Add generic and ARM specific support for half-precision IEEE 754 floating point numbe...
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Toggle value[pos]. */
1013 #define TOGGLE_BIT(value, pos) (value ^ (1 << pos))
1014
1015 /* Pure syntax. */
1016
1017 /* This array holds the chars that always start a comment. If the
1018 pre-processor is disabled, these aren't very useful. */
1019 char arm_comment_chars[] = "@";
1020
1021 /* This array holds the chars that only start a comment at the beginning of
1022 a line. If the line seems to have the form '# 123 filename'
1023 .line and .file directives will appear in the pre-processed output. */
1024 /* Note that input_file.c hand checks for '#' at the beginning of the
1025 first line of the input file. This is because the compiler outputs
1026 #NO_APP at the beginning of its output. */
1027 /* Also note that comments like this one will always work. */
1028 const char line_comment_chars[] = "#";
1029
1030 char arm_line_separator_chars[] = ";";
1031
1032 /* Chars that can be used to separate mant
1033 from exp in floating point numbers. */
1034 const char EXP_CHARS[] = "eE";
1035
1036 /* Chars that mean this number is a floating point constant. */
1037 /* As in 0f12.456 */
1038 /* or 0d1.2345e12 */
1039
1040 const char FLT_CHARS[] = "rRsSfFdDxXeEpPHh";
1041
1042 /* Prefix characters that indicate the start of an immediate
1043 value. */
1044 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1045
1046 /* Separator character handling. */
1047
1048 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1049
1050 enum fp_16bit_format
1051 {
1052 ARM_FP16_FORMAT_IEEE = 0x1,
1053 ARM_FP16_FORMAT_ALTERNATIVE = 0x2,
1054 ARM_FP16_FORMAT_DEFAULT = 0x3
1055 };
1056
1057 static enum fp_16bit_format fp16_format = ARM_FP16_FORMAT_DEFAULT;
1058
1059
1060 static inline int
1061 skip_past_char (char ** str, char c)
1062 {
1063 /* PR gas/14987: Allow for whitespace before the expected character. */
1064 skip_whitespace (*str);
1065
1066 if (**str == c)
1067 {
1068 (*str)++;
1069 return SUCCESS;
1070 }
1071 else
1072 return FAIL;
1073 }
1074
1075 #define skip_past_comma(str) skip_past_char (str, ',')
1076
1077 /* Arithmetic expressions (possibly involving symbols). */
1078
1079 /* Return TRUE if anything in the expression is a bignum. */
1080
1081 static bfd_boolean
1082 walk_no_bignums (symbolS * sp)
1083 {
1084 if (symbol_get_value_expression (sp)->X_op == O_big)
1085 return TRUE;
1086
1087 if (symbol_get_value_expression (sp)->X_add_symbol)
1088 {
1089 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1090 || (symbol_get_value_expression (sp)->X_op_symbol
1091 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1092 }
1093
1094 return FALSE;
1095 }
1096
1097 static bfd_boolean in_my_get_expression = FALSE;
1098
1099 /* Third argument to my_get_expression. */
1100 #define GE_NO_PREFIX 0
1101 #define GE_IMM_PREFIX 1
1102 #define GE_OPT_PREFIX 2
1103 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1104 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1105 #define GE_OPT_PREFIX_BIG 3
1106
1107 static int
1108 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1109 {
1110 char * save_in;
1111
1112 /* In unified syntax, all prefixes are optional. */
1113 if (unified_syntax)
1114 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1115 : GE_OPT_PREFIX;
1116
1117 switch (prefix_mode)
1118 {
1119 case GE_NO_PREFIX: break;
1120 case GE_IMM_PREFIX:
1121 if (!is_immediate_prefix (**str))
1122 {
1123 inst.error = _("immediate expression requires a # prefix");
1124 return FAIL;
1125 }
1126 (*str)++;
1127 break;
1128 case GE_OPT_PREFIX:
1129 case GE_OPT_PREFIX_BIG:
1130 if (is_immediate_prefix (**str))
1131 (*str)++;
1132 break;
1133 default:
1134 abort ();
1135 }
1136
1137 memset (ep, 0, sizeof (expressionS));
1138
1139 save_in = input_line_pointer;
1140 input_line_pointer = *str;
1141 in_my_get_expression = TRUE;
1142 expression (ep);
1143 in_my_get_expression = FALSE;
1144
1145 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1146 {
1147 /* We found a bad or missing expression in md_operand(). */
1148 *str = input_line_pointer;
1149 input_line_pointer = save_in;
1150 if (inst.error == NULL)
1151 inst.error = (ep->X_op == O_absent
1152 ? _("missing expression") :_("bad expression"));
1153 return 1;
1154 }
1155
1156 /* Get rid of any bignums now, so that we don't generate an error for which
1157 we can't establish a line number later on. Big numbers are never valid
1158 in instructions, which is where this routine is always called. */
1159 if (prefix_mode != GE_OPT_PREFIX_BIG
1160 && (ep->X_op == O_big
1161 || (ep->X_add_symbol
1162 && (walk_no_bignums (ep->X_add_symbol)
1163 || (ep->X_op_symbol
1164 && walk_no_bignums (ep->X_op_symbol))))))
1165 {
1166 inst.error = _("invalid constant");
1167 *str = input_line_pointer;
1168 input_line_pointer = save_in;
1169 return 1;
1170 }
1171
1172 *str = input_line_pointer;
1173 input_line_pointer = save_in;
1174 return SUCCESS;
1175 }
1176
1177 /* Turn a string in input_line_pointer into a floating point constant
1178 of type TYPE, and store the appropriate bytes in *LITP. The number
1179 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1180 returned, or NULL on OK.
1181
1182 Note that fp constants aren't represent in the normal way on the ARM.
1183 In big endian mode, things are as expected. However, in little endian
1184 mode fp constants are big-endian word-wise, and little-endian byte-wise
1185 within the words. For example, (double) 1.1 in big endian mode is
1186 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1187 the byte sequence 99 99 f1 3f 9a 99 99 99.
1188
1189 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1190
1191 const char *
1192 md_atof (int type, char * litP, int * sizeP)
1193 {
1194 int prec;
1195 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1196 char *t;
1197 int i;
1198
1199 switch (type)
1200 {
1201 case 'H':
1202 case 'h':
1203 prec = 1;
1204 break;
1205
1206 case 'f':
1207 case 'F':
1208 case 's':
1209 case 'S':
1210 prec = 2;
1211 break;
1212
1213 case 'd':
1214 case 'D':
1215 case 'r':
1216 case 'R':
1217 prec = 4;
1218 break;
1219
1220 case 'x':
1221 case 'X':
1222 prec = 5;
1223 break;
1224
1225 case 'p':
1226 case 'P':
1227 prec = 5;
1228 break;
1229
1230 default:
1231 *sizeP = 0;
1232 return _("Unrecognized or unsupported floating point constant");
1233 }
1234
1235 t = atof_ieee (input_line_pointer, type, words);
1236 if (t)
1237 input_line_pointer = t;
1238 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1239
1240 if (target_big_endian)
1241 {
1242 for (i = 0; i < prec; i++)
1243 {
1244 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1245 litP += sizeof (LITTLENUM_TYPE);
1246 }
1247 }
1248 else
1249 {
1250 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1251 for (i = prec - 1; i >= 0; i--)
1252 {
1253 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1254 litP += sizeof (LITTLENUM_TYPE);
1255 }
1256 else
1257 /* For a 4 byte float the order of elements in `words' is 1 0.
1258 For an 8 byte float the order is 1 0 3 2. */
1259 for (i = 0; i < prec; i += 2)
1260 {
1261 md_number_to_chars (litP, (valueT) words[i + 1],
1262 sizeof (LITTLENUM_TYPE));
1263 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1264 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1265 litP += 2 * sizeof (LITTLENUM_TYPE);
1266 }
1267 }
1268
1269 return NULL;
1270 }
1271
1272 /* We handle all bad expressions here, so that we can report the faulty
1273 instruction in the error message. */
1274
1275 void
1276 md_operand (expressionS * exp)
1277 {
1278 if (in_my_get_expression)
1279 exp->X_op = O_illegal;
1280 }
1281
1282 /* Immediate values. */
1283
1284 #ifdef OBJ_ELF
1285 /* Generic immediate-value read function for use in directives.
1286 Accepts anything that 'expression' can fold to a constant.
1287 *val receives the number. */
1288
1289 static int
1290 immediate_for_directive (int *val)
1291 {
1292 expressionS exp;
1293 exp.X_op = O_illegal;
1294
1295 if (is_immediate_prefix (*input_line_pointer))
1296 {
1297 input_line_pointer++;
1298 expression (&exp);
1299 }
1300
1301 if (exp.X_op != O_constant)
1302 {
1303 as_bad (_("expected #constant"));
1304 ignore_rest_of_line ();
1305 return FAIL;
1306 }
1307 *val = exp.X_add_number;
1308 return SUCCESS;
1309 }
1310 #endif
1311
1312 /* Register parsing. */
1313
1314 /* Generic register parser. CCP points to what should be the
1315 beginning of a register name. If it is indeed a valid register
1316 name, advance CCP over it and return the reg_entry structure;
1317 otherwise return NULL. Does not issue diagnostics. */
1318
1319 static struct reg_entry *
1320 arm_reg_parse_multi (char **ccp)
1321 {
1322 char *start = *ccp;
1323 char *p;
1324 struct reg_entry *reg;
1325
1326 skip_whitespace (start);
1327
1328 #ifdef REGISTER_PREFIX
1329 if (*start != REGISTER_PREFIX)
1330 return NULL;
1331 start++;
1332 #endif
1333 #ifdef OPTIONAL_REGISTER_PREFIX
1334 if (*start == OPTIONAL_REGISTER_PREFIX)
1335 start++;
1336 #endif
1337
1338 p = start;
1339 if (!ISALPHA (*p) || !is_name_beginner (*p))
1340 return NULL;
1341
1342 do
1343 p++;
1344 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1345
1346 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1347
1348 if (!reg)
1349 return NULL;
1350
1351 *ccp = p;
1352 return reg;
1353 }
1354
1355 static int
1356 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1357 enum arm_reg_type type)
1358 {
1359 /* Alternative syntaxes are accepted for a few register classes. */
1360 switch (type)
1361 {
1362 case REG_TYPE_MVF:
1363 case REG_TYPE_MVD:
1364 case REG_TYPE_MVFX:
1365 case REG_TYPE_MVDX:
1366 /* Generic coprocessor register names are allowed for these. */
1367 if (reg && reg->type == REG_TYPE_CN)
1368 return reg->number;
1369 break;
1370
1371 case REG_TYPE_CP:
1372 /* For backward compatibility, a bare number is valid here. */
1373 {
1374 unsigned long processor = strtoul (start, ccp, 10);
1375 if (*ccp != start && processor <= 15)
1376 return processor;
1377 }
1378 /* Fall through. */
1379
1380 case REG_TYPE_MMXWC:
1381 /* WC includes WCG. ??? I'm not sure this is true for all
1382 instructions that take WC registers. */
1383 if (reg && reg->type == REG_TYPE_MMXWCG)
1384 return reg->number;
1385 break;
1386
1387 default:
1388 break;
1389 }
1390
1391 return FAIL;
1392 }
1393
1394 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1395 return value is the register number or FAIL. */
1396
1397 static int
1398 arm_reg_parse (char **ccp, enum arm_reg_type type)
1399 {
1400 char *start = *ccp;
1401 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1402 int ret;
1403
1404 /* Do not allow a scalar (reg+index) to parse as a register. */
1405 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1406 return FAIL;
1407
1408 if (reg && reg->type == type)
1409 return reg->number;
1410
1411 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1412 return ret;
1413
1414 *ccp = start;
1415 return FAIL;
1416 }
1417
1418 /* Parse a Neon type specifier. *STR should point at the leading '.'
1419 character. Does no verification at this stage that the type fits the opcode
1420 properly. E.g.,
1421
1422 .i32.i32.s16
1423 .s32.f32
1424 .u16
1425
1426 Can all be legally parsed by this function.
1427
1428 Fills in neon_type struct pointer with parsed information, and updates STR
1429 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1430 type, FAIL if not. */
1431
1432 static int
1433 parse_neon_type (struct neon_type *type, char **str)
1434 {
1435 char *ptr = *str;
1436
1437 if (type)
1438 type->elems = 0;
1439
1440 while (type->elems < NEON_MAX_TYPE_ELS)
1441 {
1442 enum neon_el_type thistype = NT_untyped;
1443 unsigned thissize = -1u;
1444
1445 if (*ptr != '.')
1446 break;
1447
1448 ptr++;
1449
1450 /* Just a size without an explicit type. */
1451 if (ISDIGIT (*ptr))
1452 goto parsesize;
1453
1454 switch (TOLOWER (*ptr))
1455 {
1456 case 'i': thistype = NT_integer; break;
1457 case 'f': thistype = NT_float; break;
1458 case 'p': thistype = NT_poly; break;
1459 case 's': thistype = NT_signed; break;
1460 case 'u': thistype = NT_unsigned; break;
1461 case 'd':
1462 thistype = NT_float;
1463 thissize = 64;
1464 ptr++;
1465 goto done;
1466 default:
1467 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1468 return FAIL;
1469 }
1470
1471 ptr++;
1472
1473 /* .f is an abbreviation for .f32. */
1474 if (thistype == NT_float && !ISDIGIT (*ptr))
1475 thissize = 32;
1476 else
1477 {
1478 parsesize:
1479 thissize = strtoul (ptr, &ptr, 10);
1480
1481 if (thissize != 8 && thissize != 16 && thissize != 32
1482 && thissize != 64)
1483 {
1484 as_bad (_("bad size %d in type specifier"), thissize);
1485 return FAIL;
1486 }
1487 }
1488
1489 done:
1490 if (type)
1491 {
1492 type->el[type->elems].type = thistype;
1493 type->el[type->elems].size = thissize;
1494 type->elems++;
1495 }
1496 }
1497
1498 /* Empty/missing type is not a successful parse. */
1499 if (type->elems == 0)
1500 return FAIL;
1501
1502 *str = ptr;
1503
1504 return SUCCESS;
1505 }
1506
1507 /* Errors may be set multiple times during parsing or bit encoding
1508 (particularly in the Neon bits), but usually the earliest error which is set
1509 will be the most meaningful. Avoid overwriting it with later (cascading)
1510 errors by calling this function. */
1511
1512 static void
1513 first_error (const char *err)
1514 {
1515 if (!inst.error)
1516 inst.error = err;
1517 }
1518
1519 /* Parse a single type, e.g. ".s32", leading period included. */
1520 static int
1521 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1522 {
1523 char *str = *ccp;
1524 struct neon_type optype;
1525
1526 if (*str == '.')
1527 {
1528 if (parse_neon_type (&optype, &str) == SUCCESS)
1529 {
1530 if (optype.elems == 1)
1531 *vectype = optype.el[0];
1532 else
1533 {
1534 first_error (_("only one type should be specified for operand"));
1535 return FAIL;
1536 }
1537 }
1538 else
1539 {
1540 first_error (_("vector type expected"));
1541 return FAIL;
1542 }
1543 }
1544 else
1545 return FAIL;
1546
1547 *ccp = str;
1548
1549 return SUCCESS;
1550 }
1551
1552 /* Special meanings for indices (which have a range of 0-7), which will fit into
1553 a 4-bit integer. */
1554
1555 #define NEON_ALL_LANES 15
1556 #define NEON_INTERLEAVE_LANES 14
1557
1558 /* Record a use of the given feature. */
1559 static void
1560 record_feature_use (const arm_feature_set *feature)
1561 {
1562 if (thumb_mode)
1563 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1564 else
1565 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1566 }
1567
1568 /* If the given feature available in the selected CPU, mark it as used.
1569 Returns TRUE iff feature is available. */
1570 static bfd_boolean
1571 mark_feature_used (const arm_feature_set *feature)
1572 {
1573
1574 /* Do not support the use of MVE only instructions when in auto-detection or
1575 -march=all. */
1576 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1577 && ARM_CPU_IS_ANY (cpu_variant))
1578 {
1579 first_error (BAD_MVE_AUTO);
1580 return FALSE;
1581 }
1582 /* Ensure the option is valid on the current architecture. */
1583 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1584 return FALSE;
1585
1586 /* Add the appropriate architecture feature for the barrier option used.
1587 */
1588 record_feature_use (feature);
1589
1590 return TRUE;
1591 }
1592
1593 /* Parse either a register or a scalar, with an optional type. Return the
1594 register number, and optionally fill in the actual type of the register
1595 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1596 type/index information in *TYPEINFO. */
1597
1598 static int
1599 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1600 enum arm_reg_type *rtype,
1601 struct neon_typed_alias *typeinfo)
1602 {
1603 char *str = *ccp;
1604 struct reg_entry *reg = arm_reg_parse_multi (&str);
1605 struct neon_typed_alias atype;
1606 struct neon_type_el parsetype;
1607
1608 atype.defined = 0;
1609 atype.index = -1;
1610 atype.eltype.type = NT_invtype;
1611 atype.eltype.size = -1;
1612
1613 /* Try alternate syntax for some types of register. Note these are mutually
1614 exclusive with the Neon syntax extensions. */
1615 if (reg == NULL)
1616 {
1617 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1618 if (altreg != FAIL)
1619 *ccp = str;
1620 if (typeinfo)
1621 *typeinfo = atype;
1622 return altreg;
1623 }
1624
1625 /* Undo polymorphism when a set of register types may be accepted. */
1626 if ((type == REG_TYPE_NDQ
1627 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1628 || (type == REG_TYPE_VFSD
1629 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1630 || (type == REG_TYPE_NSDQ
1631 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1632 || reg->type == REG_TYPE_NQ))
1633 || (type == REG_TYPE_NSD
1634 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1635 || (type == REG_TYPE_MMXWC
1636 && (reg->type == REG_TYPE_MMXWCG)))
1637 type = (enum arm_reg_type) reg->type;
1638
1639 if (type == REG_TYPE_MQ)
1640 {
1641 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1642 return FAIL;
1643
1644 if (!reg || reg->type != REG_TYPE_NQ)
1645 return FAIL;
1646
1647 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1648 {
1649 first_error (_("expected MVE register [q0..q7]"));
1650 return FAIL;
1651 }
1652 type = REG_TYPE_NQ;
1653 }
1654 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1655 && (type == REG_TYPE_NQ))
1656 return FAIL;
1657
1658
1659 if (type != reg->type)
1660 return FAIL;
1661
1662 if (reg->neon)
1663 atype = *reg->neon;
1664
1665 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1666 {
1667 if ((atype.defined & NTA_HASTYPE) != 0)
1668 {
1669 first_error (_("can't redefine type for operand"));
1670 return FAIL;
1671 }
1672 atype.defined |= NTA_HASTYPE;
1673 atype.eltype = parsetype;
1674 }
1675
1676 if (skip_past_char (&str, '[') == SUCCESS)
1677 {
1678 if (type != REG_TYPE_VFD
1679 && !(type == REG_TYPE_VFS
1680 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1681 && !(type == REG_TYPE_NQ
1682 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1683 {
1684 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1685 first_error (_("only D and Q registers may be indexed"));
1686 else
1687 first_error (_("only D registers may be indexed"));
1688 return FAIL;
1689 }
1690
1691 if ((atype.defined & NTA_HASINDEX) != 0)
1692 {
1693 first_error (_("can't change index for operand"));
1694 return FAIL;
1695 }
1696
1697 atype.defined |= NTA_HASINDEX;
1698
1699 if (skip_past_char (&str, ']') == SUCCESS)
1700 atype.index = NEON_ALL_LANES;
1701 else
1702 {
1703 expressionS exp;
1704
1705 my_get_expression (&exp, &str, GE_NO_PREFIX);
1706
1707 if (exp.X_op != O_constant)
1708 {
1709 first_error (_("constant expression required"));
1710 return FAIL;
1711 }
1712
1713 if (skip_past_char (&str, ']') == FAIL)
1714 return FAIL;
1715
1716 atype.index = exp.X_add_number;
1717 }
1718 }
1719
1720 if (typeinfo)
1721 *typeinfo = atype;
1722
1723 if (rtype)
1724 *rtype = type;
1725
1726 *ccp = str;
1727
1728 return reg->number;
1729 }
1730
1731 /* Like arm_reg_parse, but also allow the following extra features:
1732 - If RTYPE is non-zero, return the (possibly restricted) type of the
1733 register (e.g. Neon double or quad reg when either has been requested).
1734 - If this is a Neon vector type with additional type information, fill
1735 in the struct pointed to by VECTYPE (if non-NULL).
1736 This function will fault on encountering a scalar. */
1737
1738 static int
1739 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1740 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1741 {
1742 struct neon_typed_alias atype;
1743 char *str = *ccp;
1744 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1745
1746 if (reg == FAIL)
1747 return FAIL;
1748
1749 /* Do not allow regname(... to parse as a register. */
1750 if (*str == '(')
1751 return FAIL;
1752
1753 /* Do not allow a scalar (reg+index) to parse as a register. */
1754 if ((atype.defined & NTA_HASINDEX) != 0)
1755 {
1756 first_error (_("register operand expected, but got scalar"));
1757 return FAIL;
1758 }
1759
1760 if (vectype)
1761 *vectype = atype.eltype;
1762
1763 *ccp = str;
1764
1765 return reg;
1766 }
1767
1768 #define NEON_SCALAR_REG(X) ((X) >> 4)
1769 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1770
1771 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1772 have enough information to be able to do a good job bounds-checking. So, we
1773 just do easy checks here, and do further checks later. */
1774
1775 static int
1776 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1777 arm_reg_type reg_type)
1778 {
1779 int reg;
1780 char *str = *ccp;
1781 struct neon_typed_alias atype;
1782 unsigned reg_size;
1783
1784 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1785
1786 switch (reg_type)
1787 {
1788 case REG_TYPE_VFS:
1789 reg_size = 32;
1790 break;
1791 case REG_TYPE_VFD:
1792 reg_size = 64;
1793 break;
1794 case REG_TYPE_MQ:
1795 reg_size = 128;
1796 break;
1797 default:
1798 gas_assert (0);
1799 return FAIL;
1800 }
1801
1802 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1803 return FAIL;
1804
1805 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1806 {
1807 first_error (_("scalar must have an index"));
1808 return FAIL;
1809 }
1810 else if (atype.index >= reg_size / elsize)
1811 {
1812 first_error (_("scalar index out of range"));
1813 return FAIL;
1814 }
1815
1816 if (type)
1817 *type = atype.eltype;
1818
1819 *ccp = str;
1820
1821 return reg * 16 + atype.index;
1822 }
1823
1824 /* Types of registers in a list. */
1825
1826 enum reg_list_els
1827 {
1828 REGLIST_RN,
1829 REGLIST_CLRM,
1830 REGLIST_VFP_S,
1831 REGLIST_VFP_S_VPR,
1832 REGLIST_VFP_D,
1833 REGLIST_VFP_D_VPR,
1834 REGLIST_NEON_D
1835 };
1836
1837 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1838
1839 static long
1840 parse_reg_list (char ** strp, enum reg_list_els etype)
1841 {
1842 char *str = *strp;
1843 long range = 0;
1844 int another_range;
1845
1846 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1847
1848 /* We come back here if we get ranges concatenated by '+' or '|'. */
1849 do
1850 {
1851 skip_whitespace (str);
1852
1853 another_range = 0;
1854
1855 if (*str == '{')
1856 {
1857 int in_range = 0;
1858 int cur_reg = -1;
1859
1860 str++;
1861 do
1862 {
1863 int reg;
1864 const char apsr_str[] = "apsr";
1865 int apsr_str_len = strlen (apsr_str);
1866
1867 reg = arm_reg_parse (&str, REGLIST_RN);
1868 if (etype == REGLIST_CLRM)
1869 {
1870 if (reg == REG_SP || reg == REG_PC)
1871 reg = FAIL;
1872 else if (reg == FAIL
1873 && !strncasecmp (str, apsr_str, apsr_str_len)
1874 && !ISALPHA (*(str + apsr_str_len)))
1875 {
1876 reg = 15;
1877 str += apsr_str_len;
1878 }
1879
1880 if (reg == FAIL)
1881 {
1882 first_error (_("r0-r12, lr or APSR expected"));
1883 return FAIL;
1884 }
1885 }
1886 else /* etype == REGLIST_RN. */
1887 {
1888 if (reg == FAIL)
1889 {
1890 first_error (_(reg_expected_msgs[REGLIST_RN]));
1891 return FAIL;
1892 }
1893 }
1894
1895 if (in_range)
1896 {
1897 int i;
1898
1899 if (reg <= cur_reg)
1900 {
1901 first_error (_("bad range in register list"));
1902 return FAIL;
1903 }
1904
1905 for (i = cur_reg + 1; i < reg; i++)
1906 {
1907 if (range & (1 << i))
1908 as_tsktsk
1909 (_("Warning: duplicated register (r%d) in register list"),
1910 i);
1911 else
1912 range |= 1 << i;
1913 }
1914 in_range = 0;
1915 }
1916
1917 if (range & (1 << reg))
1918 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1919 reg);
1920 else if (reg <= cur_reg)
1921 as_tsktsk (_("Warning: register range not in ascending order"));
1922
1923 range |= 1 << reg;
1924 cur_reg = reg;
1925 }
1926 while (skip_past_comma (&str) != FAIL
1927 || (in_range = 1, *str++ == '-'));
1928 str--;
1929
1930 if (skip_past_char (&str, '}') == FAIL)
1931 {
1932 first_error (_("missing `}'"));
1933 return FAIL;
1934 }
1935 }
1936 else if (etype == REGLIST_RN)
1937 {
1938 expressionS exp;
1939
1940 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1941 return FAIL;
1942
1943 if (exp.X_op == O_constant)
1944 {
1945 if (exp.X_add_number
1946 != (exp.X_add_number & 0x0000ffff))
1947 {
1948 inst.error = _("invalid register mask");
1949 return FAIL;
1950 }
1951
1952 if ((range & exp.X_add_number) != 0)
1953 {
1954 int regno = range & exp.X_add_number;
1955
1956 regno &= -regno;
1957 regno = (1 << regno) - 1;
1958 as_tsktsk
1959 (_("Warning: duplicated register (r%d) in register list"),
1960 regno);
1961 }
1962
1963 range |= exp.X_add_number;
1964 }
1965 else
1966 {
1967 if (inst.relocs[0].type != 0)
1968 {
1969 inst.error = _("expression too complex");
1970 return FAIL;
1971 }
1972
1973 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1974 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1975 inst.relocs[0].pc_rel = 0;
1976 }
1977 }
1978
1979 if (*str == '|' || *str == '+')
1980 {
1981 str++;
1982 another_range = 1;
1983 }
1984 }
1985 while (another_range);
1986
1987 *strp = str;
1988 return range;
1989 }
1990
1991 /* Parse a VFP register list. If the string is invalid return FAIL.
1992 Otherwise return the number of registers, and set PBASE to the first
1993 register. Parses registers of type ETYPE.
1994 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1995 - Q registers can be used to specify pairs of D registers
1996 - { } can be omitted from around a singleton register list
1997 FIXME: This is not implemented, as it would require backtracking in
1998 some cases, e.g.:
1999 vtbl.8 d3,d4,d5
2000 This could be done (the meaning isn't really ambiguous), but doesn't
2001 fit in well with the current parsing framework.
2002 - 32 D registers may be used (also true for VFPv3).
2003 FIXME: Types are ignored in these register lists, which is probably a
2004 bug. */
2005
2006 static int
2007 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
2008 bfd_boolean *partial_match)
2009 {
2010 char *str = *ccp;
2011 int base_reg;
2012 int new_base;
2013 enum arm_reg_type regtype = (enum arm_reg_type) 0;
2014 int max_regs = 0;
2015 int count = 0;
2016 int warned = 0;
2017 unsigned long mask = 0;
2018 int i;
2019 bfd_boolean vpr_seen = FALSE;
2020 bfd_boolean expect_vpr =
2021 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2022
2023 if (skip_past_char (&str, '{') == FAIL)
2024 {
2025 inst.error = _("expecting {");
2026 return FAIL;
2027 }
2028
2029 switch (etype)
2030 {
2031 case REGLIST_VFP_S:
2032 case REGLIST_VFP_S_VPR:
2033 regtype = REG_TYPE_VFS;
2034 max_regs = 32;
2035 break;
2036
2037 case REGLIST_VFP_D:
2038 case REGLIST_VFP_D_VPR:
2039 regtype = REG_TYPE_VFD;
2040 break;
2041
2042 case REGLIST_NEON_D:
2043 regtype = REG_TYPE_NDQ;
2044 break;
2045
2046 default:
2047 gas_assert (0);
2048 }
2049
2050 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2051 {
2052 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2053 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2054 {
2055 max_regs = 32;
2056 if (thumb_mode)
2057 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2058 fpu_vfp_ext_d32);
2059 else
2060 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2061 fpu_vfp_ext_d32);
2062 }
2063 else
2064 max_regs = 16;
2065 }
2066
2067 base_reg = max_regs;
2068 *partial_match = FALSE;
2069
2070 do
2071 {
2072 int setmask = 1, addregs = 1;
2073 const char vpr_str[] = "vpr";
2074 int vpr_str_len = strlen (vpr_str);
2075
2076 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2077
2078 if (expect_vpr)
2079 {
2080 if (new_base == FAIL
2081 && !strncasecmp (str, vpr_str, vpr_str_len)
2082 && !ISALPHA (*(str + vpr_str_len))
2083 && !vpr_seen)
2084 {
2085 vpr_seen = TRUE;
2086 str += vpr_str_len;
2087 if (count == 0)
2088 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2089 }
2090 else if (vpr_seen)
2091 {
2092 first_error (_("VPR expected last"));
2093 return FAIL;
2094 }
2095 else if (new_base == FAIL)
2096 {
2097 if (regtype == REG_TYPE_VFS)
2098 first_error (_("VFP single precision register or VPR "
2099 "expected"));
2100 else /* regtype == REG_TYPE_VFD. */
2101 first_error (_("VFP/Neon double precision register or VPR "
2102 "expected"));
2103 return FAIL;
2104 }
2105 }
2106 else if (new_base == FAIL)
2107 {
2108 first_error (_(reg_expected_msgs[regtype]));
2109 return FAIL;
2110 }
2111
2112 *partial_match = TRUE;
2113 if (vpr_seen)
2114 continue;
2115
2116 if (new_base >= max_regs)
2117 {
2118 first_error (_("register out of range in list"));
2119 return FAIL;
2120 }
2121
2122 /* Note: a value of 2 * n is returned for the register Q<n>. */
2123 if (regtype == REG_TYPE_NQ)
2124 {
2125 setmask = 3;
2126 addregs = 2;
2127 }
2128
2129 if (new_base < base_reg)
2130 base_reg = new_base;
2131
2132 if (mask & (setmask << new_base))
2133 {
2134 first_error (_("invalid register list"));
2135 return FAIL;
2136 }
2137
2138 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2139 {
2140 as_tsktsk (_("register list not in ascending order"));
2141 warned = 1;
2142 }
2143
2144 mask |= setmask << new_base;
2145 count += addregs;
2146
2147 if (*str == '-') /* We have the start of a range expression */
2148 {
2149 int high_range;
2150
2151 str++;
2152
2153 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2154 == FAIL)
2155 {
2156 inst.error = gettext (reg_expected_msgs[regtype]);
2157 return FAIL;
2158 }
2159
2160 if (high_range >= max_regs)
2161 {
2162 first_error (_("register out of range in list"));
2163 return FAIL;
2164 }
2165
2166 if (regtype == REG_TYPE_NQ)
2167 high_range = high_range + 1;
2168
2169 if (high_range <= new_base)
2170 {
2171 inst.error = _("register range not in ascending order");
2172 return FAIL;
2173 }
2174
2175 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2176 {
2177 if (mask & (setmask << new_base))
2178 {
2179 inst.error = _("invalid register list");
2180 return FAIL;
2181 }
2182
2183 mask |= setmask << new_base;
2184 count += addregs;
2185 }
2186 }
2187 }
2188 while (skip_past_comma (&str) != FAIL);
2189
2190 str++;
2191
2192 /* Sanity check -- should have raised a parse error above. */
2193 if ((!vpr_seen && count == 0) || count > max_regs)
2194 abort ();
2195
2196 *pbase = base_reg;
2197
2198 if (expect_vpr && !vpr_seen)
2199 {
2200 first_error (_("VPR expected last"));
2201 return FAIL;
2202 }
2203
2204 /* Final test -- the registers must be consecutive. */
2205 mask >>= base_reg;
2206 for (i = 0; i < count; i++)
2207 {
2208 if ((mask & (1u << i)) == 0)
2209 {
2210 inst.error = _("non-contiguous register range");
2211 return FAIL;
2212 }
2213 }
2214
2215 *ccp = str;
2216
2217 return count;
2218 }
2219
2220 /* True if two alias types are the same. */
2221
2222 static bfd_boolean
2223 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2224 {
2225 if (!a && !b)
2226 return TRUE;
2227
2228 if (!a || !b)
2229 return FALSE;
2230
2231 if (a->defined != b->defined)
2232 return FALSE;
2233
2234 if ((a->defined & NTA_HASTYPE) != 0
2235 && (a->eltype.type != b->eltype.type
2236 || a->eltype.size != b->eltype.size))
2237 return FALSE;
2238
2239 if ((a->defined & NTA_HASINDEX) != 0
2240 && (a->index != b->index))
2241 return FALSE;
2242
2243 return TRUE;
2244 }
2245
2246 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2247 The base register is put in *PBASE.
2248 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2249 the return value.
2250 The register stride (minus one) is put in bit 4 of the return value.
2251 Bits [6:5] encode the list length (minus one).
2252 The type of the list elements is put in *ELTYPE, if non-NULL. */
2253
2254 #define NEON_LANE(X) ((X) & 0xf)
2255 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2256 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2257
2258 static int
2259 parse_neon_el_struct_list (char **str, unsigned *pbase,
2260 int mve,
2261 struct neon_type_el *eltype)
2262 {
2263 char *ptr = *str;
2264 int base_reg = -1;
2265 int reg_incr = -1;
2266 int count = 0;
2267 int lane = -1;
2268 int leading_brace = 0;
2269 enum arm_reg_type rtype = REG_TYPE_NDQ;
2270 const char *const incr_error = mve ? _("register stride must be 1") :
2271 _("register stride must be 1 or 2");
2272 const char *const type_error = _("mismatched element/structure types in list");
2273 struct neon_typed_alias firsttype;
2274 firsttype.defined = 0;
2275 firsttype.eltype.type = NT_invtype;
2276 firsttype.eltype.size = -1;
2277 firsttype.index = -1;
2278
2279 if (skip_past_char (&ptr, '{') == SUCCESS)
2280 leading_brace = 1;
2281
2282 do
2283 {
2284 struct neon_typed_alias atype;
2285 if (mve)
2286 rtype = REG_TYPE_MQ;
2287 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2288
2289 if (getreg == FAIL)
2290 {
2291 first_error (_(reg_expected_msgs[rtype]));
2292 return FAIL;
2293 }
2294
2295 if (base_reg == -1)
2296 {
2297 base_reg = getreg;
2298 if (rtype == REG_TYPE_NQ)
2299 {
2300 reg_incr = 1;
2301 }
2302 firsttype = atype;
2303 }
2304 else if (reg_incr == -1)
2305 {
2306 reg_incr = getreg - base_reg;
2307 if (reg_incr < 1 || reg_incr > 2)
2308 {
2309 first_error (_(incr_error));
2310 return FAIL;
2311 }
2312 }
2313 else if (getreg != base_reg + reg_incr * count)
2314 {
2315 first_error (_(incr_error));
2316 return FAIL;
2317 }
2318
2319 if (! neon_alias_types_same (&atype, &firsttype))
2320 {
2321 first_error (_(type_error));
2322 return FAIL;
2323 }
2324
2325 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2326 modes. */
2327 if (ptr[0] == '-')
2328 {
2329 struct neon_typed_alias htype;
2330 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2331 if (lane == -1)
2332 lane = NEON_INTERLEAVE_LANES;
2333 else if (lane != NEON_INTERLEAVE_LANES)
2334 {
2335 first_error (_(type_error));
2336 return FAIL;
2337 }
2338 if (reg_incr == -1)
2339 reg_incr = 1;
2340 else if (reg_incr != 1)
2341 {
2342 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2343 return FAIL;
2344 }
2345 ptr++;
2346 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2347 if (hireg == FAIL)
2348 {
2349 first_error (_(reg_expected_msgs[rtype]));
2350 return FAIL;
2351 }
2352 if (! neon_alias_types_same (&htype, &firsttype))
2353 {
2354 first_error (_(type_error));
2355 return FAIL;
2356 }
2357 count += hireg + dregs - getreg;
2358 continue;
2359 }
2360
2361 /* If we're using Q registers, we can't use [] or [n] syntax. */
2362 if (rtype == REG_TYPE_NQ)
2363 {
2364 count += 2;
2365 continue;
2366 }
2367
2368 if ((atype.defined & NTA_HASINDEX) != 0)
2369 {
2370 if (lane == -1)
2371 lane = atype.index;
2372 else if (lane != atype.index)
2373 {
2374 first_error (_(type_error));
2375 return FAIL;
2376 }
2377 }
2378 else if (lane == -1)
2379 lane = NEON_INTERLEAVE_LANES;
2380 else if (lane != NEON_INTERLEAVE_LANES)
2381 {
2382 first_error (_(type_error));
2383 return FAIL;
2384 }
2385 count++;
2386 }
2387 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2388
2389 /* No lane set by [x]. We must be interleaving structures. */
2390 if (lane == -1)
2391 lane = NEON_INTERLEAVE_LANES;
2392
2393 /* Sanity check. */
2394 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2395 || (count > 1 && reg_incr == -1))
2396 {
2397 first_error (_("error parsing element/structure list"));
2398 return FAIL;
2399 }
2400
2401 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2402 {
2403 first_error (_("expected }"));
2404 return FAIL;
2405 }
2406
2407 if (reg_incr == -1)
2408 reg_incr = 1;
2409
2410 if (eltype)
2411 *eltype = firsttype.eltype;
2412
2413 *pbase = base_reg;
2414 *str = ptr;
2415
2416 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2417 }
2418
2419 /* Parse an explicit relocation suffix on an expression. This is
2420 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2421 arm_reloc_hsh contains no entries, so this function can only
2422 succeed if there is no () after the word. Returns -1 on error,
2423 BFD_RELOC_UNUSED if there wasn't any suffix. */
2424
2425 static int
2426 parse_reloc (char **str)
2427 {
2428 struct reloc_entry *r;
2429 char *p, *q;
2430
2431 if (**str != '(')
2432 return BFD_RELOC_UNUSED;
2433
2434 p = *str + 1;
2435 q = p;
2436
2437 while (*q && *q != ')' && *q != ',')
2438 q++;
2439 if (*q != ')')
2440 return -1;
2441
2442 if ((r = (struct reloc_entry *)
2443 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2444 return -1;
2445
2446 *str = q + 1;
2447 return r->reloc;
2448 }
2449
2450 /* Directives: register aliases. */
2451
2452 static struct reg_entry *
2453 insert_reg_alias (char *str, unsigned number, int type)
2454 {
2455 struct reg_entry *new_reg;
2456 const char *name;
2457
2458 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2459 {
2460 if (new_reg->builtin)
2461 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2462
2463 /* Only warn about a redefinition if it's not defined as the
2464 same register. */
2465 else if (new_reg->number != number || new_reg->type != type)
2466 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2467
2468 return NULL;
2469 }
2470
2471 name = xstrdup (str);
2472 new_reg = XNEW (struct reg_entry);
2473
2474 new_reg->name = name;
2475 new_reg->number = number;
2476 new_reg->type = type;
2477 new_reg->builtin = FALSE;
2478 new_reg->neon = NULL;
2479
2480 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2481 abort ();
2482
2483 return new_reg;
2484 }
2485
2486 static void
2487 insert_neon_reg_alias (char *str, int number, int type,
2488 struct neon_typed_alias *atype)
2489 {
2490 struct reg_entry *reg = insert_reg_alias (str, number, type);
2491
2492 if (!reg)
2493 {
2494 first_error (_("attempt to redefine typed alias"));
2495 return;
2496 }
2497
2498 if (atype)
2499 {
2500 reg->neon = XNEW (struct neon_typed_alias);
2501 *reg->neon = *atype;
2502 }
2503 }
2504
2505 /* Look for the .req directive. This is of the form:
2506
2507 new_register_name .req existing_register_name
2508
2509 If we find one, or if it looks sufficiently like one that we want to
2510 handle any error here, return TRUE. Otherwise return FALSE. */
2511
2512 static bfd_boolean
2513 create_register_alias (char * newname, char *p)
2514 {
2515 struct reg_entry *old;
2516 char *oldname, *nbuf;
2517 size_t nlen;
2518
2519 /* The input scrubber ensures that whitespace after the mnemonic is
2520 collapsed to single spaces. */
2521 oldname = p;
2522 if (strncmp (oldname, " .req ", 6) != 0)
2523 return FALSE;
2524
2525 oldname += 6;
2526 if (*oldname == '\0')
2527 return FALSE;
2528
2529 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2530 if (!old)
2531 {
2532 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2533 return TRUE;
2534 }
2535
2536 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2537 the desired alias name, and p points to its end. If not, then
2538 the desired alias name is in the global original_case_string. */
2539 #ifdef TC_CASE_SENSITIVE
2540 nlen = p - newname;
2541 #else
2542 newname = original_case_string;
2543 nlen = strlen (newname);
2544 #endif
2545
2546 nbuf = xmemdup0 (newname, nlen);
2547
2548 /* Create aliases under the new name as stated; an all-lowercase
2549 version of the new name; and an all-uppercase version of the new
2550 name. */
2551 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2552 {
2553 for (p = nbuf; *p; p++)
2554 *p = TOUPPER (*p);
2555
2556 if (strncmp (nbuf, newname, nlen))
2557 {
2558 /* If this attempt to create an additional alias fails, do not bother
2559 trying to create the all-lower case alias. We will fail and issue
2560 a second, duplicate error message. This situation arises when the
2561 programmer does something like:
2562 foo .req r0
2563 Foo .req r1
2564 The second .req creates the "Foo" alias but then fails to create
2565 the artificial FOO alias because it has already been created by the
2566 first .req. */
2567 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2568 {
2569 free (nbuf);
2570 return TRUE;
2571 }
2572 }
2573
2574 for (p = nbuf; *p; p++)
2575 *p = TOLOWER (*p);
2576
2577 if (strncmp (nbuf, newname, nlen))
2578 insert_reg_alias (nbuf, old->number, old->type);
2579 }
2580
2581 free (nbuf);
2582 return TRUE;
2583 }
2584
2585 /* Create a Neon typed/indexed register alias using directives, e.g.:
2586 X .dn d5.s32[1]
2587 Y .qn 6.s16
2588 Z .dn d7
2589 T .dn Z[0]
2590 These typed registers can be used instead of the types specified after the
2591 Neon mnemonic, so long as all operands given have types. Types can also be
2592 specified directly, e.g.:
2593 vadd d0.s32, d1.s32, d2.s32 */
2594
2595 static bfd_boolean
2596 create_neon_reg_alias (char *newname, char *p)
2597 {
2598 enum arm_reg_type basetype;
2599 struct reg_entry *basereg;
2600 struct reg_entry mybasereg;
2601 struct neon_type ntype;
2602 struct neon_typed_alias typeinfo;
2603 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2604 int namelen;
2605
2606 typeinfo.defined = 0;
2607 typeinfo.eltype.type = NT_invtype;
2608 typeinfo.eltype.size = -1;
2609 typeinfo.index = -1;
2610
2611 nameend = p;
2612
2613 if (strncmp (p, " .dn ", 5) == 0)
2614 basetype = REG_TYPE_VFD;
2615 else if (strncmp (p, " .qn ", 5) == 0)
2616 basetype = REG_TYPE_NQ;
2617 else
2618 return FALSE;
2619
2620 p += 5;
2621
2622 if (*p == '\0')
2623 return FALSE;
2624
2625 basereg = arm_reg_parse_multi (&p);
2626
2627 if (basereg && basereg->type != basetype)
2628 {
2629 as_bad (_("bad type for register"));
2630 return FALSE;
2631 }
2632
2633 if (basereg == NULL)
2634 {
2635 expressionS exp;
2636 /* Try parsing as an integer. */
2637 my_get_expression (&exp, &p, GE_NO_PREFIX);
2638 if (exp.X_op != O_constant)
2639 {
2640 as_bad (_("expression must be constant"));
2641 return FALSE;
2642 }
2643 basereg = &mybasereg;
2644 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2645 : exp.X_add_number;
2646 basereg->neon = 0;
2647 }
2648
2649 if (basereg->neon)
2650 typeinfo = *basereg->neon;
2651
2652 if (parse_neon_type (&ntype, &p) == SUCCESS)
2653 {
2654 /* We got a type. */
2655 if (typeinfo.defined & NTA_HASTYPE)
2656 {
2657 as_bad (_("can't redefine the type of a register alias"));
2658 return FALSE;
2659 }
2660
2661 typeinfo.defined |= NTA_HASTYPE;
2662 if (ntype.elems != 1)
2663 {
2664 as_bad (_("you must specify a single type only"));
2665 return FALSE;
2666 }
2667 typeinfo.eltype = ntype.el[0];
2668 }
2669
2670 if (skip_past_char (&p, '[') == SUCCESS)
2671 {
2672 expressionS exp;
2673 /* We got a scalar index. */
2674
2675 if (typeinfo.defined & NTA_HASINDEX)
2676 {
2677 as_bad (_("can't redefine the index of a scalar alias"));
2678 return FALSE;
2679 }
2680
2681 my_get_expression (&exp, &p, GE_NO_PREFIX);
2682
2683 if (exp.X_op != O_constant)
2684 {
2685 as_bad (_("scalar index must be constant"));
2686 return FALSE;
2687 }
2688
2689 typeinfo.defined |= NTA_HASINDEX;
2690 typeinfo.index = exp.X_add_number;
2691
2692 if (skip_past_char (&p, ']') == FAIL)
2693 {
2694 as_bad (_("expecting ]"));
2695 return FALSE;
2696 }
2697 }
2698
2699 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2700 the desired alias name, and p points to its end. If not, then
2701 the desired alias name is in the global original_case_string. */
2702 #ifdef TC_CASE_SENSITIVE
2703 namelen = nameend - newname;
2704 #else
2705 newname = original_case_string;
2706 namelen = strlen (newname);
2707 #endif
2708
2709 namebuf = xmemdup0 (newname, namelen);
2710
2711 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2712 typeinfo.defined != 0 ? &typeinfo : NULL);
2713
2714 /* Insert name in all uppercase. */
2715 for (p = namebuf; *p; p++)
2716 *p = TOUPPER (*p);
2717
2718 if (strncmp (namebuf, newname, namelen))
2719 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2720 typeinfo.defined != 0 ? &typeinfo : NULL);
2721
2722 /* Insert name in all lowercase. */
2723 for (p = namebuf; *p; p++)
2724 *p = TOLOWER (*p);
2725
2726 if (strncmp (namebuf, newname, namelen))
2727 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2728 typeinfo.defined != 0 ? &typeinfo : NULL);
2729
2730 free (namebuf);
2731 return TRUE;
2732 }
2733
2734 /* Should never be called, as .req goes between the alias and the
2735 register name, not at the beginning of the line. */
2736
2737 static void
2738 s_req (int a ATTRIBUTE_UNUSED)
2739 {
2740 as_bad (_("invalid syntax for .req directive"));
2741 }
2742
2743 static void
2744 s_dn (int a ATTRIBUTE_UNUSED)
2745 {
2746 as_bad (_("invalid syntax for .dn directive"));
2747 }
2748
2749 static void
2750 s_qn (int a ATTRIBUTE_UNUSED)
2751 {
2752 as_bad (_("invalid syntax for .qn directive"));
2753 }
2754
2755 /* The .unreq directive deletes an alias which was previously defined
2756 by .req. For example:
2757
2758 my_alias .req r11
2759 .unreq my_alias */
2760
2761 static void
2762 s_unreq (int a ATTRIBUTE_UNUSED)
2763 {
2764 char * name;
2765 char saved_char;
2766
2767 name = input_line_pointer;
2768
2769 while (*input_line_pointer != 0
2770 && *input_line_pointer != ' '
2771 && *input_line_pointer != '\n')
2772 ++input_line_pointer;
2773
2774 saved_char = *input_line_pointer;
2775 *input_line_pointer = 0;
2776
2777 if (!*name)
2778 as_bad (_("invalid syntax for .unreq directive"));
2779 else
2780 {
2781 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2782 name);
2783
2784 if (!reg)
2785 as_bad (_("unknown register alias '%s'"), name);
2786 else if (reg->builtin)
2787 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2788 name);
2789 else
2790 {
2791 char * p;
2792 char * nbuf;
2793
2794 hash_delete (arm_reg_hsh, name, FALSE);
2795 free ((char *) reg->name);
2796 if (reg->neon)
2797 free (reg->neon);
2798 free (reg);
2799
2800 /* Also locate the all upper case and all lower case versions.
2801 Do not complain if we cannot find one or the other as it
2802 was probably deleted above. */
2803
2804 nbuf = strdup (name);
2805 for (p = nbuf; *p; p++)
2806 *p = TOUPPER (*p);
2807 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2808 if (reg)
2809 {
2810 hash_delete (arm_reg_hsh, nbuf, FALSE);
2811 free ((char *) reg->name);
2812 if (reg->neon)
2813 free (reg->neon);
2814 free (reg);
2815 }
2816
2817 for (p = nbuf; *p; p++)
2818 *p = TOLOWER (*p);
2819 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2820 if (reg)
2821 {
2822 hash_delete (arm_reg_hsh, nbuf, FALSE);
2823 free ((char *) reg->name);
2824 if (reg->neon)
2825 free (reg->neon);
2826 free (reg);
2827 }
2828
2829 free (nbuf);
2830 }
2831 }
2832
2833 *input_line_pointer = saved_char;
2834 demand_empty_rest_of_line ();
2835 }
2836
2837 /* Directives: Instruction set selection. */
2838
2839 #ifdef OBJ_ELF
2840 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2841 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2842 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2843 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2844
2845 /* Create a new mapping symbol for the transition to STATE. */
2846
2847 static void
2848 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2849 {
2850 symbolS * symbolP;
2851 const char * symname;
2852 int type;
2853
2854 switch (state)
2855 {
2856 case MAP_DATA:
2857 symname = "$d";
2858 type = BSF_NO_FLAGS;
2859 break;
2860 case MAP_ARM:
2861 symname = "$a";
2862 type = BSF_NO_FLAGS;
2863 break;
2864 case MAP_THUMB:
2865 symname = "$t";
2866 type = BSF_NO_FLAGS;
2867 break;
2868 default:
2869 abort ();
2870 }
2871
2872 symbolP = symbol_new (symname, now_seg, value, frag);
2873 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2874
2875 switch (state)
2876 {
2877 case MAP_ARM:
2878 THUMB_SET_FUNC (symbolP, 0);
2879 ARM_SET_THUMB (symbolP, 0);
2880 ARM_SET_INTERWORK (symbolP, support_interwork);
2881 break;
2882
2883 case MAP_THUMB:
2884 THUMB_SET_FUNC (symbolP, 1);
2885 ARM_SET_THUMB (symbolP, 1);
2886 ARM_SET_INTERWORK (symbolP, support_interwork);
2887 break;
2888
2889 case MAP_DATA:
2890 default:
2891 break;
2892 }
2893
2894 /* Save the mapping symbols for future reference. Also check that
2895 we do not place two mapping symbols at the same offset within a
2896 frag. We'll handle overlap between frags in
2897 check_mapping_symbols.
2898
2899 If .fill or other data filling directive generates zero sized data,
2900 the mapping symbol for the following code will have the same value
2901 as the one generated for the data filling directive. In this case,
2902 we replace the old symbol with the new one at the same address. */
2903 if (value == 0)
2904 {
2905 if (frag->tc_frag_data.first_map != NULL)
2906 {
2907 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2908 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2909 }
2910 frag->tc_frag_data.first_map = symbolP;
2911 }
2912 if (frag->tc_frag_data.last_map != NULL)
2913 {
2914 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2915 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2916 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2917 }
2918 frag->tc_frag_data.last_map = symbolP;
2919 }
2920
2921 /* We must sometimes convert a region marked as code to data during
2922 code alignment, if an odd number of bytes have to be padded. The
2923 code mapping symbol is pushed to an aligned address. */
2924
2925 static void
2926 insert_data_mapping_symbol (enum mstate state,
2927 valueT value, fragS *frag, offsetT bytes)
2928 {
2929 /* If there was already a mapping symbol, remove it. */
2930 if (frag->tc_frag_data.last_map != NULL
2931 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2932 {
2933 symbolS *symp = frag->tc_frag_data.last_map;
2934
2935 if (value == 0)
2936 {
2937 know (frag->tc_frag_data.first_map == symp);
2938 frag->tc_frag_data.first_map = NULL;
2939 }
2940 frag->tc_frag_data.last_map = NULL;
2941 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2942 }
2943
2944 make_mapping_symbol (MAP_DATA, value, frag);
2945 make_mapping_symbol (state, value + bytes, frag);
2946 }
2947
2948 static void mapping_state_2 (enum mstate state, int max_chars);
2949
2950 /* Set the mapping state to STATE. Only call this when about to
2951 emit some STATE bytes to the file. */
2952
2953 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2954 void
2955 mapping_state (enum mstate state)
2956 {
2957 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2958
2959 if (mapstate == state)
2960 /* The mapping symbol has already been emitted.
2961 There is nothing else to do. */
2962 return;
2963
2964 if (state == MAP_ARM || state == MAP_THUMB)
2965 /* PR gas/12931
2966 All ARM instructions require 4-byte alignment.
2967 (Almost) all Thumb instructions require 2-byte alignment.
2968
2969 When emitting instructions into any section, mark the section
2970 appropriately.
2971
2972 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2973 but themselves require 2-byte alignment; this applies to some
2974 PC- relative forms. However, these cases will involve implicit
2975 literal pool generation or an explicit .align >=2, both of
2976 which will cause the section to me marked with sufficient
2977 alignment. Thus, we don't handle those cases here. */
2978 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2979
2980 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2981 /* This case will be evaluated later. */
2982 return;
2983
2984 mapping_state_2 (state, 0);
2985 }
2986
2987 /* Same as mapping_state, but MAX_CHARS bytes have already been
2988 allocated. Put the mapping symbol that far back. */
2989
2990 static void
2991 mapping_state_2 (enum mstate state, int max_chars)
2992 {
2993 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2994
2995 if (!SEG_NORMAL (now_seg))
2996 return;
2997
2998 if (mapstate == state)
2999 /* The mapping symbol has already been emitted.
3000 There is nothing else to do. */
3001 return;
3002
3003 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
3004 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
3005 {
3006 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
3007 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
3008
3009 if (add_symbol)
3010 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
3011 }
3012
3013 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
3014 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
3015 }
3016 #undef TRANSITION
3017 #else
3018 #define mapping_state(x) ((void)0)
3019 #define mapping_state_2(x, y) ((void)0)
3020 #endif
3021
3022 /* Find the real, Thumb encoded start of a Thumb function. */
3023
3024 #ifdef OBJ_COFF
3025 static symbolS *
3026 find_real_start (symbolS * symbolP)
3027 {
3028 char * real_start;
3029 const char * name = S_GET_NAME (symbolP);
3030 symbolS * new_target;
3031
3032 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3033 #define STUB_NAME ".real_start_of"
3034
3035 if (name == NULL)
3036 abort ();
3037
3038 /* The compiler may generate BL instructions to local labels because
3039 it needs to perform a branch to a far away location. These labels
3040 do not have a corresponding ".real_start_of" label. We check
3041 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3042 the ".real_start_of" convention for nonlocal branches. */
3043 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3044 return symbolP;
3045
3046 real_start = concat (STUB_NAME, name, NULL);
3047 new_target = symbol_find (real_start);
3048 free (real_start);
3049
3050 if (new_target == NULL)
3051 {
3052 as_warn (_("Failed to find real start of function: %s\n"), name);
3053 new_target = symbolP;
3054 }
3055
3056 return new_target;
3057 }
3058 #endif
3059
3060 static void
3061 opcode_select (int width)
3062 {
3063 switch (width)
3064 {
3065 case 16:
3066 if (! thumb_mode)
3067 {
3068 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3069 as_bad (_("selected processor does not support THUMB opcodes"));
3070
3071 thumb_mode = 1;
3072 /* No need to force the alignment, since we will have been
3073 coming from ARM mode, which is word-aligned. */
3074 record_alignment (now_seg, 1);
3075 }
3076 break;
3077
3078 case 32:
3079 if (thumb_mode)
3080 {
3081 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3082 as_bad (_("selected processor does not support ARM opcodes"));
3083
3084 thumb_mode = 0;
3085
3086 if (!need_pass_2)
3087 frag_align (2, 0, 0);
3088
3089 record_alignment (now_seg, 1);
3090 }
3091 break;
3092
3093 default:
3094 as_bad (_("invalid instruction size selected (%d)"), width);
3095 }
3096 }
3097
3098 static void
3099 s_arm (int ignore ATTRIBUTE_UNUSED)
3100 {
3101 opcode_select (32);
3102 demand_empty_rest_of_line ();
3103 }
3104
3105 static void
3106 s_thumb (int ignore ATTRIBUTE_UNUSED)
3107 {
3108 opcode_select (16);
3109 demand_empty_rest_of_line ();
3110 }
3111
3112 static void
3113 s_code (int unused ATTRIBUTE_UNUSED)
3114 {
3115 int temp;
3116
3117 temp = get_absolute_expression ();
3118 switch (temp)
3119 {
3120 case 16:
3121 case 32:
3122 opcode_select (temp);
3123 break;
3124
3125 default:
3126 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3127 }
3128 }
3129
3130 static void
3131 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3132 {
3133 /* If we are not already in thumb mode go into it, EVEN if
3134 the target processor does not support thumb instructions.
3135 This is used by gcc/config/arm/lib1funcs.asm for example
3136 to compile interworking support functions even if the
3137 target processor should not support interworking. */
3138 if (! thumb_mode)
3139 {
3140 thumb_mode = 2;
3141 record_alignment (now_seg, 1);
3142 }
3143
3144 demand_empty_rest_of_line ();
3145 }
3146
3147 static void
3148 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3149 {
3150 s_thumb (0);
3151
3152 /* The following label is the name/address of the start of a Thumb function.
3153 We need to know this for the interworking support. */
3154 label_is_thumb_function_name = TRUE;
3155 }
3156
3157 /* Perform a .set directive, but also mark the alias as
3158 being a thumb function. */
3159
3160 static void
3161 s_thumb_set (int equiv)
3162 {
3163 /* XXX the following is a duplicate of the code for s_set() in read.c
3164 We cannot just call that code as we need to get at the symbol that
3165 is created. */
3166 char * name;
3167 char delim;
3168 char * end_name;
3169 symbolS * symbolP;
3170
3171 /* Especial apologies for the random logic:
3172 This just grew, and could be parsed much more simply!
3173 Dean - in haste. */
3174 delim = get_symbol_name (& name);
3175 end_name = input_line_pointer;
3176 (void) restore_line_pointer (delim);
3177
3178 if (*input_line_pointer != ',')
3179 {
3180 *end_name = 0;
3181 as_bad (_("expected comma after name \"%s\""), name);
3182 *end_name = delim;
3183 ignore_rest_of_line ();
3184 return;
3185 }
3186
3187 input_line_pointer++;
3188 *end_name = 0;
3189
3190 if (name[0] == '.' && name[1] == '\0')
3191 {
3192 /* XXX - this should not happen to .thumb_set. */
3193 abort ();
3194 }
3195
3196 if ((symbolP = symbol_find (name)) == NULL
3197 && (symbolP = md_undefined_symbol (name)) == NULL)
3198 {
3199 #ifndef NO_LISTING
3200 /* When doing symbol listings, play games with dummy fragments living
3201 outside the normal fragment chain to record the file and line info
3202 for this symbol. */
3203 if (listing & LISTING_SYMBOLS)
3204 {
3205 extern struct list_info_struct * listing_tail;
3206 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3207
3208 memset (dummy_frag, 0, sizeof (fragS));
3209 dummy_frag->fr_type = rs_fill;
3210 dummy_frag->line = listing_tail;
3211 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3212 dummy_frag->fr_symbol = symbolP;
3213 }
3214 else
3215 #endif
3216 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3217
3218 #ifdef OBJ_COFF
3219 /* "set" symbols are local unless otherwise specified. */
3220 SF_SET_LOCAL (symbolP);
3221 #endif /* OBJ_COFF */
3222 } /* Make a new symbol. */
3223
3224 symbol_table_insert (symbolP);
3225
3226 * end_name = delim;
3227
3228 if (equiv
3229 && S_IS_DEFINED (symbolP)
3230 && S_GET_SEGMENT (symbolP) != reg_section)
3231 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3232
3233 pseudo_set (symbolP);
3234
3235 demand_empty_rest_of_line ();
3236
3237 /* XXX Now we come to the Thumb specific bit of code. */
3238
3239 THUMB_SET_FUNC (symbolP, 1);
3240 ARM_SET_THUMB (symbolP, 1);
3241 #if defined OBJ_ELF || defined OBJ_COFF
3242 ARM_SET_INTERWORK (symbolP, support_interwork);
3243 #endif
3244 }
3245
3246 /* Directives: Mode selection. */
3247
3248 /* .syntax [unified|divided] - choose the new unified syntax
3249 (same for Arm and Thumb encoding, modulo slight differences in what
3250 can be represented) or the old divergent syntax for each mode. */
3251 static void
3252 s_syntax (int unused ATTRIBUTE_UNUSED)
3253 {
3254 char *name, delim;
3255
3256 delim = get_symbol_name (& name);
3257
3258 if (!strcasecmp (name, "unified"))
3259 unified_syntax = TRUE;
3260 else if (!strcasecmp (name, "divided"))
3261 unified_syntax = FALSE;
3262 else
3263 {
3264 as_bad (_("unrecognized syntax mode \"%s\""), name);
3265 return;
3266 }
3267 (void) restore_line_pointer (delim);
3268 demand_empty_rest_of_line ();
3269 }
3270
3271 /* Directives: sectioning and alignment. */
3272
3273 static void
3274 s_bss (int ignore ATTRIBUTE_UNUSED)
3275 {
3276 /* We don't support putting frags in the BSS segment, we fake it by
3277 marking in_bss, then looking at s_skip for clues. */
3278 subseg_set (bss_section, 0);
3279 demand_empty_rest_of_line ();
3280
3281 #ifdef md_elf_section_change_hook
3282 md_elf_section_change_hook ();
3283 #endif
3284 }
3285
3286 static void
3287 s_even (int ignore ATTRIBUTE_UNUSED)
3288 {
3289 /* Never make frag if expect extra pass. */
3290 if (!need_pass_2)
3291 frag_align (1, 0, 0);
3292
3293 record_alignment (now_seg, 1);
3294
3295 demand_empty_rest_of_line ();
3296 }
3297
3298 /* Directives: CodeComposer Studio. */
3299
3300 /* .ref (for CodeComposer Studio syntax only). */
3301 static void
3302 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3303 {
3304 if (codecomposer_syntax)
3305 ignore_rest_of_line ();
3306 else
3307 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3308 }
3309
3310 /* If name is not NULL, then it is used for marking the beginning of a
3311 function, whereas if it is NULL then it means the function end. */
3312 static void
3313 asmfunc_debug (const char * name)
3314 {
3315 static const char * last_name = NULL;
3316
3317 if (name != NULL)
3318 {
3319 gas_assert (last_name == NULL);
3320 last_name = name;
3321
3322 if (debug_type == DEBUG_STABS)
3323 stabs_generate_asm_func (name, name);
3324 }
3325 else
3326 {
3327 gas_assert (last_name != NULL);
3328
3329 if (debug_type == DEBUG_STABS)
3330 stabs_generate_asm_endfunc (last_name, last_name);
3331
3332 last_name = NULL;
3333 }
3334 }
3335
3336 static void
3337 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3338 {
3339 if (codecomposer_syntax)
3340 {
3341 switch (asmfunc_state)
3342 {
3343 case OUTSIDE_ASMFUNC:
3344 asmfunc_state = WAITING_ASMFUNC_NAME;
3345 break;
3346
3347 case WAITING_ASMFUNC_NAME:
3348 as_bad (_(".asmfunc repeated."));
3349 break;
3350
3351 case WAITING_ENDASMFUNC:
3352 as_bad (_(".asmfunc without function."));
3353 break;
3354 }
3355 demand_empty_rest_of_line ();
3356 }
3357 else
3358 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3359 }
3360
3361 static void
3362 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3363 {
3364 if (codecomposer_syntax)
3365 {
3366 switch (asmfunc_state)
3367 {
3368 case OUTSIDE_ASMFUNC:
3369 as_bad (_(".endasmfunc without a .asmfunc."));
3370 break;
3371
3372 case WAITING_ASMFUNC_NAME:
3373 as_bad (_(".endasmfunc without function."));
3374 break;
3375
3376 case WAITING_ENDASMFUNC:
3377 asmfunc_state = OUTSIDE_ASMFUNC;
3378 asmfunc_debug (NULL);
3379 break;
3380 }
3381 demand_empty_rest_of_line ();
3382 }
3383 else
3384 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3385 }
3386
3387 static void
3388 s_ccs_def (int name)
3389 {
3390 if (codecomposer_syntax)
3391 s_globl (name);
3392 else
3393 as_bad (_(".def pseudo-op only available with -mccs flag."));
3394 }
3395
3396 /* Directives: Literal pools. */
3397
3398 static literal_pool *
3399 find_literal_pool (void)
3400 {
3401 literal_pool * pool;
3402
3403 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3404 {
3405 if (pool->section == now_seg
3406 && pool->sub_section == now_subseg)
3407 break;
3408 }
3409
3410 return pool;
3411 }
3412
3413 static literal_pool *
3414 find_or_make_literal_pool (void)
3415 {
3416 /* Next literal pool ID number. */
3417 static unsigned int latest_pool_num = 1;
3418 literal_pool * pool;
3419
3420 pool = find_literal_pool ();
3421
3422 if (pool == NULL)
3423 {
3424 /* Create a new pool. */
3425 pool = XNEW (literal_pool);
3426 if (! pool)
3427 return NULL;
3428
3429 pool->next_free_entry = 0;
3430 pool->section = now_seg;
3431 pool->sub_section = now_subseg;
3432 pool->next = list_of_pools;
3433 pool->symbol = NULL;
3434 pool->alignment = 2;
3435
3436 /* Add it to the list. */
3437 list_of_pools = pool;
3438 }
3439
3440 /* New pools, and emptied pools, will have a NULL symbol. */
3441 if (pool->symbol == NULL)
3442 {
3443 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3444 (valueT) 0, &zero_address_frag);
3445 pool->id = latest_pool_num ++;
3446 }
3447
3448 /* Done. */
3449 return pool;
3450 }
3451
3452 /* Add the literal in the global 'inst'
3453 structure to the relevant literal pool. */
3454
3455 static int
3456 add_to_lit_pool (unsigned int nbytes)
3457 {
3458 #define PADDING_SLOT 0x1
3459 #define LIT_ENTRY_SIZE_MASK 0xFF
3460 literal_pool * pool;
3461 unsigned int entry, pool_size = 0;
3462 bfd_boolean padding_slot_p = FALSE;
3463 unsigned imm1 = 0;
3464 unsigned imm2 = 0;
3465
3466 if (nbytes == 8)
3467 {
3468 imm1 = inst.operands[1].imm;
3469 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3470 : inst.relocs[0].exp.X_unsigned ? 0
3471 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3472 if (target_big_endian)
3473 {
3474 imm1 = imm2;
3475 imm2 = inst.operands[1].imm;
3476 }
3477 }
3478
3479 pool = find_or_make_literal_pool ();
3480
3481 /* Check if this literal value is already in the pool. */
3482 for (entry = 0; entry < pool->next_free_entry; entry ++)
3483 {
3484 if (nbytes == 4)
3485 {
3486 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3487 && (inst.relocs[0].exp.X_op == O_constant)
3488 && (pool->literals[entry].X_add_number
3489 == inst.relocs[0].exp.X_add_number)
3490 && (pool->literals[entry].X_md == nbytes)
3491 && (pool->literals[entry].X_unsigned
3492 == inst.relocs[0].exp.X_unsigned))
3493 break;
3494
3495 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3496 && (inst.relocs[0].exp.X_op == O_symbol)
3497 && (pool->literals[entry].X_add_number
3498 == inst.relocs[0].exp.X_add_number)
3499 && (pool->literals[entry].X_add_symbol
3500 == inst.relocs[0].exp.X_add_symbol)
3501 && (pool->literals[entry].X_op_symbol
3502 == inst.relocs[0].exp.X_op_symbol)
3503 && (pool->literals[entry].X_md == nbytes))
3504 break;
3505 }
3506 else if ((nbytes == 8)
3507 && !(pool_size & 0x7)
3508 && ((entry + 1) != pool->next_free_entry)
3509 && (pool->literals[entry].X_op == O_constant)
3510 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3511 && (pool->literals[entry].X_unsigned
3512 == inst.relocs[0].exp.X_unsigned)
3513 && (pool->literals[entry + 1].X_op == O_constant)
3514 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3515 && (pool->literals[entry + 1].X_unsigned
3516 == inst.relocs[0].exp.X_unsigned))
3517 break;
3518
3519 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3520 if (padding_slot_p && (nbytes == 4))
3521 break;
3522
3523 pool_size += 4;
3524 }
3525
3526 /* Do we need to create a new entry? */
3527 if (entry == pool->next_free_entry)
3528 {
3529 if (entry >= MAX_LITERAL_POOL_SIZE)
3530 {
3531 inst.error = _("literal pool overflow");
3532 return FAIL;
3533 }
3534
3535 if (nbytes == 8)
3536 {
3537 /* For 8-byte entries, we align to an 8-byte boundary,
3538 and split it into two 4-byte entries, because on 32-bit
3539 host, 8-byte constants are treated as big num, thus
3540 saved in "generic_bignum" which will be overwritten
3541 by later assignments.
3542
3543 We also need to make sure there is enough space for
3544 the split.
3545
3546 We also check to make sure the literal operand is a
3547 constant number. */
3548 if (!(inst.relocs[0].exp.X_op == O_constant
3549 || inst.relocs[0].exp.X_op == O_big))
3550 {
3551 inst.error = _("invalid type for literal pool");
3552 return FAIL;
3553 }
3554 else if (pool_size & 0x7)
3555 {
3556 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3557 {
3558 inst.error = _("literal pool overflow");
3559 return FAIL;
3560 }
3561
3562 pool->literals[entry] = inst.relocs[0].exp;
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = 0;
3565 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3566 pool->next_free_entry += 1;
3567 pool_size += 4;
3568 }
3569 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3570 {
3571 inst.error = _("literal pool overflow");
3572 return FAIL;
3573 }
3574
3575 pool->literals[entry] = inst.relocs[0].exp;
3576 pool->literals[entry].X_op = O_constant;
3577 pool->literals[entry].X_add_number = imm1;
3578 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3579 pool->literals[entry++].X_md = 4;
3580 pool->literals[entry] = inst.relocs[0].exp;
3581 pool->literals[entry].X_op = O_constant;
3582 pool->literals[entry].X_add_number = imm2;
3583 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3584 pool->literals[entry].X_md = 4;
3585 pool->alignment = 3;
3586 pool->next_free_entry += 1;
3587 }
3588 else
3589 {
3590 pool->literals[entry] = inst.relocs[0].exp;
3591 pool->literals[entry].X_md = 4;
3592 }
3593
3594 #ifdef OBJ_ELF
3595 /* PR ld/12974: Record the location of the first source line to reference
3596 this entry in the literal pool. If it turns out during linking that the
3597 symbol does not exist we will be able to give an accurate line number for
3598 the (first use of the) missing reference. */
3599 if (debug_type == DEBUG_DWARF2)
3600 dwarf2_where (pool->locs + entry);
3601 #endif
3602 pool->next_free_entry += 1;
3603 }
3604 else if (padding_slot_p)
3605 {
3606 pool->literals[entry] = inst.relocs[0].exp;
3607 pool->literals[entry].X_md = nbytes;
3608 }
3609
3610 inst.relocs[0].exp.X_op = O_symbol;
3611 inst.relocs[0].exp.X_add_number = pool_size;
3612 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3613
3614 return SUCCESS;
3615 }
3616
3617 bfd_boolean
3618 tc_start_label_without_colon (void)
3619 {
3620 bfd_boolean ret = TRUE;
3621
3622 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3623 {
3624 const char *label = input_line_pointer;
3625
3626 while (!is_end_of_line[(int) label[-1]])
3627 --label;
3628
3629 if (*label == '.')
3630 {
3631 as_bad (_("Invalid label '%s'"), label);
3632 ret = FALSE;
3633 }
3634
3635 asmfunc_debug (label);
3636
3637 asmfunc_state = WAITING_ENDASMFUNC;
3638 }
3639
3640 return ret;
3641 }
3642
3643 /* Can't use symbol_new here, so have to create a symbol and then at
3644 a later date assign it a value. That's what these functions do. */
3645
3646 static void
3647 symbol_locate (symbolS * symbolP,
3648 const char * name, /* It is copied, the caller can modify. */
3649 segT segment, /* Segment identifier (SEG_<something>). */
3650 valueT valu, /* Symbol value. */
3651 fragS * frag) /* Associated fragment. */
3652 {
3653 size_t name_length;
3654 char * preserved_copy_of_name;
3655
3656 name_length = strlen (name) + 1; /* +1 for \0. */
3657 obstack_grow (&notes, name, name_length);
3658 preserved_copy_of_name = (char *) obstack_finish (&notes);
3659
3660 #ifdef tc_canonicalize_symbol_name
3661 preserved_copy_of_name =
3662 tc_canonicalize_symbol_name (preserved_copy_of_name);
3663 #endif
3664
3665 S_SET_NAME (symbolP, preserved_copy_of_name);
3666
3667 S_SET_SEGMENT (symbolP, segment);
3668 S_SET_VALUE (symbolP, valu);
3669 symbol_clear_list_pointers (symbolP);
3670
3671 symbol_set_frag (symbolP, frag);
3672
3673 /* Link to end of symbol chain. */
3674 {
3675 extern int symbol_table_frozen;
3676
3677 if (symbol_table_frozen)
3678 abort ();
3679 }
3680
3681 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3682
3683 obj_symbol_new_hook (symbolP);
3684
3685 #ifdef tc_symbol_new_hook
3686 tc_symbol_new_hook (symbolP);
3687 #endif
3688
3689 #ifdef DEBUG_SYMS
3690 verify_symbol_chain (symbol_rootP, symbol_lastP);
3691 #endif /* DEBUG_SYMS */
3692 }
3693
3694 static void
3695 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3696 {
3697 unsigned int entry;
3698 literal_pool * pool;
3699 char sym_name[20];
3700
3701 pool = find_literal_pool ();
3702 if (pool == NULL
3703 || pool->symbol == NULL
3704 || pool->next_free_entry == 0)
3705 return;
3706
3707 /* Align pool as you have word accesses.
3708 Only make a frag if we have to. */
3709 if (!need_pass_2)
3710 frag_align (pool->alignment, 0, 0);
3711
3712 record_alignment (now_seg, 2);
3713
3714 #ifdef OBJ_ELF
3715 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3716 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3717 #endif
3718 sprintf (sym_name, "$$lit_\002%x", pool->id);
3719
3720 symbol_locate (pool->symbol, sym_name, now_seg,
3721 (valueT) frag_now_fix (), frag_now);
3722 symbol_table_insert (pool->symbol);
3723
3724 ARM_SET_THUMB (pool->symbol, thumb_mode);
3725
3726 #if defined OBJ_COFF || defined OBJ_ELF
3727 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3728 #endif
3729
3730 for (entry = 0; entry < pool->next_free_entry; entry ++)
3731 {
3732 #ifdef OBJ_ELF
3733 if (debug_type == DEBUG_DWARF2)
3734 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3735 #endif
3736 /* First output the expression in the instruction to the pool. */
3737 emit_expr (&(pool->literals[entry]),
3738 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3739 }
3740
3741 /* Mark the pool as empty. */
3742 pool->next_free_entry = 0;
3743 pool->symbol = NULL;
3744 }
3745
3746 #ifdef OBJ_ELF
3747 /* Forward declarations for functions below, in the MD interface
3748 section. */
3749 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3750 static valueT create_unwind_entry (int);
3751 static void start_unwind_section (const segT, int);
3752 static void add_unwind_opcode (valueT, int);
3753 static void flush_pending_unwind (void);
3754
3755 /* Directives: Data. */
3756
3757 static void
3758 s_arm_elf_cons (int nbytes)
3759 {
3760 expressionS exp;
3761
3762 #ifdef md_flush_pending_output
3763 md_flush_pending_output ();
3764 #endif
3765
3766 if (is_it_end_of_statement ())
3767 {
3768 demand_empty_rest_of_line ();
3769 return;
3770 }
3771
3772 #ifdef md_cons_align
3773 md_cons_align (nbytes);
3774 #endif
3775
3776 mapping_state (MAP_DATA);
3777 do
3778 {
3779 int reloc;
3780 char *base = input_line_pointer;
3781
3782 expression (& exp);
3783
3784 if (exp.X_op != O_symbol)
3785 emit_expr (&exp, (unsigned int) nbytes);
3786 else
3787 {
3788 char *before_reloc = input_line_pointer;
3789 reloc = parse_reloc (&input_line_pointer);
3790 if (reloc == -1)
3791 {
3792 as_bad (_("unrecognized relocation suffix"));
3793 ignore_rest_of_line ();
3794 return;
3795 }
3796 else if (reloc == BFD_RELOC_UNUSED)
3797 emit_expr (&exp, (unsigned int) nbytes);
3798 else
3799 {
3800 reloc_howto_type *howto = (reloc_howto_type *)
3801 bfd_reloc_type_lookup (stdoutput,
3802 (bfd_reloc_code_real_type) reloc);
3803 int size = bfd_get_reloc_size (howto);
3804
3805 if (reloc == BFD_RELOC_ARM_PLT32)
3806 {
3807 as_bad (_("(plt) is only valid on branch targets"));
3808 reloc = BFD_RELOC_UNUSED;
3809 size = 0;
3810 }
3811
3812 if (size > nbytes)
3813 as_bad (ngettext ("%s relocations do not fit in %d byte",
3814 "%s relocations do not fit in %d bytes",
3815 nbytes),
3816 howto->name, nbytes);
3817 else
3818 {
3819 /* We've parsed an expression stopping at O_symbol.
3820 But there may be more expression left now that we
3821 have parsed the relocation marker. Parse it again.
3822 XXX Surely there is a cleaner way to do this. */
3823 char *p = input_line_pointer;
3824 int offset;
3825 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3826
3827 memcpy (save_buf, base, input_line_pointer - base);
3828 memmove (base + (input_line_pointer - before_reloc),
3829 base, before_reloc - base);
3830
3831 input_line_pointer = base + (input_line_pointer-before_reloc);
3832 expression (&exp);
3833 memcpy (base, save_buf, p - base);
3834
3835 offset = nbytes - size;
3836 p = frag_more (nbytes);
3837 memset (p, 0, nbytes);
3838 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3839 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3840 free (save_buf);
3841 }
3842 }
3843 }
3844 }
3845 while (*input_line_pointer++ == ',');
3846
3847 /* Put terminator back into stream. */
3848 input_line_pointer --;
3849 demand_empty_rest_of_line ();
3850 }
3851
3852 /* Emit an expression containing a 32-bit thumb instruction.
3853 Implementation based on put_thumb32_insn. */
3854
3855 static void
3856 emit_thumb32_expr (expressionS * exp)
3857 {
3858 expressionS exp_high = *exp;
3859
3860 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3861 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3862 exp->X_add_number &= 0xffff;
3863 emit_expr (exp, (unsigned int) THUMB_SIZE);
3864 }
3865
3866 /* Guess the instruction size based on the opcode. */
3867
3868 static int
3869 thumb_insn_size (int opcode)
3870 {
3871 if ((unsigned int) opcode < 0xe800u)
3872 return 2;
3873 else if ((unsigned int) opcode >= 0xe8000000u)
3874 return 4;
3875 else
3876 return 0;
3877 }
3878
3879 static bfd_boolean
3880 emit_insn (expressionS *exp, int nbytes)
3881 {
3882 int size = 0;
3883
3884 if (exp->X_op == O_constant)
3885 {
3886 size = nbytes;
3887
3888 if (size == 0)
3889 size = thumb_insn_size (exp->X_add_number);
3890
3891 if (size != 0)
3892 {
3893 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3894 {
3895 as_bad (_(".inst.n operand too big. "\
3896 "Use .inst.w instead"));
3897 size = 0;
3898 }
3899 else
3900 {
3901 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3902 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3903 else
3904 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3905
3906 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3907 emit_thumb32_expr (exp);
3908 else
3909 emit_expr (exp, (unsigned int) size);
3910
3911 it_fsm_post_encode ();
3912 }
3913 }
3914 else
3915 as_bad (_("cannot determine Thumb instruction size. " \
3916 "Use .inst.n/.inst.w instead"));
3917 }
3918 else
3919 as_bad (_("constant expression required"));
3920
3921 return (size != 0);
3922 }
3923
3924 /* Like s_arm_elf_cons but do not use md_cons_align and
3925 set the mapping state to MAP_ARM/MAP_THUMB. */
3926
3927 static void
3928 s_arm_elf_inst (int nbytes)
3929 {
3930 if (is_it_end_of_statement ())
3931 {
3932 demand_empty_rest_of_line ();
3933 return;
3934 }
3935
3936 /* Calling mapping_state () here will not change ARM/THUMB,
3937 but will ensure not to be in DATA state. */
3938
3939 if (thumb_mode)
3940 mapping_state (MAP_THUMB);
3941 else
3942 {
3943 if (nbytes != 0)
3944 {
3945 as_bad (_("width suffixes are invalid in ARM mode"));
3946 ignore_rest_of_line ();
3947 return;
3948 }
3949
3950 nbytes = 4;
3951
3952 mapping_state (MAP_ARM);
3953 }
3954
3955 do
3956 {
3957 expressionS exp;
3958
3959 expression (& exp);
3960
3961 if (! emit_insn (& exp, nbytes))
3962 {
3963 ignore_rest_of_line ();
3964 return;
3965 }
3966 }
3967 while (*input_line_pointer++ == ',');
3968
3969 /* Put terminator back into stream. */
3970 input_line_pointer --;
3971 demand_empty_rest_of_line ();
3972 }
3973
3974 /* Parse a .rel31 directive. */
3975
3976 static void
3977 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3978 {
3979 expressionS exp;
3980 char *p;
3981 valueT highbit;
3982
3983 highbit = 0;
3984 if (*input_line_pointer == '1')
3985 highbit = 0x80000000;
3986 else if (*input_line_pointer != '0')
3987 as_bad (_("expected 0 or 1"));
3988
3989 input_line_pointer++;
3990 if (*input_line_pointer != ',')
3991 as_bad (_("missing comma"));
3992 input_line_pointer++;
3993
3994 #ifdef md_flush_pending_output
3995 md_flush_pending_output ();
3996 #endif
3997
3998 #ifdef md_cons_align
3999 md_cons_align (4);
4000 #endif
4001
4002 mapping_state (MAP_DATA);
4003
4004 expression (&exp);
4005
4006 p = frag_more (4);
4007 md_number_to_chars (p, highbit, 4);
4008 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
4009 BFD_RELOC_ARM_PREL31);
4010
4011 demand_empty_rest_of_line ();
4012 }
4013
4014 /* Directives: AEABI stack-unwind tables. */
4015
4016 /* Parse an unwind_fnstart directive. Simply records the current location. */
4017
4018 static void
4019 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4020 {
4021 demand_empty_rest_of_line ();
4022 if (unwind.proc_start)
4023 {
4024 as_bad (_("duplicate .fnstart directive"));
4025 return;
4026 }
4027
4028 /* Mark the start of the function. */
4029 unwind.proc_start = expr_build_dot ();
4030
4031 /* Reset the rest of the unwind info. */
4032 unwind.opcode_count = 0;
4033 unwind.table_entry = NULL;
4034 unwind.personality_routine = NULL;
4035 unwind.personality_index = -1;
4036 unwind.frame_size = 0;
4037 unwind.fp_offset = 0;
4038 unwind.fp_reg = REG_SP;
4039 unwind.fp_used = 0;
4040 unwind.sp_restored = 0;
4041 }
4042
4043
4044 /* Parse a handlerdata directive. Creates the exception handling table entry
4045 for the function. */
4046
4047 static void
4048 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4049 {
4050 demand_empty_rest_of_line ();
4051 if (!unwind.proc_start)
4052 as_bad (MISSING_FNSTART);
4053
4054 if (unwind.table_entry)
4055 as_bad (_("duplicate .handlerdata directive"));
4056
4057 create_unwind_entry (1);
4058 }
4059
4060 /* Parse an unwind_fnend directive. Generates the index table entry. */
4061
4062 static void
4063 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4064 {
4065 long where;
4066 char *ptr;
4067 valueT val;
4068 unsigned int marked_pr_dependency;
4069
4070 demand_empty_rest_of_line ();
4071
4072 if (!unwind.proc_start)
4073 {
4074 as_bad (_(".fnend directive without .fnstart"));
4075 return;
4076 }
4077
4078 /* Add eh table entry. */
4079 if (unwind.table_entry == NULL)
4080 val = create_unwind_entry (0);
4081 else
4082 val = 0;
4083
4084 /* Add index table entry. This is two words. */
4085 start_unwind_section (unwind.saved_seg, 1);
4086 frag_align (2, 0, 0);
4087 record_alignment (now_seg, 2);
4088
4089 ptr = frag_more (8);
4090 memset (ptr, 0, 8);
4091 where = frag_now_fix () - 8;
4092
4093 /* Self relative offset of the function start. */
4094 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4095 BFD_RELOC_ARM_PREL31);
4096
4097 /* Indicate dependency on EHABI-defined personality routines to the
4098 linker, if it hasn't been done already. */
4099 marked_pr_dependency
4100 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4101 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4102 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4103 {
4104 static const char *const name[] =
4105 {
4106 "__aeabi_unwind_cpp_pr0",
4107 "__aeabi_unwind_cpp_pr1",
4108 "__aeabi_unwind_cpp_pr2"
4109 };
4110 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4111 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4112 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4113 |= 1 << unwind.personality_index;
4114 }
4115
4116 if (val)
4117 /* Inline exception table entry. */
4118 md_number_to_chars (ptr + 4, val, 4);
4119 else
4120 /* Self relative offset of the table entry. */
4121 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4122 BFD_RELOC_ARM_PREL31);
4123
4124 /* Restore the original section. */
4125 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4126
4127 unwind.proc_start = NULL;
4128 }
4129
4130
4131 /* Parse an unwind_cantunwind directive. */
4132
4133 static void
4134 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4135 {
4136 demand_empty_rest_of_line ();
4137 if (!unwind.proc_start)
4138 as_bad (MISSING_FNSTART);
4139
4140 if (unwind.personality_routine || unwind.personality_index != -1)
4141 as_bad (_("personality routine specified for cantunwind frame"));
4142
4143 unwind.personality_index = -2;
4144 }
4145
4146
4147 /* Parse a personalityindex directive. */
4148
4149 static void
4150 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4151 {
4152 expressionS exp;
4153
4154 if (!unwind.proc_start)
4155 as_bad (MISSING_FNSTART);
4156
4157 if (unwind.personality_routine || unwind.personality_index != -1)
4158 as_bad (_("duplicate .personalityindex directive"));
4159
4160 expression (&exp);
4161
4162 if (exp.X_op != O_constant
4163 || exp.X_add_number < 0 || exp.X_add_number > 15)
4164 {
4165 as_bad (_("bad personality routine number"));
4166 ignore_rest_of_line ();
4167 return;
4168 }
4169
4170 unwind.personality_index = exp.X_add_number;
4171
4172 demand_empty_rest_of_line ();
4173 }
4174
4175
4176 /* Parse a personality directive. */
4177
4178 static void
4179 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4180 {
4181 char *name, *p, c;
4182
4183 if (!unwind.proc_start)
4184 as_bad (MISSING_FNSTART);
4185
4186 if (unwind.personality_routine || unwind.personality_index != -1)
4187 as_bad (_("duplicate .personality directive"));
4188
4189 c = get_symbol_name (& name);
4190 p = input_line_pointer;
4191 if (c == '"')
4192 ++ input_line_pointer;
4193 unwind.personality_routine = symbol_find_or_make (name);
4194 *p = c;
4195 demand_empty_rest_of_line ();
4196 }
4197
4198
4199 /* Parse a directive saving core registers. */
4200
4201 static void
4202 s_arm_unwind_save_core (void)
4203 {
4204 valueT op;
4205 long range;
4206 int n;
4207
4208 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4209 if (range == FAIL)
4210 {
4211 as_bad (_("expected register list"));
4212 ignore_rest_of_line ();
4213 return;
4214 }
4215
4216 demand_empty_rest_of_line ();
4217
4218 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4219 into .unwind_save {..., sp...}. We aren't bothered about the value of
4220 ip because it is clobbered by calls. */
4221 if (unwind.sp_restored && unwind.fp_reg == 12
4222 && (range & 0x3000) == 0x1000)
4223 {
4224 unwind.opcode_count--;
4225 unwind.sp_restored = 0;
4226 range = (range | 0x2000) & ~0x1000;
4227 unwind.pending_offset = 0;
4228 }
4229
4230 /* Pop r4-r15. */
4231 if (range & 0xfff0)
4232 {
4233 /* See if we can use the short opcodes. These pop a block of up to 8
4234 registers starting with r4, plus maybe r14. */
4235 for (n = 0; n < 8; n++)
4236 {
4237 /* Break at the first non-saved register. */
4238 if ((range & (1 << (n + 4))) == 0)
4239 break;
4240 }
4241 /* See if there are any other bits set. */
4242 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4243 {
4244 /* Use the long form. */
4245 op = 0x8000 | ((range >> 4) & 0xfff);
4246 add_unwind_opcode (op, 2);
4247 }
4248 else
4249 {
4250 /* Use the short form. */
4251 if (range & 0x4000)
4252 op = 0xa8; /* Pop r14. */
4253 else
4254 op = 0xa0; /* Do not pop r14. */
4255 op |= (n - 1);
4256 add_unwind_opcode (op, 1);
4257 }
4258 }
4259
4260 /* Pop r0-r3. */
4261 if (range & 0xf)
4262 {
4263 op = 0xb100 | (range & 0xf);
4264 add_unwind_opcode (op, 2);
4265 }
4266
4267 /* Record the number of bytes pushed. */
4268 for (n = 0; n < 16; n++)
4269 {
4270 if (range & (1 << n))
4271 unwind.frame_size += 4;
4272 }
4273 }
4274
4275
4276 /* Parse a directive saving FPA registers. */
4277
4278 static void
4279 s_arm_unwind_save_fpa (int reg)
4280 {
4281 expressionS exp;
4282 int num_regs;
4283 valueT op;
4284
4285 /* Get Number of registers to transfer. */
4286 if (skip_past_comma (&input_line_pointer) != FAIL)
4287 expression (&exp);
4288 else
4289 exp.X_op = O_illegal;
4290
4291 if (exp.X_op != O_constant)
4292 {
4293 as_bad (_("expected , <constant>"));
4294 ignore_rest_of_line ();
4295 return;
4296 }
4297
4298 num_regs = exp.X_add_number;
4299
4300 if (num_regs < 1 || num_regs > 4)
4301 {
4302 as_bad (_("number of registers must be in the range [1:4]"));
4303 ignore_rest_of_line ();
4304 return;
4305 }
4306
4307 demand_empty_rest_of_line ();
4308
4309 if (reg == 4)
4310 {
4311 /* Short form. */
4312 op = 0xb4 | (num_regs - 1);
4313 add_unwind_opcode (op, 1);
4314 }
4315 else
4316 {
4317 /* Long form. */
4318 op = 0xc800 | (reg << 4) | (num_regs - 1);
4319 add_unwind_opcode (op, 2);
4320 }
4321 unwind.frame_size += num_regs * 12;
4322 }
4323
4324
4325 /* Parse a directive saving VFP registers for ARMv6 and above. */
4326
4327 static void
4328 s_arm_unwind_save_vfp_armv6 (void)
4329 {
4330 int count;
4331 unsigned int start;
4332 valueT op;
4333 int num_vfpv3_regs = 0;
4334 int num_regs_below_16;
4335 bfd_boolean partial_match;
4336
4337 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4338 &partial_match);
4339 if (count == FAIL)
4340 {
4341 as_bad (_("expected register list"));
4342 ignore_rest_of_line ();
4343 return;
4344 }
4345
4346 demand_empty_rest_of_line ();
4347
4348 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4349 than FSTMX/FLDMX-style ones). */
4350
4351 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4352 if (start >= 16)
4353 num_vfpv3_regs = count;
4354 else if (start + count > 16)
4355 num_vfpv3_regs = start + count - 16;
4356
4357 if (num_vfpv3_regs > 0)
4358 {
4359 int start_offset = start > 16 ? start - 16 : 0;
4360 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4361 add_unwind_opcode (op, 2);
4362 }
4363
4364 /* Generate opcode for registers numbered in the range 0 .. 15. */
4365 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4366 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4367 if (num_regs_below_16 > 0)
4368 {
4369 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4370 add_unwind_opcode (op, 2);
4371 }
4372
4373 unwind.frame_size += count * 8;
4374 }
4375
4376
4377 /* Parse a directive saving VFP registers for pre-ARMv6. */
4378
4379 static void
4380 s_arm_unwind_save_vfp (void)
4381 {
4382 int count;
4383 unsigned int reg;
4384 valueT op;
4385 bfd_boolean partial_match;
4386
4387 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4388 &partial_match);
4389 if (count == FAIL)
4390 {
4391 as_bad (_("expected register list"));
4392 ignore_rest_of_line ();
4393 return;
4394 }
4395
4396 demand_empty_rest_of_line ();
4397
4398 if (reg == 8)
4399 {
4400 /* Short form. */
4401 op = 0xb8 | (count - 1);
4402 add_unwind_opcode (op, 1);
4403 }
4404 else
4405 {
4406 /* Long form. */
4407 op = 0xb300 | (reg << 4) | (count - 1);
4408 add_unwind_opcode (op, 2);
4409 }
4410 unwind.frame_size += count * 8 + 4;
4411 }
4412
4413
4414 /* Parse a directive saving iWMMXt data registers. */
4415
4416 static void
4417 s_arm_unwind_save_mmxwr (void)
4418 {
4419 int reg;
4420 int hi_reg;
4421 int i;
4422 unsigned mask = 0;
4423 valueT op;
4424
4425 if (*input_line_pointer == '{')
4426 input_line_pointer++;
4427
4428 do
4429 {
4430 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4431
4432 if (reg == FAIL)
4433 {
4434 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4435 goto error;
4436 }
4437
4438 if (mask >> reg)
4439 as_tsktsk (_("register list not in ascending order"));
4440 mask |= 1 << reg;
4441
4442 if (*input_line_pointer == '-')
4443 {
4444 input_line_pointer++;
4445 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4446 if (hi_reg == FAIL)
4447 {
4448 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4449 goto error;
4450 }
4451 else if (reg >= hi_reg)
4452 {
4453 as_bad (_("bad register range"));
4454 goto error;
4455 }
4456 for (; reg < hi_reg; reg++)
4457 mask |= 1 << reg;
4458 }
4459 }
4460 while (skip_past_comma (&input_line_pointer) != FAIL);
4461
4462 skip_past_char (&input_line_pointer, '}');
4463
4464 demand_empty_rest_of_line ();
4465
4466 /* Generate any deferred opcodes because we're going to be looking at
4467 the list. */
4468 flush_pending_unwind ();
4469
4470 for (i = 0; i < 16; i++)
4471 {
4472 if (mask & (1 << i))
4473 unwind.frame_size += 8;
4474 }
4475
4476 /* Attempt to combine with a previous opcode. We do this because gcc
4477 likes to output separate unwind directives for a single block of
4478 registers. */
4479 if (unwind.opcode_count > 0)
4480 {
4481 i = unwind.opcodes[unwind.opcode_count - 1];
4482 if ((i & 0xf8) == 0xc0)
4483 {
4484 i &= 7;
4485 /* Only merge if the blocks are contiguous. */
4486 if (i < 6)
4487 {
4488 if ((mask & 0xfe00) == (1 << 9))
4489 {
4490 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4491 unwind.opcode_count--;
4492 }
4493 }
4494 else if (i == 6 && unwind.opcode_count >= 2)
4495 {
4496 i = unwind.opcodes[unwind.opcode_count - 2];
4497 reg = i >> 4;
4498 i &= 0xf;
4499
4500 op = 0xffff << (reg - 1);
4501 if (reg > 0
4502 && ((mask & op) == (1u << (reg - 1))))
4503 {
4504 op = (1 << (reg + i + 1)) - 1;
4505 op &= ~((1 << reg) - 1);
4506 mask |= op;
4507 unwind.opcode_count -= 2;
4508 }
4509 }
4510 }
4511 }
4512
4513 hi_reg = 15;
4514 /* We want to generate opcodes in the order the registers have been
4515 saved, ie. descending order. */
4516 for (reg = 15; reg >= -1; reg--)
4517 {
4518 /* Save registers in blocks. */
4519 if (reg < 0
4520 || !(mask & (1 << reg)))
4521 {
4522 /* We found an unsaved reg. Generate opcodes to save the
4523 preceding block. */
4524 if (reg != hi_reg)
4525 {
4526 if (reg == 9)
4527 {
4528 /* Short form. */
4529 op = 0xc0 | (hi_reg - 10);
4530 add_unwind_opcode (op, 1);
4531 }
4532 else
4533 {
4534 /* Long form. */
4535 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4536 add_unwind_opcode (op, 2);
4537 }
4538 }
4539 hi_reg = reg - 1;
4540 }
4541 }
4542
4543 return;
4544 error:
4545 ignore_rest_of_line ();
4546 }
4547
4548 static void
4549 s_arm_unwind_save_mmxwcg (void)
4550 {
4551 int reg;
4552 int hi_reg;
4553 unsigned mask = 0;
4554 valueT op;
4555
4556 if (*input_line_pointer == '{')
4557 input_line_pointer++;
4558
4559 skip_whitespace (input_line_pointer);
4560
4561 do
4562 {
4563 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4564
4565 if (reg == FAIL)
4566 {
4567 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4568 goto error;
4569 }
4570
4571 reg -= 8;
4572 if (mask >> reg)
4573 as_tsktsk (_("register list not in ascending order"));
4574 mask |= 1 << reg;
4575
4576 if (*input_line_pointer == '-')
4577 {
4578 input_line_pointer++;
4579 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4580 if (hi_reg == FAIL)
4581 {
4582 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4583 goto error;
4584 }
4585 else if (reg >= hi_reg)
4586 {
4587 as_bad (_("bad register range"));
4588 goto error;
4589 }
4590 for (; reg < hi_reg; reg++)
4591 mask |= 1 << reg;
4592 }
4593 }
4594 while (skip_past_comma (&input_line_pointer) != FAIL);
4595
4596 skip_past_char (&input_line_pointer, '}');
4597
4598 demand_empty_rest_of_line ();
4599
4600 /* Generate any deferred opcodes because we're going to be looking at
4601 the list. */
4602 flush_pending_unwind ();
4603
4604 for (reg = 0; reg < 16; reg++)
4605 {
4606 if (mask & (1 << reg))
4607 unwind.frame_size += 4;
4608 }
4609 op = 0xc700 | mask;
4610 add_unwind_opcode (op, 2);
4611 return;
4612 error:
4613 ignore_rest_of_line ();
4614 }
4615
4616
4617 /* Parse an unwind_save directive.
4618 If the argument is non-zero, this is a .vsave directive. */
4619
4620 static void
4621 s_arm_unwind_save (int arch_v6)
4622 {
4623 char *peek;
4624 struct reg_entry *reg;
4625 bfd_boolean had_brace = FALSE;
4626
4627 if (!unwind.proc_start)
4628 as_bad (MISSING_FNSTART);
4629
4630 /* Figure out what sort of save we have. */
4631 peek = input_line_pointer;
4632
4633 if (*peek == '{')
4634 {
4635 had_brace = TRUE;
4636 peek++;
4637 }
4638
4639 reg = arm_reg_parse_multi (&peek);
4640
4641 if (!reg)
4642 {
4643 as_bad (_("register expected"));
4644 ignore_rest_of_line ();
4645 return;
4646 }
4647
4648 switch (reg->type)
4649 {
4650 case REG_TYPE_FN:
4651 if (had_brace)
4652 {
4653 as_bad (_("FPA .unwind_save does not take a register list"));
4654 ignore_rest_of_line ();
4655 return;
4656 }
4657 input_line_pointer = peek;
4658 s_arm_unwind_save_fpa (reg->number);
4659 return;
4660
4661 case REG_TYPE_RN:
4662 s_arm_unwind_save_core ();
4663 return;
4664
4665 case REG_TYPE_VFD:
4666 if (arch_v6)
4667 s_arm_unwind_save_vfp_armv6 ();
4668 else
4669 s_arm_unwind_save_vfp ();
4670 return;
4671
4672 case REG_TYPE_MMXWR:
4673 s_arm_unwind_save_mmxwr ();
4674 return;
4675
4676 case REG_TYPE_MMXWCG:
4677 s_arm_unwind_save_mmxwcg ();
4678 return;
4679
4680 default:
4681 as_bad (_(".unwind_save does not support this kind of register"));
4682 ignore_rest_of_line ();
4683 }
4684 }
4685
4686
4687 /* Parse an unwind_movsp directive. */
4688
4689 static void
4690 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4691 {
4692 int reg;
4693 valueT op;
4694 int offset;
4695
4696 if (!unwind.proc_start)
4697 as_bad (MISSING_FNSTART);
4698
4699 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4700 if (reg == FAIL)
4701 {
4702 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4703 ignore_rest_of_line ();
4704 return;
4705 }
4706
4707 /* Optional constant. */
4708 if (skip_past_comma (&input_line_pointer) != FAIL)
4709 {
4710 if (immediate_for_directive (&offset) == FAIL)
4711 return;
4712 }
4713 else
4714 offset = 0;
4715
4716 demand_empty_rest_of_line ();
4717
4718 if (reg == REG_SP || reg == REG_PC)
4719 {
4720 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4721 return;
4722 }
4723
4724 if (unwind.fp_reg != REG_SP)
4725 as_bad (_("unexpected .unwind_movsp directive"));
4726
4727 /* Generate opcode to restore the value. */
4728 op = 0x90 | reg;
4729 add_unwind_opcode (op, 1);
4730
4731 /* Record the information for later. */
4732 unwind.fp_reg = reg;
4733 unwind.fp_offset = unwind.frame_size - offset;
4734 unwind.sp_restored = 1;
4735 }
4736
4737 /* Parse an unwind_pad directive. */
4738
4739 static void
4740 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4741 {
4742 int offset;
4743
4744 if (!unwind.proc_start)
4745 as_bad (MISSING_FNSTART);
4746
4747 if (immediate_for_directive (&offset) == FAIL)
4748 return;
4749
4750 if (offset & 3)
4751 {
4752 as_bad (_("stack increment must be multiple of 4"));
4753 ignore_rest_of_line ();
4754 return;
4755 }
4756
4757 /* Don't generate any opcodes, just record the details for later. */
4758 unwind.frame_size += offset;
4759 unwind.pending_offset += offset;
4760
4761 demand_empty_rest_of_line ();
4762 }
4763
4764 /* Parse an unwind_setfp directive. */
4765
4766 static void
4767 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4768 {
4769 int sp_reg;
4770 int fp_reg;
4771 int offset;
4772
4773 if (!unwind.proc_start)
4774 as_bad (MISSING_FNSTART);
4775
4776 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4777 if (skip_past_comma (&input_line_pointer) == FAIL)
4778 sp_reg = FAIL;
4779 else
4780 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4781
4782 if (fp_reg == FAIL || sp_reg == FAIL)
4783 {
4784 as_bad (_("expected <reg>, <reg>"));
4785 ignore_rest_of_line ();
4786 return;
4787 }
4788
4789 /* Optional constant. */
4790 if (skip_past_comma (&input_line_pointer) != FAIL)
4791 {
4792 if (immediate_for_directive (&offset) == FAIL)
4793 return;
4794 }
4795 else
4796 offset = 0;
4797
4798 demand_empty_rest_of_line ();
4799
4800 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4801 {
4802 as_bad (_("register must be either sp or set by a previous"
4803 "unwind_movsp directive"));
4804 return;
4805 }
4806
4807 /* Don't generate any opcodes, just record the information for later. */
4808 unwind.fp_reg = fp_reg;
4809 unwind.fp_used = 1;
4810 if (sp_reg == REG_SP)
4811 unwind.fp_offset = unwind.frame_size - offset;
4812 else
4813 unwind.fp_offset -= offset;
4814 }
4815
4816 /* Parse an unwind_raw directive. */
4817
4818 static void
4819 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4820 {
4821 expressionS exp;
4822 /* This is an arbitrary limit. */
4823 unsigned char op[16];
4824 int count;
4825
4826 if (!unwind.proc_start)
4827 as_bad (MISSING_FNSTART);
4828
4829 expression (&exp);
4830 if (exp.X_op == O_constant
4831 && skip_past_comma (&input_line_pointer) != FAIL)
4832 {
4833 unwind.frame_size += exp.X_add_number;
4834 expression (&exp);
4835 }
4836 else
4837 exp.X_op = O_illegal;
4838
4839 if (exp.X_op != O_constant)
4840 {
4841 as_bad (_("expected <offset>, <opcode>"));
4842 ignore_rest_of_line ();
4843 return;
4844 }
4845
4846 count = 0;
4847
4848 /* Parse the opcode. */
4849 for (;;)
4850 {
4851 if (count >= 16)
4852 {
4853 as_bad (_("unwind opcode too long"));
4854 ignore_rest_of_line ();
4855 }
4856 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4857 {
4858 as_bad (_("invalid unwind opcode"));
4859 ignore_rest_of_line ();
4860 return;
4861 }
4862 op[count++] = exp.X_add_number;
4863
4864 /* Parse the next byte. */
4865 if (skip_past_comma (&input_line_pointer) == FAIL)
4866 break;
4867
4868 expression (&exp);
4869 }
4870
4871 /* Add the opcode bytes in reverse order. */
4872 while (count--)
4873 add_unwind_opcode (op[count], 1);
4874
4875 demand_empty_rest_of_line ();
4876 }
4877
4878
4879 /* Parse a .eabi_attribute directive. */
4880
4881 static void
4882 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4883 {
4884 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4885
4886 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4887 attributes_set_explicitly[tag] = 1;
4888 }
4889
4890 /* Emit a tls fix for the symbol. */
4891
4892 static void
4893 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4894 {
4895 char *p;
4896 expressionS exp;
4897 #ifdef md_flush_pending_output
4898 md_flush_pending_output ();
4899 #endif
4900
4901 #ifdef md_cons_align
4902 md_cons_align (4);
4903 #endif
4904
4905 /* Since we're just labelling the code, there's no need to define a
4906 mapping symbol. */
4907 expression (&exp);
4908 p = obstack_next_free (&frchain_now->frch_obstack);
4909 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4910 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4911 : BFD_RELOC_ARM_TLS_DESCSEQ);
4912 }
4913 #endif /* OBJ_ELF */
4914
4915 static void s_arm_arch (int);
4916 static void s_arm_object_arch (int);
4917 static void s_arm_cpu (int);
4918 static void s_arm_fpu (int);
4919 static void s_arm_arch_extension (int);
4920
4921 #ifdef TE_PE
4922
4923 static void
4924 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4925 {
4926 expressionS exp;
4927
4928 do
4929 {
4930 expression (&exp);
4931 if (exp.X_op == O_symbol)
4932 exp.X_op = O_secrel;
4933
4934 emit_expr (&exp, 4);
4935 }
4936 while (*input_line_pointer++ == ',');
4937
4938 input_line_pointer--;
4939 demand_empty_rest_of_line ();
4940 }
4941 #endif /* TE_PE */
4942
4943 int
4944 arm_is_largest_exponent_ok (int precision)
4945 {
4946 /* precision == 1 ensures that this will only return
4947 true for 16 bit floats. */
4948 return (precision == 1) && (fp16_format == ARM_FP16_FORMAT_ALTERNATIVE);
4949 }
4950
4951 static void
4952 set_fp16_format (int dummy ATTRIBUTE_UNUSED)
4953 {
4954 char saved_char;
4955 char* name;
4956 enum fp_16bit_format new_format;
4957
4958 new_format = ARM_FP16_FORMAT_DEFAULT;
4959
4960 name = input_line_pointer;
4961 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
4962 input_line_pointer++;
4963
4964 saved_char = *input_line_pointer;
4965 *input_line_pointer = 0;
4966
4967 if (strcasecmp (name, "ieee") == 0)
4968 new_format = ARM_FP16_FORMAT_IEEE;
4969 else if (strcasecmp (name, "alternative") == 0)
4970 new_format = ARM_FP16_FORMAT_ALTERNATIVE;
4971 else
4972 {
4973 as_bad (_("unrecognised float16 format \"%s\""), name);
4974 goto cleanup;
4975 }
4976
4977 /* Only set fp16_format if it is still the default (aka not already
4978 been set yet). */
4979 if (fp16_format == ARM_FP16_FORMAT_DEFAULT)
4980 fp16_format = new_format;
4981 else
4982 {
4983 if (new_format != fp16_format)
4984 as_warn (_("float16 format cannot be set more than once, ignoring."));
4985 }
4986
4987 cleanup:
4988 *input_line_pointer = saved_char;
4989 ignore_rest_of_line ();
4990 }
4991
4992 /* This table describes all the machine specific pseudo-ops the assembler
4993 has to support. The fields are:
4994 pseudo-op name without dot
4995 function to call to execute this pseudo-op
4996 Integer arg to pass to the function. */
4997
4998 const pseudo_typeS md_pseudo_table[] =
4999 {
5000 /* Never called because '.req' does not start a line. */
5001 { "req", s_req, 0 },
5002 /* Following two are likewise never called. */
5003 { "dn", s_dn, 0 },
5004 { "qn", s_qn, 0 },
5005 { "unreq", s_unreq, 0 },
5006 { "bss", s_bss, 0 },
5007 { "align", s_align_ptwo, 2 },
5008 { "arm", s_arm, 0 },
5009 { "thumb", s_thumb, 0 },
5010 { "code", s_code, 0 },
5011 { "force_thumb", s_force_thumb, 0 },
5012 { "thumb_func", s_thumb_func, 0 },
5013 { "thumb_set", s_thumb_set, 0 },
5014 { "even", s_even, 0 },
5015 { "ltorg", s_ltorg, 0 },
5016 { "pool", s_ltorg, 0 },
5017 { "syntax", s_syntax, 0 },
5018 { "cpu", s_arm_cpu, 0 },
5019 { "arch", s_arm_arch, 0 },
5020 { "object_arch", s_arm_object_arch, 0 },
5021 { "fpu", s_arm_fpu, 0 },
5022 { "arch_extension", s_arm_arch_extension, 0 },
5023 #ifdef OBJ_ELF
5024 { "word", s_arm_elf_cons, 4 },
5025 { "long", s_arm_elf_cons, 4 },
5026 { "inst.n", s_arm_elf_inst, 2 },
5027 { "inst.w", s_arm_elf_inst, 4 },
5028 { "inst", s_arm_elf_inst, 0 },
5029 { "rel31", s_arm_rel31, 0 },
5030 { "fnstart", s_arm_unwind_fnstart, 0 },
5031 { "fnend", s_arm_unwind_fnend, 0 },
5032 { "cantunwind", s_arm_unwind_cantunwind, 0 },
5033 { "personality", s_arm_unwind_personality, 0 },
5034 { "personalityindex", s_arm_unwind_personalityindex, 0 },
5035 { "handlerdata", s_arm_unwind_handlerdata, 0 },
5036 { "save", s_arm_unwind_save, 0 },
5037 { "vsave", s_arm_unwind_save, 1 },
5038 { "movsp", s_arm_unwind_movsp, 0 },
5039 { "pad", s_arm_unwind_pad, 0 },
5040 { "setfp", s_arm_unwind_setfp, 0 },
5041 { "unwind_raw", s_arm_unwind_raw, 0 },
5042 { "eabi_attribute", s_arm_eabi_attribute, 0 },
5043 { "tlsdescseq", s_arm_tls_descseq, 0 },
5044 #else
5045 { "word", cons, 4},
5046
5047 /* These are used for dwarf. */
5048 {"2byte", cons, 2},
5049 {"4byte", cons, 4},
5050 {"8byte", cons, 8},
5051 /* These are used for dwarf2. */
5052 { "file", dwarf2_directive_file, 0 },
5053 { "loc", dwarf2_directive_loc, 0 },
5054 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
5055 #endif
5056 { "extend", float_cons, 'x' },
5057 { "ldouble", float_cons, 'x' },
5058 { "packed", float_cons, 'p' },
5059 #ifdef TE_PE
5060 {"secrel32", pe_directive_secrel, 0},
5061 #endif
5062
5063 /* These are for compatibility with CodeComposer Studio. */
5064 {"ref", s_ccs_ref, 0},
5065 {"def", s_ccs_def, 0},
5066 {"asmfunc", s_ccs_asmfunc, 0},
5067 {"endasmfunc", s_ccs_endasmfunc, 0},
5068
5069 {"float16", float_cons, 'h' },
5070 {"float16_format", set_fp16_format, 0 },
5071
5072 { 0, 0, 0 }
5073 };
5074
5075 /* Parser functions used exclusively in instruction operands. */
5076
5077 /* Generic immediate-value read function for use in insn parsing.
5078 STR points to the beginning of the immediate (the leading #);
5079 VAL receives the value; if the value is outside [MIN, MAX]
5080 issue an error. PREFIX_OPT is true if the immediate prefix is
5081 optional. */
5082
5083 static int
5084 parse_immediate (char **str, int *val, int min, int max,
5085 bfd_boolean prefix_opt)
5086 {
5087 expressionS exp;
5088
5089 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5090 if (exp.X_op != O_constant)
5091 {
5092 inst.error = _("constant expression required");
5093 return FAIL;
5094 }
5095
5096 if (exp.X_add_number < min || exp.X_add_number > max)
5097 {
5098 inst.error = _("immediate value out of range");
5099 return FAIL;
5100 }
5101
5102 *val = exp.X_add_number;
5103 return SUCCESS;
5104 }
5105
5106 /* Less-generic immediate-value read function with the possibility of loading a
5107 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5108 instructions. Puts the result directly in inst.operands[i]. */
5109
5110 static int
5111 parse_big_immediate (char **str, int i, expressionS *in_exp,
5112 bfd_boolean allow_symbol_p)
5113 {
5114 expressionS exp;
5115 expressionS *exp_p = in_exp ? in_exp : &exp;
5116 char *ptr = *str;
5117
5118 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5119
5120 if (exp_p->X_op == O_constant)
5121 {
5122 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5123 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5124 O_constant. We have to be careful not to break compilation for
5125 32-bit X_add_number, though. */
5126 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5127 {
5128 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5129 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5130 & 0xffffffff);
5131 inst.operands[i].regisimm = 1;
5132 }
5133 }
5134 else if (exp_p->X_op == O_big
5135 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5136 {
5137 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5138
5139 /* Bignums have their least significant bits in
5140 generic_bignum[0]. Make sure we put 32 bits in imm and
5141 32 bits in reg, in a (hopefully) portable way. */
5142 gas_assert (parts != 0);
5143
5144 /* Make sure that the number is not too big.
5145 PR 11972: Bignums can now be sign-extended to the
5146 size of a .octa so check that the out of range bits
5147 are all zero or all one. */
5148 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5149 {
5150 LITTLENUM_TYPE m = -1;
5151
5152 if (generic_bignum[parts * 2] != 0
5153 && generic_bignum[parts * 2] != m)
5154 return FAIL;
5155
5156 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5157 if (generic_bignum[j] != generic_bignum[j-1])
5158 return FAIL;
5159 }
5160
5161 inst.operands[i].imm = 0;
5162 for (j = 0; j < parts; j++, idx++)
5163 inst.operands[i].imm |= generic_bignum[idx]
5164 << (LITTLENUM_NUMBER_OF_BITS * j);
5165 inst.operands[i].reg = 0;
5166 for (j = 0; j < parts; j++, idx++)
5167 inst.operands[i].reg |= generic_bignum[idx]
5168 << (LITTLENUM_NUMBER_OF_BITS * j);
5169 inst.operands[i].regisimm = 1;
5170 }
5171 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5172 return FAIL;
5173
5174 *str = ptr;
5175
5176 return SUCCESS;
5177 }
5178
5179 /* Returns the pseudo-register number of an FPA immediate constant,
5180 or FAIL if there isn't a valid constant here. */
5181
5182 static int
5183 parse_fpa_immediate (char ** str)
5184 {
5185 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5186 char * save_in;
5187 expressionS exp;
5188 int i;
5189 int j;
5190
5191 /* First try and match exact strings, this is to guarantee
5192 that some formats will work even for cross assembly. */
5193
5194 for (i = 0; fp_const[i]; i++)
5195 {
5196 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5197 {
5198 char *start = *str;
5199
5200 *str += strlen (fp_const[i]);
5201 if (is_end_of_line[(unsigned char) **str])
5202 return i + 8;
5203 *str = start;
5204 }
5205 }
5206
5207 /* Just because we didn't get a match doesn't mean that the constant
5208 isn't valid, just that it is in a format that we don't
5209 automatically recognize. Try parsing it with the standard
5210 expression routines. */
5211
5212 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5213
5214 /* Look for a raw floating point number. */
5215 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5216 && is_end_of_line[(unsigned char) *save_in])
5217 {
5218 for (i = 0; i < NUM_FLOAT_VALS; i++)
5219 {
5220 for (j = 0; j < MAX_LITTLENUMS; j++)
5221 {
5222 if (words[j] != fp_values[i][j])
5223 break;
5224 }
5225
5226 if (j == MAX_LITTLENUMS)
5227 {
5228 *str = save_in;
5229 return i + 8;
5230 }
5231 }
5232 }
5233
5234 /* Try and parse a more complex expression, this will probably fail
5235 unless the code uses a floating point prefix (eg "0f"). */
5236 save_in = input_line_pointer;
5237 input_line_pointer = *str;
5238 if (expression (&exp) == absolute_section
5239 && exp.X_op == O_big
5240 && exp.X_add_number < 0)
5241 {
5242 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5243 Ditto for 15. */
5244 #define X_PRECISION 5
5245 #define E_PRECISION 15L
5246 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5247 {
5248 for (i = 0; i < NUM_FLOAT_VALS; i++)
5249 {
5250 for (j = 0; j < MAX_LITTLENUMS; j++)
5251 {
5252 if (words[j] != fp_values[i][j])
5253 break;
5254 }
5255
5256 if (j == MAX_LITTLENUMS)
5257 {
5258 *str = input_line_pointer;
5259 input_line_pointer = save_in;
5260 return i + 8;
5261 }
5262 }
5263 }
5264 }
5265
5266 *str = input_line_pointer;
5267 input_line_pointer = save_in;
5268 inst.error = _("invalid FPA immediate expression");
5269 return FAIL;
5270 }
5271
5272 /* Returns 1 if a number has "quarter-precision" float format
5273 0baBbbbbbc defgh000 00000000 00000000. */
5274
5275 static int
5276 is_quarter_float (unsigned imm)
5277 {
5278 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5279 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5280 }
5281
5282
5283 /* Detect the presence of a floating point or integer zero constant,
5284 i.e. #0.0 or #0. */
5285
5286 static bfd_boolean
5287 parse_ifimm_zero (char **in)
5288 {
5289 int error_code;
5290
5291 if (!is_immediate_prefix (**in))
5292 {
5293 /* In unified syntax, all prefixes are optional. */
5294 if (!unified_syntax)
5295 return FALSE;
5296 }
5297 else
5298 ++*in;
5299
5300 /* Accept #0x0 as a synonym for #0. */
5301 if (strncmp (*in, "0x", 2) == 0)
5302 {
5303 int val;
5304 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5305 return FALSE;
5306 return TRUE;
5307 }
5308
5309 error_code = atof_generic (in, ".", EXP_CHARS,
5310 &generic_floating_point_number);
5311
5312 if (!error_code
5313 && generic_floating_point_number.sign == '+'
5314 && (generic_floating_point_number.low
5315 > generic_floating_point_number.leader))
5316 return TRUE;
5317
5318 return FALSE;
5319 }
5320
5321 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5322 0baBbbbbbc defgh000 00000000 00000000.
5323 The zero and minus-zero cases need special handling, since they can't be
5324 encoded in the "quarter-precision" float format, but can nonetheless be
5325 loaded as integer constants. */
5326
5327 static unsigned
5328 parse_qfloat_immediate (char **ccp, int *immed)
5329 {
5330 char *str = *ccp;
5331 char *fpnum;
5332 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5333 int found_fpchar = 0;
5334
5335 skip_past_char (&str, '#');
5336
5337 /* We must not accidentally parse an integer as a floating-point number. Make
5338 sure that the value we parse is not an integer by checking for special
5339 characters '.' or 'e'.
5340 FIXME: This is a horrible hack, but doing better is tricky because type
5341 information isn't in a very usable state at parse time. */
5342 fpnum = str;
5343 skip_whitespace (fpnum);
5344
5345 if (strncmp (fpnum, "0x", 2) == 0)
5346 return FAIL;
5347 else
5348 {
5349 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5350 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5351 {
5352 found_fpchar = 1;
5353 break;
5354 }
5355
5356 if (!found_fpchar)
5357 return FAIL;
5358 }
5359
5360 if ((str = atof_ieee (str, 's', words)) != NULL)
5361 {
5362 unsigned fpword = 0;
5363 int i;
5364
5365 /* Our FP word must be 32 bits (single-precision FP). */
5366 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5367 {
5368 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5369 fpword |= words[i];
5370 }
5371
5372 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5373 *immed = fpword;
5374 else
5375 return FAIL;
5376
5377 *ccp = str;
5378
5379 return SUCCESS;
5380 }
5381
5382 return FAIL;
5383 }
5384
5385 /* Shift operands. */
5386 enum shift_kind
5387 {
5388 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5389 };
5390
5391 struct asm_shift_name
5392 {
5393 const char *name;
5394 enum shift_kind kind;
5395 };
5396
5397 /* Third argument to parse_shift. */
5398 enum parse_shift_mode
5399 {
5400 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5401 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5402 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5403 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5404 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5405 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5406 };
5407
5408 /* Parse a <shift> specifier on an ARM data processing instruction.
5409 This has three forms:
5410
5411 (LSL|LSR|ASL|ASR|ROR) Rs
5412 (LSL|LSR|ASL|ASR|ROR) #imm
5413 RRX
5414
5415 Note that ASL is assimilated to LSL in the instruction encoding, and
5416 RRX to ROR #0 (which cannot be written as such). */
5417
5418 static int
5419 parse_shift (char **str, int i, enum parse_shift_mode mode)
5420 {
5421 const struct asm_shift_name *shift_name;
5422 enum shift_kind shift;
5423 char *s = *str;
5424 char *p = s;
5425 int reg;
5426
5427 for (p = *str; ISALPHA (*p); p++)
5428 ;
5429
5430 if (p == *str)
5431 {
5432 inst.error = _("shift expression expected");
5433 return FAIL;
5434 }
5435
5436 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5437 p - *str);
5438
5439 if (shift_name == NULL)
5440 {
5441 inst.error = _("shift expression expected");
5442 return FAIL;
5443 }
5444
5445 shift = shift_name->kind;
5446
5447 switch (mode)
5448 {
5449 case NO_SHIFT_RESTRICT:
5450 case SHIFT_IMMEDIATE:
5451 if (shift == SHIFT_UXTW)
5452 {
5453 inst.error = _("'UXTW' not allowed here");
5454 return FAIL;
5455 }
5456 break;
5457
5458 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5459 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5460 {
5461 inst.error = _("'LSL' or 'ASR' required");
5462 return FAIL;
5463 }
5464 break;
5465
5466 case SHIFT_LSL_IMMEDIATE:
5467 if (shift != SHIFT_LSL)
5468 {
5469 inst.error = _("'LSL' required");
5470 return FAIL;
5471 }
5472 break;
5473
5474 case SHIFT_ASR_IMMEDIATE:
5475 if (shift != SHIFT_ASR)
5476 {
5477 inst.error = _("'ASR' required");
5478 return FAIL;
5479 }
5480 break;
5481 case SHIFT_UXTW_IMMEDIATE:
5482 if (shift != SHIFT_UXTW)
5483 {
5484 inst.error = _("'UXTW' required");
5485 return FAIL;
5486 }
5487 break;
5488
5489 default: abort ();
5490 }
5491
5492 if (shift != SHIFT_RRX)
5493 {
5494 /* Whitespace can appear here if the next thing is a bare digit. */
5495 skip_whitespace (p);
5496
5497 if (mode == NO_SHIFT_RESTRICT
5498 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5499 {
5500 inst.operands[i].imm = reg;
5501 inst.operands[i].immisreg = 1;
5502 }
5503 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5504 return FAIL;
5505 }
5506 inst.operands[i].shift_kind = shift;
5507 inst.operands[i].shifted = 1;
5508 *str = p;
5509 return SUCCESS;
5510 }
5511
5512 /* Parse a <shifter_operand> for an ARM data processing instruction:
5513
5514 #<immediate>
5515 #<immediate>, <rotate>
5516 <Rm>
5517 <Rm>, <shift>
5518
5519 where <shift> is defined by parse_shift above, and <rotate> is a
5520 multiple of 2 between 0 and 30. Validation of immediate operands
5521 is deferred to md_apply_fix. */
5522
5523 static int
5524 parse_shifter_operand (char **str, int i)
5525 {
5526 int value;
5527 expressionS exp;
5528
5529 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5530 {
5531 inst.operands[i].reg = value;
5532 inst.operands[i].isreg = 1;
5533
5534 /* parse_shift will override this if appropriate */
5535 inst.relocs[0].exp.X_op = O_constant;
5536 inst.relocs[0].exp.X_add_number = 0;
5537
5538 if (skip_past_comma (str) == FAIL)
5539 return SUCCESS;
5540
5541 /* Shift operation on register. */
5542 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5543 }
5544
5545 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5546 return FAIL;
5547
5548 if (skip_past_comma (str) == SUCCESS)
5549 {
5550 /* #x, y -- ie explicit rotation by Y. */
5551 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5552 return FAIL;
5553
5554 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5555 {
5556 inst.error = _("constant expression expected");
5557 return FAIL;
5558 }
5559
5560 value = exp.X_add_number;
5561 if (value < 0 || value > 30 || value % 2 != 0)
5562 {
5563 inst.error = _("invalid rotation");
5564 return FAIL;
5565 }
5566 if (inst.relocs[0].exp.X_add_number < 0
5567 || inst.relocs[0].exp.X_add_number > 255)
5568 {
5569 inst.error = _("invalid constant");
5570 return FAIL;
5571 }
5572
5573 /* Encode as specified. */
5574 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5575 return SUCCESS;
5576 }
5577
5578 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5579 inst.relocs[0].pc_rel = 0;
5580 return SUCCESS;
5581 }
5582
5583 /* Group relocation information. Each entry in the table contains the
5584 textual name of the relocation as may appear in assembler source
5585 and must end with a colon.
5586 Along with this textual name are the relocation codes to be used if
5587 the corresponding instruction is an ALU instruction (ADD or SUB only),
5588 an LDR, an LDRS, or an LDC. */
5589
5590 struct group_reloc_table_entry
5591 {
5592 const char *name;
5593 int alu_code;
5594 int ldr_code;
5595 int ldrs_code;
5596 int ldc_code;
5597 };
5598
5599 typedef enum
5600 {
5601 /* Varieties of non-ALU group relocation. */
5602
5603 GROUP_LDR,
5604 GROUP_LDRS,
5605 GROUP_LDC,
5606 GROUP_MVE
5607 } group_reloc_type;
5608
5609 static struct group_reloc_table_entry group_reloc_table[] =
5610 { /* Program counter relative: */
5611 { "pc_g0_nc",
5612 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5613 0, /* LDR */
5614 0, /* LDRS */
5615 0 }, /* LDC */
5616 { "pc_g0",
5617 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5618 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5619 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5620 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5621 { "pc_g1_nc",
5622 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5623 0, /* LDR */
5624 0, /* LDRS */
5625 0 }, /* LDC */
5626 { "pc_g1",
5627 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5628 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5629 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5630 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5631 { "pc_g2",
5632 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5633 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5634 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5635 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5636 /* Section base relative */
5637 { "sb_g0_nc",
5638 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5639 0, /* LDR */
5640 0, /* LDRS */
5641 0 }, /* LDC */
5642 { "sb_g0",
5643 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5644 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5645 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5646 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5647 { "sb_g1_nc",
5648 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5649 0, /* LDR */
5650 0, /* LDRS */
5651 0 }, /* LDC */
5652 { "sb_g1",
5653 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5654 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5655 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5656 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5657 { "sb_g2",
5658 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5659 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5660 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5661 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5662 /* Absolute thumb alu relocations. */
5663 { "lower0_7",
5664 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5665 0, /* LDR. */
5666 0, /* LDRS. */
5667 0 }, /* LDC. */
5668 { "lower8_15",
5669 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5670 0, /* LDR. */
5671 0, /* LDRS. */
5672 0 }, /* LDC. */
5673 { "upper0_7",
5674 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5675 0, /* LDR. */
5676 0, /* LDRS. */
5677 0 }, /* LDC. */
5678 { "upper8_15",
5679 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5680 0, /* LDR. */
5681 0, /* LDRS. */
5682 0 } }; /* LDC. */
5683
5684 /* Given the address of a pointer pointing to the textual name of a group
5685 relocation as may appear in assembler source, attempt to find its details
5686 in group_reloc_table. The pointer will be updated to the character after
5687 the trailing colon. On failure, FAIL will be returned; SUCCESS
5688 otherwise. On success, *entry will be updated to point at the relevant
5689 group_reloc_table entry. */
5690
5691 static int
5692 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5693 {
5694 unsigned int i;
5695 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5696 {
5697 int length = strlen (group_reloc_table[i].name);
5698
5699 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5700 && (*str)[length] == ':')
5701 {
5702 *out = &group_reloc_table[i];
5703 *str += (length + 1);
5704 return SUCCESS;
5705 }
5706 }
5707
5708 return FAIL;
5709 }
5710
5711 /* Parse a <shifter_operand> for an ARM data processing instruction
5712 (as for parse_shifter_operand) where group relocations are allowed:
5713
5714 #<immediate>
5715 #<immediate>, <rotate>
5716 #:<group_reloc>:<expression>
5717 <Rm>
5718 <Rm>, <shift>
5719
5720 where <group_reloc> is one of the strings defined in group_reloc_table.
5721 The hashes are optional.
5722
5723 Everything else is as for parse_shifter_operand. */
5724
5725 static parse_operand_result
5726 parse_shifter_operand_group_reloc (char **str, int i)
5727 {
5728 /* Determine if we have the sequence of characters #: or just :
5729 coming next. If we do, then we check for a group relocation.
5730 If we don't, punt the whole lot to parse_shifter_operand. */
5731
5732 if (((*str)[0] == '#' && (*str)[1] == ':')
5733 || (*str)[0] == ':')
5734 {
5735 struct group_reloc_table_entry *entry;
5736
5737 if ((*str)[0] == '#')
5738 (*str) += 2;
5739 else
5740 (*str)++;
5741
5742 /* Try to parse a group relocation. Anything else is an error. */
5743 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5744 {
5745 inst.error = _("unknown group relocation");
5746 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5747 }
5748
5749 /* We now have the group relocation table entry corresponding to
5750 the name in the assembler source. Next, we parse the expression. */
5751 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5752 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5753
5754 /* Record the relocation type (always the ALU variant here). */
5755 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5756 gas_assert (inst.relocs[0].type != 0);
5757
5758 return PARSE_OPERAND_SUCCESS;
5759 }
5760 else
5761 return parse_shifter_operand (str, i) == SUCCESS
5762 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5763
5764 /* Never reached. */
5765 }
5766
5767 /* Parse a Neon alignment expression. Information is written to
5768 inst.operands[i]. We assume the initial ':' has been skipped.
5769
5770 align .imm = align << 8, .immisalign=1, .preind=0 */
5771 static parse_operand_result
5772 parse_neon_alignment (char **str, int i)
5773 {
5774 char *p = *str;
5775 expressionS exp;
5776
5777 my_get_expression (&exp, &p, GE_NO_PREFIX);
5778
5779 if (exp.X_op != O_constant)
5780 {
5781 inst.error = _("alignment must be constant");
5782 return PARSE_OPERAND_FAIL;
5783 }
5784
5785 inst.operands[i].imm = exp.X_add_number << 8;
5786 inst.operands[i].immisalign = 1;
5787 /* Alignments are not pre-indexes. */
5788 inst.operands[i].preind = 0;
5789
5790 *str = p;
5791 return PARSE_OPERAND_SUCCESS;
5792 }
5793
5794 /* Parse all forms of an ARM address expression. Information is written
5795 to inst.operands[i] and/or inst.relocs[0].
5796
5797 Preindexed addressing (.preind=1):
5798
5799 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5800 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5801 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5802 .shift_kind=shift .relocs[0].exp=shift_imm
5803
5804 These three may have a trailing ! which causes .writeback to be set also.
5805
5806 Postindexed addressing (.postind=1, .writeback=1):
5807
5808 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5809 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5810 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5811 .shift_kind=shift .relocs[0].exp=shift_imm
5812
5813 Unindexed addressing (.preind=0, .postind=0):
5814
5815 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5816
5817 Other:
5818
5819 [Rn]{!} shorthand for [Rn,#0]{!}
5820 =immediate .isreg=0 .relocs[0].exp=immediate
5821 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5822
5823 It is the caller's responsibility to check for addressing modes not
5824 supported by the instruction, and to set inst.relocs[0].type. */
5825
5826 static parse_operand_result
5827 parse_address_main (char **str, int i, int group_relocations,
5828 group_reloc_type group_type)
5829 {
5830 char *p = *str;
5831 int reg;
5832
5833 if (skip_past_char (&p, '[') == FAIL)
5834 {
5835 if (skip_past_char (&p, '=') == FAIL)
5836 {
5837 /* Bare address - translate to PC-relative offset. */
5838 inst.relocs[0].pc_rel = 1;
5839 inst.operands[i].reg = REG_PC;
5840 inst.operands[i].isreg = 1;
5841 inst.operands[i].preind = 1;
5842
5843 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5844 return PARSE_OPERAND_FAIL;
5845 }
5846 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5847 /*allow_symbol_p=*/TRUE))
5848 return PARSE_OPERAND_FAIL;
5849
5850 *str = p;
5851 return PARSE_OPERAND_SUCCESS;
5852 }
5853
5854 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5855 skip_whitespace (p);
5856
5857 if (group_type == GROUP_MVE)
5858 {
5859 enum arm_reg_type rtype = REG_TYPE_MQ;
5860 struct neon_type_el et;
5861 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5862 {
5863 inst.operands[i].isquad = 1;
5864 }
5865 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5866 {
5867 inst.error = BAD_ADDR_MODE;
5868 return PARSE_OPERAND_FAIL;
5869 }
5870 }
5871 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5872 {
5873 if (group_type == GROUP_MVE)
5874 inst.error = BAD_ADDR_MODE;
5875 else
5876 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5877 return PARSE_OPERAND_FAIL;
5878 }
5879 inst.operands[i].reg = reg;
5880 inst.operands[i].isreg = 1;
5881
5882 if (skip_past_comma (&p) == SUCCESS)
5883 {
5884 inst.operands[i].preind = 1;
5885
5886 if (*p == '+') p++;
5887 else if (*p == '-') p++, inst.operands[i].negative = 1;
5888
5889 enum arm_reg_type rtype = REG_TYPE_MQ;
5890 struct neon_type_el et;
5891 if (group_type == GROUP_MVE
5892 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5893 {
5894 inst.operands[i].immisreg = 2;
5895 inst.operands[i].imm = reg;
5896
5897 if (skip_past_comma (&p) == SUCCESS)
5898 {
5899 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5900 {
5901 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5902 inst.relocs[0].exp.X_add_number = 0;
5903 }
5904 else
5905 return PARSE_OPERAND_FAIL;
5906 }
5907 }
5908 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5909 {
5910 inst.operands[i].imm = reg;
5911 inst.operands[i].immisreg = 1;
5912
5913 if (skip_past_comma (&p) == SUCCESS)
5914 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5915 return PARSE_OPERAND_FAIL;
5916 }
5917 else if (skip_past_char (&p, ':') == SUCCESS)
5918 {
5919 /* FIXME: '@' should be used here, but it's filtered out by generic
5920 code before we get to see it here. This may be subject to
5921 change. */
5922 parse_operand_result result = parse_neon_alignment (&p, i);
5923
5924 if (result != PARSE_OPERAND_SUCCESS)
5925 return result;
5926 }
5927 else
5928 {
5929 if (inst.operands[i].negative)
5930 {
5931 inst.operands[i].negative = 0;
5932 p--;
5933 }
5934
5935 if (group_relocations
5936 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5937 {
5938 struct group_reloc_table_entry *entry;
5939
5940 /* Skip over the #: or : sequence. */
5941 if (*p == '#')
5942 p += 2;
5943 else
5944 p++;
5945
5946 /* Try to parse a group relocation. Anything else is an
5947 error. */
5948 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5949 {
5950 inst.error = _("unknown group relocation");
5951 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5952 }
5953
5954 /* We now have the group relocation table entry corresponding to
5955 the name in the assembler source. Next, we parse the
5956 expression. */
5957 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5958 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5959
5960 /* Record the relocation type. */
5961 switch (group_type)
5962 {
5963 case GROUP_LDR:
5964 inst.relocs[0].type
5965 = (bfd_reloc_code_real_type) entry->ldr_code;
5966 break;
5967
5968 case GROUP_LDRS:
5969 inst.relocs[0].type
5970 = (bfd_reloc_code_real_type) entry->ldrs_code;
5971 break;
5972
5973 case GROUP_LDC:
5974 inst.relocs[0].type
5975 = (bfd_reloc_code_real_type) entry->ldc_code;
5976 break;
5977
5978 default:
5979 gas_assert (0);
5980 }
5981
5982 if (inst.relocs[0].type == 0)
5983 {
5984 inst.error = _("this group relocation is not allowed on this instruction");
5985 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5986 }
5987 }
5988 else
5989 {
5990 char *q = p;
5991
5992 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5993 return PARSE_OPERAND_FAIL;
5994 /* If the offset is 0, find out if it's a +0 or -0. */
5995 if (inst.relocs[0].exp.X_op == O_constant
5996 && inst.relocs[0].exp.X_add_number == 0)
5997 {
5998 skip_whitespace (q);
5999 if (*q == '#')
6000 {
6001 q++;
6002 skip_whitespace (q);
6003 }
6004 if (*q == '-')
6005 inst.operands[i].negative = 1;
6006 }
6007 }
6008 }
6009 }
6010 else if (skip_past_char (&p, ':') == SUCCESS)
6011 {
6012 /* FIXME: '@' should be used here, but it's filtered out by generic code
6013 before we get to see it here. This may be subject to change. */
6014 parse_operand_result result = parse_neon_alignment (&p, i);
6015
6016 if (result != PARSE_OPERAND_SUCCESS)
6017 return result;
6018 }
6019
6020 if (skip_past_char (&p, ']') == FAIL)
6021 {
6022 inst.error = _("']' expected");
6023 return PARSE_OPERAND_FAIL;
6024 }
6025
6026 if (skip_past_char (&p, '!') == SUCCESS)
6027 inst.operands[i].writeback = 1;
6028
6029 else if (skip_past_comma (&p) == SUCCESS)
6030 {
6031 if (skip_past_char (&p, '{') == SUCCESS)
6032 {
6033 /* [Rn], {expr} - unindexed, with option */
6034 if (parse_immediate (&p, &inst.operands[i].imm,
6035 0, 255, TRUE) == FAIL)
6036 return PARSE_OPERAND_FAIL;
6037
6038 if (skip_past_char (&p, '}') == FAIL)
6039 {
6040 inst.error = _("'}' expected at end of 'option' field");
6041 return PARSE_OPERAND_FAIL;
6042 }
6043 if (inst.operands[i].preind)
6044 {
6045 inst.error = _("cannot combine index with option");
6046 return PARSE_OPERAND_FAIL;
6047 }
6048 *str = p;
6049 return PARSE_OPERAND_SUCCESS;
6050 }
6051 else
6052 {
6053 inst.operands[i].postind = 1;
6054 inst.operands[i].writeback = 1;
6055
6056 if (inst.operands[i].preind)
6057 {
6058 inst.error = _("cannot combine pre- and post-indexing");
6059 return PARSE_OPERAND_FAIL;
6060 }
6061
6062 if (*p == '+') p++;
6063 else if (*p == '-') p++, inst.operands[i].negative = 1;
6064
6065 enum arm_reg_type rtype = REG_TYPE_MQ;
6066 struct neon_type_el et;
6067 if (group_type == GROUP_MVE
6068 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
6069 {
6070 inst.operands[i].immisreg = 2;
6071 inst.operands[i].imm = reg;
6072 }
6073 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6074 {
6075 /* We might be using the immediate for alignment already. If we
6076 are, OR the register number into the low-order bits. */
6077 if (inst.operands[i].immisalign)
6078 inst.operands[i].imm |= reg;
6079 else
6080 inst.operands[i].imm = reg;
6081 inst.operands[i].immisreg = 1;
6082
6083 if (skip_past_comma (&p) == SUCCESS)
6084 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6085 return PARSE_OPERAND_FAIL;
6086 }
6087 else
6088 {
6089 char *q = p;
6090
6091 if (inst.operands[i].negative)
6092 {
6093 inst.operands[i].negative = 0;
6094 p--;
6095 }
6096 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6097 return PARSE_OPERAND_FAIL;
6098 /* If the offset is 0, find out if it's a +0 or -0. */
6099 if (inst.relocs[0].exp.X_op == O_constant
6100 && inst.relocs[0].exp.X_add_number == 0)
6101 {
6102 skip_whitespace (q);
6103 if (*q == '#')
6104 {
6105 q++;
6106 skip_whitespace (q);
6107 }
6108 if (*q == '-')
6109 inst.operands[i].negative = 1;
6110 }
6111 }
6112 }
6113 }
6114
6115 /* If at this point neither .preind nor .postind is set, we have a
6116 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6117 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6118 {
6119 inst.operands[i].preind = 1;
6120 inst.relocs[0].exp.X_op = O_constant;
6121 inst.relocs[0].exp.X_add_number = 0;
6122 }
6123 *str = p;
6124 return PARSE_OPERAND_SUCCESS;
6125 }
6126
6127 static int
6128 parse_address (char **str, int i)
6129 {
6130 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6131 ? SUCCESS : FAIL;
6132 }
6133
6134 static parse_operand_result
6135 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6136 {
6137 return parse_address_main (str, i, 1, type);
6138 }
6139
6140 /* Parse an operand for a MOVW or MOVT instruction. */
6141 static int
6142 parse_half (char **str)
6143 {
6144 char * p;
6145
6146 p = *str;
6147 skip_past_char (&p, '#');
6148 if (strncasecmp (p, ":lower16:", 9) == 0)
6149 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6150 else if (strncasecmp (p, ":upper16:", 9) == 0)
6151 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6152
6153 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6154 {
6155 p += 9;
6156 skip_whitespace (p);
6157 }
6158
6159 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6160 return FAIL;
6161
6162 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6163 {
6164 if (inst.relocs[0].exp.X_op != O_constant)
6165 {
6166 inst.error = _("constant expression expected");
6167 return FAIL;
6168 }
6169 if (inst.relocs[0].exp.X_add_number < 0
6170 || inst.relocs[0].exp.X_add_number > 0xffff)
6171 {
6172 inst.error = _("immediate value out of range");
6173 return FAIL;
6174 }
6175 }
6176 *str = p;
6177 return SUCCESS;
6178 }
6179
6180 /* Miscellaneous. */
6181
6182 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6183 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6184 static int
6185 parse_psr (char **str, bfd_boolean lhs)
6186 {
6187 char *p;
6188 unsigned long psr_field;
6189 const struct asm_psr *psr;
6190 char *start;
6191 bfd_boolean is_apsr = FALSE;
6192 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6193
6194 /* PR gas/12698: If the user has specified -march=all then m_profile will
6195 be TRUE, but we want to ignore it in this case as we are building for any
6196 CPU type, including non-m variants. */
6197 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6198 m_profile = FALSE;
6199
6200 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6201 feature for ease of use and backwards compatibility. */
6202 p = *str;
6203 if (strncasecmp (p, "SPSR", 4) == 0)
6204 {
6205 if (m_profile)
6206 goto unsupported_psr;
6207
6208 psr_field = SPSR_BIT;
6209 }
6210 else if (strncasecmp (p, "CPSR", 4) == 0)
6211 {
6212 if (m_profile)
6213 goto unsupported_psr;
6214
6215 psr_field = 0;
6216 }
6217 else if (strncasecmp (p, "APSR", 4) == 0)
6218 {
6219 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6220 and ARMv7-R architecture CPUs. */
6221 is_apsr = TRUE;
6222 psr_field = 0;
6223 }
6224 else if (m_profile)
6225 {
6226 start = p;
6227 do
6228 p++;
6229 while (ISALNUM (*p) || *p == '_');
6230
6231 if (strncasecmp (start, "iapsr", 5) == 0
6232 || strncasecmp (start, "eapsr", 5) == 0
6233 || strncasecmp (start, "xpsr", 4) == 0
6234 || strncasecmp (start, "psr", 3) == 0)
6235 p = start + strcspn (start, "rR") + 1;
6236
6237 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6238 p - start);
6239
6240 if (!psr)
6241 return FAIL;
6242
6243 /* If APSR is being written, a bitfield may be specified. Note that
6244 APSR itself is handled above. */
6245 if (psr->field <= 3)
6246 {
6247 psr_field = psr->field;
6248 is_apsr = TRUE;
6249 goto check_suffix;
6250 }
6251
6252 *str = p;
6253 /* M-profile MSR instructions have the mask field set to "10", except
6254 *PSR variants which modify APSR, which may use a different mask (and
6255 have been handled already). Do that by setting the PSR_f field
6256 here. */
6257 return psr->field | (lhs ? PSR_f : 0);
6258 }
6259 else
6260 goto unsupported_psr;
6261
6262 p += 4;
6263 check_suffix:
6264 if (*p == '_')
6265 {
6266 /* A suffix follows. */
6267 p++;
6268 start = p;
6269
6270 do
6271 p++;
6272 while (ISALNUM (*p) || *p == '_');
6273
6274 if (is_apsr)
6275 {
6276 /* APSR uses a notation for bits, rather than fields. */
6277 unsigned int nzcvq_bits = 0;
6278 unsigned int g_bit = 0;
6279 char *bit;
6280
6281 for (bit = start; bit != p; bit++)
6282 {
6283 switch (TOLOWER (*bit))
6284 {
6285 case 'n':
6286 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6287 break;
6288
6289 case 'z':
6290 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6291 break;
6292
6293 case 'c':
6294 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6295 break;
6296
6297 case 'v':
6298 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6299 break;
6300
6301 case 'q':
6302 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6303 break;
6304
6305 case 'g':
6306 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6307 break;
6308
6309 default:
6310 inst.error = _("unexpected bit specified after APSR");
6311 return FAIL;
6312 }
6313 }
6314
6315 if (nzcvq_bits == 0x1f)
6316 psr_field |= PSR_f;
6317
6318 if (g_bit == 0x1)
6319 {
6320 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6321 {
6322 inst.error = _("selected processor does not "
6323 "support DSP extension");
6324 return FAIL;
6325 }
6326
6327 psr_field |= PSR_s;
6328 }
6329
6330 if ((nzcvq_bits & 0x20) != 0
6331 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6332 || (g_bit & 0x2) != 0)
6333 {
6334 inst.error = _("bad bitmask specified after APSR");
6335 return FAIL;
6336 }
6337 }
6338 else
6339 {
6340 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6341 p - start);
6342 if (!psr)
6343 goto error;
6344
6345 psr_field |= psr->field;
6346 }
6347 }
6348 else
6349 {
6350 if (ISALNUM (*p))
6351 goto error; /* Garbage after "[CS]PSR". */
6352
6353 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6354 is deprecated, but allow it anyway. */
6355 if (is_apsr && lhs)
6356 {
6357 psr_field |= PSR_f;
6358 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6359 "deprecated"));
6360 }
6361 else if (!m_profile)
6362 /* These bits are never right for M-profile devices: don't set them
6363 (only code paths which read/write APSR reach here). */
6364 psr_field |= (PSR_c | PSR_f);
6365 }
6366 *str = p;
6367 return psr_field;
6368
6369 unsupported_psr:
6370 inst.error = _("selected processor does not support requested special "
6371 "purpose register");
6372 return FAIL;
6373
6374 error:
6375 inst.error = _("flag for {c}psr instruction expected");
6376 return FAIL;
6377 }
6378
6379 static int
6380 parse_sys_vldr_vstr (char **str)
6381 {
6382 unsigned i;
6383 int val = FAIL;
6384 struct {
6385 const char *name;
6386 int regl;
6387 int regh;
6388 } sysregs[] = {
6389 {"FPSCR", 0x1, 0x0},
6390 {"FPSCR_nzcvqc", 0x2, 0x0},
6391 {"VPR", 0x4, 0x1},
6392 {"P0", 0x5, 0x1},
6393 {"FPCXTNS", 0x6, 0x1},
6394 {"FPCXTS", 0x7, 0x1}
6395 };
6396 char *op_end = strchr (*str, ',');
6397 size_t op_strlen = op_end - *str;
6398
6399 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6400 {
6401 if (!strncmp (*str, sysregs[i].name, op_strlen))
6402 {
6403 val = sysregs[i].regl | (sysregs[i].regh << 3);
6404 *str = op_end;
6405 break;
6406 }
6407 }
6408
6409 return val;
6410 }
6411
6412 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6413 value suitable for splatting into the AIF field of the instruction. */
6414
6415 static int
6416 parse_cps_flags (char **str)
6417 {
6418 int val = 0;
6419 int saw_a_flag = 0;
6420 char *s = *str;
6421
6422 for (;;)
6423 switch (*s++)
6424 {
6425 case '\0': case ',':
6426 goto done;
6427
6428 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6429 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6430 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6431
6432 default:
6433 inst.error = _("unrecognized CPS flag");
6434 return FAIL;
6435 }
6436
6437 done:
6438 if (saw_a_flag == 0)
6439 {
6440 inst.error = _("missing CPS flags");
6441 return FAIL;
6442 }
6443
6444 *str = s - 1;
6445 return val;
6446 }
6447
6448 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6449 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6450
6451 static int
6452 parse_endian_specifier (char **str)
6453 {
6454 int little_endian;
6455 char *s = *str;
6456
6457 if (strncasecmp (s, "BE", 2))
6458 little_endian = 0;
6459 else if (strncasecmp (s, "LE", 2))
6460 little_endian = 1;
6461 else
6462 {
6463 inst.error = _("valid endian specifiers are be or le");
6464 return FAIL;
6465 }
6466
6467 if (ISALNUM (s[2]) || s[2] == '_')
6468 {
6469 inst.error = _("valid endian specifiers are be or le");
6470 return FAIL;
6471 }
6472
6473 *str = s + 2;
6474 return little_endian;
6475 }
6476
6477 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6478 value suitable for poking into the rotate field of an sxt or sxta
6479 instruction, or FAIL on error. */
6480
6481 static int
6482 parse_ror (char **str)
6483 {
6484 int rot;
6485 char *s = *str;
6486
6487 if (strncasecmp (s, "ROR", 3) == 0)
6488 s += 3;
6489 else
6490 {
6491 inst.error = _("missing rotation field after comma");
6492 return FAIL;
6493 }
6494
6495 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6496 return FAIL;
6497
6498 switch (rot)
6499 {
6500 case 0: *str = s; return 0x0;
6501 case 8: *str = s; return 0x1;
6502 case 16: *str = s; return 0x2;
6503 case 24: *str = s; return 0x3;
6504
6505 default:
6506 inst.error = _("rotation can only be 0, 8, 16, or 24");
6507 return FAIL;
6508 }
6509 }
6510
6511 /* Parse a conditional code (from conds[] below). The value returned is in the
6512 range 0 .. 14, or FAIL. */
6513 static int
6514 parse_cond (char **str)
6515 {
6516 char *q;
6517 const struct asm_cond *c;
6518 int n;
6519 /* Condition codes are always 2 characters, so matching up to
6520 3 characters is sufficient. */
6521 char cond[3];
6522
6523 q = *str;
6524 n = 0;
6525 while (ISALPHA (*q) && n < 3)
6526 {
6527 cond[n] = TOLOWER (*q);
6528 q++;
6529 n++;
6530 }
6531
6532 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6533 if (!c)
6534 {
6535 inst.error = _("condition required");
6536 return FAIL;
6537 }
6538
6539 *str = q;
6540 return c->value;
6541 }
6542
6543 /* Parse an option for a barrier instruction. Returns the encoding for the
6544 option, or FAIL. */
6545 static int
6546 parse_barrier (char **str)
6547 {
6548 char *p, *q;
6549 const struct asm_barrier_opt *o;
6550
6551 p = q = *str;
6552 while (ISALPHA (*q))
6553 q++;
6554
6555 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6556 q - p);
6557 if (!o)
6558 return FAIL;
6559
6560 if (!mark_feature_used (&o->arch))
6561 return FAIL;
6562
6563 *str = q;
6564 return o->value;
6565 }
6566
6567 /* Parse the operands of a table branch instruction. Similar to a memory
6568 operand. */
6569 static int
6570 parse_tb (char **str)
6571 {
6572 char * p = *str;
6573 int reg;
6574
6575 if (skip_past_char (&p, '[') == FAIL)
6576 {
6577 inst.error = _("'[' expected");
6578 return FAIL;
6579 }
6580
6581 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6582 {
6583 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6584 return FAIL;
6585 }
6586 inst.operands[0].reg = reg;
6587
6588 if (skip_past_comma (&p) == FAIL)
6589 {
6590 inst.error = _("',' expected");
6591 return FAIL;
6592 }
6593
6594 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6595 {
6596 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6597 return FAIL;
6598 }
6599 inst.operands[0].imm = reg;
6600
6601 if (skip_past_comma (&p) == SUCCESS)
6602 {
6603 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6604 return FAIL;
6605 if (inst.relocs[0].exp.X_add_number != 1)
6606 {
6607 inst.error = _("invalid shift");
6608 return FAIL;
6609 }
6610 inst.operands[0].shifted = 1;
6611 }
6612
6613 if (skip_past_char (&p, ']') == FAIL)
6614 {
6615 inst.error = _("']' expected");
6616 return FAIL;
6617 }
6618 *str = p;
6619 return SUCCESS;
6620 }
6621
6622 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6623 information on the types the operands can take and how they are encoded.
6624 Up to four operands may be read; this function handles setting the
6625 ".present" field for each read operand itself.
6626 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6627 else returns FAIL. */
6628
6629 static int
6630 parse_neon_mov (char **str, int *which_operand)
6631 {
6632 int i = *which_operand, val;
6633 enum arm_reg_type rtype;
6634 char *ptr = *str;
6635 struct neon_type_el optype;
6636
6637 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6638 {
6639 /* Cases 17 or 19. */
6640 inst.operands[i].reg = val;
6641 inst.operands[i].isvec = 1;
6642 inst.operands[i].isscalar = 2;
6643 inst.operands[i].vectype = optype;
6644 inst.operands[i++].present = 1;
6645
6646 if (skip_past_comma (&ptr) == FAIL)
6647 goto wanted_comma;
6648
6649 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6650 {
6651 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6652 inst.operands[i].reg = val;
6653 inst.operands[i].isreg = 1;
6654 inst.operands[i].present = 1;
6655 }
6656 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6657 {
6658 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6659 inst.operands[i].reg = val;
6660 inst.operands[i].isvec = 1;
6661 inst.operands[i].isscalar = 2;
6662 inst.operands[i].vectype = optype;
6663 inst.operands[i++].present = 1;
6664
6665 if (skip_past_comma (&ptr) == FAIL)
6666 goto wanted_comma;
6667
6668 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6669 goto wanted_arm;
6670
6671 inst.operands[i].reg = val;
6672 inst.operands[i].isreg = 1;
6673 inst.operands[i++].present = 1;
6674
6675 if (skip_past_comma (&ptr) == FAIL)
6676 goto wanted_comma;
6677
6678 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6679 goto wanted_arm;
6680
6681 inst.operands[i].reg = val;
6682 inst.operands[i].isreg = 1;
6683 inst.operands[i].present = 1;
6684 }
6685 else
6686 {
6687 first_error (_("expected ARM or MVE vector register"));
6688 return FAIL;
6689 }
6690 }
6691 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6692 {
6693 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6694 inst.operands[i].reg = val;
6695 inst.operands[i].isscalar = 1;
6696 inst.operands[i].vectype = optype;
6697 inst.operands[i++].present = 1;
6698
6699 if (skip_past_comma (&ptr) == FAIL)
6700 goto wanted_comma;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i].present = 1;
6708 }
6709 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6710 != FAIL)
6711 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6712 != FAIL))
6713 {
6714 /* Cases 0, 1, 2, 3, 5 (D only). */
6715 if (skip_past_comma (&ptr) == FAIL)
6716 goto wanted_comma;
6717
6718 inst.operands[i].reg = val;
6719 inst.operands[i].isreg = 1;
6720 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6721 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6722 inst.operands[i].isvec = 1;
6723 inst.operands[i].vectype = optype;
6724 inst.operands[i++].present = 1;
6725
6726 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6727 {
6728 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6729 Case 13: VMOV <Sd>, <Rm> */
6730 inst.operands[i].reg = val;
6731 inst.operands[i].isreg = 1;
6732 inst.operands[i].present = 1;
6733
6734 if (rtype == REG_TYPE_NQ)
6735 {
6736 first_error (_("can't use Neon quad register here"));
6737 return FAIL;
6738 }
6739 else if (rtype != REG_TYPE_VFS)
6740 {
6741 i++;
6742 if (skip_past_comma (&ptr) == FAIL)
6743 goto wanted_comma;
6744 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6745 goto wanted_arm;
6746 inst.operands[i].reg = val;
6747 inst.operands[i].isreg = 1;
6748 inst.operands[i].present = 1;
6749 }
6750 }
6751 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6752 &optype)) != FAIL)
6753 {
6754 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6755 Case 1: VMOV<c><q> <Dd>, <Dm>
6756 Case 8: VMOV.F32 <Sd>, <Sm>
6757 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6758
6759 inst.operands[i].reg = val;
6760 inst.operands[i].isreg = 1;
6761 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6762 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6763 inst.operands[i].isvec = 1;
6764 inst.operands[i].vectype = optype;
6765 inst.operands[i].present = 1;
6766
6767 if (skip_past_comma (&ptr) == SUCCESS)
6768 {
6769 /* Case 15. */
6770 i++;
6771
6772 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6773 goto wanted_arm;
6774
6775 inst.operands[i].reg = val;
6776 inst.operands[i].isreg = 1;
6777 inst.operands[i++].present = 1;
6778
6779 if (skip_past_comma (&ptr) == FAIL)
6780 goto wanted_comma;
6781
6782 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6783 goto wanted_arm;
6784
6785 inst.operands[i].reg = val;
6786 inst.operands[i].isreg = 1;
6787 inst.operands[i].present = 1;
6788 }
6789 }
6790 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6791 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6792 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6793 Case 10: VMOV.F32 <Sd>, #<imm>
6794 Case 11: VMOV.F64 <Dd>, #<imm> */
6795 inst.operands[i].immisfloat = 1;
6796 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6797 == SUCCESS)
6798 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6799 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6800 ;
6801 else
6802 {
6803 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6804 return FAIL;
6805 }
6806 }
6807 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6808 {
6809 /* Cases 6, 7, 16, 18. */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isreg = 1;
6812 inst.operands[i++].present = 1;
6813
6814 if (skip_past_comma (&ptr) == FAIL)
6815 goto wanted_comma;
6816
6817 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6818 {
6819 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6820 inst.operands[i].reg = val;
6821 inst.operands[i].isscalar = 2;
6822 inst.operands[i].present = 1;
6823 inst.operands[i].vectype = optype;
6824 }
6825 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6826 {
6827 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6828 inst.operands[i].reg = val;
6829 inst.operands[i].isscalar = 1;
6830 inst.operands[i].present = 1;
6831 inst.operands[i].vectype = optype;
6832 }
6833 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6834 {
6835 inst.operands[i].reg = val;
6836 inst.operands[i].isreg = 1;
6837 inst.operands[i++].present = 1;
6838
6839 if (skip_past_comma (&ptr) == FAIL)
6840 goto wanted_comma;
6841
6842 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6843 != FAIL)
6844 {
6845 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6846
6847 inst.operands[i].reg = val;
6848 inst.operands[i].isreg = 1;
6849 inst.operands[i].isvec = 1;
6850 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6851 inst.operands[i].vectype = optype;
6852 inst.operands[i].present = 1;
6853
6854 if (rtype == REG_TYPE_VFS)
6855 {
6856 /* Case 14. */
6857 i++;
6858 if (skip_past_comma (&ptr) == FAIL)
6859 goto wanted_comma;
6860 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6861 &optype)) == FAIL)
6862 {
6863 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6864 return FAIL;
6865 }
6866 inst.operands[i].reg = val;
6867 inst.operands[i].isreg = 1;
6868 inst.operands[i].isvec = 1;
6869 inst.operands[i].issingle = 1;
6870 inst.operands[i].vectype = optype;
6871 inst.operands[i].present = 1;
6872 }
6873 }
6874 else
6875 {
6876 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6877 != FAIL)
6878 {
6879 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6880 inst.operands[i].reg = val;
6881 inst.operands[i].isvec = 1;
6882 inst.operands[i].isscalar = 2;
6883 inst.operands[i].vectype = optype;
6884 inst.operands[i++].present = 1;
6885
6886 if (skip_past_comma (&ptr) == FAIL)
6887 goto wanted_comma;
6888
6889 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6890 == FAIL)
6891 {
6892 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6893 return FAIL;
6894 }
6895 inst.operands[i].reg = val;
6896 inst.operands[i].isvec = 1;
6897 inst.operands[i].isscalar = 2;
6898 inst.operands[i].vectype = optype;
6899 inst.operands[i].present = 1;
6900 }
6901 else
6902 {
6903 first_error (_("VFP single, double or MVE vector register"
6904 " expected"));
6905 return FAIL;
6906 }
6907 }
6908 }
6909 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6910 != FAIL)
6911 {
6912 /* Case 13. */
6913 inst.operands[i].reg = val;
6914 inst.operands[i].isreg = 1;
6915 inst.operands[i].isvec = 1;
6916 inst.operands[i].issingle = 1;
6917 inst.operands[i].vectype = optype;
6918 inst.operands[i].present = 1;
6919 }
6920 }
6921 else
6922 {
6923 first_error (_("parse error"));
6924 return FAIL;
6925 }
6926
6927 /* Successfully parsed the operands. Update args. */
6928 *which_operand = i;
6929 *str = ptr;
6930 return SUCCESS;
6931
6932 wanted_comma:
6933 first_error (_("expected comma"));
6934 return FAIL;
6935
6936 wanted_arm:
6937 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6938 return FAIL;
6939 }
6940
6941 /* Use this macro when the operand constraints are different
6942 for ARM and THUMB (e.g. ldrd). */
6943 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6944 ((arm_operand) | ((thumb_operand) << 16))
6945
6946 /* Matcher codes for parse_operands. */
6947 enum operand_parse_code
6948 {
6949 OP_stop, /* end of line */
6950
6951 OP_RR, /* ARM register */
6952 OP_RRnpc, /* ARM register, not r15 */
6953 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6954 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6955 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6956 optional trailing ! */
6957 OP_RRw, /* ARM register, not r15, optional trailing ! */
6958 OP_RCP, /* Coprocessor number */
6959 OP_RCN, /* Coprocessor register */
6960 OP_RF, /* FPA register */
6961 OP_RVS, /* VFP single precision register */
6962 OP_RVD, /* VFP double precision register (0..15) */
6963 OP_RND, /* Neon double precision register (0..31) */
6964 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6965 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6966 */
6967 OP_RNQ, /* Neon quad precision register */
6968 OP_RNQMQ, /* Neon quad or MVE vector register. */
6969 OP_RVSD, /* VFP single or double precision register */
6970 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6971 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6972 OP_RNSD, /* Neon single or double precision register */
6973 OP_RNDQ, /* Neon double or quad precision register */
6974 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6975 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
6976 OP_RNSDQ, /* Neon single, double or quad precision register */
6977 OP_RNSC, /* Neon scalar D[X] */
6978 OP_RVC, /* VFP control register */
6979 OP_RMF, /* Maverick F register */
6980 OP_RMD, /* Maverick D register */
6981 OP_RMFX, /* Maverick FX register */
6982 OP_RMDX, /* Maverick DX register */
6983 OP_RMAX, /* Maverick AX register */
6984 OP_RMDS, /* Maverick DSPSC register */
6985 OP_RIWR, /* iWMMXt wR register */
6986 OP_RIWC, /* iWMMXt wC register */
6987 OP_RIWG, /* iWMMXt wCG register */
6988 OP_RXA, /* XScale accumulator register */
6989
6990 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6991 */
6992 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6993 GPR (no SP/SP) */
6994 OP_RMQ, /* MVE vector register. */
6995 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6996 OP_RMQRR, /* MVE vector or ARM register. */
6997
6998 /* New operands for Armv8.1-M Mainline. */
6999 OP_LR, /* ARM LR register */
7000 OP_RRe, /* ARM register, only even numbered. */
7001 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
7002 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
7003 OP_RR_ZR, /* ARM register or ZR but no PC */
7004
7005 OP_REGLST, /* ARM register list */
7006 OP_CLRMLST, /* CLRM register list */
7007 OP_VRSLST, /* VFP single-precision register list */
7008 OP_VRDLST, /* VFP double-precision register list */
7009 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
7010 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
7011 OP_NSTRLST, /* Neon element/structure list */
7012 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
7013 OP_MSTRLST2, /* MVE vector list with two elements. */
7014 OP_MSTRLST4, /* MVE vector list with four elements. */
7015
7016 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
7017 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
7018 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
7019 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
7020 zero. */
7021 OP_RR_RNSC, /* ARM reg or Neon scalar. */
7022 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
7023 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
7024 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
7025 */
7026 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
7027 scalar, or ARM register. */
7028 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
7029 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
7030 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
7031 register. */
7032 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
7033 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
7034 OP_VMOV, /* Neon VMOV operands. */
7035 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
7036 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
7037 OP_RNDQMQ_Ibig,
7038 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
7039 OP_RNDQMQ_I63b_RR, /* Neon D or Q reg, immediate for shift, MVE vector or
7040 ARM register. */
7041 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
7042 OP_VLDR, /* VLDR operand. */
7043
7044 OP_I0, /* immediate zero */
7045 OP_I7, /* immediate value 0 .. 7 */
7046 OP_I15, /* 0 .. 15 */
7047 OP_I16, /* 1 .. 16 */
7048 OP_I16z, /* 0 .. 16 */
7049 OP_I31, /* 0 .. 31 */
7050 OP_I31w, /* 0 .. 31, optional trailing ! */
7051 OP_I32, /* 1 .. 32 */
7052 OP_I32z, /* 0 .. 32 */
7053 OP_I63, /* 0 .. 63 */
7054 OP_I63s, /* -64 .. 63 */
7055 OP_I64, /* 1 .. 64 */
7056 OP_I64z, /* 0 .. 64 */
7057 OP_I255, /* 0 .. 255 */
7058
7059 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
7060 OP_I7b, /* 0 .. 7 */
7061 OP_I15b, /* 0 .. 15 */
7062 OP_I31b, /* 0 .. 31 */
7063
7064 OP_SH, /* shifter operand */
7065 OP_SHG, /* shifter operand with possible group relocation */
7066 OP_ADDR, /* Memory address expression (any mode) */
7067 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
7068 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
7069 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
7070 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
7071 OP_EXP, /* arbitrary expression */
7072 OP_EXPi, /* same, with optional immediate prefix */
7073 OP_EXPr, /* same, with optional relocation suffix */
7074 OP_EXPs, /* same, with optional non-first operand relocation suffix */
7075 OP_HALF, /* 0 .. 65535 or low/high reloc. */
7076 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7077 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7078
7079 OP_CPSF, /* CPS flags */
7080 OP_ENDI, /* Endianness specifier */
7081 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7082 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7083 OP_COND, /* conditional code */
7084 OP_TB, /* Table branch. */
7085
7086 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7087
7088 OP_RRnpc_I0, /* ARM register or literal 0 */
7089 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7090 OP_RR_EXi, /* ARM register or expression with imm prefix */
7091 OP_RF_IF, /* FPA register or immediate */
7092 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7093 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7094
7095 /* Optional operands. */
7096 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7097 OP_oI31b, /* 0 .. 31 */
7098 OP_oI32b, /* 1 .. 32 */
7099 OP_oI32z, /* 0 .. 32 */
7100 OP_oIffffb, /* 0 .. 65535 */
7101 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7102
7103 OP_oRR, /* ARM register */
7104 OP_oLR, /* ARM LR register */
7105 OP_oRRnpc, /* ARM register, not the PC */
7106 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7107 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7108 OP_oRND, /* Optional Neon double precision register */
7109 OP_oRNQ, /* Optional Neon quad precision register */
7110 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7111 OP_oRNDQ, /* Optional Neon double or quad precision register */
7112 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7113 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7114 register. */
7115 OP_oSHll, /* LSL immediate */
7116 OP_oSHar, /* ASR immediate */
7117 OP_oSHllar, /* LSL or ASR immediate */
7118 OP_oROR, /* ROR 0/8/16/24 */
7119 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7120
7121 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7122
7123 /* Some pre-defined mixed (ARM/THUMB) operands. */
7124 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7125 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7126 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7127
7128 OP_FIRST_OPTIONAL = OP_oI7b
7129 };
7130
7131 /* Generic instruction operand parser. This does no encoding and no
7132 semantic validation; it merely squirrels values away in the inst
7133 structure. Returns SUCCESS or FAIL depending on whether the
7134 specified grammar matched. */
7135 static int
7136 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7137 {
7138 unsigned const int *upat = pattern;
7139 char *backtrack_pos = 0;
7140 const char *backtrack_error = 0;
7141 int i, val = 0, backtrack_index = 0;
7142 enum arm_reg_type rtype;
7143 parse_operand_result result;
7144 unsigned int op_parse_code;
7145 bfd_boolean partial_match;
7146
7147 #define po_char_or_fail(chr) \
7148 do \
7149 { \
7150 if (skip_past_char (&str, chr) == FAIL) \
7151 goto bad_args; \
7152 } \
7153 while (0)
7154
7155 #define po_reg_or_fail(regtype) \
7156 do \
7157 { \
7158 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7159 & inst.operands[i].vectype); \
7160 if (val == FAIL) \
7161 { \
7162 first_error (_(reg_expected_msgs[regtype])); \
7163 goto failure; \
7164 } \
7165 inst.operands[i].reg = val; \
7166 inst.operands[i].isreg = 1; \
7167 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7168 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7169 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7170 || rtype == REG_TYPE_VFD \
7171 || rtype == REG_TYPE_NQ); \
7172 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7173 } \
7174 while (0)
7175
7176 #define po_reg_or_goto(regtype, label) \
7177 do \
7178 { \
7179 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7180 & inst.operands[i].vectype); \
7181 if (val == FAIL) \
7182 goto label; \
7183 \
7184 inst.operands[i].reg = val; \
7185 inst.operands[i].isreg = 1; \
7186 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7187 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7188 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7189 || rtype == REG_TYPE_VFD \
7190 || rtype == REG_TYPE_NQ); \
7191 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7192 } \
7193 while (0)
7194
7195 #define po_imm_or_fail(min, max, popt) \
7196 do \
7197 { \
7198 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7199 goto failure; \
7200 inst.operands[i].imm = val; \
7201 } \
7202 while (0)
7203
7204 #define po_scalar_or_goto(elsz, label, reg_type) \
7205 do \
7206 { \
7207 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7208 reg_type); \
7209 if (val == FAIL) \
7210 goto label; \
7211 inst.operands[i].reg = val; \
7212 inst.operands[i].isscalar = 1; \
7213 } \
7214 while (0)
7215
7216 #define po_misc_or_fail(expr) \
7217 do \
7218 { \
7219 if (expr) \
7220 goto failure; \
7221 } \
7222 while (0)
7223
7224 #define po_misc_or_fail_no_backtrack(expr) \
7225 do \
7226 { \
7227 result = expr; \
7228 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7229 backtrack_pos = 0; \
7230 if (result != PARSE_OPERAND_SUCCESS) \
7231 goto failure; \
7232 } \
7233 while (0)
7234
7235 #define po_barrier_or_imm(str) \
7236 do \
7237 { \
7238 val = parse_barrier (&str); \
7239 if (val == FAIL && ! ISALPHA (*str)) \
7240 goto immediate; \
7241 if (val == FAIL \
7242 /* ISB can only take SY as an option. */ \
7243 || ((inst.instruction & 0xf0) == 0x60 \
7244 && val != 0xf)) \
7245 { \
7246 inst.error = _("invalid barrier type"); \
7247 backtrack_pos = 0; \
7248 goto failure; \
7249 } \
7250 } \
7251 while (0)
7252
7253 skip_whitespace (str);
7254
7255 for (i = 0; upat[i] != OP_stop; i++)
7256 {
7257 op_parse_code = upat[i];
7258 if (op_parse_code >= 1<<16)
7259 op_parse_code = thumb ? (op_parse_code >> 16)
7260 : (op_parse_code & ((1<<16)-1));
7261
7262 if (op_parse_code >= OP_FIRST_OPTIONAL)
7263 {
7264 /* Remember where we are in case we need to backtrack. */
7265 backtrack_pos = str;
7266 backtrack_error = inst.error;
7267 backtrack_index = i;
7268 }
7269
7270 if (i > 0 && (i > 1 || inst.operands[0].present))
7271 po_char_or_fail (',');
7272
7273 switch (op_parse_code)
7274 {
7275 /* Registers */
7276 case OP_oRRnpc:
7277 case OP_oRRnpcsp:
7278 case OP_RRnpc:
7279 case OP_RRnpcsp:
7280 case OP_oRR:
7281 case OP_RRe:
7282 case OP_RRo:
7283 case OP_LR:
7284 case OP_oLR:
7285 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7286 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7287 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7288 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7289 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7290 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7291 case OP_oRND:
7292 case OP_RNDMQR:
7293 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7294 break;
7295 try_rndmq:
7296 case OP_RNDMQ:
7297 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7298 break;
7299 try_rnd:
7300 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7301 case OP_RVC:
7302 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7303 break;
7304 /* Also accept generic coprocessor regs for unknown registers. */
7305 coproc_reg:
7306 po_reg_or_goto (REG_TYPE_CN, vpr_po);
7307 break;
7308 /* Also accept P0 or p0 for VPR.P0. Since P0 is already an
7309 existing register with a value of 0, this seems like the
7310 best way to parse P0. */
7311 vpr_po:
7312 if (strncasecmp (str, "P0", 2) == 0)
7313 {
7314 str += 2;
7315 inst.operands[i].isreg = 1;
7316 inst.operands[i].reg = 13;
7317 }
7318 else
7319 goto failure;
7320 break;
7321 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7322 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7323 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7324 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7325 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7326 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7327 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7328 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7329 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7330 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7331 case OP_oRNQ:
7332 case OP_RNQMQ:
7333 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7334 break;
7335 try_nq:
7336 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7337 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7338 case OP_RNDQMQR:
7339 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7340 break;
7341 try_rndqmq:
7342 case OP_oRNDQMQ:
7343 case OP_RNDQMQ:
7344 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7345 break;
7346 try_rndq:
7347 case OP_oRNDQ:
7348 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7349 case OP_RVSDMQ:
7350 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7351 break;
7352 try_rvsd:
7353 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7354 case OP_RVSD_COND:
7355 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7356 break;
7357 case OP_oRNSDQ:
7358 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7359 case OP_RNSDQMQR:
7360 po_reg_or_goto (REG_TYPE_RN, try_mq);
7361 break;
7362 try_mq:
7363 case OP_oRNSDQMQ:
7364 case OP_RNSDQMQ:
7365 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7366 break;
7367 try_nsdq2:
7368 po_reg_or_fail (REG_TYPE_NSDQ);
7369 inst.error = 0;
7370 break;
7371 case OP_RMQRR:
7372 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7373 break;
7374 try_rmq:
7375 case OP_RMQ:
7376 po_reg_or_fail (REG_TYPE_MQ);
7377 break;
7378 /* Neon scalar. Using an element size of 8 means that some invalid
7379 scalars are accepted here, so deal with those in later code. */
7380 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7381
7382 case OP_RNDQ_I0:
7383 {
7384 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7385 break;
7386 try_imm0:
7387 po_imm_or_fail (0, 0, TRUE);
7388 }
7389 break;
7390
7391 case OP_RVSD_I0:
7392 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7393 break;
7394
7395 case OP_RSVDMQ_FI0:
7396 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7397 break;
7398 try_rsvd_fi0:
7399 case OP_RSVD_FI0:
7400 {
7401 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7402 break;
7403 try_ifimm0:
7404 if (parse_ifimm_zero (&str))
7405 inst.operands[i].imm = 0;
7406 else
7407 {
7408 inst.error
7409 = _("only floating point zero is allowed as immediate value");
7410 goto failure;
7411 }
7412 }
7413 break;
7414
7415 case OP_RR_RNSC:
7416 {
7417 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7418 break;
7419 try_rr:
7420 po_reg_or_fail (REG_TYPE_RN);
7421 }
7422 break;
7423
7424 case OP_RNSDQ_RNSC_MQ_RR:
7425 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7426 break;
7427 try_rnsdq_rnsc_mq:
7428 case OP_RNSDQ_RNSC_MQ:
7429 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7430 break;
7431 try_rnsdq_rnsc:
7432 case OP_RNSDQ_RNSC:
7433 {
7434 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7435 inst.error = 0;
7436 break;
7437 try_nsdq:
7438 po_reg_or_fail (REG_TYPE_NSDQ);
7439 inst.error = 0;
7440 }
7441 break;
7442
7443 case OP_RNSD_RNSC:
7444 {
7445 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7446 break;
7447 try_s_scalar:
7448 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7449 break;
7450 try_nsd:
7451 po_reg_or_fail (REG_TYPE_NSD);
7452 }
7453 break;
7454
7455 case OP_RNDQMQ_RNSC_RR:
7456 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7457 break;
7458 try_rndq_rnsc_rr:
7459 case OP_RNDQ_RNSC_RR:
7460 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7461 break;
7462 case OP_RNDQMQ_RNSC:
7463 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7464 break;
7465 try_rndq_rnsc:
7466 case OP_RNDQ_RNSC:
7467 {
7468 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7469 break;
7470 try_ndq:
7471 po_reg_or_fail (REG_TYPE_NDQ);
7472 }
7473 break;
7474
7475 case OP_RND_RNSC:
7476 {
7477 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7478 break;
7479 try_vfd:
7480 po_reg_or_fail (REG_TYPE_VFD);
7481 }
7482 break;
7483
7484 case OP_VMOV:
7485 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7486 not careful then bad things might happen. */
7487 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7488 break;
7489
7490 case OP_RNDQMQ_Ibig:
7491 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7492 break;
7493 try_rndq_ibig:
7494 case OP_RNDQ_Ibig:
7495 {
7496 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7497 break;
7498 try_immbig:
7499 /* There's a possibility of getting a 64-bit immediate here, so
7500 we need special handling. */
7501 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7502 == FAIL)
7503 {
7504 inst.error = _("immediate value is out of range");
7505 goto failure;
7506 }
7507 }
7508 break;
7509
7510 case OP_RNDQMQ_I63b_RR:
7511 po_reg_or_goto (REG_TYPE_MQ, try_rndq_i63b_rr);
7512 break;
7513 try_rndq_i63b_rr:
7514 po_reg_or_goto (REG_TYPE_RN, try_rndq_i63b);
7515 break;
7516 try_rndq_i63b:
7517 case OP_RNDQ_I63b:
7518 {
7519 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7520 break;
7521 try_shimm:
7522 po_imm_or_fail (0, 63, TRUE);
7523 }
7524 break;
7525
7526 case OP_RRnpcb:
7527 po_char_or_fail ('[');
7528 po_reg_or_fail (REG_TYPE_RN);
7529 po_char_or_fail (']');
7530 break;
7531
7532 case OP_RRnpctw:
7533 case OP_RRw:
7534 case OP_oRRw:
7535 po_reg_or_fail (REG_TYPE_RN);
7536 if (skip_past_char (&str, '!') == SUCCESS)
7537 inst.operands[i].writeback = 1;
7538 break;
7539
7540 /* Immediates */
7541 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7542 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7543 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7544 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7545 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7546 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7547 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7548 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7549 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7550 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7551 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7552 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7553
7554 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7555 case OP_oI7b:
7556 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7557 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7558 case OP_oI31b:
7559 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7560 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7561 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7562 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7563
7564 /* Immediate variants */
7565 case OP_oI255c:
7566 po_char_or_fail ('{');
7567 po_imm_or_fail (0, 255, TRUE);
7568 po_char_or_fail ('}');
7569 break;
7570
7571 case OP_I31w:
7572 /* The expression parser chokes on a trailing !, so we have
7573 to find it first and zap it. */
7574 {
7575 char *s = str;
7576 while (*s && *s != ',')
7577 s++;
7578 if (s[-1] == '!')
7579 {
7580 s[-1] = '\0';
7581 inst.operands[i].writeback = 1;
7582 }
7583 po_imm_or_fail (0, 31, TRUE);
7584 if (str == s - 1)
7585 str = s;
7586 }
7587 break;
7588
7589 /* Expressions */
7590 case OP_EXPi: EXPi:
7591 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7592 GE_OPT_PREFIX));
7593 break;
7594
7595 case OP_EXP:
7596 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7597 GE_NO_PREFIX));
7598 break;
7599
7600 case OP_EXPr: EXPr:
7601 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7602 GE_NO_PREFIX));
7603 if (inst.relocs[0].exp.X_op == O_symbol)
7604 {
7605 val = parse_reloc (&str);
7606 if (val == -1)
7607 {
7608 inst.error = _("unrecognized relocation suffix");
7609 goto failure;
7610 }
7611 else if (val != BFD_RELOC_UNUSED)
7612 {
7613 inst.operands[i].imm = val;
7614 inst.operands[i].hasreloc = 1;
7615 }
7616 }
7617 break;
7618
7619 case OP_EXPs:
7620 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7621 GE_NO_PREFIX));
7622 if (inst.relocs[i].exp.X_op == O_symbol)
7623 {
7624 inst.operands[i].hasreloc = 1;
7625 }
7626 else if (inst.relocs[i].exp.X_op == O_constant)
7627 {
7628 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7629 inst.operands[i].hasreloc = 0;
7630 }
7631 break;
7632
7633 /* Operand for MOVW or MOVT. */
7634 case OP_HALF:
7635 po_misc_or_fail (parse_half (&str));
7636 break;
7637
7638 /* Register or expression. */
7639 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7640 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7641
7642 /* Register or immediate. */
7643 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7644 I0: po_imm_or_fail (0, 0, FALSE); break;
7645
7646 case OP_RRnpcsp_I32: po_reg_or_goto (REG_TYPE_RN, I32); break;
7647 I32: po_imm_or_fail (1, 32, FALSE); break;
7648
7649 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7650 IF:
7651 if (!is_immediate_prefix (*str))
7652 goto bad_args;
7653 str++;
7654 val = parse_fpa_immediate (&str);
7655 if (val == FAIL)
7656 goto failure;
7657 /* FPA immediates are encoded as registers 8-15.
7658 parse_fpa_immediate has already applied the offset. */
7659 inst.operands[i].reg = val;
7660 inst.operands[i].isreg = 1;
7661 break;
7662
7663 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7664 I32z: po_imm_or_fail (0, 32, FALSE); break;
7665
7666 /* Two kinds of register. */
7667 case OP_RIWR_RIWC:
7668 {
7669 struct reg_entry *rege = arm_reg_parse_multi (&str);
7670 if (!rege
7671 || (rege->type != REG_TYPE_MMXWR
7672 && rege->type != REG_TYPE_MMXWC
7673 && rege->type != REG_TYPE_MMXWCG))
7674 {
7675 inst.error = _("iWMMXt data or control register expected");
7676 goto failure;
7677 }
7678 inst.operands[i].reg = rege->number;
7679 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7680 }
7681 break;
7682
7683 case OP_RIWC_RIWG:
7684 {
7685 struct reg_entry *rege = arm_reg_parse_multi (&str);
7686 if (!rege
7687 || (rege->type != REG_TYPE_MMXWC
7688 && rege->type != REG_TYPE_MMXWCG))
7689 {
7690 inst.error = _("iWMMXt control register expected");
7691 goto failure;
7692 }
7693 inst.operands[i].reg = rege->number;
7694 inst.operands[i].isreg = 1;
7695 }
7696 break;
7697
7698 /* Misc */
7699 case OP_CPSF: val = parse_cps_flags (&str); break;
7700 case OP_ENDI: val = parse_endian_specifier (&str); break;
7701 case OP_oROR: val = parse_ror (&str); break;
7702 try_cond:
7703 case OP_COND: val = parse_cond (&str); break;
7704 case OP_oBARRIER_I15:
7705 po_barrier_or_imm (str); break;
7706 immediate:
7707 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7708 goto failure;
7709 break;
7710
7711 case OP_wPSR:
7712 case OP_rPSR:
7713 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7714 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7715 {
7716 inst.error = _("Banked registers are not available with this "
7717 "architecture.");
7718 goto failure;
7719 }
7720 break;
7721 try_psr:
7722 val = parse_psr (&str, op_parse_code == OP_wPSR);
7723 break;
7724
7725 case OP_VLDR:
7726 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7727 break;
7728 try_sysreg:
7729 val = parse_sys_vldr_vstr (&str);
7730 break;
7731
7732 case OP_APSR_RR:
7733 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7734 break;
7735 try_apsr:
7736 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7737 instruction). */
7738 if (strncasecmp (str, "APSR_", 5) == 0)
7739 {
7740 unsigned found = 0;
7741 str += 5;
7742 while (found < 15)
7743 switch (*str++)
7744 {
7745 case 'c': found = (found & 1) ? 16 : found | 1; break;
7746 case 'n': found = (found & 2) ? 16 : found | 2; break;
7747 case 'z': found = (found & 4) ? 16 : found | 4; break;
7748 case 'v': found = (found & 8) ? 16 : found | 8; break;
7749 default: found = 16;
7750 }
7751 if (found != 15)
7752 goto failure;
7753 inst.operands[i].isvec = 1;
7754 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7755 inst.operands[i].reg = REG_PC;
7756 }
7757 else
7758 goto failure;
7759 break;
7760
7761 case OP_TB:
7762 po_misc_or_fail (parse_tb (&str));
7763 break;
7764
7765 /* Register lists. */
7766 case OP_REGLST:
7767 val = parse_reg_list (&str, REGLIST_RN);
7768 if (*str == '^')
7769 {
7770 inst.operands[i].writeback = 1;
7771 str++;
7772 }
7773 break;
7774
7775 case OP_CLRMLST:
7776 val = parse_reg_list (&str, REGLIST_CLRM);
7777 break;
7778
7779 case OP_VRSLST:
7780 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7781 &partial_match);
7782 break;
7783
7784 case OP_VRDLST:
7785 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7786 &partial_match);
7787 break;
7788
7789 case OP_VRSDLST:
7790 /* Allow Q registers too. */
7791 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7792 REGLIST_NEON_D, &partial_match);
7793 if (val == FAIL)
7794 {
7795 inst.error = NULL;
7796 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7797 REGLIST_VFP_S, &partial_match);
7798 inst.operands[i].issingle = 1;
7799 }
7800 break;
7801
7802 case OP_VRSDVLST:
7803 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7804 REGLIST_VFP_D_VPR, &partial_match);
7805 if (val == FAIL && !partial_match)
7806 {
7807 inst.error = NULL;
7808 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7809 REGLIST_VFP_S_VPR, &partial_match);
7810 inst.operands[i].issingle = 1;
7811 }
7812 break;
7813
7814 case OP_NRDLST:
7815 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7816 REGLIST_NEON_D, &partial_match);
7817 break;
7818
7819 case OP_MSTRLST4:
7820 case OP_MSTRLST2:
7821 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7822 1, &inst.operands[i].vectype);
7823 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7824 goto failure;
7825 break;
7826 case OP_NSTRLST:
7827 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7828 0, &inst.operands[i].vectype);
7829 break;
7830
7831 /* Addressing modes */
7832 case OP_ADDRMVE:
7833 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7834 break;
7835
7836 case OP_ADDR:
7837 po_misc_or_fail (parse_address (&str, i));
7838 break;
7839
7840 case OP_ADDRGLDR:
7841 po_misc_or_fail_no_backtrack (
7842 parse_address_group_reloc (&str, i, GROUP_LDR));
7843 break;
7844
7845 case OP_ADDRGLDRS:
7846 po_misc_or_fail_no_backtrack (
7847 parse_address_group_reloc (&str, i, GROUP_LDRS));
7848 break;
7849
7850 case OP_ADDRGLDC:
7851 po_misc_or_fail_no_backtrack (
7852 parse_address_group_reloc (&str, i, GROUP_LDC));
7853 break;
7854
7855 case OP_SH:
7856 po_misc_or_fail (parse_shifter_operand (&str, i));
7857 break;
7858
7859 case OP_SHG:
7860 po_misc_or_fail_no_backtrack (
7861 parse_shifter_operand_group_reloc (&str, i));
7862 break;
7863
7864 case OP_oSHll:
7865 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7866 break;
7867
7868 case OP_oSHar:
7869 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7870 break;
7871
7872 case OP_oSHllar:
7873 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7874 break;
7875
7876 case OP_RMQRZ:
7877 case OP_oRMQRZ:
7878 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7879 break;
7880
7881 case OP_RR_ZR:
7882 try_rr_zr:
7883 po_reg_or_goto (REG_TYPE_RN, ZR);
7884 break;
7885 ZR:
7886 po_reg_or_fail (REG_TYPE_ZR);
7887 break;
7888
7889 default:
7890 as_fatal (_("unhandled operand code %d"), op_parse_code);
7891 }
7892
7893 /* Various value-based sanity checks and shared operations. We
7894 do not signal immediate failures for the register constraints;
7895 this allows a syntax error to take precedence. */
7896 switch (op_parse_code)
7897 {
7898 case OP_oRRnpc:
7899 case OP_RRnpc:
7900 case OP_RRnpcb:
7901 case OP_RRw:
7902 case OP_oRRw:
7903 case OP_RRnpc_I0:
7904 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7905 inst.error = BAD_PC;
7906 break;
7907
7908 case OP_oRRnpcsp:
7909 case OP_RRnpcsp:
7910 case OP_RRnpcsp_I32:
7911 if (inst.operands[i].isreg)
7912 {
7913 if (inst.operands[i].reg == REG_PC)
7914 inst.error = BAD_PC;
7915 else if (inst.operands[i].reg == REG_SP
7916 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7917 relaxed since ARMv8-A. */
7918 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7919 {
7920 gas_assert (thumb);
7921 inst.error = BAD_SP;
7922 }
7923 }
7924 break;
7925
7926 case OP_RRnpctw:
7927 if (inst.operands[i].isreg
7928 && inst.operands[i].reg == REG_PC
7929 && (inst.operands[i].writeback || thumb))
7930 inst.error = BAD_PC;
7931 break;
7932
7933 case OP_RVSD_COND:
7934 case OP_VLDR:
7935 if (inst.operands[i].isreg)
7936 break;
7937 /* fall through. */
7938
7939 case OP_CPSF:
7940 case OP_ENDI:
7941 case OP_oROR:
7942 case OP_wPSR:
7943 case OP_rPSR:
7944 case OP_COND:
7945 case OP_oBARRIER_I15:
7946 case OP_REGLST:
7947 case OP_CLRMLST:
7948 case OP_VRSLST:
7949 case OP_VRDLST:
7950 case OP_VRSDLST:
7951 case OP_VRSDVLST:
7952 case OP_NRDLST:
7953 case OP_NSTRLST:
7954 case OP_MSTRLST2:
7955 case OP_MSTRLST4:
7956 if (val == FAIL)
7957 goto failure;
7958 inst.operands[i].imm = val;
7959 break;
7960
7961 case OP_LR:
7962 case OP_oLR:
7963 if (inst.operands[i].reg != REG_LR)
7964 inst.error = _("operand must be LR register");
7965 break;
7966
7967 case OP_RMQRZ:
7968 case OP_oRMQRZ:
7969 case OP_RR_ZR:
7970 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7971 inst.error = BAD_PC;
7972 break;
7973
7974 case OP_RRe:
7975 if (inst.operands[i].isreg
7976 && (inst.operands[i].reg & 0x00000001) != 0)
7977 inst.error = BAD_ODD;
7978 break;
7979
7980 case OP_RRo:
7981 if (inst.operands[i].isreg)
7982 {
7983 if ((inst.operands[i].reg & 0x00000001) != 1)
7984 inst.error = BAD_EVEN;
7985 else if (inst.operands[i].reg == REG_SP)
7986 as_tsktsk (MVE_BAD_SP);
7987 else if (inst.operands[i].reg == REG_PC)
7988 inst.error = BAD_PC;
7989 }
7990 break;
7991
7992 default:
7993 break;
7994 }
7995
7996 /* If we get here, this operand was successfully parsed. */
7997 inst.operands[i].present = 1;
7998 continue;
7999
8000 bad_args:
8001 inst.error = BAD_ARGS;
8002
8003 failure:
8004 if (!backtrack_pos)
8005 {
8006 /* The parse routine should already have set inst.error, but set a
8007 default here just in case. */
8008 if (!inst.error)
8009 inst.error = BAD_SYNTAX;
8010 return FAIL;
8011 }
8012
8013 /* Do not backtrack over a trailing optional argument that
8014 absorbed some text. We will only fail again, with the
8015 'garbage following instruction' error message, which is
8016 probably less helpful than the current one. */
8017 if (backtrack_index == i && backtrack_pos != str
8018 && upat[i+1] == OP_stop)
8019 {
8020 if (!inst.error)
8021 inst.error = BAD_SYNTAX;
8022 return FAIL;
8023 }
8024
8025 /* Try again, skipping the optional argument at backtrack_pos. */
8026 str = backtrack_pos;
8027 inst.error = backtrack_error;
8028 inst.operands[backtrack_index].present = 0;
8029 i = backtrack_index;
8030 backtrack_pos = 0;
8031 }
8032
8033 /* Check that we have parsed all the arguments. */
8034 if (*str != '\0' && !inst.error)
8035 inst.error = _("garbage following instruction");
8036
8037 return inst.error ? FAIL : SUCCESS;
8038 }
8039
8040 #undef po_char_or_fail
8041 #undef po_reg_or_fail
8042 #undef po_reg_or_goto
8043 #undef po_imm_or_fail
8044 #undef po_scalar_or_fail
8045 #undef po_barrier_or_imm
8046
8047 /* Shorthand macro for instruction encoding functions issuing errors. */
8048 #define constraint(expr, err) \
8049 do \
8050 { \
8051 if (expr) \
8052 { \
8053 inst.error = err; \
8054 return; \
8055 } \
8056 } \
8057 while (0)
8058
8059 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
8060 instructions are unpredictable if these registers are used. This
8061 is the BadReg predicate in ARM's Thumb-2 documentation.
8062
8063 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
8064 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
8065 #define reject_bad_reg(reg) \
8066 do \
8067 if (reg == REG_PC) \
8068 { \
8069 inst.error = BAD_PC; \
8070 return; \
8071 } \
8072 else if (reg == REG_SP \
8073 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
8074 { \
8075 inst.error = BAD_SP; \
8076 return; \
8077 } \
8078 while (0)
8079
8080 /* If REG is R13 (the stack pointer), warn that its use is
8081 deprecated. */
8082 #define warn_deprecated_sp(reg) \
8083 do \
8084 if (warn_on_deprecated && reg == REG_SP) \
8085 as_tsktsk (_("use of r13 is deprecated")); \
8086 while (0)
8087
8088 /* Functions for operand encoding. ARM, then Thumb. */
8089
8090 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
8091
8092 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
8093
8094 The only binary encoding difference is the Coprocessor number. Coprocessor
8095 9 is used for half-precision calculations or conversions. The format of the
8096 instruction is the same as the equivalent Coprocessor 10 instruction that
8097 exists for Single-Precision operation. */
8098
8099 static void
8100 do_scalar_fp16_v82_encode (void)
8101 {
8102 if (inst.cond < COND_ALWAYS)
8103 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8104 " the behaviour is UNPREDICTABLE"));
8105 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8106 _(BAD_FP16));
8107
8108 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8109 mark_feature_used (&arm_ext_fp16);
8110 }
8111
8112 /* If VAL can be encoded in the immediate field of an ARM instruction,
8113 return the encoded form. Otherwise, return FAIL. */
8114
8115 static unsigned int
8116 encode_arm_immediate (unsigned int val)
8117 {
8118 unsigned int a, i;
8119
8120 if (val <= 0xff)
8121 return val;
8122
8123 for (i = 2; i < 32; i += 2)
8124 if ((a = rotate_left (val, i)) <= 0xff)
8125 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8126
8127 return FAIL;
8128 }
8129
8130 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8131 return the encoded form. Otherwise, return FAIL. */
8132 static unsigned int
8133 encode_thumb32_immediate (unsigned int val)
8134 {
8135 unsigned int a, i;
8136
8137 if (val <= 0xff)
8138 return val;
8139
8140 for (i = 1; i <= 24; i++)
8141 {
8142 a = val >> i;
8143 if ((val & ~(0xff << i)) == 0)
8144 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8145 }
8146
8147 a = val & 0xff;
8148 if (val == ((a << 16) | a))
8149 return 0x100 | a;
8150 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8151 return 0x300 | a;
8152
8153 a = val & 0xff00;
8154 if (val == ((a << 16) | a))
8155 return 0x200 | (a >> 8);
8156
8157 return FAIL;
8158 }
8159 /* Encode a VFP SP or DP register number into inst.instruction. */
8160
8161 static void
8162 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8163 {
8164 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8165 && reg > 15)
8166 {
8167 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8168 {
8169 if (thumb_mode)
8170 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8171 fpu_vfp_ext_d32);
8172 else
8173 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8174 fpu_vfp_ext_d32);
8175 }
8176 else
8177 {
8178 first_error (_("D register out of range for selected VFP version"));
8179 return;
8180 }
8181 }
8182
8183 switch (pos)
8184 {
8185 case VFP_REG_Sd:
8186 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8187 break;
8188
8189 case VFP_REG_Sn:
8190 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8191 break;
8192
8193 case VFP_REG_Sm:
8194 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8195 break;
8196
8197 case VFP_REG_Dd:
8198 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8199 break;
8200
8201 case VFP_REG_Dn:
8202 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8203 break;
8204
8205 case VFP_REG_Dm:
8206 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8207 break;
8208
8209 default:
8210 abort ();
8211 }
8212 }
8213
8214 /* Encode a <shift> in an ARM-format instruction. The immediate,
8215 if any, is handled by md_apply_fix. */
8216 static void
8217 encode_arm_shift (int i)
8218 {
8219 /* register-shifted register. */
8220 if (inst.operands[i].immisreg)
8221 {
8222 int op_index;
8223 for (op_index = 0; op_index <= i; ++op_index)
8224 {
8225 /* Check the operand only when it's presented. In pre-UAL syntax,
8226 if the destination register is the same as the first operand, two
8227 register form of the instruction can be used. */
8228 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8229 && inst.operands[op_index].reg == REG_PC)
8230 as_warn (UNPRED_REG ("r15"));
8231 }
8232
8233 if (inst.operands[i].imm == REG_PC)
8234 as_warn (UNPRED_REG ("r15"));
8235 }
8236
8237 if (inst.operands[i].shift_kind == SHIFT_RRX)
8238 inst.instruction |= SHIFT_ROR << 5;
8239 else
8240 {
8241 inst.instruction |= inst.operands[i].shift_kind << 5;
8242 if (inst.operands[i].immisreg)
8243 {
8244 inst.instruction |= SHIFT_BY_REG;
8245 inst.instruction |= inst.operands[i].imm << 8;
8246 }
8247 else
8248 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8249 }
8250 }
8251
8252 static void
8253 encode_arm_shifter_operand (int i)
8254 {
8255 if (inst.operands[i].isreg)
8256 {
8257 inst.instruction |= inst.operands[i].reg;
8258 encode_arm_shift (i);
8259 }
8260 else
8261 {
8262 inst.instruction |= INST_IMMEDIATE;
8263 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8264 inst.instruction |= inst.operands[i].imm;
8265 }
8266 }
8267
8268 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8269 static void
8270 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8271 {
8272 /* PR 14260:
8273 Generate an error if the operand is not a register. */
8274 constraint (!inst.operands[i].isreg,
8275 _("Instruction does not support =N addresses"));
8276
8277 inst.instruction |= inst.operands[i].reg << 16;
8278
8279 if (inst.operands[i].preind)
8280 {
8281 if (is_t)
8282 {
8283 inst.error = _("instruction does not accept preindexed addressing");
8284 return;
8285 }
8286 inst.instruction |= PRE_INDEX;
8287 if (inst.operands[i].writeback)
8288 inst.instruction |= WRITE_BACK;
8289
8290 }
8291 else if (inst.operands[i].postind)
8292 {
8293 gas_assert (inst.operands[i].writeback);
8294 if (is_t)
8295 inst.instruction |= WRITE_BACK;
8296 }
8297 else /* unindexed - only for coprocessor */
8298 {
8299 inst.error = _("instruction does not accept unindexed addressing");
8300 return;
8301 }
8302
8303 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8304 && (((inst.instruction & 0x000f0000) >> 16)
8305 == ((inst.instruction & 0x0000f000) >> 12)))
8306 as_warn ((inst.instruction & LOAD_BIT)
8307 ? _("destination register same as write-back base")
8308 : _("source register same as write-back base"));
8309 }
8310
8311 /* inst.operands[i] was set up by parse_address. Encode it into an
8312 ARM-format mode 2 load or store instruction. If is_t is true,
8313 reject forms that cannot be used with a T instruction (i.e. not
8314 post-indexed). */
8315 static void
8316 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8317 {
8318 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8319
8320 encode_arm_addr_mode_common (i, is_t);
8321
8322 if (inst.operands[i].immisreg)
8323 {
8324 constraint ((inst.operands[i].imm == REG_PC
8325 || (is_pc && inst.operands[i].writeback)),
8326 BAD_PC_ADDRESSING);
8327 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8328 inst.instruction |= inst.operands[i].imm;
8329 if (!inst.operands[i].negative)
8330 inst.instruction |= INDEX_UP;
8331 if (inst.operands[i].shifted)
8332 {
8333 if (inst.operands[i].shift_kind == SHIFT_RRX)
8334 inst.instruction |= SHIFT_ROR << 5;
8335 else
8336 {
8337 inst.instruction |= inst.operands[i].shift_kind << 5;
8338 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8339 }
8340 }
8341 }
8342 else /* immediate offset in inst.relocs[0] */
8343 {
8344 if (is_pc && !inst.relocs[0].pc_rel)
8345 {
8346 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8347
8348 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8349 cannot use PC in addressing.
8350 PC cannot be used in writeback addressing, either. */
8351 constraint ((is_t || inst.operands[i].writeback),
8352 BAD_PC_ADDRESSING);
8353
8354 /* Use of PC in str is deprecated for ARMv7. */
8355 if (warn_on_deprecated
8356 && !is_load
8357 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8358 as_tsktsk (_("use of PC in this instruction is deprecated"));
8359 }
8360
8361 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8362 {
8363 /* Prefer + for zero encoded value. */
8364 if (!inst.operands[i].negative)
8365 inst.instruction |= INDEX_UP;
8366 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8367 }
8368 }
8369 }
8370
8371 /* inst.operands[i] was set up by parse_address. Encode it into an
8372 ARM-format mode 3 load or store instruction. Reject forms that
8373 cannot be used with such instructions. If is_t is true, reject
8374 forms that cannot be used with a T instruction (i.e. not
8375 post-indexed). */
8376 static void
8377 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8378 {
8379 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8380 {
8381 inst.error = _("instruction does not accept scaled register index");
8382 return;
8383 }
8384
8385 encode_arm_addr_mode_common (i, is_t);
8386
8387 if (inst.operands[i].immisreg)
8388 {
8389 constraint ((inst.operands[i].imm == REG_PC
8390 || (is_t && inst.operands[i].reg == REG_PC)),
8391 BAD_PC_ADDRESSING);
8392 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8393 BAD_PC_WRITEBACK);
8394 inst.instruction |= inst.operands[i].imm;
8395 if (!inst.operands[i].negative)
8396 inst.instruction |= INDEX_UP;
8397 }
8398 else /* immediate offset in inst.relocs[0] */
8399 {
8400 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8401 && inst.operands[i].writeback),
8402 BAD_PC_WRITEBACK);
8403 inst.instruction |= HWOFFSET_IMM;
8404 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8405 {
8406 /* Prefer + for zero encoded value. */
8407 if (!inst.operands[i].negative)
8408 inst.instruction |= INDEX_UP;
8409
8410 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8411 }
8412 }
8413 }
8414
8415 /* Write immediate bits [7:0] to the following locations:
8416
8417 |28/24|23 19|18 16|15 4|3 0|
8418 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8419
8420 This function is used by VMOV/VMVN/VORR/VBIC. */
8421
8422 static void
8423 neon_write_immbits (unsigned immbits)
8424 {
8425 inst.instruction |= immbits & 0xf;
8426 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8427 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8428 }
8429
8430 /* Invert low-order SIZE bits of XHI:XLO. */
8431
8432 static void
8433 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8434 {
8435 unsigned immlo = xlo ? *xlo : 0;
8436 unsigned immhi = xhi ? *xhi : 0;
8437
8438 switch (size)
8439 {
8440 case 8:
8441 immlo = (~immlo) & 0xff;
8442 break;
8443
8444 case 16:
8445 immlo = (~immlo) & 0xffff;
8446 break;
8447
8448 case 64:
8449 immhi = (~immhi) & 0xffffffff;
8450 /* fall through. */
8451
8452 case 32:
8453 immlo = (~immlo) & 0xffffffff;
8454 break;
8455
8456 default:
8457 abort ();
8458 }
8459
8460 if (xlo)
8461 *xlo = immlo;
8462
8463 if (xhi)
8464 *xhi = immhi;
8465 }
8466
8467 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8468 A, B, C, D. */
8469
8470 static int
8471 neon_bits_same_in_bytes (unsigned imm)
8472 {
8473 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8474 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8475 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8476 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8477 }
8478
8479 /* For immediate of above form, return 0bABCD. */
8480
8481 static unsigned
8482 neon_squash_bits (unsigned imm)
8483 {
8484 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8485 | ((imm & 0x01000000) >> 21);
8486 }
8487
8488 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8489
8490 static unsigned
8491 neon_qfloat_bits (unsigned imm)
8492 {
8493 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8494 }
8495
8496 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8497 the instruction. *OP is passed as the initial value of the op field, and
8498 may be set to a different value depending on the constant (i.e.
8499 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8500 MVN). If the immediate looks like a repeated pattern then also
8501 try smaller element sizes. */
8502
8503 static int
8504 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8505 unsigned *immbits, int *op, int size,
8506 enum neon_el_type type)
8507 {
8508 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8509 float. */
8510 if (type == NT_float && !float_p)
8511 return FAIL;
8512
8513 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8514 {
8515 if (size != 32 || *op == 1)
8516 return FAIL;
8517 *immbits = neon_qfloat_bits (immlo);
8518 return 0xf;
8519 }
8520
8521 if (size == 64)
8522 {
8523 if (neon_bits_same_in_bytes (immhi)
8524 && neon_bits_same_in_bytes (immlo))
8525 {
8526 if (*op == 1)
8527 return FAIL;
8528 *immbits = (neon_squash_bits (immhi) << 4)
8529 | neon_squash_bits (immlo);
8530 *op = 1;
8531 return 0xe;
8532 }
8533
8534 if (immhi != immlo)
8535 return FAIL;
8536 }
8537
8538 if (size >= 32)
8539 {
8540 if (immlo == (immlo & 0x000000ff))
8541 {
8542 *immbits = immlo;
8543 return 0x0;
8544 }
8545 else if (immlo == (immlo & 0x0000ff00))
8546 {
8547 *immbits = immlo >> 8;
8548 return 0x2;
8549 }
8550 else if (immlo == (immlo & 0x00ff0000))
8551 {
8552 *immbits = immlo >> 16;
8553 return 0x4;
8554 }
8555 else if (immlo == (immlo & 0xff000000))
8556 {
8557 *immbits = immlo >> 24;
8558 return 0x6;
8559 }
8560 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8561 {
8562 *immbits = (immlo >> 8) & 0xff;
8563 return 0xc;
8564 }
8565 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8566 {
8567 *immbits = (immlo >> 16) & 0xff;
8568 return 0xd;
8569 }
8570
8571 if ((immlo & 0xffff) != (immlo >> 16))
8572 return FAIL;
8573 immlo &= 0xffff;
8574 }
8575
8576 if (size >= 16)
8577 {
8578 if (immlo == (immlo & 0x000000ff))
8579 {
8580 *immbits = immlo;
8581 return 0x8;
8582 }
8583 else if (immlo == (immlo & 0x0000ff00))
8584 {
8585 *immbits = immlo >> 8;
8586 return 0xa;
8587 }
8588
8589 if ((immlo & 0xff) != (immlo >> 8))
8590 return FAIL;
8591 immlo &= 0xff;
8592 }
8593
8594 if (immlo == (immlo & 0x000000ff))
8595 {
8596 /* Don't allow MVN with 8-bit immediate. */
8597 if (*op == 1)
8598 return FAIL;
8599 *immbits = immlo;
8600 return 0xe;
8601 }
8602
8603 return FAIL;
8604 }
8605
8606 #if defined BFD_HOST_64_BIT
8607 /* Returns TRUE if double precision value V may be cast
8608 to single precision without loss of accuracy. */
8609
8610 static bfd_boolean
8611 is_double_a_single (bfd_int64_t v)
8612 {
8613 int exp = (int)((v >> 52) & 0x7FF);
8614 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8615
8616 return (exp == 0 || exp == 0x7FF
8617 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8618 && (mantissa & 0x1FFFFFFFl) == 0;
8619 }
8620
8621 /* Returns a double precision value casted to single precision
8622 (ignoring the least significant bits in exponent and mantissa). */
8623
8624 static int
8625 double_to_single (bfd_int64_t v)
8626 {
8627 int sign = (int) ((v >> 63) & 1l);
8628 int exp = (int) ((v >> 52) & 0x7FF);
8629 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8630
8631 if (exp == 0x7FF)
8632 exp = 0xFF;
8633 else
8634 {
8635 exp = exp - 1023 + 127;
8636 if (exp >= 0xFF)
8637 {
8638 /* Infinity. */
8639 exp = 0x7F;
8640 mantissa = 0;
8641 }
8642 else if (exp < 0)
8643 {
8644 /* No denormalized numbers. */
8645 exp = 0;
8646 mantissa = 0;
8647 }
8648 }
8649 mantissa >>= 29;
8650 return (sign << 31) | (exp << 23) | mantissa;
8651 }
8652 #endif /* BFD_HOST_64_BIT */
8653
8654 enum lit_type
8655 {
8656 CONST_THUMB,
8657 CONST_ARM,
8658 CONST_VEC
8659 };
8660
8661 static void do_vfp_nsyn_opcode (const char *);
8662
8663 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8664 Determine whether it can be performed with a move instruction; if
8665 it can, convert inst.instruction to that move instruction and
8666 return TRUE; if it can't, convert inst.instruction to a literal-pool
8667 load and return FALSE. If this is not a valid thing to do in the
8668 current context, set inst.error and return TRUE.
8669
8670 inst.operands[i] describes the destination register. */
8671
8672 static bfd_boolean
8673 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8674 {
8675 unsigned long tbit;
8676 bfd_boolean thumb_p = (t == CONST_THUMB);
8677 bfd_boolean arm_p = (t == CONST_ARM);
8678
8679 if (thumb_p)
8680 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8681 else
8682 tbit = LOAD_BIT;
8683
8684 if ((inst.instruction & tbit) == 0)
8685 {
8686 inst.error = _("invalid pseudo operation");
8687 return TRUE;
8688 }
8689
8690 if (inst.relocs[0].exp.X_op != O_constant
8691 && inst.relocs[0].exp.X_op != O_symbol
8692 && inst.relocs[0].exp.X_op != O_big)
8693 {
8694 inst.error = _("constant expression expected");
8695 return TRUE;
8696 }
8697
8698 if (inst.relocs[0].exp.X_op == O_constant
8699 || inst.relocs[0].exp.X_op == O_big)
8700 {
8701 #if defined BFD_HOST_64_BIT
8702 bfd_int64_t v;
8703 #else
8704 offsetT v;
8705 #endif
8706 if (inst.relocs[0].exp.X_op == O_big)
8707 {
8708 LITTLENUM_TYPE w[X_PRECISION];
8709 LITTLENUM_TYPE * l;
8710
8711 if (inst.relocs[0].exp.X_add_number == -1)
8712 {
8713 gen_to_words (w, X_PRECISION, E_PRECISION);
8714 l = w;
8715 /* FIXME: Should we check words w[2..5] ? */
8716 }
8717 else
8718 l = generic_bignum;
8719
8720 #if defined BFD_HOST_64_BIT
8721 v =
8722 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8723 << LITTLENUM_NUMBER_OF_BITS)
8724 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8725 << LITTLENUM_NUMBER_OF_BITS)
8726 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8727 << LITTLENUM_NUMBER_OF_BITS)
8728 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8729 #else
8730 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8731 | (l[0] & LITTLENUM_MASK);
8732 #endif
8733 }
8734 else
8735 v = inst.relocs[0].exp.X_add_number;
8736
8737 if (!inst.operands[i].issingle)
8738 {
8739 if (thumb_p)
8740 {
8741 /* LDR should not use lead in a flag-setting instruction being
8742 chosen so we do not check whether movs can be used. */
8743
8744 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8745 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8746 && inst.operands[i].reg != 13
8747 && inst.operands[i].reg != 15)
8748 {
8749 /* Check if on thumb2 it can be done with a mov.w, mvn or
8750 movw instruction. */
8751 unsigned int newimm;
8752 bfd_boolean isNegated;
8753
8754 newimm = encode_thumb32_immediate (v);
8755 if (newimm != (unsigned int) FAIL)
8756 isNegated = FALSE;
8757 else
8758 {
8759 newimm = encode_thumb32_immediate (~v);
8760 if (newimm != (unsigned int) FAIL)
8761 isNegated = TRUE;
8762 }
8763
8764 /* The number can be loaded with a mov.w or mvn
8765 instruction. */
8766 if (newimm != (unsigned int) FAIL
8767 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8768 {
8769 inst.instruction = (0xf04f0000 /* MOV.W. */
8770 | (inst.operands[i].reg << 8));
8771 /* Change to MOVN. */
8772 inst.instruction |= (isNegated ? 0x200000 : 0);
8773 inst.instruction |= (newimm & 0x800) << 15;
8774 inst.instruction |= (newimm & 0x700) << 4;
8775 inst.instruction |= (newimm & 0x0ff);
8776 return TRUE;
8777 }
8778 /* The number can be loaded with a movw instruction. */
8779 else if ((v & ~0xFFFF) == 0
8780 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8781 {
8782 int imm = v & 0xFFFF;
8783
8784 inst.instruction = 0xf2400000; /* MOVW. */
8785 inst.instruction |= (inst.operands[i].reg << 8);
8786 inst.instruction |= (imm & 0xf000) << 4;
8787 inst.instruction |= (imm & 0x0800) << 15;
8788 inst.instruction |= (imm & 0x0700) << 4;
8789 inst.instruction |= (imm & 0x00ff);
8790 /* In case this replacement is being done on Armv8-M
8791 Baseline we need to make sure to disable the
8792 instruction size check, as otherwise GAS will reject
8793 the use of this T32 instruction. */
8794 inst.size_req = 0;
8795 return TRUE;
8796 }
8797 }
8798 }
8799 else if (arm_p)
8800 {
8801 int value = encode_arm_immediate (v);
8802
8803 if (value != FAIL)
8804 {
8805 /* This can be done with a mov instruction. */
8806 inst.instruction &= LITERAL_MASK;
8807 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8808 inst.instruction |= value & 0xfff;
8809 return TRUE;
8810 }
8811
8812 value = encode_arm_immediate (~ v);
8813 if (value != FAIL)
8814 {
8815 /* This can be done with a mvn instruction. */
8816 inst.instruction &= LITERAL_MASK;
8817 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8818 inst.instruction |= value & 0xfff;
8819 return TRUE;
8820 }
8821 }
8822 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8823 {
8824 int op = 0;
8825 unsigned immbits = 0;
8826 unsigned immlo = inst.operands[1].imm;
8827 unsigned immhi = inst.operands[1].regisimm
8828 ? inst.operands[1].reg
8829 : inst.relocs[0].exp.X_unsigned
8830 ? 0
8831 : ((bfd_int64_t)((int) immlo)) >> 32;
8832 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8833 &op, 64, NT_invtype);
8834
8835 if (cmode == FAIL)
8836 {
8837 neon_invert_size (&immlo, &immhi, 64);
8838 op = !op;
8839 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8840 &op, 64, NT_invtype);
8841 }
8842
8843 if (cmode != FAIL)
8844 {
8845 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8846 | (1 << 23)
8847 | (cmode << 8)
8848 | (op << 5)
8849 | (1 << 4);
8850
8851 /* Fill other bits in vmov encoding for both thumb and arm. */
8852 if (thumb_mode)
8853 inst.instruction |= (0x7U << 29) | (0xF << 24);
8854 else
8855 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8856 neon_write_immbits (immbits);
8857 return TRUE;
8858 }
8859 }
8860 }
8861
8862 if (t == CONST_VEC)
8863 {
8864 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8865 if (inst.operands[i].issingle
8866 && is_quarter_float (inst.operands[1].imm)
8867 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8868 {
8869 inst.operands[1].imm =
8870 neon_qfloat_bits (v);
8871 do_vfp_nsyn_opcode ("fconsts");
8872 return TRUE;
8873 }
8874
8875 /* If our host does not support a 64-bit type then we cannot perform
8876 the following optimization. This mean that there will be a
8877 discrepancy between the output produced by an assembler built for
8878 a 32-bit-only host and the output produced from a 64-bit host, but
8879 this cannot be helped. */
8880 #if defined BFD_HOST_64_BIT
8881 else if (!inst.operands[1].issingle
8882 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8883 {
8884 if (is_double_a_single (v)
8885 && is_quarter_float (double_to_single (v)))
8886 {
8887 inst.operands[1].imm =
8888 neon_qfloat_bits (double_to_single (v));
8889 do_vfp_nsyn_opcode ("fconstd");
8890 return TRUE;
8891 }
8892 }
8893 #endif
8894 }
8895 }
8896
8897 if (add_to_lit_pool ((!inst.operands[i].isvec
8898 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8899 return TRUE;
8900
8901 inst.operands[1].reg = REG_PC;
8902 inst.operands[1].isreg = 1;
8903 inst.operands[1].preind = 1;
8904 inst.relocs[0].pc_rel = 1;
8905 inst.relocs[0].type = (thumb_p
8906 ? BFD_RELOC_ARM_THUMB_OFFSET
8907 : (mode_3
8908 ? BFD_RELOC_ARM_HWLITERAL
8909 : BFD_RELOC_ARM_LITERAL));
8910 return FALSE;
8911 }
8912
8913 /* inst.operands[i] was set up by parse_address. Encode it into an
8914 ARM-format instruction. Reject all forms which cannot be encoded
8915 into a coprocessor load/store instruction. If wb_ok is false,
8916 reject use of writeback; if unind_ok is false, reject use of
8917 unindexed addressing. If reloc_override is not 0, use it instead
8918 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8919 (in which case it is preserved). */
8920
8921 static int
8922 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8923 {
8924 if (!inst.operands[i].isreg)
8925 {
8926 /* PR 18256 */
8927 if (! inst.operands[0].isvec)
8928 {
8929 inst.error = _("invalid co-processor operand");
8930 return FAIL;
8931 }
8932 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8933 return SUCCESS;
8934 }
8935
8936 inst.instruction |= inst.operands[i].reg << 16;
8937
8938 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8939
8940 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8941 {
8942 gas_assert (!inst.operands[i].writeback);
8943 if (!unind_ok)
8944 {
8945 inst.error = _("instruction does not support unindexed addressing");
8946 return FAIL;
8947 }
8948 inst.instruction |= inst.operands[i].imm;
8949 inst.instruction |= INDEX_UP;
8950 return SUCCESS;
8951 }
8952
8953 if (inst.operands[i].preind)
8954 inst.instruction |= PRE_INDEX;
8955
8956 if (inst.operands[i].writeback)
8957 {
8958 if (inst.operands[i].reg == REG_PC)
8959 {
8960 inst.error = _("pc may not be used with write-back");
8961 return FAIL;
8962 }
8963 if (!wb_ok)
8964 {
8965 inst.error = _("instruction does not support writeback");
8966 return FAIL;
8967 }
8968 inst.instruction |= WRITE_BACK;
8969 }
8970
8971 if (reloc_override)
8972 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8973 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8974 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8975 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8976 {
8977 if (thumb_mode)
8978 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8979 else
8980 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8981 }
8982
8983 /* Prefer + for zero encoded value. */
8984 if (!inst.operands[i].negative)
8985 inst.instruction |= INDEX_UP;
8986
8987 return SUCCESS;
8988 }
8989
8990 /* Functions for instruction encoding, sorted by sub-architecture.
8991 First some generics; their names are taken from the conventional
8992 bit positions for register arguments in ARM format instructions. */
8993
8994 static void
8995 do_noargs (void)
8996 {
8997 }
8998
8999 static void
9000 do_rd (void)
9001 {
9002 inst.instruction |= inst.operands[0].reg << 12;
9003 }
9004
9005 static void
9006 do_rn (void)
9007 {
9008 inst.instruction |= inst.operands[0].reg << 16;
9009 }
9010
9011 static void
9012 do_rd_rm (void)
9013 {
9014 inst.instruction |= inst.operands[0].reg << 12;
9015 inst.instruction |= inst.operands[1].reg;
9016 }
9017
9018 static void
9019 do_rm_rn (void)
9020 {
9021 inst.instruction |= inst.operands[0].reg;
9022 inst.instruction |= inst.operands[1].reg << 16;
9023 }
9024
9025 static void
9026 do_rd_rn (void)
9027 {
9028 inst.instruction |= inst.operands[0].reg << 12;
9029 inst.instruction |= inst.operands[1].reg << 16;
9030 }
9031
9032 static void
9033 do_rn_rd (void)
9034 {
9035 inst.instruction |= inst.operands[0].reg << 16;
9036 inst.instruction |= inst.operands[1].reg << 12;
9037 }
9038
9039 static void
9040 do_tt (void)
9041 {
9042 inst.instruction |= inst.operands[0].reg << 8;
9043 inst.instruction |= inst.operands[1].reg << 16;
9044 }
9045
9046 static bfd_boolean
9047 check_obsolete (const arm_feature_set *feature, const char *msg)
9048 {
9049 if (ARM_CPU_IS_ANY (cpu_variant))
9050 {
9051 as_tsktsk ("%s", msg);
9052 return TRUE;
9053 }
9054 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
9055 {
9056 as_bad ("%s", msg);
9057 return TRUE;
9058 }
9059
9060 return FALSE;
9061 }
9062
9063 static void
9064 do_rd_rm_rn (void)
9065 {
9066 unsigned Rn = inst.operands[2].reg;
9067 /* Enforce restrictions on SWP instruction. */
9068 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
9069 {
9070 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
9071 _("Rn must not overlap other operands"));
9072
9073 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
9074 */
9075 if (!check_obsolete (&arm_ext_v8,
9076 _("swp{b} use is obsoleted for ARMv8 and later"))
9077 && warn_on_deprecated
9078 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
9079 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
9080 }
9081
9082 inst.instruction |= inst.operands[0].reg << 12;
9083 inst.instruction |= inst.operands[1].reg;
9084 inst.instruction |= Rn << 16;
9085 }
9086
9087 static void
9088 do_rd_rn_rm (void)
9089 {
9090 inst.instruction |= inst.operands[0].reg << 12;
9091 inst.instruction |= inst.operands[1].reg << 16;
9092 inst.instruction |= inst.operands[2].reg;
9093 }
9094
9095 static void
9096 do_rm_rd_rn (void)
9097 {
9098 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
9099 constraint (((inst.relocs[0].exp.X_op != O_constant
9100 && inst.relocs[0].exp.X_op != O_illegal)
9101 || inst.relocs[0].exp.X_add_number != 0),
9102 BAD_ADDR_MODE);
9103 inst.instruction |= inst.operands[0].reg;
9104 inst.instruction |= inst.operands[1].reg << 12;
9105 inst.instruction |= inst.operands[2].reg << 16;
9106 }
9107
9108 static void
9109 do_imm0 (void)
9110 {
9111 inst.instruction |= inst.operands[0].imm;
9112 }
9113
9114 static void
9115 do_rd_cpaddr (void)
9116 {
9117 inst.instruction |= inst.operands[0].reg << 12;
9118 encode_arm_cp_address (1, TRUE, TRUE, 0);
9119 }
9120
9121 /* ARM instructions, in alphabetical order by function name (except
9122 that wrapper functions appear immediately after the function they
9123 wrap). */
9124
9125 /* This is a pseudo-op of the form "adr rd, label" to be converted
9126 into a relative address of the form "add rd, pc, #label-.-8". */
9127
9128 static void
9129 do_adr (void)
9130 {
9131 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9132
9133 /* Frag hacking will turn this into a sub instruction if the offset turns
9134 out to be negative. */
9135 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9136 inst.relocs[0].pc_rel = 1;
9137 inst.relocs[0].exp.X_add_number -= 8;
9138
9139 if (support_interwork
9140 && inst.relocs[0].exp.X_op == O_symbol
9141 && inst.relocs[0].exp.X_add_symbol != NULL
9142 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9143 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9144 inst.relocs[0].exp.X_add_number |= 1;
9145 }
9146
9147 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9148 into a relative address of the form:
9149 add rd, pc, #low(label-.-8)"
9150 add rd, rd, #high(label-.-8)" */
9151
9152 static void
9153 do_adrl (void)
9154 {
9155 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9156
9157 /* Frag hacking will turn this into a sub instruction if the offset turns
9158 out to be negative. */
9159 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9160 inst.relocs[0].pc_rel = 1;
9161 inst.size = INSN_SIZE * 2;
9162 inst.relocs[0].exp.X_add_number -= 8;
9163
9164 if (support_interwork
9165 && inst.relocs[0].exp.X_op == O_symbol
9166 && inst.relocs[0].exp.X_add_symbol != NULL
9167 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9168 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9169 inst.relocs[0].exp.X_add_number |= 1;
9170 }
9171
9172 static void
9173 do_arit (void)
9174 {
9175 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9176 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9177 THUMB1_RELOC_ONLY);
9178 if (!inst.operands[1].present)
9179 inst.operands[1].reg = inst.operands[0].reg;
9180 inst.instruction |= inst.operands[0].reg << 12;
9181 inst.instruction |= inst.operands[1].reg << 16;
9182 encode_arm_shifter_operand (2);
9183 }
9184
9185 static void
9186 do_barrier (void)
9187 {
9188 if (inst.operands[0].present)
9189 inst.instruction |= inst.operands[0].imm;
9190 else
9191 inst.instruction |= 0xf;
9192 }
9193
9194 static void
9195 do_bfc (void)
9196 {
9197 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9198 constraint (msb > 32, _("bit-field extends past end of register"));
9199 /* The instruction encoding stores the LSB and MSB,
9200 not the LSB and width. */
9201 inst.instruction |= inst.operands[0].reg << 12;
9202 inst.instruction |= inst.operands[1].imm << 7;
9203 inst.instruction |= (msb - 1) << 16;
9204 }
9205
9206 static void
9207 do_bfi (void)
9208 {
9209 unsigned int msb;
9210
9211 /* #0 in second position is alternative syntax for bfc, which is
9212 the same instruction but with REG_PC in the Rm field. */
9213 if (!inst.operands[1].isreg)
9214 inst.operands[1].reg = REG_PC;
9215
9216 msb = inst.operands[2].imm + inst.operands[3].imm;
9217 constraint (msb > 32, _("bit-field extends past end of register"));
9218 /* The instruction encoding stores the LSB and MSB,
9219 not the LSB and width. */
9220 inst.instruction |= inst.operands[0].reg << 12;
9221 inst.instruction |= inst.operands[1].reg;
9222 inst.instruction |= inst.operands[2].imm << 7;
9223 inst.instruction |= (msb - 1) << 16;
9224 }
9225
9226 static void
9227 do_bfx (void)
9228 {
9229 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9230 _("bit-field extends past end of register"));
9231 inst.instruction |= inst.operands[0].reg << 12;
9232 inst.instruction |= inst.operands[1].reg;
9233 inst.instruction |= inst.operands[2].imm << 7;
9234 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9235 }
9236
9237 /* ARM V5 breakpoint instruction (argument parse)
9238 BKPT <16 bit unsigned immediate>
9239 Instruction is not conditional.
9240 The bit pattern given in insns[] has the COND_ALWAYS condition,
9241 and it is an error if the caller tried to override that. */
9242
9243 static void
9244 do_bkpt (void)
9245 {
9246 /* Top 12 of 16 bits to bits 19:8. */
9247 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9248
9249 /* Bottom 4 of 16 bits to bits 3:0. */
9250 inst.instruction |= inst.operands[0].imm & 0xf;
9251 }
9252
9253 static void
9254 encode_branch (int default_reloc)
9255 {
9256 if (inst.operands[0].hasreloc)
9257 {
9258 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9259 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9260 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9261 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9262 ? BFD_RELOC_ARM_PLT32
9263 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9264 }
9265 else
9266 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9267 inst.relocs[0].pc_rel = 1;
9268 }
9269
9270 static void
9271 do_branch (void)
9272 {
9273 #ifdef OBJ_ELF
9274 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9275 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9276 else
9277 #endif
9278 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9279 }
9280
9281 static void
9282 do_bl (void)
9283 {
9284 #ifdef OBJ_ELF
9285 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9286 {
9287 if (inst.cond == COND_ALWAYS)
9288 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9289 else
9290 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9291 }
9292 else
9293 #endif
9294 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9295 }
9296
9297 /* ARM V5 branch-link-exchange instruction (argument parse)
9298 BLX <target_addr> ie BLX(1)
9299 BLX{<condition>} <Rm> ie BLX(2)
9300 Unfortunately, there are two different opcodes for this mnemonic.
9301 So, the insns[].value is not used, and the code here zaps values
9302 into inst.instruction.
9303 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9304
9305 static void
9306 do_blx (void)
9307 {
9308 if (inst.operands[0].isreg)
9309 {
9310 /* Arg is a register; the opcode provided by insns[] is correct.
9311 It is not illegal to do "blx pc", just useless. */
9312 if (inst.operands[0].reg == REG_PC)
9313 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9314
9315 inst.instruction |= inst.operands[0].reg;
9316 }
9317 else
9318 {
9319 /* Arg is an address; this instruction cannot be executed
9320 conditionally, and the opcode must be adjusted.
9321 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9322 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9323 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9324 inst.instruction = 0xfa000000;
9325 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9326 }
9327 }
9328
9329 static void
9330 do_bx (void)
9331 {
9332 bfd_boolean want_reloc;
9333
9334 if (inst.operands[0].reg == REG_PC)
9335 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9336
9337 inst.instruction |= inst.operands[0].reg;
9338 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9339 it is for ARMv4t or earlier. */
9340 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9341 if (!ARM_FEATURE_ZERO (selected_object_arch)
9342 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9343 want_reloc = TRUE;
9344
9345 #ifdef OBJ_ELF
9346 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9347 #endif
9348 want_reloc = FALSE;
9349
9350 if (want_reloc)
9351 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9352 }
9353
9354
9355 /* ARM v5TEJ. Jump to Jazelle code. */
9356
9357 static void
9358 do_bxj (void)
9359 {
9360 if (inst.operands[0].reg == REG_PC)
9361 as_tsktsk (_("use of r15 in bxj is not really useful"));
9362
9363 inst.instruction |= inst.operands[0].reg;
9364 }
9365
9366 /* Co-processor data operation:
9367 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9368 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9369 static void
9370 do_cdp (void)
9371 {
9372 inst.instruction |= inst.operands[0].reg << 8;
9373 inst.instruction |= inst.operands[1].imm << 20;
9374 inst.instruction |= inst.operands[2].reg << 12;
9375 inst.instruction |= inst.operands[3].reg << 16;
9376 inst.instruction |= inst.operands[4].reg;
9377 inst.instruction |= inst.operands[5].imm << 5;
9378 }
9379
9380 static void
9381 do_cmp (void)
9382 {
9383 inst.instruction |= inst.operands[0].reg << 16;
9384 encode_arm_shifter_operand (1);
9385 }
9386
9387 /* Transfer between coprocessor and ARM registers.
9388 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9389 MRC2
9390 MCR{cond}
9391 MCR2
9392
9393 No special properties. */
9394
9395 struct deprecated_coproc_regs_s
9396 {
9397 unsigned cp;
9398 int opc1;
9399 unsigned crn;
9400 unsigned crm;
9401 int opc2;
9402 arm_feature_set deprecated;
9403 arm_feature_set obsoleted;
9404 const char *dep_msg;
9405 const char *obs_msg;
9406 };
9407
9408 #define DEPR_ACCESS_V8 \
9409 N_("This coprocessor register access is deprecated in ARMv8")
9410
9411 /* Table of all deprecated coprocessor registers. */
9412 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9413 {
9414 {15, 0, 7, 10, 5, /* CP15DMB. */
9415 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9416 DEPR_ACCESS_V8, NULL},
9417 {15, 0, 7, 10, 4, /* CP15DSB. */
9418 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9419 DEPR_ACCESS_V8, NULL},
9420 {15, 0, 7, 5, 4, /* CP15ISB. */
9421 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9422 DEPR_ACCESS_V8, NULL},
9423 {14, 6, 1, 0, 0, /* TEEHBR. */
9424 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9425 DEPR_ACCESS_V8, NULL},
9426 {14, 6, 0, 0, 0, /* TEECR. */
9427 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9428 DEPR_ACCESS_V8, NULL},
9429 };
9430
9431 #undef DEPR_ACCESS_V8
9432
9433 static const size_t deprecated_coproc_reg_count =
9434 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9435
9436 static void
9437 do_co_reg (void)
9438 {
9439 unsigned Rd;
9440 size_t i;
9441
9442 Rd = inst.operands[2].reg;
9443 if (thumb_mode)
9444 {
9445 if (inst.instruction == 0xee000010
9446 || inst.instruction == 0xfe000010)
9447 /* MCR, MCR2 */
9448 reject_bad_reg (Rd);
9449 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9450 /* MRC, MRC2 */
9451 constraint (Rd == REG_SP, BAD_SP);
9452 }
9453 else
9454 {
9455 /* MCR */
9456 if (inst.instruction == 0xe000010)
9457 constraint (Rd == REG_PC, BAD_PC);
9458 }
9459
9460 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9461 {
9462 const struct deprecated_coproc_regs_s *r =
9463 deprecated_coproc_regs + i;
9464
9465 if (inst.operands[0].reg == r->cp
9466 && inst.operands[1].imm == r->opc1
9467 && inst.operands[3].reg == r->crn
9468 && inst.operands[4].reg == r->crm
9469 && inst.operands[5].imm == r->opc2)
9470 {
9471 if (! ARM_CPU_IS_ANY (cpu_variant)
9472 && warn_on_deprecated
9473 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9474 as_tsktsk ("%s", r->dep_msg);
9475 }
9476 }
9477
9478 inst.instruction |= inst.operands[0].reg << 8;
9479 inst.instruction |= inst.operands[1].imm << 21;
9480 inst.instruction |= Rd << 12;
9481 inst.instruction |= inst.operands[3].reg << 16;
9482 inst.instruction |= inst.operands[4].reg;
9483 inst.instruction |= inst.operands[5].imm << 5;
9484 }
9485
9486 /* Transfer between coprocessor register and pair of ARM registers.
9487 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9488 MCRR2
9489 MRRC{cond}
9490 MRRC2
9491
9492 Two XScale instructions are special cases of these:
9493
9494 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9495 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9496
9497 Result unpredictable if Rd or Rn is R15. */
9498
9499 static void
9500 do_co_reg2c (void)
9501 {
9502 unsigned Rd, Rn;
9503
9504 Rd = inst.operands[2].reg;
9505 Rn = inst.operands[3].reg;
9506
9507 if (thumb_mode)
9508 {
9509 reject_bad_reg (Rd);
9510 reject_bad_reg (Rn);
9511 }
9512 else
9513 {
9514 constraint (Rd == REG_PC, BAD_PC);
9515 constraint (Rn == REG_PC, BAD_PC);
9516 }
9517
9518 /* Only check the MRRC{2} variants. */
9519 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9520 {
9521 /* If Rd == Rn, error that the operation is
9522 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9523 constraint (Rd == Rn, BAD_OVERLAP);
9524 }
9525
9526 inst.instruction |= inst.operands[0].reg << 8;
9527 inst.instruction |= inst.operands[1].imm << 4;
9528 inst.instruction |= Rd << 12;
9529 inst.instruction |= Rn << 16;
9530 inst.instruction |= inst.operands[4].reg;
9531 }
9532
9533 static void
9534 do_cpsi (void)
9535 {
9536 inst.instruction |= inst.operands[0].imm << 6;
9537 if (inst.operands[1].present)
9538 {
9539 inst.instruction |= CPSI_MMOD;
9540 inst.instruction |= inst.operands[1].imm;
9541 }
9542 }
9543
9544 static void
9545 do_dbg (void)
9546 {
9547 inst.instruction |= inst.operands[0].imm;
9548 }
9549
9550 static void
9551 do_div (void)
9552 {
9553 unsigned Rd, Rn, Rm;
9554
9555 Rd = inst.operands[0].reg;
9556 Rn = (inst.operands[1].present
9557 ? inst.operands[1].reg : Rd);
9558 Rm = inst.operands[2].reg;
9559
9560 constraint ((Rd == REG_PC), BAD_PC);
9561 constraint ((Rn == REG_PC), BAD_PC);
9562 constraint ((Rm == REG_PC), BAD_PC);
9563
9564 inst.instruction |= Rd << 16;
9565 inst.instruction |= Rn << 0;
9566 inst.instruction |= Rm << 8;
9567 }
9568
9569 static void
9570 do_it (void)
9571 {
9572 /* There is no IT instruction in ARM mode. We
9573 process it to do the validation as if in
9574 thumb mode, just in case the code gets
9575 assembled for thumb using the unified syntax. */
9576
9577 inst.size = 0;
9578 if (unified_syntax)
9579 {
9580 set_pred_insn_type (IT_INSN);
9581 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9582 now_pred.cc = inst.operands[0].imm;
9583 }
9584 }
9585
9586 /* If there is only one register in the register list,
9587 then return its register number. Otherwise return -1. */
9588 static int
9589 only_one_reg_in_list (int range)
9590 {
9591 int i = ffs (range) - 1;
9592 return (i > 15 || range != (1 << i)) ? -1 : i;
9593 }
9594
9595 static void
9596 encode_ldmstm(int from_push_pop_mnem)
9597 {
9598 int base_reg = inst.operands[0].reg;
9599 int range = inst.operands[1].imm;
9600 int one_reg;
9601
9602 inst.instruction |= base_reg << 16;
9603 inst.instruction |= range;
9604
9605 if (inst.operands[1].writeback)
9606 inst.instruction |= LDM_TYPE_2_OR_3;
9607
9608 if (inst.operands[0].writeback)
9609 {
9610 inst.instruction |= WRITE_BACK;
9611 /* Check for unpredictable uses of writeback. */
9612 if (inst.instruction & LOAD_BIT)
9613 {
9614 /* Not allowed in LDM type 2. */
9615 if ((inst.instruction & LDM_TYPE_2_OR_3)
9616 && ((range & (1 << REG_PC)) == 0))
9617 as_warn (_("writeback of base register is UNPREDICTABLE"));
9618 /* Only allowed if base reg not in list for other types. */
9619 else if (range & (1 << base_reg))
9620 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9621 }
9622 else /* STM. */
9623 {
9624 /* Not allowed for type 2. */
9625 if (inst.instruction & LDM_TYPE_2_OR_3)
9626 as_warn (_("writeback of base register is UNPREDICTABLE"));
9627 /* Only allowed if base reg not in list, or first in list. */
9628 else if ((range & (1 << base_reg))
9629 && (range & ((1 << base_reg) - 1)))
9630 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9631 }
9632 }
9633
9634 /* If PUSH/POP has only one register, then use the A2 encoding. */
9635 one_reg = only_one_reg_in_list (range);
9636 if (from_push_pop_mnem && one_reg >= 0)
9637 {
9638 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9639
9640 if (is_push && one_reg == 13 /* SP */)
9641 /* PR 22483: The A2 encoding cannot be used when
9642 pushing the stack pointer as this is UNPREDICTABLE. */
9643 return;
9644
9645 inst.instruction &= A_COND_MASK;
9646 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9647 inst.instruction |= one_reg << 12;
9648 }
9649 }
9650
9651 static void
9652 do_ldmstm (void)
9653 {
9654 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9655 }
9656
9657 /* ARMv5TE load-consecutive (argument parse)
9658 Mode is like LDRH.
9659
9660 LDRccD R, mode
9661 STRccD R, mode. */
9662
9663 static void
9664 do_ldrd (void)
9665 {
9666 constraint (inst.operands[0].reg % 2 != 0,
9667 _("first transfer register must be even"));
9668 constraint (inst.operands[1].present
9669 && inst.operands[1].reg != inst.operands[0].reg + 1,
9670 _("can only transfer two consecutive registers"));
9671 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9672 constraint (!inst.operands[2].isreg, _("'[' expected"));
9673
9674 if (!inst.operands[1].present)
9675 inst.operands[1].reg = inst.operands[0].reg + 1;
9676
9677 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9678 register and the first register written; we have to diagnose
9679 overlap between the base and the second register written here. */
9680
9681 if (inst.operands[2].reg == inst.operands[1].reg
9682 && (inst.operands[2].writeback || inst.operands[2].postind))
9683 as_warn (_("base register written back, and overlaps "
9684 "second transfer register"));
9685
9686 if (!(inst.instruction & V4_STR_BIT))
9687 {
9688 /* For an index-register load, the index register must not overlap the
9689 destination (even if not write-back). */
9690 if (inst.operands[2].immisreg
9691 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9692 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9693 as_warn (_("index register overlaps transfer register"));
9694 }
9695 inst.instruction |= inst.operands[0].reg << 12;
9696 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9697 }
9698
9699 static void
9700 do_ldrex (void)
9701 {
9702 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9703 || inst.operands[1].postind || inst.operands[1].writeback
9704 || inst.operands[1].immisreg || inst.operands[1].shifted
9705 || inst.operands[1].negative
9706 /* This can arise if the programmer has written
9707 strex rN, rM, foo
9708 or if they have mistakenly used a register name as the last
9709 operand, eg:
9710 strex rN, rM, rX
9711 It is very difficult to distinguish between these two cases
9712 because "rX" might actually be a label. ie the register
9713 name has been occluded by a symbol of the same name. So we
9714 just generate a general 'bad addressing mode' type error
9715 message and leave it up to the programmer to discover the
9716 true cause and fix their mistake. */
9717 || (inst.operands[1].reg == REG_PC),
9718 BAD_ADDR_MODE);
9719
9720 constraint (inst.relocs[0].exp.X_op != O_constant
9721 || inst.relocs[0].exp.X_add_number != 0,
9722 _("offset must be zero in ARM encoding"));
9723
9724 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9725
9726 inst.instruction |= inst.operands[0].reg << 12;
9727 inst.instruction |= inst.operands[1].reg << 16;
9728 inst.relocs[0].type = BFD_RELOC_UNUSED;
9729 }
9730
9731 static void
9732 do_ldrexd (void)
9733 {
9734 constraint (inst.operands[0].reg % 2 != 0,
9735 _("even register required"));
9736 constraint (inst.operands[1].present
9737 && inst.operands[1].reg != inst.operands[0].reg + 1,
9738 _("can only load two consecutive registers"));
9739 /* If op 1 were present and equal to PC, this function wouldn't
9740 have been called in the first place. */
9741 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9742
9743 inst.instruction |= inst.operands[0].reg << 12;
9744 inst.instruction |= inst.operands[2].reg << 16;
9745 }
9746
9747 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9748 which is not a multiple of four is UNPREDICTABLE. */
9749 static void
9750 check_ldr_r15_aligned (void)
9751 {
9752 constraint (!(inst.operands[1].immisreg)
9753 && (inst.operands[0].reg == REG_PC
9754 && inst.operands[1].reg == REG_PC
9755 && (inst.relocs[0].exp.X_add_number & 0x3)),
9756 _("ldr to register 15 must be 4-byte aligned"));
9757 }
9758
9759 static void
9760 do_ldst (void)
9761 {
9762 inst.instruction |= inst.operands[0].reg << 12;
9763 if (!inst.operands[1].isreg)
9764 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9765 return;
9766 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9767 check_ldr_r15_aligned ();
9768 }
9769
9770 static void
9771 do_ldstt (void)
9772 {
9773 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9774 reject [Rn,...]. */
9775 if (inst.operands[1].preind)
9776 {
9777 constraint (inst.relocs[0].exp.X_op != O_constant
9778 || inst.relocs[0].exp.X_add_number != 0,
9779 _("this instruction requires a post-indexed address"));
9780
9781 inst.operands[1].preind = 0;
9782 inst.operands[1].postind = 1;
9783 inst.operands[1].writeback = 1;
9784 }
9785 inst.instruction |= inst.operands[0].reg << 12;
9786 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9787 }
9788
9789 /* Halfword and signed-byte load/store operations. */
9790
9791 static void
9792 do_ldstv4 (void)
9793 {
9794 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9795 inst.instruction |= inst.operands[0].reg << 12;
9796 if (!inst.operands[1].isreg)
9797 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9798 return;
9799 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9800 }
9801
9802 static void
9803 do_ldsttv4 (void)
9804 {
9805 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9806 reject [Rn,...]. */
9807 if (inst.operands[1].preind)
9808 {
9809 constraint (inst.relocs[0].exp.X_op != O_constant
9810 || inst.relocs[0].exp.X_add_number != 0,
9811 _("this instruction requires a post-indexed address"));
9812
9813 inst.operands[1].preind = 0;
9814 inst.operands[1].postind = 1;
9815 inst.operands[1].writeback = 1;
9816 }
9817 inst.instruction |= inst.operands[0].reg << 12;
9818 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9819 }
9820
9821 /* Co-processor register load/store.
9822 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9823 static void
9824 do_lstc (void)
9825 {
9826 inst.instruction |= inst.operands[0].reg << 8;
9827 inst.instruction |= inst.operands[1].reg << 12;
9828 encode_arm_cp_address (2, TRUE, TRUE, 0);
9829 }
9830
9831 static void
9832 do_mlas (void)
9833 {
9834 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9835 if (inst.operands[0].reg == inst.operands[1].reg
9836 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9837 && !(inst.instruction & 0x00400000))
9838 as_tsktsk (_("Rd and Rm should be different in mla"));
9839
9840 inst.instruction |= inst.operands[0].reg << 16;
9841 inst.instruction |= inst.operands[1].reg;
9842 inst.instruction |= inst.operands[2].reg << 8;
9843 inst.instruction |= inst.operands[3].reg << 12;
9844 }
9845
9846 static void
9847 do_mov (void)
9848 {
9849 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9850 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9851 THUMB1_RELOC_ONLY);
9852 inst.instruction |= inst.operands[0].reg << 12;
9853 encode_arm_shifter_operand (1);
9854 }
9855
9856 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9857 static void
9858 do_mov16 (void)
9859 {
9860 bfd_vma imm;
9861 bfd_boolean top;
9862
9863 top = (inst.instruction & 0x00400000) != 0;
9864 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9865 _(":lower16: not allowed in this instruction"));
9866 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9867 _(":upper16: not allowed in this instruction"));
9868 inst.instruction |= inst.operands[0].reg << 12;
9869 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9870 {
9871 imm = inst.relocs[0].exp.X_add_number;
9872 /* The value is in two pieces: 0:11, 16:19. */
9873 inst.instruction |= (imm & 0x00000fff);
9874 inst.instruction |= (imm & 0x0000f000) << 4;
9875 }
9876 }
9877
9878 static int
9879 do_vfp_nsyn_mrs (void)
9880 {
9881 if (inst.operands[0].isvec)
9882 {
9883 if (inst.operands[1].reg != 1)
9884 first_error (_("operand 1 must be FPSCR"));
9885 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9886 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9887 do_vfp_nsyn_opcode ("fmstat");
9888 }
9889 else if (inst.operands[1].isvec)
9890 do_vfp_nsyn_opcode ("fmrx");
9891 else
9892 return FAIL;
9893
9894 return SUCCESS;
9895 }
9896
9897 static int
9898 do_vfp_nsyn_msr (void)
9899 {
9900 if (inst.operands[0].isvec)
9901 do_vfp_nsyn_opcode ("fmxr");
9902 else
9903 return FAIL;
9904
9905 return SUCCESS;
9906 }
9907
9908 static void
9909 do_vmrs (void)
9910 {
9911 unsigned Rt = inst.operands[0].reg;
9912
9913 if (thumb_mode && Rt == REG_SP)
9914 {
9915 inst.error = BAD_SP;
9916 return;
9917 }
9918
9919 switch (inst.operands[1].reg)
9920 {
9921 /* MVFR2 is only valid for Armv8-A. */
9922 case 5:
9923 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9924 _(BAD_FPU));
9925 break;
9926
9927 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
9928 case 1: /* fpscr. */
9929 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
9930 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
9931 _(BAD_FPU));
9932 break;
9933
9934 case 14: /* fpcxt_ns. */
9935 case 15: /* fpcxt_s. */
9936 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
9937 _("selected processor does not support instruction"));
9938 break;
9939
9940 case 2: /* fpscr_nzcvqc. */
9941 case 12: /* vpr. */
9942 case 13: /* p0. */
9943 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
9944 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
9945 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
9946 _("selected processor does not support instruction"));
9947 if (inst.operands[0].reg != 2
9948 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
9949 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
9950 break;
9951
9952 default:
9953 break;
9954 }
9955
9956 /* APSR_ sets isvec. All other refs to PC are illegal. */
9957 if (!inst.operands[0].isvec && Rt == REG_PC)
9958 {
9959 inst.error = BAD_PC;
9960 return;
9961 }
9962
9963 /* If we get through parsing the register name, we just insert the number
9964 generated into the instruction without further validation. */
9965 inst.instruction |= (inst.operands[1].reg << 16);
9966 inst.instruction |= (Rt << 12);
9967 }
9968
9969 static void
9970 do_vmsr (void)
9971 {
9972 unsigned Rt = inst.operands[1].reg;
9973
9974 if (thumb_mode)
9975 reject_bad_reg (Rt);
9976 else if (Rt == REG_PC)
9977 {
9978 inst.error = BAD_PC;
9979 return;
9980 }
9981
9982 switch (inst.operands[0].reg)
9983 {
9984 /* MVFR2 is only valid for Armv8-A. */
9985 case 5:
9986 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9987 _(BAD_FPU));
9988 break;
9989
9990 /* Check for new Armv8.1-M Mainline changes to <spec_reg>. */
9991 case 1: /* fpcr. */
9992 constraint (!(ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
9993 || ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
9994 _(BAD_FPU));
9995 break;
9996
9997 case 14: /* fpcxt_ns. */
9998 case 15: /* fpcxt_s. */
9999 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main),
10000 _("selected processor does not support instruction"));
10001 break;
10002
10003 case 2: /* fpscr_nzcvqc. */
10004 case 12: /* vpr. */
10005 case 13: /* p0. */
10006 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_1m_main)
10007 || (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
10008 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)),
10009 _("selected processor does not support instruction"));
10010 if (inst.operands[0].reg != 2
10011 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
10012 as_warn (_("accessing MVE system register without MVE is UNPREDICTABLE"));
10013 break;
10014
10015 default:
10016 break;
10017 }
10018
10019 /* If we get through parsing the register name, we just insert the number
10020 generated into the instruction without further validation. */
10021 inst.instruction |= (inst.operands[0].reg << 16);
10022 inst.instruction |= (Rt << 12);
10023 }
10024
10025 static void
10026 do_mrs (void)
10027 {
10028 unsigned br;
10029
10030 if (do_vfp_nsyn_mrs () == SUCCESS)
10031 return;
10032
10033 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10034 inst.instruction |= inst.operands[0].reg << 12;
10035
10036 if (inst.operands[1].isreg)
10037 {
10038 br = inst.operands[1].reg;
10039 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
10040 as_bad (_("bad register for mrs"));
10041 }
10042 else
10043 {
10044 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10045 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
10046 != (PSR_c|PSR_f),
10047 _("'APSR', 'CPSR' or 'SPSR' expected"));
10048 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
10049 }
10050
10051 inst.instruction |= br;
10052 }
10053
10054 /* Two possible forms:
10055 "{C|S}PSR_<field>, Rm",
10056 "{C|S}PSR_f, #expression". */
10057
10058 static void
10059 do_msr (void)
10060 {
10061 if (do_vfp_nsyn_msr () == SUCCESS)
10062 return;
10063
10064 inst.instruction |= inst.operands[0].imm;
10065 if (inst.operands[1].isreg)
10066 inst.instruction |= inst.operands[1].reg;
10067 else
10068 {
10069 inst.instruction |= INST_IMMEDIATE;
10070 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
10071 inst.relocs[0].pc_rel = 0;
10072 }
10073 }
10074
10075 static void
10076 do_mul (void)
10077 {
10078 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
10079
10080 if (!inst.operands[2].present)
10081 inst.operands[2].reg = inst.operands[0].reg;
10082 inst.instruction |= inst.operands[0].reg << 16;
10083 inst.instruction |= inst.operands[1].reg;
10084 inst.instruction |= inst.operands[2].reg << 8;
10085
10086 if (inst.operands[0].reg == inst.operands[1].reg
10087 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10088 as_tsktsk (_("Rd and Rm should be different in mul"));
10089 }
10090
10091 /* Long Multiply Parser
10092 UMULL RdLo, RdHi, Rm, Rs
10093 SMULL RdLo, RdHi, Rm, Rs
10094 UMLAL RdLo, RdHi, Rm, Rs
10095 SMLAL RdLo, RdHi, Rm, Rs. */
10096
10097 static void
10098 do_mull (void)
10099 {
10100 inst.instruction |= inst.operands[0].reg << 12;
10101 inst.instruction |= inst.operands[1].reg << 16;
10102 inst.instruction |= inst.operands[2].reg;
10103 inst.instruction |= inst.operands[3].reg << 8;
10104
10105 /* rdhi and rdlo must be different. */
10106 if (inst.operands[0].reg == inst.operands[1].reg)
10107 as_tsktsk (_("rdhi and rdlo must be different"));
10108
10109 /* rdhi, rdlo and rm must all be different before armv6. */
10110 if ((inst.operands[0].reg == inst.operands[2].reg
10111 || inst.operands[1].reg == inst.operands[2].reg)
10112 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
10113 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
10114 }
10115
10116 static void
10117 do_nop (void)
10118 {
10119 if (inst.operands[0].present
10120 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
10121 {
10122 /* Architectural NOP hints are CPSR sets with no bits selected. */
10123 inst.instruction &= 0xf0000000;
10124 inst.instruction |= 0x0320f000;
10125 if (inst.operands[0].present)
10126 inst.instruction |= inst.operands[0].imm;
10127 }
10128 }
10129
10130 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
10131 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
10132 Condition defaults to COND_ALWAYS.
10133 Error if Rd, Rn or Rm are R15. */
10134
10135 static void
10136 do_pkhbt (void)
10137 {
10138 inst.instruction |= inst.operands[0].reg << 12;
10139 inst.instruction |= inst.operands[1].reg << 16;
10140 inst.instruction |= inst.operands[2].reg;
10141 if (inst.operands[3].present)
10142 encode_arm_shift (3);
10143 }
10144
10145 /* ARM V6 PKHTB (Argument Parse). */
10146
10147 static void
10148 do_pkhtb (void)
10149 {
10150 if (!inst.operands[3].present)
10151 {
10152 /* If the shift specifier is omitted, turn the instruction
10153 into pkhbt rd, rm, rn. */
10154 inst.instruction &= 0xfff00010;
10155 inst.instruction |= inst.operands[0].reg << 12;
10156 inst.instruction |= inst.operands[1].reg;
10157 inst.instruction |= inst.operands[2].reg << 16;
10158 }
10159 else
10160 {
10161 inst.instruction |= inst.operands[0].reg << 12;
10162 inst.instruction |= inst.operands[1].reg << 16;
10163 inst.instruction |= inst.operands[2].reg;
10164 encode_arm_shift (3);
10165 }
10166 }
10167
10168 /* ARMv5TE: Preload-Cache
10169 MP Extensions: Preload for write
10170
10171 PLD(W) <addr_mode>
10172
10173 Syntactically, like LDR with B=1, W=0, L=1. */
10174
10175 static void
10176 do_pld (void)
10177 {
10178 constraint (!inst.operands[0].isreg,
10179 _("'[' expected after PLD mnemonic"));
10180 constraint (inst.operands[0].postind,
10181 _("post-indexed expression used in preload instruction"));
10182 constraint (inst.operands[0].writeback,
10183 _("writeback used in preload instruction"));
10184 constraint (!inst.operands[0].preind,
10185 _("unindexed addressing used in preload instruction"));
10186 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10187 }
10188
10189 /* ARMv7: PLI <addr_mode> */
10190 static void
10191 do_pli (void)
10192 {
10193 constraint (!inst.operands[0].isreg,
10194 _("'[' expected after PLI mnemonic"));
10195 constraint (inst.operands[0].postind,
10196 _("post-indexed expression used in preload instruction"));
10197 constraint (inst.operands[0].writeback,
10198 _("writeback used in preload instruction"));
10199 constraint (!inst.operands[0].preind,
10200 _("unindexed addressing used in preload instruction"));
10201 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10202 inst.instruction &= ~PRE_INDEX;
10203 }
10204
10205 static void
10206 do_push_pop (void)
10207 {
10208 constraint (inst.operands[0].writeback,
10209 _("push/pop do not support {reglist}^"));
10210 inst.operands[1] = inst.operands[0];
10211 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10212 inst.operands[0].isreg = 1;
10213 inst.operands[0].writeback = 1;
10214 inst.operands[0].reg = REG_SP;
10215 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10216 }
10217
10218 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10219 word at the specified address and the following word
10220 respectively.
10221 Unconditionally executed.
10222 Error if Rn is R15. */
10223
10224 static void
10225 do_rfe (void)
10226 {
10227 inst.instruction |= inst.operands[0].reg << 16;
10228 if (inst.operands[0].writeback)
10229 inst.instruction |= WRITE_BACK;
10230 }
10231
10232 /* ARM V6 ssat (argument parse). */
10233
10234 static void
10235 do_ssat (void)
10236 {
10237 inst.instruction |= inst.operands[0].reg << 12;
10238 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10239 inst.instruction |= inst.operands[2].reg;
10240
10241 if (inst.operands[3].present)
10242 encode_arm_shift (3);
10243 }
10244
10245 /* ARM V6 usat (argument parse). */
10246
10247 static void
10248 do_usat (void)
10249 {
10250 inst.instruction |= inst.operands[0].reg << 12;
10251 inst.instruction |= inst.operands[1].imm << 16;
10252 inst.instruction |= inst.operands[2].reg;
10253
10254 if (inst.operands[3].present)
10255 encode_arm_shift (3);
10256 }
10257
10258 /* ARM V6 ssat16 (argument parse). */
10259
10260 static void
10261 do_ssat16 (void)
10262 {
10263 inst.instruction |= inst.operands[0].reg << 12;
10264 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10265 inst.instruction |= inst.operands[2].reg;
10266 }
10267
10268 static void
10269 do_usat16 (void)
10270 {
10271 inst.instruction |= inst.operands[0].reg << 12;
10272 inst.instruction |= inst.operands[1].imm << 16;
10273 inst.instruction |= inst.operands[2].reg;
10274 }
10275
10276 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10277 preserving the other bits.
10278
10279 setend <endian_specifier>, where <endian_specifier> is either
10280 BE or LE. */
10281
10282 static void
10283 do_setend (void)
10284 {
10285 if (warn_on_deprecated
10286 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10287 as_tsktsk (_("setend use is deprecated for ARMv8"));
10288
10289 if (inst.operands[0].imm)
10290 inst.instruction |= 0x200;
10291 }
10292
10293 static void
10294 do_shift (void)
10295 {
10296 unsigned int Rm = (inst.operands[1].present
10297 ? inst.operands[1].reg
10298 : inst.operands[0].reg);
10299
10300 inst.instruction |= inst.operands[0].reg << 12;
10301 inst.instruction |= Rm;
10302 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10303 {
10304 inst.instruction |= inst.operands[2].reg << 8;
10305 inst.instruction |= SHIFT_BY_REG;
10306 /* PR 12854: Error on extraneous shifts. */
10307 constraint (inst.operands[2].shifted,
10308 _("extraneous shift as part of operand to shift insn"));
10309 }
10310 else
10311 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10312 }
10313
10314 static void
10315 do_smc (void)
10316 {
10317 unsigned int value = inst.relocs[0].exp.X_add_number;
10318 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
10319
10320 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10321 inst.relocs[0].pc_rel = 0;
10322 }
10323
10324 static void
10325 do_hvc (void)
10326 {
10327 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10328 inst.relocs[0].pc_rel = 0;
10329 }
10330
10331 static void
10332 do_swi (void)
10333 {
10334 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10335 inst.relocs[0].pc_rel = 0;
10336 }
10337
10338 static void
10339 do_setpan (void)
10340 {
10341 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10342 _("selected processor does not support SETPAN instruction"));
10343
10344 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10345 }
10346
10347 static void
10348 do_t_setpan (void)
10349 {
10350 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10351 _("selected processor does not support SETPAN instruction"));
10352
10353 inst.instruction |= (inst.operands[0].imm << 3);
10354 }
10355
10356 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10357 SMLAxy{cond} Rd,Rm,Rs,Rn
10358 SMLAWy{cond} Rd,Rm,Rs,Rn
10359 Error if any register is R15. */
10360
10361 static void
10362 do_smla (void)
10363 {
10364 inst.instruction |= inst.operands[0].reg << 16;
10365 inst.instruction |= inst.operands[1].reg;
10366 inst.instruction |= inst.operands[2].reg << 8;
10367 inst.instruction |= inst.operands[3].reg << 12;
10368 }
10369
10370 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10371 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10372 Error if any register is R15.
10373 Warning if Rdlo == Rdhi. */
10374
10375 static void
10376 do_smlal (void)
10377 {
10378 inst.instruction |= inst.operands[0].reg << 12;
10379 inst.instruction |= inst.operands[1].reg << 16;
10380 inst.instruction |= inst.operands[2].reg;
10381 inst.instruction |= inst.operands[3].reg << 8;
10382
10383 if (inst.operands[0].reg == inst.operands[1].reg)
10384 as_tsktsk (_("rdhi and rdlo must be different"));
10385 }
10386
10387 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10388 SMULxy{cond} Rd,Rm,Rs
10389 Error if any register is R15. */
10390
10391 static void
10392 do_smul (void)
10393 {
10394 inst.instruction |= inst.operands[0].reg << 16;
10395 inst.instruction |= inst.operands[1].reg;
10396 inst.instruction |= inst.operands[2].reg << 8;
10397 }
10398
10399 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10400 the same for both ARM and Thumb-2. */
10401
10402 static void
10403 do_srs (void)
10404 {
10405 int reg;
10406
10407 if (inst.operands[0].present)
10408 {
10409 reg = inst.operands[0].reg;
10410 constraint (reg != REG_SP, _("SRS base register must be r13"));
10411 }
10412 else
10413 reg = REG_SP;
10414
10415 inst.instruction |= reg << 16;
10416 inst.instruction |= inst.operands[1].imm;
10417 if (inst.operands[0].writeback || inst.operands[1].writeback)
10418 inst.instruction |= WRITE_BACK;
10419 }
10420
10421 /* ARM V6 strex (argument parse). */
10422
10423 static void
10424 do_strex (void)
10425 {
10426 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10427 || inst.operands[2].postind || inst.operands[2].writeback
10428 || inst.operands[2].immisreg || inst.operands[2].shifted
10429 || inst.operands[2].negative
10430 /* See comment in do_ldrex(). */
10431 || (inst.operands[2].reg == REG_PC),
10432 BAD_ADDR_MODE);
10433
10434 constraint (inst.operands[0].reg == inst.operands[1].reg
10435 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10436
10437 constraint (inst.relocs[0].exp.X_op != O_constant
10438 || inst.relocs[0].exp.X_add_number != 0,
10439 _("offset must be zero in ARM encoding"));
10440
10441 inst.instruction |= inst.operands[0].reg << 12;
10442 inst.instruction |= inst.operands[1].reg;
10443 inst.instruction |= inst.operands[2].reg << 16;
10444 inst.relocs[0].type = BFD_RELOC_UNUSED;
10445 }
10446
10447 static void
10448 do_t_strexbh (void)
10449 {
10450 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10451 || inst.operands[2].postind || inst.operands[2].writeback
10452 || inst.operands[2].immisreg || inst.operands[2].shifted
10453 || inst.operands[2].negative,
10454 BAD_ADDR_MODE);
10455
10456 constraint (inst.operands[0].reg == inst.operands[1].reg
10457 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10458
10459 do_rm_rd_rn ();
10460 }
10461
10462 static void
10463 do_strexd (void)
10464 {
10465 constraint (inst.operands[1].reg % 2 != 0,
10466 _("even register required"));
10467 constraint (inst.operands[2].present
10468 && inst.operands[2].reg != inst.operands[1].reg + 1,
10469 _("can only store two consecutive registers"));
10470 /* If op 2 were present and equal to PC, this function wouldn't
10471 have been called in the first place. */
10472 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10473
10474 constraint (inst.operands[0].reg == inst.operands[1].reg
10475 || inst.operands[0].reg == inst.operands[1].reg + 1
10476 || inst.operands[0].reg == inst.operands[3].reg,
10477 BAD_OVERLAP);
10478
10479 inst.instruction |= inst.operands[0].reg << 12;
10480 inst.instruction |= inst.operands[1].reg;
10481 inst.instruction |= inst.operands[3].reg << 16;
10482 }
10483
10484 /* ARM V8 STRL. */
10485 static void
10486 do_stlex (void)
10487 {
10488 constraint (inst.operands[0].reg == inst.operands[1].reg
10489 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10490
10491 do_rd_rm_rn ();
10492 }
10493
10494 static void
10495 do_t_stlex (void)
10496 {
10497 constraint (inst.operands[0].reg == inst.operands[1].reg
10498 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10499
10500 do_rm_rd_rn ();
10501 }
10502
10503 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10504 extends it to 32-bits, and adds the result to a value in another
10505 register. You can specify a rotation by 0, 8, 16, or 24 bits
10506 before extracting the 16-bit value.
10507 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10508 Condition defaults to COND_ALWAYS.
10509 Error if any register uses R15. */
10510
10511 static void
10512 do_sxtah (void)
10513 {
10514 inst.instruction |= inst.operands[0].reg << 12;
10515 inst.instruction |= inst.operands[1].reg << 16;
10516 inst.instruction |= inst.operands[2].reg;
10517 inst.instruction |= inst.operands[3].imm << 10;
10518 }
10519
10520 /* ARM V6 SXTH.
10521
10522 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10523 Condition defaults to COND_ALWAYS.
10524 Error if any register uses R15. */
10525
10526 static void
10527 do_sxth (void)
10528 {
10529 inst.instruction |= inst.operands[0].reg << 12;
10530 inst.instruction |= inst.operands[1].reg;
10531 inst.instruction |= inst.operands[2].imm << 10;
10532 }
10533 \f
10534 /* VFP instructions. In a logical order: SP variant first, monad
10535 before dyad, arithmetic then move then load/store. */
10536
10537 static void
10538 do_vfp_sp_monadic (void)
10539 {
10540 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10541 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10542 _(BAD_FPU));
10543
10544 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10545 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10546 }
10547
10548 static void
10549 do_vfp_sp_dyadic (void)
10550 {
10551 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10552 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10553 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10554 }
10555
10556 static void
10557 do_vfp_sp_compare_z (void)
10558 {
10559 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10560 }
10561
10562 static void
10563 do_vfp_dp_sp_cvt (void)
10564 {
10565 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10566 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10567 }
10568
10569 static void
10570 do_vfp_sp_dp_cvt (void)
10571 {
10572 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10573 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10574 }
10575
10576 static void
10577 do_vfp_reg_from_sp (void)
10578 {
10579 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10580 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10581 _(BAD_FPU));
10582
10583 inst.instruction |= inst.operands[0].reg << 12;
10584 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10585 }
10586
10587 static void
10588 do_vfp_reg2_from_sp2 (void)
10589 {
10590 constraint (inst.operands[2].imm != 2,
10591 _("only two consecutive VFP SP registers allowed here"));
10592 inst.instruction |= inst.operands[0].reg << 12;
10593 inst.instruction |= inst.operands[1].reg << 16;
10594 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10595 }
10596
10597 static void
10598 do_vfp_sp_from_reg (void)
10599 {
10600 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10601 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10602 _(BAD_FPU));
10603
10604 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10605 inst.instruction |= inst.operands[1].reg << 12;
10606 }
10607
10608 static void
10609 do_vfp_sp2_from_reg2 (void)
10610 {
10611 constraint (inst.operands[0].imm != 2,
10612 _("only two consecutive VFP SP registers allowed here"));
10613 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10614 inst.instruction |= inst.operands[1].reg << 12;
10615 inst.instruction |= inst.operands[2].reg << 16;
10616 }
10617
10618 static void
10619 do_vfp_sp_ldst (void)
10620 {
10621 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10622 encode_arm_cp_address (1, FALSE, TRUE, 0);
10623 }
10624
10625 static void
10626 do_vfp_dp_ldst (void)
10627 {
10628 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10629 encode_arm_cp_address (1, FALSE, TRUE, 0);
10630 }
10631
10632
10633 static void
10634 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10635 {
10636 if (inst.operands[0].writeback)
10637 inst.instruction |= WRITE_BACK;
10638 else
10639 constraint (ldstm_type != VFP_LDSTMIA,
10640 _("this addressing mode requires base-register writeback"));
10641 inst.instruction |= inst.operands[0].reg << 16;
10642 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10643 inst.instruction |= inst.operands[1].imm;
10644 }
10645
10646 static void
10647 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10648 {
10649 int count;
10650
10651 if (inst.operands[0].writeback)
10652 inst.instruction |= WRITE_BACK;
10653 else
10654 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10655 _("this addressing mode requires base-register writeback"));
10656
10657 inst.instruction |= inst.operands[0].reg << 16;
10658 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10659
10660 count = inst.operands[1].imm << 1;
10661 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10662 count += 1;
10663
10664 inst.instruction |= count;
10665 }
10666
10667 static void
10668 do_vfp_sp_ldstmia (void)
10669 {
10670 vfp_sp_ldstm (VFP_LDSTMIA);
10671 }
10672
10673 static void
10674 do_vfp_sp_ldstmdb (void)
10675 {
10676 vfp_sp_ldstm (VFP_LDSTMDB);
10677 }
10678
10679 static void
10680 do_vfp_dp_ldstmia (void)
10681 {
10682 vfp_dp_ldstm (VFP_LDSTMIA);
10683 }
10684
10685 static void
10686 do_vfp_dp_ldstmdb (void)
10687 {
10688 vfp_dp_ldstm (VFP_LDSTMDB);
10689 }
10690
10691 static void
10692 do_vfp_xp_ldstmia (void)
10693 {
10694 vfp_dp_ldstm (VFP_LDSTMIAX);
10695 }
10696
10697 static void
10698 do_vfp_xp_ldstmdb (void)
10699 {
10700 vfp_dp_ldstm (VFP_LDSTMDBX);
10701 }
10702
10703 static void
10704 do_vfp_dp_rd_rm (void)
10705 {
10706 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10707 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10708 _(BAD_FPU));
10709
10710 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10711 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10712 }
10713
10714 static void
10715 do_vfp_dp_rn_rd (void)
10716 {
10717 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10718 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10719 }
10720
10721 static void
10722 do_vfp_dp_rd_rn (void)
10723 {
10724 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10725 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10726 }
10727
10728 static void
10729 do_vfp_dp_rd_rn_rm (void)
10730 {
10731 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10732 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10733 _(BAD_FPU));
10734
10735 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10736 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10737 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10738 }
10739
10740 static void
10741 do_vfp_dp_rd (void)
10742 {
10743 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10744 }
10745
10746 static void
10747 do_vfp_dp_rm_rd_rn (void)
10748 {
10749 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10750 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10751 _(BAD_FPU));
10752
10753 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10754 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10755 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10756 }
10757
10758 /* VFPv3 instructions. */
10759 static void
10760 do_vfp_sp_const (void)
10761 {
10762 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10763 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10764 inst.instruction |= (inst.operands[1].imm & 0x0f);
10765 }
10766
10767 static void
10768 do_vfp_dp_const (void)
10769 {
10770 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10771 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10772 inst.instruction |= (inst.operands[1].imm & 0x0f);
10773 }
10774
10775 static void
10776 vfp_conv (int srcsize)
10777 {
10778 int immbits = srcsize - inst.operands[1].imm;
10779
10780 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10781 {
10782 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10783 i.e. immbits must be in range 0 - 16. */
10784 inst.error = _("immediate value out of range, expected range [0, 16]");
10785 return;
10786 }
10787 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10788 {
10789 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10790 i.e. immbits must be in range 0 - 31. */
10791 inst.error = _("immediate value out of range, expected range [1, 32]");
10792 return;
10793 }
10794
10795 inst.instruction |= (immbits & 1) << 5;
10796 inst.instruction |= (immbits >> 1);
10797 }
10798
10799 static void
10800 do_vfp_sp_conv_16 (void)
10801 {
10802 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10803 vfp_conv (16);
10804 }
10805
10806 static void
10807 do_vfp_dp_conv_16 (void)
10808 {
10809 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10810 vfp_conv (16);
10811 }
10812
10813 static void
10814 do_vfp_sp_conv_32 (void)
10815 {
10816 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10817 vfp_conv (32);
10818 }
10819
10820 static void
10821 do_vfp_dp_conv_32 (void)
10822 {
10823 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10824 vfp_conv (32);
10825 }
10826 \f
10827 /* FPA instructions. Also in a logical order. */
10828
10829 static void
10830 do_fpa_cmp (void)
10831 {
10832 inst.instruction |= inst.operands[0].reg << 16;
10833 inst.instruction |= inst.operands[1].reg;
10834 }
10835
10836 static void
10837 do_fpa_ldmstm (void)
10838 {
10839 inst.instruction |= inst.operands[0].reg << 12;
10840 switch (inst.operands[1].imm)
10841 {
10842 case 1: inst.instruction |= CP_T_X; break;
10843 case 2: inst.instruction |= CP_T_Y; break;
10844 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10845 case 4: break;
10846 default: abort ();
10847 }
10848
10849 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10850 {
10851 /* The instruction specified "ea" or "fd", so we can only accept
10852 [Rn]{!}. The instruction does not really support stacking or
10853 unstacking, so we have to emulate these by setting appropriate
10854 bits and offsets. */
10855 constraint (inst.relocs[0].exp.X_op != O_constant
10856 || inst.relocs[0].exp.X_add_number != 0,
10857 _("this instruction does not support indexing"));
10858
10859 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10860 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10861
10862 if (!(inst.instruction & INDEX_UP))
10863 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10864
10865 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10866 {
10867 inst.operands[2].preind = 0;
10868 inst.operands[2].postind = 1;
10869 }
10870 }
10871
10872 encode_arm_cp_address (2, TRUE, TRUE, 0);
10873 }
10874 \f
10875 /* iWMMXt instructions: strictly in alphabetical order. */
10876
10877 static void
10878 do_iwmmxt_tandorc (void)
10879 {
10880 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10881 }
10882
10883 static void
10884 do_iwmmxt_textrc (void)
10885 {
10886 inst.instruction |= inst.operands[0].reg << 12;
10887 inst.instruction |= inst.operands[1].imm;
10888 }
10889
10890 static void
10891 do_iwmmxt_textrm (void)
10892 {
10893 inst.instruction |= inst.operands[0].reg << 12;
10894 inst.instruction |= inst.operands[1].reg << 16;
10895 inst.instruction |= inst.operands[2].imm;
10896 }
10897
10898 static void
10899 do_iwmmxt_tinsr (void)
10900 {
10901 inst.instruction |= inst.operands[0].reg << 16;
10902 inst.instruction |= inst.operands[1].reg << 12;
10903 inst.instruction |= inst.operands[2].imm;
10904 }
10905
10906 static void
10907 do_iwmmxt_tmia (void)
10908 {
10909 inst.instruction |= inst.operands[0].reg << 5;
10910 inst.instruction |= inst.operands[1].reg;
10911 inst.instruction |= inst.operands[2].reg << 12;
10912 }
10913
10914 static void
10915 do_iwmmxt_waligni (void)
10916 {
10917 inst.instruction |= inst.operands[0].reg << 12;
10918 inst.instruction |= inst.operands[1].reg << 16;
10919 inst.instruction |= inst.operands[2].reg;
10920 inst.instruction |= inst.operands[3].imm << 20;
10921 }
10922
10923 static void
10924 do_iwmmxt_wmerge (void)
10925 {
10926 inst.instruction |= inst.operands[0].reg << 12;
10927 inst.instruction |= inst.operands[1].reg << 16;
10928 inst.instruction |= inst.operands[2].reg;
10929 inst.instruction |= inst.operands[3].imm << 21;
10930 }
10931
10932 static void
10933 do_iwmmxt_wmov (void)
10934 {
10935 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10936 inst.instruction |= inst.operands[0].reg << 12;
10937 inst.instruction |= inst.operands[1].reg << 16;
10938 inst.instruction |= inst.operands[1].reg;
10939 }
10940
10941 static void
10942 do_iwmmxt_wldstbh (void)
10943 {
10944 int reloc;
10945 inst.instruction |= inst.operands[0].reg << 12;
10946 if (thumb_mode)
10947 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10948 else
10949 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10950 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10951 }
10952
10953 static void
10954 do_iwmmxt_wldstw (void)
10955 {
10956 /* RIWR_RIWC clears .isreg for a control register. */
10957 if (!inst.operands[0].isreg)
10958 {
10959 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10960 inst.instruction |= 0xf0000000;
10961 }
10962
10963 inst.instruction |= inst.operands[0].reg << 12;
10964 encode_arm_cp_address (1, TRUE, TRUE, 0);
10965 }
10966
10967 static void
10968 do_iwmmxt_wldstd (void)
10969 {
10970 inst.instruction |= inst.operands[0].reg << 12;
10971 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10972 && inst.operands[1].immisreg)
10973 {
10974 inst.instruction &= ~0x1a000ff;
10975 inst.instruction |= (0xfU << 28);
10976 if (inst.operands[1].preind)
10977 inst.instruction |= PRE_INDEX;
10978 if (!inst.operands[1].negative)
10979 inst.instruction |= INDEX_UP;
10980 if (inst.operands[1].writeback)
10981 inst.instruction |= WRITE_BACK;
10982 inst.instruction |= inst.operands[1].reg << 16;
10983 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10984 inst.instruction |= inst.operands[1].imm;
10985 }
10986 else
10987 encode_arm_cp_address (1, TRUE, FALSE, 0);
10988 }
10989
10990 static void
10991 do_iwmmxt_wshufh (void)
10992 {
10993 inst.instruction |= inst.operands[0].reg << 12;
10994 inst.instruction |= inst.operands[1].reg << 16;
10995 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10996 inst.instruction |= (inst.operands[2].imm & 0x0f);
10997 }
10998
10999 static void
11000 do_iwmmxt_wzero (void)
11001 {
11002 /* WZERO reg is an alias for WANDN reg, reg, reg. */
11003 inst.instruction |= inst.operands[0].reg;
11004 inst.instruction |= inst.operands[0].reg << 12;
11005 inst.instruction |= inst.operands[0].reg << 16;
11006 }
11007
11008 static void
11009 do_iwmmxt_wrwrwr_or_imm5 (void)
11010 {
11011 if (inst.operands[2].isreg)
11012 do_rd_rn_rm ();
11013 else {
11014 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
11015 _("immediate operand requires iWMMXt2"));
11016 do_rd_rn ();
11017 if (inst.operands[2].imm == 0)
11018 {
11019 switch ((inst.instruction >> 20) & 0xf)
11020 {
11021 case 4:
11022 case 5:
11023 case 6:
11024 case 7:
11025 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
11026 inst.operands[2].imm = 16;
11027 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
11028 break;
11029 case 8:
11030 case 9:
11031 case 10:
11032 case 11:
11033 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
11034 inst.operands[2].imm = 32;
11035 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
11036 break;
11037 case 12:
11038 case 13:
11039 case 14:
11040 case 15:
11041 {
11042 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
11043 unsigned long wrn;
11044 wrn = (inst.instruction >> 16) & 0xf;
11045 inst.instruction &= 0xff0fff0f;
11046 inst.instruction |= wrn;
11047 /* Bail out here; the instruction is now assembled. */
11048 return;
11049 }
11050 }
11051 }
11052 /* Map 32 -> 0, etc. */
11053 inst.operands[2].imm &= 0x1f;
11054 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
11055 }
11056 }
11057 \f
11058 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
11059 operations first, then control, shift, and load/store. */
11060
11061 /* Insns like "foo X,Y,Z". */
11062
11063 static void
11064 do_mav_triple (void)
11065 {
11066 inst.instruction |= inst.operands[0].reg << 16;
11067 inst.instruction |= inst.operands[1].reg;
11068 inst.instruction |= inst.operands[2].reg << 12;
11069 }
11070
11071 /* Insns like "foo W,X,Y,Z".
11072 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
11073
11074 static void
11075 do_mav_quad (void)
11076 {
11077 inst.instruction |= inst.operands[0].reg << 5;
11078 inst.instruction |= inst.operands[1].reg << 12;
11079 inst.instruction |= inst.operands[2].reg << 16;
11080 inst.instruction |= inst.operands[3].reg;
11081 }
11082
11083 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
11084 static void
11085 do_mav_dspsc (void)
11086 {
11087 inst.instruction |= inst.operands[1].reg << 12;
11088 }
11089
11090 /* Maverick shift immediate instructions.
11091 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
11092 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
11093
11094 static void
11095 do_mav_shift (void)
11096 {
11097 int imm = inst.operands[2].imm;
11098
11099 inst.instruction |= inst.operands[0].reg << 12;
11100 inst.instruction |= inst.operands[1].reg << 16;
11101
11102 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
11103 Bits 5-7 of the insn should have bits 4-6 of the immediate.
11104 Bit 4 should be 0. */
11105 imm = (imm & 0xf) | ((imm & 0x70) << 1);
11106
11107 inst.instruction |= imm;
11108 }
11109 \f
11110 /* XScale instructions. Also sorted arithmetic before move. */
11111
11112 /* Xscale multiply-accumulate (argument parse)
11113 MIAcc acc0,Rm,Rs
11114 MIAPHcc acc0,Rm,Rs
11115 MIAxycc acc0,Rm,Rs. */
11116
11117 static void
11118 do_xsc_mia (void)
11119 {
11120 inst.instruction |= inst.operands[1].reg;
11121 inst.instruction |= inst.operands[2].reg << 12;
11122 }
11123
11124 /* Xscale move-accumulator-register (argument parse)
11125
11126 MARcc acc0,RdLo,RdHi. */
11127
11128 static void
11129 do_xsc_mar (void)
11130 {
11131 inst.instruction |= inst.operands[1].reg << 12;
11132 inst.instruction |= inst.operands[2].reg << 16;
11133 }
11134
11135 /* Xscale move-register-accumulator (argument parse)
11136
11137 MRAcc RdLo,RdHi,acc0. */
11138
11139 static void
11140 do_xsc_mra (void)
11141 {
11142 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
11143 inst.instruction |= inst.operands[0].reg << 12;
11144 inst.instruction |= inst.operands[1].reg << 16;
11145 }
11146 \f
11147 /* Encoding functions relevant only to Thumb. */
11148
11149 /* inst.operands[i] is a shifted-register operand; encode
11150 it into inst.instruction in the format used by Thumb32. */
11151
11152 static void
11153 encode_thumb32_shifted_operand (int i)
11154 {
11155 unsigned int value = inst.relocs[0].exp.X_add_number;
11156 unsigned int shift = inst.operands[i].shift_kind;
11157
11158 constraint (inst.operands[i].immisreg,
11159 _("shift by register not allowed in thumb mode"));
11160 inst.instruction |= inst.operands[i].reg;
11161 if (shift == SHIFT_RRX)
11162 inst.instruction |= SHIFT_ROR << 4;
11163 else
11164 {
11165 constraint (inst.relocs[0].exp.X_op != O_constant,
11166 _("expression too complex"));
11167
11168 constraint (value > 32
11169 || (value == 32 && (shift == SHIFT_LSL
11170 || shift == SHIFT_ROR)),
11171 _("shift expression is too large"));
11172
11173 if (value == 0)
11174 shift = SHIFT_LSL;
11175 else if (value == 32)
11176 value = 0;
11177
11178 inst.instruction |= shift << 4;
11179 inst.instruction |= (value & 0x1c) << 10;
11180 inst.instruction |= (value & 0x03) << 6;
11181 }
11182 }
11183
11184
11185 /* inst.operands[i] was set up by parse_address. Encode it into a
11186 Thumb32 format load or store instruction. Reject forms that cannot
11187 be used with such instructions. If is_t is true, reject forms that
11188 cannot be used with a T instruction; if is_d is true, reject forms
11189 that cannot be used with a D instruction. If it is a store insn,
11190 reject PC in Rn. */
11191
11192 static void
11193 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11194 {
11195 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11196
11197 constraint (!inst.operands[i].isreg,
11198 _("Instruction does not support =N addresses"));
11199
11200 inst.instruction |= inst.operands[i].reg << 16;
11201 if (inst.operands[i].immisreg)
11202 {
11203 constraint (is_pc, BAD_PC_ADDRESSING);
11204 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11205 constraint (inst.operands[i].negative,
11206 _("Thumb does not support negative register indexing"));
11207 constraint (inst.operands[i].postind,
11208 _("Thumb does not support register post-indexing"));
11209 constraint (inst.operands[i].writeback,
11210 _("Thumb does not support register indexing with writeback"));
11211 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11212 _("Thumb supports only LSL in shifted register indexing"));
11213
11214 inst.instruction |= inst.operands[i].imm;
11215 if (inst.operands[i].shifted)
11216 {
11217 constraint (inst.relocs[0].exp.X_op != O_constant,
11218 _("expression too complex"));
11219 constraint (inst.relocs[0].exp.X_add_number < 0
11220 || inst.relocs[0].exp.X_add_number > 3,
11221 _("shift out of range"));
11222 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11223 }
11224 inst.relocs[0].type = BFD_RELOC_UNUSED;
11225 }
11226 else if (inst.operands[i].preind)
11227 {
11228 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11229 constraint (is_t && inst.operands[i].writeback,
11230 _("cannot use writeback with this instruction"));
11231 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11232 BAD_PC_ADDRESSING);
11233
11234 if (is_d)
11235 {
11236 inst.instruction |= 0x01000000;
11237 if (inst.operands[i].writeback)
11238 inst.instruction |= 0x00200000;
11239 }
11240 else
11241 {
11242 inst.instruction |= 0x00000c00;
11243 if (inst.operands[i].writeback)
11244 inst.instruction |= 0x00000100;
11245 }
11246 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11247 }
11248 else if (inst.operands[i].postind)
11249 {
11250 gas_assert (inst.operands[i].writeback);
11251 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11252 constraint (is_t, _("cannot use post-indexing with this instruction"));
11253
11254 if (is_d)
11255 inst.instruction |= 0x00200000;
11256 else
11257 inst.instruction |= 0x00000900;
11258 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11259 }
11260 else /* unindexed - only for coprocessor */
11261 inst.error = _("instruction does not accept unindexed addressing");
11262 }
11263
11264 /* Table of Thumb instructions which exist in 16- and/or 32-bit
11265 encodings (the latter only in post-V6T2 cores). The index is the
11266 value used in the insns table below. When there is more than one
11267 possible 16-bit encoding for the instruction, this table always
11268 holds variant (1).
11269 Also contains several pseudo-instructions used during relaxation. */
11270 #define T16_32_TAB \
11271 X(_adc, 4140, eb400000), \
11272 X(_adcs, 4140, eb500000), \
11273 X(_add, 1c00, eb000000), \
11274 X(_adds, 1c00, eb100000), \
11275 X(_addi, 0000, f1000000), \
11276 X(_addis, 0000, f1100000), \
11277 X(_add_pc,000f, f20f0000), \
11278 X(_add_sp,000d, f10d0000), \
11279 X(_adr, 000f, f20f0000), \
11280 X(_and, 4000, ea000000), \
11281 X(_ands, 4000, ea100000), \
11282 X(_asr, 1000, fa40f000), \
11283 X(_asrs, 1000, fa50f000), \
11284 X(_b, e000, f000b000), \
11285 X(_bcond, d000, f0008000), \
11286 X(_bf, 0000, f040e001), \
11287 X(_bfcsel,0000, f000e001), \
11288 X(_bfx, 0000, f060e001), \
11289 X(_bfl, 0000, f000c001), \
11290 X(_bflx, 0000, f070e001), \
11291 X(_bic, 4380, ea200000), \
11292 X(_bics, 4380, ea300000), \
11293 X(_cinc, 0000, ea509000), \
11294 X(_cinv, 0000, ea50a000), \
11295 X(_cmn, 42c0, eb100f00), \
11296 X(_cmp, 2800, ebb00f00), \
11297 X(_cneg, 0000, ea50b000), \
11298 X(_cpsie, b660, f3af8400), \
11299 X(_cpsid, b670, f3af8600), \
11300 X(_cpy, 4600, ea4f0000), \
11301 X(_csel, 0000, ea508000), \
11302 X(_cset, 0000, ea5f900f), \
11303 X(_csetm, 0000, ea5fa00f), \
11304 X(_csinc, 0000, ea509000), \
11305 X(_csinv, 0000, ea50a000), \
11306 X(_csneg, 0000, ea50b000), \
11307 X(_dec_sp,80dd, f1ad0d00), \
11308 X(_dls, 0000, f040e001), \
11309 X(_dlstp, 0000, f000e001), \
11310 X(_eor, 4040, ea800000), \
11311 X(_eors, 4040, ea900000), \
11312 X(_inc_sp,00dd, f10d0d00), \
11313 X(_lctp, 0000, f00fe001), \
11314 X(_ldmia, c800, e8900000), \
11315 X(_ldr, 6800, f8500000), \
11316 X(_ldrb, 7800, f8100000), \
11317 X(_ldrh, 8800, f8300000), \
11318 X(_ldrsb, 5600, f9100000), \
11319 X(_ldrsh, 5e00, f9300000), \
11320 X(_ldr_pc,4800, f85f0000), \
11321 X(_ldr_pc2,4800, f85f0000), \
11322 X(_ldr_sp,9800, f85d0000), \
11323 X(_le, 0000, f00fc001), \
11324 X(_letp, 0000, f01fc001), \
11325 X(_lsl, 0000, fa00f000), \
11326 X(_lsls, 0000, fa10f000), \
11327 X(_lsr, 0800, fa20f000), \
11328 X(_lsrs, 0800, fa30f000), \
11329 X(_mov, 2000, ea4f0000), \
11330 X(_movs, 2000, ea5f0000), \
11331 X(_mul, 4340, fb00f000), \
11332 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11333 X(_mvn, 43c0, ea6f0000), \
11334 X(_mvns, 43c0, ea7f0000), \
11335 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11336 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11337 X(_orr, 4300, ea400000), \
11338 X(_orrs, 4300, ea500000), \
11339 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11340 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11341 X(_rev, ba00, fa90f080), \
11342 X(_rev16, ba40, fa90f090), \
11343 X(_revsh, bac0, fa90f0b0), \
11344 X(_ror, 41c0, fa60f000), \
11345 X(_rors, 41c0, fa70f000), \
11346 X(_sbc, 4180, eb600000), \
11347 X(_sbcs, 4180, eb700000), \
11348 X(_stmia, c000, e8800000), \
11349 X(_str, 6000, f8400000), \
11350 X(_strb, 7000, f8000000), \
11351 X(_strh, 8000, f8200000), \
11352 X(_str_sp,9000, f84d0000), \
11353 X(_sub, 1e00, eba00000), \
11354 X(_subs, 1e00, ebb00000), \
11355 X(_subi, 8000, f1a00000), \
11356 X(_subis, 8000, f1b00000), \
11357 X(_sxtb, b240, fa4ff080), \
11358 X(_sxth, b200, fa0ff080), \
11359 X(_tst, 4200, ea100f00), \
11360 X(_uxtb, b2c0, fa5ff080), \
11361 X(_uxth, b280, fa1ff080), \
11362 X(_nop, bf00, f3af8000), \
11363 X(_yield, bf10, f3af8001), \
11364 X(_wfe, bf20, f3af8002), \
11365 X(_wfi, bf30, f3af8003), \
11366 X(_wls, 0000, f040c001), \
11367 X(_wlstp, 0000, f000c001), \
11368 X(_sev, bf40, f3af8004), \
11369 X(_sevl, bf50, f3af8005), \
11370 X(_udf, de00, f7f0a000)
11371
11372 /* To catch errors in encoding functions, the codes are all offset by
11373 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11374 as 16-bit instructions. */
11375 #define X(a,b,c) T_MNEM##a
11376 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11377 #undef X
11378
11379 #define X(a,b,c) 0x##b
11380 static const unsigned short thumb_op16[] = { T16_32_TAB };
11381 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11382 #undef X
11383
11384 #define X(a,b,c) 0x##c
11385 static const unsigned int thumb_op32[] = { T16_32_TAB };
11386 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11387 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11388 #undef X
11389 #undef T16_32_TAB
11390
11391 /* Thumb instruction encoders, in alphabetical order. */
11392
11393 /* ADDW or SUBW. */
11394
11395 static void
11396 do_t_add_sub_w (void)
11397 {
11398 int Rd, Rn;
11399
11400 Rd = inst.operands[0].reg;
11401 Rn = inst.operands[1].reg;
11402
11403 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11404 is the SP-{plus,minus}-immediate form of the instruction. */
11405 if (Rn == REG_SP)
11406 constraint (Rd == REG_PC, BAD_PC);
11407 else
11408 reject_bad_reg (Rd);
11409
11410 inst.instruction |= (Rn << 16) | (Rd << 8);
11411 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11412 }
11413
11414 /* Parse an add or subtract instruction. We get here with inst.instruction
11415 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11416
11417 static void
11418 do_t_add_sub (void)
11419 {
11420 int Rd, Rs, Rn;
11421
11422 Rd = inst.operands[0].reg;
11423 Rs = (inst.operands[1].present
11424 ? inst.operands[1].reg /* Rd, Rs, foo */
11425 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11426
11427 if (Rd == REG_PC)
11428 set_pred_insn_type_last ();
11429
11430 if (unified_syntax)
11431 {
11432 bfd_boolean flags;
11433 bfd_boolean narrow;
11434 int opcode;
11435
11436 flags = (inst.instruction == T_MNEM_adds
11437 || inst.instruction == T_MNEM_subs);
11438 if (flags)
11439 narrow = !in_pred_block ();
11440 else
11441 narrow = in_pred_block ();
11442 if (!inst.operands[2].isreg)
11443 {
11444 int add;
11445
11446 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11447 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11448
11449 add = (inst.instruction == T_MNEM_add
11450 || inst.instruction == T_MNEM_adds);
11451 opcode = 0;
11452 if (inst.size_req != 4)
11453 {
11454 /* Attempt to use a narrow opcode, with relaxation if
11455 appropriate. */
11456 if (Rd == REG_SP && Rs == REG_SP && !flags)
11457 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11458 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11459 opcode = T_MNEM_add_sp;
11460 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11461 opcode = T_MNEM_add_pc;
11462 else if (Rd <= 7 && Rs <= 7 && narrow)
11463 {
11464 if (flags)
11465 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11466 else
11467 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11468 }
11469 if (opcode)
11470 {
11471 inst.instruction = THUMB_OP16(opcode);
11472 inst.instruction |= (Rd << 4) | Rs;
11473 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11474 || (inst.relocs[0].type
11475 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11476 {
11477 if (inst.size_req == 2)
11478 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11479 else
11480 inst.relax = opcode;
11481 }
11482 }
11483 else
11484 constraint (inst.size_req == 2, BAD_HIREG);
11485 }
11486 if (inst.size_req == 4
11487 || (inst.size_req != 2 && !opcode))
11488 {
11489 constraint ((inst.relocs[0].type
11490 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11491 && (inst.relocs[0].type
11492 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11493 THUMB1_RELOC_ONLY);
11494 if (Rd == REG_PC)
11495 {
11496 constraint (add, BAD_PC);
11497 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11498 _("only SUBS PC, LR, #const allowed"));
11499 constraint (inst.relocs[0].exp.X_op != O_constant,
11500 _("expression too complex"));
11501 constraint (inst.relocs[0].exp.X_add_number < 0
11502 || inst.relocs[0].exp.X_add_number > 0xff,
11503 _("immediate value out of range"));
11504 inst.instruction = T2_SUBS_PC_LR
11505 | inst.relocs[0].exp.X_add_number;
11506 inst.relocs[0].type = BFD_RELOC_UNUSED;
11507 return;
11508 }
11509 else if (Rs == REG_PC)
11510 {
11511 /* Always use addw/subw. */
11512 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11513 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11514 }
11515 else
11516 {
11517 inst.instruction = THUMB_OP32 (inst.instruction);
11518 inst.instruction = (inst.instruction & 0xe1ffffff)
11519 | 0x10000000;
11520 if (flags)
11521 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11522 else
11523 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11524 }
11525 inst.instruction |= Rd << 8;
11526 inst.instruction |= Rs << 16;
11527 }
11528 }
11529 else
11530 {
11531 unsigned int value = inst.relocs[0].exp.X_add_number;
11532 unsigned int shift = inst.operands[2].shift_kind;
11533
11534 Rn = inst.operands[2].reg;
11535 /* See if we can do this with a 16-bit instruction. */
11536 if (!inst.operands[2].shifted && inst.size_req != 4)
11537 {
11538 if (Rd > 7 || Rs > 7 || Rn > 7)
11539 narrow = FALSE;
11540
11541 if (narrow)
11542 {
11543 inst.instruction = ((inst.instruction == T_MNEM_adds
11544 || inst.instruction == T_MNEM_add)
11545 ? T_OPCODE_ADD_R3
11546 : T_OPCODE_SUB_R3);
11547 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11548 return;
11549 }
11550
11551 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11552 {
11553 /* Thumb-1 cores (except v6-M) require at least one high
11554 register in a narrow non flag setting add. */
11555 if (Rd > 7 || Rn > 7
11556 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11557 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11558 {
11559 if (Rd == Rn)
11560 {
11561 Rn = Rs;
11562 Rs = Rd;
11563 }
11564 inst.instruction = T_OPCODE_ADD_HI;
11565 inst.instruction |= (Rd & 8) << 4;
11566 inst.instruction |= (Rd & 7);
11567 inst.instruction |= Rn << 3;
11568 return;
11569 }
11570 }
11571 }
11572
11573 constraint (Rd == REG_PC, BAD_PC);
11574 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11575 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11576 constraint (Rs == REG_PC, BAD_PC);
11577 reject_bad_reg (Rn);
11578
11579 /* If we get here, it can't be done in 16 bits. */
11580 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11581 _("shift must be constant"));
11582 inst.instruction = THUMB_OP32 (inst.instruction);
11583 inst.instruction |= Rd << 8;
11584 inst.instruction |= Rs << 16;
11585 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11586 _("shift value over 3 not allowed in thumb mode"));
11587 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11588 _("only LSL shift allowed in thumb mode"));
11589 encode_thumb32_shifted_operand (2);
11590 }
11591 }
11592 else
11593 {
11594 constraint (inst.instruction == T_MNEM_adds
11595 || inst.instruction == T_MNEM_subs,
11596 BAD_THUMB32);
11597
11598 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11599 {
11600 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11601 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11602 BAD_HIREG);
11603
11604 inst.instruction = (inst.instruction == T_MNEM_add
11605 ? 0x0000 : 0x8000);
11606 inst.instruction |= (Rd << 4) | Rs;
11607 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11608 return;
11609 }
11610
11611 Rn = inst.operands[2].reg;
11612 constraint (inst.operands[2].shifted, _("unshifted register required"));
11613
11614 /* We now have Rd, Rs, and Rn set to registers. */
11615 if (Rd > 7 || Rs > 7 || Rn > 7)
11616 {
11617 /* Can't do this for SUB. */
11618 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11619 inst.instruction = T_OPCODE_ADD_HI;
11620 inst.instruction |= (Rd & 8) << 4;
11621 inst.instruction |= (Rd & 7);
11622 if (Rs == Rd)
11623 inst.instruction |= Rn << 3;
11624 else if (Rn == Rd)
11625 inst.instruction |= Rs << 3;
11626 else
11627 constraint (1, _("dest must overlap one source register"));
11628 }
11629 else
11630 {
11631 inst.instruction = (inst.instruction == T_MNEM_add
11632 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11633 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11634 }
11635 }
11636 }
11637
11638 static void
11639 do_t_adr (void)
11640 {
11641 unsigned Rd;
11642
11643 Rd = inst.operands[0].reg;
11644 reject_bad_reg (Rd);
11645
11646 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11647 {
11648 /* Defer to section relaxation. */
11649 inst.relax = inst.instruction;
11650 inst.instruction = THUMB_OP16 (inst.instruction);
11651 inst.instruction |= Rd << 4;
11652 }
11653 else if (unified_syntax && inst.size_req != 2)
11654 {
11655 /* Generate a 32-bit opcode. */
11656 inst.instruction = THUMB_OP32 (inst.instruction);
11657 inst.instruction |= Rd << 8;
11658 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11659 inst.relocs[0].pc_rel = 1;
11660 }
11661 else
11662 {
11663 /* Generate a 16-bit opcode. */
11664 inst.instruction = THUMB_OP16 (inst.instruction);
11665 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11666 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11667 inst.relocs[0].pc_rel = 1;
11668 inst.instruction |= Rd << 4;
11669 }
11670
11671 if (inst.relocs[0].exp.X_op == O_symbol
11672 && inst.relocs[0].exp.X_add_symbol != NULL
11673 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11674 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11675 inst.relocs[0].exp.X_add_number += 1;
11676 }
11677
11678 /* Arithmetic instructions for which there is just one 16-bit
11679 instruction encoding, and it allows only two low registers.
11680 For maximal compatibility with ARM syntax, we allow three register
11681 operands even when Thumb-32 instructions are not available, as long
11682 as the first two are identical. For instance, both "sbc r0,r1" and
11683 "sbc r0,r0,r1" are allowed. */
11684 static void
11685 do_t_arit3 (void)
11686 {
11687 int Rd, Rs, Rn;
11688
11689 Rd = inst.operands[0].reg;
11690 Rs = (inst.operands[1].present
11691 ? inst.operands[1].reg /* Rd, Rs, foo */
11692 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11693 Rn = inst.operands[2].reg;
11694
11695 reject_bad_reg (Rd);
11696 reject_bad_reg (Rs);
11697 if (inst.operands[2].isreg)
11698 reject_bad_reg (Rn);
11699
11700 if (unified_syntax)
11701 {
11702 if (!inst.operands[2].isreg)
11703 {
11704 /* For an immediate, we always generate a 32-bit opcode;
11705 section relaxation will shrink it later if possible. */
11706 inst.instruction = THUMB_OP32 (inst.instruction);
11707 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11708 inst.instruction |= Rd << 8;
11709 inst.instruction |= Rs << 16;
11710 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11711 }
11712 else
11713 {
11714 bfd_boolean narrow;
11715
11716 /* See if we can do this with a 16-bit instruction. */
11717 if (THUMB_SETS_FLAGS (inst.instruction))
11718 narrow = !in_pred_block ();
11719 else
11720 narrow = in_pred_block ();
11721
11722 if (Rd > 7 || Rn > 7 || Rs > 7)
11723 narrow = FALSE;
11724 if (inst.operands[2].shifted)
11725 narrow = FALSE;
11726 if (inst.size_req == 4)
11727 narrow = FALSE;
11728
11729 if (narrow
11730 && Rd == Rs)
11731 {
11732 inst.instruction = THUMB_OP16 (inst.instruction);
11733 inst.instruction |= Rd;
11734 inst.instruction |= Rn << 3;
11735 return;
11736 }
11737
11738 /* If we get here, it can't be done in 16 bits. */
11739 constraint (inst.operands[2].shifted
11740 && inst.operands[2].immisreg,
11741 _("shift must be constant"));
11742 inst.instruction = THUMB_OP32 (inst.instruction);
11743 inst.instruction |= Rd << 8;
11744 inst.instruction |= Rs << 16;
11745 encode_thumb32_shifted_operand (2);
11746 }
11747 }
11748 else
11749 {
11750 /* On its face this is a lie - the instruction does set the
11751 flags. However, the only supported mnemonic in this mode
11752 says it doesn't. */
11753 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11754
11755 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11756 _("unshifted register required"));
11757 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11758 constraint (Rd != Rs,
11759 _("dest and source1 must be the same register"));
11760
11761 inst.instruction = THUMB_OP16 (inst.instruction);
11762 inst.instruction |= Rd;
11763 inst.instruction |= Rn << 3;
11764 }
11765 }
11766
11767 /* Similarly, but for instructions where the arithmetic operation is
11768 commutative, so we can allow either of them to be different from
11769 the destination operand in a 16-bit instruction. For instance, all
11770 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11771 accepted. */
11772 static void
11773 do_t_arit3c (void)
11774 {
11775 int Rd, Rs, Rn;
11776
11777 Rd = inst.operands[0].reg;
11778 Rs = (inst.operands[1].present
11779 ? inst.operands[1].reg /* Rd, Rs, foo */
11780 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11781 Rn = inst.operands[2].reg;
11782
11783 reject_bad_reg (Rd);
11784 reject_bad_reg (Rs);
11785 if (inst.operands[2].isreg)
11786 reject_bad_reg (Rn);
11787
11788 if (unified_syntax)
11789 {
11790 if (!inst.operands[2].isreg)
11791 {
11792 /* For an immediate, we always generate a 32-bit opcode;
11793 section relaxation will shrink it later if possible. */
11794 inst.instruction = THUMB_OP32 (inst.instruction);
11795 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11796 inst.instruction |= Rd << 8;
11797 inst.instruction |= Rs << 16;
11798 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11799 }
11800 else
11801 {
11802 bfd_boolean narrow;
11803
11804 /* See if we can do this with a 16-bit instruction. */
11805 if (THUMB_SETS_FLAGS (inst.instruction))
11806 narrow = !in_pred_block ();
11807 else
11808 narrow = in_pred_block ();
11809
11810 if (Rd > 7 || Rn > 7 || Rs > 7)
11811 narrow = FALSE;
11812 if (inst.operands[2].shifted)
11813 narrow = FALSE;
11814 if (inst.size_req == 4)
11815 narrow = FALSE;
11816
11817 if (narrow)
11818 {
11819 if (Rd == Rs)
11820 {
11821 inst.instruction = THUMB_OP16 (inst.instruction);
11822 inst.instruction |= Rd;
11823 inst.instruction |= Rn << 3;
11824 return;
11825 }
11826 if (Rd == Rn)
11827 {
11828 inst.instruction = THUMB_OP16 (inst.instruction);
11829 inst.instruction |= Rd;
11830 inst.instruction |= Rs << 3;
11831 return;
11832 }
11833 }
11834
11835 /* If we get here, it can't be done in 16 bits. */
11836 constraint (inst.operands[2].shifted
11837 && inst.operands[2].immisreg,
11838 _("shift must be constant"));
11839 inst.instruction = THUMB_OP32 (inst.instruction);
11840 inst.instruction |= Rd << 8;
11841 inst.instruction |= Rs << 16;
11842 encode_thumb32_shifted_operand (2);
11843 }
11844 }
11845 else
11846 {
11847 /* On its face this is a lie - the instruction does set the
11848 flags. However, the only supported mnemonic in this mode
11849 says it doesn't. */
11850 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11851
11852 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11853 _("unshifted register required"));
11854 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11855
11856 inst.instruction = THUMB_OP16 (inst.instruction);
11857 inst.instruction |= Rd;
11858
11859 if (Rd == Rs)
11860 inst.instruction |= Rn << 3;
11861 else if (Rd == Rn)
11862 inst.instruction |= Rs << 3;
11863 else
11864 constraint (1, _("dest must overlap one source register"));
11865 }
11866 }
11867
11868 static void
11869 do_t_bfc (void)
11870 {
11871 unsigned Rd;
11872 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11873 constraint (msb > 32, _("bit-field extends past end of register"));
11874 /* The instruction encoding stores the LSB and MSB,
11875 not the LSB and width. */
11876 Rd = inst.operands[0].reg;
11877 reject_bad_reg (Rd);
11878 inst.instruction |= Rd << 8;
11879 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11880 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11881 inst.instruction |= msb - 1;
11882 }
11883
11884 static void
11885 do_t_bfi (void)
11886 {
11887 int Rd, Rn;
11888 unsigned int msb;
11889
11890 Rd = inst.operands[0].reg;
11891 reject_bad_reg (Rd);
11892
11893 /* #0 in second position is alternative syntax for bfc, which is
11894 the same instruction but with REG_PC in the Rm field. */
11895 if (!inst.operands[1].isreg)
11896 Rn = REG_PC;
11897 else
11898 {
11899 Rn = inst.operands[1].reg;
11900 reject_bad_reg (Rn);
11901 }
11902
11903 msb = inst.operands[2].imm + inst.operands[3].imm;
11904 constraint (msb > 32, _("bit-field extends past end of register"));
11905 /* The instruction encoding stores the LSB and MSB,
11906 not the LSB and width. */
11907 inst.instruction |= Rd << 8;
11908 inst.instruction |= Rn << 16;
11909 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11910 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11911 inst.instruction |= msb - 1;
11912 }
11913
11914 static void
11915 do_t_bfx (void)
11916 {
11917 unsigned Rd, Rn;
11918
11919 Rd = inst.operands[0].reg;
11920 Rn = inst.operands[1].reg;
11921
11922 reject_bad_reg (Rd);
11923 reject_bad_reg (Rn);
11924
11925 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11926 _("bit-field extends past end of register"));
11927 inst.instruction |= Rd << 8;
11928 inst.instruction |= Rn << 16;
11929 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11930 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11931 inst.instruction |= inst.operands[3].imm - 1;
11932 }
11933
11934 /* ARM V5 Thumb BLX (argument parse)
11935 BLX <target_addr> which is BLX(1)
11936 BLX <Rm> which is BLX(2)
11937 Unfortunately, there are two different opcodes for this mnemonic.
11938 So, the insns[].value is not used, and the code here zaps values
11939 into inst.instruction.
11940
11941 ??? How to take advantage of the additional two bits of displacement
11942 available in Thumb32 mode? Need new relocation? */
11943
11944 static void
11945 do_t_blx (void)
11946 {
11947 set_pred_insn_type_last ();
11948
11949 if (inst.operands[0].isreg)
11950 {
11951 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11952 /* We have a register, so this is BLX(2). */
11953 inst.instruction |= inst.operands[0].reg << 3;
11954 }
11955 else
11956 {
11957 /* No register. This must be BLX(1). */
11958 inst.instruction = 0xf000e800;
11959 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11960 }
11961 }
11962
11963 static void
11964 do_t_branch (void)
11965 {
11966 int opcode;
11967 int cond;
11968 bfd_reloc_code_real_type reloc;
11969
11970 cond = inst.cond;
11971 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11972
11973 if (in_pred_block ())
11974 {
11975 /* Conditional branches inside IT blocks are encoded as unconditional
11976 branches. */
11977 cond = COND_ALWAYS;
11978 }
11979 else
11980 cond = inst.cond;
11981
11982 if (cond != COND_ALWAYS)
11983 opcode = T_MNEM_bcond;
11984 else
11985 opcode = inst.instruction;
11986
11987 if (unified_syntax
11988 && (inst.size_req == 4
11989 || (inst.size_req != 2
11990 && (inst.operands[0].hasreloc
11991 || inst.relocs[0].exp.X_op == O_constant))))
11992 {
11993 inst.instruction = THUMB_OP32(opcode);
11994 if (cond == COND_ALWAYS)
11995 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11996 else
11997 {
11998 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11999 _("selected architecture does not support "
12000 "wide conditional branch instruction"));
12001
12002 gas_assert (cond != 0xF);
12003 inst.instruction |= cond << 22;
12004 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
12005 }
12006 }
12007 else
12008 {
12009 inst.instruction = THUMB_OP16(opcode);
12010 if (cond == COND_ALWAYS)
12011 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
12012 else
12013 {
12014 inst.instruction |= cond << 8;
12015 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
12016 }
12017 /* Allow section relaxation. */
12018 if (unified_syntax && inst.size_req != 2)
12019 inst.relax = opcode;
12020 }
12021 inst.relocs[0].type = reloc;
12022 inst.relocs[0].pc_rel = 1;
12023 }
12024
12025 /* Actually do the work for Thumb state bkpt and hlt. The only difference
12026 between the two is the maximum immediate allowed - which is passed in
12027 RANGE. */
12028 static void
12029 do_t_bkpt_hlt1 (int range)
12030 {
12031 constraint (inst.cond != COND_ALWAYS,
12032 _("instruction is always unconditional"));
12033 if (inst.operands[0].present)
12034 {
12035 constraint (inst.operands[0].imm > range,
12036 _("immediate value out of range"));
12037 inst.instruction |= inst.operands[0].imm;
12038 }
12039
12040 set_pred_insn_type (NEUTRAL_IT_INSN);
12041 }
12042
12043 static void
12044 do_t_hlt (void)
12045 {
12046 do_t_bkpt_hlt1 (63);
12047 }
12048
12049 static void
12050 do_t_bkpt (void)
12051 {
12052 do_t_bkpt_hlt1 (255);
12053 }
12054
12055 static void
12056 do_t_branch23 (void)
12057 {
12058 set_pred_insn_type_last ();
12059 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
12060
12061 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
12062 this file. We used to simply ignore the PLT reloc type here --
12063 the branch encoding is now needed to deal with TLSCALL relocs.
12064 So if we see a PLT reloc now, put it back to how it used to be to
12065 keep the preexisting behaviour. */
12066 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
12067 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
12068
12069 #if defined(OBJ_COFF)
12070 /* If the destination of the branch is a defined symbol which does not have
12071 the THUMB_FUNC attribute, then we must be calling a function which has
12072 the (interfacearm) attribute. We look for the Thumb entry point to that
12073 function and change the branch to refer to that function instead. */
12074 if ( inst.relocs[0].exp.X_op == O_symbol
12075 && inst.relocs[0].exp.X_add_symbol != NULL
12076 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
12077 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
12078 inst.relocs[0].exp.X_add_symbol
12079 = find_real_start (inst.relocs[0].exp.X_add_symbol);
12080 #endif
12081 }
12082
12083 static void
12084 do_t_bx (void)
12085 {
12086 set_pred_insn_type_last ();
12087 inst.instruction |= inst.operands[0].reg << 3;
12088 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
12089 should cause the alignment to be checked once it is known. This is
12090 because BX PC only works if the instruction is word aligned. */
12091 }
12092
12093 static void
12094 do_t_bxj (void)
12095 {
12096 int Rm;
12097
12098 set_pred_insn_type_last ();
12099 Rm = inst.operands[0].reg;
12100 reject_bad_reg (Rm);
12101 inst.instruction |= Rm << 16;
12102 }
12103
12104 static void
12105 do_t_clz (void)
12106 {
12107 unsigned Rd;
12108 unsigned Rm;
12109
12110 Rd = inst.operands[0].reg;
12111 Rm = inst.operands[1].reg;
12112
12113 reject_bad_reg (Rd);
12114 reject_bad_reg (Rm);
12115
12116 inst.instruction |= Rd << 8;
12117 inst.instruction |= Rm << 16;
12118 inst.instruction |= Rm;
12119 }
12120
12121 /* For the Armv8.1-M conditional instructions. */
12122 static void
12123 do_t_cond (void)
12124 {
12125 unsigned Rd, Rn, Rm;
12126 signed int cond;
12127
12128 constraint (inst.cond != COND_ALWAYS, BAD_COND);
12129
12130 Rd = inst.operands[0].reg;
12131 switch (inst.instruction)
12132 {
12133 case T_MNEM_csinc:
12134 case T_MNEM_csinv:
12135 case T_MNEM_csneg:
12136 case T_MNEM_csel:
12137 Rn = inst.operands[1].reg;
12138 Rm = inst.operands[2].reg;
12139 cond = inst.operands[3].imm;
12140 constraint (Rn == REG_SP, BAD_SP);
12141 constraint (Rm == REG_SP, BAD_SP);
12142 break;
12143
12144 case T_MNEM_cinc:
12145 case T_MNEM_cinv:
12146 case T_MNEM_cneg:
12147 Rn = inst.operands[1].reg;
12148 cond = inst.operands[2].imm;
12149 /* Invert the last bit to invert the cond. */
12150 cond = TOGGLE_BIT (cond, 0);
12151 constraint (Rn == REG_SP, BAD_SP);
12152 Rm = Rn;
12153 break;
12154
12155 case T_MNEM_csetm:
12156 case T_MNEM_cset:
12157 cond = inst.operands[1].imm;
12158 /* Invert the last bit to invert the cond. */
12159 cond = TOGGLE_BIT (cond, 0);
12160 Rn = REG_PC;
12161 Rm = REG_PC;
12162 break;
12163
12164 default: abort ();
12165 }
12166
12167 set_pred_insn_type (OUTSIDE_PRED_INSN);
12168 inst.instruction = THUMB_OP32 (inst.instruction);
12169 inst.instruction |= Rd << 8;
12170 inst.instruction |= Rn << 16;
12171 inst.instruction |= Rm;
12172 inst.instruction |= cond << 4;
12173 }
12174
12175 static void
12176 do_t_csdb (void)
12177 {
12178 set_pred_insn_type (OUTSIDE_PRED_INSN);
12179 }
12180
12181 static void
12182 do_t_cps (void)
12183 {
12184 set_pred_insn_type (OUTSIDE_PRED_INSN);
12185 inst.instruction |= inst.operands[0].imm;
12186 }
12187
12188 static void
12189 do_t_cpsi (void)
12190 {
12191 set_pred_insn_type (OUTSIDE_PRED_INSN);
12192 if (unified_syntax
12193 && (inst.operands[1].present || inst.size_req == 4)
12194 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
12195 {
12196 unsigned int imod = (inst.instruction & 0x0030) >> 4;
12197 inst.instruction = 0xf3af8000;
12198 inst.instruction |= imod << 9;
12199 inst.instruction |= inst.operands[0].imm << 5;
12200 if (inst.operands[1].present)
12201 inst.instruction |= 0x100 | inst.operands[1].imm;
12202 }
12203 else
12204 {
12205 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
12206 && (inst.operands[0].imm & 4),
12207 _("selected processor does not support 'A' form "
12208 "of this instruction"));
12209 constraint (inst.operands[1].present || inst.size_req == 4,
12210 _("Thumb does not support the 2-argument "
12211 "form of this instruction"));
12212 inst.instruction |= inst.operands[0].imm;
12213 }
12214 }
12215
12216 /* THUMB CPY instruction (argument parse). */
12217
12218 static void
12219 do_t_cpy (void)
12220 {
12221 if (inst.size_req == 4)
12222 {
12223 inst.instruction = THUMB_OP32 (T_MNEM_mov);
12224 inst.instruction |= inst.operands[0].reg << 8;
12225 inst.instruction |= inst.operands[1].reg;
12226 }
12227 else
12228 {
12229 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
12230 inst.instruction |= (inst.operands[0].reg & 0x7);
12231 inst.instruction |= inst.operands[1].reg << 3;
12232 }
12233 }
12234
12235 static void
12236 do_t_cbz (void)
12237 {
12238 set_pred_insn_type (OUTSIDE_PRED_INSN);
12239 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12240 inst.instruction |= inst.operands[0].reg;
12241 inst.relocs[0].pc_rel = 1;
12242 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
12243 }
12244
12245 static void
12246 do_t_dbg (void)
12247 {
12248 inst.instruction |= inst.operands[0].imm;
12249 }
12250
12251 static void
12252 do_t_div (void)
12253 {
12254 unsigned Rd, Rn, Rm;
12255
12256 Rd = inst.operands[0].reg;
12257 Rn = (inst.operands[1].present
12258 ? inst.operands[1].reg : Rd);
12259 Rm = inst.operands[2].reg;
12260
12261 reject_bad_reg (Rd);
12262 reject_bad_reg (Rn);
12263 reject_bad_reg (Rm);
12264
12265 inst.instruction |= Rd << 8;
12266 inst.instruction |= Rn << 16;
12267 inst.instruction |= Rm;
12268 }
12269
12270 static void
12271 do_t_hint (void)
12272 {
12273 if (unified_syntax && inst.size_req == 4)
12274 inst.instruction = THUMB_OP32 (inst.instruction);
12275 else
12276 inst.instruction = THUMB_OP16 (inst.instruction);
12277 }
12278
12279 static void
12280 do_t_it (void)
12281 {
12282 unsigned int cond = inst.operands[0].imm;
12283
12284 set_pred_insn_type (IT_INSN);
12285 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12286 now_pred.cc = cond;
12287 now_pred.warn_deprecated = FALSE;
12288 now_pred.type = SCALAR_PRED;
12289
12290 /* If the condition is a negative condition, invert the mask. */
12291 if ((cond & 0x1) == 0x0)
12292 {
12293 unsigned int mask = inst.instruction & 0x000f;
12294
12295 if ((mask & 0x7) == 0)
12296 {
12297 /* No conversion needed. */
12298 now_pred.block_length = 1;
12299 }
12300 else if ((mask & 0x3) == 0)
12301 {
12302 mask ^= 0x8;
12303 now_pred.block_length = 2;
12304 }
12305 else if ((mask & 0x1) == 0)
12306 {
12307 mask ^= 0xC;
12308 now_pred.block_length = 3;
12309 }
12310 else
12311 {
12312 mask ^= 0xE;
12313 now_pred.block_length = 4;
12314 }
12315
12316 inst.instruction &= 0xfff0;
12317 inst.instruction |= mask;
12318 }
12319
12320 inst.instruction |= cond << 4;
12321 }
12322
12323 /* Helper function used for both push/pop and ldm/stm. */
12324 static void
12325 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12326 bfd_boolean writeback)
12327 {
12328 bfd_boolean load, store;
12329
12330 gas_assert (base != -1 || !do_io);
12331 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12332 store = do_io && !load;
12333
12334 if (mask & (1 << 13))
12335 inst.error = _("SP not allowed in register list");
12336
12337 if (do_io && (mask & (1 << base)) != 0
12338 && writeback)
12339 inst.error = _("having the base register in the register list when "
12340 "using write back is UNPREDICTABLE");
12341
12342 if (load)
12343 {
12344 if (mask & (1 << 15))
12345 {
12346 if (mask & (1 << 14))
12347 inst.error = _("LR and PC should not both be in register list");
12348 else
12349 set_pred_insn_type_last ();
12350 }
12351 }
12352 else if (store)
12353 {
12354 if (mask & (1 << 15))
12355 inst.error = _("PC not allowed in register list");
12356 }
12357
12358 if (do_io && ((mask & (mask - 1)) == 0))
12359 {
12360 /* Single register transfers implemented as str/ldr. */
12361 if (writeback)
12362 {
12363 if (inst.instruction & (1 << 23))
12364 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12365 else
12366 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12367 }
12368 else
12369 {
12370 if (inst.instruction & (1 << 23))
12371 inst.instruction = 0x00800000; /* ia -> [base] */
12372 else
12373 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12374 }
12375
12376 inst.instruction |= 0xf8400000;
12377 if (load)
12378 inst.instruction |= 0x00100000;
12379
12380 mask = ffs (mask) - 1;
12381 mask <<= 12;
12382 }
12383 else if (writeback)
12384 inst.instruction |= WRITE_BACK;
12385
12386 inst.instruction |= mask;
12387 if (do_io)
12388 inst.instruction |= base << 16;
12389 }
12390
12391 static void
12392 do_t_ldmstm (void)
12393 {
12394 /* This really doesn't seem worth it. */
12395 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12396 _("expression too complex"));
12397 constraint (inst.operands[1].writeback,
12398 _("Thumb load/store multiple does not support {reglist}^"));
12399
12400 if (unified_syntax)
12401 {
12402 bfd_boolean narrow;
12403 unsigned mask;
12404
12405 narrow = FALSE;
12406 /* See if we can use a 16-bit instruction. */
12407 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12408 && inst.size_req != 4
12409 && !(inst.operands[1].imm & ~0xff))
12410 {
12411 mask = 1 << inst.operands[0].reg;
12412
12413 if (inst.operands[0].reg <= 7)
12414 {
12415 if (inst.instruction == T_MNEM_stmia
12416 ? inst.operands[0].writeback
12417 : (inst.operands[0].writeback
12418 == !(inst.operands[1].imm & mask)))
12419 {
12420 if (inst.instruction == T_MNEM_stmia
12421 && (inst.operands[1].imm & mask)
12422 && (inst.operands[1].imm & (mask - 1)))
12423 as_warn (_("value stored for r%d is UNKNOWN"),
12424 inst.operands[0].reg);
12425
12426 inst.instruction = THUMB_OP16 (inst.instruction);
12427 inst.instruction |= inst.operands[0].reg << 8;
12428 inst.instruction |= inst.operands[1].imm;
12429 narrow = TRUE;
12430 }
12431 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12432 {
12433 /* This means 1 register in reg list one of 3 situations:
12434 1. Instruction is stmia, but without writeback.
12435 2. lmdia without writeback, but with Rn not in
12436 reglist.
12437 3. ldmia with writeback, but with Rn in reglist.
12438 Case 3 is UNPREDICTABLE behaviour, so we handle
12439 case 1 and 2 which can be converted into a 16-bit
12440 str or ldr. The SP cases are handled below. */
12441 unsigned long opcode;
12442 /* First, record an error for Case 3. */
12443 if (inst.operands[1].imm & mask
12444 && inst.operands[0].writeback)
12445 inst.error =
12446 _("having the base register in the register list when "
12447 "using write back is UNPREDICTABLE");
12448
12449 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12450 : T_MNEM_ldr);
12451 inst.instruction = THUMB_OP16 (opcode);
12452 inst.instruction |= inst.operands[0].reg << 3;
12453 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12454 narrow = TRUE;
12455 }
12456 }
12457 else if (inst.operands[0] .reg == REG_SP)
12458 {
12459 if (inst.operands[0].writeback)
12460 {
12461 inst.instruction =
12462 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12463 ? T_MNEM_push : T_MNEM_pop);
12464 inst.instruction |= inst.operands[1].imm;
12465 narrow = TRUE;
12466 }
12467 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12468 {
12469 inst.instruction =
12470 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12471 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12472 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12473 narrow = TRUE;
12474 }
12475 }
12476 }
12477
12478 if (!narrow)
12479 {
12480 if (inst.instruction < 0xffff)
12481 inst.instruction = THUMB_OP32 (inst.instruction);
12482
12483 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12484 inst.operands[1].imm,
12485 inst.operands[0].writeback);
12486 }
12487 }
12488 else
12489 {
12490 constraint (inst.operands[0].reg > 7
12491 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12492 constraint (inst.instruction != T_MNEM_ldmia
12493 && inst.instruction != T_MNEM_stmia,
12494 _("Thumb-2 instruction only valid in unified syntax"));
12495 if (inst.instruction == T_MNEM_stmia)
12496 {
12497 if (!inst.operands[0].writeback)
12498 as_warn (_("this instruction will write back the base register"));
12499 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12500 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12501 as_warn (_("value stored for r%d is UNKNOWN"),
12502 inst.operands[0].reg);
12503 }
12504 else
12505 {
12506 if (!inst.operands[0].writeback
12507 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12508 as_warn (_("this instruction will write back the base register"));
12509 else if (inst.operands[0].writeback
12510 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12511 as_warn (_("this instruction will not write back the base register"));
12512 }
12513
12514 inst.instruction = THUMB_OP16 (inst.instruction);
12515 inst.instruction |= inst.operands[0].reg << 8;
12516 inst.instruction |= inst.operands[1].imm;
12517 }
12518 }
12519
12520 static void
12521 do_t_ldrex (void)
12522 {
12523 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12524 || inst.operands[1].postind || inst.operands[1].writeback
12525 || inst.operands[1].immisreg || inst.operands[1].shifted
12526 || inst.operands[1].negative,
12527 BAD_ADDR_MODE);
12528
12529 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12530
12531 inst.instruction |= inst.operands[0].reg << 12;
12532 inst.instruction |= inst.operands[1].reg << 16;
12533 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12534 }
12535
12536 static void
12537 do_t_ldrexd (void)
12538 {
12539 if (!inst.operands[1].present)
12540 {
12541 constraint (inst.operands[0].reg == REG_LR,
12542 _("r14 not allowed as first register "
12543 "when second register is omitted"));
12544 inst.operands[1].reg = inst.operands[0].reg + 1;
12545 }
12546 constraint (inst.operands[0].reg == inst.operands[1].reg,
12547 BAD_OVERLAP);
12548
12549 inst.instruction |= inst.operands[0].reg << 12;
12550 inst.instruction |= inst.operands[1].reg << 8;
12551 inst.instruction |= inst.operands[2].reg << 16;
12552 }
12553
12554 static void
12555 do_t_ldst (void)
12556 {
12557 unsigned long opcode;
12558 int Rn;
12559
12560 if (inst.operands[0].isreg
12561 && !inst.operands[0].preind
12562 && inst.operands[0].reg == REG_PC)
12563 set_pred_insn_type_last ();
12564
12565 opcode = inst.instruction;
12566 if (unified_syntax)
12567 {
12568 if (!inst.operands[1].isreg)
12569 {
12570 if (opcode <= 0xffff)
12571 inst.instruction = THUMB_OP32 (opcode);
12572 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12573 return;
12574 }
12575 if (inst.operands[1].isreg
12576 && !inst.operands[1].writeback
12577 && !inst.operands[1].shifted && !inst.operands[1].postind
12578 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12579 && opcode <= 0xffff
12580 && inst.size_req != 4)
12581 {
12582 /* Insn may have a 16-bit form. */
12583 Rn = inst.operands[1].reg;
12584 if (inst.operands[1].immisreg)
12585 {
12586 inst.instruction = THUMB_OP16 (opcode);
12587 /* [Rn, Rik] */
12588 if (Rn <= 7 && inst.operands[1].imm <= 7)
12589 goto op16;
12590 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12591 reject_bad_reg (inst.operands[1].imm);
12592 }
12593 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12594 && opcode != T_MNEM_ldrsb)
12595 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12596 || (Rn == REG_SP && opcode == T_MNEM_str))
12597 {
12598 /* [Rn, #const] */
12599 if (Rn > 7)
12600 {
12601 if (Rn == REG_PC)
12602 {
12603 if (inst.relocs[0].pc_rel)
12604 opcode = T_MNEM_ldr_pc2;
12605 else
12606 opcode = T_MNEM_ldr_pc;
12607 }
12608 else
12609 {
12610 if (opcode == T_MNEM_ldr)
12611 opcode = T_MNEM_ldr_sp;
12612 else
12613 opcode = T_MNEM_str_sp;
12614 }
12615 inst.instruction = inst.operands[0].reg << 8;
12616 }
12617 else
12618 {
12619 inst.instruction = inst.operands[0].reg;
12620 inst.instruction |= inst.operands[1].reg << 3;
12621 }
12622 inst.instruction |= THUMB_OP16 (opcode);
12623 if (inst.size_req == 2)
12624 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12625 else
12626 inst.relax = opcode;
12627 return;
12628 }
12629 }
12630 /* Definitely a 32-bit variant. */
12631
12632 /* Warning for Erratum 752419. */
12633 if (opcode == T_MNEM_ldr
12634 && inst.operands[0].reg == REG_SP
12635 && inst.operands[1].writeback == 1
12636 && !inst.operands[1].immisreg)
12637 {
12638 if (no_cpu_selected ()
12639 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12640 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12641 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12642 as_warn (_("This instruction may be unpredictable "
12643 "if executed on M-profile cores "
12644 "with interrupts enabled."));
12645 }
12646
12647 /* Do some validations regarding addressing modes. */
12648 if (inst.operands[1].immisreg)
12649 reject_bad_reg (inst.operands[1].imm);
12650
12651 constraint (inst.operands[1].writeback == 1
12652 && inst.operands[0].reg == inst.operands[1].reg,
12653 BAD_OVERLAP);
12654
12655 inst.instruction = THUMB_OP32 (opcode);
12656 inst.instruction |= inst.operands[0].reg << 12;
12657 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12658 check_ldr_r15_aligned ();
12659 return;
12660 }
12661
12662 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12663
12664 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12665 {
12666 /* Only [Rn,Rm] is acceptable. */
12667 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12668 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12669 || inst.operands[1].postind || inst.operands[1].shifted
12670 || inst.operands[1].negative,
12671 _("Thumb does not support this addressing mode"));
12672 inst.instruction = THUMB_OP16 (inst.instruction);
12673 goto op16;
12674 }
12675
12676 inst.instruction = THUMB_OP16 (inst.instruction);
12677 if (!inst.operands[1].isreg)
12678 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12679 return;
12680
12681 constraint (!inst.operands[1].preind
12682 || inst.operands[1].shifted
12683 || inst.operands[1].writeback,
12684 _("Thumb does not support this addressing mode"));
12685 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12686 {
12687 constraint (inst.instruction & 0x0600,
12688 _("byte or halfword not valid for base register"));
12689 constraint (inst.operands[1].reg == REG_PC
12690 && !(inst.instruction & THUMB_LOAD_BIT),
12691 _("r15 based store not allowed"));
12692 constraint (inst.operands[1].immisreg,
12693 _("invalid base register for register offset"));
12694
12695 if (inst.operands[1].reg == REG_PC)
12696 inst.instruction = T_OPCODE_LDR_PC;
12697 else if (inst.instruction & THUMB_LOAD_BIT)
12698 inst.instruction = T_OPCODE_LDR_SP;
12699 else
12700 inst.instruction = T_OPCODE_STR_SP;
12701
12702 inst.instruction |= inst.operands[0].reg << 8;
12703 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12704 return;
12705 }
12706
12707 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12708 if (!inst.operands[1].immisreg)
12709 {
12710 /* Immediate offset. */
12711 inst.instruction |= inst.operands[0].reg;
12712 inst.instruction |= inst.operands[1].reg << 3;
12713 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12714 return;
12715 }
12716
12717 /* Register offset. */
12718 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12719 constraint (inst.operands[1].negative,
12720 _("Thumb does not support this addressing mode"));
12721
12722 op16:
12723 switch (inst.instruction)
12724 {
12725 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12726 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12727 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12728 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12729 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12730 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12731 case 0x5600 /* ldrsb */:
12732 case 0x5e00 /* ldrsh */: break;
12733 default: abort ();
12734 }
12735
12736 inst.instruction |= inst.operands[0].reg;
12737 inst.instruction |= inst.operands[1].reg << 3;
12738 inst.instruction |= inst.operands[1].imm << 6;
12739 }
12740
12741 static void
12742 do_t_ldstd (void)
12743 {
12744 if (!inst.operands[1].present)
12745 {
12746 inst.operands[1].reg = inst.operands[0].reg + 1;
12747 constraint (inst.operands[0].reg == REG_LR,
12748 _("r14 not allowed here"));
12749 constraint (inst.operands[0].reg == REG_R12,
12750 _("r12 not allowed here"));
12751 }
12752
12753 if (inst.operands[2].writeback
12754 && (inst.operands[0].reg == inst.operands[2].reg
12755 || inst.operands[1].reg == inst.operands[2].reg))
12756 as_warn (_("base register written back, and overlaps "
12757 "one of transfer registers"));
12758
12759 inst.instruction |= inst.operands[0].reg << 12;
12760 inst.instruction |= inst.operands[1].reg << 8;
12761 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12762 }
12763
12764 static void
12765 do_t_ldstt (void)
12766 {
12767 inst.instruction |= inst.operands[0].reg << 12;
12768 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12769 }
12770
12771 static void
12772 do_t_mla (void)
12773 {
12774 unsigned Rd, Rn, Rm, Ra;
12775
12776 Rd = inst.operands[0].reg;
12777 Rn = inst.operands[1].reg;
12778 Rm = inst.operands[2].reg;
12779 Ra = inst.operands[3].reg;
12780
12781 reject_bad_reg (Rd);
12782 reject_bad_reg (Rn);
12783 reject_bad_reg (Rm);
12784 reject_bad_reg (Ra);
12785
12786 inst.instruction |= Rd << 8;
12787 inst.instruction |= Rn << 16;
12788 inst.instruction |= Rm;
12789 inst.instruction |= Ra << 12;
12790 }
12791
12792 static void
12793 do_t_mlal (void)
12794 {
12795 unsigned RdLo, RdHi, Rn, Rm;
12796
12797 RdLo = inst.operands[0].reg;
12798 RdHi = inst.operands[1].reg;
12799 Rn = inst.operands[2].reg;
12800 Rm = inst.operands[3].reg;
12801
12802 reject_bad_reg (RdLo);
12803 reject_bad_reg (RdHi);
12804 reject_bad_reg (Rn);
12805 reject_bad_reg (Rm);
12806
12807 inst.instruction |= RdLo << 12;
12808 inst.instruction |= RdHi << 8;
12809 inst.instruction |= Rn << 16;
12810 inst.instruction |= Rm;
12811 }
12812
12813 static void
12814 do_t_mov_cmp (void)
12815 {
12816 unsigned Rn, Rm;
12817
12818 Rn = inst.operands[0].reg;
12819 Rm = inst.operands[1].reg;
12820
12821 if (Rn == REG_PC)
12822 set_pred_insn_type_last ();
12823
12824 if (unified_syntax)
12825 {
12826 int r0off = (inst.instruction == T_MNEM_mov
12827 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12828 unsigned long opcode;
12829 bfd_boolean narrow;
12830 bfd_boolean low_regs;
12831
12832 low_regs = (Rn <= 7 && Rm <= 7);
12833 opcode = inst.instruction;
12834 if (in_pred_block ())
12835 narrow = opcode != T_MNEM_movs;
12836 else
12837 narrow = opcode != T_MNEM_movs || low_regs;
12838 if (inst.size_req == 4
12839 || inst.operands[1].shifted)
12840 narrow = FALSE;
12841
12842 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12843 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12844 && !inst.operands[1].shifted
12845 && Rn == REG_PC
12846 && Rm == REG_LR)
12847 {
12848 inst.instruction = T2_SUBS_PC_LR;
12849 return;
12850 }
12851
12852 if (opcode == T_MNEM_cmp)
12853 {
12854 constraint (Rn == REG_PC, BAD_PC);
12855 if (narrow)
12856 {
12857 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12858 but valid. */
12859 warn_deprecated_sp (Rm);
12860 /* R15 was documented as a valid choice for Rm in ARMv6,
12861 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12862 tools reject R15, so we do too. */
12863 constraint (Rm == REG_PC, BAD_PC);
12864 }
12865 else
12866 reject_bad_reg (Rm);
12867 }
12868 else if (opcode == T_MNEM_mov
12869 || opcode == T_MNEM_movs)
12870 {
12871 if (inst.operands[1].isreg)
12872 {
12873 if (opcode == T_MNEM_movs)
12874 {
12875 reject_bad_reg (Rn);
12876 reject_bad_reg (Rm);
12877 }
12878 else if (narrow)
12879 {
12880 /* This is mov.n. */
12881 if ((Rn == REG_SP || Rn == REG_PC)
12882 && (Rm == REG_SP || Rm == REG_PC))
12883 {
12884 as_tsktsk (_("Use of r%u as a source register is "
12885 "deprecated when r%u is the destination "
12886 "register."), Rm, Rn);
12887 }
12888 }
12889 else
12890 {
12891 /* This is mov.w. */
12892 constraint (Rn == REG_PC, BAD_PC);
12893 constraint (Rm == REG_PC, BAD_PC);
12894 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12895 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12896 }
12897 }
12898 else
12899 reject_bad_reg (Rn);
12900 }
12901
12902 if (!inst.operands[1].isreg)
12903 {
12904 /* Immediate operand. */
12905 if (!in_pred_block () && opcode == T_MNEM_mov)
12906 narrow = 0;
12907 if (low_regs && narrow)
12908 {
12909 inst.instruction = THUMB_OP16 (opcode);
12910 inst.instruction |= Rn << 8;
12911 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12912 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12913 {
12914 if (inst.size_req == 2)
12915 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12916 else
12917 inst.relax = opcode;
12918 }
12919 }
12920 else
12921 {
12922 constraint ((inst.relocs[0].type
12923 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12924 && (inst.relocs[0].type
12925 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12926 THUMB1_RELOC_ONLY);
12927
12928 inst.instruction = THUMB_OP32 (inst.instruction);
12929 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12930 inst.instruction |= Rn << r0off;
12931 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12932 }
12933 }
12934 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12935 && (inst.instruction == T_MNEM_mov
12936 || inst.instruction == T_MNEM_movs))
12937 {
12938 /* Register shifts are encoded as separate shift instructions. */
12939 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12940
12941 if (in_pred_block ())
12942 narrow = !flags;
12943 else
12944 narrow = flags;
12945
12946 if (inst.size_req == 4)
12947 narrow = FALSE;
12948
12949 if (!low_regs || inst.operands[1].imm > 7)
12950 narrow = FALSE;
12951
12952 if (Rn != Rm)
12953 narrow = FALSE;
12954
12955 switch (inst.operands[1].shift_kind)
12956 {
12957 case SHIFT_LSL:
12958 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12959 break;
12960 case SHIFT_ASR:
12961 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12962 break;
12963 case SHIFT_LSR:
12964 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12965 break;
12966 case SHIFT_ROR:
12967 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12968 break;
12969 default:
12970 abort ();
12971 }
12972
12973 inst.instruction = opcode;
12974 if (narrow)
12975 {
12976 inst.instruction |= Rn;
12977 inst.instruction |= inst.operands[1].imm << 3;
12978 }
12979 else
12980 {
12981 if (flags)
12982 inst.instruction |= CONDS_BIT;
12983
12984 inst.instruction |= Rn << 8;
12985 inst.instruction |= Rm << 16;
12986 inst.instruction |= inst.operands[1].imm;
12987 }
12988 }
12989 else if (!narrow)
12990 {
12991 /* Some mov with immediate shift have narrow variants.
12992 Register shifts are handled above. */
12993 if (low_regs && inst.operands[1].shifted
12994 && (inst.instruction == T_MNEM_mov
12995 || inst.instruction == T_MNEM_movs))
12996 {
12997 if (in_pred_block ())
12998 narrow = (inst.instruction == T_MNEM_mov);
12999 else
13000 narrow = (inst.instruction == T_MNEM_movs);
13001 }
13002
13003 if (narrow)
13004 {
13005 switch (inst.operands[1].shift_kind)
13006 {
13007 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13008 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13009 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13010 default: narrow = FALSE; break;
13011 }
13012 }
13013
13014 if (narrow)
13015 {
13016 inst.instruction |= Rn;
13017 inst.instruction |= Rm << 3;
13018 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13019 }
13020 else
13021 {
13022 inst.instruction = THUMB_OP32 (inst.instruction);
13023 inst.instruction |= Rn << r0off;
13024 encode_thumb32_shifted_operand (1);
13025 }
13026 }
13027 else
13028 switch (inst.instruction)
13029 {
13030 case T_MNEM_mov:
13031 /* In v4t or v5t a move of two lowregs produces unpredictable
13032 results. Don't allow this. */
13033 if (low_regs)
13034 {
13035 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
13036 "MOV Rd, Rs with two low registers is not "
13037 "permitted on this architecture");
13038 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
13039 arm_ext_v6);
13040 }
13041
13042 inst.instruction = T_OPCODE_MOV_HR;
13043 inst.instruction |= (Rn & 0x8) << 4;
13044 inst.instruction |= (Rn & 0x7);
13045 inst.instruction |= Rm << 3;
13046 break;
13047
13048 case T_MNEM_movs:
13049 /* We know we have low registers at this point.
13050 Generate LSLS Rd, Rs, #0. */
13051 inst.instruction = T_OPCODE_LSL_I;
13052 inst.instruction |= Rn;
13053 inst.instruction |= Rm << 3;
13054 break;
13055
13056 case T_MNEM_cmp:
13057 if (low_regs)
13058 {
13059 inst.instruction = T_OPCODE_CMP_LR;
13060 inst.instruction |= Rn;
13061 inst.instruction |= Rm << 3;
13062 }
13063 else
13064 {
13065 inst.instruction = T_OPCODE_CMP_HR;
13066 inst.instruction |= (Rn & 0x8) << 4;
13067 inst.instruction |= (Rn & 0x7);
13068 inst.instruction |= Rm << 3;
13069 }
13070 break;
13071 }
13072 return;
13073 }
13074
13075 inst.instruction = THUMB_OP16 (inst.instruction);
13076
13077 /* PR 10443: Do not silently ignore shifted operands. */
13078 constraint (inst.operands[1].shifted,
13079 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
13080
13081 if (inst.operands[1].isreg)
13082 {
13083 if (Rn < 8 && Rm < 8)
13084 {
13085 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
13086 since a MOV instruction produces unpredictable results. */
13087 if (inst.instruction == T_OPCODE_MOV_I8)
13088 inst.instruction = T_OPCODE_ADD_I3;
13089 else
13090 inst.instruction = T_OPCODE_CMP_LR;
13091
13092 inst.instruction |= Rn;
13093 inst.instruction |= Rm << 3;
13094 }
13095 else
13096 {
13097 if (inst.instruction == T_OPCODE_MOV_I8)
13098 inst.instruction = T_OPCODE_MOV_HR;
13099 else
13100 inst.instruction = T_OPCODE_CMP_HR;
13101 do_t_cpy ();
13102 }
13103 }
13104 else
13105 {
13106 constraint (Rn > 7,
13107 _("only lo regs allowed with immediate"));
13108 inst.instruction |= Rn << 8;
13109 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
13110 }
13111 }
13112
13113 static void
13114 do_t_mov16 (void)
13115 {
13116 unsigned Rd;
13117 bfd_vma imm;
13118 bfd_boolean top;
13119
13120 top = (inst.instruction & 0x00800000) != 0;
13121 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
13122 {
13123 constraint (top, _(":lower16: not allowed in this instruction"));
13124 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
13125 }
13126 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
13127 {
13128 constraint (!top, _(":upper16: not allowed in this instruction"));
13129 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
13130 }
13131
13132 Rd = inst.operands[0].reg;
13133 reject_bad_reg (Rd);
13134
13135 inst.instruction |= Rd << 8;
13136 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
13137 {
13138 imm = inst.relocs[0].exp.X_add_number;
13139 inst.instruction |= (imm & 0xf000) << 4;
13140 inst.instruction |= (imm & 0x0800) << 15;
13141 inst.instruction |= (imm & 0x0700) << 4;
13142 inst.instruction |= (imm & 0x00ff);
13143 }
13144 }
13145
13146 static void
13147 do_t_mvn_tst (void)
13148 {
13149 unsigned Rn, Rm;
13150
13151 Rn = inst.operands[0].reg;
13152 Rm = inst.operands[1].reg;
13153
13154 if (inst.instruction == T_MNEM_cmp
13155 || inst.instruction == T_MNEM_cmn)
13156 constraint (Rn == REG_PC, BAD_PC);
13157 else
13158 reject_bad_reg (Rn);
13159 reject_bad_reg (Rm);
13160
13161 if (unified_syntax)
13162 {
13163 int r0off = (inst.instruction == T_MNEM_mvn
13164 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
13165 bfd_boolean narrow;
13166
13167 if (inst.size_req == 4
13168 || inst.instruction > 0xffff
13169 || inst.operands[1].shifted
13170 || Rn > 7 || Rm > 7)
13171 narrow = FALSE;
13172 else if (inst.instruction == T_MNEM_cmn
13173 || inst.instruction == T_MNEM_tst)
13174 narrow = TRUE;
13175 else if (THUMB_SETS_FLAGS (inst.instruction))
13176 narrow = !in_pred_block ();
13177 else
13178 narrow = in_pred_block ();
13179
13180 if (!inst.operands[1].isreg)
13181 {
13182 /* For an immediate, we always generate a 32-bit opcode;
13183 section relaxation will shrink it later if possible. */
13184 if (inst.instruction < 0xffff)
13185 inst.instruction = THUMB_OP32 (inst.instruction);
13186 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13187 inst.instruction |= Rn << r0off;
13188 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13189 }
13190 else
13191 {
13192 /* See if we can do this with a 16-bit instruction. */
13193 if (narrow)
13194 {
13195 inst.instruction = THUMB_OP16 (inst.instruction);
13196 inst.instruction |= Rn;
13197 inst.instruction |= Rm << 3;
13198 }
13199 else
13200 {
13201 constraint (inst.operands[1].shifted
13202 && inst.operands[1].immisreg,
13203 _("shift must be constant"));
13204 if (inst.instruction < 0xffff)
13205 inst.instruction = THUMB_OP32 (inst.instruction);
13206 inst.instruction |= Rn << r0off;
13207 encode_thumb32_shifted_operand (1);
13208 }
13209 }
13210 }
13211 else
13212 {
13213 constraint (inst.instruction > 0xffff
13214 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
13215 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
13216 _("unshifted register required"));
13217 constraint (Rn > 7 || Rm > 7,
13218 BAD_HIREG);
13219
13220 inst.instruction = THUMB_OP16 (inst.instruction);
13221 inst.instruction |= Rn;
13222 inst.instruction |= Rm << 3;
13223 }
13224 }
13225
13226 static void
13227 do_t_mrs (void)
13228 {
13229 unsigned Rd;
13230
13231 if (do_vfp_nsyn_mrs () == SUCCESS)
13232 return;
13233
13234 Rd = inst.operands[0].reg;
13235 reject_bad_reg (Rd);
13236 inst.instruction |= Rd << 8;
13237
13238 if (inst.operands[1].isreg)
13239 {
13240 unsigned br = inst.operands[1].reg;
13241 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13242 as_bad (_("bad register for mrs"));
13243
13244 inst.instruction |= br & (0xf << 16);
13245 inst.instruction |= (br & 0x300) >> 4;
13246 inst.instruction |= (br & SPSR_BIT) >> 2;
13247 }
13248 else
13249 {
13250 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13251
13252 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13253 {
13254 /* PR gas/12698: The constraint is only applied for m_profile.
13255 If the user has specified -march=all, we want to ignore it as
13256 we are building for any CPU type, including non-m variants. */
13257 bfd_boolean m_profile =
13258 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13259 constraint ((flags != 0) && m_profile, _("selected processor does "
13260 "not support requested special purpose register"));
13261 }
13262 else
13263 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13264 devices). */
13265 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13266 _("'APSR', 'CPSR' or 'SPSR' expected"));
13267
13268 inst.instruction |= (flags & SPSR_BIT) >> 2;
13269 inst.instruction |= inst.operands[1].imm & 0xff;
13270 inst.instruction |= 0xf0000;
13271 }
13272 }
13273
13274 static void
13275 do_t_msr (void)
13276 {
13277 int flags;
13278 unsigned Rn;
13279
13280 if (do_vfp_nsyn_msr () == SUCCESS)
13281 return;
13282
13283 constraint (!inst.operands[1].isreg,
13284 _("Thumb encoding does not support an immediate here"));
13285
13286 if (inst.operands[0].isreg)
13287 flags = (int)(inst.operands[0].reg);
13288 else
13289 flags = inst.operands[0].imm;
13290
13291 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13292 {
13293 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13294
13295 /* PR gas/12698: The constraint is only applied for m_profile.
13296 If the user has specified -march=all, we want to ignore it as
13297 we are building for any CPU type, including non-m variants. */
13298 bfd_boolean m_profile =
13299 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13300 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13301 && (bits & ~(PSR_s | PSR_f)) != 0)
13302 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13303 && bits != PSR_f)) && m_profile,
13304 _("selected processor does not support requested special "
13305 "purpose register"));
13306 }
13307 else
13308 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13309 "requested special purpose register"));
13310
13311 Rn = inst.operands[1].reg;
13312 reject_bad_reg (Rn);
13313
13314 inst.instruction |= (flags & SPSR_BIT) >> 2;
13315 inst.instruction |= (flags & 0xf0000) >> 8;
13316 inst.instruction |= (flags & 0x300) >> 4;
13317 inst.instruction |= (flags & 0xff);
13318 inst.instruction |= Rn << 16;
13319 }
13320
13321 static void
13322 do_t_mul (void)
13323 {
13324 bfd_boolean narrow;
13325 unsigned Rd, Rn, Rm;
13326
13327 if (!inst.operands[2].present)
13328 inst.operands[2].reg = inst.operands[0].reg;
13329
13330 Rd = inst.operands[0].reg;
13331 Rn = inst.operands[1].reg;
13332 Rm = inst.operands[2].reg;
13333
13334 if (unified_syntax)
13335 {
13336 if (inst.size_req == 4
13337 || (Rd != Rn
13338 && Rd != Rm)
13339 || Rn > 7
13340 || Rm > 7)
13341 narrow = FALSE;
13342 else if (inst.instruction == T_MNEM_muls)
13343 narrow = !in_pred_block ();
13344 else
13345 narrow = in_pred_block ();
13346 }
13347 else
13348 {
13349 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13350 constraint (Rn > 7 || Rm > 7,
13351 BAD_HIREG);
13352 narrow = TRUE;
13353 }
13354
13355 if (narrow)
13356 {
13357 /* 16-bit MULS/Conditional MUL. */
13358 inst.instruction = THUMB_OP16 (inst.instruction);
13359 inst.instruction |= Rd;
13360
13361 if (Rd == Rn)
13362 inst.instruction |= Rm << 3;
13363 else if (Rd == Rm)
13364 inst.instruction |= Rn << 3;
13365 else
13366 constraint (1, _("dest must overlap one source register"));
13367 }
13368 else
13369 {
13370 constraint (inst.instruction != T_MNEM_mul,
13371 _("Thumb-2 MUL must not set flags"));
13372 /* 32-bit MUL. */
13373 inst.instruction = THUMB_OP32 (inst.instruction);
13374 inst.instruction |= Rd << 8;
13375 inst.instruction |= Rn << 16;
13376 inst.instruction |= Rm << 0;
13377
13378 reject_bad_reg (Rd);
13379 reject_bad_reg (Rn);
13380 reject_bad_reg (Rm);
13381 }
13382 }
13383
13384 static void
13385 do_t_mull (void)
13386 {
13387 unsigned RdLo, RdHi, Rn, Rm;
13388
13389 RdLo = inst.operands[0].reg;
13390 RdHi = inst.operands[1].reg;
13391 Rn = inst.operands[2].reg;
13392 Rm = inst.operands[3].reg;
13393
13394 reject_bad_reg (RdLo);
13395 reject_bad_reg (RdHi);
13396 reject_bad_reg (Rn);
13397 reject_bad_reg (Rm);
13398
13399 inst.instruction |= RdLo << 12;
13400 inst.instruction |= RdHi << 8;
13401 inst.instruction |= Rn << 16;
13402 inst.instruction |= Rm;
13403
13404 if (RdLo == RdHi)
13405 as_tsktsk (_("rdhi and rdlo must be different"));
13406 }
13407
13408 static void
13409 do_t_nop (void)
13410 {
13411 set_pred_insn_type (NEUTRAL_IT_INSN);
13412
13413 if (unified_syntax)
13414 {
13415 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13416 {
13417 inst.instruction = THUMB_OP32 (inst.instruction);
13418 inst.instruction |= inst.operands[0].imm;
13419 }
13420 else
13421 {
13422 /* PR9722: Check for Thumb2 availability before
13423 generating a thumb2 nop instruction. */
13424 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13425 {
13426 inst.instruction = THUMB_OP16 (inst.instruction);
13427 inst.instruction |= inst.operands[0].imm << 4;
13428 }
13429 else
13430 inst.instruction = 0x46c0;
13431 }
13432 }
13433 else
13434 {
13435 constraint (inst.operands[0].present,
13436 _("Thumb does not support NOP with hints"));
13437 inst.instruction = 0x46c0;
13438 }
13439 }
13440
13441 static void
13442 do_t_neg (void)
13443 {
13444 if (unified_syntax)
13445 {
13446 bfd_boolean narrow;
13447
13448 if (THUMB_SETS_FLAGS (inst.instruction))
13449 narrow = !in_pred_block ();
13450 else
13451 narrow = in_pred_block ();
13452 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13453 narrow = FALSE;
13454 if (inst.size_req == 4)
13455 narrow = FALSE;
13456
13457 if (!narrow)
13458 {
13459 inst.instruction = THUMB_OP32 (inst.instruction);
13460 inst.instruction |= inst.operands[0].reg << 8;
13461 inst.instruction |= inst.operands[1].reg << 16;
13462 }
13463 else
13464 {
13465 inst.instruction = THUMB_OP16 (inst.instruction);
13466 inst.instruction |= inst.operands[0].reg;
13467 inst.instruction |= inst.operands[1].reg << 3;
13468 }
13469 }
13470 else
13471 {
13472 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13473 BAD_HIREG);
13474 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13475
13476 inst.instruction = THUMB_OP16 (inst.instruction);
13477 inst.instruction |= inst.operands[0].reg;
13478 inst.instruction |= inst.operands[1].reg << 3;
13479 }
13480 }
13481
13482 static void
13483 do_t_orn (void)
13484 {
13485 unsigned Rd, Rn;
13486
13487 Rd = inst.operands[0].reg;
13488 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13489
13490 reject_bad_reg (Rd);
13491 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13492 reject_bad_reg (Rn);
13493
13494 inst.instruction |= Rd << 8;
13495 inst.instruction |= Rn << 16;
13496
13497 if (!inst.operands[2].isreg)
13498 {
13499 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13500 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13501 }
13502 else
13503 {
13504 unsigned Rm;
13505
13506 Rm = inst.operands[2].reg;
13507 reject_bad_reg (Rm);
13508
13509 constraint (inst.operands[2].shifted
13510 && inst.operands[2].immisreg,
13511 _("shift must be constant"));
13512 encode_thumb32_shifted_operand (2);
13513 }
13514 }
13515
13516 static void
13517 do_t_pkhbt (void)
13518 {
13519 unsigned Rd, Rn, Rm;
13520
13521 Rd = inst.operands[0].reg;
13522 Rn = inst.operands[1].reg;
13523 Rm = inst.operands[2].reg;
13524
13525 reject_bad_reg (Rd);
13526 reject_bad_reg (Rn);
13527 reject_bad_reg (Rm);
13528
13529 inst.instruction |= Rd << 8;
13530 inst.instruction |= Rn << 16;
13531 inst.instruction |= Rm;
13532 if (inst.operands[3].present)
13533 {
13534 unsigned int val = inst.relocs[0].exp.X_add_number;
13535 constraint (inst.relocs[0].exp.X_op != O_constant,
13536 _("expression too complex"));
13537 inst.instruction |= (val & 0x1c) << 10;
13538 inst.instruction |= (val & 0x03) << 6;
13539 }
13540 }
13541
13542 static void
13543 do_t_pkhtb (void)
13544 {
13545 if (!inst.operands[3].present)
13546 {
13547 unsigned Rtmp;
13548
13549 inst.instruction &= ~0x00000020;
13550
13551 /* PR 10168. Swap the Rm and Rn registers. */
13552 Rtmp = inst.operands[1].reg;
13553 inst.operands[1].reg = inst.operands[2].reg;
13554 inst.operands[2].reg = Rtmp;
13555 }
13556 do_t_pkhbt ();
13557 }
13558
13559 static void
13560 do_t_pld (void)
13561 {
13562 if (inst.operands[0].immisreg)
13563 reject_bad_reg (inst.operands[0].imm);
13564
13565 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13566 }
13567
13568 static void
13569 do_t_push_pop (void)
13570 {
13571 unsigned mask;
13572
13573 constraint (inst.operands[0].writeback,
13574 _("push/pop do not support {reglist}^"));
13575 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13576 _("expression too complex"));
13577
13578 mask = inst.operands[0].imm;
13579 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13580 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13581 else if (inst.size_req != 4
13582 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13583 ? REG_LR : REG_PC)))
13584 {
13585 inst.instruction = THUMB_OP16 (inst.instruction);
13586 inst.instruction |= THUMB_PP_PC_LR;
13587 inst.instruction |= mask & 0xff;
13588 }
13589 else if (unified_syntax)
13590 {
13591 inst.instruction = THUMB_OP32 (inst.instruction);
13592 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13593 }
13594 else
13595 {
13596 inst.error = _("invalid register list to push/pop instruction");
13597 return;
13598 }
13599 }
13600
13601 static void
13602 do_t_clrm (void)
13603 {
13604 if (unified_syntax)
13605 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13606 else
13607 {
13608 inst.error = _("invalid register list to push/pop instruction");
13609 return;
13610 }
13611 }
13612
13613 static void
13614 do_t_vscclrm (void)
13615 {
13616 if (inst.operands[0].issingle)
13617 {
13618 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13619 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13620 inst.instruction |= inst.operands[0].imm;
13621 }
13622 else
13623 {
13624 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13625 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13626 inst.instruction |= 1 << 8;
13627 inst.instruction |= inst.operands[0].imm << 1;
13628 }
13629 }
13630
13631 static void
13632 do_t_rbit (void)
13633 {
13634 unsigned Rd, Rm;
13635
13636 Rd = inst.operands[0].reg;
13637 Rm = inst.operands[1].reg;
13638
13639 reject_bad_reg (Rd);
13640 reject_bad_reg (Rm);
13641
13642 inst.instruction |= Rd << 8;
13643 inst.instruction |= Rm << 16;
13644 inst.instruction |= Rm;
13645 }
13646
13647 static void
13648 do_t_rev (void)
13649 {
13650 unsigned Rd, Rm;
13651
13652 Rd = inst.operands[0].reg;
13653 Rm = inst.operands[1].reg;
13654
13655 reject_bad_reg (Rd);
13656 reject_bad_reg (Rm);
13657
13658 if (Rd <= 7 && Rm <= 7
13659 && inst.size_req != 4)
13660 {
13661 inst.instruction = THUMB_OP16 (inst.instruction);
13662 inst.instruction |= Rd;
13663 inst.instruction |= Rm << 3;
13664 }
13665 else if (unified_syntax)
13666 {
13667 inst.instruction = THUMB_OP32 (inst.instruction);
13668 inst.instruction |= Rd << 8;
13669 inst.instruction |= Rm << 16;
13670 inst.instruction |= Rm;
13671 }
13672 else
13673 inst.error = BAD_HIREG;
13674 }
13675
13676 static void
13677 do_t_rrx (void)
13678 {
13679 unsigned Rd, Rm;
13680
13681 Rd = inst.operands[0].reg;
13682 Rm = inst.operands[1].reg;
13683
13684 reject_bad_reg (Rd);
13685 reject_bad_reg (Rm);
13686
13687 inst.instruction |= Rd << 8;
13688 inst.instruction |= Rm;
13689 }
13690
13691 static void
13692 do_t_rsb (void)
13693 {
13694 unsigned Rd, Rs;
13695
13696 Rd = inst.operands[0].reg;
13697 Rs = (inst.operands[1].present
13698 ? inst.operands[1].reg /* Rd, Rs, foo */
13699 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13700
13701 reject_bad_reg (Rd);
13702 reject_bad_reg (Rs);
13703 if (inst.operands[2].isreg)
13704 reject_bad_reg (inst.operands[2].reg);
13705
13706 inst.instruction |= Rd << 8;
13707 inst.instruction |= Rs << 16;
13708 if (!inst.operands[2].isreg)
13709 {
13710 bfd_boolean narrow;
13711
13712 if ((inst.instruction & 0x00100000) != 0)
13713 narrow = !in_pred_block ();
13714 else
13715 narrow = in_pred_block ();
13716
13717 if (Rd > 7 || Rs > 7)
13718 narrow = FALSE;
13719
13720 if (inst.size_req == 4 || !unified_syntax)
13721 narrow = FALSE;
13722
13723 if (inst.relocs[0].exp.X_op != O_constant
13724 || inst.relocs[0].exp.X_add_number != 0)
13725 narrow = FALSE;
13726
13727 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13728 relaxation, but it doesn't seem worth the hassle. */
13729 if (narrow)
13730 {
13731 inst.relocs[0].type = BFD_RELOC_UNUSED;
13732 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13733 inst.instruction |= Rs << 3;
13734 inst.instruction |= Rd;
13735 }
13736 else
13737 {
13738 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13739 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13740 }
13741 }
13742 else
13743 encode_thumb32_shifted_operand (2);
13744 }
13745
13746 static void
13747 do_t_setend (void)
13748 {
13749 if (warn_on_deprecated
13750 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13751 as_tsktsk (_("setend use is deprecated for ARMv8"));
13752
13753 set_pred_insn_type (OUTSIDE_PRED_INSN);
13754 if (inst.operands[0].imm)
13755 inst.instruction |= 0x8;
13756 }
13757
13758 static void
13759 do_t_shift (void)
13760 {
13761 if (!inst.operands[1].present)
13762 inst.operands[1].reg = inst.operands[0].reg;
13763
13764 if (unified_syntax)
13765 {
13766 bfd_boolean narrow;
13767 int shift_kind;
13768
13769 switch (inst.instruction)
13770 {
13771 case T_MNEM_asr:
13772 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13773 case T_MNEM_lsl:
13774 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13775 case T_MNEM_lsr:
13776 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13777 case T_MNEM_ror:
13778 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13779 default: abort ();
13780 }
13781
13782 if (THUMB_SETS_FLAGS (inst.instruction))
13783 narrow = !in_pred_block ();
13784 else
13785 narrow = in_pred_block ();
13786 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13787 narrow = FALSE;
13788 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13789 narrow = FALSE;
13790 if (inst.operands[2].isreg
13791 && (inst.operands[1].reg != inst.operands[0].reg
13792 || inst.operands[2].reg > 7))
13793 narrow = FALSE;
13794 if (inst.size_req == 4)
13795 narrow = FALSE;
13796
13797 reject_bad_reg (inst.operands[0].reg);
13798 reject_bad_reg (inst.operands[1].reg);
13799
13800 if (!narrow)
13801 {
13802 if (inst.operands[2].isreg)
13803 {
13804 reject_bad_reg (inst.operands[2].reg);
13805 inst.instruction = THUMB_OP32 (inst.instruction);
13806 inst.instruction |= inst.operands[0].reg << 8;
13807 inst.instruction |= inst.operands[1].reg << 16;
13808 inst.instruction |= inst.operands[2].reg;
13809
13810 /* PR 12854: Error on extraneous shifts. */
13811 constraint (inst.operands[2].shifted,
13812 _("extraneous shift as part of operand to shift insn"));
13813 }
13814 else
13815 {
13816 inst.operands[1].shifted = 1;
13817 inst.operands[1].shift_kind = shift_kind;
13818 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13819 ? T_MNEM_movs : T_MNEM_mov);
13820 inst.instruction |= inst.operands[0].reg << 8;
13821 encode_thumb32_shifted_operand (1);
13822 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13823 inst.relocs[0].type = BFD_RELOC_UNUSED;
13824 }
13825 }
13826 else
13827 {
13828 if (inst.operands[2].isreg)
13829 {
13830 switch (shift_kind)
13831 {
13832 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13833 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13834 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13835 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13836 default: abort ();
13837 }
13838
13839 inst.instruction |= inst.operands[0].reg;
13840 inst.instruction |= inst.operands[2].reg << 3;
13841
13842 /* PR 12854: Error on extraneous shifts. */
13843 constraint (inst.operands[2].shifted,
13844 _("extraneous shift as part of operand to shift insn"));
13845 }
13846 else
13847 {
13848 switch (shift_kind)
13849 {
13850 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13851 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13852 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13853 default: abort ();
13854 }
13855 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13856 inst.instruction |= inst.operands[0].reg;
13857 inst.instruction |= inst.operands[1].reg << 3;
13858 }
13859 }
13860 }
13861 else
13862 {
13863 constraint (inst.operands[0].reg > 7
13864 || inst.operands[1].reg > 7, BAD_HIREG);
13865 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13866
13867 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13868 {
13869 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13870 constraint (inst.operands[0].reg != inst.operands[1].reg,
13871 _("source1 and dest must be same register"));
13872
13873 switch (inst.instruction)
13874 {
13875 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13876 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13877 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13878 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13879 default: abort ();
13880 }
13881
13882 inst.instruction |= inst.operands[0].reg;
13883 inst.instruction |= inst.operands[2].reg << 3;
13884
13885 /* PR 12854: Error on extraneous shifts. */
13886 constraint (inst.operands[2].shifted,
13887 _("extraneous shift as part of operand to shift insn"));
13888 }
13889 else
13890 {
13891 switch (inst.instruction)
13892 {
13893 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13894 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13895 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13896 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13897 default: abort ();
13898 }
13899 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13900 inst.instruction |= inst.operands[0].reg;
13901 inst.instruction |= inst.operands[1].reg << 3;
13902 }
13903 }
13904 }
13905
13906 static void
13907 do_t_simd (void)
13908 {
13909 unsigned Rd, Rn, Rm;
13910
13911 Rd = inst.operands[0].reg;
13912 Rn = inst.operands[1].reg;
13913 Rm = inst.operands[2].reg;
13914
13915 reject_bad_reg (Rd);
13916 reject_bad_reg (Rn);
13917 reject_bad_reg (Rm);
13918
13919 inst.instruction |= Rd << 8;
13920 inst.instruction |= Rn << 16;
13921 inst.instruction |= Rm;
13922 }
13923
13924 static void
13925 do_t_simd2 (void)
13926 {
13927 unsigned Rd, Rn, Rm;
13928
13929 Rd = inst.operands[0].reg;
13930 Rm = inst.operands[1].reg;
13931 Rn = inst.operands[2].reg;
13932
13933 reject_bad_reg (Rd);
13934 reject_bad_reg (Rn);
13935 reject_bad_reg (Rm);
13936
13937 inst.instruction |= Rd << 8;
13938 inst.instruction |= Rn << 16;
13939 inst.instruction |= Rm;
13940 }
13941
13942 static void
13943 do_t_smc (void)
13944 {
13945 unsigned int value = inst.relocs[0].exp.X_add_number;
13946 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13947 _("SMC is not permitted on this architecture"));
13948 constraint (inst.relocs[0].exp.X_op != O_constant,
13949 _("expression too complex"));
13950 constraint (value > 0xf, _("immediate too large (bigger than 0xF)"));
13951
13952 inst.relocs[0].type = BFD_RELOC_UNUSED;
13953 inst.instruction |= (value & 0x000f) << 16;
13954
13955 /* PR gas/15623: SMC instructions must be last in an IT block. */
13956 set_pred_insn_type_last ();
13957 }
13958
13959 static void
13960 do_t_hvc (void)
13961 {
13962 unsigned int value = inst.relocs[0].exp.X_add_number;
13963
13964 inst.relocs[0].type = BFD_RELOC_UNUSED;
13965 inst.instruction |= (value & 0x0fff);
13966 inst.instruction |= (value & 0xf000) << 4;
13967 }
13968
13969 static void
13970 do_t_ssat_usat (int bias)
13971 {
13972 unsigned Rd, Rn;
13973
13974 Rd = inst.operands[0].reg;
13975 Rn = inst.operands[2].reg;
13976
13977 reject_bad_reg (Rd);
13978 reject_bad_reg (Rn);
13979
13980 inst.instruction |= Rd << 8;
13981 inst.instruction |= inst.operands[1].imm - bias;
13982 inst.instruction |= Rn << 16;
13983
13984 if (inst.operands[3].present)
13985 {
13986 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13987
13988 inst.relocs[0].type = BFD_RELOC_UNUSED;
13989
13990 constraint (inst.relocs[0].exp.X_op != O_constant,
13991 _("expression too complex"));
13992
13993 if (shift_amount != 0)
13994 {
13995 constraint (shift_amount > 31,
13996 _("shift expression is too large"));
13997
13998 if (inst.operands[3].shift_kind == SHIFT_ASR)
13999 inst.instruction |= 0x00200000; /* sh bit. */
14000
14001 inst.instruction |= (shift_amount & 0x1c) << 10;
14002 inst.instruction |= (shift_amount & 0x03) << 6;
14003 }
14004 }
14005 }
14006
14007 static void
14008 do_t_ssat (void)
14009 {
14010 do_t_ssat_usat (1);
14011 }
14012
14013 static void
14014 do_t_ssat16 (void)
14015 {
14016 unsigned Rd, Rn;
14017
14018 Rd = inst.operands[0].reg;
14019 Rn = inst.operands[2].reg;
14020
14021 reject_bad_reg (Rd);
14022 reject_bad_reg (Rn);
14023
14024 inst.instruction |= Rd << 8;
14025 inst.instruction |= inst.operands[1].imm - 1;
14026 inst.instruction |= Rn << 16;
14027 }
14028
14029 static void
14030 do_t_strex (void)
14031 {
14032 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
14033 || inst.operands[2].postind || inst.operands[2].writeback
14034 || inst.operands[2].immisreg || inst.operands[2].shifted
14035 || inst.operands[2].negative,
14036 BAD_ADDR_MODE);
14037
14038 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
14039
14040 inst.instruction |= inst.operands[0].reg << 8;
14041 inst.instruction |= inst.operands[1].reg << 12;
14042 inst.instruction |= inst.operands[2].reg << 16;
14043 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
14044 }
14045
14046 static void
14047 do_t_strexd (void)
14048 {
14049 if (!inst.operands[2].present)
14050 inst.operands[2].reg = inst.operands[1].reg + 1;
14051
14052 constraint (inst.operands[0].reg == inst.operands[1].reg
14053 || inst.operands[0].reg == inst.operands[2].reg
14054 || inst.operands[0].reg == inst.operands[3].reg,
14055 BAD_OVERLAP);
14056
14057 inst.instruction |= inst.operands[0].reg;
14058 inst.instruction |= inst.operands[1].reg << 12;
14059 inst.instruction |= inst.operands[2].reg << 8;
14060 inst.instruction |= inst.operands[3].reg << 16;
14061 }
14062
14063 static void
14064 do_t_sxtah (void)
14065 {
14066 unsigned Rd, Rn, Rm;
14067
14068 Rd = inst.operands[0].reg;
14069 Rn = inst.operands[1].reg;
14070 Rm = inst.operands[2].reg;
14071
14072 reject_bad_reg (Rd);
14073 reject_bad_reg (Rn);
14074 reject_bad_reg (Rm);
14075
14076 inst.instruction |= Rd << 8;
14077 inst.instruction |= Rn << 16;
14078 inst.instruction |= Rm;
14079 inst.instruction |= inst.operands[3].imm << 4;
14080 }
14081
14082 static void
14083 do_t_sxth (void)
14084 {
14085 unsigned Rd, Rm;
14086
14087 Rd = inst.operands[0].reg;
14088 Rm = inst.operands[1].reg;
14089
14090 reject_bad_reg (Rd);
14091 reject_bad_reg (Rm);
14092
14093 if (inst.instruction <= 0xffff
14094 && inst.size_req != 4
14095 && Rd <= 7 && Rm <= 7
14096 && (!inst.operands[2].present || inst.operands[2].imm == 0))
14097 {
14098 inst.instruction = THUMB_OP16 (inst.instruction);
14099 inst.instruction |= Rd;
14100 inst.instruction |= Rm << 3;
14101 }
14102 else if (unified_syntax)
14103 {
14104 if (inst.instruction <= 0xffff)
14105 inst.instruction = THUMB_OP32 (inst.instruction);
14106 inst.instruction |= Rd << 8;
14107 inst.instruction |= Rm;
14108 inst.instruction |= inst.operands[2].imm << 4;
14109 }
14110 else
14111 {
14112 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
14113 _("Thumb encoding does not support rotation"));
14114 constraint (1, BAD_HIREG);
14115 }
14116 }
14117
14118 static void
14119 do_t_swi (void)
14120 {
14121 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
14122 }
14123
14124 static void
14125 do_t_tb (void)
14126 {
14127 unsigned Rn, Rm;
14128 int half;
14129
14130 half = (inst.instruction & 0x10) != 0;
14131 set_pred_insn_type_last ();
14132 constraint (inst.operands[0].immisreg,
14133 _("instruction requires register index"));
14134
14135 Rn = inst.operands[0].reg;
14136 Rm = inst.operands[0].imm;
14137
14138 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
14139 constraint (Rn == REG_SP, BAD_SP);
14140 reject_bad_reg (Rm);
14141
14142 constraint (!half && inst.operands[0].shifted,
14143 _("instruction does not allow shifted index"));
14144 inst.instruction |= (Rn << 16) | Rm;
14145 }
14146
14147 static void
14148 do_t_udf (void)
14149 {
14150 if (!inst.operands[0].present)
14151 inst.operands[0].imm = 0;
14152
14153 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
14154 {
14155 constraint (inst.size_req == 2,
14156 _("immediate value out of range"));
14157 inst.instruction = THUMB_OP32 (inst.instruction);
14158 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
14159 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
14160 }
14161 else
14162 {
14163 inst.instruction = THUMB_OP16 (inst.instruction);
14164 inst.instruction |= inst.operands[0].imm;
14165 }
14166
14167 set_pred_insn_type (NEUTRAL_IT_INSN);
14168 }
14169
14170
14171 static void
14172 do_t_usat (void)
14173 {
14174 do_t_ssat_usat (0);
14175 }
14176
14177 static void
14178 do_t_usat16 (void)
14179 {
14180 unsigned Rd, Rn;
14181
14182 Rd = inst.operands[0].reg;
14183 Rn = inst.operands[2].reg;
14184
14185 reject_bad_reg (Rd);
14186 reject_bad_reg (Rn);
14187
14188 inst.instruction |= Rd << 8;
14189 inst.instruction |= inst.operands[1].imm;
14190 inst.instruction |= Rn << 16;
14191 }
14192
14193 /* Checking the range of the branch offset (VAL) with NBITS bits
14194 and IS_SIGNED signedness. Also checks the LSB to be 0. */
14195 static int
14196 v8_1_branch_value_check (int val, int nbits, int is_signed)
14197 {
14198 gas_assert (nbits > 0 && nbits <= 32);
14199 if (is_signed)
14200 {
14201 int cmp = (1 << (nbits - 1));
14202 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
14203 return FAIL;
14204 }
14205 else
14206 {
14207 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
14208 return FAIL;
14209 }
14210 return SUCCESS;
14211 }
14212
14213 /* For branches in Armv8.1-M Mainline. */
14214 static void
14215 do_t_branch_future (void)
14216 {
14217 unsigned long insn = inst.instruction;
14218
14219 inst.instruction = THUMB_OP32 (inst.instruction);
14220 if (inst.operands[0].hasreloc == 0)
14221 {
14222 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
14223 as_bad (BAD_BRANCH_OFF);
14224
14225 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
14226 }
14227 else
14228 {
14229 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
14230 inst.relocs[0].pc_rel = 1;
14231 }
14232
14233 switch (insn)
14234 {
14235 case T_MNEM_bf:
14236 if (inst.operands[1].hasreloc == 0)
14237 {
14238 int val = inst.operands[1].imm;
14239 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14240 as_bad (BAD_BRANCH_OFF);
14241
14242 int immA = (val & 0x0001f000) >> 12;
14243 int immB = (val & 0x00000ffc) >> 2;
14244 int immC = (val & 0x00000002) >> 1;
14245 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14246 }
14247 else
14248 {
14249 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14250 inst.relocs[1].pc_rel = 1;
14251 }
14252 break;
14253
14254 case T_MNEM_bfl:
14255 if (inst.operands[1].hasreloc == 0)
14256 {
14257 int val = inst.operands[1].imm;
14258 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14259 as_bad (BAD_BRANCH_OFF);
14260
14261 int immA = (val & 0x0007f000) >> 12;
14262 int immB = (val & 0x00000ffc) >> 2;
14263 int immC = (val & 0x00000002) >> 1;
14264 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14265 }
14266 else
14267 {
14268 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14269 inst.relocs[1].pc_rel = 1;
14270 }
14271 break;
14272
14273 case T_MNEM_bfcsel:
14274 /* Operand 1. */
14275 if (inst.operands[1].hasreloc == 0)
14276 {
14277 int val = inst.operands[1].imm;
14278 int immA = (val & 0x00001000) >> 12;
14279 int immB = (val & 0x00000ffc) >> 2;
14280 int immC = (val & 0x00000002) >> 1;
14281 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14282 }
14283 else
14284 {
14285 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14286 inst.relocs[1].pc_rel = 1;
14287 }
14288
14289 /* Operand 2. */
14290 if (inst.operands[2].hasreloc == 0)
14291 {
14292 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14293 int val2 = inst.operands[2].imm;
14294 int val0 = inst.operands[0].imm & 0x1f;
14295 int diff = val2 - val0;
14296 if (diff == 4)
14297 inst.instruction |= 1 << 17; /* T bit. */
14298 else if (diff != 2)
14299 as_bad (_("out of range label-relative fixup value"));
14300 }
14301 else
14302 {
14303 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14304 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14305 inst.relocs[2].pc_rel = 1;
14306 }
14307
14308 /* Operand 3. */
14309 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14310 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14311 break;
14312
14313 case T_MNEM_bfx:
14314 case T_MNEM_bflx:
14315 inst.instruction |= inst.operands[1].reg << 16;
14316 break;
14317
14318 default: abort ();
14319 }
14320 }
14321
14322 /* Helper function for do_t_loloop to handle relocations. */
14323 static void
14324 v8_1_loop_reloc (int is_le)
14325 {
14326 if (inst.relocs[0].exp.X_op == O_constant)
14327 {
14328 int value = inst.relocs[0].exp.X_add_number;
14329 value = (is_le) ? -value : value;
14330
14331 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14332 as_bad (BAD_BRANCH_OFF);
14333
14334 int imml, immh;
14335
14336 immh = (value & 0x00000ffc) >> 2;
14337 imml = (value & 0x00000002) >> 1;
14338
14339 inst.instruction |= (imml << 11) | (immh << 1);
14340 }
14341 else
14342 {
14343 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14344 inst.relocs[0].pc_rel = 1;
14345 }
14346 }
14347
14348 /* For shifts in MVE. */
14349 static void
14350 do_mve_scalar_shift (void)
14351 {
14352 if (!inst.operands[2].present)
14353 {
14354 inst.operands[2] = inst.operands[1];
14355 inst.operands[1].reg = 0xf;
14356 }
14357
14358 inst.instruction |= inst.operands[0].reg << 16;
14359 inst.instruction |= inst.operands[1].reg << 8;
14360
14361 if (inst.operands[2].isreg)
14362 {
14363 /* Assuming Rm is already checked not to be 11x1. */
14364 constraint (inst.operands[2].reg == inst.operands[0].reg, BAD_OVERLAP);
14365 constraint (inst.operands[2].reg == inst.operands[1].reg, BAD_OVERLAP);
14366 inst.instruction |= inst.operands[2].reg << 12;
14367 }
14368 else
14369 {
14370 /* Assuming imm is already checked as [1,32]. */
14371 unsigned int value = inst.operands[2].imm;
14372 inst.instruction |= (value & 0x1c) << 10;
14373 inst.instruction |= (value & 0x03) << 6;
14374 /* Change last 4 bits from 0xd to 0xf. */
14375 inst.instruction |= 0x2;
14376 }
14377 }
14378
14379 /* MVE instruction encoder helpers. */
14380 #define M_MNEM_vabav 0xee800f01
14381 #define M_MNEM_vmladav 0xeef00e00
14382 #define M_MNEM_vmladava 0xeef00e20
14383 #define M_MNEM_vmladavx 0xeef01e00
14384 #define M_MNEM_vmladavax 0xeef01e20
14385 #define M_MNEM_vmlsdav 0xeef00e01
14386 #define M_MNEM_vmlsdava 0xeef00e21
14387 #define M_MNEM_vmlsdavx 0xeef01e01
14388 #define M_MNEM_vmlsdavax 0xeef01e21
14389 #define M_MNEM_vmullt 0xee011e00
14390 #define M_MNEM_vmullb 0xee010e00
14391 #define M_MNEM_vst20 0xfc801e00
14392 #define M_MNEM_vst21 0xfc801e20
14393 #define M_MNEM_vst40 0xfc801e01
14394 #define M_MNEM_vst41 0xfc801e21
14395 #define M_MNEM_vst42 0xfc801e41
14396 #define M_MNEM_vst43 0xfc801e61
14397 #define M_MNEM_vld20 0xfc901e00
14398 #define M_MNEM_vld21 0xfc901e20
14399 #define M_MNEM_vld40 0xfc901e01
14400 #define M_MNEM_vld41 0xfc901e21
14401 #define M_MNEM_vld42 0xfc901e41
14402 #define M_MNEM_vld43 0xfc901e61
14403 #define M_MNEM_vstrb 0xec000e00
14404 #define M_MNEM_vstrh 0xec000e10
14405 #define M_MNEM_vstrw 0xec000e40
14406 #define M_MNEM_vstrd 0xec000e50
14407 #define M_MNEM_vldrb 0xec100e00
14408 #define M_MNEM_vldrh 0xec100e10
14409 #define M_MNEM_vldrw 0xec100e40
14410 #define M_MNEM_vldrd 0xec100e50
14411 #define M_MNEM_vmovlt 0xeea01f40
14412 #define M_MNEM_vmovlb 0xeea00f40
14413 #define M_MNEM_vmovnt 0xfe311e81
14414 #define M_MNEM_vmovnb 0xfe310e81
14415 #define M_MNEM_vadc 0xee300f00
14416 #define M_MNEM_vadci 0xee301f00
14417 #define M_MNEM_vbrsr 0xfe011e60
14418 #define M_MNEM_vaddlv 0xee890f00
14419 #define M_MNEM_vaddlva 0xee890f20
14420 #define M_MNEM_vaddv 0xeef10f00
14421 #define M_MNEM_vaddva 0xeef10f20
14422 #define M_MNEM_vddup 0xee011f6e
14423 #define M_MNEM_vdwdup 0xee011f60
14424 #define M_MNEM_vidup 0xee010f6e
14425 #define M_MNEM_viwdup 0xee010f60
14426 #define M_MNEM_vmaxv 0xeee20f00
14427 #define M_MNEM_vmaxav 0xeee00f00
14428 #define M_MNEM_vminv 0xeee20f80
14429 #define M_MNEM_vminav 0xeee00f80
14430 #define M_MNEM_vmlaldav 0xee800e00
14431 #define M_MNEM_vmlaldava 0xee800e20
14432 #define M_MNEM_vmlaldavx 0xee801e00
14433 #define M_MNEM_vmlaldavax 0xee801e20
14434 #define M_MNEM_vmlsldav 0xee800e01
14435 #define M_MNEM_vmlsldava 0xee800e21
14436 #define M_MNEM_vmlsldavx 0xee801e01
14437 #define M_MNEM_vmlsldavax 0xee801e21
14438 #define M_MNEM_vrmlaldavhx 0xee801f00
14439 #define M_MNEM_vrmlaldavhax 0xee801f20
14440 #define M_MNEM_vrmlsldavh 0xfe800e01
14441 #define M_MNEM_vrmlsldavha 0xfe800e21
14442 #define M_MNEM_vrmlsldavhx 0xfe801e01
14443 #define M_MNEM_vrmlsldavhax 0xfe801e21
14444 #define M_MNEM_vqmovnt 0xee331e01
14445 #define M_MNEM_vqmovnb 0xee330e01
14446 #define M_MNEM_vqmovunt 0xee311e81
14447 #define M_MNEM_vqmovunb 0xee310e81
14448 #define M_MNEM_vshrnt 0xee801fc1
14449 #define M_MNEM_vshrnb 0xee800fc1
14450 #define M_MNEM_vrshrnt 0xfe801fc1
14451 #define M_MNEM_vqshrnt 0xee801f40
14452 #define M_MNEM_vqshrnb 0xee800f40
14453 #define M_MNEM_vqshrunt 0xee801fc0
14454 #define M_MNEM_vqshrunb 0xee800fc0
14455 #define M_MNEM_vrshrnb 0xfe800fc1
14456 #define M_MNEM_vqrshrnt 0xee801f41
14457 #define M_MNEM_vqrshrnb 0xee800f41
14458 #define M_MNEM_vqrshrunt 0xfe801fc0
14459 #define M_MNEM_vqrshrunb 0xfe800fc0
14460
14461 /* Neon instruction encoder helpers. */
14462
14463 /* Encodings for the different types for various Neon opcodes. */
14464
14465 /* An "invalid" code for the following tables. */
14466 #define N_INV -1u
14467
14468 struct neon_tab_entry
14469 {
14470 unsigned integer;
14471 unsigned float_or_poly;
14472 unsigned scalar_or_imm;
14473 };
14474
14475 /* Map overloaded Neon opcodes to their respective encodings. */
14476 #define NEON_ENC_TAB \
14477 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14478 X(vabdl, 0x0800700, N_INV, N_INV), \
14479 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14480 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14481 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14482 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14483 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14484 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14485 X(vaddl, 0x0800000, N_INV, N_INV), \
14486 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14487 X(vsubl, 0x0800200, N_INV, N_INV), \
14488 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14489 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14490 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14491 /* Register variants of the following two instructions are encoded as
14492 vcge / vcgt with the operands reversed. */ \
14493 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14494 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14495 X(vfma, N_INV, 0x0000c10, N_INV), \
14496 X(vfms, N_INV, 0x0200c10, N_INV), \
14497 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14498 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14499 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14500 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14501 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14502 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14503 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14504 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14505 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14506 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14507 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14508 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14509 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14510 X(vshl, 0x0000400, N_INV, 0x0800510), \
14511 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14512 X(vand, 0x0000110, N_INV, 0x0800030), \
14513 X(vbic, 0x0100110, N_INV, 0x0800030), \
14514 X(veor, 0x1000110, N_INV, N_INV), \
14515 X(vorn, 0x0300110, N_INV, 0x0800010), \
14516 X(vorr, 0x0200110, N_INV, 0x0800010), \
14517 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14518 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14519 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14520 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14521 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14522 X(vst1, 0x0000000, 0x0800000, N_INV), \
14523 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14524 X(vst2, 0x0000100, 0x0800100, N_INV), \
14525 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14526 X(vst3, 0x0000200, 0x0800200, N_INV), \
14527 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14528 X(vst4, 0x0000300, 0x0800300, N_INV), \
14529 X(vmovn, 0x1b20200, N_INV, N_INV), \
14530 X(vtrn, 0x1b20080, N_INV, N_INV), \
14531 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14532 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14533 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14534 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14535 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14536 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14537 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14538 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14539 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14540 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14541 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14542 X(vseleq, 0xe000a00, N_INV, N_INV), \
14543 X(vselvs, 0xe100a00, N_INV, N_INV), \
14544 X(vselge, 0xe200a00, N_INV, N_INV), \
14545 X(vselgt, 0xe300a00, N_INV, N_INV), \
14546 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14547 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14548 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14549 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14550 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14551 X(aes, 0x3b00300, N_INV, N_INV), \
14552 X(sha3op, 0x2000c00, N_INV, N_INV), \
14553 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14554 X(sha2op, 0x3ba0380, N_INV, N_INV)
14555
14556 enum neon_opc
14557 {
14558 #define X(OPC,I,F,S) N_MNEM_##OPC
14559 NEON_ENC_TAB
14560 #undef X
14561 };
14562
14563 static const struct neon_tab_entry neon_enc_tab[] =
14564 {
14565 #define X(OPC,I,F,S) { (I), (F), (S) }
14566 NEON_ENC_TAB
14567 #undef X
14568 };
14569
14570 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14571 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14572 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14573 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14574 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14575 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14576 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14577 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14578 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14579 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14580 #define NEON_ENC_SINGLE_(X) \
14581 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14582 #define NEON_ENC_DOUBLE_(X) \
14583 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14584 #define NEON_ENC_FPV8_(X) \
14585 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14586
14587 #define NEON_ENCODE(type, inst) \
14588 do \
14589 { \
14590 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14591 inst.is_neon = 1; \
14592 } \
14593 while (0)
14594
14595 #define check_neon_suffixes \
14596 do \
14597 { \
14598 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14599 { \
14600 as_bad (_("invalid neon suffix for non neon instruction")); \
14601 return; \
14602 } \
14603 } \
14604 while (0)
14605
14606 /* Define shapes for instruction operands. The following mnemonic characters
14607 are used in this table:
14608
14609 F - VFP S<n> register
14610 D - Neon D<n> register
14611 Q - Neon Q<n> register
14612 I - Immediate
14613 S - Scalar
14614 R - ARM register
14615 L - D<n> register list
14616
14617 This table is used to generate various data:
14618 - enumerations of the form NS_DDR to be used as arguments to
14619 neon_select_shape.
14620 - a table classifying shapes into single, double, quad, mixed.
14621 - a table used to drive neon_select_shape. */
14622
14623 #define NEON_SHAPE_DEF \
14624 X(4, (R, R, Q, Q), QUAD), \
14625 X(4, (Q, R, R, I), QUAD), \
14626 X(4, (R, R, S, S), QUAD), \
14627 X(4, (S, S, R, R), QUAD), \
14628 X(3, (Q, R, I), QUAD), \
14629 X(3, (I, Q, Q), QUAD), \
14630 X(3, (I, Q, R), QUAD), \
14631 X(3, (R, Q, Q), QUAD), \
14632 X(3, (D, D, D), DOUBLE), \
14633 X(3, (Q, Q, Q), QUAD), \
14634 X(3, (D, D, I), DOUBLE), \
14635 X(3, (Q, Q, I), QUAD), \
14636 X(3, (D, D, S), DOUBLE), \
14637 X(3, (Q, Q, S), QUAD), \
14638 X(3, (Q, Q, R), QUAD), \
14639 X(3, (R, R, Q), QUAD), \
14640 X(2, (R, Q), QUAD), \
14641 X(2, (D, D), DOUBLE), \
14642 X(2, (Q, Q), QUAD), \
14643 X(2, (D, S), DOUBLE), \
14644 X(2, (Q, S), QUAD), \
14645 X(2, (D, R), DOUBLE), \
14646 X(2, (Q, R), QUAD), \
14647 X(2, (D, I), DOUBLE), \
14648 X(2, (Q, I), QUAD), \
14649 X(3, (D, L, D), DOUBLE), \
14650 X(2, (D, Q), MIXED), \
14651 X(2, (Q, D), MIXED), \
14652 X(3, (D, Q, I), MIXED), \
14653 X(3, (Q, D, I), MIXED), \
14654 X(3, (Q, D, D), MIXED), \
14655 X(3, (D, Q, Q), MIXED), \
14656 X(3, (Q, Q, D), MIXED), \
14657 X(3, (Q, D, S), MIXED), \
14658 X(3, (D, Q, S), MIXED), \
14659 X(4, (D, D, D, I), DOUBLE), \
14660 X(4, (Q, Q, Q, I), QUAD), \
14661 X(4, (D, D, S, I), DOUBLE), \
14662 X(4, (Q, Q, S, I), QUAD), \
14663 X(2, (F, F), SINGLE), \
14664 X(3, (F, F, F), SINGLE), \
14665 X(2, (F, I), SINGLE), \
14666 X(2, (F, D), MIXED), \
14667 X(2, (D, F), MIXED), \
14668 X(3, (F, F, I), MIXED), \
14669 X(4, (R, R, F, F), SINGLE), \
14670 X(4, (F, F, R, R), SINGLE), \
14671 X(3, (D, R, R), DOUBLE), \
14672 X(3, (R, R, D), DOUBLE), \
14673 X(2, (S, R), SINGLE), \
14674 X(2, (R, S), SINGLE), \
14675 X(2, (F, R), SINGLE), \
14676 X(2, (R, F), SINGLE), \
14677 /* Used for MVE tail predicated loop instructions. */\
14678 X(2, (R, R), QUAD), \
14679 /* Half float shape supported so far. */\
14680 X (2, (H, D), MIXED), \
14681 X (2, (D, H), MIXED), \
14682 X (2, (H, F), MIXED), \
14683 X (2, (F, H), MIXED), \
14684 X (2, (H, H), HALF), \
14685 X (2, (H, R), HALF), \
14686 X (2, (R, H), HALF), \
14687 X (2, (H, I), HALF), \
14688 X (3, (H, H, H), HALF), \
14689 X (3, (H, F, I), MIXED), \
14690 X (3, (F, H, I), MIXED), \
14691 X (3, (D, H, H), MIXED), \
14692 X (3, (D, H, S), MIXED)
14693
14694 #define S2(A,B) NS_##A##B
14695 #define S3(A,B,C) NS_##A##B##C
14696 #define S4(A,B,C,D) NS_##A##B##C##D
14697
14698 #define X(N, L, C) S##N L
14699
14700 enum neon_shape
14701 {
14702 NEON_SHAPE_DEF,
14703 NS_NULL
14704 };
14705
14706 #undef X
14707 #undef S2
14708 #undef S3
14709 #undef S4
14710
14711 enum neon_shape_class
14712 {
14713 SC_HALF,
14714 SC_SINGLE,
14715 SC_DOUBLE,
14716 SC_QUAD,
14717 SC_MIXED
14718 };
14719
14720 #define X(N, L, C) SC_##C
14721
14722 static enum neon_shape_class neon_shape_class[] =
14723 {
14724 NEON_SHAPE_DEF
14725 };
14726
14727 #undef X
14728
14729 enum neon_shape_el
14730 {
14731 SE_H,
14732 SE_F,
14733 SE_D,
14734 SE_Q,
14735 SE_I,
14736 SE_S,
14737 SE_R,
14738 SE_L
14739 };
14740
14741 /* Register widths of above. */
14742 static unsigned neon_shape_el_size[] =
14743 {
14744 16,
14745 32,
14746 64,
14747 128,
14748 0,
14749 32,
14750 32,
14751 0
14752 };
14753
14754 struct neon_shape_info
14755 {
14756 unsigned els;
14757 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14758 };
14759
14760 #define S2(A,B) { SE_##A, SE_##B }
14761 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14762 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14763
14764 #define X(N, L, C) { N, S##N L }
14765
14766 static struct neon_shape_info neon_shape_tab[] =
14767 {
14768 NEON_SHAPE_DEF
14769 };
14770
14771 #undef X
14772 #undef S2
14773 #undef S3
14774 #undef S4
14775
14776 /* Bit masks used in type checking given instructions.
14777 'N_EQK' means the type must be the same as (or based on in some way) the key
14778 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14779 set, various other bits can be set as well in order to modify the meaning of
14780 the type constraint. */
14781
14782 enum neon_type_mask
14783 {
14784 N_S8 = 0x0000001,
14785 N_S16 = 0x0000002,
14786 N_S32 = 0x0000004,
14787 N_S64 = 0x0000008,
14788 N_U8 = 0x0000010,
14789 N_U16 = 0x0000020,
14790 N_U32 = 0x0000040,
14791 N_U64 = 0x0000080,
14792 N_I8 = 0x0000100,
14793 N_I16 = 0x0000200,
14794 N_I32 = 0x0000400,
14795 N_I64 = 0x0000800,
14796 N_8 = 0x0001000,
14797 N_16 = 0x0002000,
14798 N_32 = 0x0004000,
14799 N_64 = 0x0008000,
14800 N_P8 = 0x0010000,
14801 N_P16 = 0x0020000,
14802 N_F16 = 0x0040000,
14803 N_F32 = 0x0080000,
14804 N_F64 = 0x0100000,
14805 N_P64 = 0x0200000,
14806 N_KEY = 0x1000000, /* Key element (main type specifier). */
14807 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14808 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14809 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14810 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14811 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14812 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14813 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14814 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14815 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14816 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14817 N_UTYP = 0,
14818 N_MAX_NONSPECIAL = N_P64
14819 };
14820
14821 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14822
14823 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14824 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14825 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14826 #define N_S_32 (N_S8 | N_S16 | N_S32)
14827 #define N_F_16_32 (N_F16 | N_F32)
14828 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14829 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14830 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14831 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14832 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14833 #define N_F_MVE (N_F16 | N_F32)
14834 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14835
14836 /* Pass this as the first type argument to neon_check_type to ignore types
14837 altogether. */
14838 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14839
14840 /* Select a "shape" for the current instruction (describing register types or
14841 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14842 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14843 function of operand parsing, so this function doesn't need to be called.
14844 Shapes should be listed in order of decreasing length. */
14845
14846 static enum neon_shape
14847 neon_select_shape (enum neon_shape shape, ...)
14848 {
14849 va_list ap;
14850 enum neon_shape first_shape = shape;
14851
14852 /* Fix missing optional operands. FIXME: we don't know at this point how
14853 many arguments we should have, so this makes the assumption that we have
14854 > 1. This is true of all current Neon opcodes, I think, but may not be
14855 true in the future. */
14856 if (!inst.operands[1].present)
14857 inst.operands[1] = inst.operands[0];
14858
14859 va_start (ap, shape);
14860
14861 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14862 {
14863 unsigned j;
14864 int matches = 1;
14865
14866 for (j = 0; j < neon_shape_tab[shape].els; j++)
14867 {
14868 if (!inst.operands[j].present)
14869 {
14870 matches = 0;
14871 break;
14872 }
14873
14874 switch (neon_shape_tab[shape].el[j])
14875 {
14876 /* If a .f16, .16, .u16, .s16 type specifier is given over
14877 a VFP single precision register operand, it's essentially
14878 means only half of the register is used.
14879
14880 If the type specifier is given after the mnemonics, the
14881 information is stored in inst.vectype. If the type specifier
14882 is given after register operand, the information is stored
14883 in inst.operands[].vectype.
14884
14885 When there is only one type specifier, and all the register
14886 operands are the same type of hardware register, the type
14887 specifier applies to all register operands.
14888
14889 If no type specifier is given, the shape is inferred from
14890 operand information.
14891
14892 for example:
14893 vadd.f16 s0, s1, s2: NS_HHH
14894 vabs.f16 s0, s1: NS_HH
14895 vmov.f16 s0, r1: NS_HR
14896 vmov.f16 r0, s1: NS_RH
14897 vcvt.f16 r0, s1: NS_RH
14898 vcvt.f16.s32 s2, s2, #29: NS_HFI
14899 vcvt.f16.s32 s2, s2: NS_HF
14900 */
14901 case SE_H:
14902 if (!(inst.operands[j].isreg
14903 && inst.operands[j].isvec
14904 && inst.operands[j].issingle
14905 && !inst.operands[j].isquad
14906 && ((inst.vectype.elems == 1
14907 && inst.vectype.el[0].size == 16)
14908 || (inst.vectype.elems > 1
14909 && inst.vectype.el[j].size == 16)
14910 || (inst.vectype.elems == 0
14911 && inst.operands[j].vectype.type != NT_invtype
14912 && inst.operands[j].vectype.size == 16))))
14913 matches = 0;
14914 break;
14915
14916 case SE_F:
14917 if (!(inst.operands[j].isreg
14918 && inst.operands[j].isvec
14919 && inst.operands[j].issingle
14920 && !inst.operands[j].isquad
14921 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14922 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14923 || (inst.vectype.elems == 0
14924 && (inst.operands[j].vectype.size == 32
14925 || inst.operands[j].vectype.type == NT_invtype)))))
14926 matches = 0;
14927 break;
14928
14929 case SE_D:
14930 if (!(inst.operands[j].isreg
14931 && inst.operands[j].isvec
14932 && !inst.operands[j].isquad
14933 && !inst.operands[j].issingle))
14934 matches = 0;
14935 break;
14936
14937 case SE_R:
14938 if (!(inst.operands[j].isreg
14939 && !inst.operands[j].isvec))
14940 matches = 0;
14941 break;
14942
14943 case SE_Q:
14944 if (!(inst.operands[j].isreg
14945 && inst.operands[j].isvec
14946 && inst.operands[j].isquad
14947 && !inst.operands[j].issingle))
14948 matches = 0;
14949 break;
14950
14951 case SE_I:
14952 if (!(!inst.operands[j].isreg
14953 && !inst.operands[j].isscalar))
14954 matches = 0;
14955 break;
14956
14957 case SE_S:
14958 if (!(!inst.operands[j].isreg
14959 && inst.operands[j].isscalar))
14960 matches = 0;
14961 break;
14962
14963 case SE_L:
14964 break;
14965 }
14966 if (!matches)
14967 break;
14968 }
14969 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14970 /* We've matched all the entries in the shape table, and we don't
14971 have any left over operands which have not been matched. */
14972 break;
14973 }
14974
14975 va_end (ap);
14976
14977 if (shape == NS_NULL && first_shape != NS_NULL)
14978 first_error (_("invalid instruction shape"));
14979
14980 return shape;
14981 }
14982
14983 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14984 means the Q bit should be set). */
14985
14986 static int
14987 neon_quad (enum neon_shape shape)
14988 {
14989 return neon_shape_class[shape] == SC_QUAD;
14990 }
14991
14992 static void
14993 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14994 unsigned *g_size)
14995 {
14996 /* Allow modification to be made to types which are constrained to be
14997 based on the key element, based on bits set alongside N_EQK. */
14998 if ((typebits & N_EQK) != 0)
14999 {
15000 if ((typebits & N_HLF) != 0)
15001 *g_size /= 2;
15002 else if ((typebits & N_DBL) != 0)
15003 *g_size *= 2;
15004 if ((typebits & N_SGN) != 0)
15005 *g_type = NT_signed;
15006 else if ((typebits & N_UNS) != 0)
15007 *g_type = NT_unsigned;
15008 else if ((typebits & N_INT) != 0)
15009 *g_type = NT_integer;
15010 else if ((typebits & N_FLT) != 0)
15011 *g_type = NT_float;
15012 else if ((typebits & N_SIZ) != 0)
15013 *g_type = NT_untyped;
15014 }
15015 }
15016
15017 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
15018 operand type, i.e. the single type specified in a Neon instruction when it
15019 is the only one given. */
15020
15021 static struct neon_type_el
15022 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
15023 {
15024 struct neon_type_el dest = *key;
15025
15026 gas_assert ((thisarg & N_EQK) != 0);
15027
15028 neon_modify_type_size (thisarg, &dest.type, &dest.size);
15029
15030 return dest;
15031 }
15032
15033 /* Convert Neon type and size into compact bitmask representation. */
15034
15035 static enum neon_type_mask
15036 type_chk_of_el_type (enum neon_el_type type, unsigned size)
15037 {
15038 switch (type)
15039 {
15040 case NT_untyped:
15041 switch (size)
15042 {
15043 case 8: return N_8;
15044 case 16: return N_16;
15045 case 32: return N_32;
15046 case 64: return N_64;
15047 default: ;
15048 }
15049 break;
15050
15051 case NT_integer:
15052 switch (size)
15053 {
15054 case 8: return N_I8;
15055 case 16: return N_I16;
15056 case 32: return N_I32;
15057 case 64: return N_I64;
15058 default: ;
15059 }
15060 break;
15061
15062 case NT_float:
15063 switch (size)
15064 {
15065 case 16: return N_F16;
15066 case 32: return N_F32;
15067 case 64: return N_F64;
15068 default: ;
15069 }
15070 break;
15071
15072 case NT_poly:
15073 switch (size)
15074 {
15075 case 8: return N_P8;
15076 case 16: return N_P16;
15077 case 64: return N_P64;
15078 default: ;
15079 }
15080 break;
15081
15082 case NT_signed:
15083 switch (size)
15084 {
15085 case 8: return N_S8;
15086 case 16: return N_S16;
15087 case 32: return N_S32;
15088 case 64: return N_S64;
15089 default: ;
15090 }
15091 break;
15092
15093 case NT_unsigned:
15094 switch (size)
15095 {
15096 case 8: return N_U8;
15097 case 16: return N_U16;
15098 case 32: return N_U32;
15099 case 64: return N_U64;
15100 default: ;
15101 }
15102 break;
15103
15104 default: ;
15105 }
15106
15107 return N_UTYP;
15108 }
15109
15110 /* Convert compact Neon bitmask type representation to a type and size. Only
15111 handles the case where a single bit is set in the mask. */
15112
15113 static int
15114 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
15115 enum neon_type_mask mask)
15116 {
15117 if ((mask & N_EQK) != 0)
15118 return FAIL;
15119
15120 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
15121 *size = 8;
15122 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
15123 *size = 16;
15124 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
15125 *size = 32;
15126 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
15127 *size = 64;
15128 else
15129 return FAIL;
15130
15131 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
15132 *type = NT_signed;
15133 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
15134 *type = NT_unsigned;
15135 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
15136 *type = NT_integer;
15137 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
15138 *type = NT_untyped;
15139 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
15140 *type = NT_poly;
15141 else if ((mask & (N_F_ALL)) != 0)
15142 *type = NT_float;
15143 else
15144 return FAIL;
15145
15146 return SUCCESS;
15147 }
15148
15149 /* Modify a bitmask of allowed types. This is only needed for type
15150 relaxation. */
15151
15152 static unsigned
15153 modify_types_allowed (unsigned allowed, unsigned mods)
15154 {
15155 unsigned size;
15156 enum neon_el_type type;
15157 unsigned destmask;
15158 int i;
15159
15160 destmask = 0;
15161
15162 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
15163 {
15164 if (el_type_of_type_chk (&type, &size,
15165 (enum neon_type_mask) (allowed & i)) == SUCCESS)
15166 {
15167 neon_modify_type_size (mods, &type, &size);
15168 destmask |= type_chk_of_el_type (type, size);
15169 }
15170 }
15171
15172 return destmask;
15173 }
15174
15175 /* Check type and return type classification.
15176 The manual states (paraphrase): If one datatype is given, it indicates the
15177 type given in:
15178 - the second operand, if there is one
15179 - the operand, if there is no second operand
15180 - the result, if there are no operands.
15181 This isn't quite good enough though, so we use a concept of a "key" datatype
15182 which is set on a per-instruction basis, which is the one which matters when
15183 only one data type is written.
15184 Note: this function has side-effects (e.g. filling in missing operands). All
15185 Neon instructions should call it before performing bit encoding. */
15186
15187 static struct neon_type_el
15188 neon_check_type (unsigned els, enum neon_shape ns, ...)
15189 {
15190 va_list ap;
15191 unsigned i, pass, key_el = 0;
15192 unsigned types[NEON_MAX_TYPE_ELS];
15193 enum neon_el_type k_type = NT_invtype;
15194 unsigned k_size = -1u;
15195 struct neon_type_el badtype = {NT_invtype, -1};
15196 unsigned key_allowed = 0;
15197
15198 /* Optional registers in Neon instructions are always (not) in operand 1.
15199 Fill in the missing operand here, if it was omitted. */
15200 if (els > 1 && !inst.operands[1].present)
15201 inst.operands[1] = inst.operands[0];
15202
15203 /* Suck up all the varargs. */
15204 va_start (ap, ns);
15205 for (i = 0; i < els; i++)
15206 {
15207 unsigned thisarg = va_arg (ap, unsigned);
15208 if (thisarg == N_IGNORE_TYPE)
15209 {
15210 va_end (ap);
15211 return badtype;
15212 }
15213 types[i] = thisarg;
15214 if ((thisarg & N_KEY) != 0)
15215 key_el = i;
15216 }
15217 va_end (ap);
15218
15219 if (inst.vectype.elems > 0)
15220 for (i = 0; i < els; i++)
15221 if (inst.operands[i].vectype.type != NT_invtype)
15222 {
15223 first_error (_("types specified in both the mnemonic and operands"));
15224 return badtype;
15225 }
15226
15227 /* Duplicate inst.vectype elements here as necessary.
15228 FIXME: No idea if this is exactly the same as the ARM assembler,
15229 particularly when an insn takes one register and one non-register
15230 operand. */
15231 if (inst.vectype.elems == 1 && els > 1)
15232 {
15233 unsigned j;
15234 inst.vectype.elems = els;
15235 inst.vectype.el[key_el] = inst.vectype.el[0];
15236 for (j = 0; j < els; j++)
15237 if (j != key_el)
15238 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15239 types[j]);
15240 }
15241 else if (inst.vectype.elems == 0 && els > 0)
15242 {
15243 unsigned j;
15244 /* No types were given after the mnemonic, so look for types specified
15245 after each operand. We allow some flexibility here; as long as the
15246 "key" operand has a type, we can infer the others. */
15247 for (j = 0; j < els; j++)
15248 if (inst.operands[j].vectype.type != NT_invtype)
15249 inst.vectype.el[j] = inst.operands[j].vectype;
15250
15251 if (inst.operands[key_el].vectype.type != NT_invtype)
15252 {
15253 for (j = 0; j < els; j++)
15254 if (inst.operands[j].vectype.type == NT_invtype)
15255 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15256 types[j]);
15257 }
15258 else
15259 {
15260 first_error (_("operand types can't be inferred"));
15261 return badtype;
15262 }
15263 }
15264 else if (inst.vectype.elems != els)
15265 {
15266 first_error (_("type specifier has the wrong number of parts"));
15267 return badtype;
15268 }
15269
15270 for (pass = 0; pass < 2; pass++)
15271 {
15272 for (i = 0; i < els; i++)
15273 {
15274 unsigned thisarg = types[i];
15275 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15276 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15277 enum neon_el_type g_type = inst.vectype.el[i].type;
15278 unsigned g_size = inst.vectype.el[i].size;
15279
15280 /* Decay more-specific signed & unsigned types to sign-insensitive
15281 integer types if sign-specific variants are unavailable. */
15282 if ((g_type == NT_signed || g_type == NT_unsigned)
15283 && (types_allowed & N_SU_ALL) == 0)
15284 g_type = NT_integer;
15285
15286 /* If only untyped args are allowed, decay any more specific types to
15287 them. Some instructions only care about signs for some element
15288 sizes, so handle that properly. */
15289 if (((types_allowed & N_UNT) == 0)
15290 && ((g_size == 8 && (types_allowed & N_8) != 0)
15291 || (g_size == 16 && (types_allowed & N_16) != 0)
15292 || (g_size == 32 && (types_allowed & N_32) != 0)
15293 || (g_size == 64 && (types_allowed & N_64) != 0)))
15294 g_type = NT_untyped;
15295
15296 if (pass == 0)
15297 {
15298 if ((thisarg & N_KEY) != 0)
15299 {
15300 k_type = g_type;
15301 k_size = g_size;
15302 key_allowed = thisarg & ~N_KEY;
15303
15304 /* Check architecture constraint on FP16 extension. */
15305 if (k_size == 16
15306 && k_type == NT_float
15307 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15308 {
15309 inst.error = _(BAD_FP16);
15310 return badtype;
15311 }
15312 }
15313 }
15314 else
15315 {
15316 if ((thisarg & N_VFP) != 0)
15317 {
15318 enum neon_shape_el regshape;
15319 unsigned regwidth, match;
15320
15321 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15322 if (ns == NS_NULL)
15323 {
15324 first_error (_("invalid instruction shape"));
15325 return badtype;
15326 }
15327 regshape = neon_shape_tab[ns].el[i];
15328 regwidth = neon_shape_el_size[regshape];
15329
15330 /* In VFP mode, operands must match register widths. If we
15331 have a key operand, use its width, else use the width of
15332 the current operand. */
15333 if (k_size != -1u)
15334 match = k_size;
15335 else
15336 match = g_size;
15337
15338 /* FP16 will use a single precision register. */
15339 if (regwidth == 32 && match == 16)
15340 {
15341 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15342 match = regwidth;
15343 else
15344 {
15345 inst.error = _(BAD_FP16);
15346 return badtype;
15347 }
15348 }
15349
15350 if (regwidth != match)
15351 {
15352 first_error (_("operand size must match register width"));
15353 return badtype;
15354 }
15355 }
15356
15357 if ((thisarg & N_EQK) == 0)
15358 {
15359 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15360
15361 if ((given_type & types_allowed) == 0)
15362 {
15363 first_error (BAD_SIMD_TYPE);
15364 return badtype;
15365 }
15366 }
15367 else
15368 {
15369 enum neon_el_type mod_k_type = k_type;
15370 unsigned mod_k_size = k_size;
15371 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15372 if (g_type != mod_k_type || g_size != mod_k_size)
15373 {
15374 first_error (_("inconsistent types in Neon instruction"));
15375 return badtype;
15376 }
15377 }
15378 }
15379 }
15380 }
15381
15382 return inst.vectype.el[key_el];
15383 }
15384
15385 /* Neon-style VFP instruction forwarding. */
15386
15387 /* Thumb VFP instructions have 0xE in the condition field. */
15388
15389 static void
15390 do_vfp_cond_or_thumb (void)
15391 {
15392 inst.is_neon = 1;
15393
15394 if (thumb_mode)
15395 inst.instruction |= 0xe0000000;
15396 else
15397 inst.instruction |= inst.cond << 28;
15398 }
15399
15400 /* Look up and encode a simple mnemonic, for use as a helper function for the
15401 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15402 etc. It is assumed that operand parsing has already been done, and that the
15403 operands are in the form expected by the given opcode (this isn't necessarily
15404 the same as the form in which they were parsed, hence some massaging must
15405 take place before this function is called).
15406 Checks current arch version against that in the looked-up opcode. */
15407
15408 static void
15409 do_vfp_nsyn_opcode (const char *opname)
15410 {
15411 const struct asm_opcode *opcode;
15412
15413 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15414
15415 if (!opcode)
15416 abort ();
15417
15418 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15419 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15420 _(BAD_FPU));
15421
15422 inst.is_neon = 1;
15423
15424 if (thumb_mode)
15425 {
15426 inst.instruction = opcode->tvalue;
15427 opcode->tencode ();
15428 }
15429 else
15430 {
15431 inst.instruction = (inst.cond << 28) | opcode->avalue;
15432 opcode->aencode ();
15433 }
15434 }
15435
15436 static void
15437 do_vfp_nsyn_add_sub (enum neon_shape rs)
15438 {
15439 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15440
15441 if (rs == NS_FFF || rs == NS_HHH)
15442 {
15443 if (is_add)
15444 do_vfp_nsyn_opcode ("fadds");
15445 else
15446 do_vfp_nsyn_opcode ("fsubs");
15447
15448 /* ARMv8.2 fp16 instruction. */
15449 if (rs == NS_HHH)
15450 do_scalar_fp16_v82_encode ();
15451 }
15452 else
15453 {
15454 if (is_add)
15455 do_vfp_nsyn_opcode ("faddd");
15456 else
15457 do_vfp_nsyn_opcode ("fsubd");
15458 }
15459 }
15460
15461 /* Check operand types to see if this is a VFP instruction, and if so call
15462 PFN (). */
15463
15464 static int
15465 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15466 {
15467 enum neon_shape rs;
15468 struct neon_type_el et;
15469
15470 switch (args)
15471 {
15472 case 2:
15473 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15474 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15475 break;
15476
15477 case 3:
15478 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15479 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15480 N_F_ALL | N_KEY | N_VFP);
15481 break;
15482
15483 default:
15484 abort ();
15485 }
15486
15487 if (et.type != NT_invtype)
15488 {
15489 pfn (rs);
15490 return SUCCESS;
15491 }
15492
15493 inst.error = NULL;
15494 return FAIL;
15495 }
15496
15497 static void
15498 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15499 {
15500 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15501
15502 if (rs == NS_FFF || rs == NS_HHH)
15503 {
15504 if (is_mla)
15505 do_vfp_nsyn_opcode ("fmacs");
15506 else
15507 do_vfp_nsyn_opcode ("fnmacs");
15508
15509 /* ARMv8.2 fp16 instruction. */
15510 if (rs == NS_HHH)
15511 do_scalar_fp16_v82_encode ();
15512 }
15513 else
15514 {
15515 if (is_mla)
15516 do_vfp_nsyn_opcode ("fmacd");
15517 else
15518 do_vfp_nsyn_opcode ("fnmacd");
15519 }
15520 }
15521
15522 static void
15523 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15524 {
15525 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15526
15527 if (rs == NS_FFF || rs == NS_HHH)
15528 {
15529 if (is_fma)
15530 do_vfp_nsyn_opcode ("ffmas");
15531 else
15532 do_vfp_nsyn_opcode ("ffnmas");
15533
15534 /* ARMv8.2 fp16 instruction. */
15535 if (rs == NS_HHH)
15536 do_scalar_fp16_v82_encode ();
15537 }
15538 else
15539 {
15540 if (is_fma)
15541 do_vfp_nsyn_opcode ("ffmad");
15542 else
15543 do_vfp_nsyn_opcode ("ffnmad");
15544 }
15545 }
15546
15547 static void
15548 do_vfp_nsyn_mul (enum neon_shape rs)
15549 {
15550 if (rs == NS_FFF || rs == NS_HHH)
15551 {
15552 do_vfp_nsyn_opcode ("fmuls");
15553
15554 /* ARMv8.2 fp16 instruction. */
15555 if (rs == NS_HHH)
15556 do_scalar_fp16_v82_encode ();
15557 }
15558 else
15559 do_vfp_nsyn_opcode ("fmuld");
15560 }
15561
15562 static void
15563 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15564 {
15565 int is_neg = (inst.instruction & 0x80) != 0;
15566 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15567
15568 if (rs == NS_FF || rs == NS_HH)
15569 {
15570 if (is_neg)
15571 do_vfp_nsyn_opcode ("fnegs");
15572 else
15573 do_vfp_nsyn_opcode ("fabss");
15574
15575 /* ARMv8.2 fp16 instruction. */
15576 if (rs == NS_HH)
15577 do_scalar_fp16_v82_encode ();
15578 }
15579 else
15580 {
15581 if (is_neg)
15582 do_vfp_nsyn_opcode ("fnegd");
15583 else
15584 do_vfp_nsyn_opcode ("fabsd");
15585 }
15586 }
15587
15588 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15589 insns belong to Neon, and are handled elsewhere. */
15590
15591 static void
15592 do_vfp_nsyn_ldm_stm (int is_dbmode)
15593 {
15594 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15595 if (is_ldm)
15596 {
15597 if (is_dbmode)
15598 do_vfp_nsyn_opcode ("fldmdbs");
15599 else
15600 do_vfp_nsyn_opcode ("fldmias");
15601 }
15602 else
15603 {
15604 if (is_dbmode)
15605 do_vfp_nsyn_opcode ("fstmdbs");
15606 else
15607 do_vfp_nsyn_opcode ("fstmias");
15608 }
15609 }
15610
15611 static void
15612 do_vfp_nsyn_sqrt (void)
15613 {
15614 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15615 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15616
15617 if (rs == NS_FF || rs == NS_HH)
15618 {
15619 do_vfp_nsyn_opcode ("fsqrts");
15620
15621 /* ARMv8.2 fp16 instruction. */
15622 if (rs == NS_HH)
15623 do_scalar_fp16_v82_encode ();
15624 }
15625 else
15626 do_vfp_nsyn_opcode ("fsqrtd");
15627 }
15628
15629 static void
15630 do_vfp_nsyn_div (void)
15631 {
15632 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15633 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15634 N_F_ALL | N_KEY | N_VFP);
15635
15636 if (rs == NS_FFF || rs == NS_HHH)
15637 {
15638 do_vfp_nsyn_opcode ("fdivs");
15639
15640 /* ARMv8.2 fp16 instruction. */
15641 if (rs == NS_HHH)
15642 do_scalar_fp16_v82_encode ();
15643 }
15644 else
15645 do_vfp_nsyn_opcode ("fdivd");
15646 }
15647
15648 static void
15649 do_vfp_nsyn_nmul (void)
15650 {
15651 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15652 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15653 N_F_ALL | N_KEY | N_VFP);
15654
15655 if (rs == NS_FFF || rs == NS_HHH)
15656 {
15657 NEON_ENCODE (SINGLE, inst);
15658 do_vfp_sp_dyadic ();
15659
15660 /* ARMv8.2 fp16 instruction. */
15661 if (rs == NS_HHH)
15662 do_scalar_fp16_v82_encode ();
15663 }
15664 else
15665 {
15666 NEON_ENCODE (DOUBLE, inst);
15667 do_vfp_dp_rd_rn_rm ();
15668 }
15669 do_vfp_cond_or_thumb ();
15670
15671 }
15672
15673 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15674 (0, 1, 2, 3). */
15675
15676 static unsigned
15677 neon_logbits (unsigned x)
15678 {
15679 return ffs (x) - 4;
15680 }
15681
15682 #define LOW4(R) ((R) & 0xf)
15683 #define HI1(R) (((R) >> 4) & 1)
15684
15685 static unsigned
15686 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15687 {
15688 switch (et.type)
15689 {
15690 default:
15691 first_error (BAD_EL_TYPE);
15692 return 0;
15693 case NT_float:
15694 switch (inst.operands[0].imm)
15695 {
15696 default:
15697 first_error (_("invalid condition"));
15698 return 0;
15699 case 0x0:
15700 /* eq. */
15701 return 0;
15702 case 0x1:
15703 /* ne. */
15704 return 1;
15705 case 0xa:
15706 /* ge/ */
15707 return 4;
15708 case 0xb:
15709 /* lt. */
15710 return 5;
15711 case 0xc:
15712 /* gt. */
15713 return 6;
15714 case 0xd:
15715 /* le. */
15716 return 7;
15717 }
15718 case NT_integer:
15719 /* only accept eq and ne. */
15720 if (inst.operands[0].imm > 1)
15721 {
15722 first_error (_("invalid condition"));
15723 return 0;
15724 }
15725 return inst.operands[0].imm;
15726 case NT_unsigned:
15727 if (inst.operands[0].imm == 0x2)
15728 return 2;
15729 else if (inst.operands[0].imm == 0x8)
15730 return 3;
15731 else
15732 {
15733 first_error (_("invalid condition"));
15734 return 0;
15735 }
15736 case NT_signed:
15737 switch (inst.operands[0].imm)
15738 {
15739 default:
15740 first_error (_("invalid condition"));
15741 return 0;
15742 case 0xa:
15743 /* ge. */
15744 return 4;
15745 case 0xb:
15746 /* lt. */
15747 return 5;
15748 case 0xc:
15749 /* gt. */
15750 return 6;
15751 case 0xd:
15752 /* le. */
15753 return 7;
15754 }
15755 }
15756 /* Should be unreachable. */
15757 abort ();
15758 }
15759
15760 static void
15761 do_mve_vpt (void)
15762 {
15763 /* We are dealing with a vector predicated block. */
15764 if (inst.operands[0].present)
15765 {
15766 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15767 struct neon_type_el et
15768 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15769 N_EQK);
15770
15771 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15772
15773 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15774
15775 if (et.type == NT_invtype)
15776 return;
15777
15778 if (et.type == NT_float)
15779 {
15780 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15781 BAD_FPU);
15782 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15783 inst.instruction |= (et.size == 16) << 28;
15784 inst.instruction |= 0x3 << 20;
15785 }
15786 else
15787 {
15788 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15789 BAD_EL_TYPE);
15790 inst.instruction |= 1 << 28;
15791 inst.instruction |= neon_logbits (et.size) << 20;
15792 }
15793
15794 if (inst.operands[2].isquad)
15795 {
15796 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15797 inst.instruction |= LOW4 (inst.operands[2].reg);
15798 inst.instruction |= (fcond & 0x2) >> 1;
15799 }
15800 else
15801 {
15802 if (inst.operands[2].reg == REG_SP)
15803 as_tsktsk (MVE_BAD_SP);
15804 inst.instruction |= 1 << 6;
15805 inst.instruction |= (fcond & 0x2) << 4;
15806 inst.instruction |= inst.operands[2].reg;
15807 }
15808 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15809 inst.instruction |= (fcond & 0x4) << 10;
15810 inst.instruction |= (fcond & 0x1) << 7;
15811
15812 }
15813 set_pred_insn_type (VPT_INSN);
15814 now_pred.cc = 0;
15815 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15816 | ((inst.instruction & 0xe000) >> 13);
15817 now_pred.warn_deprecated = FALSE;
15818 now_pred.type = VECTOR_PRED;
15819 inst.is_neon = 1;
15820 }
15821
15822 static void
15823 do_mve_vcmp (void)
15824 {
15825 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15826 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15827 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15828 if (!inst.operands[2].present)
15829 first_error (_("MVE vector or ARM register expected"));
15830 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15831
15832 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15833 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15834 && inst.operands[1].isquad)
15835 {
15836 inst.instruction = N_MNEM_vcmp;
15837 inst.cond = 0x10;
15838 }
15839
15840 if (inst.cond > COND_ALWAYS)
15841 inst.pred_insn_type = INSIDE_VPT_INSN;
15842 else
15843 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15844
15845 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15846 struct neon_type_el et
15847 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15848 N_EQK);
15849
15850 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15851 && !inst.operands[2].iszr, BAD_PC);
15852
15853 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15854
15855 inst.instruction = 0xee010f00;
15856 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15857 inst.instruction |= (fcond & 0x4) << 10;
15858 inst.instruction |= (fcond & 0x1) << 7;
15859 if (et.type == NT_float)
15860 {
15861 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15862 BAD_FPU);
15863 inst.instruction |= (et.size == 16) << 28;
15864 inst.instruction |= 0x3 << 20;
15865 }
15866 else
15867 {
15868 inst.instruction |= 1 << 28;
15869 inst.instruction |= neon_logbits (et.size) << 20;
15870 }
15871 if (inst.operands[2].isquad)
15872 {
15873 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15874 inst.instruction |= (fcond & 0x2) >> 1;
15875 inst.instruction |= LOW4 (inst.operands[2].reg);
15876 }
15877 else
15878 {
15879 if (inst.operands[2].reg == REG_SP)
15880 as_tsktsk (MVE_BAD_SP);
15881 inst.instruction |= 1 << 6;
15882 inst.instruction |= (fcond & 0x2) << 4;
15883 inst.instruction |= inst.operands[2].reg;
15884 }
15885
15886 inst.is_neon = 1;
15887 return;
15888 }
15889
15890 static void
15891 do_mve_vmaxa_vmina (void)
15892 {
15893 if (inst.cond > COND_ALWAYS)
15894 inst.pred_insn_type = INSIDE_VPT_INSN;
15895 else
15896 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15897
15898 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15899 struct neon_type_el et
15900 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15901
15902 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15903 inst.instruction |= neon_logbits (et.size) << 18;
15904 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15905 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15906 inst.instruction |= LOW4 (inst.operands[1].reg);
15907 inst.is_neon = 1;
15908 }
15909
15910 static void
15911 do_mve_vfmas (void)
15912 {
15913 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15914 struct neon_type_el et
15915 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15916
15917 if (inst.cond > COND_ALWAYS)
15918 inst.pred_insn_type = INSIDE_VPT_INSN;
15919 else
15920 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15921
15922 if (inst.operands[2].reg == REG_SP)
15923 as_tsktsk (MVE_BAD_SP);
15924 else if (inst.operands[2].reg == REG_PC)
15925 as_tsktsk (MVE_BAD_PC);
15926
15927 inst.instruction |= (et.size == 16) << 28;
15928 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15929 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15930 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15931 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15932 inst.instruction |= inst.operands[2].reg;
15933 inst.is_neon = 1;
15934 }
15935
15936 static void
15937 do_mve_viddup (void)
15938 {
15939 if (inst.cond > COND_ALWAYS)
15940 inst.pred_insn_type = INSIDE_VPT_INSN;
15941 else
15942 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15943
15944 unsigned imm = inst.relocs[0].exp.X_add_number;
15945 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15946 _("immediate must be either 1, 2, 4 or 8"));
15947
15948 enum neon_shape rs;
15949 struct neon_type_el et;
15950 unsigned Rm;
15951 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15952 {
15953 rs = neon_select_shape (NS_QRI, NS_NULL);
15954 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15955 Rm = 7;
15956 }
15957 else
15958 {
15959 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15960 if (inst.operands[2].reg == REG_SP)
15961 as_tsktsk (MVE_BAD_SP);
15962 else if (inst.operands[2].reg == REG_PC)
15963 first_error (BAD_PC);
15964
15965 rs = neon_select_shape (NS_QRRI, NS_NULL);
15966 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15967 Rm = inst.operands[2].reg >> 1;
15968 }
15969 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15970 inst.instruction |= neon_logbits (et.size) << 20;
15971 inst.instruction |= inst.operands[1].reg << 16;
15972 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15973 inst.instruction |= (imm > 2) << 7;
15974 inst.instruction |= Rm << 1;
15975 inst.instruction |= (imm == 2 || imm == 8);
15976 inst.is_neon = 1;
15977 }
15978
15979 static void
15980 do_mve_vmlas (void)
15981 {
15982 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15983 struct neon_type_el et
15984 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15985
15986 if (inst.operands[2].reg == REG_PC)
15987 as_tsktsk (MVE_BAD_PC);
15988 else if (inst.operands[2].reg == REG_SP)
15989 as_tsktsk (MVE_BAD_SP);
15990
15991 if (inst.cond > COND_ALWAYS)
15992 inst.pred_insn_type = INSIDE_VPT_INSN;
15993 else
15994 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15995
15996 inst.instruction |= (et.type == NT_unsigned) << 28;
15997 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15998 inst.instruction |= neon_logbits (et.size) << 20;
15999 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16000 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16001 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16002 inst.instruction |= inst.operands[2].reg;
16003 inst.is_neon = 1;
16004 }
16005
16006 static void
16007 do_mve_vshll (void)
16008 {
16009 struct neon_type_el et
16010 = neon_check_type (2, NS_QQI, N_EQK, N_S8 | N_U8 | N_S16 | N_U16 | N_KEY);
16011
16012 if (inst.cond > COND_ALWAYS)
16013 inst.pred_insn_type = INSIDE_VPT_INSN;
16014 else
16015 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16016
16017 int imm = inst.operands[2].imm;
16018 constraint (imm < 1 || (unsigned)imm > et.size,
16019 _("immediate value out of range"));
16020
16021 if ((unsigned)imm == et.size)
16022 {
16023 inst.instruction |= neon_logbits (et.size) << 18;
16024 inst.instruction |= 0x110001;
16025 }
16026 else
16027 {
16028 inst.instruction |= (et.size + imm) << 16;
16029 inst.instruction |= 0x800140;
16030 }
16031
16032 inst.instruction |= (et.type == NT_unsigned) << 28;
16033 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16034 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16035 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16036 inst.instruction |= LOW4 (inst.operands[1].reg);
16037 inst.is_neon = 1;
16038 }
16039
16040 static void
16041 do_mve_vshlc (void)
16042 {
16043 if (inst.cond > COND_ALWAYS)
16044 inst.pred_insn_type = INSIDE_VPT_INSN;
16045 else
16046 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16047
16048 if (inst.operands[1].reg == REG_PC)
16049 as_tsktsk (MVE_BAD_PC);
16050 else if (inst.operands[1].reg == REG_SP)
16051 as_tsktsk (MVE_BAD_SP);
16052
16053 int imm = inst.operands[2].imm;
16054 constraint (imm < 1 || imm > 32, _("immediate value out of range"));
16055
16056 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16057 inst.instruction |= (imm & 0x1f) << 16;
16058 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16059 inst.instruction |= inst.operands[1].reg;
16060 inst.is_neon = 1;
16061 }
16062
16063 static void
16064 do_mve_vshrn (void)
16065 {
16066 unsigned types;
16067 switch (inst.instruction)
16068 {
16069 case M_MNEM_vshrnt:
16070 case M_MNEM_vshrnb:
16071 case M_MNEM_vrshrnt:
16072 case M_MNEM_vrshrnb:
16073 types = N_I16 | N_I32;
16074 break;
16075 case M_MNEM_vqshrnt:
16076 case M_MNEM_vqshrnb:
16077 case M_MNEM_vqrshrnt:
16078 case M_MNEM_vqrshrnb:
16079 types = N_U16 | N_U32 | N_S16 | N_S32;
16080 break;
16081 case M_MNEM_vqshrunt:
16082 case M_MNEM_vqshrunb:
16083 case M_MNEM_vqrshrunt:
16084 case M_MNEM_vqrshrunb:
16085 types = N_S16 | N_S32;
16086 break;
16087 default:
16088 abort ();
16089 }
16090
16091 struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY);
16092
16093 if (inst.cond > COND_ALWAYS)
16094 inst.pred_insn_type = INSIDE_VPT_INSN;
16095 else
16096 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16097
16098 unsigned Qd = inst.operands[0].reg;
16099 unsigned Qm = inst.operands[1].reg;
16100 unsigned imm = inst.operands[2].imm;
16101 constraint (imm < 1 || ((unsigned) imm) > (et.size / 2),
16102 et.size == 16
16103 ? _("immediate operand expected in the range [1,8]")
16104 : _("immediate operand expected in the range [1,16]"));
16105
16106 inst.instruction |= (et.type == NT_unsigned) << 28;
16107 inst.instruction |= HI1 (Qd) << 22;
16108 inst.instruction |= (et.size - imm) << 16;
16109 inst.instruction |= LOW4 (Qd) << 12;
16110 inst.instruction |= HI1 (Qm) << 5;
16111 inst.instruction |= LOW4 (Qm);
16112 inst.is_neon = 1;
16113 }
16114
16115 static void
16116 do_mve_vqmovn (void)
16117 {
16118 struct neon_type_el et;
16119 if (inst.instruction == M_MNEM_vqmovnt
16120 || inst.instruction == M_MNEM_vqmovnb)
16121 et = neon_check_type (2, NS_QQ, N_EQK,
16122 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
16123 else
16124 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
16125
16126 if (inst.cond > COND_ALWAYS)
16127 inst.pred_insn_type = INSIDE_VPT_INSN;
16128 else
16129 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16130
16131 inst.instruction |= (et.type == NT_unsigned) << 28;
16132 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16133 inst.instruction |= (et.size == 32) << 18;
16134 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16135 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16136 inst.instruction |= LOW4 (inst.operands[1].reg);
16137 inst.is_neon = 1;
16138 }
16139
16140 static void
16141 do_mve_vpsel (void)
16142 {
16143 neon_select_shape (NS_QQQ, NS_NULL);
16144
16145 if (inst.cond > COND_ALWAYS)
16146 inst.pred_insn_type = INSIDE_VPT_INSN;
16147 else
16148 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16149
16150 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16151 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16152 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16153 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16154 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16155 inst.instruction |= LOW4 (inst.operands[2].reg);
16156 inst.is_neon = 1;
16157 }
16158
16159 static void
16160 do_mve_vpnot (void)
16161 {
16162 if (inst.cond > COND_ALWAYS)
16163 inst.pred_insn_type = INSIDE_VPT_INSN;
16164 else
16165 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16166 }
16167
16168 static void
16169 do_mve_vmaxnma_vminnma (void)
16170 {
16171 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
16172 struct neon_type_el et
16173 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
16174
16175 if (inst.cond > COND_ALWAYS)
16176 inst.pred_insn_type = INSIDE_VPT_INSN;
16177 else
16178 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16179
16180 inst.instruction |= (et.size == 16) << 28;
16181 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16182 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16183 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16184 inst.instruction |= LOW4 (inst.operands[1].reg);
16185 inst.is_neon = 1;
16186 }
16187
16188 static void
16189 do_mve_vcmul (void)
16190 {
16191 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
16192 struct neon_type_el et
16193 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
16194
16195 if (inst.cond > COND_ALWAYS)
16196 inst.pred_insn_type = INSIDE_VPT_INSN;
16197 else
16198 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16199
16200 unsigned rot = inst.relocs[0].exp.X_add_number;
16201 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
16202 _("immediate out of range"));
16203
16204 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
16205 || inst.operands[0].reg == inst.operands[2].reg))
16206 as_tsktsk (BAD_MVE_SRCDEST);
16207
16208 inst.instruction |= (et.size == 32) << 28;
16209 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16210 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16211 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16212 inst.instruction |= (rot > 90) << 12;
16213 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16214 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16215 inst.instruction |= LOW4 (inst.operands[2].reg);
16216 inst.instruction |= (rot == 90 || rot == 270);
16217 inst.is_neon = 1;
16218 }
16219
16220 /* To handle the Low Overhead Loop instructions
16221 in Armv8.1-M Mainline and MVE. */
16222 static void
16223 do_t_loloop (void)
16224 {
16225 unsigned long insn = inst.instruction;
16226
16227 inst.instruction = THUMB_OP32 (inst.instruction);
16228
16229 if (insn == T_MNEM_lctp)
16230 return;
16231
16232 set_pred_insn_type (MVE_OUTSIDE_PRED_INSN);
16233
16234 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16235 {
16236 struct neon_type_el et
16237 = neon_check_type (2, NS_RR, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16238 inst.instruction |= neon_logbits (et.size) << 20;
16239 inst.is_neon = 1;
16240 }
16241
16242 switch (insn)
16243 {
16244 case T_MNEM_letp:
16245 constraint (!inst.operands[0].present,
16246 _("expected LR"));
16247 /* fall through. */
16248 case T_MNEM_le:
16249 /* le <label>. */
16250 if (!inst.operands[0].present)
16251 inst.instruction |= 1 << 21;
16252
16253 v8_1_loop_reloc (TRUE);
16254 break;
16255
16256 case T_MNEM_wls:
16257 case T_MNEM_wlstp:
16258 v8_1_loop_reloc (FALSE);
16259 /* fall through. */
16260 case T_MNEM_dlstp:
16261 case T_MNEM_dls:
16262 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
16263
16264 if (insn == T_MNEM_wlstp || insn == T_MNEM_dlstp)
16265 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
16266 else if (inst.operands[1].reg == REG_PC)
16267 as_tsktsk (MVE_BAD_PC);
16268 if (inst.operands[1].reg == REG_SP)
16269 as_tsktsk (MVE_BAD_SP);
16270
16271 inst.instruction |= (inst.operands[1].reg << 16);
16272 break;
16273
16274 default:
16275 abort ();
16276 }
16277 }
16278
16279
16280 static void
16281 do_vfp_nsyn_cmp (void)
16282 {
16283 enum neon_shape rs;
16284 if (!inst.operands[0].isreg)
16285 {
16286 do_mve_vcmp ();
16287 return;
16288 }
16289 else
16290 {
16291 constraint (inst.operands[2].present, BAD_SYNTAX);
16292 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
16293 BAD_FPU);
16294 }
16295
16296 if (inst.operands[1].isreg)
16297 {
16298 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
16299 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
16300
16301 if (rs == NS_FF || rs == NS_HH)
16302 {
16303 NEON_ENCODE (SINGLE, inst);
16304 do_vfp_sp_monadic ();
16305 }
16306 else
16307 {
16308 NEON_ENCODE (DOUBLE, inst);
16309 do_vfp_dp_rd_rm ();
16310 }
16311 }
16312 else
16313 {
16314 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
16315 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
16316
16317 switch (inst.instruction & 0x0fffffff)
16318 {
16319 case N_MNEM_vcmp:
16320 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
16321 break;
16322 case N_MNEM_vcmpe:
16323 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
16324 break;
16325 default:
16326 abort ();
16327 }
16328
16329 if (rs == NS_FI || rs == NS_HI)
16330 {
16331 NEON_ENCODE (SINGLE, inst);
16332 do_vfp_sp_compare_z ();
16333 }
16334 else
16335 {
16336 NEON_ENCODE (DOUBLE, inst);
16337 do_vfp_dp_rd ();
16338 }
16339 }
16340 do_vfp_cond_or_thumb ();
16341
16342 /* ARMv8.2 fp16 instruction. */
16343 if (rs == NS_HI || rs == NS_HH)
16344 do_scalar_fp16_v82_encode ();
16345 }
16346
16347 static void
16348 nsyn_insert_sp (void)
16349 {
16350 inst.operands[1] = inst.operands[0];
16351 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
16352 inst.operands[0].reg = REG_SP;
16353 inst.operands[0].isreg = 1;
16354 inst.operands[0].writeback = 1;
16355 inst.operands[0].present = 1;
16356 }
16357
16358 static void
16359 do_vfp_nsyn_push (void)
16360 {
16361 nsyn_insert_sp ();
16362
16363 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16364 _("register list must contain at least 1 and at most 16 "
16365 "registers"));
16366
16367 if (inst.operands[1].issingle)
16368 do_vfp_nsyn_opcode ("fstmdbs");
16369 else
16370 do_vfp_nsyn_opcode ("fstmdbd");
16371 }
16372
16373 static void
16374 do_vfp_nsyn_pop (void)
16375 {
16376 nsyn_insert_sp ();
16377
16378 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16379 _("register list must contain at least 1 and at most 16 "
16380 "registers"));
16381
16382 if (inst.operands[1].issingle)
16383 do_vfp_nsyn_opcode ("fldmias");
16384 else
16385 do_vfp_nsyn_opcode ("fldmiad");
16386 }
16387
16388 /* Fix up Neon data-processing instructions, ORing in the correct bits for
16389 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16390
16391 static void
16392 neon_dp_fixup (struct arm_it* insn)
16393 {
16394 unsigned int i = insn->instruction;
16395 insn->is_neon = 1;
16396
16397 if (thumb_mode)
16398 {
16399 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16400 if (i & (1 << 24))
16401 i |= 1 << 28;
16402
16403 i &= ~(1 << 24);
16404
16405 i |= 0xef000000;
16406 }
16407 else
16408 i |= 0xf2000000;
16409
16410 insn->instruction = i;
16411 }
16412
16413 static void
16414 mve_encode_qqr (int size, int U, int fp)
16415 {
16416 if (inst.operands[2].reg == REG_SP)
16417 as_tsktsk (MVE_BAD_SP);
16418 else if (inst.operands[2].reg == REG_PC)
16419 as_tsktsk (MVE_BAD_PC);
16420
16421 if (fp)
16422 {
16423 /* vadd. */
16424 if (((unsigned)inst.instruction) == 0xd00)
16425 inst.instruction = 0xee300f40;
16426 /* vsub. */
16427 else if (((unsigned)inst.instruction) == 0x200d00)
16428 inst.instruction = 0xee301f40;
16429 /* vmul. */
16430 else if (((unsigned)inst.instruction) == 0x1000d10)
16431 inst.instruction = 0xee310e60;
16432
16433 /* Setting size which is 1 for F16 and 0 for F32. */
16434 inst.instruction |= (size == 16) << 28;
16435 }
16436 else
16437 {
16438 /* vadd. */
16439 if (((unsigned)inst.instruction) == 0x800)
16440 inst.instruction = 0xee010f40;
16441 /* vsub. */
16442 else if (((unsigned)inst.instruction) == 0x1000800)
16443 inst.instruction = 0xee011f40;
16444 /* vhadd. */
16445 else if (((unsigned)inst.instruction) == 0)
16446 inst.instruction = 0xee000f40;
16447 /* vhsub. */
16448 else if (((unsigned)inst.instruction) == 0x200)
16449 inst.instruction = 0xee001f40;
16450 /* vmla. */
16451 else if (((unsigned)inst.instruction) == 0x900)
16452 inst.instruction = 0xee010e40;
16453 /* vmul. */
16454 else if (((unsigned)inst.instruction) == 0x910)
16455 inst.instruction = 0xee011e60;
16456 /* vqadd. */
16457 else if (((unsigned)inst.instruction) == 0x10)
16458 inst.instruction = 0xee000f60;
16459 /* vqsub. */
16460 else if (((unsigned)inst.instruction) == 0x210)
16461 inst.instruction = 0xee001f60;
16462 /* vqrdmlah. */
16463 else if (((unsigned)inst.instruction) == 0x3000b10)
16464 inst.instruction = 0xee000e40;
16465 /* vqdmulh. */
16466 else if (((unsigned)inst.instruction) == 0x0000b00)
16467 inst.instruction = 0xee010e60;
16468 /* vqrdmulh. */
16469 else if (((unsigned)inst.instruction) == 0x1000b00)
16470 inst.instruction = 0xfe010e60;
16471
16472 /* Set U-bit. */
16473 inst.instruction |= U << 28;
16474
16475 /* Setting bits for size. */
16476 inst.instruction |= neon_logbits (size) << 20;
16477 }
16478 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16479 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16480 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16481 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16482 inst.instruction |= inst.operands[2].reg;
16483 inst.is_neon = 1;
16484 }
16485
16486 static void
16487 mve_encode_rqq (unsigned bit28, unsigned size)
16488 {
16489 inst.instruction |= bit28 << 28;
16490 inst.instruction |= neon_logbits (size) << 20;
16491 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16492 inst.instruction |= inst.operands[0].reg << 12;
16493 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16494 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16495 inst.instruction |= LOW4 (inst.operands[2].reg);
16496 inst.is_neon = 1;
16497 }
16498
16499 static void
16500 mve_encode_qqq (int ubit, int size)
16501 {
16502
16503 inst.instruction |= (ubit != 0) << 28;
16504 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16505 inst.instruction |= neon_logbits (size) << 20;
16506 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16507 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16508 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16509 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16510 inst.instruction |= LOW4 (inst.operands[2].reg);
16511
16512 inst.is_neon = 1;
16513 }
16514
16515 static void
16516 mve_encode_rq (unsigned bit28, unsigned size)
16517 {
16518 inst.instruction |= bit28 << 28;
16519 inst.instruction |= neon_logbits (size) << 18;
16520 inst.instruction |= inst.operands[0].reg << 12;
16521 inst.instruction |= LOW4 (inst.operands[1].reg);
16522 inst.is_neon = 1;
16523 }
16524
16525 static void
16526 mve_encode_rrqq (unsigned U, unsigned size)
16527 {
16528 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16529
16530 inst.instruction |= U << 28;
16531 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16532 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16533 inst.instruction |= (size == 32) << 16;
16534 inst.instruction |= inst.operands[0].reg << 12;
16535 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16536 inst.instruction |= inst.operands[3].reg;
16537 inst.is_neon = 1;
16538 }
16539
16540 /* Encode insns with bit pattern:
16541
16542 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16543 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16544
16545 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16546 different meaning for some instruction. */
16547
16548 static void
16549 neon_three_same (int isquad, int ubit, int size)
16550 {
16551 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16552 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16553 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16554 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16555 inst.instruction |= LOW4 (inst.operands[2].reg);
16556 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16557 inst.instruction |= (isquad != 0) << 6;
16558 inst.instruction |= (ubit != 0) << 24;
16559 if (size != -1)
16560 inst.instruction |= neon_logbits (size) << 20;
16561
16562 neon_dp_fixup (&inst);
16563 }
16564
16565 /* Encode instructions of the form:
16566
16567 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16568 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16569
16570 Don't write size if SIZE == -1. */
16571
16572 static void
16573 neon_two_same (int qbit, int ubit, int size)
16574 {
16575 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16576 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16577 inst.instruction |= LOW4 (inst.operands[1].reg);
16578 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16579 inst.instruction |= (qbit != 0) << 6;
16580 inst.instruction |= (ubit != 0) << 24;
16581
16582 if (size != -1)
16583 inst.instruction |= neon_logbits (size) << 18;
16584
16585 neon_dp_fixup (&inst);
16586 }
16587
16588 enum vfp_or_neon_is_neon_bits
16589 {
16590 NEON_CHECK_CC = 1,
16591 NEON_CHECK_ARCH = 2,
16592 NEON_CHECK_ARCH8 = 4
16593 };
16594
16595 /* Call this function if an instruction which may have belonged to the VFP or
16596 Neon instruction sets, but turned out to be a Neon instruction (due to the
16597 operand types involved, etc.). We have to check and/or fix-up a couple of
16598 things:
16599
16600 - Make sure the user hasn't attempted to make a Neon instruction
16601 conditional.
16602 - Alter the value in the condition code field if necessary.
16603 - Make sure that the arch supports Neon instructions.
16604
16605 Which of these operations take place depends on bits from enum
16606 vfp_or_neon_is_neon_bits.
16607
16608 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16609 current instruction's condition is COND_ALWAYS, the condition field is
16610 changed to inst.uncond_value. This is necessary because instructions shared
16611 between VFP and Neon may be conditional for the VFP variants only, and the
16612 unconditional Neon version must have, e.g., 0xF in the condition field. */
16613
16614 static int
16615 vfp_or_neon_is_neon (unsigned check)
16616 {
16617 /* Conditions are always legal in Thumb mode (IT blocks). */
16618 if (!thumb_mode && (check & NEON_CHECK_CC))
16619 {
16620 if (inst.cond != COND_ALWAYS)
16621 {
16622 first_error (_(BAD_COND));
16623 return FAIL;
16624 }
16625 if (inst.uncond_value != -1)
16626 inst.instruction |= inst.uncond_value << 28;
16627 }
16628
16629
16630 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16631 || ((check & NEON_CHECK_ARCH8)
16632 && !mark_feature_used (&fpu_neon_ext_armv8)))
16633 {
16634 first_error (_(BAD_FPU));
16635 return FAIL;
16636 }
16637
16638 return SUCCESS;
16639 }
16640
16641
16642 /* Return TRUE if the SIMD instruction is available for the current
16643 cpu_variant. FP is set to TRUE if this is a SIMD floating-point
16644 instruction. CHECK contains th. CHECK contains the set of bits to pass to
16645 vfp_or_neon_is_neon for the NEON specific checks. */
16646
16647 static bfd_boolean
16648 check_simd_pred_availability (int fp, unsigned check)
16649 {
16650 if (inst.cond > COND_ALWAYS)
16651 {
16652 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16653 {
16654 inst.error = BAD_FPU;
16655 return FALSE;
16656 }
16657 inst.pred_insn_type = INSIDE_VPT_INSN;
16658 }
16659 else if (inst.cond < COND_ALWAYS)
16660 {
16661 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16662 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16663 else if (vfp_or_neon_is_neon (check) == FAIL)
16664 return FALSE;
16665 }
16666 else
16667 {
16668 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16669 && vfp_or_neon_is_neon (check) == FAIL)
16670 return FALSE;
16671
16672 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16673 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16674 }
16675 return TRUE;
16676 }
16677
16678 /* Neon instruction encoders, in approximate order of appearance. */
16679
16680 static void
16681 do_neon_dyadic_i_su (void)
16682 {
16683 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16684 return;
16685
16686 enum neon_shape rs;
16687 struct neon_type_el et;
16688 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16689 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16690 else
16691 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16692
16693 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16694
16695
16696 if (rs != NS_QQR)
16697 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16698 else
16699 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16700 }
16701
16702 static void
16703 do_neon_dyadic_i64_su (void)
16704 {
16705 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
16706 return;
16707 enum neon_shape rs;
16708 struct neon_type_el et;
16709 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16710 {
16711 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16712 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16713 }
16714 else
16715 {
16716 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16717 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16718 }
16719 if (rs == NS_QQR)
16720 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16721 else
16722 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16723 }
16724
16725 static void
16726 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16727 unsigned immbits)
16728 {
16729 unsigned size = et.size >> 3;
16730 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16731 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16732 inst.instruction |= LOW4 (inst.operands[1].reg);
16733 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16734 inst.instruction |= (isquad != 0) << 6;
16735 inst.instruction |= immbits << 16;
16736 inst.instruction |= (size >> 3) << 7;
16737 inst.instruction |= (size & 0x7) << 19;
16738 if (write_ubit)
16739 inst.instruction |= (uval != 0) << 24;
16740
16741 neon_dp_fixup (&inst);
16742 }
16743
16744 static void
16745 do_neon_shl (void)
16746 {
16747 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16748 return;
16749
16750 if (!inst.operands[2].isreg)
16751 {
16752 enum neon_shape rs;
16753 struct neon_type_el et;
16754 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16755 {
16756 rs = neon_select_shape (NS_QQI, NS_NULL);
16757 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_MVE);
16758 }
16759 else
16760 {
16761 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16762 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16763 }
16764 int imm = inst.operands[2].imm;
16765
16766 constraint (imm < 0 || (unsigned)imm >= et.size,
16767 _("immediate out of range for shift"));
16768 NEON_ENCODE (IMMED, inst);
16769 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16770 }
16771 else
16772 {
16773 enum neon_shape rs;
16774 struct neon_type_el et;
16775 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16776 {
16777 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16778 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16779 }
16780 else
16781 {
16782 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16783 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16784 }
16785
16786
16787 if (rs == NS_QQR)
16788 {
16789 constraint (inst.operands[0].reg != inst.operands[1].reg,
16790 _("invalid instruction shape"));
16791 if (inst.operands[2].reg == REG_SP)
16792 as_tsktsk (MVE_BAD_SP);
16793 else if (inst.operands[2].reg == REG_PC)
16794 as_tsktsk (MVE_BAD_PC);
16795
16796 inst.instruction = 0xee311e60;
16797 inst.instruction |= (et.type == NT_unsigned) << 28;
16798 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16799 inst.instruction |= neon_logbits (et.size) << 18;
16800 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16801 inst.instruction |= inst.operands[2].reg;
16802 inst.is_neon = 1;
16803 }
16804 else
16805 {
16806 unsigned int tmp;
16807
16808 /* VSHL/VQSHL 3-register variants have syntax such as:
16809 vshl.xx Dd, Dm, Dn
16810 whereas other 3-register operations encoded by neon_three_same have
16811 syntax like:
16812 vadd.xx Dd, Dn, Dm
16813 (i.e. with Dn & Dm reversed). Swap operands[1].reg and
16814 operands[2].reg here. */
16815 tmp = inst.operands[2].reg;
16816 inst.operands[2].reg = inst.operands[1].reg;
16817 inst.operands[1].reg = tmp;
16818 NEON_ENCODE (INTEGER, inst);
16819 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16820 }
16821 }
16822 }
16823
16824 static void
16825 do_neon_qshl (void)
16826 {
16827 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16828 return;
16829
16830 if (!inst.operands[2].isreg)
16831 {
16832 enum neon_shape rs;
16833 struct neon_type_el et;
16834 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16835 {
16836 rs = neon_select_shape (NS_QQI, NS_NULL);
16837 et = neon_check_type (2, rs, N_EQK, N_KEY | N_SU_MVE);
16838 }
16839 else
16840 {
16841 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16842 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16843 }
16844 int imm = inst.operands[2].imm;
16845
16846 constraint (imm < 0 || (unsigned)imm >= et.size,
16847 _("immediate out of range for shift"));
16848 NEON_ENCODE (IMMED, inst);
16849 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
16850 }
16851 else
16852 {
16853 enum neon_shape rs;
16854 struct neon_type_el et;
16855
16856 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16857 {
16858 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16859 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16860 }
16861 else
16862 {
16863 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16864 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16865 }
16866
16867 if (rs == NS_QQR)
16868 {
16869 constraint (inst.operands[0].reg != inst.operands[1].reg,
16870 _("invalid instruction shape"));
16871 if (inst.operands[2].reg == REG_SP)
16872 as_tsktsk (MVE_BAD_SP);
16873 else if (inst.operands[2].reg == REG_PC)
16874 as_tsktsk (MVE_BAD_PC);
16875
16876 inst.instruction = 0xee311ee0;
16877 inst.instruction |= (et.type == NT_unsigned) << 28;
16878 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16879 inst.instruction |= neon_logbits (et.size) << 18;
16880 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16881 inst.instruction |= inst.operands[2].reg;
16882 inst.is_neon = 1;
16883 }
16884 else
16885 {
16886 unsigned int tmp;
16887
16888 /* See note in do_neon_shl. */
16889 tmp = inst.operands[2].reg;
16890 inst.operands[2].reg = inst.operands[1].reg;
16891 inst.operands[1].reg = tmp;
16892 NEON_ENCODE (INTEGER, inst);
16893 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16894 }
16895 }
16896 }
16897
16898 static void
16899 do_neon_rshl (void)
16900 {
16901 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
16902 return;
16903
16904 enum neon_shape rs;
16905 struct neon_type_el et;
16906 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16907 {
16908 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16909 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16910 }
16911 else
16912 {
16913 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16914 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16915 }
16916
16917 unsigned int tmp;
16918
16919 if (rs == NS_QQR)
16920 {
16921 if (inst.operands[2].reg == REG_PC)
16922 as_tsktsk (MVE_BAD_PC);
16923 else if (inst.operands[2].reg == REG_SP)
16924 as_tsktsk (MVE_BAD_SP);
16925
16926 constraint (inst.operands[0].reg != inst.operands[1].reg,
16927 _("invalid instruction shape"));
16928
16929 if (inst.instruction == 0x0000510)
16930 /* We are dealing with vqrshl. */
16931 inst.instruction = 0xee331ee0;
16932 else
16933 /* We are dealing with vrshl. */
16934 inst.instruction = 0xee331e60;
16935
16936 inst.instruction |= (et.type == NT_unsigned) << 28;
16937 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16938 inst.instruction |= neon_logbits (et.size) << 18;
16939 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16940 inst.instruction |= inst.operands[2].reg;
16941 inst.is_neon = 1;
16942 }
16943 else
16944 {
16945 tmp = inst.operands[2].reg;
16946 inst.operands[2].reg = inst.operands[1].reg;
16947 inst.operands[1].reg = tmp;
16948 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16949 }
16950 }
16951
16952 static int
16953 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16954 {
16955 /* Handle .I8 pseudo-instructions. */
16956 if (size == 8)
16957 {
16958 /* Unfortunately, this will make everything apart from zero out-of-range.
16959 FIXME is this the intended semantics? There doesn't seem much point in
16960 accepting .I8 if so. */
16961 immediate |= immediate << 8;
16962 size = 16;
16963 }
16964
16965 if (size >= 32)
16966 {
16967 if (immediate == (immediate & 0x000000ff))
16968 {
16969 *immbits = immediate;
16970 return 0x1;
16971 }
16972 else if (immediate == (immediate & 0x0000ff00))
16973 {
16974 *immbits = immediate >> 8;
16975 return 0x3;
16976 }
16977 else if (immediate == (immediate & 0x00ff0000))
16978 {
16979 *immbits = immediate >> 16;
16980 return 0x5;
16981 }
16982 else if (immediate == (immediate & 0xff000000))
16983 {
16984 *immbits = immediate >> 24;
16985 return 0x7;
16986 }
16987 if ((immediate & 0xffff) != (immediate >> 16))
16988 goto bad_immediate;
16989 immediate &= 0xffff;
16990 }
16991
16992 if (immediate == (immediate & 0x000000ff))
16993 {
16994 *immbits = immediate;
16995 return 0x9;
16996 }
16997 else if (immediate == (immediate & 0x0000ff00))
16998 {
16999 *immbits = immediate >> 8;
17000 return 0xb;
17001 }
17002
17003 bad_immediate:
17004 first_error (_("immediate value out of range"));
17005 return FAIL;
17006 }
17007
17008 static void
17009 do_neon_logic (void)
17010 {
17011 if (inst.operands[2].present && inst.operands[2].isreg)
17012 {
17013 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17014 if (rs == NS_QQQ
17015 && !check_simd_pred_availability (FALSE,
17016 NEON_CHECK_ARCH | NEON_CHECK_CC))
17017 return;
17018 else if (rs != NS_QQQ
17019 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
17020 first_error (BAD_FPU);
17021
17022 neon_check_type (3, rs, N_IGNORE_TYPE);
17023 /* U bit and size field were set as part of the bitmask. */
17024 NEON_ENCODE (INTEGER, inst);
17025 neon_three_same (neon_quad (rs), 0, -1);
17026 }
17027 else
17028 {
17029 const int three_ops_form = (inst.operands[2].present
17030 && !inst.operands[2].isreg);
17031 const int immoperand = (three_ops_form ? 2 : 1);
17032 enum neon_shape rs = (three_ops_form
17033 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
17034 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
17035 /* Because neon_select_shape makes the second operand a copy of the first
17036 if the second operand is not present. */
17037 if (rs == NS_QQI
17038 && !check_simd_pred_availability (FALSE,
17039 NEON_CHECK_ARCH | NEON_CHECK_CC))
17040 return;
17041 else if (rs != NS_QQI
17042 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
17043 first_error (BAD_FPU);
17044
17045 struct neon_type_el et;
17046 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17047 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
17048 else
17049 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
17050 | N_KEY, N_EQK);
17051
17052 if (et.type == NT_invtype)
17053 return;
17054 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
17055 unsigned immbits;
17056 int cmode;
17057
17058
17059 if (three_ops_form)
17060 constraint (inst.operands[0].reg != inst.operands[1].reg,
17061 _("first and second operands shall be the same register"));
17062
17063 NEON_ENCODE (IMMED, inst);
17064
17065 immbits = inst.operands[immoperand].imm;
17066 if (et.size == 64)
17067 {
17068 /* .i64 is a pseudo-op, so the immediate must be a repeating
17069 pattern. */
17070 if (immbits != (inst.operands[immoperand].regisimm ?
17071 inst.operands[immoperand].reg : 0))
17072 {
17073 /* Set immbits to an invalid constant. */
17074 immbits = 0xdeadbeef;
17075 }
17076 }
17077
17078 switch (opcode)
17079 {
17080 case N_MNEM_vbic:
17081 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17082 break;
17083
17084 case N_MNEM_vorr:
17085 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17086 break;
17087
17088 case N_MNEM_vand:
17089 /* Pseudo-instruction for VBIC. */
17090 neon_invert_size (&immbits, 0, et.size);
17091 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17092 break;
17093
17094 case N_MNEM_vorn:
17095 /* Pseudo-instruction for VORR. */
17096 neon_invert_size (&immbits, 0, et.size);
17097 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
17098 break;
17099
17100 default:
17101 abort ();
17102 }
17103
17104 if (cmode == FAIL)
17105 return;
17106
17107 inst.instruction |= neon_quad (rs) << 6;
17108 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17109 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17110 inst.instruction |= cmode << 8;
17111 neon_write_immbits (immbits);
17112
17113 neon_dp_fixup (&inst);
17114 }
17115 }
17116
17117 static void
17118 do_neon_bitfield (void)
17119 {
17120 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17121 neon_check_type (3, rs, N_IGNORE_TYPE);
17122 neon_three_same (neon_quad (rs), 0, -1);
17123 }
17124
17125 static void
17126 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
17127 unsigned destbits)
17128 {
17129 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17130 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
17131 types | N_KEY);
17132 if (et.type == NT_float)
17133 {
17134 NEON_ENCODE (FLOAT, inst);
17135 if (rs == NS_QQR)
17136 mve_encode_qqr (et.size, 0, 1);
17137 else
17138 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17139 }
17140 else
17141 {
17142 NEON_ENCODE (INTEGER, inst);
17143 if (rs == NS_QQR)
17144 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
17145 else
17146 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
17147 }
17148 }
17149
17150
17151 static void
17152 do_neon_dyadic_if_su_d (void)
17153 {
17154 /* This version only allow D registers, but that constraint is enforced during
17155 operand parsing so we don't need to do anything extra here. */
17156 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17157 }
17158
17159 static void
17160 do_neon_dyadic_if_i_d (void)
17161 {
17162 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17163 affected if we specify unsigned args. */
17164 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17165 }
17166
17167 static void
17168 do_mve_vstr_vldr_QI (int size, int elsize, int load)
17169 {
17170 constraint (size < 32, BAD_ADDR_MODE);
17171 constraint (size != elsize, BAD_EL_TYPE);
17172 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
17173 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
17174 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
17175 _("destination register and offset register may not be the"
17176 " same"));
17177
17178 int imm = inst.relocs[0].exp.X_add_number;
17179 int add = 1;
17180 if (imm < 0)
17181 {
17182 add = 0;
17183 imm = -imm;
17184 }
17185 constraint ((imm % (size / 8) != 0)
17186 || imm > (0x7f << neon_logbits (size)),
17187 (size == 32) ? _("immediate must be a multiple of 4 in the"
17188 " range of +/-[0,508]")
17189 : _("immediate must be a multiple of 8 in the"
17190 " range of +/-[0,1016]"));
17191 inst.instruction |= 0x11 << 24;
17192 inst.instruction |= add << 23;
17193 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17194 inst.instruction |= inst.operands[1].writeback << 21;
17195 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17196 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17197 inst.instruction |= 1 << 12;
17198 inst.instruction |= (size == 64) << 8;
17199 inst.instruction &= 0xffffff00;
17200 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17201 inst.instruction |= imm >> neon_logbits (size);
17202 }
17203
17204 static void
17205 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
17206 {
17207 unsigned os = inst.operands[1].imm >> 5;
17208 constraint (os != 0 && size == 8,
17209 _("can not shift offsets when accessing less than half-word"));
17210 constraint (os && os != neon_logbits (size),
17211 _("shift immediate must be 1, 2 or 3 for half-word, word"
17212 " or double-word accesses respectively"));
17213 if (inst.operands[1].reg == REG_PC)
17214 as_tsktsk (MVE_BAD_PC);
17215
17216 switch (size)
17217 {
17218 case 8:
17219 constraint (elsize >= 64, BAD_EL_TYPE);
17220 break;
17221 case 16:
17222 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17223 break;
17224 case 32:
17225 case 64:
17226 constraint (elsize != size, BAD_EL_TYPE);
17227 break;
17228 default:
17229 break;
17230 }
17231 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
17232 BAD_ADDR_MODE);
17233 if (load)
17234 {
17235 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
17236 _("destination register and offset register may not be"
17237 " the same"));
17238 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
17239 BAD_EL_TYPE);
17240 constraint (inst.vectype.el[0].type != NT_unsigned
17241 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
17242 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
17243 }
17244 else
17245 {
17246 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
17247 }
17248
17249 inst.instruction |= 1 << 23;
17250 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17251 inst.instruction |= inst.operands[1].reg << 16;
17252 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17253 inst.instruction |= neon_logbits (elsize) << 7;
17254 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
17255 inst.instruction |= LOW4 (inst.operands[1].imm);
17256 inst.instruction |= !!os;
17257 }
17258
17259 static void
17260 do_mve_vstr_vldr_RI (int size, int elsize, int load)
17261 {
17262 enum neon_el_type type = inst.vectype.el[0].type;
17263
17264 constraint (size >= 64, BAD_ADDR_MODE);
17265 switch (size)
17266 {
17267 case 16:
17268 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
17269 break;
17270 case 32:
17271 constraint (elsize != size, BAD_EL_TYPE);
17272 break;
17273 default:
17274 break;
17275 }
17276 if (load)
17277 {
17278 constraint (elsize != size && type != NT_unsigned
17279 && type != NT_signed, BAD_EL_TYPE);
17280 }
17281 else
17282 {
17283 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
17284 }
17285
17286 int imm = inst.relocs[0].exp.X_add_number;
17287 int add = 1;
17288 if (imm < 0)
17289 {
17290 add = 0;
17291 imm = -imm;
17292 }
17293
17294 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
17295 {
17296 switch (size)
17297 {
17298 case 8:
17299 constraint (1, _("immediate must be in the range of +/-[0,127]"));
17300 break;
17301 case 16:
17302 constraint (1, _("immediate must be a multiple of 2 in the"
17303 " range of +/-[0,254]"));
17304 break;
17305 case 32:
17306 constraint (1, _("immediate must be a multiple of 4 in the"
17307 " range of +/-[0,508]"));
17308 break;
17309 }
17310 }
17311
17312 if (size != elsize)
17313 {
17314 constraint (inst.operands[1].reg > 7, BAD_HIREG);
17315 constraint (inst.operands[0].reg > 14,
17316 _("MVE vector register in the range [Q0..Q7] expected"));
17317 inst.instruction |= (load && type == NT_unsigned) << 28;
17318 inst.instruction |= (size == 16) << 19;
17319 inst.instruction |= neon_logbits (elsize) << 7;
17320 }
17321 else
17322 {
17323 if (inst.operands[1].reg == REG_PC)
17324 as_tsktsk (MVE_BAD_PC);
17325 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17326 as_tsktsk (MVE_BAD_SP);
17327 inst.instruction |= 1 << 12;
17328 inst.instruction |= neon_logbits (size) << 7;
17329 }
17330 inst.instruction |= inst.operands[1].preind << 24;
17331 inst.instruction |= add << 23;
17332 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17333 inst.instruction |= inst.operands[1].writeback << 21;
17334 inst.instruction |= inst.operands[1].reg << 16;
17335 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17336 inst.instruction &= 0xffffff80;
17337 inst.instruction |= imm >> neon_logbits (size);
17338
17339 }
17340
17341 static void
17342 do_mve_vstr_vldr (void)
17343 {
17344 unsigned size;
17345 int load = 0;
17346
17347 if (inst.cond > COND_ALWAYS)
17348 inst.pred_insn_type = INSIDE_VPT_INSN;
17349 else
17350 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17351
17352 switch (inst.instruction)
17353 {
17354 default:
17355 gas_assert (0);
17356 break;
17357 case M_MNEM_vldrb:
17358 load = 1;
17359 /* fall through. */
17360 case M_MNEM_vstrb:
17361 size = 8;
17362 break;
17363 case M_MNEM_vldrh:
17364 load = 1;
17365 /* fall through. */
17366 case M_MNEM_vstrh:
17367 size = 16;
17368 break;
17369 case M_MNEM_vldrw:
17370 load = 1;
17371 /* fall through. */
17372 case M_MNEM_vstrw:
17373 size = 32;
17374 break;
17375 case M_MNEM_vldrd:
17376 load = 1;
17377 /* fall through. */
17378 case M_MNEM_vstrd:
17379 size = 64;
17380 break;
17381 }
17382 unsigned elsize = inst.vectype.el[0].size;
17383
17384 if (inst.operands[1].isquad)
17385 {
17386 /* We are dealing with [Q, imm]{!} cases. */
17387 do_mve_vstr_vldr_QI (size, elsize, load);
17388 }
17389 else
17390 {
17391 if (inst.operands[1].immisreg == 2)
17392 {
17393 /* We are dealing with [R, Q, {UXTW #os}] cases. */
17394 do_mve_vstr_vldr_RQ (size, elsize, load);
17395 }
17396 else if (!inst.operands[1].immisreg)
17397 {
17398 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
17399 do_mve_vstr_vldr_RI (size, elsize, load);
17400 }
17401 else
17402 constraint (1, BAD_ADDR_MODE);
17403 }
17404
17405 inst.is_neon = 1;
17406 }
17407
17408 static void
17409 do_mve_vst_vld (void)
17410 {
17411 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17412 return;
17413
17414 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
17415 || inst.relocs[0].exp.X_add_number != 0
17416 || inst.operands[1].immisreg != 0,
17417 BAD_ADDR_MODE);
17418 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
17419 if (inst.operands[1].reg == REG_PC)
17420 as_tsktsk (MVE_BAD_PC);
17421 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17422 as_tsktsk (MVE_BAD_SP);
17423
17424
17425 /* These instructions are one of the "exceptions" mentioned in
17426 handle_pred_state. They are MVE instructions that are not VPT compatible
17427 and do not accept a VPT code, thus appending such a code is a syntax
17428 error. */
17429 if (inst.cond > COND_ALWAYS)
17430 first_error (BAD_SYNTAX);
17431 /* If we append a scalar condition code we can set this to
17432 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
17433 else if (inst.cond < COND_ALWAYS)
17434 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17435 else
17436 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
17437
17438 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17439 inst.instruction |= inst.operands[1].writeback << 21;
17440 inst.instruction |= inst.operands[1].reg << 16;
17441 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17442 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
17443 inst.is_neon = 1;
17444 }
17445
17446 static void
17447 do_mve_vaddlv (void)
17448 {
17449 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
17450 struct neon_type_el et
17451 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
17452
17453 if (et.type == NT_invtype)
17454 first_error (BAD_EL_TYPE);
17455
17456 if (inst.cond > COND_ALWAYS)
17457 inst.pred_insn_type = INSIDE_VPT_INSN;
17458 else
17459 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17460
17461 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17462
17463 inst.instruction |= (et.type == NT_unsigned) << 28;
17464 inst.instruction |= inst.operands[1].reg << 19;
17465 inst.instruction |= inst.operands[0].reg << 12;
17466 inst.instruction |= inst.operands[2].reg;
17467 inst.is_neon = 1;
17468 }
17469
17470 static void
17471 do_neon_dyadic_if_su (void)
17472 {
17473 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17474 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17475 N_SUF_32 | N_KEY);
17476
17477 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
17478 || inst.instruction == ((unsigned) N_MNEM_vmin))
17479 && et.type == NT_float
17480 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
17481
17482 if (!check_simd_pred_availability (et.type == NT_float,
17483 NEON_CHECK_ARCH | NEON_CHECK_CC))
17484 return;
17485
17486 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17487 }
17488
17489 static void
17490 do_neon_addsub_if_i (void)
17491 {
17492 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
17493 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
17494 return;
17495
17496 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17497 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
17498 N_EQK, N_IF_32 | N_I64 | N_KEY);
17499
17500 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
17501 /* If we are parsing Q registers and the element types match MVE, which NEON
17502 also supports, then we must check whether this is an instruction that can
17503 be used by both MVE/NEON. This distinction can be made based on whether
17504 they are predicated or not. */
17505 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
17506 {
17507 if (!check_simd_pred_availability (et.type == NT_float,
17508 NEON_CHECK_ARCH | NEON_CHECK_CC))
17509 return;
17510 }
17511 else
17512 {
17513 /* If they are either in a D register or are using an unsupported. */
17514 if (rs != NS_QQR
17515 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17516 return;
17517 }
17518
17519 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17520 affected if we specify unsigned args. */
17521 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
17522 }
17523
17524 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17525 result to be:
17526 V<op> A,B (A is operand 0, B is operand 2)
17527 to mean:
17528 V<op> A,B,A
17529 not:
17530 V<op> A,B,B
17531 so handle that case specially. */
17532
17533 static void
17534 neon_exchange_operands (void)
17535 {
17536 if (inst.operands[1].present)
17537 {
17538 void *scratch = xmalloc (sizeof (inst.operands[0]));
17539
17540 /* Swap operands[1] and operands[2]. */
17541 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17542 inst.operands[1] = inst.operands[2];
17543 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
17544 free (scratch);
17545 }
17546 else
17547 {
17548 inst.operands[1] = inst.operands[2];
17549 inst.operands[2] = inst.operands[0];
17550 }
17551 }
17552
17553 static void
17554 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17555 {
17556 if (inst.operands[2].isreg)
17557 {
17558 if (invert)
17559 neon_exchange_operands ();
17560 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
17561 }
17562 else
17563 {
17564 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17565 struct neon_type_el et = neon_check_type (2, rs,
17566 N_EQK | N_SIZ, immtypes | N_KEY);
17567
17568 NEON_ENCODE (IMMED, inst);
17569 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17570 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17571 inst.instruction |= LOW4 (inst.operands[1].reg);
17572 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17573 inst.instruction |= neon_quad (rs) << 6;
17574 inst.instruction |= (et.type == NT_float) << 10;
17575 inst.instruction |= neon_logbits (et.size) << 18;
17576
17577 neon_dp_fixup (&inst);
17578 }
17579 }
17580
17581 static void
17582 do_neon_cmp (void)
17583 {
17584 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
17585 }
17586
17587 static void
17588 do_neon_cmp_inv (void)
17589 {
17590 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
17591 }
17592
17593 static void
17594 do_neon_ceq (void)
17595 {
17596 neon_compare (N_IF_32, N_IF_32, FALSE);
17597 }
17598
17599 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17600 scalars, which are encoded in 5 bits, M : Rm.
17601 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17602 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17603 index in M.
17604
17605 Dot Product instructions are similar to multiply instructions except elsize
17606 should always be 32.
17607
17608 This function translates SCALAR, which is GAS's internal encoding of indexed
17609 scalar register, to raw encoding. There is also register and index range
17610 check based on ELSIZE. */
17611
17612 static unsigned
17613 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17614 {
17615 unsigned regno = NEON_SCALAR_REG (scalar);
17616 unsigned elno = NEON_SCALAR_INDEX (scalar);
17617
17618 switch (elsize)
17619 {
17620 case 16:
17621 if (regno > 7 || elno > 3)
17622 goto bad_scalar;
17623 return regno | (elno << 3);
17624
17625 case 32:
17626 if (regno > 15 || elno > 1)
17627 goto bad_scalar;
17628 return regno | (elno << 4);
17629
17630 default:
17631 bad_scalar:
17632 first_error (_("scalar out of range for multiply instruction"));
17633 }
17634
17635 return 0;
17636 }
17637
17638 /* Encode multiply / multiply-accumulate scalar instructions. */
17639
17640 static void
17641 neon_mul_mac (struct neon_type_el et, int ubit)
17642 {
17643 unsigned scalar;
17644
17645 /* Give a more helpful error message if we have an invalid type. */
17646 if (et.type == NT_invtype)
17647 return;
17648
17649 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
17650 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17651 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17652 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17653 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17654 inst.instruction |= LOW4 (scalar);
17655 inst.instruction |= HI1 (scalar) << 5;
17656 inst.instruction |= (et.type == NT_float) << 8;
17657 inst.instruction |= neon_logbits (et.size) << 20;
17658 inst.instruction |= (ubit != 0) << 24;
17659
17660 neon_dp_fixup (&inst);
17661 }
17662
17663 static void
17664 do_neon_mac_maybe_scalar (void)
17665 {
17666 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17667 return;
17668
17669 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17670 return;
17671
17672 if (inst.operands[2].isscalar)
17673 {
17674 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17675 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17676 struct neon_type_el et = neon_check_type (3, rs,
17677 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
17678 NEON_ENCODE (SCALAR, inst);
17679 neon_mul_mac (et, neon_quad (rs));
17680 }
17681 else if (!inst.operands[2].isvec)
17682 {
17683 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17684
17685 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17686 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17687
17688 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17689 }
17690 else
17691 {
17692 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17693 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17694 affected if we specify unsigned args. */
17695 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17696 }
17697 }
17698
17699 static void
17700 do_neon_fmac (void)
17701 {
17702 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17703 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
17704 return;
17705
17706 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17707 return;
17708
17709 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17710 {
17711 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17712 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17713 N_EQK);
17714
17715 if (rs == NS_QQR)
17716 {
17717 if (inst.operands[2].reg == REG_SP)
17718 as_tsktsk (MVE_BAD_SP);
17719 else if (inst.operands[2].reg == REG_PC)
17720 as_tsktsk (MVE_BAD_PC);
17721
17722 inst.instruction = 0xee310e40;
17723 inst.instruction |= (et.size == 16) << 28;
17724 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17725 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17726 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17727 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17728 inst.instruction |= inst.operands[2].reg;
17729 inst.is_neon = 1;
17730 return;
17731 }
17732 }
17733 else
17734 {
17735 constraint (!inst.operands[2].isvec, BAD_FPU);
17736 }
17737
17738 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17739 }
17740
17741 static void
17742 do_neon_tst (void)
17743 {
17744 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17745 struct neon_type_el et = neon_check_type (3, rs,
17746 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17747 neon_three_same (neon_quad (rs), 0, et.size);
17748 }
17749
17750 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17751 same types as the MAC equivalents. The polynomial type for this instruction
17752 is encoded the same as the integer type. */
17753
17754 static void
17755 do_neon_mul (void)
17756 {
17757 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17758 return;
17759
17760 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
17761 return;
17762
17763 if (inst.operands[2].isscalar)
17764 {
17765 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17766 do_neon_mac_maybe_scalar ();
17767 }
17768 else
17769 {
17770 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17771 {
17772 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17773 struct neon_type_el et
17774 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17775 if (et.type == NT_float)
17776 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17777 BAD_FPU);
17778
17779 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17780 }
17781 else
17782 {
17783 constraint (!inst.operands[2].isvec, BAD_FPU);
17784 neon_dyadic_misc (NT_poly,
17785 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17786 }
17787 }
17788 }
17789
17790 static void
17791 do_neon_qdmulh (void)
17792 {
17793 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
17794 return;
17795
17796 if (inst.operands[2].isscalar)
17797 {
17798 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17799 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17800 struct neon_type_el et = neon_check_type (3, rs,
17801 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17802 NEON_ENCODE (SCALAR, inst);
17803 neon_mul_mac (et, neon_quad (rs));
17804 }
17805 else
17806 {
17807 enum neon_shape rs;
17808 struct neon_type_el et;
17809 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17810 {
17811 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17812 et = neon_check_type (3, rs,
17813 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17814 }
17815 else
17816 {
17817 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17818 et = neon_check_type (3, rs,
17819 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17820 }
17821
17822 NEON_ENCODE (INTEGER, inst);
17823 if (rs == NS_QQR)
17824 mve_encode_qqr (et.size, 0, 0);
17825 else
17826 /* The U bit (rounding) comes from bit mask. */
17827 neon_three_same (neon_quad (rs), 0, et.size);
17828 }
17829 }
17830
17831 static void
17832 do_mve_vaddv (void)
17833 {
17834 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17835 struct neon_type_el et
17836 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17837
17838 if (et.type == NT_invtype)
17839 first_error (BAD_EL_TYPE);
17840
17841 if (inst.cond > COND_ALWAYS)
17842 inst.pred_insn_type = INSIDE_VPT_INSN;
17843 else
17844 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17845
17846 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17847
17848 mve_encode_rq (et.type == NT_unsigned, et.size);
17849 }
17850
17851 static void
17852 do_mve_vhcadd (void)
17853 {
17854 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17855 struct neon_type_el et
17856 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17857
17858 if (inst.cond > COND_ALWAYS)
17859 inst.pred_insn_type = INSIDE_VPT_INSN;
17860 else
17861 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17862
17863 unsigned rot = inst.relocs[0].exp.X_add_number;
17864 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17865
17866 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17867 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17868 "operand makes instruction UNPREDICTABLE"));
17869
17870 mve_encode_qqq (0, et.size);
17871 inst.instruction |= (rot == 270) << 12;
17872 inst.is_neon = 1;
17873 }
17874
17875 static void
17876 do_mve_vqdmull (void)
17877 {
17878 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17879 struct neon_type_el et
17880 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17881
17882 if (et.size == 32
17883 && (inst.operands[0].reg == inst.operands[1].reg
17884 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
17885 as_tsktsk (BAD_MVE_SRCDEST);
17886
17887 if (inst.cond > COND_ALWAYS)
17888 inst.pred_insn_type = INSIDE_VPT_INSN;
17889 else
17890 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17891
17892 if (rs == NS_QQQ)
17893 {
17894 mve_encode_qqq (et.size == 32, 64);
17895 inst.instruction |= 1;
17896 }
17897 else
17898 {
17899 mve_encode_qqr (64, et.size == 32, 0);
17900 inst.instruction |= 0x3 << 5;
17901 }
17902 }
17903
17904 static void
17905 do_mve_vadc (void)
17906 {
17907 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17908 struct neon_type_el et
17909 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17910
17911 if (et.type == NT_invtype)
17912 first_error (BAD_EL_TYPE);
17913
17914 if (inst.cond > COND_ALWAYS)
17915 inst.pred_insn_type = INSIDE_VPT_INSN;
17916 else
17917 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17918
17919 mve_encode_qqq (0, 64);
17920 }
17921
17922 static void
17923 do_mve_vbrsr (void)
17924 {
17925 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17926 struct neon_type_el et
17927 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17928
17929 if (inst.cond > COND_ALWAYS)
17930 inst.pred_insn_type = INSIDE_VPT_INSN;
17931 else
17932 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17933
17934 mve_encode_qqr (et.size, 0, 0);
17935 }
17936
17937 static void
17938 do_mve_vsbc (void)
17939 {
17940 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17941
17942 if (inst.cond > COND_ALWAYS)
17943 inst.pred_insn_type = INSIDE_VPT_INSN;
17944 else
17945 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17946
17947 mve_encode_qqq (1, 64);
17948 }
17949
17950 static void
17951 do_mve_vmulh (void)
17952 {
17953 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17954 struct neon_type_el et
17955 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17956
17957 if (inst.cond > COND_ALWAYS)
17958 inst.pred_insn_type = INSIDE_VPT_INSN;
17959 else
17960 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17961
17962 mve_encode_qqq (et.type == NT_unsigned, et.size);
17963 }
17964
17965 static void
17966 do_mve_vqdmlah (void)
17967 {
17968 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17969 struct neon_type_el et
17970 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
17971
17972 if (inst.cond > COND_ALWAYS)
17973 inst.pred_insn_type = INSIDE_VPT_INSN;
17974 else
17975 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17976
17977 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17978 }
17979
17980 static void
17981 do_mve_vqdmladh (void)
17982 {
17983 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17984 struct neon_type_el et
17985 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17986
17987 if (inst.cond > COND_ALWAYS)
17988 inst.pred_insn_type = INSIDE_VPT_INSN;
17989 else
17990 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17991
17992 mve_encode_qqq (0, et.size);
17993 }
17994
17995
17996 static void
17997 do_mve_vmull (void)
17998 {
17999
18000 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
18001 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
18002 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18003 && inst.cond == COND_ALWAYS
18004 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
18005 {
18006 if (rs == NS_QQQ)
18007 {
18008
18009 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
18010 N_SUF_32 | N_F64 | N_P8
18011 | N_P16 | N_I_MVE | N_KEY);
18012 if (((et.type == NT_poly) && et.size == 8
18013 && ARM_CPU_IS_ANY (cpu_variant))
18014 || (et.type == NT_integer) || (et.type == NT_float))
18015 goto neon_vmul;
18016 }
18017 else
18018 goto neon_vmul;
18019 }
18020
18021 constraint (rs != NS_QQQ, BAD_FPU);
18022 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
18023 N_SU_32 | N_P8 | N_P16 | N_KEY);
18024
18025 /* We are dealing with MVE's vmullt. */
18026 if (et.size == 32
18027 && (inst.operands[0].reg == inst.operands[1].reg
18028 || inst.operands[0].reg == inst.operands[2].reg))
18029 as_tsktsk (BAD_MVE_SRCDEST);
18030
18031 if (inst.cond > COND_ALWAYS)
18032 inst.pred_insn_type = INSIDE_VPT_INSN;
18033 else
18034 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18035
18036 if (et.type == NT_poly)
18037 mve_encode_qqq (neon_logbits (et.size), 64);
18038 else
18039 mve_encode_qqq (et.type == NT_unsigned, et.size);
18040
18041 return;
18042
18043 neon_vmul:
18044 inst.instruction = N_MNEM_vmul;
18045 inst.cond = 0xb;
18046 if (thumb_mode)
18047 inst.pred_insn_type = INSIDE_IT_INSN;
18048 do_neon_mul ();
18049 }
18050
18051 static void
18052 do_mve_vabav (void)
18053 {
18054 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18055
18056 if (rs == NS_NULL)
18057 return;
18058
18059 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18060 return;
18061
18062 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
18063 | N_S16 | N_S32 | N_U8 | N_U16
18064 | N_U32);
18065
18066 if (inst.cond > COND_ALWAYS)
18067 inst.pred_insn_type = INSIDE_VPT_INSN;
18068 else
18069 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18070
18071 mve_encode_rqq (et.type == NT_unsigned, et.size);
18072 }
18073
18074 static void
18075 do_mve_vmladav (void)
18076 {
18077 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
18078 struct neon_type_el et = neon_check_type (3, rs,
18079 N_EQK, N_EQK, N_SU_MVE | N_KEY);
18080
18081 if (et.type == NT_unsigned
18082 && (inst.instruction == M_MNEM_vmladavx
18083 || inst.instruction == M_MNEM_vmladavax
18084 || inst.instruction == M_MNEM_vmlsdav
18085 || inst.instruction == M_MNEM_vmlsdava
18086 || inst.instruction == M_MNEM_vmlsdavx
18087 || inst.instruction == M_MNEM_vmlsdavax))
18088 first_error (BAD_SIMD_TYPE);
18089
18090 constraint (inst.operands[2].reg > 14,
18091 _("MVE vector register in the range [Q0..Q7] expected"));
18092
18093 if (inst.cond > COND_ALWAYS)
18094 inst.pred_insn_type = INSIDE_VPT_INSN;
18095 else
18096 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18097
18098 if (inst.instruction == M_MNEM_vmlsdav
18099 || inst.instruction == M_MNEM_vmlsdava
18100 || inst.instruction == M_MNEM_vmlsdavx
18101 || inst.instruction == M_MNEM_vmlsdavax)
18102 inst.instruction |= (et.size == 8) << 28;
18103 else
18104 inst.instruction |= (et.size == 8) << 8;
18105
18106 mve_encode_rqq (et.type == NT_unsigned, 64);
18107 inst.instruction |= (et.size == 32) << 16;
18108 }
18109
18110 static void
18111 do_mve_vmlaldav (void)
18112 {
18113 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
18114 struct neon_type_el et
18115 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
18116 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
18117
18118 if (et.type == NT_unsigned
18119 && (inst.instruction == M_MNEM_vmlsldav
18120 || inst.instruction == M_MNEM_vmlsldava
18121 || inst.instruction == M_MNEM_vmlsldavx
18122 || inst.instruction == M_MNEM_vmlsldavax))
18123 first_error (BAD_SIMD_TYPE);
18124
18125 if (inst.cond > COND_ALWAYS)
18126 inst.pred_insn_type = INSIDE_VPT_INSN;
18127 else
18128 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18129
18130 mve_encode_rrqq (et.type == NT_unsigned, et.size);
18131 }
18132
18133 static void
18134 do_mve_vrmlaldavh (void)
18135 {
18136 struct neon_type_el et;
18137 if (inst.instruction == M_MNEM_vrmlsldavh
18138 || inst.instruction == M_MNEM_vrmlsldavha
18139 || inst.instruction == M_MNEM_vrmlsldavhx
18140 || inst.instruction == M_MNEM_vrmlsldavhax)
18141 {
18142 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18143 if (inst.operands[1].reg == REG_SP)
18144 as_tsktsk (MVE_BAD_SP);
18145 }
18146 else
18147 {
18148 if (inst.instruction == M_MNEM_vrmlaldavhx
18149 || inst.instruction == M_MNEM_vrmlaldavhax)
18150 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
18151 else
18152 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
18153 N_U32 | N_S32 | N_KEY);
18154 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
18155 with vmax/min instructions, making the use of SP in assembly really
18156 nonsensical, so instead of issuing a warning like we do for other uses
18157 of SP for the odd register operand we error out. */
18158 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
18159 }
18160
18161 /* Make sure we still check the second operand is an odd one and that PC is
18162 disallowed. This because we are parsing for any GPR operand, to be able
18163 to distinguish between giving a warning or an error for SP as described
18164 above. */
18165 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
18166 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
18167
18168 if (inst.cond > COND_ALWAYS)
18169 inst.pred_insn_type = INSIDE_VPT_INSN;
18170 else
18171 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18172
18173 mve_encode_rrqq (et.type == NT_unsigned, 0);
18174 }
18175
18176
18177 static void
18178 do_mve_vmaxnmv (void)
18179 {
18180 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18181 struct neon_type_el et
18182 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
18183
18184 if (inst.cond > COND_ALWAYS)
18185 inst.pred_insn_type = INSIDE_VPT_INSN;
18186 else
18187 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18188
18189 if (inst.operands[0].reg == REG_SP)
18190 as_tsktsk (MVE_BAD_SP);
18191 else if (inst.operands[0].reg == REG_PC)
18192 as_tsktsk (MVE_BAD_PC);
18193
18194 mve_encode_rq (et.size == 16, 64);
18195 }
18196
18197 static void
18198 do_mve_vmaxv (void)
18199 {
18200 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
18201 struct neon_type_el et;
18202
18203 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
18204 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
18205 else
18206 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18207
18208 if (inst.cond > COND_ALWAYS)
18209 inst.pred_insn_type = INSIDE_VPT_INSN;
18210 else
18211 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18212
18213 if (inst.operands[0].reg == REG_SP)
18214 as_tsktsk (MVE_BAD_SP);
18215 else if (inst.operands[0].reg == REG_PC)
18216 as_tsktsk (MVE_BAD_PC);
18217
18218 mve_encode_rq (et.type == NT_unsigned, et.size);
18219 }
18220
18221
18222 static void
18223 do_neon_qrdmlah (void)
18224 {
18225 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18226 return;
18227 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18228 {
18229 /* Check we're on the correct architecture. */
18230 if (!mark_feature_used (&fpu_neon_ext_armv8))
18231 inst.error
18232 = _("instruction form not available on this architecture.");
18233 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
18234 {
18235 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
18236 record_feature_use (&fpu_neon_ext_v8_1);
18237 }
18238 if (inst.operands[2].isscalar)
18239 {
18240 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
18241 struct neon_type_el et = neon_check_type (3, rs,
18242 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18243 NEON_ENCODE (SCALAR, inst);
18244 neon_mul_mac (et, neon_quad (rs));
18245 }
18246 else
18247 {
18248 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18249 struct neon_type_el et = neon_check_type (3, rs,
18250 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
18251 NEON_ENCODE (INTEGER, inst);
18252 /* The U bit (rounding) comes from bit mask. */
18253 neon_three_same (neon_quad (rs), 0, et.size);
18254 }
18255 }
18256 else
18257 {
18258 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
18259 struct neon_type_el et
18260 = neon_check_type (3, rs, N_EQK, N_EQK, N_S_32 | N_KEY);
18261
18262 NEON_ENCODE (INTEGER, inst);
18263 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
18264 }
18265 }
18266
18267 static void
18268 do_neon_fcmp_absolute (void)
18269 {
18270 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18271 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18272 N_F_16_32 | N_KEY);
18273 /* Size field comes from bit mask. */
18274 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
18275 }
18276
18277 static void
18278 do_neon_fcmp_absolute_inv (void)
18279 {
18280 neon_exchange_operands ();
18281 do_neon_fcmp_absolute ();
18282 }
18283
18284 static void
18285 do_neon_step (void)
18286 {
18287 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
18288 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
18289 N_F_16_32 | N_KEY);
18290 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
18291 }
18292
18293 static void
18294 do_neon_abs_neg (void)
18295 {
18296 enum neon_shape rs;
18297 struct neon_type_el et;
18298
18299 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
18300 return;
18301
18302 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18303 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
18304
18305 if (!check_simd_pred_availability (et.type == NT_float,
18306 NEON_CHECK_ARCH | NEON_CHECK_CC))
18307 return;
18308
18309 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18310 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18311 inst.instruction |= LOW4 (inst.operands[1].reg);
18312 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18313 inst.instruction |= neon_quad (rs) << 6;
18314 inst.instruction |= (et.type == NT_float) << 10;
18315 inst.instruction |= neon_logbits (et.size) << 18;
18316
18317 neon_dp_fixup (&inst);
18318 }
18319
18320 static void
18321 do_neon_sli (void)
18322 {
18323 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18324 return;
18325
18326 enum neon_shape rs;
18327 struct neon_type_el et;
18328 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18329 {
18330 rs = neon_select_shape (NS_QQI, NS_NULL);
18331 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18332 }
18333 else
18334 {
18335 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18336 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18337 }
18338
18339
18340 int imm = inst.operands[2].imm;
18341 constraint (imm < 0 || (unsigned)imm >= et.size,
18342 _("immediate out of range for insert"));
18343 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18344 }
18345
18346 static void
18347 do_neon_sri (void)
18348 {
18349 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18350 return;
18351
18352 enum neon_shape rs;
18353 struct neon_type_el et;
18354 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18355 {
18356 rs = neon_select_shape (NS_QQI, NS_NULL);
18357 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18358 }
18359 else
18360 {
18361 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18362 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18363 }
18364
18365 int imm = inst.operands[2].imm;
18366 constraint (imm < 1 || (unsigned)imm > et.size,
18367 _("immediate out of range for insert"));
18368 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
18369 }
18370
18371 static void
18372 do_neon_qshlu_imm (void)
18373 {
18374 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
18375 return;
18376
18377 enum neon_shape rs;
18378 struct neon_type_el et;
18379 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18380 {
18381 rs = neon_select_shape (NS_QQI, NS_NULL);
18382 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18383 }
18384 else
18385 {
18386 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18387 et = neon_check_type (2, rs, N_EQK | N_UNS,
18388 N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
18389 }
18390
18391 int imm = inst.operands[2].imm;
18392 constraint (imm < 0 || (unsigned)imm >= et.size,
18393 _("immediate out of range for shift"));
18394 /* Only encodes the 'U present' variant of the instruction.
18395 In this case, signed types have OP (bit 8) set to 0.
18396 Unsigned types have OP set to 1. */
18397 inst.instruction |= (et.type == NT_unsigned) << 8;
18398 /* The rest of the bits are the same as other immediate shifts. */
18399 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
18400 }
18401
18402 static void
18403 do_neon_qmovn (void)
18404 {
18405 struct neon_type_el et = neon_check_type (2, NS_DQ,
18406 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18407 /* Saturating move where operands can be signed or unsigned, and the
18408 destination has the same signedness. */
18409 NEON_ENCODE (INTEGER, inst);
18410 if (et.type == NT_unsigned)
18411 inst.instruction |= 0xc0;
18412 else
18413 inst.instruction |= 0x80;
18414 neon_two_same (0, 1, et.size / 2);
18415 }
18416
18417 static void
18418 do_neon_qmovun (void)
18419 {
18420 struct neon_type_el et = neon_check_type (2, NS_DQ,
18421 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18422 /* Saturating move with unsigned results. Operands must be signed. */
18423 NEON_ENCODE (INTEGER, inst);
18424 neon_two_same (0, 1, et.size / 2);
18425 }
18426
18427 static void
18428 do_neon_rshift_sat_narrow (void)
18429 {
18430 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18431 or unsigned. If operands are unsigned, results must also be unsigned. */
18432 struct neon_type_el et = neon_check_type (2, NS_DQI,
18433 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18434 int imm = inst.operands[2].imm;
18435 /* This gets the bounds check, size encoding and immediate bits calculation
18436 right. */
18437 et.size /= 2;
18438
18439 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
18440 VQMOVN.I<size> <Dd>, <Qm>. */
18441 if (imm == 0)
18442 {
18443 inst.operands[2].present = 0;
18444 inst.instruction = N_MNEM_vqmovn;
18445 do_neon_qmovn ();
18446 return;
18447 }
18448
18449 constraint (imm < 1 || (unsigned)imm > et.size,
18450 _("immediate out of range"));
18451 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
18452 }
18453
18454 static void
18455 do_neon_rshift_sat_narrow_u (void)
18456 {
18457 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18458 or unsigned. If operands are unsigned, results must also be unsigned. */
18459 struct neon_type_el et = neon_check_type (2, NS_DQI,
18460 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18461 int imm = inst.operands[2].imm;
18462 /* This gets the bounds check, size encoding and immediate bits calculation
18463 right. */
18464 et.size /= 2;
18465
18466 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
18467 VQMOVUN.I<size> <Dd>, <Qm>. */
18468 if (imm == 0)
18469 {
18470 inst.operands[2].present = 0;
18471 inst.instruction = N_MNEM_vqmovun;
18472 do_neon_qmovun ();
18473 return;
18474 }
18475
18476 constraint (imm < 1 || (unsigned)imm > et.size,
18477 _("immediate out of range"));
18478 /* FIXME: The manual is kind of unclear about what value U should have in
18479 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
18480 must be 1. */
18481 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
18482 }
18483
18484 static void
18485 do_neon_movn (void)
18486 {
18487 struct neon_type_el et = neon_check_type (2, NS_DQ,
18488 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18489 NEON_ENCODE (INTEGER, inst);
18490 neon_two_same (0, 1, et.size / 2);
18491 }
18492
18493 static void
18494 do_neon_rshift_narrow (void)
18495 {
18496 struct neon_type_el et = neon_check_type (2, NS_DQI,
18497 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18498 int imm = inst.operands[2].imm;
18499 /* This gets the bounds check, size encoding and immediate bits calculation
18500 right. */
18501 et.size /= 2;
18502
18503 /* If immediate is zero then we are a pseudo-instruction for
18504 VMOVN.I<size> <Dd>, <Qm> */
18505 if (imm == 0)
18506 {
18507 inst.operands[2].present = 0;
18508 inst.instruction = N_MNEM_vmovn;
18509 do_neon_movn ();
18510 return;
18511 }
18512
18513 constraint (imm < 1 || (unsigned)imm > et.size,
18514 _("immediate out of range for narrowing operation"));
18515 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
18516 }
18517
18518 static void
18519 do_neon_shll (void)
18520 {
18521 /* FIXME: Type checking when lengthening. */
18522 struct neon_type_el et = neon_check_type (2, NS_QDI,
18523 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
18524 unsigned imm = inst.operands[2].imm;
18525
18526 if (imm == et.size)
18527 {
18528 /* Maximum shift variant. */
18529 NEON_ENCODE (INTEGER, inst);
18530 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18531 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18532 inst.instruction |= LOW4 (inst.operands[1].reg);
18533 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18534 inst.instruction |= neon_logbits (et.size) << 18;
18535
18536 neon_dp_fixup (&inst);
18537 }
18538 else
18539 {
18540 /* A more-specific type check for non-max versions. */
18541 et = neon_check_type (2, NS_QDI,
18542 N_EQK | N_DBL, N_SU_32 | N_KEY);
18543 NEON_ENCODE (IMMED, inst);
18544 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
18545 }
18546 }
18547
18548 /* Check the various types for the VCVT instruction, and return which version
18549 the current instruction is. */
18550
18551 #define CVT_FLAVOUR_VAR \
18552 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18553 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18554 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18555 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18556 /* Half-precision conversions. */ \
18557 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18558 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18559 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18560 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
18561 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18562 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
18563 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18564 Compared with single/double precision variants, only the co-processor \
18565 field is different, so the encoding flow is reused here. */ \
18566 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18567 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18568 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18569 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
18570 /* VFP instructions. */ \
18571 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18572 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18573 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18574 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18575 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18576 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18577 /* VFP instructions with bitshift. */ \
18578 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18579 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18580 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18581 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18582 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18583 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18584 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18585 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18586
18587 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18588 neon_cvt_flavour_##C,
18589
18590 /* The different types of conversions we can do. */
18591 enum neon_cvt_flavour
18592 {
18593 CVT_FLAVOUR_VAR
18594 neon_cvt_flavour_invalid,
18595 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18596 };
18597
18598 #undef CVT_VAR
18599
18600 static enum neon_cvt_flavour
18601 get_neon_cvt_flavour (enum neon_shape rs)
18602 {
18603 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18604 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18605 if (et.type != NT_invtype) \
18606 { \
18607 inst.error = NULL; \
18608 return (neon_cvt_flavour_##C); \
18609 }
18610
18611 struct neon_type_el et;
18612 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
18613 || rs == NS_FF) ? N_VFP : 0;
18614 /* The instruction versions which take an immediate take one register
18615 argument, which is extended to the width of the full register. Thus the
18616 "source" and "destination" registers must have the same width. Hack that
18617 here by making the size equal to the key (wider, in this case) operand. */
18618 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
18619
18620 CVT_FLAVOUR_VAR;
18621
18622 return neon_cvt_flavour_invalid;
18623 #undef CVT_VAR
18624 }
18625
18626 enum neon_cvt_mode
18627 {
18628 neon_cvt_mode_a,
18629 neon_cvt_mode_n,
18630 neon_cvt_mode_p,
18631 neon_cvt_mode_m,
18632 neon_cvt_mode_z,
18633 neon_cvt_mode_x,
18634 neon_cvt_mode_r
18635 };
18636
18637 /* Neon-syntax VFP conversions. */
18638
18639 static void
18640 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
18641 {
18642 const char *opname = 0;
18643
18644 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18645 || rs == NS_FHI || rs == NS_HFI)
18646 {
18647 /* Conversions with immediate bitshift. */
18648 const char *enc[] =
18649 {
18650 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18651 CVT_FLAVOUR_VAR
18652 NULL
18653 #undef CVT_VAR
18654 };
18655
18656 if (flavour < (int) ARRAY_SIZE (enc))
18657 {
18658 opname = enc[flavour];
18659 constraint (inst.operands[0].reg != inst.operands[1].reg,
18660 _("operands 0 and 1 must be the same register"));
18661 inst.operands[1] = inst.operands[2];
18662 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18663 }
18664 }
18665 else
18666 {
18667 /* Conversions without bitshift. */
18668 const char *enc[] =
18669 {
18670 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18671 CVT_FLAVOUR_VAR
18672 NULL
18673 #undef CVT_VAR
18674 };
18675
18676 if (flavour < (int) ARRAY_SIZE (enc))
18677 opname = enc[flavour];
18678 }
18679
18680 if (opname)
18681 do_vfp_nsyn_opcode (opname);
18682
18683 /* ARMv8.2 fp16 VCVT instruction. */
18684 if (flavour == neon_cvt_flavour_s32_f16
18685 || flavour == neon_cvt_flavour_u32_f16
18686 || flavour == neon_cvt_flavour_f16_u32
18687 || flavour == neon_cvt_flavour_f16_s32)
18688 do_scalar_fp16_v82_encode ();
18689 }
18690
18691 static void
18692 do_vfp_nsyn_cvtz (void)
18693 {
18694 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
18695 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18696 const char *enc[] =
18697 {
18698 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18699 CVT_FLAVOUR_VAR
18700 NULL
18701 #undef CVT_VAR
18702 };
18703
18704 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
18705 do_vfp_nsyn_opcode (enc[flavour]);
18706 }
18707
18708 static void
18709 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
18710 enum neon_cvt_mode mode)
18711 {
18712 int sz, op;
18713 int rm;
18714
18715 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18716 D register operands. */
18717 if (flavour == neon_cvt_flavour_s32_f64
18718 || flavour == neon_cvt_flavour_u32_f64)
18719 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18720 _(BAD_FPU));
18721
18722 if (flavour == neon_cvt_flavour_s32_f16
18723 || flavour == neon_cvt_flavour_u32_f16)
18724 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18725 _(BAD_FP16));
18726
18727 set_pred_insn_type (OUTSIDE_PRED_INSN);
18728
18729 switch (flavour)
18730 {
18731 case neon_cvt_flavour_s32_f64:
18732 sz = 1;
18733 op = 1;
18734 break;
18735 case neon_cvt_flavour_s32_f32:
18736 sz = 0;
18737 op = 1;
18738 break;
18739 case neon_cvt_flavour_s32_f16:
18740 sz = 0;
18741 op = 1;
18742 break;
18743 case neon_cvt_flavour_u32_f64:
18744 sz = 1;
18745 op = 0;
18746 break;
18747 case neon_cvt_flavour_u32_f32:
18748 sz = 0;
18749 op = 0;
18750 break;
18751 case neon_cvt_flavour_u32_f16:
18752 sz = 0;
18753 op = 0;
18754 break;
18755 default:
18756 first_error (_("invalid instruction shape"));
18757 return;
18758 }
18759
18760 switch (mode)
18761 {
18762 case neon_cvt_mode_a: rm = 0; break;
18763 case neon_cvt_mode_n: rm = 1; break;
18764 case neon_cvt_mode_p: rm = 2; break;
18765 case neon_cvt_mode_m: rm = 3; break;
18766 default: first_error (_("invalid rounding mode")); return;
18767 }
18768
18769 NEON_ENCODE (FPV8, inst);
18770 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18771 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18772 inst.instruction |= sz << 8;
18773
18774 /* ARMv8.2 fp16 VCVT instruction. */
18775 if (flavour == neon_cvt_flavour_s32_f16
18776 ||flavour == neon_cvt_flavour_u32_f16)
18777 do_scalar_fp16_v82_encode ();
18778 inst.instruction |= op << 7;
18779 inst.instruction |= rm << 16;
18780 inst.instruction |= 0xf0000000;
18781 inst.is_neon = TRUE;
18782 }
18783
18784 static void
18785 do_neon_cvt_1 (enum neon_cvt_mode mode)
18786 {
18787 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
18788 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18789 NS_FH, NS_HF, NS_FHI, NS_HFI,
18790 NS_NULL);
18791 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18792
18793 if (flavour == neon_cvt_flavour_invalid)
18794 return;
18795
18796 /* PR11109: Handle round-to-zero for VCVT conversions. */
18797 if (mode == neon_cvt_mode_z
18798 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
18799 && (flavour == neon_cvt_flavour_s16_f16
18800 || flavour == neon_cvt_flavour_u16_f16
18801 || flavour == neon_cvt_flavour_s32_f32
18802 || flavour == neon_cvt_flavour_u32_f32
18803 || flavour == neon_cvt_flavour_s32_f64
18804 || flavour == neon_cvt_flavour_u32_f64)
18805 && (rs == NS_FD || rs == NS_FF))
18806 {
18807 do_vfp_nsyn_cvtz ();
18808 return;
18809 }
18810
18811 /* ARMv8.2 fp16 VCVT conversions. */
18812 if (mode == neon_cvt_mode_z
18813 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18814 && (flavour == neon_cvt_flavour_s32_f16
18815 || flavour == neon_cvt_flavour_u32_f16)
18816 && (rs == NS_FH))
18817 {
18818 do_vfp_nsyn_cvtz ();
18819 do_scalar_fp16_v82_encode ();
18820 return;
18821 }
18822
18823 /* VFP rather than Neon conversions. */
18824 if (flavour >= neon_cvt_flavour_first_fp)
18825 {
18826 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18827 do_vfp_nsyn_cvt (rs, flavour);
18828 else
18829 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18830
18831 return;
18832 }
18833
18834 switch (rs)
18835 {
18836 case NS_QQI:
18837 if (mode == neon_cvt_mode_z
18838 && (flavour == neon_cvt_flavour_f16_s16
18839 || flavour == neon_cvt_flavour_f16_u16
18840 || flavour == neon_cvt_flavour_s16_f16
18841 || flavour == neon_cvt_flavour_u16_f16
18842 || flavour == neon_cvt_flavour_f32_u32
18843 || flavour == neon_cvt_flavour_f32_s32
18844 || flavour == neon_cvt_flavour_s32_f32
18845 || flavour == neon_cvt_flavour_u32_f32))
18846 {
18847 if (!check_simd_pred_availability (TRUE,
18848 NEON_CHECK_CC | NEON_CHECK_ARCH))
18849 return;
18850 }
18851 else if (mode == neon_cvt_mode_n)
18852 {
18853 /* We are dealing with vcvt with the 'ne' condition. */
18854 inst.cond = 0x1;
18855 inst.instruction = N_MNEM_vcvt;
18856 do_neon_cvt_1 (neon_cvt_mode_z);
18857 return;
18858 }
18859 /* fall through. */
18860 case NS_DDI:
18861 {
18862 unsigned immbits;
18863 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18864 0x0000100, 0x1000100, 0x0, 0x1000000};
18865
18866 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18867 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18868 return;
18869
18870 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18871 {
18872 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18873 _("immediate value out of range"));
18874 switch (flavour)
18875 {
18876 case neon_cvt_flavour_f16_s16:
18877 case neon_cvt_flavour_f16_u16:
18878 case neon_cvt_flavour_s16_f16:
18879 case neon_cvt_flavour_u16_f16:
18880 constraint (inst.operands[2].imm > 16,
18881 _("immediate value out of range"));
18882 break;
18883 case neon_cvt_flavour_f32_u32:
18884 case neon_cvt_flavour_f32_s32:
18885 case neon_cvt_flavour_s32_f32:
18886 case neon_cvt_flavour_u32_f32:
18887 constraint (inst.operands[2].imm > 32,
18888 _("immediate value out of range"));
18889 break;
18890 default:
18891 inst.error = BAD_FPU;
18892 return;
18893 }
18894 }
18895
18896 /* Fixed-point conversion with #0 immediate is encoded as an
18897 integer conversion. */
18898 if (inst.operands[2].present && inst.operands[2].imm == 0)
18899 goto int_encode;
18900 NEON_ENCODE (IMMED, inst);
18901 if (flavour != neon_cvt_flavour_invalid)
18902 inst.instruction |= enctab[flavour];
18903 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18904 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18905 inst.instruction |= LOW4 (inst.operands[1].reg);
18906 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18907 inst.instruction |= neon_quad (rs) << 6;
18908 inst.instruction |= 1 << 21;
18909 if (flavour < neon_cvt_flavour_s16_f16)
18910 {
18911 inst.instruction |= 1 << 21;
18912 immbits = 32 - inst.operands[2].imm;
18913 inst.instruction |= immbits << 16;
18914 }
18915 else
18916 {
18917 inst.instruction |= 3 << 20;
18918 immbits = 16 - inst.operands[2].imm;
18919 inst.instruction |= immbits << 16;
18920 inst.instruction &= ~(1 << 9);
18921 }
18922
18923 neon_dp_fixup (&inst);
18924 }
18925 break;
18926
18927 case NS_QQ:
18928 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18929 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18930 && (flavour == neon_cvt_flavour_s16_f16
18931 || flavour == neon_cvt_flavour_u16_f16
18932 || flavour == neon_cvt_flavour_s32_f32
18933 || flavour == neon_cvt_flavour_u32_f32))
18934 {
18935 if (!check_simd_pred_availability (TRUE,
18936 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18937 return;
18938 }
18939 else if (mode == neon_cvt_mode_z
18940 && (flavour == neon_cvt_flavour_f16_s16
18941 || flavour == neon_cvt_flavour_f16_u16
18942 || flavour == neon_cvt_flavour_s16_f16
18943 || flavour == neon_cvt_flavour_u16_f16
18944 || flavour == neon_cvt_flavour_f32_u32
18945 || flavour == neon_cvt_flavour_f32_s32
18946 || flavour == neon_cvt_flavour_s32_f32
18947 || flavour == neon_cvt_flavour_u32_f32))
18948 {
18949 if (!check_simd_pred_availability (TRUE,
18950 NEON_CHECK_CC | NEON_CHECK_ARCH))
18951 return;
18952 }
18953 /* fall through. */
18954 case NS_DD:
18955 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18956 {
18957
18958 NEON_ENCODE (FLOAT, inst);
18959 if (!check_simd_pred_availability (TRUE,
18960 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18961 return;
18962
18963 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18964 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18965 inst.instruction |= LOW4 (inst.operands[1].reg);
18966 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18967 inst.instruction |= neon_quad (rs) << 6;
18968 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18969 || flavour == neon_cvt_flavour_u32_f32) << 7;
18970 inst.instruction |= mode << 8;
18971 if (flavour == neon_cvt_flavour_u16_f16
18972 || flavour == neon_cvt_flavour_s16_f16)
18973 /* Mask off the original size bits and reencode them. */
18974 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18975
18976 if (thumb_mode)
18977 inst.instruction |= 0xfc000000;
18978 else
18979 inst.instruction |= 0xf0000000;
18980 }
18981 else
18982 {
18983 int_encode:
18984 {
18985 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18986 0x100, 0x180, 0x0, 0x080};
18987
18988 NEON_ENCODE (INTEGER, inst);
18989
18990 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18991 {
18992 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18993 return;
18994 }
18995
18996 if (flavour != neon_cvt_flavour_invalid)
18997 inst.instruction |= enctab[flavour];
18998
18999 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19000 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19001 inst.instruction |= LOW4 (inst.operands[1].reg);
19002 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19003 inst.instruction |= neon_quad (rs) << 6;
19004 if (flavour >= neon_cvt_flavour_s16_f16
19005 && flavour <= neon_cvt_flavour_f16_u16)
19006 /* Half precision. */
19007 inst.instruction |= 1 << 18;
19008 else
19009 inst.instruction |= 2 << 18;
19010
19011 neon_dp_fixup (&inst);
19012 }
19013 }
19014 break;
19015
19016 /* Half-precision conversions for Advanced SIMD -- neon. */
19017 case NS_QD:
19018 case NS_DQ:
19019 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
19020 return;
19021
19022 if ((rs == NS_DQ)
19023 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
19024 {
19025 as_bad (_("operand size must match register width"));
19026 break;
19027 }
19028
19029 if ((rs == NS_QD)
19030 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
19031 {
19032 as_bad (_("operand size must match register width"));
19033 break;
19034 }
19035
19036 if (rs == NS_DQ)
19037 inst.instruction = 0x3b60600;
19038 else
19039 inst.instruction = 0x3b60700;
19040
19041 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19042 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19043 inst.instruction |= LOW4 (inst.operands[1].reg);
19044 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19045 neon_dp_fixup (&inst);
19046 break;
19047
19048 default:
19049 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
19050 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
19051 do_vfp_nsyn_cvt (rs, flavour);
19052 else
19053 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
19054 }
19055 }
19056
19057 static void
19058 do_neon_cvtr (void)
19059 {
19060 do_neon_cvt_1 (neon_cvt_mode_x);
19061 }
19062
19063 static void
19064 do_neon_cvt (void)
19065 {
19066 do_neon_cvt_1 (neon_cvt_mode_z);
19067 }
19068
19069 static void
19070 do_neon_cvta (void)
19071 {
19072 do_neon_cvt_1 (neon_cvt_mode_a);
19073 }
19074
19075 static void
19076 do_neon_cvtn (void)
19077 {
19078 do_neon_cvt_1 (neon_cvt_mode_n);
19079 }
19080
19081 static void
19082 do_neon_cvtp (void)
19083 {
19084 do_neon_cvt_1 (neon_cvt_mode_p);
19085 }
19086
19087 static void
19088 do_neon_cvtm (void)
19089 {
19090 do_neon_cvt_1 (neon_cvt_mode_m);
19091 }
19092
19093 static void
19094 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
19095 {
19096 if (is_double)
19097 mark_feature_used (&fpu_vfp_ext_armv8);
19098
19099 encode_arm_vfp_reg (inst.operands[0].reg,
19100 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
19101 encode_arm_vfp_reg (inst.operands[1].reg,
19102 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
19103 inst.instruction |= to ? 0x10000 : 0;
19104 inst.instruction |= t ? 0x80 : 0;
19105 inst.instruction |= is_double ? 0x100 : 0;
19106 do_vfp_cond_or_thumb ();
19107 }
19108
19109 static void
19110 do_neon_cvttb_1 (bfd_boolean t)
19111 {
19112 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
19113 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
19114
19115 if (rs == NS_NULL)
19116 return;
19117 else if (rs == NS_QQ || rs == NS_QQI)
19118 {
19119 int single_to_half = 0;
19120 if (!check_simd_pred_availability (TRUE, NEON_CHECK_ARCH))
19121 return;
19122
19123 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
19124
19125 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19126 && (flavour == neon_cvt_flavour_u16_f16
19127 || flavour == neon_cvt_flavour_s16_f16
19128 || flavour == neon_cvt_flavour_f16_s16
19129 || flavour == neon_cvt_flavour_f16_u16
19130 || flavour == neon_cvt_flavour_u32_f32
19131 || flavour == neon_cvt_flavour_s32_f32
19132 || flavour == neon_cvt_flavour_f32_s32
19133 || flavour == neon_cvt_flavour_f32_u32))
19134 {
19135 inst.cond = 0xf;
19136 inst.instruction = N_MNEM_vcvt;
19137 set_pred_insn_type (INSIDE_VPT_INSN);
19138 do_neon_cvt_1 (neon_cvt_mode_z);
19139 return;
19140 }
19141 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
19142 single_to_half = 1;
19143 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
19144 {
19145 first_error (BAD_FPU);
19146 return;
19147 }
19148
19149 inst.instruction = 0xee3f0e01;
19150 inst.instruction |= single_to_half << 28;
19151 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19152 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
19153 inst.instruction |= t << 12;
19154 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19155 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
19156 inst.is_neon = 1;
19157 }
19158 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
19159 {
19160 inst.error = NULL;
19161 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
19162 }
19163 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
19164 {
19165 inst.error = NULL;
19166 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
19167 }
19168 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
19169 {
19170 /* The VCVTB and VCVTT instructions with D-register operands
19171 don't work for SP only targets. */
19172 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19173 _(BAD_FPU));
19174
19175 inst.error = NULL;
19176 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
19177 }
19178 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
19179 {
19180 /* The VCVTB and VCVTT instructions with D-register operands
19181 don't work for SP only targets. */
19182 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19183 _(BAD_FPU));
19184
19185 inst.error = NULL;
19186 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
19187 }
19188 else
19189 return;
19190 }
19191
19192 static void
19193 do_neon_cvtb (void)
19194 {
19195 do_neon_cvttb_1 (FALSE);
19196 }
19197
19198
19199 static void
19200 do_neon_cvtt (void)
19201 {
19202 do_neon_cvttb_1 (TRUE);
19203 }
19204
19205 static void
19206 neon_move_immediate (void)
19207 {
19208 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
19209 struct neon_type_el et = neon_check_type (2, rs,
19210 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
19211 unsigned immlo, immhi = 0, immbits;
19212 int op, cmode, float_p;
19213
19214 constraint (et.type == NT_invtype,
19215 _("operand size must be specified for immediate VMOV"));
19216
19217 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
19218 op = (inst.instruction & (1 << 5)) != 0;
19219
19220 immlo = inst.operands[1].imm;
19221 if (inst.operands[1].regisimm)
19222 immhi = inst.operands[1].reg;
19223
19224 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
19225 _("immediate has bits set outside the operand size"));
19226
19227 float_p = inst.operands[1].immisfloat;
19228
19229 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
19230 et.size, et.type)) == FAIL)
19231 {
19232 /* Invert relevant bits only. */
19233 neon_invert_size (&immlo, &immhi, et.size);
19234 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
19235 with one or the other; those cases are caught by
19236 neon_cmode_for_move_imm. */
19237 op = !op;
19238 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
19239 &op, et.size, et.type)) == FAIL)
19240 {
19241 first_error (_("immediate out of range"));
19242 return;
19243 }
19244 }
19245
19246 inst.instruction &= ~(1 << 5);
19247 inst.instruction |= op << 5;
19248
19249 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19250 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19251 inst.instruction |= neon_quad (rs) << 6;
19252 inst.instruction |= cmode << 8;
19253
19254 neon_write_immbits (immbits);
19255 }
19256
19257 static void
19258 do_neon_mvn (void)
19259 {
19260 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
19261 return;
19262
19263 if (inst.operands[1].isreg)
19264 {
19265 enum neon_shape rs;
19266 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19267 rs = neon_select_shape (NS_QQ, NS_NULL);
19268 else
19269 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19270
19271 NEON_ENCODE (INTEGER, inst);
19272 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19273 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19274 inst.instruction |= LOW4 (inst.operands[1].reg);
19275 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19276 inst.instruction |= neon_quad (rs) << 6;
19277 }
19278 else
19279 {
19280 NEON_ENCODE (IMMED, inst);
19281 neon_move_immediate ();
19282 }
19283
19284 neon_dp_fixup (&inst);
19285
19286 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19287 {
19288 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
19289 constraint ((inst.instruction & 0xd00) == 0xd00,
19290 _("immediate value out of range"));
19291 }
19292 }
19293
19294 /* Encode instructions of form:
19295
19296 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
19297 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
19298
19299 static void
19300 neon_mixed_length (struct neon_type_el et, unsigned size)
19301 {
19302 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19303 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19304 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19305 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19306 inst.instruction |= LOW4 (inst.operands[2].reg);
19307 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19308 inst.instruction |= (et.type == NT_unsigned) << 24;
19309 inst.instruction |= neon_logbits (size) << 20;
19310
19311 neon_dp_fixup (&inst);
19312 }
19313
19314 static void
19315 do_neon_dyadic_long (void)
19316 {
19317 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
19318 if (rs == NS_QDD)
19319 {
19320 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
19321 return;
19322
19323 NEON_ENCODE (INTEGER, inst);
19324 /* FIXME: Type checking for lengthening op. */
19325 struct neon_type_el et = neon_check_type (3, NS_QDD,
19326 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
19327 neon_mixed_length (et, et.size);
19328 }
19329 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19330 && (inst.cond == 0xf || inst.cond == 0x10))
19331 {
19332 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
19333 in an IT block with le/lt conditions. */
19334
19335 if (inst.cond == 0xf)
19336 inst.cond = 0xb;
19337 else if (inst.cond == 0x10)
19338 inst.cond = 0xd;
19339
19340 inst.pred_insn_type = INSIDE_IT_INSN;
19341
19342 if (inst.instruction == N_MNEM_vaddl)
19343 {
19344 inst.instruction = N_MNEM_vadd;
19345 do_neon_addsub_if_i ();
19346 }
19347 else if (inst.instruction == N_MNEM_vsubl)
19348 {
19349 inst.instruction = N_MNEM_vsub;
19350 do_neon_addsub_if_i ();
19351 }
19352 else if (inst.instruction == N_MNEM_vabdl)
19353 {
19354 inst.instruction = N_MNEM_vabd;
19355 do_neon_dyadic_if_su ();
19356 }
19357 }
19358 else
19359 first_error (BAD_FPU);
19360 }
19361
19362 static void
19363 do_neon_abal (void)
19364 {
19365 struct neon_type_el et = neon_check_type (3, NS_QDD,
19366 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
19367 neon_mixed_length (et, et.size);
19368 }
19369
19370 static void
19371 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
19372 {
19373 if (inst.operands[2].isscalar)
19374 {
19375 struct neon_type_el et = neon_check_type (3, NS_QDS,
19376 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
19377 NEON_ENCODE (SCALAR, inst);
19378 neon_mul_mac (et, et.type == NT_unsigned);
19379 }
19380 else
19381 {
19382 struct neon_type_el et = neon_check_type (3, NS_QDD,
19383 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
19384 NEON_ENCODE (INTEGER, inst);
19385 neon_mixed_length (et, et.size);
19386 }
19387 }
19388
19389 static void
19390 do_neon_mac_maybe_scalar_long (void)
19391 {
19392 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
19393 }
19394
19395 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
19396 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
19397
19398 static unsigned
19399 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
19400 {
19401 unsigned regno = NEON_SCALAR_REG (scalar);
19402 unsigned elno = NEON_SCALAR_INDEX (scalar);
19403
19404 if (quad_p)
19405 {
19406 if (regno > 7 || elno > 3)
19407 goto bad_scalar;
19408
19409 return ((regno & 0x7)
19410 | ((elno & 0x1) << 3)
19411 | (((elno >> 1) & 0x1) << 5));
19412 }
19413 else
19414 {
19415 if (regno > 15 || elno > 1)
19416 goto bad_scalar;
19417
19418 return (((regno & 0x1) << 5)
19419 | ((regno >> 1) & 0x7)
19420 | ((elno & 0x1) << 3));
19421 }
19422
19423 bad_scalar:
19424 first_error (_("scalar out of range for multiply instruction"));
19425 return 0;
19426 }
19427
19428 static void
19429 do_neon_fmac_maybe_scalar_long (int subtype)
19430 {
19431 enum neon_shape rs;
19432 int high8;
19433 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
19434 field (bits[21:20]) has different meaning. For scalar index variant, it's
19435 used to differentiate add and subtract, otherwise it's with fixed value
19436 0x2. */
19437 int size = -1;
19438
19439 if (inst.cond != COND_ALWAYS)
19440 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
19441 "behaviour is UNPREDICTABLE"));
19442
19443 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
19444 _(BAD_FP16));
19445
19446 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19447 _(BAD_FPU));
19448
19449 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
19450 be a scalar index register. */
19451 if (inst.operands[2].isscalar)
19452 {
19453 high8 = 0xfe000000;
19454 if (subtype)
19455 size = 16;
19456 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
19457 }
19458 else
19459 {
19460 high8 = 0xfc000000;
19461 size = 32;
19462 if (subtype)
19463 inst.instruction |= (0x1 << 23);
19464 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
19465 }
19466
19467 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
19468
19469 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
19470 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
19471 so we simply pass -1 as size. */
19472 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
19473 neon_three_same (quad_p, 0, size);
19474
19475 /* Undo neon_dp_fixup. Redo the high eight bits. */
19476 inst.instruction &= 0x00ffffff;
19477 inst.instruction |= high8;
19478
19479 #define LOW1(R) ((R) & 0x1)
19480 #define HI4(R) (((R) >> 1) & 0xf)
19481 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
19482 whether the instruction is in Q form and whether Vm is a scalar indexed
19483 operand. */
19484 if (inst.operands[2].isscalar)
19485 {
19486 unsigned rm
19487 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
19488 inst.instruction &= 0xffffffd0;
19489 inst.instruction |= rm;
19490
19491 if (!quad_p)
19492 {
19493 /* Redo Rn as well. */
19494 inst.instruction &= 0xfff0ff7f;
19495 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19496 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19497 }
19498 }
19499 else if (!quad_p)
19500 {
19501 /* Redo Rn and Rm. */
19502 inst.instruction &= 0xfff0ff50;
19503 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19504 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19505 inst.instruction |= HI4 (inst.operands[2].reg);
19506 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
19507 }
19508 }
19509
19510 static void
19511 do_neon_vfmal (void)
19512 {
19513 return do_neon_fmac_maybe_scalar_long (0);
19514 }
19515
19516 static void
19517 do_neon_vfmsl (void)
19518 {
19519 return do_neon_fmac_maybe_scalar_long (1);
19520 }
19521
19522 static void
19523 do_neon_dyadic_wide (void)
19524 {
19525 struct neon_type_el et = neon_check_type (3, NS_QQD,
19526 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
19527 neon_mixed_length (et, et.size);
19528 }
19529
19530 static void
19531 do_neon_dyadic_narrow (void)
19532 {
19533 struct neon_type_el et = neon_check_type (3, NS_QDD,
19534 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
19535 /* Operand sign is unimportant, and the U bit is part of the opcode,
19536 so force the operand type to integer. */
19537 et.type = NT_integer;
19538 neon_mixed_length (et, et.size / 2);
19539 }
19540
19541 static void
19542 do_neon_mul_sat_scalar_long (void)
19543 {
19544 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
19545 }
19546
19547 static void
19548 do_neon_vmull (void)
19549 {
19550 if (inst.operands[2].isscalar)
19551 do_neon_mac_maybe_scalar_long ();
19552 else
19553 {
19554 struct neon_type_el et = neon_check_type (3, NS_QDD,
19555 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
19556
19557 if (et.type == NT_poly)
19558 NEON_ENCODE (POLY, inst);
19559 else
19560 NEON_ENCODE (INTEGER, inst);
19561
19562 /* For polynomial encoding the U bit must be zero, and the size must
19563 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19564 obviously, as 0b10). */
19565 if (et.size == 64)
19566 {
19567 /* Check we're on the correct architecture. */
19568 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19569 inst.error =
19570 _("Instruction form not available on this architecture.");
19571
19572 et.size = 32;
19573 }
19574
19575 neon_mixed_length (et, et.size);
19576 }
19577 }
19578
19579 static void
19580 do_neon_ext (void)
19581 {
19582 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19583 struct neon_type_el et = neon_check_type (3, rs,
19584 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19585 unsigned imm = (inst.operands[3].imm * et.size) / 8;
19586
19587 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19588 _("shift out of range"));
19589 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19590 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19591 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19592 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19593 inst.instruction |= LOW4 (inst.operands[2].reg);
19594 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19595 inst.instruction |= neon_quad (rs) << 6;
19596 inst.instruction |= imm << 8;
19597
19598 neon_dp_fixup (&inst);
19599 }
19600
19601 static void
19602 do_neon_rev (void)
19603 {
19604 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
19605 return;
19606
19607 enum neon_shape rs;
19608 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19609 rs = neon_select_shape (NS_QQ, NS_NULL);
19610 else
19611 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19612
19613 struct neon_type_el et = neon_check_type (2, rs,
19614 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19615
19616 unsigned op = (inst.instruction >> 7) & 3;
19617 /* N (width of reversed regions) is encoded as part of the bitmask. We
19618 extract it here to check the elements to be reversed are smaller.
19619 Otherwise we'd get a reserved instruction. */
19620 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
19621
19622 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && elsize == 64
19623 && inst.operands[0].reg == inst.operands[1].reg)
19624 as_tsktsk (_("Warning: 64-bit element size and same destination and source"
19625 " operands makes instruction UNPREDICTABLE"));
19626
19627 gas_assert (elsize != 0);
19628 constraint (et.size >= elsize,
19629 _("elements must be smaller than reversal region"));
19630 neon_two_same (neon_quad (rs), 1, et.size);
19631 }
19632
19633 static void
19634 do_neon_dup (void)
19635 {
19636 if (inst.operands[1].isscalar)
19637 {
19638 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19639 BAD_FPU);
19640 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
19641 struct neon_type_el et = neon_check_type (2, rs,
19642 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19643 unsigned sizebits = et.size >> 3;
19644 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
19645 int logsize = neon_logbits (et.size);
19646 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
19647
19648 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
19649 return;
19650
19651 NEON_ENCODE (SCALAR, inst);
19652 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19653 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19654 inst.instruction |= LOW4 (dm);
19655 inst.instruction |= HI1 (dm) << 5;
19656 inst.instruction |= neon_quad (rs) << 6;
19657 inst.instruction |= x << 17;
19658 inst.instruction |= sizebits << 16;
19659
19660 neon_dp_fixup (&inst);
19661 }
19662 else
19663 {
19664 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19665 struct neon_type_el et = neon_check_type (2, rs,
19666 N_8 | N_16 | N_32 | N_KEY, N_EQK);
19667 if (rs == NS_QR)
19668 {
19669 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH))
19670 return;
19671 }
19672 else
19673 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19674 BAD_FPU);
19675
19676 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19677 {
19678 if (inst.operands[1].reg == REG_SP)
19679 as_tsktsk (MVE_BAD_SP);
19680 else if (inst.operands[1].reg == REG_PC)
19681 as_tsktsk (MVE_BAD_PC);
19682 }
19683
19684 /* Duplicate ARM register to lanes of vector. */
19685 NEON_ENCODE (ARMREG, inst);
19686 switch (et.size)
19687 {
19688 case 8: inst.instruction |= 0x400000; break;
19689 case 16: inst.instruction |= 0x000020; break;
19690 case 32: inst.instruction |= 0x000000; break;
19691 default: break;
19692 }
19693 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19694 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19695 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
19696 inst.instruction |= neon_quad (rs) << 21;
19697 /* The encoding for this instruction is identical for the ARM and Thumb
19698 variants, except for the condition field. */
19699 do_vfp_cond_or_thumb ();
19700 }
19701 }
19702
19703 static void
19704 do_mve_mov (int toQ)
19705 {
19706 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19707 return;
19708 if (inst.cond > COND_ALWAYS)
19709 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19710
19711 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19712 if (toQ)
19713 {
19714 Q0 = 0;
19715 Q1 = 1;
19716 Rt = 2;
19717 Rt2 = 3;
19718 }
19719
19720 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19721 _("Index one must be [2,3] and index two must be two less than"
19722 " index one."));
19723 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19724 _("General purpose registers may not be the same"));
19725 constraint (inst.operands[Rt].reg == REG_SP
19726 || inst.operands[Rt2].reg == REG_SP,
19727 BAD_SP);
19728 constraint (inst.operands[Rt].reg == REG_PC
19729 || inst.operands[Rt2].reg == REG_PC,
19730 BAD_PC);
19731
19732 inst.instruction = 0xec000f00;
19733 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19734 inst.instruction |= !!toQ << 20;
19735 inst.instruction |= inst.operands[Rt2].reg << 16;
19736 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19737 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19738 inst.instruction |= inst.operands[Rt].reg;
19739 }
19740
19741 static void
19742 do_mve_movn (void)
19743 {
19744 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19745 return;
19746
19747 if (inst.cond > COND_ALWAYS)
19748 inst.pred_insn_type = INSIDE_VPT_INSN;
19749 else
19750 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19751
19752 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19753 | N_KEY);
19754
19755 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19756 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19757 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19758 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19759 inst.instruction |= LOW4 (inst.operands[1].reg);
19760 inst.is_neon = 1;
19761
19762 }
19763
19764 /* VMOV has particularly many variations. It can be one of:
19765 0. VMOV<c><q> <Qd>, <Qm>
19766 1. VMOV<c><q> <Dd>, <Dm>
19767 (Register operations, which are VORR with Rm = Rn.)
19768 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19769 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19770 (Immediate loads.)
19771 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19772 (ARM register to scalar.)
19773 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19774 (Two ARM registers to vector.)
19775 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19776 (Scalar to ARM register.)
19777 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19778 (Vector to two ARM registers.)
19779 8. VMOV.F32 <Sd>, <Sm>
19780 9. VMOV.F64 <Dd>, <Dm>
19781 (VFP register moves.)
19782 10. VMOV.F32 <Sd>, #imm
19783 11. VMOV.F64 <Dd>, #imm
19784 (VFP float immediate load.)
19785 12. VMOV <Rd>, <Sm>
19786 (VFP single to ARM reg.)
19787 13. VMOV <Sd>, <Rm>
19788 (ARM reg to VFP single.)
19789 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19790 (Two ARM regs to two VFP singles.)
19791 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19792 (Two VFP singles to two ARM regs.)
19793 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19794 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19795 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19796 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
19797
19798 These cases can be disambiguated using neon_select_shape, except cases 1/9
19799 and 3/11 which depend on the operand type too.
19800
19801 All the encoded bits are hardcoded by this function.
19802
19803 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19804 Cases 5, 7 may be used with VFPv2 and above.
19805
19806 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
19807 can specify a type where it doesn't make sense to, and is ignored). */
19808
19809 static void
19810 do_neon_mov (void)
19811 {
19812 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19813 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19814 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19815 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19816 NS_NULL);
19817 struct neon_type_el et;
19818 const char *ldconst = 0;
19819
19820 switch (rs)
19821 {
19822 case NS_DD: /* case 1/9. */
19823 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19824 /* It is not an error here if no type is given. */
19825 inst.error = NULL;
19826 if (et.type == NT_float && et.size == 64)
19827 {
19828 do_vfp_nsyn_opcode ("fcpyd");
19829 break;
19830 }
19831 /* fall through. */
19832
19833 case NS_QQ: /* case 0/1. */
19834 {
19835 if (!check_simd_pred_availability (FALSE,
19836 NEON_CHECK_CC | NEON_CHECK_ARCH))
19837 return;
19838 /* The architecture manual I have doesn't explicitly state which
19839 value the U bit should have for register->register moves, but
19840 the equivalent VORR instruction has U = 0, so do that. */
19841 inst.instruction = 0x0200110;
19842 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19843 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19844 inst.instruction |= LOW4 (inst.operands[1].reg);
19845 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19846 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19847 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19848 inst.instruction |= neon_quad (rs) << 6;
19849
19850 neon_dp_fixup (&inst);
19851 }
19852 break;
19853
19854 case NS_DI: /* case 3/11. */
19855 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19856 inst.error = NULL;
19857 if (et.type == NT_float && et.size == 64)
19858 {
19859 /* case 11 (fconstd). */
19860 ldconst = "fconstd";
19861 goto encode_fconstd;
19862 }
19863 /* fall through. */
19864
19865 case NS_QI: /* case 2/3. */
19866 if (!check_simd_pred_availability (FALSE,
19867 NEON_CHECK_CC | NEON_CHECK_ARCH))
19868 return;
19869 inst.instruction = 0x0800010;
19870 neon_move_immediate ();
19871 neon_dp_fixup (&inst);
19872 break;
19873
19874 case NS_SR: /* case 4. */
19875 {
19876 unsigned bcdebits = 0;
19877 int logsize;
19878 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19879 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
19880
19881 /* .<size> is optional here, defaulting to .32. */
19882 if (inst.vectype.elems == 0
19883 && inst.operands[0].vectype.type == NT_invtype
19884 && inst.operands[1].vectype.type == NT_invtype)
19885 {
19886 inst.vectype.el[0].type = NT_untyped;
19887 inst.vectype.el[0].size = 32;
19888 inst.vectype.elems = 1;
19889 }
19890
19891 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19892 logsize = neon_logbits (et.size);
19893
19894 if (et.size != 32)
19895 {
19896 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19897 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19898 return;
19899 }
19900 else
19901 {
19902 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19903 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19904 _(BAD_FPU));
19905 }
19906
19907 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19908 {
19909 if (inst.operands[1].reg == REG_SP)
19910 as_tsktsk (MVE_BAD_SP);
19911 else if (inst.operands[1].reg == REG_PC)
19912 as_tsktsk (MVE_BAD_PC);
19913 }
19914 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19915
19916 constraint (et.type == NT_invtype, _("bad type for scalar"));
19917 constraint (x >= size / et.size, _("scalar index out of range"));
19918
19919
19920 switch (et.size)
19921 {
19922 case 8: bcdebits = 0x8; break;
19923 case 16: bcdebits = 0x1; break;
19924 case 32: bcdebits = 0x0; break;
19925 default: ;
19926 }
19927
19928 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19929
19930 inst.instruction = 0xe000b10;
19931 do_vfp_cond_or_thumb ();
19932 inst.instruction |= LOW4 (dn) << 16;
19933 inst.instruction |= HI1 (dn) << 7;
19934 inst.instruction |= inst.operands[1].reg << 12;
19935 inst.instruction |= (bcdebits & 3) << 5;
19936 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19937 inst.instruction |= (x >> (3-logsize)) << 16;
19938 }
19939 break;
19940
19941 case NS_DRR: /* case 5 (fmdrr). */
19942 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19943 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19944 _(BAD_FPU));
19945
19946 inst.instruction = 0xc400b10;
19947 do_vfp_cond_or_thumb ();
19948 inst.instruction |= LOW4 (inst.operands[0].reg);
19949 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19950 inst.instruction |= inst.operands[1].reg << 12;
19951 inst.instruction |= inst.operands[2].reg << 16;
19952 break;
19953
19954 case NS_RS: /* case 6. */
19955 {
19956 unsigned logsize;
19957 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19958 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19959 unsigned abcdebits = 0;
19960
19961 /* .<dt> is optional here, defaulting to .32. */
19962 if (inst.vectype.elems == 0
19963 && inst.operands[0].vectype.type == NT_invtype
19964 && inst.operands[1].vectype.type == NT_invtype)
19965 {
19966 inst.vectype.el[0].type = NT_untyped;
19967 inst.vectype.el[0].size = 32;
19968 inst.vectype.elems = 1;
19969 }
19970
19971 et = neon_check_type (2, NS_NULL,
19972 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
19973 logsize = neon_logbits (et.size);
19974
19975 if (et.size != 32)
19976 {
19977 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19978 && vfp_or_neon_is_neon (NEON_CHECK_CC
19979 | NEON_CHECK_ARCH) == FAIL)
19980 return;
19981 }
19982 else
19983 {
19984 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19985 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19986 _(BAD_FPU));
19987 }
19988
19989 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19990 {
19991 if (inst.operands[0].reg == REG_SP)
19992 as_tsktsk (MVE_BAD_SP);
19993 else if (inst.operands[0].reg == REG_PC)
19994 as_tsktsk (MVE_BAD_PC);
19995 }
19996
19997 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19998
19999 constraint (et.type == NT_invtype, _("bad type for scalar"));
20000 constraint (x >= size / et.size, _("scalar index out of range"));
20001
20002 switch (et.size)
20003 {
20004 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
20005 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
20006 case 32: abcdebits = 0x00; break;
20007 default: ;
20008 }
20009
20010 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
20011 inst.instruction = 0xe100b10;
20012 do_vfp_cond_or_thumb ();
20013 inst.instruction |= LOW4 (dn) << 16;
20014 inst.instruction |= HI1 (dn) << 7;
20015 inst.instruction |= inst.operands[0].reg << 12;
20016 inst.instruction |= (abcdebits & 3) << 5;
20017 inst.instruction |= (abcdebits >> 2) << 21;
20018 inst.instruction |= (x >> (3-logsize)) << 16;
20019 }
20020 break;
20021
20022 case NS_RRD: /* case 7 (fmrrd). */
20023 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20024 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20025 _(BAD_FPU));
20026
20027 inst.instruction = 0xc500b10;
20028 do_vfp_cond_or_thumb ();
20029 inst.instruction |= inst.operands[0].reg << 12;
20030 inst.instruction |= inst.operands[1].reg << 16;
20031 inst.instruction |= LOW4 (inst.operands[2].reg);
20032 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20033 break;
20034
20035 case NS_FF: /* case 8 (fcpys). */
20036 do_vfp_nsyn_opcode ("fcpys");
20037 break;
20038
20039 case NS_HI:
20040 case NS_FI: /* case 10 (fconsts). */
20041 ldconst = "fconsts";
20042 encode_fconstd:
20043 if (!inst.operands[1].immisfloat)
20044 {
20045 unsigned new_imm;
20046 /* Immediate has to fit in 8 bits so float is enough. */
20047 float imm = (float) inst.operands[1].imm;
20048 memcpy (&new_imm, &imm, sizeof (float));
20049 /* But the assembly may have been written to provide an integer
20050 bit pattern that equates to a float, so check that the
20051 conversion has worked. */
20052 if (is_quarter_float (new_imm))
20053 {
20054 if (is_quarter_float (inst.operands[1].imm))
20055 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
20056
20057 inst.operands[1].imm = new_imm;
20058 inst.operands[1].immisfloat = 1;
20059 }
20060 }
20061
20062 if (is_quarter_float (inst.operands[1].imm))
20063 {
20064 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
20065 do_vfp_nsyn_opcode (ldconst);
20066
20067 /* ARMv8.2 fp16 vmov.f16 instruction. */
20068 if (rs == NS_HI)
20069 do_scalar_fp16_v82_encode ();
20070 }
20071 else
20072 first_error (_("immediate out of range"));
20073 break;
20074
20075 case NS_RH:
20076 case NS_RF: /* case 12 (fmrs). */
20077 do_vfp_nsyn_opcode ("fmrs");
20078 /* ARMv8.2 fp16 vmov.f16 instruction. */
20079 if (rs == NS_RH)
20080 do_scalar_fp16_v82_encode ();
20081 break;
20082
20083 case NS_HR:
20084 case NS_FR: /* case 13 (fmsr). */
20085 do_vfp_nsyn_opcode ("fmsr");
20086 /* ARMv8.2 fp16 vmov.f16 instruction. */
20087 if (rs == NS_HR)
20088 do_scalar_fp16_v82_encode ();
20089 break;
20090
20091 case NS_RRSS:
20092 do_mve_mov (0);
20093 break;
20094 case NS_SSRR:
20095 do_mve_mov (1);
20096 break;
20097
20098 /* The encoders for the fmrrs and fmsrr instructions expect three operands
20099 (one of which is a list), but we have parsed four. Do some fiddling to
20100 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
20101 expect. */
20102 case NS_RRFF: /* case 14 (fmrrs). */
20103 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20104 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20105 _(BAD_FPU));
20106 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
20107 _("VFP registers must be adjacent"));
20108 inst.operands[2].imm = 2;
20109 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20110 do_vfp_nsyn_opcode ("fmrrs");
20111 break;
20112
20113 case NS_FFRR: /* case 15 (fmsrr). */
20114 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
20115 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
20116 _(BAD_FPU));
20117 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
20118 _("VFP registers must be adjacent"));
20119 inst.operands[1] = inst.operands[2];
20120 inst.operands[2] = inst.operands[3];
20121 inst.operands[0].imm = 2;
20122 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
20123 do_vfp_nsyn_opcode ("fmsrr");
20124 break;
20125
20126 case NS_NULL:
20127 /* neon_select_shape has determined that the instruction
20128 shape is wrong and has already set the error message. */
20129 break;
20130
20131 default:
20132 abort ();
20133 }
20134 }
20135
20136 static void
20137 do_mve_movl (void)
20138 {
20139 if (!(inst.operands[0].present && inst.operands[0].isquad
20140 && inst.operands[1].present && inst.operands[1].isquad
20141 && !inst.operands[2].present))
20142 {
20143 inst.instruction = 0;
20144 inst.cond = 0xb;
20145 if (thumb_mode)
20146 set_pred_insn_type (INSIDE_IT_INSN);
20147 do_neon_mov ();
20148 return;
20149 }
20150
20151 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20152 return;
20153
20154 if (inst.cond != COND_ALWAYS)
20155 inst.pred_insn_type = INSIDE_VPT_INSN;
20156
20157 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
20158 | N_S16 | N_U16 | N_KEY);
20159
20160 inst.instruction |= (et.type == NT_unsigned) << 28;
20161 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20162 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
20163 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20164 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20165 inst.instruction |= LOW4 (inst.operands[1].reg);
20166 inst.is_neon = 1;
20167 }
20168
20169 static void
20170 do_neon_rshift_round_imm (void)
20171 {
20172 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20173 return;
20174
20175 enum neon_shape rs;
20176 struct neon_type_el et;
20177
20178 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20179 {
20180 rs = neon_select_shape (NS_QQI, NS_NULL);
20181 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
20182 }
20183 else
20184 {
20185 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
20186 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
20187 }
20188 int imm = inst.operands[2].imm;
20189
20190 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
20191 if (imm == 0)
20192 {
20193 inst.operands[2].present = 0;
20194 do_neon_mov ();
20195 return;
20196 }
20197
20198 constraint (imm < 1 || (unsigned)imm > et.size,
20199 _("immediate out of range for shift"));
20200 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
20201 et.size - imm);
20202 }
20203
20204 static void
20205 do_neon_movhf (void)
20206 {
20207 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
20208 constraint (rs != NS_HH, _("invalid suffix"));
20209
20210 if (inst.cond != COND_ALWAYS)
20211 {
20212 if (thumb_mode)
20213 {
20214 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
20215 " the behaviour is UNPREDICTABLE"));
20216 }
20217 else
20218 {
20219 inst.error = BAD_COND;
20220 return;
20221 }
20222 }
20223
20224 do_vfp_sp_monadic ();
20225
20226 inst.is_neon = 1;
20227 inst.instruction |= 0xf0000000;
20228 }
20229
20230 static void
20231 do_neon_movl (void)
20232 {
20233 struct neon_type_el et = neon_check_type (2, NS_QD,
20234 N_EQK | N_DBL, N_SU_32 | N_KEY);
20235 unsigned sizebits = et.size >> 3;
20236 inst.instruction |= sizebits << 19;
20237 neon_two_same (0, et.type == NT_unsigned, -1);
20238 }
20239
20240 static void
20241 do_neon_trn (void)
20242 {
20243 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20244 struct neon_type_el et = neon_check_type (2, rs,
20245 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20246 NEON_ENCODE (INTEGER, inst);
20247 neon_two_same (neon_quad (rs), 1, et.size);
20248 }
20249
20250 static void
20251 do_neon_zip_uzp (void)
20252 {
20253 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20254 struct neon_type_el et = neon_check_type (2, rs,
20255 N_EQK, N_8 | N_16 | N_32 | N_KEY);
20256 if (rs == NS_DD && et.size == 32)
20257 {
20258 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
20259 inst.instruction = N_MNEM_vtrn;
20260 do_neon_trn ();
20261 return;
20262 }
20263 neon_two_same (neon_quad (rs), 1, et.size);
20264 }
20265
20266 static void
20267 do_neon_sat_abs_neg (void)
20268 {
20269 if (!check_simd_pred_availability (FALSE, NEON_CHECK_CC | NEON_CHECK_ARCH))
20270 return;
20271
20272 enum neon_shape rs;
20273 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20274 rs = neon_select_shape (NS_QQ, NS_NULL);
20275 else
20276 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20277 struct neon_type_el et = neon_check_type (2, rs,
20278 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20279 neon_two_same (neon_quad (rs), 1, et.size);
20280 }
20281
20282 static void
20283 do_neon_pair_long (void)
20284 {
20285 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20286 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
20287 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
20288 inst.instruction |= (et.type == NT_unsigned) << 7;
20289 neon_two_same (neon_quad (rs), 1, et.size);
20290 }
20291
20292 static void
20293 do_neon_recip_est (void)
20294 {
20295 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20296 struct neon_type_el et = neon_check_type (2, rs,
20297 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
20298 inst.instruction |= (et.type == NT_float) << 8;
20299 neon_two_same (neon_quad (rs), 1, et.size);
20300 }
20301
20302 static void
20303 do_neon_cls (void)
20304 {
20305 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20306 return;
20307
20308 enum neon_shape rs;
20309 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20310 rs = neon_select_shape (NS_QQ, NS_NULL);
20311 else
20312 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20313
20314 struct neon_type_el et = neon_check_type (2, rs,
20315 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
20316 neon_two_same (neon_quad (rs), 1, et.size);
20317 }
20318
20319 static void
20320 do_neon_clz (void)
20321 {
20322 if (!check_simd_pred_availability (FALSE, NEON_CHECK_ARCH | NEON_CHECK_CC))
20323 return;
20324
20325 enum neon_shape rs;
20326 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20327 rs = neon_select_shape (NS_QQ, NS_NULL);
20328 else
20329 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20330
20331 struct neon_type_el et = neon_check_type (2, rs,
20332 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
20333 neon_two_same (neon_quad (rs), 1, et.size);
20334 }
20335
20336 static void
20337 do_neon_cnt (void)
20338 {
20339 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20340 struct neon_type_el et = neon_check_type (2, rs,
20341 N_EQK | N_INT, N_8 | N_KEY);
20342 neon_two_same (neon_quad (rs), 1, et.size);
20343 }
20344
20345 static void
20346 do_neon_swp (void)
20347 {
20348 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
20349 neon_two_same (neon_quad (rs), 1, -1);
20350 }
20351
20352 static void
20353 do_neon_tbl_tbx (void)
20354 {
20355 unsigned listlenbits;
20356 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
20357
20358 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
20359 {
20360 first_error (_("bad list length for table lookup"));
20361 return;
20362 }
20363
20364 listlenbits = inst.operands[1].imm - 1;
20365 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20366 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20367 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20368 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20369 inst.instruction |= LOW4 (inst.operands[2].reg);
20370 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20371 inst.instruction |= listlenbits << 8;
20372
20373 neon_dp_fixup (&inst);
20374 }
20375
20376 static void
20377 do_neon_ldm_stm (void)
20378 {
20379 /* P, U and L bits are part of bitmask. */
20380 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
20381 unsigned offsetbits = inst.operands[1].imm * 2;
20382
20383 if (inst.operands[1].issingle)
20384 {
20385 do_vfp_nsyn_ldm_stm (is_dbmode);
20386 return;
20387 }
20388
20389 constraint (is_dbmode && !inst.operands[0].writeback,
20390 _("writeback (!) must be used for VLDMDB and VSTMDB"));
20391
20392 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
20393 _("register list must contain at least 1 and at most 16 "
20394 "registers"));
20395
20396 inst.instruction |= inst.operands[0].reg << 16;
20397 inst.instruction |= inst.operands[0].writeback << 21;
20398 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
20399 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
20400
20401 inst.instruction |= offsetbits;
20402
20403 do_vfp_cond_or_thumb ();
20404 }
20405
20406 static void
20407 do_neon_ldr_str (void)
20408 {
20409 int is_ldr = (inst.instruction & (1 << 20)) != 0;
20410
20411 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
20412 And is UNPREDICTABLE in thumb mode. */
20413 if (!is_ldr
20414 && inst.operands[1].reg == REG_PC
20415 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
20416 {
20417 if (thumb_mode)
20418 inst.error = _("Use of PC here is UNPREDICTABLE");
20419 else if (warn_on_deprecated)
20420 as_tsktsk (_("Use of PC here is deprecated"));
20421 }
20422
20423 if (inst.operands[0].issingle)
20424 {
20425 if (is_ldr)
20426 do_vfp_nsyn_opcode ("flds");
20427 else
20428 do_vfp_nsyn_opcode ("fsts");
20429
20430 /* ARMv8.2 vldr.16/vstr.16 instruction. */
20431 if (inst.vectype.el[0].size == 16)
20432 do_scalar_fp16_v82_encode ();
20433 }
20434 else
20435 {
20436 if (is_ldr)
20437 do_vfp_nsyn_opcode ("fldd");
20438 else
20439 do_vfp_nsyn_opcode ("fstd");
20440 }
20441 }
20442
20443 static void
20444 do_t_vldr_vstr_sysreg (void)
20445 {
20446 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
20447 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
20448
20449 /* Use of PC is UNPREDICTABLE. */
20450 if (inst.operands[1].reg == REG_PC)
20451 inst.error = _("Use of PC here is UNPREDICTABLE");
20452
20453 if (inst.operands[1].immisreg)
20454 inst.error = _("instruction does not accept register index");
20455
20456 if (!inst.operands[1].isreg)
20457 inst.error = _("instruction does not accept PC-relative addressing");
20458
20459 if (abs (inst.operands[1].imm) >= (1 << 7))
20460 inst.error = _("immediate value out of range");
20461
20462 inst.instruction = 0xec000f80;
20463 if (is_vldr)
20464 inst.instruction |= 1 << sysreg_vldr_bitno;
20465 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
20466 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
20467 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
20468 }
20469
20470 static void
20471 do_vldr_vstr (void)
20472 {
20473 bfd_boolean sysreg_op = !inst.operands[0].isreg;
20474
20475 /* VLDR/VSTR (System Register). */
20476 if (sysreg_op)
20477 {
20478 if (!mark_feature_used (&arm_ext_v8_1m_main))
20479 as_bad (_("Instruction not permitted on this architecture"));
20480
20481 do_t_vldr_vstr_sysreg ();
20482 }
20483 /* VLDR/VSTR. */
20484 else
20485 {
20486 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
20487 as_bad (_("Instruction not permitted on this architecture"));
20488 do_neon_ldr_str ();
20489 }
20490 }
20491
20492 /* "interleave" version also handles non-interleaving register VLD1/VST1
20493 instructions. */
20494
20495 static void
20496 do_neon_ld_st_interleave (void)
20497 {
20498 struct neon_type_el et = neon_check_type (1, NS_NULL,
20499 N_8 | N_16 | N_32 | N_64);
20500 unsigned alignbits = 0;
20501 unsigned idx;
20502 /* The bits in this table go:
20503 0: register stride of one (0) or two (1)
20504 1,2: register list length, minus one (1, 2, 3, 4).
20505 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
20506 We use -1 for invalid entries. */
20507 const int typetable[] =
20508 {
20509 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
20510 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
20511 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
20512 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
20513 };
20514 int typebits;
20515
20516 if (et.type == NT_invtype)
20517 return;
20518
20519 if (inst.operands[1].immisalign)
20520 switch (inst.operands[1].imm >> 8)
20521 {
20522 case 64: alignbits = 1; break;
20523 case 128:
20524 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
20525 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20526 goto bad_alignment;
20527 alignbits = 2;
20528 break;
20529 case 256:
20530 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20531 goto bad_alignment;
20532 alignbits = 3;
20533 break;
20534 default:
20535 bad_alignment:
20536 first_error (_("bad alignment"));
20537 return;
20538 }
20539
20540 inst.instruction |= alignbits << 4;
20541 inst.instruction |= neon_logbits (et.size) << 6;
20542
20543 /* Bits [4:6] of the immediate in a list specifier encode register stride
20544 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20545 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20546 up the right value for "type" in a table based on this value and the given
20547 list style, then stick it back. */
20548 idx = ((inst.operands[0].imm >> 4) & 7)
20549 | (((inst.instruction >> 8) & 3) << 3);
20550
20551 typebits = typetable[idx];
20552
20553 constraint (typebits == -1, _("bad list type for instruction"));
20554 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
20555 BAD_EL_TYPE);
20556
20557 inst.instruction &= ~0xf00;
20558 inst.instruction |= typebits << 8;
20559 }
20560
20561 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20562 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20563 otherwise. The variable arguments are a list of pairs of legal (size, align)
20564 values, terminated with -1. */
20565
20566 static int
20567 neon_alignment_bit (int size, int align, int *do_alignment, ...)
20568 {
20569 va_list ap;
20570 int result = FAIL, thissize, thisalign;
20571
20572 if (!inst.operands[1].immisalign)
20573 {
20574 *do_alignment = 0;
20575 return SUCCESS;
20576 }
20577
20578 va_start (ap, do_alignment);
20579
20580 do
20581 {
20582 thissize = va_arg (ap, int);
20583 if (thissize == -1)
20584 break;
20585 thisalign = va_arg (ap, int);
20586
20587 if (size == thissize && align == thisalign)
20588 result = SUCCESS;
20589 }
20590 while (result != SUCCESS);
20591
20592 va_end (ap);
20593
20594 if (result == SUCCESS)
20595 *do_alignment = 1;
20596 else
20597 first_error (_("unsupported alignment for instruction"));
20598
20599 return result;
20600 }
20601
20602 static void
20603 do_neon_ld_st_lane (void)
20604 {
20605 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20606 int align_good, do_alignment = 0;
20607 int logsize = neon_logbits (et.size);
20608 int align = inst.operands[1].imm >> 8;
20609 int n = (inst.instruction >> 8) & 3;
20610 int max_el = 64 / et.size;
20611
20612 if (et.type == NT_invtype)
20613 return;
20614
20615 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
20616 _("bad list length"));
20617 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
20618 _("scalar index out of range"));
20619 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
20620 && et.size == 8,
20621 _("stride of 2 unavailable when element size is 8"));
20622
20623 switch (n)
20624 {
20625 case 0: /* VLD1 / VST1. */
20626 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
20627 32, 32, -1);
20628 if (align_good == FAIL)
20629 return;
20630 if (do_alignment)
20631 {
20632 unsigned alignbits = 0;
20633 switch (et.size)
20634 {
20635 case 16: alignbits = 0x1; break;
20636 case 32: alignbits = 0x3; break;
20637 default: ;
20638 }
20639 inst.instruction |= alignbits << 4;
20640 }
20641 break;
20642
20643 case 1: /* VLD2 / VST2. */
20644 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20645 16, 32, 32, 64, -1);
20646 if (align_good == FAIL)
20647 return;
20648 if (do_alignment)
20649 inst.instruction |= 1 << 4;
20650 break;
20651
20652 case 2: /* VLD3 / VST3. */
20653 constraint (inst.operands[1].immisalign,
20654 _("can't use alignment with this instruction"));
20655 break;
20656
20657 case 3: /* VLD4 / VST4. */
20658 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20659 16, 64, 32, 64, 32, 128, -1);
20660 if (align_good == FAIL)
20661 return;
20662 if (do_alignment)
20663 {
20664 unsigned alignbits = 0;
20665 switch (et.size)
20666 {
20667 case 8: alignbits = 0x1; break;
20668 case 16: alignbits = 0x1; break;
20669 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20670 default: ;
20671 }
20672 inst.instruction |= alignbits << 4;
20673 }
20674 break;
20675
20676 default: ;
20677 }
20678
20679 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20680 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20681 inst.instruction |= 1 << (4 + logsize);
20682
20683 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20684 inst.instruction |= logsize << 10;
20685 }
20686
20687 /* Encode single n-element structure to all lanes VLD<n> instructions. */
20688
20689 static void
20690 do_neon_ld_dup (void)
20691 {
20692 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20693 int align_good, do_alignment = 0;
20694
20695 if (et.type == NT_invtype)
20696 return;
20697
20698 switch ((inst.instruction >> 8) & 3)
20699 {
20700 case 0: /* VLD1. */
20701 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
20702 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20703 &do_alignment, 16, 16, 32, 32, -1);
20704 if (align_good == FAIL)
20705 return;
20706 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
20707 {
20708 case 1: break;
20709 case 2: inst.instruction |= 1 << 5; break;
20710 default: first_error (_("bad list length")); return;
20711 }
20712 inst.instruction |= neon_logbits (et.size) << 6;
20713 break;
20714
20715 case 1: /* VLD2. */
20716 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20717 &do_alignment, 8, 16, 16, 32, 32, 64,
20718 -1);
20719 if (align_good == FAIL)
20720 return;
20721 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
20722 _("bad list length"));
20723 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20724 inst.instruction |= 1 << 5;
20725 inst.instruction |= neon_logbits (et.size) << 6;
20726 break;
20727
20728 case 2: /* VLD3. */
20729 constraint (inst.operands[1].immisalign,
20730 _("can't use alignment with this instruction"));
20731 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
20732 _("bad list length"));
20733 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20734 inst.instruction |= 1 << 5;
20735 inst.instruction |= neon_logbits (et.size) << 6;
20736 break;
20737
20738 case 3: /* VLD4. */
20739 {
20740 int align = inst.operands[1].imm >> 8;
20741 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20742 16, 64, 32, 64, 32, 128, -1);
20743 if (align_good == FAIL)
20744 return;
20745 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
20746 _("bad list length"));
20747 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20748 inst.instruction |= 1 << 5;
20749 if (et.size == 32 && align == 128)
20750 inst.instruction |= 0x3 << 6;
20751 else
20752 inst.instruction |= neon_logbits (et.size) << 6;
20753 }
20754 break;
20755
20756 default: ;
20757 }
20758
20759 inst.instruction |= do_alignment << 4;
20760 }
20761
20762 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20763 apart from bits [11:4]. */
20764
20765 static void
20766 do_neon_ldx_stx (void)
20767 {
20768 if (inst.operands[1].isreg)
20769 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
20770
20771 switch (NEON_LANE (inst.operands[0].imm))
20772 {
20773 case NEON_INTERLEAVE_LANES:
20774 NEON_ENCODE (INTERLV, inst);
20775 do_neon_ld_st_interleave ();
20776 break;
20777
20778 case NEON_ALL_LANES:
20779 NEON_ENCODE (DUP, inst);
20780 if (inst.instruction == N_INV)
20781 {
20782 first_error ("only loads support such operands");
20783 break;
20784 }
20785 do_neon_ld_dup ();
20786 break;
20787
20788 default:
20789 NEON_ENCODE (LANE, inst);
20790 do_neon_ld_st_lane ();
20791 }
20792
20793 /* L bit comes from bit mask. */
20794 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20795 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20796 inst.instruction |= inst.operands[1].reg << 16;
20797
20798 if (inst.operands[1].postind)
20799 {
20800 int postreg = inst.operands[1].imm & 0xf;
20801 constraint (!inst.operands[1].immisreg,
20802 _("post-index must be a register"));
20803 constraint (postreg == 0xd || postreg == 0xf,
20804 _("bad register for post-index"));
20805 inst.instruction |= postreg;
20806 }
20807 else
20808 {
20809 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
20810 constraint (inst.relocs[0].exp.X_op != O_constant
20811 || inst.relocs[0].exp.X_add_number != 0,
20812 BAD_ADDR_MODE);
20813
20814 if (inst.operands[1].writeback)
20815 {
20816 inst.instruction |= 0xd;
20817 }
20818 else
20819 inst.instruction |= 0xf;
20820 }
20821
20822 if (thumb_mode)
20823 inst.instruction |= 0xf9000000;
20824 else
20825 inst.instruction |= 0xf4000000;
20826 }
20827
20828 /* FP v8. */
20829 static void
20830 do_vfp_nsyn_fpv8 (enum neon_shape rs)
20831 {
20832 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20833 D register operands. */
20834 if (neon_shape_class[rs] == SC_DOUBLE)
20835 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20836 _(BAD_FPU));
20837
20838 NEON_ENCODE (FPV8, inst);
20839
20840 if (rs == NS_FFF || rs == NS_HHH)
20841 {
20842 do_vfp_sp_dyadic ();
20843
20844 /* ARMv8.2 fp16 instruction. */
20845 if (rs == NS_HHH)
20846 do_scalar_fp16_v82_encode ();
20847 }
20848 else
20849 do_vfp_dp_rd_rn_rm ();
20850
20851 if (rs == NS_DDD)
20852 inst.instruction |= 0x100;
20853
20854 inst.instruction |= 0xf0000000;
20855 }
20856
20857 static void
20858 do_vsel (void)
20859 {
20860 set_pred_insn_type (OUTSIDE_PRED_INSN);
20861
20862 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20863 first_error (_("invalid instruction shape"));
20864 }
20865
20866 static void
20867 do_vmaxnm (void)
20868 {
20869 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20870 set_pred_insn_type (OUTSIDE_PRED_INSN);
20871
20872 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20873 return;
20874
20875 if (!check_simd_pred_availability (TRUE, NEON_CHECK_CC | NEON_CHECK_ARCH8))
20876 return;
20877
20878 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
20879 }
20880
20881 static void
20882 do_vrint_1 (enum neon_cvt_mode mode)
20883 {
20884 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
20885 struct neon_type_el et;
20886
20887 if (rs == NS_NULL)
20888 return;
20889
20890 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20891 D register operands. */
20892 if (neon_shape_class[rs] == SC_DOUBLE)
20893 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20894 _(BAD_FPU));
20895
20896 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20897 | N_VFP);
20898 if (et.type != NT_invtype)
20899 {
20900 /* VFP encodings. */
20901 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20902 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
20903 set_pred_insn_type (OUTSIDE_PRED_INSN);
20904
20905 NEON_ENCODE (FPV8, inst);
20906 if (rs == NS_FF || rs == NS_HH)
20907 do_vfp_sp_monadic ();
20908 else
20909 do_vfp_dp_rd_rm ();
20910
20911 switch (mode)
20912 {
20913 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20914 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20915 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20916 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20917 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20918 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20919 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20920 default: abort ();
20921 }
20922
20923 inst.instruction |= (rs == NS_DD) << 8;
20924 do_vfp_cond_or_thumb ();
20925
20926 /* ARMv8.2 fp16 vrint instruction. */
20927 if (rs == NS_HH)
20928 do_scalar_fp16_v82_encode ();
20929 }
20930 else
20931 {
20932 /* Neon encodings (or something broken...). */
20933 inst.error = NULL;
20934 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
20935
20936 if (et.type == NT_invtype)
20937 return;
20938
20939 if (!check_simd_pred_availability (TRUE,
20940 NEON_CHECK_CC | NEON_CHECK_ARCH8))
20941 return;
20942
20943 NEON_ENCODE (FLOAT, inst);
20944
20945 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20946 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20947 inst.instruction |= LOW4 (inst.operands[1].reg);
20948 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20949 inst.instruction |= neon_quad (rs) << 6;
20950 /* Mask off the original size bits and reencode them. */
20951 inst.instruction = ((inst.instruction & 0xfff3ffff)
20952 | neon_logbits (et.size) << 18);
20953
20954 switch (mode)
20955 {
20956 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20957 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20958 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20959 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20960 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20961 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20962 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20963 default: abort ();
20964 }
20965
20966 if (thumb_mode)
20967 inst.instruction |= 0xfc000000;
20968 else
20969 inst.instruction |= 0xf0000000;
20970 }
20971 }
20972
20973 static void
20974 do_vrintx (void)
20975 {
20976 do_vrint_1 (neon_cvt_mode_x);
20977 }
20978
20979 static void
20980 do_vrintz (void)
20981 {
20982 do_vrint_1 (neon_cvt_mode_z);
20983 }
20984
20985 static void
20986 do_vrintr (void)
20987 {
20988 do_vrint_1 (neon_cvt_mode_r);
20989 }
20990
20991 static void
20992 do_vrinta (void)
20993 {
20994 do_vrint_1 (neon_cvt_mode_a);
20995 }
20996
20997 static void
20998 do_vrintn (void)
20999 {
21000 do_vrint_1 (neon_cvt_mode_n);
21001 }
21002
21003 static void
21004 do_vrintp (void)
21005 {
21006 do_vrint_1 (neon_cvt_mode_p);
21007 }
21008
21009 static void
21010 do_vrintm (void)
21011 {
21012 do_vrint_1 (neon_cvt_mode_m);
21013 }
21014
21015 static unsigned
21016 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
21017 {
21018 unsigned regno = NEON_SCALAR_REG (opnd);
21019 unsigned elno = NEON_SCALAR_INDEX (opnd);
21020
21021 if (elsize == 16 && elno < 2 && regno < 16)
21022 return regno | (elno << 4);
21023 else if (elsize == 32 && elno == 0)
21024 return regno;
21025
21026 first_error (_("scalar out of range"));
21027 return 0;
21028 }
21029
21030 static void
21031 do_vcmla (void)
21032 {
21033 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
21034 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21035 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
21036 constraint (inst.relocs[0].exp.X_op != O_constant,
21037 _("expression too complex"));
21038 unsigned rot = inst.relocs[0].exp.X_add_number;
21039 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
21040 _("immediate out of range"));
21041 rot /= 90;
21042
21043 if (!check_simd_pred_availability (TRUE,
21044 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
21045 return;
21046
21047 if (inst.operands[2].isscalar)
21048 {
21049 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21050 first_error (_("invalid instruction shape"));
21051 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
21052 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21053 N_KEY | N_F16 | N_F32).size;
21054 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
21055 inst.is_neon = 1;
21056 inst.instruction = 0xfe000800;
21057 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21058 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21059 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21060 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21061 inst.instruction |= LOW4 (m);
21062 inst.instruction |= HI1 (m) << 5;
21063 inst.instruction |= neon_quad (rs) << 6;
21064 inst.instruction |= rot << 20;
21065 inst.instruction |= (size == 32) << 23;
21066 }
21067 else
21068 {
21069 enum neon_shape rs;
21070 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
21071 rs = neon_select_shape (NS_QQQI, NS_NULL);
21072 else
21073 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21074
21075 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
21076 N_KEY | N_F16 | N_F32).size;
21077 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
21078 && (inst.operands[0].reg == inst.operands[1].reg
21079 || inst.operands[0].reg == inst.operands[2].reg))
21080 as_tsktsk (BAD_MVE_SRCDEST);
21081
21082 neon_three_same (neon_quad (rs), 0, -1);
21083 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21084 inst.instruction |= 0xfc200800;
21085 inst.instruction |= rot << 23;
21086 inst.instruction |= (size == 32) << 20;
21087 }
21088 }
21089
21090 static void
21091 do_vcadd (void)
21092 {
21093 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
21094 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
21095 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
21096 constraint (inst.relocs[0].exp.X_op != O_constant,
21097 _("expression too complex"));
21098
21099 unsigned rot = inst.relocs[0].exp.X_add_number;
21100 constraint (rot != 90 && rot != 270, _("immediate out of range"));
21101 enum neon_shape rs;
21102 struct neon_type_el et;
21103 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21104 {
21105 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
21106 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
21107 }
21108 else
21109 {
21110 rs = neon_select_shape (NS_QQQI, NS_NULL);
21111 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
21112 | N_I16 | N_I32);
21113 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
21114 as_tsktsk (_("Warning: 32-bit element size and same first and third "
21115 "operand makes instruction UNPREDICTABLE"));
21116 }
21117
21118 if (et.type == NT_invtype)
21119 return;
21120
21121 if (!check_simd_pred_availability (et.type == NT_float,
21122 NEON_CHECK_ARCH8 | NEON_CHECK_CC))
21123 return;
21124
21125 if (et.type == NT_float)
21126 {
21127 neon_three_same (neon_quad (rs), 0, -1);
21128 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
21129 inst.instruction |= 0xfc800800;
21130 inst.instruction |= (rot == 270) << 24;
21131 inst.instruction |= (et.size == 32) << 20;
21132 }
21133 else
21134 {
21135 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
21136 inst.instruction = 0xfe000f00;
21137 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21138 inst.instruction |= neon_logbits (et.size) << 20;
21139 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
21140 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21141 inst.instruction |= (rot == 270) << 12;
21142 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
21143 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
21144 inst.instruction |= LOW4 (inst.operands[2].reg);
21145 inst.is_neon = 1;
21146 }
21147 }
21148
21149 /* Dot Product instructions encoding support. */
21150
21151 static void
21152 do_neon_dotproduct (int unsigned_p)
21153 {
21154 enum neon_shape rs;
21155 unsigned scalar_oprd2 = 0;
21156 int high8;
21157
21158 if (inst.cond != COND_ALWAYS)
21159 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
21160 "is UNPREDICTABLE"));
21161
21162 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
21163 _(BAD_FPU));
21164
21165 /* Dot Product instructions are in three-same D/Q register format or the third
21166 operand can be a scalar index register. */
21167 if (inst.operands[2].isscalar)
21168 {
21169 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
21170 high8 = 0xfe000000;
21171 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
21172 }
21173 else
21174 {
21175 high8 = 0xfc000000;
21176 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
21177 }
21178
21179 if (unsigned_p)
21180 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
21181 else
21182 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
21183
21184 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
21185 Product instruction, so we pass 0 as the "ubit" parameter. And the
21186 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
21187 neon_three_same (neon_quad (rs), 0, 32);
21188
21189 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
21190 different NEON three-same encoding. */
21191 inst.instruction &= 0x00ffffff;
21192 inst.instruction |= high8;
21193 /* Encode 'U' bit which indicates signedness. */
21194 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
21195 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
21196 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
21197 the instruction encoding. */
21198 if (inst.operands[2].isscalar)
21199 {
21200 inst.instruction &= 0xffffffd0;
21201 inst.instruction |= LOW4 (scalar_oprd2);
21202 inst.instruction |= HI1 (scalar_oprd2) << 5;
21203 }
21204 }
21205
21206 /* Dot Product instructions for signed integer. */
21207
21208 static void
21209 do_neon_dotproduct_s (void)
21210 {
21211 return do_neon_dotproduct (0);
21212 }
21213
21214 /* Dot Product instructions for unsigned integer. */
21215
21216 static void
21217 do_neon_dotproduct_u (void)
21218 {
21219 return do_neon_dotproduct (1);
21220 }
21221
21222 /* Crypto v1 instructions. */
21223 static void
21224 do_crypto_2op_1 (unsigned elttype, int op)
21225 {
21226 set_pred_insn_type (OUTSIDE_PRED_INSN);
21227
21228 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
21229 == NT_invtype)
21230 return;
21231
21232 inst.error = NULL;
21233
21234 NEON_ENCODE (INTEGER, inst);
21235 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
21236 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
21237 inst.instruction |= LOW4 (inst.operands[1].reg);
21238 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
21239 if (op != -1)
21240 inst.instruction |= op << 6;
21241
21242 if (thumb_mode)
21243 inst.instruction |= 0xfc000000;
21244 else
21245 inst.instruction |= 0xf0000000;
21246 }
21247
21248 static void
21249 do_crypto_3op_1 (int u, int op)
21250 {
21251 set_pred_insn_type (OUTSIDE_PRED_INSN);
21252
21253 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
21254 N_32 | N_UNT | N_KEY).type == NT_invtype)
21255 return;
21256
21257 inst.error = NULL;
21258
21259 NEON_ENCODE (INTEGER, inst);
21260 neon_three_same (1, u, 8 << op);
21261 }
21262
21263 static void
21264 do_aese (void)
21265 {
21266 do_crypto_2op_1 (N_8, 0);
21267 }
21268
21269 static void
21270 do_aesd (void)
21271 {
21272 do_crypto_2op_1 (N_8, 1);
21273 }
21274
21275 static void
21276 do_aesmc (void)
21277 {
21278 do_crypto_2op_1 (N_8, 2);
21279 }
21280
21281 static void
21282 do_aesimc (void)
21283 {
21284 do_crypto_2op_1 (N_8, 3);
21285 }
21286
21287 static void
21288 do_sha1c (void)
21289 {
21290 do_crypto_3op_1 (0, 0);
21291 }
21292
21293 static void
21294 do_sha1p (void)
21295 {
21296 do_crypto_3op_1 (0, 1);
21297 }
21298
21299 static void
21300 do_sha1m (void)
21301 {
21302 do_crypto_3op_1 (0, 2);
21303 }
21304
21305 static void
21306 do_sha1su0 (void)
21307 {
21308 do_crypto_3op_1 (0, 3);
21309 }
21310
21311 static void
21312 do_sha256h (void)
21313 {
21314 do_crypto_3op_1 (1, 0);
21315 }
21316
21317 static void
21318 do_sha256h2 (void)
21319 {
21320 do_crypto_3op_1 (1, 1);
21321 }
21322
21323 static void
21324 do_sha256su1 (void)
21325 {
21326 do_crypto_3op_1 (1, 2);
21327 }
21328
21329 static void
21330 do_sha1h (void)
21331 {
21332 do_crypto_2op_1 (N_32, -1);
21333 }
21334
21335 static void
21336 do_sha1su1 (void)
21337 {
21338 do_crypto_2op_1 (N_32, 0);
21339 }
21340
21341 static void
21342 do_sha256su0 (void)
21343 {
21344 do_crypto_2op_1 (N_32, 1);
21345 }
21346
21347 static void
21348 do_crc32_1 (unsigned int poly, unsigned int sz)
21349 {
21350 unsigned int Rd = inst.operands[0].reg;
21351 unsigned int Rn = inst.operands[1].reg;
21352 unsigned int Rm = inst.operands[2].reg;
21353
21354 set_pred_insn_type (OUTSIDE_PRED_INSN);
21355 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
21356 inst.instruction |= LOW4 (Rn) << 16;
21357 inst.instruction |= LOW4 (Rm);
21358 inst.instruction |= sz << (thumb_mode ? 4 : 21);
21359 inst.instruction |= poly << (thumb_mode ? 20 : 9);
21360
21361 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
21362 as_warn (UNPRED_REG ("r15"));
21363 }
21364
21365 static void
21366 do_crc32b (void)
21367 {
21368 do_crc32_1 (0, 0);
21369 }
21370
21371 static void
21372 do_crc32h (void)
21373 {
21374 do_crc32_1 (0, 1);
21375 }
21376
21377 static void
21378 do_crc32w (void)
21379 {
21380 do_crc32_1 (0, 2);
21381 }
21382
21383 static void
21384 do_crc32cb (void)
21385 {
21386 do_crc32_1 (1, 0);
21387 }
21388
21389 static void
21390 do_crc32ch (void)
21391 {
21392 do_crc32_1 (1, 1);
21393 }
21394
21395 static void
21396 do_crc32cw (void)
21397 {
21398 do_crc32_1 (1, 2);
21399 }
21400
21401 static void
21402 do_vjcvt (void)
21403 {
21404 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21405 _(BAD_FPU));
21406 neon_check_type (2, NS_FD, N_S32, N_F64);
21407 do_vfp_sp_dp_cvt ();
21408 do_vfp_cond_or_thumb ();
21409 }
21410
21411 \f
21412 /* Overall per-instruction processing. */
21413
21414 /* We need to be able to fix up arbitrary expressions in some statements.
21415 This is so that we can handle symbols that are an arbitrary distance from
21416 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
21417 which returns part of an address in a form which will be valid for
21418 a data instruction. We do this by pushing the expression into a symbol
21419 in the expr_section, and creating a fix for that. */
21420
21421 static void
21422 fix_new_arm (fragS * frag,
21423 int where,
21424 short int size,
21425 expressionS * exp,
21426 int pc_rel,
21427 int reloc)
21428 {
21429 fixS * new_fix;
21430
21431 switch (exp->X_op)
21432 {
21433 case O_constant:
21434 if (pc_rel)
21435 {
21436 /* Create an absolute valued symbol, so we have something to
21437 refer to in the object file. Unfortunately for us, gas's
21438 generic expression parsing will already have folded out
21439 any use of .set foo/.type foo %function that may have
21440 been used to set type information of the target location,
21441 that's being specified symbolically. We have to presume
21442 the user knows what they are doing. */
21443 char name[16 + 8];
21444 symbolS *symbol;
21445
21446 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
21447
21448 symbol = symbol_find_or_make (name);
21449 S_SET_SEGMENT (symbol, absolute_section);
21450 symbol_set_frag (symbol, &zero_address_frag);
21451 S_SET_VALUE (symbol, exp->X_add_number);
21452 exp->X_op = O_symbol;
21453 exp->X_add_symbol = symbol;
21454 exp->X_add_number = 0;
21455 }
21456 /* FALLTHROUGH */
21457 case O_symbol:
21458 case O_add:
21459 case O_subtract:
21460 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
21461 (enum bfd_reloc_code_real) reloc);
21462 break;
21463
21464 default:
21465 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
21466 pc_rel, (enum bfd_reloc_code_real) reloc);
21467 break;
21468 }
21469
21470 /* Mark whether the fix is to a THUMB instruction, or an ARM
21471 instruction. */
21472 new_fix->tc_fix_data = thumb_mode;
21473 }
21474
21475 /* Create a frg for an instruction requiring relaxation. */
21476 static void
21477 output_relax_insn (void)
21478 {
21479 char * to;
21480 symbolS *sym;
21481 int offset;
21482
21483 /* The size of the instruction is unknown, so tie the debug info to the
21484 start of the instruction. */
21485 dwarf2_emit_insn (0);
21486
21487 switch (inst.relocs[0].exp.X_op)
21488 {
21489 case O_symbol:
21490 sym = inst.relocs[0].exp.X_add_symbol;
21491 offset = inst.relocs[0].exp.X_add_number;
21492 break;
21493 case O_constant:
21494 sym = NULL;
21495 offset = inst.relocs[0].exp.X_add_number;
21496 break;
21497 default:
21498 sym = make_expr_symbol (&inst.relocs[0].exp);
21499 offset = 0;
21500 break;
21501 }
21502 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
21503 inst.relax, sym, offset, NULL/*offset, opcode*/);
21504 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
21505 }
21506
21507 /* Write a 32-bit thumb instruction to buf. */
21508 static void
21509 put_thumb32_insn (char * buf, unsigned long insn)
21510 {
21511 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
21512 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
21513 }
21514
21515 static void
21516 output_inst (const char * str)
21517 {
21518 char * to = NULL;
21519
21520 if (inst.error)
21521 {
21522 as_bad ("%s -- `%s'", inst.error, str);
21523 return;
21524 }
21525 if (inst.relax)
21526 {
21527 output_relax_insn ();
21528 return;
21529 }
21530 if (inst.size == 0)
21531 return;
21532
21533 to = frag_more (inst.size);
21534 /* PR 9814: Record the thumb mode into the current frag so that we know
21535 what type of NOP padding to use, if necessary. We override any previous
21536 setting so that if the mode has changed then the NOPS that we use will
21537 match the encoding of the last instruction in the frag. */
21538 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
21539
21540 if (thumb_mode && (inst.size > THUMB_SIZE))
21541 {
21542 gas_assert (inst.size == (2 * THUMB_SIZE));
21543 put_thumb32_insn (to, inst.instruction);
21544 }
21545 else if (inst.size > INSN_SIZE)
21546 {
21547 gas_assert (inst.size == (2 * INSN_SIZE));
21548 md_number_to_chars (to, inst.instruction, INSN_SIZE);
21549 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
21550 }
21551 else
21552 md_number_to_chars (to, inst.instruction, inst.size);
21553
21554 int r;
21555 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21556 {
21557 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
21558 fix_new_arm (frag_now, to - frag_now->fr_literal,
21559 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
21560 inst.relocs[r].type);
21561 }
21562
21563 dwarf2_emit_insn (inst.size);
21564 }
21565
21566 static char *
21567 output_it_inst (int cond, int mask, char * to)
21568 {
21569 unsigned long instruction = 0xbf00;
21570
21571 mask &= 0xf;
21572 instruction |= mask;
21573 instruction |= cond << 4;
21574
21575 if (to == NULL)
21576 {
21577 to = frag_more (2);
21578 #ifdef OBJ_ELF
21579 dwarf2_emit_insn (2);
21580 #endif
21581 }
21582
21583 md_number_to_chars (to, instruction, 2);
21584
21585 return to;
21586 }
21587
21588 /* Tag values used in struct asm_opcode's tag field. */
21589 enum opcode_tag
21590 {
21591 OT_unconditional, /* Instruction cannot be conditionalized.
21592 The ARM condition field is still 0xE. */
21593 OT_unconditionalF, /* Instruction cannot be conditionalized
21594 and carries 0xF in its ARM condition field. */
21595 OT_csuffix, /* Instruction takes a conditional suffix. */
21596 OT_csuffixF, /* Some forms of the instruction take a scalar
21597 conditional suffix, others place 0xF where the
21598 condition field would be, others take a vector
21599 conditional suffix. */
21600 OT_cinfix3, /* Instruction takes a conditional infix,
21601 beginning at character index 3. (In
21602 unified mode, it becomes a suffix.) */
21603 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21604 tsts, cmps, cmns, and teqs. */
21605 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21606 character index 3, even in unified mode. Used for
21607 legacy instructions where suffix and infix forms
21608 may be ambiguous. */
21609 OT_csuf_or_in3, /* Instruction takes either a conditional
21610 suffix or an infix at character index 3. */
21611 OT_odd_infix_unc, /* This is the unconditional variant of an
21612 instruction that takes a conditional infix
21613 at an unusual position. In unified mode,
21614 this variant will accept a suffix. */
21615 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
21616 are the conditional variants of instructions that
21617 take conditional infixes in unusual positions.
21618 The infix appears at character index
21619 (tag - OT_odd_infix_0). These are not accepted
21620 in unified mode. */
21621 };
21622
21623 /* Subroutine of md_assemble, responsible for looking up the primary
21624 opcode from the mnemonic the user wrote. STR points to the
21625 beginning of the mnemonic.
21626
21627 This is not simply a hash table lookup, because of conditional
21628 variants. Most instructions have conditional variants, which are
21629 expressed with a _conditional affix_ to the mnemonic. If we were
21630 to encode each conditional variant as a literal string in the opcode
21631 table, it would have approximately 20,000 entries.
21632
21633 Most mnemonics take this affix as a suffix, and in unified syntax,
21634 'most' is upgraded to 'all'. However, in the divided syntax, some
21635 instructions take the affix as an infix, notably the s-variants of
21636 the arithmetic instructions. Of those instructions, all but six
21637 have the infix appear after the third character of the mnemonic.
21638
21639 Accordingly, the algorithm for looking up primary opcodes given
21640 an identifier is:
21641
21642 1. Look up the identifier in the opcode table.
21643 If we find a match, go to step U.
21644
21645 2. Look up the last two characters of the identifier in the
21646 conditions table. If we find a match, look up the first N-2
21647 characters of the identifier in the opcode table. If we
21648 find a match, go to step CE.
21649
21650 3. Look up the fourth and fifth characters of the identifier in
21651 the conditions table. If we find a match, extract those
21652 characters from the identifier, and look up the remaining
21653 characters in the opcode table. If we find a match, go
21654 to step CM.
21655
21656 4. Fail.
21657
21658 U. Examine the tag field of the opcode structure, in case this is
21659 one of the six instructions with its conditional infix in an
21660 unusual place. If it is, the tag tells us where to find the
21661 infix; look it up in the conditions table and set inst.cond
21662 accordingly. Otherwise, this is an unconditional instruction.
21663 Again set inst.cond accordingly. Return the opcode structure.
21664
21665 CE. Examine the tag field to make sure this is an instruction that
21666 should receive a conditional suffix. If it is not, fail.
21667 Otherwise, set inst.cond from the suffix we already looked up,
21668 and return the opcode structure.
21669
21670 CM. Examine the tag field to make sure this is an instruction that
21671 should receive a conditional infix after the third character.
21672 If it is not, fail. Otherwise, undo the edits to the current
21673 line of input and proceed as for case CE. */
21674
21675 static const struct asm_opcode *
21676 opcode_lookup (char **str)
21677 {
21678 char *end, *base;
21679 char *affix;
21680 const struct asm_opcode *opcode;
21681 const struct asm_cond *cond;
21682 char save[2];
21683
21684 /* Scan up to the end of the mnemonic, which must end in white space,
21685 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
21686 for (base = end = *str; *end != '\0'; end++)
21687 if (*end == ' ' || *end == '.')
21688 break;
21689
21690 if (end == base)
21691 return NULL;
21692
21693 /* Handle a possible width suffix and/or Neon type suffix. */
21694 if (end[0] == '.')
21695 {
21696 int offset = 2;
21697
21698 /* The .w and .n suffixes are only valid if the unified syntax is in
21699 use. */
21700 if (unified_syntax && end[1] == 'w')
21701 inst.size_req = 4;
21702 else if (unified_syntax && end[1] == 'n')
21703 inst.size_req = 2;
21704 else
21705 offset = 0;
21706
21707 inst.vectype.elems = 0;
21708
21709 *str = end + offset;
21710
21711 if (end[offset] == '.')
21712 {
21713 /* See if we have a Neon type suffix (possible in either unified or
21714 non-unified ARM syntax mode). */
21715 if (parse_neon_type (&inst.vectype, str) == FAIL)
21716 return NULL;
21717 }
21718 else if (end[offset] != '\0' && end[offset] != ' ')
21719 return NULL;
21720 }
21721 else
21722 *str = end;
21723
21724 /* Look for unaffixed or special-case affixed mnemonic. */
21725 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21726 end - base);
21727 if (opcode)
21728 {
21729 /* step U */
21730 if (opcode->tag < OT_odd_infix_0)
21731 {
21732 inst.cond = COND_ALWAYS;
21733 return opcode;
21734 }
21735
21736 if (warn_on_deprecated && unified_syntax)
21737 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21738 affix = base + (opcode->tag - OT_odd_infix_0);
21739 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21740 gas_assert (cond);
21741
21742 inst.cond = cond->value;
21743 return opcode;
21744 }
21745 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21746 {
21747 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21748 */
21749 if (end - base < 2)
21750 return NULL;
21751 affix = end - 1;
21752 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
21753 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21754 affix - base);
21755 /* If this opcode can not be vector predicated then don't accept it with a
21756 vector predication code. */
21757 if (opcode && !opcode->mayBeVecPred)
21758 opcode = NULL;
21759 }
21760 if (!opcode || !cond)
21761 {
21762 /* Cannot have a conditional suffix on a mnemonic of less than two
21763 characters. */
21764 if (end - base < 3)
21765 return NULL;
21766
21767 /* Look for suffixed mnemonic. */
21768 affix = end - 2;
21769 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21770 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21771 affix - base);
21772 }
21773
21774 if (opcode && cond)
21775 {
21776 /* step CE */
21777 switch (opcode->tag)
21778 {
21779 case OT_cinfix3_legacy:
21780 /* Ignore conditional suffixes matched on infix only mnemonics. */
21781 break;
21782
21783 case OT_cinfix3:
21784 case OT_cinfix3_deprecated:
21785 case OT_odd_infix_unc:
21786 if (!unified_syntax)
21787 return NULL;
21788 /* Fall through. */
21789
21790 case OT_csuffix:
21791 case OT_csuffixF:
21792 case OT_csuf_or_in3:
21793 inst.cond = cond->value;
21794 return opcode;
21795
21796 case OT_unconditional:
21797 case OT_unconditionalF:
21798 if (thumb_mode)
21799 inst.cond = cond->value;
21800 else
21801 {
21802 /* Delayed diagnostic. */
21803 inst.error = BAD_COND;
21804 inst.cond = COND_ALWAYS;
21805 }
21806 return opcode;
21807
21808 default:
21809 return NULL;
21810 }
21811 }
21812
21813 /* Cannot have a usual-position infix on a mnemonic of less than
21814 six characters (five would be a suffix). */
21815 if (end - base < 6)
21816 return NULL;
21817
21818 /* Look for infixed mnemonic in the usual position. */
21819 affix = base + 3;
21820 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21821 if (!cond)
21822 return NULL;
21823
21824 memcpy (save, affix, 2);
21825 memmove (affix, affix + 2, (end - affix) - 2);
21826 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21827 (end - base) - 2);
21828 memmove (affix + 2, affix, (end - affix) - 2);
21829 memcpy (affix, save, 2);
21830
21831 if (opcode
21832 && (opcode->tag == OT_cinfix3
21833 || opcode->tag == OT_cinfix3_deprecated
21834 || opcode->tag == OT_csuf_or_in3
21835 || opcode->tag == OT_cinfix3_legacy))
21836 {
21837 /* Step CM. */
21838 if (warn_on_deprecated && unified_syntax
21839 && (opcode->tag == OT_cinfix3
21840 || opcode->tag == OT_cinfix3_deprecated))
21841 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21842
21843 inst.cond = cond->value;
21844 return opcode;
21845 }
21846
21847 return NULL;
21848 }
21849
21850 /* This function generates an initial IT instruction, leaving its block
21851 virtually open for the new instructions. Eventually,
21852 the mask will be updated by now_pred_add_mask () each time
21853 a new instruction needs to be included in the IT block.
21854 Finally, the block is closed with close_automatic_it_block ().
21855 The block closure can be requested either from md_assemble (),
21856 a tencode (), or due to a label hook. */
21857
21858 static void
21859 new_automatic_it_block (int cond)
21860 {
21861 now_pred.state = AUTOMATIC_PRED_BLOCK;
21862 now_pred.mask = 0x18;
21863 now_pred.cc = cond;
21864 now_pred.block_length = 1;
21865 mapping_state (MAP_THUMB);
21866 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21867 now_pred.warn_deprecated = FALSE;
21868 now_pred.insn_cond = TRUE;
21869 }
21870
21871 /* Close an automatic IT block.
21872 See comments in new_automatic_it_block (). */
21873
21874 static void
21875 close_automatic_it_block (void)
21876 {
21877 now_pred.mask = 0x10;
21878 now_pred.block_length = 0;
21879 }
21880
21881 /* Update the mask of the current automatically-generated IT
21882 instruction. See comments in new_automatic_it_block (). */
21883
21884 static void
21885 now_pred_add_mask (int cond)
21886 {
21887 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21888 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
21889 | ((bitvalue) << (nbit)))
21890 const int resulting_bit = (cond & 1);
21891
21892 now_pred.mask &= 0xf;
21893 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21894 resulting_bit,
21895 (5 - now_pred.block_length));
21896 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21897 1,
21898 ((5 - now_pred.block_length) - 1));
21899 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
21900
21901 #undef CLEAR_BIT
21902 #undef SET_BIT_VALUE
21903 }
21904
21905 /* The IT blocks handling machinery is accessed through the these functions:
21906 it_fsm_pre_encode () from md_assemble ()
21907 set_pred_insn_type () optional, from the tencode functions
21908 set_pred_insn_type_last () ditto
21909 in_pred_block () ditto
21910 it_fsm_post_encode () from md_assemble ()
21911 force_automatic_it_block_close () from label handling functions
21912
21913 Rationale:
21914 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
21915 initializing the IT insn type with a generic initial value depending
21916 on the inst.condition.
21917 2) During the tencode function, two things may happen:
21918 a) The tencode function overrides the IT insn type by
21919 calling either set_pred_insn_type (type) or
21920 set_pred_insn_type_last ().
21921 b) The tencode function queries the IT block state by
21922 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
21923
21924 Both set_pred_insn_type and in_pred_block run the internal FSM state
21925 handling function (handle_pred_state), because: a) setting the IT insn
21926 type may incur in an invalid state (exiting the function),
21927 and b) querying the state requires the FSM to be updated.
21928 Specifically we want to avoid creating an IT block for conditional
21929 branches, so it_fsm_pre_encode is actually a guess and we can't
21930 determine whether an IT block is required until the tencode () routine
21931 has decided what type of instruction this actually it.
21932 Because of this, if set_pred_insn_type and in_pred_block have to be
21933 used, set_pred_insn_type has to be called first.
21934
21935 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21936 that determines the insn IT type depending on the inst.cond code.
21937 When a tencode () routine encodes an instruction that can be
21938 either outside an IT block, or, in the case of being inside, has to be
21939 the last one, set_pred_insn_type_last () will determine the proper
21940 IT instruction type based on the inst.cond code. Otherwise,
21941 set_pred_insn_type can be called for overriding that logic or
21942 for covering other cases.
21943
21944 Calling handle_pred_state () may not transition the IT block state to
21945 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
21946 still queried. Instead, if the FSM determines that the state should
21947 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
21948 after the tencode () function: that's what it_fsm_post_encode () does.
21949
21950 Since in_pred_block () calls the state handling function to get an
21951 updated state, an error may occur (due to invalid insns combination).
21952 In that case, inst.error is set.
21953 Therefore, inst.error has to be checked after the execution of
21954 the tencode () routine.
21955
21956 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
21957 any pending state change (if any) that didn't take place in
21958 handle_pred_state () as explained above. */
21959
21960 static void
21961 it_fsm_pre_encode (void)
21962 {
21963 if (inst.cond != COND_ALWAYS)
21964 inst.pred_insn_type = INSIDE_IT_INSN;
21965 else
21966 inst.pred_insn_type = OUTSIDE_PRED_INSN;
21967
21968 now_pred.state_handled = 0;
21969 }
21970
21971 /* IT state FSM handling function. */
21972 /* MVE instructions and non-MVE instructions are handled differently because of
21973 the introduction of VPT blocks.
21974 Specifications say that any non-MVE instruction inside a VPT block is
21975 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21976 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
21977 few exceptions we have MVE_UNPREDICABLE_INSN.
21978 The error messages provided depending on the different combinations possible
21979 are described in the cases below:
21980 For 'most' MVE instructions:
21981 1) In an IT block, with an IT code: syntax error
21982 2) In an IT block, with a VPT code: error: must be in a VPT block
21983 3) In an IT block, with no code: warning: UNPREDICTABLE
21984 4) In a VPT block, with an IT code: syntax error
21985 5) In a VPT block, with a VPT code: OK!
21986 6) In a VPT block, with no code: error: missing code
21987 7) Outside a pred block, with an IT code: error: syntax error
21988 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21989 9) Outside a pred block, with no code: OK!
21990 For non-MVE instructions:
21991 10) In an IT block, with an IT code: OK!
21992 11) In an IT block, with a VPT code: syntax error
21993 12) In an IT block, with no code: error: missing code
21994 13) In a VPT block, with an IT code: error: should be in an IT block
21995 14) In a VPT block, with a VPT code: syntax error
21996 15) In a VPT block, with no code: UNPREDICTABLE
21997 16) Outside a pred block, with an IT code: error: should be in an IT block
21998 17) Outside a pred block, with a VPT code: syntax error
21999 18) Outside a pred block, with no code: OK!
22000 */
22001
22002
22003 static int
22004 handle_pred_state (void)
22005 {
22006 now_pred.state_handled = 1;
22007 now_pred.insn_cond = FALSE;
22008
22009 switch (now_pred.state)
22010 {
22011 case OUTSIDE_PRED_BLOCK:
22012 switch (inst.pred_insn_type)
22013 {
22014 case MVE_UNPREDICABLE_INSN:
22015 case MVE_OUTSIDE_PRED_INSN:
22016 if (inst.cond < COND_ALWAYS)
22017 {
22018 /* Case 7: Outside a pred block, with an IT code: error: syntax
22019 error. */
22020 inst.error = BAD_SYNTAX;
22021 return FAIL;
22022 }
22023 /* Case 9: Outside a pred block, with no code: OK! */
22024 break;
22025 case OUTSIDE_PRED_INSN:
22026 if (inst.cond > COND_ALWAYS)
22027 {
22028 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22029 */
22030 inst.error = BAD_SYNTAX;
22031 return FAIL;
22032 }
22033 /* Case 18: Outside a pred block, with no code: OK! */
22034 break;
22035
22036 case INSIDE_VPT_INSN:
22037 /* Case 8: Outside a pred block, with a VPT code: error: should be in
22038 a VPT block. */
22039 inst.error = BAD_OUT_VPT;
22040 return FAIL;
22041
22042 case INSIDE_IT_INSN:
22043 case INSIDE_IT_LAST_INSN:
22044 if (inst.cond < COND_ALWAYS)
22045 {
22046 /* Case 16: Outside a pred block, with an IT code: error: should
22047 be in an IT block. */
22048 if (thumb_mode == 0)
22049 {
22050 if (unified_syntax
22051 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
22052 as_tsktsk (_("Warning: conditional outside an IT block"\
22053 " for Thumb."));
22054 }
22055 else
22056 {
22057 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
22058 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
22059 {
22060 /* Automatically generate the IT instruction. */
22061 new_automatic_it_block (inst.cond);
22062 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
22063 close_automatic_it_block ();
22064 }
22065 else
22066 {
22067 inst.error = BAD_OUT_IT;
22068 return FAIL;
22069 }
22070 }
22071 break;
22072 }
22073 else if (inst.cond > COND_ALWAYS)
22074 {
22075 /* Case 17: Outside a pred block, with a VPT code: syntax error.
22076 */
22077 inst.error = BAD_SYNTAX;
22078 return FAIL;
22079 }
22080 else
22081 gas_assert (0);
22082 case IF_INSIDE_IT_LAST_INSN:
22083 case NEUTRAL_IT_INSN:
22084 break;
22085
22086 case VPT_INSN:
22087 if (inst.cond != COND_ALWAYS)
22088 first_error (BAD_SYNTAX);
22089 now_pred.state = MANUAL_PRED_BLOCK;
22090 now_pred.block_length = 0;
22091 now_pred.type = VECTOR_PRED;
22092 now_pred.cc = 0;
22093 break;
22094 case IT_INSN:
22095 now_pred.state = MANUAL_PRED_BLOCK;
22096 now_pred.block_length = 0;
22097 now_pred.type = SCALAR_PRED;
22098 break;
22099 }
22100 break;
22101
22102 case AUTOMATIC_PRED_BLOCK:
22103 /* Three things may happen now:
22104 a) We should increment current it block size;
22105 b) We should close current it block (closing insn or 4 insns);
22106 c) We should close current it block and start a new one (due
22107 to incompatible conditions or
22108 4 insns-length block reached). */
22109
22110 switch (inst.pred_insn_type)
22111 {
22112 case INSIDE_VPT_INSN:
22113 case VPT_INSN:
22114 case MVE_UNPREDICABLE_INSN:
22115 case MVE_OUTSIDE_PRED_INSN:
22116 gas_assert (0);
22117 case OUTSIDE_PRED_INSN:
22118 /* The closure of the block shall happen immediately,
22119 so any in_pred_block () call reports the block as closed. */
22120 force_automatic_it_block_close ();
22121 break;
22122
22123 case INSIDE_IT_INSN:
22124 case INSIDE_IT_LAST_INSN:
22125 case IF_INSIDE_IT_LAST_INSN:
22126 now_pred.block_length++;
22127
22128 if (now_pred.block_length > 4
22129 || !now_pred_compatible (inst.cond))
22130 {
22131 force_automatic_it_block_close ();
22132 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
22133 new_automatic_it_block (inst.cond);
22134 }
22135 else
22136 {
22137 now_pred.insn_cond = TRUE;
22138 now_pred_add_mask (inst.cond);
22139 }
22140
22141 if (now_pred.state == AUTOMATIC_PRED_BLOCK
22142 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
22143 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
22144 close_automatic_it_block ();
22145 break;
22146
22147 case NEUTRAL_IT_INSN:
22148 now_pred.block_length++;
22149 now_pred.insn_cond = TRUE;
22150
22151 if (now_pred.block_length > 4)
22152 force_automatic_it_block_close ();
22153 else
22154 now_pred_add_mask (now_pred.cc & 1);
22155 break;
22156
22157 case IT_INSN:
22158 close_automatic_it_block ();
22159 now_pred.state = MANUAL_PRED_BLOCK;
22160 break;
22161 }
22162 break;
22163
22164 case MANUAL_PRED_BLOCK:
22165 {
22166 int cond, is_last;
22167 if (now_pred.type == SCALAR_PRED)
22168 {
22169 /* Check conditional suffixes. */
22170 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
22171 now_pred.mask <<= 1;
22172 now_pred.mask &= 0x1f;
22173 is_last = (now_pred.mask == 0x10);
22174 }
22175 else
22176 {
22177 now_pred.cc ^= (now_pred.mask >> 4);
22178 cond = now_pred.cc + 0xf;
22179 now_pred.mask <<= 1;
22180 now_pred.mask &= 0x1f;
22181 is_last = now_pred.mask == 0x10;
22182 }
22183 now_pred.insn_cond = TRUE;
22184
22185 switch (inst.pred_insn_type)
22186 {
22187 case OUTSIDE_PRED_INSN:
22188 if (now_pred.type == SCALAR_PRED)
22189 {
22190 if (inst.cond == COND_ALWAYS)
22191 {
22192 /* Case 12: In an IT block, with no code: error: missing
22193 code. */
22194 inst.error = BAD_NOT_IT;
22195 return FAIL;
22196 }
22197 else if (inst.cond > COND_ALWAYS)
22198 {
22199 /* Case 11: In an IT block, with a VPT code: syntax error.
22200 */
22201 inst.error = BAD_SYNTAX;
22202 return FAIL;
22203 }
22204 else if (thumb_mode)
22205 {
22206 /* This is for some special cases where a non-MVE
22207 instruction is not allowed in an IT block, such as cbz,
22208 but are put into one with a condition code.
22209 You could argue this should be a syntax error, but we
22210 gave the 'not allowed in IT block' diagnostic in the
22211 past so we will keep doing so. */
22212 inst.error = BAD_NOT_IT;
22213 return FAIL;
22214 }
22215 break;
22216 }
22217 else
22218 {
22219 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
22220 as_tsktsk (MVE_NOT_VPT);
22221 return SUCCESS;
22222 }
22223 case MVE_OUTSIDE_PRED_INSN:
22224 if (now_pred.type == SCALAR_PRED)
22225 {
22226 if (inst.cond == COND_ALWAYS)
22227 {
22228 /* Case 3: In an IT block, with no code: warning:
22229 UNPREDICTABLE. */
22230 as_tsktsk (MVE_NOT_IT);
22231 return SUCCESS;
22232 }
22233 else if (inst.cond < COND_ALWAYS)
22234 {
22235 /* Case 1: In an IT block, with an IT code: syntax error.
22236 */
22237 inst.error = BAD_SYNTAX;
22238 return FAIL;
22239 }
22240 else
22241 gas_assert (0);
22242 }
22243 else
22244 {
22245 if (inst.cond < COND_ALWAYS)
22246 {
22247 /* Case 4: In a VPT block, with an IT code: syntax error.
22248 */
22249 inst.error = BAD_SYNTAX;
22250 return FAIL;
22251 }
22252 else if (inst.cond == COND_ALWAYS)
22253 {
22254 /* Case 6: In a VPT block, with no code: error: missing
22255 code. */
22256 inst.error = BAD_NOT_VPT;
22257 return FAIL;
22258 }
22259 else
22260 {
22261 gas_assert (0);
22262 }
22263 }
22264 case MVE_UNPREDICABLE_INSN:
22265 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
22266 return SUCCESS;
22267 case INSIDE_IT_INSN:
22268 if (inst.cond > COND_ALWAYS)
22269 {
22270 /* Case 11: In an IT block, with a VPT code: syntax error. */
22271 /* Case 14: In a VPT block, with a VPT code: syntax error. */
22272 inst.error = BAD_SYNTAX;
22273 return FAIL;
22274 }
22275 else if (now_pred.type == SCALAR_PRED)
22276 {
22277 /* Case 10: In an IT block, with an IT code: OK! */
22278 if (cond != inst.cond)
22279 {
22280 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
22281 BAD_VPT_COND;
22282 return FAIL;
22283 }
22284 }
22285 else
22286 {
22287 /* Case 13: In a VPT block, with an IT code: error: should be
22288 in an IT block. */
22289 inst.error = BAD_OUT_IT;
22290 return FAIL;
22291 }
22292 break;
22293
22294 case INSIDE_VPT_INSN:
22295 if (now_pred.type == SCALAR_PRED)
22296 {
22297 /* Case 2: In an IT block, with a VPT code: error: must be in a
22298 VPT block. */
22299 inst.error = BAD_OUT_VPT;
22300 return FAIL;
22301 }
22302 /* Case 5: In a VPT block, with a VPT code: OK! */
22303 else if (cond != inst.cond)
22304 {
22305 inst.error = BAD_VPT_COND;
22306 return FAIL;
22307 }
22308 break;
22309 case INSIDE_IT_LAST_INSN:
22310 case IF_INSIDE_IT_LAST_INSN:
22311 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
22312 {
22313 /* Case 4: In a VPT block, with an IT code: syntax error. */
22314 /* Case 11: In an IT block, with a VPT code: syntax error. */
22315 inst.error = BAD_SYNTAX;
22316 return FAIL;
22317 }
22318 else if (cond != inst.cond)
22319 {
22320 inst.error = BAD_IT_COND;
22321 return FAIL;
22322 }
22323 if (!is_last)
22324 {
22325 inst.error = BAD_BRANCH;
22326 return FAIL;
22327 }
22328 break;
22329
22330 case NEUTRAL_IT_INSN:
22331 /* The BKPT instruction is unconditional even in a IT or VPT
22332 block. */
22333 break;
22334
22335 case IT_INSN:
22336 if (now_pred.type == SCALAR_PRED)
22337 {
22338 inst.error = BAD_IT_IT;
22339 return FAIL;
22340 }
22341 /* fall through. */
22342 case VPT_INSN:
22343 if (inst.cond == COND_ALWAYS)
22344 {
22345 /* Executing a VPT/VPST instruction inside an IT block or a
22346 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
22347 */
22348 if (now_pred.type == SCALAR_PRED)
22349 as_tsktsk (MVE_NOT_IT);
22350 else
22351 as_tsktsk (MVE_NOT_VPT);
22352 return SUCCESS;
22353 }
22354 else
22355 {
22356 /* VPT/VPST do not accept condition codes. */
22357 inst.error = BAD_SYNTAX;
22358 return FAIL;
22359 }
22360 }
22361 }
22362 break;
22363 }
22364
22365 return SUCCESS;
22366 }
22367
22368 struct depr_insn_mask
22369 {
22370 unsigned long pattern;
22371 unsigned long mask;
22372 const char* description;
22373 };
22374
22375 /* List of 16-bit instruction patterns deprecated in an IT block in
22376 ARMv8. */
22377 static const struct depr_insn_mask depr_it_insns[] = {
22378 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
22379 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
22380 { 0xa000, 0xb800, N_("ADR") },
22381 { 0x4800, 0xf800, N_("Literal loads") },
22382 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
22383 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
22384 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
22385 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
22386 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
22387 { 0, 0, NULL }
22388 };
22389
22390 static void
22391 it_fsm_post_encode (void)
22392 {
22393 int is_last;
22394
22395 if (!now_pred.state_handled)
22396 handle_pred_state ();
22397
22398 if (now_pred.insn_cond
22399 && !now_pred.warn_deprecated
22400 && warn_on_deprecated
22401 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
22402 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
22403 {
22404 if (inst.instruction >= 0x10000)
22405 {
22406 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
22407 "performance deprecated in ARMv8-A and ARMv8-R"));
22408 now_pred.warn_deprecated = TRUE;
22409 }
22410 else
22411 {
22412 const struct depr_insn_mask *p = depr_it_insns;
22413
22414 while (p->mask != 0)
22415 {
22416 if ((inst.instruction & p->mask) == p->pattern)
22417 {
22418 as_tsktsk (_("IT blocks containing 16-bit Thumb "
22419 "instructions of the following class are "
22420 "performance deprecated in ARMv8-A and "
22421 "ARMv8-R: %s"), p->description);
22422 now_pred.warn_deprecated = TRUE;
22423 break;
22424 }
22425
22426 ++p;
22427 }
22428 }
22429
22430 if (now_pred.block_length > 1)
22431 {
22432 as_tsktsk (_("IT blocks containing more than one conditional "
22433 "instruction are performance deprecated in ARMv8-A and "
22434 "ARMv8-R"));
22435 now_pred.warn_deprecated = TRUE;
22436 }
22437 }
22438
22439 is_last = (now_pred.mask == 0x10);
22440 if (is_last)
22441 {
22442 now_pred.state = OUTSIDE_PRED_BLOCK;
22443 now_pred.mask = 0;
22444 }
22445 }
22446
22447 static void
22448 force_automatic_it_block_close (void)
22449 {
22450 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
22451 {
22452 close_automatic_it_block ();
22453 now_pred.state = OUTSIDE_PRED_BLOCK;
22454 now_pred.mask = 0;
22455 }
22456 }
22457
22458 static int
22459 in_pred_block (void)
22460 {
22461 if (!now_pred.state_handled)
22462 handle_pred_state ();
22463
22464 return now_pred.state != OUTSIDE_PRED_BLOCK;
22465 }
22466
22467 /* Whether OPCODE only has T32 encoding. Since this function is only used by
22468 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
22469 here, hence the "known" in the function name. */
22470
22471 static bfd_boolean
22472 known_t32_only_insn (const struct asm_opcode *opcode)
22473 {
22474 /* Original Thumb-1 wide instruction. */
22475 if (opcode->tencode == do_t_blx
22476 || opcode->tencode == do_t_branch23
22477 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
22478 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
22479 return TRUE;
22480
22481 /* Wide-only instruction added to ARMv8-M Baseline. */
22482 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
22483 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
22484 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
22485 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
22486 return TRUE;
22487
22488 return FALSE;
22489 }
22490
22491 /* Whether wide instruction variant can be used if available for a valid OPCODE
22492 in ARCH. */
22493
22494 static bfd_boolean
22495 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
22496 {
22497 if (known_t32_only_insn (opcode))
22498 return TRUE;
22499
22500 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
22501 of variant T3 of B.W is checked in do_t_branch. */
22502 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22503 && opcode->tencode == do_t_branch)
22504 return TRUE;
22505
22506 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
22507 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22508 && opcode->tencode == do_t_mov_cmp
22509 /* Make sure CMP instruction is not affected. */
22510 && opcode->aencode == do_mov)
22511 return TRUE;
22512
22513 /* Wide instruction variants of all instructions with narrow *and* wide
22514 variants become available with ARMv6t2. Other opcodes are either
22515 narrow-only or wide-only and are thus available if OPCODE is valid. */
22516 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
22517 return TRUE;
22518
22519 /* OPCODE with narrow only instruction variant or wide variant not
22520 available. */
22521 return FALSE;
22522 }
22523
22524 void
22525 md_assemble (char *str)
22526 {
22527 char *p = str;
22528 const struct asm_opcode * opcode;
22529
22530 /* Align the previous label if needed. */
22531 if (last_label_seen != NULL)
22532 {
22533 symbol_set_frag (last_label_seen, frag_now);
22534 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
22535 S_SET_SEGMENT (last_label_seen, now_seg);
22536 }
22537
22538 memset (&inst, '\0', sizeof (inst));
22539 int r;
22540 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
22541 inst.relocs[r].type = BFD_RELOC_UNUSED;
22542
22543 opcode = opcode_lookup (&p);
22544 if (!opcode)
22545 {
22546 /* It wasn't an instruction, but it might be a register alias of
22547 the form alias .req reg, or a Neon .dn/.qn directive. */
22548 if (! create_register_alias (str, p)
22549 && ! create_neon_reg_alias (str, p))
22550 as_bad (_("bad instruction `%s'"), str);
22551
22552 return;
22553 }
22554
22555 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
22556 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
22557
22558 /* The value which unconditional instructions should have in place of the
22559 condition field. */
22560 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
22561
22562 if (thumb_mode)
22563 {
22564 arm_feature_set variant;
22565
22566 variant = cpu_variant;
22567 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
22568 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
22569 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
22570 /* Check that this instruction is supported for this CPU. */
22571 if (!opcode->tvariant
22572 || (thumb_mode == 1
22573 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
22574 {
22575 if (opcode->tencode == do_t_swi)
22576 as_bad (_("SVC is not permitted on this architecture"));
22577 else
22578 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
22579 return;
22580 }
22581 if (inst.cond != COND_ALWAYS && !unified_syntax
22582 && opcode->tencode != do_t_branch)
22583 {
22584 as_bad (_("Thumb does not support conditional execution"));
22585 return;
22586 }
22587
22588 /* Two things are addressed here:
22589 1) Implicit require narrow instructions on Thumb-1.
22590 This avoids relaxation accidentally introducing Thumb-2
22591 instructions.
22592 2) Reject wide instructions in non Thumb-2 cores.
22593
22594 Only instructions with narrow and wide variants need to be handled
22595 but selecting all non wide-only instructions is easier. */
22596 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
22597 && !t32_insn_ok (variant, opcode))
22598 {
22599 if (inst.size_req == 0)
22600 inst.size_req = 2;
22601 else if (inst.size_req == 4)
22602 {
22603 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22604 as_bad (_("selected processor does not support 32bit wide "
22605 "variant of instruction `%s'"), str);
22606 else
22607 as_bad (_("selected processor does not support `%s' in "
22608 "Thumb-2 mode"), str);
22609 return;
22610 }
22611 }
22612
22613 inst.instruction = opcode->tvalue;
22614
22615 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
22616 {
22617 /* Prepare the pred_insn_type for those encodings that don't set
22618 it. */
22619 it_fsm_pre_encode ();
22620
22621 opcode->tencode ();
22622
22623 it_fsm_post_encode ();
22624 }
22625
22626 if (!(inst.error || inst.relax))
22627 {
22628 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
22629 inst.size = (inst.instruction > 0xffff ? 4 : 2);
22630 if (inst.size_req && inst.size_req != inst.size)
22631 {
22632 as_bad (_("cannot honor width suffix -- `%s'"), str);
22633 return;
22634 }
22635 }
22636
22637 /* Something has gone badly wrong if we try to relax a fixed size
22638 instruction. */
22639 gas_assert (inst.size_req == 0 || !inst.relax);
22640
22641 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22642 *opcode->tvariant);
22643 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
22644 set those bits when Thumb-2 32-bit instructions are seen. The impact
22645 of relaxable instructions will be considered later after we finish all
22646 relaxation. */
22647 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
22648 variant = arm_arch_none;
22649 else
22650 variant = cpu_variant;
22651 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
22652 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22653 arm_ext_v6t2);
22654
22655 check_neon_suffixes;
22656
22657 if (!inst.error)
22658 {
22659 mapping_state (MAP_THUMB);
22660 }
22661 }
22662 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22663 {
22664 bfd_boolean is_bx;
22665
22666 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
22667 is_bx = (opcode->aencode == do_bx);
22668
22669 /* Check that this instruction is supported for this CPU. */
22670 if (!(is_bx && fix_v4bx)
22671 && !(opcode->avariant &&
22672 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
22673 {
22674 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
22675 return;
22676 }
22677 if (inst.size_req)
22678 {
22679 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
22680 return;
22681 }
22682
22683 inst.instruction = opcode->avalue;
22684 if (opcode->tag == OT_unconditionalF)
22685 inst.instruction |= 0xFU << 28;
22686 else
22687 inst.instruction |= inst.cond << 28;
22688 inst.size = INSN_SIZE;
22689 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
22690 {
22691 it_fsm_pre_encode ();
22692 opcode->aencode ();
22693 it_fsm_post_encode ();
22694 }
22695 /* Arm mode bx is marked as both v4T and v5 because it's still required
22696 on a hypothetical non-thumb v5 core. */
22697 if (is_bx)
22698 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
22699 else
22700 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
22701 *opcode->avariant);
22702
22703 check_neon_suffixes;
22704
22705 if (!inst.error)
22706 {
22707 mapping_state (MAP_ARM);
22708 }
22709 }
22710 else
22711 {
22712 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22713 "-- `%s'"), str);
22714 return;
22715 }
22716 output_inst (str);
22717 }
22718
22719 static void
22720 check_pred_blocks_finished (void)
22721 {
22722 #ifdef OBJ_ELF
22723 asection *sect;
22724
22725 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
22726 if (seg_info (sect)->tc_segment_info_data.current_pred.state
22727 == MANUAL_PRED_BLOCK)
22728 {
22729 if (now_pred.type == SCALAR_PRED)
22730 as_warn (_("section '%s' finished with an open IT block."),
22731 sect->name);
22732 else
22733 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22734 sect->name);
22735 }
22736 #else
22737 if (now_pred.state == MANUAL_PRED_BLOCK)
22738 {
22739 if (now_pred.type == SCALAR_PRED)
22740 as_warn (_("file finished with an open IT block."));
22741 else
22742 as_warn (_("file finished with an open VPT/VPST block."));
22743 }
22744 #endif
22745 }
22746
22747 /* Various frobbings of labels and their addresses. */
22748
22749 void
22750 arm_start_line_hook (void)
22751 {
22752 last_label_seen = NULL;
22753 }
22754
22755 void
22756 arm_frob_label (symbolS * sym)
22757 {
22758 last_label_seen = sym;
22759
22760 ARM_SET_THUMB (sym, thumb_mode);
22761
22762 #if defined OBJ_COFF || defined OBJ_ELF
22763 ARM_SET_INTERWORK (sym, support_interwork);
22764 #endif
22765
22766 force_automatic_it_block_close ();
22767
22768 /* Note - do not allow local symbols (.Lxxx) to be labelled
22769 as Thumb functions. This is because these labels, whilst
22770 they exist inside Thumb code, are not the entry points for
22771 possible ARM->Thumb calls. Also, these labels can be used
22772 as part of a computed goto or switch statement. eg gcc
22773 can generate code that looks like this:
22774
22775 ldr r2, [pc, .Laaa]
22776 lsl r3, r3, #2
22777 ldr r2, [r3, r2]
22778 mov pc, r2
22779
22780 .Lbbb: .word .Lxxx
22781 .Lccc: .word .Lyyy
22782 ..etc...
22783 .Laaa: .word Lbbb
22784
22785 The first instruction loads the address of the jump table.
22786 The second instruction converts a table index into a byte offset.
22787 The third instruction gets the jump address out of the table.
22788 The fourth instruction performs the jump.
22789
22790 If the address stored at .Laaa is that of a symbol which has the
22791 Thumb_Func bit set, then the linker will arrange for this address
22792 to have the bottom bit set, which in turn would mean that the
22793 address computation performed by the third instruction would end
22794 up with the bottom bit set. Since the ARM is capable of unaligned
22795 word loads, the instruction would then load the incorrect address
22796 out of the jump table, and chaos would ensue. */
22797 if (label_is_thumb_function_name
22798 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22799 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
22800 {
22801 /* When the address of a Thumb function is taken the bottom
22802 bit of that address should be set. This will allow
22803 interworking between Arm and Thumb functions to work
22804 correctly. */
22805
22806 THUMB_SET_FUNC (sym, 1);
22807
22808 label_is_thumb_function_name = FALSE;
22809 }
22810
22811 dwarf2_emit_label (sym);
22812 }
22813
22814 bfd_boolean
22815 arm_data_in_code (void)
22816 {
22817 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
22818 {
22819 *input_line_pointer = '/';
22820 input_line_pointer += 5;
22821 *input_line_pointer = 0;
22822 return TRUE;
22823 }
22824
22825 return FALSE;
22826 }
22827
22828 char *
22829 arm_canonicalize_symbol_name (char * name)
22830 {
22831 int len;
22832
22833 if (thumb_mode && (len = strlen (name)) > 5
22834 && streq (name + len - 5, "/data"))
22835 *(name + len - 5) = 0;
22836
22837 return name;
22838 }
22839 \f
22840 /* Table of all register names defined by default. The user can
22841 define additional names with .req. Note that all register names
22842 should appear in both upper and lowercase variants. Some registers
22843 also have mixed-case names. */
22844
22845 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
22846 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
22847 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
22848 #define REGSET(p,t) \
22849 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22850 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22851 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22852 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
22853 #define REGSETH(p,t) \
22854 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22855 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22856 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22857 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22858 #define REGSET2(p,t) \
22859 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22860 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22861 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22862 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
22863 #define SPLRBANK(base,bank,t) \
22864 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22865 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22866 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22867 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22868 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22869 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
22870
22871 static const struct reg_entry reg_names[] =
22872 {
22873 /* ARM integer registers. */
22874 REGSET(r, RN), REGSET(R, RN),
22875
22876 /* ATPCS synonyms. */
22877 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22878 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22879 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
22880
22881 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22882 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22883 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
22884
22885 /* Well-known aliases. */
22886 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22887 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22888
22889 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22890 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22891
22892 /* Defining the new Zero register from ARMv8.1-M. */
22893 REGDEF(zr,15,ZR),
22894 REGDEF(ZR,15,ZR),
22895
22896 /* Coprocessor numbers. */
22897 REGSET(p, CP), REGSET(P, CP),
22898
22899 /* Coprocessor register numbers. The "cr" variants are for backward
22900 compatibility. */
22901 REGSET(c, CN), REGSET(C, CN),
22902 REGSET(cr, CN), REGSET(CR, CN),
22903
22904 /* ARM banked registers. */
22905 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22906 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22907 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22908 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22909 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22910 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22911 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22912
22913 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22914 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22915 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22916 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22917 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
22918 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
22919 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22920 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22921
22922 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22923 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22924 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22925 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22926 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22927 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22928 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
22929 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
22930 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22931
22932 /* FPA registers. */
22933 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22934 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22935
22936 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22937 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22938
22939 /* VFP SP registers. */
22940 REGSET(s,VFS), REGSET(S,VFS),
22941 REGSETH(s,VFS), REGSETH(S,VFS),
22942
22943 /* VFP DP Registers. */
22944 REGSET(d,VFD), REGSET(D,VFD),
22945 /* Extra Neon DP registers. */
22946 REGSETH(d,VFD), REGSETH(D,VFD),
22947
22948 /* Neon QP registers. */
22949 REGSET2(q,NQ), REGSET2(Q,NQ),
22950
22951 /* VFP control registers. */
22952 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22953 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
22954 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22955 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22956 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22957 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
22958 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
22959 REGDEF(fpscr_nzcvqc,2,VFC), REGDEF(FPSCR_nzcvqc,2,VFC),
22960 REGDEF(vpr,12,VFC), REGDEF(VPR,12,VFC),
22961 REGDEF(fpcxt_ns,14,VFC), REGDEF(FPCXT_NS,14,VFC),
22962 REGDEF(fpcxt_s,15,VFC), REGDEF(FPCXT_S,15,VFC),
22963
22964 /* Maverick DSP coprocessor registers. */
22965 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22966 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22967
22968 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22969 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22970 REGDEF(dspsc,0,DSPSC),
22971
22972 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22973 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22974 REGDEF(DSPSC,0,DSPSC),
22975
22976 /* iWMMXt data registers - p0, c0-15. */
22977 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22978
22979 /* iWMMXt control registers - p1, c0-3. */
22980 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22981 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22982 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22983 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22984
22985 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22986 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22987 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22988 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22989 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22990
22991 /* XScale accumulator registers. */
22992 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22993 };
22994 #undef REGDEF
22995 #undef REGNUM
22996 #undef REGSET
22997
22998 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22999 within psr_required_here. */
23000 static const struct asm_psr psrs[] =
23001 {
23002 /* Backward compatibility notation. Note that "all" is no longer
23003 truly all possible PSR bits. */
23004 {"all", PSR_c | PSR_f},
23005 {"flg", PSR_f},
23006 {"ctl", PSR_c},
23007
23008 /* Individual flags. */
23009 {"f", PSR_f},
23010 {"c", PSR_c},
23011 {"x", PSR_x},
23012 {"s", PSR_s},
23013
23014 /* Combinations of flags. */
23015 {"fs", PSR_f | PSR_s},
23016 {"fx", PSR_f | PSR_x},
23017 {"fc", PSR_f | PSR_c},
23018 {"sf", PSR_s | PSR_f},
23019 {"sx", PSR_s | PSR_x},
23020 {"sc", PSR_s | PSR_c},
23021 {"xf", PSR_x | PSR_f},
23022 {"xs", PSR_x | PSR_s},
23023 {"xc", PSR_x | PSR_c},
23024 {"cf", PSR_c | PSR_f},
23025 {"cs", PSR_c | PSR_s},
23026 {"cx", PSR_c | PSR_x},
23027 {"fsx", PSR_f | PSR_s | PSR_x},
23028 {"fsc", PSR_f | PSR_s | PSR_c},
23029 {"fxs", PSR_f | PSR_x | PSR_s},
23030 {"fxc", PSR_f | PSR_x | PSR_c},
23031 {"fcs", PSR_f | PSR_c | PSR_s},
23032 {"fcx", PSR_f | PSR_c | PSR_x},
23033 {"sfx", PSR_s | PSR_f | PSR_x},
23034 {"sfc", PSR_s | PSR_f | PSR_c},
23035 {"sxf", PSR_s | PSR_x | PSR_f},
23036 {"sxc", PSR_s | PSR_x | PSR_c},
23037 {"scf", PSR_s | PSR_c | PSR_f},
23038 {"scx", PSR_s | PSR_c | PSR_x},
23039 {"xfs", PSR_x | PSR_f | PSR_s},
23040 {"xfc", PSR_x | PSR_f | PSR_c},
23041 {"xsf", PSR_x | PSR_s | PSR_f},
23042 {"xsc", PSR_x | PSR_s | PSR_c},
23043 {"xcf", PSR_x | PSR_c | PSR_f},
23044 {"xcs", PSR_x | PSR_c | PSR_s},
23045 {"cfs", PSR_c | PSR_f | PSR_s},
23046 {"cfx", PSR_c | PSR_f | PSR_x},
23047 {"csf", PSR_c | PSR_s | PSR_f},
23048 {"csx", PSR_c | PSR_s | PSR_x},
23049 {"cxf", PSR_c | PSR_x | PSR_f},
23050 {"cxs", PSR_c | PSR_x | PSR_s},
23051 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
23052 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
23053 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
23054 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
23055 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
23056 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
23057 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
23058 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
23059 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
23060 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
23061 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
23062 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
23063 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
23064 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
23065 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
23066 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
23067 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
23068 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
23069 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
23070 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
23071 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
23072 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
23073 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
23074 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
23075 };
23076
23077 /* Table of V7M psr names. */
23078 static const struct asm_psr v7m_psrs[] =
23079 {
23080 {"apsr", 0x0 }, {"APSR", 0x0 },
23081 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
23082 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
23083 {"psr", 0x3 }, {"PSR", 0x3 },
23084 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
23085 {"ipsr", 0x5 }, {"IPSR", 0x5 },
23086 {"epsr", 0x6 }, {"EPSR", 0x6 },
23087 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
23088 {"msp", 0x8 }, {"MSP", 0x8 },
23089 {"psp", 0x9 }, {"PSP", 0x9 },
23090 {"msplim", 0xa }, {"MSPLIM", 0xa },
23091 {"psplim", 0xb }, {"PSPLIM", 0xb },
23092 {"primask", 0x10}, {"PRIMASK", 0x10},
23093 {"basepri", 0x11}, {"BASEPRI", 0x11},
23094 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
23095 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
23096 {"control", 0x14}, {"CONTROL", 0x14},
23097 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
23098 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
23099 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
23100 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
23101 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
23102 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
23103 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
23104 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
23105 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
23106 };
23107
23108 /* Table of all shift-in-operand names. */
23109 static const struct asm_shift_name shift_names [] =
23110 {
23111 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
23112 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
23113 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
23114 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
23115 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
23116 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
23117 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
23118 };
23119
23120 /* Table of all explicit relocation names. */
23121 #ifdef OBJ_ELF
23122 static struct reloc_entry reloc_names[] =
23123 {
23124 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
23125 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
23126 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
23127 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
23128 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
23129 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
23130 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
23131 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
23132 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
23133 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
23134 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
23135 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
23136 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
23137 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
23138 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
23139 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
23140 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
23141 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
23142 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
23143 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
23144 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
23145 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
23146 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
23147 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
23148 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
23149 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
23150 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
23151 };
23152 #endif
23153
23154 /* Table of all conditional affixes. */
23155 static const struct asm_cond conds[] =
23156 {
23157 {"eq", 0x0},
23158 {"ne", 0x1},
23159 {"cs", 0x2}, {"hs", 0x2},
23160 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
23161 {"mi", 0x4},
23162 {"pl", 0x5},
23163 {"vs", 0x6},
23164 {"vc", 0x7},
23165 {"hi", 0x8},
23166 {"ls", 0x9},
23167 {"ge", 0xa},
23168 {"lt", 0xb},
23169 {"gt", 0xc},
23170 {"le", 0xd},
23171 {"al", 0xe}
23172 };
23173 static const struct asm_cond vconds[] =
23174 {
23175 {"t", 0xf},
23176 {"e", 0x10}
23177 };
23178
23179 #define UL_BARRIER(L,U,CODE,FEAT) \
23180 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
23181 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
23182
23183 static struct asm_barrier_opt barrier_opt_names[] =
23184 {
23185 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
23186 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
23187 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
23188 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
23189 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
23190 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
23191 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
23192 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
23193 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
23194 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
23195 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
23196 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
23197 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
23198 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
23199 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
23200 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
23201 };
23202
23203 #undef UL_BARRIER
23204
23205 /* Table of ARM-format instructions. */
23206
23207 /* Macros for gluing together operand strings. N.B. In all cases
23208 other than OPS0, the trailing OP_stop comes from default
23209 zero-initialization of the unspecified elements of the array. */
23210 #define OPS0() { OP_stop, }
23211 #define OPS1(a) { OP_##a, }
23212 #define OPS2(a,b) { OP_##a,OP_##b, }
23213 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
23214 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
23215 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
23216 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
23217
23218 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
23219 This is useful when mixing operands for ARM and THUMB, i.e. using the
23220 MIX_ARM_THUMB_OPERANDS macro.
23221 In order to use these macros, prefix the number of operands with _
23222 e.g. _3. */
23223 #define OPS_1(a) { a, }
23224 #define OPS_2(a,b) { a,b, }
23225 #define OPS_3(a,b,c) { a,b,c, }
23226 #define OPS_4(a,b,c,d) { a,b,c,d, }
23227 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
23228 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
23229
23230 /* These macros abstract out the exact format of the mnemonic table and
23231 save some repeated characters. */
23232
23233 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
23234 #define TxCE(mnem, op, top, nops, ops, ae, te) \
23235 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
23236 THUMB_VARIANT, do_##ae, do_##te, 0 }
23237
23238 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
23239 a T_MNEM_xyz enumerator. */
23240 #define TCE(mnem, aop, top, nops, ops, ae, te) \
23241 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
23242 #define tCE(mnem, aop, top, nops, ops, ae, te) \
23243 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23244
23245 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
23246 infix after the third character. */
23247 #define TxC3(mnem, op, top, nops, ops, ae, te) \
23248 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
23249 THUMB_VARIANT, do_##ae, do_##te, 0 }
23250 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
23251 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
23252 THUMB_VARIANT, do_##ae, do_##te, 0 }
23253 #define TC3(mnem, aop, top, nops, ops, ae, te) \
23254 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
23255 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
23256 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
23257 #define tC3(mnem, aop, top, nops, ops, ae, te) \
23258 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23259 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
23260 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
23261
23262 /* Mnemonic that cannot be conditionalized. The ARM condition-code
23263 field is still 0xE. Many of the Thumb variants can be executed
23264 conditionally, so this is checked separately. */
23265 #define TUE(mnem, op, top, nops, ops, ae, te) \
23266 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
23267 THUMB_VARIANT, do_##ae, do_##te, 0 }
23268
23269 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
23270 Used by mnemonics that have very minimal differences in the encoding for
23271 ARM and Thumb variants and can be handled in a common function. */
23272 #define TUEc(mnem, op, top, nops, ops, en) \
23273 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
23274 THUMB_VARIANT, do_##en, do_##en, 0 }
23275
23276 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
23277 condition code field. */
23278 #define TUF(mnem, op, top, nops, ops, ae, te) \
23279 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
23280 THUMB_VARIANT, do_##ae, do_##te, 0 }
23281
23282 /* ARM-only variants of all the above. */
23283 #define CE(mnem, op, nops, ops, ae) \
23284 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23285
23286 #define C3(mnem, op, nops, ops, ae) \
23287 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23288
23289 /* Thumb-only variants of TCE and TUE. */
23290 #define ToC(mnem, top, nops, ops, te) \
23291 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23292 do_##te, 0 }
23293
23294 #define ToU(mnem, top, nops, ops, te) \
23295 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
23296 NULL, do_##te, 0 }
23297
23298 /* T_MNEM_xyz enumerator variants of ToC. */
23299 #define toC(mnem, top, nops, ops, te) \
23300 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
23301 do_##te, 0 }
23302
23303 /* T_MNEM_xyz enumerator variants of ToU. */
23304 #define toU(mnem, top, nops, ops, te) \
23305 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
23306 NULL, do_##te, 0 }
23307
23308 /* Legacy mnemonics that always have conditional infix after the third
23309 character. */
23310 #define CL(mnem, op, nops, ops, ae) \
23311 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
23312 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23313
23314 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
23315 #define cCE(mnem, op, nops, ops, ae) \
23316 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23317
23318 /* mov instructions that are shared between coprocessor and MVE. */
23319 #define mcCE(mnem, op, nops, ops, ae) \
23320 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
23321
23322 /* Legacy coprocessor instructions where conditional infix and conditional
23323 suffix are ambiguous. For consistency this includes all FPA instructions,
23324 not just the potentially ambiguous ones. */
23325 #define cCL(mnem, op, nops, ops, ae) \
23326 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
23327 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23328
23329 /* Coprocessor, takes either a suffix or a position-3 infix
23330 (for an FPA corner case). */
23331 #define C3E(mnem, op, nops, ops, ae) \
23332 { mnem, OPS##nops ops, OT_csuf_or_in3, \
23333 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
23334
23335 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
23336 { m1 #m2 m3, OPS##nops ops, \
23337 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
23338 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23339
23340 #define CM(m1, m2, op, nops, ops, ae) \
23341 xCM_ (m1, , m2, op, nops, ops, ae), \
23342 xCM_ (m1, eq, m2, op, nops, ops, ae), \
23343 xCM_ (m1, ne, m2, op, nops, ops, ae), \
23344 xCM_ (m1, cs, m2, op, nops, ops, ae), \
23345 xCM_ (m1, hs, m2, op, nops, ops, ae), \
23346 xCM_ (m1, cc, m2, op, nops, ops, ae), \
23347 xCM_ (m1, ul, m2, op, nops, ops, ae), \
23348 xCM_ (m1, lo, m2, op, nops, ops, ae), \
23349 xCM_ (m1, mi, m2, op, nops, ops, ae), \
23350 xCM_ (m1, pl, m2, op, nops, ops, ae), \
23351 xCM_ (m1, vs, m2, op, nops, ops, ae), \
23352 xCM_ (m1, vc, m2, op, nops, ops, ae), \
23353 xCM_ (m1, hi, m2, op, nops, ops, ae), \
23354 xCM_ (m1, ls, m2, op, nops, ops, ae), \
23355 xCM_ (m1, ge, m2, op, nops, ops, ae), \
23356 xCM_ (m1, lt, m2, op, nops, ops, ae), \
23357 xCM_ (m1, gt, m2, op, nops, ops, ae), \
23358 xCM_ (m1, le, m2, op, nops, ops, ae), \
23359 xCM_ (m1, al, m2, op, nops, ops, ae)
23360
23361 #define UE(mnem, op, nops, ops, ae) \
23362 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23363
23364 #define UF(mnem, op, nops, ops, ae) \
23365 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
23366
23367 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
23368 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
23369 use the same encoding function for each. */
23370 #define NUF(mnem, op, nops, ops, enc) \
23371 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23372 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
23373
23374 /* Neon data processing, version which indirects through neon_enc_tab for
23375 the various overloaded versions of opcodes. */
23376 #define nUF(mnem, op, nops, ops, enc) \
23377 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23378 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
23379
23380 /* Neon insn with conditional suffix for the ARM version, non-overloaded
23381 version. */
23382 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
23383 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
23384 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
23385
23386 #define NCE(mnem, op, nops, ops, enc) \
23387 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
23388
23389 #define NCEF(mnem, op, nops, ops, enc) \
23390 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23391
23392 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
23393 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
23394 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
23395 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
23396
23397 #define nCE(mnem, op, nops, ops, enc) \
23398 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
23399
23400 #define nCEF(mnem, op, nops, ops, enc) \
23401 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23402
23403 /* */
23404 #define mCEF(mnem, op, nops, ops, enc) \
23405 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
23406 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23407
23408
23409 /* nCEF but for MVE predicated instructions. */
23410 #define mnCEF(mnem, op, nops, ops, enc) \
23411 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23412
23413 /* nCE but for MVE predicated instructions. */
23414 #define mnCE(mnem, op, nops, ops, enc) \
23415 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23416
23417 /* NUF but for potentially MVE predicated instructions. */
23418 #define MNUF(mnem, op, nops, ops, enc) \
23419 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23420 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23421
23422 /* nUF but for potentially MVE predicated instructions. */
23423 #define mnUF(mnem, op, nops, ops, enc) \
23424 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23425 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23426
23427 /* ToC but for potentially MVE predicated instructions. */
23428 #define mToC(mnem, top, nops, ops, te) \
23429 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23430 do_##te, 1 }
23431
23432 /* NCE but for MVE predicated instructions. */
23433 #define MNCE(mnem, op, nops, ops, enc) \
23434 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23435
23436 /* NCEF but for MVE predicated instructions. */
23437 #define MNCEF(mnem, op, nops, ops, enc) \
23438 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23439 #define do_0 0
23440
23441 static const struct asm_opcode insns[] =
23442 {
23443 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
23444 #define THUMB_VARIANT & arm_ext_v4t
23445 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
23446 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
23447 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
23448 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
23449 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
23450 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
23451 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
23452 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
23453 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
23454 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
23455 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
23456 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
23457 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
23458 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
23459 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
23460 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
23461
23462 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
23463 for setting PSR flag bits. They are obsolete in V6 and do not
23464 have Thumb equivalents. */
23465 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23466 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23467 CL("tstp", 110f000, 2, (RR, SH), cmp),
23468 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23469 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23470 CL("cmpp", 150f000, 2, (RR, SH), cmp),
23471 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23472 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23473 CL("cmnp", 170f000, 2, (RR, SH), cmp),
23474
23475 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
23476 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
23477 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
23478 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
23479
23480 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
23481 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23482 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
23483 OP_RRnpc),
23484 OP_ADDRGLDR),ldst, t_ldst),
23485 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23486
23487 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23488 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23489 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23490 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23491 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23492 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23493
23494 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
23495 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
23496
23497 /* Pseudo ops. */
23498 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
23499 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
23500 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
23501 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
23502
23503 /* Thumb-compatibility pseudo ops. */
23504 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
23505 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
23506 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
23507 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
23508 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
23509 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
23510 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
23511 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
23512 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
23513 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
23514 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
23515 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
23516
23517 /* These may simplify to neg. */
23518 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
23519 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
23520
23521 #undef THUMB_VARIANT
23522 #define THUMB_VARIANT & arm_ext_os
23523
23524 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
23525 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
23526
23527 #undef THUMB_VARIANT
23528 #define THUMB_VARIANT & arm_ext_v6
23529
23530 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
23531
23532 /* V1 instructions with no Thumb analogue prior to V6T2. */
23533 #undef THUMB_VARIANT
23534 #define THUMB_VARIANT & arm_ext_v6t2
23535
23536 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23537 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23538 CL("teqp", 130f000, 2, (RR, SH), cmp),
23539
23540 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23541 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23542 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
23543 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23544
23545 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23546 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23547
23548 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23549 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23550
23551 /* V1 instructions with no Thumb analogue at all. */
23552 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
23553 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
23554
23555 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
23556 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
23557 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
23558 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
23559 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
23560 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
23561 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
23562 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
23563
23564 #undef ARM_VARIANT
23565 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
23566 #undef THUMB_VARIANT
23567 #define THUMB_VARIANT & arm_ext_v4t
23568
23569 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23570 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23571
23572 #undef THUMB_VARIANT
23573 #define THUMB_VARIANT & arm_ext_v6t2
23574
23575 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23576 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
23577
23578 /* Generic coprocessor instructions. */
23579 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23580 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23581 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23582 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23583 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23584 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23585 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
23586
23587 #undef ARM_VARIANT
23588 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23589
23590 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23591 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23592
23593 #undef ARM_VARIANT
23594 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23595 #undef THUMB_VARIANT
23596 #define THUMB_VARIANT & arm_ext_msr
23597
23598 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23599 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
23600
23601 #undef ARM_VARIANT
23602 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23603 #undef THUMB_VARIANT
23604 #define THUMB_VARIANT & arm_ext_v6t2
23605
23606 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23607 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23608 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23609 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23610 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23611 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23612 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23613 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23614
23615 #undef ARM_VARIANT
23616 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
23617 #undef THUMB_VARIANT
23618 #define THUMB_VARIANT & arm_ext_v4t
23619
23620 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23621 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23622 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23623 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23624 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23625 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23626
23627 #undef ARM_VARIANT
23628 #define ARM_VARIANT & arm_ext_v4t_5
23629
23630 /* ARM Architecture 4T. */
23631 /* Note: bx (and blx) are required on V5, even if the processor does
23632 not support Thumb. */
23633 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
23634
23635 #undef ARM_VARIANT
23636 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
23637 #undef THUMB_VARIANT
23638 #define THUMB_VARIANT & arm_ext_v5t
23639
23640 /* Note: blx has 2 variants; the .value coded here is for
23641 BLX(2). Only this variant has conditional execution. */
23642 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
23643 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
23644
23645 #undef THUMB_VARIANT
23646 #define THUMB_VARIANT & arm_ext_v6t2
23647
23648 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
23649 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23650 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23651 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23652 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23653 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23654 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23655 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23656
23657 #undef ARM_VARIANT
23658 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
23659 #undef THUMB_VARIANT
23660 #define THUMB_VARIANT & arm_ext_v5exp
23661
23662 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23663 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23664 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23665 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23666
23667 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23668 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23669
23670 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23671 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23672 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23673 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23674
23675 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23676 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23677 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23678 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23679
23680 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23681 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23682
23683 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23684 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23685 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23686 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23687
23688 #undef ARM_VARIANT
23689 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
23690 #undef THUMB_VARIANT
23691 #define THUMB_VARIANT & arm_ext_v6t2
23692
23693 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
23694 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
23695 ldrd, t_ldstd),
23696 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
23697 ADDRGLDRS), ldrd, t_ldstd),
23698
23699 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23700 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23701
23702 #undef ARM_VARIANT
23703 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23704
23705 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
23706
23707 #undef ARM_VARIANT
23708 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23709 #undef THUMB_VARIANT
23710 #define THUMB_VARIANT & arm_ext_v6
23711
23712 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
23713 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
23714 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23715 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23716 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23717 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23718 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23719 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23720 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23721 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
23722
23723 #undef THUMB_VARIANT
23724 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23725
23726 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
23727 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23728 strex, t_strex),
23729 #undef THUMB_VARIANT
23730 #define THUMB_VARIANT & arm_ext_v6t2
23731
23732 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23733 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23734
23735 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
23736 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
23737
23738 /* ARM V6 not included in V7M. */
23739 #undef THUMB_VARIANT
23740 #define THUMB_VARIANT & arm_ext_v6_notm
23741 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23742 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23743 UF(rfeib, 9900a00, 1, (RRw), rfe),
23744 UF(rfeda, 8100a00, 1, (RRw), rfe),
23745 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23746 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23747 UF(rfefa, 8100a00, 1, (RRw), rfe),
23748 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23749 UF(rfeed, 9900a00, 1, (RRw), rfe),
23750 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23751 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23752 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23753 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
23754 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
23755 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
23756 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
23757 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23758 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23759 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
23760
23761 /* ARM V6 not included in V7M (eg. integer SIMD). */
23762 #undef THUMB_VARIANT
23763 #define THUMB_VARIANT & arm_ext_v6_dsp
23764 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
23765 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
23766 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23767 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23768 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23769 /* Old name for QASX. */
23770 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23771 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23772 /* Old name for QSAX. */
23773 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23774 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23775 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23776 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23777 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23778 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23779 /* Old name for SASX. */
23780 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23781 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23782 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23783 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23784 /* Old name for SHASX. */
23785 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23786 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23787 /* Old name for SHSAX. */
23788 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23789 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23790 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23791 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23792 /* Old name for SSAX. */
23793 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23794 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23795 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23796 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23797 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23798 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23799 /* Old name for UASX. */
23800 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23801 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23802 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23803 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23804 /* Old name for UHASX. */
23805 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23806 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23807 /* Old name for UHSAX. */
23808 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23809 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23810 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23811 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23812 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23813 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23814 /* Old name for UQASX. */
23815 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23816 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23817 /* Old name for UQSAX. */
23818 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23819 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23820 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23821 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23822 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23823 /* Old name for USAX. */
23824 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23825 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23826 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23827 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23828 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23829 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23830 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23831 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23832 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23833 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23834 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23835 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23836 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23837 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23838 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23839 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23840 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23841 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23842 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23843 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23844 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23845 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23846 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23847 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23848 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23849 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23850 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23851 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23852 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23853 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23854 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23855 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23856 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23857 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
23858
23859 #undef ARM_VARIANT
23860 #define ARM_VARIANT & arm_ext_v6k_v6t2
23861 #undef THUMB_VARIANT
23862 #define THUMB_VARIANT & arm_ext_v6k_v6t2
23863
23864 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23865 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23866 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23867 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
23868
23869 #undef THUMB_VARIANT
23870 #define THUMB_VARIANT & arm_ext_v6_notm
23871 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23872 ldrexd, t_ldrexd),
23873 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23874 RRnpcb), strexd, t_strexd),
23875
23876 #undef THUMB_VARIANT
23877 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23878 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23879 rd_rn, rd_rn),
23880 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23881 rd_rn, rd_rn),
23882 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23883 strex, t_strexbh),
23884 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23885 strex, t_strexbh),
23886 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
23887
23888 #undef ARM_VARIANT
23889 #define ARM_VARIANT & arm_ext_sec
23890 #undef THUMB_VARIANT
23891 #define THUMB_VARIANT & arm_ext_sec
23892
23893 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
23894
23895 #undef ARM_VARIANT
23896 #define ARM_VARIANT & arm_ext_virt
23897 #undef THUMB_VARIANT
23898 #define THUMB_VARIANT & arm_ext_virt
23899
23900 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23901 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23902
23903 #undef ARM_VARIANT
23904 #define ARM_VARIANT & arm_ext_pan
23905 #undef THUMB_VARIANT
23906 #define THUMB_VARIANT & arm_ext_pan
23907
23908 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23909
23910 #undef ARM_VARIANT
23911 #define ARM_VARIANT & arm_ext_v6t2
23912 #undef THUMB_VARIANT
23913 #define THUMB_VARIANT & arm_ext_v6t2
23914
23915 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23916 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23917 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23918 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23919
23920 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23921 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
23922
23923 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23924 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23925 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23926 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23927
23928 #undef ARM_VARIANT
23929 #define ARM_VARIANT & arm_ext_v3
23930 #undef THUMB_VARIANT
23931 #define THUMB_VARIANT & arm_ext_v6t2
23932
23933 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
23934 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23935 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
23936
23937 #undef ARM_VARIANT
23938 #define ARM_VARIANT & arm_ext_v6t2
23939 #undef THUMB_VARIANT
23940 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23941 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23942 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23943
23944 /* Thumb-only instructions. */
23945 #undef ARM_VARIANT
23946 #define ARM_VARIANT NULL
23947 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23948 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
23949
23950 /* ARM does not really have an IT instruction, so always allow it.
23951 The opcode is copied from Thumb in order to allow warnings in
23952 -mimplicit-it=[never | arm] modes. */
23953 #undef ARM_VARIANT
23954 #define ARM_VARIANT & arm_ext_v1
23955 #undef THUMB_VARIANT
23956 #define THUMB_VARIANT & arm_ext_v6t2
23957
23958 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23959 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23960 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23961 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23962 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23963 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23964 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23965 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23966 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23967 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23968 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23969 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23970 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23971 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23972 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
23973 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
23974 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23975 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
23976
23977 /* Thumb2 only instructions. */
23978 #undef ARM_VARIANT
23979 #define ARM_VARIANT NULL
23980
23981 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23982 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23983 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23984 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23985 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23986 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
23987
23988 /* Hardware division instructions. */
23989 #undef ARM_VARIANT
23990 #define ARM_VARIANT & arm_ext_adiv
23991 #undef THUMB_VARIANT
23992 #define THUMB_VARIANT & arm_ext_div
23993
23994 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23995 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
23996
23997 /* ARM V6M/V7 instructions. */
23998 #undef ARM_VARIANT
23999 #define ARM_VARIANT & arm_ext_barrier
24000 #undef THUMB_VARIANT
24001 #define THUMB_VARIANT & arm_ext_barrier
24002
24003 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
24004 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
24005 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
24006
24007 /* ARM V7 instructions. */
24008 #undef ARM_VARIANT
24009 #define ARM_VARIANT & arm_ext_v7
24010 #undef THUMB_VARIANT
24011 #define THUMB_VARIANT & arm_ext_v7
24012
24013 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
24014 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
24015
24016 #undef ARM_VARIANT
24017 #define ARM_VARIANT & arm_ext_mp
24018 #undef THUMB_VARIANT
24019 #define THUMB_VARIANT & arm_ext_mp
24020
24021 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
24022
24023 /* AArchv8 instructions. */
24024 #undef ARM_VARIANT
24025 #define ARM_VARIANT & arm_ext_v8
24026
24027 /* Instructions shared between armv8-a and armv8-m. */
24028 #undef THUMB_VARIANT
24029 #define THUMB_VARIANT & arm_ext_atomics
24030
24031 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24032 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24033 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24034 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24035 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24036 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
24037 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24038 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
24039 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
24040 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
24041 stlex, t_stlex),
24042 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
24043 stlex, t_stlex),
24044 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
24045 stlex, t_stlex),
24046 #undef THUMB_VARIANT
24047 #define THUMB_VARIANT & arm_ext_v8
24048
24049 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
24050 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
24051 ldrexd, t_ldrexd),
24052 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
24053 strexd, t_strexd),
24054
24055 /* Defined in V8 but is in undefined encoding space for earlier
24056 architectures. However earlier architectures are required to treat
24057 this instuction as a semihosting trap as well. Hence while not explicitly
24058 defined as such, it is in fact correct to define the instruction for all
24059 architectures. */
24060 #undef THUMB_VARIANT
24061 #define THUMB_VARIANT & arm_ext_v1
24062 #undef ARM_VARIANT
24063 #define ARM_VARIANT & arm_ext_v1
24064 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
24065
24066 /* ARMv8 T32 only. */
24067 #undef ARM_VARIANT
24068 #define ARM_VARIANT NULL
24069 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
24070 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
24071 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
24072
24073 /* FP for ARMv8. */
24074 #undef ARM_VARIANT
24075 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
24076 #undef THUMB_VARIANT
24077 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
24078
24079 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
24080 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
24081 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
24082 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
24083 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
24084 mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz),
24085 mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx),
24086 mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta),
24087 mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn),
24088 mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp),
24089 mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm),
24090
24091 /* Crypto v1 extensions. */
24092 #undef ARM_VARIANT
24093 #define ARM_VARIANT & fpu_crypto_ext_armv8
24094 #undef THUMB_VARIANT
24095 #define THUMB_VARIANT & fpu_crypto_ext_armv8
24096
24097 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
24098 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
24099 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
24100 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
24101 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
24102 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
24103 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
24104 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
24105 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
24106 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
24107 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
24108 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
24109 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
24110 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
24111
24112 #undef ARM_VARIANT
24113 #define ARM_VARIANT & crc_ext_armv8
24114 #undef THUMB_VARIANT
24115 #define THUMB_VARIANT & crc_ext_armv8
24116 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
24117 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
24118 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
24119 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
24120 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
24121 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
24122
24123 /* ARMv8.2 RAS extension. */
24124 #undef ARM_VARIANT
24125 #define ARM_VARIANT & arm_ext_ras
24126 #undef THUMB_VARIANT
24127 #define THUMB_VARIANT & arm_ext_ras
24128 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
24129
24130 #undef ARM_VARIANT
24131 #define ARM_VARIANT & arm_ext_v8_3
24132 #undef THUMB_VARIANT
24133 #define THUMB_VARIANT & arm_ext_v8_3
24134 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
24135
24136 #undef ARM_VARIANT
24137 #define ARM_VARIANT & fpu_neon_ext_dotprod
24138 #undef THUMB_VARIANT
24139 #define THUMB_VARIANT & fpu_neon_ext_dotprod
24140 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
24141 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
24142
24143 #undef ARM_VARIANT
24144 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
24145 #undef THUMB_VARIANT
24146 #define THUMB_VARIANT NULL
24147
24148 cCE("wfs", e200110, 1, (RR), rd),
24149 cCE("rfs", e300110, 1, (RR), rd),
24150 cCE("wfc", e400110, 1, (RR), rd),
24151 cCE("rfc", e500110, 1, (RR), rd),
24152
24153 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
24154 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
24155 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
24156 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
24157
24158 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
24159 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
24160 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
24161 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
24162
24163 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
24164 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
24165 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
24166 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
24167 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
24168 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
24169 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
24170 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
24171 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
24172 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
24173 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
24174 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
24175
24176 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
24177 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
24178 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
24179 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
24180 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
24181 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
24182 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
24183 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
24184 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
24185 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
24186 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
24187 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
24188
24189 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
24190 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
24191 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
24192 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
24193 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
24194 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
24195 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
24196 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
24197 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
24198 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
24199 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
24200 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
24201
24202 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
24203 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
24204 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
24205 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
24206 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
24207 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
24208 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
24209 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
24210 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
24211 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
24212 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
24213 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
24214
24215 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
24216 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
24217 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
24218 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
24219 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
24220 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
24221 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
24222 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
24223 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
24224 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
24225 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
24226 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
24227
24228 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
24229 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
24230 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
24231 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
24232 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
24233 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
24234 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
24235 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
24236 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
24237 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
24238 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
24239 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
24240
24241 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
24242 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
24243 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
24244 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
24245 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
24246 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
24247 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
24248 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
24249 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
24250 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
24251 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
24252 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
24253
24254 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
24255 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
24256 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
24257 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
24258 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
24259 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
24260 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
24261 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
24262 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
24263 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
24264 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
24265 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
24266
24267 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
24268 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
24269 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
24270 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
24271 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
24272 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
24273 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
24274 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
24275 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
24276 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
24277 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
24278 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
24279
24280 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
24281 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
24282 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
24283 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
24284 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
24285 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
24286 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
24287 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
24288 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
24289 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
24290 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
24291 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
24292
24293 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
24294 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
24295 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
24296 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
24297 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
24298 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
24299 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
24300 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
24301 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
24302 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
24303 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
24304 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
24305
24306 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
24307 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
24308 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
24309 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
24310 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
24311 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
24312 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
24313 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
24314 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
24315 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
24316 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
24317 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
24318
24319 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
24320 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
24321 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
24322 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
24323 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
24324 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
24325 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
24326 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
24327 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
24328 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
24329 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
24330 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
24331
24332 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
24333 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
24334 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
24335 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
24336 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
24337 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
24338 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
24339 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
24340 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
24341 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
24342 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
24343 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
24344
24345 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
24346 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
24347 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
24348 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
24349 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
24350 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
24351 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
24352 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
24353 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
24354 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
24355 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
24356 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
24357
24358 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
24359 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
24360 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
24361 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
24362 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
24363 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
24364 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
24365 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
24366 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
24367 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
24368 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
24369 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
24370
24371 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
24372 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
24373 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
24374 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
24375 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
24376 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24377 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24378 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24379 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
24380 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
24381 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
24382 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
24383
24384 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
24385 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
24386 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
24387 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
24388 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
24389 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24390 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24391 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24392 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
24393 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
24394 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
24395 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
24396
24397 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
24398 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
24399 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
24400 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
24401 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
24402 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24403 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24404 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24405 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
24406 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
24407 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
24408 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
24409
24410 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
24411 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
24412 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
24413 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
24414 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
24415 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24416 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24417 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24418 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
24419 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
24420 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
24421 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
24422
24423 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
24424 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
24425 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
24426 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
24427 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
24428 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24429 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24430 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24431 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
24432 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
24433 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
24434 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
24435
24436 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
24437 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
24438 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
24439 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
24440 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
24441 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24442 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24443 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24444 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
24445 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
24446 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
24447 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
24448
24449 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
24450 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
24451 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
24452 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
24453 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
24454 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24455 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24456 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24457 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
24458 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
24459 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
24460 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
24461
24462 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
24463 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
24464 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
24465 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
24466 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
24467 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24468 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24469 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24470 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
24471 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
24472 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
24473 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
24474
24475 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
24476 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
24477 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
24478 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
24479 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
24480 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24481 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24482 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24483 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
24484 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
24485 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
24486 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
24487
24488 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
24489 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
24490 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
24491 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
24492 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
24493 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24494 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24495 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24496 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
24497 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
24498 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
24499 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
24500
24501 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24502 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24503 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24504 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24505 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24506 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24507 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24508 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24509 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24510 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24511 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24512 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24513
24514 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24515 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24516 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24517 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24518 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24519 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24520 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24521 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24522 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24523 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24524 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24525 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24526
24527 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24528 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24529 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24530 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24531 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24532 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24533 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24534 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24535 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24536 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24537 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24538 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24539
24540 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
24541 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
24542 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
24543 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
24544
24545 cCL("flts", e000110, 2, (RF, RR), rn_rd),
24546 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
24547 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
24548 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
24549 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
24550 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
24551 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
24552 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
24553 cCL("flte", e080110, 2, (RF, RR), rn_rd),
24554 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
24555 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
24556 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
24557
24558 /* The implementation of the FIX instruction is broken on some
24559 assemblers, in that it accepts a precision specifier as well as a
24560 rounding specifier, despite the fact that this is meaningless.
24561 To be more compatible, we accept it as well, though of course it
24562 does not set any bits. */
24563 cCE("fix", e100110, 2, (RR, RF), rd_rm),
24564 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
24565 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
24566 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
24567 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
24568 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
24569 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
24570 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
24571 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
24572 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
24573 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
24574 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
24575 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
24576
24577 /* Instructions that were new with the real FPA, call them V2. */
24578 #undef ARM_VARIANT
24579 #define ARM_VARIANT & fpu_fpa_ext_v2
24580
24581 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24582 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24583 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24584 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24585 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24586 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24587
24588 #undef ARM_VARIANT
24589 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
24590 #undef THUMB_VARIANT
24591 #define THUMB_VARIANT & arm_ext_v6t2
24592 mcCE(vmrs, ef00a10, 2, (APSR_RR, RVC), vmrs),
24593 mcCE(vmsr, ee00a10, 2, (RVC, RR), vmsr),
24594 #undef THUMB_VARIANT
24595
24596 /* Moves and type conversions. */
24597 cCE("fmstat", ef1fa10, 0, (), noargs),
24598 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
24599 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
24600 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
24601 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24602 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
24603 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24604 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
24605 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
24606
24607 /* Memory operations. */
24608 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24609 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24610 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24611 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24612 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24613 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24614 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24615 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24616 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24617 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24618 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24619 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24620 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24621 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24622 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24623 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24624 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24625 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24626
24627 /* Monadic operations. */
24628 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
24629 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
24630 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
24631
24632 /* Dyadic operations. */
24633 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24634 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24635 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24636 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24637 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24638 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24639 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24640 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24641 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24642
24643 /* Comparisons. */
24644 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
24645 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
24646 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
24647 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
24648
24649 /* Double precision load/store are still present on single precision
24650 implementations. */
24651 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24652 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24653 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24654 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24655 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24656 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24657 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24658 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24659 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24660 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24661
24662 #undef ARM_VARIANT
24663 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
24664
24665 /* Moves and type conversions. */
24666 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24667 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24668 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
24669 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
24670 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
24671 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
24672 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24673 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
24674 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24675 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24676 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24677 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24678
24679 /* Monadic operations. */
24680 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24681 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24682 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24683
24684 /* Dyadic operations. */
24685 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24686 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24687 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24688 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24689 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24690 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24691 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24692 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24693 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24694
24695 /* Comparisons. */
24696 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24697 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
24698 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24699 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
24700
24701 /* Instructions which may belong to either the Neon or VFP instruction sets.
24702 Individual encoder functions perform additional architecture checks. */
24703 #undef ARM_VARIANT
24704 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24705 #undef THUMB_VARIANT
24706 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
24707
24708 /* These mnemonics are unique to VFP. */
24709 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
24710 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
24711 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24712 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24713 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24714 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
24715 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
24716 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
24717
24718 /* Mnemonics shared by Neon and VFP. */
24719 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
24720
24721 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24722 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24723 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24724 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24725 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24726 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24727
24728 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
24729 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
24730 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
24731 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
24732
24733
24734 /* NOTE: All VMOV encoding is special-cased! */
24735 NCE(vmovq, 0, 1, (VMOV), neon_mov),
24736
24737 #undef THUMB_VARIANT
24738 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24739 by different feature bits. Since we are setting the Thumb guard, we can
24740 require Thumb-1 which makes it a nop guard and set the right feature bit in
24741 do_vldr_vstr (). */
24742 #define THUMB_VARIANT & arm_ext_v4t
24743 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24744 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24745
24746 #undef ARM_VARIANT
24747 #define ARM_VARIANT & arm_ext_fp16
24748 #undef THUMB_VARIANT
24749 #define THUMB_VARIANT & arm_ext_fp16
24750 /* New instructions added from v8.2, allowing the extraction and insertion of
24751 the upper 16 bits of a 32-bit vector register. */
24752 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
24753 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
24754
24755 /* New backported fma/fms instructions optional in v8.2. */
24756 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
24757 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
24758
24759 #undef THUMB_VARIANT
24760 #define THUMB_VARIANT & fpu_neon_ext_v1
24761 #undef ARM_VARIANT
24762 #define ARM_VARIANT & fpu_neon_ext_v1
24763
24764 /* Data processing with three registers of the same length. */
24765 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24766 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
24767 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
24768 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24769 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24770 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24771 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
24772 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24773 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24774 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24775 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24776 /* If not immediate, fall back to neon_dyadic_i64_su.
24777 shl should accept I8 I16 I32 I64,
24778 qshl should accept S8 S16 S32 S64 U8 U16 U32 U64. */
24779 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl),
24780 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl),
24781 /* Logic ops, types optional & ignored. */
24782 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24783 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24784 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24785 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24786 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
24787 /* Bitfield ops, untyped. */
24788 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24789 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24790 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24791 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24792 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24793 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24794 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
24795 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24796 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24797 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24798 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24799 back to neon_dyadic_if_su. */
24800 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24801 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24802 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24803 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24804 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24805 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24806 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24807 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24808 /* Comparison. Type I8 I16 I32 F32. */
24809 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24810 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
24811 /* As above, D registers only. */
24812 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24813 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24814 /* Int and float variants, signedness unimportant. */
24815 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24816 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24817 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
24818 /* Add/sub take types I8 I16 I32 I64 F32. */
24819 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24820 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24821 /* vtst takes sizes 8, 16, 32. */
24822 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24823 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24824 /* VMUL takes I8 I16 I32 F32 P8. */
24825 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
24826 /* VQD{R}MULH takes S16 S32. */
24827 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24828 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24829 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24830 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24831 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24832 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24833 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24834 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24835 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24836 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24837 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24838 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24839 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24840 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24841 /* ARM v8.1 extension. */
24842 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24843 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24844 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24845
24846 /* Two address, int/float. Types S8 S16 S32 F32. */
24847 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
24848 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24849
24850 /* Data processing with two registers and a shift amount. */
24851 /* Right shifts, and variants with rounding.
24852 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24853 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24854 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24855 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24856 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24857 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24858 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24859 /* Shift and insert. Sizes accepted 8 16 32 64. */
24860 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
24861 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24862 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24863 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24864 /* Right shift immediate, saturating & narrowing, with rounding variants.
24865 Types accepted S16 S32 S64 U16 U32 U64. */
24866 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24867 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24868 /* As above, unsigned. Types accepted S16 S32 S64. */
24869 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24870 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24871 /* Right shift narrowing. Types accepted I16 I32 I64. */
24872 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24873 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24874 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
24875 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
24876 /* CVT with optional immediate for fixed-point variant. */
24877 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
24878
24879 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
24880
24881 /* Data processing, three registers of different lengths. */
24882 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24883 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
24884 /* If not scalar, fall back to neon_dyadic_long.
24885 Vector types as above, scalar types S16 S32 U16 U32. */
24886 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24887 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24888 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24889 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24890 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24891 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24892 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24893 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24894 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24895 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24896 /* Saturating doubling multiplies. Types S16 S32. */
24897 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24898 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24899 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24900 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24901 S16 S32 U16 U32. */
24902 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
24903
24904 /* Extract. Size 8. */
24905 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24906 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
24907
24908 /* Two registers, miscellaneous. */
24909 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24910 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
24911 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
24912 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24913 /* Vector replicate. Sizes 8 16 32. */
24914 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
24915 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24916 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24917 /* VMOVN. Types I16 I32 I64. */
24918 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
24919 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
24920 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
24921 /* VQMOVUN. Types S16 S32 S64. */
24922 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
24923 /* VZIP / VUZP. Sizes 8 16 32. */
24924 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24925 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24926 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24927 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24928 /* VQABS / VQNEG. Types S8 S16 S32. */
24929 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
24930 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24931 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24932 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24933 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24934 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24935 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
24936 /* Reciprocal estimates. Types U32 F16 F32. */
24937 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24938 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24939 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24940 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24941 /* VCLS. Types S8 S16 S32. */
24942 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24943 /* VCLZ. Types I8 I16 I32. */
24944 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24945 /* VCNT. Size 8. */
24946 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24947 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24948 /* Two address, untyped. */
24949 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24950 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24951 /* VTRN. Sizes 8 16 32. */
24952 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24953 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
24954
24955 /* Table lookup. Size 8. */
24956 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24957 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24958
24959 #undef THUMB_VARIANT
24960 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24961 #undef ARM_VARIANT
24962 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24963
24964 /* Neon element/structure load/store. */
24965 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24966 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24967 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24968 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24969 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24970 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24971 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24972 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24973
24974 #undef THUMB_VARIANT
24975 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
24976 #undef ARM_VARIANT
24977 #define ARM_VARIANT & fpu_vfp_ext_v3xd
24978 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24979 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24980 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24981 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24982 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24983 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24984 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24985 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24986 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24987
24988 #undef THUMB_VARIANT
24989 #define THUMB_VARIANT & fpu_vfp_ext_v3
24990 #undef ARM_VARIANT
24991 #define ARM_VARIANT & fpu_vfp_ext_v3
24992
24993 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
24994 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24995 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24996 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24997 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24998 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24999 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25000 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
25001 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
25002
25003 #undef ARM_VARIANT
25004 #define ARM_VARIANT & fpu_vfp_ext_fma
25005 #undef THUMB_VARIANT
25006 #define THUMB_VARIANT & fpu_vfp_ext_fma
25007 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
25008 VFP FMA variant; NEON and VFP FMA always includes the NEON
25009 FMA instructions. */
25010 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
25011 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
25012
25013 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
25014 the v form should always be used. */
25015 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25016 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
25017 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25018 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
25019 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25020 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
25021
25022 #undef THUMB_VARIANT
25023 #undef ARM_VARIANT
25024 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
25025
25026 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25027 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25028 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25029 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25030 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25031 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
25032 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
25033 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
25034
25035 #undef ARM_VARIANT
25036 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
25037
25038 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
25039 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
25040 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
25041 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
25042 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
25043 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
25044 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
25045 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
25046 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
25047 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25048 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25049 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
25050 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25051 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25052 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
25053 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25054 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25055 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
25056 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
25057 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
25058 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25059 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25060 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25061 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25062 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25063 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
25064 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
25065 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
25066 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
25067 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
25068 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
25069 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
25070 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
25071 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
25072 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
25073 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
25074 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
25075 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25076 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25077 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25078 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25079 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25080 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25081 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25082 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25083 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25084 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
25085 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25086 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25087 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25088 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25089 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25090 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25091 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25092 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25093 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25094 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25095 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25096 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25097 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25098 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25099 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25100 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25101 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25102 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25103 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25104 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25105 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25106 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
25107 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
25108 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25109 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25110 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25111 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25112 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25113 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25114 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25115 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25116 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25117 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25118 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25119 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25120 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25121 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25122 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25123 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25124 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25125 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25126 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
25127 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25128 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25129 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25130 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25131 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25132 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25133 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25134 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25135 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25136 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25137 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25138 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25139 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25140 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25141 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25142 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25143 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25144 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25145 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25146 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25147 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25148 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
25149 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25150 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25151 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25152 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25153 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25154 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25155 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25156 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25157 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25158 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25159 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25160 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25161 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25162 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25163 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25164 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25165 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
25166 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
25167 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25168 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
25169 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
25170 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
25171 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25172 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25173 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25174 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25175 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25176 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25177 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25178 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25179 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25180 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
25181 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
25182 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
25183 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
25184 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
25185 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
25186 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25187 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25188 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25189 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
25190 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
25191 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
25192 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
25193 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
25194 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
25195 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25196 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25197 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25198 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25199 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
25200
25201 #undef ARM_VARIANT
25202 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
25203
25204 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
25205 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
25206 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
25207 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
25208 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
25209 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
25210 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25211 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25212 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25213 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25214 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25215 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25216 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25217 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25218 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25219 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25220 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25221 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25222 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25223 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25224 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
25225 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25226 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25227 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25228 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25229 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25230 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25231 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25232 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25233 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25234 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25235 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25236 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25237 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25238 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25239 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25240 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25241 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25242 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25243 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25244 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25245 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25246 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25247 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25248 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25249 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25250 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25251 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25252 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25253 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25254 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25255 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25256 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25257 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25258 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25259 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25260 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
25261
25262 #undef ARM_VARIANT
25263 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
25264
25265 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25266 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25267 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25268 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25269 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
25270 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
25271 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
25272 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
25273 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
25274 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
25275 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
25276 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
25277 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
25278 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
25279 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
25280 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
25281 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
25282 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
25283 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
25284 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
25285 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
25286 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
25287 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
25288 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
25289 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
25290 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
25291 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
25292 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
25293 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
25294 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
25295 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
25296 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
25297 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
25298 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
25299 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
25300 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
25301 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
25302 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
25303 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
25304 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
25305 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
25306 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
25307 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
25308 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
25309 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
25310 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
25311 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
25312 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
25313 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
25314 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
25315 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
25316 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
25317 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
25318 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
25319 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
25320 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
25321 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
25322 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
25323 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
25324 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
25325 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
25326 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
25327 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
25328 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
25329 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25330 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25331 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25332 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25333 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25334 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
25335 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25336 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
25337 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
25338 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
25339 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
25340 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
25341
25342 /* ARMv8.5-A instructions. */
25343 #undef ARM_VARIANT
25344 #define ARM_VARIANT & arm_ext_sb
25345 #undef THUMB_VARIANT
25346 #define THUMB_VARIANT & arm_ext_sb
25347 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
25348
25349 #undef ARM_VARIANT
25350 #define ARM_VARIANT & arm_ext_predres
25351 #undef THUMB_VARIANT
25352 #define THUMB_VARIANT & arm_ext_predres
25353 CE("cfprctx", e070f93, 1, (RRnpc), rd),
25354 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
25355 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
25356
25357 /* ARMv8-M instructions. */
25358 #undef ARM_VARIANT
25359 #define ARM_VARIANT NULL
25360 #undef THUMB_VARIANT
25361 #define THUMB_VARIANT & arm_ext_v8m
25362 ToU("sg", e97fe97f, 0, (), noargs),
25363 ToC("blxns", 4784, 1, (RRnpc), t_blx),
25364 ToC("bxns", 4704, 1, (RRnpc), t_bx),
25365 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
25366 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
25367 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
25368 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
25369
25370 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
25371 instructions behave as nop if no VFP is present. */
25372 #undef THUMB_VARIANT
25373 #define THUMB_VARIANT & arm_ext_v8m_main
25374 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
25375 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
25376
25377 /* Armv8.1-M Mainline instructions. */
25378 #undef THUMB_VARIANT
25379 #define THUMB_VARIANT & arm_ext_v8_1m_main
25380 toU("cinc", _cinc, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25381 toU("cinv", _cinv, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25382 toU("cneg", _cneg, 3, (RRnpcsp, RR_ZR, COND), t_cond),
25383 toU("csel", _csel, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25384 toU("csetm", _csetm, 2, (RRnpcsp, COND), t_cond),
25385 toU("cset", _cset, 2, (RRnpcsp, COND), t_cond),
25386 toU("csinc", _csinc, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25387 toU("csinv", _csinv, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25388 toU("csneg", _csneg, 4, (RRnpcsp, RR_ZR, RR_ZR, COND), t_cond),
25389
25390 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
25391 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
25392 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
25393 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
25394 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
25395
25396 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
25397 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
25398 toU("le", _le, 2, (oLR, EXP), t_loloop),
25399
25400 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
25401 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
25402
25403 #undef THUMB_VARIANT
25404 #define THUMB_VARIANT & mve_ext
25405 ToC("lsll", ea50010d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
25406 ToC("lsrl", ea50011f, 3, (RRe, RRo, I32), mve_scalar_shift),
25407 ToC("asrl", ea50012d, 3, (RRe, RRo, RRnpcsp_I32), mve_scalar_shift),
25408 ToC("uqrshll", ea51010d, 3, (RRe, RRo, RRnpcsp), mve_scalar_shift),
25409 ToC("sqrshrl", ea51012d, 3, (RRe, RRo, RRnpcsp), mve_scalar_shift),
25410 ToC("uqshll", ea51010f, 3, (RRe, RRo, I32), mve_scalar_shift),
25411 ToC("urshrl", ea51011f, 3, (RRe, RRo, I32), mve_scalar_shift),
25412 ToC("srshrl", ea51012f, 3, (RRe, RRo, I32), mve_scalar_shift),
25413 ToC("sqshll", ea51013f, 3, (RRe, RRo, I32), mve_scalar_shift),
25414 ToC("uqrshl", ea500f0d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
25415 ToC("sqrshr", ea500f2d, 2, (RRnpcsp, RRnpcsp), mve_scalar_shift),
25416 ToC("uqshl", ea500f0f, 2, (RRnpcsp, I32), mve_scalar_shift),
25417 ToC("urshr", ea500f1f, 2, (RRnpcsp, I32), mve_scalar_shift),
25418 ToC("srshr", ea500f2f, 2, (RRnpcsp, I32), mve_scalar_shift),
25419 ToC("sqshl", ea500f3f, 2, (RRnpcsp, I32), mve_scalar_shift),
25420
25421 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25422 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25423 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25424 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25425 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25426 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25427 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25428 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25429 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25430 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25431 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25432 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25433 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25434 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25435 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25436
25437 ToC("vpst", fe710f4d, 0, (), mve_vpt),
25438 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
25439 ToC("vpste", fe718f4d, 0, (), mve_vpt),
25440 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
25441 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
25442 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
25443 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
25444 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
25445 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
25446 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
25447 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
25448 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
25449 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
25450 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
25451 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
25452
25453 /* MVE and MVE FP only. */
25454 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
25455 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
25456 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
25457 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25458 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25459 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
25460 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
25461 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25462 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25463 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25464 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25465 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25466 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25467 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25468 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25469 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25470 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25471
25472 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25473 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25474 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25475 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25476 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25477 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25478 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25479 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25480 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25481 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25482 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25483 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25484 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25485 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25486 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25487 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25488 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25489 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25490 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25491 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25492
25493 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
25494 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
25495 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
25496 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
25497 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
25498 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
25499 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
25500 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
25501 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25502 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
25503 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25504 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25505 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25506 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
25507 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
25508 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
25509 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
25510
25511 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25512 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25513 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25514 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25515 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25516 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25517 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25518 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25519 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25520 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25521 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25522 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25523 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25524 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25525 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25526 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25527 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25528 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25529 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25530 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25531
25532 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
25533 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25534 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25535 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
25536 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
25537
25538 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25539 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25540 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25541 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25542 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25543 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25544 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25545 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25546 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25547 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25548 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25549 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25550 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25551 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
25552 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
25553 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
25554 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
25555
25556 mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25557 mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25558 mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25559 mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25560 mCEF(vqshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25561 mCEF(vqshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25562 mCEF(vqshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25563 mCEF(vqshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25564 mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25565 mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25566 mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25567 mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25568
25569 mToC("vshlc", eea00fc0, 3, (RMQ, RR, I32z), mve_vshlc),
25570 mToC("vshllt", ee201e00, 3, (RMQ, RMQ, I32), mve_vshll),
25571 mToC("vshllb", ee200e00, 3, (RMQ, RMQ, I32), mve_vshll),
25572
25573 toU("dlstp", _dlstp, 2, (LR, RR), t_loloop),
25574 toU("wlstp", _wlstp, 3, (LR, RR, EXP), t_loloop),
25575 toU("letp", _letp, 2, (LR, EXP), t_loloop),
25576 toU("lctp", _lctp, 0, (), t_loloop),
25577
25578 #undef THUMB_VARIANT
25579 #define THUMB_VARIANT & mve_fp_ext
25580 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
25581 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
25582 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25583 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25584 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
25585 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
25586 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
25587 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
25588
25589 #undef ARM_VARIANT
25590 #define ARM_VARIANT & fpu_vfp_ext_v1
25591 #undef THUMB_VARIANT
25592 #define THUMB_VARIANT & arm_ext_v6t2
25593 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
25594 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
25595
25596 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25597
25598 #undef ARM_VARIANT
25599 #define ARM_VARIANT & fpu_vfp_ext_v1xd
25600
25601 MNCE(vmov, 0, 1, (VMOV), neon_mov),
25602 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
25603 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
25604 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
25605
25606 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
25607 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25608 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25609
25610 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25611 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25612
25613 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
25614 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
25615
25616 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25617 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25618
25619 #undef ARM_VARIANT
25620 #define ARM_VARIANT & fpu_vfp_ext_v2
25621
25622 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
25623 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
25624 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
25625 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
25626
25627 #undef ARM_VARIANT
25628 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
25629 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
25630 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
25631 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
25632 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
25633 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25634 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25635
25636 #undef ARM_VARIANT
25637 #define ARM_VARIANT & fpu_neon_ext_v1
25638 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25639 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
25640 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25641 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25642 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25643 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25644 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25645 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25646 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
25647 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
25648 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
25649 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
25650 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25651 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
25652 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25653 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25654 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25655 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25656 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25657 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
25658 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25659 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25660 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
25661 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25662 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25663 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25664 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25665 MNUF(vshr, 0800010, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
25666 MNUF(vrshr, 0800210, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
25667 MNUF(vsli, 1800510, 3, (RNDQMQ, oRNDQMQ, I63), neon_sli),
25668 MNUF(vsri, 1800410, 3, (RNDQMQ, oRNDQMQ, I64z), neon_sri),
25669 MNUF(vrev64, 1b00000, 2, (RNDQMQ, RNDQMQ), neon_rev),
25670 MNUF(vrev32, 1b00080, 2, (RNDQMQ, RNDQMQ), neon_rev),
25671 MNUF(vrev16, 1b00100, 2, (RNDQMQ, RNDQMQ), neon_rev),
25672 mnUF(vshl, _vshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_shl),
25673 mnUF(vqshl, _vqshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_qshl),
25674 MNUF(vqshlu, 1800610, 3, (RNDQMQ, oRNDQMQ, I63), neon_qshlu_imm),
25675
25676 #undef ARM_VARIANT
25677 #define ARM_VARIANT & arm_ext_v8_3
25678 #undef THUMB_VARIANT
25679 #define THUMB_VARIANT & arm_ext_v6t2_v8m
25680 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
25681 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
25682 };
25683 #undef ARM_VARIANT
25684 #undef THUMB_VARIANT
25685 #undef TCE
25686 #undef TUE
25687 #undef TUF
25688 #undef TCC
25689 #undef cCE
25690 #undef cCL
25691 #undef C3E
25692 #undef C3
25693 #undef CE
25694 #undef CM
25695 #undef CL
25696 #undef UE
25697 #undef UF
25698 #undef UT
25699 #undef NUF
25700 #undef nUF
25701 #undef NCE
25702 #undef nCE
25703 #undef OPS0
25704 #undef OPS1
25705 #undef OPS2
25706 #undef OPS3
25707 #undef OPS4
25708 #undef OPS5
25709 #undef OPS6
25710 #undef do_0
25711 #undef ToC
25712 #undef toC
25713 #undef ToU
25714 #undef toU
25715 \f
25716 /* MD interface: bits in the object file. */
25717
25718 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
25719 for use in the a.out file, and stores them in the array pointed to by buf.
25720 This knows about the endian-ness of the target machine and does
25721 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
25722 2 (short) and 4 (long) Floating numbers are put out as a series of
25723 LITTLENUMS (shorts, here at least). */
25724
25725 void
25726 md_number_to_chars (char * buf, valueT val, int n)
25727 {
25728 if (target_big_endian)
25729 number_to_chars_bigendian (buf, val, n);
25730 else
25731 number_to_chars_littleendian (buf, val, n);
25732 }
25733
25734 static valueT
25735 md_chars_to_number (char * buf, int n)
25736 {
25737 valueT result = 0;
25738 unsigned char * where = (unsigned char *) buf;
25739
25740 if (target_big_endian)
25741 {
25742 while (n--)
25743 {
25744 result <<= 8;
25745 result |= (*where++ & 255);
25746 }
25747 }
25748 else
25749 {
25750 while (n--)
25751 {
25752 result <<= 8;
25753 result |= (where[n] & 255);
25754 }
25755 }
25756
25757 return result;
25758 }
25759
25760 /* MD interface: Sections. */
25761
25762 /* Calculate the maximum variable size (i.e., excluding fr_fix)
25763 that an rs_machine_dependent frag may reach. */
25764
25765 unsigned int
25766 arm_frag_max_var (fragS *fragp)
25767 {
25768 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25769 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25770
25771 Note that we generate relaxable instructions even for cases that don't
25772 really need it, like an immediate that's a trivial constant. So we're
25773 overestimating the instruction size for some of those cases. Rather
25774 than putting more intelligence here, it would probably be better to
25775 avoid generating a relaxation frag in the first place when it can be
25776 determined up front that a short instruction will suffice. */
25777
25778 gas_assert (fragp->fr_type == rs_machine_dependent);
25779 return INSN_SIZE;
25780 }
25781
25782 /* Estimate the size of a frag before relaxing. Assume everything fits in
25783 2 bytes. */
25784
25785 int
25786 md_estimate_size_before_relax (fragS * fragp,
25787 segT segtype ATTRIBUTE_UNUSED)
25788 {
25789 fragp->fr_var = 2;
25790 return 2;
25791 }
25792
25793 /* Convert a machine dependent frag. */
25794
25795 void
25796 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
25797 {
25798 unsigned long insn;
25799 unsigned long old_op;
25800 char *buf;
25801 expressionS exp;
25802 fixS *fixp;
25803 int reloc_type;
25804 int pc_rel;
25805 int opcode;
25806
25807 buf = fragp->fr_literal + fragp->fr_fix;
25808
25809 old_op = bfd_get_16(abfd, buf);
25810 if (fragp->fr_symbol)
25811 {
25812 exp.X_op = O_symbol;
25813 exp.X_add_symbol = fragp->fr_symbol;
25814 }
25815 else
25816 {
25817 exp.X_op = O_constant;
25818 }
25819 exp.X_add_number = fragp->fr_offset;
25820 opcode = fragp->fr_subtype;
25821 switch (opcode)
25822 {
25823 case T_MNEM_ldr_pc:
25824 case T_MNEM_ldr_pc2:
25825 case T_MNEM_ldr_sp:
25826 case T_MNEM_str_sp:
25827 case T_MNEM_ldr:
25828 case T_MNEM_ldrb:
25829 case T_MNEM_ldrh:
25830 case T_MNEM_str:
25831 case T_MNEM_strb:
25832 case T_MNEM_strh:
25833 if (fragp->fr_var == 4)
25834 {
25835 insn = THUMB_OP32 (opcode);
25836 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
25837 {
25838 insn |= (old_op & 0x700) << 4;
25839 }
25840 else
25841 {
25842 insn |= (old_op & 7) << 12;
25843 insn |= (old_op & 0x38) << 13;
25844 }
25845 insn |= 0x00000c00;
25846 put_thumb32_insn (buf, insn);
25847 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25848 }
25849 else
25850 {
25851 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25852 }
25853 pc_rel = (opcode == T_MNEM_ldr_pc2);
25854 break;
25855 case T_MNEM_adr:
25856 if (fragp->fr_var == 4)
25857 {
25858 insn = THUMB_OP32 (opcode);
25859 insn |= (old_op & 0xf0) << 4;
25860 put_thumb32_insn (buf, insn);
25861 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25862 }
25863 else
25864 {
25865 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25866 exp.X_add_number -= 4;
25867 }
25868 pc_rel = 1;
25869 break;
25870 case T_MNEM_mov:
25871 case T_MNEM_movs:
25872 case T_MNEM_cmp:
25873 case T_MNEM_cmn:
25874 if (fragp->fr_var == 4)
25875 {
25876 int r0off = (opcode == T_MNEM_mov
25877 || opcode == T_MNEM_movs) ? 0 : 8;
25878 insn = THUMB_OP32 (opcode);
25879 insn = (insn & 0xe1ffffff) | 0x10000000;
25880 insn |= (old_op & 0x700) << r0off;
25881 put_thumb32_insn (buf, insn);
25882 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25883 }
25884 else
25885 {
25886 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25887 }
25888 pc_rel = 0;
25889 break;
25890 case T_MNEM_b:
25891 if (fragp->fr_var == 4)
25892 {
25893 insn = THUMB_OP32(opcode);
25894 put_thumb32_insn (buf, insn);
25895 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25896 }
25897 else
25898 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25899 pc_rel = 1;
25900 break;
25901 case T_MNEM_bcond:
25902 if (fragp->fr_var == 4)
25903 {
25904 insn = THUMB_OP32(opcode);
25905 insn |= (old_op & 0xf00) << 14;
25906 put_thumb32_insn (buf, insn);
25907 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25908 }
25909 else
25910 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25911 pc_rel = 1;
25912 break;
25913 case T_MNEM_add_sp:
25914 case T_MNEM_add_pc:
25915 case T_MNEM_inc_sp:
25916 case T_MNEM_dec_sp:
25917 if (fragp->fr_var == 4)
25918 {
25919 /* ??? Choose between add and addw. */
25920 insn = THUMB_OP32 (opcode);
25921 insn |= (old_op & 0xf0) << 4;
25922 put_thumb32_insn (buf, insn);
25923 if (opcode == T_MNEM_add_pc)
25924 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25925 else
25926 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25927 }
25928 else
25929 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25930 pc_rel = 0;
25931 break;
25932
25933 case T_MNEM_addi:
25934 case T_MNEM_addis:
25935 case T_MNEM_subi:
25936 case T_MNEM_subis:
25937 if (fragp->fr_var == 4)
25938 {
25939 insn = THUMB_OP32 (opcode);
25940 insn |= (old_op & 0xf0) << 4;
25941 insn |= (old_op & 0xf) << 16;
25942 put_thumb32_insn (buf, insn);
25943 if (insn & (1 << 20))
25944 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25945 else
25946 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25947 }
25948 else
25949 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25950 pc_rel = 0;
25951 break;
25952 default:
25953 abort ();
25954 }
25955 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
25956 (enum bfd_reloc_code_real) reloc_type);
25957 fixp->fx_file = fragp->fr_file;
25958 fixp->fx_line = fragp->fr_line;
25959 fragp->fr_fix += fragp->fr_var;
25960
25961 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25962 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25963 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25964 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
25965 }
25966
25967 /* Return the size of a relaxable immediate operand instruction.
25968 SHIFT and SIZE specify the form of the allowable immediate. */
25969 static int
25970 relax_immediate (fragS *fragp, int size, int shift)
25971 {
25972 offsetT offset;
25973 offsetT mask;
25974 offsetT low;
25975
25976 /* ??? Should be able to do better than this. */
25977 if (fragp->fr_symbol)
25978 return 4;
25979
25980 low = (1 << shift) - 1;
25981 mask = (1 << (shift + size)) - (1 << shift);
25982 offset = fragp->fr_offset;
25983 /* Force misaligned offsets to 32-bit variant. */
25984 if (offset & low)
25985 return 4;
25986 if (offset & ~mask)
25987 return 4;
25988 return 2;
25989 }
25990
25991 /* Get the address of a symbol during relaxation. */
25992 static addressT
25993 relaxed_symbol_addr (fragS *fragp, long stretch)
25994 {
25995 fragS *sym_frag;
25996 addressT addr;
25997 symbolS *sym;
25998
25999 sym = fragp->fr_symbol;
26000 sym_frag = symbol_get_frag (sym);
26001 know (S_GET_SEGMENT (sym) != absolute_section
26002 || sym_frag == &zero_address_frag);
26003 addr = S_GET_VALUE (sym) + fragp->fr_offset;
26004
26005 /* If frag has yet to be reached on this pass, assume it will
26006 move by STRETCH just as we did. If this is not so, it will
26007 be because some frag between grows, and that will force
26008 another pass. */
26009
26010 if (stretch != 0
26011 && sym_frag->relax_marker != fragp->relax_marker)
26012 {
26013 fragS *f;
26014
26015 /* Adjust stretch for any alignment frag. Note that if have
26016 been expanding the earlier code, the symbol may be
26017 defined in what appears to be an earlier frag. FIXME:
26018 This doesn't handle the fr_subtype field, which specifies
26019 a maximum number of bytes to skip when doing an
26020 alignment. */
26021 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
26022 {
26023 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
26024 {
26025 if (stretch < 0)
26026 stretch = - ((- stretch)
26027 & ~ ((1 << (int) f->fr_offset) - 1));
26028 else
26029 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
26030 if (stretch == 0)
26031 break;
26032 }
26033 }
26034 if (f != NULL)
26035 addr += stretch;
26036 }
26037
26038 return addr;
26039 }
26040
26041 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
26042 load. */
26043 static int
26044 relax_adr (fragS *fragp, asection *sec, long stretch)
26045 {
26046 addressT addr;
26047 offsetT val;
26048
26049 /* Assume worst case for symbols not known to be in the same section. */
26050 if (fragp->fr_symbol == NULL
26051 || !S_IS_DEFINED (fragp->fr_symbol)
26052 || sec != S_GET_SEGMENT (fragp->fr_symbol)
26053 || S_IS_WEAK (fragp->fr_symbol))
26054 return 4;
26055
26056 val = relaxed_symbol_addr (fragp, stretch);
26057 addr = fragp->fr_address + fragp->fr_fix;
26058 addr = (addr + 4) & ~3;
26059 /* Force misaligned targets to 32-bit variant. */
26060 if (val & 3)
26061 return 4;
26062 val -= addr;
26063 if (val < 0 || val > 1020)
26064 return 4;
26065 return 2;
26066 }
26067
26068 /* Return the size of a relaxable add/sub immediate instruction. */
26069 static int
26070 relax_addsub (fragS *fragp, asection *sec)
26071 {
26072 char *buf;
26073 int op;
26074
26075 buf = fragp->fr_literal + fragp->fr_fix;
26076 op = bfd_get_16(sec->owner, buf);
26077 if ((op & 0xf) == ((op >> 4) & 0xf))
26078 return relax_immediate (fragp, 8, 0);
26079 else
26080 return relax_immediate (fragp, 3, 0);
26081 }
26082
26083 /* Return TRUE iff the definition of symbol S could be pre-empted
26084 (overridden) at link or load time. */
26085 static bfd_boolean
26086 symbol_preemptible (symbolS *s)
26087 {
26088 /* Weak symbols can always be pre-empted. */
26089 if (S_IS_WEAK (s))
26090 return TRUE;
26091
26092 /* Non-global symbols cannot be pre-empted. */
26093 if (! S_IS_EXTERNAL (s))
26094 return FALSE;
26095
26096 #ifdef OBJ_ELF
26097 /* In ELF, a global symbol can be marked protected, or private. In that
26098 case it can't be pre-empted (other definitions in the same link unit
26099 would violate the ODR). */
26100 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
26101 return FALSE;
26102 #endif
26103
26104 /* Other global symbols might be pre-empted. */
26105 return TRUE;
26106 }
26107
26108 /* Return the size of a relaxable branch instruction. BITS is the
26109 size of the offset field in the narrow instruction. */
26110
26111 static int
26112 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
26113 {
26114 addressT addr;
26115 offsetT val;
26116 offsetT limit;
26117
26118 /* Assume worst case for symbols not known to be in the same section. */
26119 if (!S_IS_DEFINED (fragp->fr_symbol)
26120 || sec != S_GET_SEGMENT (fragp->fr_symbol)
26121 || S_IS_WEAK (fragp->fr_symbol))
26122 return 4;
26123
26124 #ifdef OBJ_ELF
26125 /* A branch to a function in ARM state will require interworking. */
26126 if (S_IS_DEFINED (fragp->fr_symbol)
26127 && ARM_IS_FUNC (fragp->fr_symbol))
26128 return 4;
26129 #endif
26130
26131 if (symbol_preemptible (fragp->fr_symbol))
26132 return 4;
26133
26134 val = relaxed_symbol_addr (fragp, stretch);
26135 addr = fragp->fr_address + fragp->fr_fix + 4;
26136 val -= addr;
26137
26138 /* Offset is a signed value *2 */
26139 limit = 1 << bits;
26140 if (val >= limit || val < -limit)
26141 return 4;
26142 return 2;
26143 }
26144
26145
26146 /* Relax a machine dependent frag. This returns the amount by which
26147 the current size of the frag should change. */
26148
26149 int
26150 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
26151 {
26152 int oldsize;
26153 int newsize;
26154
26155 oldsize = fragp->fr_var;
26156 switch (fragp->fr_subtype)
26157 {
26158 case T_MNEM_ldr_pc2:
26159 newsize = relax_adr (fragp, sec, stretch);
26160 break;
26161 case T_MNEM_ldr_pc:
26162 case T_MNEM_ldr_sp:
26163 case T_MNEM_str_sp:
26164 newsize = relax_immediate (fragp, 8, 2);
26165 break;
26166 case T_MNEM_ldr:
26167 case T_MNEM_str:
26168 newsize = relax_immediate (fragp, 5, 2);
26169 break;
26170 case T_MNEM_ldrh:
26171 case T_MNEM_strh:
26172 newsize = relax_immediate (fragp, 5, 1);
26173 break;
26174 case T_MNEM_ldrb:
26175 case T_MNEM_strb:
26176 newsize = relax_immediate (fragp, 5, 0);
26177 break;
26178 case T_MNEM_adr:
26179 newsize = relax_adr (fragp, sec, stretch);
26180 break;
26181 case T_MNEM_mov:
26182 case T_MNEM_movs:
26183 case T_MNEM_cmp:
26184 case T_MNEM_cmn:
26185 newsize = relax_immediate (fragp, 8, 0);
26186 break;
26187 case T_MNEM_b:
26188 newsize = relax_branch (fragp, sec, 11, stretch);
26189 break;
26190 case T_MNEM_bcond:
26191 newsize = relax_branch (fragp, sec, 8, stretch);
26192 break;
26193 case T_MNEM_add_sp:
26194 case T_MNEM_add_pc:
26195 newsize = relax_immediate (fragp, 8, 2);
26196 break;
26197 case T_MNEM_inc_sp:
26198 case T_MNEM_dec_sp:
26199 newsize = relax_immediate (fragp, 7, 2);
26200 break;
26201 case T_MNEM_addi:
26202 case T_MNEM_addis:
26203 case T_MNEM_subi:
26204 case T_MNEM_subis:
26205 newsize = relax_addsub (fragp, sec);
26206 break;
26207 default:
26208 abort ();
26209 }
26210
26211 fragp->fr_var = newsize;
26212 /* Freeze wide instructions that are at or before the same location as
26213 in the previous pass. This avoids infinite loops.
26214 Don't freeze them unconditionally because targets may be artificially
26215 misaligned by the expansion of preceding frags. */
26216 if (stretch <= 0 && newsize > 2)
26217 {
26218 md_convert_frag (sec->owner, sec, fragp);
26219 frag_wane (fragp);
26220 }
26221
26222 return newsize - oldsize;
26223 }
26224
26225 /* Round up a section size to the appropriate boundary. */
26226
26227 valueT
26228 md_section_align (segT segment ATTRIBUTE_UNUSED,
26229 valueT size)
26230 {
26231 return size;
26232 }
26233
26234 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
26235 of an rs_align_code fragment. */
26236
26237 void
26238 arm_handle_align (fragS * fragP)
26239 {
26240 static unsigned char const arm_noop[2][2][4] =
26241 {
26242 { /* ARMv1 */
26243 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
26244 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
26245 },
26246 { /* ARMv6k */
26247 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
26248 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
26249 },
26250 };
26251 static unsigned char const thumb_noop[2][2][2] =
26252 {
26253 { /* Thumb-1 */
26254 {0xc0, 0x46}, /* LE */
26255 {0x46, 0xc0}, /* BE */
26256 },
26257 { /* Thumb-2 */
26258 {0x00, 0xbf}, /* LE */
26259 {0xbf, 0x00} /* BE */
26260 }
26261 };
26262 static unsigned char const wide_thumb_noop[2][4] =
26263 { /* Wide Thumb-2 */
26264 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
26265 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
26266 };
26267
26268 unsigned bytes, fix, noop_size;
26269 char * p;
26270 const unsigned char * noop;
26271 const unsigned char *narrow_noop = NULL;
26272 #ifdef OBJ_ELF
26273 enum mstate state;
26274 #endif
26275
26276 if (fragP->fr_type != rs_align_code)
26277 return;
26278
26279 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
26280 p = fragP->fr_literal + fragP->fr_fix;
26281 fix = 0;
26282
26283 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
26284 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
26285
26286 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
26287
26288 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
26289 {
26290 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26291 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
26292 {
26293 narrow_noop = thumb_noop[1][target_big_endian];
26294 noop = wide_thumb_noop[target_big_endian];
26295 }
26296 else
26297 noop = thumb_noop[0][target_big_endian];
26298 noop_size = 2;
26299 #ifdef OBJ_ELF
26300 state = MAP_THUMB;
26301 #endif
26302 }
26303 else
26304 {
26305 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
26306 ? selected_cpu : arm_arch_none,
26307 arm_ext_v6k) != 0]
26308 [target_big_endian];
26309 noop_size = 4;
26310 #ifdef OBJ_ELF
26311 state = MAP_ARM;
26312 #endif
26313 }
26314
26315 fragP->fr_var = noop_size;
26316
26317 if (bytes & (noop_size - 1))
26318 {
26319 fix = bytes & (noop_size - 1);
26320 #ifdef OBJ_ELF
26321 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
26322 #endif
26323 memset (p, 0, fix);
26324 p += fix;
26325 bytes -= fix;
26326 }
26327
26328 if (narrow_noop)
26329 {
26330 if (bytes & noop_size)
26331 {
26332 /* Insert a narrow noop. */
26333 memcpy (p, narrow_noop, noop_size);
26334 p += noop_size;
26335 bytes -= noop_size;
26336 fix += noop_size;
26337 }
26338
26339 /* Use wide noops for the remainder */
26340 noop_size = 4;
26341 }
26342
26343 while (bytes >= noop_size)
26344 {
26345 memcpy (p, noop, noop_size);
26346 p += noop_size;
26347 bytes -= noop_size;
26348 fix += noop_size;
26349 }
26350
26351 fragP->fr_fix += fix;
26352 }
26353
26354 /* Called from md_do_align. Used to create an alignment
26355 frag in a code section. */
26356
26357 void
26358 arm_frag_align_code (int n, int max)
26359 {
26360 char * p;
26361
26362 /* We assume that there will never be a requirement
26363 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
26364 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
26365 {
26366 char err_msg[128];
26367
26368 sprintf (err_msg,
26369 _("alignments greater than %d bytes not supported in .text sections."),
26370 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
26371 as_fatal ("%s", err_msg);
26372 }
26373
26374 p = frag_var (rs_align_code,
26375 MAX_MEM_FOR_RS_ALIGN_CODE,
26376 1,
26377 (relax_substateT) max,
26378 (symbolS *) NULL,
26379 (offsetT) n,
26380 (char *) NULL);
26381 *p = 0;
26382 }
26383
26384 /* Perform target specific initialisation of a frag.
26385 Note - despite the name this initialisation is not done when the frag
26386 is created, but only when its type is assigned. A frag can be created
26387 and used a long time before its type is set, so beware of assuming that
26388 this initialisation is performed first. */
26389
26390 #ifndef OBJ_ELF
26391 void
26392 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
26393 {
26394 /* Record whether this frag is in an ARM or a THUMB area. */
26395 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26396 }
26397
26398 #else /* OBJ_ELF is defined. */
26399 void
26400 arm_init_frag (fragS * fragP, int max_chars)
26401 {
26402 bfd_boolean frag_thumb_mode;
26403
26404 /* If the current ARM vs THUMB mode has not already
26405 been recorded into this frag then do so now. */
26406 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
26407 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26408
26409 /* PR 21809: Do not set a mapping state for debug sections
26410 - it just confuses other tools. */
26411 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
26412 return;
26413
26414 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
26415
26416 /* Record a mapping symbol for alignment frags. We will delete this
26417 later if the alignment ends up empty. */
26418 switch (fragP->fr_type)
26419 {
26420 case rs_align:
26421 case rs_align_test:
26422 case rs_fill:
26423 mapping_state_2 (MAP_DATA, max_chars);
26424 break;
26425 case rs_align_code:
26426 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
26427 break;
26428 default:
26429 break;
26430 }
26431 }
26432
26433 /* When we change sections we need to issue a new mapping symbol. */
26434
26435 void
26436 arm_elf_change_section (void)
26437 {
26438 /* Link an unlinked unwind index table section to the .text section. */
26439 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
26440 && elf_linked_to_section (now_seg) == NULL)
26441 elf_linked_to_section (now_seg) = text_section;
26442 }
26443
26444 int
26445 arm_elf_section_type (const char * str, size_t len)
26446 {
26447 if (len == 5 && strncmp (str, "exidx", 5) == 0)
26448 return SHT_ARM_EXIDX;
26449
26450 return -1;
26451 }
26452 \f
26453 /* Code to deal with unwinding tables. */
26454
26455 static void add_unwind_adjustsp (offsetT);
26456
26457 /* Generate any deferred unwind frame offset. */
26458
26459 static void
26460 flush_pending_unwind (void)
26461 {
26462 offsetT offset;
26463
26464 offset = unwind.pending_offset;
26465 unwind.pending_offset = 0;
26466 if (offset != 0)
26467 add_unwind_adjustsp (offset);
26468 }
26469
26470 /* Add an opcode to this list for this function. Two-byte opcodes should
26471 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
26472 order. */
26473
26474 static void
26475 add_unwind_opcode (valueT op, int length)
26476 {
26477 /* Add any deferred stack adjustment. */
26478 if (unwind.pending_offset)
26479 flush_pending_unwind ();
26480
26481 unwind.sp_restored = 0;
26482
26483 if (unwind.opcode_count + length > unwind.opcode_alloc)
26484 {
26485 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
26486 if (unwind.opcodes)
26487 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
26488 unwind.opcode_alloc);
26489 else
26490 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
26491 }
26492 while (length > 0)
26493 {
26494 length--;
26495 unwind.opcodes[unwind.opcode_count] = op & 0xff;
26496 op >>= 8;
26497 unwind.opcode_count++;
26498 }
26499 }
26500
26501 /* Add unwind opcodes to adjust the stack pointer. */
26502
26503 static void
26504 add_unwind_adjustsp (offsetT offset)
26505 {
26506 valueT op;
26507
26508 if (offset > 0x200)
26509 {
26510 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
26511 char bytes[5];
26512 int n;
26513 valueT o;
26514
26515 /* Long form: 0xb2, uleb128. */
26516 /* This might not fit in a word so add the individual bytes,
26517 remembering the list is built in reverse order. */
26518 o = (valueT) ((offset - 0x204) >> 2);
26519 if (o == 0)
26520 add_unwind_opcode (0, 1);
26521
26522 /* Calculate the uleb128 encoding of the offset. */
26523 n = 0;
26524 while (o)
26525 {
26526 bytes[n] = o & 0x7f;
26527 o >>= 7;
26528 if (o)
26529 bytes[n] |= 0x80;
26530 n++;
26531 }
26532 /* Add the insn. */
26533 for (; n; n--)
26534 add_unwind_opcode (bytes[n - 1], 1);
26535 add_unwind_opcode (0xb2, 1);
26536 }
26537 else if (offset > 0x100)
26538 {
26539 /* Two short opcodes. */
26540 add_unwind_opcode (0x3f, 1);
26541 op = (offset - 0x104) >> 2;
26542 add_unwind_opcode (op, 1);
26543 }
26544 else if (offset > 0)
26545 {
26546 /* Short opcode. */
26547 op = (offset - 4) >> 2;
26548 add_unwind_opcode (op, 1);
26549 }
26550 else if (offset < 0)
26551 {
26552 offset = -offset;
26553 while (offset > 0x100)
26554 {
26555 add_unwind_opcode (0x7f, 1);
26556 offset -= 0x100;
26557 }
26558 op = ((offset - 4) >> 2) | 0x40;
26559 add_unwind_opcode (op, 1);
26560 }
26561 }
26562
26563 /* Finish the list of unwind opcodes for this function. */
26564
26565 static void
26566 finish_unwind_opcodes (void)
26567 {
26568 valueT op;
26569
26570 if (unwind.fp_used)
26571 {
26572 /* Adjust sp as necessary. */
26573 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
26574 flush_pending_unwind ();
26575
26576 /* After restoring sp from the frame pointer. */
26577 op = 0x90 | unwind.fp_reg;
26578 add_unwind_opcode (op, 1);
26579 }
26580 else
26581 flush_pending_unwind ();
26582 }
26583
26584
26585 /* Start an exception table entry. If idx is nonzero this is an index table
26586 entry. */
26587
26588 static void
26589 start_unwind_section (const segT text_seg, int idx)
26590 {
26591 const char * text_name;
26592 const char * prefix;
26593 const char * prefix_once;
26594 const char * group_name;
26595 char * sec_name;
26596 int type;
26597 int flags;
26598 int linkonce;
26599
26600 if (idx)
26601 {
26602 prefix = ELF_STRING_ARM_unwind;
26603 prefix_once = ELF_STRING_ARM_unwind_once;
26604 type = SHT_ARM_EXIDX;
26605 }
26606 else
26607 {
26608 prefix = ELF_STRING_ARM_unwind_info;
26609 prefix_once = ELF_STRING_ARM_unwind_info_once;
26610 type = SHT_PROGBITS;
26611 }
26612
26613 text_name = segment_name (text_seg);
26614 if (streq (text_name, ".text"))
26615 text_name = "";
26616
26617 if (strncmp (text_name, ".gnu.linkonce.t.",
26618 strlen (".gnu.linkonce.t.")) == 0)
26619 {
26620 prefix = prefix_once;
26621 text_name += strlen (".gnu.linkonce.t.");
26622 }
26623
26624 sec_name = concat (prefix, text_name, (char *) NULL);
26625
26626 flags = SHF_ALLOC;
26627 linkonce = 0;
26628 group_name = 0;
26629
26630 /* Handle COMDAT group. */
26631 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
26632 {
26633 group_name = elf_group_name (text_seg);
26634 if (group_name == NULL)
26635 {
26636 as_bad (_("Group section `%s' has no group signature"),
26637 segment_name (text_seg));
26638 ignore_rest_of_line ();
26639 return;
26640 }
26641 flags |= SHF_GROUP;
26642 linkonce = 1;
26643 }
26644
26645 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
26646 linkonce, 0);
26647
26648 /* Set the section link for index tables. */
26649 if (idx)
26650 elf_linked_to_section (now_seg) = text_seg;
26651 }
26652
26653
26654 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
26655 personality routine data. Returns zero, or the index table value for
26656 an inline entry. */
26657
26658 static valueT
26659 create_unwind_entry (int have_data)
26660 {
26661 int size;
26662 addressT where;
26663 char *ptr;
26664 /* The current word of data. */
26665 valueT data;
26666 /* The number of bytes left in this word. */
26667 int n;
26668
26669 finish_unwind_opcodes ();
26670
26671 /* Remember the current text section. */
26672 unwind.saved_seg = now_seg;
26673 unwind.saved_subseg = now_subseg;
26674
26675 start_unwind_section (now_seg, 0);
26676
26677 if (unwind.personality_routine == NULL)
26678 {
26679 if (unwind.personality_index == -2)
26680 {
26681 if (have_data)
26682 as_bad (_("handlerdata in cantunwind frame"));
26683 return 1; /* EXIDX_CANTUNWIND. */
26684 }
26685
26686 /* Use a default personality routine if none is specified. */
26687 if (unwind.personality_index == -1)
26688 {
26689 if (unwind.opcode_count > 3)
26690 unwind.personality_index = 1;
26691 else
26692 unwind.personality_index = 0;
26693 }
26694
26695 /* Space for the personality routine entry. */
26696 if (unwind.personality_index == 0)
26697 {
26698 if (unwind.opcode_count > 3)
26699 as_bad (_("too many unwind opcodes for personality routine 0"));
26700
26701 if (!have_data)
26702 {
26703 /* All the data is inline in the index table. */
26704 data = 0x80;
26705 n = 3;
26706 while (unwind.opcode_count > 0)
26707 {
26708 unwind.opcode_count--;
26709 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26710 n--;
26711 }
26712
26713 /* Pad with "finish" opcodes. */
26714 while (n--)
26715 data = (data << 8) | 0xb0;
26716
26717 return data;
26718 }
26719 size = 0;
26720 }
26721 else
26722 /* We get two opcodes "free" in the first word. */
26723 size = unwind.opcode_count - 2;
26724 }
26725 else
26726 {
26727 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
26728 if (unwind.personality_index != -1)
26729 {
26730 as_bad (_("attempt to recreate an unwind entry"));
26731 return 1;
26732 }
26733
26734 /* An extra byte is required for the opcode count. */
26735 size = unwind.opcode_count + 1;
26736 }
26737
26738 size = (size + 3) >> 2;
26739 if (size > 0xff)
26740 as_bad (_("too many unwind opcodes"));
26741
26742 frag_align (2, 0, 0);
26743 record_alignment (now_seg, 2);
26744 unwind.table_entry = expr_build_dot ();
26745
26746 /* Allocate the table entry. */
26747 ptr = frag_more ((size << 2) + 4);
26748 /* PR 13449: Zero the table entries in case some of them are not used. */
26749 memset (ptr, 0, (size << 2) + 4);
26750 where = frag_now_fix () - ((size << 2) + 4);
26751
26752 switch (unwind.personality_index)
26753 {
26754 case -1:
26755 /* ??? Should this be a PLT generating relocation? */
26756 /* Custom personality routine. */
26757 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
26758 BFD_RELOC_ARM_PREL31);
26759
26760 where += 4;
26761 ptr += 4;
26762
26763 /* Set the first byte to the number of additional words. */
26764 data = size > 0 ? size - 1 : 0;
26765 n = 3;
26766 break;
26767
26768 /* ABI defined personality routines. */
26769 case 0:
26770 /* Three opcodes bytes are packed into the first word. */
26771 data = 0x80;
26772 n = 3;
26773 break;
26774
26775 case 1:
26776 case 2:
26777 /* The size and first two opcode bytes go in the first word. */
26778 data = ((0x80 + unwind.personality_index) << 8) | size;
26779 n = 2;
26780 break;
26781
26782 default:
26783 /* Should never happen. */
26784 abort ();
26785 }
26786
26787 /* Pack the opcodes into words (MSB first), reversing the list at the same
26788 time. */
26789 while (unwind.opcode_count > 0)
26790 {
26791 if (n == 0)
26792 {
26793 md_number_to_chars (ptr, data, 4);
26794 ptr += 4;
26795 n = 4;
26796 data = 0;
26797 }
26798 unwind.opcode_count--;
26799 n--;
26800 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26801 }
26802
26803 /* Finish off the last word. */
26804 if (n < 4)
26805 {
26806 /* Pad with "finish" opcodes. */
26807 while (n--)
26808 data = (data << 8) | 0xb0;
26809
26810 md_number_to_chars (ptr, data, 4);
26811 }
26812
26813 if (!have_data)
26814 {
26815 /* Add an empty descriptor if there is no user-specified data. */
26816 ptr = frag_more (4);
26817 md_number_to_chars (ptr, 0, 4);
26818 }
26819
26820 return 0;
26821 }
26822
26823
26824 /* Initialize the DWARF-2 unwind information for this procedure. */
26825
26826 void
26827 tc_arm_frame_initial_instructions (void)
26828 {
26829 cfi_add_CFA_def_cfa (REG_SP, 0);
26830 }
26831 #endif /* OBJ_ELF */
26832
26833 /* Convert REGNAME to a DWARF-2 register number. */
26834
26835 int
26836 tc_arm_regname_to_dw2regnum (char *regname)
26837 {
26838 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
26839 if (reg != FAIL)
26840 return reg;
26841
26842 /* PR 16694: Allow VFP registers as well. */
26843 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
26844 if (reg != FAIL)
26845 return 64 + reg;
26846
26847 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
26848 if (reg != FAIL)
26849 return reg + 256;
26850
26851 return FAIL;
26852 }
26853
26854 #ifdef TE_PE
26855 void
26856 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
26857 {
26858 expressionS exp;
26859
26860 exp.X_op = O_secrel;
26861 exp.X_add_symbol = symbol;
26862 exp.X_add_number = 0;
26863 emit_expr (&exp, size);
26864 }
26865 #endif
26866
26867 /* MD interface: Symbol and relocation handling. */
26868
26869 /* Return the address within the segment that a PC-relative fixup is
26870 relative to. For ARM, PC-relative fixups applied to instructions
26871 are generally relative to the location of the fixup plus 8 bytes.
26872 Thumb branches are offset by 4, and Thumb loads relative to PC
26873 require special handling. */
26874
26875 long
26876 md_pcrel_from_section (fixS * fixP, segT seg)
26877 {
26878 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26879
26880 /* If this is pc-relative and we are going to emit a relocation
26881 then we just want to put out any pipeline compensation that the linker
26882 will need. Otherwise we want to use the calculated base.
26883 For WinCE we skip the bias for externals as well, since this
26884 is how the MS ARM-CE assembler behaves and we want to be compatible. */
26885 if (fixP->fx_pcrel
26886 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
26887 || (arm_force_relocation (fixP)
26888 #ifdef TE_WINCE
26889 && !S_IS_EXTERNAL (fixP->fx_addsy)
26890 #endif
26891 )))
26892 base = 0;
26893
26894
26895 switch (fixP->fx_r_type)
26896 {
26897 /* PC relative addressing on the Thumb is slightly odd as the
26898 bottom two bits of the PC are forced to zero for the
26899 calculation. This happens *after* application of the
26900 pipeline offset. However, Thumb adrl already adjusts for
26901 this, so we need not do it again. */
26902 case BFD_RELOC_ARM_THUMB_ADD:
26903 return base & ~3;
26904
26905 case BFD_RELOC_ARM_THUMB_OFFSET:
26906 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26907 case BFD_RELOC_ARM_T32_ADD_PC12:
26908 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
26909 return (base + 4) & ~3;
26910
26911 /* Thumb branches are simply offset by +4. */
26912 case BFD_RELOC_THUMB_PCREL_BRANCH5:
26913 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26914 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26915 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26916 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26917 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26918 case BFD_RELOC_THUMB_PCREL_BFCSEL:
26919 case BFD_RELOC_ARM_THUMB_BF17:
26920 case BFD_RELOC_ARM_THUMB_BF19:
26921 case BFD_RELOC_ARM_THUMB_BF13:
26922 case BFD_RELOC_ARM_THUMB_LOOP12:
26923 return base + 4;
26924
26925 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26926 if (fixP->fx_addsy
26927 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26928 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26929 && ARM_IS_FUNC (fixP->fx_addsy)
26930 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26931 base = fixP->fx_where + fixP->fx_frag->fr_address;
26932 return base + 4;
26933
26934 /* BLX is like branches above, but forces the low two bits of PC to
26935 zero. */
26936 case BFD_RELOC_THUMB_PCREL_BLX:
26937 if (fixP->fx_addsy
26938 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26939 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26940 && THUMB_IS_FUNC (fixP->fx_addsy)
26941 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26942 base = fixP->fx_where + fixP->fx_frag->fr_address;
26943 return (base + 4) & ~3;
26944
26945 /* ARM mode branches are offset by +8. However, the Windows CE
26946 loader expects the relocation not to take this into account. */
26947 case BFD_RELOC_ARM_PCREL_BLX:
26948 if (fixP->fx_addsy
26949 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26950 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26951 && ARM_IS_FUNC (fixP->fx_addsy)
26952 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26953 base = fixP->fx_where + fixP->fx_frag->fr_address;
26954 return base + 8;
26955
26956 case BFD_RELOC_ARM_PCREL_CALL:
26957 if (fixP->fx_addsy
26958 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26959 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26960 && THUMB_IS_FUNC (fixP->fx_addsy)
26961 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26962 base = fixP->fx_where + fixP->fx_frag->fr_address;
26963 return base + 8;
26964
26965 case BFD_RELOC_ARM_PCREL_BRANCH:
26966 case BFD_RELOC_ARM_PCREL_JUMP:
26967 case BFD_RELOC_ARM_PLT32:
26968 #ifdef TE_WINCE
26969 /* When handling fixups immediately, because we have already
26970 discovered the value of a symbol, or the address of the frag involved
26971 we must account for the offset by +8, as the OS loader will never see the reloc.
26972 see fixup_segment() in write.c
26973 The S_IS_EXTERNAL test handles the case of global symbols.
26974 Those need the calculated base, not just the pipe compensation the linker will need. */
26975 if (fixP->fx_pcrel
26976 && fixP->fx_addsy != NULL
26977 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26978 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26979 return base + 8;
26980 return base;
26981 #else
26982 return base + 8;
26983 #endif
26984
26985
26986 /* ARM mode loads relative to PC are also offset by +8. Unlike
26987 branches, the Windows CE loader *does* expect the relocation
26988 to take this into account. */
26989 case BFD_RELOC_ARM_OFFSET_IMM:
26990 case BFD_RELOC_ARM_OFFSET_IMM8:
26991 case BFD_RELOC_ARM_HWLITERAL:
26992 case BFD_RELOC_ARM_LITERAL:
26993 case BFD_RELOC_ARM_CP_OFF_IMM:
26994 return base + 8;
26995
26996
26997 /* Other PC-relative relocations are un-offset. */
26998 default:
26999 return base;
27000 }
27001 }
27002
27003 static bfd_boolean flag_warn_syms = TRUE;
27004
27005 bfd_boolean
27006 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
27007 {
27008 /* PR 18347 - Warn if the user attempts to create a symbol with the same
27009 name as an ARM instruction. Whilst strictly speaking it is allowed, it
27010 does mean that the resulting code might be very confusing to the reader.
27011 Also this warning can be triggered if the user omits an operand before
27012 an immediate address, eg:
27013
27014 LDR =foo
27015
27016 GAS treats this as an assignment of the value of the symbol foo to a
27017 symbol LDR, and so (without this code) it will not issue any kind of
27018 warning or error message.
27019
27020 Note - ARM instructions are case-insensitive but the strings in the hash
27021 table are all stored in lower case, so we must first ensure that name is
27022 lower case too. */
27023 if (flag_warn_syms && arm_ops_hsh)
27024 {
27025 char * nbuf = strdup (name);
27026 char * p;
27027
27028 for (p = nbuf; *p; p++)
27029 *p = TOLOWER (*p);
27030 if (hash_find (arm_ops_hsh, nbuf) != NULL)
27031 {
27032 static struct hash_control * already_warned = NULL;
27033
27034 if (already_warned == NULL)
27035 already_warned = hash_new ();
27036 /* Only warn about the symbol once. To keep the code
27037 simple we let hash_insert do the lookup for us. */
27038 if (hash_insert (already_warned, nbuf, NULL) == NULL)
27039 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
27040 }
27041 else
27042 free (nbuf);
27043 }
27044
27045 return FALSE;
27046 }
27047
27048 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
27049 Otherwise we have no need to default values of symbols. */
27050
27051 symbolS *
27052 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
27053 {
27054 #ifdef OBJ_ELF
27055 if (name[0] == '_' && name[1] == 'G'
27056 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
27057 {
27058 if (!GOT_symbol)
27059 {
27060 if (symbol_find (name))
27061 as_bad (_("GOT already in the symbol table"));
27062
27063 GOT_symbol = symbol_new (name, undefined_section,
27064 (valueT) 0, & zero_address_frag);
27065 }
27066
27067 return GOT_symbol;
27068 }
27069 #endif
27070
27071 return NULL;
27072 }
27073
27074 /* Subroutine of md_apply_fix. Check to see if an immediate can be
27075 computed as two separate immediate values, added together. We
27076 already know that this value cannot be computed by just one ARM
27077 instruction. */
27078
27079 static unsigned int
27080 validate_immediate_twopart (unsigned int val,
27081 unsigned int * highpart)
27082 {
27083 unsigned int a;
27084 unsigned int i;
27085
27086 for (i = 0; i < 32; i += 2)
27087 if (((a = rotate_left (val, i)) & 0xff) != 0)
27088 {
27089 if (a & 0xff00)
27090 {
27091 if (a & ~ 0xffff)
27092 continue;
27093 * highpart = (a >> 8) | ((i + 24) << 7);
27094 }
27095 else if (a & 0xff0000)
27096 {
27097 if (a & 0xff000000)
27098 continue;
27099 * highpart = (a >> 16) | ((i + 16) << 7);
27100 }
27101 else
27102 {
27103 gas_assert (a & 0xff000000);
27104 * highpart = (a >> 24) | ((i + 8) << 7);
27105 }
27106
27107 return (a & 0xff) | (i << 7);
27108 }
27109
27110 return FAIL;
27111 }
27112
27113 static int
27114 validate_offset_imm (unsigned int val, int hwse)
27115 {
27116 if ((hwse && val > 255) || val > 4095)
27117 return FAIL;
27118 return val;
27119 }
27120
27121 /* Subroutine of md_apply_fix. Do those data_ops which can take a
27122 negative immediate constant by altering the instruction. A bit of
27123 a hack really.
27124 MOV <-> MVN
27125 AND <-> BIC
27126 ADC <-> SBC
27127 by inverting the second operand, and
27128 ADD <-> SUB
27129 CMP <-> CMN
27130 by negating the second operand. */
27131
27132 static int
27133 negate_data_op (unsigned long * instruction,
27134 unsigned long value)
27135 {
27136 int op, new_inst;
27137 unsigned long negated, inverted;
27138
27139 negated = encode_arm_immediate (-value);
27140 inverted = encode_arm_immediate (~value);
27141
27142 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
27143 switch (op)
27144 {
27145 /* First negates. */
27146 case OPCODE_SUB: /* ADD <-> SUB */
27147 new_inst = OPCODE_ADD;
27148 value = negated;
27149 break;
27150
27151 case OPCODE_ADD:
27152 new_inst = OPCODE_SUB;
27153 value = negated;
27154 break;
27155
27156 case OPCODE_CMP: /* CMP <-> CMN */
27157 new_inst = OPCODE_CMN;
27158 value = negated;
27159 break;
27160
27161 case OPCODE_CMN:
27162 new_inst = OPCODE_CMP;
27163 value = negated;
27164 break;
27165
27166 /* Now Inverted ops. */
27167 case OPCODE_MOV: /* MOV <-> MVN */
27168 new_inst = OPCODE_MVN;
27169 value = inverted;
27170 break;
27171
27172 case OPCODE_MVN:
27173 new_inst = OPCODE_MOV;
27174 value = inverted;
27175 break;
27176
27177 case OPCODE_AND: /* AND <-> BIC */
27178 new_inst = OPCODE_BIC;
27179 value = inverted;
27180 break;
27181
27182 case OPCODE_BIC:
27183 new_inst = OPCODE_AND;
27184 value = inverted;
27185 break;
27186
27187 case OPCODE_ADC: /* ADC <-> SBC */
27188 new_inst = OPCODE_SBC;
27189 value = inverted;
27190 break;
27191
27192 case OPCODE_SBC:
27193 new_inst = OPCODE_ADC;
27194 value = inverted;
27195 break;
27196
27197 /* We cannot do anything. */
27198 default:
27199 return FAIL;
27200 }
27201
27202 if (value == (unsigned) FAIL)
27203 return FAIL;
27204
27205 *instruction &= OPCODE_MASK;
27206 *instruction |= new_inst << DATA_OP_SHIFT;
27207 return value;
27208 }
27209
27210 /* Like negate_data_op, but for Thumb-2. */
27211
27212 static unsigned int
27213 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
27214 {
27215 int op, new_inst;
27216 int rd;
27217 unsigned int negated, inverted;
27218
27219 negated = encode_thumb32_immediate (-value);
27220 inverted = encode_thumb32_immediate (~value);
27221
27222 rd = (*instruction >> 8) & 0xf;
27223 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
27224 switch (op)
27225 {
27226 /* ADD <-> SUB. Includes CMP <-> CMN. */
27227 case T2_OPCODE_SUB:
27228 new_inst = T2_OPCODE_ADD;
27229 value = negated;
27230 break;
27231
27232 case T2_OPCODE_ADD:
27233 new_inst = T2_OPCODE_SUB;
27234 value = negated;
27235 break;
27236
27237 /* ORR <-> ORN. Includes MOV <-> MVN. */
27238 case T2_OPCODE_ORR:
27239 new_inst = T2_OPCODE_ORN;
27240 value = inverted;
27241 break;
27242
27243 case T2_OPCODE_ORN:
27244 new_inst = T2_OPCODE_ORR;
27245 value = inverted;
27246 break;
27247
27248 /* AND <-> BIC. TST has no inverted equivalent. */
27249 case T2_OPCODE_AND:
27250 new_inst = T2_OPCODE_BIC;
27251 if (rd == 15)
27252 value = FAIL;
27253 else
27254 value = inverted;
27255 break;
27256
27257 case T2_OPCODE_BIC:
27258 new_inst = T2_OPCODE_AND;
27259 value = inverted;
27260 break;
27261
27262 /* ADC <-> SBC */
27263 case T2_OPCODE_ADC:
27264 new_inst = T2_OPCODE_SBC;
27265 value = inverted;
27266 break;
27267
27268 case T2_OPCODE_SBC:
27269 new_inst = T2_OPCODE_ADC;
27270 value = inverted;
27271 break;
27272
27273 /* We cannot do anything. */
27274 default:
27275 return FAIL;
27276 }
27277
27278 if (value == (unsigned int)FAIL)
27279 return FAIL;
27280
27281 *instruction &= T2_OPCODE_MASK;
27282 *instruction |= new_inst << T2_DATA_OP_SHIFT;
27283 return value;
27284 }
27285
27286 /* Read a 32-bit thumb instruction from buf. */
27287
27288 static unsigned long
27289 get_thumb32_insn (char * buf)
27290 {
27291 unsigned long insn;
27292 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
27293 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27294
27295 return insn;
27296 }
27297
27298 /* We usually want to set the low bit on the address of thumb function
27299 symbols. In particular .word foo - . should have the low bit set.
27300 Generic code tries to fold the difference of two symbols to
27301 a constant. Prevent this and force a relocation when the first symbols
27302 is a thumb function. */
27303
27304 bfd_boolean
27305 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
27306 {
27307 if (op == O_subtract
27308 && l->X_op == O_symbol
27309 && r->X_op == O_symbol
27310 && THUMB_IS_FUNC (l->X_add_symbol))
27311 {
27312 l->X_op = O_subtract;
27313 l->X_op_symbol = r->X_add_symbol;
27314 l->X_add_number -= r->X_add_number;
27315 return TRUE;
27316 }
27317
27318 /* Process as normal. */
27319 return FALSE;
27320 }
27321
27322 /* Encode Thumb2 unconditional branches and calls. The encoding
27323 for the 2 are identical for the immediate values. */
27324
27325 static void
27326 encode_thumb2_b_bl_offset (char * buf, offsetT value)
27327 {
27328 #define T2I1I2MASK ((1 << 13) | (1 << 11))
27329 offsetT newval;
27330 offsetT newval2;
27331 addressT S, I1, I2, lo, hi;
27332
27333 S = (value >> 24) & 0x01;
27334 I1 = (value >> 23) & 0x01;
27335 I2 = (value >> 22) & 0x01;
27336 hi = (value >> 12) & 0x3ff;
27337 lo = (value >> 1) & 0x7ff;
27338 newval = md_chars_to_number (buf, THUMB_SIZE);
27339 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27340 newval |= (S << 10) | hi;
27341 newval2 &= ~T2I1I2MASK;
27342 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
27343 md_number_to_chars (buf, newval, THUMB_SIZE);
27344 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27345 }
27346
27347 void
27348 md_apply_fix (fixS * fixP,
27349 valueT * valP,
27350 segT seg)
27351 {
27352 offsetT value = * valP;
27353 offsetT newval;
27354 unsigned int newimm;
27355 unsigned long temp;
27356 int sign;
27357 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
27358
27359 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
27360
27361 /* Note whether this will delete the relocation. */
27362
27363 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
27364 fixP->fx_done = 1;
27365
27366 /* On a 64-bit host, silently truncate 'value' to 32 bits for
27367 consistency with the behaviour on 32-bit hosts. Remember value
27368 for emit_reloc. */
27369 value &= 0xffffffff;
27370 value ^= 0x80000000;
27371 value -= 0x80000000;
27372
27373 *valP = value;
27374 fixP->fx_addnumber = value;
27375
27376 /* Same treatment for fixP->fx_offset. */
27377 fixP->fx_offset &= 0xffffffff;
27378 fixP->fx_offset ^= 0x80000000;
27379 fixP->fx_offset -= 0x80000000;
27380
27381 switch (fixP->fx_r_type)
27382 {
27383 case BFD_RELOC_NONE:
27384 /* This will need to go in the object file. */
27385 fixP->fx_done = 0;
27386 break;
27387
27388 case BFD_RELOC_ARM_IMMEDIATE:
27389 /* We claim that this fixup has been processed here,
27390 even if in fact we generate an error because we do
27391 not have a reloc for it, so tc_gen_reloc will reject it. */
27392 fixP->fx_done = 1;
27393
27394 if (fixP->fx_addsy)
27395 {
27396 const char *msg = 0;
27397
27398 if (! S_IS_DEFINED (fixP->fx_addsy))
27399 msg = _("undefined symbol %s used as an immediate value");
27400 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27401 msg = _("symbol %s is in a different section");
27402 else if (S_IS_WEAK (fixP->fx_addsy))
27403 msg = _("symbol %s is weak and may be overridden later");
27404
27405 if (msg)
27406 {
27407 as_bad_where (fixP->fx_file, fixP->fx_line,
27408 msg, S_GET_NAME (fixP->fx_addsy));
27409 break;
27410 }
27411 }
27412
27413 temp = md_chars_to_number (buf, INSN_SIZE);
27414
27415 /* If the offset is negative, we should use encoding A2 for ADR. */
27416 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
27417 newimm = negate_data_op (&temp, value);
27418 else
27419 {
27420 newimm = encode_arm_immediate (value);
27421
27422 /* If the instruction will fail, see if we can fix things up by
27423 changing the opcode. */
27424 if (newimm == (unsigned int) FAIL)
27425 newimm = negate_data_op (&temp, value);
27426 /* MOV accepts both ARM modified immediate (A1 encoding) and
27427 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
27428 When disassembling, MOV is preferred when there is no encoding
27429 overlap. */
27430 if (newimm == (unsigned int) FAIL
27431 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
27432 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
27433 && !((temp >> SBIT_SHIFT) & 0x1)
27434 && value >= 0 && value <= 0xffff)
27435 {
27436 /* Clear bits[23:20] to change encoding from A1 to A2. */
27437 temp &= 0xff0fffff;
27438 /* Encoding high 4bits imm. Code below will encode the remaining
27439 low 12bits. */
27440 temp |= (value & 0x0000f000) << 4;
27441 newimm = value & 0x00000fff;
27442 }
27443 }
27444
27445 if (newimm == (unsigned int) FAIL)
27446 {
27447 as_bad_where (fixP->fx_file, fixP->fx_line,
27448 _("invalid constant (%lx) after fixup"),
27449 (unsigned long) value);
27450 break;
27451 }
27452
27453 newimm |= (temp & 0xfffff000);
27454 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27455 break;
27456
27457 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27458 {
27459 unsigned int highpart = 0;
27460 unsigned int newinsn = 0xe1a00000; /* nop. */
27461
27462 if (fixP->fx_addsy)
27463 {
27464 const char *msg = 0;
27465
27466 if (! S_IS_DEFINED (fixP->fx_addsy))
27467 msg = _("undefined symbol %s used as an immediate value");
27468 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27469 msg = _("symbol %s is in a different section");
27470 else if (S_IS_WEAK (fixP->fx_addsy))
27471 msg = _("symbol %s is weak and may be overridden later");
27472
27473 if (msg)
27474 {
27475 as_bad_where (fixP->fx_file, fixP->fx_line,
27476 msg, S_GET_NAME (fixP->fx_addsy));
27477 break;
27478 }
27479 }
27480
27481 newimm = encode_arm_immediate (value);
27482 temp = md_chars_to_number (buf, INSN_SIZE);
27483
27484 /* If the instruction will fail, see if we can fix things up by
27485 changing the opcode. */
27486 if (newimm == (unsigned int) FAIL
27487 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
27488 {
27489 /* No ? OK - try using two ADD instructions to generate
27490 the value. */
27491 newimm = validate_immediate_twopart (value, & highpart);
27492
27493 /* Yes - then make sure that the second instruction is
27494 also an add. */
27495 if (newimm != (unsigned int) FAIL)
27496 newinsn = temp;
27497 /* Still No ? Try using a negated value. */
27498 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
27499 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
27500 /* Otherwise - give up. */
27501 else
27502 {
27503 as_bad_where (fixP->fx_file, fixP->fx_line,
27504 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
27505 (long) value);
27506 break;
27507 }
27508
27509 /* Replace the first operand in the 2nd instruction (which
27510 is the PC) with the destination register. We have
27511 already added in the PC in the first instruction and we
27512 do not want to do it again. */
27513 newinsn &= ~ 0xf0000;
27514 newinsn |= ((newinsn & 0x0f000) << 4);
27515 }
27516
27517 newimm |= (temp & 0xfffff000);
27518 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27519
27520 highpart |= (newinsn & 0xfffff000);
27521 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
27522 }
27523 break;
27524
27525 case BFD_RELOC_ARM_OFFSET_IMM:
27526 if (!fixP->fx_done && seg->use_rela_p)
27527 value = 0;
27528 /* Fall through. */
27529
27530 case BFD_RELOC_ARM_LITERAL:
27531 sign = value > 0;
27532
27533 if (value < 0)
27534 value = - value;
27535
27536 if (validate_offset_imm (value, 0) == FAIL)
27537 {
27538 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
27539 as_bad_where (fixP->fx_file, fixP->fx_line,
27540 _("invalid literal constant: pool needs to be closer"));
27541 else
27542 as_bad_where (fixP->fx_file, fixP->fx_line,
27543 _("bad immediate value for offset (%ld)"),
27544 (long) value);
27545 break;
27546 }
27547
27548 newval = md_chars_to_number (buf, INSN_SIZE);
27549 if (value == 0)
27550 newval &= 0xfffff000;
27551 else
27552 {
27553 newval &= 0xff7ff000;
27554 newval |= value | (sign ? INDEX_UP : 0);
27555 }
27556 md_number_to_chars (buf, newval, INSN_SIZE);
27557 break;
27558
27559 case BFD_RELOC_ARM_OFFSET_IMM8:
27560 case BFD_RELOC_ARM_HWLITERAL:
27561 sign = value > 0;
27562
27563 if (value < 0)
27564 value = - value;
27565
27566 if (validate_offset_imm (value, 1) == FAIL)
27567 {
27568 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
27569 as_bad_where (fixP->fx_file, fixP->fx_line,
27570 _("invalid literal constant: pool needs to be closer"));
27571 else
27572 as_bad_where (fixP->fx_file, fixP->fx_line,
27573 _("bad immediate value for 8-bit offset (%ld)"),
27574 (long) value);
27575 break;
27576 }
27577
27578 newval = md_chars_to_number (buf, INSN_SIZE);
27579 if (value == 0)
27580 newval &= 0xfffff0f0;
27581 else
27582 {
27583 newval &= 0xff7ff0f0;
27584 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
27585 }
27586 md_number_to_chars (buf, newval, INSN_SIZE);
27587 break;
27588
27589 case BFD_RELOC_ARM_T32_OFFSET_U8:
27590 if (value < 0 || value > 1020 || value % 4 != 0)
27591 as_bad_where (fixP->fx_file, fixP->fx_line,
27592 _("bad immediate value for offset (%ld)"), (long) value);
27593 value /= 4;
27594
27595 newval = md_chars_to_number (buf+2, THUMB_SIZE);
27596 newval |= value;
27597 md_number_to_chars (buf+2, newval, THUMB_SIZE);
27598 break;
27599
27600 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27601 /* This is a complicated relocation used for all varieties of Thumb32
27602 load/store instruction with immediate offset:
27603
27604 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
27605 *4, optional writeback(W)
27606 (doubleword load/store)
27607
27608 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
27609 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
27610 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
27611 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
27612 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
27613
27614 Uppercase letters indicate bits that are already encoded at
27615 this point. Lowercase letters are our problem. For the
27616 second block of instructions, the secondary opcode nybble
27617 (bits 8..11) is present, and bit 23 is zero, even if this is
27618 a PC-relative operation. */
27619 newval = md_chars_to_number (buf, THUMB_SIZE);
27620 newval <<= 16;
27621 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
27622
27623 if ((newval & 0xf0000000) == 0xe0000000)
27624 {
27625 /* Doubleword load/store: 8-bit offset, scaled by 4. */
27626 if (value >= 0)
27627 newval |= (1 << 23);
27628 else
27629 value = -value;
27630 if (value % 4 != 0)
27631 {
27632 as_bad_where (fixP->fx_file, fixP->fx_line,
27633 _("offset not a multiple of 4"));
27634 break;
27635 }
27636 value /= 4;
27637 if (value > 0xff)
27638 {
27639 as_bad_where (fixP->fx_file, fixP->fx_line,
27640 _("offset out of range"));
27641 break;
27642 }
27643 newval &= ~0xff;
27644 }
27645 else if ((newval & 0x000f0000) == 0x000f0000)
27646 {
27647 /* PC-relative, 12-bit offset. */
27648 if (value >= 0)
27649 newval |= (1 << 23);
27650 else
27651 value = -value;
27652 if (value > 0xfff)
27653 {
27654 as_bad_where (fixP->fx_file, fixP->fx_line,
27655 _("offset out of range"));
27656 break;
27657 }
27658 newval &= ~0xfff;
27659 }
27660 else if ((newval & 0x00000100) == 0x00000100)
27661 {
27662 /* Writeback: 8-bit, +/- offset. */
27663 if (value >= 0)
27664 newval |= (1 << 9);
27665 else
27666 value = -value;
27667 if (value > 0xff)
27668 {
27669 as_bad_where (fixP->fx_file, fixP->fx_line,
27670 _("offset out of range"));
27671 break;
27672 }
27673 newval &= ~0xff;
27674 }
27675 else if ((newval & 0x00000f00) == 0x00000e00)
27676 {
27677 /* T-instruction: positive 8-bit offset. */
27678 if (value < 0 || value > 0xff)
27679 {
27680 as_bad_where (fixP->fx_file, fixP->fx_line,
27681 _("offset out of range"));
27682 break;
27683 }
27684 newval &= ~0xff;
27685 newval |= value;
27686 }
27687 else
27688 {
27689 /* Positive 12-bit or negative 8-bit offset. */
27690 int limit;
27691 if (value >= 0)
27692 {
27693 newval |= (1 << 23);
27694 limit = 0xfff;
27695 }
27696 else
27697 {
27698 value = -value;
27699 limit = 0xff;
27700 }
27701 if (value > limit)
27702 {
27703 as_bad_where (fixP->fx_file, fixP->fx_line,
27704 _("offset out of range"));
27705 break;
27706 }
27707 newval &= ~limit;
27708 }
27709
27710 newval |= value;
27711 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
27712 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
27713 break;
27714
27715 case BFD_RELOC_ARM_SHIFT_IMM:
27716 newval = md_chars_to_number (buf, INSN_SIZE);
27717 if (((unsigned long) value) > 32
27718 || (value == 32
27719 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
27720 {
27721 as_bad_where (fixP->fx_file, fixP->fx_line,
27722 _("shift expression is too large"));
27723 break;
27724 }
27725
27726 if (value == 0)
27727 /* Shifts of zero must be done as lsl. */
27728 newval &= ~0x60;
27729 else if (value == 32)
27730 value = 0;
27731 newval &= 0xfffff07f;
27732 newval |= (value & 0x1f) << 7;
27733 md_number_to_chars (buf, newval, INSN_SIZE);
27734 break;
27735
27736 case BFD_RELOC_ARM_T32_IMMEDIATE:
27737 case BFD_RELOC_ARM_T32_ADD_IMM:
27738 case BFD_RELOC_ARM_T32_IMM12:
27739 case BFD_RELOC_ARM_T32_ADD_PC12:
27740 /* We claim that this fixup has been processed here,
27741 even if in fact we generate an error because we do
27742 not have a reloc for it, so tc_gen_reloc will reject it. */
27743 fixP->fx_done = 1;
27744
27745 if (fixP->fx_addsy
27746 && ! S_IS_DEFINED (fixP->fx_addsy))
27747 {
27748 as_bad_where (fixP->fx_file, fixP->fx_line,
27749 _("undefined symbol %s used as an immediate value"),
27750 S_GET_NAME (fixP->fx_addsy));
27751 break;
27752 }
27753
27754 newval = md_chars_to_number (buf, THUMB_SIZE);
27755 newval <<= 16;
27756 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
27757
27758 newimm = FAIL;
27759 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27760 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27761 Thumb2 modified immediate encoding (T2). */
27762 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
27763 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27764 {
27765 newimm = encode_thumb32_immediate (value);
27766 if (newimm == (unsigned int) FAIL)
27767 newimm = thumb32_negate_data_op (&newval, value);
27768 }
27769 if (newimm == (unsigned int) FAIL)
27770 {
27771 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
27772 {
27773 /* Turn add/sum into addw/subw. */
27774 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27775 newval = (newval & 0xfeffffff) | 0x02000000;
27776 /* No flat 12-bit imm encoding for addsw/subsw. */
27777 if ((newval & 0x00100000) == 0)
27778 {
27779 /* 12 bit immediate for addw/subw. */
27780 if (value < 0)
27781 {
27782 value = -value;
27783 newval ^= 0x00a00000;
27784 }
27785 if (value > 0xfff)
27786 newimm = (unsigned int) FAIL;
27787 else
27788 newimm = value;
27789 }
27790 }
27791 else
27792 {
27793 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27794 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27795 disassembling, MOV is preferred when there is no encoding
27796 overlap. */
27797 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
27798 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27799 but with the Rn field [19:16] set to 1111. */
27800 && (((newval >> 16) & 0xf) == 0xf)
27801 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
27802 && !((newval >> T2_SBIT_SHIFT) & 0x1)
27803 && value >= 0 && value <= 0xffff)
27804 {
27805 /* Toggle bit[25] to change encoding from T2 to T3. */
27806 newval ^= 1 << 25;
27807 /* Clear bits[19:16]. */
27808 newval &= 0xfff0ffff;
27809 /* Encoding high 4bits imm. Code below will encode the
27810 remaining low 12bits. */
27811 newval |= (value & 0x0000f000) << 4;
27812 newimm = value & 0x00000fff;
27813 }
27814 }
27815 }
27816
27817 if (newimm == (unsigned int)FAIL)
27818 {
27819 as_bad_where (fixP->fx_file, fixP->fx_line,
27820 _("invalid constant (%lx) after fixup"),
27821 (unsigned long) value);
27822 break;
27823 }
27824
27825 newval |= (newimm & 0x800) << 15;
27826 newval |= (newimm & 0x700) << 4;
27827 newval |= (newimm & 0x0ff);
27828
27829 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
27830 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
27831 break;
27832
27833 case BFD_RELOC_ARM_SMC:
27834 if (((unsigned long) value) > 0xf)
27835 as_bad_where (fixP->fx_file, fixP->fx_line,
27836 _("invalid smc expression"));
27837
27838 newval = md_chars_to_number (buf, INSN_SIZE);
27839 newval |= (value & 0xf);
27840 md_number_to_chars (buf, newval, INSN_SIZE);
27841 break;
27842
27843 case BFD_RELOC_ARM_HVC:
27844 if (((unsigned long) value) > 0xffff)
27845 as_bad_where (fixP->fx_file, fixP->fx_line,
27846 _("invalid hvc expression"));
27847 newval = md_chars_to_number (buf, INSN_SIZE);
27848 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27849 md_number_to_chars (buf, newval, INSN_SIZE);
27850 break;
27851
27852 case BFD_RELOC_ARM_SWI:
27853 if (fixP->tc_fix_data != 0)
27854 {
27855 if (((unsigned long) value) > 0xff)
27856 as_bad_where (fixP->fx_file, fixP->fx_line,
27857 _("invalid swi expression"));
27858 newval = md_chars_to_number (buf, THUMB_SIZE);
27859 newval |= value;
27860 md_number_to_chars (buf, newval, THUMB_SIZE);
27861 }
27862 else
27863 {
27864 if (((unsigned long) value) > 0x00ffffff)
27865 as_bad_where (fixP->fx_file, fixP->fx_line,
27866 _("invalid swi expression"));
27867 newval = md_chars_to_number (buf, INSN_SIZE);
27868 newval |= value;
27869 md_number_to_chars (buf, newval, INSN_SIZE);
27870 }
27871 break;
27872
27873 case BFD_RELOC_ARM_MULTI:
27874 if (((unsigned long) value) > 0xffff)
27875 as_bad_where (fixP->fx_file, fixP->fx_line,
27876 _("invalid expression in load/store multiple"));
27877 newval = value | md_chars_to_number (buf, INSN_SIZE);
27878 md_number_to_chars (buf, newval, INSN_SIZE);
27879 break;
27880
27881 #ifdef OBJ_ELF
27882 case BFD_RELOC_ARM_PCREL_CALL:
27883
27884 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27885 && fixP->fx_addsy
27886 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27887 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27888 && THUMB_IS_FUNC (fixP->fx_addsy))
27889 /* Flip the bl to blx. This is a simple flip
27890 bit here because we generate PCREL_CALL for
27891 unconditional bls. */
27892 {
27893 newval = md_chars_to_number (buf, INSN_SIZE);
27894 newval = newval | 0x10000000;
27895 md_number_to_chars (buf, newval, INSN_SIZE);
27896 temp = 1;
27897 fixP->fx_done = 1;
27898 }
27899 else
27900 temp = 3;
27901 goto arm_branch_common;
27902
27903 case BFD_RELOC_ARM_PCREL_JUMP:
27904 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27905 && fixP->fx_addsy
27906 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27907 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27908 && THUMB_IS_FUNC (fixP->fx_addsy))
27909 {
27910 /* This would map to a bl<cond>, b<cond>,
27911 b<always> to a Thumb function. We
27912 need to force a relocation for this particular
27913 case. */
27914 newval = md_chars_to_number (buf, INSN_SIZE);
27915 fixP->fx_done = 0;
27916 }
27917 /* Fall through. */
27918
27919 case BFD_RELOC_ARM_PLT32:
27920 #endif
27921 case BFD_RELOC_ARM_PCREL_BRANCH:
27922 temp = 3;
27923 goto arm_branch_common;
27924
27925 case BFD_RELOC_ARM_PCREL_BLX:
27926
27927 temp = 1;
27928 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27929 && fixP->fx_addsy
27930 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27931 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27932 && ARM_IS_FUNC (fixP->fx_addsy))
27933 {
27934 /* Flip the blx to a bl and warn. */
27935 const char *name = S_GET_NAME (fixP->fx_addsy);
27936 newval = 0xeb000000;
27937 as_warn_where (fixP->fx_file, fixP->fx_line,
27938 _("blx to '%s' an ARM ISA state function changed to bl"),
27939 name);
27940 md_number_to_chars (buf, newval, INSN_SIZE);
27941 temp = 3;
27942 fixP->fx_done = 1;
27943 }
27944
27945 #ifdef OBJ_ELF
27946 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27947 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
27948 #endif
27949
27950 arm_branch_common:
27951 /* We are going to store value (shifted right by two) in the
27952 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27953 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
27954 also be clear. */
27955 if (value & temp)
27956 as_bad_where (fixP->fx_file, fixP->fx_line,
27957 _("misaligned branch destination"));
27958 if ((value & (offsetT)0xfe000000) != (offsetT)0
27959 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
27960 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27961
27962 if (fixP->fx_done || !seg->use_rela_p)
27963 {
27964 newval = md_chars_to_number (buf, INSN_SIZE);
27965 newval |= (value >> 2) & 0x00ffffff;
27966 /* Set the H bit on BLX instructions. */
27967 if (temp == 1)
27968 {
27969 if (value & 2)
27970 newval |= 0x01000000;
27971 else
27972 newval &= ~0x01000000;
27973 }
27974 md_number_to_chars (buf, newval, INSN_SIZE);
27975 }
27976 break;
27977
27978 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27979 /* CBZ can only branch forward. */
27980
27981 /* Attempts to use CBZ to branch to the next instruction
27982 (which, strictly speaking, are prohibited) will be turned into
27983 no-ops.
27984
27985 FIXME: It may be better to remove the instruction completely and
27986 perform relaxation. */
27987 if (value == -2)
27988 {
27989 newval = md_chars_to_number (buf, THUMB_SIZE);
27990 newval = 0xbf00; /* NOP encoding T1 */
27991 md_number_to_chars (buf, newval, THUMB_SIZE);
27992 }
27993 else
27994 {
27995 if (value & ~0x7e)
27996 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27997
27998 if (fixP->fx_done || !seg->use_rela_p)
27999 {
28000 newval = md_chars_to_number (buf, THUMB_SIZE);
28001 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
28002 md_number_to_chars (buf, newval, THUMB_SIZE);
28003 }
28004 }
28005 break;
28006
28007 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
28008 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
28009 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28010
28011 if (fixP->fx_done || !seg->use_rela_p)
28012 {
28013 newval = md_chars_to_number (buf, THUMB_SIZE);
28014 newval |= (value & 0x1ff) >> 1;
28015 md_number_to_chars (buf, newval, THUMB_SIZE);
28016 }
28017 break;
28018
28019 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
28020 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
28021 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28022
28023 if (fixP->fx_done || !seg->use_rela_p)
28024 {
28025 newval = md_chars_to_number (buf, THUMB_SIZE);
28026 newval |= (value & 0xfff) >> 1;
28027 md_number_to_chars (buf, newval, THUMB_SIZE);
28028 }
28029 break;
28030
28031 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28032 if (fixP->fx_addsy
28033 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28034 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28035 && ARM_IS_FUNC (fixP->fx_addsy)
28036 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
28037 {
28038 /* Force a relocation for a branch 20 bits wide. */
28039 fixP->fx_done = 0;
28040 }
28041 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
28042 as_bad_where (fixP->fx_file, fixP->fx_line,
28043 _("conditional branch out of range"));
28044
28045 if (fixP->fx_done || !seg->use_rela_p)
28046 {
28047 offsetT newval2;
28048 addressT S, J1, J2, lo, hi;
28049
28050 S = (value & 0x00100000) >> 20;
28051 J2 = (value & 0x00080000) >> 19;
28052 J1 = (value & 0x00040000) >> 18;
28053 hi = (value & 0x0003f000) >> 12;
28054 lo = (value & 0x00000ffe) >> 1;
28055
28056 newval = md_chars_to_number (buf, THUMB_SIZE);
28057 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28058 newval |= (S << 10) | hi;
28059 newval2 |= (J1 << 13) | (J2 << 11) | lo;
28060 md_number_to_chars (buf, newval, THUMB_SIZE);
28061 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28062 }
28063 break;
28064
28065 case BFD_RELOC_THUMB_PCREL_BLX:
28066 /* If there is a blx from a thumb state function to
28067 another thumb function flip this to a bl and warn
28068 about it. */
28069
28070 if (fixP->fx_addsy
28071 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28072 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28073 && THUMB_IS_FUNC (fixP->fx_addsy))
28074 {
28075 const char *name = S_GET_NAME (fixP->fx_addsy);
28076 as_warn_where (fixP->fx_file, fixP->fx_line,
28077 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
28078 name);
28079 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28080 newval = newval | 0x1000;
28081 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
28082 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
28083 fixP->fx_done = 1;
28084 }
28085
28086
28087 goto thumb_bl_common;
28088
28089 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28090 /* A bl from Thumb state ISA to an internal ARM state function
28091 is converted to a blx. */
28092 if (fixP->fx_addsy
28093 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28094 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28095 && ARM_IS_FUNC (fixP->fx_addsy)
28096 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
28097 {
28098 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28099 newval = newval & ~0x1000;
28100 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
28101 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
28102 fixP->fx_done = 1;
28103 }
28104
28105 thumb_bl_common:
28106
28107 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
28108 /* For a BLX instruction, make sure that the relocation is rounded up
28109 to a word boundary. This follows the semantics of the instruction
28110 which specifies that bit 1 of the target address will come from bit
28111 1 of the base address. */
28112 value = (value + 3) & ~ 3;
28113
28114 #ifdef OBJ_ELF
28115 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
28116 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
28117 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
28118 #endif
28119
28120 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
28121 {
28122 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
28123 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28124 else if ((value & ~0x1ffffff)
28125 && ((value & ~0x1ffffff) != ~0x1ffffff))
28126 as_bad_where (fixP->fx_file, fixP->fx_line,
28127 _("Thumb2 branch out of range"));
28128 }
28129
28130 if (fixP->fx_done || !seg->use_rela_p)
28131 encode_thumb2_b_bl_offset (buf, value);
28132
28133 break;
28134
28135 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28136 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
28137 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
28138
28139 if (fixP->fx_done || !seg->use_rela_p)
28140 encode_thumb2_b_bl_offset (buf, value);
28141
28142 break;
28143
28144 case BFD_RELOC_8:
28145 if (fixP->fx_done || !seg->use_rela_p)
28146 *buf = value;
28147 break;
28148
28149 case BFD_RELOC_16:
28150 if (fixP->fx_done || !seg->use_rela_p)
28151 md_number_to_chars (buf, value, 2);
28152 break;
28153
28154 #ifdef OBJ_ELF
28155 case BFD_RELOC_ARM_TLS_CALL:
28156 case BFD_RELOC_ARM_THM_TLS_CALL:
28157 case BFD_RELOC_ARM_TLS_DESCSEQ:
28158 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
28159 case BFD_RELOC_ARM_TLS_GOTDESC:
28160 case BFD_RELOC_ARM_TLS_GD32:
28161 case BFD_RELOC_ARM_TLS_LE32:
28162 case BFD_RELOC_ARM_TLS_IE32:
28163 case BFD_RELOC_ARM_TLS_LDM32:
28164 case BFD_RELOC_ARM_TLS_LDO32:
28165 S_SET_THREAD_LOCAL (fixP->fx_addsy);
28166 break;
28167
28168 /* Same handling as above, but with the arm_fdpic guard. */
28169 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
28170 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
28171 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
28172 if (arm_fdpic)
28173 {
28174 S_SET_THREAD_LOCAL (fixP->fx_addsy);
28175 }
28176 else
28177 {
28178 as_bad_where (fixP->fx_file, fixP->fx_line,
28179 _("Relocation supported only in FDPIC mode"));
28180 }
28181 break;
28182
28183 case BFD_RELOC_ARM_GOT32:
28184 case BFD_RELOC_ARM_GOTOFF:
28185 break;
28186
28187 case BFD_RELOC_ARM_GOT_PREL:
28188 if (fixP->fx_done || !seg->use_rela_p)
28189 md_number_to_chars (buf, value, 4);
28190 break;
28191
28192 case BFD_RELOC_ARM_TARGET2:
28193 /* TARGET2 is not partial-inplace, so we need to write the
28194 addend here for REL targets, because it won't be written out
28195 during reloc processing later. */
28196 if (fixP->fx_done || !seg->use_rela_p)
28197 md_number_to_chars (buf, fixP->fx_offset, 4);
28198 break;
28199
28200 /* Relocations for FDPIC. */
28201 case BFD_RELOC_ARM_GOTFUNCDESC:
28202 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28203 case BFD_RELOC_ARM_FUNCDESC:
28204 if (arm_fdpic)
28205 {
28206 if (fixP->fx_done || !seg->use_rela_p)
28207 md_number_to_chars (buf, 0, 4);
28208 }
28209 else
28210 {
28211 as_bad_where (fixP->fx_file, fixP->fx_line,
28212 _("Relocation supported only in FDPIC mode"));
28213 }
28214 break;
28215 #endif
28216
28217 case BFD_RELOC_RVA:
28218 case BFD_RELOC_32:
28219 case BFD_RELOC_ARM_TARGET1:
28220 case BFD_RELOC_ARM_ROSEGREL32:
28221 case BFD_RELOC_ARM_SBREL32:
28222 case BFD_RELOC_32_PCREL:
28223 #ifdef TE_PE
28224 case BFD_RELOC_32_SECREL:
28225 #endif
28226 if (fixP->fx_done || !seg->use_rela_p)
28227 #ifdef TE_WINCE
28228 /* For WinCE we only do this for pcrel fixups. */
28229 if (fixP->fx_done || fixP->fx_pcrel)
28230 #endif
28231 md_number_to_chars (buf, value, 4);
28232 break;
28233
28234 #ifdef OBJ_ELF
28235 case BFD_RELOC_ARM_PREL31:
28236 if (fixP->fx_done || !seg->use_rela_p)
28237 {
28238 newval = md_chars_to_number (buf, 4) & 0x80000000;
28239 if ((value ^ (value >> 1)) & 0x40000000)
28240 {
28241 as_bad_where (fixP->fx_file, fixP->fx_line,
28242 _("rel31 relocation overflow"));
28243 }
28244 newval |= value & 0x7fffffff;
28245 md_number_to_chars (buf, newval, 4);
28246 }
28247 break;
28248 #endif
28249
28250 case BFD_RELOC_ARM_CP_OFF_IMM:
28251 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
28252 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
28253 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
28254 newval = md_chars_to_number (buf, INSN_SIZE);
28255 else
28256 newval = get_thumb32_insn (buf);
28257 if ((newval & 0x0f200f00) == 0x0d000900)
28258 {
28259 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
28260 has permitted values that are multiples of 2, in the range 0
28261 to 510. */
28262 if (value < -510 || value > 510 || (value & 1))
28263 as_bad_where (fixP->fx_file, fixP->fx_line,
28264 _("co-processor offset out of range"));
28265 }
28266 else if ((newval & 0xfe001f80) == 0xec000f80)
28267 {
28268 if (value < -511 || value > 512 || (value & 3))
28269 as_bad_where (fixP->fx_file, fixP->fx_line,
28270 _("co-processor offset out of range"));
28271 }
28272 else if (value < -1023 || value > 1023 || (value & 3))
28273 as_bad_where (fixP->fx_file, fixP->fx_line,
28274 _("co-processor offset out of range"));
28275 cp_off_common:
28276 sign = value > 0;
28277 if (value < 0)
28278 value = -value;
28279 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28280 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28281 newval = md_chars_to_number (buf, INSN_SIZE);
28282 else
28283 newval = get_thumb32_insn (buf);
28284 if (value == 0)
28285 {
28286 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28287 newval &= 0xffffff80;
28288 else
28289 newval &= 0xffffff00;
28290 }
28291 else
28292 {
28293 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
28294 newval &= 0xff7fff80;
28295 else
28296 newval &= 0xff7fff00;
28297 if ((newval & 0x0f200f00) == 0x0d000900)
28298 {
28299 /* This is a fp16 vstr/vldr.
28300
28301 It requires the immediate offset in the instruction is shifted
28302 left by 1 to be a half-word offset.
28303
28304 Here, left shift by 1 first, and later right shift by 2
28305 should get the right offset. */
28306 value <<= 1;
28307 }
28308 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
28309 }
28310 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28311 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
28312 md_number_to_chars (buf, newval, INSN_SIZE);
28313 else
28314 put_thumb32_insn (buf, newval);
28315 break;
28316
28317 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
28318 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
28319 if (value < -255 || value > 255)
28320 as_bad_where (fixP->fx_file, fixP->fx_line,
28321 _("co-processor offset out of range"));
28322 value *= 4;
28323 goto cp_off_common;
28324
28325 case BFD_RELOC_ARM_THUMB_OFFSET:
28326 newval = md_chars_to_number (buf, THUMB_SIZE);
28327 /* Exactly what ranges, and where the offset is inserted depends
28328 on the type of instruction, we can establish this from the
28329 top 4 bits. */
28330 switch (newval >> 12)
28331 {
28332 case 4: /* PC load. */
28333 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
28334 forced to zero for these loads; md_pcrel_from has already
28335 compensated for this. */
28336 if (value & 3)
28337 as_bad_where (fixP->fx_file, fixP->fx_line,
28338 _("invalid offset, target not word aligned (0x%08lX)"),
28339 (((unsigned long) fixP->fx_frag->fr_address
28340 + (unsigned long) fixP->fx_where) & ~3)
28341 + (unsigned long) value);
28342
28343 if (value & ~0x3fc)
28344 as_bad_where (fixP->fx_file, fixP->fx_line,
28345 _("invalid offset, value too big (0x%08lX)"),
28346 (long) value);
28347
28348 newval |= value >> 2;
28349 break;
28350
28351 case 9: /* SP load/store. */
28352 if (value & ~0x3fc)
28353 as_bad_where (fixP->fx_file, fixP->fx_line,
28354 _("invalid offset, value too big (0x%08lX)"),
28355 (long) value);
28356 newval |= value >> 2;
28357 break;
28358
28359 case 6: /* Word load/store. */
28360 if (value & ~0x7c)
28361 as_bad_where (fixP->fx_file, fixP->fx_line,
28362 _("invalid offset, value too big (0x%08lX)"),
28363 (long) value);
28364 newval |= value << 4; /* 6 - 2. */
28365 break;
28366
28367 case 7: /* Byte load/store. */
28368 if (value & ~0x1f)
28369 as_bad_where (fixP->fx_file, fixP->fx_line,
28370 _("invalid offset, value too big (0x%08lX)"),
28371 (long) value);
28372 newval |= value << 6;
28373 break;
28374
28375 case 8: /* Halfword load/store. */
28376 if (value & ~0x3e)
28377 as_bad_where (fixP->fx_file, fixP->fx_line,
28378 _("invalid offset, value too big (0x%08lX)"),
28379 (long) value);
28380 newval |= value << 5; /* 6 - 1. */
28381 break;
28382
28383 default:
28384 as_bad_where (fixP->fx_file, fixP->fx_line,
28385 "Unable to process relocation for thumb opcode: %lx",
28386 (unsigned long) newval);
28387 break;
28388 }
28389 md_number_to_chars (buf, newval, THUMB_SIZE);
28390 break;
28391
28392 case BFD_RELOC_ARM_THUMB_ADD:
28393 /* This is a complicated relocation, since we use it for all of
28394 the following immediate relocations:
28395
28396 3bit ADD/SUB
28397 8bit ADD/SUB
28398 9bit ADD/SUB SP word-aligned
28399 10bit ADD PC/SP word-aligned
28400
28401 The type of instruction being processed is encoded in the
28402 instruction field:
28403
28404 0x8000 SUB
28405 0x00F0 Rd
28406 0x000F Rs
28407 */
28408 newval = md_chars_to_number (buf, THUMB_SIZE);
28409 {
28410 int rd = (newval >> 4) & 0xf;
28411 int rs = newval & 0xf;
28412 int subtract = !!(newval & 0x8000);
28413
28414 /* Check for HI regs, only very restricted cases allowed:
28415 Adjusting SP, and using PC or SP to get an address. */
28416 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
28417 || (rs > 7 && rs != REG_SP && rs != REG_PC))
28418 as_bad_where (fixP->fx_file, fixP->fx_line,
28419 _("invalid Hi register with immediate"));
28420
28421 /* If value is negative, choose the opposite instruction. */
28422 if (value < 0)
28423 {
28424 value = -value;
28425 subtract = !subtract;
28426 if (value < 0)
28427 as_bad_where (fixP->fx_file, fixP->fx_line,
28428 _("immediate value out of range"));
28429 }
28430
28431 if (rd == REG_SP)
28432 {
28433 if (value & ~0x1fc)
28434 as_bad_where (fixP->fx_file, fixP->fx_line,
28435 _("invalid immediate for stack address calculation"));
28436 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
28437 newval |= value >> 2;
28438 }
28439 else if (rs == REG_PC || rs == REG_SP)
28440 {
28441 /* PR gas/18541. If the addition is for a defined symbol
28442 within range of an ADR instruction then accept it. */
28443 if (subtract
28444 && value == 4
28445 && fixP->fx_addsy != NULL)
28446 {
28447 subtract = 0;
28448
28449 if (! S_IS_DEFINED (fixP->fx_addsy)
28450 || S_GET_SEGMENT (fixP->fx_addsy) != seg
28451 || S_IS_WEAK (fixP->fx_addsy))
28452 {
28453 as_bad_where (fixP->fx_file, fixP->fx_line,
28454 _("address calculation needs a strongly defined nearby symbol"));
28455 }
28456 else
28457 {
28458 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
28459
28460 /* Round up to the next 4-byte boundary. */
28461 if (v & 3)
28462 v = (v + 3) & ~ 3;
28463 else
28464 v += 4;
28465 v = S_GET_VALUE (fixP->fx_addsy) - v;
28466
28467 if (v & ~0x3fc)
28468 {
28469 as_bad_where (fixP->fx_file, fixP->fx_line,
28470 _("symbol too far away"));
28471 }
28472 else
28473 {
28474 fixP->fx_done = 1;
28475 value = v;
28476 }
28477 }
28478 }
28479
28480 if (subtract || value & ~0x3fc)
28481 as_bad_where (fixP->fx_file, fixP->fx_line,
28482 _("invalid immediate for address calculation (value = 0x%08lX)"),
28483 (unsigned long) (subtract ? - value : value));
28484 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
28485 newval |= rd << 8;
28486 newval |= value >> 2;
28487 }
28488 else if (rs == rd)
28489 {
28490 if (value & ~0xff)
28491 as_bad_where (fixP->fx_file, fixP->fx_line,
28492 _("immediate value out of range"));
28493 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
28494 newval |= (rd << 8) | value;
28495 }
28496 else
28497 {
28498 if (value & ~0x7)
28499 as_bad_where (fixP->fx_file, fixP->fx_line,
28500 _("immediate value out of range"));
28501 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
28502 newval |= rd | (rs << 3) | (value << 6);
28503 }
28504 }
28505 md_number_to_chars (buf, newval, THUMB_SIZE);
28506 break;
28507
28508 case BFD_RELOC_ARM_THUMB_IMM:
28509 newval = md_chars_to_number (buf, THUMB_SIZE);
28510 if (value < 0 || value > 255)
28511 as_bad_where (fixP->fx_file, fixP->fx_line,
28512 _("invalid immediate: %ld is out of range"),
28513 (long) value);
28514 newval |= value;
28515 md_number_to_chars (buf, newval, THUMB_SIZE);
28516 break;
28517
28518 case BFD_RELOC_ARM_THUMB_SHIFT:
28519 /* 5bit shift value (0..32). LSL cannot take 32. */
28520 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
28521 temp = newval & 0xf800;
28522 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
28523 as_bad_where (fixP->fx_file, fixP->fx_line,
28524 _("invalid shift value: %ld"), (long) value);
28525 /* Shifts of zero must be encoded as LSL. */
28526 if (value == 0)
28527 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
28528 /* Shifts of 32 are encoded as zero. */
28529 else if (value == 32)
28530 value = 0;
28531 newval |= value << 6;
28532 md_number_to_chars (buf, newval, THUMB_SIZE);
28533 break;
28534
28535 case BFD_RELOC_VTABLE_INHERIT:
28536 case BFD_RELOC_VTABLE_ENTRY:
28537 fixP->fx_done = 0;
28538 return;
28539
28540 case BFD_RELOC_ARM_MOVW:
28541 case BFD_RELOC_ARM_MOVT:
28542 case BFD_RELOC_ARM_THUMB_MOVW:
28543 case BFD_RELOC_ARM_THUMB_MOVT:
28544 if (fixP->fx_done || !seg->use_rela_p)
28545 {
28546 /* REL format relocations are limited to a 16-bit addend. */
28547 if (!fixP->fx_done)
28548 {
28549 if (value < -0x8000 || value > 0x7fff)
28550 as_bad_where (fixP->fx_file, fixP->fx_line,
28551 _("offset out of range"));
28552 }
28553 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28554 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28555 {
28556 value >>= 16;
28557 }
28558
28559 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28560 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28561 {
28562 newval = get_thumb32_insn (buf);
28563 newval &= 0xfbf08f00;
28564 newval |= (value & 0xf000) << 4;
28565 newval |= (value & 0x0800) << 15;
28566 newval |= (value & 0x0700) << 4;
28567 newval |= (value & 0x00ff);
28568 put_thumb32_insn (buf, newval);
28569 }
28570 else
28571 {
28572 newval = md_chars_to_number (buf, 4);
28573 newval &= 0xfff0f000;
28574 newval |= value & 0x0fff;
28575 newval |= (value & 0xf000) << 4;
28576 md_number_to_chars (buf, newval, 4);
28577 }
28578 }
28579 return;
28580
28581 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28582 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28583 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28584 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28585 gas_assert (!fixP->fx_done);
28586 {
28587 bfd_vma insn;
28588 bfd_boolean is_mov;
28589 bfd_vma encoded_addend = value;
28590
28591 /* Check that addend can be encoded in instruction. */
28592 if (!seg->use_rela_p && (value < 0 || value > 255))
28593 as_bad_where (fixP->fx_file, fixP->fx_line,
28594 _("the offset 0x%08lX is not representable"),
28595 (unsigned long) encoded_addend);
28596
28597 /* Extract the instruction. */
28598 insn = md_chars_to_number (buf, THUMB_SIZE);
28599 is_mov = (insn & 0xf800) == 0x2000;
28600
28601 /* Encode insn. */
28602 if (is_mov)
28603 {
28604 if (!seg->use_rela_p)
28605 insn |= encoded_addend;
28606 }
28607 else
28608 {
28609 int rd, rs;
28610
28611 /* Extract the instruction. */
28612 /* Encoding is the following
28613 0x8000 SUB
28614 0x00F0 Rd
28615 0x000F Rs
28616 */
28617 /* The following conditions must be true :
28618 - ADD
28619 - Rd == Rs
28620 - Rd <= 7
28621 */
28622 rd = (insn >> 4) & 0xf;
28623 rs = insn & 0xf;
28624 if ((insn & 0x8000) || (rd != rs) || rd > 7)
28625 as_bad_where (fixP->fx_file, fixP->fx_line,
28626 _("Unable to process relocation for thumb opcode: %lx"),
28627 (unsigned long) insn);
28628
28629 /* Encode as ADD immediate8 thumb 1 code. */
28630 insn = 0x3000 | (rd << 8);
28631
28632 /* Place the encoded addend into the first 8 bits of the
28633 instruction. */
28634 if (!seg->use_rela_p)
28635 insn |= encoded_addend;
28636 }
28637
28638 /* Update the instruction. */
28639 md_number_to_chars (buf, insn, THUMB_SIZE);
28640 }
28641 break;
28642
28643 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28644 case BFD_RELOC_ARM_ALU_PC_G0:
28645 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28646 case BFD_RELOC_ARM_ALU_PC_G1:
28647 case BFD_RELOC_ARM_ALU_PC_G2:
28648 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28649 case BFD_RELOC_ARM_ALU_SB_G0:
28650 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28651 case BFD_RELOC_ARM_ALU_SB_G1:
28652 case BFD_RELOC_ARM_ALU_SB_G2:
28653 gas_assert (!fixP->fx_done);
28654 if (!seg->use_rela_p)
28655 {
28656 bfd_vma insn;
28657 bfd_vma encoded_addend;
28658 bfd_vma addend_abs = llabs (value);
28659
28660 /* Check that the absolute value of the addend can be
28661 expressed as an 8-bit constant plus a rotation. */
28662 encoded_addend = encode_arm_immediate (addend_abs);
28663 if (encoded_addend == (unsigned int) FAIL)
28664 as_bad_where (fixP->fx_file, fixP->fx_line,
28665 _("the offset 0x%08lX is not representable"),
28666 (unsigned long) addend_abs);
28667
28668 /* Extract the instruction. */
28669 insn = md_chars_to_number (buf, INSN_SIZE);
28670
28671 /* If the addend is positive, use an ADD instruction.
28672 Otherwise use a SUB. Take care not to destroy the S bit. */
28673 insn &= 0xff1fffff;
28674 if (value < 0)
28675 insn |= 1 << 22;
28676 else
28677 insn |= 1 << 23;
28678
28679 /* Place the encoded addend into the first 12 bits of the
28680 instruction. */
28681 insn &= 0xfffff000;
28682 insn |= encoded_addend;
28683
28684 /* Update the instruction. */
28685 md_number_to_chars (buf, insn, INSN_SIZE);
28686 }
28687 break;
28688
28689 case BFD_RELOC_ARM_LDR_PC_G0:
28690 case BFD_RELOC_ARM_LDR_PC_G1:
28691 case BFD_RELOC_ARM_LDR_PC_G2:
28692 case BFD_RELOC_ARM_LDR_SB_G0:
28693 case BFD_RELOC_ARM_LDR_SB_G1:
28694 case BFD_RELOC_ARM_LDR_SB_G2:
28695 gas_assert (!fixP->fx_done);
28696 if (!seg->use_rela_p)
28697 {
28698 bfd_vma insn;
28699 bfd_vma addend_abs = llabs (value);
28700
28701 /* Check that the absolute value of the addend can be
28702 encoded in 12 bits. */
28703 if (addend_abs >= 0x1000)
28704 as_bad_where (fixP->fx_file, fixP->fx_line,
28705 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
28706 (unsigned long) addend_abs);
28707
28708 /* Extract the instruction. */
28709 insn = md_chars_to_number (buf, INSN_SIZE);
28710
28711 /* If the addend is negative, clear bit 23 of the instruction.
28712 Otherwise set it. */
28713 if (value < 0)
28714 insn &= ~(1 << 23);
28715 else
28716 insn |= 1 << 23;
28717
28718 /* Place the absolute value of the addend into the first 12 bits
28719 of the instruction. */
28720 insn &= 0xfffff000;
28721 insn |= addend_abs;
28722
28723 /* Update the instruction. */
28724 md_number_to_chars (buf, insn, INSN_SIZE);
28725 }
28726 break;
28727
28728 case BFD_RELOC_ARM_LDRS_PC_G0:
28729 case BFD_RELOC_ARM_LDRS_PC_G1:
28730 case BFD_RELOC_ARM_LDRS_PC_G2:
28731 case BFD_RELOC_ARM_LDRS_SB_G0:
28732 case BFD_RELOC_ARM_LDRS_SB_G1:
28733 case BFD_RELOC_ARM_LDRS_SB_G2:
28734 gas_assert (!fixP->fx_done);
28735 if (!seg->use_rela_p)
28736 {
28737 bfd_vma insn;
28738 bfd_vma addend_abs = llabs (value);
28739
28740 /* Check that the absolute value of the addend can be
28741 encoded in 8 bits. */
28742 if (addend_abs >= 0x100)
28743 as_bad_where (fixP->fx_file, fixP->fx_line,
28744 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
28745 (unsigned long) addend_abs);
28746
28747 /* Extract the instruction. */
28748 insn = md_chars_to_number (buf, INSN_SIZE);
28749
28750 /* If the addend is negative, clear bit 23 of the instruction.
28751 Otherwise set it. */
28752 if (value < 0)
28753 insn &= ~(1 << 23);
28754 else
28755 insn |= 1 << 23;
28756
28757 /* Place the first four bits of the absolute value of the addend
28758 into the first 4 bits of the instruction, and the remaining
28759 four into bits 8 .. 11. */
28760 insn &= 0xfffff0f0;
28761 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
28762
28763 /* Update the instruction. */
28764 md_number_to_chars (buf, insn, INSN_SIZE);
28765 }
28766 break;
28767
28768 case BFD_RELOC_ARM_LDC_PC_G0:
28769 case BFD_RELOC_ARM_LDC_PC_G1:
28770 case BFD_RELOC_ARM_LDC_PC_G2:
28771 case BFD_RELOC_ARM_LDC_SB_G0:
28772 case BFD_RELOC_ARM_LDC_SB_G1:
28773 case BFD_RELOC_ARM_LDC_SB_G2:
28774 gas_assert (!fixP->fx_done);
28775 if (!seg->use_rela_p)
28776 {
28777 bfd_vma insn;
28778 bfd_vma addend_abs = llabs (value);
28779
28780 /* Check that the absolute value of the addend is a multiple of
28781 four and, when divided by four, fits in 8 bits. */
28782 if (addend_abs & 0x3)
28783 as_bad_where (fixP->fx_file, fixP->fx_line,
28784 _("bad offset 0x%08lX (must be word-aligned)"),
28785 (unsigned long) addend_abs);
28786
28787 if ((addend_abs >> 2) > 0xff)
28788 as_bad_where (fixP->fx_file, fixP->fx_line,
28789 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28790 (unsigned long) addend_abs);
28791
28792 /* Extract the instruction. */
28793 insn = md_chars_to_number (buf, INSN_SIZE);
28794
28795 /* If the addend is negative, clear bit 23 of the instruction.
28796 Otherwise set it. */
28797 if (value < 0)
28798 insn &= ~(1 << 23);
28799 else
28800 insn |= 1 << 23;
28801
28802 /* Place the addend (divided by four) into the first eight
28803 bits of the instruction. */
28804 insn &= 0xfffffff0;
28805 insn |= addend_abs >> 2;
28806
28807 /* Update the instruction. */
28808 md_number_to_chars (buf, insn, INSN_SIZE);
28809 }
28810 break;
28811
28812 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28813 if (fixP->fx_addsy
28814 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28815 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28816 && ARM_IS_FUNC (fixP->fx_addsy)
28817 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28818 {
28819 /* Force a relocation for a branch 5 bits wide. */
28820 fixP->fx_done = 0;
28821 }
28822 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
28823 as_bad_where (fixP->fx_file, fixP->fx_line,
28824 BAD_BRANCH_OFF);
28825
28826 if (fixP->fx_done || !seg->use_rela_p)
28827 {
28828 addressT boff = value >> 1;
28829
28830 newval = md_chars_to_number (buf, THUMB_SIZE);
28831 newval |= (boff << 7);
28832 md_number_to_chars (buf, newval, THUMB_SIZE);
28833 }
28834 break;
28835
28836 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28837 if (fixP->fx_addsy
28838 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28839 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28840 && ARM_IS_FUNC (fixP->fx_addsy)
28841 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28842 {
28843 fixP->fx_done = 0;
28844 }
28845 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
28846 as_bad_where (fixP->fx_file, fixP->fx_line,
28847 _("branch out of range"));
28848
28849 if (fixP->fx_done || !seg->use_rela_p)
28850 {
28851 newval = md_chars_to_number (buf, THUMB_SIZE);
28852
28853 addressT boff = ((newval & 0x0780) >> 7) << 1;
28854 addressT diff = value - boff;
28855
28856 if (diff == 4)
28857 {
28858 newval |= 1 << 1; /* T bit. */
28859 }
28860 else if (diff != 2)
28861 {
28862 as_bad_where (fixP->fx_file, fixP->fx_line,
28863 _("out of range label-relative fixup value"));
28864 }
28865 md_number_to_chars (buf, newval, THUMB_SIZE);
28866 }
28867 break;
28868
28869 case BFD_RELOC_ARM_THUMB_BF17:
28870 if (fixP->fx_addsy
28871 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28872 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28873 && ARM_IS_FUNC (fixP->fx_addsy)
28874 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28875 {
28876 /* Force a relocation for a branch 17 bits wide. */
28877 fixP->fx_done = 0;
28878 }
28879
28880 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28881 as_bad_where (fixP->fx_file, fixP->fx_line,
28882 BAD_BRANCH_OFF);
28883
28884 if (fixP->fx_done || !seg->use_rela_p)
28885 {
28886 offsetT newval2;
28887 addressT immA, immB, immC;
28888
28889 immA = (value & 0x0001f000) >> 12;
28890 immB = (value & 0x00000ffc) >> 2;
28891 immC = (value & 0x00000002) >> 1;
28892
28893 newval = md_chars_to_number (buf, THUMB_SIZE);
28894 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28895 newval |= immA;
28896 newval2 |= (immC << 11) | (immB << 1);
28897 md_number_to_chars (buf, newval, THUMB_SIZE);
28898 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28899 }
28900 break;
28901
28902 case BFD_RELOC_ARM_THUMB_BF19:
28903 if (fixP->fx_addsy
28904 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28905 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28906 && ARM_IS_FUNC (fixP->fx_addsy)
28907 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28908 {
28909 /* Force a relocation for a branch 19 bits wide. */
28910 fixP->fx_done = 0;
28911 }
28912
28913 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28914 as_bad_where (fixP->fx_file, fixP->fx_line,
28915 BAD_BRANCH_OFF);
28916
28917 if (fixP->fx_done || !seg->use_rela_p)
28918 {
28919 offsetT newval2;
28920 addressT immA, immB, immC;
28921
28922 immA = (value & 0x0007f000) >> 12;
28923 immB = (value & 0x00000ffc) >> 2;
28924 immC = (value & 0x00000002) >> 1;
28925
28926 newval = md_chars_to_number (buf, THUMB_SIZE);
28927 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28928 newval |= immA;
28929 newval2 |= (immC << 11) | (immB << 1);
28930 md_number_to_chars (buf, newval, THUMB_SIZE);
28931 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28932 }
28933 break;
28934
28935 case BFD_RELOC_ARM_THUMB_BF13:
28936 if (fixP->fx_addsy
28937 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28938 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28939 && ARM_IS_FUNC (fixP->fx_addsy)
28940 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28941 {
28942 /* Force a relocation for a branch 13 bits wide. */
28943 fixP->fx_done = 0;
28944 }
28945
28946 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28947 as_bad_where (fixP->fx_file, fixP->fx_line,
28948 BAD_BRANCH_OFF);
28949
28950 if (fixP->fx_done || !seg->use_rela_p)
28951 {
28952 offsetT newval2;
28953 addressT immA, immB, immC;
28954
28955 immA = (value & 0x00001000) >> 12;
28956 immB = (value & 0x00000ffc) >> 2;
28957 immC = (value & 0x00000002) >> 1;
28958
28959 newval = md_chars_to_number (buf, THUMB_SIZE);
28960 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28961 newval |= immA;
28962 newval2 |= (immC << 11) | (immB << 1);
28963 md_number_to_chars (buf, newval, THUMB_SIZE);
28964 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28965 }
28966 break;
28967
28968 case BFD_RELOC_ARM_THUMB_LOOP12:
28969 if (fixP->fx_addsy
28970 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28971 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28972 && ARM_IS_FUNC (fixP->fx_addsy)
28973 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28974 {
28975 /* Force a relocation for a branch 12 bits wide. */
28976 fixP->fx_done = 0;
28977 }
28978
28979 bfd_vma insn = get_thumb32_insn (buf);
28980 /* le lr, <label>, le <label> or letp lr, <label> */
28981 if (((insn & 0xffffffff) == 0xf00fc001)
28982 || ((insn & 0xffffffff) == 0xf02fc001)
28983 || ((insn & 0xffffffff) == 0xf01fc001))
28984 value = -value;
28985
28986 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28987 as_bad_where (fixP->fx_file, fixP->fx_line,
28988 BAD_BRANCH_OFF);
28989 if (fixP->fx_done || !seg->use_rela_p)
28990 {
28991 addressT imml, immh;
28992
28993 immh = (value & 0x00000ffc) >> 2;
28994 imml = (value & 0x00000002) >> 1;
28995
28996 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28997 newval |= (imml << 11) | (immh << 1);
28998 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28999 }
29000 break;
29001
29002 case BFD_RELOC_ARM_V4BX:
29003 /* This will need to go in the object file. */
29004 fixP->fx_done = 0;
29005 break;
29006
29007 case BFD_RELOC_UNUSED:
29008 default:
29009 as_bad_where (fixP->fx_file, fixP->fx_line,
29010 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
29011 }
29012 }
29013
29014 /* Translate internal representation of relocation info to BFD target
29015 format. */
29016
29017 arelent *
29018 tc_gen_reloc (asection *section, fixS *fixp)
29019 {
29020 arelent * reloc;
29021 bfd_reloc_code_real_type code;
29022
29023 reloc = XNEW (arelent);
29024
29025 reloc->sym_ptr_ptr = XNEW (asymbol *);
29026 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
29027 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
29028
29029 if (fixp->fx_pcrel)
29030 {
29031 if (section->use_rela_p)
29032 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
29033 else
29034 fixp->fx_offset = reloc->address;
29035 }
29036 reloc->addend = fixp->fx_offset;
29037
29038 switch (fixp->fx_r_type)
29039 {
29040 case BFD_RELOC_8:
29041 if (fixp->fx_pcrel)
29042 {
29043 code = BFD_RELOC_8_PCREL;
29044 break;
29045 }
29046 /* Fall through. */
29047
29048 case BFD_RELOC_16:
29049 if (fixp->fx_pcrel)
29050 {
29051 code = BFD_RELOC_16_PCREL;
29052 break;
29053 }
29054 /* Fall through. */
29055
29056 case BFD_RELOC_32:
29057 if (fixp->fx_pcrel)
29058 {
29059 code = BFD_RELOC_32_PCREL;
29060 break;
29061 }
29062 /* Fall through. */
29063
29064 case BFD_RELOC_ARM_MOVW:
29065 if (fixp->fx_pcrel)
29066 {
29067 code = BFD_RELOC_ARM_MOVW_PCREL;
29068 break;
29069 }
29070 /* Fall through. */
29071
29072 case BFD_RELOC_ARM_MOVT:
29073 if (fixp->fx_pcrel)
29074 {
29075 code = BFD_RELOC_ARM_MOVT_PCREL;
29076 break;
29077 }
29078 /* Fall through. */
29079
29080 case BFD_RELOC_ARM_THUMB_MOVW:
29081 if (fixp->fx_pcrel)
29082 {
29083 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
29084 break;
29085 }
29086 /* Fall through. */
29087
29088 case BFD_RELOC_ARM_THUMB_MOVT:
29089 if (fixp->fx_pcrel)
29090 {
29091 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
29092 break;
29093 }
29094 /* Fall through. */
29095
29096 case BFD_RELOC_NONE:
29097 case BFD_RELOC_ARM_PCREL_BRANCH:
29098 case BFD_RELOC_ARM_PCREL_BLX:
29099 case BFD_RELOC_RVA:
29100 case BFD_RELOC_THUMB_PCREL_BRANCH7:
29101 case BFD_RELOC_THUMB_PCREL_BRANCH9:
29102 case BFD_RELOC_THUMB_PCREL_BRANCH12:
29103 case BFD_RELOC_THUMB_PCREL_BRANCH20:
29104 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29105 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29106 case BFD_RELOC_VTABLE_ENTRY:
29107 case BFD_RELOC_VTABLE_INHERIT:
29108 #ifdef TE_PE
29109 case BFD_RELOC_32_SECREL:
29110 #endif
29111 code = fixp->fx_r_type;
29112 break;
29113
29114 case BFD_RELOC_THUMB_PCREL_BLX:
29115 #ifdef OBJ_ELF
29116 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
29117 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
29118 else
29119 #endif
29120 code = BFD_RELOC_THUMB_PCREL_BLX;
29121 break;
29122
29123 case BFD_RELOC_ARM_LITERAL:
29124 case BFD_RELOC_ARM_HWLITERAL:
29125 /* If this is called then the a literal has
29126 been referenced across a section boundary. */
29127 as_bad_where (fixp->fx_file, fixp->fx_line,
29128 _("literal referenced across section boundary"));
29129 return NULL;
29130
29131 #ifdef OBJ_ELF
29132 case BFD_RELOC_ARM_TLS_CALL:
29133 case BFD_RELOC_ARM_THM_TLS_CALL:
29134 case BFD_RELOC_ARM_TLS_DESCSEQ:
29135 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
29136 case BFD_RELOC_ARM_GOT32:
29137 case BFD_RELOC_ARM_GOTOFF:
29138 case BFD_RELOC_ARM_GOT_PREL:
29139 case BFD_RELOC_ARM_PLT32:
29140 case BFD_RELOC_ARM_TARGET1:
29141 case BFD_RELOC_ARM_ROSEGREL32:
29142 case BFD_RELOC_ARM_SBREL32:
29143 case BFD_RELOC_ARM_PREL31:
29144 case BFD_RELOC_ARM_TARGET2:
29145 case BFD_RELOC_ARM_TLS_LDO32:
29146 case BFD_RELOC_ARM_PCREL_CALL:
29147 case BFD_RELOC_ARM_PCREL_JUMP:
29148 case BFD_RELOC_ARM_ALU_PC_G0_NC:
29149 case BFD_RELOC_ARM_ALU_PC_G0:
29150 case BFD_RELOC_ARM_ALU_PC_G1_NC:
29151 case BFD_RELOC_ARM_ALU_PC_G1:
29152 case BFD_RELOC_ARM_ALU_PC_G2:
29153 case BFD_RELOC_ARM_LDR_PC_G0:
29154 case BFD_RELOC_ARM_LDR_PC_G1:
29155 case BFD_RELOC_ARM_LDR_PC_G2:
29156 case BFD_RELOC_ARM_LDRS_PC_G0:
29157 case BFD_RELOC_ARM_LDRS_PC_G1:
29158 case BFD_RELOC_ARM_LDRS_PC_G2:
29159 case BFD_RELOC_ARM_LDC_PC_G0:
29160 case BFD_RELOC_ARM_LDC_PC_G1:
29161 case BFD_RELOC_ARM_LDC_PC_G2:
29162 case BFD_RELOC_ARM_ALU_SB_G0_NC:
29163 case BFD_RELOC_ARM_ALU_SB_G0:
29164 case BFD_RELOC_ARM_ALU_SB_G1_NC:
29165 case BFD_RELOC_ARM_ALU_SB_G1:
29166 case BFD_RELOC_ARM_ALU_SB_G2:
29167 case BFD_RELOC_ARM_LDR_SB_G0:
29168 case BFD_RELOC_ARM_LDR_SB_G1:
29169 case BFD_RELOC_ARM_LDR_SB_G2:
29170 case BFD_RELOC_ARM_LDRS_SB_G0:
29171 case BFD_RELOC_ARM_LDRS_SB_G1:
29172 case BFD_RELOC_ARM_LDRS_SB_G2:
29173 case BFD_RELOC_ARM_LDC_SB_G0:
29174 case BFD_RELOC_ARM_LDC_SB_G1:
29175 case BFD_RELOC_ARM_LDC_SB_G2:
29176 case BFD_RELOC_ARM_V4BX:
29177 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
29178 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
29179 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
29180 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
29181 case BFD_RELOC_ARM_GOTFUNCDESC:
29182 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
29183 case BFD_RELOC_ARM_FUNCDESC:
29184 case BFD_RELOC_ARM_THUMB_BF17:
29185 case BFD_RELOC_ARM_THUMB_BF19:
29186 case BFD_RELOC_ARM_THUMB_BF13:
29187 code = fixp->fx_r_type;
29188 break;
29189
29190 case BFD_RELOC_ARM_TLS_GOTDESC:
29191 case BFD_RELOC_ARM_TLS_GD32:
29192 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
29193 case BFD_RELOC_ARM_TLS_LE32:
29194 case BFD_RELOC_ARM_TLS_IE32:
29195 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
29196 case BFD_RELOC_ARM_TLS_LDM32:
29197 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
29198 /* BFD will include the symbol's address in the addend.
29199 But we don't want that, so subtract it out again here. */
29200 if (!S_IS_COMMON (fixp->fx_addsy))
29201 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
29202 code = fixp->fx_r_type;
29203 break;
29204 #endif
29205
29206 case BFD_RELOC_ARM_IMMEDIATE:
29207 as_bad_where (fixp->fx_file, fixp->fx_line,
29208 _("internal relocation (type: IMMEDIATE) not fixed up"));
29209 return NULL;
29210
29211 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
29212 as_bad_where (fixp->fx_file, fixp->fx_line,
29213 _("ADRL used for a symbol not defined in the same file"));
29214 return NULL;
29215
29216 case BFD_RELOC_THUMB_PCREL_BRANCH5:
29217 case BFD_RELOC_THUMB_PCREL_BFCSEL:
29218 case BFD_RELOC_ARM_THUMB_LOOP12:
29219 as_bad_where (fixp->fx_file, fixp->fx_line,
29220 _("%s used for a symbol not defined in the same file"),
29221 bfd_get_reloc_code_name (fixp->fx_r_type));
29222 return NULL;
29223
29224 case BFD_RELOC_ARM_OFFSET_IMM:
29225 if (section->use_rela_p)
29226 {
29227 code = fixp->fx_r_type;
29228 break;
29229 }
29230
29231 if (fixp->fx_addsy != NULL
29232 && !S_IS_DEFINED (fixp->fx_addsy)
29233 && S_IS_LOCAL (fixp->fx_addsy))
29234 {
29235 as_bad_where (fixp->fx_file, fixp->fx_line,
29236 _("undefined local label `%s'"),
29237 S_GET_NAME (fixp->fx_addsy));
29238 return NULL;
29239 }
29240
29241 as_bad_where (fixp->fx_file, fixp->fx_line,
29242 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
29243 return NULL;
29244
29245 default:
29246 {
29247 const char * type;
29248
29249 switch (fixp->fx_r_type)
29250 {
29251 case BFD_RELOC_NONE: type = "NONE"; break;
29252 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
29253 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
29254 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
29255 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
29256 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
29257 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
29258 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
29259 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
29260 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
29261 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
29262 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
29263 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
29264 default: type = _("<unknown>"); break;
29265 }
29266 as_bad_where (fixp->fx_file, fixp->fx_line,
29267 _("cannot represent %s relocation in this object file format"),
29268 type);
29269 return NULL;
29270 }
29271 }
29272
29273 #ifdef OBJ_ELF
29274 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
29275 && GOT_symbol
29276 && fixp->fx_addsy == GOT_symbol)
29277 {
29278 code = BFD_RELOC_ARM_GOTPC;
29279 reloc->addend = fixp->fx_offset = reloc->address;
29280 }
29281 #endif
29282
29283 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
29284
29285 if (reloc->howto == NULL)
29286 {
29287 as_bad_where (fixp->fx_file, fixp->fx_line,
29288 _("cannot represent %s relocation in this object file format"),
29289 bfd_get_reloc_code_name (code));
29290 return NULL;
29291 }
29292
29293 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
29294 vtable entry to be used in the relocation's section offset. */
29295 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
29296 reloc->address = fixp->fx_offset;
29297
29298 return reloc;
29299 }
29300
29301 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
29302
29303 void
29304 cons_fix_new_arm (fragS * frag,
29305 int where,
29306 int size,
29307 expressionS * exp,
29308 bfd_reloc_code_real_type reloc)
29309 {
29310 int pcrel = 0;
29311
29312 /* Pick a reloc.
29313 FIXME: @@ Should look at CPU word size. */
29314 switch (size)
29315 {
29316 case 1:
29317 reloc = BFD_RELOC_8;
29318 break;
29319 case 2:
29320 reloc = BFD_RELOC_16;
29321 break;
29322 case 4:
29323 default:
29324 reloc = BFD_RELOC_32;
29325 break;
29326 case 8:
29327 reloc = BFD_RELOC_64;
29328 break;
29329 }
29330
29331 #ifdef TE_PE
29332 if (exp->X_op == O_secrel)
29333 {
29334 exp->X_op = O_symbol;
29335 reloc = BFD_RELOC_32_SECREL;
29336 }
29337 #endif
29338
29339 fix_new_exp (frag, where, size, exp, pcrel, reloc);
29340 }
29341
29342 #if defined (OBJ_COFF)
29343 void
29344 arm_validate_fix (fixS * fixP)
29345 {
29346 /* If the destination of the branch is a defined symbol which does not have
29347 the THUMB_FUNC attribute, then we must be calling a function which has
29348 the (interfacearm) attribute. We look for the Thumb entry point to that
29349 function and change the branch to refer to that function instead. */
29350 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
29351 && fixP->fx_addsy != NULL
29352 && S_IS_DEFINED (fixP->fx_addsy)
29353 && ! THUMB_IS_FUNC (fixP->fx_addsy))
29354 {
29355 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
29356 }
29357 }
29358 #endif
29359
29360
29361 int
29362 arm_force_relocation (struct fix * fixp)
29363 {
29364 #if defined (OBJ_COFF) && defined (TE_PE)
29365 if (fixp->fx_r_type == BFD_RELOC_RVA)
29366 return 1;
29367 #endif
29368
29369 /* In case we have a call or a branch to a function in ARM ISA mode from
29370 a thumb function or vice-versa force the relocation. These relocations
29371 are cleared off for some cores that might have blx and simple transformations
29372 are possible. */
29373
29374 #ifdef OBJ_ELF
29375 switch (fixp->fx_r_type)
29376 {
29377 case BFD_RELOC_ARM_PCREL_JUMP:
29378 case BFD_RELOC_ARM_PCREL_CALL:
29379 case BFD_RELOC_THUMB_PCREL_BLX:
29380 if (THUMB_IS_FUNC (fixp->fx_addsy))
29381 return 1;
29382 break;
29383
29384 case BFD_RELOC_ARM_PCREL_BLX:
29385 case BFD_RELOC_THUMB_PCREL_BRANCH25:
29386 case BFD_RELOC_THUMB_PCREL_BRANCH20:
29387 case BFD_RELOC_THUMB_PCREL_BRANCH23:
29388 if (ARM_IS_FUNC (fixp->fx_addsy))
29389 return 1;
29390 break;
29391
29392 default:
29393 break;
29394 }
29395 #endif
29396
29397 /* Resolve these relocations even if the symbol is extern or weak.
29398 Technically this is probably wrong due to symbol preemption.
29399 In practice these relocations do not have enough range to be useful
29400 at dynamic link time, and some code (e.g. in the Linux kernel)
29401 expects these references to be resolved. */
29402 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
29403 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
29404 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
29405 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
29406 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
29407 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
29408 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
29409 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
29410 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
29411 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
29412 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
29413 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
29414 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
29415 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
29416 return 0;
29417
29418 /* Always leave these relocations for the linker. */
29419 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29420 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29421 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29422 return 1;
29423
29424 /* Always generate relocations against function symbols. */
29425 if (fixp->fx_r_type == BFD_RELOC_32
29426 && fixp->fx_addsy
29427 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
29428 return 1;
29429
29430 return generic_force_reloc (fixp);
29431 }
29432
29433 #if defined (OBJ_ELF) || defined (OBJ_COFF)
29434 /* Relocations against function names must be left unadjusted,
29435 so that the linker can use this information to generate interworking
29436 stubs. The MIPS version of this function
29437 also prevents relocations that are mips-16 specific, but I do not
29438 know why it does this.
29439
29440 FIXME:
29441 There is one other problem that ought to be addressed here, but
29442 which currently is not: Taking the address of a label (rather
29443 than a function) and then later jumping to that address. Such
29444 addresses also ought to have their bottom bit set (assuming that
29445 they reside in Thumb code), but at the moment they will not. */
29446
29447 bfd_boolean
29448 arm_fix_adjustable (fixS * fixP)
29449 {
29450 if (fixP->fx_addsy == NULL)
29451 return 1;
29452
29453 /* Preserve relocations against symbols with function type. */
29454 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
29455 return FALSE;
29456
29457 if (THUMB_IS_FUNC (fixP->fx_addsy)
29458 && fixP->fx_subsy == NULL)
29459 return FALSE;
29460
29461 /* We need the symbol name for the VTABLE entries. */
29462 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
29463 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
29464 return FALSE;
29465
29466 /* Don't allow symbols to be discarded on GOT related relocs. */
29467 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
29468 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
29469 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
29470 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
29471 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
29472 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
29473 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
29474 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
29475 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
29476 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
29477 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
29478 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
29479 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
29480 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
29481 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
29482 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
29483 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
29484 return FALSE;
29485
29486 /* Similarly for group relocations. */
29487 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29488 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29489 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29490 return FALSE;
29491
29492 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
29493 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
29494 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
29495 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
29496 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
29497 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
29498 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
29499 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
29500 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
29501 return FALSE;
29502
29503 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
29504 offsets, so keep these symbols. */
29505 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
29506 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
29507 return FALSE;
29508
29509 return TRUE;
29510 }
29511 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
29512
29513 #ifdef OBJ_ELF
29514 const char *
29515 elf32_arm_target_format (void)
29516 {
29517 #ifdef TE_SYMBIAN
29518 return (target_big_endian
29519 ? "elf32-bigarm-symbian"
29520 : "elf32-littlearm-symbian");
29521 #elif defined (TE_VXWORKS)
29522 return (target_big_endian
29523 ? "elf32-bigarm-vxworks"
29524 : "elf32-littlearm-vxworks");
29525 #elif defined (TE_NACL)
29526 return (target_big_endian
29527 ? "elf32-bigarm-nacl"
29528 : "elf32-littlearm-nacl");
29529 #else
29530 if (arm_fdpic)
29531 {
29532 if (target_big_endian)
29533 return "elf32-bigarm-fdpic";
29534 else
29535 return "elf32-littlearm-fdpic";
29536 }
29537 else
29538 {
29539 if (target_big_endian)
29540 return "elf32-bigarm";
29541 else
29542 return "elf32-littlearm";
29543 }
29544 #endif
29545 }
29546
29547 void
29548 armelf_frob_symbol (symbolS * symp,
29549 int * puntp)
29550 {
29551 elf_frob_symbol (symp, puntp);
29552 }
29553 #endif
29554
29555 /* MD interface: Finalization. */
29556
29557 void
29558 arm_cleanup (void)
29559 {
29560 literal_pool * pool;
29561
29562 /* Ensure that all the predication blocks are properly closed. */
29563 check_pred_blocks_finished ();
29564
29565 for (pool = list_of_pools; pool; pool = pool->next)
29566 {
29567 /* Put it at the end of the relevant section. */
29568 subseg_set (pool->section, pool->sub_section);
29569 #ifdef OBJ_ELF
29570 arm_elf_change_section ();
29571 #endif
29572 s_ltorg (0);
29573 }
29574 }
29575
29576 #ifdef OBJ_ELF
29577 /* Remove any excess mapping symbols generated for alignment frags in
29578 SEC. We may have created a mapping symbol before a zero byte
29579 alignment; remove it if there's a mapping symbol after the
29580 alignment. */
29581 static void
29582 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
29583 void *dummy ATTRIBUTE_UNUSED)
29584 {
29585 segment_info_type *seginfo = seg_info (sec);
29586 fragS *fragp;
29587
29588 if (seginfo == NULL || seginfo->frchainP == NULL)
29589 return;
29590
29591 for (fragp = seginfo->frchainP->frch_root;
29592 fragp != NULL;
29593 fragp = fragp->fr_next)
29594 {
29595 symbolS *sym = fragp->tc_frag_data.last_map;
29596 fragS *next = fragp->fr_next;
29597
29598 /* Variable-sized frags have been converted to fixed size by
29599 this point. But if this was variable-sized to start with,
29600 there will be a fixed-size frag after it. So don't handle
29601 next == NULL. */
29602 if (sym == NULL || next == NULL)
29603 continue;
29604
29605 if (S_GET_VALUE (sym) < next->fr_address)
29606 /* Not at the end of this frag. */
29607 continue;
29608 know (S_GET_VALUE (sym) == next->fr_address);
29609
29610 do
29611 {
29612 if (next->tc_frag_data.first_map != NULL)
29613 {
29614 /* Next frag starts with a mapping symbol. Discard this
29615 one. */
29616 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29617 break;
29618 }
29619
29620 if (next->fr_next == NULL)
29621 {
29622 /* This mapping symbol is at the end of the section. Discard
29623 it. */
29624 know (next->fr_fix == 0 && next->fr_var == 0);
29625 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29626 break;
29627 }
29628
29629 /* As long as we have empty frags without any mapping symbols,
29630 keep looking. */
29631 /* If the next frag is non-empty and does not start with a
29632 mapping symbol, then this mapping symbol is required. */
29633 if (next->fr_address != next->fr_next->fr_address)
29634 break;
29635
29636 next = next->fr_next;
29637 }
29638 while (next != NULL);
29639 }
29640 }
29641 #endif
29642
29643 /* Adjust the symbol table. This marks Thumb symbols as distinct from
29644 ARM ones. */
29645
29646 void
29647 arm_adjust_symtab (void)
29648 {
29649 #ifdef OBJ_COFF
29650 symbolS * sym;
29651
29652 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29653 {
29654 if (ARM_IS_THUMB (sym))
29655 {
29656 if (THUMB_IS_FUNC (sym))
29657 {
29658 /* Mark the symbol as a Thumb function. */
29659 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
29660 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
29661 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
29662
29663 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
29664 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
29665 else
29666 as_bad (_("%s: unexpected function type: %d"),
29667 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
29668 }
29669 else switch (S_GET_STORAGE_CLASS (sym))
29670 {
29671 case C_EXT:
29672 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
29673 break;
29674 case C_STAT:
29675 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
29676 break;
29677 case C_LABEL:
29678 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
29679 break;
29680 default:
29681 /* Do nothing. */
29682 break;
29683 }
29684 }
29685
29686 if (ARM_IS_INTERWORK (sym))
29687 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
29688 }
29689 #endif
29690 #ifdef OBJ_ELF
29691 symbolS * sym;
29692 char bind;
29693
29694 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29695 {
29696 if (ARM_IS_THUMB (sym))
29697 {
29698 elf_symbol_type * elf_sym;
29699
29700 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
29701 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
29702
29703 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
29704 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
29705 {
29706 /* If it's a .thumb_func, declare it as so,
29707 otherwise tag label as .code 16. */
29708 if (THUMB_IS_FUNC (sym))
29709 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
29710 ST_BRANCH_TO_THUMB);
29711 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
29712 elf_sym->internal_elf_sym.st_info =
29713 ELF_ST_INFO (bind, STT_ARM_16BIT);
29714 }
29715 }
29716 }
29717
29718 /* Remove any overlapping mapping symbols generated by alignment frags. */
29719 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
29720 /* Now do generic ELF adjustments. */
29721 elf_adjust_symtab ();
29722 #endif
29723 }
29724
29725 /* MD interface: Initialization. */
29726
29727 static void
29728 set_constant_flonums (void)
29729 {
29730 int i;
29731
29732 for (i = 0; i < NUM_FLOAT_VALS; i++)
29733 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
29734 abort ();
29735 }
29736
29737 /* Auto-select Thumb mode if it's the only available instruction set for the
29738 given architecture. */
29739
29740 static void
29741 autoselect_thumb_from_cpu_variant (void)
29742 {
29743 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
29744 opcode_select (16);
29745 }
29746
29747 void
29748 md_begin (void)
29749 {
29750 unsigned mach;
29751 unsigned int i;
29752
29753 if ( (arm_ops_hsh = hash_new ()) == NULL
29754 || (arm_cond_hsh = hash_new ()) == NULL
29755 || (arm_vcond_hsh = hash_new ()) == NULL
29756 || (arm_shift_hsh = hash_new ()) == NULL
29757 || (arm_psr_hsh = hash_new ()) == NULL
29758 || (arm_v7m_psr_hsh = hash_new ()) == NULL
29759 || (arm_reg_hsh = hash_new ()) == NULL
29760 || (arm_reloc_hsh = hash_new ()) == NULL
29761 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
29762 as_fatal (_("virtual memory exhausted"));
29763
29764 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
29765 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
29766 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
29767 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
29768 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
29769 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
29770 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
29771 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
29772 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
29773 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
29774 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
29775 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
29776 (void *) (v7m_psrs + i));
29777 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
29778 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
29779 for (i = 0;
29780 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
29781 i++)
29782 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
29783 (void *) (barrier_opt_names + i));
29784 #ifdef OBJ_ELF
29785 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
29786 {
29787 struct reloc_entry * entry = reloc_names + i;
29788
29789 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
29790 /* This makes encode_branch() use the EABI versions of this relocation. */
29791 entry->reloc = BFD_RELOC_UNUSED;
29792
29793 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
29794 }
29795 #endif
29796
29797 set_constant_flonums ();
29798
29799 /* Set the cpu variant based on the command-line options. We prefer
29800 -mcpu= over -march= if both are set (as for GCC); and we prefer
29801 -mfpu= over any other way of setting the floating point unit.
29802 Use of legacy options with new options are faulted. */
29803 if (legacy_cpu)
29804 {
29805 if (mcpu_cpu_opt || march_cpu_opt)
29806 as_bad (_("use of old and new-style options to set CPU type"));
29807
29808 selected_arch = *legacy_cpu;
29809 }
29810 else if (mcpu_cpu_opt)
29811 {
29812 selected_arch = *mcpu_cpu_opt;
29813 selected_ext = *mcpu_ext_opt;
29814 }
29815 else if (march_cpu_opt)
29816 {
29817 selected_arch = *march_cpu_opt;
29818 selected_ext = *march_ext_opt;
29819 }
29820 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
29821
29822 if (legacy_fpu)
29823 {
29824 if (mfpu_opt)
29825 as_bad (_("use of old and new-style options to set FPU type"));
29826
29827 selected_fpu = *legacy_fpu;
29828 }
29829 else if (mfpu_opt)
29830 selected_fpu = *mfpu_opt;
29831 else
29832 {
29833 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29834 || defined (TE_NetBSD) || defined (TE_VXWORKS))
29835 /* Some environments specify a default FPU. If they don't, infer it
29836 from the processor. */
29837 if (mcpu_fpu_opt)
29838 selected_fpu = *mcpu_fpu_opt;
29839 else if (march_fpu_opt)
29840 selected_fpu = *march_fpu_opt;
29841 #else
29842 selected_fpu = fpu_default;
29843 #endif
29844 }
29845
29846 if (ARM_FEATURE_ZERO (selected_fpu))
29847 {
29848 if (!no_cpu_selected ())
29849 selected_fpu = fpu_default;
29850 else
29851 selected_fpu = fpu_arch_fpa;
29852 }
29853
29854 #ifdef CPU_DEFAULT
29855 if (ARM_FEATURE_ZERO (selected_arch))
29856 {
29857 selected_arch = cpu_default;
29858 selected_cpu = selected_arch;
29859 }
29860 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29861 #else
29862 /* Autodection of feature mode: allow all features in cpu_variant but leave
29863 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29864 after all instruction have been processed and we can decide what CPU
29865 should be selected. */
29866 if (ARM_FEATURE_ZERO (selected_arch))
29867 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
29868 else
29869 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29870 #endif
29871
29872 autoselect_thumb_from_cpu_variant ();
29873
29874 arm_arch_used = thumb_arch_used = arm_arch_none;
29875
29876 #if defined OBJ_COFF || defined OBJ_ELF
29877 {
29878 unsigned int flags = 0;
29879
29880 #if defined OBJ_ELF
29881 flags = meabi_flags;
29882
29883 switch (meabi_flags)
29884 {
29885 case EF_ARM_EABI_UNKNOWN:
29886 #endif
29887 /* Set the flags in the private structure. */
29888 if (uses_apcs_26) flags |= F_APCS26;
29889 if (support_interwork) flags |= F_INTERWORK;
29890 if (uses_apcs_float) flags |= F_APCS_FLOAT;
29891 if (pic_code) flags |= F_PIC;
29892 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
29893 flags |= F_SOFT_FLOAT;
29894
29895 switch (mfloat_abi_opt)
29896 {
29897 case ARM_FLOAT_ABI_SOFT:
29898 case ARM_FLOAT_ABI_SOFTFP:
29899 flags |= F_SOFT_FLOAT;
29900 break;
29901
29902 case ARM_FLOAT_ABI_HARD:
29903 if (flags & F_SOFT_FLOAT)
29904 as_bad (_("hard-float conflicts with specified fpu"));
29905 break;
29906 }
29907
29908 /* Using pure-endian doubles (even if soft-float). */
29909 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
29910 flags |= F_VFP_FLOAT;
29911
29912 #if defined OBJ_ELF
29913 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
29914 flags |= EF_ARM_MAVERICK_FLOAT;
29915 break;
29916
29917 case EF_ARM_EABI_VER4:
29918 case EF_ARM_EABI_VER5:
29919 /* No additional flags to set. */
29920 break;
29921
29922 default:
29923 abort ();
29924 }
29925 #endif
29926 bfd_set_private_flags (stdoutput, flags);
29927
29928 /* We have run out flags in the COFF header to encode the
29929 status of ATPCS support, so instead we create a dummy,
29930 empty, debug section called .arm.atpcs. */
29931 if (atpcs)
29932 {
29933 asection * sec;
29934
29935 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29936
29937 if (sec != NULL)
29938 {
29939 bfd_set_section_flags
29940 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29941 bfd_set_section_size (stdoutput, sec, 0);
29942 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29943 }
29944 }
29945 }
29946 #endif
29947
29948 /* Record the CPU type as well. */
29949 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29950 mach = bfd_mach_arm_iWMMXt2;
29951 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
29952 mach = bfd_mach_arm_iWMMXt;
29953 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
29954 mach = bfd_mach_arm_XScale;
29955 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
29956 mach = bfd_mach_arm_ep9312;
29957 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
29958 mach = bfd_mach_arm_5TE;
29959 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
29960 {
29961 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29962 mach = bfd_mach_arm_5T;
29963 else
29964 mach = bfd_mach_arm_5;
29965 }
29966 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
29967 {
29968 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29969 mach = bfd_mach_arm_4T;
29970 else
29971 mach = bfd_mach_arm_4;
29972 }
29973 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
29974 mach = bfd_mach_arm_3M;
29975 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29976 mach = bfd_mach_arm_3;
29977 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29978 mach = bfd_mach_arm_2a;
29979 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29980 mach = bfd_mach_arm_2;
29981 else
29982 mach = bfd_mach_arm_unknown;
29983
29984 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29985 }
29986
29987 /* Command line processing. */
29988
29989 /* md_parse_option
29990 Invocation line includes a switch not recognized by the base assembler.
29991 See if it's a processor-specific option.
29992
29993 This routine is somewhat complicated by the need for backwards
29994 compatibility (since older releases of gcc can't be changed).
29995 The new options try to make the interface as compatible as
29996 possible with GCC.
29997
29998 New options (supported) are:
29999
30000 -mcpu=<cpu name> Assemble for selected processor
30001 -march=<architecture name> Assemble for selected architecture
30002 -mfpu=<fpu architecture> Assemble for selected FPU.
30003 -EB/-mbig-endian Big-endian
30004 -EL/-mlittle-endian Little-endian
30005 -k Generate PIC code
30006 -mthumb Start in Thumb mode
30007 -mthumb-interwork Code supports ARM/Thumb interworking
30008
30009 -m[no-]warn-deprecated Warn about deprecated features
30010 -m[no-]warn-syms Warn when symbols match instructions
30011
30012 For now we will also provide support for:
30013
30014 -mapcs-32 32-bit Program counter
30015 -mapcs-26 26-bit Program counter
30016 -macps-float Floats passed in FP registers
30017 -mapcs-reentrant Reentrant code
30018 -matpcs
30019 (sometime these will probably be replaced with -mapcs=<list of options>
30020 and -matpcs=<list of options>)
30021
30022 The remaining options are only supported for back-wards compatibility.
30023 Cpu variants, the arm part is optional:
30024 -m[arm]1 Currently not supported.
30025 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
30026 -m[arm]3 Arm 3 processor
30027 -m[arm]6[xx], Arm 6 processors
30028 -m[arm]7[xx][t][[d]m] Arm 7 processors
30029 -m[arm]8[10] Arm 8 processors
30030 -m[arm]9[20][tdmi] Arm 9 processors
30031 -mstrongarm[110[0]] StrongARM processors
30032 -mxscale XScale processors
30033 -m[arm]v[2345[t[e]]] Arm architectures
30034 -mall All (except the ARM1)
30035 FP variants:
30036 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
30037 -mfpe-old (No float load/store multiples)
30038 -mvfpxd VFP Single precision
30039 -mvfp All VFP
30040 -mno-fpu Disable all floating point instructions
30041
30042 The following CPU names are recognized:
30043 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
30044 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
30045 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
30046 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
30047 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
30048 arm10t arm10e, arm1020t, arm1020e, arm10200e,
30049 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
30050
30051 */
30052
30053 const char * md_shortopts = "m:k";
30054
30055 #ifdef ARM_BI_ENDIAN
30056 #define OPTION_EB (OPTION_MD_BASE + 0)
30057 #define OPTION_EL (OPTION_MD_BASE + 1)
30058 #else
30059 #if TARGET_BYTES_BIG_ENDIAN
30060 #define OPTION_EB (OPTION_MD_BASE + 0)
30061 #else
30062 #define OPTION_EL (OPTION_MD_BASE + 1)
30063 #endif
30064 #endif
30065 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
30066 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
30067
30068 struct option md_longopts[] =
30069 {
30070 #ifdef OPTION_EB
30071 {"EB", no_argument, NULL, OPTION_EB},
30072 #endif
30073 #ifdef OPTION_EL
30074 {"EL", no_argument, NULL, OPTION_EL},
30075 #endif
30076 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
30077 #ifdef OBJ_ELF
30078 {"fdpic", no_argument, NULL, OPTION_FDPIC},
30079 #endif
30080 {NULL, no_argument, NULL, 0}
30081 };
30082
30083 size_t md_longopts_size = sizeof (md_longopts);
30084
30085 struct arm_option_table
30086 {
30087 const char * option; /* Option name to match. */
30088 const char * help; /* Help information. */
30089 int * var; /* Variable to change. */
30090 int value; /* What to change it to. */
30091 const char * deprecated; /* If non-null, print this message. */
30092 };
30093
30094 struct arm_option_table arm_opts[] =
30095 {
30096 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
30097 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
30098 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
30099 &support_interwork, 1, NULL},
30100 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
30101 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
30102 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
30103 1, NULL},
30104 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
30105 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
30106 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
30107 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
30108 NULL},
30109
30110 /* These are recognized by the assembler, but have no affect on code. */
30111 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
30112 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
30113
30114 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
30115 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
30116 &warn_on_deprecated, 0, NULL},
30117 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
30118 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
30119 {NULL, NULL, NULL, 0, NULL}
30120 };
30121
30122 struct arm_legacy_option_table
30123 {
30124 const char * option; /* Option name to match. */
30125 const arm_feature_set ** var; /* Variable to change. */
30126 const arm_feature_set value; /* What to change it to. */
30127 const char * deprecated; /* If non-null, print this message. */
30128 };
30129
30130 const struct arm_legacy_option_table arm_legacy_opts[] =
30131 {
30132 /* DON'T add any new processors to this list -- we want the whole list
30133 to go away... Add them to the processors table instead. */
30134 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
30135 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
30136 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
30137 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
30138 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
30139 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
30140 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
30141 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
30142 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
30143 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
30144 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
30145 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
30146 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
30147 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
30148 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
30149 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
30150 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
30151 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
30152 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
30153 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
30154 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
30155 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
30156 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
30157 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
30158 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
30159 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
30160 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
30161 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
30162 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
30163 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
30164 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
30165 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
30166 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
30167 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
30168 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
30169 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
30170 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
30171 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
30172 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
30173 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
30174 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
30175 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
30176 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
30177 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
30178 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
30179 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
30180 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30181 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30182 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30183 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
30184 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
30185 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
30186 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
30187 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
30188 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
30189 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
30190 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
30191 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
30192 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
30193 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
30194 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
30195 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
30196 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
30197 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
30198 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
30199 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
30200 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
30201 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
30202 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
30203 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
30204 N_("use -mcpu=strongarm110")},
30205 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
30206 N_("use -mcpu=strongarm1100")},
30207 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
30208 N_("use -mcpu=strongarm1110")},
30209 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
30210 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
30211 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
30212
30213 /* Architecture variants -- don't add any more to this list either. */
30214 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
30215 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
30216 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
30217 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
30218 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
30219 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
30220 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
30221 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
30222 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
30223 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
30224 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
30225 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
30226 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
30227 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
30228 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
30229 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
30230 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
30231 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
30232
30233 /* Floating point variants -- don't add any more to this list either. */
30234 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
30235 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
30236 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
30237 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
30238 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
30239
30240 {NULL, NULL, ARM_ARCH_NONE, NULL}
30241 };
30242
30243 struct arm_cpu_option_table
30244 {
30245 const char * name;
30246 size_t name_len;
30247 const arm_feature_set value;
30248 const arm_feature_set ext;
30249 /* For some CPUs we assume an FPU unless the user explicitly sets
30250 -mfpu=... */
30251 const arm_feature_set default_fpu;
30252 /* The canonical name of the CPU, or NULL to use NAME converted to upper
30253 case. */
30254 const char * canonical_name;
30255 };
30256
30257 /* This list should, at a minimum, contain all the cpu names
30258 recognized by GCC. */
30259 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
30260
30261 static const struct arm_cpu_option_table arm_cpus[] =
30262 {
30263 ARM_CPU_OPT ("all", NULL, ARM_ANY,
30264 ARM_ARCH_NONE,
30265 FPU_ARCH_FPA),
30266 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
30267 ARM_ARCH_NONE,
30268 FPU_ARCH_FPA),
30269 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
30270 ARM_ARCH_NONE,
30271 FPU_ARCH_FPA),
30272 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
30273 ARM_ARCH_NONE,
30274 FPU_ARCH_FPA),
30275 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
30276 ARM_ARCH_NONE,
30277 FPU_ARCH_FPA),
30278 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
30279 ARM_ARCH_NONE,
30280 FPU_ARCH_FPA),
30281 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
30282 ARM_ARCH_NONE,
30283 FPU_ARCH_FPA),
30284 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
30285 ARM_ARCH_NONE,
30286 FPU_ARCH_FPA),
30287 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
30288 ARM_ARCH_NONE,
30289 FPU_ARCH_FPA),
30290 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
30291 ARM_ARCH_NONE,
30292 FPU_ARCH_FPA),
30293 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
30294 ARM_ARCH_NONE,
30295 FPU_ARCH_FPA),
30296 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
30297 ARM_ARCH_NONE,
30298 FPU_ARCH_FPA),
30299 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
30300 ARM_ARCH_NONE,
30301 FPU_ARCH_FPA),
30302 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
30303 ARM_ARCH_NONE,
30304 FPU_ARCH_FPA),
30305 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
30306 ARM_ARCH_NONE,
30307 FPU_ARCH_FPA),
30308 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
30309 ARM_ARCH_NONE,
30310 FPU_ARCH_FPA),
30311 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
30312 ARM_ARCH_NONE,
30313 FPU_ARCH_FPA),
30314 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
30315 ARM_ARCH_NONE,
30316 FPU_ARCH_FPA),
30317 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
30318 ARM_ARCH_NONE,
30319 FPU_ARCH_FPA),
30320 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
30321 ARM_ARCH_NONE,
30322 FPU_ARCH_FPA),
30323 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
30324 ARM_ARCH_NONE,
30325 FPU_ARCH_FPA),
30326 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
30327 ARM_ARCH_NONE,
30328 FPU_ARCH_FPA),
30329 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
30330 ARM_ARCH_NONE,
30331 FPU_ARCH_FPA),
30332 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
30333 ARM_ARCH_NONE,
30334 FPU_ARCH_FPA),
30335 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
30336 ARM_ARCH_NONE,
30337 FPU_ARCH_FPA),
30338 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
30339 ARM_ARCH_NONE,
30340 FPU_ARCH_FPA),
30341 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
30342 ARM_ARCH_NONE,
30343 FPU_ARCH_FPA),
30344 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
30345 ARM_ARCH_NONE,
30346 FPU_ARCH_FPA),
30347 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
30348 ARM_ARCH_NONE,
30349 FPU_ARCH_FPA),
30350 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
30351 ARM_ARCH_NONE,
30352 FPU_ARCH_FPA),
30353 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
30354 ARM_ARCH_NONE,
30355 FPU_ARCH_FPA),
30356 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
30357 ARM_ARCH_NONE,
30358 FPU_ARCH_FPA),
30359 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
30360 ARM_ARCH_NONE,
30361 FPU_ARCH_FPA),
30362 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
30363 ARM_ARCH_NONE,
30364 FPU_ARCH_FPA),
30365 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
30366 ARM_ARCH_NONE,
30367 FPU_ARCH_FPA),
30368 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
30369 ARM_ARCH_NONE,
30370 FPU_ARCH_FPA),
30371 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
30372 ARM_ARCH_NONE,
30373 FPU_ARCH_FPA),
30374 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
30375 ARM_ARCH_NONE,
30376 FPU_ARCH_FPA),
30377 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
30378 ARM_ARCH_NONE,
30379 FPU_ARCH_FPA),
30380 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
30381 ARM_ARCH_NONE,
30382 FPU_ARCH_FPA),
30383 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
30384 ARM_ARCH_NONE,
30385 FPU_ARCH_FPA),
30386 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
30387 ARM_ARCH_NONE,
30388 FPU_ARCH_FPA),
30389 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
30390 ARM_ARCH_NONE,
30391 FPU_ARCH_FPA),
30392 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
30393 ARM_ARCH_NONE,
30394 FPU_ARCH_FPA),
30395 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
30396 ARM_ARCH_NONE,
30397 FPU_ARCH_FPA),
30398 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
30399 ARM_ARCH_NONE,
30400 FPU_ARCH_FPA),
30401
30402 /* For V5 or later processors we default to using VFP; but the user
30403 should really set the FPU type explicitly. */
30404 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
30405 ARM_ARCH_NONE,
30406 FPU_ARCH_VFP_V2),
30407 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
30408 ARM_ARCH_NONE,
30409 FPU_ARCH_VFP_V2),
30410 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30411 ARM_ARCH_NONE,
30412 FPU_ARCH_VFP_V2),
30413 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30414 ARM_ARCH_NONE,
30415 FPU_ARCH_VFP_V2),
30416 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
30417 ARM_ARCH_NONE,
30418 FPU_ARCH_VFP_V2),
30419 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
30420 ARM_ARCH_NONE,
30421 FPU_ARCH_VFP_V2),
30422 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
30423 ARM_ARCH_NONE,
30424 FPU_ARCH_VFP_V2),
30425 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
30426 ARM_ARCH_NONE,
30427 FPU_ARCH_VFP_V2),
30428 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
30429 ARM_ARCH_NONE,
30430 FPU_ARCH_VFP_V2),
30431 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
30432 ARM_ARCH_NONE,
30433 FPU_ARCH_VFP_V2),
30434 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
30435 ARM_ARCH_NONE,
30436 FPU_ARCH_VFP_V2),
30437 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
30438 ARM_ARCH_NONE,
30439 FPU_ARCH_VFP_V2),
30440 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
30441 ARM_ARCH_NONE,
30442 FPU_ARCH_VFP_V1),
30443 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
30444 ARM_ARCH_NONE,
30445 FPU_ARCH_VFP_V1),
30446 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
30447 ARM_ARCH_NONE,
30448 FPU_ARCH_VFP_V2),
30449 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
30450 ARM_ARCH_NONE,
30451 FPU_ARCH_VFP_V2),
30452 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
30453 ARM_ARCH_NONE,
30454 FPU_ARCH_VFP_V1),
30455 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
30456 ARM_ARCH_NONE,
30457 FPU_ARCH_VFP_V2),
30458 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
30459 ARM_ARCH_NONE,
30460 FPU_ARCH_VFP_V2),
30461 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
30462 ARM_ARCH_NONE,
30463 FPU_ARCH_VFP_V2),
30464 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
30465 ARM_ARCH_NONE,
30466 FPU_ARCH_VFP_V2),
30467 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
30468 ARM_ARCH_NONE,
30469 FPU_ARCH_VFP_V2),
30470 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
30471 ARM_ARCH_NONE,
30472 FPU_ARCH_VFP_V2),
30473 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
30474 ARM_ARCH_NONE,
30475 FPU_ARCH_VFP_V2),
30476 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
30477 ARM_ARCH_NONE,
30478 FPU_ARCH_VFP_V2),
30479 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
30480 ARM_ARCH_NONE,
30481 FPU_ARCH_VFP_V2),
30482 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
30483 ARM_ARCH_NONE,
30484 FPU_NONE),
30485 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
30486 ARM_ARCH_NONE,
30487 FPU_NONE),
30488 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
30489 ARM_ARCH_NONE,
30490 FPU_ARCH_VFP_V2),
30491 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
30492 ARM_ARCH_NONE,
30493 FPU_ARCH_VFP_V2),
30494 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
30495 ARM_ARCH_NONE,
30496 FPU_ARCH_VFP_V2),
30497 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
30498 ARM_ARCH_NONE,
30499 FPU_NONE),
30500 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
30501 ARM_ARCH_NONE,
30502 FPU_NONE),
30503 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
30504 ARM_ARCH_NONE,
30505 FPU_ARCH_VFP_V2),
30506 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
30507 ARM_ARCH_NONE,
30508 FPU_NONE),
30509 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
30510 ARM_ARCH_NONE,
30511 FPU_ARCH_VFP_V2),
30512 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
30513 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30514 FPU_NONE),
30515 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
30516 ARM_ARCH_NONE,
30517 FPU_ARCH_NEON_VFP_V4),
30518 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
30519 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30520 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30521 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
30522 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30523 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30524 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
30525 ARM_ARCH_NONE,
30526 FPU_ARCH_NEON_VFP_V4),
30527 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
30528 ARM_ARCH_NONE,
30529 FPU_ARCH_NEON_VFP_V4),
30530 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
30531 ARM_ARCH_NONE,
30532 FPU_ARCH_NEON_VFP_V4),
30533 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
30534 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30535 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30536 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
30537 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30538 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30539 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
30540 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30541 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30542 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
30543 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30544 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30545 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
30546 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30547 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30548 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
30549 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30550 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30551 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
30552 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30553 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30554 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
30555 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30556 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30557 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
30558 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30559 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30560 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
30561 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30562 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30563 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
30564 ARM_ARCH_NONE,
30565 FPU_NONE),
30566 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
30567 ARM_ARCH_NONE,
30568 FPU_ARCH_VFP_V3D16),
30569 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
30570 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30571 FPU_NONE),
30572 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
30573 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30574 FPU_ARCH_VFP_V3D16),
30575 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
30576 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30577 FPU_ARCH_VFP_V3D16),
30578 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
30579 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30580 FPU_ARCH_NEON_VFP_ARMV8),
30581 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
30582 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30583 FPU_NONE),
30584 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
30585 ARM_ARCH_NONE,
30586 FPU_NONE),
30587 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
30588 ARM_ARCH_NONE,
30589 FPU_NONE),
30590 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
30591 ARM_ARCH_NONE,
30592 FPU_NONE),
30593 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
30594 ARM_ARCH_NONE,
30595 FPU_NONE),
30596 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
30597 ARM_ARCH_NONE,
30598 FPU_NONE),
30599 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
30600 ARM_ARCH_NONE,
30601 FPU_NONE),
30602 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
30603 ARM_ARCH_NONE,
30604 FPU_NONE),
30605 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
30606 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30607 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30608 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
30609 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30610 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
30611 /* ??? XSCALE is really an architecture. */
30612 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
30613 ARM_ARCH_NONE,
30614 FPU_ARCH_VFP_V2),
30615
30616 /* ??? iwmmxt is not a processor. */
30617 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
30618 ARM_ARCH_NONE,
30619 FPU_ARCH_VFP_V2),
30620 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
30621 ARM_ARCH_NONE,
30622 FPU_ARCH_VFP_V2),
30623 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
30624 ARM_ARCH_NONE,
30625 FPU_ARCH_VFP_V2),
30626
30627 /* Maverick. */
30628 ARM_CPU_OPT ("ep9312", "ARM920T",
30629 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
30630 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
30631
30632 /* Marvell processors. */
30633 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
30634 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30635 FPU_ARCH_VFP_V3D16),
30636 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
30637 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30638 FPU_ARCH_NEON_VFP_V4),
30639
30640 /* APM X-Gene family. */
30641 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
30642 ARM_ARCH_NONE,
30643 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30644 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
30645 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30646 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30647
30648 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30649 };
30650 #undef ARM_CPU_OPT
30651
30652 struct arm_ext_table
30653 {
30654 const char * name;
30655 size_t name_len;
30656 const arm_feature_set merge;
30657 const arm_feature_set clear;
30658 };
30659
30660 struct arm_arch_option_table
30661 {
30662 const char * name;
30663 size_t name_len;
30664 const arm_feature_set value;
30665 const arm_feature_set default_fpu;
30666 const struct arm_ext_table * ext_table;
30667 };
30668
30669 /* Used to add support for +E and +noE extension. */
30670 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
30671 /* Used to add support for a +E extension. */
30672 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
30673 /* Used to add support for a +noE extension. */
30674 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
30675
30676 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
30677 ~0 & ~FPU_ENDIAN_PURE)
30678
30679 static const struct arm_ext_table armv5te_ext_table[] =
30680 {
30681 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
30682 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30683 };
30684
30685 static const struct arm_ext_table armv7_ext_table[] =
30686 {
30687 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30688 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30689 };
30690
30691 static const struct arm_ext_table armv7ve_ext_table[] =
30692 {
30693 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
30694 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
30695 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30696 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30697 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30698 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
30699 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30700
30701 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
30702 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30703
30704 /* Aliases for +simd. */
30705 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30706
30707 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30708 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30709 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30710
30711 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30712 };
30713
30714 static const struct arm_ext_table armv7a_ext_table[] =
30715 {
30716 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30717 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30718 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30719 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30720 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30721 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
30722 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30723
30724 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
30725 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30726
30727 /* Aliases for +simd. */
30728 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30729 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30730
30731 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30732 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30733
30734 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
30735 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
30736 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30737 };
30738
30739 static const struct arm_ext_table armv7r_ext_table[] =
30740 {
30741 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
30742 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
30743 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30744 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30745 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
30746 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30747 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30748 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
30749 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30750 };
30751
30752 static const struct arm_ext_table armv7em_ext_table[] =
30753 {
30754 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
30755 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30756 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
30757 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
30758 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30759 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
30760 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30761 };
30762
30763 static const struct arm_ext_table armv8a_ext_table[] =
30764 {
30765 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30766 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30767 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30768 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30769
30770 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30771 should use the +simd option to turn on FP. */
30772 ARM_REMOVE ("fp", ALL_FP),
30773 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30774 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30775 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30776 };
30777
30778
30779 static const struct arm_ext_table armv81a_ext_table[] =
30780 {
30781 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30782 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30783 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30784
30785 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30786 should use the +simd option to turn on FP. */
30787 ARM_REMOVE ("fp", ALL_FP),
30788 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30789 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30790 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30791 };
30792
30793 static const struct arm_ext_table armv82a_ext_table[] =
30794 {
30795 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30796 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
30797 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
30798 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30799 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30800 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30801
30802 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30803 should use the +simd option to turn on FP. */
30804 ARM_REMOVE ("fp", ALL_FP),
30805 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30806 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30807 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30808 };
30809
30810 static const struct arm_ext_table armv84a_ext_table[] =
30811 {
30812 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30813 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30814 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30815 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30816
30817 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30818 should use the +simd option to turn on FP. */
30819 ARM_REMOVE ("fp", ALL_FP),
30820 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30821 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30822 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30823 };
30824
30825 static const struct arm_ext_table armv85a_ext_table[] =
30826 {
30827 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30828 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30829 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30830 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30831
30832 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30833 should use the +simd option to turn on FP. */
30834 ARM_REMOVE ("fp", ALL_FP),
30835 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30836 };
30837
30838 static const struct arm_ext_table armv8m_main_ext_table[] =
30839 {
30840 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30841 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30842 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
30843 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30844 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30845 };
30846
30847 static const struct arm_ext_table armv8_1m_main_ext_table[] =
30848 {
30849 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30850 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30851 ARM_EXT ("fp",
30852 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30853 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30854 ALL_FP),
30855 ARM_ADD ("fp.dp",
30856 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30857 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30858 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30859 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30860 ARM_ADD ("mve.fp",
30861 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30862 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30863 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30864 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30865 };
30866
30867 static const struct arm_ext_table armv8r_ext_table[] =
30868 {
30869 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30870 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30871 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30872 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30873 ARM_REMOVE ("fp", ALL_FP),
30874 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30875 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30876 };
30877
30878 /* This list should, at a minimum, contain all the architecture names
30879 recognized by GCC. */
30880 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30881 #define ARM_ARCH_OPT2(N, V, DF, ext) \
30882 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
30883
30884 static const struct arm_arch_option_table arm_archs[] =
30885 {
30886 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30887 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30888 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30889 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30890 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30891 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30892 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30893 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30894 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30895 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30896 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30897 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30898 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30899 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
30900 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30901 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30902 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30903 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30904 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30905 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30906 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
30907 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30908 kept to preserve existing behaviour. */
30909 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30910 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30911 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30912 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30913 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
30914 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30915 kept to preserve existing behaviour. */
30916 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30917 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30918 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30919 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
30920 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
30921 /* The official spelling of the ARMv7 profile variants is the dashed form.
30922 Accept the non-dashed form for compatibility with old toolchains. */
30923 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30924 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30925 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30926 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30927 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30928 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30929 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30930 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
30931 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
30932 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30933 armv8m_main),
30934 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30935 armv8_1m_main),
30936 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30937 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30938 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30939 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30940 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30941 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30942 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
30943 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30944 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30945 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
30946 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30947 };
30948 #undef ARM_ARCH_OPT
30949
30950 /* ISA extensions in the co-processor and main instruction set space. */
30951
30952 struct arm_option_extension_value_table
30953 {
30954 const char * name;
30955 size_t name_len;
30956 const arm_feature_set merge_value;
30957 const arm_feature_set clear_value;
30958 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30959 indicates that an extension is available for all architectures while
30960 ARM_ANY marks an empty entry. */
30961 const arm_feature_set allowed_archs[2];
30962 };
30963
30964 /* The following table must be in alphabetical order with a NULL last entry. */
30965
30966 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30967 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
30968
30969 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
30970 use the context sensitive approach using arm_ext_table's. */
30971 static const struct arm_option_extension_value_table arm_extensions[] =
30972 {
30973 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30974 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30975 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30976 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30977 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30978 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30979 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30980 ARM_ARCH_V8_2A),
30981 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30982 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30983 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
30984 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30985 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30986 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30987 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30988 ARM_ARCH_V8_2A),
30989 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30990 | ARM_EXT2_FP16_FML),
30991 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30992 | ARM_EXT2_FP16_FML),
30993 ARM_ARCH_V8_2A),
30994 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30995 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30996 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30997 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30998 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30999 Thumb divide instruction. Due to this having the same name as the
31000 previous entry, this will be ignored when doing command-line parsing and
31001 only considered by build attribute selection code. */
31002 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
31003 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
31004 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
31005 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
31006 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
31007 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
31008 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
31009 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
31010 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
31011 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
31012 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
31013 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
31014 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
31015 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
31016 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
31017 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
31018 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
31019 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
31020 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
31021 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
31022 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
31023 ARM_ARCH_V8A),
31024 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
31025 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
31026 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
31027 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
31028 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
31029 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
31030 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
31031 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
31032 ARM_ARCH_V8A),
31033 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
31034 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
31035 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
31036 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
31037 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
31038 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
31039 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
31040 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
31041 | ARM_EXT_DIV),
31042 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
31043 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
31044 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
31045 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
31046 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
31047 };
31048 #undef ARM_EXT_OPT
31049
31050 /* ISA floating-point and Advanced SIMD extensions. */
31051 struct arm_option_fpu_value_table
31052 {
31053 const char * name;
31054 const arm_feature_set value;
31055 };
31056
31057 /* This list should, at a minimum, contain all the fpu names
31058 recognized by GCC. */
31059 static const struct arm_option_fpu_value_table arm_fpus[] =
31060 {
31061 {"softfpa", FPU_NONE},
31062 {"fpe", FPU_ARCH_FPE},
31063 {"fpe2", FPU_ARCH_FPE},
31064 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
31065 {"fpa", FPU_ARCH_FPA},
31066 {"fpa10", FPU_ARCH_FPA},
31067 {"fpa11", FPU_ARCH_FPA},
31068 {"arm7500fe", FPU_ARCH_FPA},
31069 {"softvfp", FPU_ARCH_VFP},
31070 {"softvfp+vfp", FPU_ARCH_VFP_V2},
31071 {"vfp", FPU_ARCH_VFP_V2},
31072 {"vfp9", FPU_ARCH_VFP_V2},
31073 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
31074 {"vfp10", FPU_ARCH_VFP_V2},
31075 {"vfp10-r0", FPU_ARCH_VFP_V1},
31076 {"vfpxd", FPU_ARCH_VFP_V1xD},
31077 {"vfpv2", FPU_ARCH_VFP_V2},
31078 {"vfpv3", FPU_ARCH_VFP_V3},
31079 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
31080 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
31081 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
31082 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
31083 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
31084 {"arm1020t", FPU_ARCH_VFP_V1},
31085 {"arm1020e", FPU_ARCH_VFP_V2},
31086 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
31087 {"arm1136jf-s", FPU_ARCH_VFP_V2},
31088 {"maverick", FPU_ARCH_MAVERICK},
31089 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
31090 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
31091 {"neon-fp16", FPU_ARCH_NEON_FP16},
31092 {"vfpv4", FPU_ARCH_VFP_V4},
31093 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
31094 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
31095 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
31096 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
31097 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
31098 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
31099 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
31100 {"crypto-neon-fp-armv8",
31101 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
31102 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
31103 {"crypto-neon-fp-armv8.1",
31104 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
31105 {NULL, ARM_ARCH_NONE}
31106 };
31107
31108 struct arm_option_value_table
31109 {
31110 const char *name;
31111 long value;
31112 };
31113
31114 static const struct arm_option_value_table arm_float_abis[] =
31115 {
31116 {"hard", ARM_FLOAT_ABI_HARD},
31117 {"softfp", ARM_FLOAT_ABI_SOFTFP},
31118 {"soft", ARM_FLOAT_ABI_SOFT},
31119 {NULL, 0}
31120 };
31121
31122 #ifdef OBJ_ELF
31123 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
31124 static const struct arm_option_value_table arm_eabis[] =
31125 {
31126 {"gnu", EF_ARM_EABI_UNKNOWN},
31127 {"4", EF_ARM_EABI_VER4},
31128 {"5", EF_ARM_EABI_VER5},
31129 {NULL, 0}
31130 };
31131 #endif
31132
31133 struct arm_long_option_table
31134 {
31135 const char * option; /* Substring to match. */
31136 const char * help; /* Help information. */
31137 int (* func) (const char * subopt); /* Function to decode sub-option. */
31138 const char * deprecated; /* If non-null, print this message. */
31139 };
31140
31141 static bfd_boolean
31142 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
31143 arm_feature_set *ext_set,
31144 const struct arm_ext_table *ext_table)
31145 {
31146 /* We insist on extensions being specified in alphabetical order, and with
31147 extensions being added before being removed. We achieve this by having
31148 the global ARM_EXTENSIONS table in alphabetical order, and using the
31149 ADDING_VALUE variable to indicate whether we are adding an extension (1)
31150 or removing it (0) and only allowing it to change in the order
31151 -1 -> 1 -> 0. */
31152 const struct arm_option_extension_value_table * opt = NULL;
31153 const arm_feature_set arm_any = ARM_ANY;
31154 int adding_value = -1;
31155
31156 while (str != NULL && *str != 0)
31157 {
31158 const char *ext;
31159 size_t len;
31160
31161 if (*str != '+')
31162 {
31163 as_bad (_("invalid architectural extension"));
31164 return FALSE;
31165 }
31166
31167 str++;
31168 ext = strchr (str, '+');
31169
31170 if (ext != NULL)
31171 len = ext - str;
31172 else
31173 len = strlen (str);
31174
31175 if (len >= 2 && strncmp (str, "no", 2) == 0)
31176 {
31177 if (adding_value != 0)
31178 {
31179 adding_value = 0;
31180 opt = arm_extensions;
31181 }
31182
31183 len -= 2;
31184 str += 2;
31185 }
31186 else if (len > 0)
31187 {
31188 if (adding_value == -1)
31189 {
31190 adding_value = 1;
31191 opt = arm_extensions;
31192 }
31193 else if (adding_value != 1)
31194 {
31195 as_bad (_("must specify extensions to add before specifying "
31196 "those to remove"));
31197 return FALSE;
31198 }
31199 }
31200
31201 if (len == 0)
31202 {
31203 as_bad (_("missing architectural extension"));
31204 return FALSE;
31205 }
31206
31207 gas_assert (adding_value != -1);
31208 gas_assert (opt != NULL);
31209
31210 if (ext_table != NULL)
31211 {
31212 const struct arm_ext_table * ext_opt = ext_table;
31213 bfd_boolean found = FALSE;
31214 for (; ext_opt->name != NULL; ext_opt++)
31215 if (ext_opt->name_len == len
31216 && strncmp (ext_opt->name, str, len) == 0)
31217 {
31218 if (adding_value)
31219 {
31220 if (ARM_FEATURE_ZERO (ext_opt->merge))
31221 /* TODO: Option not supported. When we remove the
31222 legacy table this case should error out. */
31223 continue;
31224
31225 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
31226 }
31227 else
31228 {
31229 if (ARM_FEATURE_ZERO (ext_opt->clear))
31230 /* TODO: Option not supported. When we remove the
31231 legacy table this case should error out. */
31232 continue;
31233 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
31234 }
31235 found = TRUE;
31236 break;
31237 }
31238 if (found)
31239 {
31240 str = ext;
31241 continue;
31242 }
31243 }
31244
31245 /* Scan over the options table trying to find an exact match. */
31246 for (; opt->name != NULL; opt++)
31247 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31248 {
31249 int i, nb_allowed_archs =
31250 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31251 /* Check we can apply the extension to this architecture. */
31252 for (i = 0; i < nb_allowed_archs; i++)
31253 {
31254 /* Empty entry. */
31255 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
31256 continue;
31257 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
31258 break;
31259 }
31260 if (i == nb_allowed_archs)
31261 {
31262 as_bad (_("extension does not apply to the base architecture"));
31263 return FALSE;
31264 }
31265
31266 /* Add or remove the extension. */
31267 if (adding_value)
31268 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
31269 else
31270 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
31271
31272 /* Allowing Thumb division instructions for ARMv7 in autodetection
31273 rely on this break so that duplicate extensions (extensions
31274 with the same name as a previous extension in the list) are not
31275 considered for command-line parsing. */
31276 break;
31277 }
31278
31279 if (opt->name == NULL)
31280 {
31281 /* Did we fail to find an extension because it wasn't specified in
31282 alphabetical order, or because it does not exist? */
31283
31284 for (opt = arm_extensions; opt->name != NULL; opt++)
31285 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31286 break;
31287
31288 if (opt->name == NULL)
31289 as_bad (_("unknown architectural extension `%s'"), str);
31290 else
31291 as_bad (_("architectural extensions must be specified in "
31292 "alphabetical order"));
31293
31294 return FALSE;
31295 }
31296 else
31297 {
31298 /* We should skip the extension we've just matched the next time
31299 round. */
31300 opt++;
31301 }
31302
31303 str = ext;
31304 };
31305
31306 return TRUE;
31307 }
31308
31309 static bfd_boolean
31310 arm_parse_fp16_opt (const char *str)
31311 {
31312 if (strcasecmp (str, "ieee") == 0)
31313 fp16_format = ARM_FP16_FORMAT_IEEE;
31314 else if (strcasecmp (str, "alternative") == 0)
31315 fp16_format = ARM_FP16_FORMAT_ALTERNATIVE;
31316 else
31317 {
31318 as_bad (_("unrecognised float16 format \"%s\""), str);
31319 return FALSE;
31320 }
31321
31322 return TRUE;
31323 }
31324
31325 static bfd_boolean
31326 arm_parse_cpu (const char *str)
31327 {
31328 const struct arm_cpu_option_table *opt;
31329 const char *ext = strchr (str, '+');
31330 size_t len;
31331
31332 if (ext != NULL)
31333 len = ext - str;
31334 else
31335 len = strlen (str);
31336
31337 if (len == 0)
31338 {
31339 as_bad (_("missing cpu name `%s'"), str);
31340 return FALSE;
31341 }
31342
31343 for (opt = arm_cpus; opt->name != NULL; opt++)
31344 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31345 {
31346 mcpu_cpu_opt = &opt->value;
31347 if (mcpu_ext_opt == NULL)
31348 mcpu_ext_opt = XNEW (arm_feature_set);
31349 *mcpu_ext_opt = opt->ext;
31350 mcpu_fpu_opt = &opt->default_fpu;
31351 if (opt->canonical_name)
31352 {
31353 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
31354 strcpy (selected_cpu_name, opt->canonical_name);
31355 }
31356 else
31357 {
31358 size_t i;
31359
31360 if (len >= sizeof selected_cpu_name)
31361 len = (sizeof selected_cpu_name) - 1;
31362
31363 for (i = 0; i < len; i++)
31364 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31365 selected_cpu_name[i] = 0;
31366 }
31367
31368 if (ext != NULL)
31369 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
31370
31371 return TRUE;
31372 }
31373
31374 as_bad (_("unknown cpu `%s'"), str);
31375 return FALSE;
31376 }
31377
31378 static bfd_boolean
31379 arm_parse_arch (const char *str)
31380 {
31381 const struct arm_arch_option_table *opt;
31382 const char *ext = strchr (str, '+');
31383 size_t len;
31384
31385 if (ext != NULL)
31386 len = ext - str;
31387 else
31388 len = strlen (str);
31389
31390 if (len == 0)
31391 {
31392 as_bad (_("missing architecture name `%s'"), str);
31393 return FALSE;
31394 }
31395
31396 for (opt = arm_archs; opt->name != NULL; opt++)
31397 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
31398 {
31399 march_cpu_opt = &opt->value;
31400 if (march_ext_opt == NULL)
31401 march_ext_opt = XNEW (arm_feature_set);
31402 *march_ext_opt = arm_arch_none;
31403 march_fpu_opt = &opt->default_fpu;
31404 strcpy (selected_cpu_name, opt->name);
31405
31406 if (ext != NULL)
31407 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
31408 opt->ext_table);
31409
31410 return TRUE;
31411 }
31412
31413 as_bad (_("unknown architecture `%s'\n"), str);
31414 return FALSE;
31415 }
31416
31417 static bfd_boolean
31418 arm_parse_fpu (const char * str)
31419 {
31420 const struct arm_option_fpu_value_table * opt;
31421
31422 for (opt = arm_fpus; opt->name != NULL; opt++)
31423 if (streq (opt->name, str))
31424 {
31425 mfpu_opt = &opt->value;
31426 return TRUE;
31427 }
31428
31429 as_bad (_("unknown floating point format `%s'\n"), str);
31430 return FALSE;
31431 }
31432
31433 static bfd_boolean
31434 arm_parse_float_abi (const char * str)
31435 {
31436 const struct arm_option_value_table * opt;
31437
31438 for (opt = arm_float_abis; opt->name != NULL; opt++)
31439 if (streq (opt->name, str))
31440 {
31441 mfloat_abi_opt = opt->value;
31442 return TRUE;
31443 }
31444
31445 as_bad (_("unknown floating point abi `%s'\n"), str);
31446 return FALSE;
31447 }
31448
31449 #ifdef OBJ_ELF
31450 static bfd_boolean
31451 arm_parse_eabi (const char * str)
31452 {
31453 const struct arm_option_value_table *opt;
31454
31455 for (opt = arm_eabis; opt->name != NULL; opt++)
31456 if (streq (opt->name, str))
31457 {
31458 meabi_flags = opt->value;
31459 return TRUE;
31460 }
31461 as_bad (_("unknown EABI `%s'\n"), str);
31462 return FALSE;
31463 }
31464 #endif
31465
31466 static bfd_boolean
31467 arm_parse_it_mode (const char * str)
31468 {
31469 bfd_boolean ret = TRUE;
31470
31471 if (streq ("arm", str))
31472 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
31473 else if (streq ("thumb", str))
31474 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
31475 else if (streq ("always", str))
31476 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
31477 else if (streq ("never", str))
31478 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
31479 else
31480 {
31481 as_bad (_("unknown implicit IT mode `%s', should be "\
31482 "arm, thumb, always, or never."), str);
31483 ret = FALSE;
31484 }
31485
31486 return ret;
31487 }
31488
31489 static bfd_boolean
31490 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
31491 {
31492 codecomposer_syntax = TRUE;
31493 arm_comment_chars[0] = ';';
31494 arm_line_separator_chars[0] = 0;
31495 return TRUE;
31496 }
31497
31498 struct arm_long_option_table arm_long_opts[] =
31499 {
31500 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
31501 arm_parse_cpu, NULL},
31502 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
31503 arm_parse_arch, NULL},
31504 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
31505 arm_parse_fpu, NULL},
31506 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
31507 arm_parse_float_abi, NULL},
31508 #ifdef OBJ_ELF
31509 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
31510 arm_parse_eabi, NULL},
31511 #endif
31512 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
31513 arm_parse_it_mode, NULL},
31514 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
31515 arm_ccs_mode, NULL},
31516 {"mfp16-format=",
31517 N_("[ieee|alternative]\n\
31518 set the encoding for half precision floating point "
31519 "numbers to IEEE\n\
31520 or Arm alternative format."),
31521 arm_parse_fp16_opt, NULL },
31522 {NULL, NULL, 0, NULL}
31523 };
31524
31525 int
31526 md_parse_option (int c, const char * arg)
31527 {
31528 struct arm_option_table *opt;
31529 const struct arm_legacy_option_table *fopt;
31530 struct arm_long_option_table *lopt;
31531
31532 switch (c)
31533 {
31534 #ifdef OPTION_EB
31535 case OPTION_EB:
31536 target_big_endian = 1;
31537 break;
31538 #endif
31539
31540 #ifdef OPTION_EL
31541 case OPTION_EL:
31542 target_big_endian = 0;
31543 break;
31544 #endif
31545
31546 case OPTION_FIX_V4BX:
31547 fix_v4bx = TRUE;
31548 break;
31549
31550 #ifdef OBJ_ELF
31551 case OPTION_FDPIC:
31552 arm_fdpic = TRUE;
31553 break;
31554 #endif /* OBJ_ELF */
31555
31556 case 'a':
31557 /* Listing option. Just ignore these, we don't support additional
31558 ones. */
31559 return 0;
31560
31561 default:
31562 for (opt = arm_opts; opt->option != NULL; opt++)
31563 {
31564 if (c == opt->option[0]
31565 && ((arg == NULL && opt->option[1] == 0)
31566 || streq (arg, opt->option + 1)))
31567 {
31568 /* If the option is deprecated, tell the user. */
31569 if (warn_on_deprecated && opt->deprecated != NULL)
31570 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31571 arg ? arg : "", _(opt->deprecated));
31572
31573 if (opt->var != NULL)
31574 *opt->var = opt->value;
31575
31576 return 1;
31577 }
31578 }
31579
31580 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
31581 {
31582 if (c == fopt->option[0]
31583 && ((arg == NULL && fopt->option[1] == 0)
31584 || streq (arg, fopt->option + 1)))
31585 {
31586 /* If the option is deprecated, tell the user. */
31587 if (warn_on_deprecated && fopt->deprecated != NULL)
31588 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31589 arg ? arg : "", _(fopt->deprecated));
31590
31591 if (fopt->var != NULL)
31592 *fopt->var = &fopt->value;
31593
31594 return 1;
31595 }
31596 }
31597
31598 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31599 {
31600 /* These options are expected to have an argument. */
31601 if (c == lopt->option[0]
31602 && arg != NULL
31603 && strncmp (arg, lopt->option + 1,
31604 strlen (lopt->option + 1)) == 0)
31605 {
31606 /* If the option is deprecated, tell the user. */
31607 if (warn_on_deprecated && lopt->deprecated != NULL)
31608 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
31609 _(lopt->deprecated));
31610
31611 /* Call the sup-option parser. */
31612 return lopt->func (arg + strlen (lopt->option) - 1);
31613 }
31614 }
31615
31616 return 0;
31617 }
31618
31619 return 1;
31620 }
31621
31622 void
31623 md_show_usage (FILE * fp)
31624 {
31625 struct arm_option_table *opt;
31626 struct arm_long_option_table *lopt;
31627
31628 fprintf (fp, _(" ARM-specific assembler options:\n"));
31629
31630 for (opt = arm_opts; opt->option != NULL; opt++)
31631 if (opt->help != NULL)
31632 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
31633
31634 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31635 if (lopt->help != NULL)
31636 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
31637
31638 #ifdef OPTION_EB
31639 fprintf (fp, _("\
31640 -EB assemble code for a big-endian cpu\n"));
31641 #endif
31642
31643 #ifdef OPTION_EL
31644 fprintf (fp, _("\
31645 -EL assemble code for a little-endian cpu\n"));
31646 #endif
31647
31648 fprintf (fp, _("\
31649 --fix-v4bx Allow BX in ARMv4 code\n"));
31650
31651 #ifdef OBJ_ELF
31652 fprintf (fp, _("\
31653 --fdpic generate an FDPIC object file\n"));
31654 #endif /* OBJ_ELF */
31655 }
31656
31657 #ifdef OBJ_ELF
31658
31659 typedef struct
31660 {
31661 int val;
31662 arm_feature_set flags;
31663 } cpu_arch_ver_table;
31664
31665 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
31666 chronologically for architectures, with an exception for ARMv6-M and
31667 ARMv6S-M due to legacy reasons. No new architecture should have a
31668 special case. This allows for build attribute selection results to be
31669 stable when new architectures are added. */
31670 static const cpu_arch_ver_table cpu_arch_ver[] =
31671 {
31672 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
31673 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
31674 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
31675 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
31676 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
31677 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
31678 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
31679 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
31680 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
31681 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
31682 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
31683 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
31684 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
31685 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
31686 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
31687 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
31688 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
31689 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
31690 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
31691 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
31692 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
31693 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
31694 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
31695 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
31696
31697 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
31698 always selected build attributes to match those of ARMv6-M
31699 (resp. ARMv6S-M). However, due to these architectures being a strict
31700 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
31701 would be selected when fully respecting chronology of architectures.
31702 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
31703 move them before ARMv7 architectures. */
31704 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
31705 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
31706
31707 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
31708 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
31709 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
31710 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
31711 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
31712 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
31713 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
31714 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
31715 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
31716 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
31717 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
31718 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
31719 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
31720 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
31721 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
31722 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
31723 {-1, ARM_ARCH_NONE}
31724 };
31725
31726 /* Set an attribute if it has not already been set by the user. */
31727
31728 static void
31729 aeabi_set_attribute_int (int tag, int value)
31730 {
31731 if (tag < 1
31732 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31733 || !attributes_set_explicitly[tag])
31734 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
31735 }
31736
31737 static void
31738 aeabi_set_attribute_string (int tag, const char *value)
31739 {
31740 if (tag < 1
31741 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31742 || !attributes_set_explicitly[tag])
31743 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
31744 }
31745
31746 /* Return whether features in the *NEEDED feature set are available via
31747 extensions for the architecture whose feature set is *ARCH_FSET. */
31748
31749 static bfd_boolean
31750 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
31751 const arm_feature_set *needed)
31752 {
31753 int i, nb_allowed_archs;
31754 arm_feature_set ext_fset;
31755 const struct arm_option_extension_value_table *opt;
31756
31757 ext_fset = arm_arch_none;
31758 for (opt = arm_extensions; opt->name != NULL; opt++)
31759 {
31760 /* Extension does not provide any feature we need. */
31761 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
31762 continue;
31763
31764 nb_allowed_archs =
31765 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31766 for (i = 0; i < nb_allowed_archs; i++)
31767 {
31768 /* Empty entry. */
31769 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
31770 break;
31771
31772 /* Extension is available, add it. */
31773 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
31774 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
31775 }
31776 }
31777
31778 /* Can we enable all features in *needed? */
31779 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
31780 }
31781
31782 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31783 a given architecture feature set *ARCH_EXT_FSET including extension feature
31784 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31785 - if true, check for an exact match of the architecture modulo extensions;
31786 - otherwise, select build attribute value of the first superset
31787 architecture released so that results remains stable when new architectures
31788 are added.
31789 For -march/-mcpu=all the build attribute value of the most featureful
31790 architecture is returned. Tag_CPU_arch_profile result is returned in
31791 PROFILE. */
31792
31793 static int
31794 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
31795 const arm_feature_set *ext_fset,
31796 char *profile, int exact_match)
31797 {
31798 arm_feature_set arch_fset;
31799 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
31800
31801 /* Select most featureful architecture with all its extensions if building
31802 for -march=all as the feature sets used to set build attributes. */
31803 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
31804 {
31805 /* Force revisiting of decision for each new architecture. */
31806 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
31807 *profile = 'A';
31808 return TAG_CPU_ARCH_V8;
31809 }
31810
31811 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
31812
31813 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
31814 {
31815 arm_feature_set known_arch_fset;
31816
31817 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
31818 if (exact_match)
31819 {
31820 /* Base architecture match user-specified architecture and
31821 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31822 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
31823 {
31824 p_ver_ret = p_ver;
31825 goto found;
31826 }
31827 /* Base architecture match user-specified architecture only
31828 (eg. ARMv6-M in the same case as above). Record it in case we
31829 find a match with above condition. */
31830 else if (p_ver_ret == NULL
31831 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
31832 p_ver_ret = p_ver;
31833 }
31834 else
31835 {
31836
31837 /* Architecture has all features wanted. */
31838 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
31839 {
31840 arm_feature_set added_fset;
31841
31842 /* Compute features added by this architecture over the one
31843 recorded in p_ver_ret. */
31844 if (p_ver_ret != NULL)
31845 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
31846 p_ver_ret->flags);
31847 /* First architecture that match incl. with extensions, or the
31848 only difference in features over the recorded match is
31849 features that were optional and are now mandatory. */
31850 if (p_ver_ret == NULL
31851 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
31852 {
31853 p_ver_ret = p_ver;
31854 goto found;
31855 }
31856 }
31857 else if (p_ver_ret == NULL)
31858 {
31859 arm_feature_set needed_ext_fset;
31860
31861 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
31862
31863 /* Architecture has all features needed when using some
31864 extensions. Record it and continue searching in case there
31865 exist an architecture providing all needed features without
31866 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31867 OS extension). */
31868 if (have_ext_for_needed_feat_p (&known_arch_fset,
31869 &needed_ext_fset))
31870 p_ver_ret = p_ver;
31871 }
31872 }
31873 }
31874
31875 if (p_ver_ret == NULL)
31876 return -1;
31877
31878 found:
31879 /* Tag_CPU_arch_profile. */
31880 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31881 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31882 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31883 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31884 *profile = 'A';
31885 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31886 *profile = 'R';
31887 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31888 *profile = 'M';
31889 else
31890 *profile = '\0';
31891 return p_ver_ret->val;
31892 }
31893
31894 /* Set the public EABI object attributes. */
31895
31896 static void
31897 aeabi_set_public_attributes (void)
31898 {
31899 char profile = '\0';
31900 int arch = -1;
31901 int virt_sec = 0;
31902 int fp16_optional = 0;
31903 int skip_exact_match = 0;
31904 arm_feature_set flags, flags_arch, flags_ext;
31905
31906 /* Autodetection mode, choose the architecture based the instructions
31907 actually used. */
31908 if (no_cpu_selected ())
31909 {
31910 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
31911
31912 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31913 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
31914
31915 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31916 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
31917
31918 /* Code run during relaxation relies on selected_cpu being set. */
31919 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31920 flags_ext = arm_arch_none;
31921 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31922 selected_ext = flags_ext;
31923 selected_cpu = flags;
31924 }
31925 /* Otherwise, choose the architecture based on the capabilities of the
31926 requested cpu. */
31927 else
31928 {
31929 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31930 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31931 flags_ext = selected_ext;
31932 flags = selected_cpu;
31933 }
31934 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
31935
31936 /* Allow the user to override the reported architecture. */
31937 if (!ARM_FEATURE_ZERO (selected_object_arch))
31938 {
31939 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
31940 flags_ext = arm_arch_none;
31941 }
31942 else
31943 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
31944
31945 /* When this function is run again after relaxation has happened there is no
31946 way to determine whether an architecture or CPU was specified by the user:
31947 - selected_cpu is set above for relaxation to work;
31948 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31949 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31950 Therefore, if not in -march=all case we first try an exact match and fall
31951 back to autodetection. */
31952 if (!skip_exact_match)
31953 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31954 if (arch == -1)
31955 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31956 if (arch == -1)
31957 as_bad (_("no architecture contains all the instructions used\n"));
31958
31959 /* Tag_CPU_name. */
31960 if (selected_cpu_name[0])
31961 {
31962 char *q;
31963
31964 q = selected_cpu_name;
31965 if (strncmp (q, "armv", 4) == 0)
31966 {
31967 int i;
31968
31969 q += 4;
31970 for (i = 0; q[i]; i++)
31971 q[i] = TOUPPER (q[i]);
31972 }
31973 aeabi_set_attribute_string (Tag_CPU_name, q);
31974 }
31975
31976 /* Tag_CPU_arch. */
31977 aeabi_set_attribute_int (Tag_CPU_arch, arch);
31978
31979 /* Tag_CPU_arch_profile. */
31980 if (profile != '\0')
31981 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
31982
31983 /* Tag_DSP_extension. */
31984 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
31985 aeabi_set_attribute_int (Tag_DSP_extension, 1);
31986
31987 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31988 /* Tag_ARM_ISA_use. */
31989 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
31990 || ARM_FEATURE_ZERO (flags_arch))
31991 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
31992
31993 /* Tag_THUMB_ISA_use. */
31994 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
31995 || ARM_FEATURE_ZERO (flags_arch))
31996 {
31997 int thumb_isa_use;
31998
31999 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
32000 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
32001 thumb_isa_use = 3;
32002 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
32003 thumb_isa_use = 2;
32004 else
32005 thumb_isa_use = 1;
32006 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
32007 }
32008
32009 /* Tag_VFP_arch. */
32010 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
32011 aeabi_set_attribute_int (Tag_VFP_arch,
32012 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
32013 ? 7 : 8);
32014 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
32015 aeabi_set_attribute_int (Tag_VFP_arch,
32016 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
32017 ? 5 : 6);
32018 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
32019 {
32020 fp16_optional = 1;
32021 aeabi_set_attribute_int (Tag_VFP_arch, 3);
32022 }
32023 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
32024 {
32025 aeabi_set_attribute_int (Tag_VFP_arch, 4);
32026 fp16_optional = 1;
32027 }
32028 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
32029 aeabi_set_attribute_int (Tag_VFP_arch, 2);
32030 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
32031 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
32032 aeabi_set_attribute_int (Tag_VFP_arch, 1);
32033
32034 /* Tag_ABI_HardFP_use. */
32035 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
32036 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
32037 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
32038
32039 /* Tag_WMMX_arch. */
32040 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
32041 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
32042 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
32043 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
32044
32045 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
32046 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
32047 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
32048 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
32049 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
32050 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
32051 {
32052 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
32053 {
32054 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
32055 }
32056 else
32057 {
32058 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
32059 fp16_optional = 1;
32060 }
32061 }
32062
32063 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
32064 aeabi_set_attribute_int (Tag_MVE_arch, 2);
32065 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
32066 aeabi_set_attribute_int (Tag_MVE_arch, 1);
32067
32068 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
32069 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
32070 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
32071
32072 /* Tag_DIV_use.
32073
32074 We set Tag_DIV_use to two when integer divide instructions have been used
32075 in ARM state, or when Thumb integer divide instructions have been used,
32076 but we have no architecture profile set, nor have we any ARM instructions.
32077
32078 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
32079 by the base architecture.
32080
32081 For new architectures we will have to check these tests. */
32082 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
32083 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
32084 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
32085 aeabi_set_attribute_int (Tag_DIV_use, 0);
32086 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
32087 || (profile == '\0'
32088 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
32089 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
32090 aeabi_set_attribute_int (Tag_DIV_use, 2);
32091
32092 /* Tag_MP_extension_use. */
32093 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
32094 aeabi_set_attribute_int (Tag_MPextension_use, 1);
32095
32096 /* Tag Virtualization_use. */
32097 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
32098 virt_sec |= 1;
32099 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
32100 virt_sec |= 2;
32101 if (virt_sec != 0)
32102 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
32103
32104 if (fp16_format != ARM_FP16_FORMAT_DEFAULT)
32105 aeabi_set_attribute_int (Tag_ABI_FP_16bit_format, fp16_format);
32106 }
32107
32108 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
32109 finished and free extension feature bits which will not be used anymore. */
32110
32111 void
32112 arm_md_post_relax (void)
32113 {
32114 aeabi_set_public_attributes ();
32115 XDELETE (mcpu_ext_opt);
32116 mcpu_ext_opt = NULL;
32117 XDELETE (march_ext_opt);
32118 march_ext_opt = NULL;
32119 }
32120
32121 /* Add the default contents for the .ARM.attributes section. */
32122
32123 void
32124 arm_md_end (void)
32125 {
32126 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
32127 return;
32128
32129 aeabi_set_public_attributes ();
32130 }
32131 #endif /* OBJ_ELF */
32132
32133 /* Parse a .cpu directive. */
32134
32135 static void
32136 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
32137 {
32138 const struct arm_cpu_option_table *opt;
32139 char *name;
32140 char saved_char;
32141
32142 name = input_line_pointer;
32143 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32144 input_line_pointer++;
32145 saved_char = *input_line_pointer;
32146 *input_line_pointer = 0;
32147
32148 /* Skip the first "all" entry. */
32149 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
32150 if (streq (opt->name, name))
32151 {
32152 selected_arch = opt->value;
32153 selected_ext = opt->ext;
32154 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32155 if (opt->canonical_name)
32156 strcpy (selected_cpu_name, opt->canonical_name);
32157 else
32158 {
32159 int i;
32160 for (i = 0; opt->name[i]; i++)
32161 selected_cpu_name[i] = TOUPPER (opt->name[i]);
32162
32163 selected_cpu_name[i] = 0;
32164 }
32165 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32166
32167 *input_line_pointer = saved_char;
32168 demand_empty_rest_of_line ();
32169 return;
32170 }
32171 as_bad (_("unknown cpu `%s'"), name);
32172 *input_line_pointer = saved_char;
32173 ignore_rest_of_line ();
32174 }
32175
32176 /* Parse a .arch directive. */
32177
32178 static void
32179 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
32180 {
32181 const struct arm_arch_option_table *opt;
32182 char saved_char;
32183 char *name;
32184
32185 name = input_line_pointer;
32186 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32187 input_line_pointer++;
32188 saved_char = *input_line_pointer;
32189 *input_line_pointer = 0;
32190
32191 /* Skip the first "all" entry. */
32192 for (opt = arm_archs + 1; opt->name != NULL; opt++)
32193 if (streq (opt->name, name))
32194 {
32195 selected_arch = opt->value;
32196 selected_ext = arm_arch_none;
32197 selected_cpu = selected_arch;
32198 strcpy (selected_cpu_name, opt->name);
32199 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32200 *input_line_pointer = saved_char;
32201 demand_empty_rest_of_line ();
32202 return;
32203 }
32204
32205 as_bad (_("unknown architecture `%s'\n"), name);
32206 *input_line_pointer = saved_char;
32207 ignore_rest_of_line ();
32208 }
32209
32210 /* Parse a .object_arch directive. */
32211
32212 static void
32213 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
32214 {
32215 const struct arm_arch_option_table *opt;
32216 char saved_char;
32217 char *name;
32218
32219 name = input_line_pointer;
32220 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32221 input_line_pointer++;
32222 saved_char = *input_line_pointer;
32223 *input_line_pointer = 0;
32224
32225 /* Skip the first "all" entry. */
32226 for (opt = arm_archs + 1; opt->name != NULL; opt++)
32227 if (streq (opt->name, name))
32228 {
32229 selected_object_arch = opt->value;
32230 *input_line_pointer = saved_char;
32231 demand_empty_rest_of_line ();
32232 return;
32233 }
32234
32235 as_bad (_("unknown architecture `%s'\n"), name);
32236 *input_line_pointer = saved_char;
32237 ignore_rest_of_line ();
32238 }
32239
32240 /* Parse a .arch_extension directive. */
32241
32242 static void
32243 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
32244 {
32245 const struct arm_option_extension_value_table *opt;
32246 char saved_char;
32247 char *name;
32248 int adding_value = 1;
32249
32250 name = input_line_pointer;
32251 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32252 input_line_pointer++;
32253 saved_char = *input_line_pointer;
32254 *input_line_pointer = 0;
32255
32256 if (strlen (name) >= 2
32257 && strncmp (name, "no", 2) == 0)
32258 {
32259 adding_value = 0;
32260 name += 2;
32261 }
32262
32263 for (opt = arm_extensions; opt->name != NULL; opt++)
32264 if (streq (opt->name, name))
32265 {
32266 int i, nb_allowed_archs =
32267 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
32268 for (i = 0; i < nb_allowed_archs; i++)
32269 {
32270 /* Empty entry. */
32271 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
32272 continue;
32273 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
32274 break;
32275 }
32276
32277 if (i == nb_allowed_archs)
32278 {
32279 as_bad (_("architectural extension `%s' is not allowed for the "
32280 "current base architecture"), name);
32281 break;
32282 }
32283
32284 if (adding_value)
32285 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
32286 opt->merge_value);
32287 else
32288 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
32289
32290 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
32291 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32292 *input_line_pointer = saved_char;
32293 demand_empty_rest_of_line ();
32294 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
32295 on this return so that duplicate extensions (extensions with the
32296 same name as a previous extension in the list) are not considered
32297 for command-line parsing. */
32298 return;
32299 }
32300
32301 if (opt->name == NULL)
32302 as_bad (_("unknown architecture extension `%s'\n"), name);
32303
32304 *input_line_pointer = saved_char;
32305 ignore_rest_of_line ();
32306 }
32307
32308 /* Parse a .fpu directive. */
32309
32310 static void
32311 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
32312 {
32313 const struct arm_option_fpu_value_table *opt;
32314 char saved_char;
32315 char *name;
32316
32317 name = input_line_pointer;
32318 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
32319 input_line_pointer++;
32320 saved_char = *input_line_pointer;
32321 *input_line_pointer = 0;
32322
32323 for (opt = arm_fpus; opt->name != NULL; opt++)
32324 if (streq (opt->name, name))
32325 {
32326 selected_fpu = opt->value;
32327 #ifndef CPU_DEFAULT
32328 if (no_cpu_selected ())
32329 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
32330 else
32331 #endif
32332 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
32333 *input_line_pointer = saved_char;
32334 demand_empty_rest_of_line ();
32335 return;
32336 }
32337
32338 as_bad (_("unknown floating point format `%s'\n"), name);
32339 *input_line_pointer = saved_char;
32340 ignore_rest_of_line ();
32341 }
32342
32343 /* Copy symbol information. */
32344
32345 void
32346 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
32347 {
32348 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
32349 }
32350
32351 #ifdef OBJ_ELF
32352 /* Given a symbolic attribute NAME, return the proper integer value.
32353 Returns -1 if the attribute is not known. */
32354
32355 int
32356 arm_convert_symbolic_attribute (const char *name)
32357 {
32358 static const struct
32359 {
32360 const char * name;
32361 const int tag;
32362 }
32363 attribute_table[] =
32364 {
32365 /* When you modify this table you should
32366 also modify the list in doc/c-arm.texi. */
32367 #define T(tag) {#tag, tag}
32368 T (Tag_CPU_raw_name),
32369 T (Tag_CPU_name),
32370 T (Tag_CPU_arch),
32371 T (Tag_CPU_arch_profile),
32372 T (Tag_ARM_ISA_use),
32373 T (Tag_THUMB_ISA_use),
32374 T (Tag_FP_arch),
32375 T (Tag_VFP_arch),
32376 T (Tag_WMMX_arch),
32377 T (Tag_Advanced_SIMD_arch),
32378 T (Tag_PCS_config),
32379 T (Tag_ABI_PCS_R9_use),
32380 T (Tag_ABI_PCS_RW_data),
32381 T (Tag_ABI_PCS_RO_data),
32382 T (Tag_ABI_PCS_GOT_use),
32383 T (Tag_ABI_PCS_wchar_t),
32384 T (Tag_ABI_FP_rounding),
32385 T (Tag_ABI_FP_denormal),
32386 T (Tag_ABI_FP_exceptions),
32387 T (Tag_ABI_FP_user_exceptions),
32388 T (Tag_ABI_FP_number_model),
32389 T (Tag_ABI_align_needed),
32390 T (Tag_ABI_align8_needed),
32391 T (Tag_ABI_align_preserved),
32392 T (Tag_ABI_align8_preserved),
32393 T (Tag_ABI_enum_size),
32394 T (Tag_ABI_HardFP_use),
32395 T (Tag_ABI_VFP_args),
32396 T (Tag_ABI_WMMX_args),
32397 T (Tag_ABI_optimization_goals),
32398 T (Tag_ABI_FP_optimization_goals),
32399 T (Tag_compatibility),
32400 T (Tag_CPU_unaligned_access),
32401 T (Tag_FP_HP_extension),
32402 T (Tag_VFP_HP_extension),
32403 T (Tag_ABI_FP_16bit_format),
32404 T (Tag_MPextension_use),
32405 T (Tag_DIV_use),
32406 T (Tag_nodefaults),
32407 T (Tag_also_compatible_with),
32408 T (Tag_conformance),
32409 T (Tag_T2EE_use),
32410 T (Tag_Virtualization_use),
32411 T (Tag_DSP_extension),
32412 T (Tag_MVE_arch),
32413 /* We deliberately do not include Tag_MPextension_use_legacy. */
32414 #undef T
32415 };
32416 unsigned int i;
32417
32418 if (name == NULL)
32419 return -1;
32420
32421 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
32422 if (streq (name, attribute_table[i].name))
32423 return attribute_table[i].tag;
32424
32425 return -1;
32426 }
32427
32428 /* Apply sym value for relocations only in the case that they are for
32429 local symbols in the same segment as the fixup and you have the
32430 respective architectural feature for blx and simple switches. */
32431
32432 int
32433 arm_apply_sym_value (struct fix * fixP, segT this_seg)
32434 {
32435 if (fixP->fx_addsy
32436 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
32437 /* PR 17444: If the local symbol is in a different section then a reloc
32438 will always be generated for it, so applying the symbol value now
32439 will result in a double offset being stored in the relocation. */
32440 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
32441 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
32442 {
32443 switch (fixP->fx_r_type)
32444 {
32445 case BFD_RELOC_ARM_PCREL_BLX:
32446 case BFD_RELOC_THUMB_PCREL_BRANCH23:
32447 if (ARM_IS_FUNC (fixP->fx_addsy))
32448 return 1;
32449 break;
32450
32451 case BFD_RELOC_ARM_PCREL_CALL:
32452 case BFD_RELOC_THUMB_PCREL_BLX:
32453 if (THUMB_IS_FUNC (fixP->fx_addsy))
32454 return 1;
32455 break;
32456
32457 default:
32458 break;
32459 }
32460
32461 }
32462 return 0;
32463 }
32464 #endif /* OBJ_ELF */
This page took 0.764155 seconds and 5 git commands to generate.