bit set. Since the ARM is capable of unaligned
16349 word loads, the instruction would then load the incorrect address
16350 out of the jump table, and chaos would ensue. */
16351 if (label_is_thumb_function_name
16352 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16353 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16354 {
16355 /* When the address of a Thumb function is taken the bottom
16356 bit of that address should be set. This will allow
16357 interworking between Arm and Thumb functions to work
16358 correctly. */
16359
16360 THUMB_SET_FUNC (sym, 1);
16361
16362 label_is_thumb_function_name = FALSE;
16363 }
16364
16365 dwarf2_emit_label (sym);
16366 }
16367
16368 bfd_boolean
16369 arm_data_in_code (void)
16370 {
16371 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16372 {
16373 *input_line_pointer = '/';
16374 input_line_pointer += 5;
16375 *input_line_pointer = 0;
16376 return TRUE;
16377 }
16378
16379 return FALSE;
16380 }
16381
16382 char *
16383 arm_canonicalize_symbol_name (char * name)
16384 {
16385 int len;
16386
16387 if (thumb_mode && (len = strlen (name)) > 5
16388 && streq (name + len - 5, "/data"))
16389 *(name + len - 5) = 0;
16390
16391 return name;
16392 }
16393 \f
16394 /* Table of all register names defined by default. The user can
16395 define additional names with .req. Note that all register names
16396 should appear in both upper and lowercase variants. Some registers
16397 also have mixed-case names. */
16398
16399 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16400 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16401 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16402 #define REGSET(p,t) \
16403 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16404 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16405 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16406 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16407 #define REGSETH(p,t) \
16408 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16409 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16410 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16411 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16412 #define REGSET2(p,t) \
16413 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16414 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16415 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16416 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16417 #define SPLRBANK(base,bank,t) \
16418 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16419 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16420 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16421 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16422 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16423 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16424
16425 static const struct reg_entry reg_names[] =
16426 {
16427 /* ARM integer registers. */
16428 REGSET(r, RN), REGSET(R, RN),
16429
16430 /* ATPCS synonyms. */
16431 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16432 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16433 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16434
16435 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16436 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16437 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16438
16439 /* Well-known aliases. */
16440 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16441 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16442
16443 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16444 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16445
16446 /* Coprocessor numbers. */
16447 REGSET(p, CP), REGSET(P, CP),
16448
16449 /* Coprocessor register numbers. The "cr" variants are for backward
16450 compatibility. */
16451 REGSET(c, CN), REGSET(C, CN),
16452 REGSET(cr, CN), REGSET(CR, CN),
16453
16454 /* ARM banked registers. */
16455 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16456 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16457 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16458 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16459 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16460 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16461 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16462
16463 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16464 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16465 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16466 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16467 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16468 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16469 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16470 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16471
16472 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16473 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16474 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16475 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16476 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16477 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16478 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16479 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16480 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16481
16482 /* FPA registers. */
16483 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16484 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16485
16486 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16487 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16488
16489 /* VFP SP registers. */
16490 REGSET(s,VFS), REGSET(S,VFS),
16491 REGSETH(s,VFS), REGSETH(S,VFS),
16492
16493 /* VFP DP Registers. */
16494 REGSET(d,VFD), REGSET(D,VFD),
16495 /* Extra Neon DP registers. */
16496 REGSETH(d,VFD), REGSETH(D,VFD),
16497
16498 /* Neon QP registers. */
16499 REGSET2(q,NQ), REGSET2(Q,NQ),
16500
16501 /* VFP control registers. */
16502 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16503 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16504 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16505 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16506 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16507 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16508
16509 /* Maverick DSP coprocessor registers. */
16510 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16511 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16512
16513 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16514 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16515 REGDEF(dspsc,0,DSPSC),
16516
16517 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16518 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16519 REGDEF(DSPSC,0,DSPSC),
16520
16521 /* iWMMXt data registers - p0, c0-15. */
16522 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16523
16524 /* iWMMXt control registers - p1, c0-3. */
16525 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16526 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16527 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16528 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16529
16530 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16531 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16532 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16533 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16534 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16535
16536 /* XScale accumulator registers. */
16537 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16538 };
16539 #undef REGDEF
16540 #undef REGNUM
16541 #undef REGSET
16542
16543 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16544 within psr_required_here. */
16545 static const struct asm_psr psrs[] =
16546 {
16547 /* Backward compatibility notation. Note that "all" is no longer
16548 truly all possible PSR bits. */
16549 {"all", PSR_c | PSR_f},
16550 {"flg", PSR_f},
16551 {"ctl", PSR_c},
16552
16553 /* Individual flags. */
16554 {"f", PSR_f},
16555 {"c", PSR_c},
16556 {"x", PSR_x},
16557 {"s", PSR_s},
16558
16559 /* Combinations of flags. */
16560 {"fs", PSR_f | PSR_s},
16561 {"fx", PSR_f | PSR_x},
16562 {"fc", PSR_f | PSR_c},
16563 {"sf", PSR_s | PSR_f},
16564 {"sx", PSR_s | PSR_x},
16565 {"sc", PSR_s | PSR_c},
16566 {"xf", PSR_x | PSR_f},
16567 {"xs", PSR_x | PSR_s},
16568 {"xc", PSR_x | PSR_c},
16569 {"cf", PSR_c | PSR_f},
16570 {"cs", PSR_c | PSR_s},
16571 {"cx", PSR_c | PSR_x},
16572 {"fsx", PSR_f | PSR_s | PSR_x},
16573 {"fsc", PSR_f | PSR_s | PSR_c},
16574 {"fxs", PSR_f | PSR_x | PSR_s},
16575 {"fxc", PSR_f | PSR_x | PSR_c},
16576 {"fcs", PSR_f | PSR_c | PSR_s},
16577 {"fcx", PSR_f | PSR_c | PSR_x},
16578 {"sfx", PSR_s | PSR_f | PSR_x},
16579 {"sfc", PSR_s | PSR_f | PSR_c},
16580 {"sxf", PSR_s | PSR_x | PSR_f},
16581 {"sxc", PSR_s | PSR_x | PSR_c},
16582 {"scf", PSR_s | PSR_c | PSR_f},
16583 {"scx", PSR_s | PSR_c | PSR_x},
16584 {"xfs", PSR_x | PSR_f | PSR_s},
16585 {"xfc", PSR_x | PSR_f | PSR_c},
16586 {"xsf", PSR_x | PSR_s | PSR_f},
16587 {"xsc", PSR_x | PSR_s | PSR_c},
16588 {"xcf", PSR_x | PSR_c | PSR_f},
16589 {"xcs", PSR_x | PSR_c | PSR_s},
16590 {"cfs", PSR_c | PSR_f | PSR_s},
16591 {"cfx", PSR_c | PSR_f | PSR_x},
16592 {"csf", PSR_c | PSR_s | PSR_f},
16593 {"csx", PSR_c | PSR_s | PSR_x},
16594 {"cxf", PSR_c | PSR_x | PSR_f},
16595 {"cxs", PSR_c | PSR_x | PSR_s},
16596 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16597 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16598 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16599 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16600 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16601 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16602 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16603 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16604 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16605 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16606 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16607 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16608 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16609 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16610 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16611 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16612 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16613 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16614 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16615 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16616 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16617 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16618 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16619 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16620 };
16621
16622 /* Table of V7M psr names. */
16623 static const struct asm_psr v7m_psrs[] =
16624 {
16625 {"apsr", 0 }, {"APSR", 0 },
16626 {"iapsr", 1 }, {"IAPSR", 1 },
16627 {"eapsr", 2 }, {"EAPSR", 2 },
16628 {"psr", 3 }, {"PSR", 3 },
16629 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16630 {"ipsr", 5 }, {"IPSR", 5 },
16631 {"epsr", 6 }, {"EPSR", 6 },
16632 {"iepsr", 7 }, {"IEPSR", 7 },
16633 {"msp", 8 }, {"MSP", 8 },
16634 {"psp", 9 }, {"PSP", 9 },
16635 {"primask", 16}, {"PRIMASK", 16},
16636 {"basepri", 17}, {"BASEPRI", 17},
16637 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16638 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
16639 {"faultmask", 19}, {"FAULTMASK", 19},
16640 {"control", 20}, {"CONTROL", 20}
16641 };
16642
16643 /* Table of all shift-in-operand names. */
16644 static const struct asm_shift_name shift_names [] =
16645 {
16646 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16647 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16648 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16649 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16650 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16651 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16652 };
16653
16654 /* Table of all explicit relocation names. */
16655 #ifdef OBJ_ELF
16656 static struct reloc_entry reloc_names[] =
16657 {
16658 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16659 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16660 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16661 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16662 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16663 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16664 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16665 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16666 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16667 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16668 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16669 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16670 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16671 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16672 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16673 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16674 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16675 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
16676 };
16677 #endif
16678
16679 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16680 static const struct asm_cond conds[] =
16681 {
16682 {"eq", 0x0},
16683 {"ne", 0x1},
16684 {"cs", 0x2}, {"hs", 0x2},
16685 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16686 {"mi", 0x4},
16687 {"pl", 0x5},
16688 {"vs", 0x6},
16689 {"vc", 0x7},
16690 {"hi", 0x8},
16691 {"ls", 0x9},
16692 {"ge", 0xa},
16693 {"lt", 0xb},
16694 {"gt", 0xc},
16695 {"le", 0xd},
16696 {"al", 0xe}
16697 };
16698
16699 static struct asm_barrier_opt barrier_opt_names[] =
16700 {
16701 { "sy", 0xf }, { "SY", 0xf },
16702 { "un", 0x7 }, { "UN", 0x7 },
16703 { "st", 0xe }, { "ST", 0xe },
16704 { "unst", 0x6 }, { "UNST", 0x6 },
16705 { "ish", 0xb }, { "ISH", 0xb },
16706 { "sh", 0xb }, { "SH", 0xb },
16707 { "ishst", 0xa }, { "ISHST", 0xa },
16708 { "shst", 0xa }, { "SHST", 0xa },
16709 { "nsh", 0x7 }, { "NSH", 0x7 },
16710 { "nshst", 0x6 }, { "NSHST", 0x6 },
16711 { "osh", 0x3 }, { "OSH", 0x3 },
16712 { "oshst", 0x2 }, { "OSHST", 0x2 }
16713 };
16714
16715 /* Table of ARM-format instructions. */
16716
16717 /* Macros for gluing together operand strings. N.B. In all cases
16718 other than OPS0, the trailing OP_stop comes from default
16719 zero-initialization of the unspecified elements of the array. */
16720 #define OPS0() { OP_stop, }
16721 #define OPS1(a) { OP_##a, }
16722 #define OPS2(a,b) { OP_##a,OP_##b, }
16723 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16724 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16725 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16726 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16727
16728 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16729 This is useful when mixing operands for ARM and THUMB, i.e. using the
16730 MIX_ARM_THUMB_OPERANDS macro.
16731 In order to use these macros, prefix the number of operands with _
16732 e.g. _3. */
16733 #define OPS_1(a) { a, }
16734 #define OPS_2(a,b) { a,b, }
16735 #define OPS_3(a,b,c) { a,b,c, }
16736 #define OPS_4(a,b,c,d) { a,b,c,d, }
16737 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16738 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16739
16740 /* These macros abstract out the exact format of the mnemonic table and
16741 save some repeated characters. */
16742
16743 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16744 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16745 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16746 THUMB_VARIANT, do_##ae, do_##te }
16747
16748 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16749 a T_MNEM_xyz enumerator. */
16750 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16751 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16752 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16753 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16754
16755 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16756 infix after the third character. */
16757 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16758 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16759 THUMB_VARIANT, do_##ae, do_##te }
16760 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16761 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16762 THUMB_VARIANT, do_##ae, do_##te }
16763 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16764 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16765 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16766 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16767 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16768 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16769 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16770 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16771
16772 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16773 appear in the condition table. */
16774 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16775 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16776 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16777
16778 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16779 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16780 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16781 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16782 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16783 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16784 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16785 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16786 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16787 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16788 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16789 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16790 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16791 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16792 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16793 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16794 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16795 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16796 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16797 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16798
16799 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16800 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16801 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16802 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16803
16804 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16805 field is still 0xE. Many of the Thumb variants can be executed
16806 conditionally, so this is checked separately. */
16807 #define TUE(mnem, op, top, nops, ops, ae, te) \
16808 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16809 THUMB_VARIANT, do_##ae, do_##te }
16810
16811 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16812 condition code field. */
16813 #define TUF(mnem, op, top, nops, ops, ae, te) \
16814 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16815 THUMB_VARIANT, do_##ae, do_##te }
16816
16817 /* ARM-only variants of all the above. */
16818 #define CE(mnem, op, nops, ops, ae) \
16819 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16820
16821 #define C3(mnem, op, nops, ops, ae) \
16822 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16823
16824 /* Legacy mnemonics that always have conditional infix after the third
16825 character. */
16826 #define CL(mnem, op, nops, ops, ae) \
16827 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16828 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16829
16830 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16831 #define cCE(mnem, op, nops, ops, ae) \
16832 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16833
16834 /* Legacy coprocessor instructions where conditional infix and conditional
16835 suffix are ambiguous. For consistency this includes all FPA instructions,
16836 not just the potentially ambiguous ones. */
16837 #define cCL(mnem, op, nops, ops, ae) \
16838 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16839 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16840
16841 /* Coprocessor, takes either a suffix or a position-3 infix
16842 (for an FPA corner case). */
16843 #define C3E(mnem, op, nops, ops, ae) \
16844 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16845 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16846
16847 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16848 { m1 #m2 m3, OPS##nops ops, \
16849 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16850 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16851
16852 #define CM(m1, m2, op, nops, ops, ae) \
16853 xCM_ (m1, , m2, op, nops, ops, ae), \
16854 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16855 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16856 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16857 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16858 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16859 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16860 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16861 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16862 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16863 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16864 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16865 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16866 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16867 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16868 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16869 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16870 xCM_ (m1, le, m2, op, nops, ops, ae), \
16871 xCM_ (m1, al, m2, op, nops, ops, ae)
16872
16873 #define UE(mnem, op, nops, ops, ae) \
16874 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16875
16876 #define UF(mnem, op, nops, ops, ae) \
16877 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16878
16879 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16880 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16881 use the same encoding function for each. */
16882 #define NUF(mnem, op, nops, ops, enc) \
16883 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16884 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16885
16886 /* Neon data processing, version which indirects through neon_enc_tab for
16887 the various overloaded versions of opcodes. */
16888 #define nUF(mnem, op, nops, ops, enc) \
16889 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16890 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16891
16892 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16893 version. */
16894 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16895 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16896 THUMB_VARIANT, do_##enc, do_##enc }
16897
16898 #define NCE(mnem, op, nops, ops, enc) \
16899 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16900
16901 #define NCEF(mnem, op, nops, ops, enc) \
16902 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16903
16904 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
16905 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
16906 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
16907 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16908
16909 #define nCE(mnem, op, nops, ops, enc) \
16910 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16911
16912 #define nCEF(mnem, op, nops, ops, enc) \
16913 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16914
16915 #define do_0 0
16916
16917 static const struct asm_opcode insns[] =
16918 {
16919 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16920 #define THUMB_VARIANT &arm_ext_v4t
16921 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16922 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16923 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16924 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16925 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16926 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16927 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16928 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16929 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16930 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16931 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16932 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16933 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16934 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16935 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16936 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
16937
16938 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16939 for setting PSR flag bits. They are obsolete in V6 and do not
16940 have Thumb equivalents. */
16941 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16942 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16943 CL("tstp", 110f000, 2, (RR, SH), cmp),
16944 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16945 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16946 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16947 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16948 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16949 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16950
16951 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16952 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16953 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16954 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16955
16956 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16957 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16958 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
16959 OP_RRnpc),
16960 OP_ADDRGLDR),ldst, t_ldst),
16961 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16962
16963 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16964 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16965 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16966 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16967 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16968 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16969
16970 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16971 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16972 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16973 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
16974
16975 /* Pseudo ops. */
16976 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
16977 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
16978 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
16979
16980 /* Thumb-compatibility pseudo ops. */
16981 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16982 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16983 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16984 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16985 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16986 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16987 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16988 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16989 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16990 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16991 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16992 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
16993
16994 /* These may simplify to neg. */
16995 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16996 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16997
16998 #undef THUMB_VARIANT
16999 #define THUMB_VARIANT & arm_ext_v6
17000
17001 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17002
17003 /* V1 instructions with no Thumb analogue prior to V6T2. */
17004 #undef THUMB_VARIANT
17005 #define THUMB_VARIANT & arm_ext_v6t2
17006
17007 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17008 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17009 CL("teqp", 130f000, 2, (RR, SH), cmp),
17010
17011 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17012 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17013 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17014 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17015
17016 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17017 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17018
17019 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17020 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17021
17022 /* V1 instructions with no Thumb analogue at all. */
17023 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17024 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17025
17026 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17027 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17028 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17029 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17030 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17031 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17032 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17033 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17034
17035 #undef ARM_VARIANT
17036 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17037 #undef THUMB_VARIANT
17038 #define THUMB_VARIANT & arm_ext_v4t
17039
17040 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17041 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17042
17043 #undef THUMB_VARIANT
17044 #define THUMB_VARIANT & arm_ext_v6t2
17045
17046 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17047 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17048
17049 /* Generic coprocessor instructions. */
17050 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17051 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17052 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17053 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17054 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17055 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17056 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17057
17058 #undef ARM_VARIANT
17059 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17060
17061 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17062 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17063
17064 #undef ARM_VARIANT
17065 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17066 #undef THUMB_VARIANT
17067 #define THUMB_VARIANT & arm_ext_msr
17068
17069 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17070 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17071
17072 #undef ARM_VARIANT
17073 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17074 #undef THUMB_VARIANT
17075 #define THUMB_VARIANT & arm_ext_v6t2
17076
17077 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17078 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17079 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17080 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17081 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17082 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17083 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17084 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17085
17086 #undef ARM_VARIANT
17087 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17088 #undef THUMB_VARIANT
17089 #define THUMB_VARIANT & arm_ext_v4t
17090
17091 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17092 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17093 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17094 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17095 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17096 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17097
17098 #undef ARM_VARIANT
17099 #define ARM_VARIANT & arm_ext_v4t_5
17100
17101 /* ARM Architecture 4T. */
17102 /* Note: bx (and blx) are required on V5, even if the processor does
17103 not support Thumb. */
17104 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17105
17106 #undef ARM_VARIANT
17107 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17108 #undef THUMB_VARIANT
17109 #define THUMB_VARIANT & arm_ext_v5t
17110
17111 /* Note: blx has 2 variants; the .value coded here is for
17112 BLX(2). Only this variant has conditional execution. */
17113 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17114 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17115
17116 #undef THUMB_VARIANT
17117 #define THUMB_VARIANT & arm_ext_v6t2
17118
17119 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17120 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17121 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17122 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17123 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17124 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17125 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17126 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17127
17128 #undef ARM_VARIANT
17129 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17130 #undef THUMB_VARIANT
17131 #define THUMB_VARIANT &arm_ext_v5exp
17132
17133 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17134 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17135 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17136 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17137
17138 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17139 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17140
17141 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17142 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17143 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17144 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17145
17146 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17147 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17148 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17149 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17150
17151 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17152 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17153
17154 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17155 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17156 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17157 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17158
17159 #undef ARM_VARIANT
17160 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17161 #undef THUMB_VARIANT
17162 #define THUMB_VARIANT &arm_ext_v6t2
17163
17164 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17165 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17166 ldrd, t_ldstd),
17167 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17168 ADDRGLDRS), ldrd, t_ldstd),
17169
17170 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17171 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17172
17173 #undef ARM_VARIANT
17174 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17175
17176 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17177
17178 #undef ARM_VARIANT
17179 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17180 #undef THUMB_VARIANT
17181 #define THUMB_VARIANT & arm_ext_v6
17182
17183 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17184 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17185 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17186 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17187 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17188 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17189 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17190 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17191 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17192 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17193
17194 #undef THUMB_VARIANT
17195 #define THUMB_VARIANT & arm_ext_v6t2
17196
17197 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17198 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17199 strex, t_strex),
17200 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17201 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17202
17203 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17204 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17205
17206 /* ARM V6 not included in V7M. */
17207 #undef THUMB_VARIANT
17208 #define THUMB_VARIANT & arm_ext_v6_notm
17209 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17210 UF(rfeib, 9900a00, 1, (RRw), rfe),
17211 UF(rfeda, 8100a00, 1, (RRw), rfe),
17212 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17213 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17214 UF(rfefa, 9900a00, 1, (RRw), rfe),
17215 UF(rfeea, 8100a00, 1, (RRw), rfe),
17216 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17217 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17218 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17219 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17220 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17221
17222 /* ARM V6 not included in V7M (eg. integer SIMD). */
17223 #undef THUMB_VARIANT
17224 #define THUMB_VARIANT & arm_ext_v6_dsp
17225 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17226 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17227 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17228 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17229 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17230 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17231 /* Old name for QASX. */
17232 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17233 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17234 /* Old name for QSAX. */
17235 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17236 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17237 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17238 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17239 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17240 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17241 /* Old name for SASX. */
17242 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17243 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17244 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17245 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17246 /* Old name for SHASX. */
17247 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17248 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17249 /* Old name for SHSAX. */
17250 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17251 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17252 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17253 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17254 /* Old name for SSAX. */
17255 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17256 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17257 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17258 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17259 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17260 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17261 /* Old name for UASX. */
17262 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17263 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17264 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17265 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17266 /* Old name for UHASX. */
17267 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17268 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17269 /* Old name for UHSAX. */
17270 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17271 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17272 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17273 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17274 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17275 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17276 /* Old name for UQASX. */
17277 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17278 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17279 /* Old name for UQSAX. */
17280 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17281 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17282 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17283 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17284 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17285 /* Old name for USAX. */
17286 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17287 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17288 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17289 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17290 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17291 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17292 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17293 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17294 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17295 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17296 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17297 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17298 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17299 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17300 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17301 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17302 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17303 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17304 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17305 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17306 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17307 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17308 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17309 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17310 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17311 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17312 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17313 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17314 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17315 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17316 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17317 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17318 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17319 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17320
17321 #undef ARM_VARIANT
17322 #define ARM_VARIANT & arm_ext_v6k
17323 #undef THUMB_VARIANT
17324 #define THUMB_VARIANT & arm_ext_v6k
17325
17326 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17327 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17328 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17329 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17330
17331 #undef THUMB_VARIANT
17332 #define THUMB_VARIANT & arm_ext_v6_notm
17333 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17334 ldrexd, t_ldrexd),
17335 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17336 RRnpcb), strexd, t_strexd),
17337
17338 #undef THUMB_VARIANT
17339 #define THUMB_VARIANT & arm_ext_v6t2
17340 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17341 rd_rn, rd_rn),
17342 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17343 rd_rn, rd_rn),
17344 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17345 strex, rm_rd_rn),
17346 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17347 strex, rm_rd_rn),
17348 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17349
17350 #undef ARM_VARIANT
17351 #define ARM_VARIANT & arm_ext_sec
17352 #undef THUMB_VARIANT
17353 #define THUMB_VARIANT & arm_ext_sec
17354
17355 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17356
17357 #undef ARM_VARIANT
17358 #define ARM_VARIANT & arm_ext_virt
17359 #undef THUMB_VARIANT
17360 #define THUMB_VARIANT & arm_ext_virt
17361
17362 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17363 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17364
17365 #undef ARM_VARIANT
17366 #define ARM_VARIANT & arm_ext_v6t2
17367 #undef THUMB_VARIANT
17368 #define THUMB_VARIANT & arm_ext_v6t2
17369
17370 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17371 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17372 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17373 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17374
17375 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17376 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17377 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17378 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17379
17380 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17381 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17382 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17383 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17384
17385 /* Thumb-only instructions. */
17386 #undef ARM_VARIANT
17387 #define ARM_VARIANT NULL
17388 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17389 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17390
17391 /* ARM does not really have an IT instruction, so always allow it.
17392 The opcode is copied from Thumb in order to allow warnings in
17393 -mimplicit-it=[never | arm] modes. */
17394 #undef ARM_VARIANT
17395 #define ARM_VARIANT & arm_ext_v1
17396
17397 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17398 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17399 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17400 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17401 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17402 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17403 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17404 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17405 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17406 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17407 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17408 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17409 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17410 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17411 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17412 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17413 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17414 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17415
17416 /* Thumb2 only instructions. */
17417 #undef ARM_VARIANT
17418 #define ARM_VARIANT NULL
17419
17420 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17421 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17422 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17423 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17424 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17425 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17426
17427 /* Hardware division instructions. */
17428 #undef ARM_VARIANT
17429 #define ARM_VARIANT & arm_ext_adiv
17430 #undef THUMB_VARIANT
17431 #define THUMB_VARIANT & arm_ext_div
17432
17433 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17434 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17435
17436 /* ARM V6M/V7 instructions. */
17437 #undef ARM_VARIANT
17438 #define ARM_VARIANT & arm_ext_barrier
17439 #undef THUMB_VARIANT
17440 #define THUMB_VARIANT & arm_ext_barrier
17441
17442 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17443 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17444 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17445
17446 /* ARM V7 instructions. */
17447 #undef ARM_VARIANT
17448 #define ARM_VARIANT & arm_ext_v7
17449 #undef THUMB_VARIANT
17450 #define THUMB_VARIANT & arm_ext_v7
17451
17452 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17453 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17454
17455 #undef ARM_VARIANT
17456 #define ARM_VARIANT & arm_ext_mp
17457 #undef THUMB_VARIANT
17458 #define THUMB_VARIANT & arm_ext_mp
17459
17460 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17461
17462 #undef ARM_VARIANT
17463 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17464
17465 cCE("wfs", e200110, 1, (RR), rd),
17466 cCE("rfs", e300110, 1, (RR), rd),
17467 cCE("wfc", e400110, 1, (RR), rd),
17468 cCE("rfc", e500110, 1, (RR), rd),
17469
17470 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17471 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17472 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17473 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17474
17475 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17476 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17477 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17478 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17479
17480 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17481 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17482 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17483 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17484 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17485 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17486 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17487 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17488 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17489 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17490 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17491 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17492
17493 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17494 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17495 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17496 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17497 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17498 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17499 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17500 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17501 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17502 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17503 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17504 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17505
17506 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17507 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17508 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17509 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17510 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17511 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17512 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17513 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17514 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17515 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17516 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17517 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17518
17519 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17520 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17521 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17522 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17523 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17524 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17525 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17526 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17527 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17528 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17529 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17530 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17531
17532 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17533 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17534 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17535 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17536 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17537 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17538 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17539 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17540 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17541 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17542 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17543 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17544
17545 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17546 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17547 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17548 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17549 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17550 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17551 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17552 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17553 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17554 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17555 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17556 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17557
17558 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17559 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17560 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17561 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17562 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17563 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17564 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17565 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17566 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17567 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17568 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17569 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17570
17571 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17572 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17573 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17574 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17575 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17576 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17577 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17578 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17579 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17580 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17581 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17582 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17583
17584 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17585 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17586 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17587 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17588 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17589 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17590 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17591 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17592 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17593 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17594 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17595 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17596
17597 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17598 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17599 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17600 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17601 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17602 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17603 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17604 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17605 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17606 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17607 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17608 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17609
17610 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17611 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17612 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17613 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17614 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17615 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17616 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17617 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17618 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17619 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17620 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17621 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17622
17623 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17624 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17625 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17626 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17627 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17628 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17629 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17630 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17631 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17632 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17633 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17634 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17635
17636 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17637 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17638 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17639 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17640 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17641 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17642 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17643 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17644 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17645 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17646 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17647 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17648
17649 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17650 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17651 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17652 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17653 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17654 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17655 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17656 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17657 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17658 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17659 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17660 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17661
17662 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17663 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17664 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17665 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17666 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17667 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17668 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17669 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17670 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17671 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17672 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17673 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17674
17675 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17676 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17677 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17678 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17679 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17680 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17681 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17682 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17683 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17684 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17685 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17686 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17687
17688 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17689 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17690 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17691 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17692 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17693 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17694 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17695 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17696 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17697 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17698 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17699 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17700
17701 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17702 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17703 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17704 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17705 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17706 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17707 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17708 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17709 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17710 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17711 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17712 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17713
17714 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17715 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17716 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17717 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17718 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17719 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17720 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17721 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17722 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17723 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17724 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17725 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17726
17727 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17728 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17729 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17730 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17731 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17732 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17733 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17734 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17735 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17736 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17737 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17738 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17739
17740 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17741 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17742 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17743 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17744 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17745 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17746 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17747 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17748 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17749 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17750 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17751 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17752
17753 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17754 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17755 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17756 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17757 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17758 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17759 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17760 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17761 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17762 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17763 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17764 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17765
17766 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17767 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17768 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17769 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17770 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17771 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17772 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17773 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17774 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17775 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17776 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17777 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17778
17779 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17780 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17781 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17782 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17783 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17784 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17785 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17786 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17787 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17788 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17789 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17790 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17791
17792 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17793 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17794 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17795 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17796 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17797 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17798 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17799 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17800 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17801 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17802 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17803 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17804
17805 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17806 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17807 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17808 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17809 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17810 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17811 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17812 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17813 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17814 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17815 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17816 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17817
17818 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17819 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17820 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17821 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17822 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17823 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17824 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17825 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17826 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17827 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17828 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17829 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17830
17831 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17832 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17833 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17834 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17835 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17836 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17837 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17838 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17839 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17840 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17841 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17842 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17843
17844 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17845 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17846 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17847 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17848 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17849 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17850 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17851 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17852 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17853 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17854 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17855 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17856
17857 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17858 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17859 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17860 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17861
17862 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17863 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17864 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17865 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17866 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17867 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17868 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17869 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17870 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17871 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17872 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17873 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
17874
17875 /* The implementation of the FIX instruction is broken on some
17876 assemblers, in that it accepts a precision specifier as well as a
17877 rounding specifier, despite the fact that this is meaningless.
17878 To be more compatible, we accept it as well, though of course it
17879 does not set any bits. */
17880 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17881 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17882 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17883 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17884 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17885 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17886 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17887 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17888 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17889 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17890 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17891 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17892 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
17893
17894 /* Instructions that were new with the real FPA, call them V2. */
17895 #undef ARM_VARIANT
17896 #define ARM_VARIANT & fpu_fpa_ext_v2
17897
17898 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17899 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17900 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17901 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17902 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17903 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17904
17905 #undef ARM_VARIANT
17906 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17907
17908 /* Moves and type conversions. */
17909 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17910 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17911 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17912 cCE("fmstat", ef1fa10, 0, (), noargs),
17913 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17914 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
17915 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17916 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17917 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17918 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17919 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17920 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17921 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17922 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
17923
17924 /* Memory operations. */
17925 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17926 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17927 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17928 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17929 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17930 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17931 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17932 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17933 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17934 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17935 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17936 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17937 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17938 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17939 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17940 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17941 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17942 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17943
17944 /* Monadic operations. */
17945 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17946 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17947 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
17948
17949 /* Dyadic operations. */
17950 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17951 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17952 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17953 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17954 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17955 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17956 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17957 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17958 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17959
17960 /* Comparisons. */
17961 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17962 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17963 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17964 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
17965
17966 /* Double precision load/store are still present on single precision
17967 implementations. */
17968 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17969 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17970 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17971 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17972 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17973 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17974 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17975 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17976 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17977 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17978
17979 #undef ARM_VARIANT
17980 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17981
17982 /* Moves and type conversions. */
17983 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17984 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17985 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17986 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17987 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17988 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17989 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17990 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17991 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17992 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17993 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17994 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17995 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17996
17997 /* Monadic operations. */
17998 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17999 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18000 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18001
18002 /* Dyadic operations. */
18003 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18004 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18005 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18006 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18007 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18008 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18009 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18010 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18011 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18012
18013 /* Comparisons. */
18014 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18015 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18016 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18017 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18018
18019 #undef ARM_VARIANT
18020 #define ARM_VARIANT & fpu_vfp_ext_v2
18021
18022 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18023 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18024 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18025 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18026
18027 /* Instructions which may belong to either the Neon or VFP instruction sets.
18028 Individual encoder functions perform additional architecture checks. */
18029 #undef ARM_VARIANT
18030 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18031 #undef THUMB_VARIANT
18032 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18033
18034 /* These mnemonics are unique to VFP. */
18035 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18036 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18037 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18038 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18039 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18040 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18041 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18042 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18043 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18044 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18045
18046 /* Mnemonics shared by Neon and VFP. */
18047 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18048 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18049 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18050
18051 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18052 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18053
18054 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18055 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18056
18057 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18058 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18059 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18060 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18061 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18062 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18063 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18064 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18065
18066 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
18067 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18068 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18069 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18070
18071
18072 /* NOTE: All VMOV encoding is special-cased! */
18073 NCE(vmov, 0, 1, (VMOV), neon_mov),
18074 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18075
18076 #undef THUMB_VARIANT
18077 #define THUMB_VARIANT & fpu_neon_ext_v1
18078 #undef ARM_VARIANT
18079 #define ARM_VARIANT & fpu_neon_ext_v1
18080
18081 /* Data processing with three registers of the same length. */
18082 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18083 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18084 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18085 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18086 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18087 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18088 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18089 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18090 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18091 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18092 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18093 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18094 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18095 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18096 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18097 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18098 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18099 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18100 /* If not immediate, fall back to neon_dyadic_i64_su.
18101 shl_imm should accept I8 I16 I32 I64,
18102 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18103 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18104 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18105 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18106 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
18107 /* Logic ops, types optional & ignored. */
18108 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18109 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18110 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18111 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18112 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18113 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18114 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18115 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18116 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18117 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18118 /* Bitfield ops, untyped. */
18119 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18120 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18121 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18122 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18123 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18124 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18125 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18126 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18127 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18128 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18129 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18130 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18131 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18132 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18133 back to neon_dyadic_if_su. */
18134 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18135 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18136 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18137 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18138 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18139 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18140 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18141 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18142 /* Comparison. Type I8 I16 I32 F32. */
18143 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18144 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18145 /* As above, D registers only. */
18146 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18147 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18148 /* Int and float variants, signedness unimportant. */
18149 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18150 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18151 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18152 /* Add/sub take types I8 I16 I32 I64 F32. */
18153 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18154 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18155 /* vtst takes sizes 8, 16, 32. */
18156 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18157 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18158 /* VMUL takes I8 I16 I32 F32 P8. */
18159 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18160 /* VQD{R}MULH takes S16 S32. */
18161 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18162 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18163 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18164 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18165 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18166 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18167 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18168 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18169 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18170 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18171 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18172 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18173 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18174 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18175 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18176 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18177
18178 /* Two address, int/float. Types S8 S16 S32 F32. */
18179 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18180 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18181
18182 /* Data processing with two registers and a shift amount. */
18183 /* Right shifts, and variants with rounding.
18184 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18185 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18186 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18187 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18188 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18189 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18190 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18191 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18192 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18193 /* Shift and insert. Sizes accepted 8 16 32 64. */
18194 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18195 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18196 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18197 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18198 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18199 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18200 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18201 /* Right shift immediate, saturating & narrowing, with rounding variants.
18202 Types accepted S16 S32 S64 U16 U32 U64. */
18203 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18204 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18205 /* As above, unsigned. Types accepted S16 S32 S64. */
18206 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18207 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18208 /* Right shift narrowing. Types accepted I16 I32 I64. */
18209 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18210 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18211 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18212 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18213 /* CVT with optional immediate for fixed-point variant. */
18214 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18215
18216 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18217 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18218
18219 /* Data processing, three registers of different lengths. */
18220 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18221 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18222 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18223 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18224 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18225 /* If not scalar, fall back to neon_dyadic_long.
18226 Vector types as above, scalar types S16 S32 U16 U32. */
18227 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18228 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18229 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18230 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18231 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18232 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18233 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18234 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18235 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18236 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18237 /* Saturating doubling multiplies. Types S16 S32. */
18238 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18239 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18240 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18241 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18242 S16 S32 U16 U32. */
18243 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18244
18245 /* Extract. Size 8. */
18246 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18247 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18248
18249 /* Two registers, miscellaneous. */
18250 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18251 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18252 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18253 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18254 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18255 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18256 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18257 /* Vector replicate. Sizes 8 16 32. */
18258 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18259 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18260 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18261 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18262 /* VMOVN. Types I16 I32 I64. */
18263 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18264 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18265 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18266 /* VQMOVUN. Types S16 S32 S64. */
18267 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18268 /* VZIP / VUZP. Sizes 8 16 32. */
18269 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18270 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18271 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18272 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18273 /* VQABS / VQNEG. Types S8 S16 S32. */
18274 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18275 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18276 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18277 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18278 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18279 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18280 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18281 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18282 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18283 /* Reciprocal estimates. Types U32 F32. */
18284 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18285 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18286 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18287 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18288 /* VCLS. Types S8 S16 S32. */
18289 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18290 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18291 /* VCLZ. Types I8 I16 I32. */
18292 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18293 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18294 /* VCNT. Size 8. */
18295 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18296 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18297 /* Two address, untyped. */
18298 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18299 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18300 /* VTRN. Sizes 8 16 32. */
18301 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18302 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18303
18304 /* Table lookup. Size 8. */
18305 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18306 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18307
18308 #undef THUMB_VARIANT
18309 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18310 #undef ARM_VARIANT
18311 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18312
18313 /* Neon element/structure load/store. */
18314 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18315 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18316 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18317 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18318 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18319 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18320 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18321 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18322
18323 #undef THUMB_VARIANT
18324 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18325 #undef ARM_VARIANT
18326 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18327 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18328 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18329 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18330 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18331 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18332 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18333 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18334 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18335 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18336
18337 #undef THUMB_VARIANT
18338 #define THUMB_VARIANT & fpu_vfp_ext_v3
18339 #undef ARM_VARIANT
18340 #define ARM_VARIANT & fpu_vfp_ext_v3
18341
18342 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18343 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18344 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18345 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18346 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18347 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18348 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18349 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18350 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18351
18352 #undef ARM_VARIANT
18353 #define ARM_VARIANT &fpu_vfp_ext_fma
18354 #undef THUMB_VARIANT
18355 #define THUMB_VARIANT &fpu_vfp_ext_fma
18356 /* Mnemonics shared by Neon and VFP. These are included in the
18357 VFP FMA variant; NEON and VFP FMA always includes the NEON
18358 FMA instructions. */
18359 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18360 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18361 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18362 the v form should always be used. */
18363 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18364 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18365 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18366 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18367 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18368 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18369
18370 #undef THUMB_VARIANT
18371 #undef ARM_VARIANT
18372 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18373
18374 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18375 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18376 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18377 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18378 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18379 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18380 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18381 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18382
18383 #undef ARM_VARIANT
18384 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18385
18386 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18387 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18388 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18389 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18390 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18391 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18392 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18393 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18394 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18395 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18396 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18397 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18398 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18399 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18400 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18401 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18402 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18403 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18404 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18405 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18406 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18407 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18408 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18409 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18410 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18411 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18412 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18413 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18414 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18415 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18416 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18417 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18418 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18419 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18420 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18421 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18422 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18423 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18424 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18425 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18426 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18427 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18428 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18429 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18430 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18431 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18432 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18433 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18434 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18435 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18436 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18437 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18438 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18439 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18440 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18441 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18442 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18443 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18444 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18445 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18446 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18447 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18448 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18449 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18450 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18451 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18452 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18453 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18454 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18455 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18456 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18457 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18458 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18459 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18460 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18461 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18462 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18463 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18464 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18465 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18466 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18467 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18468 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18469 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18470 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18471 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18472 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18473 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18474 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18475 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18476 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18477 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18478 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18479 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18480 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18481 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18482 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18483 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18484 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18485 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18486 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18487 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18488 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18489 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18490 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18491 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18492 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18493 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18494 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18495 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18496 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18497 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18498 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18499 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18500 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18501 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18502 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18503 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18504 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18505 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18506 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18507 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18508 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18509 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18510 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18511 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18512 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18513 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18514 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18515 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18516 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18517 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18518 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18519 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18520 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18521 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18522 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18523 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18524 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18525 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18526 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18527 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18528 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18529 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18530 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18531 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18532 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18533 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18534 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18535 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18536 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18537 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18538 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18539 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18540 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18541 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18542 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18543 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18544 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18545 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18546 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18547 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
18548
18549 #undef ARM_VARIANT
18550 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18551
18552 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18553 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18554 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18555 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18556 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18557 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18558 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18559 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18560 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18561 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18562 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18563 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18564 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18565 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18566 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18567 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18568 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18569 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18570 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18571 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18572 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18573 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18574 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18575 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18576 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18577 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18578 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18579 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18580 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18581 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18582 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18583 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18584 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18585 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18586 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18587 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18588 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18589 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18590 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18591 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18592 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18593 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18594 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18595 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18596 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18597 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18598 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18599 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18600 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18601 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18602 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18603 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18604 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18605 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18606 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18607 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18608 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18609
18610 #undef ARM_VARIANT
18611 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18612
18613 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18614 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18615 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18616 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18617 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18618 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18619 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18620 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18621 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18622 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18623 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18624 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18625 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18626 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18627 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18628 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18629 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18630 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18631 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18632 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18633 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18634 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18635 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18636 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18637 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18638 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18639 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18640 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18641 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18642 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18643 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18644 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18645 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18646 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18647 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18648 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18649 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18650 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18651 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18652 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18653 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18654 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18655 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18656 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18657 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18658 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18659 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18660 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18661 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18662 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18663 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18664 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18665 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18666 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18667 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18668 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18669 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18670 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18671 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18672 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18673 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18674 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18675 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18676 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18677 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18678 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18679 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18680 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18681 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18682 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18683 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18684 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18685 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18686 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18687 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18688 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18689 };
18690 #undef ARM_VARIANT
18691 #undef THUMB_VARIANT
18692 #undef TCE
18693 #undef TCM
18694 #undef TUE
18695 #undef TUF
18696 #undef TCC
18697 #undef cCE
18698 #undef cCL
18699 #undef C3E
18700 #undef CE
18701 #undef CM
18702 #undef UE
18703 #undef UF
18704 #undef UT
18705 #undef NUF
18706 #undef nUF
18707 #undef NCE
18708 #undef nCE
18709 #undef OPS0
18710 #undef OPS1
18711 #undef OPS2
18712 #undef OPS3
18713 #undef OPS4
18714 #undef OPS5
18715 #undef OPS6
18716 #undef do_0
18717 \f
18718 /* MD interface: bits in the object file. */
18719
18720 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18721 for use in the a.out file, and stores them in the array pointed to by buf.
18722 This knows about the endian-ness of the target machine and does
18723 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18724 2 (short) and 4 (long) Floating numbers are put out as a series of
18725 LITTLENUMS (shorts, here at least). */
18726
18727 void
18728 md_number_to_chars (char * buf, valueT val, int n)
18729 {
18730 if (target_big_endian)
18731 number_to_chars_bigendian (buf, val, n);
18732 else
18733 number_to_chars_littleendian (buf, val, n);
18734 }
18735
18736 static valueT
18737 md_chars_to_number (char * buf, int n)
18738 {
18739 valueT result = 0;
18740 unsigned char * where = (unsigned char *) buf;
18741
18742 if (target_big_endian)
18743 {
18744 while (n--)
18745 {
18746 result <<= 8;
18747 result |= (*where++ & 255);
18748 }
18749 }
18750 else
18751 {
18752 while (n--)
18753 {
18754 result <<= 8;
18755 result |= (where[n] & 255);
18756 }
18757 }
18758
18759 return result;
18760 }
18761
18762 /* MD interface: Sections. */
18763
18764 /* Estimate the size of a frag before relaxing. Assume everything fits in
18765 2 bytes. */
18766
18767 int
18768 md_estimate_size_before_relax (fragS * fragp,
18769 segT segtype ATTRIBUTE_UNUSED)
18770 {
18771 fragp->fr_var = 2;
18772 return 2;
18773 }
18774
18775 /* Convert a machine dependent frag. */
18776
18777 void
18778 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18779 {
18780 unsigned long insn;
18781 unsigned long old_op;
18782 char *buf;
18783 expressionS exp;
18784 fixS *fixp;
18785 int reloc_type;
18786 int pc_rel;
18787 int opcode;
18788
18789 buf = fragp->fr_literal + fragp->fr_fix;
18790
18791 old_op = bfd_get_16(abfd, buf);
18792 if (fragp->fr_symbol)
18793 {
18794 exp.X_op = O_symbol;
18795 exp.X_add_symbol = fragp->fr_symbol;
18796 }
18797 else
18798 {
18799 exp.X_op = O_constant;
18800 }
18801 exp.X_add_number = fragp->fr_offset;
18802 opcode = fragp->fr_subtype;
18803 switch (opcode)
18804 {
18805 case T_MNEM_ldr_pc:
18806 case T_MNEM_ldr_pc2:
18807 case T_MNEM_ldr_sp:
18808 case T_MNEM_str_sp:
18809 case T_MNEM_ldr:
18810 case T_MNEM_ldrb:
18811 case T_MNEM_ldrh:
18812 case T_MNEM_str:
18813 case T_MNEM_strb:
18814 case T_MNEM_strh:
18815 if (fragp->fr_var == 4)
18816 {
18817 insn = THUMB_OP32 (opcode);
18818 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18819 {
18820 insn |= (old_op & 0x700) << 4;
18821 }
18822 else
18823 {
18824 insn |= (old_op & 7) << 12;
18825 insn |= (old_op & 0x38) << 13;
18826 }
18827 insn |= 0x00000c00;
18828 put_thumb32_insn (buf, insn);
18829 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18830 }
18831 else
18832 {
18833 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18834 }
18835 pc_rel = (opcode == T_MNEM_ldr_pc2);
18836 break;
18837 case T_MNEM_adr:
18838 if (fragp->fr_var == 4)
18839 {
18840 insn = THUMB_OP32 (opcode);
18841 insn |= (old_op & 0xf0) << 4;
18842 put_thumb32_insn (buf, insn);
18843 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18844 }
18845 else
18846 {
18847 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18848 exp.X_add_number -= 4;
18849 }
18850 pc_rel = 1;
18851 break;
18852 case T_MNEM_mov:
18853 case T_MNEM_movs:
18854 case T_MNEM_cmp:
18855 case T_MNEM_cmn:
18856 if (fragp->fr_var == 4)
18857 {
18858 int r0off = (opcode == T_MNEM_mov
18859 || opcode == T_MNEM_movs) ? 0 : 8;
18860 insn = THUMB_OP32 (opcode);
18861 insn = (insn & 0xe1ffffff) | 0x10000000;
18862 insn |= (old_op & 0x700) << r0off;
18863 put_thumb32_insn (buf, insn);
18864 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18865 }
18866 else
18867 {
18868 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18869 }
18870 pc_rel = 0;
18871 break;
18872 case T_MNEM_b:
18873 if (fragp->fr_var == 4)
18874 {
18875 insn = THUMB_OP32(opcode);
18876 put_thumb32_insn (buf, insn);
18877 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18878 }
18879 else
18880 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18881 pc_rel = 1;
18882 break;
18883 case T_MNEM_bcond:
18884 if (fragp->fr_var == 4)
18885 {
18886 insn = THUMB_OP32(opcode);
18887 insn |= (old_op & 0xf00) << 14;
18888 put_thumb32_insn (buf, insn);
18889 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18890 }
18891 else
18892 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18893 pc_rel = 1;
18894 break;
18895 case T_MNEM_add_sp:
18896 case T_MNEM_add_pc:
18897 case T_MNEM_inc_sp:
18898 case T_MNEM_dec_sp:
18899 if (fragp->fr_var == 4)
18900 {
18901 /* ??? Choose between add and addw. */
18902 insn = THUMB_OP32 (opcode);
18903 insn |= (old_op & 0xf0) << 4;
18904 put_thumb32_insn (buf, insn);
18905 if (opcode == T_MNEM_add_pc)
18906 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18907 else
18908 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18909 }
18910 else
18911 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18912 pc_rel = 0;
18913 break;
18914
18915 case T_MNEM_addi:
18916 case T_MNEM_addis:
18917 case T_MNEM_subi:
18918 case T_MNEM_subis:
18919 if (fragp->fr_var == 4)
18920 {
18921 insn = THUMB_OP32 (opcode);
18922 insn |= (old_op & 0xf0) << 4;
18923 insn |= (old_op & 0xf) << 16;
18924 put_thumb32_insn (buf, insn);
18925 if (insn & (1 << 20))
18926 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18927 else
18928 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18929 }
18930 else
18931 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18932 pc_rel = 0;
18933 break;
18934 default:
18935 abort ();
18936 }
18937 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
18938 (enum bfd_reloc_code_real) reloc_type);
18939 fixp->fx_file = fragp->fr_file;
18940 fixp->fx_line = fragp->fr_line;
18941 fragp->fr_fix += fragp->fr_var;
18942 }
18943
18944 /* Return the size of a relaxable immediate operand instruction.
18945 SHIFT and SIZE specify the form of the allowable immediate. */
18946 static int
18947 relax_immediate (fragS *fragp, int size, int shift)
18948 {
18949 offsetT offset;
18950 offsetT mask;
18951 offsetT low;
18952
18953 /* ??? Should be able to do better than this. */
18954 if (fragp->fr_symbol)
18955 return 4;
18956
18957 low = (1 << shift) - 1;
18958 mask = (1 << (shift + size)) - (1 << shift);
18959 offset = fragp->fr_offset;
18960 /* Force misaligned offsets to 32-bit variant. */
18961 if (offset & low)
18962 return 4;
18963 if (offset & ~mask)
18964 return 4;
18965 return 2;
18966 }
18967
18968 /* Get the address of a symbol during relaxation. */
18969 static addressT
18970 relaxed_symbol_addr (fragS *fragp, long stretch)
18971 {
18972 fragS *sym_frag;
18973 addressT addr;
18974 symbolS *sym;
18975
18976 sym = fragp->fr_symbol;
18977 sym_frag = symbol_get_frag (sym);
18978 know (S_GET_SEGMENT (sym) != absolute_section
18979 || sym_frag == &zero_address_frag);
18980 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18981
18982 /* If frag has yet to be reached on this pass, assume it will
18983 move by STRETCH just as we did. If this is not so, it will
18984 be because some frag between grows, and that will force
18985 another pass. */
18986
18987 if (stretch != 0
18988 && sym_frag->relax_marker != fragp->relax_marker)
18989 {
18990 fragS *f;
18991
18992 /* Adjust stretch for any alignment frag. Note that if have
18993 been expanding the earlier code, the symbol may be
18994 defined in what appears to be an earlier frag. FIXME:
18995 This doesn't handle the fr_subtype field, which specifies
18996 a maximum number of bytes to skip when doing an
18997 alignment. */
18998 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18999 {
19000 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19001 {
19002 if (stretch < 0)
19003 stretch = - ((- stretch)
19004 & ~ ((1 << (int) f->fr_offset) - 1));
19005 else
19006 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19007 if (stretch == 0)
19008 break;
19009 }
19010 }
19011 if (f != NULL)
19012 addr += stretch;
19013 }
19014
19015 return addr;
19016 }
19017
19018 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19019 load. */
19020 static int
19021 relax_adr (fragS *fragp, asection *sec, long stretch)
19022 {
19023 addressT addr;
19024 offsetT val;
19025
19026 /* Assume worst case for symbols not known to be in the same section. */
19027 if (fragp->fr_symbol == NULL
19028 || !S_IS_DEFINED (fragp->fr_symbol)
19029 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19030 || S_IS_WEAK (fragp->fr_symbol))
19031 return 4;
19032
19033 val = relaxed_symbol_addr (fragp, stretch);
19034 addr = fragp->fr_address + fragp->fr_fix;
19035 addr = (addr + 4) & ~3;
19036 /* Force misaligned targets to 32-bit variant. */
19037 if (val & 3)
19038 return 4;
19039 val -= addr;
19040 if (val < 0 || val > 1020)
19041 return 4;
19042 return 2;
19043 }
19044
19045 /* Return the size of a relaxable add/sub immediate instruction. */
19046 static int
19047 relax_addsub (fragS *fragp, asection *sec)
19048 {
19049 char *buf;
19050 int op;
19051
19052 buf = fragp->fr_literal + fragp->fr_fix;
19053 op = bfd_get_16(sec->owner, buf);
19054 if ((op & 0xf) == ((op >> 4) & 0xf))
19055 return relax_immediate (fragp, 8, 0);
19056 else
19057 return relax_immediate (fragp, 3, 0);
19058 }
19059
19060
19061 /* Return the size of a relaxable branch instruction. BITS is the
19062 size of the offset field in the narrow instruction. */
19063
19064 static int
19065 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19066 {
19067 addressT addr;
19068 offsetT val;
19069 offsetT limit;
19070
19071 /* Assume worst case for symbols not known to be in the same section. */
19072 if (!S_IS_DEFINED (fragp->fr_symbol)
19073 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19074 || S_IS_WEAK (fragp->fr_symbol))
19075 return 4;
19076
19077 #ifdef OBJ_ELF
19078 if (S_IS_DEFINED (fragp->fr_symbol)
19079 && ARM_IS_FUNC (fragp->fr_symbol))
19080 return 4;
19081
19082 /* PR 12532. Global symbols with default visibility might
19083 be preempted, so do not relax relocations to them. */
19084 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19085 && (! S_IS_LOCAL (fragp->fr_symbol)))
19086 return 4;
19087 #endif
19088
19089 val = relaxed_symbol_addr (fragp, stretch);
19090 addr = fragp->fr_address + fragp->fr_fix + 4;
19091 val -= addr;
19092
19093 /* Offset is a signed value *2 */
19094 limit = 1 << bits;
19095 if (val >= limit || val < -limit)
19096 return 4;
19097 return 2;
19098 }
19099
19100
19101 /* Relax a machine dependent frag. This returns the amount by which
19102 the current size of the frag should change. */
19103
19104 int
19105 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
19106 {
19107 int oldsize;
19108 int newsize;
19109
19110 oldsize = fragp->fr_var;
19111 switch (fragp->fr_subtype)
19112 {
19113 case T_MNEM_ldr_pc2:
19114 newsize = relax_adr (fragp, sec, stretch);
19115 break;
19116 case T_MNEM_ldr_pc:
19117 case T_MNEM_ldr_sp:
19118 case T_MNEM_str_sp:
19119 newsize = relax_immediate (fragp, 8, 2);
19120 break;
19121 case T_MNEM_ldr:
19122 case T_MNEM_str:
19123 newsize = relax_immediate (fragp, 5, 2);
19124 break;
19125 case T_MNEM_ldrh:
19126 case T_MNEM_strh:
19127 newsize = relax_immediate (fragp, 5, 1);
19128 break;
19129 case T_MNEM_ldrb:
19130 case T_MNEM_strb:
19131 newsize = relax_immediate (fragp, 5, 0);
19132 break;
19133 case T_MNEM_adr:
19134 newsize = relax_adr (fragp, sec, stretch);
19135 break;
19136 case T_MNEM_mov:
19137 case T_MNEM_movs:
19138 case T_MNEM_cmp:
19139 case T_MNEM_cmn:
19140 newsize = relax_immediate (fragp, 8, 0);
19141 break;
19142 case T_MNEM_b:
19143 newsize = relax_branch (fragp, sec, 11, stretch);
19144 break;
19145 case T_MNEM_bcond:
19146 newsize = relax_branch (fragp, sec, 8, stretch);
19147 break;
19148 case T_MNEM_add_sp:
19149 case T_MNEM_add_pc:
19150 newsize = relax_immediate (fragp, 8, 2);
19151 break;
19152 case T_MNEM_inc_sp:
19153 case T_MNEM_dec_sp:
19154 newsize = relax_immediate (fragp, 7, 2);
19155 break;
19156 case T_MNEM_addi:
19157 case T_MNEM_addis:
19158 case T_MNEM_subi:
19159 case T_MNEM_subis:
19160 newsize = relax_addsub (fragp, sec);
19161 break;
19162 default:
19163 abort ();
19164 }
19165
19166 fragp->fr_var = newsize;
19167 /* Freeze wide instructions that are at or before the same location as
19168 in the previous pass. This avoids infinite loops.
19169 Don't freeze them unconditionally because targets may be artificially
19170 misaligned by the expansion of preceding frags. */
19171 if (stretch <= 0 && newsize > 2)
19172 {
19173 md_convert_frag (sec->owner, sec, fragp);
19174 frag_wane (fragp);
19175 }
19176
19177 return newsize - oldsize;
19178 }
19179
19180 /* Round up a section size to the appropriate boundary. */
19181
19182 valueT
19183 md_section_align (segT segment ATTRIBUTE_UNUSED,
19184 valueT size)
19185 {
19186 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19187 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19188 {
19189 /* For a.out, force the section size to be aligned. If we don't do
19190 this, BFD will align it for us, but it will not write out the
19191 final bytes of the section. This may be a bug in BFD, but it is
19192 easier to fix it here since that is how the other a.out targets
19193 work. */
19194 int align;
19195
19196 align = bfd_get_section_alignment (stdoutput, segment);
19197 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19198 }
19199 #endif
19200
19201 return size;
19202 }
19203
19204 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19205 of an rs_align_code fragment. */
19206
19207 void
19208 arm_handle_align (fragS * fragP)
19209 {
19210 static char const arm_noop[2][2][4] =
19211 {
19212 { /* ARMv1 */
19213 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19214 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19215 },
19216 { /* ARMv6k */
19217 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19218 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19219 },
19220 };
19221 static char const thumb_noop[2][2][2] =
19222 {
19223 { /* Thumb-1 */
19224 {0xc0, 0x46}, /* LE */
19225 {0x46, 0xc0}, /* BE */
19226 },
19227 { /* Thumb-2 */
19228 {0x00, 0xbf}, /* LE */
19229 {0xbf, 0x00} /* BE */
19230 }
19231 };
19232 static char const wide_thumb_noop[2][4] =
19233 { /* Wide Thumb-2 */
19234 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19235 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19236 };
19237
19238 unsigned bytes, fix, noop_size;
19239 char * p;
19240 const char * noop;
19241 const char *narrow_noop = NULL;
19242 #ifdef OBJ_ELF
19243 enum mstate state;
19244 #endif
19245
19246 if (fragP->fr_type != rs_align_code)
19247 return;
19248
19249 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19250 p = fragP->fr_literal + fragP->fr_fix;
19251 fix = 0;
19252
19253 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19254 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19255
19256 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19257
19258 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19259 {
19260 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19261 {
19262 narrow_noop = thumb_noop[1][target_big_endian];
19263 noop = wide_thumb_noop[target_big_endian];
19264 }
19265 else
19266 noop = thumb_noop[0][target_big_endian];
19267 noop_size = 2;
19268 #ifdef OBJ_ELF
19269 state = MAP_THUMB;
19270 #endif
19271 }
19272 else
19273 {
19274 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19275 [target_big_endian];
19276 noop_size = 4;
19277 #ifdef OBJ_ELF
19278 state = MAP_ARM;
19279 #endif
19280 }
19281
19282 fragP->fr_var = noop_size;
19283
19284 if (bytes & (noop_size - 1))
19285 {
19286 fix = bytes & (noop_size - 1);
19287 #ifdef OBJ_ELF
19288 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19289 #endif
19290 memset (p, 0, fix);
19291 p += fix;
19292 bytes -= fix;
19293 }
19294
19295 if (narrow_noop)
19296 {
19297 if (bytes & noop_size)
19298 {
19299 /* Insert a narrow noop. */
19300 memcpy (p, narrow_noop, noop_size);
19301 p += noop_size;
19302 bytes -= noop_size;
19303 fix += noop_size;
19304 }
19305
19306 /* Use wide noops for the remainder */
19307 noop_size = 4;
19308 }
19309
19310 while (bytes >= noop_size)
19311 {
19312 memcpy (p, noop, noop_size);
19313 p += noop_size;
19314 bytes -= noop_size;
19315 fix += noop_size;
19316 }
19317
19318 fragP->fr_fix += fix;
19319 }
19320
19321 /* Called from md_do_align. Used to create an alignment
19322 frag in a code section. */
19323
19324 void
19325 arm_frag_align_code (int n, int max)
19326 {
19327 char * p;
19328
19329 /* We assume that there will never be a requirement
19330 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19331 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19332 {
19333 char err_msg[128];
19334
19335 sprintf (err_msg,
19336 _("alignments greater than %d bytes not supported in .text sections."),
19337 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19338 as_fatal ("%s", err_msg);
19339 }
19340
19341 p = frag_var (rs_align_code,
19342 MAX_MEM_FOR_RS_ALIGN_CODE,
19343 1,
19344 (relax_substateT) max,
19345 (symbolS *) NULL,
19346 (offsetT) n,
19347 (char *) NULL);
19348 *p = 0;
19349 }
19350
19351 /* Perform target specific initialisation of a frag.
19352 Note - despite the name this initialisation is not done when the frag
19353 is created, but only when its type is assigned. A frag can be created
19354 and used a long time before its type is set, so beware of assuming that
19355 this initialisationis performed first. */
19356
19357 #ifndef OBJ_ELF
19358 void
19359 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19360 {
19361 /* Record whether this frag is in an ARM or a THUMB area. */
19362 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19363 }
19364
19365 #else /* OBJ_ELF is defined. */
19366 void
19367 arm_init_frag (fragS * fragP, int max_chars)
19368 {
19369 /* If the current ARM vs THUMB mode has not already
19370 been recorded into this frag then do so now. */
19371 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19372 {
19373 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19374
19375 /* Record a mapping symbol for alignment frags. We will delete this
19376 later if the alignment ends up empty. */
19377 switch (fragP->fr_type)
19378 {
19379 case rs_align:
19380 case rs_align_test:
19381 case rs_fill:
19382 mapping_state_2 (MAP_DATA, max_chars);
19383 break;
19384 case rs_align_code:
19385 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19386 break;
19387 default:
19388 break;
19389 }
19390 }
19391 }
19392
19393 /* When we change sections we need to issue a new mapping symbol. */
19394
19395 void
19396 arm_elf_change_section (void)
19397 {
19398 /* Link an unlinked unwind index table section to the .text section. */
19399 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19400 && elf_linked_to_section (now_seg) == NULL)
19401 elf_linked_to_section (now_seg) = text_section;
19402 }
19403
19404 int
19405 arm_elf_section_type (const char * str, size_t len)
19406 {
19407 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19408 return SHT_ARM_EXIDX;
19409
19410 return -1;
19411 }
19412 \f
19413 /* Code to deal with unwinding tables. */
19414
19415 static void add_unwind_adjustsp (offsetT);
19416
19417 /* Generate any deferred unwind frame offset. */
19418
19419 static void
19420 flush_pending_unwind (void)
19421 {
19422 offsetT offset;
19423
19424 offset = unwind.pending_offset;
19425 unwind.pending_offset = 0;
19426 if (offset != 0)
19427 add_unwind_adjustsp (offset);
19428 }
19429
19430 /* Add an opcode to this list for this function. Two-byte opcodes should
19431 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19432 order. */
19433
19434 static void
19435 add_unwind_opcode (valueT op, int length)
19436 {
19437 /* Add any deferred stack adjustment. */
19438 if (unwind.pending_offset)
19439 flush_pending_unwind ();
19440
19441 unwind.sp_restored = 0;
19442
19443 if (unwind.opcode_count + length > unwind.opcode_alloc)
19444 {
19445 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19446 if (unwind.opcodes)
19447 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19448 unwind.opcode_alloc);
19449 else
19450 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19451 }
19452 while (length > 0)
19453 {
19454 length--;
19455 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19456 op >>= 8;
19457 unwind.opcode_count++;
19458 }
19459 }
19460
19461 /* Add unwind opcodes to adjust the stack pointer. */
19462
19463 static void
19464 add_unwind_adjustsp (offsetT offset)
19465 {
19466 valueT op;
19467
19468 if (offset > 0x200)
19469 {
19470 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19471 char bytes[5];
19472 int n;
19473 valueT o;
19474
19475 /* Long form: 0xb2, uleb128. */
19476 /* This might not fit in a word so add the individual bytes,
19477 remembering the list is built in reverse order. */
19478 o = (valueT) ((offset - 0x204) >> 2);
19479 if (o == 0)
19480 add_unwind_opcode (0, 1);
19481
19482 /* Calculate the uleb128 encoding of the offset. */
19483 n = 0;
19484 while (o)
19485 {
19486 bytes[n] = o & 0x7f;
19487 o >>= 7;
19488 if (o)
19489 bytes[n] |= 0x80;
19490 n++;
19491 }
19492 /* Add the insn. */
19493 for (; n; n--)
19494 add_unwind_opcode (bytes[n - 1], 1);
19495 add_unwind_opcode (0xb2, 1);
19496 }
19497 else if (offset > 0x100)
19498 {
19499 /* Two short opcodes. */
19500 add_unwind_opcode (0x3f, 1);
19501 op = (offset - 0x104) >> 2;
19502 add_unwind_opcode (op, 1);
19503 }
19504 else if (offset > 0)
19505 {
19506 /* Short opcode. */
19507 op = (offset - 4) >> 2;
19508 add_unwind_opcode (op, 1);
19509 }
19510 else if (offset < 0)
19511 {
19512 offset = -offset;
19513 while (offset > 0x100)
19514 {
19515 add_unwind_opcode (0x7f, 1);
19516 offset -= 0x100;
19517 }
19518 op = ((offset - 4) >> 2) | 0x40;
19519 add_unwind_opcode (op, 1);
19520 }
19521 }
19522
19523 /* Finish the list of unwind opcodes for this function. */
19524 static void
19525 finish_unwind_opcodes (void)
19526 {
19527 valueT op;
19528
19529 if (unwind.fp_used)
19530 {
19531 /* Adjust sp as necessary. */
19532 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19533 flush_pending_unwind ();
19534
19535 /* After restoring sp from the frame pointer. */
19536 op = 0x90 | unwind.fp_reg;
19537 add_unwind_opcode (op, 1);
19538 }
19539 else
19540 flush_pending_unwind ();
19541 }
19542
19543
19544 /* Start an exception table entry. If idx is nonzero this is an index table
19545 entry. */
19546
19547 static void
19548 start_unwind_section (const segT text_seg, int idx)
19549 {
19550 const char * text_name;
19551 const char * prefix;
19552 const char * prefix_once;
19553 const char * group_name;
19554 size_t prefix_len;
19555 size_t text_len;
19556 char * sec_name;
19557 size_t sec_name_len;
19558 int type;
19559 int flags;
19560 int linkonce;
19561
19562 if (idx)
19563 {
19564 prefix = ELF_STRING_ARM_unwind;
19565 prefix_once = ELF_STRING_ARM_unwind_once;
19566 type = SHT_ARM_EXIDX;
19567 }
19568 else
19569 {
19570 prefix = ELF_STRING_ARM_unwind_info;
19571 prefix_once = ELF_STRING_ARM_unwind_info_once;
19572 type = SHT_PROGBITS;
19573 }
19574
19575 text_name = segment_name (text_seg);
19576 if (streq (text_name, ".text"))
19577 text_name = "";
19578
19579 if (strncmp (text_name, ".gnu.linkonce.t.",
19580 strlen (".gnu.linkonce.t.")) == 0)
19581 {
19582 prefix = prefix_once;
19583 text_name += strlen (".gnu.linkonce.t.");
19584 }
19585
19586 prefix_len = strlen (prefix);
19587 text_len = strlen (text_name);
19588 sec_name_len = prefix_len + text_len;
19589 sec_name = (char *) xmalloc (sec_name_len + 1);
19590 memcpy (sec_name, prefix, prefix_len);
19591 memcpy (sec_name + prefix_len, text_name, text_len);
19592 sec_name[prefix_len + text_len] = '\0';
19593
19594 flags = SHF_ALLOC;
19595 linkonce = 0;
19596 group_name = 0;
19597
19598 /* Handle COMDAT group. */
19599 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
19600 {
19601 group_name = elf_group_name (text_seg);
19602 if (group_name == NULL)
19603 {
19604 as_bad (_("Group section `%s' has no group signature"),
19605 segment_name (text_seg));
19606 ignore_rest_of_line ();
19607 return;
19608 }
19609 flags |= SHF_GROUP;
19610 linkonce = 1;
19611 }
19612
19613 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
19614
19615 /* Set the section link for index tables. */
19616 if (idx)
19617 elf_linked_to_section (now_seg) = text_seg;
19618 }
19619
19620
19621 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19622 personality routine data. Returns zero, or the index table value for
19623 and inline entry. */
19624
19625 static valueT
19626 create_unwind_entry (int have_data)
19627 {
19628 int size;
19629 addressT where;
19630 char *ptr;
19631 /* The current word of data. */
19632 valueT data;
19633 /* The number of bytes left in this word. */
19634 int n;
19635
19636 finish_unwind_opcodes ();
19637
19638 /* Remember the current text section. */
19639 unwind.saved_seg = now_seg;
19640 unwind.saved_subseg = now_subseg;
19641
19642 start_unwind_section (now_seg, 0);
19643
19644 if (unwind.personality_routine == NULL)
19645 {
19646 if (unwind.personality_index == -2)
19647 {
19648 if (have_data)
19649 as_bad (_("handlerdata in cantunwind frame"));
19650 return 1; /* EXIDX_CANTUNWIND. */
19651 }
19652
19653 /* Use a default personality routine if none is specified. */
19654 if (unwind.personality_index == -1)
19655 {
19656 if (unwind.opcode_count > 3)
19657 unwind.personality_index = 1;
19658 else
19659 unwind.personality_index = 0;
19660 }
19661
19662 /* Space for the personality routine entry. */
19663 if (unwind.personality_index == 0)
19664 {
19665 if (unwind.opcode_count > 3)
19666 as_bad (_("too many unwind opcodes for personality routine 0"));
19667
19668 if (!have_data)
19669 {
19670 /* All the data is inline in the index table. */
19671 data = 0x80;
19672 n = 3;
19673 while (unwind.opcode_count > 0)
19674 {
19675 unwind.opcode_count--;
19676 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19677 n--;
19678 }
19679
19680 /* Pad with "finish" opcodes. */
19681 while (n--)
19682 data = (data << 8) | 0xb0;
19683
19684 return data;
19685 }
19686 size = 0;
19687 }
19688 else
19689 /* We get two opcodes "free" in the first word. */
19690 size = unwind.opcode_count - 2;
19691 }
19692 else
19693 /* An extra byte is required for the opcode count. */
19694 size = unwind.opcode_count + 1;
19695
19696 size = (size + 3) >> 2;
19697 if (size > 0xff)
19698 as_bad (_("too many unwind opcodes"));
19699
19700 frag_align (2, 0, 0);
19701 record_alignment (now_seg, 2);
19702 unwind.table_entry = expr_build_dot ();
19703
19704 /* Allocate the table entry. */
19705 ptr = frag_more ((size << 2) + 4);
19706 where = frag_now_fix () - ((size << 2) + 4);
19707
19708 switch (unwind.personality_index)
19709 {
19710 case -1:
19711 /* ??? Should this be a PLT generating relocation? */
19712 /* Custom personality routine. */
19713 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19714 BFD_RELOC_ARM_PREL31);
19715
19716 where += 4;
19717 ptr += 4;
19718
19719 /* Set the first byte to the number of additional words. */
19720 data = size - 1;
19721 n = 3;
19722 break;
19723
19724 /* ABI defined personality routines. */
19725 case 0:
19726 /* Three opcodes bytes are packed into the first word. */
19727 data = 0x80;
19728 n = 3;
19729 break;
19730
19731 case 1:
19732 case 2:
19733 /* The size and first two opcode bytes go in the first word. */
19734 data = ((0x80 + unwind.personality_index) << 8) | size;
19735 n = 2;
19736 break;
19737
19738 default:
19739 /* Should never happen. */
19740 abort ();
19741 }
19742
19743 /* Pack the opcodes into words (MSB first), reversing the list at the same
19744 time. */
19745 while (unwind.opcode_count > 0)
19746 {
19747 if (n == 0)
19748 {
19749 md_number_to_chars (ptr, data, 4);
19750 ptr += 4;
19751 n = 4;
19752 data = 0;
19753 }
19754 unwind.opcode_count--;
19755 n--;
19756 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19757 }
19758
19759 /* Finish off the last word. */
19760 if (n < 4)
19761 {
19762 /* Pad with "finish" opcodes. */
19763 while (n--)
19764 data = (data << 8) | 0xb0;
19765
19766 md_number_to_chars (ptr, data, 4);
19767 }
19768
19769 if (!have_data)
19770 {
19771 /* Add an empty descriptor if there is no user-specified data. */
19772 ptr = frag_more (4);
19773 md_number_to_chars (ptr, 0, 4);
19774 }
19775
19776 return 0;
19777 }
19778
19779
19780 /* Initialize the DWARF-2 unwind information for this procedure. */
19781
19782 void
19783 tc_arm_frame_initial_instructions (void)
19784 {
19785 cfi_add_CFA_def_cfa (REG_SP, 0);
19786 }
19787 #endif /* OBJ_ELF */
19788
19789 /* Convert REGNAME to a DWARF-2 register number. */
19790
19791 int
19792 tc_arm_regname_to_dw2regnum (char *regname)
19793 {
19794 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
19795
19796 if (reg == FAIL)
19797 return -1;
19798
19799 return reg;
19800 }
19801
19802 #ifdef TE_PE
19803 void
19804 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
19805 {
19806 expressionS exp;
19807
19808 exp.X_op = O_secrel;
19809 exp.X_add_symbol = symbol;
19810 exp.X_add_number = 0;
19811 emit_expr (&exp, size);
19812 }
19813 #endif
19814
19815 /* MD interface: Symbol and relocation handling. */
19816
19817 /* Return the address within the segment that a PC-relative fixup is
19818 relative to. For ARM, PC-relative fixups applied to instructions
19819 are generally relative to the location of the fixup plus 8 bytes.
19820 Thumb branches are offset by 4, and Thumb loads relative to PC
19821 require special handling. */
19822
19823 long
19824 md_pcrel_from_section (fixS * fixP, segT seg)
19825 {
19826 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19827
19828 /* If this is pc-relative and we are going to emit a relocation
19829 then we just want to put out any pipeline compensation that the linker
19830 will need. Otherwise we want to use the calculated base.
19831 For WinCE we skip the bias for externals as well, since this
19832 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19833 if (fixP->fx_pcrel
19834 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19835 || (arm_force_relocation (fixP)
19836 #ifdef TE_WINCE
19837 && !S_IS_EXTERNAL (fixP->fx_addsy)
19838 #endif
19839 )))
19840 base = 0;
19841
19842
19843 switch (fixP->fx_r_type)
19844 {
19845 /* PC relative addressing on the Thumb is slightly odd as the
19846 bottom two bits of the PC are forced to zero for the
19847 calculation. This happens *after* application of the
19848 pipeline offset. However, Thumb adrl already adjusts for
19849 this, so we need not do it again. */
19850 case BFD_RELOC_ARM_THUMB_ADD:
19851 return base & ~3;
19852
19853 case BFD_RELOC_ARM_THUMB_OFFSET:
19854 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19855 case BFD_RELOC_ARM_T32_ADD_PC12:
19856 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19857 return (base + 4) & ~3;
19858
19859 /* Thumb branches are simply offset by +4. */
19860 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19861 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19862 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19863 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19864 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19865 return base + 4;
19866
19867 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19868 if (fixP->fx_addsy
19869 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19870 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
19871 && ARM_IS_FUNC (fixP->fx_addsy)
19872 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19873 base = fixP->fx_where + fixP->fx_frag->fr_address;
19874 return base + 4;
19875
19876 /* BLX is like branches above, but forces the low two bits of PC to
19877 zero. */
19878 case BFD_RELOC_THUMB_PCREL_BLX:
19879 if (fixP->fx_addsy
19880 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19881 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
19882 && THUMB_IS_FUNC (fixP->fx_addsy)
19883 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19884 base = fixP->fx_where + fixP->fx_frag->fr_address;
19885 return (base + 4) & ~3;
19886
19887 /* ARM mode branches are offset by +8. However, the Windows CE
19888 loader expects the relocation not to take this into account. */
19889 case BFD_RELOC_ARM_PCREL_BLX:
19890 if (fixP->fx_addsy
19891 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19892 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
19893 && ARM_IS_FUNC (fixP->fx_addsy)
19894 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19895 base = fixP->fx_where + fixP->fx_frag->fr_address;
19896 return base + 8;
19897
19898 case BFD_RELOC_ARM_PCREL_CALL:
19899 if (fixP->fx_addsy
19900 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19901 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
19902 && THUMB_IS_FUNC (fixP->fx_addsy)
19903 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19904 base = fixP->fx_where + fixP->fx_frag->fr_address;
19905 return base + 8;
19906
19907 case BFD_RELOC_ARM_PCREL_BRANCH:
19908 case BFD_RELOC_ARM_PCREL_JUMP:
19909 case BFD_RELOC_ARM_PLT32:
19910 #ifdef TE_WINCE
19911 /* When handling fixups immediately, because we have already
19912 discovered the value of a symbol, or the address of the frag involved
19913 we must account for the offset by +8, as the OS loader will never see the reloc.
19914 see fixup_segment() in write.c
19915 The S_IS_EXTERNAL test handles the case of global symbols.
19916 Those need the calculated base, not just the pipe compensation the linker will need. */
19917 if (fixP->fx_pcrel
19918 && fixP->fx_addsy != NULL
19919 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19920 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19921 return base + 8;
19922 return base;
19923 #else
19924 return base + 8;
19925 #endif
19926
19927
19928 /* ARM mode loads relative to PC are also offset by +8. Unlike
19929 branches, the Windows CE loader *does* expect the relocation
19930 to take this into account. */
19931 case BFD_RELOC_ARM_OFFSET_IMM:
19932 case BFD_RELOC_ARM_OFFSET_IMM8:
19933 case BFD_RELOC_ARM_HWLITERAL:
19934 case BFD_RELOC_ARM_LITERAL:
19935 case BFD_RELOC_ARM_CP_OFF_IMM:
19936 return base + 8;
19937
19938
19939 /* Other PC-relative relocations are un-offset. */
19940 default:
19941 return base;
19942 }
19943 }
19944
19945 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19946 Otherwise we have no need to default values of symbols. */
19947
19948 symbolS *
19949 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
19950 {
19951 #ifdef OBJ_ELF
19952 if (name[0] == '_' && name[1] == 'G'
19953 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19954 {
19955 if (!GOT_symbol)
19956 {
19957 if (symbol_find (name))
19958 as_bad (_("GOT already in the symbol table"));
19959
19960 GOT_symbol = symbol_new (name, undefined_section,
19961 (valueT) 0, & zero_address_frag);
19962 }
19963
19964 return GOT_symbol;
19965 }
19966 #endif
19967
19968 return NULL;
19969 }
19970
19971 /* Subroutine of md_apply_fix. Check to see if an immediate can be
19972 computed as two separate immediate values, added together. We
19973 already know that this value cannot be computed by just one ARM
19974 instruction. */
19975
19976 static unsigned int
19977 validate_immediate_twopart (unsigned int val,
19978 unsigned int * highpart)
19979 {
19980 unsigned int a;
19981 unsigned int i;
19982
19983 for (i = 0; i < 32; i += 2)
19984 if (((a = rotate_left (val, i)) & 0xff) != 0)
19985 {
19986 if (a & 0xff00)
19987 {
19988 if (a & ~ 0xffff)
19989 continue;
19990 * highpart = (a >> 8) | ((i + 24) << 7);
19991 }
19992 else if (a & 0xff0000)
19993 {
19994 if (a & 0xff000000)
19995 continue;
19996 * highpart = (a >> 16) | ((i + 16) << 7);
19997 }
19998 else
19999 {
20000 gas_assert (a & 0xff000000);
20001 * highpart = (a >> 24) | ((i + 8) << 7);
20002 }
20003
20004 return (a & 0xff) | (i << 7);
20005 }
20006
20007 return FAIL;
20008 }
20009
20010 static int
20011 validate_offset_imm (unsigned int val, int hwse)
20012 {
20013 if ((hwse && val > 255) || val > 4095)
20014 return FAIL;
20015 return val;
20016 }
20017
20018 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20019 negative immediate constant by altering the instruction. A bit of
20020 a hack really.
20021 MOV <-> MVN
20022 AND <-> BIC
20023 ADC <-> SBC
20024 by inverting the second operand, and
20025 ADD <-> SUB
20026 CMP <-> CMN
20027 by negating the second operand. */
20028
20029 static int
20030 negate_data_op (unsigned long * instruction,
20031 unsigned long value)
20032 {
20033 int op, new_inst;
20034 unsigned long negated, inverted;
20035
20036 negated = encode_arm_immediate (-value);
20037 inverted = encode_arm_immediate (~value);
20038
20039 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20040 switch (op)
20041 {
20042 /* First negates. */
20043 case OPCODE_SUB: /* ADD <-> SUB */
20044 new_inst = OPCODE_ADD;
20045 value = negated;
20046 break;
20047
20048 case OPCODE_ADD:
20049 new_inst = OPCODE_SUB;
20050 value = negated;
20051 break;
20052
20053 case OPCODE_CMP: /* CMP <-> CMN */
20054 new_inst = OPCODE_CMN;
20055 value = negated;
20056 break;
20057
20058 case OPCODE_CMN:
20059 new_inst = OPCODE_CMP;
20060 value = negated;
20061 break;
20062
20063 /* Now Inverted ops. */
20064 case OPCODE_MOV: /* MOV <-> MVN */
20065 new_inst = OPCODE_MVN;
20066 value = inverted;
20067 break;
20068
20069 case OPCODE_MVN:
20070 new_inst = OPCODE_MOV;
20071 value = inverted;
20072 break;
20073
20074 case OPCODE_AND: /* AND <-> BIC */
20075 new_inst = OPCODE_BIC;
20076 value = inverted;
20077 break;
20078
20079 case OPCODE_BIC:
20080 new_inst = OPCODE_AND;
20081 value = inverted;
20082 break;
20083
20084 case OPCODE_ADC: /* ADC <-> SBC */
20085 new_inst = OPCODE_SBC;
20086 value = inverted;
20087 break;
20088
20089 case OPCODE_SBC:
20090 new_inst = OPCODE_ADC;
20091 value = inverted;
20092 break;
20093
20094 /* We cannot do anything. */
20095 default:
20096 return FAIL;
20097 }
20098
20099 if (value == (unsigned) FAIL)
20100 return FAIL;
20101
20102 *instruction &= OPCODE_MASK;
20103 *instruction |= new_inst << DATA_OP_SHIFT;
20104 return value;
20105 }
20106
20107 /* Like negate_data_op, but for Thumb-2. */
20108
20109 static unsigned int
20110 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
20111 {
20112 int op, new_inst;
20113 int rd;
20114 unsigned int negated, inverted;
20115
20116 negated = encode_thumb32_immediate (-value);
20117 inverted = encode_thumb32_immediate (~value);
20118
20119 rd = (*instruction >> 8) & 0xf;
20120 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20121 switch (op)
20122 {
20123 /* ADD <-> SUB. Includes CMP <-> CMN. */
20124 case T2_OPCODE_SUB:
20125 new_inst = T2_OPCODE_ADD;
20126 value = negated;
20127 break;
20128
20129 case T2_OPCODE_ADD:
20130 new_inst = T2_OPCODE_SUB;
20131 value = negated;
20132 break;
20133
20134 /* ORR <-> ORN. Includes MOV <-> MVN. */
20135 case T2_OPCODE_ORR:
20136 new_inst = T2_OPCODE_ORN;
20137 value = inverted;
20138 break;
20139
20140 case T2_OPCODE_ORN:
20141 new_inst = T2_OPCODE_ORR;
20142 value = inverted;
20143 break;
20144
20145 /* AND <-> BIC. TST has no inverted equivalent. */
20146 case T2_OPCODE_AND:
20147 new_inst = T2_OPCODE_BIC;
20148 if (rd == 15)
20149 value = FAIL;
20150 else
20151 value = inverted;
20152 break;
20153
20154 case T2_OPCODE_BIC:
20155 new_inst = T2_OPCODE_AND;
20156 value = inverted;
20157 break;
20158
20159 /* ADC <-> SBC */
20160 case T2_OPCODE_ADC:
20161 new_inst = T2_OPCODE_SBC;
20162 value = inverted;
20163 break;
20164
20165 case T2_OPCODE_SBC:
20166 new_inst = T2_OPCODE_ADC;
20167 value = inverted;
20168 break;
20169
20170 /* We cannot do anything. */
20171 default:
20172 return FAIL;
20173 }
20174
20175 if (value == (unsigned int)FAIL)
20176 return FAIL;
20177
20178 *instruction &= T2_OPCODE_MASK;
20179 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20180 return value;
20181 }
20182
20183 /* Read a 32-bit thumb instruction from buf. */
20184 static unsigned long
20185 get_thumb32_insn (char * buf)
20186 {
20187 unsigned long insn;
20188 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20189 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20190
20191 return insn;
20192 }
20193
20194
20195 /* We usually want to set the low bit on the address of thumb function
20196 symbols. In particular .word foo - . should have the low bit set.
20197 Generic code tries to fold the difference of two symbols to
20198 a constant. Prevent this and force a relocation when the first symbols
20199 is a thumb function. */
20200
20201 bfd_boolean
20202 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20203 {
20204 if (op == O_subtract
20205 && l->X_op == O_symbol
20206 && r->X_op == O_symbol
20207 && THUMB_IS_FUNC (l->X_add_symbol))
20208 {
20209 l->X_op = O_subtract;
20210 l->X_op_symbol = r->X_add_symbol;
20211 l->X_add_number -= r->X_add_number;
20212 return TRUE;
20213 }
20214
20215 /* Process as normal. */
20216 return FALSE;
20217 }
20218
20219 /* Encode Thumb2 unconditional branches and calls. The encoding
20220 for the 2 are identical for the immediate values. */
20221
20222 static void
20223 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20224 {
20225 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20226 offsetT newval;
20227 offsetT newval2;
20228 addressT S, I1, I2, lo, hi;
20229
20230 S = (value >> 24) & 0x01;
20231 I1 = (value >> 23) & 0x01;
20232 I2 = (value >> 22) & 0x01;
20233 hi = (value >> 12) & 0x3ff;
20234 lo = (value >> 1) & 0x7ff;
20235 newval = md_chars_to_number (buf, THUMB_SIZE);
20236 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20237 newval |= (S << 10) | hi;
20238 newval2 &= ~T2I1I2MASK;
20239 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20240 md_number_to_chars (buf, newval, THUMB_SIZE);
20241 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20242 }
20243
20244 void
20245 md_apply_fix (fixS * fixP,
20246 valueT * valP,
20247 segT seg)
20248 {
20249 offsetT value = * valP;
20250 offsetT newval;
20251 unsigned int newimm;
20252 unsigned long temp;
20253 int sign;
20254 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20255
20256 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20257
20258 /* Note whether this will delete the relocation. */
20259
20260 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20261 fixP->fx_done = 1;
20262
20263 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20264 consistency with the behaviour on 32-bit hosts. Remember value
20265 for emit_reloc. */
20266 value &= 0xffffffff;
20267 value ^= 0x80000000;
20268 value -= 0x80000000;
20269
20270 *valP = value;
20271 fixP->fx_addnumber = value;
20272
20273 /* Same treatment for fixP->fx_offset. */
20274 fixP->fx_offset &= 0xffffffff;
20275 fixP->fx_offset ^= 0x80000000;
20276 fixP->fx_offset -= 0x80000000;
20277
20278 switch (fixP->fx_r_type)
20279 {
20280 case BFD_RELOC_NONE:
20281 /* This will need to go in the object file. */
20282 fixP->fx_done = 0;
20283 break;
20284
20285 case BFD_RELOC_ARM_IMMEDIATE:
20286 /* We claim that this fixup has been processed here,
20287 even if in fact we generate an error because we do
20288 not have a reloc for it, so tc_gen_reloc will reject it. */
20289 fixP->fx_done = 1;
20290
20291 if (fixP->fx_addsy)
20292 {
20293 const char *msg = 0;
20294
20295 if (! S_IS_DEFINED (fixP->fx_addsy))
20296 msg = _("undefined symbol %s used as an immediate value");
20297 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20298 msg = _("symbol %s is in a different section");
20299 else if (S_IS_WEAK (fixP->fx_addsy))
20300 msg = _("symbol %s is weak and may be overridden later");
20301
20302 if (msg)
20303 {
20304 as_bad_where (fixP->fx_file, fixP->fx_line,
20305 msg, S_GET_NAME (fixP->fx_addsy));
20306 break;
20307 }
20308 }
20309
20310 newimm = encode_arm_immediate (value);
20311 temp = md_chars_to_number (buf, INSN_SIZE);
20312
20313 /* If the instruction will fail, see if we can fix things up by
20314 changing the opcode. */
20315 if (newimm == (unsigned int) FAIL
20316 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
20317 {
20318 as_bad_where (fixP->fx_file, fixP->fx_line,
20319 _("invalid constant (%lx) after fixup"),
20320 (unsigned long) value);
20321 break;
20322 }
20323
20324 newimm |= (temp & 0xfffff000);
20325 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20326 break;
20327
20328 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20329 {
20330 unsigned int highpart = 0;
20331 unsigned int newinsn = 0xe1a00000; /* nop. */
20332
20333 if (fixP->fx_addsy)
20334 {
20335 const char *msg = 0;
20336
20337 if (! S_IS_DEFINED (fixP->fx_addsy))
20338 msg = _("undefined symbol %s used as an immediate value");
20339 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20340 msg = _("symbol %s is in a different section");
20341 else if (S_IS_WEAK (fixP->fx_addsy))
20342 msg = _("symbol %s is weak and may be overridden later");
20343
20344 if (msg)
20345 {
20346 as_bad_where (fixP->fx_file, fixP->fx_line,
20347 msg, S_GET_NAME (fixP->fx_addsy));
20348 break;
20349 }
20350 }
20351
20352 newimm = encode_arm_immediate (value);
20353 temp = md_chars_to_number (buf, INSN_SIZE);
20354
20355 /* If the instruction will fail, see if we can fix things up by
20356 changing the opcode. */
20357 if (newimm == (unsigned int) FAIL
20358 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20359 {
20360 /* No ? OK - try using two ADD instructions to generate
20361 the value. */
20362 newimm = validate_immediate_twopart (value, & highpart);
20363
20364 /* Yes - then make sure that the second instruction is
20365 also an add. */
20366 if (newimm != (unsigned int) FAIL)
20367 newinsn = temp;
20368 /* Still No ? Try using a negated value. */
20369 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20370 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20371 /* Otherwise - give up. */
20372 else
20373 {
20374 as_bad_where (fixP->fx_file, fixP->fx_line,
20375 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20376 (long) value);
20377 break;
20378 }
20379
20380 /* Replace the first operand in the 2nd instruction (which
20381 is the PC) with the destination register. We have
20382 already added in the PC in the first instruction and we
20383 do not want to do it again. */
20384 newinsn &= ~ 0xf0000;
20385 newinsn |= ((newinsn & 0x0f000) << 4);
20386 }
20387
20388 newimm |= (temp & 0xfffff000);
20389 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20390
20391 highpart |= (newinsn & 0xfffff000);
20392 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20393 }
20394 break;
20395
20396 case BFD_RELOC_ARM_OFFSET_IMM:
20397 if (!fixP->fx_done && seg->use_rela_p)
20398 value = 0;
20399
20400 case BFD_RELOC_ARM_LITERAL:
20401 sign = value >= 0;
20402
20403 if (value < 0)
20404 value = - value;
20405
20406 if (validate_offset_imm (value, 0) == FAIL)
20407 {
20408 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20409 as_bad_where (fixP->fx_file, fixP->fx_line,
20410 _("invalid literal constant: pool needs to be closer"));
20411 else
20412 as_bad_where (fixP->fx_file, fixP->fx_line,
20413 _("bad immediate value for offset (%ld)"),
20414 (long) value);
20415 break;
20416 }
20417
20418 newval = md_chars_to_number (buf, INSN_SIZE);
20419 newval &= 0xff7ff000;
20420 newval |= value | (sign ? INDEX_UP : 0);
20421 md_number_to_chars (buf, newval, INSN_SIZE);
20422 break;
20423
20424 case BFD_RELOC_ARM_OFFSET_IMM8:
20425 case BFD_RELOC_ARM_HWLITERAL:
20426 sign = value >= 0;
20427
20428 if (value < 0)
20429 value = - value;
20430
20431 if (validate_offset_imm (value, 1) == FAIL)
20432 {
20433 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20434 as_bad_where (fixP->fx_file, fixP->fx_line,
20435 _("invalid literal constant: pool needs to be closer"));
20436 else
20437 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20438 (long) value);
20439 break;
20440 }
20441
20442 newval = md_chars_to_number (buf, INSN_SIZE);
20443 newval &= 0xff7ff0f0;
20444 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20445 md_number_to_chars (buf, newval, INSN_SIZE);
20446 break;
20447
20448 case BFD_RELOC_ARM_T32_OFFSET_U8:
20449 if (value < 0 || value > 1020 || value % 4 != 0)
20450 as_bad_where (fixP->fx_file, fixP->fx_line,
20451 _("bad immediate value for offset (%ld)"), (long) value);
20452 value /= 4;
20453
20454 newval = md_chars_to_number (buf+2, THUMB_SIZE);
20455 newval |= value;
20456 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20457 break;
20458
20459 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20460 /* This is a complicated relocation used for all varieties of Thumb32
20461 load/store instruction with immediate offset:
20462
20463 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20464 *4, optional writeback(W)
20465 (doubleword load/store)
20466
20467 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20468 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20469 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20470 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20471 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20472
20473 Uppercase letters indicate bits that are already encoded at
20474 this point. Lowercase letters are our problem. For the
20475 second block of instructions, the secondary opcode nybble
20476 (bits 8..11) is present, and bit 23 is zero, even if this is
20477 a PC-relative operation. */
20478 newval = md_chars_to_number (buf, THUMB_SIZE);
20479 newval <<= 16;
20480 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
20481
20482 if ((newval & 0xf0000000) == 0xe0000000)
20483 {
20484 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20485 if (value >= 0)
20486 newval |= (1 << 23);
20487 else
20488 value = -value;
20489 if (value % 4 != 0)
20490 {
20491 as_bad_where (fixP->fx_file, fixP->fx_line,
20492 _("offset not a multiple of 4"));
20493 break;
20494 }
20495 value /= 4;
20496 if (value > 0xff)
20497 {
20498 as_bad_where (fixP->fx_file, fixP->fx_line,
20499 _("offset out of range"));
20500 break;
20501 }
20502 newval &= ~0xff;
20503 }
20504 else if ((newval & 0x000f0000) == 0x000f0000)
20505 {
20506 /* PC-relative, 12-bit offset. */
20507 if (value >= 0)
20508 newval |= (1 << 23);
20509 else
20510 value = -value;
20511 if (value > 0xfff)
20512 {
20513 as_bad_where (fixP->fx_file, fixP->fx_line,
20514 _("offset out of range"));
20515 break;
20516 }
20517 newval &= ~0xfff;
20518 }
20519 else if ((newval & 0x00000100) == 0x00000100)
20520 {
20521 /* Writeback: 8-bit, +/- offset. */
20522 if (value >= 0)
20523 newval |= (1 << 9);
20524 else
20525 value = -value;
20526 if (value > 0xff)
20527 {
20528 as_bad_where (fixP->fx_file, fixP->fx_line,
20529 _("offset out of range"));
20530 break;
20531 }
20532 newval &= ~0xff;
20533 }
20534 else if ((newval & 0x00000f00) == 0x00000e00)
20535 {
20536 /* T-instruction: positive 8-bit offset. */
20537 if (value < 0 || value > 0xff)
20538 {
20539 as_bad_where (fixP->fx_file, fixP->fx_line,
20540 _("offset out of range"));
20541 break;
20542 }
20543 newval &= ~0xff;
20544 newval |= value;
20545 }
20546 else
20547 {
20548 /* Positive 12-bit or negative 8-bit offset. */
20549 int limit;
20550 if (value >= 0)
20551 {
20552 newval |= (1 << 23);
20553 limit = 0xfff;
20554 }
20555 else
20556 {
20557 value = -value;
20558 limit = 0xff;
20559 }
20560 if (value > limit)
20561 {
20562 as_bad_where (fixP->fx_file, fixP->fx_line,
20563 _("offset out of range"));
20564 break;
20565 }
20566 newval &= ~limit;
20567 }
20568
20569 newval |= value;
20570 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20571 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20572 break;
20573
20574 case BFD_RELOC_ARM_SHIFT_IMM:
20575 newval = md_chars_to_number (buf, INSN_SIZE);
20576 if (((unsigned long) value) > 32
20577 || (value == 32
20578 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20579 {
20580 as_bad_where (fixP->fx_file, fixP->fx_line,
20581 _("shift expression is too large"));
20582 break;
20583 }
20584
20585 if (value == 0)
20586 /* Shifts of zero must be done as lsl. */
20587 newval &= ~0x60;
20588 else if (value == 32)
20589 value = 0;
20590 newval &= 0xfffff07f;
20591 newval |= (value & 0x1f) << 7;
20592 md_number_to_chars (buf, newval, INSN_SIZE);
20593 break;
20594
20595 case BFD_RELOC_ARM_T32_IMMEDIATE:
20596 case BFD_RELOC_ARM_T32_ADD_IMM:
20597 case BFD_RELOC_ARM_T32_IMM12:
20598 case BFD_RELOC_ARM_T32_ADD_PC12:
20599 /* We claim that this fixup has been processed here,
20600 even if in fact we generate an error because we do
20601 not have a reloc for it, so tc_gen_reloc will reject it. */
20602 fixP->fx_done = 1;
20603
20604 if (fixP->fx_addsy
20605 && ! S_IS_DEFINED (fixP->fx_addsy))
20606 {
20607 as_bad_where (fixP->fx_file, fixP->fx_line,
20608 _("undefined symbol %s used as an immediate value"),
20609 S_GET_NAME (fixP->fx_addsy));
20610 break;
20611 }
20612
20613 newval = md_chars_to_number (buf, THUMB_SIZE);
20614 newval <<= 16;
20615 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
20616
20617 newimm = FAIL;
20618 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20619 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20620 {
20621 newimm = encode_thumb32_immediate (value);
20622 if (newimm == (unsigned int) FAIL)
20623 newimm = thumb32_negate_data_op (&newval, value);
20624 }
20625 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20626 && newimm == (unsigned int) FAIL)
20627 {
20628 /* Turn add/sum into addw/subw. */
20629 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20630 newval = (newval & 0xfeffffff) | 0x02000000;
20631 /* No flat 12-bit imm encoding for addsw/subsw. */
20632 if ((newval & 0x00100000) == 0)
20633 {
20634 /* 12 bit immediate for addw/subw. */
20635 if (value < 0)
20636 {
20637 value = -value;
20638 newval ^= 0x00a00000;
20639 }
20640 if (value > 0xfff)
20641 newimm = (unsigned int) FAIL;
20642 else
20643 newimm = value;
20644 }
20645 }
20646
20647 if (newimm == (unsigned int)FAIL)
20648 {
20649 as_bad_where (fixP->fx_file, fixP->fx_line,
20650 _("invalid constant (%lx) after fixup"),
20651 (unsigned long) value);
20652 break;
20653 }
20654
20655 newval |= (newimm & 0x800) << 15;
20656 newval |= (newimm & 0x700) << 4;
20657 newval |= (newimm & 0x0ff);
20658
20659 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20660 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20661 break;
20662
20663 case BFD_RELOC_ARM_SMC:
20664 if (((unsigned long) value) > 0xffff)
20665 as_bad_where (fixP->fx_file, fixP->fx_line,
20666 _("invalid smc expression"));
20667 newval = md_chars_to_number (buf, INSN_SIZE);
20668 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20669 md_number_to_chars (buf, newval, INSN_SIZE);
20670 break;
20671
20672 case BFD_RELOC_ARM_HVC:
20673 if (((unsigned long) value) > 0xffff)
20674 as_bad_where (fixP->fx_file, fixP->fx_line,
20675 _("invalid hvc expression"));
20676 newval = md_chars_to_number (buf, INSN_SIZE);
20677 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20678 md_number_to_chars (buf, newval, INSN_SIZE);
20679 break;
20680
20681 case BFD_RELOC_ARM_SWI:
20682 if (fixP->tc_fix_data != 0)
20683 {
20684 if (((unsigned long) value) > 0xff)
20685 as_bad_where (fixP->fx_file, fixP->fx_line,
20686 _("invalid swi expression"));
20687 newval = md_chars_to_number (buf, THUMB_SIZE);
20688 newval |= value;
20689 md_number_to_chars (buf, newval, THUMB_SIZE);
20690 }
20691 else
20692 {
20693 if (((unsigned long) value) > 0x00ffffff)
20694 as_bad_where (fixP->fx_file, fixP->fx_line,
20695 _("invalid swi expression"));
20696 newval = md_chars_to_number (buf, INSN_SIZE);
20697 newval |= value;
20698 md_number_to_chars (buf, newval, INSN_SIZE);
20699 }
20700 break;
20701
20702 case BFD_RELOC_ARM_MULTI:
20703 if (((unsigned long) value) > 0xffff)
20704 as_bad_where (fixP->fx_file, fixP->fx_line,
20705 _("invalid expression in load/store multiple"));
20706 newval = value | md_chars_to_number (buf, INSN_SIZE);
20707 md_number_to_chars (buf, newval, INSN_SIZE);
20708 break;
20709
20710 #ifdef OBJ_ELF
20711 case BFD_RELOC_ARM_PCREL_CALL:
20712
20713 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20714 && fixP->fx_addsy
20715 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20716 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20717 && THUMB_IS_FUNC (fixP->fx_addsy))
20718 /* Flip the bl to blx. This is a simple flip
20719 bit here because we generate PCREL_CALL for
20720 unconditional bls. */
20721 {
20722 newval = md_chars_to_number (buf, INSN_SIZE);
20723 newval = newval | 0x10000000;
20724 md_number_to_chars (buf, newval, INSN_SIZE);
20725 temp = 1;
20726 fixP->fx_done = 1;
20727 }
20728 else
20729 temp = 3;
20730 goto arm_branch_common;
20731
20732 case BFD_RELOC_ARM_PCREL_JUMP:
20733 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20734 && fixP->fx_addsy
20735 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20736 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20737 && THUMB_IS_FUNC (fixP->fx_addsy))
20738 {
20739 /* This would map to a bl<cond>, b<cond>,
20740 b<always> to a Thumb function. We
20741 need to force a relocation for this particular
20742 case. */
20743 newval = md_chars_to_number (buf, INSN_SIZE);
20744 fixP->fx_done = 0;
20745 }
20746
20747 case BFD_RELOC_ARM_PLT32:
20748 #endif
20749 case BFD_RELOC_ARM_PCREL_BRANCH:
20750 temp = 3;
20751 goto arm_branch_common;
20752
20753 case BFD_RELOC_ARM_PCREL_BLX:
20754
20755 temp = 1;
20756 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20757 && fixP->fx_addsy
20758 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20759 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20760 && ARM_IS_FUNC (fixP->fx_addsy))
20761 {
20762 /* Flip the blx to a bl and warn. */
20763 const char *name = S_GET_NAME (fixP->fx_addsy);
20764 newval = 0xeb000000;
20765 as_warn_where (fixP->fx_file, fixP->fx_line,
20766 _("blx to '%s' an ARM ISA state function changed to bl"),
20767 name);
20768 md_number_to_chars (buf, newval, INSN_SIZE);
20769 temp = 3;
20770 fixP->fx_done = 1;
20771 }
20772
20773 #ifdef OBJ_ELF
20774 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20775 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20776 #endif
20777
20778 arm_branch_common:
20779 /* We are going to store value (shifted right by two) in the
20780 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20781 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20782 also be be clear. */
20783 if (value & temp)
20784 as_bad_where (fixP->fx_file, fixP->fx_line,
20785 _("misaligned branch destination"));
20786 if ((value & (offsetT)0xfe000000) != (offsetT)0
20787 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20788 as_bad_where (fixP->fx_file, fixP->fx_line,
20789 _("branch out of range"));
20790
20791 if (fixP->fx_done || !seg->use_rela_p)
20792 {
20793 newval = md_chars_to_number (buf, INSN_SIZE);
20794 newval |= (value >> 2) & 0x00ffffff;
20795 /* Set the H bit on BLX instructions. */
20796 if (temp == 1)
20797 {
20798 if (value & 2)
20799 newval |= 0x01000000;
20800 else
20801 newval &= ~0x01000000;
20802 }
20803 md_number_to_chars (buf, newval, INSN_SIZE);
20804 }
20805 break;
20806
20807 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20808 /* CBZ can only branch forward. */
20809
20810 /* Attempts to use CBZ to branch to the next instruction
20811 (which, strictly speaking, are prohibited) will be turned into
20812 no-ops.
20813
20814 FIXME: It may be better to remove the instruction completely and
20815 perform relaxation. */
20816 if (value == -2)
20817 {
20818 newval = md_chars_to_number (buf, THUMB_SIZE);
20819 newval = 0xbf00; /* NOP encoding T1 */
20820 md_number_to_chars (buf, newval, THUMB_SIZE);
20821 }
20822 else
20823 {
20824 if (value & ~0x7e)
20825 as_bad_where (fixP->fx_file, fixP->fx_line,
20826 _("branch out of range"));
20827
20828 if (fixP->fx_done || !seg->use_rela_p)
20829 {
20830 newval = md_chars_to_number (buf, THUMB_SIZE);
20831 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20832 md_number_to_chars (buf, newval, THUMB_SIZE);
20833 }
20834 }
20835 break;
20836
20837 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
20838 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20839 as_bad_where (fixP->fx_file, fixP->fx_line,
20840 _("branch out of range"));
20841
20842 if (fixP->fx_done || !seg->use_rela_p)
20843 {
20844 newval = md_chars_to_number (buf, THUMB_SIZE);
20845 newval |= (value & 0x1ff) >> 1;
20846 md_number_to_chars (buf, newval, THUMB_SIZE);
20847 }
20848 break;
20849
20850 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
20851 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20852 as_bad_where (fixP->fx_file, fixP->fx_line,
20853 _("branch out of range"));
20854
20855 if (fixP->fx_done || !seg->use_rela_p)
20856 {
20857 newval = md_chars_to_number (buf, THUMB_SIZE);
20858 newval |= (value & 0xfff) >> 1;
20859 md_number_to_chars (buf, newval, THUMB_SIZE);
20860 }
20861 break;
20862
20863 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20864 if (fixP->fx_addsy
20865 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20866 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20867 && ARM_IS_FUNC (fixP->fx_addsy)
20868 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20869 {
20870 /* Force a relocation for a branch 20 bits wide. */
20871 fixP->fx_done = 0;
20872 }
20873 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20874 as_bad_where (fixP->fx_file, fixP->fx_line,
20875 _("conditional branch out of range"));
20876
20877 if (fixP->fx_done || !seg->use_rela_p)
20878 {
20879 offsetT newval2;
20880 addressT S, J1, J2, lo, hi;
20881
20882 S = (value & 0x00100000) >> 20;
20883 J2 = (value & 0x00080000) >> 19;
20884 J1 = (value & 0x00040000) >> 18;
20885 hi = (value & 0x0003f000) >> 12;
20886 lo = (value & 0x00000ffe) >> 1;
20887
20888 newval = md_chars_to_number (buf, THUMB_SIZE);
20889 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20890 newval |= (S << 10) | hi;
20891 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20892 md_number_to_chars (buf, newval, THUMB_SIZE);
20893 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20894 }
20895 break;
20896
20897 case BFD_RELOC_THUMB_PCREL_BLX:
20898
20899 /* If there is a blx from a thumb state function to
20900 another thumb function flip this to a bl and warn
20901 about it. */
20902
20903 if (fixP->fx_addsy
20904 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20905 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20906 && THUMB_IS_FUNC (fixP->fx_addsy))
20907 {
20908 const char *name = S_GET_NAME (fixP->fx_addsy);
20909 as_warn_where (fixP->fx_file, fixP->fx_line,
20910 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20911 name);
20912 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20913 newval = newval | 0x1000;
20914 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20915 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20916 fixP->fx_done = 1;
20917 }
20918
20919
20920 goto thumb_bl_common;
20921
20922 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20923
20924 /* A bl from Thumb state ISA to an internal ARM state function
20925 is converted to a blx. */
20926 if (fixP->fx_addsy
20927 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20928 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20929 && ARM_IS_FUNC (fixP->fx_addsy)
20930 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20931 {
20932 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20933 newval = newval & ~0x1000;
20934 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20935 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20936 fixP->fx_done = 1;
20937 }
20938
20939 thumb_bl_common:
20940
20941 #ifdef OBJ_ELF
20942 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20943 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20944 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20945 #endif
20946
20947 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20948 /* For a BLX instruction, make sure that the relocation is rounded up
20949 to a word boundary. This follows the semantics of the instruction
20950 which specifies that bit 1 of the target address will come from bit
20951 1 of the base address. */
20952 value = (value + 1) & ~ 1;
20953
20954
20955 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20956 {
20957 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20958 {
20959 as_bad_where (fixP->fx_file, fixP->fx_line,
20960 _("branch out of range"));
20961 }
20962 else if ((value & ~0x1ffffff)
20963 && ((value & ~0x1ffffff) != ~0x1ffffff))
20964 {
20965 as_bad_where (fixP->fx_file, fixP->fx_line,
20966 _("Thumb2 branch out of range"));
20967 }
20968 }
20969
20970 if (fixP->fx_done || !seg->use_rela_p)
20971 encode_thumb2_b_bl_offset (buf, value);
20972
20973 break;
20974
20975 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20976 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20977 as_bad_where (fixP->fx_file, fixP->fx_line,
20978 _("branch out of range"));
20979
20980 if (fixP->fx_done || !seg->use_rela_p)
20981 encode_thumb2_b_bl_offset (buf, value);
20982
20983 break;
20984
20985 case BFD_RELOC_8:
20986 if (fixP->fx_done || !seg->use_rela_p)
20987 md_number_to_chars (buf, value, 1);
20988 break;
20989
20990 case BFD_RELOC_16:
20991 if (fixP->fx_done || !seg->use_rela_p)
20992 md_number_to_chars (buf, value, 2);
20993 break;
20994
20995 #ifdef OBJ_ELF
20996 case BFD_RELOC_ARM_TLS_CALL:
20997 case BFD_RELOC_ARM_THM_TLS_CALL:
20998 case BFD_RELOC_ARM_TLS_DESCSEQ:
20999 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21000 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21001 break;
21002
21003 case BFD_RELOC_ARM_TLS_GOTDESC:
21004 case BFD_RELOC_ARM_TLS_GD32:
21005 case BFD_RELOC_ARM_TLS_LE32:
21006 case BFD_RELOC_ARM_TLS_IE32:
21007 case BFD_RELOC_ARM_TLS_LDM32:
21008 case BFD_RELOC_ARM_TLS_LDO32:
21009 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21010 /* fall through */
21011
21012 case BFD_RELOC_ARM_GOT32:
21013 case BFD_RELOC_ARM_GOTOFF:
21014 if (fixP->fx_done || !seg->use_rela_p)
21015 md_number_to_chars (buf, 0, 4);
21016 break;
21017
21018 case BFD_RELOC_ARM_GOT_PREL:
21019 if (fixP->fx_done || !seg->use_rela_p)
21020 md_number_to_chars (buf, value, 4);
21021 break;
21022
21023 case BFD_RELOC_ARM_TARGET2:
21024 /* TARGET2 is not partial-inplace, so we need to write the
21025 addend here for REL targets, because it won't be written out
21026 during reloc processing later. */
21027 if (fixP->fx_done || !seg->use_rela_p)
21028 md_number_to_chars (buf, fixP->fx_offset, 4);
21029 break;
21030 #endif
21031
21032 case BFD_RELOC_RVA:
21033 case BFD_RELOC_32:
21034 case BFD_RELOC_ARM_TARGET1:
21035 case BFD_RELOC_ARM_ROSEGREL32:
21036 case BFD_RELOC_ARM_SBREL32:
21037 case BFD_RELOC_32_PCREL:
21038 #ifdef TE_PE
21039 case BFD_RELOC_32_SECREL:
21040 #endif
21041 if (fixP->fx_done || !seg->use_rela_p)
21042 #ifdef TE_WINCE
21043 /* For WinCE we only do this for pcrel fixups. */
21044 if (fixP->fx_done || fixP->fx_pcrel)
21045 #endif
21046 md_number_to_chars (buf, value, 4);
21047 break;
21048
21049 #ifdef OBJ_ELF
21050 case BFD_RELOC_ARM_PREL31:
21051 if (fixP->fx_done || !seg->use_rela_p)
21052 {
21053 newval = md_chars_to_number (buf, 4) & 0x80000000;
21054 if ((value ^ (value >> 1)) & 0x40000000)
21055 {
21056 as_bad_where (fixP->fx_file, fixP->fx_line,
21057 _("rel31 relocation overflow"));
21058 }
21059 newval |= value & 0x7fffffff;
21060 md_number_to_chars (buf, newval, 4);
21061 }
21062 break;
21063 #endif
21064
21065 case BFD_RELOC_ARM_CP_OFF_IMM:
21066 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21067 if (value < -1023 || value > 1023 || (value & 3))
21068 as_bad_where (fixP->fx_file, fixP->fx_line,
21069 _("co-processor offset out of range"));
21070 cp_off_common:
21071 sign = value >= 0;
21072 if (value < 0)
21073 value = -value;
21074 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21075 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21076 newval = md_chars_to_number (buf, INSN_SIZE);
21077 else
21078 newval = get_thumb32_insn (buf);
21079 newval &= 0xff7fff00;
21080 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21081 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21082 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21083 md_number_to_chars (buf, newval, INSN_SIZE);
21084 else
21085 put_thumb32_insn (buf, newval);
21086 break;
21087
21088 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
21089 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
21090 if (value < -255 || value > 255)
21091 as_bad_where (fixP->fx_file, fixP->fx_line,
21092 _("co-processor offset out of range"));
21093 value *= 4;
21094 goto cp_off_common;
21095
21096 case BFD_RELOC_ARM_THUMB_OFFSET:
21097 newval = md_chars_to_number (buf, THUMB_SIZE);
21098 /* Exactly what ranges, and where the offset is inserted depends
21099 on the type of instruction, we can establish this from the
21100 top 4 bits. */
21101 switch (newval >> 12)
21102 {
21103 case 4: /* PC load. */
21104 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21105 forced to zero for these loads; md_pcrel_from has already
21106 compensated for this. */
21107 if (value & 3)
21108 as_bad_where (fixP->fx_file, fixP->fx_line,
21109 _("invalid offset, target not word aligned (0x%08lX)"),
21110 (((unsigned long) fixP->fx_frag->fr_address
21111 + (unsigned long) fixP->fx_where) & ~3)
21112 + (unsigned long) value);
21113
21114 if (value & ~0x3fc)
21115 as_bad_where (fixP->fx_file, fixP->fx_line,
21116 _("invalid offset, value too big (0x%08lX)"),
21117 (long) value);
21118
21119 newval |= value >> 2;
21120 break;
21121
21122 case 9: /* SP load/store. */
21123 if (value & ~0x3fc)
21124 as_bad_where (fixP->fx_file, fixP->fx_line,
21125 _("invalid offset, value too big (0x%08lX)"),
21126 (long) value);
21127 newval |= value >> 2;
21128 break;
21129
21130 case 6: /* Word load/store. */
21131 if (value & ~0x7c)
21132 as_bad_where (fixP->fx_file, fixP->fx_line,
21133 _("invalid offset, value too big (0x%08lX)"),
21134 (long) value);
21135 newval |= value << 4; /* 6 - 2. */
21136 break;
21137
21138 case 7: /* Byte load/store. */
21139 if (value & ~0x1f)
21140 as_bad_where (fixP->fx_file, fixP->fx_line,
21141 _("invalid offset, value too big (0x%08lX)"),
21142 (long) value);
21143 newval |= value << 6;
21144 break;
21145
21146 case 8: /* Halfword load/store. */
21147 if (value & ~0x3e)
21148 as_bad_where (fixP->fx_file, fixP->fx_line,
21149 _("invalid offset, value too big (0x%08lX)"),
21150 (long) value);
21151 newval |= value << 5; /* 6 - 1. */
21152 break;
21153
21154 default:
21155 as_bad_where (fixP->fx_file, fixP->fx_line,
21156 "Unable to process relocation for thumb opcode: %lx",
21157 (unsigned long) newval);
21158 break;
21159 }
21160 md_number_to_chars (buf, newval, THUMB_SIZE);
21161 break;
21162
21163 case BFD_RELOC_ARM_THUMB_ADD:
21164 /* This is a complicated relocation, since we use it for all of
21165 the following immediate relocations:
21166
21167 3bit ADD/SUB
21168 8bit ADD/SUB
21169 9bit ADD/SUB SP word-aligned
21170 10bit ADD PC/SP word-aligned
21171
21172 The type of instruction being processed is encoded in the
21173 instruction field:
21174
21175 0x8000 SUB
21176 0x00F0 Rd
21177 0x000F Rs
21178 */
21179 newval = md_chars_to_number (buf, THUMB_SIZE);
21180 {
21181 int rd = (newval >> 4) & 0xf;
21182 int rs = newval & 0xf;
21183 int subtract = !!(newval & 0x8000);
21184
21185 /* Check for HI regs, only very restricted cases allowed:
21186 Adjusting SP, and using PC or SP to get an address. */
21187 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21188 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21189 as_bad_where (fixP->fx_file, fixP->fx_line,
21190 _("invalid Hi register with immediate"));
21191
21192 /* If value is negative, choose the opposite instruction. */
21193 if (value < 0)
21194 {
21195 value = -value;
21196 subtract = !subtract;
21197 if (value < 0)
21198 as_bad_where (fixP->fx_file, fixP->fx_line,
21199 _("immediate value out of range"));
21200 }
21201
21202 if (rd == REG_SP)
21203 {
21204 if (value & ~0x1fc)
21205 as_bad_where (fixP->fx_file, fixP->fx_line,
21206 _("invalid immediate for stack address calculation"));
21207 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21208 newval |= value >> 2;
21209 }
21210 else if (rs == REG_PC || rs == REG_SP)
21211 {
21212 if (subtract || value & ~0x3fc)
21213 as_bad_where (fixP->fx_file, fixP->fx_line,
21214 _("invalid immediate for address calculation (value = 0x%08lX)"),
21215 (unsigned long) value);
21216 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21217 newval |= rd << 8;
21218 newval |= value >> 2;
21219 }
21220 else if (rs == rd)
21221 {
21222 if (value & ~0xff)
21223 as_bad_where (fixP->fx_file, fixP->fx_line,
21224 _("immediate value out of range"));
21225 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21226 newval |= (rd << 8) | value;
21227 }
21228 else
21229 {
21230 if (value & ~0x7)
21231 as_bad_where (fixP->fx_file, fixP->fx_line,
21232 _("immediate value out of range"));
21233 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21234 newval |= rd | (rs << 3) | (value << 6);
21235 }
21236 }
21237 md_number_to_chars (buf, newval, THUMB_SIZE);
21238 break;
21239
21240 case BFD_RELOC_ARM_THUMB_IMM:
21241 newval = md_chars_to_number (buf, THUMB_SIZE);
21242 if (value < 0 || value > 255)
21243 as_bad_where (fixP->fx_file, fixP->fx_line,
21244 _("invalid immediate: %ld is out of range"),
21245 (long) value);
21246 newval |= value;
21247 md_number_to_chars (buf, newval, THUMB_SIZE);
21248 break;
21249
21250 case BFD_RELOC_ARM_THUMB_SHIFT:
21251 /* 5bit shift value (0..32). LSL cannot take 32. */
21252 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21253 temp = newval & 0xf800;
21254 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21255 as_bad_where (fixP->fx_file, fixP->fx_line,
21256 _("invalid shift value: %ld"), (long) value);
21257 /* Shifts of zero must be encoded as LSL. */
21258 if (value == 0)
21259 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21260 /* Shifts of 32 are encoded as zero. */
21261 else if (value == 32)
21262 value = 0;
21263 newval |= value << 6;
21264 md_number_to_chars (buf, newval, THUMB_SIZE);
21265 break;
21266
21267 case BFD_RELOC_VTABLE_INHERIT:
21268 case BFD_RELOC_VTABLE_ENTRY:
21269 fixP->fx_done = 0;
21270 return;
21271
21272 case BFD_RELOC_ARM_MOVW:
21273 case BFD_RELOC_ARM_MOVT:
21274 case BFD_RELOC_ARM_THUMB_MOVW:
21275 case BFD_RELOC_ARM_THUMB_MOVT:
21276 if (fixP->fx_done || !seg->use_rela_p)
21277 {
21278 /* REL format relocations are limited to a 16-bit addend. */
21279 if (!fixP->fx_done)
21280 {
21281 if (value < -0x8000 || value > 0x7fff)
21282 as_bad_where (fixP->fx_file, fixP->fx_line,
21283 _("offset out of range"));
21284 }
21285 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21286 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21287 {
21288 value >>= 16;
21289 }
21290
21291 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21292 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21293 {
21294 newval = get_thumb32_insn (buf);
21295 newval &= 0xfbf08f00;
21296 newval |= (value & 0xf000) << 4;
21297 newval |= (value & 0x0800) << 15;
21298 newval |= (value & 0x0700) << 4;
21299 newval |= (value & 0x00ff);
21300 put_thumb32_insn (buf, newval);
21301 }
21302 else
21303 {
21304 newval = md_chars_to_number (buf, 4);
21305 newval &= 0xfff0f000;
21306 newval |= value & 0x0fff;
21307 newval |= (value & 0xf000) << 4;
21308 md_number_to_chars (buf, newval, 4);
21309 }
21310 }
21311 return;
21312
21313 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21314 case BFD_RELOC_ARM_ALU_PC_G0:
21315 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21316 case BFD_RELOC_ARM_ALU_PC_G1:
21317 case BFD_RELOC_ARM_ALU_PC_G2:
21318 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21319 case BFD_RELOC_ARM_ALU_SB_G0:
21320 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21321 case BFD_RELOC_ARM_ALU_SB_G1:
21322 case BFD_RELOC_ARM_ALU_SB_G2:
21323 gas_assert (!fixP->fx_done);
21324 if (!seg->use_rela_p)
21325 {
21326 bfd_vma insn;
21327 bfd_vma encoded_addend;
21328 bfd_vma addend_abs = abs (value);
21329
21330 /* Check that the absolute value of the addend can be
21331 expressed as an 8-bit constant plus a rotation. */
21332 encoded_addend = encode_arm_immediate (addend_abs);
21333 if (encoded_addend == (unsigned int) FAIL)
21334 as_bad_where (fixP->fx_file, fixP->fx_line,
21335 _("the offset 0x%08lX is not representable"),
21336 (unsigned long) addend_abs);
21337
21338 /* Extract the instruction. */
21339 insn = md_chars_to_number (buf, INSN_SIZE);
21340
21341 /* If the addend is positive, use an ADD instruction.
21342 Otherwise use a SUB. Take care not to destroy the S bit. */
21343 insn &= 0xff1fffff;
21344 if (value < 0)
21345 insn |= 1 << 22;
21346 else
21347 insn |= 1 << 23;
21348
21349 /* Place the encoded addend into the first 12 bits of the
21350 instruction. */
21351 insn &= 0xfffff000;
21352 insn |= encoded_addend;
21353
21354 /* Update the instruction. */
21355 md_number_to_chars (buf, insn, INSN_SIZE);
21356 }
21357 break;
21358
21359 case BFD_RELOC_ARM_LDR_PC_G0:
21360 case BFD_RELOC_ARM_LDR_PC_G1:
21361 case BFD_RELOC_ARM_LDR_PC_G2:
21362 case BFD_RELOC_ARM_LDR_SB_G0:
21363 case BFD_RELOC_ARM_LDR_SB_G1:
21364 case BFD_RELOC_ARM_LDR_SB_G2:
21365 gas_assert (!fixP->fx_done);
21366 if (!seg->use_rela_p)
21367 {
21368 bfd_vma insn;
21369 bfd_vma addend_abs = abs (value);
21370
21371 /* Check that the absolute value of the addend can be
21372 encoded in 12 bits. */
21373 if (addend_abs >= 0x1000)
21374 as_bad_where (fixP->fx_file, fixP->fx_line,
21375 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21376 (unsigned long) addend_abs);
21377
21378 /* Extract the instruction. */
21379 insn = md_chars_to_number (buf, INSN_SIZE);
21380
21381 /* If the addend is negative, clear bit 23 of the instruction.
21382 Otherwise set it. */
21383 if (value < 0)
21384 insn &= ~(1 << 23);
21385 else
21386 insn |= 1 << 23;
21387
21388 /* Place the absolute value of the addend into the first 12 bits
21389 of the instruction. */
21390 insn &= 0xfffff000;
21391 insn |= addend_abs;
21392
21393 /* Update the instruction. */
21394 md_number_to_chars (buf, insn, INSN_SIZE);
21395 }
21396 break;
21397
21398 case BFD_RELOC_ARM_LDRS_PC_G0:
21399 case BFD_RELOC_ARM_LDRS_PC_G1:
21400 case BFD_RELOC_ARM_LDRS_PC_G2:
21401 case BFD_RELOC_ARM_LDRS_SB_G0:
21402 case BFD_RELOC_ARM_LDRS_SB_G1:
21403 case BFD_RELOC_ARM_LDRS_SB_G2:
21404 gas_assert (!fixP->fx_done);
21405 if (!seg->use_rela_p)
21406 {
21407 bfd_vma insn;
21408 bfd_vma addend_abs = abs (value);
21409
21410 /* Check that the absolute value of the addend can be
21411 encoded in 8 bits. */
21412 if (addend_abs >= 0x100)
21413 as_bad_where (fixP->fx_file, fixP->fx_line,
21414 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21415 (unsigned long) addend_abs);
21416
21417 /* Extract the instruction. */
21418 insn = md_chars_to_number (buf, INSN_SIZE);
21419
21420 /* If the addend is negative, clear bit 23 of the instruction.
21421 Otherwise set it. */
21422 if (value < 0)
21423 insn &= ~(1 << 23);
21424 else
21425 insn |= 1 << 23;
21426
21427 /* Place the first four bits of the absolute value of the addend
21428 into the first 4 bits of the instruction, and the remaining
21429 four into bits 8 .. 11. */
21430 insn &= 0xfffff0f0;
21431 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
21432
21433 /* Update the instruction. */
21434 md_number_to_chars (buf, insn, INSN_SIZE);
21435 }
21436 break;
21437
21438 case BFD_RELOC_ARM_LDC_PC_G0:
21439 case BFD_RELOC_ARM_LDC_PC_G1:
21440 case BFD_RELOC_ARM_LDC_PC_G2:
21441 case BFD_RELOC_ARM_LDC_SB_G0:
21442 case BFD_RELOC_ARM_LDC_SB_G1:
21443 case BFD_RELOC_ARM_LDC_SB_G2:
21444 gas_assert (!fixP->fx_done);
21445 if (!seg->use_rela_p)
21446 {
21447 bfd_vma insn;
21448 bfd_vma addend_abs = abs (value);
21449
21450 /* Check that the absolute value of the addend is a multiple of
21451 four and, when divided by four, fits in 8 bits. */
21452 if (addend_abs & 0x3)
21453 as_bad_where (fixP->fx_file, fixP->fx_line,
21454 _("bad offset 0x%08lX (must be word-aligned)"),
21455 (unsigned long) addend_abs);
21456
21457 if ((addend_abs >> 2) > 0xff)
21458 as_bad_where (fixP->fx_file, fixP->fx_line,
21459 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
21460 (unsigned long) addend_abs);
21461
21462 /* Extract the instruction. */
21463 insn = md_chars_to_number (buf, INSN_SIZE);
21464
21465 /* If the addend is negative, clear bit 23 of the instruction.
21466 Otherwise set it. */
21467 if (value < 0)
21468 insn &= ~(1 << 23);
21469 else
21470 insn |= 1 << 23;
21471
21472 /* Place the addend (divided by four) into the first eight
21473 bits of the instruction. */
21474 insn &= 0xfffffff0;
21475 insn |= addend_abs >> 2;
21476
21477 /* Update the instruction. */
21478 md_number_to_chars (buf, insn, INSN_SIZE);
21479 }
21480 break;
21481
21482 case BFD_RELOC_ARM_V4BX:
21483 /* This will need to go in the object file. */
21484 fixP->fx_done = 0;
21485 break;
21486
21487 case BFD_RELOC_UNUSED:
21488 default:
21489 as_bad_where (fixP->fx_file, fixP->fx_line,
21490 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21491 }
21492 }
21493
21494 /* Translate internal representation of relocation info to BFD target
21495 format. */
21496
21497 arelent *
21498 tc_gen_reloc (asection *section, fixS *fixp)
21499 {
21500 arelent * reloc;
21501 bfd_reloc_code_real_type code;
21502
21503 reloc = (arelent *) xmalloc (sizeof (arelent));
21504
21505 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
21506 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21507 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
21508
21509 if (fixp->fx_pcrel)
21510 {
21511 if (section->use_rela_p)
21512 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21513 else
21514 fixp->fx_offset = reloc->address;
21515 }
21516 reloc->addend = fixp->fx_offset;
21517
21518 switch (fixp->fx_r_type)
21519 {
21520 case BFD_RELOC_8:
21521 if (fixp->fx_pcrel)
21522 {
21523 code = BFD_RELOC_8_PCREL;
21524 break;
21525 }
21526
21527 case BFD_RELOC_16:
21528 if (fixp->fx_pcrel)
21529 {
21530 code = BFD_RELOC_16_PCREL;
21531 break;
21532 }
21533
21534 case BFD_RELOC_32:
21535 if (fixp->fx_pcrel)
21536 {
21537 code = BFD_RELOC_32_PCREL;
21538 break;
21539 }
21540
21541 case BFD_RELOC_ARM_MOVW:
21542 if (fixp->fx_pcrel)
21543 {
21544 code = BFD_RELOC_ARM_MOVW_PCREL;
21545 break;
21546 }
21547
21548 case BFD_RELOC_ARM_MOVT:
21549 if (fixp->fx_pcrel)
21550 {
21551 code = BFD_RELOC_ARM_MOVT_PCREL;
21552 break;
21553 }
21554
21555 case BFD_RELOC_ARM_THUMB_MOVW:
21556 if (fixp->fx_pcrel)
21557 {
21558 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21559 break;
21560 }
21561
21562 case BFD_RELOC_ARM_THUMB_MOVT:
21563 if (fixp->fx_pcrel)
21564 {
21565 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21566 break;
21567 }
21568
21569 case BFD_RELOC_NONE:
21570 case BFD_RELOC_ARM_PCREL_BRANCH:
21571 case BFD_RELOC_ARM_PCREL_BLX:
21572 case BFD_RELOC_RVA:
21573 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21574 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21575 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21576 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21577 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21578 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21579 case BFD_RELOC_VTABLE_ENTRY:
21580 case BFD_RELOC_VTABLE_INHERIT:
21581 #ifdef TE_PE
21582 case BFD_RELOC_32_SECREL:
21583 #endif
21584 code = fixp->fx_r_type;
21585 break;
21586
21587 case BFD_RELOC_THUMB_PCREL_BLX:
21588 #ifdef OBJ_ELF
21589 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21590 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21591 else
21592 #endif
21593 code = BFD_RELOC_THUMB_PCREL_BLX;
21594 break;
21595
21596 case BFD_RELOC_ARM_LITERAL:
21597 case BFD_RELOC_ARM_HWLITERAL:
21598 /* If this is called then the a literal has
21599 been referenced across a section boundary. */
21600 as_bad_where (fixp->fx_file, fixp->fx_line,
21601 _("literal referenced across section boundary"));
21602 return NULL;
21603
21604 #ifdef OBJ_ELF
21605 case BFD_RELOC_ARM_TLS_CALL:
21606 case BFD_RELOC_ARM_THM_TLS_CALL:
21607 case BFD_RELOC_ARM_TLS_DESCSEQ:
21608 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21609 case BFD_RELOC_ARM_GOT32:
21610 case BFD_RELOC_ARM_GOTOFF:
21611 case BFD_RELOC_ARM_GOT_PREL:
21612 case BFD_RELOC_ARM_PLT32:
21613 case BFD_RELOC_ARM_TARGET1:
21614 case BFD_RELOC_ARM_ROSEGREL32:
21615 case BFD_RELOC_ARM_SBREL32:
21616 case BFD_RELOC_ARM_PREL31:
21617 case BFD_RELOC_ARM_TARGET2:
21618 case BFD_RELOC_ARM_TLS_LE32:
21619 case BFD_RELOC_ARM_TLS_LDO32:
21620 case BFD_RELOC_ARM_PCREL_CALL:
21621 case BFD_RELOC_ARM_PCREL_JUMP:
21622 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21623 case BFD_RELOC_ARM_ALU_PC_G0:
21624 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21625 case BFD_RELOC_ARM_ALU_PC_G1:
21626 case BFD_RELOC_ARM_ALU_PC_G2:
21627 case BFD_RELOC_ARM_LDR_PC_G0:
21628 case BFD_RELOC_ARM_LDR_PC_G1:
21629 case BFD_RELOC_ARM_LDR_PC_G2:
21630 case BFD_RELOC_ARM_LDRS_PC_G0:
21631 case BFD_RELOC_ARM_LDRS_PC_G1:
21632 case BFD_RELOC_ARM_LDRS_PC_G2:
21633 case BFD_RELOC_ARM_LDC_PC_G0:
21634 case BFD_RELOC_ARM_LDC_PC_G1:
21635 case BFD_RELOC_ARM_LDC_PC_G2:
21636 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21637 case BFD_RELOC_ARM_ALU_SB_G0:
21638 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21639 case BFD_RELOC_ARM_ALU_SB_G1:
21640 case BFD_RELOC_ARM_ALU_SB_G2:
21641 case BFD_RELOC_ARM_LDR_SB_G0:
21642 case BFD_RELOC_ARM_LDR_SB_G1:
21643 case BFD_RELOC_ARM_LDR_SB_G2:
21644 case BFD_RELOC_ARM_LDRS_SB_G0:
21645 case BFD_RELOC_ARM_LDRS_SB_G1:
21646 case BFD_RELOC_ARM_LDRS_SB_G2:
21647 case BFD_RELOC_ARM_LDC_SB_G0:
21648 case BFD_RELOC_ARM_LDC_SB_G1:
21649 case BFD_RELOC_ARM_LDC_SB_G2:
21650 case BFD_RELOC_ARM_V4BX:
21651 code = fixp->fx_r_type;
21652 break;
21653
21654 case BFD_RELOC_ARM_TLS_GOTDESC:
21655 case BFD_RELOC_ARM_TLS_GD32:
21656 case BFD_RELOC_ARM_TLS_IE32:
21657 case BFD_RELOC_ARM_TLS_LDM32:
21658 /* BFD will include the symbol's address in the addend.
21659 But we don't want that, so subtract it out again here. */
21660 if (!S_IS_COMMON (fixp->fx_addsy))
21661 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21662 code = fixp->fx_r_type;
21663 break;
21664 #endif
21665
21666 case BFD_RELOC_ARM_IMMEDIATE:
21667 as_bad_where (fixp->fx_file, fixp->fx_line,
21668 _("internal relocation (type: IMMEDIATE) not fixed up"));
21669 return NULL;
21670
21671 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21672 as_bad_where (fixp->fx_file, fixp->fx_line,
21673 _("ADRL used for a symbol not defined in the same file"));
21674 return NULL;
21675
21676 case BFD_RELOC_ARM_OFFSET_IMM:
21677 if (section->use_rela_p)
21678 {
21679 code = fixp->fx_r_type;
21680 break;
21681 }
21682
21683 if (fixp->fx_addsy != NULL
21684 && !S_IS_DEFINED (fixp->fx_addsy)
21685 && S_IS_LOCAL (fixp->fx_addsy))
21686 {
21687 as_bad_where (fixp->fx_file, fixp->fx_line,
21688 _("undefined local label `%s'"),
21689 S_GET_NAME (fixp->fx_addsy));
21690 return NULL;
21691 }
21692
21693 as_bad_where (fixp->fx_file, fixp->fx_line,
21694 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21695 return NULL;
21696
21697 default:
21698 {
21699 char * type;
21700
21701 switch (fixp->fx_r_type)
21702 {
21703 case BFD_RELOC_NONE: type = "NONE"; break;
21704 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21705 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21706 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21707 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21708 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21709 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21710 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
21711 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21712 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21713 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21714 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21715 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21716 default: type = _("<unknown>"); break;
21717 }
21718 as_bad_where (fixp->fx_file, fixp->fx_line,
21719 _("cannot represent %s relocation in this object file format"),
21720 type);
21721 return NULL;
21722 }
21723 }
21724
21725 #ifdef OBJ_ELF
21726 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21727 && GOT_symbol
21728 && fixp->fx_addsy == GOT_symbol)
21729 {
21730 code = BFD_RELOC_ARM_GOTPC;
21731 reloc->addend = fixp->fx_offset = reloc->address;
21732 }
21733 #endif
21734
21735 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21736
21737 if (reloc->howto == NULL)
21738 {
21739 as_bad_where (fixp->fx_file, fixp->fx_line,
21740 _("cannot represent %s relocation in this object file format"),
21741 bfd_get_reloc_code_name (code));
21742 return NULL;
21743 }
21744
21745 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21746 vtable entry to be used in the relocation's section offset. */
21747 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21748 reloc->address = fixp->fx_offset;
21749
21750 return reloc;
21751 }
21752
21753 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21754
21755 void
21756 cons_fix_new_arm (fragS * frag,
21757 int where,
21758 int size,
21759 expressionS * exp)
21760 {
21761 bfd_reloc_code_real_type type;
21762 int pcrel = 0;
21763
21764 /* Pick a reloc.
21765 FIXME: @@ Should look at CPU word size. */
21766 switch (size)
21767 {
21768 case 1:
21769 type = BFD_RELOC_8;
21770 break;
21771 case 2:
21772 type = BFD_RELOC_16;
21773 break;
21774 case 4:
21775 default:
21776 type = BFD_RELOC_32;
21777 break;
21778 case 8:
21779 type = BFD_RELOC_64;
21780 break;
21781 }
21782
21783 #ifdef TE_PE
21784 if (exp->X_op == O_secrel)
21785 {
21786 exp->X_op = O_symbol;
21787 type = BFD_RELOC_32_SECREL;
21788 }
21789 #endif
21790
21791 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21792 }
21793
21794 #if defined (OBJ_COFF)
21795 void
21796 arm_validate_fix (fixS * fixP)
21797 {
21798 /* If the destination of the branch is a defined symbol which does not have
21799 the THUMB_FUNC attribute, then we must be calling a function which has
21800 the (interfacearm) attribute. We look for the Thumb entry point to that
21801 function and change the branch to refer to that function instead. */
21802 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21803 && fixP->fx_addsy != NULL
21804 && S_IS_DEFINED (fixP->fx_addsy)
21805 && ! THUMB_IS_FUNC (fixP->fx_addsy))
21806 {
21807 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
21808 }
21809 }
21810 #endif
21811
21812
21813 int
21814 arm_force_relocation (struct fix * fixp)
21815 {
21816 #if defined (OBJ_COFF) && defined (TE_PE)
21817 if (fixp->fx_r_type == BFD_RELOC_RVA)
21818 return 1;
21819 #endif
21820
21821 /* In case we have a call or a branch to a function in ARM ISA mode from
21822 a thumb function or vice-versa force the relocation. These relocations
21823 are cleared off for some cores that might have blx and simple transformations
21824 are possible. */
21825
21826 #ifdef OBJ_ELF
21827 switch (fixp->fx_r_type)
21828 {
21829 case BFD_RELOC_ARM_PCREL_JUMP:
21830 case BFD_RELOC_ARM_PCREL_CALL:
21831 case BFD_RELOC_THUMB_PCREL_BLX:
21832 if (THUMB_IS_FUNC (fixp->fx_addsy))
21833 return 1;
21834 break;
21835
21836 case BFD_RELOC_ARM_PCREL_BLX:
21837 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21838 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21839 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21840 if (ARM_IS_FUNC (fixp->fx_addsy))
21841 return 1;
21842 break;
21843
21844 default:
21845 break;
21846 }
21847 #endif
21848
21849 /* Resolve these relocations even if the symbol is extern or weak. */
21850 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21851 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
21852 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
21853 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
21854 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21855 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21856 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
21857 return 0;
21858
21859 /* Always leave these relocations for the linker. */
21860 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21861 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21862 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21863 return 1;
21864
21865 /* Always generate relocations against function symbols. */
21866 if (fixp->fx_r_type == BFD_RELOC_32
21867 && fixp->fx_addsy
21868 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21869 return 1;
21870
21871 return generic_force_reloc (fixp);
21872 }
21873
21874 #if defined (OBJ_ELF) || defined (OBJ_COFF)
21875 /* Relocations against function names must be left unadjusted,
21876 so that the linker can use this information to generate interworking
21877 stubs. The MIPS version of this function
21878 also prevents relocations that are mips-16 specific, but I do not
21879 know why it does this.
21880
21881 FIXME:
21882 There is one other problem that ought to be addressed here, but
21883 which currently is not: Taking the address of a label (rather
21884 than a function) and then later jumping to that address. Such
21885 addresses also ought to have their bottom bit set (assuming that
21886 they reside in Thumb code), but at the moment they will not. */
21887
21888 bfd_boolean
21889 arm_fix_adjustable (fixS * fixP)
21890 {
21891 if (fixP->fx_addsy == NULL)
21892 return 1;
21893
21894 /* Preserve relocations against symbols with function type. */
21895 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
21896 return FALSE;
21897
21898 if (THUMB_IS_FUNC (fixP->fx_addsy)
21899 && fixP->fx_subsy == NULL)
21900 return FALSE;
21901
21902 /* We need the symbol name for the VTABLE entries. */
21903 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21904 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21905 return FALSE;
21906
21907 /* Don't allow symbols to be discarded on GOT related relocs. */
21908 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21909 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21910 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21911 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21912 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21913 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21914 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21915 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21916 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
21917 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
21918 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
21919 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
21920 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
21921 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
21922 return FALSE;
21923
21924 /* Similarly for group relocations. */
21925 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21926 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21927 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21928 return FALSE;
21929
21930 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21931 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21932 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21933 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21934 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21935 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21936 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21937 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21938 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
21939 return FALSE;
21940
21941 return TRUE;
21942 }
21943 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21944
21945 #ifdef OBJ_ELF
21946
21947 const char *
21948 elf32_arm_target_format (void)
21949 {
21950 #ifdef TE_SYMBIAN
21951 return (target_big_endian
21952 ? "elf32-bigarm-symbian"
21953 : "elf32-littlearm-symbian");
21954 #elif defined (TE_VXWORKS)
21955 return (target_big_endian
21956 ? "elf32-bigarm-vxworks"
21957 : "elf32-littlearm-vxworks");
21958 #else
21959 if (target_big_endian)
21960 return "elf32-bigarm";
21961 else
21962 return "elf32-littlearm";
21963 #endif
21964 }
21965
21966 void
21967 armelf_frob_symbol (symbolS * symp,
21968 int * puntp)
21969 {
21970 elf_frob_symbol (symp, puntp);
21971 }
21972 #endif
21973
21974 /* MD interface: Finalization. */
21975
21976 void
21977 arm_cleanup (void)
21978 {
21979 literal_pool * pool;
21980
21981 /* Ensure that all the IT blocks are properly closed. */
21982 check_it_blocks_finished ();
21983
21984 for (pool = list_of_pools; pool; pool = pool->next)
21985 {
21986 /* Put it at the end of the relevant section. */
21987 subseg_set (pool->section, pool->sub_section);
21988 #ifdef OBJ_ELF
21989 arm_elf_change_section ();
21990 #endif
21991 s_ltorg (0);
21992 }
21993 }
21994
21995 #ifdef OBJ_ELF
21996 /* Remove any excess mapping symbols generated for alignment frags in
21997 SEC. We may have created a mapping symbol before a zero byte
21998 alignment; remove it if there's a mapping symbol after the
21999 alignment. */
22000 static void
22001 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22002 void *dummy ATTRIBUTE_UNUSED)
22003 {
22004 segment_info_type *seginfo = seg_info (sec);
22005 fragS *fragp;
22006
22007 if (seginfo == NULL || seginfo->frchainP == NULL)
22008 return;
22009
22010 for (fragp = seginfo->frchainP->frch_root;
22011 fragp != NULL;
22012 fragp = fragp->fr_next)
22013 {
22014 symbolS *sym = fragp->tc_frag_data.last_map;
22015 fragS *next = fragp->fr_next;
22016
22017 /* Variable-sized frags have been converted to fixed size by
22018 this point. But if this was variable-sized to start with,
22019 there will be a fixed-size frag after it. So don't handle
22020 next == NULL. */
22021 if (sym == NULL || next == NULL)
22022 continue;
22023
22024 if (S_GET_VALUE (sym) < next->fr_address)
22025 /* Not at the end of this frag. */
22026 continue;
22027 know (S_GET_VALUE (sym) == next->fr_address);
22028
22029 do
22030 {
22031 if (next->tc_frag_data.first_map != NULL)
22032 {
22033 /* Next frag starts with a mapping symbol. Discard this
22034 one. */
22035 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22036 break;
22037 }
22038
22039 if (next->fr_next == NULL)
22040 {
22041 /* This mapping symbol is at the end of the section. Discard
22042 it. */
22043 know (next->fr_fix == 0 && next->fr_var == 0);
22044 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22045 break;
22046 }
22047
22048 /* As long as we have empty frags without any mapping symbols,
22049 keep looking. */
22050 /* If the next frag is non-empty and does not start with a
22051 mapping symbol, then this mapping symbol is required. */
22052 if (next->fr_address != next->fr_next->fr_address)
22053 break;
22054
22055 next = next->fr_next;
22056 }
22057 while (next != NULL);
22058 }
22059 }
22060 #endif
22061
22062 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22063 ARM ones. */
22064
22065 void
22066 arm_adjust_symtab (void)
22067 {
22068 #ifdef OBJ_COFF
22069 symbolS * sym;
22070
22071 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22072 {
22073 if (ARM_IS_THUMB (sym))
22074 {
22075 if (THUMB_IS_FUNC (sym))
22076 {
22077 /* Mark the symbol as a Thumb function. */
22078 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22079 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22080 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
22081
22082 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22083 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22084 else
22085 as_bad (_("%s: unexpected function type: %d"),
22086 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22087 }
22088 else switch (S_GET_STORAGE_CLASS (sym))
22089 {
22090 case C_EXT:
22091 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22092 break;
22093 case C_STAT:
22094 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22095 break;
22096 case C_LABEL:
22097 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22098 break;
22099 default:
22100 /* Do nothing. */
22101 break;
22102 }
22103 }
22104
22105 if (ARM_IS_INTERWORK (sym))
22106 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
22107 }
22108 #endif
22109 #ifdef OBJ_ELF
22110 symbolS * sym;
22111 char bind;
22112
22113 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22114 {
22115 if (ARM_IS_THUMB (sym))
22116 {
22117 elf_symbol_type * elf_sym;
22118
22119 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22120 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22121
22122 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22123 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22124 {
22125 /* If it's a .thumb_func, declare it as so,
22126 otherwise tag label as .code 16. */
22127 if (THUMB_IS_FUNC (sym))
22128 elf_sym->internal_elf_sym.st_target_internal
22129 = ST_BRANCH_TO_THUMB;
22130 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22131 elf_sym->internal_elf_sym.st_info =
22132 ELF_ST_INFO (bind, STT_ARM_16BIT);
22133 }
22134 }
22135 }
22136
22137 /* Remove any overlapping mapping symbols generated by alignment frags. */
22138 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22139 /* Now do generic ELF adjustments. */
22140 elf_adjust_symtab ();
22141 #endif
22142 }
22143
22144 /* MD interface: Initialization. */
22145
22146 static void
22147 set_constant_flonums (void)
22148 {
22149 int i;
22150
22151 for (i = 0; i < NUM_FLOAT_VALS; i++)
22152 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22153 abort ();
22154 }
22155
22156 /* Auto-select Thumb mode if it's the only available instruction set for the
22157 given architecture. */
22158
22159 static void
22160 autoselect_thumb_from_cpu_variant (void)
22161 {
22162 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22163 opcode_select (16);
22164 }
22165
22166 void
22167 md_begin (void)
22168 {
22169 unsigned mach;
22170 unsigned int i;
22171
22172 if ( (arm_ops_hsh = hash_new ()) == NULL
22173 || (arm_cond_hsh = hash_new ()) == NULL
22174 || (arm_shift_hsh = hash_new ()) == NULL
22175 || (arm_psr_hsh = hash_new ()) == NULL
22176 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22177 || (arm_reg_hsh = hash_new ()) == NULL
22178 || (arm_reloc_hsh = hash_new ()) == NULL
22179 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22180 as_fatal (_("virtual memory exhausted"));
22181
22182 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22183 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22184 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22185 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22186 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22187 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22188 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22189 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22190 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22191 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22192 (void *) (v7m_psrs + i));
22193 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22194 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22195 for (i = 0;
22196 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22197 i++)
22198 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22199 (void *) (barrier_opt_names + i));
22200 #ifdef OBJ_ELF
22201 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
22202 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
22203 #endif
22204
22205 set_constant_flonums ();
22206
22207 /* Set the cpu variant based on the command-line options. We prefer
22208 -mcpu= over -march= if both are set (as for GCC); and we prefer
22209 -mfpu= over any other way of setting the floating point unit.
22210 Use of legacy options with new options are faulted. */
22211 if (legacy_cpu)
22212 {
22213 if (mcpu_cpu_opt || march_cpu_opt)
22214 as_bad (_("use of old and new-style options to set CPU type"));
22215
22216 mcpu_cpu_opt = legacy_cpu;
22217 }
22218 else if (!mcpu_cpu_opt)
22219 mcpu_cpu_opt = march_cpu_opt;
22220
22221 if (legacy_fpu)
22222 {
22223 if (mfpu_opt)
22224 as_bad (_("use of old and new-style options to set FPU type"));
22225
22226 mfpu_opt = legacy_fpu;
22227 }
22228 else if (!mfpu_opt)
22229 {
22230 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22231 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22232 /* Some environments specify a default FPU. If they don't, infer it
22233 from the processor. */
22234 if (mcpu_fpu_opt)
22235 mfpu_opt = mcpu_fpu_opt;
22236 else
22237 mfpu_opt = march_fpu_opt;
22238 #else
22239 mfpu_opt = &fpu_default;
22240 #endif
22241 }
22242
22243 if (!mfpu_opt)
22244 {
22245 if (mcpu_cpu_opt != NULL)
22246 mfpu_opt = &fpu_default;
22247 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22248 mfpu_opt = &fpu_arch_vfp_v2;
22249 else
22250 mfpu_opt = &fpu_arch_fpa;
22251 }
22252
22253 #ifdef CPU_DEFAULT
22254 if (!mcpu_cpu_opt)
22255 {
22256 mcpu_cpu_opt = &cpu_default;
22257 selected_cpu = cpu_default;
22258 }
22259 #else
22260 if (mcpu_cpu_opt)
22261 selected_cpu = *mcpu_cpu_opt;
22262 else
22263 mcpu_cpu_opt = &arm_arch_any;
22264 #endif
22265
22266 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22267
22268 autoselect_thumb_from_cpu_variant ();
22269
22270 arm_arch_used = thumb_arch_used = arm_arch_none;
22271
22272 #if defined OBJ_COFF || defined OBJ_ELF
22273 {
22274 unsigned int flags = 0;
22275
22276 #if defined OBJ_ELF
22277 flags = meabi_flags;
22278
22279 switch (meabi_flags)
22280 {
22281 case EF_ARM_EABI_UNKNOWN:
22282 #endif
22283 /* Set the flags in the private structure. */
22284 if (uses_apcs_26) flags |= F_APCS26;
22285 if (support_interwork) flags |= F_INTERWORK;
22286 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22287 if (pic_code) flags |= F_PIC;
22288 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22289 flags |= F_SOFT_FLOAT;
22290
22291 switch (mfloat_abi_opt)
22292 {
22293 case ARM_FLOAT_ABI_SOFT:
22294 case ARM_FLOAT_ABI_SOFTFP:
22295 flags |= F_SOFT_FLOAT;
22296 break;
22297
22298 case ARM_FLOAT_ABI_HARD:
22299 if (flags & F_SOFT_FLOAT)
22300 as_bad (_("hard-float conflicts with specified fpu"));
22301 break;
22302 }
22303
22304 /* Using pure-endian doubles (even if soft-float). */
22305 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22306 flags |= F_VFP_FLOAT;
22307
22308 #if defined OBJ_ELF
22309 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22310 flags |= EF_ARM_MAVERICK_FLOAT;
22311 break;
22312
22313 case EF_ARM_EABI_VER4:
22314 case EF_ARM_EABI_VER5:
22315 /* No additional flags to set. */
22316 break;
22317
22318 default:
22319 abort ();
22320 }
22321 #endif
22322 bfd_set_private_flags (stdoutput, flags);
22323
22324 /* We have run out flags in the COFF header to encode the
22325 status of ATPCS support, so instead we create a dummy,
22326 empty, debug section called .arm.atpcs. */
22327 if (atpcs)
22328 {
22329 asection * sec;
22330
22331 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22332
22333 if (sec != NULL)
22334 {
22335 bfd_set_section_flags
22336 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22337 bfd_set_section_size (stdoutput, sec, 0);
22338 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22339 }
22340 }
22341 }
22342 #endif
22343
22344 /* Record the CPU type as well. */
22345 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22346 mach = bfd_mach_arm_iWMMXt2;
22347 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22348 mach = bfd_mach_arm_iWMMXt;
22349 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22350 mach = bfd_mach_arm_XScale;
22351 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22352 mach = bfd_mach_arm_ep9312;
22353 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
22354 mach = bfd_mach_arm_5TE;
22355 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
22356 {
22357 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22358 mach = bfd_mach_arm_5T;
22359 else
22360 mach = bfd_mach_arm_5;
22361 }
22362 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
22363 {
22364 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22365 mach = bfd_mach_arm_4T;
22366 else
22367 mach = bfd_mach_arm_4;
22368 }
22369 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
22370 mach = bfd_mach_arm_3M;
22371 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22372 mach = bfd_mach_arm_3;
22373 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22374 mach = bfd_mach_arm_2a;
22375 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22376 mach = bfd_mach_arm_2;
22377 else
22378 mach = bfd_mach_arm_unknown;
22379
22380 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22381 }
22382
22383 /* Command line processing. */
22384
22385 /* md_parse_option
22386 Invocation line includes a switch not recognized by the base assembler.
22387 See if it's a processor-specific option.
22388
22389 This routine is somewhat complicated by the need for backwards
22390 compatibility (since older releases of gcc can't be changed).
22391 The new options try to make the interface as compatible as
22392 possible with GCC.
22393
22394 New options (supported) are:
22395
22396 -mcpu=<cpu name> Assemble for selected processor
22397 -march=<architecture name> Assemble for selected architecture
22398 -mfpu=<fpu architecture> Assemble for selected FPU.
22399 -EB/-mbig-endian Big-endian
22400 -EL/-mlittle-endian Little-endian
22401 -k Generate PIC code
22402 -mthumb Start in Thumb mode
22403 -mthumb-interwork Code supports ARM/Thumb interworking
22404
22405 -m[no-]warn-deprecated Warn about deprecated features
22406
22407 For now we will also provide support for:
22408
22409 -mapcs-32 32-bit Program counter
22410 -mapcs-26 26-bit Program counter
22411 -macps-float Floats passed in FP registers
22412 -mapcs-reentrant Reentrant code
22413 -matpcs
22414 (sometime these will probably be replaced with -mapcs=<list of options>
22415 and -matpcs=<list of options>)
22416
22417 The remaining options are only supported for back-wards compatibility.
22418 Cpu variants, the arm part is optional:
22419 -m[arm]1 Currently not supported.
22420 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22421 -m[arm]3 Arm 3 processor
22422 -m[arm]6[xx], Arm 6 processors
22423 -m[arm]7[xx][t][[d]m] Arm 7 processors
22424 -m[arm]8[10] Arm 8 processors
22425 -m[arm]9[20][tdmi] Arm 9 processors
22426 -mstrongarm[110[0]] StrongARM processors
22427 -mxscale XScale processors
22428 -m[arm]v[2345[t[e]]] Arm architectures
22429 -mall All (except the ARM1)
22430 FP variants:
22431 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22432 -mfpe-old (No float load/store multiples)
22433 -mvfpxd VFP Single precision
22434 -mvfp All VFP
22435 -mno-fpu Disable all floating point instructions
22436
22437 The following CPU names are recognized:
22438 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22439 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22440 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22441 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22442 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22443 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22444 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
22445
22446 */
22447
22448 const char * md_shortopts = "m:k";
22449
22450 #ifdef ARM_BI_ENDIAN
22451 #define OPTION_EB (OPTION_MD_BASE + 0)
22452 #define OPTION_EL (OPTION_MD_BASE + 1)
22453 #else
22454 #if TARGET_BYTES_BIG_ENDIAN
22455 #define OPTION_EB (OPTION_MD_BASE + 0)
22456 #else
22457 #define OPTION_EL (OPTION_MD_BASE + 1)
22458 #endif
22459 #endif
22460 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
22461
22462 struct option md_longopts[] =
22463 {
22464 #ifdef OPTION_EB
22465 {"EB", no_argument, NULL, OPTION_EB},
22466 #endif
22467 #ifdef OPTION_EL
22468 {"EL", no_argument, NULL, OPTION_EL},
22469 #endif
22470 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
22471 {NULL, no_argument, NULL, 0}
22472 };
22473
22474 size_t md_longopts_size = sizeof (md_longopts);
22475
22476 struct arm_option_table
22477 {
22478 char *option; /* Option name to match. */
22479 char *help; /* Help information. */
22480 int *var; /* Variable to change. */
22481 int value; /* What to change it to. */
22482 char *deprecated; /* If non-null, print this message. */
22483 };
22484
22485 struct arm_option_table arm_opts[] =
22486 {
22487 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22488 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22489 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22490 &support_interwork, 1, NULL},
22491 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22492 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22493 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22494 1, NULL},
22495 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22496 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22497 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22498 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22499 NULL},
22500
22501 /* These are recognized by the assembler, but have no affect on code. */
22502 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22503 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
22504
22505 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22506 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22507 &warn_on_deprecated, 0, NULL},
22508 {NULL, NULL, NULL, 0, NULL}
22509 };
22510
22511 struct arm_legacy_option_table
22512 {
22513 char *option; /* Option name to match. */
22514 const arm_feature_set **var; /* Variable to change. */
22515 const arm_feature_set value; /* What to change it to. */
22516 char *deprecated; /* If non-null, print this message. */
22517 };
22518
22519 const struct arm_legacy_option_table arm_legacy_opts[] =
22520 {
22521 /* DON'T add any new processors to this list -- we want the whole list
22522 to go away... Add them to the processors table instead. */
22523 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22524 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22525 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22526 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22527 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22528 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22529 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22530 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22531 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22532 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22533 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22534 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22535 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22536 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22537 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22538 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22539 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22540 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22541 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22542 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22543 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22544 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22545 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22546 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22547 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22548 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22549 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22550 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22551 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22552 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22553 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22554 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22555 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22556 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22557 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22558 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22559 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22560 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22561 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22562 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22563 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22564 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22565 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22566 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22567 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22568 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22569 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22570 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22571 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22572 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22573 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22574 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22575 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22576 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22577 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22578 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22579 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22580 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22581 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22582 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22583 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22584 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22585 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22586 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22587 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22588 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22589 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22590 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22591 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22592 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
22593 N_("use -mcpu=strongarm110")},
22594 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
22595 N_("use -mcpu=strongarm1100")},
22596 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
22597 N_("use -mcpu=strongarm1110")},
22598 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22599 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22600 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
22601
22602 /* Architecture variants -- don't add any more to this list either. */
22603 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22604 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22605 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22606 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22607 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22608 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22609 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22610 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22611 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22612 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22613 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22614 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22615 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22616 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22617 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22618 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22619 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22620 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22621
22622 /* Floating point variants -- don't add any more to this list either. */
22623 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22624 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22625 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22626 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
22627 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22628
22629 {NULL, NULL, ARM_ARCH_NONE, NULL}
22630 };
22631
22632 struct arm_cpu_option_table
22633 {
22634 char *name;
22635 const arm_feature_set value;
22636 /* For some CPUs we assume an FPU unless the user explicitly sets
22637 -mfpu=... */
22638 const arm_feature_set default_fpu;
22639 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22640 case. */
22641 const char *canonical_name;
22642 };
22643
22644 /* This list should, at a minimum, contain all the cpu names
22645 recognized by GCC. */
22646 static const struct arm_cpu_option_table arm_cpus[] =
22647 {
22648 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22649 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22650 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22651 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22652 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22653 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22654 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22655 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22656 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22657 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22658 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22659 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22660 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22661 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22662 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22663 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22664 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22665 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22666 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22667 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22668 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22669 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22670 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22671 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22672 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22673 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22674 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22675 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22676 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22677 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22678 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22679 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22680 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22681 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22682 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22683 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22684 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22685 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22686 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22687 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22688 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22689 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22690 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22691 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22692 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22693 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22694 /* For V5 or later processors we default to using VFP; but the user
22695 should really set the FPU type explicitly. */
22696 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22697 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22698 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22699 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22700 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22701 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22702 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22703 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22704 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22705 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22706 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22707 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22708 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22709 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22710 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22711 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22712 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22713 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22714 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22715 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22716 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22717 {"fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22718 {"fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22719 {"fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22720 {"fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22721 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22722 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22723 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22724 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22725 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22726 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22727 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
22728 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22729 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22730 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22731 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
22732 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22733 FPU_NONE, "Cortex-A5"},
22734 {"cortex-a8", ARM_ARCH_V7A_SEC,
22735 ARM_FEATURE (0, FPU_VFP_V3
22736 | FPU_NEON_EXT_V1),
22737 "Cortex-A8"},
22738 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22739 ARM_FEATURE (0, FPU_VFP_V3
22740 | FPU_NEON_EXT_V1),
22741 "Cortex-A9"},
22742 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22743 FPU_ARCH_NEON_VFP_V4,
22744 "Cortex-A15"},
22745 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22746 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22747 "Cortex-R4F"},
22748 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22749 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
22750 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22751 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
22752 /* ??? XSCALE is really an architecture. */
22753 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22754 /* ??? iwmmxt is not a processor. */
22755 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
22756 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
22757 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22758 /* Maverick */
22759 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
22760 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
22761 };
22762
22763 struct arm_arch_option_table
22764 {
22765 char *name;
22766 const arm_feature_set value;
22767 const arm_feature_set default_fpu;
22768 };
22769
22770 /* This list should, at a minimum, contain all the architecture names
22771 recognized by GCC. */
22772 static const struct arm_arch_option_table arm_archs[] =
22773 {
22774 {"all", ARM_ANY, FPU_ARCH_FPA},
22775 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22776 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22777 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22778 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22779 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22780 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22781 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22782 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22783 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22784 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22785 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22786 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22787 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22788 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22789 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22790 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22791 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22792 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22793 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22794 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22795 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22796 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22797 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22798 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22799 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
22800 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
22801 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
22802 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
22803 /* The official spelling of the ARMv7 profile variants is the dashed form.
22804 Accept the non-dashed form for compatibility with old toolchains. */
22805 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22806 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22807 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22808 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22809 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22810 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22811 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
22812 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22813 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
22814 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
22815 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22816 };
22817
22818 /* ISA extensions in the co-processor and main instruction set space. */
22819 struct arm_option_extension_value_table
22820 {
22821 char *name;
22822 const arm_feature_set value;
22823 const arm_feature_set allowed_archs;
22824 };
22825
22826 /* The following table must be in alphabetical order with a NULL last entry.
22827 */
22828 static const struct arm_option_extension_value_table arm_extensions[] =
22829 {
22830 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22831 ARM_FEATURE (ARM_EXT_V7A, 0)},
22832 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
22833 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
22834 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
22835 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
22836 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
22837 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
22838 ARM_FEATURE (ARM_EXT_V6M, 0)},
22839 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
22840 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
22841 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22842 ARM_FEATURE (ARM_EXT_V7A, 0)},
22843 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
22844 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22845 };
22846
22847 /* ISA floating-point and Advanced SIMD extensions. */
22848 struct arm_option_fpu_value_table
22849 {
22850 char *name;
22851 const arm_feature_set value;
22852 };
22853
22854 /* This list should, at a minimum, contain all the fpu names
22855 recognized by GCC. */
22856 static const struct arm_option_fpu_value_table arm_fpus[] =
22857 {
22858 {"softfpa", FPU_NONE},
22859 {"fpe", FPU_ARCH_FPE},
22860 {"fpe2", FPU_ARCH_FPE},
22861 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22862 {"fpa", FPU_ARCH_FPA},
22863 {"fpa10", FPU_ARCH_FPA},
22864 {"fpa11", FPU_ARCH_FPA},
22865 {"arm7500fe", FPU_ARCH_FPA},
22866 {"softvfp", FPU_ARCH_VFP},
22867 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22868 {"vfp", FPU_ARCH_VFP_V2},
22869 {"vfp9", FPU_ARCH_VFP_V2},
22870 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
22871 {"vfp10", FPU_ARCH_VFP_V2},
22872 {"vfp10-r0", FPU_ARCH_VFP_V1},
22873 {"vfpxd", FPU_ARCH_VFP_V1xD},
22874 {"vfpv2", FPU_ARCH_VFP_V2},
22875 {"vfpv3", FPU_ARCH_VFP_V3},
22876 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
22877 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
22878 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22879 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22880 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
22881 {"arm1020t", FPU_ARCH_VFP_V1},
22882 {"arm1020e", FPU_ARCH_VFP_V2},
22883 {"arm1136jfs", FPU_ARCH_VFP_V2},
22884 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22885 {"maverick", FPU_ARCH_MAVERICK},
22886 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
22887 {"neon-fp16", FPU_ARCH_NEON_FP16},
22888 {"vfpv4", FPU_ARCH_VFP_V4},
22889 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
22890 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
22891 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
22892 {NULL, ARM_ARCH_NONE}
22893 };
22894
22895 struct arm_option_value_table
22896 {
22897 char *name;
22898 long value;
22899 };
22900
22901 static const struct arm_option_value_table arm_float_abis[] =
22902 {
22903 {"hard", ARM_FLOAT_ABI_HARD},
22904 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22905 {"soft", ARM_FLOAT_ABI_SOFT},
22906 {NULL, 0}
22907 };
22908
22909 #ifdef OBJ_ELF
22910 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
22911 static const struct arm_option_value_table arm_eabis[] =
22912 {
22913 {"gnu", EF_ARM_EABI_UNKNOWN},
22914 {"4", EF_ARM_EABI_VER4},
22915 {"5", EF_ARM_EABI_VER5},
22916 {NULL, 0}
22917 };
22918 #endif
22919
22920 struct arm_long_option_table
22921 {
22922 char * option; /* Substring to match. */
22923 char * help; /* Help information. */
22924 int (* func) (char * subopt); /* Function to decode sub-option. */
22925 char * deprecated; /* If non-null, print this message. */
22926 };
22927
22928 static bfd_boolean
22929 arm_parse_extension (char * str, const arm_feature_set **opt_p)
22930 {
22931 arm_feature_set *ext_set = (arm_feature_set *)
22932 xmalloc (sizeof (arm_feature_set));
22933
22934 /* We insist on extensions being specified in alphabetical order, and with
22935 extensions being added before being removed. We achieve this by having
22936 the global ARM_EXTENSIONS table in alphabetical order, and using the
22937 ADDING_VALUE variable to indicate whether we are adding an extension (1)
22938 or removing it (0) and only allowing it to change in the order
22939 -1 -> 1 -> 0. */
22940 const struct arm_option_extension_value_table * opt = NULL;
22941 int adding_value = -1;
22942
22943 /* Copy the feature set, so that we can modify it. */
22944 *ext_set = **opt_p;
22945 *opt_p = ext_set;
22946
22947 while (str != NULL && *str != 0)
22948 {
22949 char * ext;
22950 size_t optlen;
22951
22952 if (*str != '+')
22953 {
22954 as_bad (_("invalid architectural extension"));
22955 return FALSE;
22956 }
22957
22958 str++;
22959 ext = strchr (str, '+');
22960
22961 if (ext != NULL)
22962 optlen = ext - str;
22963 else
22964 optlen = strlen (str);
22965
22966 if (optlen >= 2
22967 && strncmp (str, "no", 2) == 0)
22968 {
22969 if (adding_value != 0)
22970 {
22971 adding_value = 0;
22972 opt = arm_extensions;
22973 }
22974
22975 optlen -= 2;
22976 str += 2;
22977 }
22978 else if (optlen > 0)
22979 {
22980 if (adding_value == -1)
22981 {
22982 adding_value = 1;
22983 opt = arm_extensions;
22984 }
22985 else if (adding_value != 1)
22986 {
22987 as_bad (_("must specify extensions to add before specifying "
22988 "those to remove"));
22989 return FALSE;
22990 }
22991 }
22992
22993 if (optlen == 0)
22994 {
22995 as_bad (_("missing architectural extension"));
22996 return FALSE;
22997 }
22998
22999 gas_assert (adding_value != -1);
23000 gas_assert (opt != NULL);
23001
23002 /* Scan over the options table trying to find an exact match. */
23003 for (; opt->name != NULL; opt++)
23004 if (strncmp (opt->name, str, optlen) == 0
23005 && strlen (opt->name) == optlen)
23006 {
23007 /* Check we can apply the extension to this architecture. */
23008 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23009 {
23010 as_bad (_("extension does not apply to the base architecture"));
23011 return FALSE;
23012 }
23013
23014 /* Add or remove the extension. */
23015 if (adding_value)
23016 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23017 else
23018 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23019
23020 break;
23021 }
23022
23023 if (opt->name == NULL)
23024 {
23025 /* Did we fail to find an extension because it wasn't specified in
23026 alphabetical order, or because it does not exist? */
23027
23028 for (opt = arm_extensions; opt->name != NULL; opt++)
23029 if (strncmp (opt->name, str, optlen) == 0)
23030 break;
23031
23032 if (opt->name == NULL)
23033 as_bad (_("unknown architectural extension `%s'"), str);
23034 else
23035 as_bad (_("architectural extensions must be specified in "
23036 "alphabetical order"));
23037
23038 return FALSE;
23039 }
23040 else
23041 {
23042 /* We should skip the extension we've just matched the next time
23043 round. */
23044 opt++;
23045 }
23046
23047 str = ext;
23048 };
23049
23050 return TRUE;
23051 }
23052
23053 static bfd_boolean
23054 arm_parse_cpu (char * str)
23055 {
23056 const struct arm_cpu_option_table * opt;
23057 char * ext = strchr (str, '+');
23058 int optlen;
23059
23060 if (ext != NULL)
23061 optlen = ext - str;
23062 else
23063 optlen = strlen (str);
23064
23065 if (optlen == 0)
23066 {
23067 as_bad (_("missing cpu name `%s'"), str);
23068 return FALSE;
23069 }
23070
23071 for (opt = arm_cpus; opt->name != NULL; opt++)
23072 if (strncmp (opt->name, str, optlen) == 0)
23073 {
23074 mcpu_cpu_opt = &opt->value;
23075 mcpu_fpu_opt = &opt->default_fpu;
23076 if (opt->canonical_name)
23077 strcpy (selected_cpu_name, opt->canonical_name);
23078 else
23079 {
23080 int i;
23081
23082 for (i = 0; i < optlen; i++)
23083 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23084 selected_cpu_name[i] = 0;
23085 }
23086
23087 if (ext != NULL)
23088 return arm_parse_extension (ext, &mcpu_cpu_opt);
23089
23090 return TRUE;
23091 }
23092
23093 as_bad (_("unknown cpu `%s'"), str);
23094 return FALSE;
23095 }
23096
23097 static bfd_boolean
23098 arm_parse_arch (char * str)
23099 {
23100 const struct arm_arch_option_table *opt;
23101 char *ext = strchr (str, '+');
23102 int optlen;
23103
23104 if (ext != NULL)
23105 optlen = ext - str;
23106 else
23107 optlen = strlen (str);
23108
23109 if (optlen == 0)
23110 {
23111 as_bad (_("missing architecture name `%s'"), str);
23112 return FALSE;
23113 }
23114
23115 for (opt = arm_archs; opt->name != NULL; opt++)
23116 if (strncmp (opt->name, str, optlen) == 0)
23117 {
23118 march_cpu_opt = &opt->value;
23119 march_fpu_opt = &opt->default_fpu;
23120 strcpy (selected_cpu_name, opt->name);
23121
23122 if (ext != NULL)
23123 return arm_parse_extension (ext, &march_cpu_opt);
23124
23125 return TRUE;
23126 }
23127
23128 as_bad (_("unknown architecture `%s'\n"), str);
23129 return FALSE;
23130 }
23131
23132 static bfd_boolean
23133 arm_parse_fpu (char * str)
23134 {
23135 const struct arm_option_fpu_value_table * opt;
23136
23137 for (opt = arm_fpus; opt->name != NULL; opt++)
23138 if (streq (opt->name, str))
23139 {
23140 mfpu_opt = &opt->value;
23141 return TRUE;
23142 }
23143
23144 as_bad (_("unknown floating point format `%s'\n"), str);
23145 return FALSE;
23146 }
23147
23148 static bfd_boolean
23149 arm_parse_float_abi (char * str)
23150 {
23151 const struct arm_option_value_table * opt;
23152
23153 for (opt = arm_float_abis; opt->name != NULL; opt++)
23154 if (streq (opt->name, str))
23155 {
23156 mfloat_abi_opt = opt->value;
23157 return TRUE;
23158 }
23159
23160 as_bad (_("unknown floating point abi `%s'\n"), str);
23161 return FALSE;
23162 }
23163
23164 #ifdef OBJ_ELF
23165 static bfd_boolean
23166 arm_parse_eabi (char * str)
23167 {
23168 const struct arm_option_value_table *opt;
23169
23170 for (opt = arm_eabis; opt->name != NULL; opt++)
23171 if (streq (opt->name, str))
23172 {
23173 meabi_flags = opt->value;
23174 return TRUE;
23175 }
23176 as_bad (_("unknown EABI `%s'\n"), str);
23177 return FALSE;
23178 }
23179 #endif
23180
23181 static bfd_boolean
23182 arm_parse_it_mode (char * str)
23183 {
23184 bfd_boolean ret = TRUE;
23185
23186 if (streq ("arm", str))
23187 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23188 else if (streq ("thumb", str))
23189 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23190 else if (streq ("always", str))
23191 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23192 else if (streq ("never", str))
23193 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23194 else
23195 {
23196 as_bad (_("unknown implicit IT mode `%s', should be "\
23197 "arm, thumb, always, or never."), str);
23198 ret = FALSE;
23199 }
23200
23201 return ret;
23202 }
23203
23204 struct arm_long_option_table arm_long_opts[] =
23205 {
23206 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23207 arm_parse_cpu, NULL},
23208 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23209 arm_parse_arch, NULL},
23210 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23211 arm_parse_fpu, NULL},
23212 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23213 arm_parse_float_abi, NULL},
23214 #ifdef OBJ_ELF
23215 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23216 arm_parse_eabi, NULL},
23217 #endif
23218 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23219 arm_parse_it_mode, NULL},
23220 {NULL, NULL, 0, NULL}
23221 };
23222
23223 int
23224 md_parse_option (int c, char * arg)
23225 {
23226 struct arm_option_table *opt;
23227 const struct arm_legacy_option_table *fopt;
23228 struct arm_long_option_table *lopt;
23229
23230 switch (c)
23231 {
23232 #ifdef OPTION_EB
23233 case OPTION_EB:
23234 target_big_endian = 1;
23235 break;
23236 #endif
23237
23238 #ifdef OPTION_EL
23239 case OPTION_EL:
23240 target_big_endian = 0;
23241 break;
23242 #endif
23243
23244 case OPTION_FIX_V4BX:
23245 fix_v4bx = TRUE;
23246 break;
23247
23248 case 'a':
23249 /* Listing option. Just ignore these, we don't support additional
23250 ones. */
23251 return 0;
23252
23253 default:
23254 for (opt = arm_opts; opt->option != NULL; opt++)
23255 {
23256 if (c == opt->option[0]
23257 && ((arg == NULL && opt->option[1] == 0)
23258 || streq (arg, opt->option + 1)))
23259 {
23260 /* If the option is deprecated, tell the user. */
23261 if (warn_on_deprecated && opt->deprecated != NULL)
23262 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23263 arg ? arg : "", _(opt->deprecated));
23264
23265 if (opt->var != NULL)
23266 *opt->var = opt->value;
23267
23268 return 1;
23269 }
23270 }
23271
23272 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23273 {
23274 if (c == fopt->option[0]
23275 && ((arg == NULL && fopt->option[1] == 0)
23276 || streq (arg, fopt->option + 1)))
23277 {
23278 /* If the option is deprecated, tell the user. */
23279 if (warn_on_deprecated && fopt->deprecated != NULL)
23280 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23281 arg ? arg : "", _(fopt->deprecated));
23282
23283 if (fopt->var != NULL)
23284 *fopt->var = &fopt->value;
23285
23286 return 1;
23287 }
23288 }
23289
23290 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23291 {
23292 /* These options are expected to have an argument. */
23293 if (c == lopt->option[0]
23294 && arg != NULL
23295 && strncmp (arg, lopt->option + 1,
23296 strlen (lopt->option + 1)) == 0)
23297 {
23298 /* If the option is deprecated, tell the user. */
23299 if (warn_on_deprecated && lopt->deprecated != NULL)
23300 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23301 _(lopt->deprecated));
23302
23303 /* Call the sup-option parser. */
23304 return lopt->func (arg + strlen (lopt->option) - 1);
23305 }
23306 }
23307
23308 return 0;
23309 }
23310
23311 return 1;
23312 }
23313
23314 void
23315 md_show_usage (FILE * fp)
23316 {
23317 struct arm_option_table *opt;
23318 struct arm_long_option_table *lopt;
23319
23320 fprintf (fp, _(" ARM-specific assembler options:\n"));
23321
23322 for (opt = arm_opts; opt->option != NULL; opt++)
23323 if (opt->help != NULL)
23324 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
23325
23326 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23327 if (lopt->help != NULL)
23328 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
23329
23330 #ifdef OPTION_EB
23331 fprintf (fp, _("\
23332 -EB assemble code for a big-endian cpu\n"));
23333 #endif
23334
23335 #ifdef OPTION_EL
23336 fprintf (fp, _("\
23337 -EL assemble code for a little-endian cpu\n"));
23338 #endif
23339
23340 fprintf (fp, _("\
23341 --fix-v4bx Allow BX in ARMv4 code\n"));
23342 }
23343
23344
23345 #ifdef OBJ_ELF
23346 typedef struct
23347 {
23348 int val;
23349 arm_feature_set flags;
23350 } cpu_arch_ver_table;
23351
23352 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23353 least features first. */
23354 static const cpu_arch_ver_table cpu_arch_ver[] =
23355 {
23356 {1, ARM_ARCH_V4},
23357 {2, ARM_ARCH_V4T},
23358 {3, ARM_ARCH_V5},
23359 {3, ARM_ARCH_V5T},
23360 {4, ARM_ARCH_V5TE},
23361 {5, ARM_ARCH_V5TEJ},
23362 {6, ARM_ARCH_V6},
23363 {9, ARM_ARCH_V6K},
23364 {7, ARM_ARCH_V6Z},
23365 {11, ARM_ARCH_V6M},
23366 {12, ARM_ARCH_V6SM},
23367 {8, ARM_ARCH_V6T2},
23368 {10, ARM_ARCH_V7A},
23369 {10, ARM_ARCH_V7R},
23370 {10, ARM_ARCH_V7M},
23371 {0, ARM_ARCH_NONE}
23372 };
23373
23374 /* Set an attribute if it has not already been set by the user. */
23375 static void
23376 aeabi_set_attribute_int (int tag, int value)
23377 {
23378 if (tag < 1
23379 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23380 || !attributes_set_explicitly[tag])
23381 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23382 }
23383
23384 static void
23385 aeabi_set_attribute_string (int tag, const char *value)
23386 {
23387 if (tag < 1
23388 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23389 || !attributes_set_explicitly[tag])
23390 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23391 }
23392
23393 /* Set the public EABI object attributes. */
23394 static void
23395 aeabi_set_public_attributes (void)
23396 {
23397 int arch;
23398 int virt_sec = 0;
23399 arm_feature_set flags;
23400 arm_feature_set tmp;
23401 const cpu_arch_ver_table *p;
23402
23403 /* Choose the architecture based on the capabilities of the requested cpu
23404 (if any) and/or the instructions actually used. */
23405 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23406 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23407 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
23408 /*Allow the user to override the reported architecture. */
23409 if (object_arch)
23410 {
23411 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23412 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23413 }
23414
23415 /* We need to make sure that the attributes do not identify us as v6S-M
23416 when the only v6S-M feature in use is the Operating System Extensions. */
23417 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23418 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23419 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23420
23421 tmp = flags;
23422 arch = 0;
23423 for (p = cpu_arch_ver; p->val; p++)
23424 {
23425 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23426 {
23427 arch = p->val;
23428 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23429 }
23430 }
23431
23432 /* The table lookup above finds the last architecture to contribute
23433 a new feature. Unfortunately, Tag13 is a subset of the union of
23434 v6T2 and v7-M, so it is never seen as contributing a new feature.
23435 We can not search for the last entry which is entirely used,
23436 because if no CPU is specified we build up only those flags
23437 actually used. Perhaps we should separate out the specified
23438 and implicit cases. Avoid taking this path for -march=all by
23439 checking for contradictory v7-A / v7-M features. */
23440 if (arch == 10
23441 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23442 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23443 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23444 arch = 13;
23445
23446 /* Tag_CPU_name. */
23447 if (selected_cpu_name[0])
23448 {
23449 char *q;
23450
23451 q = selected_cpu_name;
23452 if (strncmp (q, "armv", 4) == 0)
23453 {
23454 int i;
23455
23456 q += 4;
23457 for (i = 0; q[i]; i++)
23458 q[i] = TOUPPER (q[i]);
23459 }
23460 aeabi_set_attribute_string (Tag_CPU_name, q);
23461 }
23462
23463 /* Tag_CPU_arch. */
23464 aeabi_set_attribute_int (Tag_CPU_arch, arch);
23465
23466 /* Tag_CPU_arch_profile. */
23467 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
23468 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
23469 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
23470 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
23471 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
23472 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
23473
23474 /* Tag_ARM_ISA_use. */
23475 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23476 || arch == 0)
23477 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
23478
23479 /* Tag_THUMB_ISA_use. */
23480 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23481 || arch == 0)
23482 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23483 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
23484
23485 /* Tag_VFP_arch. */
23486 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23487 aeabi_set_attribute_int (Tag_VFP_arch,
23488 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23489 ? 5 : 6);
23490 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
23491 aeabi_set_attribute_int (Tag_VFP_arch, 3);
23492 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
23493 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23494 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23495 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23496 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23497 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23498 aeabi_set_attribute_int (Tag_VFP_arch, 1);
23499
23500 /* Tag_ABI_HardFP_use. */
23501 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23502 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23503 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23504
23505 /* Tag_WMMX_arch. */
23506 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23507 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23508 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23509 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
23510
23511 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
23512 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
23513 aeabi_set_attribute_int
23514 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23515 ? 2 : 1));
23516
23517 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
23518 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
23519 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
23520
23521 /* Tag_DIV_use. */
23522 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23523 aeabi_set_attribute_int (Tag_DIV_use, 2);
23524 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
23525 aeabi_set_attribute_int (Tag_DIV_use, 0);
23526 else
23527 aeabi_set_attribute_int (Tag_DIV_use, 1);
23528
23529 /* Tag_MP_extension_use. */
23530 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23531 aeabi_set_attribute_int (Tag_MPextension_use, 1);
23532
23533 /* Tag Virtualization_use. */
23534 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
23535 virt_sec |= 1;
23536 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23537 virt_sec |= 2;
23538 if (virt_sec != 0)
23539 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
23540 }
23541
23542 /* Add the default contents for the .ARM.attributes section. */
23543 void
23544 arm_md_end (void)
23545 {
23546 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23547 return;
23548
23549 aeabi_set_public_attributes ();
23550 }
23551 #endif /* OBJ_ELF */
23552
23553
23554 /* Parse a .cpu directive. */
23555
23556 static void
23557 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23558 {
23559 const struct arm_cpu_option_table *opt;
23560 char *name;
23561 char saved_char;
23562
23563 name = input_line_pointer;
23564 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23565 input_line_pointer++;
23566 saved_char = *input_line_pointer;
23567 *input_line_pointer = 0;
23568
23569 /* Skip the first "all" entry. */
23570 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23571 if (streq (opt->name, name))
23572 {
23573 mcpu_cpu_opt = &opt->value;
23574 selected_cpu = opt->value;
23575 if (opt->canonical_name)
23576 strcpy (selected_cpu_name, opt->canonical_name);
23577 else
23578 {
23579 int i;
23580 for (i = 0; opt->name[i]; i++)
23581 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23582 selected_cpu_name[i] = 0;
23583 }
23584 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23585 *input_line_pointer = saved_char;
23586 demand_empty_rest_of_line ();
23587 return;
23588 }
23589 as_bad (_("unknown cpu `%s'"), name);
23590 *input_line_pointer = saved_char;
23591 ignore_rest_of_line ();
23592 }
23593
23594
23595 /* Parse a .arch directive. */
23596
23597 static void
23598 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23599 {
23600 const struct arm_arch_option_table *opt;
23601 char saved_char;
23602 char *name;
23603
23604 name = input_line_pointer;
23605 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23606 input_line_pointer++;
23607 saved_char = *input_line_pointer;
23608 *input_line_pointer = 0;
23609
23610 /* Skip the first "all" entry. */
23611 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23612 if (streq (opt->name, name))
23613 {
23614 mcpu_cpu_opt = &opt->value;
23615 selected_cpu = opt->value;
23616 strcpy (selected_cpu_name, opt->name);
23617 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23618 *input_line_pointer = saved_char;
23619 demand_empty_rest_of_line ();
23620 return;
23621 }
23622
23623 as_bad (_("unknown architecture `%s'\n"), name);
23624 *input_line_pointer = saved_char;
23625 ignore_rest_of_line ();
23626 }
23627
23628
23629 /* Parse a .object_arch directive. */
23630
23631 static void
23632 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23633 {
23634 const struct arm_arch_option_table *opt;
23635 char saved_char;
23636 char *name;
23637
23638 name = input_line_pointer;
23639 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23640 input_line_pointer++;
23641 saved_char = *input_line_pointer;
23642 *input_line_pointer = 0;
23643
23644 /* Skip the first "all" entry. */
23645 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23646 if (streq (opt->name, name))
23647 {
23648 object_arch = &opt->value;
23649 *input_line_pointer = saved_char;
23650 demand_empty_rest_of_line ();
23651 return;
23652 }
23653
23654 as_bad (_("unknown architecture `%s'\n"), name);
23655 *input_line_pointer = saved_char;
23656 ignore_rest_of_line ();
23657 }
23658
23659 /* Parse a .arch_extension directive. */
23660
23661 static void
23662 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23663 {
23664 const struct arm_option_extension_value_table *opt;
23665 char saved_char;
23666 char *name;
23667 int adding_value = 1;
23668
23669 name = input_line_pointer;
23670 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23671 input_line_pointer++;
23672 saved_char = *input_line_pointer;
23673 *input_line_pointer = 0;
23674
23675 if (strlen (name) >= 2
23676 && strncmp (name, "no", 2) == 0)
23677 {
23678 adding_value = 0;
23679 name += 2;
23680 }
23681
23682 for (opt = arm_extensions; opt->name != NULL; opt++)
23683 if (streq (opt->name, name))
23684 {
23685 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23686 {
23687 as_bad (_("architectural extension `%s' is not allowed for the "
23688 "current base architecture"), name);
23689 break;
23690 }
23691
23692 if (adding_value)
23693 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23694 else
23695 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23696
23697 mcpu_cpu_opt = &selected_cpu;
23698 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23699 *input_line_pointer = saved_char;
23700 demand_empty_rest_of_line ();
23701 return;
23702 }
23703
23704 if (opt->name == NULL)
23705 as_bad (_("unknown architecture `%s'\n"), name);
23706
23707 *input_line_pointer = saved_char;
23708 ignore_rest_of_line ();
23709 }
23710
23711 /* Parse a .fpu directive. */
23712
23713 static void
23714 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23715 {
23716 const struct arm_option_fpu_value_table *opt;
23717 char saved_char;
23718 char *name;
23719
23720 name = input_line_pointer;
23721 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23722 input_line_pointer++;
23723 saved_char = *input_line_pointer;
23724 *input_line_pointer = 0;
23725
23726 for (opt = arm_fpus; opt->name != NULL; opt++)
23727 if (streq (opt->name, name))
23728 {
23729 mfpu_opt = &opt->value;
23730 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23731 *input_line_pointer = saved_char;
23732 demand_empty_rest_of_line ();
23733 return;
23734 }
23735
23736 as_bad (_("unknown floating point format `%s'\n"), name);
23737 *input_line_pointer = saved_char;
23738 ignore_rest_of_line ();
23739 }
23740
23741 /* Copy symbol information. */
23742
23743 void
23744 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23745 {
23746 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23747 }
23748
23749 #ifdef OBJ_ELF
23750 /* Given a symbolic attribute NAME, return the proper integer value.
23751 Returns -1 if the attribute is not known. */
23752
23753 int
23754 arm_convert_symbolic_attribute (const char *name)
23755 {
23756 static const struct
23757 {
23758 const char * name;
23759 const int tag;
23760 }
23761 attribute_table[] =
23762 {
23763 /* When you modify this table you should
23764 also modify the list in doc/c-arm.texi. */
23765 #define T(tag) {#tag, tag}
23766 T (Tag_CPU_raw_name),
23767 T (Tag_CPU_name),
23768 T (Tag_CPU_arch),
23769 T (Tag_CPU_arch_profile),
23770 T (Tag_ARM_ISA_use),
23771 T (Tag_THUMB_ISA_use),
23772 T (Tag_FP_arch),
23773 T (Tag_VFP_arch),
23774 T (Tag_WMMX_arch),
23775 T (Tag_Advanced_SIMD_arch),
23776 T (Tag_PCS_config),
23777 T (Tag_ABI_PCS_R9_use),
23778 T (Tag_ABI_PCS_RW_data),
23779 T (Tag_ABI_PCS_RO_data),
23780 T (Tag_ABI_PCS_GOT_use),
23781 T (Tag_ABI_PCS_wchar_t),
23782 T (Tag_ABI_FP_rounding),
23783 T (Tag_ABI_FP_denormal),
23784 T (Tag_ABI_FP_exceptions),
23785 T (Tag_ABI_FP_user_exceptions),
23786 T (Tag_ABI_FP_number_model),
23787 T (Tag_ABI_align_needed),
23788 T (Tag_ABI_align8_needed),
23789 T (Tag_ABI_align_preserved),
23790 T (Tag_ABI_align8_preserved),
23791 T (Tag_ABI_enum_size),
23792 T (Tag_ABI_HardFP_use),
23793 T (Tag_ABI_VFP_args),
23794 T (Tag_ABI_WMMX_args),
23795 T (Tag_ABI_optimization_goals),
23796 T (Tag_ABI_FP_optimization_goals),
23797 T (Tag_compatibility),
23798 T (Tag_CPU_unaligned_access),
23799 T (Tag_FP_HP_extension),
23800 T (Tag_VFP_HP_extension),
23801 T (Tag_ABI_FP_16bit_format),
23802 T (Tag_MPextension_use),
23803 T (Tag_DIV_use),
23804 T (Tag_nodefaults),
23805 T (Tag_also_compatible_with),
23806 T (Tag_conformance),
23807 T (Tag_T2EE_use),
23808 T (Tag_Virtualization_use),
23809 /* We deliberately do not include Tag_MPextension_use_legacy. */
23810 #undef T
23811 };
23812 unsigned int i;
23813
23814 if (name == NULL)
23815 return -1;
23816
23817 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
23818 if (streq (name, attribute_table[i].name))
23819 return attribute_table[i].tag;
23820
23821 return -1;
23822 }
23823
23824
23825 /* Apply sym value for relocations only in the case that
23826 they are for local symbols and you have the respective
23827 architectural feature for blx and simple switches. */
23828 int
23829 arm_apply_sym_value (struct fix * fixP)
23830 {
23831 if (fixP->fx_addsy
23832 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23833 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
23834 {
23835 switch (fixP->fx_r_type)
23836 {
23837 case BFD_RELOC_ARM_PCREL_BLX:
23838 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23839 if (ARM_IS_FUNC (fixP->fx_addsy))
23840 return 1;
23841 break;
23842
23843 case BFD_RELOC_ARM_PCREL_CALL:
23844 case BFD_RELOC_THUMB_PCREL_BLX:
23845 if (THUMB_IS_FUNC (fixP->fx_addsy))
23846 return 1;
23847 break;
23848
23849 default:
23850 break;
23851 }
23852
23853 }
23854 return 0;
23855 }
23856 #endif /* OBJ_ELF */
This page took 1.52944 seconds and 5 git commands to generate.