* config/tc-arm.c (arm_archs): Change "armv6" to "armv6j".
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
5 Modified by David Taylor (dtaylor@armltd.co.uk)
6 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
7
8 This file is part of GAS, the GNU Assembler.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 #include <string.h>
26 #define NO_RELOC 0
27 #include "as.h"
28 #include "safe-ctype.h"
29
30 /* Need TARGET_CPU. */
31 #include "config.h"
32 #include "subsegs.h"
33 #include "obstack.h"
34 #include "symbols.h"
35 #include "listing.h"
36
37 #ifdef OBJ_ELF
38 #include "elf/arm.h"
39 #include "dwarf2dbg.h"
40 #endif
41
42 /* XXX Set this to 1 after the next binutils release */
43 #define WARN_DEPRECATED 0
44
45 /* The following bitmasks control CPU extensions: */
46 #define ARM_EXT_V1 0x00000001 /* All processors (core set). */
47 #define ARM_EXT_V2 0x00000002 /* Multiply instructions. */
48 #define ARM_EXT_V2S 0x00000004 /* SWP instructions. */
49 #define ARM_EXT_V3 0x00000008 /* MSR MRS. */
50 #define ARM_EXT_V3M 0x00000010 /* Allow long multiplies. */
51 #define ARM_EXT_V4 0x00000020 /* Allow half word loads. */
52 #define ARM_EXT_V4T 0x00000040 /* Thumb v1. */
53 #define ARM_EXT_V5 0x00000080 /* Allow CLZ, etc. */
54 #define ARM_EXT_V5T 0x00000100 /* Thumb v2. */
55 #define ARM_EXT_V5ExP 0x00000200 /* DSP core set. */
56 #define ARM_EXT_V5E 0x00000400 /* DSP Double transfers. */
57 #define ARM_EXT_V5J 0x00000800 /* Jazelle extension. */
58 #define ARM_EXT_V6 0x00001000 /* ARM V6. */
59
60 /* Co-processor space extensions. */
61 #define ARM_CEXT_XSCALE 0x00800000 /* Allow MIA etc. */
62 #define ARM_CEXT_MAVERICK 0x00400000 /* Use Cirrus/DSP coprocessor. */
63 #define ARM_CEXT_IWMMXT 0x00200000 /* Intel Wireless MMX technology coprocessor. */
64
65 /* Architectures are the sum of the base and extensions. The ARM ARM (rev E)
66 defines the following: ARMv3, ARMv3M, ARMv4xM, ARMv4, ARMv4TxM, ARMv4T,
67 ARMv5xM, ARMv5, ARMv5TxM, ARMv5T, ARMv5TExP, ARMv5TE. To these we add
68 three more to cover cores prior to ARM6. Finally, there are cores which
69 implement further extensions in the co-processor space. */
70 #define ARM_ARCH_V1 ARM_EXT_V1
71 #define ARM_ARCH_V2 (ARM_ARCH_V1 | ARM_EXT_V2)
72 #define ARM_ARCH_V2S (ARM_ARCH_V2 | ARM_EXT_V2S)
73 #define ARM_ARCH_V3 (ARM_ARCH_V2S | ARM_EXT_V3)
74 #define ARM_ARCH_V3M (ARM_ARCH_V3 | ARM_EXT_V3M)
75 #define ARM_ARCH_V4xM (ARM_ARCH_V3 | ARM_EXT_V4)
76 #define ARM_ARCH_V4 (ARM_ARCH_V3M | ARM_EXT_V4)
77 #define ARM_ARCH_V4TxM (ARM_ARCH_V4xM | ARM_EXT_V4T)
78 #define ARM_ARCH_V4T (ARM_ARCH_V4 | ARM_EXT_V4T)
79 #define ARM_ARCH_V5xM (ARM_ARCH_V4xM | ARM_EXT_V5)
80 #define ARM_ARCH_V5 (ARM_ARCH_V4 | ARM_EXT_V5)
81 #define ARM_ARCH_V5TxM (ARM_ARCH_V5xM | ARM_EXT_V4T | ARM_EXT_V5T)
82 #define ARM_ARCH_V5T (ARM_ARCH_V5 | ARM_EXT_V4T | ARM_EXT_V5T)
83 #define ARM_ARCH_V5TExP (ARM_ARCH_V5T | ARM_EXT_V5ExP)
84 #define ARM_ARCH_V5TE (ARM_ARCH_V5TExP | ARM_EXT_V5E)
85 #define ARM_ARCH_V5TEJ (ARM_ARCH_V5TE | ARM_EXT_V5J)
86 #define ARM_ARCH_V6 (ARM_ARCH_V5TEJ | ARM_EXT_V6)
87
88 /* Processors with specific extensions in the co-processor space. */
89 #define ARM_ARCH_XSCALE (ARM_ARCH_V5TE | ARM_CEXT_XSCALE)
90 #define ARM_ARCH_IWMMXT (ARM_ARCH_XSCALE | ARM_CEXT_IWMMXT)
91
92 /* Some useful combinations: */
93 #define ARM_ANY 0x0000ffff /* Any basic core. */
94 #define ARM_ALL 0x00ffffff /* Any core + co-processor */
95 #define CPROC_ANY 0x00ff0000 /* Any co-processor */
96 #define FPU_ANY 0xff000000 /* Note this is ~ARM_ALL. */
97
98
99 #define FPU_FPA_EXT_V1 0x80000000 /* Base FPA instruction set. */
100 #define FPU_FPA_EXT_V2 0x40000000 /* LFM/SFM. */
101 #define FPU_VFP_EXT_NONE 0x20000000 /* Use VFP word-ordering. */
102 #define FPU_VFP_EXT_V1xD 0x10000000 /* Base VFP instruction set. */
103 #define FPU_VFP_EXT_V1 0x08000000 /* Double-precision insns. */
104 #define FPU_VFP_EXT_V2 0x04000000 /* ARM10E VFPr1. */
105 #define FPU_MAVERICK 0x02000000 /* Cirrus Maverick. */
106 #define FPU_NONE 0
107
108 #define FPU_ARCH_FPE FPU_FPA_EXT_V1
109 #define FPU_ARCH_FPA (FPU_ARCH_FPE | FPU_FPA_EXT_V2)
110
111 #define FPU_ARCH_VFP FPU_VFP_EXT_NONE
112 #define FPU_ARCH_VFP_V1xD (FPU_VFP_EXT_V1xD | FPU_VFP_EXT_NONE)
113 #define FPU_ARCH_VFP_V1 (FPU_ARCH_VFP_V1xD | FPU_VFP_EXT_V1)
114 #define FPU_ARCH_VFP_V2 (FPU_ARCH_VFP_V1 | FPU_VFP_EXT_V2)
115
116 #define FPU_ARCH_MAVERICK FPU_MAVERICK
117
118 enum arm_float_abi
119 {
120 ARM_FLOAT_ABI_HARD,
121 ARM_FLOAT_ABI_SOFTFP,
122 ARM_FLOAT_ABI_SOFT
123 };
124
125 /* Types of processor to assemble for. */
126 #define ARM_1 ARM_ARCH_V1
127 #define ARM_2 ARM_ARCH_V2
128 #define ARM_3 ARM_ARCH_V2S
129 #define ARM_250 ARM_ARCH_V2S
130 #define ARM_6 ARM_ARCH_V3
131 #define ARM_7 ARM_ARCH_V3
132 #define ARM_8 ARM_ARCH_V4
133 #define ARM_9 ARM_ARCH_V4T
134 #define ARM_STRONG ARM_ARCH_V4
135 #define ARM_CPU_MASK 0x0000000f /* XXX? */
136
137 #ifndef CPU_DEFAULT
138 #if defined __XSCALE__
139 #define CPU_DEFAULT (ARM_ARCH_XSCALE)
140 #else
141 #if defined __thumb__
142 #define CPU_DEFAULT (ARM_ARCH_V5T)
143 #else
144 #define CPU_DEFAULT ARM_ANY
145 #endif
146 #endif
147 #endif
148
149 #ifdef TE_LINUX
150 #define FPU_DEFAULT FPU_ARCH_FPA
151 #endif
152
153 #ifdef TE_NetBSD
154 #ifdef OBJ_ELF
155 #define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
156 #else
157 /* Legacy a.out format. */
158 #define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
159 #endif
160 #endif
161
162 /* For backwards compatibility we default to the FPA. */
163 #ifndef FPU_DEFAULT
164 #define FPU_DEFAULT FPU_ARCH_FPA
165 #endif
166
167 #define streq(a, b) (strcmp (a, b) == 0)
168 #define skip_whitespace(str) while (*(str) == ' ') ++(str)
169
170 static unsigned long cpu_variant;
171 static int target_oabi = 0;
172
173 /* Flags stored in private area of BFD structure. */
174 static int uses_apcs_26 = FALSE;
175 static int atpcs = FALSE;
176 static int support_interwork = FALSE;
177 static int uses_apcs_float = FALSE;
178 static int pic_code = FALSE;
179
180 /* Variables that we set while parsing command-line options. Once all
181 options have been read we re-process these values to set the real
182 assembly flags. */
183 static int legacy_cpu = -1;
184 static int legacy_fpu = -1;
185
186 static int mcpu_cpu_opt = -1;
187 static int mcpu_fpu_opt = -1;
188 static int march_cpu_opt = -1;
189 static int march_fpu_opt = -1;
190 static int mfpu_opt = -1;
191 static int mfloat_abi_opt = -1;
192
193 /* This array holds the chars that always start a comment. If the
194 pre-processor is disabled, these aren't very useful. */
195 const char comment_chars[] = "@";
196
197 /* This array holds the chars that only start a comment at the beginning of
198 a line. If the line seems to have the form '# 123 filename'
199 .line and .file directives will appear in the pre-processed output. */
200 /* Note that input_file.c hand checks for '#' at the beginning of the
201 first line of the input file. This is because the compiler outputs
202 #NO_APP at the beginning of its output. */
203 /* Also note that comments like this one will always work. */
204 const char line_comment_chars[] = "#";
205
206 const char line_separator_chars[] = ";";
207
208 /* Chars that can be used to separate mant
209 from exp in floating point numbers. */
210 const char EXP_CHARS[] = "eE";
211
212 /* Chars that mean this number is a floating point constant. */
213 /* As in 0f12.456 */
214 /* or 0d1.2345e12 */
215
216 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
217
218 /* Prefix characters that indicate the start of an immediate
219 value. */
220 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
221
222 #ifdef OBJ_ELF
223 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
224 symbolS * GOT_symbol;
225 #endif
226
227 /* Size of relocation record. */
228 const int md_reloc_size = 8;
229
230 /* 0: assemble for ARM,
231 1: assemble for Thumb,
232 2: assemble for Thumb even though target CPU does not support thumb
233 instructions. */
234 static int thumb_mode = 0;
235
236 typedef struct arm_fix
237 {
238 int thumb_mode;
239 } arm_fix_data;
240
241 struct arm_it
242 {
243 const char * error;
244 unsigned long instruction;
245 int size;
246 struct
247 {
248 bfd_reloc_code_real_type type;
249 expressionS exp;
250 int pc_rel;
251 } reloc;
252 };
253
254 struct arm_it inst;
255
256 enum asm_shift_index
257 {
258 SHIFT_LSL = 0,
259 SHIFT_LSR,
260 SHIFT_ASR,
261 SHIFT_ROR,
262 SHIFT_RRX
263 };
264
265 struct asm_shift_properties
266 {
267 enum asm_shift_index index;
268 unsigned long bit_field;
269 unsigned int allows_0 : 1;
270 unsigned int allows_32 : 1;
271 };
272
273 static const struct asm_shift_properties shift_properties [] =
274 {
275 { SHIFT_LSL, 0, 1, 0},
276 { SHIFT_LSR, 0x20, 0, 1},
277 { SHIFT_ASR, 0x40, 0, 1},
278 { SHIFT_ROR, 0x60, 0, 0},
279 { SHIFT_RRX, 0x60, 0, 0}
280 };
281
282 struct asm_shift_name
283 {
284 const char * name;
285 const struct asm_shift_properties * properties;
286 };
287
288 static const struct asm_shift_name shift_names [] =
289 {
290 { "asl", shift_properties + SHIFT_LSL },
291 { "lsl", shift_properties + SHIFT_LSL },
292 { "lsr", shift_properties + SHIFT_LSR },
293 { "asr", shift_properties + SHIFT_ASR },
294 { "ror", shift_properties + SHIFT_ROR },
295 { "rrx", shift_properties + SHIFT_RRX },
296 { "ASL", shift_properties + SHIFT_LSL },
297 { "LSL", shift_properties + SHIFT_LSL },
298 { "LSR", shift_properties + SHIFT_LSR },
299 { "ASR", shift_properties + SHIFT_ASR },
300 { "ROR", shift_properties + SHIFT_ROR },
301 { "RRX", shift_properties + SHIFT_RRX }
302 };
303
304 /* Any kind of shift is accepted. */
305 #define NO_SHIFT_RESTRICT 1
306 /* The shift operand must be an immediate value, not a register. */
307 #define SHIFT_IMMEDIATE 0
308 /* The shift must be LSL or ASR and the operand must be an immediate. */
309 #define SHIFT_LSL_OR_ASR_IMMEDIATE 2
310 /* The shift must be ASR and the operand must be an immediate. */
311 #define SHIFT_ASR_IMMEDIATE 3
312 /* The shift must be LSL and the operand must be an immediate. */
313 #define SHIFT_LSL_IMMEDIATE 4
314
315 #define NUM_FLOAT_VALS 8
316
317 const char * fp_const[] =
318 {
319 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
320 };
321
322 /* Number of littlenums required to hold an extended precision number. */
323 #define MAX_LITTLENUMS 6
324
325 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
326
327 #define FAIL (-1)
328 #define SUCCESS (0)
329
330 /* Whether a Co-processor load/store operation accepts write-back forms. */
331 #define CP_WB_OK 1
332 #define CP_NO_WB 0
333
334 #define SUFF_S 1
335 #define SUFF_D 2
336 #define SUFF_E 3
337 #define SUFF_P 4
338
339 #define CP_T_X 0x00008000
340 #define CP_T_Y 0x00400000
341 #define CP_T_Pre 0x01000000
342 #define CP_T_UD 0x00800000
343 #define CP_T_WB 0x00200000
344
345 #define CONDS_BIT 0x00100000
346 #define LOAD_BIT 0x00100000
347
348 #define DOUBLE_LOAD_FLAG 0x00000001
349
350 struct asm_cond
351 {
352 const char * template;
353 unsigned long value;
354 };
355
356 #define COND_ALWAYS 0xe0000000
357 #define COND_MASK 0xf0000000
358
359 static const struct asm_cond conds[] =
360 {
361 {"eq", 0x00000000},
362 {"ne", 0x10000000},
363 {"cs", 0x20000000}, {"hs", 0x20000000},
364 {"cc", 0x30000000}, {"ul", 0x30000000}, {"lo", 0x30000000},
365 {"mi", 0x40000000},
366 {"pl", 0x50000000},
367 {"vs", 0x60000000},
368 {"vc", 0x70000000},
369 {"hi", 0x80000000},
370 {"ls", 0x90000000},
371 {"ge", 0xa0000000},
372 {"lt", 0xb0000000},
373 {"gt", 0xc0000000},
374 {"le", 0xd0000000},
375 {"al", 0xe0000000},
376 {"nv", 0xf0000000}
377 };
378
379 struct asm_psr
380 {
381 const char *template;
382 bfd_boolean cpsr;
383 unsigned long field;
384 };
385
386 /* The bit that distinguishes CPSR and SPSR. */
387 #define SPSR_BIT (1 << 22)
388
389 /* How many bits to shift the PSR_xxx bits up by. */
390 #define PSR_SHIFT 16
391
392 #define PSR_c (1 << 0)
393 #define PSR_x (1 << 1)
394 #define PSR_s (1 << 2)
395 #define PSR_f (1 << 3)
396
397 static const struct asm_psr psrs[] =
398 {
399 {"CPSR", TRUE, PSR_c | PSR_f},
400 {"CPSR_all", TRUE, PSR_c | PSR_f},
401 {"SPSR", FALSE, PSR_c | PSR_f},
402 {"SPSR_all", FALSE, PSR_c | PSR_f},
403 {"CPSR_flg", TRUE, PSR_f},
404 {"CPSR_f", TRUE, PSR_f},
405 {"SPSR_flg", FALSE, PSR_f},
406 {"SPSR_f", FALSE, PSR_f},
407 {"CPSR_c", TRUE, PSR_c},
408 {"CPSR_ctl", TRUE, PSR_c},
409 {"SPSR_c", FALSE, PSR_c},
410 {"SPSR_ctl", FALSE, PSR_c},
411 {"CPSR_x", TRUE, PSR_x},
412 {"CPSR_s", TRUE, PSR_s},
413 {"SPSR_x", FALSE, PSR_x},
414 {"SPSR_s", FALSE, PSR_s},
415 /* Combinations of flags. */
416 {"CPSR_fs", TRUE, PSR_f | PSR_s},
417 {"CPSR_fx", TRUE, PSR_f | PSR_x},
418 {"CPSR_fc", TRUE, PSR_f | PSR_c},
419 {"CPSR_sf", TRUE, PSR_s | PSR_f},
420 {"CPSR_sx", TRUE, PSR_s | PSR_x},
421 {"CPSR_sc", TRUE, PSR_s | PSR_c},
422 {"CPSR_xf", TRUE, PSR_x | PSR_f},
423 {"CPSR_xs", TRUE, PSR_x | PSR_s},
424 {"CPSR_xc", TRUE, PSR_x | PSR_c},
425 {"CPSR_cf", TRUE, PSR_c | PSR_f},
426 {"CPSR_cs", TRUE, PSR_c | PSR_s},
427 {"CPSR_cx", TRUE, PSR_c | PSR_x},
428 {"CPSR_fsx", TRUE, PSR_f | PSR_s | PSR_x},
429 {"CPSR_fsc", TRUE, PSR_f | PSR_s | PSR_c},
430 {"CPSR_fxs", TRUE, PSR_f | PSR_x | PSR_s},
431 {"CPSR_fxc", TRUE, PSR_f | PSR_x | PSR_c},
432 {"CPSR_fcs", TRUE, PSR_f | PSR_c | PSR_s},
433 {"CPSR_fcx", TRUE, PSR_f | PSR_c | PSR_x},
434 {"CPSR_sfx", TRUE, PSR_s | PSR_f | PSR_x},
435 {"CPSR_sfc", TRUE, PSR_s | PSR_f | PSR_c},
436 {"CPSR_sxf", TRUE, PSR_s | PSR_x | PSR_f},
437 {"CPSR_sxc", TRUE, PSR_s | PSR_x | PSR_c},
438 {"CPSR_scf", TRUE, PSR_s | PSR_c | PSR_f},
439 {"CPSR_scx", TRUE, PSR_s | PSR_c | PSR_x},
440 {"CPSR_xfs", TRUE, PSR_x | PSR_f | PSR_s},
441 {"CPSR_xfc", TRUE, PSR_x | PSR_f | PSR_c},
442 {"CPSR_xsf", TRUE, PSR_x | PSR_s | PSR_f},
443 {"CPSR_xsc", TRUE, PSR_x | PSR_s | PSR_c},
444 {"CPSR_xcf", TRUE, PSR_x | PSR_c | PSR_f},
445 {"CPSR_xcs", TRUE, PSR_x | PSR_c | PSR_s},
446 {"CPSR_cfs", TRUE, PSR_c | PSR_f | PSR_s},
447 {"CPSR_cfx", TRUE, PSR_c | PSR_f | PSR_x},
448 {"CPSR_csf", TRUE, PSR_c | PSR_s | PSR_f},
449 {"CPSR_csx", TRUE, PSR_c | PSR_s | PSR_x},
450 {"CPSR_cxf", TRUE, PSR_c | PSR_x | PSR_f},
451 {"CPSR_cxs", TRUE, PSR_c | PSR_x | PSR_s},
452 {"CPSR_fsxc", TRUE, PSR_f | PSR_s | PSR_x | PSR_c},
453 {"CPSR_fscx", TRUE, PSR_f | PSR_s | PSR_c | PSR_x},
454 {"CPSR_fxsc", TRUE, PSR_f | PSR_x | PSR_s | PSR_c},
455 {"CPSR_fxcs", TRUE, PSR_f | PSR_x | PSR_c | PSR_s},
456 {"CPSR_fcsx", TRUE, PSR_f | PSR_c | PSR_s | PSR_x},
457 {"CPSR_fcxs", TRUE, PSR_f | PSR_c | PSR_x | PSR_s},
458 {"CPSR_sfxc", TRUE, PSR_s | PSR_f | PSR_x | PSR_c},
459 {"CPSR_sfcx", TRUE, PSR_s | PSR_f | PSR_c | PSR_x},
460 {"CPSR_sxfc", TRUE, PSR_s | PSR_x | PSR_f | PSR_c},
461 {"CPSR_sxcf", TRUE, PSR_s | PSR_x | PSR_c | PSR_f},
462 {"CPSR_scfx", TRUE, PSR_s | PSR_c | PSR_f | PSR_x},
463 {"CPSR_scxf", TRUE, PSR_s | PSR_c | PSR_x | PSR_f},
464 {"CPSR_xfsc", TRUE, PSR_x | PSR_f | PSR_s | PSR_c},
465 {"CPSR_xfcs", TRUE, PSR_x | PSR_f | PSR_c | PSR_s},
466 {"CPSR_xsfc", TRUE, PSR_x | PSR_s | PSR_f | PSR_c},
467 {"CPSR_xscf", TRUE, PSR_x | PSR_s | PSR_c | PSR_f},
468 {"CPSR_xcfs", TRUE, PSR_x | PSR_c | PSR_f | PSR_s},
469 {"CPSR_xcsf", TRUE, PSR_x | PSR_c | PSR_s | PSR_f},
470 {"CPSR_cfsx", TRUE, PSR_c | PSR_f | PSR_s | PSR_x},
471 {"CPSR_cfxs", TRUE, PSR_c | PSR_f | PSR_x | PSR_s},
472 {"CPSR_csfx", TRUE, PSR_c | PSR_s | PSR_f | PSR_x},
473 {"CPSR_csxf", TRUE, PSR_c | PSR_s | PSR_x | PSR_f},
474 {"CPSR_cxfs", TRUE, PSR_c | PSR_x | PSR_f | PSR_s},
475 {"CPSR_cxsf", TRUE, PSR_c | PSR_x | PSR_s | PSR_f},
476 {"SPSR_fs", FALSE, PSR_f | PSR_s},
477 {"SPSR_fx", FALSE, PSR_f | PSR_x},
478 {"SPSR_fc", FALSE, PSR_f | PSR_c},
479 {"SPSR_sf", FALSE, PSR_s | PSR_f},
480 {"SPSR_sx", FALSE, PSR_s | PSR_x},
481 {"SPSR_sc", FALSE, PSR_s | PSR_c},
482 {"SPSR_xf", FALSE, PSR_x | PSR_f},
483 {"SPSR_xs", FALSE, PSR_x | PSR_s},
484 {"SPSR_xc", FALSE, PSR_x | PSR_c},
485 {"SPSR_cf", FALSE, PSR_c | PSR_f},
486 {"SPSR_cs", FALSE, PSR_c | PSR_s},
487 {"SPSR_cx", FALSE, PSR_c | PSR_x},
488 {"SPSR_fsx", FALSE, PSR_f | PSR_s | PSR_x},
489 {"SPSR_fsc", FALSE, PSR_f | PSR_s | PSR_c},
490 {"SPSR_fxs", FALSE, PSR_f | PSR_x | PSR_s},
491 {"SPSR_fxc", FALSE, PSR_f | PSR_x | PSR_c},
492 {"SPSR_fcs", FALSE, PSR_f | PSR_c | PSR_s},
493 {"SPSR_fcx", FALSE, PSR_f | PSR_c | PSR_x},
494 {"SPSR_sfx", FALSE, PSR_s | PSR_f | PSR_x},
495 {"SPSR_sfc", FALSE, PSR_s | PSR_f | PSR_c},
496 {"SPSR_sxf", FALSE, PSR_s | PSR_x | PSR_f},
497 {"SPSR_sxc", FALSE, PSR_s | PSR_x | PSR_c},
498 {"SPSR_scf", FALSE, PSR_s | PSR_c | PSR_f},
499 {"SPSR_scx", FALSE, PSR_s | PSR_c | PSR_x},
500 {"SPSR_xfs", FALSE, PSR_x | PSR_f | PSR_s},
501 {"SPSR_xfc", FALSE, PSR_x | PSR_f | PSR_c},
502 {"SPSR_xsf", FALSE, PSR_x | PSR_s | PSR_f},
503 {"SPSR_xsc", FALSE, PSR_x | PSR_s | PSR_c},
504 {"SPSR_xcf", FALSE, PSR_x | PSR_c | PSR_f},
505 {"SPSR_xcs", FALSE, PSR_x | PSR_c | PSR_s},
506 {"SPSR_cfs", FALSE, PSR_c | PSR_f | PSR_s},
507 {"SPSR_cfx", FALSE, PSR_c | PSR_f | PSR_x},
508 {"SPSR_csf", FALSE, PSR_c | PSR_s | PSR_f},
509 {"SPSR_csx", FALSE, PSR_c | PSR_s | PSR_x},
510 {"SPSR_cxf", FALSE, PSR_c | PSR_x | PSR_f},
511 {"SPSR_cxs", FALSE, PSR_c | PSR_x | PSR_s},
512 {"SPSR_fsxc", FALSE, PSR_f | PSR_s | PSR_x | PSR_c},
513 {"SPSR_fscx", FALSE, PSR_f | PSR_s | PSR_c | PSR_x},
514 {"SPSR_fxsc", FALSE, PSR_f | PSR_x | PSR_s | PSR_c},
515 {"SPSR_fxcs", FALSE, PSR_f | PSR_x | PSR_c | PSR_s},
516 {"SPSR_fcsx", FALSE, PSR_f | PSR_c | PSR_s | PSR_x},
517 {"SPSR_fcxs", FALSE, PSR_f | PSR_c | PSR_x | PSR_s},
518 {"SPSR_sfxc", FALSE, PSR_s | PSR_f | PSR_x | PSR_c},
519 {"SPSR_sfcx", FALSE, PSR_s | PSR_f | PSR_c | PSR_x},
520 {"SPSR_sxfc", FALSE, PSR_s | PSR_x | PSR_f | PSR_c},
521 {"SPSR_sxcf", FALSE, PSR_s | PSR_x | PSR_c | PSR_f},
522 {"SPSR_scfx", FALSE, PSR_s | PSR_c | PSR_f | PSR_x},
523 {"SPSR_scxf", FALSE, PSR_s | PSR_c | PSR_x | PSR_f},
524 {"SPSR_xfsc", FALSE, PSR_x | PSR_f | PSR_s | PSR_c},
525 {"SPSR_xfcs", FALSE, PSR_x | PSR_f | PSR_c | PSR_s},
526 {"SPSR_xsfc", FALSE, PSR_x | PSR_s | PSR_f | PSR_c},
527 {"SPSR_xscf", FALSE, PSR_x | PSR_s | PSR_c | PSR_f},
528 {"SPSR_xcfs", FALSE, PSR_x | PSR_c | PSR_f | PSR_s},
529 {"SPSR_xcsf", FALSE, PSR_x | PSR_c | PSR_s | PSR_f},
530 {"SPSR_cfsx", FALSE, PSR_c | PSR_f | PSR_s | PSR_x},
531 {"SPSR_cfxs", FALSE, PSR_c | PSR_f | PSR_x | PSR_s},
532 {"SPSR_csfx", FALSE, PSR_c | PSR_s | PSR_f | PSR_x},
533 {"SPSR_csxf", FALSE, PSR_c | PSR_s | PSR_x | PSR_f},
534 {"SPSR_cxfs", FALSE, PSR_c | PSR_x | PSR_f | PSR_s},
535 {"SPSR_cxsf", FALSE, PSR_c | PSR_x | PSR_s | PSR_f},
536 };
537
538 enum wreg_type
539 {
540 IWMMXT_REG_WR = 0,
541 IWMMXT_REG_WC = 1,
542 IWMMXT_REG_WR_OR_WC = 2,
543 IWMMXT_REG_WCG
544 };
545
546 enum iwmmxt_insn_type
547 {
548 check_rd,
549 check_wr,
550 check_wrwr,
551 check_wrwrwr,
552 check_wrwrwcg,
553 check_tbcst,
554 check_tmovmsk,
555 check_tmia,
556 check_tmcrr,
557 check_tmrrc,
558 check_tmcr,
559 check_tmrc,
560 check_tinsr,
561 check_textrc,
562 check_waligni,
563 check_textrm,
564 check_wshufh
565 };
566
567 enum vfp_dp_reg_pos
568 {
569 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
570 };
571
572 enum vfp_sp_reg_pos
573 {
574 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn
575 };
576
577 enum vfp_ldstm_type
578 {
579 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
580 };
581
582 /* VFP system registers. */
583 struct vfp_reg
584 {
585 const char *name;
586 unsigned long regno;
587 };
588
589 static const struct vfp_reg vfp_regs[] =
590 {
591 {"fpsid", 0x00000000},
592 {"FPSID", 0x00000000},
593 {"fpscr", 0x00010000},
594 {"FPSCR", 0x00010000},
595 {"fpexc", 0x00080000},
596 {"FPEXC", 0x00080000}
597 };
598
599 /* Structure for a hash table entry for a register. */
600 struct reg_entry
601 {
602 const char * name;
603 int number;
604 bfd_boolean builtin;
605 };
606
607 /* Some well known registers that we refer to directly elsewhere. */
608 #define REG_SP 13
609 #define REG_LR 14
610 #define REG_PC 15
611
612 #define wr_register(reg) ((reg ^ WR_PREFIX) >= 0 && (reg ^ WR_PREFIX) <= 15)
613 #define wc_register(reg) ((reg ^ WC_PREFIX) >= 0 && (reg ^ WC_PREFIX) <= 15)
614 #define wcg_register(reg) ((reg ^ WC_PREFIX) >= 8 && (reg ^ WC_PREFIX) <= 11)
615
616 /* These are the standard names. Users can add aliases with .req.
617 and delete them with .unreq. */
618
619 /* Integer Register Numbers. */
620 static const struct reg_entry rn_table[] =
621 {
622 {"r0", 0, TRUE}, {"r1", 1, TRUE}, {"r2", 2, TRUE}, {"r3", 3, TRUE},
623 {"r4", 4, TRUE}, {"r5", 5, TRUE}, {"r6", 6, TRUE}, {"r7", 7, TRUE},
624 {"r8", 8, TRUE}, {"r9", 9, TRUE}, {"r10", 10, TRUE}, {"r11", 11, TRUE},
625 {"r12", 12, TRUE}, {"r13", REG_SP, TRUE}, {"r14", REG_LR, TRUE}, {"r15", REG_PC, TRUE},
626 /* ATPCS Synonyms. */
627 {"a1", 0, TRUE}, {"a2", 1, TRUE}, {"a3", 2, TRUE}, {"a4", 3, TRUE},
628 {"v1", 4, TRUE}, {"v2", 5, TRUE}, {"v3", 6, TRUE}, {"v4", 7, TRUE},
629 {"v5", 8, TRUE}, {"v6", 9, TRUE}, {"v7", 10, TRUE}, {"v8", 11, TRUE},
630 /* Well-known aliases. */
631 {"wr", 7, TRUE}, {"sb", 9, TRUE}, {"sl", 10, TRUE}, {"fp", 11, TRUE},
632 {"ip", 12, TRUE}, {"sp", REG_SP, TRUE}, {"lr", REG_LR, TRUE}, {"pc", REG_PC, TRUE},
633 {NULL, 0, TRUE}
634 };
635
636 #define WR_PREFIX 0x200
637 #define WC_PREFIX 0x400
638
639 static const struct reg_entry iwmmxt_table[] =
640 {
641 /* Intel Wireless MMX technology register names. */
642 { "wr0", 0x0 | WR_PREFIX, TRUE}, {"wr1", 0x1 | WR_PREFIX, TRUE},
643 { "wr2", 0x2 | WR_PREFIX, TRUE}, {"wr3", 0x3 | WR_PREFIX, TRUE},
644 { "wr4", 0x4 | WR_PREFIX, TRUE}, {"wr5", 0x5 | WR_PREFIX, TRUE},
645 { "wr6", 0x6 | WR_PREFIX, TRUE}, {"wr7", 0x7 | WR_PREFIX, TRUE},
646 { "wr8", 0x8 | WR_PREFIX, TRUE}, {"wr9", 0x9 | WR_PREFIX, TRUE},
647 { "wr10", 0xa | WR_PREFIX, TRUE}, {"wr11", 0xb | WR_PREFIX, TRUE},
648 { "wr12", 0xc | WR_PREFIX, TRUE}, {"wr13", 0xd | WR_PREFIX, TRUE},
649 { "wr14", 0xe | WR_PREFIX, TRUE}, {"wr15", 0xf | WR_PREFIX, TRUE},
650 { "wcid", 0x0 | WC_PREFIX, TRUE}, {"wcon", 0x1 | WC_PREFIX, TRUE},
651 {"wcssf", 0x2 | WC_PREFIX, TRUE}, {"wcasf", 0x3 | WC_PREFIX, TRUE},
652 {"wcgr0", 0x8 | WC_PREFIX, TRUE}, {"wcgr1", 0x9 | WC_PREFIX, TRUE},
653 {"wcgr2", 0xa | WC_PREFIX, TRUE}, {"wcgr3", 0xb | WC_PREFIX, TRUE},
654
655 { "wR0", 0x0 | WR_PREFIX, TRUE}, {"wR1", 0x1 | WR_PREFIX, TRUE},
656 { "wR2", 0x2 | WR_PREFIX, TRUE}, {"wR3", 0x3 | WR_PREFIX, TRUE},
657 { "wR4", 0x4 | WR_PREFIX, TRUE}, {"wR5", 0x5 | WR_PREFIX, TRUE},
658 { "wR6", 0x6 | WR_PREFIX, TRUE}, {"wR7", 0x7 | WR_PREFIX, TRUE},
659 { "wR8", 0x8 | WR_PREFIX, TRUE}, {"wR9", 0x9 | WR_PREFIX, TRUE},
660 { "wR10", 0xa | WR_PREFIX, TRUE}, {"wR11", 0xb | WR_PREFIX, TRUE},
661 { "wR12", 0xc | WR_PREFIX, TRUE}, {"wR13", 0xd | WR_PREFIX, TRUE},
662 { "wR14", 0xe | WR_PREFIX, TRUE}, {"wR15", 0xf | WR_PREFIX, TRUE},
663 { "wCID", 0x0 | WC_PREFIX, TRUE}, {"wCon", 0x1 | WC_PREFIX, TRUE},
664 {"wCSSF", 0x2 | WC_PREFIX, TRUE}, {"wCASF", 0x3 | WC_PREFIX, TRUE},
665 {"wCGR0", 0x8 | WC_PREFIX, TRUE}, {"wCGR1", 0x9 | WC_PREFIX, TRUE},
666 {"wCGR2", 0xa | WC_PREFIX, TRUE}, {"wCGR3", 0xb | WC_PREFIX, TRUE},
667 {NULL, 0, TRUE}
668 };
669
670 /* Co-processor Numbers. */
671 static const struct reg_entry cp_table[] =
672 {
673 {"p0", 0, TRUE}, {"p1", 1, TRUE}, {"p2", 2, TRUE}, {"p3", 3, TRUE},
674 {"p4", 4, TRUE}, {"p5", 5, TRUE}, {"p6", 6, TRUE}, {"p7", 7, TRUE},
675 {"p8", 8, TRUE}, {"p9", 9, TRUE}, {"p10", 10, TRUE}, {"p11", 11, TRUE},
676 {"p12", 12, TRUE}, {"p13", 13, TRUE}, {"p14", 14, TRUE}, {"p15", 15, TRUE},
677 {NULL, 0, TRUE}
678 };
679
680 /* Co-processor Register Numbers. */
681 static const struct reg_entry cn_table[] =
682 {
683 {"c0", 0, TRUE}, {"c1", 1, TRUE}, {"c2", 2, TRUE}, {"c3", 3, TRUE},
684 {"c4", 4, TRUE}, {"c5", 5, TRUE}, {"c6", 6, TRUE}, {"c7", 7, TRUE},
685 {"c8", 8, TRUE}, {"c9", 9, TRUE}, {"c10", 10, TRUE}, {"c11", 11, TRUE},
686 {"c12", 12, TRUE}, {"c13", 13, TRUE}, {"c14", 14, TRUE}, {"c15", 15, TRUE},
687 /* Not really valid, but kept for back-wards compatibility. */
688 {"cr0", 0, TRUE}, {"cr1", 1, TRUE}, {"cr2", 2, TRUE}, {"cr3", 3, TRUE},
689 {"cr4", 4, TRUE}, {"cr5", 5, TRUE}, {"cr6", 6, TRUE}, {"cr7", 7, TRUE},
690 {"cr8", 8, TRUE}, {"cr9", 9, TRUE}, {"cr10", 10, TRUE}, {"cr11", 11, TRUE},
691 {"cr12", 12, TRUE}, {"cr13", 13, TRUE}, {"cr14", 14, TRUE}, {"cr15", 15, TRUE},
692 {NULL, 0, TRUE}
693 };
694
695 /* FPA Registers. */
696 static const struct reg_entry fn_table[] =
697 {
698 {"f0", 0, TRUE}, {"f1", 1, TRUE}, {"f2", 2, TRUE}, {"f3", 3, TRUE},
699 {"f4", 4, TRUE}, {"f5", 5, TRUE}, {"f6", 6, TRUE}, {"f7", 7, TRUE},
700 {NULL, 0, TRUE}
701 };
702
703 /* VFP SP Registers. */
704 static const struct reg_entry sn_table[] =
705 {
706 {"s0", 0, TRUE}, {"s1", 1, TRUE}, {"s2", 2, TRUE}, {"s3", 3, TRUE},
707 {"s4", 4, TRUE}, {"s5", 5, TRUE}, {"s6", 6, TRUE}, {"s7", 7, TRUE},
708 {"s8", 8, TRUE}, {"s9", 9, TRUE}, {"s10", 10, TRUE}, {"s11", 11, TRUE},
709 {"s12", 12, TRUE}, {"s13", 13, TRUE}, {"s14", 14, TRUE}, {"s15", 15, TRUE},
710 {"s16", 16, TRUE}, {"s17", 17, TRUE}, {"s18", 18, TRUE}, {"s19", 19, TRUE},
711 {"s20", 20, TRUE}, {"s21", 21, TRUE}, {"s22", 22, TRUE}, {"s23", 23, TRUE},
712 {"s24", 24, TRUE}, {"s25", 25, TRUE}, {"s26", 26, TRUE}, {"s27", 27, TRUE},
713 {"s28", 28, TRUE}, {"s29", 29, TRUE}, {"s30", 30, TRUE}, {"s31", 31, TRUE},
714 {NULL, 0, TRUE}
715 };
716
717 /* VFP DP Registers. */
718 static const struct reg_entry dn_table[] =
719 {
720 {"d0", 0, TRUE}, {"d1", 1, TRUE}, {"d2", 2, TRUE}, {"d3", 3, TRUE},
721 {"d4", 4, TRUE}, {"d5", 5, TRUE}, {"d6", 6, TRUE}, {"d7", 7, TRUE},
722 {"d8", 8, TRUE}, {"d9", 9, TRUE}, {"d10", 10, TRUE}, {"d11", 11, TRUE},
723 {"d12", 12, TRUE}, {"d13", 13, TRUE}, {"d14", 14, TRUE}, {"d15", 15, TRUE},
724 {NULL, 0, TRUE}
725 };
726
727 /* Maverick DSP coprocessor registers. */
728 static const struct reg_entry mav_mvf_table[] =
729 {
730 {"mvf0", 0, TRUE}, {"mvf1", 1, TRUE}, {"mvf2", 2, TRUE}, {"mvf3", 3, TRUE},
731 {"mvf4", 4, TRUE}, {"mvf5", 5, TRUE}, {"mvf6", 6, TRUE}, {"mvf7", 7, TRUE},
732 {"mvf8", 8, TRUE}, {"mvf9", 9, TRUE}, {"mvf10", 10, TRUE}, {"mvf11", 11, TRUE},
733 {"mvf12", 12, TRUE}, {"mvf13", 13, TRUE}, {"mvf14", 14, TRUE}, {"mvf15", 15, TRUE},
734 {NULL, 0, TRUE}
735 };
736
737 static const struct reg_entry mav_mvd_table[] =
738 {
739 {"mvd0", 0, TRUE}, {"mvd1", 1, TRUE}, {"mvd2", 2, TRUE}, {"mvd3", 3, TRUE},
740 {"mvd4", 4, TRUE}, {"mvd5", 5, TRUE}, {"mvd6", 6, TRUE}, {"mvd7", 7, TRUE},
741 {"mvd8", 8, TRUE}, {"mvd9", 9, TRUE}, {"mvd10", 10, TRUE}, {"mvd11", 11, TRUE},
742 {"mvd12", 12, TRUE}, {"mvd13", 13, TRUE}, {"mvd14", 14, TRUE}, {"mvd15", 15, TRUE},
743 {NULL, 0, TRUE}
744 };
745
746 static const struct reg_entry mav_mvfx_table[] =
747 {
748 {"mvfx0", 0, TRUE}, {"mvfx1", 1, TRUE}, {"mvfx2", 2, TRUE}, {"mvfx3", 3, TRUE},
749 {"mvfx4", 4, TRUE}, {"mvfx5", 5, TRUE}, {"mvfx6", 6, TRUE}, {"mvfx7", 7, TRUE},
750 {"mvfx8", 8, TRUE}, {"mvfx9", 9, TRUE}, {"mvfx10", 10, TRUE}, {"mvfx11", 11, TRUE},
751 {"mvfx12", 12, TRUE}, {"mvfx13", 13, TRUE}, {"mvfx14", 14, TRUE}, {"mvfx15", 15, TRUE},
752 {NULL, 0, TRUE}
753 };
754
755 static const struct reg_entry mav_mvdx_table[] =
756 {
757 {"mvdx0", 0, TRUE}, {"mvdx1", 1, TRUE}, {"mvdx2", 2, TRUE}, {"mvdx3", 3, TRUE},
758 {"mvdx4", 4, TRUE}, {"mvdx5", 5, TRUE}, {"mvdx6", 6, TRUE}, {"mvdx7", 7, TRUE},
759 {"mvdx8", 8, TRUE}, {"mvdx9", 9, TRUE}, {"mvdx10", 10, TRUE}, {"mvdx11", 11, TRUE},
760 {"mvdx12", 12, TRUE}, {"mvdx13", 13, TRUE}, {"mvdx14", 14, TRUE}, {"mvdx15", 15, TRUE},
761 {NULL, 0, TRUE}
762 };
763
764 static const struct reg_entry mav_mvax_table[] =
765 {
766 {"mvax0", 0, TRUE}, {"mvax1", 1, TRUE}, {"mvax2", 2, TRUE}, {"mvax3", 3, TRUE},
767 {NULL, 0, TRUE}
768 };
769
770 static const struct reg_entry mav_dspsc_table[] =
771 {
772 {"dspsc", 0, TRUE},
773 {NULL, 0, TRUE}
774 };
775
776 struct reg_map
777 {
778 const struct reg_entry *names;
779 int max_regno;
780 struct hash_control *htab;
781 const char *expected;
782 };
783
784 struct reg_map all_reg_maps[] =
785 {
786 {rn_table, 15, NULL, N_("ARM register expected")},
787 {cp_table, 15, NULL, N_("bad or missing co-processor number")},
788 {cn_table, 15, NULL, N_("co-processor register expected")},
789 {fn_table, 7, NULL, N_("FPA register expected")},
790 {sn_table, 31, NULL, N_("VFP single precision register expected")},
791 {dn_table, 15, NULL, N_("VFP double precision register expected")},
792 {mav_mvf_table, 15, NULL, N_("Maverick MVF register expected")},
793 {mav_mvd_table, 15, NULL, N_("Maverick MVD register expected")},
794 {mav_mvfx_table, 15, NULL, N_("Maverick MVFX register expected")},
795 {mav_mvdx_table, 15, NULL, N_("Maverick MVDX register expected")},
796 {mav_mvax_table, 3, NULL, N_("Maverick MVAX register expected")},
797 {mav_dspsc_table, 0, NULL, N_("Maverick DSPSC register expected")},
798 {iwmmxt_table, 23, NULL, N_("Intel Wireless MMX technology register expected")},
799 };
800
801 /* Enumeration matching entries in table above. */
802 enum arm_reg_type
803 {
804 REG_TYPE_RN = 0,
805 #define REG_TYPE_FIRST REG_TYPE_RN
806 REG_TYPE_CP = 1,
807 REG_TYPE_CN = 2,
808 REG_TYPE_FN = 3,
809 REG_TYPE_SN = 4,
810 REG_TYPE_DN = 5,
811 REG_TYPE_MVF = 6,
812 REG_TYPE_MVD = 7,
813 REG_TYPE_MVFX = 8,
814 REG_TYPE_MVDX = 9,
815 REG_TYPE_MVAX = 10,
816 REG_TYPE_DSPSC = 11,
817 REG_TYPE_IWMMXT = 12,
818
819 REG_TYPE_MAX = 13
820 };
821
822 /* Functions called by parser. */
823 /* ARM instructions. */
824 static void do_arit PARAMS ((char *));
825 static void do_cmp PARAMS ((char *));
826 static void do_mov PARAMS ((char *));
827 static void do_ldst PARAMS ((char *));
828 static void do_ldstt PARAMS ((char *));
829 static void do_ldmstm PARAMS ((char *));
830 static void do_branch PARAMS ((char *));
831 static void do_swi PARAMS ((char *));
832
833 /* Pseudo Op codes. */
834 static void do_adr PARAMS ((char *));
835 static void do_adrl PARAMS ((char *));
836 static void do_empty PARAMS ((char *));
837
838 /* ARM v2. */
839 static void do_mul PARAMS ((char *));
840 static void do_mla PARAMS ((char *));
841
842 /* ARM v2S. */
843 static void do_swap PARAMS ((char *));
844
845 /* ARM v3. */
846 static void do_msr PARAMS ((char *));
847 static void do_mrs PARAMS ((char *));
848
849 /* ARM v3M. */
850 static void do_mull PARAMS ((char *));
851
852 /* ARM v4. */
853 static void do_ldstv4 PARAMS ((char *));
854
855 /* ARM v4T. */
856 static void do_bx PARAMS ((char *));
857
858 /* ARM v5T. */
859 static void do_blx PARAMS ((char *));
860 static void do_bkpt PARAMS ((char *));
861 static void do_clz PARAMS ((char *));
862 static void do_lstc2 PARAMS ((char *));
863 static void do_cdp2 PARAMS ((char *));
864 static void do_co_reg2 PARAMS ((char *));
865
866 /* ARM v5TExP. */
867 static void do_smla PARAMS ((char *));
868 static void do_smlal PARAMS ((char *));
869 static void do_smul PARAMS ((char *));
870 static void do_qadd PARAMS ((char *));
871
872 /* ARM v5TE. */
873 static void do_pld PARAMS ((char *));
874 static void do_ldrd PARAMS ((char *));
875 static void do_co_reg2c PARAMS ((char *));
876
877 /* ARM v5TEJ. */
878 static void do_bxj PARAMS ((char *));
879
880 /* ARM V6. */
881 static void do_cps PARAMS ((char *));
882 static void do_cpsi PARAMS ((char *));
883 static void do_ldrex PARAMS ((char *));
884 static void do_pkhbt PARAMS ((char *));
885 static void do_pkhtb PARAMS ((char *));
886 static void do_qadd16 PARAMS ((char *));
887 static void do_rev PARAMS ((char *));
888 static void do_rfe PARAMS ((char *));
889 static void do_sxtah PARAMS ((char *));
890 static void do_sxth PARAMS ((char *));
891 static void do_setend PARAMS ((char *));
892 static void do_smlad PARAMS ((char *));
893 static void do_smlald PARAMS ((char *));
894 static void do_smmul PARAMS ((char *));
895 static void do_ssat PARAMS ((char *));
896 static void do_usat PARAMS ((char *));
897 static void do_srs PARAMS ((char *));
898 static void do_ssat16 PARAMS ((char *));
899 static void do_usat16 PARAMS ((char *));
900 static void do_strex PARAMS ((char *));
901 static void do_umaal PARAMS ((char *));
902
903 static void do_cps_mode PARAMS ((char **));
904 static void do_cps_flags PARAMS ((char **, int));
905 static int do_endian_specifier PARAMS ((char *));
906 static void do_pkh_core PARAMS ((char *, int));
907 static void do_sat PARAMS ((char **, int));
908 static void do_sat16 PARAMS ((char **, int));
909
910 /* Coprocessor Instructions. */
911 static void do_cdp PARAMS ((char *));
912 static void do_lstc PARAMS ((char *));
913 static void do_co_reg PARAMS ((char *));
914
915 /* FPA instructions. */
916 static void do_fpa_ctrl PARAMS ((char *));
917 static void do_fpa_ldst PARAMS ((char *));
918 static void do_fpa_ldmstm PARAMS ((char *));
919 static void do_fpa_dyadic PARAMS ((char *));
920 static void do_fpa_monadic PARAMS ((char *));
921 static void do_fpa_cmp PARAMS ((char *));
922 static void do_fpa_from_reg PARAMS ((char *));
923 static void do_fpa_to_reg PARAMS ((char *));
924
925 /* VFP instructions. */
926 static void do_vfp_sp_monadic PARAMS ((char *));
927 static void do_vfp_dp_monadic PARAMS ((char *));
928 static void do_vfp_sp_dyadic PARAMS ((char *));
929 static void do_vfp_dp_dyadic PARAMS ((char *));
930 static void do_vfp_reg_from_sp PARAMS ((char *));
931 static void do_vfp_sp_from_reg PARAMS ((char *));
932 static void do_vfp_sp_reg2 PARAMS ((char *));
933 static void do_vfp_reg_from_dp PARAMS ((char *));
934 static void do_vfp_reg2_from_dp PARAMS ((char *));
935 static void do_vfp_dp_from_reg PARAMS ((char *));
936 static void do_vfp_dp_from_reg2 PARAMS ((char *));
937 static void do_vfp_reg_from_ctrl PARAMS ((char *));
938 static void do_vfp_ctrl_from_reg PARAMS ((char *));
939 static void do_vfp_sp_ldst PARAMS ((char *));
940 static void do_vfp_dp_ldst PARAMS ((char *));
941 static void do_vfp_sp_ldstmia PARAMS ((char *));
942 static void do_vfp_sp_ldstmdb PARAMS ((char *));
943 static void do_vfp_dp_ldstmia PARAMS ((char *));
944 static void do_vfp_dp_ldstmdb PARAMS ((char *));
945 static void do_vfp_xp_ldstmia PARAMS ((char *));
946 static void do_vfp_xp_ldstmdb PARAMS ((char *));
947 static void do_vfp_sp_compare_z PARAMS ((char *));
948 static void do_vfp_dp_compare_z PARAMS ((char *));
949 static void do_vfp_dp_sp_cvt PARAMS ((char *));
950 static void do_vfp_sp_dp_cvt PARAMS ((char *));
951
952 /* XScale. */
953 static void do_xsc_mia PARAMS ((char *));
954 static void do_xsc_mar PARAMS ((char *));
955 static void do_xsc_mra PARAMS ((char *));
956
957 /* Maverick. */
958 static void do_mav_binops PARAMS ((char *, int, enum arm_reg_type,
959 enum arm_reg_type));
960 static void do_mav_binops_1a PARAMS ((char *));
961 static void do_mav_binops_1b PARAMS ((char *));
962 static void do_mav_binops_1c PARAMS ((char *));
963 static void do_mav_binops_1d PARAMS ((char *));
964 static void do_mav_binops_1e PARAMS ((char *));
965 static void do_mav_binops_1f PARAMS ((char *));
966 static void do_mav_binops_1g PARAMS ((char *));
967 static void do_mav_binops_1h PARAMS ((char *));
968 static void do_mav_binops_1i PARAMS ((char *));
969 static void do_mav_binops_1j PARAMS ((char *));
970 static void do_mav_binops_1k PARAMS ((char *));
971 static void do_mav_binops_1l PARAMS ((char *));
972 static void do_mav_binops_1m PARAMS ((char *));
973 static void do_mav_binops_1n PARAMS ((char *));
974 static void do_mav_binops_1o PARAMS ((char *));
975 static void do_mav_binops_2a PARAMS ((char *));
976 static void do_mav_binops_2b PARAMS ((char *));
977 static void do_mav_binops_2c PARAMS ((char *));
978 static void do_mav_binops_3a PARAMS ((char *));
979 static void do_mav_binops_3b PARAMS ((char *));
980 static void do_mav_binops_3c PARAMS ((char *));
981 static void do_mav_binops_3d PARAMS ((char *));
982 static void do_mav_triple PARAMS ((char *, int, enum arm_reg_type,
983 enum arm_reg_type,
984 enum arm_reg_type));
985 static void do_mav_triple_4a PARAMS ((char *));
986 static void do_mav_triple_4b PARAMS ((char *));
987 static void do_mav_triple_5a PARAMS ((char *));
988 static void do_mav_triple_5b PARAMS ((char *));
989 static void do_mav_triple_5c PARAMS ((char *));
990 static void do_mav_triple_5d PARAMS ((char *));
991 static void do_mav_triple_5e PARAMS ((char *));
992 static void do_mav_triple_5f PARAMS ((char *));
993 static void do_mav_triple_5g PARAMS ((char *));
994 static void do_mav_triple_5h PARAMS ((char *));
995 static void do_mav_quad PARAMS ((char *, int, enum arm_reg_type,
996 enum arm_reg_type,
997 enum arm_reg_type,
998 enum arm_reg_type));
999 static void do_mav_quad_6a PARAMS ((char *));
1000 static void do_mav_quad_6b PARAMS ((char *));
1001 static void do_mav_dspsc_1 PARAMS ((char *));
1002 static void do_mav_dspsc_2 PARAMS ((char *));
1003 static void do_mav_shift PARAMS ((char *, enum arm_reg_type,
1004 enum arm_reg_type));
1005 static void do_mav_shift_1 PARAMS ((char *));
1006 static void do_mav_shift_2 PARAMS ((char *));
1007 static void do_mav_ldst PARAMS ((char *, enum arm_reg_type));
1008 static void do_mav_ldst_1 PARAMS ((char *));
1009 static void do_mav_ldst_2 PARAMS ((char *));
1010 static void do_mav_ldst_3 PARAMS ((char *));
1011 static void do_mav_ldst_4 PARAMS ((char *));
1012
1013 static int mav_reg_required_here PARAMS ((char **, int,
1014 enum arm_reg_type));
1015 static int mav_parse_offset PARAMS ((char **, int *));
1016
1017 static void fix_new_arm PARAMS ((fragS *, int, short, expressionS *,
1018 int, int));
1019 static int arm_reg_parse PARAMS ((char **, struct hash_control *));
1020 static enum arm_reg_type arm_reg_parse_any PARAMS ((char *));
1021 static const struct asm_psr * arm_psr_parse PARAMS ((char **));
1022 static void symbol_locate PARAMS ((symbolS *, const char *, segT, valueT,
1023 fragS *));
1024 static int add_to_lit_pool PARAMS ((void));
1025 static unsigned validate_immediate PARAMS ((unsigned));
1026 static unsigned validate_immediate_twopart PARAMS ((unsigned int,
1027 unsigned int *));
1028 static int validate_offset_imm PARAMS ((unsigned int, int));
1029 static void opcode_select PARAMS ((int));
1030 static void end_of_line PARAMS ((char *));
1031 static int reg_required_here PARAMS ((char **, int));
1032 static int psr_required_here PARAMS ((char **));
1033 static int co_proc_number PARAMS ((char **));
1034 static int cp_opc_expr PARAMS ((char **, int, int));
1035 static int cp_reg_required_here PARAMS ((char **, int));
1036 static int fp_reg_required_here PARAMS ((char **, int));
1037 static int vfp_sp_reg_required_here PARAMS ((char **, enum vfp_sp_reg_pos));
1038 static int vfp_dp_reg_required_here PARAMS ((char **, enum vfp_dp_reg_pos));
1039 static void vfp_sp_ldstm PARAMS ((char *, enum vfp_ldstm_type));
1040 static void vfp_dp_ldstm PARAMS ((char *, enum vfp_ldstm_type));
1041 static long vfp_sp_reg_list PARAMS ((char **, enum vfp_sp_reg_pos));
1042 static long vfp_dp_reg_list PARAMS ((char **));
1043 static int vfp_psr_required_here PARAMS ((char **str));
1044 static const struct vfp_reg *vfp_psr_parse PARAMS ((char **str));
1045 static int cp_address_offset PARAMS ((char **));
1046 static int cp_address_required_here PARAMS ((char **, int));
1047 static int my_get_float_expression PARAMS ((char **));
1048 static int skip_past_comma PARAMS ((char **));
1049 static int walk_no_bignums PARAMS ((symbolS *));
1050 static int negate_data_op PARAMS ((unsigned long *, unsigned long));
1051 static int data_op2 PARAMS ((char **));
1052 static int fp_op2 PARAMS ((char **));
1053 static long reg_list PARAMS ((char **));
1054 static void thumb_load_store PARAMS ((char *, int, int));
1055 static int decode_shift PARAMS ((char **, int));
1056 static int ldst_extend PARAMS ((char **));
1057 static int ldst_extend_v4 PARAMS ((char **));
1058 static void thumb_add_sub PARAMS ((char *, int));
1059 static void insert_reg PARAMS ((const struct reg_entry *,
1060 struct hash_control *));
1061 static void thumb_shift PARAMS ((char *, int));
1062 static void thumb_mov_compare PARAMS ((char *, int));
1063 static void build_arm_ops_hsh PARAMS ((void));
1064 static void set_constant_flonums PARAMS ((void));
1065 static valueT md_chars_to_number PARAMS ((char *, int));
1066 static void build_reg_hsh PARAMS ((struct reg_map *));
1067 static void insert_reg_alias PARAMS ((char *, int, struct hash_control *));
1068 static int create_register_alias PARAMS ((char *, char *));
1069 static void output_inst PARAMS ((const char *));
1070 static int accum0_required_here PARAMS ((char **));
1071 static int ld_mode_required_here PARAMS ((char **));
1072 static void do_branch25 PARAMS ((char *));
1073 static symbolS * find_real_start PARAMS ((symbolS *));
1074 #ifdef OBJ_ELF
1075 static bfd_reloc_code_real_type arm_parse_reloc PARAMS ((void));
1076 #endif
1077
1078 static int wreg_required_here PARAMS ((char **, int, enum wreg_type));
1079 static void do_iwmmxt_byte_addr PARAMS ((char *));
1080 static void do_iwmmxt_tandc PARAMS ((char *));
1081 static void do_iwmmxt_tbcst PARAMS ((char *));
1082 static void do_iwmmxt_textrc PARAMS ((char *));
1083 static void do_iwmmxt_textrm PARAMS ((char *));
1084 static void do_iwmmxt_tinsr PARAMS ((char *));
1085 static void do_iwmmxt_tmcr PARAMS ((char *));
1086 static void do_iwmmxt_tmcrr PARAMS ((char *));
1087 static void do_iwmmxt_tmia PARAMS ((char *));
1088 static void do_iwmmxt_tmovmsk PARAMS ((char *));
1089 static void do_iwmmxt_tmrc PARAMS ((char *));
1090 static void do_iwmmxt_tmrrc PARAMS ((char *));
1091 static void do_iwmmxt_torc PARAMS ((char *));
1092 static void do_iwmmxt_waligni PARAMS ((char *));
1093 static void do_iwmmxt_wmov PARAMS ((char *));
1094 static void do_iwmmxt_word_addr PARAMS ((char *));
1095 static void do_iwmmxt_wrwr PARAMS ((char *));
1096 static void do_iwmmxt_wrwrwcg PARAMS ((char *));
1097 static void do_iwmmxt_wrwrwr PARAMS ((char *));
1098 static void do_iwmmxt_wshufh PARAMS ((char *));
1099 static void do_iwmmxt_wzero PARAMS ((char *));
1100 static int cp_byte_address_offset PARAMS ((char **));
1101 static int cp_byte_address_required_here PARAMS ((char **));
1102
1103 /* ARM instructions take 4bytes in the object file, Thumb instructions
1104 take 2: */
1105 #define INSN_SIZE 4
1106
1107 /* "INSN<cond> X,Y" where X:bit12, Y:bit16. */
1108 #define MAV_MODE1 0x100c
1109
1110 /* "INSN<cond> X,Y" where X:bit16, Y:bit12. */
1111 #define MAV_MODE2 0x0c10
1112
1113 /* "INSN<cond> X,Y" where X:0, Y:bit16. */
1114 #define MAV_MODE3 0x1000
1115
1116 /* "INSN<cond> X,Y,Z" where X:16, Y:0, Z:12. */
1117 #define MAV_MODE4 0x0c0010
1118
1119 /* "INSN<cond> X,Y,Z" where X:12, Y:16, Z:0. */
1120 #define MAV_MODE5 0x00100c
1121
1122 /* "INSN<cond> W,X,Y,Z" where W:5, X:12, Y:16, Z:0. */
1123 #define MAV_MODE6 0x00100c05
1124
1125 struct asm_opcode
1126 {
1127 /* Basic string to match. */
1128 const char * template;
1129
1130 /* Basic instruction code. */
1131 unsigned long value;
1132
1133 /* Offset into the template where the condition code (if any) will be.
1134 If zero, then the instruction is never conditional. */
1135 unsigned cond_offset;
1136
1137 /* Which architecture variant provides this instruction. */
1138 unsigned long variant;
1139
1140 /* Function to call to parse args. */
1141 void (* parms) PARAMS ((char *));
1142 };
1143
1144 static const struct asm_opcode insns[] =
1145 {
1146 /* Core ARM Instructions. */
1147 {"and", 0xe0000000, 3, ARM_EXT_V1, do_arit},
1148 {"ands", 0xe0100000, 3, ARM_EXT_V1, do_arit},
1149 {"eor", 0xe0200000, 3, ARM_EXT_V1, do_arit},
1150 {"eors", 0xe0300000, 3, ARM_EXT_V1, do_arit},
1151 {"sub", 0xe0400000, 3, ARM_EXT_V1, do_arit},
1152 {"subs", 0xe0500000, 3, ARM_EXT_V1, do_arit},
1153 {"rsb", 0xe0600000, 3, ARM_EXT_V1, do_arit},
1154 {"rsbs", 0xe0700000, 3, ARM_EXT_V1, do_arit},
1155 {"add", 0xe0800000, 3, ARM_EXT_V1, do_arit},
1156 {"adds", 0xe0900000, 3, ARM_EXT_V1, do_arit},
1157 {"adc", 0xe0a00000, 3, ARM_EXT_V1, do_arit},
1158 {"adcs", 0xe0b00000, 3, ARM_EXT_V1, do_arit},
1159 {"sbc", 0xe0c00000, 3, ARM_EXT_V1, do_arit},
1160 {"sbcs", 0xe0d00000, 3, ARM_EXT_V1, do_arit},
1161 {"rsc", 0xe0e00000, 3, ARM_EXT_V1, do_arit},
1162 {"rscs", 0xe0f00000, 3, ARM_EXT_V1, do_arit},
1163 {"orr", 0xe1800000, 3, ARM_EXT_V1, do_arit},
1164 {"orrs", 0xe1900000, 3, ARM_EXT_V1, do_arit},
1165 {"bic", 0xe1c00000, 3, ARM_EXT_V1, do_arit},
1166 {"bics", 0xe1d00000, 3, ARM_EXT_V1, do_arit},
1167
1168 {"tst", 0xe1100000, 3, ARM_EXT_V1, do_cmp},
1169 {"tsts", 0xe1100000, 3, ARM_EXT_V1, do_cmp},
1170 {"tstp", 0xe110f000, 3, ARM_EXT_V1, do_cmp},
1171 {"teq", 0xe1300000, 3, ARM_EXT_V1, do_cmp},
1172 {"teqs", 0xe1300000, 3, ARM_EXT_V1, do_cmp},
1173 {"teqp", 0xe130f000, 3, ARM_EXT_V1, do_cmp},
1174 {"cmp", 0xe1500000, 3, ARM_EXT_V1, do_cmp},
1175 {"cmps", 0xe1500000, 3, ARM_EXT_V1, do_cmp},
1176 {"cmpp", 0xe150f000, 3, ARM_EXT_V1, do_cmp},
1177 {"cmn", 0xe1700000, 3, ARM_EXT_V1, do_cmp},
1178 {"cmns", 0xe1700000, 3, ARM_EXT_V1, do_cmp},
1179 {"cmnp", 0xe170f000, 3, ARM_EXT_V1, do_cmp},
1180
1181 {"mov", 0xe1a00000, 3, ARM_EXT_V1, do_mov},
1182 {"movs", 0xe1b00000, 3, ARM_EXT_V1, do_mov},
1183 {"mvn", 0xe1e00000, 3, ARM_EXT_V1, do_mov},
1184 {"mvns", 0xe1f00000, 3, ARM_EXT_V1, do_mov},
1185
1186 {"ldr", 0xe4100000, 3, ARM_EXT_V1, do_ldst},
1187 {"ldrb", 0xe4500000, 3, ARM_EXT_V1, do_ldst},
1188 {"ldrt", 0xe4300000, 3, ARM_EXT_V1, do_ldstt},
1189 {"ldrbt", 0xe4700000, 3, ARM_EXT_V1, do_ldstt},
1190 {"str", 0xe4000000, 3, ARM_EXT_V1, do_ldst},
1191 {"strb", 0xe4400000, 3, ARM_EXT_V1, do_ldst},
1192 {"strt", 0xe4200000, 3, ARM_EXT_V1, do_ldstt},
1193 {"strbt", 0xe4600000, 3, ARM_EXT_V1, do_ldstt},
1194
1195 {"stmia", 0xe8800000, 3, ARM_EXT_V1, do_ldmstm},
1196 {"stmib", 0xe9800000, 3, ARM_EXT_V1, do_ldmstm},
1197 {"stmda", 0xe8000000, 3, ARM_EXT_V1, do_ldmstm},
1198 {"stmdb", 0xe9000000, 3, ARM_EXT_V1, do_ldmstm},
1199 {"stmfd", 0xe9000000, 3, ARM_EXT_V1, do_ldmstm},
1200 {"stmfa", 0xe9800000, 3, ARM_EXT_V1, do_ldmstm},
1201 {"stmea", 0xe8800000, 3, ARM_EXT_V1, do_ldmstm},
1202 {"stmed", 0xe8000000, 3, ARM_EXT_V1, do_ldmstm},
1203
1204 {"ldmia", 0xe8900000, 3, ARM_EXT_V1, do_ldmstm},
1205 {"ldmib", 0xe9900000, 3, ARM_EXT_V1, do_ldmstm},
1206 {"ldmda", 0xe8100000, 3, ARM_EXT_V1, do_ldmstm},
1207 {"ldmdb", 0xe9100000, 3, ARM_EXT_V1, do_ldmstm},
1208 {"ldmfd", 0xe8900000, 3, ARM_EXT_V1, do_ldmstm},
1209 {"ldmfa", 0xe8100000, 3, ARM_EXT_V1, do_ldmstm},
1210 {"ldmea", 0xe9100000, 3, ARM_EXT_V1, do_ldmstm},
1211 {"ldmed", 0xe9900000, 3, ARM_EXT_V1, do_ldmstm},
1212
1213 {"swi", 0xef000000, 3, ARM_EXT_V1, do_swi},
1214 #ifdef TE_WINCE
1215 /* XXX This is the wrong place to do this. Think multi-arch. */
1216 {"bl", 0xeb000000, 2, ARM_EXT_V1, do_branch},
1217 {"b", 0xea000000, 1, ARM_EXT_V1, do_branch},
1218 #else
1219 {"bl", 0xebfffffe, 2, ARM_EXT_V1, do_branch},
1220 {"b", 0xeafffffe, 1, ARM_EXT_V1, do_branch},
1221 #endif
1222
1223 /* Pseudo ops. */
1224 {"adr", 0xe28f0000, 3, ARM_EXT_V1, do_adr},
1225 {"adrl", 0xe28f0000, 3, ARM_EXT_V1, do_adrl},
1226 {"nop", 0xe1a00000, 3, ARM_EXT_V1, do_empty},
1227
1228 /* ARM 2 multiplies. */
1229 {"mul", 0xe0000090, 3, ARM_EXT_V2, do_mul},
1230 {"muls", 0xe0100090, 3, ARM_EXT_V2, do_mul},
1231 {"mla", 0xe0200090, 3, ARM_EXT_V2, do_mla},
1232 {"mlas", 0xe0300090, 3, ARM_EXT_V2, do_mla},
1233
1234 /* Generic coprocessor instructions. */
1235 {"cdp", 0xee000000, 3, ARM_EXT_V2, do_cdp},
1236 {"ldc", 0xec100000, 3, ARM_EXT_V2, do_lstc},
1237 {"ldcl", 0xec500000, 3, ARM_EXT_V2, do_lstc},
1238 {"stc", 0xec000000, 3, ARM_EXT_V2, do_lstc},
1239 {"stcl", 0xec400000, 3, ARM_EXT_V2, do_lstc},
1240 {"mcr", 0xee000010, 3, ARM_EXT_V2, do_co_reg},
1241 {"mrc", 0xee100010, 3, ARM_EXT_V2, do_co_reg},
1242
1243 /* ARM 3 - swp instructions. */
1244 {"swp", 0xe1000090, 3, ARM_EXT_V2S, do_swap},
1245 {"swpb", 0xe1400090, 3, ARM_EXT_V2S, do_swap},
1246
1247 /* ARM 6 Status register instructions. */
1248 {"mrs", 0xe10f0000, 3, ARM_EXT_V3, do_mrs},
1249 {"msr", 0xe120f000, 3, ARM_EXT_V3, do_msr},
1250 /* ScottB: our code uses 0xe128f000 for msr.
1251 NickC: but this is wrong because the bits 16 through 19 are
1252 handled by the PSR_xxx defines above. */
1253
1254 /* ARM 7M long multiplies. */
1255 {"smull", 0xe0c00090, 5, ARM_EXT_V3M, do_mull},
1256 {"smulls", 0xe0d00090, 5, ARM_EXT_V3M, do_mull},
1257 {"umull", 0xe0800090, 5, ARM_EXT_V3M, do_mull},
1258 {"umulls", 0xe0900090, 5, ARM_EXT_V3M, do_mull},
1259 {"smlal", 0xe0e00090, 5, ARM_EXT_V3M, do_mull},
1260 {"smlals", 0xe0f00090, 5, ARM_EXT_V3M, do_mull},
1261 {"umlal", 0xe0a00090, 5, ARM_EXT_V3M, do_mull},
1262 {"umlals", 0xe0b00090, 5, ARM_EXT_V3M, do_mull},
1263
1264 /* ARM Architecture 4. */
1265 {"ldrh", 0xe01000b0, 3, ARM_EXT_V4, do_ldstv4},
1266 {"ldrsh", 0xe01000f0, 3, ARM_EXT_V4, do_ldstv4},
1267 {"ldrsb", 0xe01000d0, 3, ARM_EXT_V4, do_ldstv4},
1268 {"strh", 0xe00000b0, 3, ARM_EXT_V4, do_ldstv4},
1269
1270 /* ARM Architecture 4T. */
1271 /* Note: bx (and blx) are required on V5, even if the processor does
1272 not support Thumb. */
1273 {"bx", 0xe12fff10, 2, ARM_EXT_V4T | ARM_EXT_V5, do_bx},
1274
1275 /* ARM Architecture 5T. */
1276 /* Note: blx has 2 variants, so the .value is set dynamically.
1277 Only one of the variants has conditional execution. */
1278 {"blx", 0xe0000000, 3, ARM_EXT_V5, do_blx},
1279 {"clz", 0xe16f0f10, 3, ARM_EXT_V5, do_clz},
1280 {"bkpt", 0xe1200070, 0, ARM_EXT_V5, do_bkpt},
1281 {"ldc2", 0xfc100000, 0, ARM_EXT_V5, do_lstc2},
1282 {"ldc2l", 0xfc500000, 0, ARM_EXT_V5, do_lstc2},
1283 {"stc2", 0xfc000000, 0, ARM_EXT_V5, do_lstc2},
1284 {"stc2l", 0xfc400000, 0, ARM_EXT_V5, do_lstc2},
1285 {"cdp2", 0xfe000000, 0, ARM_EXT_V5, do_cdp2},
1286 {"mcr2", 0xfe000010, 0, ARM_EXT_V5, do_co_reg2},
1287 {"mrc2", 0xfe100010, 0, ARM_EXT_V5, do_co_reg2},
1288
1289 /* ARM Architecture 5TExP. */
1290 {"smlabb", 0xe1000080, 6, ARM_EXT_V5ExP, do_smla},
1291 {"smlatb", 0xe10000a0, 6, ARM_EXT_V5ExP, do_smla},
1292 {"smlabt", 0xe10000c0, 6, ARM_EXT_V5ExP, do_smla},
1293 {"smlatt", 0xe10000e0, 6, ARM_EXT_V5ExP, do_smla},
1294
1295 {"smlawb", 0xe1200080, 6, ARM_EXT_V5ExP, do_smla},
1296 {"smlawt", 0xe12000c0, 6, ARM_EXT_V5ExP, do_smla},
1297
1298 {"smlalbb", 0xe1400080, 7, ARM_EXT_V5ExP, do_smlal},
1299 {"smlaltb", 0xe14000a0, 7, ARM_EXT_V5ExP, do_smlal},
1300 {"smlalbt", 0xe14000c0, 7, ARM_EXT_V5ExP, do_smlal},
1301 {"smlaltt", 0xe14000e0, 7, ARM_EXT_V5ExP, do_smlal},
1302
1303 {"smulbb", 0xe1600080, 6, ARM_EXT_V5ExP, do_smul},
1304 {"smultb", 0xe16000a0, 6, ARM_EXT_V5ExP, do_smul},
1305 {"smulbt", 0xe16000c0, 6, ARM_EXT_V5ExP, do_smul},
1306 {"smultt", 0xe16000e0, 6, ARM_EXT_V5ExP, do_smul},
1307
1308 {"smulwb", 0xe12000a0, 6, ARM_EXT_V5ExP, do_smul},
1309 {"smulwt", 0xe12000e0, 6, ARM_EXT_V5ExP, do_smul},
1310
1311 {"qadd", 0xe1000050, 4, ARM_EXT_V5ExP, do_qadd},
1312 {"qdadd", 0xe1400050, 5, ARM_EXT_V5ExP, do_qadd},
1313 {"qsub", 0xe1200050, 4, ARM_EXT_V5ExP, do_qadd},
1314 {"qdsub", 0xe1600050, 5, ARM_EXT_V5ExP, do_qadd},
1315
1316 /* ARM Architecture 5TE. */
1317 {"pld", 0xf450f000, 0, ARM_EXT_V5E, do_pld},
1318 {"ldrd", 0xe00000d0, 3, ARM_EXT_V5E, do_ldrd},
1319 {"strd", 0xe00000f0, 3, ARM_EXT_V5E, do_ldrd},
1320
1321 {"mcrr", 0xec400000, 4, ARM_EXT_V5E, do_co_reg2c},
1322 {"mrrc", 0xec500000, 4, ARM_EXT_V5E, do_co_reg2c},
1323
1324 /* ARM Architecture 5TEJ. */
1325 {"bxj", 0xe12fff20, 3, ARM_EXT_V5J, do_bxj},
1326
1327 /* ARM V6. */
1328 { "cps", 0xf1020000, 0, ARM_EXT_V6, do_cps},
1329 { "cpsie", 0xf1080000, 0, ARM_EXT_V6, do_cpsi},
1330 { "cpsid", 0xf10C0000, 0, ARM_EXT_V6, do_cpsi},
1331 { "ldrex", 0xe1900f9f, 5, ARM_EXT_V6, do_ldrex},
1332 { "mcrr2", 0xfc400000, 0, ARM_EXT_V6, do_co_reg2c},
1333 { "mrrc2", 0xfc500000, 0, ARM_EXT_V6, do_co_reg2c},
1334 { "pkhbt", 0xe6800010, 5, ARM_EXT_V6, do_pkhbt},
1335 { "pkhtb", 0xe6800050, 5, ARM_EXT_V6, do_pkhtb},
1336 { "qadd16", 0xe6200f10, 6, ARM_EXT_V6, do_qadd16},
1337 { "qadd8", 0xe6200f90, 5, ARM_EXT_V6, do_qadd16},
1338 { "qaddsubx", 0xe6200f30, 8, ARM_EXT_V6, do_qadd16},
1339 { "qsub16", 0xe6200f70, 6, ARM_EXT_V6, do_qadd16},
1340 { "qsub8", 0xe6200ff0, 5, ARM_EXT_V6, do_qadd16},
1341 { "qsubaddx", 0xe6200f50, 8, ARM_EXT_V6, do_qadd16},
1342 { "sadd16", 0xe6100f10, 6, ARM_EXT_V6, do_qadd16},
1343 { "sadd8", 0xe6100f90, 5, ARM_EXT_V6, do_qadd16},
1344 { "saddsubx", 0xe6100f30, 8, ARM_EXT_V6, do_qadd16},
1345 { "shadd16", 0xe6300f10, 7, ARM_EXT_V6, do_qadd16},
1346 { "shadd8", 0xe6300f90, 6, ARM_EXT_V6, do_qadd16},
1347 { "shaddsubx", 0xe6300f30, 9, ARM_EXT_V6, do_qadd16},
1348 { "shsub16", 0xe6300f70, 7, ARM_EXT_V6, do_qadd16},
1349 { "shsub8", 0xe6300ff0, 6, ARM_EXT_V6, do_qadd16},
1350 { "shsubaddx", 0xe6300f50, 9, ARM_EXT_V6, do_qadd16},
1351 { "ssub16", 0xe6100f70, 6, ARM_EXT_V6, do_qadd16},
1352 { "ssub8", 0xe6100ff0, 5, ARM_EXT_V6, do_qadd16},
1353 { "ssubaddx", 0xe6100f50, 8, ARM_EXT_V6, do_qadd16},
1354 { "uadd16", 0xe6500f10, 6, ARM_EXT_V6, do_qadd16},
1355 { "uadd8", 0xe6500f90, 5, ARM_EXT_V6, do_qadd16},
1356 { "uaddsubx", 0xe6500f30, 8, ARM_EXT_V6, do_qadd16},
1357 { "uhadd16", 0xe6700f10, 7, ARM_EXT_V6, do_qadd16},
1358 { "uhadd8", 0xe6700f90, 6, ARM_EXT_V6, do_qadd16},
1359 { "uhaddsubx", 0xe6700f30, 9, ARM_EXT_V6, do_qadd16},
1360 { "uhsub16", 0xe6700f70, 7, ARM_EXT_V6, do_qadd16},
1361 { "uhsub8", 0xe6700ff0, 6, ARM_EXT_V6, do_qadd16},
1362 { "uhsubaddx", 0xe6700f50, 9, ARM_EXT_V6, do_qadd16},
1363 { "uqadd16", 0xe6600f10, 7, ARM_EXT_V6, do_qadd16},
1364 { "uqadd8", 0xe6600f90, 6, ARM_EXT_V6, do_qadd16},
1365 { "uqaddsubx", 0xe6600f30, 9, ARM_EXT_V6, do_qadd16},
1366 { "uqsub16", 0xe6600f70, 7, ARM_EXT_V6, do_qadd16},
1367 { "uqsub8", 0xe6600ff0, 6, ARM_EXT_V6, do_qadd16},
1368 { "uqsubaddx", 0xe6600f50, 9, ARM_EXT_V6, do_qadd16},
1369 { "usub16", 0xe6500f70, 6, ARM_EXT_V6, do_qadd16},
1370 { "usub8", 0xe6500ff0, 5, ARM_EXT_V6, do_qadd16},
1371 { "usubaddx", 0xe6500f50, 8, ARM_EXT_V6, do_qadd16},
1372 { "rev", 0xe6bf0f30, 3, ARM_EXT_V6, do_rev},
1373 { "rev16", 0xe6bf0fb0, 5, ARM_EXT_V6, do_rev},
1374 { "revsh", 0xe6ff0fb0, 5, ARM_EXT_V6, do_rev},
1375 { "rfeia", 0xf8900a00, 0, ARM_EXT_V6, do_rfe},
1376 { "rfeib", 0xf9900a00, 0, ARM_EXT_V6, do_rfe},
1377 { "rfeda", 0xf8100a00, 0, ARM_EXT_V6, do_rfe},
1378 { "rfedb", 0xf9100a00, 0, ARM_EXT_V6, do_rfe},
1379 { "rfefd", 0xf8900a00, 0, ARM_EXT_V6, do_rfe},
1380 { "rfefa", 0xf9900a00, 0, ARM_EXT_V6, do_rfe},
1381 { "rfeea", 0xf8100a00, 0, ARM_EXT_V6, do_rfe},
1382 { "rfeed", 0xf9100a00, 0, ARM_EXT_V6, do_rfe},
1383 { "sxtah", 0xe6b00070, 5, ARM_EXT_V6, do_sxtah},
1384 { "sxtab16", 0xe6800070, 7, ARM_EXT_V6, do_sxtah},
1385 { "sxtab", 0xe6a00070, 5, ARM_EXT_V6, do_sxtah},
1386 { "sxth", 0xe6bf0070, 4, ARM_EXT_V6, do_sxth},
1387 { "sxtb16", 0xe68f0070, 6, ARM_EXT_V6, do_sxth},
1388 { "sxtb", 0xe6af0070, 4, ARM_EXT_V6, do_sxth},
1389 { "uxtah", 0xe6f00070, 5, ARM_EXT_V6, do_sxtah},
1390 { "uxtab16", 0xe6c00070, 7, ARM_EXT_V6, do_sxtah},
1391 { "uxtab", 0xe6e00070, 5, ARM_EXT_V6, do_sxtah},
1392 { "uxth", 0xe6ff0070, 4, ARM_EXT_V6, do_sxth},
1393 { "uxtb16", 0xe6cf0070, 6, ARM_EXT_V6, do_sxth},
1394 { "uxtb", 0xe6ef0070, 4, ARM_EXT_V6, do_sxth},
1395 { "sel", 0xe68000b0, 3, ARM_EXT_V6, do_qadd16},
1396 { "setend", 0xf1010000, 0, ARM_EXT_V6, do_setend},
1397 { "smlad", 0xe7000010, 5, ARM_EXT_V6, do_smlad},
1398 { "smladx", 0xe7000030, 6, ARM_EXT_V6, do_smlad},
1399 { "smlald", 0xe7400010, 6, ARM_EXT_V6, do_smlald},
1400 { "smlaldx", 0xe7400030, 7, ARM_EXT_V6, do_smlald},
1401 { "smlsd", 0xe7000050, 5, ARM_EXT_V6, do_smlad},
1402 { "smlsdx", 0xe7000070, 6, ARM_EXT_V6, do_smlad},
1403 { "smlsld", 0xe7400050, 6, ARM_EXT_V6, do_smlald},
1404 { "smlsldx", 0xe7400070, 7, ARM_EXT_V6, do_smlald},
1405 { "smmla", 0xe7500010, 5, ARM_EXT_V6, do_smlad},
1406 { "smmlar", 0xe7500030, 6, ARM_EXT_V6, do_smlad},
1407 { "smmls", 0xe75000d0, 5, ARM_EXT_V6, do_smlad},
1408 { "smmlsr", 0xe75000f0, 6, ARM_EXT_V6, do_smlad},
1409 { "smmul", 0xe750f010, 5, ARM_EXT_V6, do_smmul},
1410 { "smmulr", 0xe750f030, 6, ARM_EXT_V6, do_smmul},
1411 { "smuad", 0xe700f010, 5, ARM_EXT_V6, do_smmul},
1412 { "smuadx", 0xe700f030, 6, ARM_EXT_V6, do_smmul},
1413 { "smusd", 0xe700f050, 5, ARM_EXT_V6, do_smmul},
1414 { "smusdx", 0xe700f070, 6, ARM_EXT_V6, do_smmul},
1415 { "srsia", 0xf8cd0500, 0, ARM_EXT_V6, do_srs},
1416 { "srsib", 0xf9cd0500, 0, ARM_EXT_V6, do_srs},
1417 { "srsda", 0xf84d0500, 0, ARM_EXT_V6, do_srs},
1418 { "srsdb", 0xf94d0500, 0, ARM_EXT_V6, do_srs},
1419 { "ssat", 0xe6a00010, 4, ARM_EXT_V6, do_ssat},
1420 { "ssat16", 0xe6a00f30, 6, ARM_EXT_V6, do_ssat16},
1421 { "strex", 0xe1800f90, 5, ARM_EXT_V6, do_strex},
1422 { "umaal", 0xe0400090, 5, ARM_EXT_V6, do_umaal},
1423 { "usad8", 0xe780f010, 5, ARM_EXT_V6, do_smmul},
1424 { "usada8", 0xe7800010, 6, ARM_EXT_V6, do_smlad},
1425 { "usat", 0xe6e00010, 4, ARM_EXT_V6, do_usat},
1426 { "usat16", 0xe6e00f30, 6, ARM_EXT_V6, do_usat16},
1427
1428 /* Core FPA instruction set (V1). */
1429 {"wfs", 0xee200110, 3, FPU_FPA_EXT_V1, do_fpa_ctrl},
1430 {"rfs", 0xee300110, 3, FPU_FPA_EXT_V1, do_fpa_ctrl},
1431 {"wfc", 0xee400110, 3, FPU_FPA_EXT_V1, do_fpa_ctrl},
1432 {"rfc", 0xee500110, 3, FPU_FPA_EXT_V1, do_fpa_ctrl},
1433
1434 {"ldfs", 0xec100100, 3, FPU_FPA_EXT_V1, do_fpa_ldst},
1435 {"ldfd", 0xec108100, 3, FPU_FPA_EXT_V1, do_fpa_ldst},
1436 {"ldfe", 0xec500100, 3, FPU_FPA_EXT_V1, do_fpa_ldst},
1437 {"ldfp", 0xec508100, 3, FPU_FPA_EXT_V1, do_fpa_ldst},
1438
1439 {"stfs", 0xec000100, 3, FPU_FPA_EXT_V1, do_fpa_ldst},
1440 {"stfd", 0xec008100, 3, FPU_FPA_EXT_V1, do_fpa_ldst},
1441 {"stfe", 0xec400100, 3, FPU_FPA_EXT_V1, do_fpa_ldst},
1442 {"stfp", 0xec408100, 3, FPU_FPA_EXT_V1, do_fpa_ldst},
1443
1444 {"mvfs", 0xee008100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1445 {"mvfsp", 0xee008120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1446 {"mvfsm", 0xee008140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1447 {"mvfsz", 0xee008160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1448 {"mvfd", 0xee008180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1449 {"mvfdp", 0xee0081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1450 {"mvfdm", 0xee0081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1451 {"mvfdz", 0xee0081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1452 {"mvfe", 0xee088100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1453 {"mvfep", 0xee088120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1454 {"mvfem", 0xee088140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1455 {"mvfez", 0xee088160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1456
1457 {"mnfs", 0xee108100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1458 {"mnfsp", 0xee108120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1459 {"mnfsm", 0xee108140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1460 {"mnfsz", 0xee108160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1461 {"mnfd", 0xee108180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1462 {"mnfdp", 0xee1081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1463 {"mnfdm", 0xee1081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1464 {"mnfdz", 0xee1081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1465 {"mnfe", 0xee188100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1466 {"mnfep", 0xee188120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1467 {"mnfem", 0xee188140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1468 {"mnfez", 0xee188160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1469
1470 {"abss", 0xee208100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1471 {"abssp", 0xee208120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1472 {"abssm", 0xee208140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1473 {"abssz", 0xee208160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1474 {"absd", 0xee208180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1475 {"absdp", 0xee2081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1476 {"absdm", 0xee2081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1477 {"absdz", 0xee2081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1478 {"abse", 0xee288100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1479 {"absep", 0xee288120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1480 {"absem", 0xee288140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1481 {"absez", 0xee288160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1482
1483 {"rnds", 0xee308100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1484 {"rndsp", 0xee308120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1485 {"rndsm", 0xee308140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1486 {"rndsz", 0xee308160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1487 {"rndd", 0xee308180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1488 {"rnddp", 0xee3081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1489 {"rnddm", 0xee3081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1490 {"rnddz", 0xee3081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1491 {"rnde", 0xee388100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1492 {"rndep", 0xee388120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1493 {"rndem", 0xee388140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1494 {"rndez", 0xee388160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1495
1496 {"sqts", 0xee408100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1497 {"sqtsp", 0xee408120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1498 {"sqtsm", 0xee408140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1499 {"sqtsz", 0xee408160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1500 {"sqtd", 0xee408180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1501 {"sqtdp", 0xee4081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1502 {"sqtdm", 0xee4081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1503 {"sqtdz", 0xee4081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1504 {"sqte", 0xee488100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1505 {"sqtep", 0xee488120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1506 {"sqtem", 0xee488140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1507 {"sqtez", 0xee488160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1508
1509 {"logs", 0xee508100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1510 {"logsp", 0xee508120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1511 {"logsm", 0xee508140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1512 {"logsz", 0xee508160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1513 {"logd", 0xee508180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1514 {"logdp", 0xee5081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1515 {"logdm", 0xee5081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1516 {"logdz", 0xee5081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1517 {"loge", 0xee588100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1518 {"logep", 0xee588120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1519 {"logem", 0xee588140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1520 {"logez", 0xee588160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1521
1522 {"lgns", 0xee608100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1523 {"lgnsp", 0xee608120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1524 {"lgnsm", 0xee608140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1525 {"lgnsz", 0xee608160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1526 {"lgnd", 0xee608180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1527 {"lgndp", 0xee6081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1528 {"lgndm", 0xee6081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1529 {"lgndz", 0xee6081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1530 {"lgne", 0xee688100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1531 {"lgnep", 0xee688120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1532 {"lgnem", 0xee688140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1533 {"lgnez", 0xee688160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1534
1535 {"exps", 0xee708100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1536 {"expsp", 0xee708120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1537 {"expsm", 0xee708140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1538 {"expsz", 0xee708160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1539 {"expd", 0xee708180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1540 {"expdp", 0xee7081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1541 {"expdm", 0xee7081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1542 {"expdz", 0xee7081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1543 {"expe", 0xee788100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1544 {"expep", 0xee788120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1545 {"expem", 0xee788140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1546 {"expdz", 0xee788160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1547
1548 {"sins", 0xee808100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1549 {"sinsp", 0xee808120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1550 {"sinsm", 0xee808140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1551 {"sinsz", 0xee808160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1552 {"sind", 0xee808180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1553 {"sindp", 0xee8081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1554 {"sindm", 0xee8081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1555 {"sindz", 0xee8081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1556 {"sine", 0xee888100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1557 {"sinep", 0xee888120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1558 {"sinem", 0xee888140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1559 {"sinez", 0xee888160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1560
1561 {"coss", 0xee908100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1562 {"cossp", 0xee908120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1563 {"cossm", 0xee908140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1564 {"cossz", 0xee908160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1565 {"cosd", 0xee908180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1566 {"cosdp", 0xee9081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1567 {"cosdm", 0xee9081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1568 {"cosdz", 0xee9081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1569 {"cose", 0xee988100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1570 {"cosep", 0xee988120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1571 {"cosem", 0xee988140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1572 {"cosez", 0xee988160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1573
1574 {"tans", 0xeea08100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1575 {"tansp", 0xeea08120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1576 {"tansm", 0xeea08140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1577 {"tansz", 0xeea08160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1578 {"tand", 0xeea08180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1579 {"tandp", 0xeea081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1580 {"tandm", 0xeea081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1581 {"tandz", 0xeea081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1582 {"tane", 0xeea88100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1583 {"tanep", 0xeea88120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1584 {"tanem", 0xeea88140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1585 {"tanez", 0xeea88160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1586
1587 {"asns", 0xeeb08100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1588 {"asnsp", 0xeeb08120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1589 {"asnsm", 0xeeb08140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1590 {"asnsz", 0xeeb08160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1591 {"asnd", 0xeeb08180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1592 {"asndp", 0xeeb081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1593 {"asndm", 0xeeb081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1594 {"asndz", 0xeeb081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1595 {"asne", 0xeeb88100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1596 {"asnep", 0xeeb88120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1597 {"asnem", 0xeeb88140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1598 {"asnez", 0xeeb88160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1599
1600 {"acss", 0xeec08100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1601 {"acssp", 0xeec08120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1602 {"acssm", 0xeec08140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1603 {"acssz", 0xeec08160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1604 {"acsd", 0xeec08180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1605 {"acsdp", 0xeec081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1606 {"acsdm", 0xeec081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1607 {"acsdz", 0xeec081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1608 {"acse", 0xeec88100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1609 {"acsep", 0xeec88120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1610 {"acsem", 0xeec88140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1611 {"acsez", 0xeec88160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1612
1613 {"atns", 0xeed08100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1614 {"atnsp", 0xeed08120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1615 {"atnsm", 0xeed08140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1616 {"atnsz", 0xeed08160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1617 {"atnd", 0xeed08180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1618 {"atndp", 0xeed081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1619 {"atndm", 0xeed081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1620 {"atndz", 0xeed081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1621 {"atne", 0xeed88100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1622 {"atnep", 0xeed88120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1623 {"atnem", 0xeed88140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1624 {"atnez", 0xeed88160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1625
1626 {"urds", 0xeee08100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1627 {"urdsp", 0xeee08120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1628 {"urdsm", 0xeee08140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1629 {"urdsz", 0xeee08160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1630 {"urdd", 0xeee08180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1631 {"urddp", 0xeee081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1632 {"urddm", 0xeee081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1633 {"urddz", 0xeee081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1634 {"urde", 0xeee88100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1635 {"urdep", 0xeee88120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1636 {"urdem", 0xeee88140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1637 {"urdez", 0xeee88160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1638
1639 {"nrms", 0xeef08100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1640 {"nrmsp", 0xeef08120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1641 {"nrmsm", 0xeef08140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1642 {"nrmsz", 0xeef08160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1643 {"nrmd", 0xeef08180, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1644 {"nrmdp", 0xeef081a0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1645 {"nrmdm", 0xeef081c0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1646 {"nrmdz", 0xeef081e0, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1647 {"nrme", 0xeef88100, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1648 {"nrmep", 0xeef88120, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1649 {"nrmem", 0xeef88140, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1650 {"nrmez", 0xeef88160, 3, FPU_FPA_EXT_V1, do_fpa_monadic},
1651
1652 {"adfs", 0xee000100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1653 {"adfsp", 0xee000120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1654 {"adfsm", 0xee000140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1655 {"adfsz", 0xee000160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1656 {"adfd", 0xee000180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1657 {"adfdp", 0xee0001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1658 {"adfdm", 0xee0001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1659 {"adfdz", 0xee0001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1660 {"adfe", 0xee080100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1661 {"adfep", 0xee080120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1662 {"adfem", 0xee080140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1663 {"adfez", 0xee080160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1664
1665 {"sufs", 0xee200100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1666 {"sufsp", 0xee200120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1667 {"sufsm", 0xee200140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1668 {"sufsz", 0xee200160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1669 {"sufd", 0xee200180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1670 {"sufdp", 0xee2001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1671 {"sufdm", 0xee2001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1672 {"sufdz", 0xee2001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1673 {"sufe", 0xee280100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1674 {"sufep", 0xee280120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1675 {"sufem", 0xee280140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1676 {"sufez", 0xee280160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1677
1678 {"rsfs", 0xee300100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1679 {"rsfsp", 0xee300120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1680 {"rsfsm", 0xee300140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1681 {"rsfsz", 0xee300160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1682 {"rsfd", 0xee300180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1683 {"rsfdp", 0xee3001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1684 {"rsfdm", 0xee3001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1685 {"rsfdz", 0xee3001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1686 {"rsfe", 0xee380100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1687 {"rsfep", 0xee380120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1688 {"rsfem", 0xee380140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1689 {"rsfez", 0xee380160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1690
1691 {"mufs", 0xee100100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1692 {"mufsp", 0xee100120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1693 {"mufsm", 0xee100140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1694 {"mufsz", 0xee100160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1695 {"mufd", 0xee100180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1696 {"mufdp", 0xee1001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1697 {"mufdm", 0xee1001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1698 {"mufdz", 0xee1001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1699 {"mufe", 0xee180100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1700 {"mufep", 0xee180120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1701 {"mufem", 0xee180140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1702 {"mufez", 0xee180160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1703
1704 {"dvfs", 0xee400100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1705 {"dvfsp", 0xee400120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1706 {"dvfsm", 0xee400140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1707 {"dvfsz", 0xee400160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1708 {"dvfd", 0xee400180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1709 {"dvfdp", 0xee4001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1710 {"dvfdm", 0xee4001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1711 {"dvfdz", 0xee4001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1712 {"dvfe", 0xee480100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1713 {"dvfep", 0xee480120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1714 {"dvfem", 0xee480140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1715 {"dvfez", 0xee480160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1716
1717 {"rdfs", 0xee500100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1718 {"rdfsp", 0xee500120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1719 {"rdfsm", 0xee500140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1720 {"rdfsz", 0xee500160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1721 {"rdfd", 0xee500180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1722 {"rdfdp", 0xee5001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1723 {"rdfdm", 0xee5001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1724 {"rdfdz", 0xee5001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1725 {"rdfe", 0xee580100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1726 {"rdfep", 0xee580120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1727 {"rdfem", 0xee580140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1728 {"rdfez", 0xee580160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1729
1730 {"pows", 0xee600100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1731 {"powsp", 0xee600120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1732 {"powsm", 0xee600140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1733 {"powsz", 0xee600160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1734 {"powd", 0xee600180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1735 {"powdp", 0xee6001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1736 {"powdm", 0xee6001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1737 {"powdz", 0xee6001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1738 {"powe", 0xee680100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1739 {"powep", 0xee680120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1740 {"powem", 0xee680140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1741 {"powez", 0xee680160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1742
1743 {"rpws", 0xee700100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1744 {"rpwsp", 0xee700120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1745 {"rpwsm", 0xee700140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1746 {"rpwsz", 0xee700160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1747 {"rpwd", 0xee700180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1748 {"rpwdp", 0xee7001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1749 {"rpwdm", 0xee7001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1750 {"rpwdz", 0xee7001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1751 {"rpwe", 0xee780100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1752 {"rpwep", 0xee780120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1753 {"rpwem", 0xee780140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1754 {"rpwez", 0xee780160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1755
1756 {"rmfs", 0xee800100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1757 {"rmfsp", 0xee800120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1758 {"rmfsm", 0xee800140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1759 {"rmfsz", 0xee800160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1760 {"rmfd", 0xee800180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1761 {"rmfdp", 0xee8001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1762 {"rmfdm", 0xee8001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1763 {"rmfdz", 0xee8001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1764 {"rmfe", 0xee880100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1765 {"rmfep", 0xee880120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1766 {"rmfem", 0xee880140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1767 {"rmfez", 0xee880160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1768
1769 {"fmls", 0xee900100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1770 {"fmlsp", 0xee900120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1771 {"fmlsm", 0xee900140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1772 {"fmlsz", 0xee900160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1773 {"fmld", 0xee900180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1774 {"fmldp", 0xee9001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1775 {"fmldm", 0xee9001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1776 {"fmldz", 0xee9001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1777 {"fmle", 0xee980100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1778 {"fmlep", 0xee980120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1779 {"fmlem", 0xee980140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1780 {"fmlez", 0xee980160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1781
1782 {"fdvs", 0xeea00100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1783 {"fdvsp", 0xeea00120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1784 {"fdvsm", 0xeea00140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1785 {"fdvsz", 0xeea00160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1786 {"fdvd", 0xeea00180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1787 {"fdvdp", 0xeea001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1788 {"fdvdm", 0xeea001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1789 {"fdvdz", 0xeea001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1790 {"fdve", 0xeea80100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1791 {"fdvep", 0xeea80120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1792 {"fdvem", 0xeea80140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1793 {"fdvez", 0xeea80160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1794
1795 {"frds", 0xeeb00100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1796 {"frdsp", 0xeeb00120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1797 {"frdsm", 0xeeb00140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1798 {"frdsz", 0xeeb00160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1799 {"frdd", 0xeeb00180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1800 {"frddp", 0xeeb001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1801 {"frddm", 0xeeb001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1802 {"frddz", 0xeeb001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1803 {"frde", 0xeeb80100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1804 {"frdep", 0xeeb80120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1805 {"frdem", 0xeeb80140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1806 {"frdez", 0xeeb80160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1807
1808 {"pols", 0xeec00100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1809 {"polsp", 0xeec00120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1810 {"polsm", 0xeec00140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1811 {"polsz", 0xeec00160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1812 {"pold", 0xeec00180, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1813 {"poldp", 0xeec001a0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1814 {"poldm", 0xeec001c0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1815 {"poldz", 0xeec001e0, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1816 {"pole", 0xeec80100, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1817 {"polep", 0xeec80120, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1818 {"polem", 0xeec80140, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1819 {"polez", 0xeec80160, 3, FPU_FPA_EXT_V1, do_fpa_dyadic},
1820
1821 {"cmf", 0xee90f110, 3, FPU_FPA_EXT_V1, do_fpa_cmp},
1822 {"cmfe", 0xeed0f110, 3, FPU_FPA_EXT_V1, do_fpa_cmp},
1823 {"cnf", 0xeeb0f110, 3, FPU_FPA_EXT_V1, do_fpa_cmp},
1824 {"cnfe", 0xeef0f110, 3, FPU_FPA_EXT_V1, do_fpa_cmp},
1825 /* The FPA10 data sheet suggests that the 'E' of cmfe/cnfe should
1826 not be an optional suffix, but part of the instruction. To be
1827 compatible, we accept either. */
1828 {"cmfe", 0xeed0f110, 4, FPU_FPA_EXT_V1, do_fpa_cmp},
1829 {"cnfe", 0xeef0f110, 4, FPU_FPA_EXT_V1, do_fpa_cmp},
1830
1831 {"flts", 0xee000110, 3, FPU_FPA_EXT_V1, do_fpa_from_reg},
1832 {"fltsp", 0xee000130, 3, FPU_FPA_EXT_V1, do_fpa_from_reg},
1833 {"fltsm", 0xee000150, 3, FPU_FPA_EXT_V1, do_fpa_from_reg},
1834 {"fltsz", 0xee000170, 3, FPU_FPA_EXT_V1, do_fpa_from_reg},
1835 {"fltd", 0xee000190, 3, FPU_FPA_EXT_V1, do_fpa_from_reg},
1836 {"fltdp", 0xee0001b0, 3, FPU_FPA_EXT_V1, do_fpa_from_reg},
1837 {"fltdm", 0xee0001d0, 3, FPU_FPA_EXT_V1, do_fpa_from_reg},
1838 {"fltdz", 0xee0001f0, 3, FPU_FPA_EXT_V1, do_fpa_from_reg},
1839 {"flte", 0xee080110, 3, FPU_FPA_EXT_V1, do_fpa_from_reg},
1840 {"fltep", 0xee080130, 3, FPU_FPA_EXT_V1, do_fpa_from_reg},
1841 {"fltem", 0xee080150, 3, FPU_FPA_EXT_V1, do_fpa_from_reg},
1842 {"fltez", 0xee080170, 3, FPU_FPA_EXT_V1, do_fpa_from_reg},
1843
1844 /* The implementation of the FIX instruction is broken on some
1845 assemblers, in that it accepts a precision specifier as well as a
1846 rounding specifier, despite the fact that this is meaningless.
1847 To be more compatible, we accept it as well, though of course it
1848 does not set any bits. */
1849 {"fix", 0xee100110, 3, FPU_FPA_EXT_V1, do_fpa_to_reg},
1850 {"fixp", 0xee100130, 3, FPU_FPA_EXT_V1, do_fpa_to_reg},
1851 {"fixm", 0xee100150, 3, FPU_FPA_EXT_V1, do_fpa_to_reg},
1852 {"fixz", 0xee100170, 3, FPU_FPA_EXT_V1, do_fpa_to_reg},
1853 {"fixsp", 0xee100130, 3, FPU_FPA_EXT_V1, do_fpa_to_reg},
1854 {"fixsm", 0xee100150, 3, FPU_FPA_EXT_V1, do_fpa_to_reg},
1855 {"fixsz", 0xee100170, 3, FPU_FPA_EXT_V1, do_fpa_to_reg},
1856 {"fixdp", 0xee100130, 3, FPU_FPA_EXT_V1, do_fpa_to_reg},
1857 {"fixdm", 0xee100150, 3, FPU_FPA_EXT_V1, do_fpa_to_reg},
1858 {"fixdz", 0xee100170, 3, FPU_FPA_EXT_V1, do_fpa_to_reg},
1859 {"fixep", 0xee100130, 3, FPU_FPA_EXT_V1, do_fpa_to_reg},
1860 {"fixem", 0xee100150, 3, FPU_FPA_EXT_V1, do_fpa_to_reg},
1861 {"fixez", 0xee100170, 3, FPU_FPA_EXT_V1, do_fpa_to_reg},
1862
1863 /* Instructions that were new with the real FPA, call them V2. */
1864 {"lfm", 0xec100200, 3, FPU_FPA_EXT_V2, do_fpa_ldmstm},
1865 {"lfmfd", 0xec900200, 3, FPU_FPA_EXT_V2, do_fpa_ldmstm},
1866 {"lfmea", 0xed100200, 3, FPU_FPA_EXT_V2, do_fpa_ldmstm},
1867 {"sfm", 0xec000200, 3, FPU_FPA_EXT_V2, do_fpa_ldmstm},
1868 {"sfmfd", 0xed000200, 3, FPU_FPA_EXT_V2, do_fpa_ldmstm},
1869 {"sfmea", 0xec800200, 3, FPU_FPA_EXT_V2, do_fpa_ldmstm},
1870
1871 /* VFP V1xD (single precision). */
1872 /* Moves and type conversions. */
1873 {"fcpys", 0xeeb00a40, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
1874 {"fmrs", 0xee100a10, 4, FPU_VFP_EXT_V1xD, do_vfp_reg_from_sp},
1875 {"fmsr", 0xee000a10, 4, FPU_VFP_EXT_V1xD, do_vfp_sp_from_reg},
1876 {"fmstat", 0xeef1fa10, 6, FPU_VFP_EXT_V1xD, do_empty},
1877 {"fsitos", 0xeeb80ac0, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
1878 {"fuitos", 0xeeb80a40, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
1879 {"ftosis", 0xeebd0a40, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
1880 {"ftosizs", 0xeebd0ac0, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
1881 {"ftouis", 0xeebc0a40, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
1882 {"ftouizs", 0xeebc0ac0, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
1883 {"fmrx", 0xeef00a10, 4, FPU_VFP_EXT_V1xD, do_vfp_reg_from_ctrl},
1884 {"fmxr", 0xeee00a10, 4, FPU_VFP_EXT_V1xD, do_vfp_ctrl_from_reg},
1885
1886 /* Memory operations. */
1887 {"flds", 0xed100a00, 4, FPU_VFP_EXT_V1xD, do_vfp_sp_ldst},
1888 {"fsts", 0xed000a00, 4, FPU_VFP_EXT_V1xD, do_vfp_sp_ldst},
1889 {"fldmias", 0xec900a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmia},
1890 {"fldmfds", 0xec900a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmia},
1891 {"fldmdbs", 0xed300a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmdb},
1892 {"fldmeas", 0xed300a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmdb},
1893 {"fldmiax", 0xec900b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmia},
1894 {"fldmfdx", 0xec900b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmia},
1895 {"fldmdbx", 0xed300b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmdb},
1896 {"fldmeax", 0xed300b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmdb},
1897 {"fstmias", 0xec800a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmia},
1898 {"fstmeas", 0xec800a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmia},
1899 {"fstmdbs", 0xed200a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmdb},
1900 {"fstmfds", 0xed200a00, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_ldstmdb},
1901 {"fstmiax", 0xec800b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmia},
1902 {"fstmeax", 0xec800b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmia},
1903 {"fstmdbx", 0xed200b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmdb},
1904 {"fstmfdx", 0xed200b00, 7, FPU_VFP_EXT_V1xD, do_vfp_xp_ldstmdb},
1905
1906 /* Monadic operations. */
1907 {"fabss", 0xeeb00ac0, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
1908 {"fnegs", 0xeeb10a40, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
1909 {"fsqrts", 0xeeb10ac0, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
1910
1911 /* Dyadic operations. */
1912 {"fadds", 0xee300a00, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
1913 {"fsubs", 0xee300a40, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
1914 {"fmuls", 0xee200a00, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
1915 {"fdivs", 0xee800a00, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
1916 {"fmacs", 0xee000a00, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
1917 {"fmscs", 0xee100a00, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
1918 {"fnmuls", 0xee200a40, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
1919 {"fnmacs", 0xee000a40, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
1920 {"fnmscs", 0xee100a40, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_dyadic},
1921
1922 /* Comparisons. */
1923 {"fcmps", 0xeeb40a40, 5, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
1924 {"fcmpzs", 0xeeb50a40, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_compare_z},
1925 {"fcmpes", 0xeeb40ac0, 6, FPU_VFP_EXT_V1xD, do_vfp_sp_monadic},
1926 {"fcmpezs", 0xeeb50ac0, 7, FPU_VFP_EXT_V1xD, do_vfp_sp_compare_z},
1927
1928 /* VFP V1 (Double precision). */
1929 /* Moves and type conversions. */
1930 {"fcpyd", 0xeeb00b40, 5, FPU_VFP_EXT_V1, do_vfp_dp_monadic},
1931 {"fcvtds", 0xeeb70ac0, 6, FPU_VFP_EXT_V1, do_vfp_dp_sp_cvt},
1932 {"fcvtsd", 0xeeb70bc0, 6, FPU_VFP_EXT_V1, do_vfp_sp_dp_cvt},
1933 {"fmdhr", 0xee200b10, 5, FPU_VFP_EXT_V1, do_vfp_dp_from_reg},
1934 {"fmdlr", 0xee000b10, 5, FPU_VFP_EXT_V1, do_vfp_dp_from_reg},
1935 {"fmrdh", 0xee300b10, 5, FPU_VFP_EXT_V1, do_vfp_reg_from_dp},
1936 {"fmrdl", 0xee100b10, 5, FPU_VFP_EXT_V1, do_vfp_reg_from_dp},
1937 {"fsitod", 0xeeb80bc0, 6, FPU_VFP_EXT_V1, do_vfp_dp_sp_cvt},
1938 {"fuitod", 0xeeb80b40, 6, FPU_VFP_EXT_V1, do_vfp_dp_sp_cvt},
1939 {"ftosid", 0xeebd0b40, 6, FPU_VFP_EXT_V1, do_vfp_sp_dp_cvt},
1940 {"ftosizd", 0xeebd0bc0, 7, FPU_VFP_EXT_V1, do_vfp_sp_dp_cvt},
1941 {"ftouid", 0xeebc0b40, 6, FPU_VFP_EXT_V1, do_vfp_sp_dp_cvt},
1942 {"ftouizd", 0xeebc0bc0, 7, FPU_VFP_EXT_V1, do_vfp_sp_dp_cvt},
1943
1944 /* Memory operations. */
1945 {"fldd", 0xed100b00, 4, FPU_VFP_EXT_V1, do_vfp_dp_ldst},
1946 {"fstd", 0xed000b00, 4, FPU_VFP_EXT_V1, do_vfp_dp_ldst},
1947 {"fldmiad", 0xec900b00, 7, FPU_VFP_EXT_V1, do_vfp_dp_ldstmia},
1948 {"fldmfdd", 0xec900b00, 7, FPU_VFP_EXT_V1, do_vfp_dp_ldstmia},
1949 {"fldmdbd", 0xed300b00, 7, FPU_VFP_EXT_V1, do_vfp_dp_ldstmdb},
1950 {"fldmead", 0xed300b00, 7, FPU_VFP_EXT_V1, do_vfp_dp_ldstmdb},
1951 {"fstmiad", 0xec800b00, 7, FPU_VFP_EXT_V1, do_vfp_dp_ldstmia},
1952 {"fstmead", 0xec800b00, 7, FPU_VFP_EXT_V1, do_vfp_dp_ldstmia},
1953 {"fstmdbd", 0xed200b00, 7, FPU_VFP_EXT_V1, do_vfp_dp_ldstmdb},
1954 {"fstmfdd", 0xed200b00, 7, FPU_VFP_EXT_V1, do_vfp_dp_ldstmdb},
1955
1956 /* Monadic operations. */
1957 {"fabsd", 0xeeb00bc0, 5, FPU_VFP_EXT_V1, do_vfp_dp_monadic},
1958 {"fnegd", 0xeeb10b40, 5, FPU_VFP_EXT_V1, do_vfp_dp_monadic},
1959 {"fsqrtd", 0xeeb10bc0, 6, FPU_VFP_EXT_V1, do_vfp_dp_monadic},
1960
1961 /* Dyadic operations. */
1962 {"faddd", 0xee300b00, 5, FPU_VFP_EXT_V1, do_vfp_dp_dyadic},
1963 {"fsubd", 0xee300b40, 5, FPU_VFP_EXT_V1, do_vfp_dp_dyadic},
1964 {"fmuld", 0xee200b00, 5, FPU_VFP_EXT_V1, do_vfp_dp_dyadic},
1965 {"fdivd", 0xee800b00, 5, FPU_VFP_EXT_V1, do_vfp_dp_dyadic},
1966 {"fmacd", 0xee000b00, 5, FPU_VFP_EXT_V1, do_vfp_dp_dyadic},
1967 {"fmscd", 0xee100b00, 5, FPU_VFP_EXT_V1, do_vfp_dp_dyadic},
1968 {"fnmuld", 0xee200b40, 6, FPU_VFP_EXT_V1, do_vfp_dp_dyadic},
1969 {"fnmacd", 0xee000b40, 6, FPU_VFP_EXT_V1, do_vfp_dp_dyadic},
1970 {"fnmscd", 0xee100b40, 6, FPU_VFP_EXT_V1, do_vfp_dp_dyadic},
1971
1972 /* Comparisons. */
1973 {"fcmpd", 0xeeb40b40, 5, FPU_VFP_EXT_V1, do_vfp_dp_monadic},
1974 {"fcmpzd", 0xeeb50b40, 6, FPU_VFP_EXT_V1, do_vfp_dp_compare_z},
1975 {"fcmped", 0xeeb40bc0, 6, FPU_VFP_EXT_V1, do_vfp_dp_monadic},
1976 {"fcmpezd", 0xeeb50bc0, 7, FPU_VFP_EXT_V1, do_vfp_dp_compare_z},
1977
1978 /* VFP V2. */
1979 {"fmsrr", 0xec400a10, 5, FPU_VFP_EXT_V2, do_vfp_sp_reg2},
1980 {"fmrrs", 0xec500a10, 5, FPU_VFP_EXT_V2, do_vfp_sp_reg2},
1981 {"fmdrr", 0xec400b10, 5, FPU_VFP_EXT_V2, do_vfp_dp_from_reg2},
1982 {"fmrrd", 0xec500b10, 5, FPU_VFP_EXT_V2, do_vfp_reg2_from_dp},
1983
1984 /* Intel XScale extensions to ARM V5 ISA. (All use CP0). */
1985 {"mia", 0xee200010, 3, ARM_CEXT_XSCALE, do_xsc_mia},
1986 {"miaph", 0xee280010, 5, ARM_CEXT_XSCALE, do_xsc_mia},
1987 {"miabb", 0xee2c0010, 5, ARM_CEXT_XSCALE, do_xsc_mia},
1988 {"miabt", 0xee2d0010, 5, ARM_CEXT_XSCALE, do_xsc_mia},
1989 {"miatb", 0xee2e0010, 5, ARM_CEXT_XSCALE, do_xsc_mia},
1990 {"miatt", 0xee2f0010, 5, ARM_CEXT_XSCALE, do_xsc_mia},
1991 {"mar", 0xec400000, 3, ARM_CEXT_XSCALE, do_xsc_mar},
1992 {"mra", 0xec500000, 3, ARM_CEXT_XSCALE, do_xsc_mra},
1993
1994 /* Intel Wireless MMX technology instructions. */
1995 {"tandcb", 0xee130130, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tandc},
1996 {"tandch", 0xee530130, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tandc},
1997 {"tandcw", 0xee930130, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tandc},
1998 {"tbcstb", 0xee400010, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tbcst},
1999 {"tbcsth", 0xee400050, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tbcst},
2000 {"tbcstw", 0xee400090, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tbcst},
2001 {"textrcb", 0xee130170, 7, ARM_CEXT_IWMMXT, do_iwmmxt_textrc},
2002 {"textrch", 0xee530170, 7, ARM_CEXT_IWMMXT, do_iwmmxt_textrc},
2003 {"textrcw", 0xee930170, 7, ARM_CEXT_IWMMXT, do_iwmmxt_textrc},
2004 {"textrmub", 0xee100070, 8, ARM_CEXT_IWMMXT, do_iwmmxt_textrm},
2005 {"textrmuh", 0xee500070, 8, ARM_CEXT_IWMMXT, do_iwmmxt_textrm},
2006 {"textrmuw", 0xee900070, 8, ARM_CEXT_IWMMXT, do_iwmmxt_textrm},
2007 {"textrmsb", 0xee100078, 8, ARM_CEXT_IWMMXT, do_iwmmxt_textrm},
2008 {"textrmsh", 0xee500078, 8, ARM_CEXT_IWMMXT, do_iwmmxt_textrm},
2009 {"textrmsw", 0xee900078, 8, ARM_CEXT_IWMMXT, do_iwmmxt_textrm},
2010 {"tinsrb", 0xee600010, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tinsr},
2011 {"tinsrh", 0xee600050, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tinsr},
2012 {"tinsrw", 0xee600090, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tinsr},
2013 {"tmcr", 0xee000110, 4, ARM_CEXT_IWMMXT, do_iwmmxt_tmcr},
2014 {"tmcrr", 0xec400000, 5, ARM_CEXT_IWMMXT, do_iwmmxt_tmcrr},
2015 {"tmia", 0xee200010, 4, ARM_CEXT_IWMMXT, do_iwmmxt_tmia},
2016 {"tmiaph", 0xee280010, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tmia},
2017 {"tmiabb", 0xee2c0010, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tmia},
2018 {"tmiabt", 0xee2d0010, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tmia},
2019 {"tmiatb", 0xee2e0010, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tmia},
2020 {"tmiatt", 0xee2f0010, 6, ARM_CEXT_IWMMXT, do_iwmmxt_tmia},
2021 {"tmovmskb", 0xee100030, 8, ARM_CEXT_IWMMXT, do_iwmmxt_tmovmsk},
2022 {"tmovmskh", 0xee500030, 8, ARM_CEXT_IWMMXT, do_iwmmxt_tmovmsk},
2023 {"tmovmskw", 0xee900030, 8, ARM_CEXT_IWMMXT, do_iwmmxt_tmovmsk},
2024 {"tmrc", 0xee100110, 4, ARM_CEXT_IWMMXT, do_iwmmxt_tmrc},
2025 {"tmrrc", 0xec500000, 5, ARM_CEXT_IWMMXT, do_iwmmxt_tmrrc},
2026 {"torcb", 0xee130150, 5, ARM_CEXT_IWMMXT, do_iwmmxt_torc},
2027 {"torch", 0xee530150, 5, ARM_CEXT_IWMMXT, do_iwmmxt_torc},
2028 {"torcw", 0xee930150, 5, ARM_CEXT_IWMMXT, do_iwmmxt_torc},
2029 {"waccb", 0xee0001c0, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2030 {"wacch", 0xee4001c0, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2031 {"waccw", 0xee8001c0, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2032 {"waddbss", 0xee300180, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2033 {"waddb", 0xee000180, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2034 {"waddbus", 0xee100180, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2035 {"waddhss", 0xee700180, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2036 {"waddh", 0xee400180, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2037 {"waddhus", 0xee500180, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2038 {"waddwss", 0xeeb00180, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2039 {"waddw", 0xee800180, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2040 {"waddwus", 0xee900180, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2041 {"waligni", 0xee000020, 7, ARM_CEXT_IWMMXT, do_iwmmxt_waligni},
2042 {"walignr0", 0xee800020, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2043 {"walignr1", 0xee900020, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2044 {"walignr2", 0xeea00020, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2045 {"walignr3", 0xeeb00020, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2046 {"wand", 0xee200000, 4, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2047 {"wandn", 0xee300000, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2048 {"wavg2b", 0xee800000, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2049 {"wavg2br", 0xee900000, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2050 {"wavg2h", 0xeec00000, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2051 {"wavg2hr", 0xeed00000, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2052 {"wcmpeqb", 0xee000060, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2053 {"wcmpeqh", 0xee400060, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2054 {"wcmpeqw", 0xee800060, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2055 {"wcmpgtub", 0xee100060, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2056 {"wcmpgtuh", 0xee500060, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2057 {"wcmpgtuw", 0xee900060, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2058 {"wcmpgtsb", 0xee300060, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2059 {"wcmpgtsh", 0xee700060, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2060 {"wcmpgtsw", 0xeeb00060, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2061 {"wldrb", 0xec100000, 5, ARM_CEXT_IWMMXT, do_iwmmxt_byte_addr},
2062 {"wldrh", 0xec100100, 5, ARM_CEXT_IWMMXT, do_iwmmxt_byte_addr},
2063 {"wldrw", 0xec100200, 5, ARM_CEXT_IWMMXT, do_iwmmxt_word_addr},
2064 {"wldrd", 0xec100300, 5, ARM_CEXT_IWMMXT, do_iwmmxt_word_addr},
2065 {"wmacs", 0xee600100, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2066 {"wmacsz", 0xee700100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2067 {"wmacu", 0xee400100, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2068 {"wmacuz", 0xee500100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2069 {"wmadds", 0xeea00100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2070 {"wmaddu", 0xee800100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2071 {"wmaxsb", 0xee200160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2072 {"wmaxsh", 0xee600160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2073 {"wmaxsw", 0xeea00160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2074 {"wmaxub", 0xee000160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2075 {"wmaxuh", 0xee400160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2076 {"wmaxuw", 0xee800160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2077 {"wminsb", 0xee300160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2078 {"wminsh", 0xee700160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2079 {"wminsw", 0xeeb00160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2080 {"wminub", 0xee100160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2081 {"wminuh", 0xee500160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2082 {"wminuw", 0xee900160, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2083 {"wmov", 0xee000000, 4, ARM_CEXT_IWMMXT, do_iwmmxt_wmov},
2084 {"wmulsm", 0xee300100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2085 {"wmulsl", 0xee200100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2086 {"wmulum", 0xee100100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2087 {"wmulul", 0xee000100, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2088 {"wor", 0xee000000, 3, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2089 {"wpackhss", 0xee700080, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2090 {"wpackhus", 0xee500080, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2091 {"wpackwss", 0xeeb00080, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2092 {"wpackwus", 0xee900080, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2093 {"wpackdss", 0xeef00080, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2094 {"wpackdus", 0xeed00080, 8, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2095 {"wrorh", 0xee700040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2096 {"wrorhg", 0xee700148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
2097 {"wrorw", 0xeeb00040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2098 {"wrorwg", 0xeeb00148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
2099 {"wrord", 0xeef00040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2100 {"wrordg", 0xeef00148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
2101 {"wsadb", 0xee000120, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2102 {"wsadbz", 0xee100120, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2103 {"wsadh", 0xee400120, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2104 {"wsadhz", 0xee500120, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2105 {"wshufh", 0xee0001e0, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wshufh},
2106 {"wsllh", 0xee500040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2107 {"wsllhg", 0xee500148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
2108 {"wsllw", 0xee900040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2109 {"wsllwg", 0xee900148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
2110 {"wslld", 0xeed00040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2111 {"wslldg", 0xeed00148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
2112 {"wsrah", 0xee400040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2113 {"wsrahg", 0xee400148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
2114 {"wsraw", 0xee800040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2115 {"wsrawg", 0xee800148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
2116 {"wsrad", 0xeec00040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2117 {"wsradg", 0xeec00148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
2118 {"wsrlh", 0xee600040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2119 {"wsrlhg", 0xee600148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
2120 {"wsrlw", 0xeea00040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2121 {"wsrlwg", 0xeea00148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
2122 {"wsrld", 0xeee00040, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2123 {"wsrldg", 0xeee00148, 6, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwcg},
2124 {"wstrb", 0xec000000, 5, ARM_CEXT_IWMMXT, do_iwmmxt_byte_addr},
2125 {"wstrh", 0xec000100, 5, ARM_CEXT_IWMMXT, do_iwmmxt_byte_addr},
2126 {"wstrw", 0xec000200, 5, ARM_CEXT_IWMMXT, do_iwmmxt_word_addr},
2127 {"wstrd", 0xec000300, 5, ARM_CEXT_IWMMXT, do_iwmmxt_word_addr},
2128 {"wsubbss", 0xee3001a0, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2129 {"wsubb", 0xee0001a0, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2130 {"wsubbus", 0xee1001a0, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2131 {"wsubhss", 0xee7001a0, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2132 {"wsubh", 0xee4001a0, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2133 {"wsubhus", 0xee5001a0, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2134 {"wsubwss", 0xeeb001a0, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2135 {"wsubw", 0xee8001a0, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2136 {"wsubwus", 0xee9001a0, 7, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2137 {"wunpckehub", 0xee0000c0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2138 {"wunpckehuh", 0xee4000c0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2139 {"wunpckehuw", 0xee8000c0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2140 {"wunpckehsb", 0xee2000c0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2141 {"wunpckehsh", 0xee6000c0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2142 {"wunpckehsw", 0xeea000c0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2143 {"wunpckihb", 0xee1000c0, 9, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2144 {"wunpckihh", 0xee5000c0, 9, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2145 {"wunpckihw", 0xee9000c0, 9, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2146 {"wunpckelub", 0xee0000e0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2147 {"wunpckeluh", 0xee4000e0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2148 {"wunpckeluw", 0xee8000e0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2149 {"wunpckelsb", 0xee2000e0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2150 {"wunpckelsh", 0xee6000e0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2151 {"wunpckelsw", 0xeea000e0, 10, ARM_CEXT_IWMMXT, do_iwmmxt_wrwr},
2152 {"wunpckilb", 0xee1000e0, 9, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2153 {"wunpckilh", 0xee5000e0, 9, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2154 {"wunpckilw", 0xee9000e0, 9, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2155 {"wxor", 0xee100000, 4, ARM_CEXT_IWMMXT, do_iwmmxt_wrwrwr},
2156 {"wzero", 0xee300000, 5, ARM_CEXT_IWMMXT, do_iwmmxt_wzero},
2157
2158 /* Cirrus Maverick instructions. */
2159 {"cfldrs", 0xec100400, 6, ARM_CEXT_MAVERICK, do_mav_ldst_1},
2160 {"cfldrd", 0xec500400, 6, ARM_CEXT_MAVERICK, do_mav_ldst_2},
2161 {"cfldr32", 0xec100500, 7, ARM_CEXT_MAVERICK, do_mav_ldst_3},
2162 {"cfldr64", 0xec500500, 7, ARM_CEXT_MAVERICK, do_mav_ldst_4},
2163 {"cfstrs", 0xec000400, 6, ARM_CEXT_MAVERICK, do_mav_ldst_1},
2164 {"cfstrd", 0xec400400, 6, ARM_CEXT_MAVERICK, do_mav_ldst_2},
2165 {"cfstr32", 0xec000500, 7, ARM_CEXT_MAVERICK, do_mav_ldst_3},
2166 {"cfstr64", 0xec400500, 7, ARM_CEXT_MAVERICK, do_mav_ldst_4},
2167 {"cfmvsr", 0xee000450, 6, ARM_CEXT_MAVERICK, do_mav_binops_2a},
2168 {"cfmvrs", 0xee100450, 6, ARM_CEXT_MAVERICK, do_mav_binops_1a},
2169 {"cfmvdlr", 0xee000410, 7, ARM_CEXT_MAVERICK, do_mav_binops_2b},
2170 {"cfmvrdl", 0xee100410, 7, ARM_CEXT_MAVERICK, do_mav_binops_1b},
2171 {"cfmvdhr", 0xee000430, 7, ARM_CEXT_MAVERICK, do_mav_binops_2b},
2172 {"cfmvrdh", 0xee100430, 7, ARM_CEXT_MAVERICK, do_mav_binops_1b},
2173 {"cfmv64lr", 0xee000510, 8, ARM_CEXT_MAVERICK, do_mav_binops_2c},
2174 {"cfmvr64l", 0xee100510, 8, ARM_CEXT_MAVERICK, do_mav_binops_1c},
2175 {"cfmv64hr", 0xee000530, 8, ARM_CEXT_MAVERICK, do_mav_binops_2c},
2176 {"cfmvr64h", 0xee100530, 8, ARM_CEXT_MAVERICK, do_mav_binops_1c},
2177 {"cfmval32", 0xee100610, 8, ARM_CEXT_MAVERICK, do_mav_binops_3a},
2178 {"cfmv32al", 0xee000610, 8, ARM_CEXT_MAVERICK, do_mav_binops_3b},
2179 {"cfmvam32", 0xee100630, 8, ARM_CEXT_MAVERICK, do_mav_binops_3a},
2180 {"cfmv32am", 0xee000630, 8, ARM_CEXT_MAVERICK, do_mav_binops_3b},
2181 {"cfmvah32", 0xee100650, 8, ARM_CEXT_MAVERICK, do_mav_binops_3a},
2182 {"cfmv32ah", 0xee000650, 8, ARM_CEXT_MAVERICK, do_mav_binops_3b},
2183 {"cfmva32", 0xee100670, 7, ARM_CEXT_MAVERICK, do_mav_binops_3a},
2184 {"cfmv32a", 0xee000670, 7, ARM_CEXT_MAVERICK, do_mav_binops_3b},
2185 {"cfmva64", 0xee100690, 7, ARM_CEXT_MAVERICK, do_mav_binops_3c},
2186 {"cfmv64a", 0xee000690, 7, ARM_CEXT_MAVERICK, do_mav_binops_3d},
2187 {"cfmvsc32", 0xee1006b0, 8, ARM_CEXT_MAVERICK, do_mav_dspsc_1},
2188 {"cfmv32sc", 0xee0006b0, 8, ARM_CEXT_MAVERICK, do_mav_dspsc_2},
2189 {"cfcpys", 0xee000400, 6, ARM_CEXT_MAVERICK, do_mav_binops_1d},
2190 {"cfcpyd", 0xee000420, 6, ARM_CEXT_MAVERICK, do_mav_binops_1e},
2191 {"cfcvtsd", 0xee000460, 7, ARM_CEXT_MAVERICK, do_mav_binops_1f},
2192 {"cfcvtds", 0xee000440, 7, ARM_CEXT_MAVERICK, do_mav_binops_1g},
2193 {"cfcvt32s", 0xee000480, 8, ARM_CEXT_MAVERICK, do_mav_binops_1h},
2194 {"cfcvt32d", 0xee0004a0, 8, ARM_CEXT_MAVERICK, do_mav_binops_1i},
2195 {"cfcvt64s", 0xee0004c0, 8, ARM_CEXT_MAVERICK, do_mav_binops_1j},
2196 {"cfcvt64d", 0xee0004e0, 8, ARM_CEXT_MAVERICK, do_mav_binops_1k},
2197 {"cfcvts32", 0xee100580, 8, ARM_CEXT_MAVERICK, do_mav_binops_1l},
2198 {"cfcvtd32", 0xee1005a0, 8, ARM_CEXT_MAVERICK, do_mav_binops_1m},
2199 {"cftruncs32", 0xee1005c0, 10, ARM_CEXT_MAVERICK, do_mav_binops_1l},
2200 {"cftruncd32", 0xee1005e0, 10, ARM_CEXT_MAVERICK, do_mav_binops_1m},
2201 {"cfrshl32", 0xee000550, 8, ARM_CEXT_MAVERICK, do_mav_triple_4a},
2202 {"cfrshl64", 0xee000570, 8, ARM_CEXT_MAVERICK, do_mav_triple_4b},
2203 {"cfsh32", 0xee000500, 6, ARM_CEXT_MAVERICK, do_mav_shift_1},
2204 {"cfsh64", 0xee200500, 6, ARM_CEXT_MAVERICK, do_mav_shift_2},
2205 {"cfcmps", 0xee100490, 6, ARM_CEXT_MAVERICK, do_mav_triple_5a},
2206 {"cfcmpd", 0xee1004b0, 6, ARM_CEXT_MAVERICK, do_mav_triple_5b},
2207 {"cfcmp32", 0xee100590, 7, ARM_CEXT_MAVERICK, do_mav_triple_5c},
2208 {"cfcmp64", 0xee1005b0, 7, ARM_CEXT_MAVERICK, do_mav_triple_5d},
2209 {"cfabss", 0xee300400, 6, ARM_CEXT_MAVERICK, do_mav_binops_1d},
2210 {"cfabsd", 0xee300420, 6, ARM_CEXT_MAVERICK, do_mav_binops_1e},
2211 {"cfnegs", 0xee300440, 6, ARM_CEXT_MAVERICK, do_mav_binops_1d},
2212 {"cfnegd", 0xee300460, 6, ARM_CEXT_MAVERICK, do_mav_binops_1e},
2213 {"cfadds", 0xee300480, 6, ARM_CEXT_MAVERICK, do_mav_triple_5e},
2214 {"cfaddd", 0xee3004a0, 6, ARM_CEXT_MAVERICK, do_mav_triple_5f},
2215 {"cfsubs", 0xee3004c0, 6, ARM_CEXT_MAVERICK, do_mav_triple_5e},
2216 {"cfsubd", 0xee3004e0, 6, ARM_CEXT_MAVERICK, do_mav_triple_5f},
2217 {"cfmuls", 0xee100400, 6, ARM_CEXT_MAVERICK, do_mav_triple_5e},
2218 {"cfmuld", 0xee100420, 6, ARM_CEXT_MAVERICK, do_mav_triple_5f},
2219 {"cfabs32", 0xee300500, 7, ARM_CEXT_MAVERICK, do_mav_binops_1n},
2220 {"cfabs64", 0xee300520, 7, ARM_CEXT_MAVERICK, do_mav_binops_1o},
2221 {"cfneg32", 0xee300540, 7, ARM_CEXT_MAVERICK, do_mav_binops_1n},
2222 {"cfneg64", 0xee300560, 7, ARM_CEXT_MAVERICK, do_mav_binops_1o},
2223 {"cfadd32", 0xee300580, 7, ARM_CEXT_MAVERICK, do_mav_triple_5g},
2224 {"cfadd64", 0xee3005a0, 7, ARM_CEXT_MAVERICK, do_mav_triple_5h},
2225 {"cfsub32", 0xee3005c0, 7, ARM_CEXT_MAVERICK, do_mav_triple_5g},
2226 {"cfsub64", 0xee3005e0, 7, ARM_CEXT_MAVERICK, do_mav_triple_5h},
2227 {"cfmul32", 0xee100500, 7, ARM_CEXT_MAVERICK, do_mav_triple_5g},
2228 {"cfmul64", 0xee100520, 7, ARM_CEXT_MAVERICK, do_mav_triple_5h},
2229 {"cfmac32", 0xee100540, 7, ARM_CEXT_MAVERICK, do_mav_triple_5g},
2230 {"cfmsc32", 0xee100560, 7, ARM_CEXT_MAVERICK, do_mav_triple_5g},
2231 {"cfmadd32", 0xee000600, 8, ARM_CEXT_MAVERICK, do_mav_quad_6a},
2232 {"cfmsub32", 0xee100600, 8, ARM_CEXT_MAVERICK, do_mav_quad_6a},
2233 {"cfmadda32", 0xee200600, 9, ARM_CEXT_MAVERICK, do_mav_quad_6b},
2234 {"cfmsuba32", 0xee300600, 9, ARM_CEXT_MAVERICK, do_mav_quad_6b},
2235 };
2236
2237 /* Defines for various bits that we will want to toggle. */
2238 #define INST_IMMEDIATE 0x02000000
2239 #define OFFSET_REG 0x02000000
2240 #define HWOFFSET_IMM 0x00400000
2241 #define SHIFT_BY_REG 0x00000010
2242 #define PRE_INDEX 0x01000000
2243 #define INDEX_UP 0x00800000
2244 #define WRITE_BACK 0x00200000
2245 #define LDM_TYPE_2_OR_3 0x00400000
2246
2247 #define LITERAL_MASK 0xf000f000
2248 #define OPCODE_MASK 0xfe1fffff
2249 #define V4_STR_BIT 0x00000020
2250
2251 #define DATA_OP_SHIFT 21
2252
2253 /* Codes to distinguish the arithmetic instructions. */
2254 #define OPCODE_AND 0
2255 #define OPCODE_EOR 1
2256 #define OPCODE_SUB 2
2257 #define OPCODE_RSB 3
2258 #define OPCODE_ADD 4
2259 #define OPCODE_ADC 5
2260 #define OPCODE_SBC 6
2261 #define OPCODE_RSC 7
2262 #define OPCODE_TST 8
2263 #define OPCODE_TEQ 9
2264 #define OPCODE_CMP 10
2265 #define OPCODE_CMN 11
2266 #define OPCODE_ORR 12
2267 #define OPCODE_MOV 13
2268 #define OPCODE_BIC 14
2269 #define OPCODE_MVN 15
2270
2271 /* Thumb v1 (ARMv4T). */
2272 static void do_t_nop PARAMS ((char *));
2273 static void do_t_arit PARAMS ((char *));
2274 static void do_t_add PARAMS ((char *));
2275 static void do_t_asr PARAMS ((char *));
2276 static void do_t_branch9 PARAMS ((char *));
2277 static void do_t_branch12 PARAMS ((char *));
2278 static void do_t_branch23 PARAMS ((char *));
2279 static void do_t_bx PARAMS ((char *));
2280 static void do_t_compare PARAMS ((char *));
2281 static void do_t_ldmstm PARAMS ((char *));
2282 static void do_t_ldr PARAMS ((char *));
2283 static void do_t_ldrb PARAMS ((char *));
2284 static void do_t_ldrh PARAMS ((char *));
2285 static void do_t_lds PARAMS ((char *));
2286 static void do_t_lsl PARAMS ((char *));
2287 static void do_t_lsr PARAMS ((char *));
2288 static void do_t_mov PARAMS ((char *));
2289 static void do_t_push_pop PARAMS ((char *));
2290 static void do_t_str PARAMS ((char *));
2291 static void do_t_strb PARAMS ((char *));
2292 static void do_t_strh PARAMS ((char *));
2293 static void do_t_sub PARAMS ((char *));
2294 static void do_t_swi PARAMS ((char *));
2295 static void do_t_adr PARAMS ((char *));
2296
2297 /* Thumb v2 (ARMv5T). */
2298 static void do_t_blx PARAMS ((char *));
2299 static void do_t_bkpt PARAMS ((char *));
2300
2301 /* ARM V6. */
2302 static void do_t_cps PARAMS ((char *));
2303 static void do_t_cpy PARAMS ((char *));
2304 static void do_t_setend PARAMS ((char *));;
2305
2306 #define T_OPCODE_MUL 0x4340
2307 #define T_OPCODE_TST 0x4200
2308 #define T_OPCODE_CMN 0x42c0
2309 #define T_OPCODE_NEG 0x4240
2310 #define T_OPCODE_MVN 0x43c0
2311
2312 #define T_OPCODE_ADD_R3 0x1800
2313 #define T_OPCODE_SUB_R3 0x1a00
2314 #define T_OPCODE_ADD_HI 0x4400
2315 #define T_OPCODE_ADD_ST 0xb000
2316 #define T_OPCODE_SUB_ST 0xb080
2317 #define T_OPCODE_ADD_SP 0xa800
2318 #define T_OPCODE_ADD_PC 0xa000
2319 #define T_OPCODE_ADD_I8 0x3000
2320 #define T_OPCODE_SUB_I8 0x3800
2321 #define T_OPCODE_ADD_I3 0x1c00
2322 #define T_OPCODE_SUB_I3 0x1e00
2323
2324 #define T_OPCODE_ASR_R 0x4100
2325 #define T_OPCODE_LSL_R 0x4080
2326 #define T_OPCODE_LSR_R 0x40c0
2327 #define T_OPCODE_ASR_I 0x1000
2328 #define T_OPCODE_LSL_I 0x0000
2329 #define T_OPCODE_LSR_I 0x0800
2330
2331 #define T_OPCODE_MOV_I8 0x2000
2332 #define T_OPCODE_CMP_I8 0x2800
2333 #define T_OPCODE_CMP_LR 0x4280
2334 #define T_OPCODE_MOV_HR 0x4600
2335 #define T_OPCODE_CMP_HR 0x4500
2336
2337 #define T_OPCODE_LDR_PC 0x4800
2338 #define T_OPCODE_LDR_SP 0x9800
2339 #define T_OPCODE_STR_SP 0x9000
2340 #define T_OPCODE_LDR_IW 0x6800
2341 #define T_OPCODE_STR_IW 0x6000
2342 #define T_OPCODE_LDR_IH 0x8800
2343 #define T_OPCODE_STR_IH 0x8000
2344 #define T_OPCODE_LDR_IB 0x7800
2345 #define T_OPCODE_STR_IB 0x7000
2346 #define T_OPCODE_LDR_RW 0x5800
2347 #define T_OPCODE_STR_RW 0x5000
2348 #define T_OPCODE_LDR_RH 0x5a00
2349 #define T_OPCODE_STR_RH 0x5200
2350 #define T_OPCODE_LDR_RB 0x5c00
2351 #define T_OPCODE_STR_RB 0x5400
2352
2353 #define T_OPCODE_PUSH 0xb400
2354 #define T_OPCODE_POP 0xbc00
2355
2356 #define T_OPCODE_BRANCH 0xe7fe
2357
2358 static int thumb_reg PARAMS ((char ** str, int hi_lo));
2359
2360 #define THUMB_SIZE 2 /* Size of thumb instruction. */
2361 #define THUMB_REG_LO 0x1
2362 #define THUMB_REG_HI 0x2
2363 #define THUMB_REG_ANY 0x3
2364
2365 #define THUMB_H1 0x0080
2366 #define THUMB_H2 0x0040
2367
2368 #define THUMB_ASR 0
2369 #define THUMB_LSL 1
2370 #define THUMB_LSR 2
2371
2372 #define THUMB_MOVE 0
2373 #define THUMB_COMPARE 1
2374 #define THUMB_CPY 2
2375
2376 #define THUMB_LOAD 0
2377 #define THUMB_STORE 1
2378
2379 #define THUMB_PP_PC_LR 0x0100
2380
2381 /* These three are used for immediate shifts, do not alter. */
2382 #define THUMB_WORD 2
2383 #define THUMB_HALFWORD 1
2384 #define THUMB_BYTE 0
2385
2386 struct thumb_opcode
2387 {
2388 /* Basic string to match. */
2389 const char * template;
2390
2391 /* Basic instruction code. */
2392 unsigned long value;
2393
2394 int size;
2395
2396 /* Which CPU variants this exists for. */
2397 unsigned long variant;
2398
2399 /* Function to call to parse args. */
2400 void (* parms) PARAMS ((char *));
2401 };
2402
2403 static const struct thumb_opcode tinsns[] =
2404 {
2405 /* Thumb v1 (ARMv4T). */
2406 {"adc", 0x4140, 2, ARM_EXT_V4T, do_t_arit},
2407 {"add", 0x0000, 2, ARM_EXT_V4T, do_t_add},
2408 {"and", 0x4000, 2, ARM_EXT_V4T, do_t_arit},
2409 {"asr", 0x0000, 2, ARM_EXT_V4T, do_t_asr},
2410 {"b", T_OPCODE_BRANCH, 2, ARM_EXT_V4T, do_t_branch12},
2411 {"beq", 0xd0fe, 2, ARM_EXT_V4T, do_t_branch9},
2412 {"bne", 0xd1fe, 2, ARM_EXT_V4T, do_t_branch9},
2413 {"bcs", 0xd2fe, 2, ARM_EXT_V4T, do_t_branch9},
2414 {"bhs", 0xd2fe, 2, ARM_EXT_V4T, do_t_branch9},
2415 {"bcc", 0xd3fe, 2, ARM_EXT_V4T, do_t_branch9},
2416 {"bul", 0xd3fe, 2, ARM_EXT_V4T, do_t_branch9},
2417 {"blo", 0xd3fe, 2, ARM_EXT_V4T, do_t_branch9},
2418 {"bmi", 0xd4fe, 2, ARM_EXT_V4T, do_t_branch9},
2419 {"bpl", 0xd5fe, 2, ARM_EXT_V4T, do_t_branch9},
2420 {"bvs", 0xd6fe, 2, ARM_EXT_V4T, do_t_branch9},
2421 {"bvc", 0xd7fe, 2, ARM_EXT_V4T, do_t_branch9},
2422 {"bhi", 0xd8fe, 2, ARM_EXT_V4T, do_t_branch9},
2423 {"bls", 0xd9fe, 2, ARM_EXT_V4T, do_t_branch9},
2424 {"bge", 0xdafe, 2, ARM_EXT_V4T, do_t_branch9},
2425 {"blt", 0xdbfe, 2, ARM_EXT_V4T, do_t_branch9},
2426 {"bgt", 0xdcfe, 2, ARM_EXT_V4T, do_t_branch9},
2427 {"ble", 0xddfe, 2, ARM_EXT_V4T, do_t_branch9},
2428 {"bal", 0xdefe, 2, ARM_EXT_V4T, do_t_branch9},
2429 {"bic", 0x4380, 2, ARM_EXT_V4T, do_t_arit},
2430 {"bl", 0xf7fffffe, 4, ARM_EXT_V4T, do_t_branch23},
2431 {"bx", 0x4700, 2, ARM_EXT_V4T, do_t_bx},
2432 {"cmn", T_OPCODE_CMN, 2, ARM_EXT_V4T, do_t_arit},
2433 {"cmp", 0x0000, 2, ARM_EXT_V4T, do_t_compare},
2434 {"eor", 0x4040, 2, ARM_EXT_V4T, do_t_arit},
2435 {"ldmia", 0xc800, 2, ARM_EXT_V4T, do_t_ldmstm},
2436 {"ldr", 0x0000, 2, ARM_EXT_V4T, do_t_ldr},
2437 {"ldrb", 0x0000, 2, ARM_EXT_V4T, do_t_ldrb},
2438 {"ldrh", 0x0000, 2, ARM_EXT_V4T, do_t_ldrh},
2439 {"ldrsb", 0x5600, 2, ARM_EXT_V4T, do_t_lds},
2440 {"ldrsh", 0x5e00, 2, ARM_EXT_V4T, do_t_lds},
2441 {"ldsb", 0x5600, 2, ARM_EXT_V4T, do_t_lds},
2442 {"ldsh", 0x5e00, 2, ARM_EXT_V4T, do_t_lds},
2443 {"lsl", 0x0000, 2, ARM_EXT_V4T, do_t_lsl},
2444 {"lsr", 0x0000, 2, ARM_EXT_V4T, do_t_lsr},
2445 {"mov", 0x0000, 2, ARM_EXT_V4T, do_t_mov},
2446 {"mul", T_OPCODE_MUL, 2, ARM_EXT_V4T, do_t_arit},
2447 {"mvn", T_OPCODE_MVN, 2, ARM_EXT_V4T, do_t_arit},
2448 {"neg", T_OPCODE_NEG, 2, ARM_EXT_V4T, do_t_arit},
2449 {"orr", 0x4300, 2, ARM_EXT_V4T, do_t_arit},
2450 {"pop", 0xbc00, 2, ARM_EXT_V4T, do_t_push_pop},
2451 {"push", 0xb400, 2, ARM_EXT_V4T, do_t_push_pop},
2452 {"ror", 0x41c0, 2, ARM_EXT_V4T, do_t_arit},
2453 {"sbc", 0x4180, 2, ARM_EXT_V4T, do_t_arit},
2454 {"stmia", 0xc000, 2, ARM_EXT_V4T, do_t_ldmstm},
2455 {"str", 0x0000, 2, ARM_EXT_V4T, do_t_str},
2456 {"strb", 0x0000, 2, ARM_EXT_V4T, do_t_strb},
2457 {"strh", 0x0000, 2, ARM_EXT_V4T, do_t_strh},
2458 {"swi", 0xdf00, 2, ARM_EXT_V4T, do_t_swi},
2459 {"sub", 0x0000, 2, ARM_EXT_V4T, do_t_sub},
2460 {"tst", T_OPCODE_TST, 2, ARM_EXT_V4T, do_t_arit},
2461 /* Pseudo ops: */
2462 {"adr", 0x0000, 2, ARM_EXT_V4T, do_t_adr},
2463 {"nop", 0x46C0, 2, ARM_EXT_V4T, do_t_nop}, /* mov r8,r8 */
2464 /* Thumb v2 (ARMv5T). */
2465 {"blx", 0, 0, ARM_EXT_V5T, do_t_blx},
2466 {"bkpt", 0xbe00, 2, ARM_EXT_V5T, do_t_bkpt},
2467
2468 /* ARM V6. */
2469 {"cpsie", 0xb660, 2, ARM_EXT_V6, do_t_cps},
2470 {"cpsid", 0xb670, 2, ARM_EXT_V6, do_t_cps},
2471 {"cpy", 0x4600, 2, ARM_EXT_V6, do_t_cpy},
2472 {"rev", 0xba00, 2, ARM_EXT_V6, do_t_arit},
2473 {"rev16", 0xba40, 2, ARM_EXT_V6, do_t_arit},
2474 {"revsh", 0xbac0, 2, ARM_EXT_V6, do_t_arit},
2475 {"setend", 0xb650, 2, ARM_EXT_V6, do_t_setend},
2476 {"sxth", 0xb200, 2, ARM_EXT_V6, do_t_arit},
2477 {"sxtb", 0xb240, 2, ARM_EXT_V6, do_t_arit},
2478 {"uxth", 0xb280, 2, ARM_EXT_V6, do_t_arit},
2479 {"uxtb", 0xb2c0, 2, ARM_EXT_V6, do_t_arit},
2480 };
2481
2482 #define BAD_ARGS _("bad arguments to instruction")
2483 #define BAD_PC _("r15 not allowed here")
2484 #define BAD_COND _("instruction is not conditional")
2485 #define ERR_NO_ACCUM _("acc0 expected")
2486
2487 static struct hash_control * arm_ops_hsh = NULL;
2488 static struct hash_control * arm_tops_hsh = NULL;
2489 static struct hash_control * arm_cond_hsh = NULL;
2490 static struct hash_control * arm_shift_hsh = NULL;
2491 static struct hash_control * arm_psr_hsh = NULL;
2492
2493 /* This table describes all the machine specific pseudo-ops the assembler
2494 has to support. The fields are:
2495 pseudo-op name without dot
2496 function to call to execute this pseudo-op
2497 Integer arg to pass to the function. */
2498
2499 static void s_req PARAMS ((int));
2500 static void s_unreq PARAMS ((int));
2501 static void s_align PARAMS ((int));
2502 static void s_bss PARAMS ((int));
2503 static void s_even PARAMS ((int));
2504 static void s_ltorg PARAMS ((int));
2505 static void s_arm PARAMS ((int));
2506 static void s_thumb PARAMS ((int));
2507 static void s_code PARAMS ((int));
2508 static void s_force_thumb PARAMS ((int));
2509 static void s_thumb_func PARAMS ((int));
2510 static void s_thumb_set PARAMS ((int));
2511 #ifdef OBJ_ELF
2512 static void s_arm_elf_cons PARAMS ((int));
2513 #endif
2514
2515 static int my_get_expression PARAMS ((expressionS *, char **));
2516
2517 const pseudo_typeS md_pseudo_table[] =
2518 {
2519 /* Never called because '.req' does not start a line. */
2520 { "req", s_req, 0 },
2521 { "unreq", s_unreq, 0 },
2522 { "bss", s_bss, 0 },
2523 { "align", s_align, 0 },
2524 { "arm", s_arm, 0 },
2525 { "thumb", s_thumb, 0 },
2526 { "code", s_code, 0 },
2527 { "force_thumb", s_force_thumb, 0 },
2528 { "thumb_func", s_thumb_func, 0 },
2529 { "thumb_set", s_thumb_set, 0 },
2530 { "even", s_even, 0 },
2531 { "ltorg", s_ltorg, 0 },
2532 { "pool", s_ltorg, 0 },
2533 #ifdef OBJ_ELF
2534 { "word", s_arm_elf_cons, 4 },
2535 { "long", s_arm_elf_cons, 4 },
2536 #else
2537 { "word", cons, 4},
2538 #endif
2539 { "extend", float_cons, 'x' },
2540 { "ldouble", float_cons, 'x' },
2541 { "packed", float_cons, 'p' },
2542 { 0, 0, 0 }
2543 };
2544
2545 /* Other internal functions. */
2546 static int arm_parse_extension PARAMS ((char *, int *));
2547 static int arm_parse_cpu PARAMS ((char *));
2548 static int arm_parse_arch PARAMS ((char *));
2549 static int arm_parse_fpu PARAMS ((char *));
2550 static int arm_parse_float_abi PARAMS ((char *));
2551 #if 0 /* Suppressed - for now. */
2552 #if defined OBJ_COFF || defined OBJ_ELF
2553 static void arm_add_note PARAMS ((const char *, const char *, unsigned int));
2554 #endif
2555 #endif
2556
2557 /* Stuff needed to resolve the label ambiguity
2558 As:
2559 ...
2560 label: <insn>
2561 may differ from:
2562 ...
2563 label:
2564 <insn>
2565 */
2566
2567 symbolS * last_label_seen;
2568 static int label_is_thumb_function_name = FALSE;
2569
2570 /* Literal Pool stuff. */
2571
2572 #define MAX_LITERAL_POOL_SIZE 1024
2573
2574 /* Literal pool structure. Held on a per-section
2575 and per-sub-section basis. */
2576 typedef struct literal_pool
2577 {
2578 expressionS literals [MAX_LITERAL_POOL_SIZE];
2579 unsigned int next_free_entry;
2580 unsigned int id;
2581 symbolS * symbol;
2582 segT section;
2583 subsegT sub_section;
2584 struct literal_pool * next;
2585 } literal_pool;
2586
2587 /* Pointer to a linked list of literal pools. */
2588 literal_pool * list_of_pools = NULL;
2589
2590 static literal_pool * find_literal_pool PARAMS ((void));
2591 static literal_pool * find_or_make_literal_pool PARAMS ((void));
2592
2593 static literal_pool *
2594 find_literal_pool ()
2595 {
2596 literal_pool * pool;
2597
2598 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2599 {
2600 if (pool->section == now_seg
2601 && pool->sub_section == now_subseg)
2602 break;
2603 }
2604
2605 return pool;
2606 }
2607
2608 static literal_pool *
2609 find_or_make_literal_pool ()
2610 {
2611 /* Next literal pool ID number. */
2612 static unsigned int latest_pool_num = 1;
2613 literal_pool * pool;
2614
2615 pool = find_literal_pool ();
2616
2617 if (pool == NULL)
2618 {
2619 /* Create a new pool. */
2620 pool = (literal_pool *) xmalloc (sizeof (* pool));
2621 if (! pool)
2622 return NULL;
2623
2624 pool->next_free_entry = 0;
2625 pool->section = now_seg;
2626 pool->sub_section = now_subseg;
2627 pool->next = list_of_pools;
2628 pool->symbol = NULL;
2629
2630 /* Add it to the list. */
2631 list_of_pools = pool;
2632 }
2633
2634 /* New pools, and emptied pools, will have a NULL symbol. */
2635 if (pool->symbol == NULL)
2636 {
2637 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2638 (valueT) 0, &zero_address_frag);
2639 pool->id = latest_pool_num ++;
2640 }
2641
2642 /* Done. */
2643 return pool;
2644 }
2645
2646 /* Add the literal in the global 'inst'
2647 structure to the relevent literal pool. */
2648 static int
2649 add_to_lit_pool ()
2650 {
2651 literal_pool * pool;
2652 unsigned int entry;
2653
2654 pool = find_or_make_literal_pool ();
2655
2656 /* Check if this literal value is already in the pool. */
2657 for (entry = 0; entry < pool->next_free_entry; entry ++)
2658 {
2659 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2660 && (inst.reloc.exp.X_op == O_constant)
2661 && (pool->literals[entry].X_add_number
2662 == inst.reloc.exp.X_add_number)
2663 && (pool->literals[entry].X_unsigned
2664 == inst.reloc.exp.X_unsigned))
2665 break;
2666
2667 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2668 && (inst.reloc.exp.X_op == O_symbol)
2669 && (pool->literals[entry].X_add_number
2670 == inst.reloc.exp.X_add_number)
2671 && (pool->literals[entry].X_add_symbol
2672 == inst.reloc.exp.X_add_symbol)
2673 && (pool->literals[entry].X_op_symbol
2674 == inst.reloc.exp.X_op_symbol))
2675 break;
2676 }
2677
2678 /* Do we need to create a new entry? */
2679 if (entry == pool->next_free_entry)
2680 {
2681 if (entry >= MAX_LITERAL_POOL_SIZE)
2682 {
2683 inst.error = _("literal pool overflow");
2684 return FAIL;
2685 }
2686
2687 pool->literals[entry] = inst.reloc.exp;
2688 pool->next_free_entry += 1;
2689 }
2690
2691 inst.reloc.exp.X_op = O_symbol;
2692 inst.reloc.exp.X_add_number = ((int) entry) * 4 - 8;
2693 inst.reloc.exp.X_add_symbol = pool->symbol;
2694
2695 return SUCCESS;
2696 }
2697
2698 /* Can't use symbol_new here, so have to create a symbol and then at
2699 a later date assign it a value. Thats what these functions do. */
2700
2701 static void
2702 symbol_locate (symbolP, name, segment, valu, frag)
2703 symbolS * symbolP;
2704 const char * name; /* It is copied, the caller can modify. */
2705 segT segment; /* Segment identifier (SEG_<something>). */
2706 valueT valu; /* Symbol value. */
2707 fragS * frag; /* Associated fragment. */
2708 {
2709 unsigned int name_length;
2710 char * preserved_copy_of_name;
2711
2712 name_length = strlen (name) + 1; /* +1 for \0. */
2713 obstack_grow (&notes, name, name_length);
2714 preserved_copy_of_name = obstack_finish (&notes);
2715 #ifdef STRIP_UNDERSCORE
2716 if (preserved_copy_of_name[0] == '_')
2717 preserved_copy_of_name++;
2718 #endif
2719
2720 #ifdef tc_canonicalize_symbol_name
2721 preserved_copy_of_name =
2722 tc_canonicalize_symbol_name (preserved_copy_of_name);
2723 #endif
2724
2725 S_SET_NAME (symbolP, preserved_copy_of_name);
2726
2727 S_SET_SEGMENT (symbolP, segment);
2728 S_SET_VALUE (symbolP, valu);
2729 symbol_clear_list_pointers (symbolP);
2730
2731 symbol_set_frag (symbolP, frag);
2732
2733 /* Link to end of symbol chain. */
2734 {
2735 extern int symbol_table_frozen;
2736 if (symbol_table_frozen)
2737 abort ();
2738 }
2739
2740 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
2741
2742 obj_symbol_new_hook (symbolP);
2743
2744 #ifdef tc_symbol_new_hook
2745 tc_symbol_new_hook (symbolP);
2746 #endif
2747
2748 #ifdef DEBUG_SYMS
2749 verify_symbol_chain (symbol_rootP, symbol_lastP);
2750 #endif /* DEBUG_SYMS */
2751 }
2752
2753 /* Check that an immediate is valid.
2754 If so, convert it to the right format. */
2755
2756 static unsigned int
2757 validate_immediate (val)
2758 unsigned int val;
2759 {
2760 unsigned int a;
2761 unsigned int i;
2762
2763 #define rotate_left(v, n) (v << n | v >> (32 - n))
2764
2765 for (i = 0; i < 32; i += 2)
2766 if ((a = rotate_left (val, i)) <= 0xff)
2767 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
2768
2769 return FAIL;
2770 }
2771
2772 /* Check to see if an immediate can be computed as two separate immediate
2773 values, added together. We already know that this value cannot be
2774 computed by just one ARM instruction. */
2775
2776 static unsigned int
2777 validate_immediate_twopart (val, highpart)
2778 unsigned int val;
2779 unsigned int * highpart;
2780 {
2781 unsigned int a;
2782 unsigned int i;
2783
2784 for (i = 0; i < 32; i += 2)
2785 if (((a = rotate_left (val, i)) & 0xff) != 0)
2786 {
2787 if (a & 0xff00)
2788 {
2789 if (a & ~ 0xffff)
2790 continue;
2791 * highpart = (a >> 8) | ((i + 24) << 7);
2792 }
2793 else if (a & 0xff0000)
2794 {
2795 if (a & 0xff000000)
2796 continue;
2797 * highpart = (a >> 16) | ((i + 16) << 7);
2798 }
2799 else
2800 {
2801 assert (a & 0xff000000);
2802 * highpart = (a >> 24) | ((i + 8) << 7);
2803 }
2804
2805 return (a & 0xff) | (i << 7);
2806 }
2807
2808 return FAIL;
2809 }
2810
2811 static int
2812 validate_offset_imm (val, hwse)
2813 unsigned int val;
2814 int hwse;
2815 {
2816 if ((hwse && val > 255) || val > 4095)
2817 return FAIL;
2818 return val;
2819 }
2820
2821 \f
2822 #ifdef OBJ_ELF
2823 enum mstate
2824 {
2825 MAP_DATA,
2826 MAP_ARM,
2827 MAP_THUMB
2828 };
2829
2830 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2831 (This text is taken from version B-02 of the spec):
2832
2833 4.4.7 Mapping and tagging symbols
2834
2835 A section of an ARM ELF file can contain a mixture of ARM code,
2836 Thumb code, and data. There are inline transitions between code
2837 and data at literal pool boundaries. There can also be inline
2838 transitions between ARM code and Thumb code, for example in
2839 ARM-Thumb inter-working veneers. Linkers, machine-level
2840 debuggers, profiling tools, and disassembly tools need to map
2841 images accurately. For example, setting an ARM breakpoint on a
2842 Thumb location, or in a literal pool, can crash the program
2843 being debugged, ruining the debugging session.
2844
2845 ARM ELF entities are mapped (see section 4.4.7.1 below) and
2846 tagged (see section 4.4.7.2 below) using local symbols (with
2847 binding STB_LOCAL). To assist consumers, mapping and tagging
2848 symbols should be collated first in the symbol table, before
2849 other symbols with binding STB_LOCAL.
2850
2851 To allow properly collated mapping and tagging symbols to be
2852 skipped by consumers that have no interest in them, the first
2853 such symbol should have the name $m and its st_value field equal
2854 to the total number of mapping and tagging symbols (including
2855 the $m) in the symbol table.
2856
2857 4.4.7.1 Mapping symbols
2858
2859 $a Labels the first byte of a sequence of ARM instructions.
2860 Its type is STT_FUNC.
2861
2862 $d Labels the first byte of a sequence of data items.
2863 Its type is STT_OBJECT.
2864
2865 $t Labels the first byte of a sequence of Thumb instructions.
2866 Its type is STT_FUNC.
2867
2868 This list of mapping symbols may be extended in the future.
2869
2870 Section-relative mapping symbols
2871
2872 Mapping symbols defined in a section define a sequence of
2873 half-open address intervals that cover the address range of the
2874 section. Each interval starts at the address defined by a
2875 mapping symbol, and continues up to, but not including, the
2876 address defined by the next (in address order) mapping symbol or
2877 the end of the section. A corollary is that there must be a
2878 mapping symbol defined at the beginning of each section.
2879 Consumers can ignore the size of a section-relative mapping
2880 symbol. Producers can set it to 0.
2881
2882 Absolute mapping symbols
2883
2884 Because of the need to crystallize a Thumb address with the
2885 Thumb-bit set, absolute symbol of type STT_FUNC (symbols of type
2886 STT_FUNC defined in section SHN_ABS) need to be mapped with $a
2887 or $t.
2888
2889 The extent of a mapping symbol defined in SHN_ABS is [st_value,
2890 st_value + st_size), or [st_value, st_value + 1) if st_size = 0,
2891 where [x, y) denotes the half-open address range from x,
2892 inclusive, to y, exclusive.
2893
2894 In the absence of a mapping symbol, a consumer can interpret a
2895 function symbol with an odd value as the Thumb code address
2896 obtained by clearing the least significant bit of the
2897 value. This interpretation is deprecated, and it may not work in
2898 the future.
2899
2900 Note - the Tagging symbols ($b, $f, $p $m) have been dropped from
2901 the EABI (which is still under development), so they are not
2902 implemented here. */
2903
2904 static void
2905 mapping_state (enum mstate state)
2906 {
2907 static enum mstate mapstate = MAP_DATA;
2908 symbolS * symbolP;
2909 const char * symname;
2910 int type;
2911
2912 if (mapstate == state)
2913 /* The mapping symbol has already been emitted.
2914 There is nothing else to do. */
2915 return;
2916
2917 mapstate = state;
2918
2919 switch (state)
2920 {
2921 case MAP_DATA:
2922 symname = "$d";
2923 type = BSF_OBJECT;
2924 break;
2925 case MAP_ARM:
2926 symname = "$a";
2927 type = BSF_FUNCTION;
2928 break;
2929 case MAP_THUMB:
2930 symname = "$t";
2931 type = BSF_FUNCTION;
2932 break;
2933 default:
2934 abort ();
2935 }
2936
2937 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2938 symbol_table_insert (symbolP);
2939 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2940
2941 switch (state)
2942 {
2943 case MAP_ARM:
2944 THUMB_SET_FUNC (symbolP, 0);
2945 ARM_SET_THUMB (symbolP, 0);
2946 ARM_SET_INTERWORK (symbolP, support_interwork);
2947 break;
2948
2949 case MAP_THUMB:
2950 THUMB_SET_FUNC (symbolP, 1);
2951 ARM_SET_THUMB (symbolP, 1);
2952 ARM_SET_INTERWORK (symbolP, support_interwork);
2953 break;
2954
2955 case MAP_DATA:
2956 default:
2957 return;
2958 }
2959 }
2960
2961 /* When we change sections we need to issue a new mapping symbol. */
2962
2963 void
2964 arm_elf_change_section (void)
2965 {
2966 flagword flags;
2967
2968 if (!SEG_NORMAL (now_seg))
2969 return;
2970
2971 flags = bfd_get_section_flags (stdoutput, now_seg);
2972
2973 /* We can ignore sections that only contain debug info. */
2974 if ((flags & SEC_ALLOC) == 0)
2975 return;
2976
2977 if (flags & SEC_CODE)
2978 {
2979 if (thumb_mode)
2980 mapping_state (MAP_THUMB);
2981 else
2982 mapping_state (MAP_ARM);
2983 }
2984 else
2985 /* This section does not contain code. Therefore it must contain data. */
2986 mapping_state (MAP_DATA);
2987 }
2988 #else
2989 #define mapping_state(a)
2990 #endif /* OBJ_ELF */
2991 \f
2992
2993 static void
2994 s_req (a)
2995 int a ATTRIBUTE_UNUSED;
2996 {
2997 as_bad (_("invalid syntax for .req directive"));
2998 }
2999
3000 /* The .unreq directive deletes an alias which was previously defined
3001 by .req. For example:
3002
3003 my_alias .req r11
3004 .unreq my_alias */
3005
3006 static void
3007 s_unreq (int a ATTRIBUTE_UNUSED)
3008 {
3009 char *name;
3010 char saved_char;
3011
3012 skip_whitespace (input_line_pointer);
3013 name = input_line_pointer;
3014
3015 while (*input_line_pointer != 0
3016 && *input_line_pointer != ' '
3017 && *input_line_pointer != '\n')
3018 ++input_line_pointer;
3019
3020 saved_char = *input_line_pointer;
3021 *input_line_pointer = 0;
3022
3023 if (*name)
3024 {
3025 enum arm_reg_type req_type = arm_reg_parse_any (name);
3026
3027 if (req_type != REG_TYPE_MAX)
3028 {
3029 char *temp_name = name;
3030 int req_no = arm_reg_parse (&temp_name, all_reg_maps[req_type].htab);
3031
3032 if (req_no != FAIL)
3033 {
3034 struct reg_entry *req_entry;
3035
3036 /* Check to see if this alias is a builtin one. */
3037 req_entry = hash_delete (all_reg_maps[req_type].htab, name);
3038
3039 if (!req_entry)
3040 as_bad (_("unreq: missing hash entry for \"%s\""), name);
3041 else if (req_entry->builtin)
3042 /* FIXME: We are deleting a built in register alias which
3043 points to a const data structure, so we only need to
3044 free up the memory used by the key in the hash table.
3045 Unfortunately we have not recorded this value, so this
3046 is a memory leak. */
3047 /* FIXME: Should we issue a warning message ? */
3048 ;
3049 else
3050 {
3051 /* Deleting a user defined alias. We need to free the
3052 key and the value, but fortunately the key is the same
3053 as the value->name field. */
3054 free ((char *) req_entry->name);
3055 free (req_entry);
3056 }
3057 }
3058 else
3059 as_bad (_(".unreq: unrecognized symbol \"%s\""), name);
3060 }
3061 else
3062 as_bad (_(".unreq: unrecognized symbol \"%s\""), name);
3063 }
3064 else
3065 as_bad (_("invalid syntax for .unreq directive"));
3066
3067 *input_line_pointer = saved_char;
3068 demand_empty_rest_of_line ();
3069 }
3070
3071 static void
3072 s_bss (ignore)
3073 int ignore ATTRIBUTE_UNUSED;
3074 {
3075 /* We don't support putting frags in the BSS segment, we fake it by
3076 marking in_bss, then looking at s_skip for clues. */
3077 subseg_set (bss_section, 0);
3078 demand_empty_rest_of_line ();
3079 mapping_state (MAP_DATA);
3080 }
3081
3082 static void
3083 s_even (ignore)
3084 int ignore ATTRIBUTE_UNUSED;
3085 {
3086 /* Never make frag if expect extra pass. */
3087 if (!need_pass_2)
3088 frag_align (1, 0, 0);
3089
3090 record_alignment (now_seg, 1);
3091
3092 demand_empty_rest_of_line ();
3093 }
3094
3095 static void
3096 s_ltorg (ignored)
3097 int ignored ATTRIBUTE_UNUSED;
3098 {
3099 unsigned int entry;
3100 literal_pool * pool;
3101 char sym_name[20];
3102
3103 pool = find_literal_pool ();
3104 if (pool == NULL
3105 || pool->symbol == NULL
3106 || pool->next_free_entry == 0)
3107 return;
3108
3109 /* Align pool as you have word accesses.
3110 Only make a frag if we have to. */
3111 if (!need_pass_2)
3112 frag_align (2, 0, 0);
3113
3114 record_alignment (now_seg, 2);
3115
3116 sprintf (sym_name, "$$lit_\002%x", pool->id);
3117
3118 symbol_locate (pool->symbol, sym_name, now_seg,
3119 (valueT) frag_now_fix (), frag_now);
3120 symbol_table_insert (pool->symbol);
3121
3122 ARM_SET_THUMB (pool->symbol, thumb_mode);
3123
3124 #if defined OBJ_COFF || defined OBJ_ELF
3125 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3126 #endif
3127
3128 for (entry = 0; entry < pool->next_free_entry; entry ++)
3129 /* First output the expression in the instruction to the pool. */
3130 emit_expr (&(pool->literals[entry]), 4); /* .word */
3131
3132 /* Mark the pool as empty. */
3133 pool->next_free_entry = 0;
3134 pool->symbol = NULL;
3135 }
3136
3137 /* Same as s_align_ptwo but align 0 => align 2. */
3138
3139 static void
3140 s_align (unused)
3141 int unused ATTRIBUTE_UNUSED;
3142 {
3143 register int temp;
3144 register long temp_fill;
3145 long max_alignment = 15;
3146
3147 temp = get_absolute_expression ();
3148 if (temp > max_alignment)
3149 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
3150 else if (temp < 0)
3151 {
3152 as_bad (_("alignment negative. 0 assumed."));
3153 temp = 0;
3154 }
3155
3156 if (*input_line_pointer == ',')
3157 {
3158 input_line_pointer++;
3159 temp_fill = get_absolute_expression ();
3160 }
3161 else
3162 temp_fill = 0;
3163
3164 if (!temp)
3165 temp = 2;
3166
3167 /* Only make a frag if we HAVE to. */
3168 if (temp && !need_pass_2)
3169 frag_align (temp, (int) temp_fill, 0);
3170 demand_empty_rest_of_line ();
3171
3172 record_alignment (now_seg, temp);
3173 }
3174
3175 static void
3176 s_force_thumb (ignore)
3177 int ignore ATTRIBUTE_UNUSED;
3178 {
3179 /* If we are not already in thumb mode go into it, EVEN if
3180 the target processor does not support thumb instructions.
3181 This is used by gcc/config/arm/lib1funcs.asm for example
3182 to compile interworking support functions even if the
3183 target processor should not support interworking. */
3184 if (! thumb_mode)
3185 {
3186 thumb_mode = 2;
3187
3188 record_alignment (now_seg, 1);
3189 }
3190
3191 demand_empty_rest_of_line ();
3192 }
3193
3194 static void
3195 s_thumb_func (ignore)
3196 int ignore ATTRIBUTE_UNUSED;
3197 {
3198 if (! thumb_mode)
3199 opcode_select (16);
3200
3201 /* The following label is the name/address of the start of a Thumb function.
3202 We need to know this for the interworking support. */
3203 label_is_thumb_function_name = TRUE;
3204
3205 demand_empty_rest_of_line ();
3206 }
3207
3208 /* Perform a .set directive, but also mark the alias as
3209 being a thumb function. */
3210
3211 static void
3212 s_thumb_set (equiv)
3213 int equiv;
3214 {
3215 /* XXX the following is a duplicate of the code for s_set() in read.c
3216 We cannot just call that code as we need to get at the symbol that
3217 is created. */
3218 register char * name;
3219 register char delim;
3220 register char * end_name;
3221 register symbolS * symbolP;
3222
3223 /* Especial apologies for the random logic:
3224 This just grew, and could be parsed much more simply!
3225 Dean - in haste. */
3226 name = input_line_pointer;
3227 delim = get_symbol_end ();
3228 end_name = input_line_pointer;
3229 *end_name = delim;
3230
3231 SKIP_WHITESPACE ();
3232
3233 if (*input_line_pointer != ',')
3234 {
3235 *end_name = 0;
3236 as_bad (_("expected comma after name \"%s\""), name);
3237 *end_name = delim;
3238 ignore_rest_of_line ();
3239 return;
3240 }
3241
3242 input_line_pointer++;
3243 *end_name = 0;
3244
3245 if (name[0] == '.' && name[1] == '\0')
3246 {
3247 /* XXX - this should not happen to .thumb_set. */
3248 abort ();
3249 }
3250
3251 if ((symbolP = symbol_find (name)) == NULL
3252 && (symbolP = md_undefined_symbol (name)) == NULL)
3253 {
3254 #ifndef NO_LISTING
3255 /* When doing symbol listings, play games with dummy fragments living
3256 outside the normal fragment chain to record the file and line info
3257 for this symbol. */
3258 if (listing & LISTING_SYMBOLS)
3259 {
3260 extern struct list_info_struct * listing_tail;
3261 fragS * dummy_frag = (fragS *) xmalloc (sizeof (fragS));
3262
3263 memset (dummy_frag, 0, sizeof (fragS));
3264 dummy_frag->fr_type = rs_fill;
3265 dummy_frag->line = listing_tail;
3266 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3267 dummy_frag->fr_symbol = symbolP;
3268 }
3269 else
3270 #endif
3271 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3272
3273 #ifdef OBJ_COFF
3274 /* "set" symbols are local unless otherwise specified. */
3275 SF_SET_LOCAL (symbolP);
3276 #endif /* OBJ_COFF */
3277 } /* Make a new symbol. */
3278
3279 symbol_table_insert (symbolP);
3280
3281 * end_name = delim;
3282
3283 if (equiv
3284 && S_IS_DEFINED (symbolP)
3285 && S_GET_SEGMENT (symbolP) != reg_section)
3286 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3287
3288 pseudo_set (symbolP);
3289
3290 demand_empty_rest_of_line ();
3291
3292 /* XXX Now we come to the Thumb specific bit of code. */
3293
3294 THUMB_SET_FUNC (symbolP, 1);
3295 ARM_SET_THUMB (symbolP, 1);
3296 #if defined OBJ_ELF || defined OBJ_COFF
3297 ARM_SET_INTERWORK (symbolP, support_interwork);
3298 #endif
3299 }
3300
3301 static void
3302 opcode_select (width)
3303 int width;
3304 {
3305 switch (width)
3306 {
3307 case 16:
3308 if (! thumb_mode)
3309 {
3310 if (! (cpu_variant & ARM_EXT_V4T))
3311 as_bad (_("selected processor does not support THUMB opcodes"));
3312
3313 thumb_mode = 1;
3314 /* No need to force the alignment, since we will have been
3315 coming from ARM mode, which is word-aligned. */
3316 record_alignment (now_seg, 1);
3317 }
3318 mapping_state (MAP_THUMB);
3319 break;
3320
3321 case 32:
3322 if (thumb_mode)
3323 {
3324 if ((cpu_variant & ARM_ALL) == ARM_EXT_V4T)
3325 as_bad (_("selected processor does not support ARM opcodes"));
3326
3327 thumb_mode = 0;
3328
3329 if (!need_pass_2)
3330 frag_align (2, 0, 0);
3331
3332 record_alignment (now_seg, 1);
3333 }
3334 mapping_state (MAP_ARM);
3335 break;
3336
3337 default:
3338 as_bad (_("invalid instruction size selected (%d)"), width);
3339 }
3340 }
3341
3342 static void
3343 s_arm (ignore)
3344 int ignore ATTRIBUTE_UNUSED;
3345 {
3346 opcode_select (32);
3347 demand_empty_rest_of_line ();
3348 }
3349
3350 static void
3351 s_thumb (ignore)
3352 int ignore ATTRIBUTE_UNUSED;
3353 {
3354 opcode_select (16);
3355 demand_empty_rest_of_line ();
3356 }
3357
3358 static void
3359 s_code (unused)
3360 int unused ATTRIBUTE_UNUSED;
3361 {
3362 register int temp;
3363
3364 temp = get_absolute_expression ();
3365 switch (temp)
3366 {
3367 case 16:
3368 case 32:
3369 opcode_select (temp);
3370 break;
3371
3372 default:
3373 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3374 }
3375 }
3376
3377 static void
3378 end_of_line (str)
3379 char *str;
3380 {
3381 skip_whitespace (str);
3382
3383 if (*str != '\0' && !inst.error)
3384 inst.error = _("garbage following instruction");
3385 }
3386
3387 static int
3388 skip_past_comma (str)
3389 char ** str;
3390 {
3391 char * p = * str, c;
3392 int comma = 0;
3393
3394 while ((c = *p) == ' ' || c == ',')
3395 {
3396 p++;
3397 if (c == ',' && comma++)
3398 return FAIL;
3399 }
3400
3401 if (c == '\0')
3402 return FAIL;
3403
3404 *str = p;
3405 return comma ? SUCCESS : FAIL;
3406 }
3407
3408 /* A standard register must be given at this point.
3409 SHIFT is the place to put it in inst.instruction.
3410 Restores input start point on error.
3411 Returns the reg#, or FAIL. */
3412
3413 static int
3414 reg_required_here (str, shift)
3415 char ** str;
3416 int shift;
3417 {
3418 static char buff [128]; /* XXX */
3419 int reg;
3420 char * start = * str;
3421
3422 if ((reg = arm_reg_parse (str, all_reg_maps[REG_TYPE_RN].htab)) != FAIL)
3423 {
3424 if (shift >= 0)
3425 inst.instruction |= reg << shift;
3426 return reg;
3427 }
3428
3429 /* Restore the start point, we may have got a reg of the wrong class. */
3430 *str = start;
3431
3432 /* In the few cases where we might be able to accept something else
3433 this error can be overridden. */
3434 sprintf (buff, _("register expected, not '%.100s'"), start);
3435 inst.error = buff;
3436
3437 return FAIL;
3438 }
3439
3440 /* A Intel Wireless MMX technology register
3441 must be given at this point.
3442 Shift is the place to put it in inst.instruction.
3443 Restores input start point on err.
3444 Returns the reg#, or FAIL. */
3445
3446 static int
3447 wreg_required_here (str, shift, reg_type)
3448 char ** str;
3449 int shift;
3450 enum wreg_type reg_type;
3451 {
3452 static char buff [128];
3453 int reg;
3454 char * start = *str;
3455
3456 if ((reg = arm_reg_parse (str, all_reg_maps[REG_TYPE_IWMMXT].htab)) != FAIL)
3457 {
3458 if (wr_register (reg)
3459 && (reg_type == IWMMXT_REG_WR || reg_type == IWMMXT_REG_WR_OR_WC))
3460 {
3461 if (shift >= 0)
3462 inst.instruction |= (reg ^ WR_PREFIX) << shift;
3463 return reg;
3464 }
3465 else if (wc_register (reg)
3466 && (reg_type == IWMMXT_REG_WC || reg_type == IWMMXT_REG_WR_OR_WC))
3467 {
3468 if (shift >= 0)
3469 inst.instruction |= (reg ^ WC_PREFIX) << shift;
3470 return reg;
3471 }
3472 else if ((wcg_register (reg) && reg_type == IWMMXT_REG_WCG))
3473 {
3474 if (shift >= 0)
3475 inst.instruction |= ((reg ^ WC_PREFIX) - 8) << shift;
3476 return reg;
3477 }
3478 }
3479
3480 /* Restore the start point, we may have got a reg of the wrong class. */
3481 *str = start;
3482
3483 /* In the few cases where we might be able to accept
3484 something else this error can be overridden. */
3485 sprintf (buff, _("Intel Wireless MMX technology register expected, not '%.100s'"), start);
3486 inst.error = buff;
3487
3488 return FAIL;
3489 }
3490
3491 static const struct asm_psr *
3492 arm_psr_parse (ccp)
3493 register char ** ccp;
3494 {
3495 char * start = * ccp;
3496 char c;
3497 char * p;
3498 const struct asm_psr * psr;
3499
3500 p = start;
3501
3502 /* Skip to the end of the next word in the input stream. */
3503 do
3504 {
3505 c = *p++;
3506 }
3507 while (ISALPHA (c) || c == '_');
3508
3509 /* Terminate the word. */
3510 *--p = 0;
3511
3512 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
3513 feature for ease of use and backwards compatibility. */
3514 if (!strncmp (start, "cpsr", 4))
3515 strncpy (start, "CPSR", 4);
3516 else if (!strncmp (start, "spsr", 4))
3517 strncpy (start, "SPSR", 4);
3518
3519 /* Now locate the word in the psr hash table. */
3520 psr = (const struct asm_psr *) hash_find (arm_psr_hsh, start);
3521
3522 /* Restore the input stream. */
3523 *p = c;
3524
3525 /* If we found a valid match, advance the
3526 stream pointer past the end of the word. */
3527 *ccp = p;
3528
3529 return psr;
3530 }
3531
3532 /* Parse the input looking for a PSR flag. */
3533
3534 static int
3535 psr_required_here (str)
3536 char ** str;
3537 {
3538 char * start = * str;
3539 const struct asm_psr * psr;
3540
3541 psr = arm_psr_parse (str);
3542
3543 if (psr)
3544 {
3545 /* If this is the SPSR that is being modified, set the R bit. */
3546 if (! psr->cpsr)
3547 inst.instruction |= SPSR_BIT;
3548
3549 /* Set the psr flags in the MSR instruction. */
3550 inst.instruction |= psr->field << PSR_SHIFT;
3551
3552 return SUCCESS;
3553 }
3554
3555 /* In the few cases where we might be able to accept
3556 something else this error can be overridden. */
3557 inst.error = _("flag for {c}psr instruction expected");
3558
3559 /* Restore the start point. */
3560 *str = start;
3561 return FAIL;
3562 }
3563
3564 static int
3565 co_proc_number (str)
3566 char **str;
3567 {
3568 int processor, pchar;
3569 char *start;
3570
3571 skip_whitespace (*str);
3572 start = *str;
3573
3574 /* The data sheet seems to imply that just a number on its own is valid
3575 here, but the RISC iX assembler seems to accept a prefix 'p'. We will
3576 accept either. */
3577 if ((processor = arm_reg_parse (str, all_reg_maps[REG_TYPE_CP].htab))
3578 == FAIL)
3579 {
3580 *str = start;
3581
3582 pchar = *(*str)++;
3583 if (pchar >= '0' && pchar <= '9')
3584 {
3585 processor = pchar - '0';
3586 if (**str >= '0' && **str <= '9')
3587 {
3588 processor = processor * 10 + *(*str)++ - '0';
3589 if (processor > 15)
3590 {
3591 inst.error = _("illegal co-processor number");
3592 return FAIL;
3593 }
3594 }
3595 }
3596 else
3597 {
3598 inst.error = _("bad or missing co-processor number");
3599 return FAIL;
3600 }
3601 }
3602
3603 inst.instruction |= processor << 8;
3604 return SUCCESS;
3605 }
3606
3607 static int
3608 cp_opc_expr (str, where, length)
3609 char ** str;
3610 int where;
3611 int length;
3612 {
3613 expressionS expr;
3614
3615 skip_whitespace (* str);
3616
3617 memset (&expr, '\0', sizeof (expr));
3618
3619 if (my_get_expression (&expr, str))
3620 return FAIL;
3621 if (expr.X_op != O_constant)
3622 {
3623 inst.error = _("bad or missing expression");
3624 return FAIL;
3625 }
3626
3627 if ((expr.X_add_number & ((1 << length) - 1)) != expr.X_add_number)
3628 {
3629 inst.error = _("immediate co-processor expression too large");
3630 return FAIL;
3631 }
3632
3633 inst.instruction |= expr.X_add_number << where;
3634 return SUCCESS;
3635 }
3636
3637 static int
3638 cp_reg_required_here (str, where)
3639 char ** str;
3640 int where;
3641 {
3642 int reg;
3643 char * start = *str;
3644
3645 if ((reg = arm_reg_parse (str, all_reg_maps[REG_TYPE_CN].htab)) != FAIL)
3646 {
3647 inst.instruction |= reg << where;
3648 return reg;
3649 }
3650
3651 /* In the few cases where we might be able to accept something else
3652 this error can be overridden. */
3653 inst.error = _("co-processor register expected");
3654
3655 /* Restore the start point. */
3656 *str = start;
3657 return FAIL;
3658 }
3659
3660 static int
3661 fp_reg_required_here (str, where)
3662 char ** str;
3663 int where;
3664 {
3665 int reg;
3666 char * start = * str;
3667
3668 if ((reg = arm_reg_parse (str, all_reg_maps[REG_TYPE_FN].htab)) != FAIL)
3669 {
3670 inst.instruction |= reg << where;
3671 return reg;
3672 }
3673
3674 /* In the few cases where we might be able to accept something else
3675 this error can be overridden. */
3676 inst.error = _("floating point register expected");
3677
3678 /* Restore the start point. */
3679 *str = start;
3680 return FAIL;
3681 }
3682
3683 static int
3684 cp_address_offset (str)
3685 char ** str;
3686 {
3687 int offset;
3688
3689 skip_whitespace (* str);
3690
3691 if (! is_immediate_prefix (**str))
3692 {
3693 inst.error = _("immediate expression expected");
3694 return FAIL;
3695 }
3696
3697 (*str)++;
3698
3699 if (my_get_expression (& inst.reloc.exp, str))
3700 return FAIL;
3701
3702 if (inst.reloc.exp.X_op == O_constant)
3703 {
3704 offset = inst.reloc.exp.X_add_number;
3705
3706 if (offset & 3)
3707 {
3708 inst.error = _("co-processor address must be word aligned");
3709 return FAIL;
3710 }
3711
3712 if (offset > 1023 || offset < -1023)
3713 {
3714 inst.error = _("offset too large");
3715 return FAIL;
3716 }
3717
3718 if (offset >= 0)
3719 inst.instruction |= INDEX_UP;
3720 else
3721 offset = -offset;
3722
3723 inst.instruction |= offset >> 2;
3724 }
3725 else
3726 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
3727
3728 return SUCCESS;
3729 }
3730
3731 static int
3732 cp_address_required_here (str, wb_ok)
3733 char ** str;
3734 int wb_ok;
3735 {
3736 char * p = * str;
3737 int pre_inc = 0;
3738 int write_back = 0;
3739
3740 if (*p == '[')
3741 {
3742 int reg;
3743
3744 p++;
3745 skip_whitespace (p);
3746
3747 if ((reg = reg_required_here (& p, 16)) == FAIL)
3748 return FAIL;
3749
3750 skip_whitespace (p);
3751
3752 if (*p == ']')
3753 {
3754 p++;
3755
3756 skip_whitespace (p);
3757
3758 if (*p == '\0')
3759 {
3760 /* As an extension to the official ARM syntax we allow:
3761
3762 [Rn]
3763
3764 as a short hand for:
3765
3766 [Rn,#0] */
3767 inst.instruction |= PRE_INDEX | INDEX_UP;
3768 *str = p;
3769 return SUCCESS;
3770 }
3771
3772 if (skip_past_comma (& p) == FAIL)
3773 {
3774 inst.error = _("comma expected after closing square bracket");
3775 return FAIL;
3776 }
3777
3778 skip_whitespace (p);
3779
3780 if (*p == '#')
3781 {
3782 if (wb_ok)
3783 {
3784 /* [Rn], #expr */
3785 write_back = WRITE_BACK;
3786
3787 if (reg == REG_PC)
3788 {
3789 inst.error = _("pc may not be used in post-increment");
3790 return FAIL;
3791 }
3792
3793 if (cp_address_offset (& p) == FAIL)
3794 return FAIL;
3795 }
3796 else
3797 pre_inc = PRE_INDEX | INDEX_UP;
3798 }
3799 else if (*p == '{')
3800 {
3801 int option;
3802
3803 /* [Rn], {<expr>} */
3804 p++;
3805
3806 skip_whitespace (p);
3807
3808 if (my_get_expression (& inst.reloc.exp, & p))
3809 return FAIL;
3810
3811 if (inst.reloc.exp.X_op == O_constant)
3812 {
3813 option = inst.reloc.exp.X_add_number;
3814
3815 if (option > 255 || option < 0)
3816 {
3817 inst.error = _("'option' field too large");
3818 return FAIL;
3819 }
3820
3821 skip_whitespace (p);
3822
3823 if (*p != '}')
3824 {
3825 inst.error = _("'}' expected at end of 'option' field");
3826 return FAIL;
3827 }
3828 else
3829 {
3830 p++;
3831 inst.instruction |= option;
3832 inst.instruction |= INDEX_UP;
3833 }
3834 }
3835 else
3836 {
3837 inst.error = _("non-constant expressions for 'option' field not supported");
3838 return FAIL;
3839 }
3840 }
3841 else
3842 {
3843 inst.error = _("# or { expected after comma");
3844 return FAIL;
3845 }
3846 }
3847 else
3848 {
3849 /* '['Rn, #expr']'[!] */
3850
3851 if (skip_past_comma (& p) == FAIL)
3852 {
3853 inst.error = _("pre-indexed expression expected");
3854 return FAIL;
3855 }
3856
3857 pre_inc = PRE_INDEX;
3858
3859 if (cp_address_offset (& p) == FAIL)
3860 return FAIL;
3861
3862 skip_whitespace (p);
3863
3864 if (*p++ != ']')
3865 {
3866 inst.error = _("missing ]");
3867 return FAIL;
3868 }
3869
3870 skip_whitespace (p);
3871
3872 if (wb_ok && *p == '!')
3873 {
3874 if (reg == REG_PC)
3875 {
3876 inst.error = _("pc may not be used with write-back");
3877 return FAIL;
3878 }
3879
3880 p++;
3881 write_back = WRITE_BACK;
3882 }
3883 }
3884 }
3885 else
3886 {
3887 if (my_get_expression (&inst.reloc.exp, &p))
3888 return FAIL;
3889
3890 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
3891 inst.reloc.exp.X_add_number -= 8; /* PC rel adjust. */
3892 inst.reloc.pc_rel = 1;
3893 inst.instruction |= (REG_PC << 16);
3894 pre_inc = PRE_INDEX;
3895 }
3896
3897 inst.instruction |= write_back | pre_inc;
3898 *str = p;
3899 return SUCCESS;
3900 }
3901
3902 static int
3903 cp_byte_address_offset (str)
3904 char ** str;
3905 {
3906 int offset;
3907
3908 skip_whitespace (* str);
3909
3910 if (! is_immediate_prefix (**str))
3911 {
3912 inst.error = _("immediate expression expected");
3913 return FAIL;
3914 }
3915
3916 (*str)++;
3917
3918 if (my_get_expression (& inst.reloc.exp, str))
3919 return FAIL;
3920
3921 if (inst.reloc.exp.X_op == O_constant)
3922 {
3923 offset = inst.reloc.exp.X_add_number;
3924
3925 if (offset > 255 || offset < -255)
3926 {
3927 inst.error = _("offset too large");
3928 return FAIL;
3929 }
3930
3931 if (offset >= 0)
3932 inst.instruction |= INDEX_UP;
3933 else
3934 offset = -offset;
3935
3936 inst.instruction |= offset;
3937 }
3938 else
3939 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM_S2;
3940
3941 return SUCCESS;
3942 }
3943
3944 static int
3945 cp_byte_address_required_here (str)
3946 char ** str;
3947 {
3948 char * p = * str;
3949 int pre_inc = 0;
3950 int write_back = 0;
3951
3952 if (*p == '[')
3953 {
3954 int reg;
3955
3956 p++;
3957 skip_whitespace (p);
3958
3959 if ((reg = reg_required_here (& p, 16)) == FAIL)
3960 return FAIL;
3961
3962 skip_whitespace (p);
3963
3964 if (*p == ']')
3965 {
3966 p++;
3967
3968 if (skip_past_comma (& p) == SUCCESS)
3969 {
3970 /* [Rn], #expr */
3971 write_back = WRITE_BACK;
3972
3973 if (reg == REG_PC)
3974 {
3975 inst.error = _("pc may not be used in post-increment");
3976 return FAIL;
3977 }
3978
3979 if (cp_byte_address_offset (& p) == FAIL)
3980 return FAIL;
3981 }
3982 else
3983 pre_inc = PRE_INDEX | INDEX_UP;
3984 }
3985 else
3986 {
3987 /* '['Rn, #expr']'[!] */
3988
3989 if (skip_past_comma (& p) == FAIL)
3990 {
3991 inst.error = _("pre-indexed expression expected");
3992 return FAIL;
3993 }
3994
3995 pre_inc = PRE_INDEX;
3996
3997 if (cp_byte_address_offset (& p) == FAIL)
3998 return FAIL;
3999
4000 skip_whitespace (p);
4001
4002 if (*p++ != ']')
4003 {
4004 inst.error = _("missing ]");
4005 return FAIL;
4006 }
4007
4008 skip_whitespace (p);
4009
4010 if (*p == '!')
4011 {
4012 if (reg == REG_PC)
4013 {
4014 inst.error = _("pc may not be used with write-back");
4015 return FAIL;
4016 }
4017
4018 p++;
4019 write_back = WRITE_BACK;
4020 }
4021 }
4022 }
4023 else
4024 {
4025 if (my_get_expression (&inst.reloc.exp, &p))
4026 return FAIL;
4027
4028 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM_S2;
4029 inst.reloc.exp.X_add_number -= 8; /* PC rel adjust. */
4030 inst.reloc.pc_rel = 1;
4031 inst.instruction |= (REG_PC << 16);
4032 pre_inc = PRE_INDEX;
4033 }
4034
4035 inst.instruction |= write_back | pre_inc;
4036 *str = p;
4037 return SUCCESS;
4038 }
4039
4040 static void
4041 do_empty (str)
4042 char * str;
4043 {
4044 /* Do nothing really. */
4045 end_of_line (str);
4046 }
4047
4048 static void
4049 do_mrs (str)
4050 char *str;
4051 {
4052 int skip = 0;
4053
4054 /* Only one syntax. */
4055 skip_whitespace (str);
4056
4057 if (reg_required_here (&str, 12) == FAIL)
4058 {
4059 inst.error = BAD_ARGS;
4060 return;
4061 }
4062
4063 if (skip_past_comma (&str) == FAIL)
4064 {
4065 inst.error = _("comma expected after register name");
4066 return;
4067 }
4068
4069 skip_whitespace (str);
4070
4071 if ( strcmp (str, "CPSR") == 0
4072 || strcmp (str, "SPSR") == 0
4073 /* Lower case versions for backwards compatibility. */
4074 || strcmp (str, "cpsr") == 0
4075 || strcmp (str, "spsr") == 0)
4076 skip = 4;
4077
4078 /* This is for backwards compatibility with older toolchains. */
4079 else if ( strcmp (str, "cpsr_all") == 0
4080 || strcmp (str, "spsr_all") == 0)
4081 skip = 8;
4082 else
4083 {
4084 inst.error = _("CPSR or SPSR expected");
4085 return;
4086 }
4087
4088 if (* str == 's' || * str == 'S')
4089 inst.instruction |= SPSR_BIT;
4090 str += skip;
4091
4092 end_of_line (str);
4093 }
4094
4095 /* Two possible forms:
4096 "{C|S}PSR_<field>, Rm",
4097 "{C|S}PSR_f, #expression". */
4098
4099 static void
4100 do_msr (str)
4101 char * str;
4102 {
4103 skip_whitespace (str);
4104
4105 if (psr_required_here (& str) == FAIL)
4106 return;
4107
4108 if (skip_past_comma (& str) == FAIL)
4109 {
4110 inst.error = _("comma missing after psr flags");
4111 return;
4112 }
4113
4114 skip_whitespace (str);
4115
4116 if (reg_required_here (& str, 0) != FAIL)
4117 {
4118 inst.error = NULL;
4119 end_of_line (str);
4120 return;
4121 }
4122
4123 if (! is_immediate_prefix (* str))
4124 {
4125 inst.error =
4126 _("only a register or immediate value can follow a psr flag");
4127 return;
4128 }
4129
4130 str ++;
4131 inst.error = NULL;
4132
4133 if (my_get_expression (& inst.reloc.exp, & str))
4134 {
4135 inst.error =
4136 _("only a register or immediate value can follow a psr flag");
4137 return;
4138 }
4139
4140 #if 0 /* The first edition of the ARM architecture manual stated that
4141 writing anything other than the flags with an immediate operation
4142 had UNPREDICTABLE effects. This constraint was removed in the
4143 second edition of the specification. */
4144 if ((cpu_variant & ARM_EXT_V5) != ARM_EXT_V5
4145 && inst.instruction & ((PSR_c | PSR_x | PSR_s) << PSR_SHIFT))
4146 {
4147 inst.error = _("immediate value cannot be used to set this field");
4148 return;
4149 }
4150 #endif
4151
4152 inst.instruction |= INST_IMMEDIATE;
4153
4154 if (inst.reloc.exp.X_add_symbol)
4155 {
4156 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4157 inst.reloc.pc_rel = 0;
4158 }
4159 else
4160 {
4161 unsigned value = validate_immediate (inst.reloc.exp.X_add_number);
4162
4163 if (value == (unsigned) FAIL)
4164 {
4165 inst.error = _("invalid constant");
4166 return;
4167 }
4168
4169 inst.instruction |= value;
4170 }
4171
4172 inst.error = NULL;
4173 end_of_line (str);
4174 }
4175
4176 /* Long Multiply Parser
4177 UMULL RdLo, RdHi, Rm, Rs
4178 SMULL RdLo, RdHi, Rm, Rs
4179 UMLAL RdLo, RdHi, Rm, Rs
4180 SMLAL RdLo, RdHi, Rm, Rs. */
4181
4182 static void
4183 do_mull (str)
4184 char * str;
4185 {
4186 int rdlo, rdhi, rm, rs;
4187
4188 /* Only one format "rdlo, rdhi, rm, rs". */
4189 skip_whitespace (str);
4190
4191 if ((rdlo = reg_required_here (&str, 12)) == FAIL)
4192 {
4193 inst.error = BAD_ARGS;
4194 return;
4195 }
4196
4197 if (skip_past_comma (&str) == FAIL
4198 || (rdhi = reg_required_here (&str, 16)) == FAIL)
4199 {
4200 inst.error = BAD_ARGS;
4201 return;
4202 }
4203
4204 if (skip_past_comma (&str) == FAIL
4205 || (rm = reg_required_here (&str, 0)) == FAIL)
4206 {
4207 inst.error = BAD_ARGS;
4208 return;
4209 }
4210
4211 /* rdhi, rdlo and rm must all be different. */
4212 if (rdlo == rdhi || rdlo == rm || rdhi == rm)
4213 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
4214
4215 if (skip_past_comma (&str) == FAIL
4216 || (rs = reg_required_here (&str, 8)) == FAIL)
4217 {
4218 inst.error = BAD_ARGS;
4219 return;
4220 }
4221
4222 if (rdhi == REG_PC || rdhi == REG_PC || rdhi == REG_PC || rdhi == REG_PC)
4223 {
4224 inst.error = BAD_PC;
4225 return;
4226 }
4227
4228 end_of_line (str);
4229 }
4230
4231 static void
4232 do_mul (str)
4233 char * str;
4234 {
4235 int rd, rm;
4236
4237 /* Only one format "rd, rm, rs". */
4238 skip_whitespace (str);
4239
4240 if ((rd = reg_required_here (&str, 16)) == FAIL)
4241 {
4242 inst.error = BAD_ARGS;
4243 return;
4244 }
4245
4246 if (rd == REG_PC)
4247 {
4248 inst.error = BAD_PC;
4249 return;
4250 }
4251
4252 if (skip_past_comma (&str) == FAIL
4253 || (rm = reg_required_here (&str, 0)) == FAIL)
4254 {
4255 inst.error = BAD_ARGS;
4256 return;
4257 }
4258
4259 if (rm == REG_PC)
4260 {
4261 inst.error = BAD_PC;
4262 return;
4263 }
4264
4265 if (rm == rd)
4266 as_tsktsk (_("rd and rm should be different in mul"));
4267
4268 if (skip_past_comma (&str) == FAIL
4269 || (rm = reg_required_here (&str, 8)) == FAIL)
4270 {
4271 inst.error = BAD_ARGS;
4272 return;
4273 }
4274
4275 if (rm == REG_PC)
4276 {
4277 inst.error = BAD_PC;
4278 return;
4279 }
4280
4281 end_of_line (str);
4282 }
4283
4284 static void
4285 do_mla (str)
4286 char * str;
4287 {
4288 int rd, rm;
4289
4290 /* Only one format "rd, rm, rs, rn". */
4291 skip_whitespace (str);
4292
4293 if ((rd = reg_required_here (&str, 16)) == FAIL)
4294 {
4295 inst.error = BAD_ARGS;
4296 return;
4297 }
4298
4299 if (rd == REG_PC)
4300 {
4301 inst.error = BAD_PC;
4302 return;
4303 }
4304
4305 if (skip_past_comma (&str) == FAIL
4306 || (rm = reg_required_here (&str, 0)) == FAIL)
4307 {
4308 inst.error = BAD_ARGS;
4309 return;
4310 }
4311
4312 if (rm == REG_PC)
4313 {
4314 inst.error = BAD_PC;
4315 return;
4316 }
4317
4318 if (rm == rd)
4319 as_tsktsk (_("rd and rm should be different in mla"));
4320
4321 if (skip_past_comma (&str) == FAIL
4322 || (rd = reg_required_here (&str, 8)) == FAIL
4323 || skip_past_comma (&str) == FAIL
4324 || (rm = reg_required_here (&str, 12)) == FAIL)
4325 {
4326 inst.error = BAD_ARGS;
4327 return;
4328 }
4329
4330 if (rd == REG_PC || rm == REG_PC)
4331 {
4332 inst.error = BAD_PC;
4333 return;
4334 }
4335
4336 end_of_line (str);
4337 }
4338
4339 /* Expects *str -> the characters "acc0", possibly with leading blanks.
4340 Advances *str to the next non-alphanumeric.
4341 Returns 0, or else FAIL (in which case sets inst.error).
4342
4343 (In a future XScale, there may be accumulators other than zero.
4344 At that time this routine and its callers can be upgraded to suit.) */
4345
4346 static int
4347 accum0_required_here (str)
4348 char ** str;
4349 {
4350 static char buff [128]; /* Note the address is taken. Hence, static. */
4351 char * p = * str;
4352 char c;
4353 int result = 0; /* The accum number. */
4354
4355 skip_whitespace (p);
4356
4357 *str = p; /* Advance caller's string pointer too. */
4358 c = *p++;
4359 while (ISALNUM (c))
4360 c = *p++;
4361
4362 *--p = 0; /* Aap nul into input buffer at non-alnum. */
4363
4364 if (! ( streq (*str, "acc0") || streq (*str, "ACC0")))
4365 {
4366 sprintf (buff, _("acc0 expected, not '%.100s'"), *str);
4367 inst.error = buff;
4368 result = FAIL;
4369 }
4370
4371 *p = c; /* Unzap. */
4372 *str = p; /* Caller's string pointer to after match. */
4373 return result;
4374 }
4375
4376 /* Expects **str -> after a comma. May be leading blanks.
4377 Advances *str, recognizing a load mode, and setting inst.instruction.
4378 Returns rn, or else FAIL (in which case may set inst.error
4379 and not advance str)
4380
4381 Note: doesn't know Rd, so no err checks that require such knowledge. */
4382
4383 static int
4384 ld_mode_required_here (string)
4385 char ** string;
4386 {
4387 char * str = * string;
4388 int rn;
4389 int pre_inc = 0;
4390
4391 skip_whitespace (str);
4392
4393 if (* str == '[')
4394 {
4395 str++;
4396
4397 skip_whitespace (str);
4398
4399 if ((rn = reg_required_here (& str, 16)) == FAIL)
4400 return FAIL;
4401
4402 skip_whitespace (str);
4403
4404 if (* str == ']')
4405 {
4406 str ++;
4407
4408 if (skip_past_comma (& str) == SUCCESS)
4409 {
4410 /* [Rn],... (post inc) */
4411 if (ldst_extend_v4 (&str) == FAIL)
4412 return FAIL;
4413 }
4414 else /* [Rn] */
4415 {
4416 skip_whitespace (str);
4417
4418 if (* str == '!')
4419 {
4420 str ++;
4421 inst.instruction |= WRITE_BACK;
4422 }
4423
4424 inst.instruction |= INDEX_UP | HWOFFSET_IMM;
4425 pre_inc = 1;
4426 }
4427 }
4428 else /* [Rn,...] */
4429 {
4430 if (skip_past_comma (& str) == FAIL)
4431 {
4432 inst.error = _("pre-indexed expression expected");
4433 return FAIL;
4434 }
4435
4436 pre_inc = 1;
4437
4438 if (ldst_extend_v4 (&str) == FAIL)
4439 return FAIL;
4440
4441 skip_whitespace (str);
4442
4443 if (* str ++ != ']')
4444 {
4445 inst.error = _("missing ]");
4446 return FAIL;
4447 }
4448
4449 skip_whitespace (str);
4450
4451 if (* str == '!')
4452 {
4453 str ++;
4454 inst.instruction |= WRITE_BACK;
4455 }
4456 }
4457 }
4458 else if (* str == '=') /* ldr's "r,=label" syntax */
4459 /* We should never reach here, because <text> = <expression> is
4460 caught gas/read.c read_a_source_file() as a .set operation. */
4461 return FAIL;
4462 else /* PC +- 8 bit immediate offset. */
4463 {
4464 if (my_get_expression (& inst.reloc.exp, & str))
4465 return FAIL;
4466
4467 inst.instruction |= HWOFFSET_IMM; /* The I bit. */
4468 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
4469 inst.reloc.exp.X_add_number -= 8; /* PC rel adjust. */
4470 inst.reloc.pc_rel = 1;
4471 inst.instruction |= (REG_PC << 16);
4472
4473 rn = REG_PC;
4474 pre_inc = 1;
4475 }
4476
4477 inst.instruction |= (pre_inc ? PRE_INDEX : 0);
4478 * string = str;
4479
4480 return rn;
4481 }
4482
4483 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
4484 SMLAxy{cond} Rd,Rm,Rs,Rn
4485 SMLAWy{cond} Rd,Rm,Rs,Rn
4486 Error if any register is R15. */
4487
4488 static void
4489 do_smla (str)
4490 char * str;
4491 {
4492 int rd, rm, rs, rn;
4493
4494 skip_whitespace (str);
4495
4496 if ((rd = reg_required_here (& str, 16)) == FAIL
4497 || skip_past_comma (& str) == FAIL
4498 || (rm = reg_required_here (& str, 0)) == FAIL
4499 || skip_past_comma (& str) == FAIL
4500 || (rs = reg_required_here (& str, 8)) == FAIL
4501 || skip_past_comma (& str) == FAIL
4502 || (rn = reg_required_here (& str, 12)) == FAIL)
4503 inst.error = BAD_ARGS;
4504
4505 else if (rd == REG_PC || rm == REG_PC || rs == REG_PC || rn == REG_PC)
4506 inst.error = BAD_PC;
4507
4508 else
4509 end_of_line (str);
4510 }
4511
4512 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
4513 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
4514 Error if any register is R15.
4515 Warning if Rdlo == Rdhi. */
4516
4517 static void
4518 do_smlal (str)
4519 char * str;
4520 {
4521 int rdlo, rdhi, rm, rs;
4522
4523 skip_whitespace (str);
4524
4525 if ((rdlo = reg_required_here (& str, 12)) == FAIL
4526 || skip_past_comma (& str) == FAIL
4527 || (rdhi = reg_required_here (& str, 16)) == FAIL
4528 || skip_past_comma (& str) == FAIL
4529 || (rm = reg_required_here (& str, 0)) == FAIL
4530 || skip_past_comma (& str) == FAIL
4531 || (rs = reg_required_here (& str, 8)) == FAIL)
4532 {
4533 inst.error = BAD_ARGS;
4534 return;
4535 }
4536
4537 if (rdlo == REG_PC || rdhi == REG_PC || rm == REG_PC || rs == REG_PC)
4538 {
4539 inst.error = BAD_PC;
4540 return;
4541 }
4542
4543 if (rdlo == rdhi)
4544 as_tsktsk (_("rdhi and rdlo must be different"));
4545
4546 end_of_line (str);
4547 }
4548
4549 /* ARM V5E (El Segundo) signed-multiply (argument parse)
4550 SMULxy{cond} Rd,Rm,Rs
4551 Error if any register is R15. */
4552
4553 static void
4554 do_smul (str)
4555 char * str;
4556 {
4557 int rd, rm, rs;
4558
4559 skip_whitespace (str);
4560
4561 if ((rd = reg_required_here (& str, 16)) == FAIL
4562 || skip_past_comma (& str) == FAIL
4563 || (rm = reg_required_here (& str, 0)) == FAIL
4564 || skip_past_comma (& str) == FAIL
4565 || (rs = reg_required_here (& str, 8)) == FAIL)
4566 inst.error = BAD_ARGS;
4567
4568 else if (rd == REG_PC || rm == REG_PC || rs == REG_PC)
4569 inst.error = BAD_PC;
4570
4571 else
4572 end_of_line (str);
4573 }
4574
4575 /* ARM V5E (El Segundo) saturating-add/subtract (argument parse)
4576 Q[D]{ADD,SUB}{cond} Rd,Rm,Rn
4577 Error if any register is R15. */
4578
4579 static void
4580 do_qadd (str)
4581 char * str;
4582 {
4583 int rd, rm, rn;
4584
4585 skip_whitespace (str);
4586
4587 if ((rd = reg_required_here (& str, 12)) == FAIL
4588 || skip_past_comma (& str) == FAIL
4589 || (rm = reg_required_here (& str, 0)) == FAIL
4590 || skip_past_comma (& str) == FAIL
4591 || (rn = reg_required_here (& str, 16)) == FAIL)
4592 inst.error = BAD_ARGS;
4593
4594 else if (rd == REG_PC || rm == REG_PC || rn == REG_PC)
4595 inst.error = BAD_PC;
4596
4597 else
4598 end_of_line (str);
4599 }
4600
4601 /* ARM V5E (el Segundo)
4602 MCRRcc <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
4603 MRRCcc <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
4604
4605 These are equivalent to the XScale instructions MAR and MRA,
4606 respectively, when coproc == 0, opcode == 0, and CRm == 0.
4607
4608 Result unpredicatable if Rd or Rn is R15. */
4609
4610 static void
4611 do_co_reg2c (str)
4612 char * str;
4613 {
4614 int rd, rn;
4615
4616 skip_whitespace (str);
4617
4618 if (co_proc_number (& str) == FAIL)
4619 {
4620 if (!inst.error)
4621 inst.error = BAD_ARGS;
4622 return;
4623 }
4624
4625 if (skip_past_comma (& str) == FAIL
4626 || cp_opc_expr (& str, 4, 4) == FAIL)
4627 {
4628 if (!inst.error)
4629 inst.error = BAD_ARGS;
4630 return;
4631 }
4632
4633 if (skip_past_comma (& str) == FAIL
4634 || (rd = reg_required_here (& str, 12)) == FAIL)
4635 {
4636 if (!inst.error)
4637 inst.error = BAD_ARGS;
4638 return;
4639 }
4640
4641 if (skip_past_comma (& str) == FAIL
4642 || (rn = reg_required_here (& str, 16)) == FAIL)
4643 {
4644 if (!inst.error)
4645 inst.error = BAD_ARGS;
4646 return;
4647 }
4648
4649 /* Unpredictable result if rd or rn is R15. */
4650 if (rd == REG_PC || rn == REG_PC)
4651 as_tsktsk
4652 (_("Warning: instruction unpredictable when using r15"));
4653
4654 if (skip_past_comma (& str) == FAIL
4655 || cp_reg_required_here (& str, 0) == FAIL)
4656 {
4657 if (!inst.error)
4658 inst.error = BAD_ARGS;
4659 return;
4660 }
4661
4662 end_of_line (str);
4663 }
4664
4665 /* ARM V5 count-leading-zeroes instruction (argument parse)
4666 CLZ{<cond>} <Rd>, <Rm>
4667 Condition defaults to COND_ALWAYS.
4668 Error if Rd or Rm are R15. */
4669
4670 static void
4671 do_clz (str)
4672 char * str;
4673 {
4674 int rd, rm;
4675
4676 skip_whitespace (str);
4677
4678 if (((rd = reg_required_here (& str, 12)) == FAIL)
4679 || (skip_past_comma (& str) == FAIL)
4680 || ((rm = reg_required_here (& str, 0)) == FAIL))
4681 inst.error = BAD_ARGS;
4682
4683 else if (rd == REG_PC || rm == REG_PC )
4684 inst.error = BAD_PC;
4685
4686 else
4687 end_of_line (str);
4688 }
4689
4690 /* ARM V5 (argument parse)
4691 LDC2{L} <coproc>, <CRd>, <addressing mode>
4692 STC2{L} <coproc>, <CRd>, <addressing mode>
4693 Instruction is not conditional, and has 0xf in the condition field.
4694 Otherwise, it's the same as LDC/STC. */
4695
4696 static void
4697 do_lstc2 (str)
4698 char * str;
4699 {
4700 skip_whitespace (str);
4701
4702 if (co_proc_number (& str) == FAIL)
4703 {
4704 if (!inst.error)
4705 inst.error = BAD_ARGS;
4706 }
4707 else if (skip_past_comma (& str) == FAIL
4708 || cp_reg_required_here (& str, 12) == FAIL)
4709 {
4710 if (!inst.error)
4711 inst.error = BAD_ARGS;
4712 }
4713 else if (skip_past_comma (& str) == FAIL
4714 || cp_address_required_here (&str, CP_WB_OK) == FAIL)
4715 {
4716 if (! inst.error)
4717 inst.error = BAD_ARGS;
4718 }
4719 else
4720 end_of_line (str);
4721 }
4722
4723 /* ARM V5 (argument parse)
4724 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>, <opcode_2>
4725 Instruction is not conditional, and has 0xf in the condition field.
4726 Otherwise, it's the same as CDP. */
4727
4728 static void
4729 do_cdp2 (str)
4730 char * str;
4731 {
4732 skip_whitespace (str);
4733
4734 if (co_proc_number (& str) == FAIL)
4735 {
4736 if (!inst.error)
4737 inst.error = BAD_ARGS;
4738 return;
4739 }
4740
4741 if (skip_past_comma (& str) == FAIL
4742 || cp_opc_expr (& str, 20,4) == FAIL)
4743 {
4744 if (!inst.error)
4745 inst.error = BAD_ARGS;
4746 return;
4747 }
4748
4749 if (skip_past_comma (& str) == FAIL
4750 || cp_reg_required_here (& str, 12) == FAIL)
4751 {
4752 if (!inst.error)
4753 inst.error = BAD_ARGS;
4754 return;
4755 }
4756
4757 if (skip_past_comma (& str) == FAIL
4758 || cp_reg_required_here (& str, 16) == FAIL)
4759 {
4760 if (!inst.error)
4761 inst.error = BAD_ARGS;
4762 return;
4763 }
4764
4765 if (skip_past_comma (& str) == FAIL
4766 || cp_reg_required_here (& str, 0) == FAIL)
4767 {
4768 if (!inst.error)
4769 inst.error = BAD_ARGS;
4770 return;
4771 }
4772
4773 if (skip_past_comma (& str) == SUCCESS)
4774 {
4775 if (cp_opc_expr (& str, 5, 3) == FAIL)
4776 {
4777 if (!inst.error)
4778 inst.error = BAD_ARGS;
4779 return;
4780 }
4781 }
4782
4783 end_of_line (str);
4784 }
4785
4786 /* ARM V5 (argument parse)
4787 MCR2 <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>, <opcode_2>
4788 MRC2 <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>, <opcode_2>
4789 Instruction is not conditional, and has 0xf in the condition field.
4790 Otherwise, it's the same as MCR/MRC. */
4791
4792 static void
4793 do_co_reg2 (str)
4794 char * str;
4795 {
4796 skip_whitespace (str);
4797
4798 if (co_proc_number (& str) == FAIL)
4799 {
4800 if (!inst.error)
4801 inst.error = BAD_ARGS;
4802 return;
4803 }
4804
4805 if (skip_past_comma (& str) == FAIL
4806 || cp_opc_expr (& str, 21, 3) == FAIL)
4807 {
4808 if (!inst.error)
4809 inst.error = BAD_ARGS;
4810 return;
4811 }
4812
4813 if (skip_past_comma (& str) == FAIL
4814 || reg_required_here (& str, 12) == FAIL)
4815 {
4816 if (!inst.error)
4817 inst.error = BAD_ARGS;
4818 return;
4819 }
4820
4821 if (skip_past_comma (& str) == FAIL
4822 || cp_reg_required_here (& str, 16) == FAIL)
4823 {
4824 if (!inst.error)
4825 inst.error = BAD_ARGS;
4826 return;
4827 }
4828
4829 if (skip_past_comma (& str) == FAIL
4830 || cp_reg_required_here (& str, 0) == FAIL)
4831 {
4832 if (!inst.error)
4833 inst.error = BAD_ARGS;
4834 return;
4835 }
4836
4837 if (skip_past_comma (& str) == SUCCESS)
4838 {
4839 if (cp_opc_expr (& str, 5, 3) == FAIL)
4840 {
4841 if (!inst.error)
4842 inst.error = BAD_ARGS;
4843 return;
4844 }
4845 }
4846
4847 end_of_line (str);
4848 }
4849
4850 /* ARM v5TEJ. Jump to Jazelle code. */
4851 static void
4852 do_bxj (str)
4853 char * str;
4854 {
4855 int reg;
4856
4857 skip_whitespace (str);
4858
4859 if ((reg = reg_required_here (&str, 0)) == FAIL)
4860 {
4861 inst.error = BAD_ARGS;
4862 return;
4863 }
4864
4865 /* Note - it is not illegal to do a "bxj pc". Useless, but not illegal. */
4866 if (reg == REG_PC)
4867 as_tsktsk (_("use of r15 in bxj is not really useful"));
4868
4869 end_of_line (str);
4870 }
4871
4872 /* ARM V6 umaal (argument parse). */
4873
4874 static void
4875 do_umaal (str)
4876 char *str;
4877 {
4878
4879 int rdlo, rdhi, rm, rs;
4880
4881 skip_whitespace (str);
4882 if ((rdlo = reg_required_here (& str, 12)) == FAIL
4883 || skip_past_comma (& str) == FAIL
4884 || (rdhi = reg_required_here (& str, 16)) == FAIL
4885 || skip_past_comma (& str) == FAIL
4886 || (rm = reg_required_here (& str, 0)) == FAIL
4887 || skip_past_comma (& str) == FAIL
4888 || (rs = reg_required_here (& str, 8)) == FAIL)
4889 {
4890 inst.error = BAD_ARGS;
4891 return;
4892 }
4893
4894 if (rdlo == REG_PC || rdhi == REG_PC || rm == REG_PC || rs == REG_PC)
4895 {
4896 inst.error = BAD_PC;
4897 return;
4898 }
4899
4900 end_of_line (str);
4901 }
4902
4903 /* ARM V6 strex (argument parse). */
4904
4905 static void
4906 do_strex (str)
4907 char *str;
4908 {
4909 int rd, rm, rn;
4910
4911 /* Parse Rd, Rm,. */
4912 skip_whitespace (str);
4913 if ((rd = reg_required_here (& str, 12)) == FAIL
4914 || skip_past_comma (& str) == FAIL
4915 || (rm = reg_required_here (& str, 0)) == FAIL
4916 || skip_past_comma (& str) == FAIL)
4917 {
4918 inst.error = BAD_ARGS;
4919 return;
4920 }
4921 if (rd == REG_PC || rm == REG_PC)
4922 {
4923 inst.error = BAD_PC;
4924 return;
4925 }
4926 if (rd == rm)
4927 {
4928 inst.error = _("Rd equal to Rm or Rn yields unpredictable results");
4929 return;
4930 }
4931
4932 /* Skip past '['. */
4933 if ((strlen (str) >= 1)
4934 && strncmp (str, "[", 1) == 0)
4935 str+=1;
4936 skip_whitespace (str);
4937
4938 /* Parse Rn. */
4939 if ((rn = reg_required_here (& str, 16)) == FAIL)
4940 {
4941 inst.error = BAD_ARGS;
4942 return;
4943 }
4944 else if (rn == REG_PC)
4945 {
4946 inst.error = BAD_PC;
4947 return;
4948 }
4949 if (rd == rn)
4950 {
4951 inst.error = _("Rd equal to Rm or Rn yields unpredictable results");
4952 return;
4953 }
4954 skip_whitespace (str);
4955
4956 /* Skip past ']'. */
4957 if ((strlen (str) >= 1)
4958 && strncmp (str, "]", 1) == 0)
4959 str+=1;
4960
4961 end_of_line (str);
4962 }
4963
4964 /* ARM V6 ssat (argument parse). */
4965
4966 static void
4967 do_ssat (str)
4968 char* str;
4969 {
4970 do_sat (&str, /*bias=*/-1);
4971 end_of_line (str);
4972 }
4973
4974 /* ARM V6 usat (argument parse). */
4975
4976 static void
4977 do_usat (str)
4978 char* str;
4979 {
4980 do_sat (&str, /*bias=*/0);
4981 end_of_line (str);
4982 }
4983
4984 static void
4985 do_sat (str, bias)
4986 char **str;
4987 int bias;
4988 {
4989 int rd, rm;
4990 expressionS expr;
4991
4992 skip_whitespace (*str);
4993
4994 /* Parse <Rd>, field. */
4995 if ((rd = reg_required_here (str, 12)) == FAIL
4996 || skip_past_comma (str) == FAIL)
4997 {
4998 inst.error = BAD_ARGS;
4999 return;
5000 }
5001 if (rd == REG_PC)
5002 {
5003 inst.error = BAD_PC;
5004 return;
5005 }
5006
5007 /* Parse #<immed>, field. */
5008 if (is_immediate_prefix (**str))
5009 (*str)++;
5010 else
5011 {
5012 inst.error = _("immediate expression expected");
5013 return;
5014 }
5015 if (my_get_expression (&expr, str))
5016 {
5017 inst.error = _("bad expression");
5018 return;
5019 }
5020 if (expr.X_op != O_constant)
5021 {
5022 inst.error = _("constant expression expected");
5023 return;
5024 }
5025 if (expr.X_add_number + bias < 0
5026 || expr.X_add_number + bias > 31)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return;
5030 }
5031 inst.instruction |= (expr.X_add_number + bias) << 16;
5032 if (skip_past_comma (str) == FAIL)
5033 {
5034 inst.error = BAD_ARGS;
5035 return;
5036 }
5037
5038 /* Parse <Rm> field. */
5039 if ((rm = reg_required_here (str, 0)) == FAIL)
5040 {
5041 inst.error = BAD_ARGS;
5042 return;
5043 }
5044 if (rm == REG_PC)
5045 {
5046 inst.error = BAD_PC;
5047 return;
5048 }
5049
5050 if (skip_past_comma (str) == SUCCESS)
5051 decode_shift (str, SHIFT_LSL_OR_ASR_IMMEDIATE);
5052 }
5053
5054 /* ARM V6 ssat16 (argument parse). */
5055
5056 static void
5057 do_ssat16 (str)
5058 char *str;
5059 {
5060 do_sat16 (&str, /*bias=*/-1);
5061 end_of_line (str);
5062 }
5063
5064 static void
5065 do_usat16 (str)
5066 char *str;
5067 {
5068 do_sat16 (&str, /*bias=*/0);
5069 end_of_line (str);
5070 }
5071
5072 static void
5073 do_sat16 (str, bias)
5074 char **str;
5075 int bias;
5076 {
5077 int rd, rm;
5078 expressionS expr;
5079
5080 skip_whitespace (*str);
5081
5082 /* Parse the <Rd> field. */
5083 if ((rd = reg_required_here (str, 12)) == FAIL
5084 || skip_past_comma (str) == FAIL)
5085 {
5086 inst.error = BAD_ARGS;
5087 return;
5088 }
5089 if (rd == REG_PC)
5090 {
5091 inst.error = BAD_PC;
5092 return;
5093 }
5094
5095 /* Parse #<immed>, field. */
5096 if (is_immediate_prefix (**str))
5097 (*str)++;
5098 else
5099 {
5100 inst.error = _("immediate expression expected");
5101 return;
5102 }
5103 if (my_get_expression (&expr, str))
5104 {
5105 inst.error = _("bad expression");
5106 return;
5107 }
5108 if (expr.X_op != O_constant)
5109 {
5110 inst.error = _("constant expression expected");
5111 return;
5112 }
5113 if (expr.X_add_number + bias < 0
5114 || expr.X_add_number + bias > 15)
5115 {
5116 inst.error = _("immediate value out of range");
5117 return;
5118 }
5119 inst.instruction |= (expr.X_add_number + bias) << 16;
5120 if (skip_past_comma (str) == FAIL)
5121 {
5122 inst.error = BAD_ARGS;
5123 return;
5124 }
5125
5126 /* Parse <Rm> field. */
5127 if ((rm = reg_required_here (str, 0)) == FAIL)
5128 {
5129 inst.error = BAD_ARGS;
5130 return;
5131 }
5132 if (rm == REG_PC)
5133 {
5134 inst.error = BAD_PC;
5135 return;
5136 }
5137 }
5138
5139 /* ARM V6 srs (argument parse). */
5140
5141 static void
5142 do_srs (str)
5143 char* str;
5144 {
5145 char *exclam;
5146 skip_whitespace (str);
5147 exclam = strchr (str, '!');
5148 if (exclam)
5149 *exclam = '\0';
5150 do_cps_mode (&str);
5151 if (exclam)
5152 *exclam = '!';
5153 if (*str == '!')
5154 {
5155 inst.instruction |= WRITE_BACK;
5156 str++;
5157 }
5158 end_of_line (str);
5159 }
5160
5161 /* ARM V6 SMMUL (argument parse). */
5162
5163 static void
5164 do_smmul (str)
5165 char* str;
5166 {
5167 int rd, rm, rs;
5168
5169 skip_whitespace (str);
5170 if ((rd = reg_required_here (&str, 16)) == FAIL
5171 || skip_past_comma (&str) == FAIL
5172 || (rm = reg_required_here (&str, 0)) == FAIL
5173 || skip_past_comma (&str) == FAIL
5174 || (rs = reg_required_here (&str, 8)) == FAIL)
5175 {
5176 inst.error = BAD_ARGS;
5177 return;
5178 }
5179
5180 if (rd == REG_PC
5181 || rm == REG_PC
5182 || rs == REG_PC)
5183 {
5184 inst.error = BAD_PC;
5185 return;
5186 }
5187
5188 end_of_line (str);
5189
5190 }
5191
5192 /* ARM V6 SMLALD (argument parse). */
5193
5194 static void
5195 do_smlald (str)
5196 char* str;
5197 {
5198 int rdlo, rdhi, rm, rs;
5199 skip_whitespace (str);
5200 if ((rdlo = reg_required_here (&str, 12)) == FAIL
5201 || skip_past_comma (&str) == FAIL
5202 || (rdhi = reg_required_here (&str, 16)) == FAIL
5203 || skip_past_comma (&str) == FAIL
5204 || (rm = reg_required_here (&str, 0)) == FAIL
5205 || skip_past_comma (&str) == FAIL
5206 || (rs = reg_required_here (&str, 8)) == FAIL)
5207 {
5208 inst.error = BAD_ARGS;
5209 return;
5210 }
5211
5212 if (rdlo == REG_PC
5213 || rdhi == REG_PC
5214 || rm == REG_PC
5215 || rs == REG_PC)
5216 {
5217 inst.error = BAD_PC;
5218 return;
5219 }
5220
5221 end_of_line (str);
5222 }
5223
5224 /* ARM V6 SMLAD (argument parse). Signed multiply accumulate dual.
5225 smlad{x}{<cond>} Rd, Rm, Rs, Rn */
5226
5227 static void
5228 do_smlad (str)
5229 char *str;
5230 {
5231 int rd, rm, rs, rn;
5232
5233 skip_whitespace (str);
5234 if ((rd = reg_required_here (&str, 16)) == FAIL
5235 || skip_past_comma (&str) == FAIL
5236 || (rm = reg_required_here (&str, 0)) == FAIL
5237 || skip_past_comma (&str) == FAIL
5238 || (rs = reg_required_here (&str, 8)) == FAIL
5239 || skip_past_comma (&str) == FAIL
5240 || (rn = reg_required_here (&str, 12)) == FAIL)
5241 {
5242 inst.error = BAD_ARGS;
5243 return;
5244 }
5245
5246 if (rd == REG_PC
5247 || rn == REG_PC
5248 || rs == REG_PC
5249 || rm == REG_PC)
5250 {
5251 inst.error = BAD_PC;
5252 return;
5253 }
5254
5255 end_of_line (str);
5256 }
5257
5258 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
5259 preserving the other bits.
5260
5261 setend <endian_specifier>, where <endian_specifier> is either
5262 BE or LE. */
5263
5264 static void
5265 do_setend (str)
5266 char *str;
5267 {
5268 if (do_endian_specifier (str))
5269 inst.instruction |= 0x200;
5270 }
5271
5272 /* Returns true if the endian-specifier indicates big-endianness. */
5273
5274 static int
5275 do_endian_specifier (str)
5276 char *str;
5277 {
5278 int big_endian = 0;
5279
5280 skip_whitespace (str);
5281 if (strlen (str) < 2)
5282 inst.error = _("missing endian specifier");
5283 else if (strncasecmp (str, "BE", 2) == 0)
5284 {
5285 str += 2;
5286 big_endian = 1;
5287 }
5288 else if (strncasecmp (str, "LE", 2) == 0)
5289 str += 2;
5290 else
5291 inst.error = _("valid endian specifiers are be or le");
5292
5293 end_of_line (str);
5294
5295 return big_endian;
5296 }
5297
5298 /* ARM V6 SXTH.
5299
5300 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
5301 Condition defaults to COND_ALWAYS.
5302 Error if any register uses R15. */
5303
5304 static void
5305 do_sxth (str)
5306 char *str;
5307 {
5308 int rd, rm;
5309 expressionS expr;
5310 int rotation_clear_mask = 0xfffff3ff;
5311 int rotation_eight_mask = 0x00000400;
5312 int rotation_sixteen_mask = 0x00000800;
5313 int rotation_twenty_four_mask = 0x00000c00;
5314
5315 skip_whitespace (str);
5316 if ((rd = reg_required_here (&str, 12)) == FAIL
5317 || skip_past_comma (&str) == FAIL
5318 || (rm = reg_required_here (&str, 0)) == FAIL)
5319 {
5320 inst.error = BAD_ARGS;
5321 return;
5322 }
5323
5324 else if (rd == REG_PC || rm == REG_PC)
5325 {
5326 inst.error = BAD_PC;
5327 return;
5328 }
5329
5330 /* Zero out the rotation field. */
5331 inst.instruction &= rotation_clear_mask;
5332
5333 /* Check for lack of optional rotation field. */
5334 if (skip_past_comma (&str) == FAIL)
5335 {
5336 end_of_line (str);
5337 return;
5338 }
5339
5340 /* Move past 'ROR'. */
5341 skip_whitespace (str);
5342 if (strncasecmp (str, "ROR", 3) == 0)
5343 str+=3;
5344 else
5345 {
5346 inst.error = _("missing rotation field after comma");
5347 return;
5348 }
5349
5350 /* Get the immediate constant. */
5351 skip_whitespace (str);
5352 if (is_immediate_prefix (* str))
5353 str++;
5354 else
5355 {
5356 inst.error = _("immediate expression expected");
5357 return;
5358 }
5359
5360 if (my_get_expression (&expr, &str))
5361 {
5362 inst.error = _("bad expression");
5363 return;
5364 }
5365
5366 if (expr.X_op != O_constant)
5367 {
5368 inst.error = _("constant expression expected");
5369 return;
5370 }
5371
5372 switch (expr.X_add_number)
5373 {
5374 case 0:
5375 /* Rotation field has already been zeroed. */
5376 break;
5377 case 8:
5378 inst.instruction |= rotation_eight_mask;
5379 break;
5380
5381 case 16:
5382 inst.instruction |= rotation_sixteen_mask;
5383 break;
5384
5385 case 24:
5386 inst.instruction |= rotation_twenty_four_mask;
5387 break;
5388
5389 default:
5390 inst.error = _("rotation can be 8, 16, 24 or 0 when field is ommited");
5391 break;
5392 }
5393
5394 end_of_line (str);
5395
5396 }
5397
5398 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
5399 extends it to 32-bits, and adds the result to a value in another
5400 register. You can specify a rotation by 0, 8, 16, or 24 bits
5401 before extracting the 16-bit value.
5402 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
5403 Condition defaults to COND_ALWAYS.
5404 Error if any register uses R15. */
5405
5406 static void
5407 do_sxtah (str)
5408 char *str;
5409 {
5410 int rd, rn, rm;
5411 expressionS expr;
5412 int rotation_clear_mask = 0xfffff3ff;
5413 int rotation_eight_mask = 0x00000400;
5414 int rotation_sixteen_mask = 0x00000800;
5415 int rotation_twenty_four_mask = 0x00000c00;
5416
5417 skip_whitespace (str);
5418 if ((rd = reg_required_here (&str, 12)) == FAIL
5419 || skip_past_comma (&str) == FAIL
5420 || (rn = reg_required_here (&str, 16)) == FAIL
5421 || skip_past_comma (&str) == FAIL
5422 || (rm = reg_required_here (&str, 0)) == FAIL)
5423 {
5424 inst.error = BAD_ARGS;
5425 return;
5426 }
5427
5428 else if (rd == REG_PC || rn == REG_PC || rm == REG_PC)
5429 {
5430 inst.error = BAD_PC;
5431 return;
5432 }
5433
5434 /* Zero out the rotation field. */
5435 inst.instruction &= rotation_clear_mask;
5436
5437 /* Check for lack of optional rotation field. */
5438 if (skip_past_comma (&str) == FAIL)
5439 {
5440 end_of_line (str);
5441 return;
5442 }
5443
5444 /* Move past 'ROR'. */
5445 skip_whitespace (str);
5446 if (strncasecmp (str, "ROR", 3) == 0)
5447 str+=3;
5448 else
5449 {
5450 inst.error = _("missing rotation field after comma");
5451 return;
5452 }
5453
5454 /* Get the immediate constant. */
5455 skip_whitespace (str);
5456 if (is_immediate_prefix (* str))
5457 str++;
5458 else
5459 {
5460 inst.error = _("immediate expression expected");
5461 return;
5462 }
5463
5464 if (my_get_expression (&expr, &str))
5465 {
5466 inst.error = _("bad expression");
5467 return;
5468 }
5469
5470 if (expr.X_op != O_constant)
5471 {
5472 inst.error = _("constant expression expected");
5473 return;
5474 }
5475
5476 switch (expr.X_add_number)
5477 {
5478 case 0:
5479 /* Rotation field has already been zeroed. */
5480 break;
5481
5482 case 8:
5483 inst.instruction |= rotation_eight_mask;
5484 break;
5485
5486 case 16:
5487 inst.instruction |= rotation_sixteen_mask;
5488 break;
5489
5490 case 24:
5491 inst.instruction |= rotation_twenty_four_mask;
5492 break;
5493
5494 default:
5495 inst.error = _("rotation can be 8, 16, 24 or 0 when field is ommited");
5496 break;
5497 }
5498
5499 end_of_line (str);
5500
5501 }
5502
5503
5504 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
5505 word at the specified address and the following word
5506 respectively.
5507 Unconditionally executed.
5508 Error if Rn is R15.
5509 */
5510
5511 static void
5512 do_rfe (str)
5513 char *str;
5514 {
5515 int rn;
5516
5517 skip_whitespace (str);
5518
5519 if ((rn = reg_required_here (&str, 16)) == FAIL)
5520 return;
5521
5522 if (rn == REG_PC)
5523 {
5524 inst.error = BAD_PC;
5525 return;
5526 }
5527
5528 skip_whitespace (str);
5529
5530 if (*str == '!')
5531 {
5532 inst.instruction |= WRITE_BACK;
5533 str++;
5534 }
5535 end_of_line (str);
5536 }
5537
5538 /* ARM V6 REV (Byte Reverse Word) reverses the byte order in a 32-bit
5539 register (argument parse).
5540 REV{<cond>} Rd, Rm.
5541 Condition defaults to COND_ALWAYS.
5542 Error if Rd or Rm are R15. */
5543
5544 static void
5545 do_rev (str)
5546 char* str;
5547 {
5548 int rd, rm;
5549
5550 skip_whitespace (str);
5551
5552 if ((rd = reg_required_here (&str, 12)) == FAIL
5553 || skip_past_comma (&str) == FAIL
5554 || (rm = reg_required_here (&str, 0)) == FAIL)
5555 inst.error = BAD_ARGS;
5556
5557 else if (rd == REG_PC || rm == REG_PC)
5558 inst.error = BAD_PC;
5559
5560 else
5561 end_of_line (str);
5562 }
5563
5564 /* ARM V6 Perform Two Sixteen Bit Integer Additions. (argument parse).
5565 QADD16{<cond>} <Rd>, <Rn>, <Rm>
5566 Condition defaults to COND_ALWAYS.
5567 Error if Rd, Rn or Rm are R15. */
5568
5569 static void
5570 do_qadd16 (str)
5571 char* str;
5572 {
5573 int rd, rm, rn;
5574
5575 skip_whitespace (str);
5576
5577 if ((rd = reg_required_here (&str, 12)) == FAIL
5578 || skip_past_comma (&str) == FAIL
5579 || (rn = reg_required_here (&str, 16)) == FAIL
5580 || skip_past_comma (&str) == FAIL
5581 || (rm = reg_required_here (&str, 0)) == FAIL)
5582 inst.error = BAD_ARGS;
5583
5584 else if (rd == REG_PC || rm == REG_PC || rn == REG_PC)
5585 inst.error = BAD_PC;
5586
5587 else
5588 end_of_line (str);
5589 }
5590
5591 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
5592 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
5593 Condition defaults to COND_ALWAYS.
5594 Error if Rd, Rn or Rm are R15. */
5595
5596 static void
5597 do_pkhbt (str)
5598 char* str;
5599 {
5600 do_pkh_core (str, SHIFT_LSL_IMMEDIATE);
5601 }
5602
5603 /* ARM V6 PKHTB (Argument Parse). */
5604
5605 static void
5606 do_pkhtb (str)
5607 char* str;
5608 {
5609 do_pkh_core (str, SHIFT_ASR_IMMEDIATE);
5610 }
5611
5612 static void
5613 do_pkh_core (str, shift)
5614 char* str;
5615 int shift;
5616 {
5617 int rd, rn, rm;
5618
5619 skip_whitespace (str);
5620 if (((rd = reg_required_here (&str, 12)) == FAIL)
5621 || (skip_past_comma (&str) == FAIL)
5622 || ((rn = reg_required_here (&str, 16)) == FAIL)
5623 || (skip_past_comma (&str) == FAIL)
5624 || ((rm = reg_required_here (&str, 0)) == FAIL))
5625 {
5626 inst.error = BAD_ARGS;
5627 return;
5628 }
5629
5630 else if (rd == REG_PC || rn == REG_PC || rm == REG_PC)
5631 {
5632 inst.error = BAD_PC;
5633 return;
5634 }
5635
5636 /* Check for optional shift immediate constant. */
5637 if (skip_past_comma (&str) == FAIL)
5638 {
5639 if (shift == SHIFT_ASR_IMMEDIATE)
5640 {
5641 /* If the shift specifier is ommited, turn the instruction
5642 into pkhbt rd, rm, rn. First, switch the instruction
5643 code, and clear the rn and rm fields. */
5644 inst.instruction &= 0xfff0f010;
5645 /* Now, re-encode the registers. */
5646 inst.instruction |= (rm << 16) | rn;
5647 }
5648 return;
5649 }
5650
5651 decode_shift (&str, shift);
5652 }
5653
5654 /* ARM V6 Load Register Exclusive instruction (argument parse).
5655 LDREX{<cond>} <Rd, [<Rn>]
5656 Condition defaults to COND_ALWAYS.
5657 Error if Rd or Rn are R15.
5658 See ARMARMv6 A4.1.27: LDREX. */
5659
5660
5661 static void
5662 do_ldrex (str)
5663 char * str;
5664 {
5665 int rd, rn;
5666
5667 skip_whitespace (str);
5668
5669 /* Parse Rd. */
5670 if (((rd = reg_required_here (&str, 12)) == FAIL)
5671 || (skip_past_comma (&str) == FAIL))
5672 {
5673 inst.error = BAD_ARGS;
5674 return;
5675 }
5676 else if (rd == REG_PC)
5677 {
5678 inst.error = BAD_PC;
5679 return;
5680 }
5681 skip_whitespace (str);
5682
5683 /* Skip past '['. */
5684 if ((strlen (str) >= 1)
5685 &&strncmp (str, "[", 1) == 0)
5686 str+=1;
5687 skip_whitespace (str);
5688
5689 /* Parse Rn. */
5690 if ((rn = reg_required_here (&str, 16)) == FAIL)
5691 {
5692 inst.error = BAD_ARGS;
5693 return;
5694 }
5695 else if (rn == REG_PC)
5696 {
5697 inst.error = BAD_PC;
5698 return;
5699 }
5700 skip_whitespace (str);
5701
5702 /* Skip past ']'. */
5703 if ((strlen (str) >= 1)
5704 && strncmp (str, "]", 1) == 0)
5705 str+=1;
5706
5707 end_of_line (str);
5708 }
5709
5710 /* ARM V6 change processor state instruction (argument parse)
5711 CPS, CPSIE, CSPID . */
5712
5713 static void
5714 do_cps (str)
5715 char * str;
5716 {
5717 do_cps_mode (&str);
5718 end_of_line (str);
5719 }
5720
5721 static void
5722 do_cpsi (str)
5723 char * str;
5724 {
5725 do_cps_flags (&str, /*thumb_p=*/0);
5726
5727 if (skip_past_comma (&str) == SUCCESS)
5728 {
5729 skip_whitespace (str);
5730 do_cps_mode (&str);
5731 }
5732 end_of_line (str);
5733 }
5734
5735 static void
5736 do_cps_mode (str)
5737 char **str;
5738 {
5739 expressionS expr;
5740
5741 skip_whitespace (*str);
5742
5743 if (! is_immediate_prefix (**str))
5744 {
5745 inst.error = _("immediate expression expected");
5746 return;
5747 }
5748
5749 (*str)++; /* Strip off the immediate signifier. */
5750 if (my_get_expression (&expr, str))
5751 {
5752 inst.error = _("bad expression");
5753 return;
5754 }
5755
5756 if (expr.X_op != O_constant)
5757 {
5758 inst.error = _("constant expression expected");
5759 return;
5760 }
5761
5762 /* The mode is a 5 bit field. Valid values are 0-31. */
5763 if (((unsigned) expr.X_add_number) > 31
5764 || (inst.reloc.exp.X_add_number) < 0)
5765 {
5766 inst.error = _("invalid constant");
5767 return;
5768 }
5769
5770 inst.instruction |= expr.X_add_number;
5771 }
5772
5773 static void
5774 do_cps_flags (str, thumb_p)
5775 char **str;
5776 int thumb_p;
5777 {
5778 struct cps_flag {
5779 char character;
5780 unsigned long arm_value;
5781 unsigned long thumb_value;
5782 };
5783 static struct cps_flag flag_table[] = {
5784 {'a', 0x100, 0x4 },
5785 {'i', 0x080, 0x2 },
5786 {'f', 0x040, 0x1 }
5787 };
5788
5789 int saw_a_flag = 0;
5790
5791 skip_whitespace (*str);
5792
5793 /* Get the a, f and i flags. */
5794 while (**str && **str != ',')
5795 {
5796 struct cps_flag *p;
5797 struct cps_flag *q = flag_table + sizeof (flag_table)/sizeof (*p);
5798 for (p = flag_table; p < q; ++p)
5799 if (strncasecmp (*str, &p->character, 1) == 0)
5800 {
5801 inst.instruction |= (thumb_p ? p->thumb_value : p->arm_value);
5802 saw_a_flag = 1;
5803 break;
5804 }
5805 if (p == q)
5806 {
5807 inst.error = _("unrecognized flag");
5808 return;
5809 }
5810 (*str)++;
5811 }
5812 if (!saw_a_flag)
5813 inst.error = _("no 'a', 'i', or 'f' flags for 'cps'");
5814 }
5815
5816 /* THUMB V5 breakpoint instruction (argument parse)
5817 BKPT <immed_8>. */
5818
5819 static void
5820 do_t_bkpt (str)
5821 char * str;
5822 {
5823 expressionS expr;
5824 unsigned long number;
5825
5826 skip_whitespace (str);
5827
5828 /* Allow optional leading '#'. */
5829 if (is_immediate_prefix (*str))
5830 str ++;
5831
5832 memset (& expr, '\0', sizeof (expr));
5833 if (my_get_expression (& expr, & str)
5834 || (expr.X_op != O_constant
5835 /* As a convenience we allow 'bkpt' without an operand. */
5836 && expr.X_op != O_absent))
5837 {
5838 inst.error = _("bad expression");
5839 return;
5840 }
5841
5842 number = expr.X_add_number;
5843
5844 /* Check it fits an 8 bit unsigned. */
5845 if (number != (number & 0xff))
5846 {
5847 inst.error = _("immediate value out of range");
5848 return;
5849 }
5850
5851 inst.instruction |= number;
5852
5853 end_of_line (str);
5854 }
5855
5856 /* ARM V5 branch-link-exchange (argument parse) for BLX(1) only.
5857 Expects inst.instruction is set for BLX(1).
5858 Note: this is cloned from do_branch, and the reloc changed to be a
5859 new one that can cope with setting one extra bit (the H bit). */
5860
5861 static void
5862 do_branch25 (str)
5863 char * str;
5864 {
5865 if (my_get_expression (& inst.reloc.exp, & str))
5866 return;
5867
5868 #ifdef OBJ_ELF
5869 {
5870 char * save_in;
5871
5872 /* ScottB: February 5, 1998 */
5873 /* Check to see of PLT32 reloc required for the instruction. */
5874
5875 /* arm_parse_reloc() works on input_line_pointer.
5876 We actually want to parse the operands to the branch instruction
5877 passed in 'str'. Save the input pointer and restore it later. */
5878 save_in = input_line_pointer;
5879 input_line_pointer = str;
5880
5881 if (inst.reloc.exp.X_op == O_symbol
5882 && *str == '('
5883 && arm_parse_reloc () == BFD_RELOC_ARM_PLT32)
5884 {
5885 inst.reloc.type = BFD_RELOC_ARM_PLT32;
5886 inst.reloc.pc_rel = 0;
5887 /* Modify str to point to after parsed operands, otherwise
5888 end_of_line() will complain about the (PLT) left in str. */
5889 str = input_line_pointer;
5890 }
5891 else
5892 {
5893 inst.reloc.type = BFD_RELOC_ARM_PCREL_BLX;
5894 inst.reloc.pc_rel = 1;
5895 }
5896
5897 input_line_pointer = save_in;
5898 }
5899 #else
5900 inst.reloc.type = BFD_RELOC_ARM_PCREL_BLX;
5901 inst.reloc.pc_rel = 1;
5902 #endif /* OBJ_ELF */
5903
5904 end_of_line (str);
5905 }
5906
5907 /* ARM V5 branch-link-exchange instruction (argument parse)
5908 BLX <target_addr> ie BLX(1)
5909 BLX{<condition>} <Rm> ie BLX(2)
5910 Unfortunately, there are two different opcodes for this mnemonic.
5911 So, the insns[].value is not used, and the code here zaps values
5912 into inst.instruction.
5913 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
5914
5915 static void
5916 do_blx (str)
5917 char * str;
5918 {
5919 char * mystr = str;
5920 int rm;
5921
5922 skip_whitespace (mystr);
5923 rm = reg_required_here (& mystr, 0);
5924
5925 /* The above may set inst.error. Ignore his opinion. */
5926 inst.error = 0;
5927
5928 if (rm != FAIL)
5929 {
5930 /* Arg is a register.
5931 Use the condition code our caller put in inst.instruction.
5932 Pass ourselves off as a BX with a funny opcode. */
5933 inst.instruction |= 0x012fff30;
5934 do_bx (str);
5935 }
5936 else
5937 {
5938 /* This must be is BLX <target address>, no condition allowed. */
5939 if (inst.instruction != COND_ALWAYS)
5940 {
5941 inst.error = BAD_COND;
5942 return;
5943 }
5944
5945 inst.instruction = 0xfafffffe;
5946
5947 /* Process like a B/BL, but with a different reloc.
5948 Note that B/BL expecte fffffe, not 0, offset in the opcode table. */
5949 do_branch25 (str);
5950 }
5951 }
5952
5953 /* ARM V5 Thumb BLX (argument parse)
5954 BLX <target_addr> which is BLX(1)
5955 BLX <Rm> which is BLX(2)
5956 Unfortunately, there are two different opcodes for this mnemonic.
5957 So, the tinsns[].value is not used, and the code here zaps values
5958 into inst.instruction. */
5959
5960 static void
5961 do_t_blx (str)
5962 char * str;
5963 {
5964 char * mystr = str;
5965 int rm;
5966
5967 skip_whitespace (mystr);
5968 inst.instruction = 0x4780;
5969
5970 /* Note that this call is to the ARM register recognizer. BLX(2)
5971 uses the ARM register space, not the Thumb one, so a call to
5972 thumb_reg() would be wrong. */
5973 rm = reg_required_here (& mystr, 3);
5974 inst.error = 0;
5975
5976 if (rm != FAIL)
5977 {
5978 /* It's BLX(2). The .instruction was zapped with rm & is final. */
5979 inst.size = 2;
5980 }
5981 else
5982 {
5983 /* No ARM register. This must be BLX(1). Change the .instruction. */
5984 inst.instruction = 0xf7ffeffe;
5985 inst.size = 4;
5986
5987 if (my_get_expression (& inst.reloc.exp, & mystr))
5988 return;
5989
5990 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
5991 inst.reloc.pc_rel = 1;
5992 }
5993
5994 end_of_line (mystr);
5995 }
5996
5997 /* ARM V5 breakpoint instruction (argument parse)
5998 BKPT <16 bit unsigned immediate>
5999 Instruction is not conditional.
6000 The bit pattern given in insns[] has the COND_ALWAYS condition,
6001 and it is an error if the caller tried to override that. */
6002
6003 static void
6004 do_bkpt (str)
6005 char * str;
6006 {
6007 expressionS expr;
6008 unsigned long number;
6009
6010 skip_whitespace (str);
6011
6012 /* Allow optional leading '#'. */
6013 if (is_immediate_prefix (* str))
6014 str++;
6015
6016 memset (& expr, '\0', sizeof (expr));
6017
6018 if (my_get_expression (& expr, & str)
6019 || (expr.X_op != O_constant
6020 /* As a convenience we allow 'bkpt' without an operand. */
6021 && expr.X_op != O_absent))
6022 {
6023 inst.error = _("bad expression");
6024 return;
6025 }
6026
6027 number = expr.X_add_number;
6028
6029 /* Check it fits a 16 bit unsigned. */
6030 if (number != (number & 0xffff))
6031 {
6032 inst.error = _("immediate value out of range");
6033 return;
6034 }
6035
6036 /* Top 12 of 16 bits to bits 19:8. */
6037 inst.instruction |= (number & 0xfff0) << 4;
6038
6039 /* Bottom 4 of 16 bits to bits 3:0. */
6040 inst.instruction |= number & 0xf;
6041
6042 end_of_line (str);
6043 }
6044
6045 /* THUMB CPS instruction (argument parse). */
6046
6047 static void
6048 do_t_cps (str)
6049 char *str;
6050 {
6051 do_cps_flags (&str, /*thumb_p=*/1);
6052 end_of_line (str);
6053 }
6054
6055 /* THUMB CPY instruction (argument parse). */
6056
6057 static void
6058 do_t_cpy (str)
6059 char *str;
6060 {
6061 thumb_mov_compare (str, THUMB_CPY);
6062 }
6063
6064 /* THUMB SETEND instruction (argument parse). */
6065
6066 static void
6067 do_t_setend (str)
6068 char *str;
6069 {
6070 if (do_endian_specifier (str))
6071 inst.instruction |= 0x8;
6072 }
6073
6074 static unsigned long check_iwmmxt_insn PARAMS ((char *, enum iwmmxt_insn_type, int));
6075
6076 /* Parse INSN_TYPE insn STR having a possible IMMEDIATE_SIZE immediate. */
6077
6078 static unsigned long
6079 check_iwmmxt_insn (str, insn_type, immediate_size)
6080 char * str;
6081 enum iwmmxt_insn_type insn_type;
6082 int immediate_size;
6083 {
6084 int reg = 0;
6085 const char * inst_error;
6086 expressionS expr;
6087 unsigned long number;
6088
6089 inst_error = inst.error;
6090 if (!inst.error)
6091 inst.error = BAD_ARGS;
6092 skip_whitespace (str);
6093
6094 switch (insn_type)
6095 {
6096 case check_rd:
6097 if ((reg = reg_required_here (&str, 12)) == FAIL)
6098 return FAIL;
6099 break;
6100
6101 case check_wr:
6102 if ((wreg_required_here (&str, 0, IWMMXT_REG_WR)) == FAIL)
6103 return FAIL;
6104 break;
6105
6106 case check_wrwr:
6107 if ((wreg_required_here (&str, 12, IWMMXT_REG_WR) == FAIL
6108 || skip_past_comma (&str) == FAIL
6109 || wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL))
6110 return FAIL;
6111 break;
6112
6113 case check_wrwrwr:
6114 if ((wreg_required_here (&str, 12, IWMMXT_REG_WR) == FAIL
6115 || skip_past_comma (&str) == FAIL
6116 || wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL
6117 || skip_past_comma (&str) == FAIL
6118 || wreg_required_here (&str, 0, IWMMXT_REG_WR) == FAIL))
6119 return FAIL;
6120 break;
6121
6122 case check_wrwrwcg:
6123 if ((wreg_required_here (&str, 12, IWMMXT_REG_WR) == FAIL
6124 || skip_past_comma (&str) == FAIL
6125 || wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL
6126 || skip_past_comma (&str) == FAIL
6127 || wreg_required_here (&str, 0, IWMMXT_REG_WCG) == FAIL))
6128 return FAIL;
6129 break;
6130
6131 case check_tbcst:
6132 if ((wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL
6133 || skip_past_comma (&str) == FAIL
6134 || reg_required_here (&str, 12) == FAIL))
6135 return FAIL;
6136 break;
6137
6138 case check_tmovmsk:
6139 if ((reg_required_here (&str, 12) == FAIL
6140 || skip_past_comma (&str) == FAIL
6141 || wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL))
6142 return FAIL;
6143 break;
6144
6145 case check_tmia:
6146 if ((wreg_required_here (&str, 5, IWMMXT_REG_WR) == FAIL
6147 || skip_past_comma (&str) == FAIL
6148 || reg_required_here (&str, 0) == FAIL
6149 || skip_past_comma (&str) == FAIL
6150 || reg_required_here (&str, 12) == FAIL))
6151 return FAIL;
6152 break;
6153
6154 case check_tmcrr:
6155 if ((wreg_required_here (&str, 0, IWMMXT_REG_WR) == FAIL
6156 || skip_past_comma (&str) == FAIL
6157 || reg_required_here (&str, 12) == FAIL
6158 || skip_past_comma (&str) == FAIL
6159 || reg_required_here (&str, 16) == FAIL))
6160 return FAIL;
6161 break;
6162
6163 case check_tmrrc:
6164 if ((reg_required_here (&str, 12) == FAIL
6165 || skip_past_comma (&str) == FAIL
6166 || reg_required_here (&str, 16) == FAIL
6167 || skip_past_comma (&str) == FAIL
6168 || wreg_required_here (&str, 0, IWMMXT_REG_WR) == FAIL))
6169 return FAIL;
6170 break;
6171
6172 case check_tmcr:
6173 if ((wreg_required_here (&str, 16, IWMMXT_REG_WC) == FAIL
6174 || skip_past_comma (&str) == FAIL
6175 || reg_required_here (&str, 12) == FAIL))
6176 return FAIL;
6177 break;
6178
6179 case check_tmrc:
6180 if ((reg_required_here (&str, 12) == FAIL
6181 || skip_past_comma (&str) == FAIL
6182 || wreg_required_here (&str, 16, IWMMXT_REG_WC) == FAIL))
6183 return FAIL;
6184 break;
6185
6186 case check_tinsr:
6187 if ((wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL
6188 || skip_past_comma (&str) == FAIL
6189 || reg_required_here (&str, 12) == FAIL
6190 || skip_past_comma (&str) == FAIL))
6191 return FAIL;
6192 break;
6193
6194 case check_textrc:
6195 if ((reg_required_here (&str, 12) == FAIL
6196 || skip_past_comma (&str) == FAIL))
6197 return FAIL;
6198 break;
6199
6200 case check_waligni:
6201 if ((wreg_required_here (&str, 12, IWMMXT_REG_WR) == FAIL
6202 || skip_past_comma (&str) == FAIL
6203 || wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL
6204 || skip_past_comma (&str) == FAIL
6205 || wreg_required_here (&str, 0, IWMMXT_REG_WR) == FAIL
6206 || skip_past_comma (&str) == FAIL))
6207 return FAIL;
6208 break;
6209
6210 case check_textrm:
6211 if ((reg_required_here (&str, 12) == FAIL
6212 || skip_past_comma (&str) == FAIL
6213 || wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL
6214 || skip_past_comma (&str) == FAIL))
6215 return FAIL;
6216 break;
6217
6218 case check_wshufh:
6219 if ((wreg_required_here (&str, 12, IWMMXT_REG_WR) == FAIL
6220 || skip_past_comma (&str) == FAIL
6221 || wreg_required_here (&str, 16, IWMMXT_REG_WR) == FAIL
6222 || skip_past_comma (&str) == FAIL))
6223 return FAIL;
6224 break;
6225 }
6226
6227 if (immediate_size == 0)
6228 {
6229 end_of_line (str);
6230 inst.error = inst_error;
6231 return reg;
6232 }
6233 else
6234 {
6235 skip_whitespace (str);
6236
6237 /* Allow optional leading '#'. */
6238 if (is_immediate_prefix (* str))
6239 str++;
6240
6241 memset (& expr, '\0', sizeof (expr));
6242
6243 if (my_get_expression (& expr, & str) || (expr.X_op != O_constant))
6244 {
6245 inst.error = _("bad or missing expression");
6246 return FAIL;
6247 }
6248
6249 number = expr.X_add_number;
6250
6251 if (number != (number & immediate_size))
6252 {
6253 inst.error = _("immediate value out of range");
6254 return FAIL;
6255 }
6256 end_of_line (str);
6257 inst.error = inst_error;
6258 return number;
6259 }
6260 }
6261
6262 static void
6263 do_iwmmxt_byte_addr (str)
6264 char * str;
6265 {
6266 int op = (inst.instruction & 0x300) >> 8;
6267 int reg;
6268
6269 inst.instruction &= ~0x300;
6270 inst.instruction |= (op & 1) << 22 | (op & 2) << 7;
6271
6272 skip_whitespace (str);
6273
6274 if ((reg = wreg_required_here (&str, 12, IWMMXT_REG_WR_OR_WC)) == FAIL
6275 || skip_past_comma (& str) == FAIL
6276 || cp_byte_address_required_here (&str) == FAIL)
6277 {
6278 if (! inst.error)
6279 inst.error = BAD_ARGS;
6280 }
6281 else
6282 end_of_line (str);
6283
6284 if (wc_register (reg))
6285 {
6286 as_bad (_("non-word size not supported with control register"));
6287 inst.instruction |= 0xf0000100;
6288 inst.instruction &= ~0x00400000;
6289 }
6290 }
6291
6292 static void
6293 do_iwmmxt_tandc (str)
6294 char * str;
6295 {
6296 int reg;
6297
6298 reg = check_iwmmxt_insn (str, check_rd, 0);
6299
6300 if (reg != REG_PC && !inst.error)
6301 inst.error = _("only r15 allowed here");
6302 }
6303
6304 static void
6305 do_iwmmxt_tbcst (str)
6306 char * str;
6307 {
6308 check_iwmmxt_insn (str, check_tbcst, 0);
6309 }
6310
6311 static void
6312 do_iwmmxt_textrc (str)
6313 char * str;
6314 {
6315 unsigned long number;
6316
6317 if ((number = check_iwmmxt_insn (str, check_textrc, 7)) == (unsigned long) FAIL)
6318 return;
6319
6320 inst.instruction |= number & 0x7;
6321 }
6322
6323 static void
6324 do_iwmmxt_textrm (str)
6325 char * str;
6326 {
6327 unsigned long number;
6328
6329 if ((number = check_iwmmxt_insn (str, check_textrm, 7)) == (unsigned long) FAIL)
6330 return;
6331
6332 inst.instruction |= number & 0x7;
6333 }
6334
6335 static void
6336 do_iwmmxt_tinsr (str)
6337 char * str;
6338 {
6339 unsigned long number;
6340
6341 if ((number = check_iwmmxt_insn (str, check_tinsr, 7)) == (unsigned long) FAIL)
6342 return;
6343
6344 inst.instruction |= number & 0x7;
6345 }
6346
6347 static void
6348 do_iwmmxt_tmcr (str)
6349 char * str;
6350 {
6351 check_iwmmxt_insn (str, check_tmcr, 0);
6352 }
6353
6354 static void
6355 do_iwmmxt_tmcrr (str)
6356 char * str;
6357 {
6358 check_iwmmxt_insn (str, check_tmcrr, 0);
6359 }
6360
6361 static void
6362 do_iwmmxt_tmia (str)
6363 char * str;
6364 {
6365 check_iwmmxt_insn (str, check_tmia, 0);
6366 }
6367
6368 static void
6369 do_iwmmxt_tmovmsk (str)
6370 char * str;
6371 {
6372 check_iwmmxt_insn (str, check_tmovmsk, 0);
6373 }
6374
6375 static void
6376 do_iwmmxt_tmrc (str)
6377 char * str;
6378 {
6379 check_iwmmxt_insn (str, check_tmrc, 0);
6380 }
6381
6382 static void
6383 do_iwmmxt_tmrrc (str)
6384 char * str;
6385 {
6386 check_iwmmxt_insn (str, check_tmrrc, 0);
6387 }
6388
6389 static void
6390 do_iwmmxt_torc (str)
6391 char * str;
6392 {
6393 check_iwmmxt_insn (str, check_rd, 0);
6394 }
6395
6396 static void
6397 do_iwmmxt_waligni (str)
6398 char * str;
6399 {
6400 unsigned long number;
6401
6402 if ((number = check_iwmmxt_insn (str, check_waligni, 7)) == (unsigned long) FAIL)
6403 return;
6404
6405 inst.instruction |= ((number & 0x7) << 20);
6406 }
6407
6408 static void
6409 do_iwmmxt_wmov (str)
6410 char * str;
6411 {
6412 if (check_iwmmxt_insn (str, check_wrwr, 0) == (unsigned long) FAIL)
6413 return;
6414
6415 inst.instruction |= ((inst.instruction >> 16) & 0xf);
6416 }
6417
6418 static void
6419 do_iwmmxt_word_addr (str)
6420 char * str;
6421 {
6422 int op = (inst.instruction & 0x300) >> 8;
6423 int reg;
6424
6425 inst.instruction &= ~0x300;
6426 inst.instruction |= (op & 1) << 22 | (op & 2) << 7;
6427
6428 skip_whitespace (str);
6429
6430 if ((reg = wreg_required_here (&str, 12, IWMMXT_REG_WR_OR_WC)) == FAIL
6431 || skip_past_comma (& str) == FAIL
6432 || cp_address_required_here (& str, CP_WB_OK) == FAIL)
6433 {
6434 if (! inst.error)
6435 inst.error = BAD_ARGS;
6436 }
6437 else
6438 end_of_line (str);
6439
6440 if (wc_register (reg))
6441 {
6442 if ((inst.instruction & COND_MASK) != COND_ALWAYS)
6443 as_bad (_("conditional execution not supported with control register"));
6444 if (op != 2)
6445 as_bad (_("non-word size not supported with control register"));
6446 inst.instruction |= 0xf0000100;
6447 inst.instruction &= ~0x00400000;
6448 }
6449 }
6450
6451 static void
6452 do_iwmmxt_wrwr (str)
6453 char * str;
6454 {
6455 check_iwmmxt_insn (str, check_wrwr, 0);
6456 }
6457
6458 static void
6459 do_iwmmxt_wrwrwcg (str)
6460 char * str;
6461 {
6462 check_iwmmxt_insn (str, check_wrwrwcg, 0);
6463 }
6464
6465 static void
6466 do_iwmmxt_wrwrwr (str)
6467 char * str;
6468 {
6469 check_iwmmxt_insn (str, check_wrwrwr, 0);
6470 }
6471
6472 static void
6473 do_iwmmxt_wshufh (str)
6474 char * str;
6475 {
6476 unsigned long number;
6477
6478 if ((number = check_iwmmxt_insn (str, check_wshufh, 0xff)) == (unsigned long) FAIL)
6479 return;
6480
6481 inst.instruction |= ((number & 0xf0) << 16) | (number & 0xf);
6482 }
6483
6484 static void
6485 do_iwmmxt_wzero (str)
6486 char * str;
6487 {
6488 if (check_iwmmxt_insn (str, check_wr, 0) == (unsigned long) FAIL)
6489 return;
6490
6491 inst.instruction |= ((inst.instruction & 0xf) << 12) | ((inst.instruction & 0xf) << 16);
6492 }
6493
6494 /* Xscale multiply-accumulate (argument parse)
6495 MIAcc acc0,Rm,Rs
6496 MIAPHcc acc0,Rm,Rs
6497 MIAxycc acc0,Rm,Rs. */
6498
6499 static void
6500 do_xsc_mia (str)
6501 char * str;
6502 {
6503 int rs;
6504 int rm;
6505
6506 if (accum0_required_here (& str) == FAIL)
6507 inst.error = ERR_NO_ACCUM;
6508
6509 else if (skip_past_comma (& str) == FAIL
6510 || (rm = reg_required_here (& str, 0)) == FAIL)
6511 inst.error = BAD_ARGS;
6512
6513 else if (skip_past_comma (& str) == FAIL
6514 || (rs = reg_required_here (& str, 12)) == FAIL)
6515 inst.error = BAD_ARGS;
6516
6517 /* inst.instruction has now been zapped with both rm and rs. */
6518 else if (rm == REG_PC || rs == REG_PC)
6519 inst.error = BAD_PC; /* Undefined result if rm or rs is R15. */
6520
6521 else
6522 end_of_line (str);
6523 }
6524
6525 /* Xscale move-accumulator-register (argument parse)
6526
6527 MARcc acc0,RdLo,RdHi. */
6528
6529 static void
6530 do_xsc_mar (str)
6531 char * str;
6532 {
6533 int rdlo, rdhi;
6534
6535 if (accum0_required_here (& str) == FAIL)
6536 inst.error = ERR_NO_ACCUM;
6537
6538 else if (skip_past_comma (& str) == FAIL
6539 || (rdlo = reg_required_here (& str, 12)) == FAIL)
6540 inst.error = BAD_ARGS;
6541
6542 else if (skip_past_comma (& str) == FAIL
6543 || (rdhi = reg_required_here (& str, 16)) == FAIL)
6544 inst.error = BAD_ARGS;
6545
6546 /* inst.instruction has now been zapped with both rdlo and rdhi. */
6547 else if (rdlo == REG_PC || rdhi == REG_PC)
6548 inst.error = BAD_PC; /* Undefined result if rdlo or rdhi is R15. */
6549
6550 else
6551 end_of_line (str);
6552 }
6553
6554 /* Xscale move-register-accumulator (argument parse)
6555
6556 MRAcc RdLo,RdHi,acc0. */
6557
6558 static void
6559 do_xsc_mra (str)
6560 char * str;
6561 {
6562 int rdlo;
6563 int rdhi;
6564
6565 skip_whitespace (str);
6566
6567 if ((rdlo = reg_required_here (& str, 12)) == FAIL)
6568 inst.error = BAD_ARGS;
6569
6570 else if (skip_past_comma (& str) == FAIL
6571 || (rdhi = reg_required_here (& str, 16)) == FAIL)
6572 inst.error = BAD_ARGS;
6573
6574 else if (skip_past_comma (& str) == FAIL
6575 || accum0_required_here (& str) == FAIL)
6576 inst.error = ERR_NO_ACCUM;
6577
6578 /* inst.instruction has now been zapped with both rdlo and rdhi. */
6579 else if (rdlo == rdhi)
6580 inst.error = BAD_ARGS; /* Undefined result if 2 writes to same reg. */
6581
6582 else if (rdlo == REG_PC || rdhi == REG_PC)
6583 inst.error = BAD_PC; /* Undefined result if rdlo or rdhi is R15. */
6584 else
6585 end_of_line (str);
6586 }
6587
6588 /* ARMv5TE: Preload-Cache
6589
6590 PLD <addr_mode>
6591
6592 Syntactically, like LDR with B=1, W=0, L=1. */
6593
6594 static void
6595 do_pld (str)
6596 char * str;
6597 {
6598 int rd;
6599
6600 skip_whitespace (str);
6601
6602 if (* str != '[')
6603 {
6604 inst.error = _("'[' expected after PLD mnemonic");
6605 return;
6606 }
6607
6608 ++str;
6609 skip_whitespace (str);
6610
6611 if ((rd = reg_required_here (& str, 16)) == FAIL)
6612 return;
6613
6614 skip_whitespace (str);
6615
6616 if (*str == ']')
6617 {
6618 /* [Rn], ... ? */
6619 ++str;
6620 skip_whitespace (str);
6621
6622 /* Post-indexed addressing is not allowed with PLD. */
6623 if (skip_past_comma (&str) == SUCCESS)
6624 {
6625 inst.error
6626 = _("post-indexed expression used in preload instruction");
6627 return;
6628 }
6629 else if (*str == '!') /* [Rn]! */
6630 {
6631 inst.error = _("writeback used in preload instruction");
6632 ++str;
6633 }
6634 else /* [Rn] */
6635 inst.instruction |= INDEX_UP | PRE_INDEX;
6636 }
6637 else /* [Rn, ...] */
6638 {
6639 if (skip_past_comma (& str) == FAIL)
6640 {
6641 inst.error = _("pre-indexed expression expected");
6642 return;
6643 }
6644
6645 if (ldst_extend (&str) == FAIL)
6646 return;
6647
6648 skip_whitespace (str);
6649
6650 if (* str != ']')
6651 {
6652 inst.error = _("missing ]");
6653 return;
6654 }
6655
6656 ++ str;
6657 skip_whitespace (str);
6658
6659 if (* str == '!') /* [Rn]! */
6660 {
6661 inst.error = _("writeback used in preload instruction");
6662 ++ str;
6663 }
6664
6665 inst.instruction |= PRE_INDEX;
6666 }
6667
6668 end_of_line (str);
6669 }
6670
6671 /* ARMv5TE load-consecutive (argument parse)
6672 Mode is like LDRH.
6673
6674 LDRccD R, mode
6675 STRccD R, mode. */
6676
6677 static void
6678 do_ldrd (str)
6679 char * str;
6680 {
6681 int rd;
6682 int rn;
6683
6684 skip_whitespace (str);
6685
6686 if ((rd = reg_required_here (& str, 12)) == FAIL)
6687 {
6688 inst.error = BAD_ARGS;
6689 return;
6690 }
6691
6692 if (skip_past_comma (& str) == FAIL
6693 || (rn = ld_mode_required_here (& str)) == FAIL)
6694 {
6695 if (!inst.error)
6696 inst.error = BAD_ARGS;
6697 return;
6698 }
6699
6700 /* inst.instruction has now been zapped with Rd and the addressing mode. */
6701 if (rd & 1) /* Unpredictable result if Rd is odd. */
6702 {
6703 inst.error = _("destination register must be even");
6704 return;
6705 }
6706
6707 if (rd == REG_LR)
6708 {
6709 inst.error = _("r14 not allowed here");
6710 return;
6711 }
6712
6713 if (((rd == rn) || (rd + 1 == rn))
6714 && ((inst.instruction & WRITE_BACK)
6715 || (!(inst.instruction & PRE_INDEX))))
6716 as_warn (_("pre/post-indexing used when modified address register is destination"));
6717
6718 /* For an index-register load, the index register must not overlap the
6719 destination (even if not write-back). */
6720 if ((inst.instruction & V4_STR_BIT) == 0
6721 && (inst.instruction & HWOFFSET_IMM) == 0)
6722 {
6723 int rm = inst.instruction & 0x0000000f;
6724
6725 if (rm == rd || (rm == rd + 1))
6726 as_warn (_("ldrd destination registers must not overlap index register"));
6727 }
6728
6729 end_of_line (str);
6730 }
6731
6732 /* Returns the index into fp_values of a floating point number,
6733 or -1 if not in the table. */
6734
6735 static int
6736 my_get_float_expression (str)
6737 char ** str;
6738 {
6739 LITTLENUM_TYPE words[MAX_LITTLENUMS];
6740 char * save_in;
6741 expressionS exp;
6742 int i;
6743 int j;
6744
6745 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
6746
6747 /* Look for a raw floating point number. */
6748 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
6749 && is_end_of_line[(unsigned char) *save_in])
6750 {
6751 for (i = 0; i < NUM_FLOAT_VALS; i++)
6752 {
6753 for (j = 0; j < MAX_LITTLENUMS; j++)
6754 {
6755 if (words[j] != fp_values[i][j])
6756 break;
6757 }
6758
6759 if (j == MAX_LITTLENUMS)
6760 {
6761 *str = save_in;
6762 return i;
6763 }
6764 }
6765 }
6766
6767 /* Try and parse a more complex expression, this will probably fail
6768 unless the code uses a floating point prefix (eg "0f"). */
6769 save_in = input_line_pointer;
6770 input_line_pointer = *str;
6771 if (expression (&exp) == absolute_section
6772 && exp.X_op == O_big
6773 && exp.X_add_number < 0)
6774 {
6775 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
6776 Ditto for 15. */
6777 if (gen_to_words (words, 5, (long) 15) == 0)
6778 {
6779 for (i = 0; i < NUM_FLOAT_VALS; i++)
6780 {
6781 for (j = 0; j < MAX_LITTLENUMS; j++)
6782 {
6783 if (words[j] != fp_values[i][j])
6784 break;
6785 }
6786
6787 if (j == MAX_LITTLENUMS)
6788 {
6789 *str = input_line_pointer;
6790 input_line_pointer = save_in;
6791 return i;
6792 }
6793 }
6794 }
6795 }
6796
6797 *str = input_line_pointer;
6798 input_line_pointer = save_in;
6799 return -1;
6800 }
6801
6802 /* Return TRUE if anything in the expression is a bignum. */
6803
6804 static int
6805 walk_no_bignums (sp)
6806 symbolS * sp;
6807 {
6808 if (symbol_get_value_expression (sp)->X_op == O_big)
6809 return 1;
6810
6811 if (symbol_get_value_expression (sp)->X_add_symbol)
6812 {
6813 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
6814 || (symbol_get_value_expression (sp)->X_op_symbol
6815 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
6816 }
6817
6818 return 0;
6819 }
6820
6821 static int in_my_get_expression = 0;
6822
6823 static int
6824 my_get_expression (ep, str)
6825 expressionS * ep;
6826 char ** str;
6827 {
6828 char * save_in;
6829 segT seg;
6830
6831 save_in = input_line_pointer;
6832 input_line_pointer = *str;
6833 in_my_get_expression = 1;
6834 seg = expression (ep);
6835 in_my_get_expression = 0;
6836
6837 if (ep->X_op == O_illegal)
6838 {
6839 /* We found a bad expression in md_operand(). */
6840 *str = input_line_pointer;
6841 input_line_pointer = save_in;
6842 return 1;
6843 }
6844
6845 #ifdef OBJ_AOUT
6846 if (seg != absolute_section
6847 && seg != text_section
6848 && seg != data_section
6849 && seg != bss_section
6850 && seg != undefined_section)
6851 {
6852 inst.error = _("bad_segment");
6853 *str = input_line_pointer;
6854 input_line_pointer = save_in;
6855 return 1;
6856 }
6857 #endif
6858
6859 /* Get rid of any bignums now, so that we don't generate an error for which
6860 we can't establish a line number later on. Big numbers are never valid
6861 in instructions, which is where this routine is always called. */
6862 if (ep->X_op == O_big
6863 || (ep->X_add_symbol
6864 && (walk_no_bignums (ep->X_add_symbol)
6865 || (ep->X_op_symbol
6866 && walk_no_bignums (ep->X_op_symbol)))))
6867 {
6868 inst.error = _("invalid constant");
6869 *str = input_line_pointer;
6870 input_line_pointer = save_in;
6871 return 1;
6872 }
6873
6874 *str = input_line_pointer;
6875 input_line_pointer = save_in;
6876 return 0;
6877 }
6878
6879 /* We handle all bad expressions here, so that we can report the faulty
6880 instruction in the error message. */
6881 void
6882 md_operand (expr)
6883 expressionS *expr;
6884 {
6885 if (in_my_get_expression)
6886 {
6887 expr->X_op = O_illegal;
6888 if (inst.error == NULL)
6889 inst.error = _("bad expression");
6890 }
6891 }
6892
6893 /* KIND indicates what kind of shifts are accepted. */
6894
6895 static int
6896 decode_shift (str, kind)
6897 char ** str;
6898 int kind;
6899 {
6900 const struct asm_shift_name * shift;
6901 char * p;
6902 char c;
6903
6904 skip_whitespace (* str);
6905
6906 for (p = * str; ISALPHA (* p); p ++)
6907 ;
6908
6909 if (p == * str)
6910 {
6911 inst.error = _("shift expression expected");
6912 return FAIL;
6913 }
6914
6915 c = * p;
6916 * p = '\0';
6917 shift = (const struct asm_shift_name *) hash_find (arm_shift_hsh, * str);
6918 * p = c;
6919
6920 if (shift == NULL)
6921 {
6922 inst.error = _("shift expression expected");
6923 return FAIL;
6924 }
6925
6926 assert (shift->properties->index == shift_properties[shift->properties->index].index);
6927
6928 if (kind == SHIFT_LSL_OR_ASR_IMMEDIATE
6929 && shift->properties->index != SHIFT_LSL
6930 && shift->properties->index != SHIFT_ASR)
6931 {
6932 inst.error = _("'LSL' or 'ASR' required");
6933 return FAIL;
6934 }
6935 else if (kind == SHIFT_LSL_IMMEDIATE
6936 && shift->properties->index != SHIFT_LSL)
6937 {
6938 inst.error = _("'LSL' required");
6939 return FAIL;
6940 }
6941 else if (kind == SHIFT_ASR_IMMEDIATE
6942 && shift->properties->index != SHIFT_ASR)
6943 {
6944 inst.error = _("'ASR' required");
6945 return FAIL;
6946 }
6947
6948 if (shift->properties->index == SHIFT_RRX)
6949 {
6950 * str = p;
6951 inst.instruction |= shift->properties->bit_field;
6952 return SUCCESS;
6953 }
6954
6955 skip_whitespace (p);
6956
6957 if (kind == NO_SHIFT_RESTRICT && reg_required_here (& p, 8) != FAIL)
6958 {
6959 inst.instruction |= shift->properties->bit_field | SHIFT_BY_REG;
6960 * str = p;
6961 return SUCCESS;
6962 }
6963 else if (! is_immediate_prefix (* p))
6964 {
6965 inst.error = (NO_SHIFT_RESTRICT
6966 ? _("shift requires register or #expression")
6967 : _("shift requires #expression"));
6968 * str = p;
6969 return FAIL;
6970 }
6971
6972 inst.error = NULL;
6973 p ++;
6974
6975 if (my_get_expression (& inst.reloc.exp, & p))
6976 return FAIL;
6977
6978 /* Validate some simple #expressions. */
6979 if (inst.reloc.exp.X_op == O_constant)
6980 {
6981 unsigned num = inst.reloc.exp.X_add_number;
6982
6983 /* Reject operations greater than 32. */
6984 if (num > 32
6985 /* Reject a shift of 0 unless the mode allows it. */
6986 || (num == 0 && shift->properties->allows_0 == 0)
6987 /* Reject a shift of 32 unless the mode allows it. */
6988 || (num == 32 && shift->properties->allows_32 == 0)
6989 )
6990 {
6991 /* As a special case we allow a shift of zero for
6992 modes that do not support it to be recoded as an
6993 logical shift left of zero (ie nothing). We warn
6994 about this though. */
6995 if (num == 0)
6996 {
6997 as_warn (_("shift of 0 ignored."));
6998 shift = & shift_names[0];
6999 assert (shift->properties->index == SHIFT_LSL);
7000 }
7001 else
7002 {
7003 inst.error = _("invalid immediate shift");
7004 return FAIL;
7005 }
7006 }
7007
7008 /* Shifts of 32 are encoded as 0, for those shifts that
7009 support it. */
7010 if (num == 32)
7011 num = 0;
7012
7013 inst.instruction |= (num << 7) | shift->properties->bit_field;
7014 }
7015 else
7016 {
7017 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7018 inst.reloc.pc_rel = 0;
7019 inst.instruction |= shift->properties->bit_field;
7020 }
7021
7022 * str = p;
7023 return SUCCESS;
7024 }
7025
7026 /* Do those data_ops which can take a negative immediate constant
7027 by altering the instruction. A bit of a hack really.
7028 MOV <-> MVN
7029 AND <-> BIC
7030 ADC <-> SBC
7031 by inverting the second operand, and
7032 ADD <-> SUB
7033 CMP <-> CMN
7034 by negating the second operand. */
7035
7036 static int
7037 negate_data_op (instruction, value)
7038 unsigned long * instruction;
7039 unsigned long value;
7040 {
7041 int op, new_inst;
7042 unsigned long negated, inverted;
7043
7044 negated = validate_immediate (-value);
7045 inverted = validate_immediate (~value);
7046
7047 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
7048 switch (op)
7049 {
7050 /* First negates. */
7051 case OPCODE_SUB: /* ADD <-> SUB */
7052 new_inst = OPCODE_ADD;
7053 value = negated;
7054 break;
7055
7056 case OPCODE_ADD:
7057 new_inst = OPCODE_SUB;
7058 value = negated;
7059 break;
7060
7061 case OPCODE_CMP: /* CMP <-> CMN */
7062 new_inst = OPCODE_CMN;
7063 value = negated;
7064 break;
7065
7066 case OPCODE_CMN:
7067 new_inst = OPCODE_CMP;
7068 value = negated;
7069 break;
7070
7071 /* Now Inverted ops. */
7072 case OPCODE_MOV: /* MOV <-> MVN */
7073 new_inst = OPCODE_MVN;
7074 value = inverted;
7075 break;
7076
7077 case OPCODE_MVN:
7078 new_inst = OPCODE_MOV;
7079 value = inverted;
7080 break;
7081
7082 case OPCODE_AND: /* AND <-> BIC */
7083 new_inst = OPCODE_BIC;
7084 value = inverted;
7085 break;
7086
7087 case OPCODE_BIC:
7088 new_inst = OPCODE_AND;
7089 value = inverted;
7090 break;
7091
7092 case OPCODE_ADC: /* ADC <-> SBC */
7093 new_inst = OPCODE_SBC;
7094 value = inverted;
7095 break;
7096
7097 case OPCODE_SBC:
7098 new_inst = OPCODE_ADC;
7099 value = inverted;
7100 break;
7101
7102 /* We cannot do anything. */
7103 default:
7104 return FAIL;
7105 }
7106
7107 if (value == (unsigned) FAIL)
7108 return FAIL;
7109
7110 *instruction &= OPCODE_MASK;
7111 *instruction |= new_inst << DATA_OP_SHIFT;
7112 return value;
7113 }
7114
7115 static int
7116 data_op2 (str)
7117 char ** str;
7118 {
7119 int value;
7120 expressionS expr;
7121
7122 skip_whitespace (* str);
7123
7124 if (reg_required_here (str, 0) != FAIL)
7125 {
7126 if (skip_past_comma (str) == SUCCESS)
7127 /* Shift operation on register. */
7128 return decode_shift (str, NO_SHIFT_RESTRICT);
7129
7130 return SUCCESS;
7131 }
7132 else
7133 {
7134 /* Immediate expression. */
7135 if (is_immediate_prefix (**str))
7136 {
7137 (*str)++;
7138 inst.error = NULL;
7139
7140 if (my_get_expression (&inst.reloc.exp, str))
7141 return FAIL;
7142
7143 if (inst.reloc.exp.X_add_symbol)
7144 {
7145 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7146 inst.reloc.pc_rel = 0;
7147 }
7148 else
7149 {
7150 if (skip_past_comma (str) == SUCCESS)
7151 {
7152 /* #x, y -- ie explicit rotation by Y. */
7153 if (my_get_expression (&expr, str))
7154 return FAIL;
7155
7156 if (expr.X_op != O_constant)
7157 {
7158 inst.error = _("constant expression expected");
7159 return FAIL;
7160 }
7161
7162 /* Rotate must be a multiple of 2. */
7163 if (((unsigned) expr.X_add_number) > 30
7164 || (expr.X_add_number & 1) != 0
7165 || ((unsigned) inst.reloc.exp.X_add_number) > 255)
7166 {
7167 inst.error = _("invalid constant");
7168 return FAIL;
7169 }
7170 inst.instruction |= INST_IMMEDIATE;
7171 inst.instruction |= inst.reloc.exp.X_add_number;
7172 inst.instruction |= expr.X_add_number << 7;
7173 return SUCCESS;
7174 }
7175
7176 /* Implicit rotation, select a suitable one. */
7177 value = validate_immediate (inst.reloc.exp.X_add_number);
7178
7179 if (value == FAIL)
7180 {
7181 /* Can't be done. Perhaps the code reads something like
7182 "add Rd, Rn, #-n", where "sub Rd, Rn, #n" would be OK. */
7183 if ((value = negate_data_op (&inst.instruction,
7184 inst.reloc.exp.X_add_number))
7185 == FAIL)
7186 {
7187 inst.error = _("invalid constant");
7188 return FAIL;
7189 }
7190 }
7191
7192 inst.instruction |= value;
7193 }
7194
7195 inst.instruction |= INST_IMMEDIATE;
7196 return SUCCESS;
7197 }
7198
7199 (*str)++;
7200 inst.error = _("register or shift expression expected");
7201 return FAIL;
7202 }
7203 }
7204
7205 static int
7206 fp_op2 (str)
7207 char ** str;
7208 {
7209 skip_whitespace (* str);
7210
7211 if (fp_reg_required_here (str, 0) != FAIL)
7212 return SUCCESS;
7213 else
7214 {
7215 /* Immediate expression. */
7216 if (*((*str)++) == '#')
7217 {
7218 int i;
7219
7220 inst.error = NULL;
7221
7222 skip_whitespace (* str);
7223
7224 /* First try and match exact strings, this is to guarantee
7225 that some formats will work even for cross assembly. */
7226
7227 for (i = 0; fp_const[i]; i++)
7228 {
7229 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
7230 {
7231 char *start = *str;
7232
7233 *str += strlen (fp_const[i]);
7234 if (is_end_of_line[(unsigned char) **str])
7235 {
7236 inst.instruction |= i + 8;
7237 return SUCCESS;
7238 }
7239 *str = start;
7240 }
7241 }
7242
7243 /* Just because we didn't get a match doesn't mean that the
7244 constant isn't valid, just that it is in a format that we
7245 don't automatically recognize. Try parsing it with
7246 the standard expression routines. */
7247 if ((i = my_get_float_expression (str)) >= 0)
7248 {
7249 inst.instruction |= i + 8;
7250 return SUCCESS;
7251 }
7252
7253 inst.error = _("invalid floating point immediate expression");
7254 return FAIL;
7255 }
7256 inst.error =
7257 _("floating point register or immediate expression expected");
7258 return FAIL;
7259 }
7260 }
7261
7262 static void
7263 do_arit (str)
7264 char * str;
7265 {
7266 skip_whitespace (str);
7267
7268 if (reg_required_here (&str, 12) == FAIL
7269 || skip_past_comma (&str) == FAIL
7270 || reg_required_here (&str, 16) == FAIL
7271 || skip_past_comma (&str) == FAIL
7272 || data_op2 (&str) == FAIL)
7273 {
7274 if (!inst.error)
7275 inst.error = BAD_ARGS;
7276 return;
7277 }
7278
7279 end_of_line (str);
7280 }
7281
7282 static void
7283 do_adr (str)
7284 char * str;
7285 {
7286 /* This is a pseudo-op of the form "adr rd, label" to be converted
7287 into a relative address of the form "add rd, pc, #label-.-8". */
7288 skip_whitespace (str);
7289
7290 if (reg_required_here (&str, 12) == FAIL
7291 || skip_past_comma (&str) == FAIL
7292 || my_get_expression (&inst.reloc.exp, &str))
7293 {
7294 if (!inst.error)
7295 inst.error = BAD_ARGS;
7296 return;
7297 }
7298
7299 /* Frag hacking will turn this into a sub instruction if the offset turns
7300 out to be negative. */
7301 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7302 #ifndef TE_WINCE
7303 inst.reloc.exp.X_add_number -= 8; /* PC relative adjust. */
7304 #endif
7305 inst.reloc.pc_rel = 1;
7306
7307 end_of_line (str);
7308 }
7309
7310 static void
7311 do_adrl (str)
7312 char * str;
7313 {
7314 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7315 into a relative address of the form:
7316 add rd, pc, #low(label-.-8)"
7317 add rd, rd, #high(label-.-8)" */
7318
7319 skip_whitespace (str);
7320
7321 if (reg_required_here (&str, 12) == FAIL
7322 || skip_past_comma (&str) == FAIL
7323 || my_get_expression (&inst.reloc.exp, &str))
7324 {
7325 if (!inst.error)
7326 inst.error = BAD_ARGS;
7327
7328 return;
7329 }
7330
7331 end_of_line (str);
7332 /* Frag hacking will turn this into a sub instruction if the offset turns
7333 out to be negative. */
7334 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7335 #ifndef TE_WINCE
7336 inst.reloc.exp.X_add_number -= 8; /* PC relative adjust */
7337 #endif
7338 inst.reloc.pc_rel = 1;
7339 inst.size = INSN_SIZE * 2;
7340 }
7341
7342 static void
7343 do_cmp (str)
7344 char * str;
7345 {
7346 skip_whitespace (str);
7347
7348 if (reg_required_here (&str, 16) == FAIL)
7349 {
7350 if (!inst.error)
7351 inst.error = BAD_ARGS;
7352 return;
7353 }
7354
7355 if (skip_past_comma (&str) == FAIL
7356 || data_op2 (&str) == FAIL)
7357 {
7358 if (!inst.error)
7359 inst.error = BAD_ARGS;
7360 return;
7361 }
7362
7363 end_of_line (str);
7364 }
7365
7366 static void
7367 do_mov (str)
7368 char * str;
7369 {
7370 skip_whitespace (str);
7371
7372 if (reg_required_here (&str, 12) == FAIL)
7373 {
7374 if (!inst.error)
7375 inst.error = BAD_ARGS;
7376 return;
7377 }
7378
7379 if (skip_past_comma (&str) == FAIL
7380 || data_op2 (&str) == FAIL)
7381 {
7382 if (!inst.error)
7383 inst.error = BAD_ARGS;
7384 return;
7385 }
7386
7387 end_of_line (str);
7388 }
7389
7390 static int
7391 ldst_extend (str)
7392 char ** str;
7393 {
7394 int add = INDEX_UP;
7395
7396 switch (**str)
7397 {
7398 case '#':
7399 case '$':
7400 (*str)++;
7401 if (my_get_expression (& inst.reloc.exp, str))
7402 return FAIL;
7403
7404 if (inst.reloc.exp.X_op == O_constant)
7405 {
7406 int value = inst.reloc.exp.X_add_number;
7407
7408 if (value < -4095 || value > 4095)
7409 {
7410 inst.error = _("address offset too large");
7411 return FAIL;
7412 }
7413
7414 if (value < 0)
7415 {
7416 value = -value;
7417 add = 0;
7418 }
7419
7420 inst.instruction |= add | value;
7421 }
7422 else
7423 {
7424 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7425 inst.reloc.pc_rel = 0;
7426 }
7427 return SUCCESS;
7428
7429 case '-':
7430 add = 0;
7431 /* Fall through. */
7432
7433 case '+':
7434 (*str)++;
7435 /* Fall through. */
7436
7437 default:
7438 if (reg_required_here (str, 0) == FAIL)
7439 return FAIL;
7440
7441 inst.instruction |= add | OFFSET_REG;
7442 if (skip_past_comma (str) == SUCCESS)
7443 return decode_shift (str, SHIFT_IMMEDIATE);
7444
7445 return SUCCESS;
7446 }
7447 }
7448
7449 static void
7450 do_ldst (str)
7451 char * str;
7452 {
7453 int pre_inc = 0;
7454 int conflict_reg;
7455 int value;
7456
7457 skip_whitespace (str);
7458
7459 if ((conflict_reg = reg_required_here (&str, 12)) == FAIL)
7460 {
7461 if (!inst.error)
7462 inst.error = BAD_ARGS;
7463 return;
7464 }
7465
7466 if (skip_past_comma (&str) == FAIL)
7467 {
7468 inst.error = _("address expected");
7469 return;
7470 }
7471
7472 if (*str == '[')
7473 {
7474 int reg;
7475
7476 str++;
7477
7478 skip_whitespace (str);
7479
7480 if ((reg = reg_required_here (&str, 16)) == FAIL)
7481 return;
7482
7483 /* Conflicts can occur on stores as well as loads. */
7484 conflict_reg = (conflict_reg == reg);
7485
7486 skip_whitespace (str);
7487
7488 if (*str == ']')
7489 {
7490 str ++;
7491
7492 if (skip_past_comma (&str) == SUCCESS)
7493 {
7494 /* [Rn],... (post inc) */
7495 if (ldst_extend (&str) == FAIL)
7496 return;
7497 if (conflict_reg)
7498 as_warn (_("%s register same as write-back base"),
7499 ((inst.instruction & LOAD_BIT)
7500 ? _("destination") : _("source")));
7501 }
7502 else
7503 {
7504 /* [Rn] */
7505 skip_whitespace (str);
7506
7507 if (*str == '!')
7508 {
7509 if (conflict_reg)
7510 as_warn (_("%s register same as write-back base"),
7511 ((inst.instruction & LOAD_BIT)
7512 ? _("destination") : _("source")));
7513 str++;
7514 inst.instruction |= WRITE_BACK;
7515 }
7516
7517 inst.instruction |= INDEX_UP;
7518 pre_inc = 1;
7519 }
7520 }
7521 else
7522 {
7523 /* [Rn,...] */
7524 if (skip_past_comma (&str) == FAIL)
7525 {
7526 inst.error = _("pre-indexed expression expected");
7527 return;
7528 }
7529
7530 pre_inc = 1;
7531 if (ldst_extend (&str) == FAIL)
7532 return;
7533
7534 skip_whitespace (str);
7535
7536 if (*str++ != ']')
7537 {
7538 inst.error = _("missing ]");
7539 return;
7540 }
7541
7542 skip_whitespace (str);
7543
7544 if (*str == '!')
7545 {
7546 if (conflict_reg)
7547 as_warn (_("%s register same as write-back base"),
7548 ((inst.instruction & LOAD_BIT)
7549 ? _("destination") : _("source")));
7550 str++;
7551 inst.instruction |= WRITE_BACK;
7552 }
7553 }
7554 }
7555 else if (*str == '=')
7556 {
7557 if ((inst.instruction & LOAD_BIT) == 0)
7558 {
7559 inst.error = _("invalid pseudo operation");
7560 return;
7561 }
7562
7563 /* Parse an "ldr Rd, =expr" instruction; this is another pseudo op. */
7564 str++;
7565
7566 skip_whitespace (str);
7567
7568 if (my_get_expression (&inst.reloc.exp, &str))
7569 return;
7570
7571 if (inst.reloc.exp.X_op != O_constant
7572 && inst.reloc.exp.X_op != O_symbol)
7573 {
7574 inst.error = _("constant expression expected");
7575 return;
7576 }
7577
7578 if (inst.reloc.exp.X_op == O_constant)
7579 {
7580 value = validate_immediate (inst.reloc.exp.X_add_number);
7581
7582 if (value != FAIL)
7583 {
7584 /* This can be done with a mov instruction. */
7585 inst.instruction &= LITERAL_MASK;
7586 inst.instruction |= (INST_IMMEDIATE
7587 | (OPCODE_MOV << DATA_OP_SHIFT));
7588 inst.instruction |= value & 0xfff;
7589 end_of_line (str);
7590 return;
7591 }
7592
7593 value = validate_immediate (~inst.reloc.exp.X_add_number);
7594
7595 if (value != FAIL)
7596 {
7597 /* This can be done with a mvn instruction. */
7598 inst.instruction &= LITERAL_MASK;
7599 inst.instruction |= (INST_IMMEDIATE
7600 | (OPCODE_MVN << DATA_OP_SHIFT));
7601 inst.instruction |= value & 0xfff;
7602 end_of_line (str);
7603 return;
7604 }
7605 }
7606
7607 /* Insert into literal pool. */
7608 if (add_to_lit_pool () == FAIL)
7609 {
7610 if (!inst.error)
7611 inst.error = _("literal pool insertion failed");
7612 return;
7613 }
7614
7615 /* Change the instruction exp to point to the pool. */
7616 inst.reloc.type = BFD_RELOC_ARM_LITERAL;
7617 inst.reloc.pc_rel = 1;
7618 inst.instruction |= (REG_PC << 16);
7619 pre_inc = 1;
7620 }
7621 else
7622 {
7623 if (my_get_expression (&inst.reloc.exp, &str))
7624 return;
7625
7626 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7627 #ifndef TE_WINCE
7628 /* PC rel adjust. */
7629 inst.reloc.exp.X_add_number -= 8;
7630 #endif
7631 inst.reloc.pc_rel = 1;
7632 inst.instruction |= (REG_PC << 16);
7633 pre_inc = 1;
7634 }
7635
7636 inst.instruction |= (pre_inc ? PRE_INDEX : 0);
7637 end_of_line (str);
7638 }
7639
7640 static void
7641 do_ldstt (str)
7642 char * str;
7643 {
7644 int conflict_reg;
7645
7646 skip_whitespace (str);
7647
7648 if ((conflict_reg = reg_required_here (& str, 12)) == FAIL)
7649 {
7650 if (!inst.error)
7651 inst.error = BAD_ARGS;
7652 return;
7653 }
7654
7655 if (skip_past_comma (& str) == FAIL)
7656 {
7657 inst.error = _("address expected");
7658 return;
7659 }
7660
7661 if (*str == '[')
7662 {
7663 int reg;
7664
7665 str++;
7666
7667 skip_whitespace (str);
7668
7669 if ((reg = reg_required_here (&str, 16)) == FAIL)
7670 return;
7671
7672 /* ldrt/strt always use post-indexed addressing, so if the base is
7673 the same as Rd, we warn. */
7674 if (conflict_reg == reg)
7675 as_warn (_("%s register same as write-back base"),
7676 ((inst.instruction & LOAD_BIT)
7677 ? _("destination") : _("source")));
7678
7679 skip_whitespace (str);
7680
7681 if (*str == ']')
7682 {
7683 str ++;
7684
7685 if (skip_past_comma (&str) == SUCCESS)
7686 {
7687 /* [Rn],... (post inc) */
7688 if (ldst_extend (&str) == FAIL)
7689 return;
7690 }
7691 else
7692 {
7693 /* [Rn] */
7694 skip_whitespace (str);
7695
7696 /* Skip a write-back '!'. */
7697 if (*str == '!')
7698 str++;
7699
7700 inst.instruction |= INDEX_UP;
7701 }
7702 }
7703 else
7704 {
7705 inst.error = _("post-indexed expression expected");
7706 return;
7707 }
7708 }
7709 else
7710 {
7711 inst.error = _("post-indexed expression expected");
7712 return;
7713 }
7714
7715 end_of_line (str);
7716 }
7717
7718 static int
7719 ldst_extend_v4 (str)
7720 char ** str;
7721 {
7722 int add = INDEX_UP;
7723
7724 switch (**str)
7725 {
7726 case '#':
7727 case '$':
7728 (*str)++;
7729 if (my_get_expression (& inst.reloc.exp, str))
7730 return FAIL;
7731
7732 if (inst.reloc.exp.X_op == O_constant)
7733 {
7734 int value = inst.reloc.exp.X_add_number;
7735
7736 if (value < -255 || value > 255)
7737 {
7738 inst.error = _("address offset too large");
7739 return FAIL;
7740 }
7741
7742 if (value < 0)
7743 {
7744 value = -value;
7745 add = 0;
7746 }
7747
7748 /* Halfword and signextension instructions have the
7749 immediate value split across bits 11..8 and bits 3..0. */
7750 inst.instruction |= (add | HWOFFSET_IMM
7751 | ((value >> 4) << 8) | (value & 0xF));
7752 }
7753 else
7754 {
7755 inst.instruction |= HWOFFSET_IMM;
7756 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7757 inst.reloc.pc_rel = 0;
7758 }
7759 return SUCCESS;
7760
7761 case '-':
7762 add = 0;
7763 /* Fall through. */
7764
7765 case '+':
7766 (*str)++;
7767 /* Fall through. */
7768
7769 default:
7770 if (reg_required_here (str, 0) == FAIL)
7771 return FAIL;
7772
7773 inst.instruction |= add;
7774 return SUCCESS;
7775 }
7776 }
7777
7778 /* Halfword and signed-byte load/store operations. */
7779 static void
7780 do_ldstv4 (str)
7781 char * str;
7782 {
7783 int pre_inc = 0;
7784 int conflict_reg;
7785 int value;
7786
7787 skip_whitespace (str);
7788
7789 if ((conflict_reg = reg_required_here (& str, 12)) == FAIL)
7790 {
7791 if (!inst.error)
7792 inst.error = BAD_ARGS;
7793 return;
7794 }
7795
7796 if (skip_past_comma (& str) == FAIL)
7797 {
7798 inst.error = _("address expected");
7799 return;
7800 }
7801
7802 if (*str == '[')
7803 {
7804 int reg;
7805
7806 str++;
7807
7808 skip_whitespace (str);
7809
7810 if ((reg = reg_required_here (&str, 16)) == FAIL)
7811 return;
7812
7813 /* Conflicts can occur on stores as well as loads. */
7814 conflict_reg = (conflict_reg == reg);
7815
7816 skip_whitespace (str);
7817
7818 if (*str == ']')
7819 {
7820 str ++;
7821
7822 if (skip_past_comma (&str) == SUCCESS)
7823 {
7824 /* [Rn],... (post inc) */
7825 if (ldst_extend_v4 (&str) == FAIL)
7826 return;
7827 if (conflict_reg)
7828 as_warn (_("%s register same as write-back base"),
7829 ((inst.instruction & LOAD_BIT)
7830 ? _("destination") : _("source")));
7831 }
7832 else
7833 {
7834 /* [Rn] */
7835 inst.instruction |= HWOFFSET_IMM;
7836
7837 skip_whitespace (str);
7838
7839 if (*str == '!')
7840 {
7841 if (conflict_reg)
7842 as_warn (_("%s register same as write-back base"),
7843 ((inst.instruction & LOAD_BIT)
7844 ? _("destination") : _("source")));
7845 str++;
7846 inst.instruction |= WRITE_BACK;
7847 }
7848
7849 inst.instruction |= INDEX_UP;
7850 pre_inc = 1;
7851 }
7852 }
7853 else
7854 {
7855 /* [Rn,...] */
7856 if (skip_past_comma (&str) == FAIL)
7857 {
7858 inst.error = _("pre-indexed expression expected");
7859 return;
7860 }
7861
7862 pre_inc = 1;
7863 if (ldst_extend_v4 (&str) == FAIL)
7864 return;
7865
7866 skip_whitespace (str);
7867
7868 if (*str++ != ']')
7869 {
7870 inst.error = _("missing ]");
7871 return;
7872 }
7873
7874 skip_whitespace (str);
7875
7876 if (*str == '!')
7877 {
7878 if (conflict_reg)
7879 as_warn (_("%s register same as write-back base"),
7880 ((inst.instruction & LOAD_BIT)
7881 ? _("destination") : _("source")));
7882 str++;
7883 inst.instruction |= WRITE_BACK;
7884 }
7885 }
7886 }
7887 else if (*str == '=')
7888 {
7889 if ((inst.instruction & LOAD_BIT) == 0)
7890 {
7891 inst.error = _("invalid pseudo operation");
7892 return;
7893 }
7894
7895 /* XXX Does this work correctly for half-word/byte ops? */
7896 /* Parse an "ldr Rd, =expr" instruction; this is another pseudo op. */
7897 str++;
7898
7899 skip_whitespace (str);
7900
7901 if (my_get_expression (&inst.reloc.exp, &str))
7902 return;
7903
7904 if (inst.reloc.exp.X_op != O_constant
7905 && inst.reloc.exp.X_op != O_symbol)
7906 {
7907 inst.error = _("constant expression expected");
7908 return;
7909 }
7910
7911 if (inst.reloc.exp.X_op == O_constant)
7912 {
7913 value = validate_immediate (inst.reloc.exp.X_add_number);
7914
7915 if (value != FAIL)
7916 {
7917 /* This can be done with a mov instruction. */
7918 inst.instruction &= LITERAL_MASK;
7919 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7920 inst.instruction |= value & 0xfff;
7921 end_of_line (str);
7922 return;
7923 }
7924
7925 value = validate_immediate (~ inst.reloc.exp.X_add_number);
7926
7927 if (value != FAIL)
7928 {
7929 /* This can be done with a mvn instruction. */
7930 inst.instruction &= LITERAL_MASK;
7931 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7932 inst.instruction |= value & 0xfff;
7933 end_of_line (str);
7934 return;
7935 }
7936 }
7937
7938 /* Insert into literal pool. */
7939 if (add_to_lit_pool () == FAIL)
7940 {
7941 if (!inst.error)
7942 inst.error = _("literal pool insertion failed");
7943 return;
7944 }
7945
7946 /* Change the instruction exp to point to the pool. */
7947 inst.instruction |= HWOFFSET_IMM;
7948 inst.reloc.type = BFD_RELOC_ARM_HWLITERAL;
7949 inst.reloc.pc_rel = 1;
7950 inst.instruction |= (REG_PC << 16);
7951 pre_inc = 1;
7952 }
7953 else
7954 {
7955 if (my_get_expression (&inst.reloc.exp, &str))
7956 return;
7957
7958 inst.instruction |= HWOFFSET_IMM;
7959 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7960 #ifndef TE_WINCE
7961 /* PC rel adjust. */
7962 inst.reloc.exp.X_add_number -= 8;
7963 #endif
7964 inst.reloc.pc_rel = 1;
7965 inst.instruction |= (REG_PC << 16);
7966 pre_inc = 1;
7967 }
7968
7969 inst.instruction |= (pre_inc ? PRE_INDEX : 0);
7970 end_of_line (str);
7971 }
7972
7973 static long
7974 reg_list (strp)
7975 char ** strp;
7976 {
7977 char * str = * strp;
7978 long range = 0;
7979 int another_range;
7980
7981 /* We come back here if we get ranges concatenated by '+' or '|'. */
7982 do
7983 {
7984 another_range = 0;
7985
7986 if (*str == '{')
7987 {
7988 int in_range = 0;
7989 int cur_reg = -1;
7990
7991 str++;
7992 do
7993 {
7994 int reg;
7995
7996 skip_whitespace (str);
7997
7998 if ((reg = reg_required_here (& str, -1)) == FAIL)
7999 return FAIL;
8000
8001 if (in_range)
8002 {
8003 int i;
8004
8005 if (reg <= cur_reg)
8006 {
8007 inst.error = _("bad range in register list");
8008 return FAIL;
8009 }
8010
8011 for (i = cur_reg + 1; i < reg; i++)
8012 {
8013 if (range & (1 << i))
8014 as_tsktsk
8015 (_("Warning: duplicated register (r%d) in register list"),
8016 i);
8017 else
8018 range |= 1 << i;
8019 }
8020 in_range = 0;
8021 }
8022
8023 if (range & (1 << reg))
8024 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
8025 reg);
8026 else if (reg <= cur_reg)
8027 as_tsktsk (_("Warning: register range not in ascending order"));
8028
8029 range |= 1 << reg;
8030 cur_reg = reg;
8031 }
8032 while (skip_past_comma (&str) != FAIL
8033 || (in_range = 1, *str++ == '-'));
8034 str--;
8035 skip_whitespace (str);
8036
8037 if (*str++ != '}')
8038 {
8039 inst.error = _("missing `}'");
8040 return FAIL;
8041 }
8042 }
8043 else
8044 {
8045 expressionS expr;
8046
8047 if (my_get_expression (&expr, &str))
8048 return FAIL;
8049
8050 if (expr.X_op == O_constant)
8051 {
8052 if (expr.X_add_number
8053 != (expr.X_add_number & 0x0000ffff))
8054 {
8055 inst.error = _("invalid register mask");
8056 return FAIL;
8057 }
8058
8059 if ((range & expr.X_add_number) != 0)
8060 {
8061 int regno = range & expr.X_add_number;
8062
8063 regno &= -regno;
8064 regno = (1 << regno) - 1;
8065 as_tsktsk
8066 (_("Warning: duplicated register (r%d) in register list"),
8067 regno);
8068 }
8069
8070 range |= expr.X_add_number;
8071 }
8072 else
8073 {
8074 if (inst.reloc.type != 0)
8075 {
8076 inst.error = _("expression too complex");
8077 return FAIL;
8078 }
8079
8080 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
8081 inst.reloc.type = BFD_RELOC_ARM_MULTI;
8082 inst.reloc.pc_rel = 0;
8083 }
8084 }
8085
8086 skip_whitespace (str);
8087
8088 if (*str == '|' || *str == '+')
8089 {
8090 str++;
8091 another_range = 1;
8092 }
8093 }
8094 while (another_range);
8095
8096 *strp = str;
8097 return range;
8098 }
8099
8100 static void
8101 do_ldmstm (str)
8102 char * str;
8103 {
8104 int base_reg;
8105 long range;
8106
8107 skip_whitespace (str);
8108
8109 if ((base_reg = reg_required_here (&str, 16)) == FAIL)
8110 return;
8111
8112 if (base_reg == REG_PC)
8113 {
8114 inst.error = _("r15 not allowed as base register");
8115 return;
8116 }
8117
8118 skip_whitespace (str);
8119
8120 if (*str == '!')
8121 {
8122 inst.instruction |= WRITE_BACK;
8123 str++;
8124 }
8125
8126 if (skip_past_comma (&str) == FAIL
8127 || (range = reg_list (&str)) == FAIL)
8128 {
8129 if (! inst.error)
8130 inst.error = BAD_ARGS;
8131 return;
8132 }
8133
8134 if (*str == '^')
8135 {
8136 str++;
8137 inst.instruction |= LDM_TYPE_2_OR_3;
8138 }
8139
8140 if (inst.instruction & WRITE_BACK)
8141 {
8142 /* Check for unpredictable uses of writeback. */
8143 if (inst.instruction & LOAD_BIT)
8144 {
8145 /* Not allowed in LDM type 2. */
8146 if ((inst.instruction & LDM_TYPE_2_OR_3)
8147 && ((range & (1 << REG_PC)) == 0))
8148 as_warn (_("writeback of base register is UNPREDICTABLE"));
8149 /* Only allowed if base reg not in list for other types. */
8150 else if (range & (1 << base_reg))
8151 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
8152 }
8153 else /* STM. */
8154 {
8155 /* Not allowed for type 2. */
8156 if (inst.instruction & LDM_TYPE_2_OR_3)
8157 as_warn (_("writeback of base register is UNPREDICTABLE"));
8158 /* Only allowed if base reg not in list, or first in list. */
8159 else if ((range & (1 << base_reg))
8160 && (range & ((1 << base_reg) - 1)))
8161 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
8162 }
8163 }
8164
8165 inst.instruction |= range;
8166 end_of_line (str);
8167 }
8168
8169 static void
8170 do_swi (str)
8171 char * str;
8172 {
8173 skip_whitespace (str);
8174
8175 /* Allow optional leading '#'. */
8176 if (is_immediate_prefix (*str))
8177 str++;
8178
8179 if (my_get_expression (& inst.reloc.exp, & str))
8180 return;
8181
8182 inst.reloc.type = BFD_RELOC_ARM_SWI;
8183 inst.reloc.pc_rel = 0;
8184 end_of_line (str);
8185 }
8186
8187 static void
8188 do_swap (str)
8189 char * str;
8190 {
8191 int reg;
8192
8193 skip_whitespace (str);
8194
8195 if ((reg = reg_required_here (&str, 12)) == FAIL)
8196 return;
8197
8198 if (reg == REG_PC)
8199 {
8200 inst.error = _("r15 not allowed in swap");
8201 return;
8202 }
8203
8204 if (skip_past_comma (&str) == FAIL
8205 || (reg = reg_required_here (&str, 0)) == FAIL)
8206 {
8207 if (!inst.error)
8208 inst.error = BAD_ARGS;
8209 return;
8210 }
8211
8212 if (reg == REG_PC)
8213 {
8214 inst.error = _("r15 not allowed in swap");
8215 return;
8216 }
8217
8218 if (skip_past_comma (&str) == FAIL
8219 || *str++ != '[')
8220 {
8221 inst.error = BAD_ARGS;
8222 return;
8223 }
8224
8225 skip_whitespace (str);
8226
8227 if ((reg = reg_required_here (&str, 16)) == FAIL)
8228 return;
8229
8230 if (reg == REG_PC)
8231 {
8232 inst.error = BAD_PC;
8233 return;
8234 }
8235
8236 skip_whitespace (str);
8237
8238 if (*str++ != ']')
8239 {
8240 inst.error = _("missing ]");
8241 return;
8242 }
8243
8244 end_of_line (str);
8245 }
8246
8247 static void
8248 do_branch (str)
8249 char * str;
8250 {
8251 if (my_get_expression (&inst.reloc.exp, &str))
8252 return;
8253
8254 #ifdef OBJ_ELF
8255 {
8256 char * save_in;
8257
8258 /* ScottB: February 5, 1998 - Check to see of PLT32 reloc
8259 required for the instruction. */
8260
8261 /* arm_parse_reloc () works on input_line_pointer.
8262 We actually want to parse the operands to the branch instruction
8263 passed in 'str'. Save the input pointer and restore it later. */
8264 save_in = input_line_pointer;
8265 input_line_pointer = str;
8266 if (inst.reloc.exp.X_op == O_symbol
8267 && *str == '('
8268 && arm_parse_reloc () == BFD_RELOC_ARM_PLT32)
8269 {
8270 inst.reloc.type = BFD_RELOC_ARM_PLT32;
8271 inst.reloc.pc_rel = 0;
8272 /* Modify str to point to after parsed operands, otherwise
8273 end_of_line() will complain about the (PLT) left in str. */
8274 str = input_line_pointer;
8275 }
8276 else
8277 {
8278 inst.reloc.type = BFD_RELOC_ARM_PCREL_BRANCH;
8279 inst.reloc.pc_rel = 1;
8280 }
8281 input_line_pointer = save_in;
8282 }
8283 #else
8284 inst.reloc.type = BFD_RELOC_ARM_PCREL_BRANCH;
8285 inst.reloc.pc_rel = 1;
8286 #endif /* OBJ_ELF */
8287
8288 end_of_line (str);
8289 }
8290
8291 static void
8292 do_bx (str)
8293 char * str;
8294 {
8295 int reg;
8296
8297 skip_whitespace (str);
8298
8299 if ((reg = reg_required_here (&str, 0)) == FAIL)
8300 {
8301 inst.error = BAD_ARGS;
8302 return;
8303 }
8304
8305 /* Note - it is not illegal to do a "bx pc". Useless, but not illegal. */
8306 if (reg == REG_PC)
8307 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
8308
8309 end_of_line (str);
8310 }
8311
8312 static void
8313 do_cdp (str)
8314 char * str;
8315 {
8316 /* Co-processor data operation.
8317 Format: CDP{cond} CP#,<expr>,CRd,CRn,CRm{,<expr>} */
8318 skip_whitespace (str);
8319
8320 if (co_proc_number (&str) == FAIL)
8321 {
8322 if (!inst.error)
8323 inst.error = BAD_ARGS;
8324 return;
8325 }
8326
8327 if (skip_past_comma (&str) == FAIL
8328 || cp_opc_expr (&str, 20,4) == FAIL)
8329 {
8330 if (!inst.error)
8331 inst.error = BAD_ARGS;
8332 return;
8333 }
8334
8335 if (skip_past_comma (&str) == FAIL
8336 || cp_reg_required_here (&str, 12) == FAIL)
8337 {
8338 if (!inst.error)
8339 inst.error = BAD_ARGS;
8340 return;
8341 }
8342
8343 if (skip_past_comma (&str) == FAIL
8344 || cp_reg_required_here (&str, 16) == FAIL)
8345 {
8346 if (!inst.error)
8347 inst.error = BAD_ARGS;
8348 return;
8349 }
8350
8351 if (skip_past_comma (&str) == FAIL
8352 || cp_reg_required_here (&str, 0) == FAIL)
8353 {
8354 if (!inst.error)
8355 inst.error = BAD_ARGS;
8356 return;
8357 }
8358
8359 if (skip_past_comma (&str) == SUCCESS)
8360 {
8361 if (cp_opc_expr (&str, 5, 3) == FAIL)
8362 {
8363 if (!inst.error)
8364 inst.error = BAD_ARGS;
8365 return;
8366 }
8367 }
8368
8369 end_of_line (str);
8370 }
8371
8372 static void
8373 do_lstc (str)
8374 char * str;
8375 {
8376 /* Co-processor register load/store.
8377 Format: <LDC|STC{cond}[L] CP#,CRd,<address> */
8378
8379 skip_whitespace (str);
8380
8381 if (co_proc_number (&str) == FAIL)
8382 {
8383 if (!inst.error)
8384 inst.error = BAD_ARGS;
8385 return;
8386 }
8387
8388 if (skip_past_comma (&str) == FAIL
8389 || cp_reg_required_here (&str, 12) == FAIL)
8390 {
8391 if (!inst.error)
8392 inst.error = BAD_ARGS;
8393 return;
8394 }
8395
8396 if (skip_past_comma (&str) == FAIL
8397 || cp_address_required_here (&str, CP_WB_OK) == FAIL)
8398 {
8399 if (! inst.error)
8400 inst.error = BAD_ARGS;
8401 return;
8402 }
8403
8404 end_of_line (str);
8405 }
8406
8407 static void
8408 do_co_reg (str)
8409 char * str;
8410 {
8411 /* Co-processor register transfer.
8412 Format: <MCR|MRC>{cond} CP#,<expr1>,Rd,CRn,CRm{,<expr2>} */
8413
8414 skip_whitespace (str);
8415
8416 if (co_proc_number (&str) == FAIL)
8417 {
8418 if (!inst.error)
8419 inst.error = BAD_ARGS;
8420 return;
8421 }
8422
8423 if (skip_past_comma (&str) == FAIL
8424 || cp_opc_expr (&str, 21, 3) == FAIL)
8425 {
8426 if (!inst.error)
8427 inst.error = BAD_ARGS;
8428 return;
8429 }
8430
8431 if (skip_past_comma (&str) == FAIL
8432 || reg_required_here (&str, 12) == FAIL)
8433 {
8434 if (!inst.error)
8435 inst.error = BAD_ARGS;
8436 return;
8437 }
8438
8439 if (skip_past_comma (&str) == FAIL
8440 || cp_reg_required_here (&str, 16) == FAIL)
8441 {
8442 if (!inst.error)
8443 inst.error = BAD_ARGS;
8444 return;
8445 }
8446
8447 if (skip_past_comma (&str) == FAIL
8448 || cp_reg_required_here (&str, 0) == FAIL)
8449 {
8450 if (!inst.error)
8451 inst.error = BAD_ARGS;
8452 return;
8453 }
8454
8455 if (skip_past_comma (&str) == SUCCESS)
8456 {
8457 if (cp_opc_expr (&str, 5, 3) == FAIL)
8458 {
8459 if (!inst.error)
8460 inst.error = BAD_ARGS;
8461 return;
8462 }
8463 }
8464
8465 end_of_line (str);
8466 }
8467
8468 static void
8469 do_fpa_ctrl (str)
8470 char * str;
8471 {
8472 /* FP control registers.
8473 Format: <WFS|RFS|WFC|RFC>{cond} Rn */
8474
8475 skip_whitespace (str);
8476
8477 if (reg_required_here (&str, 12) == FAIL)
8478 {
8479 if (!inst.error)
8480 inst.error = BAD_ARGS;
8481 return;
8482 }
8483
8484 end_of_line (str);
8485 }
8486
8487 static void
8488 do_fpa_ldst (str)
8489 char * str;
8490 {
8491 skip_whitespace (str);
8492
8493 if (fp_reg_required_here (&str, 12) == FAIL)
8494 {
8495 if (!inst.error)
8496 inst.error = BAD_ARGS;
8497 return;
8498 }
8499
8500 if (skip_past_comma (&str) == FAIL
8501 || cp_address_required_here (&str, CP_WB_OK) == FAIL)
8502 {
8503 if (!inst.error)
8504 inst.error = BAD_ARGS;
8505 return;
8506 }
8507
8508 end_of_line (str);
8509 }
8510
8511 static void
8512 do_fpa_ldmstm (str)
8513 char * str;
8514 {
8515 int num_regs;
8516
8517 skip_whitespace (str);
8518
8519 if (fp_reg_required_here (&str, 12) == FAIL)
8520 {
8521 if (! inst.error)
8522 inst.error = BAD_ARGS;
8523 return;
8524 }
8525
8526 /* Get Number of registers to transfer. */
8527 if (skip_past_comma (&str) == FAIL
8528 || my_get_expression (&inst.reloc.exp, &str))
8529 {
8530 if (! inst.error)
8531 inst.error = _("constant expression expected");
8532 return;
8533 }
8534
8535 if (inst.reloc.exp.X_op != O_constant)
8536 {
8537 inst.error = _("constant value required for number of registers");
8538 return;
8539 }
8540
8541 num_regs = inst.reloc.exp.X_add_number;
8542
8543 if (num_regs < 1 || num_regs > 4)
8544 {
8545 inst.error = _("number of registers must be in the range [1:4]");
8546 return;
8547 }
8548
8549 switch (num_regs)
8550 {
8551 case 1:
8552 inst.instruction |= CP_T_X;
8553 break;
8554 case 2:
8555 inst.instruction |= CP_T_Y;
8556 break;
8557 case 3:
8558 inst.instruction |= CP_T_Y | CP_T_X;
8559 break;
8560 case 4:
8561 break;
8562 default:
8563 abort ();
8564 }
8565
8566 if (inst.instruction & (CP_T_Pre | CP_T_UD)) /* ea/fd format. */
8567 {
8568 int reg;
8569 int write_back;
8570 int offset;
8571
8572 /* The instruction specified "ea" or "fd", so we can only accept
8573 [Rn]{!}. The instruction does not really support stacking or
8574 unstacking, so we have to emulate these by setting appropriate
8575 bits and offsets. */
8576 if (skip_past_comma (&str) == FAIL
8577 || *str != '[')
8578 {
8579 if (! inst.error)
8580 inst.error = BAD_ARGS;
8581 return;
8582 }
8583
8584 str++;
8585 skip_whitespace (str);
8586
8587 if ((reg = reg_required_here (&str, 16)) == FAIL)
8588 return;
8589
8590 skip_whitespace (str);
8591
8592 if (*str != ']')
8593 {
8594 inst.error = BAD_ARGS;
8595 return;
8596 }
8597
8598 str++;
8599 if (*str == '!')
8600 {
8601 write_back = 1;
8602 str++;
8603 if (reg == REG_PC)
8604 {
8605 inst.error =
8606 _("r15 not allowed as base register with write-back");
8607 return;
8608 }
8609 }
8610 else
8611 write_back = 0;
8612
8613 if (inst.instruction & CP_T_Pre)
8614 {
8615 /* Pre-decrement. */
8616 offset = 3 * num_regs;
8617 if (write_back)
8618 inst.instruction |= CP_T_WB;
8619 }
8620 else
8621 {
8622 /* Post-increment. */
8623 if (write_back)
8624 {
8625 inst.instruction |= CP_T_WB;
8626 offset = 3 * num_regs;
8627 }
8628 else
8629 {
8630 /* No write-back, so convert this into a standard pre-increment
8631 instruction -- aesthetically more pleasing. */
8632 inst.instruction |= CP_T_Pre | CP_T_UD;
8633 offset = 0;
8634 }
8635 }
8636
8637 inst.instruction |= offset;
8638 }
8639 else if (skip_past_comma (&str) == FAIL
8640 || cp_address_required_here (&str, CP_WB_OK) == FAIL)
8641 {
8642 if (! inst.error)
8643 inst.error = BAD_ARGS;
8644 return;
8645 }
8646
8647 end_of_line (str);
8648 }
8649
8650 static void
8651 do_fpa_dyadic (str)
8652 char * str;
8653 {
8654 skip_whitespace (str);
8655
8656 if (fp_reg_required_here (&str, 12) == FAIL)
8657 {
8658 if (! inst.error)
8659 inst.error = BAD_ARGS;
8660 return;
8661 }
8662
8663 if (skip_past_comma (&str) == FAIL
8664 || fp_reg_required_here (&str, 16) == FAIL)
8665 {
8666 if (! inst.error)
8667 inst.error = BAD_ARGS;
8668 return;
8669 }
8670
8671 if (skip_past_comma (&str) == FAIL
8672 || fp_op2 (&str) == FAIL)
8673 {
8674 if (! inst.error)
8675 inst.error = BAD_ARGS;
8676 return;
8677 }
8678
8679 end_of_line (str);
8680 }
8681
8682 static void
8683 do_fpa_monadic (str)
8684 char * str;
8685 {
8686 skip_whitespace (str);
8687
8688 if (fp_reg_required_here (&str, 12) == FAIL)
8689 {
8690 if (! inst.error)
8691 inst.error = BAD_ARGS;
8692 return;
8693 }
8694
8695 if (skip_past_comma (&str) == FAIL
8696 || fp_op2 (&str) == FAIL)
8697 {
8698 if (! inst.error)
8699 inst.error = BAD_ARGS;
8700 return;
8701 }
8702
8703 end_of_line (str);
8704 }
8705
8706 static void
8707 do_fpa_cmp (str)
8708 char * str;
8709 {
8710 skip_whitespace (str);
8711
8712 if (fp_reg_required_here (&str, 16) == FAIL)
8713 {
8714 if (! inst.error)
8715 inst.error = BAD_ARGS;
8716 return;
8717 }
8718
8719 if (skip_past_comma (&str) == FAIL
8720 || fp_op2 (&str) == FAIL)
8721 {
8722 if (! inst.error)
8723 inst.error = BAD_ARGS;
8724 return;
8725 }
8726
8727 end_of_line (str);
8728 }
8729
8730 static void
8731 do_fpa_from_reg (str)
8732 char * str;
8733 {
8734 skip_whitespace (str);
8735
8736 if (fp_reg_required_here (&str, 16) == FAIL)
8737 {
8738 if (! inst.error)
8739 inst.error = BAD_ARGS;
8740 return;
8741 }
8742
8743 if (skip_past_comma (&str) == FAIL
8744 || reg_required_here (&str, 12) == FAIL)
8745 {
8746 if (! inst.error)
8747 inst.error = BAD_ARGS;
8748 return;
8749 }
8750
8751 end_of_line (str);
8752 }
8753
8754 static void
8755 do_fpa_to_reg (str)
8756 char * str;
8757 {
8758 skip_whitespace (str);
8759
8760 if (reg_required_here (&str, 12) == FAIL)
8761 return;
8762
8763 if (skip_past_comma (&str) == FAIL
8764 || fp_reg_required_here (&str, 0) == FAIL)
8765 {
8766 if (! inst.error)
8767 inst.error = BAD_ARGS;
8768 return;
8769 }
8770
8771 end_of_line (str);
8772 }
8773
8774 static int
8775 vfp_sp_reg_required_here (str, pos)
8776 char **str;
8777 enum vfp_sp_reg_pos pos;
8778 {
8779 int reg;
8780 char *start = *str;
8781
8782 if ((reg = arm_reg_parse (str, all_reg_maps[REG_TYPE_SN].htab)) != FAIL)
8783 {
8784 switch (pos)
8785 {
8786 case VFP_REG_Sd:
8787 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8788 break;
8789
8790 case VFP_REG_Sn:
8791 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8792 break;
8793
8794 case VFP_REG_Sm:
8795 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8796 break;
8797
8798 default:
8799 abort ();
8800 }
8801 return reg;
8802 }
8803
8804 /* In the few cases where we might be able to accept something else
8805 this error can be overridden. */
8806 inst.error = _(all_reg_maps[REG_TYPE_SN].expected);
8807
8808 /* Restore the start point. */
8809 *str = start;
8810 return FAIL;
8811 }
8812
8813 static int
8814 vfp_dp_reg_required_here (str, pos)
8815 char **str;
8816 enum vfp_dp_reg_pos pos;
8817 {
8818 int reg;
8819 char *start = *str;
8820
8821 if ((reg = arm_reg_parse (str, all_reg_maps[REG_TYPE_DN].htab)) != FAIL)
8822 {
8823 switch (pos)
8824 {
8825 case VFP_REG_Dd:
8826 inst.instruction |= reg << 12;
8827 break;
8828
8829 case VFP_REG_Dn:
8830 inst.instruction |= reg << 16;
8831 break;
8832
8833 case VFP_REG_Dm:
8834 inst.instruction |= reg << 0;
8835 break;
8836
8837 default:
8838 abort ();
8839 }
8840 return reg;
8841 }
8842
8843 /* In the few cases where we might be able to accept something else
8844 this error can be overridden. */
8845 inst.error = _(all_reg_maps[REG_TYPE_DN].expected);
8846
8847 /* Restore the start point. */
8848 *str = start;
8849 return FAIL;
8850 }
8851
8852 static void
8853 do_vfp_sp_monadic (str)
8854 char *str;
8855 {
8856 skip_whitespace (str);
8857
8858 if (vfp_sp_reg_required_here (&str, VFP_REG_Sd) == FAIL)
8859 return;
8860
8861 if (skip_past_comma (&str) == FAIL
8862 || vfp_sp_reg_required_here (&str, VFP_REG_Sm) == FAIL)
8863 {
8864 if (! inst.error)
8865 inst.error = BAD_ARGS;
8866 return;
8867 }
8868
8869 end_of_line (str);
8870 }
8871
8872 static void
8873 do_vfp_dp_monadic (str)
8874 char *str;
8875 {
8876 skip_whitespace (str);
8877
8878 if (vfp_dp_reg_required_here (&str, VFP_REG_Dd) == FAIL)
8879 return;
8880
8881 if (skip_past_comma (&str) == FAIL
8882 || vfp_dp_reg_required_here (&str, VFP_REG_Dm) == FAIL)
8883 {
8884 if (! inst.error)
8885 inst.error = BAD_ARGS;
8886 return;
8887 }
8888
8889 end_of_line (str);
8890 }
8891
8892 static void
8893 do_vfp_sp_dyadic (str)
8894 char *str;
8895 {
8896 skip_whitespace (str);
8897
8898 if (vfp_sp_reg_required_here (&str, VFP_REG_Sd) == FAIL)
8899 return;
8900
8901 if (skip_past_comma (&str) == FAIL
8902 || vfp_sp_reg_required_here (&str, VFP_REG_Sn) == FAIL
8903 || skip_past_comma (&str) == FAIL
8904 || vfp_sp_reg_required_here (&str, VFP_REG_Sm) == FAIL)
8905 {
8906 if (! inst.error)
8907 inst.error = BAD_ARGS;
8908 return;
8909 }
8910
8911 end_of_line (str);
8912 }
8913
8914 static void
8915 do_vfp_dp_dyadic (str)
8916 char *str;
8917 {
8918 skip_whitespace (str);
8919
8920 if (vfp_dp_reg_required_here (&str, VFP_REG_Dd) == FAIL)
8921 return;
8922
8923 if (skip_past_comma (&str) == FAIL
8924 || vfp_dp_reg_required_here (&str, VFP_REG_Dn) == FAIL
8925 || skip_past_comma (&str) == FAIL
8926 || vfp_dp_reg_required_here (&str, VFP_REG_Dm) == FAIL)
8927 {
8928 if (! inst.error)
8929 inst.error = BAD_ARGS;
8930 return;
8931 }
8932
8933 end_of_line (str);
8934 }
8935
8936 static void
8937 do_vfp_reg_from_sp (str)
8938 char *str;
8939 {
8940 skip_whitespace (str);
8941
8942 if (reg_required_here (&str, 12) == FAIL)
8943 return;
8944
8945 if (skip_past_comma (&str) == FAIL
8946 || vfp_sp_reg_required_here (&str, VFP_REG_Sn) == FAIL)
8947 {
8948 if (! inst.error)
8949 inst.error = BAD_ARGS;
8950 return;
8951 }
8952
8953 end_of_line (str);
8954 }
8955
8956 static void
8957 do_vfp_sp_reg2 (str)
8958 char *str;
8959 {
8960 skip_whitespace (str);
8961
8962 if (reg_required_here (&str, 12) == FAIL)
8963 return;
8964
8965 if (skip_past_comma (&str) == FAIL
8966 || reg_required_here (&str, 16) == FAIL
8967 || skip_past_comma (&str) == FAIL)
8968 {
8969 if (! inst.error)
8970 inst.error = BAD_ARGS;
8971 return;
8972 }
8973
8974 /* We require exactly two consecutive SP registers. */
8975 if (vfp_sp_reg_list (&str, VFP_REG_Sm) != 2)
8976 {
8977 if (! inst.error)
8978 inst.error = _("only two consecutive VFP SP registers allowed here");
8979 }
8980
8981 end_of_line (str);
8982 }
8983
8984 static void
8985 do_vfp_sp_from_reg (str)
8986 char *str;
8987 {
8988 skip_whitespace (str);
8989
8990 if (vfp_sp_reg_required_here (&str, VFP_REG_Sn) == FAIL)
8991 return;
8992
8993 if (skip_past_comma (&str) == FAIL
8994 || reg_required_here (&str, 12) == FAIL)
8995 {
8996 if (! inst.error)
8997 inst.error = BAD_ARGS;
8998 return;
8999 }
9000
9001 end_of_line (str);
9002 }
9003
9004 static void
9005 do_vfp_reg_from_dp (str)
9006 char *str;
9007 {
9008 skip_whitespace (str);
9009
9010 if (reg_required_here (&str, 12) == FAIL)
9011 return;
9012
9013 if (skip_past_comma (&str) == FAIL
9014 || vfp_dp_reg_required_here (&str, VFP_REG_Dn) == FAIL)
9015 {
9016 if (! inst.error)
9017 inst.error = BAD_ARGS;
9018 return;
9019 }
9020
9021 end_of_line (str);
9022 }
9023
9024 static void
9025 do_vfp_reg2_from_dp (str)
9026 char *str;
9027 {
9028 skip_whitespace (str);
9029
9030 if (reg_required_here (&str, 12) == FAIL)
9031 return;
9032
9033 if (skip_past_comma (&str) == FAIL
9034 || reg_required_here (&str, 16) == FAIL
9035 || skip_past_comma (&str) == FAIL
9036 || vfp_dp_reg_required_here (&str, VFP_REG_Dm) == FAIL)
9037 {
9038 if (! inst.error)
9039 inst.error = BAD_ARGS;
9040 return;
9041 }
9042
9043 end_of_line (str);
9044 }
9045
9046 static void
9047 do_vfp_dp_from_reg (str)
9048 char *str;
9049 {
9050 skip_whitespace (str);
9051
9052 if (vfp_dp_reg_required_here (&str, VFP_REG_Dn) == FAIL)
9053 return;
9054
9055 if (skip_past_comma (&str) == FAIL
9056 || reg_required_here (&str, 12) == FAIL)
9057 {
9058 if (! inst.error)
9059 inst.error = BAD_ARGS;
9060 return;
9061 }
9062
9063 end_of_line (str);
9064 }
9065
9066 static void
9067 do_vfp_dp_from_reg2 (str)
9068 char *str;
9069 {
9070 skip_whitespace (str);
9071
9072 if (vfp_dp_reg_required_here (&str, VFP_REG_Dm) == FAIL)
9073 return;
9074
9075 if (skip_past_comma (&str) == FAIL
9076 || reg_required_here (&str, 12) == FAIL
9077 || skip_past_comma (&str) == FAIL
9078 || reg_required_here (&str, 16))
9079 {
9080 if (! inst.error)
9081 inst.error = BAD_ARGS;
9082 return;
9083 }
9084
9085 end_of_line (str);
9086 }
9087
9088 static const struct vfp_reg *
9089 vfp_psr_parse (str)
9090 char **str;
9091 {
9092 char *start = *str;
9093 char c;
9094 char *p;
9095 const struct vfp_reg *vreg;
9096
9097 p = start;
9098
9099 /* Find the end of the current token. */
9100 do
9101 {
9102 c = *p++;
9103 }
9104 while (ISALPHA (c));
9105
9106 /* Mark it. */
9107 *--p = 0;
9108
9109 for (vreg = vfp_regs + 0;
9110 vreg < vfp_regs + sizeof (vfp_regs) / sizeof (struct vfp_reg);
9111 vreg++)
9112 {
9113 if (strcmp (start, vreg->name) == 0)
9114 {
9115 *p = c;
9116 *str = p;
9117 return vreg;
9118 }
9119 }
9120
9121 *p = c;
9122 return NULL;
9123 }
9124
9125 static int
9126 vfp_psr_required_here (str)
9127 char **str;
9128 {
9129 char *start = *str;
9130 const struct vfp_reg *vreg;
9131
9132 vreg = vfp_psr_parse (str);
9133
9134 if (vreg)
9135 {
9136 inst.instruction |= vreg->regno;
9137 return SUCCESS;
9138 }
9139
9140 inst.error = _("VFP system register expected");
9141
9142 *str = start;
9143 return FAIL;
9144 }
9145
9146 static void
9147 do_vfp_reg_from_ctrl (str)
9148 char *str;
9149 {
9150 skip_whitespace (str);
9151
9152 if (reg_required_here (&str, 12) == FAIL)
9153 return;
9154
9155 if (skip_past_comma (&str) == FAIL
9156 || vfp_psr_required_here (&str) == FAIL)
9157 {
9158 if (! inst.error)
9159 inst.error = BAD_ARGS;
9160 return;
9161 }
9162
9163 end_of_line (str);
9164 }
9165
9166 static void
9167 do_vfp_ctrl_from_reg (str)
9168 char *str;
9169 {
9170 skip_whitespace (str);
9171
9172 if (vfp_psr_required_here (&str) == FAIL)
9173 return;
9174
9175 if (skip_past_comma (&str) == FAIL
9176 || reg_required_here (&str, 12) == FAIL)
9177 {
9178 if (! inst.error)
9179 inst.error = BAD_ARGS;
9180 return;
9181 }
9182
9183 end_of_line (str);
9184 }
9185
9186 static void
9187 do_vfp_sp_ldst (str)
9188 char *str;
9189 {
9190 skip_whitespace (str);
9191
9192 if (vfp_sp_reg_required_here (&str, VFP_REG_Sd) == FAIL)
9193 {
9194 if (!inst.error)
9195 inst.error = BAD_ARGS;
9196 return;
9197 }
9198
9199 if (skip_past_comma (&str) == FAIL
9200 || cp_address_required_here (&str, CP_NO_WB) == FAIL)
9201 {
9202 if (!inst.error)
9203 inst.error = BAD_ARGS;
9204 return;
9205 }
9206
9207 end_of_line (str);
9208 }
9209
9210 static void
9211 do_vfp_dp_ldst (str)
9212 char *str;
9213 {
9214 skip_whitespace (str);
9215
9216 if (vfp_dp_reg_required_here (&str, VFP_REG_Dd) == FAIL)
9217 {
9218 if (!inst.error)
9219 inst.error = BAD_ARGS;
9220 return;
9221 }
9222
9223 if (skip_past_comma (&str) == FAIL
9224 || cp_address_required_here (&str, CP_NO_WB) == FAIL)
9225 {
9226 if (!inst.error)
9227 inst.error = BAD_ARGS;
9228 return;
9229 }
9230
9231 end_of_line (str);
9232 }
9233
9234 /* Parse and encode a VFP SP register list, storing the initial
9235 register in position POS and returning the range as the result. If
9236 the string is invalid return FAIL (an invalid range). */
9237 static long
9238 vfp_sp_reg_list (str, pos)
9239 char **str;
9240 enum vfp_sp_reg_pos pos;
9241 {
9242 long range = 0;
9243 int base_reg = 0;
9244 int new_base;
9245 long base_bits = 0;
9246 int count = 0;
9247 long tempinst;
9248 unsigned long mask = 0;
9249 int warned = 0;
9250
9251 if (**str != '{')
9252 return FAIL;
9253
9254 (*str)++;
9255 skip_whitespace (*str);
9256
9257 tempinst = inst.instruction;
9258
9259 do
9260 {
9261 inst.instruction = 0;
9262
9263 if ((new_base = vfp_sp_reg_required_here (str, pos)) == FAIL)
9264 return FAIL;
9265
9266 if (count == 0 || base_reg > new_base)
9267 {
9268 base_reg = new_base;
9269 base_bits = inst.instruction;
9270 }
9271
9272 if (mask & (1 << new_base))
9273 {
9274 inst.error = _("invalid register list");
9275 return FAIL;
9276 }
9277
9278 if ((mask >> new_base) != 0 && ! warned)
9279 {
9280 as_tsktsk (_("register list not in ascending order"));
9281 warned = 1;
9282 }
9283
9284 mask |= 1 << new_base;
9285 count++;
9286
9287 skip_whitespace (*str);
9288
9289 if (**str == '-') /* We have the start of a range expression */
9290 {
9291 int high_range;
9292
9293 (*str)++;
9294
9295 if ((high_range
9296 = arm_reg_parse (str, all_reg_maps[REG_TYPE_SN].htab))
9297 == FAIL)
9298 {
9299 inst.error = _(all_reg_maps[REG_TYPE_SN].expected);
9300 return FAIL;
9301 }
9302
9303 if (high_range <= new_base)
9304 {
9305 inst.error = _("register range not in ascending order");
9306 return FAIL;
9307 }
9308
9309 for (new_base++; new_base <= high_range; new_base++)
9310 {
9311 if (mask & (1 << new_base))
9312 {
9313 inst.error = _("invalid register list");
9314 return FAIL;
9315 }
9316
9317 mask |= 1 << new_base;
9318 count++;
9319 }
9320 }
9321 }
9322 while (skip_past_comma (str) != FAIL);
9323
9324 if (**str != '}')
9325 {
9326 inst.error = _("invalid register list");
9327 return FAIL;
9328 }
9329
9330 (*str)++;
9331
9332 range = count;
9333
9334 /* Sanity check -- should have raised a parse error above. */
9335 if (count == 0 || count > 32)
9336 abort ();
9337
9338 /* Final test -- the registers must be consecutive. */
9339 while (count--)
9340 {
9341 if ((mask & (1 << base_reg++)) == 0)
9342 {
9343 inst.error = _("non-contiguous register range");
9344 return FAIL;
9345 }
9346 }
9347
9348 inst.instruction = tempinst | base_bits;
9349 return range;
9350 }
9351
9352 static long
9353 vfp_dp_reg_list (str)
9354 char **str;
9355 {
9356 long range = 0;
9357 int base_reg = 0;
9358 int new_base;
9359 int count = 0;
9360 long tempinst;
9361 unsigned long mask = 0;
9362 int warned = 0;
9363
9364 if (**str != '{')
9365 return FAIL;
9366
9367 (*str)++;
9368 skip_whitespace (*str);
9369
9370 tempinst = inst.instruction;
9371
9372 do
9373 {
9374 inst.instruction = 0;
9375
9376 if ((new_base = vfp_dp_reg_required_here (str, VFP_REG_Dd)) == FAIL)
9377 return FAIL;
9378
9379 if (count == 0 || base_reg > new_base)
9380 {
9381 base_reg = new_base;
9382 range = inst.instruction;
9383 }
9384
9385 if (mask & (1 << new_base))
9386 {
9387 inst.error = _("invalid register list");
9388 return FAIL;
9389 }
9390
9391 if ((mask >> new_base) != 0 && ! warned)
9392 {
9393 as_tsktsk (_("register list not in ascending order"));
9394 warned = 1;
9395 }
9396
9397 mask |= 1 << new_base;
9398 count++;
9399
9400 skip_whitespace (*str);
9401
9402 if (**str == '-') /* We have the start of a range expression */
9403 {
9404 int high_range;
9405
9406 (*str)++;
9407
9408 if ((high_range
9409 = arm_reg_parse (str, all_reg_maps[REG_TYPE_DN].htab))
9410 == FAIL)
9411 {
9412 inst.error = _(all_reg_maps[REG_TYPE_DN].expected);
9413 return FAIL;
9414 }
9415
9416 if (high_range <= new_base)
9417 {
9418 inst.error = _("register range not in ascending order");
9419 return FAIL;
9420 }
9421
9422 for (new_base++; new_base <= high_range; new_base++)
9423 {
9424 if (mask & (1 << new_base))
9425 {
9426 inst.error = _("invalid register list");
9427 return FAIL;
9428 }
9429
9430 mask |= 1 << new_base;
9431 count++;
9432 }
9433 }
9434 }
9435 while (skip_past_comma (str) != FAIL);
9436
9437 if (**str != '}')
9438 {
9439 inst.error = _("invalid register list");
9440 return FAIL;
9441 }
9442
9443 (*str)++;
9444
9445 range |= 2 * count;
9446
9447 /* Sanity check -- should have raised a parse error above. */
9448 if (count == 0 || count > 16)
9449 abort ();
9450
9451 /* Final test -- the registers must be consecutive. */
9452 while (count--)
9453 {
9454 if ((mask & (1 << base_reg++)) == 0)
9455 {
9456 inst.error = _("non-contiguous register range");
9457 return FAIL;
9458 }
9459 }
9460
9461 inst.instruction = tempinst;
9462 return range;
9463 }
9464
9465 static void
9466 vfp_sp_ldstm (str, ldstm_type)
9467 char *str;
9468 enum vfp_ldstm_type ldstm_type;
9469 {
9470 long range;
9471
9472 skip_whitespace (str);
9473
9474 if (reg_required_here (&str, 16) == FAIL)
9475 return;
9476
9477 skip_whitespace (str);
9478
9479 if (*str == '!')
9480 {
9481 inst.instruction |= WRITE_BACK;
9482 str++;
9483 }
9484 else if (ldstm_type != VFP_LDSTMIA)
9485 {
9486 inst.error = _("this addressing mode requires base-register writeback");
9487 return;
9488 }
9489
9490 if (skip_past_comma (&str) == FAIL
9491 || (range = vfp_sp_reg_list (&str, VFP_REG_Sd)) == FAIL)
9492 {
9493 if (!inst.error)
9494 inst.error = BAD_ARGS;
9495 return;
9496 }
9497
9498 inst.instruction |= range;
9499 end_of_line (str);
9500 }
9501
9502 static void
9503 vfp_dp_ldstm (str, ldstm_type)
9504 char *str;
9505 enum vfp_ldstm_type ldstm_type;
9506 {
9507 long range;
9508
9509 skip_whitespace (str);
9510
9511 if (reg_required_here (&str, 16) == FAIL)
9512 return;
9513
9514 skip_whitespace (str);
9515
9516 if (*str == '!')
9517 {
9518 inst.instruction |= WRITE_BACK;
9519 str++;
9520 }
9521 else if (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX)
9522 {
9523 inst.error = _("this addressing mode requires base-register writeback");
9524 return;
9525 }
9526
9527 if (skip_past_comma (&str) == FAIL
9528 || (range = vfp_dp_reg_list (&str)) == FAIL)
9529 {
9530 if (!inst.error)
9531 inst.error = BAD_ARGS;
9532 return;
9533 }
9534
9535 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
9536 range += 1;
9537
9538 inst.instruction |= range;
9539 end_of_line (str);
9540 }
9541
9542 static void
9543 do_vfp_sp_ldstmia (str)
9544 char *str;
9545 {
9546 vfp_sp_ldstm (str, VFP_LDSTMIA);
9547 }
9548
9549 static void
9550 do_vfp_sp_ldstmdb (str)
9551 char *str;
9552 {
9553 vfp_sp_ldstm (str, VFP_LDSTMDB);
9554 }
9555
9556 static void
9557 do_vfp_dp_ldstmia (str)
9558 char *str;
9559 {
9560 vfp_dp_ldstm (str, VFP_LDSTMIA);
9561 }
9562
9563 static void
9564 do_vfp_dp_ldstmdb (str)
9565 char *str;
9566 {
9567 vfp_dp_ldstm (str, VFP_LDSTMDB);
9568 }
9569
9570 static void
9571 do_vfp_xp_ldstmia (str)
9572 char *str;
9573 {
9574 vfp_dp_ldstm (str, VFP_LDSTMIAX);
9575 }
9576
9577 static void
9578 do_vfp_xp_ldstmdb (str)
9579 char *str;
9580 {
9581 vfp_dp_ldstm (str, VFP_LDSTMDBX);
9582 }
9583
9584 static void
9585 do_vfp_sp_compare_z (str)
9586 char *str;
9587 {
9588 skip_whitespace (str);
9589
9590 if (vfp_sp_reg_required_here (&str, VFP_REG_Sd) == FAIL)
9591 {
9592 if (!inst.error)
9593 inst.error = BAD_ARGS;
9594 return;
9595 }
9596
9597 end_of_line (str);
9598 }
9599
9600 static void
9601 do_vfp_dp_compare_z (str)
9602 char *str;
9603 {
9604 skip_whitespace (str);
9605
9606 if (vfp_dp_reg_required_here (&str, VFP_REG_Dd) == FAIL)
9607 {
9608 if (!inst.error)
9609 inst.error = BAD_ARGS;
9610 return;
9611 }
9612
9613 end_of_line (str);
9614 }
9615
9616 static void
9617 do_vfp_dp_sp_cvt (str)
9618 char *str;
9619 {
9620 skip_whitespace (str);
9621
9622 if (vfp_dp_reg_required_here (&str, VFP_REG_Dd) == FAIL)
9623 return;
9624
9625 if (skip_past_comma (&str) == FAIL
9626 || vfp_sp_reg_required_here (&str, VFP_REG_Sm) == FAIL)
9627 {
9628 if (! inst.error)
9629 inst.error = BAD_ARGS;
9630 return;
9631 }
9632
9633 end_of_line (str);
9634 }
9635
9636 static void
9637 do_vfp_sp_dp_cvt (str)
9638 char *str;
9639 {
9640 skip_whitespace (str);
9641
9642 if (vfp_sp_reg_required_here (&str, VFP_REG_Sd) == FAIL)
9643 return;
9644
9645 if (skip_past_comma (&str) == FAIL
9646 || vfp_dp_reg_required_here (&str, VFP_REG_Dm) == FAIL)
9647 {
9648 if (! inst.error)
9649 inst.error = BAD_ARGS;
9650 return;
9651 }
9652
9653 end_of_line (str);
9654 }
9655
9656 /* Thumb specific routines. */
9657
9658 /* Parse and validate that a register is of the right form, this saves
9659 repeated checking of this information in many similar cases.
9660 Unlike the 32-bit case we do not insert the register into the opcode
9661 here, since the position is often unknown until the full instruction
9662 has been parsed. */
9663
9664 static int
9665 thumb_reg (strp, hi_lo)
9666 char ** strp;
9667 int hi_lo;
9668 {
9669 int reg;
9670
9671 if ((reg = reg_required_here (strp, -1)) == FAIL)
9672 return FAIL;
9673
9674 switch (hi_lo)
9675 {
9676 case THUMB_REG_LO:
9677 if (reg > 7)
9678 {
9679 inst.error = _("lo register required");
9680 return FAIL;
9681 }
9682 break;
9683
9684 case THUMB_REG_HI:
9685 if (reg < 8)
9686 {
9687 inst.error = _("hi register required");
9688 return FAIL;
9689 }
9690 break;
9691
9692 default:
9693 break;
9694 }
9695
9696 return reg;
9697 }
9698
9699 /* Parse an add or subtract instruction, SUBTRACT is non-zero if the opcode
9700 was SUB. */
9701
9702 static void
9703 thumb_add_sub (str, subtract)
9704 char * str;
9705 int subtract;
9706 {
9707 int Rd, Rs, Rn = FAIL;
9708
9709 skip_whitespace (str);
9710
9711 if ((Rd = thumb_reg (&str, THUMB_REG_ANY)) == FAIL
9712 || skip_past_comma (&str) == FAIL)
9713 {
9714 if (! inst.error)
9715 inst.error = BAD_ARGS;
9716 return;
9717 }
9718
9719 if (is_immediate_prefix (*str))
9720 {
9721 Rs = Rd;
9722 str++;
9723 if (my_get_expression (&inst.reloc.exp, &str))
9724 return;
9725 }
9726 else
9727 {
9728 if ((Rs = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
9729 return;
9730
9731 if (skip_past_comma (&str) == FAIL)
9732 {
9733 /* Two operand format, shuffle the registers
9734 and pretend there are 3. */
9735 Rn = Rs;
9736 Rs = Rd;
9737 }
9738 else if (is_immediate_prefix (*str))
9739 {
9740 str++;
9741 if (my_get_expression (&inst.reloc.exp, &str))
9742 return;
9743 }
9744 else if ((Rn = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
9745 return;
9746 }
9747
9748 /* We now have Rd and Rs set to registers, and Rn set to a register or FAIL;
9749 for the latter case, EXPR contains the immediate that was found. */
9750 if (Rn != FAIL)
9751 {
9752 /* All register format. */
9753 if (Rd > 7 || Rs > 7 || Rn > 7)
9754 {
9755 if (Rs != Rd)
9756 {
9757 inst.error = _("dest and source1 must be the same register");
9758 return;
9759 }
9760
9761 /* Can't do this for SUB. */
9762 if (subtract)
9763 {
9764 inst.error = _("subtract valid only on lo regs");
9765 return;
9766 }
9767
9768 inst.instruction = (T_OPCODE_ADD_HI
9769 | (Rd > 7 ? THUMB_H1 : 0)
9770 | (Rn > 7 ? THUMB_H2 : 0));
9771 inst.instruction |= (Rd & 7) | ((Rn & 7) << 3);
9772 }
9773 else
9774 {
9775 inst.instruction = subtract ? T_OPCODE_SUB_R3 : T_OPCODE_ADD_R3;
9776 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9777 }
9778 }
9779 else
9780 {
9781 /* Immediate expression, now things start to get nasty. */
9782
9783 /* First deal with HI regs, only very restricted cases allowed:
9784 Adjusting SP, and using PC or SP to get an address. */
9785 if ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9786 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC))
9787 {
9788 inst.error = _("invalid Hi register with immediate");
9789 return;
9790 }
9791
9792 if (inst.reloc.exp.X_op != O_constant)
9793 {
9794 /* Value isn't known yet, all we can do is store all the fragments
9795 we know about in the instruction and let the reloc hacking
9796 work it all out. */
9797 inst.instruction = (subtract ? 0x8000 : 0) | (Rd << 4) | Rs;
9798 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9799 }
9800 else
9801 {
9802 int offset = inst.reloc.exp.X_add_number;
9803
9804 if (subtract)
9805 offset = - offset;
9806
9807 if (offset < 0)
9808 {
9809 offset = - offset;
9810 subtract = 1;
9811
9812 /* Quick check, in case offset is MIN_INT. */
9813 if (offset < 0)
9814 {
9815 inst.error = _("immediate value out of range");
9816 return;
9817 }
9818 }
9819 /* Note - you cannot convert a subtract of 0 into an
9820 add of 0 because the carry flag is set differently. */
9821 else if (offset > 0)
9822 subtract = 0;
9823
9824 if (Rd == REG_SP)
9825 {
9826 if (offset & ~0x1fc)
9827 {
9828 inst.error = _("invalid immediate value for stack adjust");
9829 return;
9830 }
9831 inst.instruction = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
9832 inst.instruction |= offset >> 2;
9833 }
9834 else if (Rs == REG_PC || Rs == REG_SP)
9835 {
9836 if (subtract
9837 || (offset & ~0x3fc))
9838 {
9839 inst.error = _("invalid immediate for address calculation");
9840 return;
9841 }
9842 inst.instruction = (Rs == REG_PC ? T_OPCODE_ADD_PC
9843 : T_OPCODE_ADD_SP);
9844 inst.instruction |= (Rd << 8) | (offset >> 2);
9845 }
9846 else if (Rs == Rd)
9847 {
9848 if (offset & ~0xff)
9849 {
9850 inst.error = _("immediate value out of range");
9851 return;
9852 }
9853 inst.instruction = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
9854 inst.instruction |= (Rd << 8) | offset;
9855 }
9856 else
9857 {
9858 if (offset & ~0x7)
9859 {
9860 inst.error = _("immediate value out of range");
9861 return;
9862 }
9863 inst.instruction = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
9864 inst.instruction |= Rd | (Rs << 3) | (offset << 6);
9865 }
9866 }
9867 }
9868
9869 end_of_line (str);
9870 }
9871
9872 static void
9873 thumb_shift (str, shift)
9874 char * str;
9875 int shift;
9876 {
9877 int Rd, Rs, Rn = FAIL;
9878
9879 skip_whitespace (str);
9880
9881 if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL
9882 || skip_past_comma (&str) == FAIL)
9883 {
9884 if (! inst.error)
9885 inst.error = BAD_ARGS;
9886 return;
9887 }
9888
9889 if (is_immediate_prefix (*str))
9890 {
9891 /* Two operand immediate format, set Rs to Rd. */
9892 Rs = Rd;
9893 str ++;
9894 if (my_get_expression (&inst.reloc.exp, &str))
9895 return;
9896 }
9897 else
9898 {
9899 if ((Rs = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
9900 return;
9901
9902 if (skip_past_comma (&str) == FAIL)
9903 {
9904 /* Two operand format, shuffle the registers
9905 and pretend there are 3. */
9906 Rn = Rs;
9907 Rs = Rd;
9908 }
9909 else if (is_immediate_prefix (*str))
9910 {
9911 str++;
9912 if (my_get_expression (&inst.reloc.exp, &str))
9913 return;
9914 }
9915 else if ((Rn = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
9916 return;
9917 }
9918
9919 /* We now have Rd and Rs set to registers, and Rn set to a register or FAIL;
9920 for the latter case, EXPR contains the immediate that was found. */
9921
9922 if (Rn != FAIL)
9923 {
9924 if (Rs != Rd)
9925 {
9926 inst.error = _("source1 and dest must be same register");
9927 return;
9928 }
9929
9930 switch (shift)
9931 {
9932 case THUMB_ASR: inst.instruction = T_OPCODE_ASR_R; break;
9933 case THUMB_LSL: inst.instruction = T_OPCODE_LSL_R; break;
9934 case THUMB_LSR: inst.instruction = T_OPCODE_LSR_R; break;
9935 }
9936
9937 inst.instruction |= Rd | (Rn << 3);
9938 }
9939 else
9940 {
9941 switch (shift)
9942 {
9943 case THUMB_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9944 case THUMB_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9945 case THUMB_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9946 }
9947
9948 if (inst.reloc.exp.X_op != O_constant)
9949 {
9950 /* Value isn't known yet, create a dummy reloc and let reloc
9951 hacking fix it up. */
9952 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9953 }
9954 else
9955 {
9956 unsigned shift_value = inst.reloc.exp.X_add_number;
9957
9958 if (shift_value > 32 || (shift_value == 32 && shift == THUMB_LSL))
9959 {
9960 inst.error = _("invalid immediate for shift");
9961 return;
9962 }
9963
9964 /* Shifts of zero are handled by converting to LSL. */
9965 if (shift_value == 0)
9966 inst.instruction = T_OPCODE_LSL_I;
9967
9968 /* Shifts of 32 are encoded as a shift of zero. */
9969 if (shift_value == 32)
9970 shift_value = 0;
9971
9972 inst.instruction |= shift_value << 6;
9973 }
9974
9975 inst.instruction |= Rd | (Rs << 3);
9976 }
9977
9978 end_of_line (str);
9979 }
9980
9981 static void
9982 thumb_mov_compare (str, move)
9983 char * str;
9984 int move;
9985 {
9986 int Rd, Rs = FAIL;
9987
9988 skip_whitespace (str);
9989
9990 if ((Rd = thumb_reg (&str, THUMB_REG_ANY)) == FAIL
9991 || skip_past_comma (&str) == FAIL)
9992 {
9993 if (! inst.error)
9994 inst.error = BAD_ARGS;
9995 return;
9996 }
9997
9998 if (move != THUMB_CPY && is_immediate_prefix (*str))
9999 {
10000 str++;
10001 if (my_get_expression (&inst.reloc.exp, &str))
10002 return;
10003 }
10004 else if ((Rs = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
10005 return;
10006
10007 if (Rs != FAIL)
10008 {
10009 if (move != THUMB_CPY && Rs < 8 && Rd < 8)
10010 {
10011 if (move == THUMB_MOVE)
10012 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10013 since a MOV instruction produces unpredictable results. */
10014 inst.instruction = T_OPCODE_ADD_I3;
10015 else
10016 inst.instruction = T_OPCODE_CMP_LR;
10017 inst.instruction |= Rd | (Rs << 3);
10018 }
10019 else
10020 {
10021 if (move == THUMB_MOVE)
10022 inst.instruction = T_OPCODE_MOV_HR;
10023 else if (move != THUMB_CPY)
10024 inst.instruction = T_OPCODE_CMP_HR;
10025
10026 if (Rd > 7)
10027 inst.instruction |= THUMB_H1;
10028
10029 if (Rs > 7)
10030 inst.instruction |= THUMB_H2;
10031
10032 inst.instruction |= (Rd & 7) | ((Rs & 7) << 3);
10033 }
10034 }
10035 else
10036 {
10037 if (Rd > 7)
10038 {
10039 inst.error = _("only lo regs allowed with immediate");
10040 return;
10041 }
10042
10043 if (move == THUMB_MOVE)
10044 inst.instruction = T_OPCODE_MOV_I8;
10045 else
10046 inst.instruction = T_OPCODE_CMP_I8;
10047
10048 inst.instruction |= Rd << 8;
10049
10050 if (inst.reloc.exp.X_op != O_constant)
10051 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10052 else
10053 {
10054 unsigned value = inst.reloc.exp.X_add_number;
10055
10056 if (value > 255)
10057 {
10058 inst.error = _("invalid immediate");
10059 return;
10060 }
10061
10062 inst.instruction |= value;
10063 }
10064 }
10065
10066 end_of_line (str);
10067 }
10068
10069 static void
10070 thumb_load_store (str, load_store, size)
10071 char * str;
10072 int load_store;
10073 int size;
10074 {
10075 int Rd, Rb, Ro = FAIL;
10076
10077 skip_whitespace (str);
10078
10079 if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL
10080 || skip_past_comma (&str) == FAIL)
10081 {
10082 if (! inst.error)
10083 inst.error = BAD_ARGS;
10084 return;
10085 }
10086
10087 if (*str == '[')
10088 {
10089 str++;
10090 if ((Rb = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
10091 return;
10092
10093 if (skip_past_comma (&str) != FAIL)
10094 {
10095 if (is_immediate_prefix (*str))
10096 {
10097 str++;
10098 if (my_get_expression (&inst.reloc.exp, &str))
10099 return;
10100 }
10101 else if ((Ro = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
10102 return;
10103 }
10104 else
10105 {
10106 inst.reloc.exp.X_op = O_constant;
10107 inst.reloc.exp.X_add_number = 0;
10108 }
10109
10110 if (*str != ']')
10111 {
10112 inst.error = _("expected ']'");
10113 return;
10114 }
10115 str++;
10116 }
10117 else if (*str == '=')
10118 {
10119 if (load_store != THUMB_LOAD)
10120 {
10121 inst.error = _("invalid pseudo operation");
10122 return;
10123 }
10124
10125 /* Parse an "ldr Rd, =expr" instruction; this is another pseudo op. */
10126 str++;
10127
10128 skip_whitespace (str);
10129
10130 if (my_get_expression (& inst.reloc.exp, & str))
10131 return;
10132
10133 end_of_line (str);
10134
10135 if ( inst.reloc.exp.X_op != O_constant
10136 && inst.reloc.exp.X_op != O_symbol)
10137 {
10138 inst.error = "Constant expression expected";
10139 return;
10140 }
10141
10142 if (inst.reloc.exp.X_op == O_constant
10143 && ((inst.reloc.exp.X_add_number & ~0xFF) == 0))
10144 {
10145 /* This can be done with a mov instruction. */
10146
10147 inst.instruction = T_OPCODE_MOV_I8 | (Rd << 8);
10148 inst.instruction |= inst.reloc.exp.X_add_number;
10149 return;
10150 }
10151
10152 /* Insert into literal pool. */
10153 if (add_to_lit_pool () == FAIL)
10154 {
10155 if (!inst.error)
10156 inst.error = "literal pool insertion failed";
10157 return;
10158 }
10159
10160 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10161 inst.reloc.pc_rel = 1;
10162 inst.instruction = T_OPCODE_LDR_PC | (Rd << 8);
10163 /* Adjust ARM pipeline offset to Thumb. */
10164 inst.reloc.exp.X_add_number += 4;
10165
10166 return;
10167 }
10168 else
10169 {
10170 if (my_get_expression (&inst.reloc.exp, &str))
10171 return;
10172
10173 inst.instruction = T_OPCODE_LDR_PC | (Rd << 8);
10174 inst.reloc.pc_rel = 1;
10175 inst.reloc.exp.X_add_number -= 4; /* Pipeline offset. */
10176 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10177 end_of_line (str);
10178 return;
10179 }
10180
10181 if (Rb == REG_PC || Rb == REG_SP)
10182 {
10183 if (size != THUMB_WORD)
10184 {
10185 inst.error = _("byte or halfword not valid for base register");
10186 return;
10187 }
10188 else if (Rb == REG_PC && load_store != THUMB_LOAD)
10189 {
10190 inst.error = _("r15 based store not allowed");
10191 return;
10192 }
10193 else if (Ro != FAIL)
10194 {
10195 inst.error = _("invalid base register for register offset");
10196 return;
10197 }
10198
10199 if (Rb == REG_PC)
10200 inst.instruction = T_OPCODE_LDR_PC;
10201 else if (load_store == THUMB_LOAD)
10202 inst.instruction = T_OPCODE_LDR_SP;
10203 else
10204 inst.instruction = T_OPCODE_STR_SP;
10205
10206 inst.instruction |= Rd << 8;
10207 if (inst.reloc.exp.X_op == O_constant)
10208 {
10209 unsigned offset = inst.reloc.exp.X_add_number;
10210
10211 if (offset & ~0x3fc)
10212 {
10213 inst.error = _("invalid offset");
10214 return;
10215 }
10216
10217 inst.instruction |= offset >> 2;
10218 }
10219 else
10220 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10221 }
10222 else if (Rb > 7)
10223 {
10224 inst.error = _("invalid base register in load/store");
10225 return;
10226 }
10227 else if (Ro == FAIL)
10228 {
10229 /* Immediate offset. */
10230 if (size == THUMB_WORD)
10231 inst.instruction = (load_store == THUMB_LOAD
10232 ? T_OPCODE_LDR_IW : T_OPCODE_STR_IW);
10233 else if (size == THUMB_HALFWORD)
10234 inst.instruction = (load_store == THUMB_LOAD
10235 ? T_OPCODE_LDR_IH : T_OPCODE_STR_IH);
10236 else
10237 inst.instruction = (load_store == THUMB_LOAD
10238 ? T_OPCODE_LDR_IB : T_OPCODE_STR_IB);
10239
10240 inst.instruction |= Rd | (Rb << 3);
10241
10242 if (inst.reloc.exp.X_op == O_constant)
10243 {
10244 unsigned offset = inst.reloc.exp.X_add_number;
10245
10246 if (offset & ~(0x1f << size))
10247 {
10248 inst.error = _("invalid offset");
10249 return;
10250 }
10251 inst.instruction |= (offset >> size) << 6;
10252 }
10253 else
10254 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10255 }
10256 else
10257 {
10258 /* Register offset. */
10259 if (size == THUMB_WORD)
10260 inst.instruction = (load_store == THUMB_LOAD
10261 ? T_OPCODE_LDR_RW : T_OPCODE_STR_RW);
10262 else if (size == THUMB_HALFWORD)
10263 inst.instruction = (load_store == THUMB_LOAD
10264 ? T_OPCODE_LDR_RH : T_OPCODE_STR_RH);
10265 else
10266 inst.instruction = (load_store == THUMB_LOAD
10267 ? T_OPCODE_LDR_RB : T_OPCODE_STR_RB);
10268
10269 inst.instruction |= Rd | (Rb << 3) | (Ro << 6);
10270 }
10271
10272 end_of_line (str);
10273 }
10274
10275 /* A register must be given at this point.
10276
10277 Shift is the place to put it in inst.instruction.
10278
10279 Restores input start point on err.
10280 Returns the reg#, or FAIL. */
10281
10282 static int
10283 mav_reg_required_here (str, shift, regtype)
10284 char ** str;
10285 int shift;
10286 enum arm_reg_type regtype;
10287 {
10288 int reg;
10289 char *start = *str;
10290
10291 if ((reg = arm_reg_parse (str, all_reg_maps[regtype].htab)) != FAIL)
10292 {
10293 if (shift >= 0)
10294 inst.instruction |= reg << shift;
10295
10296 return reg;
10297 }
10298
10299 /* Restore the start point. */
10300 *str = start;
10301
10302 /* In the few cases where we might be able to accept something else
10303 this error can be overridden. */
10304 inst.error = _(all_reg_maps[regtype].expected);
10305
10306 return FAIL;
10307 }
10308
10309 /* Cirrus Maverick Instructions. */
10310
10311 /* Wrapper functions. */
10312
10313 static void
10314 do_mav_binops_1a (str)
10315 char * str;
10316 {
10317 do_mav_binops (str, MAV_MODE1, REG_TYPE_RN, REG_TYPE_MVF);
10318 }
10319
10320 static void
10321 do_mav_binops_1b (str)
10322 char * str;
10323 {
10324 do_mav_binops (str, MAV_MODE1, REG_TYPE_RN, REG_TYPE_MVD);
10325 }
10326
10327 static void
10328 do_mav_binops_1c (str)
10329 char * str;
10330 {
10331 do_mav_binops (str, MAV_MODE1, REG_TYPE_RN, REG_TYPE_MVDX);
10332 }
10333
10334 static void
10335 do_mav_binops_1d (str)
10336 char * str;
10337 {
10338 do_mav_binops (str, MAV_MODE1, REG_TYPE_MVF, REG_TYPE_MVF);
10339 }
10340
10341 static void
10342 do_mav_binops_1e (str)
10343 char * str;
10344 {
10345 do_mav_binops (str, MAV_MODE1, REG_TYPE_MVD, REG_TYPE_MVD);
10346 }
10347
10348 static void
10349 do_mav_binops_1f (str)
10350 char * str;
10351 {
10352 do_mav_binops (str, MAV_MODE1, REG_TYPE_MVD, REG_TYPE_MVF);
10353 }
10354
10355 static void
10356 do_mav_binops_1g (str)
10357 char * str;
10358 {
10359 do_mav_binops (str, MAV_MODE1, REG_TYPE_MVF, REG_TYPE_MVD);
10360 }
10361
10362 static void
10363 do_mav_binops_1h (str)
10364 char * str;
10365 {
10366 do_mav_binops (str, MAV_MODE1, REG_TYPE_MVF, REG_TYPE_MVFX);
10367 }
10368
10369 static void
10370 do_mav_binops_1i (str)
10371 char * str;
10372 {
10373 do_mav_binops (str, MAV_MODE1, REG_TYPE_MVD, REG_TYPE_MVFX);
10374 }
10375
10376 static void
10377 do_mav_binops_1j (str)
10378 char * str;
10379 {
10380 do_mav_binops (str, MAV_MODE1, REG_TYPE_MVF, REG_TYPE_MVDX);
10381 }
10382
10383 static void
10384 do_mav_binops_1k (str)
10385 char * str;
10386 {
10387 do_mav_binops (str, MAV_MODE1, REG_TYPE_MVD, REG_TYPE_MVDX);
10388 }
10389
10390 static void
10391 do_mav_binops_1l (str)
10392 char * str;
10393 {
10394 do_mav_binops (str, MAV_MODE1, REG_TYPE_MVFX, REG_TYPE_MVF);
10395 }
10396
10397 static void
10398 do_mav_binops_1m (str)
10399 char * str;
10400 {
10401 do_mav_binops (str, MAV_MODE1, REG_TYPE_MVFX, REG_TYPE_MVD);
10402 }
10403
10404 static void
10405 do_mav_binops_1n (str)
10406 char * str;
10407 {
10408 do_mav_binops (str, MAV_MODE1, REG_TYPE_MVFX, REG_TYPE_MVFX);
10409 }
10410
10411 static void
10412 do_mav_binops_1o (str)
10413 char * str;
10414 {
10415 do_mav_binops (str, MAV_MODE1, REG_TYPE_MVDX, REG_TYPE_MVDX);
10416 }
10417
10418 static void
10419 do_mav_binops_2a (str)
10420 char * str;
10421 {
10422 do_mav_binops (str, MAV_MODE2, REG_TYPE_MVF, REG_TYPE_RN);
10423 }
10424
10425 static void
10426 do_mav_binops_2b (str)
10427 char * str;
10428 {
10429 do_mav_binops (str, MAV_MODE2, REG_TYPE_MVD, REG_TYPE_RN);
10430 }
10431
10432 static void
10433 do_mav_binops_2c (str)
10434 char * str;
10435 {
10436 do_mav_binops (str, MAV_MODE2, REG_TYPE_MVDX, REG_TYPE_RN);
10437 }
10438
10439 static void
10440 do_mav_binops_3a (str)
10441 char * str;
10442 {
10443 do_mav_binops (str, MAV_MODE3, REG_TYPE_MVAX, REG_TYPE_MVFX);
10444 }
10445
10446 static void
10447 do_mav_binops_3b (str)
10448 char * str;
10449 {
10450 do_mav_binops (str, MAV_MODE3, REG_TYPE_MVFX, REG_TYPE_MVAX);
10451 }
10452
10453 static void
10454 do_mav_binops_3c (str)
10455 char * str;
10456 {
10457 do_mav_binops (str, MAV_MODE3, REG_TYPE_MVAX, REG_TYPE_MVDX);
10458 }
10459
10460 static void
10461 do_mav_binops_3d (str)
10462 char * str;
10463 {
10464 do_mav_binops (str, MAV_MODE3, REG_TYPE_MVDX, REG_TYPE_MVAX);
10465 }
10466
10467 static void
10468 do_mav_triple_4a (str)
10469 char * str;
10470 {
10471 do_mav_triple (str, MAV_MODE4, REG_TYPE_MVFX, REG_TYPE_MVFX, REG_TYPE_RN);
10472 }
10473
10474 static void
10475 do_mav_triple_4b (str)
10476 char * str;
10477 {
10478 do_mav_triple (str, MAV_MODE4, REG_TYPE_MVDX, REG_TYPE_MVDX, REG_TYPE_RN);
10479 }
10480
10481 static void
10482 do_mav_triple_5a (str)
10483 char * str;
10484 {
10485 do_mav_triple (str, MAV_MODE5, REG_TYPE_RN, REG_TYPE_MVF, REG_TYPE_MVF);
10486 }
10487
10488 static void
10489 do_mav_triple_5b (str)
10490 char * str;
10491 {
10492 do_mav_triple (str, MAV_MODE5, REG_TYPE_RN, REG_TYPE_MVD, REG_TYPE_MVD);
10493 }
10494
10495 static void
10496 do_mav_triple_5c (str)
10497 char * str;
10498 {
10499 do_mav_triple (str, MAV_MODE5, REG_TYPE_RN, REG_TYPE_MVFX, REG_TYPE_MVFX);
10500 }
10501
10502 static void
10503 do_mav_triple_5d (str)
10504 char * str;
10505 {
10506 do_mav_triple (str, MAV_MODE5, REG_TYPE_RN, REG_TYPE_MVDX, REG_TYPE_MVDX);
10507 }
10508
10509 static void
10510 do_mav_triple_5e (str)
10511 char * str;
10512 {
10513 do_mav_triple (str, MAV_MODE5, REG_TYPE_MVF, REG_TYPE_MVF, REG_TYPE_MVF);
10514 }
10515
10516 static void
10517 do_mav_triple_5f (str)
10518 char * str;
10519 {
10520 do_mav_triple (str, MAV_MODE5, REG_TYPE_MVD, REG_TYPE_MVD, REG_TYPE_MVD);
10521 }
10522
10523 static void
10524 do_mav_triple_5g (str)
10525 char * str;
10526 {
10527 do_mav_triple (str, MAV_MODE5, REG_TYPE_MVFX, REG_TYPE_MVFX, REG_TYPE_MVFX);
10528 }
10529
10530 static void
10531 do_mav_triple_5h (str)
10532 char * str;
10533 {
10534 do_mav_triple (str, MAV_MODE5, REG_TYPE_MVDX, REG_TYPE_MVDX, REG_TYPE_MVDX);
10535 }
10536
10537 static void
10538 do_mav_quad_6a (str)
10539 char * str;
10540 {
10541 do_mav_quad (str, MAV_MODE6, REG_TYPE_MVAX, REG_TYPE_MVFX, REG_TYPE_MVFX,
10542 REG_TYPE_MVFX);
10543 }
10544
10545 static void
10546 do_mav_quad_6b (str)
10547 char * str;
10548 {
10549 do_mav_quad (str, MAV_MODE6, REG_TYPE_MVAX, REG_TYPE_MVAX, REG_TYPE_MVFX,
10550 REG_TYPE_MVFX);
10551 }
10552
10553 /* cfmvsc32<cond> DSPSC,MVFX[15:0]. */
10554 static void
10555 do_mav_dspsc_1 (str)
10556 char * str;
10557 {
10558 skip_whitespace (str);
10559
10560 /* cfmvsc32. */
10561 if (mav_reg_required_here (&str, -1, REG_TYPE_DSPSC) == FAIL
10562 || skip_past_comma (&str) == FAIL
10563 || mav_reg_required_here (&str, 16, REG_TYPE_MVFX) == FAIL)
10564 {
10565 if (!inst.error)
10566 inst.error = BAD_ARGS;
10567
10568 return;
10569 }
10570
10571 end_of_line (str);
10572 }
10573
10574 /* cfmv32sc<cond> MVFX[15:0],DSPSC. */
10575 static void
10576 do_mav_dspsc_2 (str)
10577 char * str;
10578 {
10579 skip_whitespace (str);
10580
10581 /* cfmv32sc. */
10582 if (mav_reg_required_here (&str, 0, REG_TYPE_MVFX) == FAIL
10583 || skip_past_comma (&str) == FAIL
10584 || mav_reg_required_here (&str, -1, REG_TYPE_DSPSC) == FAIL)
10585 {
10586 if (!inst.error)
10587 inst.error = BAD_ARGS;
10588
10589 return;
10590 }
10591
10592 end_of_line (str);
10593 }
10594
10595 static void
10596 do_mav_shift_1 (str)
10597 char * str;
10598 {
10599 do_mav_shift (str, REG_TYPE_MVFX, REG_TYPE_MVFX);
10600 }
10601
10602 static void
10603 do_mav_shift_2 (str)
10604 char * str;
10605 {
10606 do_mav_shift (str, REG_TYPE_MVDX, REG_TYPE_MVDX);
10607 }
10608
10609 static void
10610 do_mav_ldst_1 (str)
10611 char * str;
10612 {
10613 do_mav_ldst (str, REG_TYPE_MVF);
10614 }
10615
10616 static void
10617 do_mav_ldst_2 (str)
10618 char * str;
10619 {
10620 do_mav_ldst (str, REG_TYPE_MVD);
10621 }
10622
10623 static void
10624 do_mav_ldst_3 (str)
10625 char * str;
10626 {
10627 do_mav_ldst (str, REG_TYPE_MVFX);
10628 }
10629
10630 static void
10631 do_mav_ldst_4 (str)
10632 char * str;
10633 {
10634 do_mav_ldst (str, REG_TYPE_MVDX);
10635 }
10636
10637 /* Isnsn like "foo X,Y". */
10638
10639 static void
10640 do_mav_binops (str, mode, reg0, reg1)
10641 char * str;
10642 int mode;
10643 enum arm_reg_type reg0;
10644 enum arm_reg_type reg1;
10645 {
10646 int shift0, shift1;
10647
10648 shift0 = mode & 0xff;
10649 shift1 = (mode >> 8) & 0xff;
10650
10651 skip_whitespace (str);
10652
10653 if (mav_reg_required_here (&str, shift0, reg0) == FAIL
10654 || skip_past_comma (&str) == FAIL
10655 || mav_reg_required_here (&str, shift1, reg1) == FAIL)
10656 {
10657 if (!inst.error)
10658 inst.error = BAD_ARGS;
10659 }
10660 else
10661 end_of_line (str);
10662 }
10663
10664 /* Isnsn like "foo X,Y,Z". */
10665
10666 static void
10667 do_mav_triple (str, mode, reg0, reg1, reg2)
10668 char * str;
10669 int mode;
10670 enum arm_reg_type reg0;
10671 enum arm_reg_type reg1;
10672 enum arm_reg_type reg2;
10673 {
10674 int shift0, shift1, shift2;
10675
10676 shift0 = mode & 0xff;
10677 shift1 = (mode >> 8) & 0xff;
10678 shift2 = (mode >> 16) & 0xff;
10679
10680 skip_whitespace (str);
10681
10682 if (mav_reg_required_here (&str, shift0, reg0) == FAIL
10683 || skip_past_comma (&str) == FAIL
10684 || mav_reg_required_here (&str, shift1, reg1) == FAIL
10685 || skip_past_comma (&str) == FAIL
10686 || mav_reg_required_here (&str, shift2, reg2) == FAIL)
10687 {
10688 if (!inst.error)
10689 inst.error = BAD_ARGS;
10690 }
10691 else
10692 end_of_line (str);
10693 }
10694
10695 /* Isnsn like "foo W,X,Y,Z".
10696 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10697
10698 static void
10699 do_mav_quad (str, mode, reg0, reg1, reg2, reg3)
10700 char * str;
10701 int mode;
10702 enum arm_reg_type reg0;
10703 enum arm_reg_type reg1;
10704 enum arm_reg_type reg2;
10705 enum arm_reg_type reg3;
10706 {
10707 int shift0, shift1, shift2, shift3;
10708
10709 shift0= mode & 0xff;
10710 shift1 = (mode >> 8) & 0xff;
10711 shift2 = (mode >> 16) & 0xff;
10712 shift3 = (mode >> 24) & 0xff;
10713
10714 skip_whitespace (str);
10715
10716 if (mav_reg_required_here (&str, shift0, reg0) == FAIL
10717 || skip_past_comma (&str) == FAIL
10718 || mav_reg_required_here (&str, shift1, reg1) == FAIL
10719 || skip_past_comma (&str) == FAIL
10720 || mav_reg_required_here (&str, shift2, reg2) == FAIL
10721 || skip_past_comma (&str) == FAIL
10722 || mav_reg_required_here (&str, shift3, reg3) == FAIL)
10723 {
10724 if (!inst.error)
10725 inst.error = BAD_ARGS;
10726 }
10727 else
10728 end_of_line (str);
10729 }
10730
10731 /* Maverick shift immediate instructions.
10732 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10733 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10734
10735 static void
10736 do_mav_shift (str, reg0, reg1)
10737 char * str;
10738 enum arm_reg_type reg0;
10739 enum arm_reg_type reg1;
10740 {
10741 int error;
10742 int imm, neg = 0;
10743
10744 skip_whitespace (str);
10745
10746 error = 0;
10747
10748 if (mav_reg_required_here (&str, 12, reg0) == FAIL
10749 || skip_past_comma (&str) == FAIL
10750 || mav_reg_required_here (&str, 16, reg1) == FAIL
10751 || skip_past_comma (&str) == FAIL)
10752 {
10753 if (!inst.error)
10754 inst.error = BAD_ARGS;
10755 return;
10756 }
10757
10758 /* Calculate the immediate operand.
10759 The operand is a 7bit signed number. */
10760 skip_whitespace (str);
10761
10762 if (*str == '#')
10763 ++str;
10764
10765 if (!ISDIGIT (*str) && *str != '-')
10766 {
10767 inst.error = _("expecting immediate, 7bit operand");
10768 return;
10769 }
10770
10771 if (*str == '-')
10772 {
10773 neg = 1;
10774 ++str;
10775 }
10776
10777 for (imm = 0; *str && ISDIGIT (*str); ++str)
10778 imm = imm * 10 + *str - '0';
10779
10780 if (imm > 64)
10781 {
10782 inst.error = _("immediate out of range");
10783 return;
10784 }
10785
10786 /* Make negative imm's into 7bit signed numbers. */
10787 if (neg)
10788 {
10789 imm = -imm;
10790 imm &= 0x0000007f;
10791 }
10792
10793 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10794 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10795 Bit 4 should be 0. */
10796 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10797
10798 inst.instruction |= imm;
10799 end_of_line (str);
10800 }
10801
10802 static int
10803 mav_parse_offset (str, negative)
10804 char ** str;
10805 int *negative;
10806 {
10807 char * p = *str;
10808 int offset;
10809
10810 *negative = 0;
10811
10812 skip_whitespace (p);
10813
10814 if (*p == '#')
10815 ++p;
10816
10817 if (*p == '-')
10818 {
10819 *negative = 1;
10820 ++p;
10821 }
10822
10823 if (!ISDIGIT (*p))
10824 {
10825 inst.error = _("offset expected");
10826 return 0;
10827 }
10828
10829 for (offset = 0; *p && ISDIGIT (*p); ++p)
10830 offset = offset * 10 + *p - '0';
10831
10832 if (offset > 0xff)
10833 {
10834 inst.error = _("offset out of range");
10835 return 0;
10836 }
10837
10838 *str = p;
10839
10840 return *negative ? -offset : offset;
10841 }
10842
10843 /* Maverick load/store instructions.
10844 <insn><cond> CRd,[Rn,<offset>]{!}.
10845 <insn><cond> CRd,[Rn],<offset>. */
10846
10847 static void
10848 do_mav_ldst (str, reg0)
10849 char * str;
10850 enum arm_reg_type reg0;
10851 {
10852 int offset, negative;
10853
10854 skip_whitespace (str);
10855
10856 if (mav_reg_required_here (&str, 12, reg0) == FAIL
10857 || skip_past_comma (&str) == FAIL
10858 || *str++ != '['
10859 || reg_required_here (&str, 16) == FAIL)
10860 goto fail_ldst;
10861
10862 if (skip_past_comma (&str) == SUCCESS)
10863 {
10864 /* You are here: "<offset>]{!}". */
10865 inst.instruction |= PRE_INDEX;
10866
10867 offset = mav_parse_offset (&str, &negative);
10868
10869 if (inst.error)
10870 return;
10871
10872 if (*str++ != ']')
10873 {
10874 inst.error = _("missing ]");
10875 return;
10876 }
10877
10878 if (*str == '!')
10879 {
10880 inst.instruction |= WRITE_BACK;
10881 ++str;
10882 }
10883 }
10884 else
10885 {
10886 /* You are here: "], <offset>". */
10887 if (*str++ != ']')
10888 {
10889 inst.error = _("missing ]");
10890 return;
10891 }
10892
10893 if (skip_past_comma (&str) == FAIL
10894 || (offset = mav_parse_offset (&str, &negative), inst.error))
10895 goto fail_ldst;
10896
10897 inst.instruction |= CP_T_WB; /* Post indexed, set bit W. */
10898 }
10899
10900 if (negative)
10901 offset = -offset;
10902 else
10903 inst.instruction |= CP_T_UD; /* Positive, so set bit U. */
10904
10905 inst.instruction |= offset >> 2;
10906 end_of_line (str);
10907 return;
10908
10909 fail_ldst:
10910 if (!inst.error)
10911 inst.error = BAD_ARGS;
10912 }
10913
10914 static void
10915 do_t_nop (str)
10916 char * str;
10917 {
10918 /* Do nothing. */
10919 end_of_line (str);
10920 }
10921
10922 /* Handle the Format 4 instructions that do not have equivalents in other
10923 formats. That is, ADC, AND, EOR, SBC, ROR, TST, NEG, CMN, ORR, MUL,
10924 BIC and MVN. */
10925
10926 static void
10927 do_t_arit (str)
10928 char * str;
10929 {
10930 int Rd, Rs, Rn;
10931
10932 skip_whitespace (str);
10933
10934 if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL
10935 || skip_past_comma (&str) == FAIL
10936 || (Rs = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
10937 {
10938 inst.error = BAD_ARGS;
10939 return;
10940 }
10941
10942 if (skip_past_comma (&str) != FAIL)
10943 {
10944 /* Three operand format not allowed for TST, CMN, NEG and MVN.
10945 (It isn't allowed for CMP either, but that isn't handled by this
10946 function.) */
10947 if (inst.instruction == T_OPCODE_TST
10948 || inst.instruction == T_OPCODE_CMN
10949 || inst.instruction == T_OPCODE_NEG
10950 || inst.instruction == T_OPCODE_MVN)
10951 {
10952 inst.error = BAD_ARGS;
10953 return;
10954 }
10955
10956 if ((Rn = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
10957 return;
10958
10959 if (Rs != Rd)
10960 {
10961 inst.error = _("dest and source1 must be the same register");
10962 return;
10963 }
10964 Rs = Rn;
10965 }
10966
10967 if (inst.instruction == T_OPCODE_MUL
10968 && Rs == Rd)
10969 as_tsktsk (_("Rs and Rd must be different in MUL"));
10970
10971 inst.instruction |= Rd | (Rs << 3);
10972 end_of_line (str);
10973 }
10974
10975 static void
10976 do_t_add (str)
10977 char * str;
10978 {
10979 thumb_add_sub (str, 0);
10980 }
10981
10982 static void
10983 do_t_asr (str)
10984 char * str;
10985 {
10986 thumb_shift (str, THUMB_ASR);
10987 }
10988
10989 static void
10990 do_t_branch9 (str)
10991 char * str;
10992 {
10993 if (my_get_expression (&inst.reloc.exp, &str))
10994 return;
10995 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
10996 inst.reloc.pc_rel = 1;
10997 end_of_line (str);
10998 }
10999
11000 static void
11001 do_t_branch12 (str)
11002 char * str;
11003 {
11004 if (my_get_expression (&inst.reloc.exp, &str))
11005 return;
11006 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
11007 inst.reloc.pc_rel = 1;
11008 end_of_line (str);
11009 }
11010
11011 /* Find the real, Thumb encoded start of a Thumb function. */
11012
11013 static symbolS *
11014 find_real_start (symbolP)
11015 symbolS * symbolP;
11016 {
11017 char * real_start;
11018 const char * name = S_GET_NAME (symbolP);
11019 symbolS * new_target;
11020
11021 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
11022 #define STUB_NAME ".real_start_of"
11023
11024 if (name == NULL)
11025 abort ();
11026
11027 /* Names that start with '.' are local labels, not function entry points.
11028 The compiler may generate BL instructions to these labels because it
11029 needs to perform a branch to a far away location. */
11030 if (name[0] == '.')
11031 return symbolP;
11032
11033 real_start = malloc (strlen (name) + strlen (STUB_NAME) + 1);
11034 sprintf (real_start, "%s%s", STUB_NAME, name);
11035
11036 new_target = symbol_find (real_start);
11037
11038 if (new_target == NULL)
11039 {
11040 as_warn ("Failed to find real start of function: %s\n", name);
11041 new_target = symbolP;
11042 }
11043
11044 free (real_start);
11045
11046 return new_target;
11047 }
11048
11049 static void
11050 do_t_branch23 (str)
11051 char * str;
11052 {
11053 if (my_get_expression (& inst.reloc.exp, & str))
11054 return;
11055
11056 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11057 inst.reloc.pc_rel = 1;
11058 end_of_line (str);
11059
11060 /* If the destination of the branch is a defined symbol which does not have
11061 the THUMB_FUNC attribute, then we must be calling a function which has
11062 the (interfacearm) attribute. We look for the Thumb entry point to that
11063 function and change the branch to refer to that function instead. */
11064 if ( inst.reloc.exp.X_op == O_symbol
11065 && inst.reloc.exp.X_add_symbol != NULL
11066 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
11067 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
11068 inst.reloc.exp.X_add_symbol =
11069 find_real_start (inst.reloc.exp.X_add_symbol);
11070 }
11071
11072 static void
11073 do_t_bx (str)
11074 char * str;
11075 {
11076 int reg;
11077
11078 skip_whitespace (str);
11079
11080 if ((reg = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
11081 return;
11082
11083 /* This sets THUMB_H2 from the top bit of reg. */
11084 inst.instruction |= reg << 3;
11085
11086 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11087 should cause the alignment to be checked once it is known. This is
11088 because BX PC only works if the instruction is word aligned. */
11089
11090 end_of_line (str);
11091 }
11092
11093 static void
11094 do_t_compare (str)
11095 char * str;
11096 {
11097 thumb_mov_compare (str, THUMB_COMPARE);
11098 }
11099
11100 static void
11101 do_t_ldmstm (str)
11102 char * str;
11103 {
11104 int Rb;
11105 long range;
11106
11107 skip_whitespace (str);
11108
11109 if ((Rb = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
11110 return;
11111
11112 if (*str != '!')
11113 as_warn (_("inserted missing '!': load/store multiple always writes back base register"));
11114 else
11115 str++;
11116
11117 if (skip_past_comma (&str) == FAIL
11118 || (range = reg_list (&str)) == FAIL)
11119 {
11120 if (! inst.error)
11121 inst.error = BAD_ARGS;
11122 return;
11123 }
11124
11125 if (inst.reloc.type != BFD_RELOC_NONE)
11126 {
11127 /* This really doesn't seem worth it. */
11128 inst.reloc.type = BFD_RELOC_NONE;
11129 inst.error = _("expression too complex");
11130 return;
11131 }
11132
11133 if (range & ~0xff)
11134 {
11135 inst.error = _("only lo-regs valid in load/store multiple");
11136 return;
11137 }
11138
11139 inst.instruction |= (Rb << 8) | range;
11140 end_of_line (str);
11141 }
11142
11143 static void
11144 do_t_ldr (str)
11145 char * str;
11146 {
11147 thumb_load_store (str, THUMB_LOAD, THUMB_WORD);
11148 }
11149
11150 static void
11151 do_t_ldrb (str)
11152 char * str;
11153 {
11154 thumb_load_store (str, THUMB_LOAD, THUMB_BYTE);
11155 }
11156
11157 static void
11158 do_t_ldrh (str)
11159 char * str;
11160 {
11161 thumb_load_store (str, THUMB_LOAD, THUMB_HALFWORD);
11162 }
11163
11164 static void
11165 do_t_lds (str)
11166 char * str;
11167 {
11168 int Rd, Rb, Ro;
11169
11170 skip_whitespace (str);
11171
11172 if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL
11173 || skip_past_comma (&str) == FAIL
11174 || *str++ != '['
11175 || (Rb = thumb_reg (&str, THUMB_REG_LO)) == FAIL
11176 || skip_past_comma (&str) == FAIL
11177 || (Ro = thumb_reg (&str, THUMB_REG_LO)) == FAIL
11178 || *str++ != ']')
11179 {
11180 if (! inst.error)
11181 inst.error = _("syntax: ldrs[b] Rd, [Rb, Ro]");
11182 return;
11183 }
11184
11185 inst.instruction |= Rd | (Rb << 3) | (Ro << 6);
11186 end_of_line (str);
11187 }
11188
11189 static void
11190 do_t_lsl (str)
11191 char * str;
11192 {
11193 thumb_shift (str, THUMB_LSL);
11194 }
11195
11196 static void
11197 do_t_lsr (str)
11198 char * str;
11199 {
11200 thumb_shift (str, THUMB_LSR);
11201 }
11202
11203 static void
11204 do_t_mov (str)
11205 char * str;
11206 {
11207 thumb_mov_compare (str, THUMB_MOVE);
11208 }
11209
11210 static void
11211 do_t_push_pop (str)
11212 char * str;
11213 {
11214 long range;
11215
11216 skip_whitespace (str);
11217
11218 if ((range = reg_list (&str)) == FAIL)
11219 {
11220 if (! inst.error)
11221 inst.error = BAD_ARGS;
11222 return;
11223 }
11224
11225 if (inst.reloc.type != BFD_RELOC_NONE)
11226 {
11227 /* This really doesn't seem worth it. */
11228 inst.reloc.type = BFD_RELOC_NONE;
11229 inst.error = _("expression too complex");
11230 return;
11231 }
11232
11233 if (range & ~0xff)
11234 {
11235 if ((inst.instruction == T_OPCODE_PUSH
11236 && (range & ~0xff) == 1 << REG_LR)
11237 || (inst.instruction == T_OPCODE_POP
11238 && (range & ~0xff) == 1 << REG_PC))
11239 {
11240 inst.instruction |= THUMB_PP_PC_LR;
11241 range &= 0xff;
11242 }
11243 else
11244 {
11245 inst.error = _("invalid register list to push/pop instruction");
11246 return;
11247 }
11248 }
11249
11250 inst.instruction |= range;
11251 end_of_line (str);
11252 }
11253
11254 static void
11255 do_t_str (str)
11256 char * str;
11257 {
11258 thumb_load_store (str, THUMB_STORE, THUMB_WORD);
11259 }
11260
11261 static void
11262 do_t_strb (str)
11263 char * str;
11264 {
11265 thumb_load_store (str, THUMB_STORE, THUMB_BYTE);
11266 }
11267
11268 static void
11269 do_t_strh (str)
11270 char * str;
11271 {
11272 thumb_load_store (str, THUMB_STORE, THUMB_HALFWORD);
11273 }
11274
11275 static void
11276 do_t_sub (str)
11277 char * str;
11278 {
11279 thumb_add_sub (str, 1);
11280 }
11281
11282 static void
11283 do_t_swi (str)
11284 char * str;
11285 {
11286 skip_whitespace (str);
11287
11288 if (my_get_expression (&inst.reloc.exp, &str))
11289 return;
11290
11291 inst.reloc.type = BFD_RELOC_ARM_SWI;
11292 end_of_line (str);
11293 }
11294
11295 static void
11296 do_t_adr (str)
11297 char * str;
11298 {
11299 int reg;
11300
11301 /* This is a pseudo-op of the form "adr rd, label" to be converted
11302 into a relative address of the form "add rd, pc, #label-.-4". */
11303 skip_whitespace (str);
11304
11305 /* Store Rd in temporary location inside instruction. */
11306 if ((reg = reg_required_here (&str, 4)) == FAIL
11307 || (reg > 7) /* For Thumb reg must be r0..r7. */
11308 || skip_past_comma (&str) == FAIL
11309 || my_get_expression (&inst.reloc.exp, &str))
11310 {
11311 if (!inst.error)
11312 inst.error = BAD_ARGS;
11313 return;
11314 }
11315
11316 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
11317 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
11318 inst.reloc.pc_rel = 1;
11319 inst.instruction |= REG_PC; /* Rd is already placed into the instruction. */
11320
11321 end_of_line (str);
11322 }
11323
11324 static void
11325 insert_reg (r, htab)
11326 const struct reg_entry *r;
11327 struct hash_control *htab;
11328 {
11329 int len = strlen (r->name) + 2;
11330 char * buf = (char *) xmalloc (len);
11331 char * buf2 = (char *) xmalloc (len);
11332 int i = 0;
11333
11334 #ifdef REGISTER_PREFIX
11335 buf[i++] = REGISTER_PREFIX;
11336 #endif
11337
11338 strcpy (buf + i, r->name);
11339
11340 for (i = 0; buf[i]; i++)
11341 buf2[i] = TOUPPER (buf[i]);
11342
11343 buf2[i] = '\0';
11344
11345 hash_insert (htab, buf, (PTR) r);
11346 hash_insert (htab, buf2, (PTR) r);
11347 }
11348
11349 static void
11350 build_reg_hsh (map)
11351 struct reg_map *map;
11352 {
11353 const struct reg_entry *r;
11354
11355 if ((map->htab = hash_new ()) == NULL)
11356 as_fatal (_("virtual memory exhausted"));
11357
11358 for (r = map->names; r->name != NULL; r++)
11359 insert_reg (r, map->htab);
11360 }
11361
11362 static void
11363 insert_reg_alias (str, regnum, htab)
11364 char *str;
11365 int regnum;
11366 struct hash_control *htab;
11367 {
11368 const char *error;
11369 struct reg_entry *new = xmalloc (sizeof (struct reg_entry));
11370 const char *name = xmalloc (strlen (str) + 1);
11371
11372 strcpy ((char *) name, str);
11373
11374 new->name = name;
11375 new->number = regnum;
11376 new->builtin = FALSE;
11377
11378 error = hash_insert (htab, name, (PTR) new);
11379 if (error)
11380 {
11381 as_bad (_("failed to create an alias for %s, reason: %s"),
11382 str, error);
11383 free ((char *) name);
11384 free (new);
11385 }
11386 }
11387
11388 /* Look for the .req directive. This is of the form:
11389
11390 new_register_name .req existing_register_name
11391
11392 If we find one, or if it looks sufficiently like one that we want to
11393 handle any error here, return non-zero. Otherwise return zero. */
11394 static int
11395 create_register_alias (newname, p)
11396 char *newname;
11397 char *p;
11398 {
11399 char *q;
11400 char c;
11401
11402 q = p;
11403 skip_whitespace (q);
11404
11405 c = *p;
11406 *p = '\0';
11407
11408 if (*q && !strncmp (q, ".req ", 5))
11409 {
11410 char *copy_of_str;
11411 char *r;
11412
11413 #ifdef IGNORE_OPCODE_CASE
11414 newname = original_case_string;
11415 #endif
11416 copy_of_str = newname;
11417
11418 q += 4;
11419 skip_whitespace (q);
11420
11421 for (r = q; *r != '\0'; r++)
11422 if (*r == ' ')
11423 break;
11424
11425 if (r != q)
11426 {
11427 enum arm_reg_type new_type, old_type;
11428 int old_regno;
11429 char d = *r;
11430
11431 *r = '\0';
11432 old_type = arm_reg_parse_any (q);
11433 *r = d;
11434
11435 new_type = arm_reg_parse_any (newname);
11436
11437 if (new_type == REG_TYPE_MAX)
11438 {
11439 if (old_type != REG_TYPE_MAX)
11440 {
11441 old_regno = arm_reg_parse (&q, all_reg_maps[old_type].htab);
11442 insert_reg_alias (newname, old_regno,
11443 all_reg_maps[old_type].htab);
11444 }
11445 else
11446 as_warn (_("register '%s' does not exist\n"), q);
11447 }
11448 else if (old_type == REG_TYPE_MAX)
11449 {
11450 as_warn (_("ignoring redefinition of register alias '%s' to non-existant register '%s'"),
11451 copy_of_str, q);
11452 }
11453 else
11454 {
11455 /* Do not warn about redefinitions to the same alias. */
11456 if (new_type != old_type
11457 || (arm_reg_parse (&q, all_reg_maps[old_type].htab)
11458 != arm_reg_parse (&q, all_reg_maps[new_type].htab)))
11459 as_warn (_("ignoring redefinition of register alias '%s'"),
11460 copy_of_str);
11461
11462 }
11463 }
11464 else
11465 as_warn (_("ignoring incomplete .req pseuso op"));
11466
11467 *p = c;
11468 return 1;
11469 }
11470
11471 *p = c;
11472 return 0;
11473 }
11474
11475 static void
11476 set_constant_flonums ()
11477 {
11478 int i;
11479
11480 for (i = 0; i < NUM_FLOAT_VALS; i++)
11481 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
11482 abort ();
11483 }
11484
11485 /* Iterate over the base tables to create the instruction patterns. */
11486 static void
11487 build_arm_ops_hsh ()
11488 {
11489 unsigned int i;
11490 unsigned int j;
11491 static struct obstack insn_obstack;
11492
11493 obstack_begin (&insn_obstack, 4000);
11494
11495 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
11496 {
11497 const struct asm_opcode *insn = insns + i;
11498
11499 if (insn->cond_offset != 0)
11500 {
11501 /* Insn supports conditional execution. Build the varaints
11502 and insert them in the hash table. */
11503 for (j = 0; j < sizeof (conds) / sizeof (struct asm_cond); j++)
11504 {
11505 unsigned len = strlen (insn->template);
11506 struct asm_opcode *new;
11507 char *template;
11508
11509 new = obstack_alloc (&insn_obstack, sizeof (struct asm_opcode));
11510 /* All condition codes are two characters. */
11511 template = obstack_alloc (&insn_obstack, len + 3);
11512
11513 strncpy (template, insn->template, insn->cond_offset);
11514 strcpy (template + insn->cond_offset, conds[j].template);
11515 if (len > insn->cond_offset)
11516 strcpy (template + insn->cond_offset + 2,
11517 insn->template + insn->cond_offset);
11518 new->template = template;
11519 new->cond_offset = 0;
11520 new->variant = insn->variant;
11521 new->parms = insn->parms;
11522 new->value = (insn->value & ~COND_MASK) | conds[j].value;
11523
11524 hash_insert (arm_ops_hsh, new->template, (PTR) new);
11525 }
11526 }
11527 /* Finally, insert the unconditional insn in the table directly;
11528 no need to build a copy. */
11529 hash_insert (arm_ops_hsh, insn->template, (PTR) insn);
11530 }
11531 }
11532
11533 #if 0 /* Suppressed - for now. */
11534 #if defined OBJ_ELF || defined OBJ_COFF
11535
11536 #ifdef OBJ_ELF
11537 #define arm_Note Elf_External_Note
11538 #else
11539 typedef struct
11540 {
11541 unsigned char namesz[4]; /* Size of entry's owner string. */
11542 unsigned char descsz[4]; /* Size of the note descriptor. */
11543 unsigned char type[4]; /* Interpretation of the descriptor. */
11544 char name[1]; /* Start of the name+desc data. */
11545 } arm_Note;
11546 #endif
11547
11548 /* The description is kept to a fix sized in order to make updating
11549 it and merging it easier. */
11550 #define ARM_NOTE_DESCRIPTION_LENGTH 8
11551
11552 static void
11553 arm_add_note (name, description, type)
11554 const char * name;
11555 const char * description;
11556 unsigned int type;
11557 {
11558 arm_Note note ATTRIBUTE_UNUSED;
11559 char * p;
11560 unsigned int name_len;
11561
11562 name_len = (strlen (name) + 1 + 3) & ~3;
11563
11564 p = frag_more (sizeof (note.namesz));
11565 md_number_to_chars (p, (valueT) name_len, sizeof (note.namesz));
11566
11567 p = frag_more (sizeof (note.descsz));
11568 md_number_to_chars (p, (valueT) ARM_NOTE_DESCRIPTION_LENGTH, sizeof (note.descsz));
11569
11570 p = frag_more (sizeof (note.type));
11571 md_number_to_chars (p, (valueT) type, sizeof (note.type));
11572
11573 p = frag_more (name_len);
11574 strcpy (p, name);
11575
11576 p = frag_more (ARM_NOTE_DESCRIPTION_LENGTH);
11577 strncpy (p, description, ARM_NOTE_DESCRIPTION_LENGTH);
11578 frag_align (2, 0, 0);
11579 }
11580 #endif
11581 #endif
11582
11583 void
11584 md_begin ()
11585 {
11586 unsigned mach;
11587 unsigned int i;
11588
11589 if ( (arm_ops_hsh = hash_new ()) == NULL
11590 || (arm_tops_hsh = hash_new ()) == NULL
11591 || (arm_cond_hsh = hash_new ()) == NULL
11592 || (arm_shift_hsh = hash_new ()) == NULL
11593 || (arm_psr_hsh = hash_new ()) == NULL)
11594 as_fatal (_("virtual memory exhausted"));
11595
11596 build_arm_ops_hsh ();
11597 for (i = 0; i < sizeof (tinsns) / sizeof (struct thumb_opcode); i++)
11598 hash_insert (arm_tops_hsh, tinsns[i].template, (PTR) (tinsns + i));
11599 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
11600 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
11601 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
11602 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
11603 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
11604 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
11605
11606 for (i = (int) REG_TYPE_FIRST; i < (int) REG_TYPE_MAX; i++)
11607 build_reg_hsh (all_reg_maps + i);
11608
11609 set_constant_flonums ();
11610
11611 /* Set the cpu variant based on the command-line options. We prefer
11612 -mcpu= over -march= if both are set (as for GCC); and we prefer
11613 -mfpu= over any other way of setting the floating point unit.
11614 Use of legacy options with new options are faulted. */
11615 if (legacy_cpu != -1)
11616 {
11617 if (mcpu_cpu_opt != -1 || march_cpu_opt != -1)
11618 as_bad (_("use of old and new-style options to set CPU type"));
11619
11620 mcpu_cpu_opt = legacy_cpu;
11621 }
11622 else if (mcpu_cpu_opt == -1)
11623 mcpu_cpu_opt = march_cpu_opt;
11624
11625 if (legacy_fpu != -1)
11626 {
11627 if (mfpu_opt != -1)
11628 as_bad (_("use of old and new-style options to set FPU type"));
11629
11630 mfpu_opt = legacy_fpu;
11631 }
11632 else if (mfpu_opt == -1)
11633 {
11634 #if !(defined (TE_LINUX) || defined (TE_NetBSD))
11635 /* Some environments specify a default FPU. If they don't, infer it
11636 from the processor. */
11637 if (mcpu_fpu_opt != -1)
11638 mfpu_opt = mcpu_fpu_opt;
11639 else
11640 mfpu_opt = march_fpu_opt;
11641 #else
11642 mfpu_opt = FPU_DEFAULT;
11643 #endif
11644 }
11645
11646 if (mfpu_opt == -1)
11647 {
11648 if (mcpu_cpu_opt == -1)
11649 mfpu_opt = FPU_DEFAULT;
11650 else if (mcpu_cpu_opt & ARM_EXT_V5)
11651 mfpu_opt = FPU_ARCH_VFP_V2;
11652 else
11653 mfpu_opt = FPU_ARCH_FPA;
11654 }
11655
11656 if (mcpu_cpu_opt == -1)
11657 mcpu_cpu_opt = CPU_DEFAULT;
11658
11659 cpu_variant = mcpu_cpu_opt | mfpu_opt;
11660
11661 #if defined OBJ_COFF || defined OBJ_ELF
11662 {
11663 unsigned int flags = 0;
11664
11665 /* Set the flags in the private structure. */
11666 if (uses_apcs_26) flags |= F_APCS26;
11667 if (support_interwork) flags |= F_INTERWORK;
11668 if (uses_apcs_float) flags |= F_APCS_FLOAT;
11669 if (pic_code) flags |= F_PIC;
11670 if ((cpu_variant & FPU_ANY) == FPU_NONE
11671 || (cpu_variant & FPU_ANY) == FPU_ARCH_VFP) /* VFP layout only. */
11672 {
11673 flags |= F_SOFT_FLOAT;
11674 }
11675 switch (mfloat_abi_opt)
11676 {
11677 case ARM_FLOAT_ABI_SOFT:
11678 case ARM_FLOAT_ABI_SOFTFP:
11679 flags |= F_SOFT_FLOAT;
11680 break;
11681
11682 case ARM_FLOAT_ABI_HARD:
11683 if (flags & F_SOFT_FLOAT)
11684 as_bad (_("hard-float conflicts with specified fpu"));
11685 break;
11686 }
11687 /* Using VFP conventions (even if soft-float). */
11688 if (cpu_variant & FPU_VFP_EXT_NONE) flags |= F_VFP_FLOAT;
11689
11690 #if defined OBJ_ELF
11691 if (cpu_variant & FPU_ARCH_MAVERICK)
11692 flags |= EF_ARM_MAVERICK_FLOAT;
11693 #endif
11694
11695 bfd_set_private_flags (stdoutput, flags);
11696
11697 /* We have run out flags in the COFF header to encode the
11698 status of ATPCS support, so instead we create a dummy,
11699 empty, debug section called .arm.atpcs. */
11700 if (atpcs)
11701 {
11702 asection * sec;
11703
11704 sec = bfd_make_section (stdoutput, ".arm.atpcs");
11705
11706 if (sec != NULL)
11707 {
11708 bfd_set_section_flags
11709 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
11710 bfd_set_section_size (stdoutput, sec, 0);
11711 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
11712 }
11713 }
11714 }
11715 #endif
11716
11717 /* Record the CPU type as well. */
11718 switch (cpu_variant & ARM_CPU_MASK)
11719 {
11720 case ARM_2:
11721 mach = bfd_mach_arm_2;
11722 break;
11723
11724 case ARM_3: /* Also ARM_250. */
11725 mach = bfd_mach_arm_2a;
11726 break;
11727
11728 case ARM_6: /* Also ARM_7. */
11729 mach = bfd_mach_arm_3;
11730 break;
11731
11732 default:
11733 mach = bfd_mach_arm_unknown;
11734 break;
11735 }
11736
11737 /* Catch special cases. */
11738 if (cpu_variant & ARM_CEXT_IWMMXT)
11739 mach = bfd_mach_arm_iWMMXt;
11740 else if (cpu_variant & ARM_CEXT_XSCALE)
11741 mach = bfd_mach_arm_XScale;
11742 else if (cpu_variant & ARM_CEXT_MAVERICK)
11743 mach = bfd_mach_arm_ep9312;
11744 else if (cpu_variant & ARM_EXT_V5E)
11745 mach = bfd_mach_arm_5TE;
11746 else if (cpu_variant & ARM_EXT_V5)
11747 {
11748 if (cpu_variant & ARM_EXT_V4T)
11749 mach = bfd_mach_arm_5T;
11750 else
11751 mach = bfd_mach_arm_5;
11752 }
11753 else if (cpu_variant & ARM_EXT_V4)
11754 {
11755 if (cpu_variant & ARM_EXT_V4T)
11756 mach = bfd_mach_arm_4T;
11757 else
11758 mach = bfd_mach_arm_4;
11759 }
11760 else if (cpu_variant & ARM_EXT_V3M)
11761 mach = bfd_mach_arm_3M;
11762
11763 #if 0 /* Suppressed - for now. */
11764 #if defined (OBJ_ELF) || defined (OBJ_COFF)
11765
11766 /* Create a .note section to fully identify this arm binary. */
11767
11768 #define NOTE_ARCH_STRING "arch: "
11769
11770 #if defined OBJ_COFF && ! defined NT_VERSION
11771 #define NT_VERSION 1
11772 #define NT_ARCH 2
11773 #endif
11774
11775 {
11776 segT current_seg = now_seg;
11777 subsegT current_subseg = now_subseg;
11778 asection * arm_arch;
11779 const char * arch_string;
11780
11781 arm_arch = bfd_make_section_old_way (stdoutput, ARM_NOTE_SECTION);
11782
11783 #ifdef OBJ_COFF
11784 bfd_set_section_flags (stdoutput, arm_arch,
11785 SEC_DATA | SEC_ALLOC | SEC_LOAD | SEC_LINK_ONCE \
11786 | SEC_HAS_CONTENTS);
11787 #endif
11788 arm_arch->output_section = arm_arch;
11789 subseg_set (arm_arch, 0);
11790
11791 switch (mach)
11792 {
11793 default:
11794 case bfd_mach_arm_unknown: arch_string = "unknown"; break;
11795 case bfd_mach_arm_2: arch_string = "armv2"; break;
11796 case bfd_mach_arm_2a: arch_string = "armv2a"; break;
11797 case bfd_mach_arm_3: arch_string = "armv3"; break;
11798 case bfd_mach_arm_3M: arch_string = "armv3M"; break;
11799 case bfd_mach_arm_4: arch_string = "armv4"; break;
11800 case bfd_mach_arm_4T: arch_string = "armv4t"; break;
11801 case bfd_mach_arm_5: arch_string = "armv5"; break;
11802 case bfd_mach_arm_5T: arch_string = "armv5t"; break;
11803 case bfd_mach_arm_5TE: arch_string = "armv5te"; break;
11804 case bfd_mach_arm_XScale: arch_string = "XScale"; break;
11805 case bfd_mach_arm_ep9312: arch_string = "ep9312"; break;
11806 case bfd_mach_arm_iWMMXt: arch_string = "iWMMXt"; break;
11807 }
11808
11809 arm_add_note (NOTE_ARCH_STRING, arch_string, NT_ARCH);
11810
11811 subseg_set (current_seg, current_subseg);
11812 }
11813 #endif
11814 #endif /* Suppressed code. */
11815
11816 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
11817 }
11818
11819 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
11820 for use in the a.out file, and stores them in the array pointed to by buf.
11821 This knows about the endian-ness of the target machine and does
11822 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
11823 2 (short) and 4 (long) Floating numbers are put out as a series of
11824 LITTLENUMS (shorts, here at least). */
11825
11826 void
11827 md_number_to_chars (buf, val, n)
11828 char * buf;
11829 valueT val;
11830 int n;
11831 {
11832 if (target_big_endian)
11833 number_to_chars_bigendian (buf, val, n);
11834 else
11835 number_to_chars_littleendian (buf, val, n);
11836 }
11837
11838 static valueT
11839 md_chars_to_number (buf, n)
11840 char * buf;
11841 int n;
11842 {
11843 valueT result = 0;
11844 unsigned char * where = (unsigned char *) buf;
11845
11846 if (target_big_endian)
11847 {
11848 while (n--)
11849 {
11850 result <<= 8;
11851 result |= (*where++ & 255);
11852 }
11853 }
11854 else
11855 {
11856 while (n--)
11857 {
11858 result <<= 8;
11859 result |= (where[n] & 255);
11860 }
11861 }
11862
11863 return result;
11864 }
11865
11866 /* Turn a string in input_line_pointer into a floating point constant
11867 of type TYPE, and store the appropriate bytes in *LITP. The number
11868 of LITTLENUMS emitted is stored in *SIZEP. An error message is
11869 returned, or NULL on OK.
11870
11871 Note that fp constants aren't represent in the normal way on the ARM.
11872 In big endian mode, things are as expected. However, in little endian
11873 mode fp constants are big-endian word-wise, and little-endian byte-wise
11874 within the words. For example, (double) 1.1 in big endian mode is
11875 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
11876 the byte sequence 99 99 f1 3f 9a 99 99 99.
11877
11878 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
11879
11880 char *
11881 md_atof (type, litP, sizeP)
11882 char type;
11883 char * litP;
11884 int * sizeP;
11885 {
11886 int prec;
11887 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11888 char *t;
11889 int i;
11890
11891 switch (type)
11892 {
11893 case 'f':
11894 case 'F':
11895 case 's':
11896 case 'S':
11897 prec = 2;
11898 break;
11899
11900 case 'd':
11901 case 'D':
11902 case 'r':
11903 case 'R':
11904 prec = 4;
11905 break;
11906
11907 case 'x':
11908 case 'X':
11909 prec = 6;
11910 break;
11911
11912 case 'p':
11913 case 'P':
11914 prec = 6;
11915 break;
11916
11917 default:
11918 *sizeP = 0;
11919 return _("bad call to MD_ATOF()");
11920 }
11921
11922 t = atof_ieee (input_line_pointer, type, words);
11923 if (t)
11924 input_line_pointer = t;
11925 *sizeP = prec * 2;
11926
11927 if (target_big_endian)
11928 {
11929 for (i = 0; i < prec; i++)
11930 {
11931 md_number_to_chars (litP, (valueT) words[i], 2);
11932 litP += 2;
11933 }
11934 }
11935 else
11936 {
11937 if (cpu_variant & FPU_ARCH_VFP)
11938 for (i = prec - 1; i >= 0; i--)
11939 {
11940 md_number_to_chars (litP, (valueT) words[i], 2);
11941 litP += 2;
11942 }
11943 else
11944 /* For a 4 byte float the order of elements in `words' is 1 0.
11945 For an 8 byte float the order is 1 0 3 2. */
11946 for (i = 0; i < prec; i += 2)
11947 {
11948 md_number_to_chars (litP, (valueT) words[i + 1], 2);
11949 md_number_to_chars (litP + 2, (valueT) words[i], 2);
11950 litP += 4;
11951 }
11952 }
11953
11954 return 0;
11955 }
11956
11957 /* The knowledge of the PC's pipeline offset is built into the insns
11958 themselves. */
11959
11960 long
11961 md_pcrel_from (fixP)
11962 fixS * fixP;
11963 {
11964 if (fixP->fx_addsy
11965 && S_GET_SEGMENT (fixP->fx_addsy) == undefined_section
11966 && fixP->fx_subsy == NULL)
11967 return 0;
11968
11969 if (fixP->fx_pcrel && (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_ADD))
11970 {
11971 /* PC relative addressing on the Thumb is slightly odd
11972 as the bottom two bits of the PC are forced to zero
11973 for the calculation. */
11974 return (fixP->fx_where + fixP->fx_frag->fr_address) & ~3;
11975 }
11976
11977 #ifdef TE_WINCE
11978 /* The pattern was adjusted to accommodate CE's off-by-one fixups,
11979 so we un-adjust here to compensate for the accommodation. */
11980 return fixP->fx_where + fixP->fx_frag->fr_address + 8;
11981 #else
11982 return fixP->fx_where + fixP->fx_frag->fr_address;
11983 #endif
11984 }
11985
11986 /* Round up a section size to the appropriate boundary. */
11987
11988 valueT
11989 md_section_align (segment, size)
11990 segT segment ATTRIBUTE_UNUSED;
11991 valueT size;
11992 {
11993 #ifdef OBJ_ELF
11994 return size;
11995 #else
11996 /* Round all sects to multiple of 4. */
11997 return (size + 3) & ~3;
11998 #endif
11999 }
12000
12001 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
12002 Otherwise we have no need to default values of symbols. */
12003
12004 symbolS *
12005 md_undefined_symbol (name)
12006 char * name ATTRIBUTE_UNUSED;
12007 {
12008 #ifdef OBJ_ELF
12009 if (name[0] == '_' && name[1] == 'G'
12010 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
12011 {
12012 if (!GOT_symbol)
12013 {
12014 if (symbol_find (name))
12015 as_bad ("GOT already in the symbol table");
12016
12017 GOT_symbol = symbol_new (name, undefined_section,
12018 (valueT) 0, & zero_address_frag);
12019 }
12020
12021 return GOT_symbol;
12022 }
12023 #endif
12024
12025 return 0;
12026 }
12027
12028 /* arm_reg_parse () := if it looks like a register, return its token and
12029 advance the pointer. */
12030
12031 static int
12032 arm_reg_parse (ccp, htab)
12033 register char ** ccp;
12034 struct hash_control *htab;
12035 {
12036 char * start = * ccp;
12037 char c;
12038 char * p;
12039 struct reg_entry * reg;
12040
12041 #ifdef REGISTER_PREFIX
12042 if (*start != REGISTER_PREFIX)
12043 return FAIL;
12044 p = start + 1;
12045 #else
12046 p = start;
12047 #ifdef OPTIONAL_REGISTER_PREFIX
12048 if (*p == OPTIONAL_REGISTER_PREFIX)
12049 p++, start++;
12050 #endif
12051 #endif
12052 if (!ISALPHA (*p) || !is_name_beginner (*p))
12053 return FAIL;
12054
12055 c = *p++;
12056 while (ISALPHA (c) || ISDIGIT (c) || c == '_')
12057 c = *p++;
12058
12059 *--p = 0;
12060 reg = (struct reg_entry *) hash_find (htab, start);
12061 *p = c;
12062
12063 if (reg)
12064 {
12065 *ccp = p;
12066 return reg->number;
12067 }
12068
12069 return FAIL;
12070 }
12071
12072 /* Search for the following register name in each of the possible reg name
12073 tables. Return the classification if found, or REG_TYPE_MAX if not
12074 present. */
12075 static enum arm_reg_type
12076 arm_reg_parse_any (cp)
12077 char *cp;
12078 {
12079 int i;
12080
12081 for (i = (int) REG_TYPE_FIRST; i < (int) REG_TYPE_MAX; i++)
12082 if (arm_reg_parse (&cp, all_reg_maps[i].htab) != FAIL)
12083 return (enum arm_reg_type) i;
12084
12085 return REG_TYPE_MAX;
12086 }
12087
12088 void
12089 md_apply_fix3 (fixP, valP, seg)
12090 fixS * fixP;
12091 valueT * valP;
12092 segT seg;
12093 {
12094 offsetT value = * valP;
12095 offsetT newval;
12096 unsigned int newimm;
12097 unsigned long temp;
12098 int sign;
12099 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
12100 arm_fix_data * arm_data = (arm_fix_data *) fixP->tc_fix_data;
12101
12102 assert (fixP->fx_r_type < BFD_RELOC_UNUSED);
12103
12104 /* Note whether this will delete the relocation. */
12105 #if 0
12106 /* Patch from REarnshaw to JDavis (disabled for the moment, since it
12107 doesn't work fully.) */
12108 if ((fixP->fx_addsy == 0 || symbol_constant_p (fixP->fx_addsy))
12109 && !fixP->fx_pcrel)
12110 #else
12111 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
12112 #endif
12113 fixP->fx_done = 1;
12114
12115 /* If this symbol is in a different section then we need to leave it for
12116 the linker to deal with. Unfortunately, md_pcrel_from can't tell,
12117 so we have to undo it's effects here. */
12118 if (fixP->fx_pcrel)
12119 {
12120 if (fixP->fx_addsy != NULL
12121 && S_IS_DEFINED (fixP->fx_addsy)
12122 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
12123 {
12124 if (target_oabi
12125 && (fixP->fx_r_type == BFD_RELOC_ARM_PCREL_BRANCH
12126 || fixP->fx_r_type == BFD_RELOC_ARM_PCREL_BLX
12127 ))
12128 value = 0;
12129 else
12130 value += md_pcrel_from (fixP);
12131 }
12132 }
12133
12134 /* Remember value for emit_reloc. */
12135 fixP->fx_addnumber = value;
12136
12137 switch (fixP->fx_r_type)
12138 {
12139 case BFD_RELOC_ARM_IMMEDIATE:
12140 newimm = validate_immediate (value);
12141 temp = md_chars_to_number (buf, INSN_SIZE);
12142
12143 /* If the instruction will fail, see if we can fix things up by
12144 changing the opcode. */
12145 if (newimm == (unsigned int) FAIL
12146 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
12147 {
12148 as_bad_where (fixP->fx_file, fixP->fx_line,
12149 _("invalid constant (%lx) after fixup"),
12150 (unsigned long) value);
12151 break;
12152 }
12153
12154 newimm |= (temp & 0xfffff000);
12155 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
12156 fixP->fx_done = 1;
12157 break;
12158
12159 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
12160 {
12161 unsigned int highpart = 0;
12162 unsigned int newinsn = 0xe1a00000; /* nop. */
12163
12164 newimm = validate_immediate (value);
12165 temp = md_chars_to_number (buf, INSN_SIZE);
12166
12167 /* If the instruction will fail, see if we can fix things up by
12168 changing the opcode. */
12169 if (newimm == (unsigned int) FAIL
12170 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
12171 {
12172 /* No ? OK - try using two ADD instructions to generate
12173 the value. */
12174 newimm = validate_immediate_twopart (value, & highpart);
12175
12176 /* Yes - then make sure that the second instruction is
12177 also an add. */
12178 if (newimm != (unsigned int) FAIL)
12179 newinsn = temp;
12180 /* Still No ? Try using a negated value. */
12181 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
12182 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
12183 /* Otherwise - give up. */
12184 else
12185 {
12186 as_bad_where (fixP->fx_file, fixP->fx_line,
12187 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
12188 (long) value);
12189 break;
12190 }
12191
12192 /* Replace the first operand in the 2nd instruction (which
12193 is the PC) with the destination register. We have
12194 already added in the PC in the first instruction and we
12195 do not want to do it again. */
12196 newinsn &= ~ 0xf0000;
12197 newinsn |= ((newinsn & 0x0f000) << 4);
12198 }
12199
12200 newimm |= (temp & 0xfffff000);
12201 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
12202
12203 highpart |= (newinsn & 0xfffff000);
12204 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
12205 }
12206 break;
12207
12208 case BFD_RELOC_ARM_OFFSET_IMM:
12209 sign = value >= 0;
12210
12211 if (value < 0)
12212 value = - value;
12213
12214 if (validate_offset_imm (value, 0) == FAIL)
12215 {
12216 as_bad_where (fixP->fx_file, fixP->fx_line,
12217 _("bad immediate value for offset (%ld)"),
12218 (long) value);
12219 break;
12220 }
12221
12222 newval = md_chars_to_number (buf, INSN_SIZE);
12223 newval &= 0xff7ff000;
12224 newval |= value | (sign ? INDEX_UP : 0);
12225 md_number_to_chars (buf, newval, INSN_SIZE);
12226 break;
12227
12228 case BFD_RELOC_ARM_OFFSET_IMM8:
12229 case BFD_RELOC_ARM_HWLITERAL:
12230 sign = value >= 0;
12231
12232 if (value < 0)
12233 value = - value;
12234
12235 if (validate_offset_imm (value, 1) == FAIL)
12236 {
12237 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
12238 as_bad_where (fixP->fx_file, fixP->fx_line,
12239 _("invalid literal constant: pool needs to be closer"));
12240 else
12241 as_bad (_("bad immediate value for half-word offset (%ld)"),
12242 (long) value);
12243 break;
12244 }
12245
12246 newval = md_chars_to_number (buf, INSN_SIZE);
12247 newval &= 0xff7ff0f0;
12248 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
12249 md_number_to_chars (buf, newval, INSN_SIZE);
12250 break;
12251
12252 case BFD_RELOC_ARM_LITERAL:
12253 sign = value >= 0;
12254
12255 if (value < 0)
12256 value = - value;
12257
12258 if (validate_offset_imm (value, 0) == FAIL)
12259 {
12260 as_bad_where (fixP->fx_file, fixP->fx_line,
12261 _("invalid literal constant: pool needs to be closer"));
12262 break;
12263 }
12264
12265 newval = md_chars_to_number (buf, INSN_SIZE);
12266 newval &= 0xff7ff000;
12267 newval |= value | (sign ? INDEX_UP : 0);
12268 md_number_to_chars (buf, newval, INSN_SIZE);
12269 break;
12270
12271 case BFD_RELOC_ARM_SHIFT_IMM:
12272 newval = md_chars_to_number (buf, INSN_SIZE);
12273 if (((unsigned long) value) > 32
12274 || (value == 32
12275 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
12276 {
12277 as_bad_where (fixP->fx_file, fixP->fx_line,
12278 _("shift expression is too large"));
12279 break;
12280 }
12281
12282 if (value == 0)
12283 /* Shifts of zero must be done as lsl. */
12284 newval &= ~0x60;
12285 else if (value == 32)
12286 value = 0;
12287 newval &= 0xfffff07f;
12288 newval |= (value & 0x1f) << 7;
12289 md_number_to_chars (buf, newval, INSN_SIZE);
12290 break;
12291
12292 case BFD_RELOC_ARM_SWI:
12293 if (arm_data->thumb_mode)
12294 {
12295 if (((unsigned long) value) > 0xff)
12296 as_bad_where (fixP->fx_file, fixP->fx_line,
12297 _("invalid swi expression"));
12298 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xff00;
12299 newval |= value;
12300 md_number_to_chars (buf, newval, THUMB_SIZE);
12301 }
12302 else
12303 {
12304 if (((unsigned long) value) > 0x00ffffff)
12305 as_bad_where (fixP->fx_file, fixP->fx_line,
12306 _("invalid swi expression"));
12307 newval = md_chars_to_number (buf, INSN_SIZE) & 0xff000000;
12308 newval |= value;
12309 md_number_to_chars (buf, newval, INSN_SIZE);
12310 }
12311 break;
12312
12313 case BFD_RELOC_ARM_MULTI:
12314 if (((unsigned long) value) > 0xffff)
12315 as_bad_where (fixP->fx_file, fixP->fx_line,
12316 _("invalid expression in load/store multiple"));
12317 newval = value | md_chars_to_number (buf, INSN_SIZE);
12318 md_number_to_chars (buf, newval, INSN_SIZE);
12319 break;
12320
12321 case BFD_RELOC_ARM_PCREL_BRANCH:
12322 newval = md_chars_to_number (buf, INSN_SIZE);
12323
12324 /* Sign-extend a 24-bit number. */
12325 #define SEXT24(x) ((((x) & 0xffffff) ^ (~ 0x7fffff)) + 0x800000)
12326
12327 #ifdef OBJ_ELF
12328 if (! target_oabi)
12329 value = fixP->fx_offset;
12330 #endif
12331
12332 /* We are going to store value (shifted right by two) in the
12333 instruction, in a 24 bit, signed field. Thus we need to check
12334 that none of the top 8 bits of the shifted value (top 7 bits of
12335 the unshifted, unsigned value) are set, or that they are all set. */
12336 if ((value & ~ ((offsetT) 0x1ffffff)) != 0
12337 && ((value & ~ ((offsetT) 0x1ffffff)) != ~ ((offsetT) 0x1ffffff)))
12338 {
12339 #ifdef OBJ_ELF
12340 /* Normally we would be stuck at this point, since we cannot store
12341 the absolute address that is the destination of the branch in the
12342 24 bits of the branch instruction. If however, we happen to know
12343 that the destination of the branch is in the same section as the
12344 branch instruction itself, then we can compute the relocation for
12345 ourselves and not have to bother the linker with it.
12346
12347 FIXME: The tests for OBJ_ELF and ! target_oabi are only here
12348 because I have not worked out how to do this for OBJ_COFF or
12349 target_oabi. */
12350 if (! target_oabi
12351 && fixP->fx_addsy != NULL
12352 && S_IS_DEFINED (fixP->fx_addsy)
12353 && S_GET_SEGMENT (fixP->fx_addsy) == seg)
12354 {
12355 /* Get pc relative value to go into the branch. */
12356 value = * valP;
12357
12358 /* Permit a backward branch provided that enough bits
12359 are set. Allow a forwards branch, provided that
12360 enough bits are clear. */
12361 if ( (value & ~ ((offsetT) 0x1ffffff)) == ~ ((offsetT) 0x1ffffff)
12362 || (value & ~ ((offsetT) 0x1ffffff)) == 0)
12363 fixP->fx_done = 1;
12364 }
12365
12366 if (! fixP->fx_done)
12367 #endif
12368 as_bad_where (fixP->fx_file, fixP->fx_line,
12369 _("GAS can't handle same-section branch dest >= 0x04000000"));
12370 }
12371
12372 value >>= 2;
12373 value += SEXT24 (newval);
12374
12375 if ( (value & ~ ((offsetT) 0xffffff)) != 0
12376 && ((value & ~ ((offsetT) 0xffffff)) != ~ ((offsetT) 0xffffff)))
12377 as_bad_where (fixP->fx_file, fixP->fx_line,
12378 _("out of range branch"));
12379
12380 newval = (value & 0x00ffffff) | (newval & 0xff000000);
12381 md_number_to_chars (buf, newval, INSN_SIZE);
12382 break;
12383
12384 case BFD_RELOC_ARM_PCREL_BLX:
12385 {
12386 offsetT hbit;
12387 newval = md_chars_to_number (buf, INSN_SIZE);
12388
12389 #ifdef OBJ_ELF
12390 if (! target_oabi)
12391 value = fixP->fx_offset;
12392 #endif
12393 hbit = (value >> 1) & 1;
12394 value = (value >> 2) & 0x00ffffff;
12395 value = (value + (newval & 0x00ffffff)) & 0x00ffffff;
12396 newval = value | (newval & 0xfe000000) | (hbit << 24);
12397 md_number_to_chars (buf, newval, INSN_SIZE);
12398 }
12399 break;
12400
12401 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
12402 newval = md_chars_to_number (buf, THUMB_SIZE);
12403 {
12404 addressT diff = (newval & 0xff) << 1;
12405 if (diff & 0x100)
12406 diff |= ~0xff;
12407
12408 value += diff;
12409 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
12410 as_bad_where (fixP->fx_file, fixP->fx_line,
12411 _("branch out of range"));
12412 newval = (newval & 0xff00) | ((value & 0x1ff) >> 1);
12413 }
12414 md_number_to_chars (buf, newval, THUMB_SIZE);
12415 break;
12416
12417 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
12418 newval = md_chars_to_number (buf, THUMB_SIZE);
12419 {
12420 addressT diff = (newval & 0x7ff) << 1;
12421 if (diff & 0x800)
12422 diff |= ~0x7ff;
12423
12424 value += diff;
12425 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
12426 as_bad_where (fixP->fx_file, fixP->fx_line,
12427 _("branch out of range"));
12428 newval = (newval & 0xf800) | ((value & 0xfff) >> 1);
12429 }
12430 md_number_to_chars (buf, newval, THUMB_SIZE);
12431 break;
12432
12433 case BFD_RELOC_THUMB_PCREL_BLX:
12434 case BFD_RELOC_THUMB_PCREL_BRANCH23:
12435 {
12436 offsetT newval2;
12437 addressT diff;
12438
12439 newval = md_chars_to_number (buf, THUMB_SIZE);
12440 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
12441 diff = ((newval & 0x7ff) << 12) | ((newval2 & 0x7ff) << 1);
12442 if (diff & 0x400000)
12443 diff |= ~0x3fffff;
12444 #ifdef OBJ_ELF
12445 value = fixP->fx_offset;
12446 #endif
12447 value += diff;
12448
12449 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
12450 as_bad_where (fixP->fx_file, fixP->fx_line,
12451 _("branch with link out of range"));
12452
12453 newval = (newval & 0xf800) | ((value & 0x7fffff) >> 12);
12454 newval2 = (newval2 & 0xf800) | ((value & 0xfff) >> 1);
12455 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
12456 /* For a BLX instruction, make sure that the relocation is rounded up
12457 to a word boundary. This follows the semantics of the instruction
12458 which specifies that bit 1 of the target address will come from bit
12459 1 of the base address. */
12460 newval2 = (newval2 + 1) & ~ 1;
12461 md_number_to_chars (buf, newval, THUMB_SIZE);
12462 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
12463 }
12464 break;
12465
12466 case BFD_RELOC_8:
12467 if (fixP->fx_done || fixP->fx_pcrel)
12468 md_number_to_chars (buf, value, 1);
12469 #ifdef OBJ_ELF
12470 else if (!target_oabi)
12471 {
12472 value = fixP->fx_offset;
12473 md_number_to_chars (buf, value, 1);
12474 }
12475 #endif
12476 break;
12477
12478 case BFD_RELOC_16:
12479 if (fixP->fx_done || fixP->fx_pcrel)
12480 md_number_to_chars (buf, value, 2);
12481 #ifdef OBJ_ELF
12482 else if (!target_oabi)
12483 {
12484 value = fixP->fx_offset;
12485 md_number_to_chars (buf, value, 2);
12486 }
12487 #endif
12488 break;
12489
12490 #ifdef OBJ_ELF
12491 case BFD_RELOC_ARM_GOT32:
12492 case BFD_RELOC_ARM_GOTOFF:
12493 md_number_to_chars (buf, 0, 4);
12494 break;
12495 #endif
12496
12497 case BFD_RELOC_RVA:
12498 case BFD_RELOC_32:
12499 if (fixP->fx_done || fixP->fx_pcrel)
12500 md_number_to_chars (buf, value, 4);
12501 #ifdef OBJ_ELF
12502 else if (!target_oabi)
12503 {
12504 value = fixP->fx_offset;
12505 md_number_to_chars (buf, value, 4);
12506 }
12507 #endif
12508 break;
12509
12510 #ifdef OBJ_ELF
12511 case BFD_RELOC_ARM_PLT32:
12512 /* It appears the instruction is fully prepared at this point. */
12513 break;
12514 #endif
12515
12516 case BFD_RELOC_ARM_CP_OFF_IMM:
12517 sign = value >= 0;
12518 if (value < -1023 || value > 1023 || (value & 3))
12519 as_bad_where (fixP->fx_file, fixP->fx_line,
12520 _("illegal value for co-processor offset"));
12521 if (value < 0)
12522 value = -value;
12523 newval = md_chars_to_number (buf, INSN_SIZE) & 0xff7fff00;
12524 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
12525 md_number_to_chars (buf, newval, INSN_SIZE);
12526 break;
12527
12528 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
12529 sign = value >= 0;
12530 if (value < -255 || value > 255)
12531 as_bad_where (fixP->fx_file, fixP->fx_line,
12532 _("Illegal value for co-processor offset"));
12533 if (value < 0)
12534 value = -value;
12535 newval = md_chars_to_number (buf, INSN_SIZE) & 0xff7fff00;
12536 newval |= value | (sign ? INDEX_UP : 0);
12537 md_number_to_chars (buf, newval , INSN_SIZE);
12538 break;
12539
12540 case BFD_RELOC_ARM_THUMB_OFFSET:
12541 newval = md_chars_to_number (buf, THUMB_SIZE);
12542 /* Exactly what ranges, and where the offset is inserted depends
12543 on the type of instruction, we can establish this from the
12544 top 4 bits. */
12545 switch (newval >> 12)
12546 {
12547 case 4: /* PC load. */
12548 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
12549 forced to zero for these loads, so we will need to round
12550 up the offset if the instruction address is not word
12551 aligned (since the final address produced must be, and
12552 we can only describe word-aligned immediate offsets). */
12553
12554 if ((fixP->fx_frag->fr_address + fixP->fx_where + value) & 3)
12555 as_bad_where (fixP->fx_file, fixP->fx_line,
12556 _("invalid offset, target not word aligned (0x%08X)"),
12557 (unsigned int) (fixP->fx_frag->fr_address
12558 + fixP->fx_where + value));
12559
12560 if ((value + 2) & ~0x3fe)
12561 as_bad_where (fixP->fx_file, fixP->fx_line,
12562 _("invalid offset, value too big (0x%08lX)"),
12563 (long) value);
12564
12565 /* Round up, since pc will be rounded down. */
12566 newval |= (value + 2) >> 2;
12567 break;
12568
12569 case 9: /* SP load/store. */
12570 if (value & ~0x3fc)
12571 as_bad_where (fixP->fx_file, fixP->fx_line,
12572 _("invalid offset, value too big (0x%08lX)"),
12573 (long) value);
12574 newval |= value >> 2;
12575 break;
12576
12577 case 6: /* Word load/store. */
12578 if (value & ~0x7c)
12579 as_bad_where (fixP->fx_file, fixP->fx_line,
12580 _("invalid offset, value too big (0x%08lX)"),
12581 (long) value);
12582 newval |= value << 4; /* 6 - 2. */
12583 break;
12584
12585 case 7: /* Byte load/store. */
12586 if (value & ~0x1f)
12587 as_bad_where (fixP->fx_file, fixP->fx_line,
12588 _("invalid offset, value too big (0x%08lX)"),
12589 (long) value);
12590 newval |= value << 6;
12591 break;
12592
12593 case 8: /* Halfword load/store. */
12594 if (value & ~0x3e)
12595 as_bad_where (fixP->fx_file, fixP->fx_line,
12596 _("invalid offset, value too big (0x%08lX)"),
12597 (long) value);
12598 newval |= value << 5; /* 6 - 1. */
12599 break;
12600
12601 default:
12602 as_bad_where (fixP->fx_file, fixP->fx_line,
12603 "Unable to process relocation for thumb opcode: %lx",
12604 (unsigned long) newval);
12605 break;
12606 }
12607 md_number_to_chars (buf, newval, THUMB_SIZE);
12608 break;
12609
12610 case BFD_RELOC_ARM_THUMB_ADD:
12611 /* This is a complicated relocation, since we use it for all of
12612 the following immediate relocations:
12613
12614 3bit ADD/SUB
12615 8bit ADD/SUB
12616 9bit ADD/SUB SP word-aligned
12617 10bit ADD PC/SP word-aligned
12618
12619 The type of instruction being processed is encoded in the
12620 instruction field:
12621
12622 0x8000 SUB
12623 0x00F0 Rd
12624 0x000F Rs
12625 */
12626 newval = md_chars_to_number (buf, THUMB_SIZE);
12627 {
12628 int rd = (newval >> 4) & 0xf;
12629 int rs = newval & 0xf;
12630 int subtract = newval & 0x8000;
12631
12632 if (rd == REG_SP)
12633 {
12634 if (value & ~0x1fc)
12635 as_bad_where (fixP->fx_file, fixP->fx_line,
12636 _("invalid immediate for stack address calculation"));
12637 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
12638 newval |= value >> 2;
12639 }
12640 else if (rs == REG_PC || rs == REG_SP)
12641 {
12642 if (subtract ||
12643 value & ~0x3fc)
12644 as_bad_where (fixP->fx_file, fixP->fx_line,
12645 _("invalid immediate for address calculation (value = 0x%08lX)"),
12646 (unsigned long) value);
12647 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
12648 newval |= rd << 8;
12649 newval |= value >> 2;
12650 }
12651 else if (rs == rd)
12652 {
12653 if (value & ~0xff)
12654 as_bad_where (fixP->fx_file, fixP->fx_line,
12655 _("invalid 8bit immediate"));
12656 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
12657 newval |= (rd << 8) | value;
12658 }
12659 else
12660 {
12661 if (value & ~0x7)
12662 as_bad_where (fixP->fx_file, fixP->fx_line,
12663 _("invalid 3bit immediate"));
12664 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
12665 newval |= rd | (rs << 3) | (value << 6);
12666 }
12667 }
12668 md_number_to_chars (buf, newval, THUMB_SIZE);
12669 break;
12670
12671 case BFD_RELOC_ARM_THUMB_IMM:
12672 newval = md_chars_to_number (buf, THUMB_SIZE);
12673 switch (newval >> 11)
12674 {
12675 case 0x04: /* 8bit immediate MOV. */
12676 case 0x05: /* 8bit immediate CMP. */
12677 if (value < 0 || value > 255)
12678 as_bad_where (fixP->fx_file, fixP->fx_line,
12679 _("invalid immediate: %ld is too large"),
12680 (long) value);
12681 newval |= value;
12682 break;
12683
12684 default:
12685 abort ();
12686 }
12687 md_number_to_chars (buf, newval, THUMB_SIZE);
12688 break;
12689
12690 case BFD_RELOC_ARM_THUMB_SHIFT:
12691 /* 5bit shift value (0..31). */
12692 if (value < 0 || value > 31)
12693 as_bad_where (fixP->fx_file, fixP->fx_line,
12694 _("illegal Thumb shift value: %ld"), (long) value);
12695 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf03f;
12696 newval |= value << 6;
12697 md_number_to_chars (buf, newval, THUMB_SIZE);
12698 break;
12699
12700 case BFD_RELOC_VTABLE_INHERIT:
12701 case BFD_RELOC_VTABLE_ENTRY:
12702 fixP->fx_done = 0;
12703 return;
12704
12705 case BFD_RELOC_NONE:
12706 default:
12707 as_bad_where (fixP->fx_file, fixP->fx_line,
12708 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
12709 }
12710 }
12711
12712 /* Translate internal representation of relocation info to BFD target
12713 format. */
12714
12715 arelent *
12716 tc_gen_reloc (section, fixp)
12717 asection * section ATTRIBUTE_UNUSED;
12718 fixS * fixp;
12719 {
12720 arelent * reloc;
12721 bfd_reloc_code_real_type code;
12722
12723 reloc = (arelent *) xmalloc (sizeof (arelent));
12724
12725 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
12726 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12727 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
12728
12729 /* @@ Why fx_addnumber sometimes and fx_offset other times? */
12730 #ifndef OBJ_ELF
12731 if (fixp->fx_pcrel == 0)
12732 reloc->addend = fixp->fx_offset;
12733 else
12734 reloc->addend = fixp->fx_offset = reloc->address;
12735 #else /* OBJ_ELF */
12736 reloc->addend = fixp->fx_offset;
12737 #endif
12738
12739 switch (fixp->fx_r_type)
12740 {
12741 case BFD_RELOC_8:
12742 if (fixp->fx_pcrel)
12743 {
12744 code = BFD_RELOC_8_PCREL;
12745 break;
12746 }
12747
12748 case BFD_RELOC_16:
12749 if (fixp->fx_pcrel)
12750 {
12751 code = BFD_RELOC_16_PCREL;
12752 break;
12753 }
12754
12755 case BFD_RELOC_32:
12756 if (fixp->fx_pcrel)
12757 {
12758 code = BFD_RELOC_32_PCREL;
12759 break;
12760 }
12761
12762 case BFD_RELOC_ARM_PCREL_BRANCH:
12763 case BFD_RELOC_ARM_PCREL_BLX:
12764 case BFD_RELOC_RVA:
12765 case BFD_RELOC_THUMB_PCREL_BRANCH9:
12766 case BFD_RELOC_THUMB_PCREL_BRANCH12:
12767 case BFD_RELOC_THUMB_PCREL_BRANCH23:
12768 case BFD_RELOC_THUMB_PCREL_BLX:
12769 case BFD_RELOC_VTABLE_ENTRY:
12770 case BFD_RELOC_VTABLE_INHERIT:
12771 code = fixp->fx_r_type;
12772 break;
12773
12774 case BFD_RELOC_ARM_LITERAL:
12775 case BFD_RELOC_ARM_HWLITERAL:
12776 /* If this is called then the a literal has
12777 been referenced across a section boundary. */
12778 as_bad_where (fixp->fx_file, fixp->fx_line,
12779 _("literal referenced across section boundary"));
12780 return NULL;
12781
12782 #ifdef OBJ_ELF
12783 case BFD_RELOC_ARM_GOT32:
12784 case BFD_RELOC_ARM_GOTOFF:
12785 case BFD_RELOC_ARM_PLT32:
12786 code = fixp->fx_r_type;
12787 break;
12788 #endif
12789
12790 case BFD_RELOC_ARM_IMMEDIATE:
12791 as_bad_where (fixp->fx_file, fixp->fx_line,
12792 _("internal relocation (type: IMMEDIATE) not fixed up"));
12793 return NULL;
12794
12795 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
12796 as_bad_where (fixp->fx_file, fixp->fx_line,
12797 _("ADRL used for a symbol not defined in the same file"));
12798 return NULL;
12799
12800 case BFD_RELOC_ARM_OFFSET_IMM:
12801 as_bad_where (fixp->fx_file, fixp->fx_line,
12802 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
12803 return NULL;
12804
12805 default:
12806 {
12807 char * type;
12808
12809 switch (fixp->fx_r_type)
12810 {
12811 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
12812 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
12813 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
12814 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
12815 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
12816 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
12817 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
12818 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
12819 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
12820 default: type = _("<unknown>"); break;
12821 }
12822 as_bad_where (fixp->fx_file, fixp->fx_line,
12823 _("cannot represent %s relocation in this object file format"),
12824 type);
12825 return NULL;
12826 }
12827 }
12828
12829 #ifdef OBJ_ELF
12830 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
12831 && GOT_symbol
12832 && fixp->fx_addsy == GOT_symbol)
12833 {
12834 code = BFD_RELOC_ARM_GOTPC;
12835 reloc->addend = fixp->fx_offset = reloc->address;
12836 }
12837 #endif
12838
12839 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
12840
12841 if (reloc->howto == NULL)
12842 {
12843 as_bad_where (fixp->fx_file, fixp->fx_line,
12844 _("cannot represent %s relocation in this object file format"),
12845 bfd_get_reloc_code_name (code));
12846 return NULL;
12847 }
12848
12849 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
12850 vtable entry to be used in the relocation's section offset. */
12851 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12852 reloc->address = fixp->fx_offset;
12853
12854 return reloc;
12855 }
12856
12857 int
12858 md_estimate_size_before_relax (fragP, segtype)
12859 fragS * fragP ATTRIBUTE_UNUSED;
12860 segT segtype ATTRIBUTE_UNUSED;
12861 {
12862 as_fatal (_("md_estimate_size_before_relax\n"));
12863 return 1;
12864 }
12865
12866 static void
12867 output_inst (str)
12868 const char *str;
12869 {
12870 char * to = NULL;
12871
12872 if (inst.error)
12873 {
12874 as_bad ("%s -- `%s'", inst.error, str);
12875 return;
12876 }
12877
12878 to = frag_more (inst.size);
12879
12880 if (thumb_mode && (inst.size > THUMB_SIZE))
12881 {
12882 assert (inst.size == (2 * THUMB_SIZE));
12883 md_number_to_chars (to, inst.instruction >> 16, THUMB_SIZE);
12884 md_number_to_chars (to + THUMB_SIZE, inst.instruction, THUMB_SIZE);
12885 }
12886 else if (inst.size > INSN_SIZE)
12887 {
12888 assert (inst.size == (2 * INSN_SIZE));
12889 md_number_to_chars (to, inst.instruction, INSN_SIZE);
12890 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
12891 }
12892 else
12893 md_number_to_chars (to, inst.instruction, inst.size);
12894
12895 if (inst.reloc.type != BFD_RELOC_NONE)
12896 fix_new_arm (frag_now, to - frag_now->fr_literal,
12897 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
12898 inst.reloc.type);
12899
12900 #ifdef OBJ_ELF
12901 dwarf2_emit_insn (inst.size);
12902 #endif
12903 }
12904
12905 void
12906 md_assemble (str)
12907 char * str;
12908 {
12909 char c;
12910 char *p;
12911 char *start;
12912
12913 /* Align the instruction.
12914 This may not be the right thing to do but ... */
12915 #if 0
12916 arm_align (2, 0);
12917 #endif
12918
12919 /* Align the previous label if needed. */
12920 if (last_label_seen != NULL)
12921 {
12922 symbol_set_frag (last_label_seen, frag_now);
12923 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
12924 S_SET_SEGMENT (last_label_seen, now_seg);
12925 }
12926
12927 memset (&inst, '\0', sizeof (inst));
12928 inst.reloc.type = BFD_RELOC_NONE;
12929
12930 skip_whitespace (str);
12931
12932 /* Scan up to the end of the op-code, which must end in white space or
12933 end of string. */
12934 for (start = p = str; *p != '\0'; p++)
12935 if (*p == ' ')
12936 break;
12937
12938 if (p == str)
12939 {
12940 as_bad (_("no operator -- statement `%s'\n"), str);
12941 return;
12942 }
12943
12944 if (thumb_mode)
12945 {
12946 const struct thumb_opcode * opcode;
12947
12948 c = *p;
12949 *p = '\0';
12950 opcode = (const struct thumb_opcode *) hash_find (arm_tops_hsh, str);
12951 *p = c;
12952
12953 if (opcode)
12954 {
12955 /* Check that this instruction is supported for this CPU. */
12956 if (thumb_mode == 1 && (opcode->variant & cpu_variant) == 0)
12957 {
12958 as_bad (_("selected processor does not support `%s'"), str);
12959 return;
12960 }
12961
12962 mapping_state (MAP_THUMB);
12963 inst.instruction = opcode->value;
12964 inst.size = opcode->size;
12965 (*opcode->parms) (p);
12966 output_inst (str);
12967 return;
12968 }
12969 }
12970 else
12971 {
12972 const struct asm_opcode * opcode;
12973
12974 c = *p;
12975 *p = '\0';
12976 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, str);
12977 *p = c;
12978
12979 if (opcode)
12980 {
12981 /* Check that this instruction is supported for this CPU. */
12982 if ((opcode->variant & cpu_variant) == 0)
12983 {
12984 as_bad (_("selected processor does not support `%s'"), str);
12985 return;
12986 }
12987
12988 mapping_state (MAP_ARM);
12989 inst.instruction = opcode->value;
12990 inst.size = INSN_SIZE;
12991 (*opcode->parms) (p);
12992 output_inst (str);
12993 return;
12994 }
12995 }
12996
12997 /* It wasn't an instruction, but it might be a register alias of the form
12998 alias .req reg. */
12999 if (create_register_alias (str, p))
13000 return;
13001
13002 as_bad (_("bad instruction `%s'"), start);
13003 }
13004
13005 /* md_parse_option
13006 Invocation line includes a switch not recognized by the base assembler.
13007 See if it's a processor-specific option.
13008
13009 This routine is somewhat complicated by the need for backwards
13010 compatibility (since older releases of gcc can't be changed).
13011 The new options try to make the interface as compatible as
13012 possible with GCC.
13013
13014 New options (supported) are:
13015
13016 -mcpu=<cpu name> Assemble for selected processor
13017 -march=<architecture name> Assemble for selected architecture
13018 -mfpu=<fpu architecture> Assemble for selected FPU.
13019 -EB/-mbig-endian Big-endian
13020 -EL/-mlittle-endian Little-endian
13021 -k Generate PIC code
13022 -mthumb Start in Thumb mode
13023 -mthumb-interwork Code supports ARM/Thumb interworking
13024
13025 For now we will also provide support for:
13026
13027 -mapcs-32 32-bit Program counter
13028 -mapcs-26 26-bit Program counter
13029 -macps-float Floats passed in FP registers
13030 -mapcs-reentrant Reentrant code
13031 -matpcs
13032 (sometime these will probably be replaced with -mapcs=<list of options>
13033 and -matpcs=<list of options>)
13034
13035 The remaining options are only supported for back-wards compatibility.
13036 Cpu variants, the arm part is optional:
13037 -m[arm]1 Currently not supported.
13038 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
13039 -m[arm]3 Arm 3 processor
13040 -m[arm]6[xx], Arm 6 processors
13041 -m[arm]7[xx][t][[d]m] Arm 7 processors
13042 -m[arm]8[10] Arm 8 processors
13043 -m[arm]9[20][tdmi] Arm 9 processors
13044 -mstrongarm[110[0]] StrongARM processors
13045 -mxscale XScale processors
13046 -m[arm]v[2345[t[e]]] Arm architectures
13047 -mall All (except the ARM1)
13048 FP variants:
13049 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
13050 -mfpe-old (No float load/store multiples)
13051 -mvfpxd VFP Single precision
13052 -mvfp All VFP
13053 -mno-fpu Disable all floating point instructions
13054
13055 The following CPU names are recognized:
13056 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
13057 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
13058 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
13059 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
13060 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
13061 arm10t arm10e, arm1020t, arm1020e, arm10200e,
13062 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
13063
13064 */
13065
13066 const char * md_shortopts = "m:k";
13067
13068 #ifdef ARM_BI_ENDIAN
13069 #define OPTION_EB (OPTION_MD_BASE + 0)
13070 #define OPTION_EL (OPTION_MD_BASE + 1)
13071 #else
13072 #if TARGET_BYTES_BIG_ENDIAN
13073 #define OPTION_EB (OPTION_MD_BASE + 0)
13074 #else
13075 #define OPTION_EL (OPTION_MD_BASE + 1)
13076 #endif
13077 #endif
13078
13079 struct option md_longopts[] =
13080 {
13081 #ifdef OPTION_EB
13082 {"EB", no_argument, NULL, OPTION_EB},
13083 #endif
13084 #ifdef OPTION_EL
13085 {"EL", no_argument, NULL, OPTION_EL},
13086 #endif
13087 {NULL, no_argument, NULL, 0}
13088 };
13089
13090 size_t md_longopts_size = sizeof (md_longopts);
13091
13092 struct arm_option_table
13093 {
13094 char *option; /* Option name to match. */
13095 char *help; /* Help information. */
13096 int *var; /* Variable to change. */
13097 int value; /* What to change it to. */
13098 char *deprecated; /* If non-null, print this message. */
13099 };
13100
13101 struct arm_option_table arm_opts[] =
13102 {
13103 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
13104 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
13105 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
13106 &support_interwork, 1, NULL},
13107 {"moabi", N_("use old ABI (ELF only)"), &target_oabi, 1, NULL},
13108 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
13109 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
13110 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
13111 1, NULL},
13112 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
13113 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
13114 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
13115 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 1,
13116 NULL},
13117
13118 /* These are recognized by the assembler, but have no affect on code. */
13119 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
13120 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
13121
13122 /* DON'T add any new processors to this list -- we want the whole list
13123 to go away... Add them to the processors table instead. */
13124 {"marm1", NULL, &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
13125 {"m1", NULL, &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
13126 {"marm2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
13127 {"m2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
13128 {"marm250", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
13129 {"m250", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
13130 {"marm3", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
13131 {"m3", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
13132 {"marm6", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
13133 {"m6", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
13134 {"marm600", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
13135 {"m600", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
13136 {"marm610", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
13137 {"m610", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
13138 {"marm620", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
13139 {"m620", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
13140 {"marm7", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
13141 {"m7", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
13142 {"marm70", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
13143 {"m70", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
13144 {"marm700", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
13145 {"m700", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
13146 {"marm700i", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
13147 {"m700i", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
13148 {"marm710", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
13149 {"m710", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
13150 {"marm710c", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
13151 {"m710c", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
13152 {"marm720", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
13153 {"m720", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
13154 {"marm7d", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
13155 {"m7d", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
13156 {"marm7di", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
13157 {"m7di", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
13158 {"marm7m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
13159 {"m7m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
13160 {"marm7dm", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
13161 {"m7dm", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
13162 {"marm7dmi", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
13163 {"m7dmi", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
13164 {"marm7100", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
13165 {"m7100", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
13166 {"marm7500", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
13167 {"m7500", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
13168 {"marm7500fe", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
13169 {"m7500fe", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
13170 {"marm7t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
13171 {"m7t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
13172 {"marm7tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
13173 {"m7tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
13174 {"marm710t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
13175 {"m710t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
13176 {"marm720t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
13177 {"m720t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
13178 {"marm740t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
13179 {"m740t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
13180 {"marm8", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
13181 {"m8", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
13182 {"marm810", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
13183 {"m810", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
13184 {"marm9", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
13185 {"m9", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
13186 {"marm9tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
13187 {"m9tdmi", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
13188 {"marm920", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
13189 {"m920", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
13190 {"marm940", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
13191 {"m940", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
13192 {"mstrongarm", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
13193 {"mstrongarm110", NULL, &legacy_cpu, ARM_ARCH_V4,
13194 N_("use -mcpu=strongarm110")},
13195 {"mstrongarm1100", NULL, &legacy_cpu, ARM_ARCH_V4,
13196 N_("use -mcpu=strongarm1100")},
13197 {"mstrongarm1110", NULL, &legacy_cpu, ARM_ARCH_V4,
13198 N_("use -mcpu=strongarm1110")},
13199 {"mxscale", NULL, &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
13200 {"miwmmxt", NULL, &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
13201 {"mall", NULL, &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
13202
13203 /* Architecture variants -- don't add any more to this list either. */
13204 {"mv2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
13205 {"marmv2", NULL, &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
13206 {"mv2a", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
13207 {"marmv2a", NULL, &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
13208 {"mv3", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
13209 {"marmv3", NULL, &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
13210 {"mv3m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
13211 {"marmv3m", NULL, &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
13212 {"mv4", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
13213 {"marmv4", NULL, &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
13214 {"mv4t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
13215 {"marmv4t", NULL, &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
13216 {"mv5", NULL, &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
13217 {"marmv5", NULL, &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
13218 {"mv5t", NULL, &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
13219 {"marmv5t", NULL, &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
13220 {"mv5e", NULL, &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
13221 {"marmv5e", NULL, &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
13222
13223 /* Floating point variants -- don't add any more to this list either. */
13224 {"mfpe-old", NULL, &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
13225 {"mfpa10", NULL, &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
13226 {"mfpa11", NULL, &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
13227 {"mno-fpu", NULL, &legacy_fpu, 0,
13228 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
13229
13230 {NULL, NULL, NULL, 0, NULL}
13231 };
13232
13233 struct arm_cpu_option_table
13234 {
13235 char *name;
13236 int value;
13237 /* For some CPUs we assume an FPU unless the user explicitly sets
13238 -mfpu=... */
13239 int default_fpu;
13240 };
13241
13242 /* This list should, at a minimum, contain all the cpu names
13243 recognized by GCC. */
13244 static struct arm_cpu_option_table arm_cpus[] =
13245 {
13246 {"all", ARM_ANY, FPU_ARCH_FPA},
13247 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA},
13248 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA},
13249 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA},
13250 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA},
13251 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA},
13252 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA},
13253 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA},
13254 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA},
13255 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA},
13256 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA},
13257 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA},
13258 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA},
13259 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA},
13260 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA},
13261 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA},
13262 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA},
13263 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA},
13264 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA},
13265 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA},
13266 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA},
13267 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA},
13268 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA},
13269 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA},
13270 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA},
13271 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA},
13272 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA},
13273 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA},
13274 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA},
13275 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA},
13276 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA},
13277 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA},
13278 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA},
13279 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA},
13280 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA},
13281 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA},
13282 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA},
13283 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA},
13284 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA},
13285 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA},
13286 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA},
13287 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA},
13288 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA},
13289 /* For V5 or later processors we default to using VFP; but the user
13290 should really set the FPU type explicitly. */
13291 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2},
13292 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
13293 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2},
13294 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2},
13295 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
13296 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2},
13297 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
13298 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1},
13299 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
13300 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
13301 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1},
13302 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2},
13303 {"arm1136js", ARM_ARCH_V6, FPU_NONE},
13304 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2},
13305 /* ??? XSCALE is really an architecture. */
13306 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2},
13307 /* ??? iwmmxt is not a processor. */
13308 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2},
13309 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2},
13310 /* Maverick */
13311 {"ep9312", ARM_ARCH_V4T | ARM_CEXT_MAVERICK, FPU_ARCH_MAVERICK},
13312 {NULL, 0, 0}
13313 };
13314
13315 struct arm_arch_option_table
13316 {
13317 char *name;
13318 int value;
13319 int default_fpu;
13320 };
13321
13322 /* This list should, at a minimum, contain all the architecture names
13323 recognized by GCC. */
13324 static struct arm_arch_option_table arm_archs[] =
13325 {
13326 {"all", ARM_ANY, FPU_ARCH_FPA},
13327 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
13328 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
13329 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
13330 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
13331 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
13332 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
13333 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
13334 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
13335 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
13336 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
13337 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
13338 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
13339 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
13340 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
13341 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
13342 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
13343 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
13344 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
13345 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
13346 {NULL, 0, 0}
13347 };
13348
13349 /* ISA extensions in the co-processor space. */
13350 struct arm_arch_extension_table
13351 {
13352 char *name;
13353 int value;
13354 };
13355
13356 static struct arm_arch_extension_table arm_extensions[] =
13357 {
13358 {"maverick", ARM_CEXT_MAVERICK},
13359 {"xscale", ARM_CEXT_XSCALE},
13360 {"iwmmxt", ARM_CEXT_IWMMXT},
13361 {NULL, 0}
13362 };
13363
13364 struct arm_fpu_option_table
13365 {
13366 char *name;
13367 int value;
13368 };
13369
13370 /* This list should, at a minimum, contain all the fpu names
13371 recognized by GCC. */
13372 static struct arm_fpu_option_table arm_fpus[] =
13373 {
13374 {"softfpa", FPU_NONE},
13375 {"fpe", FPU_ARCH_FPE},
13376 {"fpe2", FPU_ARCH_FPE},
13377 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
13378 {"fpa", FPU_ARCH_FPA},
13379 {"fpa10", FPU_ARCH_FPA},
13380 {"fpa11", FPU_ARCH_FPA},
13381 {"arm7500fe", FPU_ARCH_FPA},
13382 {"softvfp", FPU_ARCH_VFP},
13383 {"softvfp+vfp", FPU_ARCH_VFP_V2},
13384 {"vfp", FPU_ARCH_VFP_V2},
13385 {"vfp9", FPU_ARCH_VFP_V2},
13386 {"vfp10", FPU_ARCH_VFP_V2},
13387 {"vfp10-r0", FPU_ARCH_VFP_V1},
13388 {"vfpxd", FPU_ARCH_VFP_V1xD},
13389 {"arm1020t", FPU_ARCH_VFP_V1},
13390 {"arm1020e", FPU_ARCH_VFP_V2},
13391 {"arm1136jfs", FPU_ARCH_VFP_V2},
13392 {"maverick", FPU_ARCH_MAVERICK},
13393 {NULL, 0}
13394 };
13395
13396 struct arm_float_abi_option_table
13397 {
13398 char *name;
13399 int value;
13400 };
13401
13402 static struct arm_float_abi_option_table arm_float_abis[] =
13403 {
13404 {"hard", ARM_FLOAT_ABI_HARD},
13405 {"softfp", ARM_FLOAT_ABI_SOFTFP},
13406 {"soft", ARM_FLOAT_ABI_SOFT},
13407 {NULL, 0}
13408 };
13409
13410 struct arm_long_option_table
13411 {
13412 char *option; /* Substring to match. */
13413 char *help; /* Help information. */
13414 int (*func) PARAMS ((char *subopt)); /* Function to decode sub-option. */
13415 char *deprecated; /* If non-null, print this message. */
13416 };
13417
13418 static int
13419 arm_parse_extension (str, opt_p)
13420 char *str;
13421 int *opt_p;
13422 {
13423 while (str != NULL && *str != 0)
13424 {
13425 struct arm_arch_extension_table *opt;
13426 char *ext;
13427 int optlen;
13428
13429 if (*str != '+')
13430 {
13431 as_bad (_("invalid architectural extension"));
13432 return 0;
13433 }
13434
13435 str++;
13436 ext = strchr (str, '+');
13437
13438 if (ext != NULL)
13439 optlen = ext - str;
13440 else
13441 optlen = strlen (str);
13442
13443 if (optlen == 0)
13444 {
13445 as_bad (_("missing architectural extension"));
13446 return 0;
13447 }
13448
13449 for (opt = arm_extensions; opt->name != NULL; opt++)
13450 if (strncmp (opt->name, str, optlen) == 0)
13451 {
13452 *opt_p |= opt->value;
13453 break;
13454 }
13455
13456 if (opt->name == NULL)
13457 {
13458 as_bad (_("unknown architectural extnsion `%s'"), str);
13459 return 0;
13460 }
13461
13462 str = ext;
13463 };
13464
13465 return 1;
13466 }
13467
13468 static int
13469 arm_parse_cpu (str)
13470 char *str;
13471 {
13472 struct arm_cpu_option_table *opt;
13473 char *ext = strchr (str, '+');
13474 int optlen;
13475
13476 if (ext != NULL)
13477 optlen = ext - str;
13478 else
13479 optlen = strlen (str);
13480
13481 if (optlen == 0)
13482 {
13483 as_bad (_("missing cpu name `%s'"), str);
13484 return 0;
13485 }
13486
13487 for (opt = arm_cpus; opt->name != NULL; opt++)
13488 if (strncmp (opt->name, str, optlen) == 0)
13489 {
13490 mcpu_cpu_opt = opt->value;
13491 mcpu_fpu_opt = opt->default_fpu;
13492
13493 if (ext != NULL)
13494 return arm_parse_extension (ext, &mcpu_cpu_opt);
13495
13496 return 1;
13497 }
13498
13499 as_bad (_("unknown cpu `%s'"), str);
13500 return 0;
13501 }
13502
13503 static int
13504 arm_parse_arch (str)
13505 char *str;
13506 {
13507 struct arm_arch_option_table *opt;
13508 char *ext = strchr (str, '+');
13509 int optlen;
13510
13511 if (ext != NULL)
13512 optlen = ext - str;
13513 else
13514 optlen = strlen (str);
13515
13516 if (optlen == 0)
13517 {
13518 as_bad (_("missing architecture name `%s'"), str);
13519 return 0;
13520 }
13521
13522
13523 for (opt = arm_archs; opt->name != NULL; opt++)
13524 if (strcmp (opt->name, str) == 0)
13525 {
13526 march_cpu_opt = opt->value;
13527 march_fpu_opt = opt->default_fpu;
13528
13529 if (ext != NULL)
13530 return arm_parse_extension (ext, &march_cpu_opt);
13531
13532 return 1;
13533 }
13534
13535 as_bad (_("unknown architecture `%s'\n"), str);
13536 return 0;
13537 }
13538
13539 static int
13540 arm_parse_fpu (str)
13541 char *str;
13542 {
13543 struct arm_fpu_option_table *opt;
13544
13545 for (opt = arm_fpus; opt->name != NULL; opt++)
13546 if (strcmp (opt->name, str) == 0)
13547 {
13548 mfpu_opt = opt->value;
13549 return 1;
13550 }
13551
13552 as_bad (_("unknown floating point format `%s'\n"), str);
13553 return 0;
13554 }
13555
13556 static int
13557 arm_parse_float_abi (str)
13558 char * str;
13559 {
13560 struct arm_float_abi_option_table *opt;
13561
13562 for (opt = arm_float_abis; opt->name != NULL; opt++)
13563 if (strcmp (opt->name, str) == 0)
13564 {
13565 mfloat_abi_opt = opt->value;
13566 return 1;
13567 }
13568
13569 as_bad (_("unknown floating point abi `%s'\n"), str);
13570 return 0;
13571 }
13572
13573 struct arm_long_option_table arm_long_opts[] =
13574 {
13575 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
13576 arm_parse_cpu, NULL},
13577 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
13578 arm_parse_arch, NULL},
13579 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
13580 arm_parse_fpu, NULL},
13581 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
13582 arm_parse_float_abi, NULL},
13583 {NULL, NULL, 0, NULL}
13584 };
13585
13586 int
13587 md_parse_option (c, arg)
13588 int c;
13589 char * arg;
13590 {
13591 struct arm_option_table *opt;
13592 struct arm_long_option_table *lopt;
13593
13594 switch (c)
13595 {
13596 #ifdef OPTION_EB
13597 case OPTION_EB:
13598 target_big_endian = 1;
13599 break;
13600 #endif
13601
13602 #ifdef OPTION_EL
13603 case OPTION_EL:
13604 target_big_endian = 0;
13605 break;
13606 #endif
13607
13608 case 'a':
13609 /* Listing option. Just ignore these, we don't support additional
13610 ones. */
13611 return 0;
13612
13613 default:
13614 for (opt = arm_opts; opt->option != NULL; opt++)
13615 {
13616 if (c == opt->option[0]
13617 && ((arg == NULL && opt->option[1] == 0)
13618 || strcmp (arg, opt->option + 1) == 0))
13619 {
13620 #if WARN_DEPRECATED
13621 /* If the option is deprecated, tell the user. */
13622 if (opt->deprecated != NULL)
13623 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
13624 arg ? arg : "", _(opt->deprecated));
13625 #endif
13626
13627 if (opt->var != NULL)
13628 *opt->var = opt->value;
13629
13630 return 1;
13631 }
13632 }
13633
13634 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
13635 {
13636 /* These options are expected to have an argument. */
13637 if (c == lopt->option[0]
13638 && arg != NULL
13639 && strncmp (arg, lopt->option + 1,
13640 strlen (lopt->option + 1)) == 0)
13641 {
13642 #if WARN_DEPRECATED
13643 /* If the option is deprecated, tell the user. */
13644 if (lopt->deprecated != NULL)
13645 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
13646 _(lopt->deprecated));
13647 #endif
13648
13649 /* Call the sup-option parser. */
13650 return (*lopt->func)(arg + strlen (lopt->option) - 1);
13651 }
13652 }
13653
13654 as_bad (_("unrecognized option `-%c%s'"), c, arg ? arg : "");
13655 return 0;
13656 }
13657
13658 return 1;
13659 }
13660
13661 void
13662 md_show_usage (fp)
13663 FILE * fp;
13664 {
13665 struct arm_option_table *opt;
13666 struct arm_long_option_table *lopt;
13667
13668 fprintf (fp, _(" ARM-specific assembler options:\n"));
13669
13670 for (opt = arm_opts; opt->option != NULL; opt++)
13671 if (opt->help != NULL)
13672 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
13673
13674 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
13675 if (lopt->help != NULL)
13676 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
13677
13678 #ifdef OPTION_EB
13679 fprintf (fp, _("\
13680 -EB assemble code for a big-endian cpu\n"));
13681 #endif
13682
13683 #ifdef OPTION_EL
13684 fprintf (fp, _("\
13685 -EL assemble code for a little-endian cpu\n"));
13686 #endif
13687 }
13688
13689 /* We need to be able to fix up arbitrary expressions in some statements.
13690 This is so that we can handle symbols that are an arbitrary distance from
13691 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13692 which returns part of an address in a form which will be valid for
13693 a data instruction. We do this by pushing the expression into a symbol
13694 in the expr_section, and creating a fix for that. */
13695
13696 static void
13697 fix_new_arm (frag, where, size, exp, pc_rel, reloc)
13698 fragS * frag;
13699 int where;
13700 short int size;
13701 expressionS * exp;
13702 int pc_rel;
13703 int reloc;
13704 {
13705 fixS * new_fix;
13706 arm_fix_data * arm_data;
13707
13708 switch (exp->X_op)
13709 {
13710 case O_constant:
13711 case O_symbol:
13712 case O_add:
13713 case O_subtract:
13714 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13715 break;
13716
13717 default:
13718 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13719 pc_rel, reloc);
13720 break;
13721 }
13722
13723 /* Mark whether the fix is to a THUMB instruction, or an ARM
13724 instruction. */
13725 arm_data = (arm_fix_data *) obstack_alloc (& notes, sizeof (arm_fix_data));
13726 new_fix->tc_fix_data = (PTR) arm_data;
13727 arm_data->thumb_mode = thumb_mode;
13728 }
13729
13730 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
13731
13732 void
13733 cons_fix_new_arm (frag, where, size, exp)
13734 fragS * frag;
13735 int where;
13736 int size;
13737 expressionS * exp;
13738 {
13739 bfd_reloc_code_real_type type;
13740 int pcrel = 0;
13741
13742 /* Pick a reloc.
13743 FIXME: @@ Should look at CPU word size. */
13744 switch (size)
13745 {
13746 case 1:
13747 type = BFD_RELOC_8;
13748 break;
13749 case 2:
13750 type = BFD_RELOC_16;
13751 break;
13752 case 4:
13753 default:
13754 type = BFD_RELOC_32;
13755 break;
13756 case 8:
13757 type = BFD_RELOC_64;
13758 break;
13759 }
13760
13761 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
13762 }
13763
13764 /* A good place to do this, although this was probably not intended
13765 for this kind of use. We need to dump the literal pool before
13766 references are made to a null symbol pointer. */
13767
13768 void
13769 arm_cleanup ()
13770 {
13771 literal_pool * pool;
13772
13773 for (pool = list_of_pools; pool; pool = pool->next)
13774 {
13775 /* Put it at the end of the relevent section. */
13776 subseg_set (pool->section, pool->sub_section);
13777 s_ltorg (0);
13778 }
13779 }
13780
13781 void
13782 arm_start_line_hook ()
13783 {
13784 last_label_seen = NULL;
13785 }
13786
13787 void
13788 arm_frob_label (sym)
13789 symbolS * sym;
13790 {
13791 last_label_seen = sym;
13792
13793 ARM_SET_THUMB (sym, thumb_mode);
13794
13795 #if defined OBJ_COFF || defined OBJ_ELF
13796 ARM_SET_INTERWORK (sym, support_interwork);
13797 #endif
13798
13799 /* Note - do not allow local symbols (.Lxxx) to be labeled
13800 as Thumb functions. This is because these labels, whilst
13801 they exist inside Thumb code, are not the entry points for
13802 possible ARM->Thumb calls. Also, these labels can be used
13803 as part of a computed goto or switch statement. eg gcc
13804 can generate code that looks like this:
13805
13806 ldr r2, [pc, .Laaa]
13807 lsl r3, r3, #2
13808 ldr r2, [r3, r2]
13809 mov pc, r2
13810
13811 .Lbbb: .word .Lxxx
13812 .Lccc: .word .Lyyy
13813 ..etc...
13814 .Laaa: .word Lbbb
13815
13816 The first instruction loads the address of the jump table.
13817 The second instruction converts a table index into a byte offset.
13818 The third instruction gets the jump address out of the table.
13819 The fourth instruction performs the jump.
13820
13821 If the address stored at .Laaa is that of a symbol which has the
13822 Thumb_Func bit set, then the linker will arrange for this address
13823 to have the bottom bit set, which in turn would mean that the
13824 address computation performed by the third instruction would end
13825 up with the bottom bit set. Since the ARM is capable of unaligned
13826 word loads, the instruction would then load the incorrect address
13827 out of the jump table, and chaos would ensue. */
13828 if (label_is_thumb_function_name
13829 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
13830 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
13831 {
13832 /* When the address of a Thumb function is taken the bottom
13833 bit of that address should be set. This will allow
13834 interworking between Arm and Thumb functions to work
13835 correctly. */
13836
13837 THUMB_SET_FUNC (sym, 1);
13838
13839 label_is_thumb_function_name = FALSE;
13840 }
13841 }
13842
13843 /* Adjust the symbol table. This marks Thumb symbols as distinct from
13844 ARM ones. */
13845
13846 void
13847 arm_adjust_symtab ()
13848 {
13849 #ifdef OBJ_COFF
13850 symbolS * sym;
13851
13852 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
13853 {
13854 if (ARM_IS_THUMB (sym))
13855 {
13856 if (THUMB_IS_FUNC (sym))
13857 {
13858 /* Mark the symbol as a Thumb function. */
13859 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
13860 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
13861 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
13862
13863 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
13864 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
13865 else
13866 as_bad (_("%s: unexpected function type: %d"),
13867 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
13868 }
13869 else switch (S_GET_STORAGE_CLASS (sym))
13870 {
13871 case C_EXT:
13872 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
13873 break;
13874 case C_STAT:
13875 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
13876 break;
13877 case C_LABEL:
13878 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
13879 break;
13880 default:
13881 /* Do nothing. */
13882 break;
13883 }
13884 }
13885
13886 if (ARM_IS_INTERWORK (sym))
13887 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
13888 }
13889 #endif
13890 #ifdef OBJ_ELF
13891 symbolS * sym;
13892 char bind;
13893
13894 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
13895 {
13896 if (ARM_IS_THUMB (sym))
13897 {
13898 elf_symbol_type * elf_sym;
13899
13900 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
13901 bind = ELF_ST_BIND (elf_sym);
13902
13903 /* If it's a .thumb_func, declare it as so,
13904 otherwise tag label as .code 16. */
13905 if (THUMB_IS_FUNC (sym))
13906 elf_sym->internal_elf_sym.st_info =
13907 ELF_ST_INFO (bind, STT_ARM_TFUNC);
13908 else
13909 elf_sym->internal_elf_sym.st_info =
13910 ELF_ST_INFO (bind, STT_ARM_16BIT);
13911 }
13912 }
13913 #endif
13914 }
13915
13916 int
13917 arm_data_in_code ()
13918 {
13919 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
13920 {
13921 *input_line_pointer = '/';
13922 input_line_pointer += 5;
13923 *input_line_pointer = 0;
13924 return 1;
13925 }
13926
13927 return 0;
13928 }
13929
13930 char *
13931 arm_canonicalize_symbol_name (name)
13932 char * name;
13933 {
13934 int len;
13935
13936 if (thumb_mode && (len = strlen (name)) > 5
13937 && streq (name + len - 5, "/data"))
13938 *(name + len - 5) = 0;
13939
13940 return name;
13941 }
13942
13943 #if defined OBJ_COFF || defined OBJ_ELF
13944 void
13945 arm_validate_fix (fixP)
13946 fixS * fixP;
13947 {
13948 /* If the destination of the branch is a defined symbol which does not have
13949 the THUMB_FUNC attribute, then we must be calling a function which has
13950 the (interfacearm) attribute. We look for the Thumb entry point to that
13951 function and change the branch to refer to that function instead. */
13952 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
13953 && fixP->fx_addsy != NULL
13954 && S_IS_DEFINED (fixP->fx_addsy)
13955 && ! THUMB_IS_FUNC (fixP->fx_addsy))
13956 {
13957 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
13958 }
13959 }
13960 #endif
13961
13962 int
13963 arm_force_relocation (fixp)
13964 struct fix * fixp;
13965 {
13966 #if defined (OBJ_COFF) && defined (TE_PE)
13967 if (fixp->fx_r_type == BFD_RELOC_RVA)
13968 return 1;
13969 #endif
13970 #ifdef OBJ_ELF
13971 if (fixp->fx_r_type == BFD_RELOC_ARM_PCREL_BRANCH
13972 || fixp->fx_r_type == BFD_RELOC_ARM_PCREL_BLX
13973 || fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX
13974 || fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23)
13975 return 1;
13976 #endif
13977
13978 /* Resolve these relocations even if the symbol is extern or weak. */
13979 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
13980 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
13981 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
13982 return 0;
13983
13984 return generic_force_reloc (fixp);
13985 }
13986
13987 #ifdef OBJ_COFF
13988 /* This is a little hack to help the gas/arm/adrl.s test. It prevents
13989 local labels from being added to the output symbol table when they
13990 are used with the ADRL pseudo op. The ADRL relocation should always
13991 be resolved before the binbary is emitted, so it is safe to say that
13992 it is adjustable. */
13993
13994 bfd_boolean
13995 arm_fix_adjustable (fixP)
13996 fixS * fixP;
13997 {
13998 if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
13999 return 1;
14000 return 0;
14001 }
14002 #endif
14003
14004 #ifdef OBJ_ELF
14005 /* Relocations against Thumb function names must be left unadjusted,
14006 so that the linker can use this information to correctly set the
14007 bottom bit of their addresses. The MIPS version of this function
14008 also prevents relocations that are mips-16 specific, but I do not
14009 know why it does this.
14010
14011 FIXME:
14012 There is one other problem that ought to be addressed here, but
14013 which currently is not: Taking the address of a label (rather
14014 than a function) and then later jumping to that address. Such
14015 addresses also ought to have their bottom bit set (assuming that
14016 they reside in Thumb code), but at the moment they will not. */
14017
14018 bfd_boolean
14019 arm_fix_adjustable (fixP)
14020 fixS * fixP;
14021 {
14022 if (fixP->fx_addsy == NULL)
14023 return 1;
14024
14025 if (THUMB_IS_FUNC (fixP->fx_addsy)
14026 && fixP->fx_subsy == NULL)
14027 return 0;
14028
14029 /* We need the symbol name for the VTABLE entries. */
14030 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14031 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14032 return 0;
14033
14034 /* Don't allow symbols to be discarded on GOT related relocs. */
14035 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
14036 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
14037 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF)
14038 return 0;
14039
14040 return 1;
14041 }
14042
14043 const char *
14044 elf32_arm_target_format ()
14045 {
14046 if (target_big_endian)
14047 {
14048 if (target_oabi)
14049 return "elf32-bigarm-oabi";
14050 else
14051 return "elf32-bigarm";
14052 }
14053 else
14054 {
14055 if (target_oabi)
14056 return "elf32-littlearm-oabi";
14057 else
14058 return "elf32-littlearm";
14059 }
14060 }
14061
14062 void
14063 armelf_frob_symbol (symp, puntp)
14064 symbolS * symp;
14065 int * puntp;
14066 {
14067 elf_frob_symbol (symp, puntp);
14068 }
14069
14070 static bfd_reloc_code_real_type
14071 arm_parse_reloc ()
14072 {
14073 char id [16];
14074 char * ip;
14075 unsigned int i;
14076 static struct
14077 {
14078 char * str;
14079 int len;
14080 bfd_reloc_code_real_type reloc;
14081 }
14082 reloc_map[] =
14083 {
14084 #define MAP(str,reloc) { str, sizeof (str) - 1, reloc }
14085 MAP ("(got)", BFD_RELOC_ARM_GOT32),
14086 MAP ("(gotoff)", BFD_RELOC_ARM_GOTOFF),
14087 /* ScottB: Jan 30, 1998 - Added support for parsing "var(PLT)"
14088 branch instructions generated by GCC for PLT relocs. */
14089 MAP ("(plt)", BFD_RELOC_ARM_PLT32),
14090 { NULL, 0, BFD_RELOC_UNUSED }
14091 #undef MAP
14092 };
14093
14094 for (i = 0, ip = input_line_pointer;
14095 i < sizeof (id) && (ISALNUM (*ip) || ISPUNCT (*ip));
14096 i++, ip++)
14097 id[i] = TOLOWER (*ip);
14098
14099 for (i = 0; reloc_map[i].str; i++)
14100 if (strncmp (id, reloc_map[i].str, reloc_map[i].len) == 0)
14101 break;
14102
14103 input_line_pointer += reloc_map[i].len;
14104
14105 return reloc_map[i].reloc;
14106 }
14107
14108 static void
14109 s_arm_elf_cons (nbytes)
14110 int nbytes;
14111 {
14112 expressionS exp;
14113
14114 #ifdef md_flush_pending_output
14115 md_flush_pending_output ();
14116 #endif
14117
14118 if (is_it_end_of_statement ())
14119 {
14120 demand_empty_rest_of_line ();
14121 return;
14122 }
14123
14124 #ifdef md_cons_align
14125 md_cons_align (nbytes);
14126 #endif
14127
14128 mapping_state (MAP_DATA);
14129 do
14130 {
14131 bfd_reloc_code_real_type reloc;
14132
14133 expression (& exp);
14134
14135 if (exp.X_op == O_symbol
14136 && * input_line_pointer == '('
14137 && (reloc = arm_parse_reloc ()) != BFD_RELOC_UNUSED)
14138 {
14139 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
14140 int size = bfd_get_reloc_size (howto);
14141
14142 if (size > nbytes)
14143 as_bad ("%s relocations do not fit in %d bytes",
14144 howto->name, nbytes);
14145 else
14146 {
14147 register char *p = frag_more ((int) nbytes);
14148 int offset = nbytes - size;
14149
14150 fix_new_exp (frag_now, p - frag_now->fr_literal + offset, size,
14151 &exp, 0, reloc);
14152 }
14153 }
14154 else
14155 emit_expr (&exp, (unsigned int) nbytes);
14156 }
14157 while (*input_line_pointer++ == ',');
14158
14159 /* Put terminator back into stream. */
14160 input_line_pointer --;
14161 demand_empty_rest_of_line ();
14162 }
14163
14164 #endif /* OBJ_ELF */
14165
14166 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
14167 of an rs_align_code fragment. */
14168
14169 void
14170 arm_handle_align (fragP)
14171 fragS *fragP;
14172 {
14173 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
14174 static char const thumb_noop[2] = { 0xc0, 0x46 };
14175 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
14176 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
14177
14178 int bytes, fix, noop_size;
14179 char * p;
14180 const char * noop;
14181
14182 if (fragP->fr_type != rs_align_code)
14183 return;
14184
14185 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
14186 p = fragP->fr_literal + fragP->fr_fix;
14187 fix = 0;
14188
14189 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
14190 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
14191
14192 if (fragP->tc_frag_data)
14193 {
14194 if (target_big_endian)
14195 noop = thumb_bigend_noop;
14196 else
14197 noop = thumb_noop;
14198 noop_size = sizeof (thumb_noop);
14199 }
14200 else
14201 {
14202 if (target_big_endian)
14203 noop = arm_bigend_noop;
14204 else
14205 noop = arm_noop;
14206 noop_size = sizeof (arm_noop);
14207 }
14208
14209 if (bytes & (noop_size - 1))
14210 {
14211 fix = bytes & (noop_size - 1);
14212 memset (p, 0, fix);
14213 p += fix;
14214 bytes -= fix;
14215 }
14216
14217 while (bytes >= noop_size)
14218 {
14219 memcpy (p, noop, noop_size);
14220 p += noop_size;
14221 bytes -= noop_size;
14222 fix += noop_size;
14223 }
14224
14225 fragP->fr_fix += fix;
14226 fragP->fr_var = noop_size;
14227 }
14228
14229 /* Called from md_do_align. Used to create an alignment
14230 frag in a code section. */
14231
14232 void
14233 arm_frag_align_code (n, max)
14234 int n;
14235 int max;
14236 {
14237 char * p;
14238
14239 /* We assume that there will never be a requirement
14240 to support alignments greater than 32 bytes. */
14241 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
14242 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
14243
14244 p = frag_var (rs_align_code,
14245 MAX_MEM_FOR_RS_ALIGN_CODE,
14246 1,
14247 (relax_substateT) max,
14248 (symbolS *) NULL,
14249 (offsetT) n,
14250 (char *) NULL);
14251 *p = 0;
14252
14253 }
14254
14255 /* Perform target specific initialisation of a frag. */
14256
14257 void
14258 arm_init_frag (fragP)
14259 fragS *fragP;
14260 {
14261 /* Record whether this frag is in an ARM or a THUMB area. */
14262 fragP->tc_frag_data = thumb_mode;
14263 }
This page took 0.439938 seconds and 5 git commands to generate.