2006-04-07 Paul Brook <paul@codesourcery.com>
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include <string.h>
29 #define NO_RELOC 0
30 #include "as.h"
31 #include "safe-ctype.h"
32
33 /* Need TARGET_CPU. */
34 #include "config.h"
35 #include "subsegs.h"
36 #include "obstack.h"
37 #include "symbols.h"
38 #include "listing.h"
39
40 #include "opcode/arm.h"
41
42 #ifdef OBJ_ELF
43 #include "elf/arm.h"
44 #include "dwarf2dbg.h"
45 #include "dw2gencfi.h"
46 #endif
47
48 /* XXX Set this to 1 after the next binutils release. */
49 #define WARN_DEPRECATED 0
50
51 #ifdef OBJ_ELF
52 /* Must be at least the size of the largest unwind opcode (currently two). */
53 #define ARM_OPCODE_CHUNK_SIZE 8
54
55 /* This structure holds the unwinding state. */
56
57 static struct
58 {
59 symbolS * proc_start;
60 symbolS * table_entry;
61 symbolS * personality_routine;
62 int personality_index;
63 /* The segment containing the function. */
64 segT saved_seg;
65 subsegT saved_subseg;
66 /* Opcodes generated from this function. */
67 unsigned char * opcodes;
68 int opcode_count;
69 int opcode_alloc;
70 /* The number of bytes pushed to the stack. */
71 offsetT frame_size;
72 /* We don't add stack adjustment opcodes immediately so that we can merge
73 multiple adjustments. We can also omit the final adjustment
74 when using a frame pointer. */
75 offsetT pending_offset;
76 /* These two fields are set by both unwind_movsp and unwind_setfp. They
77 hold the reg+offset to use when restoring sp from a frame pointer. */
78 offsetT fp_offset;
79 int fp_reg;
80 /* Nonzero if an unwind_setfp directive has been seen. */
81 unsigned fp_used:1;
82 /* Nonzero if the last opcode restores sp from fp_reg. */
83 unsigned sp_restored:1;
84 } unwind;
85
86 /* Bit N indicates that an R_ARM_NONE relocation has been output for
87 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
88 emitted only once per section, to save unnecessary bloat. */
89 static unsigned int marked_pr_dependency = 0;
90
91 #endif /* OBJ_ELF */
92
93 enum arm_float_abi
94 {
95 ARM_FLOAT_ABI_HARD,
96 ARM_FLOAT_ABI_SOFTFP,
97 ARM_FLOAT_ABI_SOFT
98 };
99
100 /* Types of processor to assemble for. */
101 #ifndef CPU_DEFAULT
102 #if defined __XSCALE__
103 #define CPU_DEFAULT ARM_ARCH_XSCALE
104 #else
105 #if defined __thumb__
106 #define CPU_DEFAULT ARM_ARCH_V5T
107 #endif
108 #endif
109 #endif
110
111 #ifndef FPU_DEFAULT
112 # ifdef TE_LINUX
113 # define FPU_DEFAULT FPU_ARCH_FPA
114 # elif defined (TE_NetBSD)
115 # ifdef OBJ_ELF
116 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
117 # else
118 /* Legacy a.out format. */
119 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
120 # endif
121 # elif defined (TE_VXWORKS)
122 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
123 # else
124 /* For backwards compatibility, default to FPA. */
125 # define FPU_DEFAULT FPU_ARCH_FPA
126 # endif
127 #endif /* ifndef FPU_DEFAULT */
128
129 #define streq(a, b) (strcmp (a, b) == 0)
130
131 static arm_feature_set cpu_variant;
132 static arm_feature_set arm_arch_used;
133 static arm_feature_set thumb_arch_used;
134
135 /* Flags stored in private area of BFD structure. */
136 static int uses_apcs_26 = FALSE;
137 static int atpcs = FALSE;
138 static int support_interwork = FALSE;
139 static int uses_apcs_float = FALSE;
140 static int pic_code = FALSE;
141
142 /* Variables that we set while parsing command-line options. Once all
143 options have been read we re-process these values to set the real
144 assembly flags. */
145 static const arm_feature_set *legacy_cpu = NULL;
146 static const arm_feature_set *legacy_fpu = NULL;
147
148 static const arm_feature_set *mcpu_cpu_opt = NULL;
149 static const arm_feature_set *mcpu_fpu_opt = NULL;
150 static const arm_feature_set *march_cpu_opt = NULL;
151 static const arm_feature_set *march_fpu_opt = NULL;
152 static const arm_feature_set *mfpu_opt = NULL;
153
154 /* Constants for known architecture features. */
155 static const arm_feature_set fpu_default = FPU_DEFAULT;
156 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
157 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
158 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
159 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
160 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
161 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
162
163 #ifdef CPU_DEFAULT
164 static const arm_feature_set cpu_default = CPU_DEFAULT;
165 #endif
166
167 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
168 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
169 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
170 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
171 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
172 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
173 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
174 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
175 static const arm_feature_set arm_ext_v4t_5 =
176 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
177 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
178 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
179 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
180 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
181 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
182 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
183 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
184 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
185 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
186 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
187 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
188 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
189 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
190 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
191
192 static const arm_feature_set arm_arch_any = ARM_ANY;
193 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
194 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
195 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
196
197 static const arm_feature_set arm_cext_iwmmxt =
198 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
199 static const arm_feature_set arm_cext_xscale =
200 ARM_FEATURE (0, ARM_CEXT_XSCALE);
201 static const arm_feature_set arm_cext_maverick =
202 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
203 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
204 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
205 static const arm_feature_set fpu_vfp_ext_v1xd =
206 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
207 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
208 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
209
210 static int mfloat_abi_opt = -1;
211 /* Record user cpu selection for object attributes. */
212 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
213 /* Must be long enough to hold any of the names in arm_cpus. */
214 static char selected_cpu_name[16];
215 #ifdef OBJ_ELF
216 # ifdef EABI_DEFAULT
217 static int meabi_flags = EABI_DEFAULT;
218 # else
219 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
220 # endif
221 #endif
222
223 #ifdef OBJ_ELF
224 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
225 symbolS * GOT_symbol;
226 #endif
227
228 /* 0: assemble for ARM,
229 1: assemble for Thumb,
230 2: assemble for Thumb even though target CPU does not support thumb
231 instructions. */
232 static int thumb_mode = 0;
233
234 /* If unified_syntax is true, we are processing the new unified
235 ARM/Thumb syntax. Important differences from the old ARM mode:
236
237 - Immediate operands do not require a # prefix.
238 - Conditional affixes always appear at the end of the
239 instruction. (For backward compatibility, those instructions
240 that formerly had them in the middle, continue to accept them
241 there.)
242 - The IT instruction may appear, and if it does is validated
243 against subsequent conditional affixes. It does not generate
244 machine code.
245
246 Important differences from the old Thumb mode:
247
248 - Immediate operands do not require a # prefix.
249 - Most of the V6T2 instructions are only available in unified mode.
250 - The .N and .W suffixes are recognized and honored (it is an error
251 if they cannot be honored).
252 - All instructions set the flags if and only if they have an 's' affix.
253 - Conditional affixes may be used. They are validated against
254 preceding IT instructions. Unlike ARM mode, you cannot use a
255 conditional affix except in the scope of an IT instruction. */
256
257 static bfd_boolean unified_syntax = FALSE;
258
259 struct arm_it
260 {
261 const char * error;
262 unsigned long instruction;
263 int size;
264 int size_req;
265 int cond;
266 /* Set to the opcode if the instruction needs relaxation.
267 Zero if the instruction is not relaxed. */
268 unsigned long relax;
269 struct
270 {
271 bfd_reloc_code_real_type type;
272 expressionS exp;
273 int pc_rel;
274 } reloc;
275
276 struct
277 {
278 unsigned reg;
279 signed int imm;
280 unsigned present : 1; /* Operand present. */
281 unsigned isreg : 1; /* Operand was a register. */
282 unsigned immisreg : 1; /* .imm field is a second register. */
283 unsigned hasreloc : 1; /* Operand has relocation suffix. */
284 unsigned writeback : 1; /* Operand has trailing ! */
285 unsigned preind : 1; /* Preindexed address. */
286 unsigned postind : 1; /* Postindexed address. */
287 unsigned negative : 1; /* Index register was negated. */
288 unsigned shifted : 1; /* Shift applied to operation. */
289 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
290 } operands[6];
291 };
292
293 static struct arm_it inst;
294
295 #define NUM_FLOAT_VALS 8
296
297 const char * fp_const[] =
298 {
299 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
300 };
301
302 /* Number of littlenums required to hold an extended precision number. */
303 #define MAX_LITTLENUMS 6
304
305 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
306
307 #define FAIL (-1)
308 #define SUCCESS (0)
309
310 #define SUFF_S 1
311 #define SUFF_D 2
312 #define SUFF_E 3
313 #define SUFF_P 4
314
315 #define CP_T_X 0x00008000
316 #define CP_T_Y 0x00400000
317
318 #define CONDS_BIT 0x00100000
319 #define LOAD_BIT 0x00100000
320
321 #define DOUBLE_LOAD_FLAG 0x00000001
322
323 struct asm_cond
324 {
325 const char * template;
326 unsigned long value;
327 };
328
329 #define COND_ALWAYS 0xE
330
331 struct asm_psr
332 {
333 const char *template;
334 unsigned long field;
335 };
336
337 struct asm_barrier_opt
338 {
339 const char *template;
340 unsigned long value;
341 };
342
343 /* The bit that distinguishes CPSR and SPSR. */
344 #define SPSR_BIT (1 << 22)
345
346 /* The individual PSR flag bits. */
347 #define PSR_c (1 << 16)
348 #define PSR_x (1 << 17)
349 #define PSR_s (1 << 18)
350 #define PSR_f (1 << 19)
351
352 struct reloc_entry
353 {
354 char *name;
355 bfd_reloc_code_real_type reloc;
356 };
357
358 enum vfp_sp_reg_pos
359 {
360 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn
361 };
362
363 enum vfp_ldstm_type
364 {
365 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
366 };
367
368 /* ARM register categories. This includes coprocessor numbers and various
369 architecture extensions' registers. */
370 enum arm_reg_type
371 {
372 REG_TYPE_RN,
373 REG_TYPE_CP,
374 REG_TYPE_CN,
375 REG_TYPE_FN,
376 REG_TYPE_VFS,
377 REG_TYPE_VFD,
378 REG_TYPE_VFC,
379 REG_TYPE_MVF,
380 REG_TYPE_MVD,
381 REG_TYPE_MVFX,
382 REG_TYPE_MVDX,
383 REG_TYPE_MVAX,
384 REG_TYPE_DSPSC,
385 REG_TYPE_MMXWR,
386 REG_TYPE_MMXWC,
387 REG_TYPE_MMXWCG,
388 REG_TYPE_XSCALE,
389 };
390
391 /* Structure for a hash table entry for a register. */
392 struct reg_entry
393 {
394 const char *name;
395 unsigned char number;
396 unsigned char type;
397 unsigned char builtin;
398 };
399
400 /* Diagnostics used when we don't get a register of the expected type. */
401 const char *const reg_expected_msgs[] =
402 {
403 N_("ARM register expected"),
404 N_("bad or missing co-processor number"),
405 N_("co-processor register expected"),
406 N_("FPA register expected"),
407 N_("VFP single precision register expected"),
408 N_("VFP double precision register expected"),
409 N_("VFP system register expected"),
410 N_("Maverick MVF register expected"),
411 N_("Maverick MVD register expected"),
412 N_("Maverick MVFX register expected"),
413 N_("Maverick MVDX register expected"),
414 N_("Maverick MVAX register expected"),
415 N_("Maverick DSPSC register expected"),
416 N_("iWMMXt data register expected"),
417 N_("iWMMXt control register expected"),
418 N_("iWMMXt scalar register expected"),
419 N_("XScale accumulator register expected"),
420 };
421
422 /* Some well known registers that we refer to directly elsewhere. */
423 #define REG_SP 13
424 #define REG_LR 14
425 #define REG_PC 15
426
427 /* ARM instructions take 4bytes in the object file, Thumb instructions
428 take 2: */
429 #define INSN_SIZE 4
430
431 struct asm_opcode
432 {
433 /* Basic string to match. */
434 const char *template;
435
436 /* Parameters to instruction. */
437 unsigned char operands[8];
438
439 /* Conditional tag - see opcode_lookup. */
440 unsigned int tag : 4;
441
442 /* Basic instruction code. */
443 unsigned int avalue : 28;
444
445 /* Thumb-format instruction code. */
446 unsigned int tvalue;
447
448 /* Which architecture variant provides this instruction. */
449 const arm_feature_set *avariant;
450 const arm_feature_set *tvariant;
451
452 /* Function to call to encode instruction in ARM format. */
453 void (* aencode) (void);
454
455 /* Function to call to encode instruction in Thumb format. */
456 void (* tencode) (void);
457 };
458
459 /* Defines for various bits that we will want to toggle. */
460 #define INST_IMMEDIATE 0x02000000
461 #define OFFSET_REG 0x02000000
462 #define HWOFFSET_IMM 0x00400000
463 #define SHIFT_BY_REG 0x00000010
464 #define PRE_INDEX 0x01000000
465 #define INDEX_UP 0x00800000
466 #define WRITE_BACK 0x00200000
467 #define LDM_TYPE_2_OR_3 0x00400000
468
469 #define LITERAL_MASK 0xf000f000
470 #define OPCODE_MASK 0xfe1fffff
471 #define V4_STR_BIT 0x00000020
472
473 #define DATA_OP_SHIFT 21
474
475 #define T2_OPCODE_MASK 0xfe1fffff
476 #define T2_DATA_OP_SHIFT 21
477
478 /* Codes to distinguish the arithmetic instructions. */
479 #define OPCODE_AND 0
480 #define OPCODE_EOR 1
481 #define OPCODE_SUB 2
482 #define OPCODE_RSB 3
483 #define OPCODE_ADD 4
484 #define OPCODE_ADC 5
485 #define OPCODE_SBC 6
486 #define OPCODE_RSC 7
487 #define OPCODE_TST 8
488 #define OPCODE_TEQ 9
489 #define OPCODE_CMP 10
490 #define OPCODE_CMN 11
491 #define OPCODE_ORR 12
492 #define OPCODE_MOV 13
493 #define OPCODE_BIC 14
494 #define OPCODE_MVN 15
495
496 #define T2_OPCODE_AND 0
497 #define T2_OPCODE_BIC 1
498 #define T2_OPCODE_ORR 2
499 #define T2_OPCODE_ORN 3
500 #define T2_OPCODE_EOR 4
501 #define T2_OPCODE_ADD 8
502 #define T2_OPCODE_ADC 10
503 #define T2_OPCODE_SBC 11
504 #define T2_OPCODE_SUB 13
505 #define T2_OPCODE_RSB 14
506
507 #define T_OPCODE_MUL 0x4340
508 #define T_OPCODE_TST 0x4200
509 #define T_OPCODE_CMN 0x42c0
510 #define T_OPCODE_NEG 0x4240
511 #define T_OPCODE_MVN 0x43c0
512
513 #define T_OPCODE_ADD_R3 0x1800
514 #define T_OPCODE_SUB_R3 0x1a00
515 #define T_OPCODE_ADD_HI 0x4400
516 #define T_OPCODE_ADD_ST 0xb000
517 #define T_OPCODE_SUB_ST 0xb080
518 #define T_OPCODE_ADD_SP 0xa800
519 #define T_OPCODE_ADD_PC 0xa000
520 #define T_OPCODE_ADD_I8 0x3000
521 #define T_OPCODE_SUB_I8 0x3800
522 #define T_OPCODE_ADD_I3 0x1c00
523 #define T_OPCODE_SUB_I3 0x1e00
524
525 #define T_OPCODE_ASR_R 0x4100
526 #define T_OPCODE_LSL_R 0x4080
527 #define T_OPCODE_LSR_R 0x40c0
528 #define T_OPCODE_ROR_R 0x41c0
529 #define T_OPCODE_ASR_I 0x1000
530 #define T_OPCODE_LSL_I 0x0000
531 #define T_OPCODE_LSR_I 0x0800
532
533 #define T_OPCODE_MOV_I8 0x2000
534 #define T_OPCODE_CMP_I8 0x2800
535 #define T_OPCODE_CMP_LR 0x4280
536 #define T_OPCODE_MOV_HR 0x4600
537 #define T_OPCODE_CMP_HR 0x4500
538
539 #define T_OPCODE_LDR_PC 0x4800
540 #define T_OPCODE_LDR_SP 0x9800
541 #define T_OPCODE_STR_SP 0x9000
542 #define T_OPCODE_LDR_IW 0x6800
543 #define T_OPCODE_STR_IW 0x6000
544 #define T_OPCODE_LDR_IH 0x8800
545 #define T_OPCODE_STR_IH 0x8000
546 #define T_OPCODE_LDR_IB 0x7800
547 #define T_OPCODE_STR_IB 0x7000
548 #define T_OPCODE_LDR_RW 0x5800
549 #define T_OPCODE_STR_RW 0x5000
550 #define T_OPCODE_LDR_RH 0x5a00
551 #define T_OPCODE_STR_RH 0x5200
552 #define T_OPCODE_LDR_RB 0x5c00
553 #define T_OPCODE_STR_RB 0x5400
554
555 #define T_OPCODE_PUSH 0xb400
556 #define T_OPCODE_POP 0xbc00
557
558 #define T_OPCODE_BRANCH 0xe000
559
560 #define THUMB_SIZE 2 /* Size of thumb instruction. */
561 #define THUMB_PP_PC_LR 0x0100
562 #define THUMB_LOAD_BIT 0x0800
563 #define THUMB2_LOAD_BIT 0x00100000
564
565 #define BAD_ARGS _("bad arguments to instruction")
566 #define BAD_PC _("r15 not allowed here")
567 #define BAD_COND _("instruction cannot be conditional")
568 #define BAD_OVERLAP _("registers may not be the same")
569 #define BAD_HIREG _("lo register required")
570 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
571 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
572 #define BAD_BRANCH _("branch must be last instruction in IT block")
573 #define BAD_NOT_IT _("instruction not allowed in IT block")
574
575 static struct hash_control *arm_ops_hsh;
576 static struct hash_control *arm_cond_hsh;
577 static struct hash_control *arm_shift_hsh;
578 static struct hash_control *arm_psr_hsh;
579 static struct hash_control *arm_v7m_psr_hsh;
580 static struct hash_control *arm_reg_hsh;
581 static struct hash_control *arm_reloc_hsh;
582 static struct hash_control *arm_barrier_opt_hsh;
583
584 /* Stuff needed to resolve the label ambiguity
585 As:
586 ...
587 label: <insn>
588 may differ from:
589 ...
590 label:
591 <insn>
592 */
593
594 symbolS * last_label_seen;
595 static int label_is_thumb_function_name = FALSE;
596 \f
597 /* Literal pool structure. Held on a per-section
598 and per-sub-section basis. */
599
600 #define MAX_LITERAL_POOL_SIZE 1024
601 typedef struct literal_pool
602 {
603 expressionS literals [MAX_LITERAL_POOL_SIZE];
604 unsigned int next_free_entry;
605 unsigned int id;
606 symbolS * symbol;
607 segT section;
608 subsegT sub_section;
609 struct literal_pool * next;
610 } literal_pool;
611
612 /* Pointer to a linked list of literal pools. */
613 literal_pool * list_of_pools = NULL;
614
615 /* State variables for IT block handling. */
616 static bfd_boolean current_it_mask = 0;
617 static int current_cc;
618
619 \f
620 /* Pure syntax. */
621
622 /* This array holds the chars that always start a comment. If the
623 pre-processor is disabled, these aren't very useful. */
624 const char comment_chars[] = "@";
625
626 /* This array holds the chars that only start a comment at the beginning of
627 a line. If the line seems to have the form '# 123 filename'
628 .line and .file directives will appear in the pre-processed output. */
629 /* Note that input_file.c hand checks for '#' at the beginning of the
630 first line of the input file. This is because the compiler outputs
631 #NO_APP at the beginning of its output. */
632 /* Also note that comments like this one will always work. */
633 const char line_comment_chars[] = "#";
634
635 const char line_separator_chars[] = ";";
636
637 /* Chars that can be used to separate mant
638 from exp in floating point numbers. */
639 const char EXP_CHARS[] = "eE";
640
641 /* Chars that mean this number is a floating point constant. */
642 /* As in 0f12.456 */
643 /* or 0d1.2345e12 */
644
645 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
646
647 /* Prefix characters that indicate the start of an immediate
648 value. */
649 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
650
651 /* Separator character handling. */
652
653 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
654
655 static inline int
656 skip_past_char (char ** str, char c)
657 {
658 if (**str == c)
659 {
660 (*str)++;
661 return SUCCESS;
662 }
663 else
664 return FAIL;
665 }
666 #define skip_past_comma(str) skip_past_char (str, ',')
667
668 /* Arithmetic expressions (possibly involving symbols). */
669
670 /* Return TRUE if anything in the expression is a bignum. */
671
672 static int
673 walk_no_bignums (symbolS * sp)
674 {
675 if (symbol_get_value_expression (sp)->X_op == O_big)
676 return 1;
677
678 if (symbol_get_value_expression (sp)->X_add_symbol)
679 {
680 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
681 || (symbol_get_value_expression (sp)->X_op_symbol
682 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
683 }
684
685 return 0;
686 }
687
688 static int in_my_get_expression = 0;
689
690 /* Third argument to my_get_expression. */
691 #define GE_NO_PREFIX 0
692 #define GE_IMM_PREFIX 1
693 #define GE_OPT_PREFIX 2
694
695 static int
696 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
697 {
698 char * save_in;
699 segT seg;
700
701 /* In unified syntax, all prefixes are optional. */
702 if (unified_syntax)
703 prefix_mode = GE_OPT_PREFIX;
704
705 switch (prefix_mode)
706 {
707 case GE_NO_PREFIX: break;
708 case GE_IMM_PREFIX:
709 if (!is_immediate_prefix (**str))
710 {
711 inst.error = _("immediate expression requires a # prefix");
712 return FAIL;
713 }
714 (*str)++;
715 break;
716 case GE_OPT_PREFIX:
717 if (is_immediate_prefix (**str))
718 (*str)++;
719 break;
720 default: abort ();
721 }
722
723 memset (ep, 0, sizeof (expressionS));
724
725 save_in = input_line_pointer;
726 input_line_pointer = *str;
727 in_my_get_expression = 1;
728 seg = expression (ep);
729 in_my_get_expression = 0;
730
731 if (ep->X_op == O_illegal)
732 {
733 /* We found a bad expression in md_operand(). */
734 *str = input_line_pointer;
735 input_line_pointer = save_in;
736 if (inst.error == NULL)
737 inst.error = _("bad expression");
738 return 1;
739 }
740
741 #ifdef OBJ_AOUT
742 if (seg != absolute_section
743 && seg != text_section
744 && seg != data_section
745 && seg != bss_section
746 && seg != undefined_section)
747 {
748 inst.error = _("bad segment");
749 *str = input_line_pointer;
750 input_line_pointer = save_in;
751 return 1;
752 }
753 #endif
754
755 /* Get rid of any bignums now, so that we don't generate an error for which
756 we can't establish a line number later on. Big numbers are never valid
757 in instructions, which is where this routine is always called. */
758 if (ep->X_op == O_big
759 || (ep->X_add_symbol
760 && (walk_no_bignums (ep->X_add_symbol)
761 || (ep->X_op_symbol
762 && walk_no_bignums (ep->X_op_symbol)))))
763 {
764 inst.error = _("invalid constant");
765 *str = input_line_pointer;
766 input_line_pointer = save_in;
767 return 1;
768 }
769
770 *str = input_line_pointer;
771 input_line_pointer = save_in;
772 return 0;
773 }
774
775 /* Turn a string in input_line_pointer into a floating point constant
776 of type TYPE, and store the appropriate bytes in *LITP. The number
777 of LITTLENUMS emitted is stored in *SIZEP. An error message is
778 returned, or NULL on OK.
779
780 Note that fp constants aren't represent in the normal way on the ARM.
781 In big endian mode, things are as expected. However, in little endian
782 mode fp constants are big-endian word-wise, and little-endian byte-wise
783 within the words. For example, (double) 1.1 in big endian mode is
784 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
785 the byte sequence 99 99 f1 3f 9a 99 99 99.
786
787 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
788
789 char *
790 md_atof (int type, char * litP, int * sizeP)
791 {
792 int prec;
793 LITTLENUM_TYPE words[MAX_LITTLENUMS];
794 char *t;
795 int i;
796
797 switch (type)
798 {
799 case 'f':
800 case 'F':
801 case 's':
802 case 'S':
803 prec = 2;
804 break;
805
806 case 'd':
807 case 'D':
808 case 'r':
809 case 'R':
810 prec = 4;
811 break;
812
813 case 'x':
814 case 'X':
815 prec = 6;
816 break;
817
818 case 'p':
819 case 'P':
820 prec = 6;
821 break;
822
823 default:
824 *sizeP = 0;
825 return _("bad call to MD_ATOF()");
826 }
827
828 t = atof_ieee (input_line_pointer, type, words);
829 if (t)
830 input_line_pointer = t;
831 *sizeP = prec * 2;
832
833 if (target_big_endian)
834 {
835 for (i = 0; i < prec; i++)
836 {
837 md_number_to_chars (litP, (valueT) words[i], 2);
838 litP += 2;
839 }
840 }
841 else
842 {
843 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
844 for (i = prec - 1; i >= 0; i--)
845 {
846 md_number_to_chars (litP, (valueT) words[i], 2);
847 litP += 2;
848 }
849 else
850 /* For a 4 byte float the order of elements in `words' is 1 0.
851 For an 8 byte float the order is 1 0 3 2. */
852 for (i = 0; i < prec; i += 2)
853 {
854 md_number_to_chars (litP, (valueT) words[i + 1], 2);
855 md_number_to_chars (litP + 2, (valueT) words[i], 2);
856 litP += 4;
857 }
858 }
859
860 return 0;
861 }
862
863 /* We handle all bad expressions here, so that we can report the faulty
864 instruction in the error message. */
865 void
866 md_operand (expressionS * expr)
867 {
868 if (in_my_get_expression)
869 expr->X_op = O_illegal;
870 }
871
872 /* Immediate values. */
873
874 /* Generic immediate-value read function for use in directives.
875 Accepts anything that 'expression' can fold to a constant.
876 *val receives the number. */
877 #ifdef OBJ_ELF
878 static int
879 immediate_for_directive (int *val)
880 {
881 expressionS exp;
882 exp.X_op = O_illegal;
883
884 if (is_immediate_prefix (*input_line_pointer))
885 {
886 input_line_pointer++;
887 expression (&exp);
888 }
889
890 if (exp.X_op != O_constant)
891 {
892 as_bad (_("expected #constant"));
893 ignore_rest_of_line ();
894 return FAIL;
895 }
896 *val = exp.X_add_number;
897 return SUCCESS;
898 }
899 #endif
900
901 /* Register parsing. */
902
903 /* Generic register parser. CCP points to what should be the
904 beginning of a register name. If it is indeed a valid register
905 name, advance CCP over it and return the reg_entry structure;
906 otherwise return NULL. Does not issue diagnostics. */
907
908 static struct reg_entry *
909 arm_reg_parse_multi (char **ccp)
910 {
911 char *start = *ccp;
912 char *p;
913 struct reg_entry *reg;
914
915 #ifdef REGISTER_PREFIX
916 if (*start != REGISTER_PREFIX)
917 return NULL;
918 start++;
919 #endif
920 #ifdef OPTIONAL_REGISTER_PREFIX
921 if (*start == OPTIONAL_REGISTER_PREFIX)
922 start++;
923 #endif
924
925 p = start;
926 if (!ISALPHA (*p) || !is_name_beginner (*p))
927 return NULL;
928
929 do
930 p++;
931 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
932
933 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
934
935 if (!reg)
936 return NULL;
937
938 *ccp = p;
939 return reg;
940 }
941
942 /* As above, but the register must be of type TYPE, and the return
943 value is the register number or FAIL. */
944
945 static int
946 arm_reg_parse (char **ccp, enum arm_reg_type type)
947 {
948 char *start = *ccp;
949 struct reg_entry *reg = arm_reg_parse_multi (ccp);
950
951 if (reg && reg->type == type)
952 return reg->number;
953
954 /* Alternative syntaxes are accepted for a few register classes. */
955 switch (type)
956 {
957 case REG_TYPE_MVF:
958 case REG_TYPE_MVD:
959 case REG_TYPE_MVFX:
960 case REG_TYPE_MVDX:
961 /* Generic coprocessor register names are allowed for these. */
962 if (reg && reg->type == REG_TYPE_CN)
963 return reg->number;
964 break;
965
966 case REG_TYPE_CP:
967 /* For backward compatibility, a bare number is valid here. */
968 {
969 unsigned long processor = strtoul (start, ccp, 10);
970 if (*ccp != start && processor <= 15)
971 return processor;
972 }
973
974 case REG_TYPE_MMXWC:
975 /* WC includes WCG. ??? I'm not sure this is true for all
976 instructions that take WC registers. */
977 if (reg && reg->type == REG_TYPE_MMXWCG)
978 return reg->number;
979 break;
980
981 default:
982 break;
983 }
984
985 *ccp = start;
986 return FAIL;
987 }
988
989 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
990 static long
991 parse_reg_list (char ** strp)
992 {
993 char * str = * strp;
994 long range = 0;
995 int another_range;
996
997 /* We come back here if we get ranges concatenated by '+' or '|'. */
998 do
999 {
1000 another_range = 0;
1001
1002 if (*str == '{')
1003 {
1004 int in_range = 0;
1005 int cur_reg = -1;
1006
1007 str++;
1008 do
1009 {
1010 int reg;
1011
1012 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1013 {
1014 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
1015 return FAIL;
1016 }
1017
1018 if (in_range)
1019 {
1020 int i;
1021
1022 if (reg <= cur_reg)
1023 {
1024 inst.error = _("bad range in register list");
1025 return FAIL;
1026 }
1027
1028 for (i = cur_reg + 1; i < reg; i++)
1029 {
1030 if (range & (1 << i))
1031 as_tsktsk
1032 (_("Warning: duplicated register (r%d) in register list"),
1033 i);
1034 else
1035 range |= 1 << i;
1036 }
1037 in_range = 0;
1038 }
1039
1040 if (range & (1 << reg))
1041 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1042 reg);
1043 else if (reg <= cur_reg)
1044 as_tsktsk (_("Warning: register range not in ascending order"));
1045
1046 range |= 1 << reg;
1047 cur_reg = reg;
1048 }
1049 while (skip_past_comma (&str) != FAIL
1050 || (in_range = 1, *str++ == '-'));
1051 str--;
1052
1053 if (*str++ != '}')
1054 {
1055 inst.error = _("missing `}'");
1056 return FAIL;
1057 }
1058 }
1059 else
1060 {
1061 expressionS expr;
1062
1063 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1064 return FAIL;
1065
1066 if (expr.X_op == O_constant)
1067 {
1068 if (expr.X_add_number
1069 != (expr.X_add_number & 0x0000ffff))
1070 {
1071 inst.error = _("invalid register mask");
1072 return FAIL;
1073 }
1074
1075 if ((range & expr.X_add_number) != 0)
1076 {
1077 int regno = range & expr.X_add_number;
1078
1079 regno &= -regno;
1080 regno = (1 << regno) - 1;
1081 as_tsktsk
1082 (_("Warning: duplicated register (r%d) in register list"),
1083 regno);
1084 }
1085
1086 range |= expr.X_add_number;
1087 }
1088 else
1089 {
1090 if (inst.reloc.type != 0)
1091 {
1092 inst.error = _("expression too complex");
1093 return FAIL;
1094 }
1095
1096 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1097 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1098 inst.reloc.pc_rel = 0;
1099 }
1100 }
1101
1102 if (*str == '|' || *str == '+')
1103 {
1104 str++;
1105 another_range = 1;
1106 }
1107 }
1108 while (another_range);
1109
1110 *strp = str;
1111 return range;
1112 }
1113
1114 /* Parse a VFP register list. If the string is invalid return FAIL.
1115 Otherwise return the number of registers, and set PBASE to the first
1116 register. Double precision registers are matched if DP is nonzero. */
1117
1118 static int
1119 parse_vfp_reg_list (char **str, unsigned int *pbase, int dp)
1120 {
1121 int base_reg;
1122 int new_base;
1123 int regtype;
1124 int max_regs;
1125 int count = 0;
1126 int warned = 0;
1127 unsigned long mask = 0;
1128 int i;
1129
1130 if (**str != '{')
1131 return FAIL;
1132
1133 (*str)++;
1134
1135 if (dp)
1136 {
1137 regtype = REG_TYPE_VFD;
1138 max_regs = 16;
1139 }
1140 else
1141 {
1142 regtype = REG_TYPE_VFS;
1143 max_regs = 32;
1144 }
1145
1146 base_reg = max_regs;
1147
1148 do
1149 {
1150 new_base = arm_reg_parse (str, regtype);
1151 if (new_base == FAIL)
1152 {
1153 inst.error = gettext (reg_expected_msgs[regtype]);
1154 return FAIL;
1155 }
1156
1157 if (new_base < base_reg)
1158 base_reg = new_base;
1159
1160 if (mask & (1 << new_base))
1161 {
1162 inst.error = _("invalid register list");
1163 return FAIL;
1164 }
1165
1166 if ((mask >> new_base) != 0 && ! warned)
1167 {
1168 as_tsktsk (_("register list not in ascending order"));
1169 warned = 1;
1170 }
1171
1172 mask |= 1 << new_base;
1173 count++;
1174
1175 if (**str == '-') /* We have the start of a range expression */
1176 {
1177 int high_range;
1178
1179 (*str)++;
1180
1181 if ((high_range = arm_reg_parse (str, regtype)) == FAIL)
1182 {
1183 inst.error = gettext (reg_expected_msgs[regtype]);
1184 return FAIL;
1185 }
1186
1187 if (high_range <= new_base)
1188 {
1189 inst.error = _("register range not in ascending order");
1190 return FAIL;
1191 }
1192
1193 for (new_base++; new_base <= high_range; new_base++)
1194 {
1195 if (mask & (1 << new_base))
1196 {
1197 inst.error = _("invalid register list");
1198 return FAIL;
1199 }
1200
1201 mask |= 1 << new_base;
1202 count++;
1203 }
1204 }
1205 }
1206 while (skip_past_comma (str) != FAIL);
1207
1208 (*str)++;
1209
1210 /* Sanity check -- should have raised a parse error above. */
1211 if (count == 0 || count > max_regs)
1212 abort ();
1213
1214 *pbase = base_reg;
1215
1216 /* Final test -- the registers must be consecutive. */
1217 mask >>= base_reg;
1218 for (i = 0; i < count; i++)
1219 {
1220 if ((mask & (1u << i)) == 0)
1221 {
1222 inst.error = _("non-contiguous register range");
1223 return FAIL;
1224 }
1225 }
1226
1227 return count;
1228 }
1229
1230 /* Parse an explicit relocation suffix on an expression. This is
1231 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1232 arm_reloc_hsh contains no entries, so this function can only
1233 succeed if there is no () after the word. Returns -1 on error,
1234 BFD_RELOC_UNUSED if there wasn't any suffix. */
1235 static int
1236 parse_reloc (char **str)
1237 {
1238 struct reloc_entry *r;
1239 char *p, *q;
1240
1241 if (**str != '(')
1242 return BFD_RELOC_UNUSED;
1243
1244 p = *str + 1;
1245 q = p;
1246
1247 while (*q && *q != ')' && *q != ',')
1248 q++;
1249 if (*q != ')')
1250 return -1;
1251
1252 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1253 return -1;
1254
1255 *str = q + 1;
1256 return r->reloc;
1257 }
1258
1259 /* Directives: register aliases. */
1260
1261 static void
1262 insert_reg_alias (char *str, int number, int type)
1263 {
1264 struct reg_entry *new;
1265 const char *name;
1266
1267 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1268 {
1269 if (new->builtin)
1270 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
1271
1272 /* Only warn about a redefinition if it's not defined as the
1273 same register. */
1274 else if (new->number != number || new->type != type)
1275 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1276
1277 return;
1278 }
1279
1280 name = xstrdup (str);
1281 new = xmalloc (sizeof (struct reg_entry));
1282
1283 new->name = name;
1284 new->number = number;
1285 new->type = type;
1286 new->builtin = FALSE;
1287
1288 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1289 abort ();
1290 }
1291
1292 /* Look for the .req directive. This is of the form:
1293
1294 new_register_name .req existing_register_name
1295
1296 If we find one, or if it looks sufficiently like one that we want to
1297 handle any error here, return non-zero. Otherwise return zero. */
1298
1299 static int
1300 create_register_alias (char * newname, char *p)
1301 {
1302 struct reg_entry *old;
1303 char *oldname, *nbuf;
1304 size_t nlen;
1305
1306 /* The input scrubber ensures that whitespace after the mnemonic is
1307 collapsed to single spaces. */
1308 oldname = p;
1309 if (strncmp (oldname, " .req ", 6) != 0)
1310 return 0;
1311
1312 oldname += 6;
1313 if (*oldname == '\0')
1314 return 0;
1315
1316 old = hash_find (arm_reg_hsh, oldname);
1317 if (!old)
1318 {
1319 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1320 return 1;
1321 }
1322
1323 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1324 the desired alias name, and p points to its end. If not, then
1325 the desired alias name is in the global original_case_string. */
1326 #ifdef TC_CASE_SENSITIVE
1327 nlen = p - newname;
1328 #else
1329 newname = original_case_string;
1330 nlen = strlen (newname);
1331 #endif
1332
1333 nbuf = alloca (nlen + 1);
1334 memcpy (nbuf, newname, nlen);
1335 nbuf[nlen] = '\0';
1336
1337 /* Create aliases under the new name as stated; an all-lowercase
1338 version of the new name; and an all-uppercase version of the new
1339 name. */
1340 insert_reg_alias (nbuf, old->number, old->type);
1341
1342 for (p = nbuf; *p; p++)
1343 *p = TOUPPER (*p);
1344
1345 if (strncmp (nbuf, newname, nlen))
1346 insert_reg_alias (nbuf, old->number, old->type);
1347
1348 for (p = nbuf; *p; p++)
1349 *p = TOLOWER (*p);
1350
1351 if (strncmp (nbuf, newname, nlen))
1352 insert_reg_alias (nbuf, old->number, old->type);
1353
1354 return 1;
1355 }
1356
1357 /* Should never be called, as .req goes between the alias and the
1358 register name, not at the beginning of the line. */
1359 static void
1360 s_req (int a ATTRIBUTE_UNUSED)
1361 {
1362 as_bad (_("invalid syntax for .req directive"));
1363 }
1364
1365 /* The .unreq directive deletes an alias which was previously defined
1366 by .req. For example:
1367
1368 my_alias .req r11
1369 .unreq my_alias */
1370
1371 static void
1372 s_unreq (int a ATTRIBUTE_UNUSED)
1373 {
1374 char * name;
1375 char saved_char;
1376
1377 name = input_line_pointer;
1378
1379 while (*input_line_pointer != 0
1380 && *input_line_pointer != ' '
1381 && *input_line_pointer != '\n')
1382 ++input_line_pointer;
1383
1384 saved_char = *input_line_pointer;
1385 *input_line_pointer = 0;
1386
1387 if (!*name)
1388 as_bad (_("invalid syntax for .unreq directive"));
1389 else
1390 {
1391 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
1392
1393 if (!reg)
1394 as_bad (_("unknown register alias '%s'"), name);
1395 else if (reg->builtin)
1396 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1397 name);
1398 else
1399 {
1400 hash_delete (arm_reg_hsh, name);
1401 free ((char *) reg->name);
1402 free (reg);
1403 }
1404 }
1405
1406 *input_line_pointer = saved_char;
1407 demand_empty_rest_of_line ();
1408 }
1409
1410 /* Directives: Instruction set selection. */
1411
1412 #ifdef OBJ_ELF
1413 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
1414 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
1415 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1416 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1417
1418 static enum mstate mapstate = MAP_UNDEFINED;
1419
1420 static void
1421 mapping_state (enum mstate state)
1422 {
1423 symbolS * symbolP;
1424 const char * symname;
1425 int type;
1426
1427 if (mapstate == state)
1428 /* The mapping symbol has already been emitted.
1429 There is nothing else to do. */
1430 return;
1431
1432 mapstate = state;
1433
1434 switch (state)
1435 {
1436 case MAP_DATA:
1437 symname = "$d";
1438 type = BSF_NO_FLAGS;
1439 break;
1440 case MAP_ARM:
1441 symname = "$a";
1442 type = BSF_NO_FLAGS;
1443 break;
1444 case MAP_THUMB:
1445 symname = "$t";
1446 type = BSF_NO_FLAGS;
1447 break;
1448 case MAP_UNDEFINED:
1449 return;
1450 default:
1451 abort ();
1452 }
1453
1454 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1455
1456 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
1457 symbol_table_insert (symbolP);
1458 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1459
1460 switch (state)
1461 {
1462 case MAP_ARM:
1463 THUMB_SET_FUNC (symbolP, 0);
1464 ARM_SET_THUMB (symbolP, 0);
1465 ARM_SET_INTERWORK (symbolP, support_interwork);
1466 break;
1467
1468 case MAP_THUMB:
1469 THUMB_SET_FUNC (symbolP, 1);
1470 ARM_SET_THUMB (symbolP, 1);
1471 ARM_SET_INTERWORK (symbolP, support_interwork);
1472 break;
1473
1474 case MAP_DATA:
1475 default:
1476 return;
1477 }
1478 }
1479 #else
1480 #define mapping_state(x) /* nothing */
1481 #endif
1482
1483 /* Find the real, Thumb encoded start of a Thumb function. */
1484
1485 static symbolS *
1486 find_real_start (symbolS * symbolP)
1487 {
1488 char * real_start;
1489 const char * name = S_GET_NAME (symbolP);
1490 symbolS * new_target;
1491
1492 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
1493 #define STUB_NAME ".real_start_of"
1494
1495 if (name == NULL)
1496 abort ();
1497
1498 /* The compiler may generate BL instructions to local labels because
1499 it needs to perform a branch to a far away location. These labels
1500 do not have a corresponding ".real_start_of" label. We check
1501 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
1502 the ".real_start_of" convention for nonlocal branches. */
1503 if (S_IS_LOCAL (symbolP) || name[0] == '.')
1504 return symbolP;
1505
1506 real_start = ACONCAT ((STUB_NAME, name, NULL));
1507 new_target = symbol_find (real_start);
1508
1509 if (new_target == NULL)
1510 {
1511 as_warn ("Failed to find real start of function: %s\n", name);
1512 new_target = symbolP;
1513 }
1514
1515 return new_target;
1516 }
1517
1518 static void
1519 opcode_select (int width)
1520 {
1521 switch (width)
1522 {
1523 case 16:
1524 if (! thumb_mode)
1525 {
1526 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
1527 as_bad (_("selected processor does not support THUMB opcodes"));
1528
1529 thumb_mode = 1;
1530 /* No need to force the alignment, since we will have been
1531 coming from ARM mode, which is word-aligned. */
1532 record_alignment (now_seg, 1);
1533 }
1534 mapping_state (MAP_THUMB);
1535 break;
1536
1537 case 32:
1538 if (thumb_mode)
1539 {
1540 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
1541 as_bad (_("selected processor does not support ARM opcodes"));
1542
1543 thumb_mode = 0;
1544
1545 if (!need_pass_2)
1546 frag_align (2, 0, 0);
1547
1548 record_alignment (now_seg, 1);
1549 }
1550 mapping_state (MAP_ARM);
1551 break;
1552
1553 default:
1554 as_bad (_("invalid instruction size selected (%d)"), width);
1555 }
1556 }
1557
1558 static void
1559 s_arm (int ignore ATTRIBUTE_UNUSED)
1560 {
1561 opcode_select (32);
1562 demand_empty_rest_of_line ();
1563 }
1564
1565 static void
1566 s_thumb (int ignore ATTRIBUTE_UNUSED)
1567 {
1568 opcode_select (16);
1569 demand_empty_rest_of_line ();
1570 }
1571
1572 static void
1573 s_code (int unused ATTRIBUTE_UNUSED)
1574 {
1575 int temp;
1576
1577 temp = get_absolute_expression ();
1578 switch (temp)
1579 {
1580 case 16:
1581 case 32:
1582 opcode_select (temp);
1583 break;
1584
1585 default:
1586 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
1587 }
1588 }
1589
1590 static void
1591 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
1592 {
1593 /* If we are not already in thumb mode go into it, EVEN if
1594 the target processor does not support thumb instructions.
1595 This is used by gcc/config/arm/lib1funcs.asm for example
1596 to compile interworking support functions even if the
1597 target processor should not support interworking. */
1598 if (! thumb_mode)
1599 {
1600 thumb_mode = 2;
1601 record_alignment (now_seg, 1);
1602 }
1603
1604 demand_empty_rest_of_line ();
1605 }
1606
1607 static void
1608 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
1609 {
1610 s_thumb (0);
1611
1612 /* The following label is the name/address of the start of a Thumb function.
1613 We need to know this for the interworking support. */
1614 label_is_thumb_function_name = TRUE;
1615 }
1616
1617 /* Perform a .set directive, but also mark the alias as
1618 being a thumb function. */
1619
1620 static void
1621 s_thumb_set (int equiv)
1622 {
1623 /* XXX the following is a duplicate of the code for s_set() in read.c
1624 We cannot just call that code as we need to get at the symbol that
1625 is created. */
1626 char * name;
1627 char delim;
1628 char * end_name;
1629 symbolS * symbolP;
1630
1631 /* Especial apologies for the random logic:
1632 This just grew, and could be parsed much more simply!
1633 Dean - in haste. */
1634 name = input_line_pointer;
1635 delim = get_symbol_end ();
1636 end_name = input_line_pointer;
1637 *end_name = delim;
1638
1639 if (*input_line_pointer != ',')
1640 {
1641 *end_name = 0;
1642 as_bad (_("expected comma after name \"%s\""), name);
1643 *end_name = delim;
1644 ignore_rest_of_line ();
1645 return;
1646 }
1647
1648 input_line_pointer++;
1649 *end_name = 0;
1650
1651 if (name[0] == '.' && name[1] == '\0')
1652 {
1653 /* XXX - this should not happen to .thumb_set. */
1654 abort ();
1655 }
1656
1657 if ((symbolP = symbol_find (name)) == NULL
1658 && (symbolP = md_undefined_symbol (name)) == NULL)
1659 {
1660 #ifndef NO_LISTING
1661 /* When doing symbol listings, play games with dummy fragments living
1662 outside the normal fragment chain to record the file and line info
1663 for this symbol. */
1664 if (listing & LISTING_SYMBOLS)
1665 {
1666 extern struct list_info_struct * listing_tail;
1667 fragS * dummy_frag = xmalloc (sizeof (fragS));
1668
1669 memset (dummy_frag, 0, sizeof (fragS));
1670 dummy_frag->fr_type = rs_fill;
1671 dummy_frag->line = listing_tail;
1672 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
1673 dummy_frag->fr_symbol = symbolP;
1674 }
1675 else
1676 #endif
1677 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
1678
1679 #ifdef OBJ_COFF
1680 /* "set" symbols are local unless otherwise specified. */
1681 SF_SET_LOCAL (symbolP);
1682 #endif /* OBJ_COFF */
1683 } /* Make a new symbol. */
1684
1685 symbol_table_insert (symbolP);
1686
1687 * end_name = delim;
1688
1689 if (equiv
1690 && S_IS_DEFINED (symbolP)
1691 && S_GET_SEGMENT (symbolP) != reg_section)
1692 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
1693
1694 pseudo_set (symbolP);
1695
1696 demand_empty_rest_of_line ();
1697
1698 /* XXX Now we come to the Thumb specific bit of code. */
1699
1700 THUMB_SET_FUNC (symbolP, 1);
1701 ARM_SET_THUMB (symbolP, 1);
1702 #if defined OBJ_ELF || defined OBJ_COFF
1703 ARM_SET_INTERWORK (symbolP, support_interwork);
1704 #endif
1705 }
1706
1707 /* Directives: Mode selection. */
1708
1709 /* .syntax [unified|divided] - choose the new unified syntax
1710 (same for Arm and Thumb encoding, modulo slight differences in what
1711 can be represented) or the old divergent syntax for each mode. */
1712 static void
1713 s_syntax (int unused ATTRIBUTE_UNUSED)
1714 {
1715 char *name, delim;
1716
1717 name = input_line_pointer;
1718 delim = get_symbol_end ();
1719
1720 if (!strcasecmp (name, "unified"))
1721 unified_syntax = TRUE;
1722 else if (!strcasecmp (name, "divided"))
1723 unified_syntax = FALSE;
1724 else
1725 {
1726 as_bad (_("unrecognized syntax mode \"%s\""), name);
1727 return;
1728 }
1729 *input_line_pointer = delim;
1730 demand_empty_rest_of_line ();
1731 }
1732
1733 /* Directives: sectioning and alignment. */
1734
1735 /* Same as s_align_ptwo but align 0 => align 2. */
1736
1737 static void
1738 s_align (int unused ATTRIBUTE_UNUSED)
1739 {
1740 int temp;
1741 long temp_fill;
1742 long max_alignment = 15;
1743
1744 temp = get_absolute_expression ();
1745 if (temp > max_alignment)
1746 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
1747 else if (temp < 0)
1748 {
1749 as_bad (_("alignment negative. 0 assumed."));
1750 temp = 0;
1751 }
1752
1753 if (*input_line_pointer == ',')
1754 {
1755 input_line_pointer++;
1756 temp_fill = get_absolute_expression ();
1757 }
1758 else
1759 temp_fill = 0;
1760
1761 if (!temp)
1762 temp = 2;
1763
1764 /* Only make a frag if we HAVE to. */
1765 if (temp && !need_pass_2)
1766 frag_align (temp, (int) temp_fill, 0);
1767 demand_empty_rest_of_line ();
1768
1769 record_alignment (now_seg, temp);
1770 }
1771
1772 static void
1773 s_bss (int ignore ATTRIBUTE_UNUSED)
1774 {
1775 /* We don't support putting frags in the BSS segment, we fake it by
1776 marking in_bss, then looking at s_skip for clues. */
1777 subseg_set (bss_section, 0);
1778 demand_empty_rest_of_line ();
1779 mapping_state (MAP_DATA);
1780 }
1781
1782 static void
1783 s_even (int ignore ATTRIBUTE_UNUSED)
1784 {
1785 /* Never make frag if expect extra pass. */
1786 if (!need_pass_2)
1787 frag_align (1, 0, 0);
1788
1789 record_alignment (now_seg, 1);
1790
1791 demand_empty_rest_of_line ();
1792 }
1793
1794 /* Directives: Literal pools. */
1795
1796 static literal_pool *
1797 find_literal_pool (void)
1798 {
1799 literal_pool * pool;
1800
1801 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1802 {
1803 if (pool->section == now_seg
1804 && pool->sub_section == now_subseg)
1805 break;
1806 }
1807
1808 return pool;
1809 }
1810
1811 static literal_pool *
1812 find_or_make_literal_pool (void)
1813 {
1814 /* Next literal pool ID number. */
1815 static unsigned int latest_pool_num = 1;
1816 literal_pool * pool;
1817
1818 pool = find_literal_pool ();
1819
1820 if (pool == NULL)
1821 {
1822 /* Create a new pool. */
1823 pool = xmalloc (sizeof (* pool));
1824 if (! pool)
1825 return NULL;
1826
1827 pool->next_free_entry = 0;
1828 pool->section = now_seg;
1829 pool->sub_section = now_subseg;
1830 pool->next = list_of_pools;
1831 pool->symbol = NULL;
1832
1833 /* Add it to the list. */
1834 list_of_pools = pool;
1835 }
1836
1837 /* New pools, and emptied pools, will have a NULL symbol. */
1838 if (pool->symbol == NULL)
1839 {
1840 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1841 (valueT) 0, &zero_address_frag);
1842 pool->id = latest_pool_num ++;
1843 }
1844
1845 /* Done. */
1846 return pool;
1847 }
1848
1849 /* Add the literal in the global 'inst'
1850 structure to the relevent literal pool. */
1851
1852 static int
1853 add_to_lit_pool (void)
1854 {
1855 literal_pool * pool;
1856 unsigned int entry;
1857
1858 pool = find_or_make_literal_pool ();
1859
1860 /* Check if this literal value is already in the pool. */
1861 for (entry = 0; entry < pool->next_free_entry; entry ++)
1862 {
1863 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
1864 && (inst.reloc.exp.X_op == O_constant)
1865 && (pool->literals[entry].X_add_number
1866 == inst.reloc.exp.X_add_number)
1867 && (pool->literals[entry].X_unsigned
1868 == inst.reloc.exp.X_unsigned))
1869 break;
1870
1871 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
1872 && (inst.reloc.exp.X_op == O_symbol)
1873 && (pool->literals[entry].X_add_number
1874 == inst.reloc.exp.X_add_number)
1875 && (pool->literals[entry].X_add_symbol
1876 == inst.reloc.exp.X_add_symbol)
1877 && (pool->literals[entry].X_op_symbol
1878 == inst.reloc.exp.X_op_symbol))
1879 break;
1880 }
1881
1882 /* Do we need to create a new entry? */
1883 if (entry == pool->next_free_entry)
1884 {
1885 if (entry >= MAX_LITERAL_POOL_SIZE)
1886 {
1887 inst.error = _("literal pool overflow");
1888 return FAIL;
1889 }
1890
1891 pool->literals[entry] = inst.reloc.exp;
1892 pool->next_free_entry += 1;
1893 }
1894
1895 inst.reloc.exp.X_op = O_symbol;
1896 inst.reloc.exp.X_add_number = ((int) entry) * 4;
1897 inst.reloc.exp.X_add_symbol = pool->symbol;
1898
1899 return SUCCESS;
1900 }
1901
1902 /* Can't use symbol_new here, so have to create a symbol and then at
1903 a later date assign it a value. Thats what these functions do. */
1904
1905 static void
1906 symbol_locate (symbolS * symbolP,
1907 const char * name, /* It is copied, the caller can modify. */
1908 segT segment, /* Segment identifier (SEG_<something>). */
1909 valueT valu, /* Symbol value. */
1910 fragS * frag) /* Associated fragment. */
1911 {
1912 unsigned int name_length;
1913 char * preserved_copy_of_name;
1914
1915 name_length = strlen (name) + 1; /* +1 for \0. */
1916 obstack_grow (&notes, name, name_length);
1917 preserved_copy_of_name = obstack_finish (&notes);
1918
1919 #ifdef tc_canonicalize_symbol_name
1920 preserved_copy_of_name =
1921 tc_canonicalize_symbol_name (preserved_copy_of_name);
1922 #endif
1923
1924 S_SET_NAME (symbolP, preserved_copy_of_name);
1925
1926 S_SET_SEGMENT (symbolP, segment);
1927 S_SET_VALUE (symbolP, valu);
1928 symbol_clear_list_pointers (symbolP);
1929
1930 symbol_set_frag (symbolP, frag);
1931
1932 /* Link to end of symbol chain. */
1933 {
1934 extern int symbol_table_frozen;
1935
1936 if (symbol_table_frozen)
1937 abort ();
1938 }
1939
1940 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
1941
1942 obj_symbol_new_hook (symbolP);
1943
1944 #ifdef tc_symbol_new_hook
1945 tc_symbol_new_hook (symbolP);
1946 #endif
1947
1948 #ifdef DEBUG_SYMS
1949 verify_symbol_chain (symbol_rootP, symbol_lastP);
1950 #endif /* DEBUG_SYMS */
1951 }
1952
1953
1954 static void
1955 s_ltorg (int ignored ATTRIBUTE_UNUSED)
1956 {
1957 unsigned int entry;
1958 literal_pool * pool;
1959 char sym_name[20];
1960
1961 pool = find_literal_pool ();
1962 if (pool == NULL
1963 || pool->symbol == NULL
1964 || pool->next_free_entry == 0)
1965 return;
1966
1967 mapping_state (MAP_DATA);
1968
1969 /* Align pool as you have word accesses.
1970 Only make a frag if we have to. */
1971 if (!need_pass_2)
1972 frag_align (2, 0, 0);
1973
1974 record_alignment (now_seg, 2);
1975
1976 sprintf (sym_name, "$$lit_\002%x", pool->id);
1977
1978 symbol_locate (pool->symbol, sym_name, now_seg,
1979 (valueT) frag_now_fix (), frag_now);
1980 symbol_table_insert (pool->symbol);
1981
1982 ARM_SET_THUMB (pool->symbol, thumb_mode);
1983
1984 #if defined OBJ_COFF || defined OBJ_ELF
1985 ARM_SET_INTERWORK (pool->symbol, support_interwork);
1986 #endif
1987
1988 for (entry = 0; entry < pool->next_free_entry; entry ++)
1989 /* First output the expression in the instruction to the pool. */
1990 emit_expr (&(pool->literals[entry]), 4); /* .word */
1991
1992 /* Mark the pool as empty. */
1993 pool->next_free_entry = 0;
1994 pool->symbol = NULL;
1995 }
1996
1997 #ifdef OBJ_ELF
1998 /* Forward declarations for functions below, in the MD interface
1999 section. */
2000 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2001 static valueT create_unwind_entry (int);
2002 static void start_unwind_section (const segT, int);
2003 static void add_unwind_opcode (valueT, int);
2004 static void flush_pending_unwind (void);
2005
2006 /* Directives: Data. */
2007
2008 static void
2009 s_arm_elf_cons (int nbytes)
2010 {
2011 expressionS exp;
2012
2013 #ifdef md_flush_pending_output
2014 md_flush_pending_output ();
2015 #endif
2016
2017 if (is_it_end_of_statement ())
2018 {
2019 demand_empty_rest_of_line ();
2020 return;
2021 }
2022
2023 #ifdef md_cons_align
2024 md_cons_align (nbytes);
2025 #endif
2026
2027 mapping_state (MAP_DATA);
2028 do
2029 {
2030 int reloc;
2031 char *base = input_line_pointer;
2032
2033 expression (& exp);
2034
2035 if (exp.X_op != O_symbol)
2036 emit_expr (&exp, (unsigned int) nbytes);
2037 else
2038 {
2039 char *before_reloc = input_line_pointer;
2040 reloc = parse_reloc (&input_line_pointer);
2041 if (reloc == -1)
2042 {
2043 as_bad (_("unrecognized relocation suffix"));
2044 ignore_rest_of_line ();
2045 return;
2046 }
2047 else if (reloc == BFD_RELOC_UNUSED)
2048 emit_expr (&exp, (unsigned int) nbytes);
2049 else
2050 {
2051 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2052 int size = bfd_get_reloc_size (howto);
2053
2054 if (reloc == BFD_RELOC_ARM_PLT32)
2055 {
2056 as_bad (_("(plt) is only valid on branch targets"));
2057 reloc = BFD_RELOC_UNUSED;
2058 size = 0;
2059 }
2060
2061 if (size > nbytes)
2062 as_bad (_("%s relocations do not fit in %d bytes"),
2063 howto->name, nbytes);
2064 else
2065 {
2066 /* We've parsed an expression stopping at O_symbol.
2067 But there may be more expression left now that we
2068 have parsed the relocation marker. Parse it again.
2069 XXX Surely there is a cleaner way to do this. */
2070 char *p = input_line_pointer;
2071 int offset;
2072 char *save_buf = alloca (input_line_pointer - base);
2073 memcpy (save_buf, base, input_line_pointer - base);
2074 memmove (base + (input_line_pointer - before_reloc),
2075 base, before_reloc - base);
2076
2077 input_line_pointer = base + (input_line_pointer-before_reloc);
2078 expression (&exp);
2079 memcpy (base, save_buf, p - base);
2080
2081 offset = nbytes - size;
2082 p = frag_more ((int) nbytes);
2083 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
2084 size, &exp, 0, reloc);
2085 }
2086 }
2087 }
2088 }
2089 while (*input_line_pointer++ == ',');
2090
2091 /* Put terminator back into stream. */
2092 input_line_pointer --;
2093 demand_empty_rest_of_line ();
2094 }
2095
2096
2097 /* Parse a .rel31 directive. */
2098
2099 static void
2100 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
2101 {
2102 expressionS exp;
2103 char *p;
2104 valueT highbit;
2105
2106 highbit = 0;
2107 if (*input_line_pointer == '1')
2108 highbit = 0x80000000;
2109 else if (*input_line_pointer != '0')
2110 as_bad (_("expected 0 or 1"));
2111
2112 input_line_pointer++;
2113 if (*input_line_pointer != ',')
2114 as_bad (_("missing comma"));
2115 input_line_pointer++;
2116
2117 #ifdef md_flush_pending_output
2118 md_flush_pending_output ();
2119 #endif
2120
2121 #ifdef md_cons_align
2122 md_cons_align (4);
2123 #endif
2124
2125 mapping_state (MAP_DATA);
2126
2127 expression (&exp);
2128
2129 p = frag_more (4);
2130 md_number_to_chars (p, highbit, 4);
2131 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
2132 BFD_RELOC_ARM_PREL31);
2133
2134 demand_empty_rest_of_line ();
2135 }
2136
2137 /* Directives: AEABI stack-unwind tables. */
2138
2139 /* Parse an unwind_fnstart directive. Simply records the current location. */
2140
2141 static void
2142 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
2143 {
2144 demand_empty_rest_of_line ();
2145 /* Mark the start of the function. */
2146 unwind.proc_start = expr_build_dot ();
2147
2148 /* Reset the rest of the unwind info. */
2149 unwind.opcode_count = 0;
2150 unwind.table_entry = NULL;
2151 unwind.personality_routine = NULL;
2152 unwind.personality_index = -1;
2153 unwind.frame_size = 0;
2154 unwind.fp_offset = 0;
2155 unwind.fp_reg = 13;
2156 unwind.fp_used = 0;
2157 unwind.sp_restored = 0;
2158 }
2159
2160
2161 /* Parse a handlerdata directive. Creates the exception handling table entry
2162 for the function. */
2163
2164 static void
2165 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
2166 {
2167 demand_empty_rest_of_line ();
2168 if (unwind.table_entry)
2169 as_bad (_("dupicate .handlerdata directive"));
2170
2171 create_unwind_entry (1);
2172 }
2173
2174 /* Parse an unwind_fnend directive. Generates the index table entry. */
2175
2176 static void
2177 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
2178 {
2179 long where;
2180 char *ptr;
2181 valueT val;
2182
2183 demand_empty_rest_of_line ();
2184
2185 /* Add eh table entry. */
2186 if (unwind.table_entry == NULL)
2187 val = create_unwind_entry (0);
2188 else
2189 val = 0;
2190
2191 /* Add index table entry. This is two words. */
2192 start_unwind_section (unwind.saved_seg, 1);
2193 frag_align (2, 0, 0);
2194 record_alignment (now_seg, 2);
2195
2196 ptr = frag_more (8);
2197 where = frag_now_fix () - 8;
2198
2199 /* Self relative offset of the function start. */
2200 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
2201 BFD_RELOC_ARM_PREL31);
2202
2203 /* Indicate dependency on EHABI-defined personality routines to the
2204 linker, if it hasn't been done already. */
2205 if (unwind.personality_index >= 0 && unwind.personality_index < 3
2206 && !(marked_pr_dependency & (1 << unwind.personality_index)))
2207 {
2208 static const char *const name[] = {
2209 "__aeabi_unwind_cpp_pr0",
2210 "__aeabi_unwind_cpp_pr1",
2211 "__aeabi_unwind_cpp_pr2"
2212 };
2213 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
2214 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
2215 marked_pr_dependency |= 1 << unwind.personality_index;
2216 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
2217 = marked_pr_dependency;
2218 }
2219
2220 if (val)
2221 /* Inline exception table entry. */
2222 md_number_to_chars (ptr + 4, val, 4);
2223 else
2224 /* Self relative offset of the table entry. */
2225 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
2226 BFD_RELOC_ARM_PREL31);
2227
2228 /* Restore the original section. */
2229 subseg_set (unwind.saved_seg, unwind.saved_subseg);
2230 }
2231
2232
2233 /* Parse an unwind_cantunwind directive. */
2234
2235 static void
2236 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
2237 {
2238 demand_empty_rest_of_line ();
2239 if (unwind.personality_routine || unwind.personality_index != -1)
2240 as_bad (_("personality routine specified for cantunwind frame"));
2241
2242 unwind.personality_index = -2;
2243 }
2244
2245
2246 /* Parse a personalityindex directive. */
2247
2248 static void
2249 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
2250 {
2251 expressionS exp;
2252
2253 if (unwind.personality_routine || unwind.personality_index != -1)
2254 as_bad (_("duplicate .personalityindex directive"));
2255
2256 expression (&exp);
2257
2258 if (exp.X_op != O_constant
2259 || exp.X_add_number < 0 || exp.X_add_number > 15)
2260 {
2261 as_bad (_("bad personality routine number"));
2262 ignore_rest_of_line ();
2263 return;
2264 }
2265
2266 unwind.personality_index = exp.X_add_number;
2267
2268 demand_empty_rest_of_line ();
2269 }
2270
2271
2272 /* Parse a personality directive. */
2273
2274 static void
2275 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
2276 {
2277 char *name, *p, c;
2278
2279 if (unwind.personality_routine || unwind.personality_index != -1)
2280 as_bad (_("duplicate .personality directive"));
2281
2282 name = input_line_pointer;
2283 c = get_symbol_end ();
2284 p = input_line_pointer;
2285 unwind.personality_routine = symbol_find_or_make (name);
2286 *p = c;
2287 demand_empty_rest_of_line ();
2288 }
2289
2290
2291 /* Parse a directive saving core registers. */
2292
2293 static void
2294 s_arm_unwind_save_core (void)
2295 {
2296 valueT op;
2297 long range;
2298 int n;
2299
2300 range = parse_reg_list (&input_line_pointer);
2301 if (range == FAIL)
2302 {
2303 as_bad (_("expected register list"));
2304 ignore_rest_of_line ();
2305 return;
2306 }
2307
2308 demand_empty_rest_of_line ();
2309
2310 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
2311 into .unwind_save {..., sp...}. We aren't bothered about the value of
2312 ip because it is clobbered by calls. */
2313 if (unwind.sp_restored && unwind.fp_reg == 12
2314 && (range & 0x3000) == 0x1000)
2315 {
2316 unwind.opcode_count--;
2317 unwind.sp_restored = 0;
2318 range = (range | 0x2000) & ~0x1000;
2319 unwind.pending_offset = 0;
2320 }
2321
2322 /* Pop r4-r15. */
2323 if (range & 0xfff0)
2324 {
2325 /* See if we can use the short opcodes. These pop a block of up to 8
2326 registers starting with r4, plus maybe r14. */
2327 for (n = 0; n < 8; n++)
2328 {
2329 /* Break at the first non-saved register. */
2330 if ((range & (1 << (n + 4))) == 0)
2331 break;
2332 }
2333 /* See if there are any other bits set. */
2334 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
2335 {
2336 /* Use the long form. */
2337 op = 0x8000 | ((range >> 4) & 0xfff);
2338 add_unwind_opcode (op, 2);
2339 }
2340 else
2341 {
2342 /* Use the short form. */
2343 if (range & 0x4000)
2344 op = 0xa8; /* Pop r14. */
2345 else
2346 op = 0xa0; /* Do not pop r14. */
2347 op |= (n - 1);
2348 add_unwind_opcode (op, 1);
2349 }
2350 }
2351
2352 /* Pop r0-r3. */
2353 if (range & 0xf)
2354 {
2355 op = 0xb100 | (range & 0xf);
2356 add_unwind_opcode (op, 2);
2357 }
2358
2359 /* Record the number of bytes pushed. */
2360 for (n = 0; n < 16; n++)
2361 {
2362 if (range & (1 << n))
2363 unwind.frame_size += 4;
2364 }
2365 }
2366
2367
2368 /* Parse a directive saving FPA registers. */
2369
2370 static void
2371 s_arm_unwind_save_fpa (int reg)
2372 {
2373 expressionS exp;
2374 int num_regs;
2375 valueT op;
2376
2377 /* Get Number of registers to transfer. */
2378 if (skip_past_comma (&input_line_pointer) != FAIL)
2379 expression (&exp);
2380 else
2381 exp.X_op = O_illegal;
2382
2383 if (exp.X_op != O_constant)
2384 {
2385 as_bad (_("expected , <constant>"));
2386 ignore_rest_of_line ();
2387 return;
2388 }
2389
2390 num_regs = exp.X_add_number;
2391
2392 if (num_regs < 1 || num_regs > 4)
2393 {
2394 as_bad (_("number of registers must be in the range [1:4]"));
2395 ignore_rest_of_line ();
2396 return;
2397 }
2398
2399 demand_empty_rest_of_line ();
2400
2401 if (reg == 4)
2402 {
2403 /* Short form. */
2404 op = 0xb4 | (num_regs - 1);
2405 add_unwind_opcode (op, 1);
2406 }
2407 else
2408 {
2409 /* Long form. */
2410 op = 0xc800 | (reg << 4) | (num_regs - 1);
2411 add_unwind_opcode (op, 2);
2412 }
2413 unwind.frame_size += num_regs * 12;
2414 }
2415
2416
2417 /* Parse a directive saving VFP registers. */
2418
2419 static void
2420 s_arm_unwind_save_vfp (void)
2421 {
2422 int count;
2423 unsigned int reg;
2424 valueT op;
2425
2426 count = parse_vfp_reg_list (&input_line_pointer, &reg, 1);
2427 if (count == FAIL)
2428 {
2429 as_bad (_("expected register list"));
2430 ignore_rest_of_line ();
2431 return;
2432 }
2433
2434 demand_empty_rest_of_line ();
2435
2436 if (reg == 8)
2437 {
2438 /* Short form. */
2439 op = 0xb8 | (count - 1);
2440 add_unwind_opcode (op, 1);
2441 }
2442 else
2443 {
2444 /* Long form. */
2445 op = 0xb300 | (reg << 4) | (count - 1);
2446 add_unwind_opcode (op, 2);
2447 }
2448 unwind.frame_size += count * 8 + 4;
2449 }
2450
2451
2452 /* Parse a directive saving iWMMXt data registers. */
2453
2454 static void
2455 s_arm_unwind_save_mmxwr (void)
2456 {
2457 int reg;
2458 int hi_reg;
2459 int i;
2460 unsigned mask = 0;
2461 valueT op;
2462
2463 if (*input_line_pointer == '{')
2464 input_line_pointer++;
2465
2466 do
2467 {
2468 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
2469
2470 if (reg == FAIL)
2471 {
2472 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
2473 goto error;
2474 }
2475
2476 if (mask >> reg)
2477 as_tsktsk (_("register list not in ascending order"));
2478 mask |= 1 << reg;
2479
2480 if (*input_line_pointer == '-')
2481 {
2482 input_line_pointer++;
2483 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
2484 if (hi_reg == FAIL)
2485 {
2486 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
2487 goto error;
2488 }
2489 else if (reg >= hi_reg)
2490 {
2491 as_bad (_("bad register range"));
2492 goto error;
2493 }
2494 for (; reg < hi_reg; reg++)
2495 mask |= 1 << reg;
2496 }
2497 }
2498 while (skip_past_comma (&input_line_pointer) != FAIL);
2499
2500 if (*input_line_pointer == '}')
2501 input_line_pointer++;
2502
2503 demand_empty_rest_of_line ();
2504
2505 /* Generate any deferred opcodes becuuse we're going to be looking at
2506 the list. */
2507 flush_pending_unwind ();
2508
2509 for (i = 0; i < 16; i++)
2510 {
2511 if (mask & (1 << i))
2512 unwind.frame_size += 8;
2513 }
2514
2515 /* Attempt to combine with a previous opcode. We do this because gcc
2516 likes to output separate unwind directives for a single block of
2517 registers. */
2518 if (unwind.opcode_count > 0)
2519 {
2520 i = unwind.opcodes[unwind.opcode_count - 1];
2521 if ((i & 0xf8) == 0xc0)
2522 {
2523 i &= 7;
2524 /* Only merge if the blocks are contiguous. */
2525 if (i < 6)
2526 {
2527 if ((mask & 0xfe00) == (1 << 9))
2528 {
2529 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
2530 unwind.opcode_count--;
2531 }
2532 }
2533 else if (i == 6 && unwind.opcode_count >= 2)
2534 {
2535 i = unwind.opcodes[unwind.opcode_count - 2];
2536 reg = i >> 4;
2537 i &= 0xf;
2538
2539 op = 0xffff << (reg - 1);
2540 if (reg > 0
2541 || ((mask & op) == (1u << (reg - 1))))
2542 {
2543 op = (1 << (reg + i + 1)) - 1;
2544 op &= ~((1 << reg) - 1);
2545 mask |= op;
2546 unwind.opcode_count -= 2;
2547 }
2548 }
2549 }
2550 }
2551
2552 hi_reg = 15;
2553 /* We want to generate opcodes in the order the registers have been
2554 saved, ie. descending order. */
2555 for (reg = 15; reg >= -1; reg--)
2556 {
2557 /* Save registers in blocks. */
2558 if (reg < 0
2559 || !(mask & (1 << reg)))
2560 {
2561 /* We found an unsaved reg. Generate opcodes to save the
2562 preceeding block. */
2563 if (reg != hi_reg)
2564 {
2565 if (reg == 9)
2566 {
2567 /* Short form. */
2568 op = 0xc0 | (hi_reg - 10);
2569 add_unwind_opcode (op, 1);
2570 }
2571 else
2572 {
2573 /* Long form. */
2574 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
2575 add_unwind_opcode (op, 2);
2576 }
2577 }
2578 hi_reg = reg - 1;
2579 }
2580 }
2581
2582 return;
2583 error:
2584 ignore_rest_of_line ();
2585 }
2586
2587 static void
2588 s_arm_unwind_save_mmxwcg (void)
2589 {
2590 int reg;
2591 int hi_reg;
2592 unsigned mask = 0;
2593 valueT op;
2594
2595 if (*input_line_pointer == '{')
2596 input_line_pointer++;
2597
2598 do
2599 {
2600 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
2601
2602 if (reg == FAIL)
2603 {
2604 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
2605 goto error;
2606 }
2607
2608 reg -= 8;
2609 if (mask >> reg)
2610 as_tsktsk (_("register list not in ascending order"));
2611 mask |= 1 << reg;
2612
2613 if (*input_line_pointer == '-')
2614 {
2615 input_line_pointer++;
2616 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
2617 if (hi_reg == FAIL)
2618 {
2619 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
2620 goto error;
2621 }
2622 else if (reg >= hi_reg)
2623 {
2624 as_bad (_("bad register range"));
2625 goto error;
2626 }
2627 for (; reg < hi_reg; reg++)
2628 mask |= 1 << reg;
2629 }
2630 }
2631 while (skip_past_comma (&input_line_pointer) != FAIL);
2632
2633 if (*input_line_pointer == '}')
2634 input_line_pointer++;
2635
2636 demand_empty_rest_of_line ();
2637
2638 /* Generate any deferred opcodes becuuse we're going to be looking at
2639 the list. */
2640 flush_pending_unwind ();
2641
2642 for (reg = 0; reg < 16; reg++)
2643 {
2644 if (mask & (1 << reg))
2645 unwind.frame_size += 4;
2646 }
2647 op = 0xc700 | mask;
2648 add_unwind_opcode (op, 2);
2649 return;
2650 error:
2651 ignore_rest_of_line ();
2652 }
2653
2654
2655 /* Parse an unwind_save directive. */
2656
2657 static void
2658 s_arm_unwind_save (int ignored ATTRIBUTE_UNUSED)
2659 {
2660 char *peek;
2661 struct reg_entry *reg;
2662 bfd_boolean had_brace = FALSE;
2663
2664 /* Figure out what sort of save we have. */
2665 peek = input_line_pointer;
2666
2667 if (*peek == '{')
2668 {
2669 had_brace = TRUE;
2670 peek++;
2671 }
2672
2673 reg = arm_reg_parse_multi (&peek);
2674
2675 if (!reg)
2676 {
2677 as_bad (_("register expected"));
2678 ignore_rest_of_line ();
2679 return;
2680 }
2681
2682 switch (reg->type)
2683 {
2684 case REG_TYPE_FN:
2685 if (had_brace)
2686 {
2687 as_bad (_("FPA .unwind_save does not take a register list"));
2688 ignore_rest_of_line ();
2689 return;
2690 }
2691 s_arm_unwind_save_fpa (reg->number);
2692 return;
2693
2694 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
2695 case REG_TYPE_VFD: s_arm_unwind_save_vfp (); return;
2696 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
2697 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
2698
2699 default:
2700 as_bad (_(".unwind_save does not support this kind of register"));
2701 ignore_rest_of_line ();
2702 }
2703 }
2704
2705
2706 /* Parse an unwind_movsp directive. */
2707
2708 static void
2709 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
2710 {
2711 int reg;
2712 valueT op;
2713
2714 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
2715 if (reg == FAIL)
2716 {
2717 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
2718 ignore_rest_of_line ();
2719 return;
2720 }
2721 demand_empty_rest_of_line ();
2722
2723 if (reg == REG_SP || reg == REG_PC)
2724 {
2725 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
2726 return;
2727 }
2728
2729 if (unwind.fp_reg != REG_SP)
2730 as_bad (_("unexpected .unwind_movsp directive"));
2731
2732 /* Generate opcode to restore the value. */
2733 op = 0x90 | reg;
2734 add_unwind_opcode (op, 1);
2735
2736 /* Record the information for later. */
2737 unwind.fp_reg = reg;
2738 unwind.fp_offset = unwind.frame_size;
2739 unwind.sp_restored = 1;
2740 }
2741
2742 /* Parse an unwind_pad directive. */
2743
2744 static void
2745 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
2746 {
2747 int offset;
2748
2749 if (immediate_for_directive (&offset) == FAIL)
2750 return;
2751
2752 if (offset & 3)
2753 {
2754 as_bad (_("stack increment must be multiple of 4"));
2755 ignore_rest_of_line ();
2756 return;
2757 }
2758
2759 /* Don't generate any opcodes, just record the details for later. */
2760 unwind.frame_size += offset;
2761 unwind.pending_offset += offset;
2762
2763 demand_empty_rest_of_line ();
2764 }
2765
2766 /* Parse an unwind_setfp directive. */
2767
2768 static void
2769 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
2770 {
2771 int sp_reg;
2772 int fp_reg;
2773 int offset;
2774
2775 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
2776 if (skip_past_comma (&input_line_pointer) == FAIL)
2777 sp_reg = FAIL;
2778 else
2779 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
2780
2781 if (fp_reg == FAIL || sp_reg == FAIL)
2782 {
2783 as_bad (_("expected <reg>, <reg>"));
2784 ignore_rest_of_line ();
2785 return;
2786 }
2787
2788 /* Optional constant. */
2789 if (skip_past_comma (&input_line_pointer) != FAIL)
2790 {
2791 if (immediate_for_directive (&offset) == FAIL)
2792 return;
2793 }
2794 else
2795 offset = 0;
2796
2797 demand_empty_rest_of_line ();
2798
2799 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
2800 {
2801 as_bad (_("register must be either sp or set by a previous"
2802 "unwind_movsp directive"));
2803 return;
2804 }
2805
2806 /* Don't generate any opcodes, just record the information for later. */
2807 unwind.fp_reg = fp_reg;
2808 unwind.fp_used = 1;
2809 if (sp_reg == 13)
2810 unwind.fp_offset = unwind.frame_size - offset;
2811 else
2812 unwind.fp_offset -= offset;
2813 }
2814
2815 /* Parse an unwind_raw directive. */
2816
2817 static void
2818 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
2819 {
2820 expressionS exp;
2821 /* This is an arbitary limit. */
2822 unsigned char op[16];
2823 int count;
2824
2825 expression (&exp);
2826 if (exp.X_op == O_constant
2827 && skip_past_comma (&input_line_pointer) != FAIL)
2828 {
2829 unwind.frame_size += exp.X_add_number;
2830 expression (&exp);
2831 }
2832 else
2833 exp.X_op = O_illegal;
2834
2835 if (exp.X_op != O_constant)
2836 {
2837 as_bad (_("expected <offset>, <opcode>"));
2838 ignore_rest_of_line ();
2839 return;
2840 }
2841
2842 count = 0;
2843
2844 /* Parse the opcode. */
2845 for (;;)
2846 {
2847 if (count >= 16)
2848 {
2849 as_bad (_("unwind opcode too long"));
2850 ignore_rest_of_line ();
2851 }
2852 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
2853 {
2854 as_bad (_("invalid unwind opcode"));
2855 ignore_rest_of_line ();
2856 return;
2857 }
2858 op[count++] = exp.X_add_number;
2859
2860 /* Parse the next byte. */
2861 if (skip_past_comma (&input_line_pointer) == FAIL)
2862 break;
2863
2864 expression (&exp);
2865 }
2866
2867 /* Add the opcode bytes in reverse order. */
2868 while (count--)
2869 add_unwind_opcode (op[count], 1);
2870
2871 demand_empty_rest_of_line ();
2872 }
2873
2874
2875 /* Parse a .eabi_attribute directive. */
2876
2877 static void
2878 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
2879 {
2880 expressionS exp;
2881 bfd_boolean is_string;
2882 int tag;
2883 unsigned int i = 0;
2884 char *s = NULL;
2885 char saved_char;
2886
2887 expression (& exp);
2888 if (exp.X_op != O_constant)
2889 goto bad;
2890
2891 tag = exp.X_add_number;
2892 if (tag == 4 || tag == 5 || tag == 32 || (tag > 32 && (tag & 1) != 0))
2893 is_string = 1;
2894 else
2895 is_string = 0;
2896
2897 if (skip_past_comma (&input_line_pointer) == FAIL)
2898 goto bad;
2899 if (tag == 32 || !is_string)
2900 {
2901 expression (& exp);
2902 if (exp.X_op != O_constant)
2903 {
2904 as_bad (_("expected numeric constant"));
2905 ignore_rest_of_line ();
2906 return;
2907 }
2908 i = exp.X_add_number;
2909 }
2910 if (tag == Tag_compatibility
2911 && skip_past_comma (&input_line_pointer) == FAIL)
2912 {
2913 as_bad (_("expected comma"));
2914 ignore_rest_of_line ();
2915 return;
2916 }
2917 if (is_string)
2918 {
2919 skip_whitespace(input_line_pointer);
2920 if (*input_line_pointer != '"')
2921 goto bad_string;
2922 input_line_pointer++;
2923 s = input_line_pointer;
2924 while (*input_line_pointer && *input_line_pointer != '"')
2925 input_line_pointer++;
2926 if (*input_line_pointer != '"')
2927 goto bad_string;
2928 saved_char = *input_line_pointer;
2929 *input_line_pointer = 0;
2930 }
2931 else
2932 {
2933 s = NULL;
2934 saved_char = 0;
2935 }
2936
2937 if (tag == Tag_compatibility)
2938 elf32_arm_add_eabi_attr_compat (stdoutput, i, s);
2939 else if (is_string)
2940 elf32_arm_add_eabi_attr_string (stdoutput, tag, s);
2941 else
2942 elf32_arm_add_eabi_attr_int (stdoutput, tag, i);
2943
2944 if (s)
2945 {
2946 *input_line_pointer = saved_char;
2947 input_line_pointer++;
2948 }
2949 demand_empty_rest_of_line ();
2950 return;
2951 bad_string:
2952 as_bad (_("bad string constant"));
2953 ignore_rest_of_line ();
2954 return;
2955 bad:
2956 as_bad (_("expected <tag> , <value>"));
2957 ignore_rest_of_line ();
2958 }
2959
2960 static void s_arm_arch (int);
2961 static void s_arm_cpu (int);
2962 static void s_arm_fpu (int);
2963 #endif /* OBJ_ELF */
2964
2965 /* This table describes all the machine specific pseudo-ops the assembler
2966 has to support. The fields are:
2967 pseudo-op name without dot
2968 function to call to execute this pseudo-op
2969 Integer arg to pass to the function. */
2970
2971 const pseudo_typeS md_pseudo_table[] =
2972 {
2973 /* Never called because '.req' does not start a line. */
2974 { "req", s_req, 0 },
2975 { "unreq", s_unreq, 0 },
2976 { "bss", s_bss, 0 },
2977 { "align", s_align, 0 },
2978 { "arm", s_arm, 0 },
2979 { "thumb", s_thumb, 0 },
2980 { "code", s_code, 0 },
2981 { "force_thumb", s_force_thumb, 0 },
2982 { "thumb_func", s_thumb_func, 0 },
2983 { "thumb_set", s_thumb_set, 0 },
2984 { "even", s_even, 0 },
2985 { "ltorg", s_ltorg, 0 },
2986 { "pool", s_ltorg, 0 },
2987 { "syntax", s_syntax, 0 },
2988 #ifdef OBJ_ELF
2989 { "word", s_arm_elf_cons, 4 },
2990 { "long", s_arm_elf_cons, 4 },
2991 { "rel31", s_arm_rel31, 0 },
2992 { "fnstart", s_arm_unwind_fnstart, 0 },
2993 { "fnend", s_arm_unwind_fnend, 0 },
2994 { "cantunwind", s_arm_unwind_cantunwind, 0 },
2995 { "personality", s_arm_unwind_personality, 0 },
2996 { "personalityindex", s_arm_unwind_personalityindex, 0 },
2997 { "handlerdata", s_arm_unwind_handlerdata, 0 },
2998 { "save", s_arm_unwind_save, 0 },
2999 { "movsp", s_arm_unwind_movsp, 0 },
3000 { "pad", s_arm_unwind_pad, 0 },
3001 { "setfp", s_arm_unwind_setfp, 0 },
3002 { "unwind_raw", s_arm_unwind_raw, 0 },
3003 { "cpu", s_arm_cpu, 0 },
3004 { "arch", s_arm_arch, 0 },
3005 { "fpu", s_arm_fpu, 0 },
3006 { "eabi_attribute", s_arm_eabi_attribute, 0 },
3007 #else
3008 { "word", cons, 4},
3009 #endif
3010 { "extend", float_cons, 'x' },
3011 { "ldouble", float_cons, 'x' },
3012 { "packed", float_cons, 'p' },
3013 { 0, 0, 0 }
3014 };
3015 \f
3016 /* Parser functions used exclusively in instruction operands. */
3017
3018 /* Generic immediate-value read function for use in insn parsing.
3019 STR points to the beginning of the immediate (the leading #);
3020 VAL receives the value; if the value is outside [MIN, MAX]
3021 issue an error. PREFIX_OPT is true if the immediate prefix is
3022 optional. */
3023
3024 static int
3025 parse_immediate (char **str, int *val, int min, int max,
3026 bfd_boolean prefix_opt)
3027 {
3028 expressionS exp;
3029 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
3030 if (exp.X_op != O_constant)
3031 {
3032 inst.error = _("constant expression required");
3033 return FAIL;
3034 }
3035
3036 if (exp.X_add_number < min || exp.X_add_number > max)
3037 {
3038 inst.error = _("immediate value out of range");
3039 return FAIL;
3040 }
3041
3042 *val = exp.X_add_number;
3043 return SUCCESS;
3044 }
3045
3046 /* Returns the pseudo-register number of an FPA immediate constant,
3047 or FAIL if there isn't a valid constant here. */
3048
3049 static int
3050 parse_fpa_immediate (char ** str)
3051 {
3052 LITTLENUM_TYPE words[MAX_LITTLENUMS];
3053 char * save_in;
3054 expressionS exp;
3055 int i;
3056 int j;
3057
3058 /* First try and match exact strings, this is to guarantee
3059 that some formats will work even for cross assembly. */
3060
3061 for (i = 0; fp_const[i]; i++)
3062 {
3063 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
3064 {
3065 char *start = *str;
3066
3067 *str += strlen (fp_const[i]);
3068 if (is_end_of_line[(unsigned char) **str])
3069 return i + 8;
3070 *str = start;
3071 }
3072 }
3073
3074 /* Just because we didn't get a match doesn't mean that the constant
3075 isn't valid, just that it is in a format that we don't
3076 automatically recognize. Try parsing it with the standard
3077 expression routines. */
3078
3079 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
3080
3081 /* Look for a raw floating point number. */
3082 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
3083 && is_end_of_line[(unsigned char) *save_in])
3084 {
3085 for (i = 0; i < NUM_FLOAT_VALS; i++)
3086 {
3087 for (j = 0; j < MAX_LITTLENUMS; j++)
3088 {
3089 if (words[j] != fp_values[i][j])
3090 break;
3091 }
3092
3093 if (j == MAX_LITTLENUMS)
3094 {
3095 *str = save_in;
3096 return i + 8;
3097 }
3098 }
3099 }
3100
3101 /* Try and parse a more complex expression, this will probably fail
3102 unless the code uses a floating point prefix (eg "0f"). */
3103 save_in = input_line_pointer;
3104 input_line_pointer = *str;
3105 if (expression (&exp) == absolute_section
3106 && exp.X_op == O_big
3107 && exp.X_add_number < 0)
3108 {
3109 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
3110 Ditto for 15. */
3111 if (gen_to_words (words, 5, (long) 15) == 0)
3112 {
3113 for (i = 0; i < NUM_FLOAT_VALS; i++)
3114 {
3115 for (j = 0; j < MAX_LITTLENUMS; j++)
3116 {
3117 if (words[j] != fp_values[i][j])
3118 break;
3119 }
3120
3121 if (j == MAX_LITTLENUMS)
3122 {
3123 *str = input_line_pointer;
3124 input_line_pointer = save_in;
3125 return i + 8;
3126 }
3127 }
3128 }
3129 }
3130
3131 *str = input_line_pointer;
3132 input_line_pointer = save_in;
3133 inst.error = _("invalid FPA immediate expression");
3134 return FAIL;
3135 }
3136
3137 /* Shift operands. */
3138 enum shift_kind
3139 {
3140 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
3141 };
3142
3143 struct asm_shift_name
3144 {
3145 const char *name;
3146 enum shift_kind kind;
3147 };
3148
3149 /* Third argument to parse_shift. */
3150 enum parse_shift_mode
3151 {
3152 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
3153 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
3154 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
3155 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
3156 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
3157 };
3158
3159 /* Parse a <shift> specifier on an ARM data processing instruction.
3160 This has three forms:
3161
3162 (LSL|LSR|ASL|ASR|ROR) Rs
3163 (LSL|LSR|ASL|ASR|ROR) #imm
3164 RRX
3165
3166 Note that ASL is assimilated to LSL in the instruction encoding, and
3167 RRX to ROR #0 (which cannot be written as such). */
3168
3169 static int
3170 parse_shift (char **str, int i, enum parse_shift_mode mode)
3171 {
3172 const struct asm_shift_name *shift_name;
3173 enum shift_kind shift;
3174 char *s = *str;
3175 char *p = s;
3176 int reg;
3177
3178 for (p = *str; ISALPHA (*p); p++)
3179 ;
3180
3181 if (p == *str)
3182 {
3183 inst.error = _("shift expression expected");
3184 return FAIL;
3185 }
3186
3187 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
3188
3189 if (shift_name == NULL)
3190 {
3191 inst.error = _("shift expression expected");
3192 return FAIL;
3193 }
3194
3195 shift = shift_name->kind;
3196
3197 switch (mode)
3198 {
3199 case NO_SHIFT_RESTRICT:
3200 case SHIFT_IMMEDIATE: break;
3201
3202 case SHIFT_LSL_OR_ASR_IMMEDIATE:
3203 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
3204 {
3205 inst.error = _("'LSL' or 'ASR' required");
3206 return FAIL;
3207 }
3208 break;
3209
3210 case SHIFT_LSL_IMMEDIATE:
3211 if (shift != SHIFT_LSL)
3212 {
3213 inst.error = _("'LSL' required");
3214 return FAIL;
3215 }
3216 break;
3217
3218 case SHIFT_ASR_IMMEDIATE:
3219 if (shift != SHIFT_ASR)
3220 {
3221 inst.error = _("'ASR' required");
3222 return FAIL;
3223 }
3224 break;
3225
3226 default: abort ();
3227 }
3228
3229 if (shift != SHIFT_RRX)
3230 {
3231 /* Whitespace can appear here if the next thing is a bare digit. */
3232 skip_whitespace (p);
3233
3234 if (mode == NO_SHIFT_RESTRICT
3235 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
3236 {
3237 inst.operands[i].imm = reg;
3238 inst.operands[i].immisreg = 1;
3239 }
3240 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
3241 return FAIL;
3242 }
3243 inst.operands[i].shift_kind = shift;
3244 inst.operands[i].shifted = 1;
3245 *str = p;
3246 return SUCCESS;
3247 }
3248
3249 /* Parse a <shifter_operand> for an ARM data processing instruction:
3250
3251 #<immediate>
3252 #<immediate>, <rotate>
3253 <Rm>
3254 <Rm>, <shift>
3255
3256 where <shift> is defined by parse_shift above, and <rotate> is a
3257 multiple of 2 between 0 and 30. Validation of immediate operands
3258 is deferred to md_apply_fix. */
3259
3260 static int
3261 parse_shifter_operand (char **str, int i)
3262 {
3263 int value;
3264 expressionS expr;
3265
3266 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
3267 {
3268 inst.operands[i].reg = value;
3269 inst.operands[i].isreg = 1;
3270
3271 /* parse_shift will override this if appropriate */
3272 inst.reloc.exp.X_op = O_constant;
3273 inst.reloc.exp.X_add_number = 0;
3274
3275 if (skip_past_comma (str) == FAIL)
3276 return SUCCESS;
3277
3278 /* Shift operation on register. */
3279 return parse_shift (str, i, NO_SHIFT_RESTRICT);
3280 }
3281
3282 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
3283 return FAIL;
3284
3285 if (skip_past_comma (str) == SUCCESS)
3286 {
3287 /* #x, y -- ie explicit rotation by Y. */
3288 if (my_get_expression (&expr, str, GE_NO_PREFIX))
3289 return FAIL;
3290
3291 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
3292 {
3293 inst.error = _("constant expression expected");
3294 return FAIL;
3295 }
3296
3297 value = expr.X_add_number;
3298 if (value < 0 || value > 30 || value % 2 != 0)
3299 {
3300 inst.error = _("invalid rotation");
3301 return FAIL;
3302 }
3303 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
3304 {
3305 inst.error = _("invalid constant");
3306 return FAIL;
3307 }
3308
3309 /* Convert to decoded value. md_apply_fix will put it back. */
3310 inst.reloc.exp.X_add_number
3311 = (((inst.reloc.exp.X_add_number << (32 - value))
3312 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
3313 }
3314
3315 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
3316 inst.reloc.pc_rel = 0;
3317 return SUCCESS;
3318 }
3319
3320 /* Parse all forms of an ARM address expression. Information is written
3321 to inst.operands[i] and/or inst.reloc.
3322
3323 Preindexed addressing (.preind=1):
3324
3325 [Rn, #offset] .reg=Rn .reloc.exp=offset
3326 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3327 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3328 .shift_kind=shift .reloc.exp=shift_imm
3329
3330 These three may have a trailing ! which causes .writeback to be set also.
3331
3332 Postindexed addressing (.postind=1, .writeback=1):
3333
3334 [Rn], #offset .reg=Rn .reloc.exp=offset
3335 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3336 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
3337 .shift_kind=shift .reloc.exp=shift_imm
3338
3339 Unindexed addressing (.preind=0, .postind=0):
3340
3341 [Rn], {option} .reg=Rn .imm=option .immisreg=0
3342
3343 Other:
3344
3345 [Rn]{!} shorthand for [Rn,#0]{!}
3346 =immediate .isreg=0 .reloc.exp=immediate
3347 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
3348
3349 It is the caller's responsibility to check for addressing modes not
3350 supported by the instruction, and to set inst.reloc.type. */
3351
3352 static int
3353 parse_address (char **str, int i)
3354 {
3355 char *p = *str;
3356 int reg;
3357
3358 if (skip_past_char (&p, '[') == FAIL)
3359 {
3360 if (skip_past_char (&p, '=') == FAIL)
3361 {
3362 /* bare address - translate to PC-relative offset */
3363 inst.reloc.pc_rel = 1;
3364 inst.operands[i].reg = REG_PC;
3365 inst.operands[i].isreg = 1;
3366 inst.operands[i].preind = 1;
3367 }
3368 /* else a load-constant pseudo op, no special treatment needed here */
3369
3370 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
3371 return FAIL;
3372
3373 *str = p;
3374 return SUCCESS;
3375 }
3376
3377 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
3378 {
3379 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
3380 return FAIL;
3381 }
3382 inst.operands[i].reg = reg;
3383 inst.operands[i].isreg = 1;
3384
3385 if (skip_past_comma (&p) == SUCCESS)
3386 {
3387 inst.operands[i].preind = 1;
3388
3389 if (*p == '+') p++;
3390 else if (*p == '-') p++, inst.operands[i].negative = 1;
3391
3392 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
3393 {
3394 inst.operands[i].imm = reg;
3395 inst.operands[i].immisreg = 1;
3396
3397 if (skip_past_comma (&p) == SUCCESS)
3398 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
3399 return FAIL;
3400 }
3401 else
3402 {
3403 if (inst.operands[i].negative)
3404 {
3405 inst.operands[i].negative = 0;
3406 p--;
3407 }
3408 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
3409 return FAIL;
3410 }
3411 }
3412
3413 if (skip_past_char (&p, ']') == FAIL)
3414 {
3415 inst.error = _("']' expected");
3416 return FAIL;
3417 }
3418
3419 if (skip_past_char (&p, '!') == SUCCESS)
3420 inst.operands[i].writeback = 1;
3421
3422 else if (skip_past_comma (&p) == SUCCESS)
3423 {
3424 if (skip_past_char (&p, '{') == SUCCESS)
3425 {
3426 /* [Rn], {expr} - unindexed, with option */
3427 if (parse_immediate (&p, &inst.operands[i].imm,
3428 0, 255, TRUE) == FAIL)
3429 return FAIL;
3430
3431 if (skip_past_char (&p, '}') == FAIL)
3432 {
3433 inst.error = _("'}' expected at end of 'option' field");
3434 return FAIL;
3435 }
3436 if (inst.operands[i].preind)
3437 {
3438 inst.error = _("cannot combine index with option");
3439 return FAIL;
3440 }
3441 *str = p;
3442 return SUCCESS;
3443 }
3444 else
3445 {
3446 inst.operands[i].postind = 1;
3447 inst.operands[i].writeback = 1;
3448
3449 if (inst.operands[i].preind)
3450 {
3451 inst.error = _("cannot combine pre- and post-indexing");
3452 return FAIL;
3453 }
3454
3455 if (*p == '+') p++;
3456 else if (*p == '-') p++, inst.operands[i].negative = 1;
3457
3458 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
3459 {
3460 inst.operands[i].imm = reg;
3461 inst.operands[i].immisreg = 1;
3462
3463 if (skip_past_comma (&p) == SUCCESS)
3464 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
3465 return FAIL;
3466 }
3467 else
3468 {
3469 if (inst.operands[i].negative)
3470 {
3471 inst.operands[i].negative = 0;
3472 p--;
3473 }
3474 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
3475 return FAIL;
3476 }
3477 }
3478 }
3479
3480 /* If at this point neither .preind nor .postind is set, we have a
3481 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
3482 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
3483 {
3484 inst.operands[i].preind = 1;
3485 inst.reloc.exp.X_op = O_constant;
3486 inst.reloc.exp.X_add_number = 0;
3487 }
3488 *str = p;
3489 return SUCCESS;
3490 }
3491
3492 /* Miscellaneous. */
3493
3494 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
3495 or a bitmask suitable to be or-ed into the ARM msr instruction. */
3496 static int
3497 parse_psr (char **str)
3498 {
3499 char *p;
3500 unsigned long psr_field;
3501 const struct asm_psr *psr;
3502 char *start;
3503
3504 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
3505 feature for ease of use and backwards compatibility. */
3506 p = *str;
3507 if (strncasecmp (p, "SPSR", 4) == 0)
3508 psr_field = SPSR_BIT;
3509 else if (strncasecmp (p, "CPSR", 4) == 0)
3510 psr_field = 0;
3511 else
3512 {
3513 start = p;
3514 do
3515 p++;
3516 while (ISALNUM (*p) || *p == '_');
3517
3518 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
3519 if (!psr)
3520 return FAIL;
3521
3522 *str = p;
3523 return psr->field;
3524 }
3525
3526 p += 4;
3527 if (*p == '_')
3528 {
3529 /* A suffix follows. */
3530 p++;
3531 start = p;
3532
3533 do
3534 p++;
3535 while (ISALNUM (*p) || *p == '_');
3536
3537 psr = hash_find_n (arm_psr_hsh, start, p - start);
3538 if (!psr)
3539 goto error;
3540
3541 psr_field |= psr->field;
3542 }
3543 else
3544 {
3545 if (ISALNUM (*p))
3546 goto error; /* Garbage after "[CS]PSR". */
3547
3548 psr_field |= (PSR_c | PSR_f);
3549 }
3550 *str = p;
3551 return psr_field;
3552
3553 error:
3554 inst.error = _("flag for {c}psr instruction expected");
3555 return FAIL;
3556 }
3557
3558 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
3559 value suitable for splatting into the AIF field of the instruction. */
3560
3561 static int
3562 parse_cps_flags (char **str)
3563 {
3564 int val = 0;
3565 int saw_a_flag = 0;
3566 char *s = *str;
3567
3568 for (;;)
3569 switch (*s++)
3570 {
3571 case '\0': case ',':
3572 goto done;
3573
3574 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
3575 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
3576 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
3577
3578 default:
3579 inst.error = _("unrecognized CPS flag");
3580 return FAIL;
3581 }
3582
3583 done:
3584 if (saw_a_flag == 0)
3585 {
3586 inst.error = _("missing CPS flags");
3587 return FAIL;
3588 }
3589
3590 *str = s - 1;
3591 return val;
3592 }
3593
3594 /* Parse an endian specifier ("BE" or "LE", case insensitive);
3595 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
3596
3597 static int
3598 parse_endian_specifier (char **str)
3599 {
3600 int little_endian;
3601 char *s = *str;
3602
3603 if (strncasecmp (s, "BE", 2))
3604 little_endian = 0;
3605 else if (strncasecmp (s, "LE", 2))
3606 little_endian = 1;
3607 else
3608 {
3609 inst.error = _("valid endian specifiers are be or le");
3610 return FAIL;
3611 }
3612
3613 if (ISALNUM (s[2]) || s[2] == '_')
3614 {
3615 inst.error = _("valid endian specifiers are be or le");
3616 return FAIL;
3617 }
3618
3619 *str = s + 2;
3620 return little_endian;
3621 }
3622
3623 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
3624 value suitable for poking into the rotate field of an sxt or sxta
3625 instruction, or FAIL on error. */
3626
3627 static int
3628 parse_ror (char **str)
3629 {
3630 int rot;
3631 char *s = *str;
3632
3633 if (strncasecmp (s, "ROR", 3) == 0)
3634 s += 3;
3635 else
3636 {
3637 inst.error = _("missing rotation field after comma");
3638 return FAIL;
3639 }
3640
3641 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
3642 return FAIL;
3643
3644 switch (rot)
3645 {
3646 case 0: *str = s; return 0x0;
3647 case 8: *str = s; return 0x1;
3648 case 16: *str = s; return 0x2;
3649 case 24: *str = s; return 0x3;
3650
3651 default:
3652 inst.error = _("rotation can only be 0, 8, 16, or 24");
3653 return FAIL;
3654 }
3655 }
3656
3657 /* Parse a conditional code (from conds[] below). The value returned is in the
3658 range 0 .. 14, or FAIL. */
3659 static int
3660 parse_cond (char **str)
3661 {
3662 char *p, *q;
3663 const struct asm_cond *c;
3664
3665 p = q = *str;
3666 while (ISALPHA (*q))
3667 q++;
3668
3669 c = hash_find_n (arm_cond_hsh, p, q - p);
3670 if (!c)
3671 {
3672 inst.error = _("condition required");
3673 return FAIL;
3674 }
3675
3676 *str = q;
3677 return c->value;
3678 }
3679
3680 /* Parse an option for a barrier instruction. Returns the encoding for the
3681 option, or FAIL. */
3682 static int
3683 parse_barrier (char **str)
3684 {
3685 char *p, *q;
3686 const struct asm_barrier_opt *o;
3687
3688 p = q = *str;
3689 while (ISALPHA (*q))
3690 q++;
3691
3692 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
3693 if (!o)
3694 return FAIL;
3695
3696 *str = q;
3697 return o->value;
3698 }
3699
3700 /* Parse the operands of a table branch instruction. Similar to a memory
3701 operand. */
3702 static int
3703 parse_tb (char **str)
3704 {
3705 char * p = *str;
3706 int reg;
3707
3708 if (skip_past_char (&p, '[') == FAIL)
3709 return FAIL;
3710
3711 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
3712 {
3713 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
3714 return FAIL;
3715 }
3716 inst.operands[0].reg = reg;
3717
3718 if (skip_past_comma (&p) == FAIL)
3719 return FAIL;
3720
3721 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
3722 {
3723 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
3724 return FAIL;
3725 }
3726 inst.operands[0].imm = reg;
3727
3728 if (skip_past_comma (&p) == SUCCESS)
3729 {
3730 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
3731 return FAIL;
3732 if (inst.reloc.exp.X_add_number != 1)
3733 {
3734 inst.error = _("invalid shift");
3735 return FAIL;
3736 }
3737 inst.operands[0].shifted = 1;
3738 }
3739
3740 if (skip_past_char (&p, ']') == FAIL)
3741 {
3742 inst.error = _("']' expected");
3743 return FAIL;
3744 }
3745 *str = p;
3746 return SUCCESS;
3747 }
3748
3749 /* Matcher codes for parse_operands. */
3750 enum operand_parse_code
3751 {
3752 OP_stop, /* end of line */
3753
3754 OP_RR, /* ARM register */
3755 OP_RRnpc, /* ARM register, not r15 */
3756 OP_RRnpcb, /* ARM register, not r15, in square brackets */
3757 OP_RRw, /* ARM register, not r15, optional trailing ! */
3758 OP_RCP, /* Coprocessor number */
3759 OP_RCN, /* Coprocessor register */
3760 OP_RF, /* FPA register */
3761 OP_RVS, /* VFP single precision register */
3762 OP_RVD, /* VFP double precision register */
3763 OP_RVC, /* VFP control register */
3764 OP_RMF, /* Maverick F register */
3765 OP_RMD, /* Maverick D register */
3766 OP_RMFX, /* Maverick FX register */
3767 OP_RMDX, /* Maverick DX register */
3768 OP_RMAX, /* Maverick AX register */
3769 OP_RMDS, /* Maverick DSPSC register */
3770 OP_RIWR, /* iWMMXt wR register */
3771 OP_RIWC, /* iWMMXt wC register */
3772 OP_RIWG, /* iWMMXt wCG register */
3773 OP_RXA, /* XScale accumulator register */
3774
3775 OP_REGLST, /* ARM register list */
3776 OP_VRSLST, /* VFP single-precision register list */
3777 OP_VRDLST, /* VFP double-precision register list */
3778
3779 OP_I7, /* immediate value 0 .. 7 */
3780 OP_I15, /* 0 .. 15 */
3781 OP_I16, /* 1 .. 16 */
3782 OP_I31, /* 0 .. 31 */
3783 OP_I31w, /* 0 .. 31, optional trailing ! */
3784 OP_I32, /* 1 .. 32 */
3785 OP_I63s, /* -64 .. 63 */
3786 OP_I255, /* 0 .. 255 */
3787 OP_Iffff, /* 0 .. 65535 */
3788
3789 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
3790 OP_I7b, /* 0 .. 7 */
3791 OP_I15b, /* 0 .. 15 */
3792 OP_I31b, /* 0 .. 31 */
3793
3794 OP_SH, /* shifter operand */
3795 OP_ADDR, /* Memory address expression (any mode) */
3796 OP_EXP, /* arbitrary expression */
3797 OP_EXPi, /* same, with optional immediate prefix */
3798 OP_EXPr, /* same, with optional relocation suffix */
3799
3800 OP_CPSF, /* CPS flags */
3801 OP_ENDI, /* Endianness specifier */
3802 OP_PSR, /* CPSR/SPSR mask for msr */
3803 OP_COND, /* conditional code */
3804 OP_TB, /* Table branch. */
3805
3806 OP_RRnpc_I0, /* ARM register or literal 0 */
3807 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
3808 OP_RR_EXi, /* ARM register or expression with imm prefix */
3809 OP_RF_IF, /* FPA register or immediate */
3810 OP_RIWR_RIWC, /* iWMMXt R or C reg */
3811
3812 /* Optional operands. */
3813 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
3814 OP_oI31b, /* 0 .. 31 */
3815 OP_oIffffb, /* 0 .. 65535 */
3816 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
3817
3818 OP_oRR, /* ARM register */
3819 OP_oRRnpc, /* ARM register, not the PC */
3820 OP_oSHll, /* LSL immediate */
3821 OP_oSHar, /* ASR immediate */
3822 OP_oSHllar, /* LSL or ASR immediate */
3823 OP_oROR, /* ROR 0/8/16/24 */
3824 OP_oBARRIER, /* Option argument for a barrier instruction. */
3825
3826 OP_FIRST_OPTIONAL = OP_oI7b
3827 };
3828
3829 /* Generic instruction operand parser. This does no encoding and no
3830 semantic validation; it merely squirrels values away in the inst
3831 structure. Returns SUCCESS or FAIL depending on whether the
3832 specified grammar matched. */
3833 static int
3834 parse_operands (char *str, const unsigned char *pattern)
3835 {
3836 unsigned const char *upat = pattern;
3837 char *backtrack_pos = 0;
3838 const char *backtrack_error = 0;
3839 int i, val, backtrack_index = 0;
3840
3841 #define po_char_or_fail(chr) do { \
3842 if (skip_past_char (&str, chr) == FAIL) \
3843 goto bad_args; \
3844 } while (0)
3845
3846 #define po_reg_or_fail(regtype) do { \
3847 val = arm_reg_parse (&str, regtype); \
3848 if (val == FAIL) \
3849 { \
3850 inst.error = _(reg_expected_msgs[regtype]); \
3851 goto failure; \
3852 } \
3853 inst.operands[i].reg = val; \
3854 inst.operands[i].isreg = 1; \
3855 } while (0)
3856
3857 #define po_reg_or_goto(regtype, label) do { \
3858 val = arm_reg_parse (&str, regtype); \
3859 if (val == FAIL) \
3860 goto label; \
3861 \
3862 inst.operands[i].reg = val; \
3863 inst.operands[i].isreg = 1; \
3864 } while (0)
3865
3866 #define po_imm_or_fail(min, max, popt) do { \
3867 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
3868 goto failure; \
3869 inst.operands[i].imm = val; \
3870 } while (0)
3871
3872 #define po_misc_or_fail(expr) do { \
3873 if (expr) \
3874 goto failure; \
3875 } while (0)
3876
3877 skip_whitespace (str);
3878
3879 for (i = 0; upat[i] != OP_stop; i++)
3880 {
3881 if (upat[i] >= OP_FIRST_OPTIONAL)
3882 {
3883 /* Remember where we are in case we need to backtrack. */
3884 assert (!backtrack_pos);
3885 backtrack_pos = str;
3886 backtrack_error = inst.error;
3887 backtrack_index = i;
3888 }
3889
3890 if (i > 0)
3891 po_char_or_fail (',');
3892
3893 switch (upat[i])
3894 {
3895 /* Registers */
3896 case OP_oRRnpc:
3897 case OP_RRnpc:
3898 case OP_oRR:
3899 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
3900 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
3901 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
3902 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
3903 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
3904 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
3905 case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break;
3906 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
3907 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
3908 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
3909 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
3910 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
3911 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
3912 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
3913 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
3914 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
3915 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
3916
3917 case OP_RRnpcb:
3918 po_char_or_fail ('[');
3919 po_reg_or_fail (REG_TYPE_RN);
3920 po_char_or_fail (']');
3921 break;
3922
3923 case OP_RRw:
3924 po_reg_or_fail (REG_TYPE_RN);
3925 if (skip_past_char (&str, '!') == SUCCESS)
3926 inst.operands[i].writeback = 1;
3927 break;
3928
3929 /* Immediates */
3930 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
3931 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
3932 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
3933 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
3934 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
3935 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
3936 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
3937 case OP_Iffff: po_imm_or_fail ( 0, 0xffff, FALSE); break;
3938
3939 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
3940 case OP_oI7b:
3941 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
3942 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
3943 case OP_oI31b:
3944 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
3945 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
3946
3947 /* Immediate variants */
3948 case OP_oI255c:
3949 po_char_or_fail ('{');
3950 po_imm_or_fail (0, 255, TRUE);
3951 po_char_or_fail ('}');
3952 break;
3953
3954 case OP_I31w:
3955 /* The expression parser chokes on a trailing !, so we have
3956 to find it first and zap it. */
3957 {
3958 char *s = str;
3959 while (*s && *s != ',')
3960 s++;
3961 if (s[-1] == '!')
3962 {
3963 s[-1] = '\0';
3964 inst.operands[i].writeback = 1;
3965 }
3966 po_imm_or_fail (0, 31, TRUE);
3967 if (str == s - 1)
3968 str = s;
3969 }
3970 break;
3971
3972 /* Expressions */
3973 case OP_EXPi: EXPi:
3974 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
3975 GE_OPT_PREFIX));
3976 break;
3977
3978 case OP_EXP:
3979 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
3980 GE_NO_PREFIX));
3981 break;
3982
3983 case OP_EXPr: EXPr:
3984 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
3985 GE_NO_PREFIX));
3986 if (inst.reloc.exp.X_op == O_symbol)
3987 {
3988 val = parse_reloc (&str);
3989 if (val == -1)
3990 {
3991 inst.error = _("unrecognized relocation suffix");
3992 goto failure;
3993 }
3994 else if (val != BFD_RELOC_UNUSED)
3995 {
3996 inst.operands[i].imm = val;
3997 inst.operands[i].hasreloc = 1;
3998 }
3999 }
4000 break;
4001
4002 /* Register or expression */
4003 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
4004 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
4005
4006 /* Register or immediate */
4007 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
4008 I0: po_imm_or_fail (0, 0, FALSE); break;
4009
4010 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
4011 IF:
4012 if (!is_immediate_prefix (*str))
4013 goto bad_args;
4014 str++;
4015 val = parse_fpa_immediate (&str);
4016 if (val == FAIL)
4017 goto failure;
4018 /* FPA immediates are encoded as registers 8-15.
4019 parse_fpa_immediate has already applied the offset. */
4020 inst.operands[i].reg = val;
4021 inst.operands[i].isreg = 1;
4022 break;
4023
4024 /* Two kinds of register */
4025 case OP_RIWR_RIWC:
4026 {
4027 struct reg_entry *rege = arm_reg_parse_multi (&str);
4028 if (rege->type != REG_TYPE_MMXWR
4029 && rege->type != REG_TYPE_MMXWC
4030 && rege->type != REG_TYPE_MMXWCG)
4031 {
4032 inst.error = _("iWMMXt data or control register expected");
4033 goto failure;
4034 }
4035 inst.operands[i].reg = rege->number;
4036 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
4037 }
4038 break;
4039
4040 /* Misc */
4041 case OP_CPSF: val = parse_cps_flags (&str); break;
4042 case OP_ENDI: val = parse_endian_specifier (&str); break;
4043 case OP_oROR: val = parse_ror (&str); break;
4044 case OP_PSR: val = parse_psr (&str); break;
4045 case OP_COND: val = parse_cond (&str); break;
4046 case OP_oBARRIER:val = parse_barrier (&str); break;
4047
4048 case OP_TB:
4049 po_misc_or_fail (parse_tb (&str));
4050 break;
4051
4052 /* Register lists */
4053 case OP_REGLST:
4054 val = parse_reg_list (&str);
4055 if (*str == '^')
4056 {
4057 inst.operands[1].writeback = 1;
4058 str++;
4059 }
4060 break;
4061
4062 case OP_VRSLST:
4063 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, 0);
4064 break;
4065
4066 case OP_VRDLST:
4067 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, 1);
4068 break;
4069
4070 /* Addressing modes */
4071 case OP_ADDR:
4072 po_misc_or_fail (parse_address (&str, i));
4073 break;
4074
4075 case OP_SH:
4076 po_misc_or_fail (parse_shifter_operand (&str, i));
4077 break;
4078
4079 case OP_oSHll:
4080 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
4081 break;
4082
4083 case OP_oSHar:
4084 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
4085 break;
4086
4087 case OP_oSHllar:
4088 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
4089 break;
4090
4091 default:
4092 as_fatal ("unhandled operand code %d", upat[i]);
4093 }
4094
4095 /* Various value-based sanity checks and shared operations. We
4096 do not signal immediate failures for the register constraints;
4097 this allows a syntax error to take precedence. */
4098 switch (upat[i])
4099 {
4100 case OP_oRRnpc:
4101 case OP_RRnpc:
4102 case OP_RRnpcb:
4103 case OP_RRw:
4104 case OP_RRnpc_I0:
4105 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
4106 inst.error = BAD_PC;
4107 break;
4108
4109 case OP_CPSF:
4110 case OP_ENDI:
4111 case OP_oROR:
4112 case OP_PSR:
4113 case OP_COND:
4114 case OP_oBARRIER:
4115 case OP_REGLST:
4116 case OP_VRSLST:
4117 case OP_VRDLST:
4118 if (val == FAIL)
4119 goto failure;
4120 inst.operands[i].imm = val;
4121 break;
4122
4123 default:
4124 break;
4125 }
4126
4127 /* If we get here, this operand was successfully parsed. */
4128 inst.operands[i].present = 1;
4129 continue;
4130
4131 bad_args:
4132 inst.error = BAD_ARGS;
4133
4134 failure:
4135 if (!backtrack_pos)
4136 return FAIL;
4137
4138 /* Do not backtrack over a trailing optional argument that
4139 absorbed some text. We will only fail again, with the
4140 'garbage following instruction' error message, which is
4141 probably less helpful than the current one. */
4142 if (backtrack_index == i && backtrack_pos != str
4143 && upat[i+1] == OP_stop)
4144 return FAIL;
4145
4146 /* Try again, skipping the optional argument at backtrack_pos. */
4147 str = backtrack_pos;
4148 inst.error = backtrack_error;
4149 inst.operands[backtrack_index].present = 0;
4150 i = backtrack_index;
4151 backtrack_pos = 0;
4152 }
4153
4154 /* Check that we have parsed all the arguments. */
4155 if (*str != '\0' && !inst.error)
4156 inst.error = _("garbage following instruction");
4157
4158 return inst.error ? FAIL : SUCCESS;
4159 }
4160
4161 #undef po_char_or_fail
4162 #undef po_reg_or_fail
4163 #undef po_reg_or_goto
4164 #undef po_imm_or_fail
4165 \f
4166 /* Shorthand macro for instruction encoding functions issuing errors. */
4167 #define constraint(expr, err) do { \
4168 if (expr) \
4169 { \
4170 inst.error = err; \
4171 return; \
4172 } \
4173 } while (0)
4174
4175 /* Functions for operand encoding. ARM, then Thumb. */
4176
4177 #define rotate_left(v, n) (v << n | v >> (32 - n))
4178
4179 /* If VAL can be encoded in the immediate field of an ARM instruction,
4180 return the encoded form. Otherwise, return FAIL. */
4181
4182 static unsigned int
4183 encode_arm_immediate (unsigned int val)
4184 {
4185 unsigned int a, i;
4186
4187 for (i = 0; i < 32; i += 2)
4188 if ((a = rotate_left (val, i)) <= 0xff)
4189 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
4190
4191 return FAIL;
4192 }
4193
4194 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
4195 return the encoded form. Otherwise, return FAIL. */
4196 static unsigned int
4197 encode_thumb32_immediate (unsigned int val)
4198 {
4199 unsigned int a, i;
4200
4201 if (val <= 0xff)
4202 return val;
4203
4204 for (i = 1; i <= 24; i++)
4205 {
4206 a = val >> i;
4207 if ((val & ~(0xff << i)) == 0)
4208 return ((val >> i) & 0x7f) | ((32 - i) << 7);
4209 }
4210
4211 a = val & 0xff;
4212 if (val == ((a << 16) | a))
4213 return 0x100 | a;
4214 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
4215 return 0x300 | a;
4216
4217 a = val & 0xff00;
4218 if (val == ((a << 16) | a))
4219 return 0x200 | (a >> 8);
4220
4221 return FAIL;
4222 }
4223 /* Encode a VFP SP register number into inst.instruction. */
4224
4225 static void
4226 encode_arm_vfp_sp_reg (int reg, enum vfp_sp_reg_pos pos)
4227 {
4228 switch (pos)
4229 {
4230 case VFP_REG_Sd:
4231 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
4232 break;
4233
4234 case VFP_REG_Sn:
4235 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
4236 break;
4237
4238 case VFP_REG_Sm:
4239 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
4240 break;
4241
4242 default:
4243 abort ();
4244 }
4245 }
4246
4247 /* Encode a <shift> in an ARM-format instruction. The immediate,
4248 if any, is handled by md_apply_fix. */
4249 static void
4250 encode_arm_shift (int i)
4251 {
4252 if (inst.operands[i].shift_kind == SHIFT_RRX)
4253 inst.instruction |= SHIFT_ROR << 5;
4254 else
4255 {
4256 inst.instruction |= inst.operands[i].shift_kind << 5;
4257 if (inst.operands[i].immisreg)
4258 {
4259 inst.instruction |= SHIFT_BY_REG;
4260 inst.instruction |= inst.operands[i].imm << 8;
4261 }
4262 else
4263 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
4264 }
4265 }
4266
4267 static void
4268 encode_arm_shifter_operand (int i)
4269 {
4270 if (inst.operands[i].isreg)
4271 {
4272 inst.instruction |= inst.operands[i].reg;
4273 encode_arm_shift (i);
4274 }
4275 else
4276 inst.instruction |= INST_IMMEDIATE;
4277 }
4278
4279 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
4280 static void
4281 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
4282 {
4283 assert (inst.operands[i].isreg);
4284 inst.instruction |= inst.operands[i].reg << 16;
4285
4286 if (inst.operands[i].preind)
4287 {
4288 if (is_t)
4289 {
4290 inst.error = _("instruction does not accept preindexed addressing");
4291 return;
4292 }
4293 inst.instruction |= PRE_INDEX;
4294 if (inst.operands[i].writeback)
4295 inst.instruction |= WRITE_BACK;
4296
4297 }
4298 else if (inst.operands[i].postind)
4299 {
4300 assert (inst.operands[i].writeback);
4301 if (is_t)
4302 inst.instruction |= WRITE_BACK;
4303 }
4304 else /* unindexed - only for coprocessor */
4305 {
4306 inst.error = _("instruction does not accept unindexed addressing");
4307 return;
4308 }
4309
4310 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
4311 && (((inst.instruction & 0x000f0000) >> 16)
4312 == ((inst.instruction & 0x0000f000) >> 12)))
4313 as_warn ((inst.instruction & LOAD_BIT)
4314 ? _("destination register same as write-back base")
4315 : _("source register same as write-back base"));
4316 }
4317
4318 /* inst.operands[i] was set up by parse_address. Encode it into an
4319 ARM-format mode 2 load or store instruction. If is_t is true,
4320 reject forms that cannot be used with a T instruction (i.e. not
4321 post-indexed). */
4322 static void
4323 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
4324 {
4325 encode_arm_addr_mode_common (i, is_t);
4326
4327 if (inst.operands[i].immisreg)
4328 {
4329 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
4330 inst.instruction |= inst.operands[i].imm;
4331 if (!inst.operands[i].negative)
4332 inst.instruction |= INDEX_UP;
4333 if (inst.operands[i].shifted)
4334 {
4335 if (inst.operands[i].shift_kind == SHIFT_RRX)
4336 inst.instruction |= SHIFT_ROR << 5;
4337 else
4338 {
4339 inst.instruction |= inst.operands[i].shift_kind << 5;
4340 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
4341 }
4342 }
4343 }
4344 else /* immediate offset in inst.reloc */
4345 {
4346 if (inst.reloc.type == BFD_RELOC_UNUSED)
4347 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
4348 }
4349 }
4350
4351 /* inst.operands[i] was set up by parse_address. Encode it into an
4352 ARM-format mode 3 load or store instruction. Reject forms that
4353 cannot be used with such instructions. If is_t is true, reject
4354 forms that cannot be used with a T instruction (i.e. not
4355 post-indexed). */
4356 static void
4357 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
4358 {
4359 if (inst.operands[i].immisreg && inst.operands[i].shifted)
4360 {
4361 inst.error = _("instruction does not accept scaled register index");
4362 return;
4363 }
4364
4365 encode_arm_addr_mode_common (i, is_t);
4366
4367 if (inst.operands[i].immisreg)
4368 {
4369 inst.instruction |= inst.operands[i].imm;
4370 if (!inst.operands[i].negative)
4371 inst.instruction |= INDEX_UP;
4372 }
4373 else /* immediate offset in inst.reloc */
4374 {
4375 inst.instruction |= HWOFFSET_IMM;
4376 if (inst.reloc.type == BFD_RELOC_UNUSED)
4377 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
4378 }
4379 }
4380
4381 /* inst.operands[i] was set up by parse_address. Encode it into an
4382 ARM-format instruction. Reject all forms which cannot be encoded
4383 into a coprocessor load/store instruction. If wb_ok is false,
4384 reject use of writeback; if unind_ok is false, reject use of
4385 unindexed addressing. If reloc_override is not 0, use it instead
4386 of BFD_ARM_CP_OFF_IMM. */
4387
4388 static int
4389 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
4390 {
4391 inst.instruction |= inst.operands[i].reg << 16;
4392
4393 assert (!(inst.operands[i].preind && inst.operands[i].postind));
4394
4395 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
4396 {
4397 assert (!inst.operands[i].writeback);
4398 if (!unind_ok)
4399 {
4400 inst.error = _("instruction does not support unindexed addressing");
4401 return FAIL;
4402 }
4403 inst.instruction |= inst.operands[i].imm;
4404 inst.instruction |= INDEX_UP;
4405 return SUCCESS;
4406 }
4407
4408 if (inst.operands[i].preind)
4409 inst.instruction |= PRE_INDEX;
4410
4411 if (inst.operands[i].writeback)
4412 {
4413 if (inst.operands[i].reg == REG_PC)
4414 {
4415 inst.error = _("pc may not be used with write-back");
4416 return FAIL;
4417 }
4418 if (!wb_ok)
4419 {
4420 inst.error = _("instruction does not support writeback");
4421 return FAIL;
4422 }
4423 inst.instruction |= WRITE_BACK;
4424 }
4425
4426 if (reloc_override)
4427 inst.reloc.type = reloc_override;
4428 else if (thumb_mode)
4429 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
4430 else
4431 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
4432 return SUCCESS;
4433 }
4434
4435 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
4436 Determine whether it can be performed with a move instruction; if
4437 it can, convert inst.instruction to that move instruction and
4438 return 1; if it can't, convert inst.instruction to a literal-pool
4439 load and return 0. If this is not a valid thing to do in the
4440 current context, set inst.error and return 1.
4441
4442 inst.operands[i] describes the destination register. */
4443
4444 static int
4445 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
4446 {
4447 unsigned long tbit;
4448
4449 if (thumb_p)
4450 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
4451 else
4452 tbit = LOAD_BIT;
4453
4454 if ((inst.instruction & tbit) == 0)
4455 {
4456 inst.error = _("invalid pseudo operation");
4457 return 1;
4458 }
4459 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
4460 {
4461 inst.error = _("constant expression expected");
4462 return 1;
4463 }
4464 if (inst.reloc.exp.X_op == O_constant)
4465 {
4466 if (thumb_p)
4467 {
4468 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
4469 {
4470 /* This can be done with a mov(1) instruction. */
4471 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
4472 inst.instruction |= inst.reloc.exp.X_add_number;
4473 return 1;
4474 }
4475 }
4476 else
4477 {
4478 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
4479 if (value != FAIL)
4480 {
4481 /* This can be done with a mov instruction. */
4482 inst.instruction &= LITERAL_MASK;
4483 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
4484 inst.instruction |= value & 0xfff;
4485 return 1;
4486 }
4487
4488 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
4489 if (value != FAIL)
4490 {
4491 /* This can be done with a mvn instruction. */
4492 inst.instruction &= LITERAL_MASK;
4493 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
4494 inst.instruction |= value & 0xfff;
4495 return 1;
4496 }
4497 }
4498 }
4499
4500 if (add_to_lit_pool () == FAIL)
4501 {
4502 inst.error = _("literal pool insertion failed");
4503 return 1;
4504 }
4505 inst.operands[1].reg = REG_PC;
4506 inst.operands[1].isreg = 1;
4507 inst.operands[1].preind = 1;
4508 inst.reloc.pc_rel = 1;
4509 inst.reloc.type = (thumb_p
4510 ? BFD_RELOC_ARM_THUMB_OFFSET
4511 : (mode_3
4512 ? BFD_RELOC_ARM_HWLITERAL
4513 : BFD_RELOC_ARM_LITERAL));
4514 return 0;
4515 }
4516
4517 /* Functions for instruction encoding, sorted by subarchitecture.
4518 First some generics; their names are taken from the conventional
4519 bit positions for register arguments in ARM format instructions. */
4520
4521 static void
4522 do_noargs (void)
4523 {
4524 }
4525
4526 static void
4527 do_rd (void)
4528 {
4529 inst.instruction |= inst.operands[0].reg << 12;
4530 }
4531
4532 static void
4533 do_rd_rm (void)
4534 {
4535 inst.instruction |= inst.operands[0].reg << 12;
4536 inst.instruction |= inst.operands[1].reg;
4537 }
4538
4539 static void
4540 do_rd_rn (void)
4541 {
4542 inst.instruction |= inst.operands[0].reg << 12;
4543 inst.instruction |= inst.operands[1].reg << 16;
4544 }
4545
4546 static void
4547 do_rn_rd (void)
4548 {
4549 inst.instruction |= inst.operands[0].reg << 16;
4550 inst.instruction |= inst.operands[1].reg << 12;
4551 }
4552
4553 static void
4554 do_rd_rm_rn (void)
4555 {
4556 unsigned Rn = inst.operands[2].reg;
4557 /* Enforce resutrictions on SWP instruction. */
4558 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
4559 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
4560 _("Rn must not overlap other operands"));
4561 inst.instruction |= inst.operands[0].reg << 12;
4562 inst.instruction |= inst.operands[1].reg;
4563 inst.instruction |= Rn << 16;
4564 }
4565
4566 static void
4567 do_rd_rn_rm (void)
4568 {
4569 inst.instruction |= inst.operands[0].reg << 12;
4570 inst.instruction |= inst.operands[1].reg << 16;
4571 inst.instruction |= inst.operands[2].reg;
4572 }
4573
4574 static void
4575 do_rm_rd_rn (void)
4576 {
4577 inst.instruction |= inst.operands[0].reg;
4578 inst.instruction |= inst.operands[1].reg << 12;
4579 inst.instruction |= inst.operands[2].reg << 16;
4580 }
4581
4582 static void
4583 do_imm0 (void)
4584 {
4585 inst.instruction |= inst.operands[0].imm;
4586 }
4587
4588 static void
4589 do_rd_cpaddr (void)
4590 {
4591 inst.instruction |= inst.operands[0].reg << 12;
4592 encode_arm_cp_address (1, TRUE, TRUE, 0);
4593 }
4594
4595 /* ARM instructions, in alphabetical order by function name (except
4596 that wrapper functions appear immediately after the function they
4597 wrap). */
4598
4599 /* This is a pseudo-op of the form "adr rd, label" to be converted
4600 into a relative address of the form "add rd, pc, #label-.-8". */
4601
4602 static void
4603 do_adr (void)
4604 {
4605 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
4606
4607 /* Frag hacking will turn this into a sub instruction if the offset turns
4608 out to be negative. */
4609 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4610 inst.reloc.pc_rel = 1;
4611 inst.reloc.exp.X_add_number -= 8;
4612 }
4613
4614 /* This is a pseudo-op of the form "adrl rd, label" to be converted
4615 into a relative address of the form:
4616 add rd, pc, #low(label-.-8)"
4617 add rd, rd, #high(label-.-8)" */
4618
4619 static void
4620 do_adrl (void)
4621 {
4622 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
4623
4624 /* Frag hacking will turn this into a sub instruction if the offset turns
4625 out to be negative. */
4626 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
4627 inst.reloc.pc_rel = 1;
4628 inst.size = INSN_SIZE * 2;
4629 inst.reloc.exp.X_add_number -= 8;
4630 }
4631
4632 static void
4633 do_arit (void)
4634 {
4635 if (!inst.operands[1].present)
4636 inst.operands[1].reg = inst.operands[0].reg;
4637 inst.instruction |= inst.operands[0].reg << 12;
4638 inst.instruction |= inst.operands[1].reg << 16;
4639 encode_arm_shifter_operand (2);
4640 }
4641
4642 static void
4643 do_barrier (void)
4644 {
4645 if (inst.operands[0].present)
4646 {
4647 constraint ((inst.instruction & 0xf0) != 0x40
4648 && inst.operands[0].imm != 0xf,
4649 "bad barrier type");
4650 inst.instruction |= inst.operands[0].imm;
4651 }
4652 else
4653 inst.instruction |= 0xf;
4654 }
4655
4656 static void
4657 do_bfc (void)
4658 {
4659 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
4660 constraint (msb > 32, _("bit-field extends past end of register"));
4661 /* The instruction encoding stores the LSB and MSB,
4662 not the LSB and width. */
4663 inst.instruction |= inst.operands[0].reg << 12;
4664 inst.instruction |= inst.operands[1].imm << 7;
4665 inst.instruction |= (msb - 1) << 16;
4666 }
4667
4668 static void
4669 do_bfi (void)
4670 {
4671 unsigned int msb;
4672
4673 /* #0 in second position is alternative syntax for bfc, which is
4674 the same instruction but with REG_PC in the Rm field. */
4675 if (!inst.operands[1].isreg)
4676 inst.operands[1].reg = REG_PC;
4677
4678 msb = inst.operands[2].imm + inst.operands[3].imm;
4679 constraint (msb > 32, _("bit-field extends past end of register"));
4680 /* The instruction encoding stores the LSB and MSB,
4681 not the LSB and width. */
4682 inst.instruction |= inst.operands[0].reg << 12;
4683 inst.instruction |= inst.operands[1].reg;
4684 inst.instruction |= inst.operands[2].imm << 7;
4685 inst.instruction |= (msb - 1) << 16;
4686 }
4687
4688 static void
4689 do_bfx (void)
4690 {
4691 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
4692 _("bit-field extends past end of register"));
4693 inst.instruction |= inst.operands[0].reg << 12;
4694 inst.instruction |= inst.operands[1].reg;
4695 inst.instruction |= inst.operands[2].imm << 7;
4696 inst.instruction |= (inst.operands[3].imm - 1) << 16;
4697 }
4698
4699 /* ARM V5 breakpoint instruction (argument parse)
4700 BKPT <16 bit unsigned immediate>
4701 Instruction is not conditional.
4702 The bit pattern given in insns[] has the COND_ALWAYS condition,
4703 and it is an error if the caller tried to override that. */
4704
4705 static void
4706 do_bkpt (void)
4707 {
4708 /* Top 12 of 16 bits to bits 19:8. */
4709 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
4710
4711 /* Bottom 4 of 16 bits to bits 3:0. */
4712 inst.instruction |= inst.operands[0].imm & 0xf;
4713 }
4714
4715 static void
4716 encode_branch (int default_reloc)
4717 {
4718 if (inst.operands[0].hasreloc)
4719 {
4720 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
4721 _("the only suffix valid here is '(plt)'"));
4722 inst.reloc.type = BFD_RELOC_ARM_PLT32;
4723 }
4724 else
4725 {
4726 inst.reloc.type = default_reloc;
4727 }
4728 inst.reloc.pc_rel = 1;
4729 }
4730
4731 static void
4732 do_branch (void)
4733 {
4734 #ifdef OBJ_ELF
4735 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
4736 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
4737 else
4738 #endif
4739 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
4740 }
4741
4742 static void
4743 do_bl (void)
4744 {
4745 #ifdef OBJ_ELF
4746 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
4747 {
4748 if (inst.cond == COND_ALWAYS)
4749 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
4750 else
4751 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
4752 }
4753 else
4754 #endif
4755 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
4756 }
4757
4758 /* ARM V5 branch-link-exchange instruction (argument parse)
4759 BLX <target_addr> ie BLX(1)
4760 BLX{<condition>} <Rm> ie BLX(2)
4761 Unfortunately, there are two different opcodes for this mnemonic.
4762 So, the insns[].value is not used, and the code here zaps values
4763 into inst.instruction.
4764 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
4765
4766 static void
4767 do_blx (void)
4768 {
4769 if (inst.operands[0].isreg)
4770 {
4771 /* Arg is a register; the opcode provided by insns[] is correct.
4772 It is not illegal to do "blx pc", just useless. */
4773 if (inst.operands[0].reg == REG_PC)
4774 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
4775
4776 inst.instruction |= inst.operands[0].reg;
4777 }
4778 else
4779 {
4780 /* Arg is an address; this instruction cannot be executed
4781 conditionally, and the opcode must be adjusted. */
4782 constraint (inst.cond != COND_ALWAYS, BAD_COND);
4783 inst.instruction = 0xfa000000;
4784 #ifdef OBJ_ELF
4785 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
4786 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
4787 else
4788 #endif
4789 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
4790 }
4791 }
4792
4793 static void
4794 do_bx (void)
4795 {
4796 if (inst.operands[0].reg == REG_PC)
4797 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
4798
4799 inst.instruction |= inst.operands[0].reg;
4800 }
4801
4802
4803 /* ARM v5TEJ. Jump to Jazelle code. */
4804
4805 static void
4806 do_bxj (void)
4807 {
4808 if (inst.operands[0].reg == REG_PC)
4809 as_tsktsk (_("use of r15 in bxj is not really useful"));
4810
4811 inst.instruction |= inst.operands[0].reg;
4812 }
4813
4814 /* Co-processor data operation:
4815 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
4816 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
4817 static void
4818 do_cdp (void)
4819 {
4820 inst.instruction |= inst.operands[0].reg << 8;
4821 inst.instruction |= inst.operands[1].imm << 20;
4822 inst.instruction |= inst.operands[2].reg << 12;
4823 inst.instruction |= inst.operands[3].reg << 16;
4824 inst.instruction |= inst.operands[4].reg;
4825 inst.instruction |= inst.operands[5].imm << 5;
4826 }
4827
4828 static void
4829 do_cmp (void)
4830 {
4831 inst.instruction |= inst.operands[0].reg << 16;
4832 encode_arm_shifter_operand (1);
4833 }
4834
4835 /* Transfer between coprocessor and ARM registers.
4836 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
4837 MRC2
4838 MCR{cond}
4839 MCR2
4840
4841 No special properties. */
4842
4843 static void
4844 do_co_reg (void)
4845 {
4846 inst.instruction |= inst.operands[0].reg << 8;
4847 inst.instruction |= inst.operands[1].imm << 21;
4848 inst.instruction |= inst.operands[2].reg << 12;
4849 inst.instruction |= inst.operands[3].reg << 16;
4850 inst.instruction |= inst.operands[4].reg;
4851 inst.instruction |= inst.operands[5].imm << 5;
4852 }
4853
4854 /* Transfer between coprocessor register and pair of ARM registers.
4855 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
4856 MCRR2
4857 MRRC{cond}
4858 MRRC2
4859
4860 Two XScale instructions are special cases of these:
4861
4862 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
4863 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
4864
4865 Result unpredicatable if Rd or Rn is R15. */
4866
4867 static void
4868 do_co_reg2c (void)
4869 {
4870 inst.instruction |= inst.operands[0].reg << 8;
4871 inst.instruction |= inst.operands[1].imm << 4;
4872 inst.instruction |= inst.operands[2].reg << 12;
4873 inst.instruction |= inst.operands[3].reg << 16;
4874 inst.instruction |= inst.operands[4].reg;
4875 }
4876
4877 static void
4878 do_cpsi (void)
4879 {
4880 inst.instruction |= inst.operands[0].imm << 6;
4881 inst.instruction |= inst.operands[1].imm;
4882 }
4883
4884 static void
4885 do_dbg (void)
4886 {
4887 inst.instruction |= inst.operands[0].imm;
4888 }
4889
4890 static void
4891 do_it (void)
4892 {
4893 /* There is no IT instruction in ARM mode. We
4894 process it but do not generate code for it. */
4895 inst.size = 0;
4896 }
4897
4898 static void
4899 do_ldmstm (void)
4900 {
4901 int base_reg = inst.operands[0].reg;
4902 int range = inst.operands[1].imm;
4903
4904 inst.instruction |= base_reg << 16;
4905 inst.instruction |= range;
4906
4907 if (inst.operands[1].writeback)
4908 inst.instruction |= LDM_TYPE_2_OR_3;
4909
4910 if (inst.operands[0].writeback)
4911 {
4912 inst.instruction |= WRITE_BACK;
4913 /* Check for unpredictable uses of writeback. */
4914 if (inst.instruction & LOAD_BIT)
4915 {
4916 /* Not allowed in LDM type 2. */
4917 if ((inst.instruction & LDM_TYPE_2_OR_3)
4918 && ((range & (1 << REG_PC)) == 0))
4919 as_warn (_("writeback of base register is UNPREDICTABLE"));
4920 /* Only allowed if base reg not in list for other types. */
4921 else if (range & (1 << base_reg))
4922 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
4923 }
4924 else /* STM. */
4925 {
4926 /* Not allowed for type 2. */
4927 if (inst.instruction & LDM_TYPE_2_OR_3)
4928 as_warn (_("writeback of base register is UNPREDICTABLE"));
4929 /* Only allowed if base reg not in list, or first in list. */
4930 else if ((range & (1 << base_reg))
4931 && (range & ((1 << base_reg) - 1)))
4932 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
4933 }
4934 }
4935 }
4936
4937 /* ARMv5TE load-consecutive (argument parse)
4938 Mode is like LDRH.
4939
4940 LDRccD R, mode
4941 STRccD R, mode. */
4942
4943 static void
4944 do_ldrd (void)
4945 {
4946 constraint (inst.operands[0].reg % 2 != 0,
4947 _("first destination register must be even"));
4948 constraint (inst.operands[1].present
4949 && inst.operands[1].reg != inst.operands[0].reg + 1,
4950 _("can only load two consecutive registers"));
4951 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
4952 constraint (!inst.operands[2].isreg, _("'[' expected"));
4953
4954 if (!inst.operands[1].present)
4955 inst.operands[1].reg = inst.operands[0].reg + 1;
4956
4957 if (inst.instruction & LOAD_BIT)
4958 {
4959 /* encode_arm_addr_mode_3 will diagnose overlap between the base
4960 register and the first register written; we have to diagnose
4961 overlap between the base and the second register written here. */
4962
4963 if (inst.operands[2].reg == inst.operands[1].reg
4964 && (inst.operands[2].writeback || inst.operands[2].postind))
4965 as_warn (_("base register written back, and overlaps "
4966 "second destination register"));
4967
4968 /* For an index-register load, the index register must not overlap the
4969 destination (even if not write-back). */
4970 else if (inst.operands[2].immisreg
4971 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
4972 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
4973 as_warn (_("index register overlaps destination register"));
4974 }
4975
4976 inst.instruction |= inst.operands[0].reg << 12;
4977 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
4978 }
4979
4980 static void
4981 do_ldrex (void)
4982 {
4983 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
4984 || inst.operands[1].postind || inst.operands[1].writeback
4985 || inst.operands[1].immisreg || inst.operands[1].shifted
4986 || inst.operands[1].negative
4987 /* This can arise if the programmer has written
4988 strex rN, rM, foo
4989 or if they have mistakenly used a register name as the last
4990 operand, eg:
4991 strex rN, rM, rX
4992 It is very difficult to distinguish between these two cases
4993 because "rX" might actually be a label. ie the register
4994 name has been occluded by a symbol of the same name. So we
4995 just generate a general 'bad addressing mode' type error
4996 message and leave it up to the programmer to discover the
4997 true cause and fix their mistake. */
4998 || (inst.operands[1].reg == REG_PC),
4999 BAD_ADDR_MODE);
5000
5001 constraint (inst.reloc.exp.X_op != O_constant
5002 || inst.reloc.exp.X_add_number != 0,
5003 _("offset must be zero in ARM encoding"));
5004
5005 inst.instruction |= inst.operands[0].reg << 12;
5006 inst.instruction |= inst.operands[1].reg << 16;
5007 inst.reloc.type = BFD_RELOC_UNUSED;
5008 }
5009
5010 static void
5011 do_ldrexd (void)
5012 {
5013 constraint (inst.operands[0].reg % 2 != 0,
5014 _("even register required"));
5015 constraint (inst.operands[1].present
5016 && inst.operands[1].reg != inst.operands[0].reg + 1,
5017 _("can only load two consecutive registers"));
5018 /* If op 1 were present and equal to PC, this function wouldn't
5019 have been called in the first place. */
5020 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
5021
5022 inst.instruction |= inst.operands[0].reg << 12;
5023 inst.instruction |= inst.operands[2].reg << 16;
5024 }
5025
5026 static void
5027 do_ldst (void)
5028 {
5029 inst.instruction |= inst.operands[0].reg << 12;
5030 if (!inst.operands[1].isreg)
5031 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
5032 return;
5033 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
5034 }
5035
5036 static void
5037 do_ldstt (void)
5038 {
5039 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
5040 reject [Rn,...]. */
5041 if (inst.operands[1].preind)
5042 {
5043 constraint (inst.reloc.exp.X_op != O_constant ||
5044 inst.reloc.exp.X_add_number != 0,
5045 _("this instruction requires a post-indexed address"));
5046
5047 inst.operands[1].preind = 0;
5048 inst.operands[1].postind = 1;
5049 inst.operands[1].writeback = 1;
5050 }
5051 inst.instruction |= inst.operands[0].reg << 12;
5052 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
5053 }
5054
5055 /* Halfword and signed-byte load/store operations. */
5056
5057 static void
5058 do_ldstv4 (void)
5059 {
5060 inst.instruction |= inst.operands[0].reg << 12;
5061 if (!inst.operands[1].isreg)
5062 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
5063 return;
5064 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
5065 }
5066
5067 static void
5068 do_ldsttv4 (void)
5069 {
5070 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
5071 reject [Rn,...]. */
5072 if (inst.operands[1].preind)
5073 {
5074 constraint (inst.reloc.exp.X_op != O_constant ||
5075 inst.reloc.exp.X_add_number != 0,
5076 _("this instruction requires a post-indexed address"));
5077
5078 inst.operands[1].preind = 0;
5079 inst.operands[1].postind = 1;
5080 inst.operands[1].writeback = 1;
5081 }
5082 inst.instruction |= inst.operands[0].reg << 12;
5083 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
5084 }
5085
5086 /* Co-processor register load/store.
5087 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
5088 static void
5089 do_lstc (void)
5090 {
5091 inst.instruction |= inst.operands[0].reg << 8;
5092 inst.instruction |= inst.operands[1].reg << 12;
5093 encode_arm_cp_address (2, TRUE, TRUE, 0);
5094 }
5095
5096 static void
5097 do_mlas (void)
5098 {
5099 /* This restriction does not apply to mls (nor to mla in v6, but
5100 that's hard to detect at present). */
5101 if (inst.operands[0].reg == inst.operands[1].reg
5102 && !(inst.instruction & 0x00400000))
5103 as_tsktsk (_("rd and rm should be different in mla"));
5104
5105 inst.instruction |= inst.operands[0].reg << 16;
5106 inst.instruction |= inst.operands[1].reg;
5107 inst.instruction |= inst.operands[2].reg << 8;
5108 inst.instruction |= inst.operands[3].reg << 12;
5109
5110 }
5111
5112 static void
5113 do_mov (void)
5114 {
5115 inst.instruction |= inst.operands[0].reg << 12;
5116 encode_arm_shifter_operand (1);
5117 }
5118
5119 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
5120 static void
5121 do_mov16 (void)
5122 {
5123 inst.instruction |= inst.operands[0].reg << 12;
5124 /* The value is in two pieces: 0:11, 16:19. */
5125 inst.instruction |= (inst.operands[1].imm & 0x00000fff);
5126 inst.instruction |= (inst.operands[1].imm & 0x0000f000) << 4;
5127 }
5128
5129 static void
5130 do_mrs (void)
5131 {
5132 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
5133 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
5134 != (PSR_c|PSR_f),
5135 _("'CPSR' or 'SPSR' expected"));
5136 inst.instruction |= inst.operands[0].reg << 12;
5137 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
5138 }
5139
5140 /* Two possible forms:
5141 "{C|S}PSR_<field>, Rm",
5142 "{C|S}PSR_f, #expression". */
5143
5144 static void
5145 do_msr (void)
5146 {
5147 inst.instruction |= inst.operands[0].imm;
5148 if (inst.operands[1].isreg)
5149 inst.instruction |= inst.operands[1].reg;
5150 else
5151 {
5152 inst.instruction |= INST_IMMEDIATE;
5153 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
5154 inst.reloc.pc_rel = 0;
5155 }
5156 }
5157
5158 static void
5159 do_mul (void)
5160 {
5161 if (!inst.operands[2].present)
5162 inst.operands[2].reg = inst.operands[0].reg;
5163 inst.instruction |= inst.operands[0].reg << 16;
5164 inst.instruction |= inst.operands[1].reg;
5165 inst.instruction |= inst.operands[2].reg << 8;
5166
5167 if (inst.operands[0].reg == inst.operands[1].reg)
5168 as_tsktsk (_("rd and rm should be different in mul"));
5169 }
5170
5171 /* Long Multiply Parser
5172 UMULL RdLo, RdHi, Rm, Rs
5173 SMULL RdLo, RdHi, Rm, Rs
5174 UMLAL RdLo, RdHi, Rm, Rs
5175 SMLAL RdLo, RdHi, Rm, Rs. */
5176
5177 static void
5178 do_mull (void)
5179 {
5180 inst.instruction |= inst.operands[0].reg << 12;
5181 inst.instruction |= inst.operands[1].reg << 16;
5182 inst.instruction |= inst.operands[2].reg;
5183 inst.instruction |= inst.operands[3].reg << 8;
5184
5185 /* rdhi, rdlo and rm must all be different. */
5186 if (inst.operands[0].reg == inst.operands[1].reg
5187 || inst.operands[0].reg == inst.operands[2].reg
5188 || inst.operands[1].reg == inst.operands[2].reg)
5189 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
5190 }
5191
5192 static void
5193 do_nop (void)
5194 {
5195 if (inst.operands[0].present)
5196 {
5197 /* Architectural NOP hints are CPSR sets with no bits selected. */
5198 inst.instruction &= 0xf0000000;
5199 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
5200 }
5201 }
5202
5203 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
5204 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
5205 Condition defaults to COND_ALWAYS.
5206 Error if Rd, Rn or Rm are R15. */
5207
5208 static void
5209 do_pkhbt (void)
5210 {
5211 inst.instruction |= inst.operands[0].reg << 12;
5212 inst.instruction |= inst.operands[1].reg << 16;
5213 inst.instruction |= inst.operands[2].reg;
5214 if (inst.operands[3].present)
5215 encode_arm_shift (3);
5216 }
5217
5218 /* ARM V6 PKHTB (Argument Parse). */
5219
5220 static void
5221 do_pkhtb (void)
5222 {
5223 if (!inst.operands[3].present)
5224 {
5225 /* If the shift specifier is omitted, turn the instruction
5226 into pkhbt rd, rm, rn. */
5227 inst.instruction &= 0xfff00010;
5228 inst.instruction |= inst.operands[0].reg << 12;
5229 inst.instruction |= inst.operands[1].reg;
5230 inst.instruction |= inst.operands[2].reg << 16;
5231 }
5232 else
5233 {
5234 inst.instruction |= inst.operands[0].reg << 12;
5235 inst.instruction |= inst.operands[1].reg << 16;
5236 inst.instruction |= inst.operands[2].reg;
5237 encode_arm_shift (3);
5238 }
5239 }
5240
5241 /* ARMv5TE: Preload-Cache
5242
5243 PLD <addr_mode>
5244
5245 Syntactically, like LDR with B=1, W=0, L=1. */
5246
5247 static void
5248 do_pld (void)
5249 {
5250 constraint (!inst.operands[0].isreg,
5251 _("'[' expected after PLD mnemonic"));
5252 constraint (inst.operands[0].postind,
5253 _("post-indexed expression used in preload instruction"));
5254 constraint (inst.operands[0].writeback,
5255 _("writeback used in preload instruction"));
5256 constraint (!inst.operands[0].preind,
5257 _("unindexed addressing used in preload instruction"));
5258 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
5259 }
5260
5261 /* ARMv7: PLI <addr_mode> */
5262 static void
5263 do_pli (void)
5264 {
5265 constraint (!inst.operands[0].isreg,
5266 _("'[' expected after PLI mnemonic"));
5267 constraint (inst.operands[0].postind,
5268 _("post-indexed expression used in preload instruction"));
5269 constraint (inst.operands[0].writeback,
5270 _("writeback used in preload instruction"));
5271 constraint (!inst.operands[0].preind,
5272 _("unindexed addressing used in preload instruction"));
5273 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
5274 inst.instruction &= ~PRE_INDEX;
5275 }
5276
5277 static void
5278 do_push_pop (void)
5279 {
5280 inst.operands[1] = inst.operands[0];
5281 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
5282 inst.operands[0].isreg = 1;
5283 inst.operands[0].writeback = 1;
5284 inst.operands[0].reg = REG_SP;
5285 do_ldmstm ();
5286 }
5287
5288 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
5289 word at the specified address and the following word
5290 respectively.
5291 Unconditionally executed.
5292 Error if Rn is R15. */
5293
5294 static void
5295 do_rfe (void)
5296 {
5297 inst.instruction |= inst.operands[0].reg << 16;
5298 if (inst.operands[0].writeback)
5299 inst.instruction |= WRITE_BACK;
5300 }
5301
5302 /* ARM V6 ssat (argument parse). */
5303
5304 static void
5305 do_ssat (void)
5306 {
5307 inst.instruction |= inst.operands[0].reg << 12;
5308 inst.instruction |= (inst.operands[1].imm - 1) << 16;
5309 inst.instruction |= inst.operands[2].reg;
5310
5311 if (inst.operands[3].present)
5312 encode_arm_shift (3);
5313 }
5314
5315 /* ARM V6 usat (argument parse). */
5316
5317 static void
5318 do_usat (void)
5319 {
5320 inst.instruction |= inst.operands[0].reg << 12;
5321 inst.instruction |= inst.operands[1].imm << 16;
5322 inst.instruction |= inst.operands[2].reg;
5323
5324 if (inst.operands[3].present)
5325 encode_arm_shift (3);
5326 }
5327
5328 /* ARM V6 ssat16 (argument parse). */
5329
5330 static void
5331 do_ssat16 (void)
5332 {
5333 inst.instruction |= inst.operands[0].reg << 12;
5334 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
5335 inst.instruction |= inst.operands[2].reg;
5336 }
5337
5338 static void
5339 do_usat16 (void)
5340 {
5341 inst.instruction |= inst.operands[0].reg << 12;
5342 inst.instruction |= inst.operands[1].imm << 16;
5343 inst.instruction |= inst.operands[2].reg;
5344 }
5345
5346 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
5347 preserving the other bits.
5348
5349 setend <endian_specifier>, where <endian_specifier> is either
5350 BE or LE. */
5351
5352 static void
5353 do_setend (void)
5354 {
5355 if (inst.operands[0].imm)
5356 inst.instruction |= 0x200;
5357 }
5358
5359 static void
5360 do_shift (void)
5361 {
5362 unsigned int Rm = (inst.operands[1].present
5363 ? inst.operands[1].reg
5364 : inst.operands[0].reg);
5365
5366 inst.instruction |= inst.operands[0].reg << 12;
5367 inst.instruction |= Rm;
5368 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
5369 {
5370 inst.instruction |= inst.operands[2].reg << 8;
5371 inst.instruction |= SHIFT_BY_REG;
5372 }
5373 else
5374 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
5375 }
5376
5377 static void
5378 do_smc (void)
5379 {
5380 inst.reloc.type = BFD_RELOC_ARM_SMC;
5381 inst.reloc.pc_rel = 0;
5382 }
5383
5384 static void
5385 do_swi (void)
5386 {
5387 inst.reloc.type = BFD_RELOC_ARM_SWI;
5388 inst.reloc.pc_rel = 0;
5389 }
5390
5391 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
5392 SMLAxy{cond} Rd,Rm,Rs,Rn
5393 SMLAWy{cond} Rd,Rm,Rs,Rn
5394 Error if any register is R15. */
5395
5396 static void
5397 do_smla (void)
5398 {
5399 inst.instruction |= inst.operands[0].reg << 16;
5400 inst.instruction |= inst.operands[1].reg;
5401 inst.instruction |= inst.operands[2].reg << 8;
5402 inst.instruction |= inst.operands[3].reg << 12;
5403 }
5404
5405 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
5406 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
5407 Error if any register is R15.
5408 Warning if Rdlo == Rdhi. */
5409
5410 static void
5411 do_smlal (void)
5412 {
5413 inst.instruction |= inst.operands[0].reg << 12;
5414 inst.instruction |= inst.operands[1].reg << 16;
5415 inst.instruction |= inst.operands[2].reg;
5416 inst.instruction |= inst.operands[3].reg << 8;
5417
5418 if (inst.operands[0].reg == inst.operands[1].reg)
5419 as_tsktsk (_("rdhi and rdlo must be different"));
5420 }
5421
5422 /* ARM V5E (El Segundo) signed-multiply (argument parse)
5423 SMULxy{cond} Rd,Rm,Rs
5424 Error if any register is R15. */
5425
5426 static void
5427 do_smul (void)
5428 {
5429 inst.instruction |= inst.operands[0].reg << 16;
5430 inst.instruction |= inst.operands[1].reg;
5431 inst.instruction |= inst.operands[2].reg << 8;
5432 }
5433
5434 /* ARM V6 srs (argument parse). */
5435
5436 static void
5437 do_srs (void)
5438 {
5439 inst.instruction |= inst.operands[0].imm;
5440 if (inst.operands[0].writeback)
5441 inst.instruction |= WRITE_BACK;
5442 }
5443
5444 /* ARM V6 strex (argument parse). */
5445
5446 static void
5447 do_strex (void)
5448 {
5449 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
5450 || inst.operands[2].postind || inst.operands[2].writeback
5451 || inst.operands[2].immisreg || inst.operands[2].shifted
5452 || inst.operands[2].negative
5453 /* See comment in do_ldrex(). */
5454 || (inst.operands[2].reg == REG_PC),
5455 BAD_ADDR_MODE);
5456
5457 constraint (inst.operands[0].reg == inst.operands[1].reg
5458 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
5459
5460 constraint (inst.reloc.exp.X_op != O_constant
5461 || inst.reloc.exp.X_add_number != 0,
5462 _("offset must be zero in ARM encoding"));
5463
5464 inst.instruction |= inst.operands[0].reg << 12;
5465 inst.instruction |= inst.operands[1].reg;
5466 inst.instruction |= inst.operands[2].reg << 16;
5467 inst.reloc.type = BFD_RELOC_UNUSED;
5468 }
5469
5470 static void
5471 do_strexd (void)
5472 {
5473 constraint (inst.operands[1].reg % 2 != 0,
5474 _("even register required"));
5475 constraint (inst.operands[2].present
5476 && inst.operands[2].reg != inst.operands[1].reg + 1,
5477 _("can only store two consecutive registers"));
5478 /* If op 2 were present and equal to PC, this function wouldn't
5479 have been called in the first place. */
5480 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
5481
5482 constraint (inst.operands[0].reg == inst.operands[1].reg
5483 || inst.operands[0].reg == inst.operands[1].reg + 1
5484 || inst.operands[0].reg == inst.operands[3].reg,
5485 BAD_OVERLAP);
5486
5487 inst.instruction |= inst.operands[0].reg << 12;
5488 inst.instruction |= inst.operands[1].reg;
5489 inst.instruction |= inst.operands[3].reg << 16;
5490 }
5491
5492 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
5493 extends it to 32-bits, and adds the result to a value in another
5494 register. You can specify a rotation by 0, 8, 16, or 24 bits
5495 before extracting the 16-bit value.
5496 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
5497 Condition defaults to COND_ALWAYS.
5498 Error if any register uses R15. */
5499
5500 static void
5501 do_sxtah (void)
5502 {
5503 inst.instruction |= inst.operands[0].reg << 12;
5504 inst.instruction |= inst.operands[1].reg << 16;
5505 inst.instruction |= inst.operands[2].reg;
5506 inst.instruction |= inst.operands[3].imm << 10;
5507 }
5508
5509 /* ARM V6 SXTH.
5510
5511 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
5512 Condition defaults to COND_ALWAYS.
5513 Error if any register uses R15. */
5514
5515 static void
5516 do_sxth (void)
5517 {
5518 inst.instruction |= inst.operands[0].reg << 12;
5519 inst.instruction |= inst.operands[1].reg;
5520 inst.instruction |= inst.operands[2].imm << 10;
5521 }
5522 \f
5523 /* VFP instructions. In a logical order: SP variant first, monad
5524 before dyad, arithmetic then move then load/store. */
5525
5526 static void
5527 do_vfp_sp_monadic (void)
5528 {
5529 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5530 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sm);
5531 }
5532
5533 static void
5534 do_vfp_sp_dyadic (void)
5535 {
5536 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5537 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sn);
5538 encode_arm_vfp_sp_reg (inst.operands[2].reg, VFP_REG_Sm);
5539 }
5540
5541 static void
5542 do_vfp_sp_compare_z (void)
5543 {
5544 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5545 }
5546
5547 static void
5548 do_vfp_dp_sp_cvt (void)
5549 {
5550 inst.instruction |= inst.operands[0].reg << 12;
5551 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sm);
5552 }
5553
5554 static void
5555 do_vfp_sp_dp_cvt (void)
5556 {
5557 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5558 inst.instruction |= inst.operands[1].reg;
5559 }
5560
5561 static void
5562 do_vfp_reg_from_sp (void)
5563 {
5564 inst.instruction |= inst.operands[0].reg << 12;
5565 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sn);
5566 }
5567
5568 static void
5569 do_vfp_reg2_from_sp2 (void)
5570 {
5571 constraint (inst.operands[2].imm != 2,
5572 _("only two consecutive VFP SP registers allowed here"));
5573 inst.instruction |= inst.operands[0].reg << 12;
5574 inst.instruction |= inst.operands[1].reg << 16;
5575 encode_arm_vfp_sp_reg (inst.operands[2].reg, VFP_REG_Sm);
5576 }
5577
5578 static void
5579 do_vfp_sp_from_reg (void)
5580 {
5581 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sn);
5582 inst.instruction |= inst.operands[1].reg << 12;
5583 }
5584
5585 static void
5586 do_vfp_sp2_from_reg2 (void)
5587 {
5588 constraint (inst.operands[0].imm != 2,
5589 _("only two consecutive VFP SP registers allowed here"));
5590 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sm);
5591 inst.instruction |= inst.operands[1].reg << 12;
5592 inst.instruction |= inst.operands[2].reg << 16;
5593 }
5594
5595 static void
5596 do_vfp_sp_ldst (void)
5597 {
5598 encode_arm_vfp_sp_reg (inst.operands[0].reg, VFP_REG_Sd);
5599 encode_arm_cp_address (1, FALSE, TRUE, 0);
5600 }
5601
5602 static void
5603 do_vfp_dp_ldst (void)
5604 {
5605 inst.instruction |= inst.operands[0].reg << 12;
5606 encode_arm_cp_address (1, FALSE, TRUE, 0);
5607 }
5608
5609
5610 static void
5611 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
5612 {
5613 if (inst.operands[0].writeback)
5614 inst.instruction |= WRITE_BACK;
5615 else
5616 constraint (ldstm_type != VFP_LDSTMIA,
5617 _("this addressing mode requires base-register writeback"));
5618 inst.instruction |= inst.operands[0].reg << 16;
5619 encode_arm_vfp_sp_reg (inst.operands[1].reg, VFP_REG_Sd);
5620 inst.instruction |= inst.operands[1].imm;
5621 }
5622
5623 static void
5624 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
5625 {
5626 int count;
5627
5628 if (inst.operands[0].writeback)
5629 inst.instruction |= WRITE_BACK;
5630 else
5631 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
5632 _("this addressing mode requires base-register writeback"));
5633
5634 inst.instruction |= inst.operands[0].reg << 16;
5635 inst.instruction |= inst.operands[1].reg << 12;
5636
5637 count = inst.operands[1].imm << 1;
5638 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
5639 count += 1;
5640
5641 inst.instruction |= count;
5642 }
5643
5644 static void
5645 do_vfp_sp_ldstmia (void)
5646 {
5647 vfp_sp_ldstm (VFP_LDSTMIA);
5648 }
5649
5650 static void
5651 do_vfp_sp_ldstmdb (void)
5652 {
5653 vfp_sp_ldstm (VFP_LDSTMDB);
5654 }
5655
5656 static void
5657 do_vfp_dp_ldstmia (void)
5658 {
5659 vfp_dp_ldstm (VFP_LDSTMIA);
5660 }
5661
5662 static void
5663 do_vfp_dp_ldstmdb (void)
5664 {
5665 vfp_dp_ldstm (VFP_LDSTMDB);
5666 }
5667
5668 static void
5669 do_vfp_xp_ldstmia (void)
5670 {
5671 vfp_dp_ldstm (VFP_LDSTMIAX);
5672 }
5673
5674 static void
5675 do_vfp_xp_ldstmdb (void)
5676 {
5677 vfp_dp_ldstm (VFP_LDSTMDBX);
5678 }
5679 \f
5680 /* FPA instructions. Also in a logical order. */
5681
5682 static void
5683 do_fpa_cmp (void)
5684 {
5685 inst.instruction |= inst.operands[0].reg << 16;
5686 inst.instruction |= inst.operands[1].reg;
5687 }
5688
5689 static void
5690 do_fpa_ldmstm (void)
5691 {
5692 inst.instruction |= inst.operands[0].reg << 12;
5693 switch (inst.operands[1].imm)
5694 {
5695 case 1: inst.instruction |= CP_T_X; break;
5696 case 2: inst.instruction |= CP_T_Y; break;
5697 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
5698 case 4: break;
5699 default: abort ();
5700 }
5701
5702 if (inst.instruction & (PRE_INDEX | INDEX_UP))
5703 {
5704 /* The instruction specified "ea" or "fd", so we can only accept
5705 [Rn]{!}. The instruction does not really support stacking or
5706 unstacking, so we have to emulate these by setting appropriate
5707 bits and offsets. */
5708 constraint (inst.reloc.exp.X_op != O_constant
5709 || inst.reloc.exp.X_add_number != 0,
5710 _("this instruction does not support indexing"));
5711
5712 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
5713 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
5714
5715 if (!(inst.instruction & INDEX_UP))
5716 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
5717
5718 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
5719 {
5720 inst.operands[2].preind = 0;
5721 inst.operands[2].postind = 1;
5722 }
5723 }
5724
5725 encode_arm_cp_address (2, TRUE, TRUE, 0);
5726 }
5727 \f
5728 /* iWMMXt instructions: strictly in alphabetical order. */
5729
5730 static void
5731 do_iwmmxt_tandorc (void)
5732 {
5733 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
5734 }
5735
5736 static void
5737 do_iwmmxt_textrc (void)
5738 {
5739 inst.instruction |= inst.operands[0].reg << 12;
5740 inst.instruction |= inst.operands[1].imm;
5741 }
5742
5743 static void
5744 do_iwmmxt_textrm (void)
5745 {
5746 inst.instruction |= inst.operands[0].reg << 12;
5747 inst.instruction |= inst.operands[1].reg << 16;
5748 inst.instruction |= inst.operands[2].imm;
5749 }
5750
5751 static void
5752 do_iwmmxt_tinsr (void)
5753 {
5754 inst.instruction |= inst.operands[0].reg << 16;
5755 inst.instruction |= inst.operands[1].reg << 12;
5756 inst.instruction |= inst.operands[2].imm;
5757 }
5758
5759 static void
5760 do_iwmmxt_tmia (void)
5761 {
5762 inst.instruction |= inst.operands[0].reg << 5;
5763 inst.instruction |= inst.operands[1].reg;
5764 inst.instruction |= inst.operands[2].reg << 12;
5765 }
5766
5767 static void
5768 do_iwmmxt_waligni (void)
5769 {
5770 inst.instruction |= inst.operands[0].reg << 12;
5771 inst.instruction |= inst.operands[1].reg << 16;
5772 inst.instruction |= inst.operands[2].reg;
5773 inst.instruction |= inst.operands[3].imm << 20;
5774 }
5775
5776 static void
5777 do_iwmmxt_wmov (void)
5778 {
5779 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
5780 inst.instruction |= inst.operands[0].reg << 12;
5781 inst.instruction |= inst.operands[1].reg << 16;
5782 inst.instruction |= inst.operands[1].reg;
5783 }
5784
5785 static void
5786 do_iwmmxt_wldstbh (void)
5787 {
5788 int reloc;
5789 inst.instruction |= inst.operands[0].reg << 12;
5790 inst.reloc.exp.X_add_number *= 4;
5791 if (thumb_mode)
5792 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
5793 else
5794 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
5795 encode_arm_cp_address (1, TRUE, FALSE, reloc);
5796 }
5797
5798 static void
5799 do_iwmmxt_wldstw (void)
5800 {
5801 /* RIWR_RIWC clears .isreg for a control register. */
5802 if (!inst.operands[0].isreg)
5803 {
5804 constraint (inst.cond != COND_ALWAYS, BAD_COND);
5805 inst.instruction |= 0xf0000000;
5806 }
5807
5808 inst.instruction |= inst.operands[0].reg << 12;
5809 encode_arm_cp_address (1, TRUE, TRUE, 0);
5810 }
5811
5812 static void
5813 do_iwmmxt_wldstd (void)
5814 {
5815 inst.instruction |= inst.operands[0].reg << 12;
5816 encode_arm_cp_address (1, TRUE, FALSE, 0);
5817 }
5818
5819 static void
5820 do_iwmmxt_wshufh (void)
5821 {
5822 inst.instruction |= inst.operands[0].reg << 12;
5823 inst.instruction |= inst.operands[1].reg << 16;
5824 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
5825 inst.instruction |= (inst.operands[2].imm & 0x0f);
5826 }
5827
5828 static void
5829 do_iwmmxt_wzero (void)
5830 {
5831 /* WZERO reg is an alias for WANDN reg, reg, reg. */
5832 inst.instruction |= inst.operands[0].reg;
5833 inst.instruction |= inst.operands[0].reg << 12;
5834 inst.instruction |= inst.operands[0].reg << 16;
5835 }
5836 \f
5837 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
5838 operations first, then control, shift, and load/store. */
5839
5840 /* Insns like "foo X,Y,Z". */
5841
5842 static void
5843 do_mav_triple (void)
5844 {
5845 inst.instruction |= inst.operands[0].reg << 16;
5846 inst.instruction |= inst.operands[1].reg;
5847 inst.instruction |= inst.operands[2].reg << 12;
5848 }
5849
5850 /* Insns like "foo W,X,Y,Z".
5851 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
5852
5853 static void
5854 do_mav_quad (void)
5855 {
5856 inst.instruction |= inst.operands[0].reg << 5;
5857 inst.instruction |= inst.operands[1].reg << 12;
5858 inst.instruction |= inst.operands[2].reg << 16;
5859 inst.instruction |= inst.operands[3].reg;
5860 }
5861
5862 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
5863 static void
5864 do_mav_dspsc (void)
5865 {
5866 inst.instruction |= inst.operands[1].reg << 12;
5867 }
5868
5869 /* Maverick shift immediate instructions.
5870 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
5871 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
5872
5873 static void
5874 do_mav_shift (void)
5875 {
5876 int imm = inst.operands[2].imm;
5877
5878 inst.instruction |= inst.operands[0].reg << 12;
5879 inst.instruction |= inst.operands[1].reg << 16;
5880
5881 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
5882 Bits 5-7 of the insn should have bits 4-6 of the immediate.
5883 Bit 4 should be 0. */
5884 imm = (imm & 0xf) | ((imm & 0x70) << 1);
5885
5886 inst.instruction |= imm;
5887 }
5888 \f
5889 /* XScale instructions. Also sorted arithmetic before move. */
5890
5891 /* Xscale multiply-accumulate (argument parse)
5892 MIAcc acc0,Rm,Rs
5893 MIAPHcc acc0,Rm,Rs
5894 MIAxycc acc0,Rm,Rs. */
5895
5896 static void
5897 do_xsc_mia (void)
5898 {
5899 inst.instruction |= inst.operands[1].reg;
5900 inst.instruction |= inst.operands[2].reg << 12;
5901 }
5902
5903 /* Xscale move-accumulator-register (argument parse)
5904
5905 MARcc acc0,RdLo,RdHi. */
5906
5907 static void
5908 do_xsc_mar (void)
5909 {
5910 inst.instruction |= inst.operands[1].reg << 12;
5911 inst.instruction |= inst.operands[2].reg << 16;
5912 }
5913
5914 /* Xscale move-register-accumulator (argument parse)
5915
5916 MRAcc RdLo,RdHi,acc0. */
5917
5918 static void
5919 do_xsc_mra (void)
5920 {
5921 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
5922 inst.instruction |= inst.operands[0].reg << 12;
5923 inst.instruction |= inst.operands[1].reg << 16;
5924 }
5925 \f
5926 /* Encoding functions relevant only to Thumb. */
5927
5928 /* inst.operands[i] is a shifted-register operand; encode
5929 it into inst.instruction in the format used by Thumb32. */
5930
5931 static void
5932 encode_thumb32_shifted_operand (int i)
5933 {
5934 unsigned int value = inst.reloc.exp.X_add_number;
5935 unsigned int shift = inst.operands[i].shift_kind;
5936
5937 constraint (inst.operands[i].immisreg,
5938 _("shift by register not allowed in thumb mode"));
5939 inst.instruction |= inst.operands[i].reg;
5940 if (shift == SHIFT_RRX)
5941 inst.instruction |= SHIFT_ROR << 4;
5942 else
5943 {
5944 constraint (inst.reloc.exp.X_op != O_constant,
5945 _("expression too complex"));
5946
5947 constraint (value > 32
5948 || (value == 32 && (shift == SHIFT_LSL
5949 || shift == SHIFT_ROR)),
5950 _("shift expression is too large"));
5951
5952 if (value == 0)
5953 shift = SHIFT_LSL;
5954 else if (value == 32)
5955 value = 0;
5956
5957 inst.instruction |= shift << 4;
5958 inst.instruction |= (value & 0x1c) << 10;
5959 inst.instruction |= (value & 0x03) << 6;
5960 }
5961 }
5962
5963
5964 /* inst.operands[i] was set up by parse_address. Encode it into a
5965 Thumb32 format load or store instruction. Reject forms that cannot
5966 be used with such instructions. If is_t is true, reject forms that
5967 cannot be used with a T instruction; if is_d is true, reject forms
5968 that cannot be used with a D instruction. */
5969
5970 static void
5971 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
5972 {
5973 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
5974
5975 constraint (!inst.operands[i].isreg,
5976 _("Instruction does not support =N addresses"));
5977
5978 inst.instruction |= inst.operands[i].reg << 16;
5979 if (inst.operands[i].immisreg)
5980 {
5981 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
5982 constraint (is_t || is_d, _("cannot use register index with this instruction"));
5983 constraint (inst.operands[i].negative,
5984 _("Thumb does not support negative register indexing"));
5985 constraint (inst.operands[i].postind,
5986 _("Thumb does not support register post-indexing"));
5987 constraint (inst.operands[i].writeback,
5988 _("Thumb does not support register indexing with writeback"));
5989 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
5990 _("Thumb supports only LSL in shifted register indexing"));
5991
5992 inst.instruction |= inst.operands[i].imm;
5993 if (inst.operands[i].shifted)
5994 {
5995 constraint (inst.reloc.exp.X_op != O_constant,
5996 _("expression too complex"));
5997 constraint (inst.reloc.exp.X_add_number < 0
5998 || inst.reloc.exp.X_add_number > 3,
5999 _("shift out of range"));
6000 inst.instruction |= inst.reloc.exp.X_add_number << 4;
6001 }
6002 inst.reloc.type = BFD_RELOC_UNUSED;
6003 }
6004 else if (inst.operands[i].preind)
6005 {
6006 constraint (is_pc && inst.operands[i].writeback,
6007 _("cannot use writeback with PC-relative addressing"));
6008 constraint (is_t && inst.operands[i].writeback,
6009 _("cannot use writeback with this instruction"));
6010
6011 if (is_d)
6012 {
6013 inst.instruction |= 0x01000000;
6014 if (inst.operands[i].writeback)
6015 inst.instruction |= 0x00200000;
6016 }
6017 else
6018 {
6019 inst.instruction |= 0x00000c00;
6020 if (inst.operands[i].writeback)
6021 inst.instruction |= 0x00000100;
6022 }
6023 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
6024 }
6025 else if (inst.operands[i].postind)
6026 {
6027 assert (inst.operands[i].writeback);
6028 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
6029 constraint (is_t, _("cannot use post-indexing with this instruction"));
6030
6031 if (is_d)
6032 inst.instruction |= 0x00200000;
6033 else
6034 inst.instruction |= 0x00000900;
6035 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
6036 }
6037 else /* unindexed - only for coprocessor */
6038 inst.error = _("instruction does not accept unindexed addressing");
6039 }
6040
6041 /* Table of Thumb instructions which exist in both 16- and 32-bit
6042 encodings (the latter only in post-V6T2 cores). The index is the
6043 value used in the insns table below. When there is more than one
6044 possible 16-bit encoding for the instruction, this table always
6045 holds variant (1).
6046 Also contains several pseudo-instructions used during relaxation. */
6047 #define T16_32_TAB \
6048 X(adc, 4140, eb400000), \
6049 X(adcs, 4140, eb500000), \
6050 X(add, 1c00, eb000000), \
6051 X(adds, 1c00, eb100000), \
6052 X(addi, 0000, f1000000), \
6053 X(addis, 0000, f1100000), \
6054 X(add_pc,000f, f20f0000), \
6055 X(add_sp,000d, f10d0000), \
6056 X(adr, 000f, f20f0000), \
6057 X(and, 4000, ea000000), \
6058 X(ands, 4000, ea100000), \
6059 X(asr, 1000, fa40f000), \
6060 X(asrs, 1000, fa50f000), \
6061 X(b, e000, f000b000), \
6062 X(bcond, d000, f0008000), \
6063 X(bic, 4380, ea200000), \
6064 X(bics, 4380, ea300000), \
6065 X(cmn, 42c0, eb100f00), \
6066 X(cmp, 2800, ebb00f00), \
6067 X(cpsie, b660, f3af8400), \
6068 X(cpsid, b670, f3af8600), \
6069 X(cpy, 4600, ea4f0000), \
6070 X(dec_sp,80dd, f1bd0d00), \
6071 X(eor, 4040, ea800000), \
6072 X(eors, 4040, ea900000), \
6073 X(inc_sp,00dd, f10d0d00), \
6074 X(ldmia, c800, e8900000), \
6075 X(ldr, 6800, f8500000), \
6076 X(ldrb, 7800, f8100000), \
6077 X(ldrh, 8800, f8300000), \
6078 X(ldrsb, 5600, f9100000), \
6079 X(ldrsh, 5e00, f9300000), \
6080 X(ldr_pc,4800, f85f0000), \
6081 X(ldr_pc2,4800, f85f0000), \
6082 X(ldr_sp,9800, f85d0000), \
6083 X(lsl, 0000, fa00f000), \
6084 X(lsls, 0000, fa10f000), \
6085 X(lsr, 0800, fa20f000), \
6086 X(lsrs, 0800, fa30f000), \
6087 X(mov, 2000, ea4f0000), \
6088 X(movs, 2000, ea5f0000), \
6089 X(mul, 4340, fb00f000), \
6090 X(muls, 4340, ffffffff), /* no 32b muls */ \
6091 X(mvn, 43c0, ea6f0000), \
6092 X(mvns, 43c0, ea7f0000), \
6093 X(neg, 4240, f1c00000), /* rsb #0 */ \
6094 X(negs, 4240, f1d00000), /* rsbs #0 */ \
6095 X(orr, 4300, ea400000), \
6096 X(orrs, 4300, ea500000), \
6097 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
6098 X(push, b400, e92d0000), /* stmdb sp!,... */ \
6099 X(rev, ba00, fa90f080), \
6100 X(rev16, ba40, fa90f090), \
6101 X(revsh, bac0, fa90f0b0), \
6102 X(ror, 41c0, fa60f000), \
6103 X(rors, 41c0, fa70f000), \
6104 X(sbc, 4180, eb600000), \
6105 X(sbcs, 4180, eb700000), \
6106 X(stmia, c000, e8800000), \
6107 X(str, 6000, f8400000), \
6108 X(strb, 7000, f8000000), \
6109 X(strh, 8000, f8200000), \
6110 X(str_sp,9000, f84d0000), \
6111 X(sub, 1e00, eba00000), \
6112 X(subs, 1e00, ebb00000), \
6113 X(subi, 8000, f1a00000), \
6114 X(subis, 8000, f1b00000), \
6115 X(sxtb, b240, fa4ff080), \
6116 X(sxth, b200, fa0ff080), \
6117 X(tst, 4200, ea100f00), \
6118 X(uxtb, b2c0, fa5ff080), \
6119 X(uxth, b280, fa1ff080), \
6120 X(nop, bf00, f3af8000), \
6121 X(yield, bf10, f3af8001), \
6122 X(wfe, bf20, f3af8002), \
6123 X(wfi, bf30, f3af8003), \
6124 X(sev, bf40, f3af9004), /* typo, 8004? */
6125
6126 /* To catch errors in encoding functions, the codes are all offset by
6127 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
6128 as 16-bit instructions. */
6129 #define X(a,b,c) T_MNEM_##a
6130 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
6131 #undef X
6132
6133 #define X(a,b,c) 0x##b
6134 static const unsigned short thumb_op16[] = { T16_32_TAB };
6135 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
6136 #undef X
6137
6138 #define X(a,b,c) 0x##c
6139 static const unsigned int thumb_op32[] = { T16_32_TAB };
6140 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
6141 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
6142 #undef X
6143 #undef T16_32_TAB
6144
6145 /* Thumb instruction encoders, in alphabetical order. */
6146
6147 /* ADDW or SUBW. */
6148 static void
6149 do_t_add_sub_w (void)
6150 {
6151 int Rd, Rn;
6152
6153 Rd = inst.operands[0].reg;
6154 Rn = inst.operands[1].reg;
6155
6156 constraint (Rd == 15, _("PC not allowed as destination"));
6157 inst.instruction |= (Rn << 16) | (Rd << 8);
6158 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
6159 }
6160
6161 /* Parse an add or subtract instruction. We get here with inst.instruction
6162 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
6163
6164 static void
6165 do_t_add_sub (void)
6166 {
6167 int Rd, Rs, Rn;
6168
6169 Rd = inst.operands[0].reg;
6170 Rs = (inst.operands[1].present
6171 ? inst.operands[1].reg /* Rd, Rs, foo */
6172 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
6173
6174 if (unified_syntax)
6175 {
6176 bfd_boolean flags;
6177 bfd_boolean narrow;
6178 int opcode;
6179
6180 flags = (inst.instruction == T_MNEM_adds
6181 || inst.instruction == T_MNEM_subs);
6182 if (flags)
6183 narrow = (current_it_mask == 0);
6184 else
6185 narrow = (current_it_mask != 0);
6186 if (!inst.operands[2].isreg)
6187 {
6188 opcode = 0;
6189 if (inst.size_req != 4)
6190 {
6191 int add;
6192
6193 add = (inst.instruction == T_MNEM_add
6194 || inst.instruction == T_MNEM_adds);
6195 /* Attempt to use a narrow opcode, with relaxation if
6196 appropriate. */
6197 if (Rd == REG_SP && Rs == REG_SP && !flags)
6198 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
6199 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
6200 opcode = T_MNEM_add_sp;
6201 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
6202 opcode = T_MNEM_add_pc;
6203 else if (Rd <= 7 && Rs <= 7 && narrow)
6204 {
6205 if (flags)
6206 opcode = add ? T_MNEM_addis : T_MNEM_subis;
6207 else
6208 opcode = add ? T_MNEM_addi : T_MNEM_subi;
6209 }
6210 if (opcode)
6211 {
6212 inst.instruction = THUMB_OP16(opcode);
6213 inst.instruction |= (Rd << 4) | Rs;
6214 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
6215 if (inst.size_req != 2)
6216 inst.relax = opcode;
6217 }
6218 else
6219 constraint (inst.size_req == 2, BAD_HIREG);
6220 }
6221 if (inst.size_req == 4
6222 || (inst.size_req != 2 && !opcode))
6223 {
6224 /* ??? Convert large immediates to addw/subw. */
6225 inst.instruction = THUMB_OP32 (inst.instruction);
6226 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6227 inst.instruction |= inst.operands[0].reg << 8;
6228 inst.instruction |= inst.operands[1].reg << 16;
6229 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
6230 }
6231 }
6232 else
6233 {
6234 Rn = inst.operands[2].reg;
6235 /* See if we can do this with a 16-bit instruction. */
6236 if (!inst.operands[2].shifted && inst.size_req != 4)
6237 {
6238 if (Rd > 7 || Rs > 7 || Rn > 7)
6239 narrow = FALSE;
6240
6241 if (narrow)
6242 {
6243 inst.instruction = ((inst.instruction == T_MNEM_adds
6244 || inst.instruction == T_MNEM_add)
6245 ? T_OPCODE_ADD_R3
6246 : T_OPCODE_SUB_R3);
6247 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
6248 return;
6249 }
6250
6251 if (inst.instruction == T_MNEM_add)
6252 {
6253 if (Rd == Rs)
6254 {
6255 inst.instruction = T_OPCODE_ADD_HI;
6256 inst.instruction |= (Rd & 8) << 4;
6257 inst.instruction |= (Rd & 7);
6258 inst.instruction |= Rn << 3;
6259 return;
6260 }
6261 /* ... because addition is commutative! */
6262 else if (Rd == Rn)
6263 {
6264 inst.instruction = T_OPCODE_ADD_HI;
6265 inst.instruction |= (Rd & 8) << 4;
6266 inst.instruction |= (Rd & 7);
6267 inst.instruction |= Rs << 3;
6268 return;
6269 }
6270 }
6271 }
6272 /* If we get here, it can't be done in 16 bits. */
6273 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
6274 _("shift must be constant"));
6275 inst.instruction = THUMB_OP32 (inst.instruction);
6276 inst.instruction |= Rd << 8;
6277 inst.instruction |= Rs << 16;
6278 encode_thumb32_shifted_operand (2);
6279 }
6280 }
6281 else
6282 {
6283 constraint (inst.instruction == T_MNEM_adds
6284 || inst.instruction == T_MNEM_subs,
6285 BAD_THUMB32);
6286
6287 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
6288 {
6289 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
6290 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
6291 BAD_HIREG);
6292
6293 inst.instruction = (inst.instruction == T_MNEM_add
6294 ? 0x0000 : 0x8000);
6295 inst.instruction |= (Rd << 4) | Rs;
6296 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
6297 return;
6298 }
6299
6300 Rn = inst.operands[2].reg;
6301 constraint (inst.operands[2].shifted, _("unshifted register required"));
6302
6303 /* We now have Rd, Rs, and Rn set to registers. */
6304 if (Rd > 7 || Rs > 7 || Rn > 7)
6305 {
6306 /* Can't do this for SUB. */
6307 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
6308 inst.instruction = T_OPCODE_ADD_HI;
6309 inst.instruction |= (Rd & 8) << 4;
6310 inst.instruction |= (Rd & 7);
6311 if (Rs == Rd)
6312 inst.instruction |= Rn << 3;
6313 else if (Rn == Rd)
6314 inst.instruction |= Rs << 3;
6315 else
6316 constraint (1, _("dest must overlap one source register"));
6317 }
6318 else
6319 {
6320 inst.instruction = (inst.instruction == T_MNEM_add
6321 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
6322 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
6323 }
6324 }
6325 }
6326
6327 static void
6328 do_t_adr (void)
6329 {
6330 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
6331 {
6332 /* Defer to section relaxation. */
6333 inst.relax = inst.instruction;
6334 inst.instruction = THUMB_OP16 (inst.instruction);
6335 inst.instruction |= inst.operands[0].reg << 4;
6336 }
6337 else if (unified_syntax && inst.size_req != 2)
6338 {
6339 /* Generate a 32-bit opcode. */
6340 inst.instruction = THUMB_OP32 (inst.instruction);
6341 inst.instruction |= inst.operands[0].reg << 8;
6342 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
6343 inst.reloc.pc_rel = 1;
6344 }
6345 else
6346 {
6347 /* Generate a 16-bit opcode. */
6348 inst.instruction = THUMB_OP16 (inst.instruction);
6349 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
6350 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
6351 inst.reloc.pc_rel = 1;
6352
6353 inst.instruction |= inst.operands[0].reg << 4;
6354 }
6355 }
6356
6357 /* Arithmetic instructions for which there is just one 16-bit
6358 instruction encoding, and it allows only two low registers.
6359 For maximal compatibility with ARM syntax, we allow three register
6360 operands even when Thumb-32 instructions are not available, as long
6361 as the first two are identical. For instance, both "sbc r0,r1" and
6362 "sbc r0,r0,r1" are allowed. */
6363 static void
6364 do_t_arit3 (void)
6365 {
6366 int Rd, Rs, Rn;
6367
6368 Rd = inst.operands[0].reg;
6369 Rs = (inst.operands[1].present
6370 ? inst.operands[1].reg /* Rd, Rs, foo */
6371 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
6372 Rn = inst.operands[2].reg;
6373
6374 if (unified_syntax)
6375 {
6376 if (!inst.operands[2].isreg)
6377 {
6378 /* For an immediate, we always generate a 32-bit opcode;
6379 section relaxation will shrink it later if possible. */
6380 inst.instruction = THUMB_OP32 (inst.instruction);
6381 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6382 inst.instruction |= Rd << 8;
6383 inst.instruction |= Rs << 16;
6384 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
6385 }
6386 else
6387 {
6388 bfd_boolean narrow;
6389
6390 /* See if we can do this with a 16-bit instruction. */
6391 if (THUMB_SETS_FLAGS (inst.instruction))
6392 narrow = current_it_mask == 0;
6393 else
6394 narrow = current_it_mask != 0;
6395
6396 if (Rd > 7 || Rn > 7 || Rs > 7)
6397 narrow = FALSE;
6398 if (inst.operands[2].shifted)
6399 narrow = FALSE;
6400 if (inst.size_req == 4)
6401 narrow = FALSE;
6402
6403 if (narrow
6404 && Rd == Rs)
6405 {
6406 inst.instruction = THUMB_OP16 (inst.instruction);
6407 inst.instruction |= Rd;
6408 inst.instruction |= Rn << 3;
6409 return;
6410 }
6411
6412 /* If we get here, it can't be done in 16 bits. */
6413 constraint (inst.operands[2].shifted
6414 && inst.operands[2].immisreg,
6415 _("shift must be constant"));
6416 inst.instruction = THUMB_OP32 (inst.instruction);
6417 inst.instruction |= Rd << 8;
6418 inst.instruction |= Rs << 16;
6419 encode_thumb32_shifted_operand (2);
6420 }
6421 }
6422 else
6423 {
6424 /* On its face this is a lie - the instruction does set the
6425 flags. However, the only supported mnemonic in this mode
6426 says it doesn't. */
6427 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
6428
6429 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
6430 _("unshifted register required"));
6431 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
6432 constraint (Rd != Rs,
6433 _("dest and source1 must be the same register"));
6434
6435 inst.instruction = THUMB_OP16 (inst.instruction);
6436 inst.instruction |= Rd;
6437 inst.instruction |= Rn << 3;
6438 }
6439 }
6440
6441 /* Similarly, but for instructions where the arithmetic operation is
6442 commutative, so we can allow either of them to be different from
6443 the destination operand in a 16-bit instruction. For instance, all
6444 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
6445 accepted. */
6446 static void
6447 do_t_arit3c (void)
6448 {
6449 int Rd, Rs, Rn;
6450
6451 Rd = inst.operands[0].reg;
6452 Rs = (inst.operands[1].present
6453 ? inst.operands[1].reg /* Rd, Rs, foo */
6454 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
6455 Rn = inst.operands[2].reg;
6456
6457 if (unified_syntax)
6458 {
6459 if (!inst.operands[2].isreg)
6460 {
6461 /* For an immediate, we always generate a 32-bit opcode;
6462 section relaxation will shrink it later if possible. */
6463 inst.instruction = THUMB_OP32 (inst.instruction);
6464 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
6465 inst.instruction |= Rd << 8;
6466 inst.instruction |= Rs << 16;
6467 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
6468 }
6469 else
6470 {
6471 bfd_boolean narrow;
6472
6473 /* See if we can do this with a 16-bit instruction. */
6474 if (THUMB_SETS_FLAGS (inst.instruction))
6475 narrow = current_it_mask == 0;
6476 else
6477 narrow = current_it_mask != 0;
6478
6479 if (Rd > 7 || Rn > 7 || Rs > 7)
6480 narrow = FALSE;
6481 if (inst.operands[2].shifted)
6482 narrow = FALSE;
6483 if (inst.size_req == 4)
6484 narrow = FALSE;
6485
6486 if (narrow)
6487 {
6488 if (Rd == Rs)
6489 {
6490 inst.instruction = THUMB_OP16 (inst.instruction);
6491 inst.instruction |= Rd;
6492 inst.instruction |= Rn << 3;
6493 return;
6494 }
6495 if (Rd == Rn)
6496 {
6497 inst.instruction = THUMB_OP16 (inst.instruction);
6498 inst.instruction |= Rd;
6499 inst.instruction |= Rs << 3;
6500 return;
6501 }
6502 }
6503
6504 /* If we get here, it can't be done in 16 bits. */
6505 constraint (inst.operands[2].shifted
6506 && inst.operands[2].immisreg,
6507 _("shift must be constant"));
6508 inst.instruction = THUMB_OP32 (inst.instruction);
6509 inst.instruction |= Rd << 8;
6510 inst.instruction |= Rs << 16;
6511 encode_thumb32_shifted_operand (2);
6512 }
6513 }
6514 else
6515 {
6516 /* On its face this is a lie - the instruction does set the
6517 flags. However, the only supported mnemonic in this mode
6518 says it doesn't. */
6519 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
6520
6521 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
6522 _("unshifted register required"));
6523 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
6524
6525 inst.instruction = THUMB_OP16 (inst.instruction);
6526 inst.instruction |= Rd;
6527
6528 if (Rd == Rs)
6529 inst.instruction |= Rn << 3;
6530 else if (Rd == Rn)
6531 inst.instruction |= Rs << 3;
6532 else
6533 constraint (1, _("dest must overlap one source register"));
6534 }
6535 }
6536
6537 static void
6538 do_t_barrier (void)
6539 {
6540 if (inst.operands[0].present)
6541 {
6542 constraint ((inst.instruction & 0xf0) != 0x40
6543 && inst.operands[0].imm != 0xf,
6544 "bad barrier type");
6545 inst.instruction |= inst.operands[0].imm;
6546 }
6547 else
6548 inst.instruction |= 0xf;
6549 }
6550
6551 static void
6552 do_t_bfc (void)
6553 {
6554 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6555 constraint (msb > 32, _("bit-field extends past end of register"));
6556 /* The instruction encoding stores the LSB and MSB,
6557 not the LSB and width. */
6558 inst.instruction |= inst.operands[0].reg << 8;
6559 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
6560 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
6561 inst.instruction |= msb - 1;
6562 }
6563
6564 static void
6565 do_t_bfi (void)
6566 {
6567 unsigned int msb;
6568
6569 /* #0 in second position is alternative syntax for bfc, which is
6570 the same instruction but with REG_PC in the Rm field. */
6571 if (!inst.operands[1].isreg)
6572 inst.operands[1].reg = REG_PC;
6573
6574 msb = inst.operands[2].imm + inst.operands[3].imm;
6575 constraint (msb > 32, _("bit-field extends past end of register"));
6576 /* The instruction encoding stores the LSB and MSB,
6577 not the LSB and width. */
6578 inst.instruction |= inst.operands[0].reg << 8;
6579 inst.instruction |= inst.operands[1].reg << 16;
6580 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
6581 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
6582 inst.instruction |= msb - 1;
6583 }
6584
6585 static void
6586 do_t_bfx (void)
6587 {
6588 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6589 _("bit-field extends past end of register"));
6590 inst.instruction |= inst.operands[0].reg << 8;
6591 inst.instruction |= inst.operands[1].reg << 16;
6592 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
6593 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
6594 inst.instruction |= inst.operands[3].imm - 1;
6595 }
6596
6597 /* ARM V5 Thumb BLX (argument parse)
6598 BLX <target_addr> which is BLX(1)
6599 BLX <Rm> which is BLX(2)
6600 Unfortunately, there are two different opcodes for this mnemonic.
6601 So, the insns[].value is not used, and the code here zaps values
6602 into inst.instruction.
6603
6604 ??? How to take advantage of the additional two bits of displacement
6605 available in Thumb32 mode? Need new relocation? */
6606
6607 static void
6608 do_t_blx (void)
6609 {
6610 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
6611 if (inst.operands[0].isreg)
6612 /* We have a register, so this is BLX(2). */
6613 inst.instruction |= inst.operands[0].reg << 3;
6614 else
6615 {
6616 /* No register. This must be BLX(1). */
6617 inst.instruction = 0xf000e800;
6618 #ifdef OBJ_ELF
6619 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6620 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
6621 else
6622 #endif
6623 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
6624 inst.reloc.pc_rel = 1;
6625 }
6626 }
6627
6628 static void
6629 do_t_branch (void)
6630 {
6631 int opcode;
6632 int cond;
6633
6634 if (current_it_mask)
6635 {
6636 /* Conditional branches inside IT blocks are encoded as unconditional
6637 branches. */
6638 cond = COND_ALWAYS;
6639 /* A branch must be the last instruction in an IT block. */
6640 constraint (current_it_mask != 0x10, BAD_BRANCH);
6641 }
6642 else
6643 cond = inst.cond;
6644
6645 if (cond != COND_ALWAYS)
6646 opcode = T_MNEM_bcond;
6647 else
6648 opcode = inst.instruction;
6649
6650 if (unified_syntax && inst.size_req == 4)
6651 {
6652 inst.instruction = THUMB_OP32(opcode);
6653 if (cond == COND_ALWAYS)
6654 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
6655 else
6656 {
6657 assert (cond != 0xF);
6658 inst.instruction |= cond << 22;
6659 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
6660 }
6661 }
6662 else
6663 {
6664 inst.instruction = THUMB_OP16(opcode);
6665 if (cond == COND_ALWAYS)
6666 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
6667 else
6668 {
6669 inst.instruction |= cond << 8;
6670 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
6671 }
6672 /* Allow section relaxation. */
6673 if (unified_syntax && inst.size_req != 2)
6674 inst.relax = opcode;
6675 }
6676
6677 inst.reloc.pc_rel = 1;
6678 }
6679
6680 static void
6681 do_t_bkpt (void)
6682 {
6683 constraint (inst.cond != COND_ALWAYS,
6684 _("instruction is always unconditional"));
6685 if (inst.operands[0].present)
6686 {
6687 constraint (inst.operands[0].imm > 255,
6688 _("immediate value out of range"));
6689 inst.instruction |= inst.operands[0].imm;
6690 }
6691 }
6692
6693 static void
6694 do_t_branch23 (void)
6695 {
6696 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
6697 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
6698 inst.reloc.pc_rel = 1;
6699
6700 /* If the destination of the branch is a defined symbol which does not have
6701 the THUMB_FUNC attribute, then we must be calling a function which has
6702 the (interfacearm) attribute. We look for the Thumb entry point to that
6703 function and change the branch to refer to that function instead. */
6704 if ( inst.reloc.exp.X_op == O_symbol
6705 && inst.reloc.exp.X_add_symbol != NULL
6706 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
6707 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
6708 inst.reloc.exp.X_add_symbol =
6709 find_real_start (inst.reloc.exp.X_add_symbol);
6710 }
6711
6712 static void
6713 do_t_bx (void)
6714 {
6715 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
6716 inst.instruction |= inst.operands[0].reg << 3;
6717 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
6718 should cause the alignment to be checked once it is known. This is
6719 because BX PC only works if the instruction is word aligned. */
6720 }
6721
6722 static void
6723 do_t_bxj (void)
6724 {
6725 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
6726 if (inst.operands[0].reg == REG_PC)
6727 as_tsktsk (_("use of r15 in bxj is not really useful"));
6728
6729 inst.instruction |= inst.operands[0].reg << 16;
6730 }
6731
6732 static void
6733 do_t_clz (void)
6734 {
6735 inst.instruction |= inst.operands[0].reg << 8;
6736 inst.instruction |= inst.operands[1].reg << 16;
6737 inst.instruction |= inst.operands[1].reg;
6738 }
6739
6740 static void
6741 do_t_cps (void)
6742 {
6743 constraint (current_it_mask, BAD_NOT_IT);
6744 inst.instruction |= inst.operands[0].imm;
6745 }
6746
6747 static void
6748 do_t_cpsi (void)
6749 {
6750 constraint (current_it_mask, BAD_NOT_IT);
6751 if (unified_syntax
6752 && (inst.operands[1].present || inst.size_req == 4)
6753 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
6754 {
6755 unsigned int imod = (inst.instruction & 0x0030) >> 4;
6756 inst.instruction = 0xf3af8000;
6757 inst.instruction |= imod << 9;
6758 inst.instruction |= inst.operands[0].imm << 5;
6759 if (inst.operands[1].present)
6760 inst.instruction |= 0x100 | inst.operands[1].imm;
6761 }
6762 else
6763 {
6764 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
6765 && (inst.operands[0].imm & 4),
6766 _("selected processor does not support 'A' form "
6767 "of this instruction"));
6768 constraint (inst.operands[1].present || inst.size_req == 4,
6769 _("Thumb does not support the 2-argument "
6770 "form of this instruction"));
6771 inst.instruction |= inst.operands[0].imm;
6772 }
6773 }
6774
6775 /* THUMB CPY instruction (argument parse). */
6776
6777 static void
6778 do_t_cpy (void)
6779 {
6780 if (inst.size_req == 4)
6781 {
6782 inst.instruction = THUMB_OP32 (T_MNEM_mov);
6783 inst.instruction |= inst.operands[0].reg << 8;
6784 inst.instruction |= inst.operands[1].reg;
6785 }
6786 else
6787 {
6788 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
6789 inst.instruction |= (inst.operands[0].reg & 0x7);
6790 inst.instruction |= inst.operands[1].reg << 3;
6791 }
6792 }
6793
6794 static void
6795 do_t_czb (void)
6796 {
6797 constraint (current_it_mask, BAD_NOT_IT);
6798 constraint (inst.operands[0].reg > 7, BAD_HIREG);
6799 inst.instruction |= inst.operands[0].reg;
6800 inst.reloc.pc_rel = 1;
6801 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
6802 }
6803
6804 static void
6805 do_t_dbg (void)
6806 {
6807 inst.instruction |= inst.operands[0].imm;
6808 }
6809
6810 static void
6811 do_t_div (void)
6812 {
6813 if (!inst.operands[1].present)
6814 inst.operands[1].reg = inst.operands[0].reg;
6815 inst.instruction |= inst.operands[0].reg << 8;
6816 inst.instruction |= inst.operands[1].reg << 16;
6817 inst.instruction |= inst.operands[2].reg;
6818 }
6819
6820 static void
6821 do_t_hint (void)
6822 {
6823 if (unified_syntax && inst.size_req == 4)
6824 inst.instruction = THUMB_OP32 (inst.instruction);
6825 else
6826 inst.instruction = THUMB_OP16 (inst.instruction);
6827 }
6828
6829 static void
6830 do_t_it (void)
6831 {
6832 unsigned int cond = inst.operands[0].imm;
6833
6834 constraint (current_it_mask, BAD_NOT_IT);
6835 current_it_mask = (inst.instruction & 0xf) | 0x10;
6836 current_cc = cond;
6837
6838 /* If the condition is a negative condition, invert the mask. */
6839 if ((cond & 0x1) == 0x0)
6840 {
6841 unsigned int mask = inst.instruction & 0x000f;
6842
6843 if ((mask & 0x7) == 0)
6844 /* no conversion needed */;
6845 else if ((mask & 0x3) == 0)
6846 mask ^= 0x8;
6847 else if ((mask & 0x1) == 0)
6848 mask ^= 0xC;
6849 else
6850 mask ^= 0xE;
6851
6852 inst.instruction &= 0xfff0;
6853 inst.instruction |= mask;
6854 }
6855
6856 inst.instruction |= cond << 4;
6857 }
6858
6859 static void
6860 do_t_ldmstm (void)
6861 {
6862 /* This really doesn't seem worth it. */
6863 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
6864 _("expression too complex"));
6865 constraint (inst.operands[1].writeback,
6866 _("Thumb load/store multiple does not support {reglist}^"));
6867
6868 if (unified_syntax)
6869 {
6870 /* See if we can use a 16-bit instruction. */
6871 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
6872 && inst.size_req != 4
6873 && inst.operands[0].reg <= 7
6874 && !(inst.operands[1].imm & ~0xff)
6875 && (inst.instruction == T_MNEM_stmia
6876 ? inst.operands[0].writeback
6877 : (inst.operands[0].writeback
6878 == !(inst.operands[1].imm & (1 << inst.operands[0].reg)))))
6879 {
6880 if (inst.instruction == T_MNEM_stmia
6881 && (inst.operands[1].imm & (1 << inst.operands[0].reg))
6882 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
6883 as_warn (_("value stored for r%d is UNPREDICTABLE"),
6884 inst.operands[0].reg);
6885
6886 inst.instruction = THUMB_OP16 (inst.instruction);
6887 inst.instruction |= inst.operands[0].reg << 8;
6888 inst.instruction |= inst.operands[1].imm;
6889 }
6890 else
6891 {
6892 if (inst.operands[1].imm & (1 << 13))
6893 as_warn (_("SP should not be in register list"));
6894 if (inst.instruction == T_MNEM_stmia)
6895 {
6896 if (inst.operands[1].imm & (1 << 15))
6897 as_warn (_("PC should not be in register list"));
6898 if (inst.operands[1].imm & (1 << inst.operands[0].reg))
6899 as_warn (_("value stored for r%d is UNPREDICTABLE"),
6900 inst.operands[0].reg);
6901 }
6902 else
6903 {
6904 if (inst.operands[1].imm & (1 << 14)
6905 && inst.operands[1].imm & (1 << 15))
6906 as_warn (_("LR and PC should not both be in register list"));
6907 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
6908 && inst.operands[0].writeback)
6909 as_warn (_("base register should not be in register list "
6910 "when written back"));
6911 }
6912 if (inst.instruction < 0xffff)
6913 inst.instruction = THUMB_OP32 (inst.instruction);
6914 inst.instruction |= inst.operands[0].reg << 16;
6915 inst.instruction |= inst.operands[1].imm;
6916 if (inst.operands[0].writeback)
6917 inst.instruction |= WRITE_BACK;
6918 }
6919 }
6920 else
6921 {
6922 constraint (inst.operands[0].reg > 7
6923 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
6924 if (inst.instruction == T_MNEM_stmia)
6925 {
6926 if (!inst.operands[0].writeback)
6927 as_warn (_("this instruction will write back the base register"));
6928 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
6929 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
6930 as_warn (_("value stored for r%d is UNPREDICTABLE"),
6931 inst.operands[0].reg);
6932 }
6933 else
6934 {
6935 if (!inst.operands[0].writeback
6936 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
6937 as_warn (_("this instruction will write back the base register"));
6938 else if (inst.operands[0].writeback
6939 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
6940 as_warn (_("this instruction will not write back the base register"));
6941 }
6942
6943 inst.instruction = THUMB_OP16 (inst.instruction);
6944 inst.instruction |= inst.operands[0].reg << 8;
6945 inst.instruction |= inst.operands[1].imm;
6946 }
6947 }
6948
6949 static void
6950 do_t_ldrex (void)
6951 {
6952 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6953 || inst.operands[1].postind || inst.operands[1].writeback
6954 || inst.operands[1].immisreg || inst.operands[1].shifted
6955 || inst.operands[1].negative,
6956 BAD_ADDR_MODE);
6957
6958 inst.instruction |= inst.operands[0].reg << 12;
6959 inst.instruction |= inst.operands[1].reg << 16;
6960 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
6961 }
6962
6963 static void
6964 do_t_ldrexd (void)
6965 {
6966 if (!inst.operands[1].present)
6967 {
6968 constraint (inst.operands[0].reg == REG_LR,
6969 _("r14 not allowed as first register "
6970 "when second register is omitted"));
6971 inst.operands[1].reg = inst.operands[0].reg + 1;
6972 }
6973 constraint (inst.operands[0].reg == inst.operands[1].reg,
6974 BAD_OVERLAP);
6975
6976 inst.instruction |= inst.operands[0].reg << 12;
6977 inst.instruction |= inst.operands[1].reg << 8;
6978 inst.instruction |= inst.operands[2].reg << 16;
6979 }
6980
6981 static void
6982 do_t_ldst (void)
6983 {
6984 unsigned long opcode;
6985 int Rn;
6986
6987 opcode = inst.instruction;
6988 if (unified_syntax)
6989 {
6990 if (!inst.operands[1].isreg)
6991 {
6992 if (opcode <= 0xffff)
6993 inst.instruction = THUMB_OP32 (opcode);
6994 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
6995 return;
6996 }
6997 if (inst.operands[1].isreg
6998 && !inst.operands[1].writeback
6999 && !inst.operands[1].shifted && !inst.operands[1].postind
7000 && !inst.operands[1].negative && inst.operands[0].reg <= 7
7001 && opcode <= 0xffff
7002 && inst.size_req != 4)
7003 {
7004 /* Insn may have a 16-bit form. */
7005 Rn = inst.operands[1].reg;
7006 if (inst.operands[1].immisreg)
7007 {
7008 inst.instruction = THUMB_OP16 (opcode);
7009 /* [Rn, Ri] */
7010 if (Rn <= 7 && inst.operands[1].imm <= 7)
7011 goto op16;
7012 }
7013 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
7014 && opcode != T_MNEM_ldrsb)
7015 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
7016 || (Rn == REG_SP && opcode == T_MNEM_str))
7017 {
7018 /* [Rn, #const] */
7019 if (Rn > 7)
7020 {
7021 if (Rn == REG_PC)
7022 {
7023 if (inst.reloc.pc_rel)
7024 opcode = T_MNEM_ldr_pc2;
7025 else
7026 opcode = T_MNEM_ldr_pc;
7027 }
7028 else
7029 {
7030 if (opcode == T_MNEM_ldr)
7031 opcode = T_MNEM_ldr_sp;
7032 else
7033 opcode = T_MNEM_str_sp;
7034 }
7035 inst.instruction = inst.operands[0].reg << 8;
7036 }
7037 else
7038 {
7039 inst.instruction = inst.operands[0].reg;
7040 inst.instruction |= inst.operands[1].reg << 3;
7041 }
7042 inst.instruction |= THUMB_OP16 (opcode);
7043 if (inst.size_req == 2)
7044 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
7045 else
7046 inst.relax = opcode;
7047 return;
7048 }
7049 }
7050 /* Definitely a 32-bit variant. */
7051 inst.instruction = THUMB_OP32 (opcode);
7052 inst.instruction |= inst.operands[0].reg << 12;
7053 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
7054 return;
7055 }
7056
7057 constraint (inst.operands[0].reg > 7, BAD_HIREG);
7058
7059 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
7060 {
7061 /* Only [Rn,Rm] is acceptable. */
7062 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
7063 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
7064 || inst.operands[1].postind || inst.operands[1].shifted
7065 || inst.operands[1].negative,
7066 _("Thumb does not support this addressing mode"));
7067 inst.instruction = THUMB_OP16 (inst.instruction);
7068 goto op16;
7069 }
7070
7071 inst.instruction = THUMB_OP16 (inst.instruction);
7072 if (!inst.operands[1].isreg)
7073 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
7074 return;
7075
7076 constraint (!inst.operands[1].preind
7077 || inst.operands[1].shifted
7078 || inst.operands[1].writeback,
7079 _("Thumb does not support this addressing mode"));
7080 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
7081 {
7082 constraint (inst.instruction & 0x0600,
7083 _("byte or halfword not valid for base register"));
7084 constraint (inst.operands[1].reg == REG_PC
7085 && !(inst.instruction & THUMB_LOAD_BIT),
7086 _("r15 based store not allowed"));
7087 constraint (inst.operands[1].immisreg,
7088 _("invalid base register for register offset"));
7089
7090 if (inst.operands[1].reg == REG_PC)
7091 inst.instruction = T_OPCODE_LDR_PC;
7092 else if (inst.instruction & THUMB_LOAD_BIT)
7093 inst.instruction = T_OPCODE_LDR_SP;
7094 else
7095 inst.instruction = T_OPCODE_STR_SP;
7096
7097 inst.instruction |= inst.operands[0].reg << 8;
7098 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
7099 return;
7100 }
7101
7102 constraint (inst.operands[1].reg > 7, BAD_HIREG);
7103 if (!inst.operands[1].immisreg)
7104 {
7105 /* Immediate offset. */
7106 inst.instruction |= inst.operands[0].reg;
7107 inst.instruction |= inst.operands[1].reg << 3;
7108 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
7109 return;
7110 }
7111
7112 /* Register offset. */
7113 constraint (inst.operands[1].imm > 7, BAD_HIREG);
7114 constraint (inst.operands[1].negative,
7115 _("Thumb does not support this addressing mode"));
7116
7117 op16:
7118 switch (inst.instruction)
7119 {
7120 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
7121 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
7122 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
7123 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
7124 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
7125 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
7126 case 0x5600 /* ldrsb */:
7127 case 0x5e00 /* ldrsh */: break;
7128 default: abort ();
7129 }
7130
7131 inst.instruction |= inst.operands[0].reg;
7132 inst.instruction |= inst.operands[1].reg << 3;
7133 inst.instruction |= inst.operands[1].imm << 6;
7134 }
7135
7136 static void
7137 do_t_ldstd (void)
7138 {
7139 if (!inst.operands[1].present)
7140 {
7141 inst.operands[1].reg = inst.operands[0].reg + 1;
7142 constraint (inst.operands[0].reg == REG_LR,
7143 _("r14 not allowed here"));
7144 }
7145 inst.instruction |= inst.operands[0].reg << 12;
7146 inst.instruction |= inst.operands[1].reg << 8;
7147 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
7148
7149 }
7150
7151 static void
7152 do_t_ldstt (void)
7153 {
7154 inst.instruction |= inst.operands[0].reg << 12;
7155 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
7156 }
7157
7158 static void
7159 do_t_mla (void)
7160 {
7161 inst.instruction |= inst.operands[0].reg << 8;
7162 inst.instruction |= inst.operands[1].reg << 16;
7163 inst.instruction |= inst.operands[2].reg;
7164 inst.instruction |= inst.operands[3].reg << 12;
7165 }
7166
7167 static void
7168 do_t_mlal (void)
7169 {
7170 inst.instruction |= inst.operands[0].reg << 12;
7171 inst.instruction |= inst.operands[1].reg << 8;
7172 inst.instruction |= inst.operands[2].reg << 16;
7173 inst.instruction |= inst.operands[3].reg;
7174 }
7175
7176 static void
7177 do_t_mov_cmp (void)
7178 {
7179 if (unified_syntax)
7180 {
7181 int r0off = (inst.instruction == T_MNEM_mov
7182 || inst.instruction == T_MNEM_movs) ? 8 : 16;
7183 unsigned long opcode;
7184 bfd_boolean narrow;
7185 bfd_boolean low_regs;
7186
7187 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
7188 opcode = inst.instruction;
7189 if (current_it_mask)
7190 narrow = opcode != T_MNEM_movs;
7191 else
7192 narrow = opcode != T_MNEM_movs || low_regs;
7193 if (inst.size_req == 4
7194 || inst.operands[1].shifted)
7195 narrow = FALSE;
7196
7197 if (!inst.operands[1].isreg)
7198 {
7199 /* Immediate operand. */
7200 if (current_it_mask == 0 && opcode == T_MNEM_mov)
7201 narrow = 0;
7202 if (low_regs && narrow)
7203 {
7204 inst.instruction = THUMB_OP16 (opcode);
7205 inst.instruction |= inst.operands[0].reg << 8;
7206 if (inst.size_req == 2)
7207 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
7208 else
7209 inst.relax = opcode;
7210 }
7211 else
7212 {
7213 inst.instruction = THUMB_OP32 (inst.instruction);
7214 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
7215 inst.instruction |= inst.operands[0].reg << r0off;
7216 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
7217 }
7218 }
7219 else if (!narrow)
7220 {
7221 inst.instruction = THUMB_OP32 (inst.instruction);
7222 inst.instruction |= inst.operands[0].reg << r0off;
7223 encode_thumb32_shifted_operand (1);
7224 }
7225 else
7226 switch (inst.instruction)
7227 {
7228 case T_MNEM_mov:
7229 inst.instruction = T_OPCODE_MOV_HR;
7230 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
7231 inst.instruction |= (inst.operands[0].reg & 0x7);
7232 inst.instruction |= inst.operands[1].reg << 3;
7233 break;
7234
7235 case T_MNEM_movs:
7236 /* We know we have low registers at this point.
7237 Generate ADD Rd, Rs, #0. */
7238 inst.instruction = T_OPCODE_ADD_I3;
7239 inst.instruction |= inst.operands[0].reg;
7240 inst.instruction |= inst.operands[1].reg << 3;
7241 break;
7242
7243 case T_MNEM_cmp:
7244 if (low_regs)
7245 {
7246 inst.instruction = T_OPCODE_CMP_LR;
7247 inst.instruction |= inst.operands[0].reg;
7248 inst.instruction |= inst.operands[1].reg << 3;
7249 }
7250 else
7251 {
7252 inst.instruction = T_OPCODE_CMP_HR;
7253 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
7254 inst.instruction |= (inst.operands[0].reg & 0x7);
7255 inst.instruction |= inst.operands[1].reg << 3;
7256 }
7257 break;
7258 }
7259 return;
7260 }
7261
7262 inst.instruction = THUMB_OP16 (inst.instruction);
7263 if (inst.operands[1].isreg)
7264 {
7265 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
7266 {
7267 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
7268 since a MOV instruction produces unpredictable results. */
7269 if (inst.instruction == T_OPCODE_MOV_I8)
7270 inst.instruction = T_OPCODE_ADD_I3;
7271 else
7272 inst.instruction = T_OPCODE_CMP_LR;
7273
7274 inst.instruction |= inst.operands[0].reg;
7275 inst.instruction |= inst.operands[1].reg << 3;
7276 }
7277 else
7278 {
7279 if (inst.instruction == T_OPCODE_MOV_I8)
7280 inst.instruction = T_OPCODE_MOV_HR;
7281 else
7282 inst.instruction = T_OPCODE_CMP_HR;
7283 do_t_cpy ();
7284 }
7285 }
7286 else
7287 {
7288 constraint (inst.operands[0].reg > 7,
7289 _("only lo regs allowed with immediate"));
7290 inst.instruction |= inst.operands[0].reg << 8;
7291 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
7292 }
7293 }
7294
7295 static void
7296 do_t_mov16 (void)
7297 {
7298 inst.instruction |= inst.operands[0].reg << 8;
7299 inst.instruction |= (inst.operands[1].imm & 0xf000) << 4;
7300 inst.instruction |= (inst.operands[1].imm & 0x0800) << 15;
7301 inst.instruction |= (inst.operands[1].imm & 0x0700) << 4;
7302 inst.instruction |= (inst.operands[1].imm & 0x00ff);
7303 }
7304
7305 static void
7306 do_t_mvn_tst (void)
7307 {
7308 if (unified_syntax)
7309 {
7310 int r0off = (inst.instruction == T_MNEM_mvn
7311 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
7312 bfd_boolean narrow;
7313
7314 if (inst.size_req == 4
7315 || inst.instruction > 0xffff
7316 || inst.operands[1].shifted
7317 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
7318 narrow = FALSE;
7319 else if (inst.instruction == T_MNEM_cmn)
7320 narrow = TRUE;
7321 else if (THUMB_SETS_FLAGS (inst.instruction))
7322 narrow = (current_it_mask == 0);
7323 else
7324 narrow = (current_it_mask != 0);
7325
7326 if (!inst.operands[1].isreg)
7327 {
7328 /* For an immediate, we always generate a 32-bit opcode;
7329 section relaxation will shrink it later if possible. */
7330 if (inst.instruction < 0xffff)
7331 inst.instruction = THUMB_OP32 (inst.instruction);
7332 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
7333 inst.instruction |= inst.operands[0].reg << r0off;
7334 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
7335 }
7336 else
7337 {
7338 /* See if we can do this with a 16-bit instruction. */
7339 if (narrow)
7340 {
7341 inst.instruction = THUMB_OP16 (inst.instruction);
7342 inst.instruction |= inst.operands[0].reg;
7343 inst.instruction |= inst.operands[1].reg << 3;
7344 }
7345 else
7346 {
7347 constraint (inst.operands[1].shifted
7348 && inst.operands[1].immisreg,
7349 _("shift must be constant"));
7350 if (inst.instruction < 0xffff)
7351 inst.instruction = THUMB_OP32 (inst.instruction);
7352 inst.instruction |= inst.operands[0].reg << r0off;
7353 encode_thumb32_shifted_operand (1);
7354 }
7355 }
7356 }
7357 else
7358 {
7359 constraint (inst.instruction > 0xffff
7360 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
7361 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
7362 _("unshifted register required"));
7363 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
7364 BAD_HIREG);
7365
7366 inst.instruction = THUMB_OP16 (inst.instruction);
7367 inst.instruction |= inst.operands[0].reg;
7368 inst.instruction |= inst.operands[1].reg << 3;
7369 }
7370 }
7371
7372 static void
7373 do_t_mrs (void)
7374 {
7375 int flags;
7376 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
7377 if (flags == 0)
7378 {
7379 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
7380 _("selected processor does not support "
7381 "requested special purpose register"));
7382 }
7383 else
7384 {
7385 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
7386 _("selected processor does not support "
7387 "requested special purpose register %x"));
7388 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7389 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
7390 _("'CPSR' or 'SPSR' expected"));
7391 }
7392
7393 inst.instruction |= inst.operands[0].reg << 8;
7394 inst.instruction |= (flags & SPSR_BIT) >> 2;
7395 inst.instruction |= inst.operands[1].imm & 0xff;
7396 }
7397
7398 static void
7399 do_t_msr (void)
7400 {
7401 int flags;
7402
7403 constraint (!inst.operands[1].isreg,
7404 _("Thumb encoding does not support an immediate here"));
7405 flags = inst.operands[0].imm;
7406 if (flags & ~0xff)
7407 {
7408 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
7409 _("selected processor does not support "
7410 "requested special purpose register"));
7411 }
7412 else
7413 {
7414 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
7415 _("selected processor does not support "
7416 "requested special purpose register"));
7417 flags |= PSR_f;
7418 }
7419 inst.instruction |= (flags & SPSR_BIT) >> 2;
7420 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
7421 inst.instruction |= (flags & 0xff);
7422 inst.instruction |= inst.operands[1].reg << 16;
7423 }
7424
7425 static void
7426 do_t_mul (void)
7427 {
7428 if (!inst.operands[2].present)
7429 inst.operands[2].reg = inst.operands[0].reg;
7430
7431 /* There is no 32-bit MULS and no 16-bit MUL. */
7432 if (unified_syntax && inst.instruction == T_MNEM_mul)
7433 {
7434 inst.instruction = THUMB_OP32 (inst.instruction);
7435 inst.instruction |= inst.operands[0].reg << 8;
7436 inst.instruction |= inst.operands[1].reg << 16;
7437 inst.instruction |= inst.operands[2].reg << 0;
7438 }
7439 else
7440 {
7441 constraint (!unified_syntax
7442 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
7443 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
7444 BAD_HIREG);
7445
7446 inst.instruction = THUMB_OP16 (inst.instruction);
7447 inst.instruction |= inst.operands[0].reg;
7448
7449 if (inst.operands[0].reg == inst.operands[1].reg)
7450 inst.instruction |= inst.operands[2].reg << 3;
7451 else if (inst.operands[0].reg == inst.operands[2].reg)
7452 inst.instruction |= inst.operands[1].reg << 3;
7453 else
7454 constraint (1, _("dest must overlap one source register"));
7455 }
7456 }
7457
7458 static void
7459 do_t_mull (void)
7460 {
7461 inst.instruction |= inst.operands[0].reg << 12;
7462 inst.instruction |= inst.operands[1].reg << 8;
7463 inst.instruction |= inst.operands[2].reg << 16;
7464 inst.instruction |= inst.operands[3].reg;
7465
7466 if (inst.operands[0].reg == inst.operands[1].reg)
7467 as_tsktsk (_("rdhi and rdlo must be different"));
7468 }
7469
7470 static void
7471 do_t_nop (void)
7472 {
7473 if (unified_syntax)
7474 {
7475 if (inst.size_req == 4 || inst.operands[0].imm > 15)
7476 {
7477 inst.instruction = THUMB_OP32 (inst.instruction);
7478 inst.instruction |= inst.operands[0].imm;
7479 }
7480 else
7481 {
7482 inst.instruction = THUMB_OP16 (inst.instruction);
7483 inst.instruction |= inst.operands[0].imm << 4;
7484 }
7485 }
7486 else
7487 {
7488 constraint (inst.operands[0].present,
7489 _("Thumb does not support NOP with hints"));
7490 inst.instruction = 0x46c0;
7491 }
7492 }
7493
7494 static void
7495 do_t_neg (void)
7496 {
7497 if (unified_syntax)
7498 {
7499 bfd_boolean narrow;
7500
7501 if (THUMB_SETS_FLAGS (inst.instruction))
7502 narrow = (current_it_mask == 0);
7503 else
7504 narrow = (current_it_mask != 0);
7505 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
7506 narrow = FALSE;
7507 if (inst.size_req == 4)
7508 narrow = FALSE;
7509
7510 if (!narrow)
7511 {
7512 inst.instruction = THUMB_OP32 (inst.instruction);
7513 inst.instruction |= inst.operands[0].reg << 8;
7514 inst.instruction |= inst.operands[1].reg << 16;
7515 }
7516 else
7517 {
7518 inst.instruction = THUMB_OP16 (inst.instruction);
7519 inst.instruction |= inst.operands[0].reg;
7520 inst.instruction |= inst.operands[1].reg << 3;
7521 }
7522 }
7523 else
7524 {
7525 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
7526 BAD_HIREG);
7527 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
7528
7529 inst.instruction = THUMB_OP16 (inst.instruction);
7530 inst.instruction |= inst.operands[0].reg;
7531 inst.instruction |= inst.operands[1].reg << 3;
7532 }
7533 }
7534
7535 static void
7536 do_t_pkhbt (void)
7537 {
7538 inst.instruction |= inst.operands[0].reg << 8;
7539 inst.instruction |= inst.operands[1].reg << 16;
7540 inst.instruction |= inst.operands[2].reg;
7541 if (inst.operands[3].present)
7542 {
7543 unsigned int val = inst.reloc.exp.X_add_number;
7544 constraint (inst.reloc.exp.X_op != O_constant,
7545 _("expression too complex"));
7546 inst.instruction |= (val & 0x1c) << 10;
7547 inst.instruction |= (val & 0x03) << 6;
7548 }
7549 }
7550
7551 static void
7552 do_t_pkhtb (void)
7553 {
7554 if (!inst.operands[3].present)
7555 inst.instruction &= ~0x00000020;
7556 do_t_pkhbt ();
7557 }
7558
7559 static void
7560 do_t_pld (void)
7561 {
7562 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
7563 }
7564
7565 static void
7566 do_t_push_pop (void)
7567 {
7568 unsigned mask;
7569
7570 constraint (inst.operands[0].writeback,
7571 _("push/pop do not support {reglist}^"));
7572 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
7573 _("expression too complex"));
7574
7575 mask = inst.operands[0].imm;
7576 if ((mask & ~0xff) == 0)
7577 inst.instruction = THUMB_OP16 (inst.instruction);
7578 else if ((inst.instruction == T_MNEM_push
7579 && (mask & ~0xff) == 1 << REG_LR)
7580 || (inst.instruction == T_MNEM_pop
7581 && (mask & ~0xff) == 1 << REG_PC))
7582 {
7583 inst.instruction = THUMB_OP16 (inst.instruction);
7584 inst.instruction |= THUMB_PP_PC_LR;
7585 mask &= 0xff;
7586 }
7587 else if (unified_syntax)
7588 {
7589 if (mask & (1 << 13))
7590 inst.error = _("SP not allowed in register list");
7591 if (inst.instruction == T_MNEM_push)
7592 {
7593 if (mask & (1 << 15))
7594 inst.error = _("PC not allowed in register list");
7595 }
7596 else
7597 {
7598 if (mask & (1 << 14)
7599 && mask & (1 << 15))
7600 inst.error = _("LR and PC should not both be in register list");
7601 }
7602 if ((mask & (mask - 1)) == 0)
7603 {
7604 /* Single register push/pop implemented as str/ldr. */
7605 if (inst.instruction == T_MNEM_push)
7606 inst.instruction = 0xf84d0d04; /* str reg, [sp, #-4]! */
7607 else
7608 inst.instruction = 0xf85d0b04; /* ldr reg, [sp], #4 */
7609 mask = ffs(mask) - 1;
7610 mask <<= 12;
7611 }
7612 else
7613 inst.instruction = THUMB_OP32 (inst.instruction);
7614 }
7615 else
7616 {
7617 inst.error = _("invalid register list to push/pop instruction");
7618 return;
7619 }
7620
7621 inst.instruction |= mask;
7622 }
7623
7624 static void
7625 do_t_rbit (void)
7626 {
7627 inst.instruction |= inst.operands[0].reg << 8;
7628 inst.instruction |= inst.operands[1].reg << 16;
7629 }
7630
7631 static void
7632 do_t_rev (void)
7633 {
7634 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
7635 && inst.size_req != 4)
7636 {
7637 inst.instruction = THUMB_OP16 (inst.instruction);
7638 inst.instruction |= inst.operands[0].reg;
7639 inst.instruction |= inst.operands[1].reg << 3;
7640 }
7641 else if (unified_syntax)
7642 {
7643 inst.instruction = THUMB_OP32 (inst.instruction);
7644 inst.instruction |= inst.operands[0].reg << 8;
7645 inst.instruction |= inst.operands[1].reg << 16;
7646 inst.instruction |= inst.operands[1].reg;
7647 }
7648 else
7649 inst.error = BAD_HIREG;
7650 }
7651
7652 static void
7653 do_t_rsb (void)
7654 {
7655 int Rd, Rs;
7656
7657 Rd = inst.operands[0].reg;
7658 Rs = (inst.operands[1].present
7659 ? inst.operands[1].reg /* Rd, Rs, foo */
7660 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
7661
7662 inst.instruction |= Rd << 8;
7663 inst.instruction |= Rs << 16;
7664 if (!inst.operands[2].isreg)
7665 {
7666 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
7667 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
7668 }
7669 else
7670 encode_thumb32_shifted_operand (2);
7671 }
7672
7673 static void
7674 do_t_setend (void)
7675 {
7676 constraint (current_it_mask, BAD_NOT_IT);
7677 if (inst.operands[0].imm)
7678 inst.instruction |= 0x8;
7679 }
7680
7681 static void
7682 do_t_shift (void)
7683 {
7684 if (!inst.operands[1].present)
7685 inst.operands[1].reg = inst.operands[0].reg;
7686
7687 if (unified_syntax)
7688 {
7689 bfd_boolean narrow;
7690 int shift_kind;
7691
7692 switch (inst.instruction)
7693 {
7694 case T_MNEM_asr:
7695 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
7696 case T_MNEM_lsl:
7697 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
7698 case T_MNEM_lsr:
7699 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
7700 case T_MNEM_ror:
7701 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
7702 default: abort ();
7703 }
7704
7705 if (THUMB_SETS_FLAGS (inst.instruction))
7706 narrow = (current_it_mask == 0);
7707 else
7708 narrow = (current_it_mask != 0);
7709 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
7710 narrow = FALSE;
7711 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
7712 narrow = FALSE;
7713 if (inst.operands[2].isreg
7714 && (inst.operands[1].reg != inst.operands[0].reg
7715 || inst.operands[2].reg > 7))
7716 narrow = FALSE;
7717 if (inst.size_req == 4)
7718 narrow = FALSE;
7719
7720 if (!narrow)
7721 {
7722 if (inst.operands[2].isreg)
7723 {
7724 inst.instruction = THUMB_OP32 (inst.instruction);
7725 inst.instruction |= inst.operands[0].reg << 8;
7726 inst.instruction |= inst.operands[1].reg << 16;
7727 inst.instruction |= inst.operands[2].reg;
7728 }
7729 else
7730 {
7731 inst.operands[1].shifted = 1;
7732 inst.operands[1].shift_kind = shift_kind;
7733 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
7734 ? T_MNEM_movs : T_MNEM_mov);
7735 inst.instruction |= inst.operands[0].reg << 8;
7736 encode_thumb32_shifted_operand (1);
7737 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
7738 inst.reloc.type = BFD_RELOC_UNUSED;
7739 }
7740 }
7741 else
7742 {
7743 if (inst.operands[2].isreg)
7744 {
7745 switch (shift_kind)
7746 {
7747 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
7748 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
7749 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
7750 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
7751 default: abort ();
7752 }
7753
7754 inst.instruction |= inst.operands[0].reg;
7755 inst.instruction |= inst.operands[2].reg << 3;
7756 }
7757 else
7758 {
7759 switch (shift_kind)
7760 {
7761 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
7762 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
7763 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
7764 default: abort ();
7765 }
7766 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
7767 inst.instruction |= inst.operands[0].reg;
7768 inst.instruction |= inst.operands[1].reg << 3;
7769 }
7770 }
7771 }
7772 else
7773 {
7774 constraint (inst.operands[0].reg > 7
7775 || inst.operands[1].reg > 7, BAD_HIREG);
7776 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
7777
7778 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
7779 {
7780 constraint (inst.operands[2].reg > 7, BAD_HIREG);
7781 constraint (inst.operands[0].reg != inst.operands[1].reg,
7782 _("source1 and dest must be same register"));
7783
7784 switch (inst.instruction)
7785 {
7786 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
7787 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
7788 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
7789 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
7790 default: abort ();
7791 }
7792
7793 inst.instruction |= inst.operands[0].reg;
7794 inst.instruction |= inst.operands[2].reg << 3;
7795 }
7796 else
7797 {
7798 switch (inst.instruction)
7799 {
7800 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
7801 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
7802 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
7803 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
7804 default: abort ();
7805 }
7806 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
7807 inst.instruction |= inst.operands[0].reg;
7808 inst.instruction |= inst.operands[1].reg << 3;
7809 }
7810 }
7811 }
7812
7813 static void
7814 do_t_simd (void)
7815 {
7816 inst.instruction |= inst.operands[0].reg << 8;
7817 inst.instruction |= inst.operands[1].reg << 16;
7818 inst.instruction |= inst.operands[2].reg;
7819 }
7820
7821 static void
7822 do_t_smc (void)
7823 {
7824 unsigned int value = inst.reloc.exp.X_add_number;
7825 constraint (inst.reloc.exp.X_op != O_constant,
7826 _("expression too complex"));
7827 inst.reloc.type = BFD_RELOC_UNUSED;
7828 inst.instruction |= (value & 0xf000) >> 12;
7829 inst.instruction |= (value & 0x0ff0);
7830 inst.instruction |= (value & 0x000f) << 16;
7831 }
7832
7833 static void
7834 do_t_ssat (void)
7835 {
7836 inst.instruction |= inst.operands[0].reg << 8;
7837 inst.instruction |= inst.operands[1].imm - 1;
7838 inst.instruction |= inst.operands[2].reg << 16;
7839
7840 if (inst.operands[3].present)
7841 {
7842 constraint (inst.reloc.exp.X_op != O_constant,
7843 _("expression too complex"));
7844
7845 if (inst.reloc.exp.X_add_number != 0)
7846 {
7847 if (inst.operands[3].shift_kind == SHIFT_ASR)
7848 inst.instruction |= 0x00200000; /* sh bit */
7849 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
7850 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
7851 }
7852 inst.reloc.type = BFD_RELOC_UNUSED;
7853 }
7854 }
7855
7856 static void
7857 do_t_ssat16 (void)
7858 {
7859 inst.instruction |= inst.operands[0].reg << 8;
7860 inst.instruction |= inst.operands[1].imm - 1;
7861 inst.instruction |= inst.operands[2].reg << 16;
7862 }
7863
7864 static void
7865 do_t_strex (void)
7866 {
7867 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7868 || inst.operands[2].postind || inst.operands[2].writeback
7869 || inst.operands[2].immisreg || inst.operands[2].shifted
7870 || inst.operands[2].negative,
7871 BAD_ADDR_MODE);
7872
7873 inst.instruction |= inst.operands[0].reg << 8;
7874 inst.instruction |= inst.operands[1].reg << 12;
7875 inst.instruction |= inst.operands[2].reg << 16;
7876 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
7877 }
7878
7879 static void
7880 do_t_strexd (void)
7881 {
7882 if (!inst.operands[2].present)
7883 inst.operands[2].reg = inst.operands[1].reg + 1;
7884
7885 constraint (inst.operands[0].reg == inst.operands[1].reg
7886 || inst.operands[0].reg == inst.operands[2].reg
7887 || inst.operands[0].reg == inst.operands[3].reg
7888 || inst.operands[1].reg == inst.operands[2].reg,
7889 BAD_OVERLAP);
7890
7891 inst.instruction |= inst.operands[0].reg;
7892 inst.instruction |= inst.operands[1].reg << 12;
7893 inst.instruction |= inst.operands[2].reg << 8;
7894 inst.instruction |= inst.operands[3].reg << 16;
7895 }
7896
7897 static void
7898 do_t_sxtah (void)
7899 {
7900 inst.instruction |= inst.operands[0].reg << 8;
7901 inst.instruction |= inst.operands[1].reg << 16;
7902 inst.instruction |= inst.operands[2].reg;
7903 inst.instruction |= inst.operands[3].imm << 4;
7904 }
7905
7906 static void
7907 do_t_sxth (void)
7908 {
7909 if (inst.instruction <= 0xffff && inst.size_req != 4
7910 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
7911 && (!inst.operands[2].present || inst.operands[2].imm == 0))
7912 {
7913 inst.instruction = THUMB_OP16 (inst.instruction);
7914 inst.instruction |= inst.operands[0].reg;
7915 inst.instruction |= inst.operands[1].reg << 3;
7916 }
7917 else if (unified_syntax)
7918 {
7919 if (inst.instruction <= 0xffff)
7920 inst.instruction = THUMB_OP32 (inst.instruction);
7921 inst.instruction |= inst.operands[0].reg << 8;
7922 inst.instruction |= inst.operands[1].reg;
7923 inst.instruction |= inst.operands[2].imm << 4;
7924 }
7925 else
7926 {
7927 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
7928 _("Thumb encoding does not support rotation"));
7929 constraint (1, BAD_HIREG);
7930 }
7931 }
7932
7933 static void
7934 do_t_swi (void)
7935 {
7936 inst.reloc.type = BFD_RELOC_ARM_SWI;
7937 }
7938
7939 static void
7940 do_t_tb (void)
7941 {
7942 int half;
7943
7944 half = (inst.instruction & 0x10) != 0;
7945 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
7946 constraint (inst.operands[0].immisreg,
7947 _("instruction requires register index"));
7948 constraint (inst.operands[0].imm == 15,
7949 _("PC is not a valid index register"));
7950 constraint (!half && inst.operands[0].shifted,
7951 _("instruction does not allow shifted index"));
7952 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
7953 }
7954
7955 static void
7956 do_t_usat (void)
7957 {
7958 inst.instruction |= inst.operands[0].reg << 8;
7959 inst.instruction |= inst.operands[1].imm;
7960 inst.instruction |= inst.operands[2].reg << 16;
7961
7962 if (inst.operands[3].present)
7963 {
7964 constraint (inst.reloc.exp.X_op != O_constant,
7965 _("expression too complex"));
7966 if (inst.reloc.exp.X_add_number != 0)
7967 {
7968 if (inst.operands[3].shift_kind == SHIFT_ASR)
7969 inst.instruction |= 0x00200000; /* sh bit */
7970
7971 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
7972 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
7973 }
7974 inst.reloc.type = BFD_RELOC_UNUSED;
7975 }
7976 }
7977
7978 static void
7979 do_t_usat16 (void)
7980 {
7981 inst.instruction |= inst.operands[0].reg << 8;
7982 inst.instruction |= inst.operands[1].imm;
7983 inst.instruction |= inst.operands[2].reg << 16;
7984 }
7985 \f
7986 /* Overall per-instruction processing. */
7987
7988 /* We need to be able to fix up arbitrary expressions in some statements.
7989 This is so that we can handle symbols that are an arbitrary distance from
7990 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
7991 which returns part of an address in a form which will be valid for
7992 a data instruction. We do this by pushing the expression into a symbol
7993 in the expr_section, and creating a fix for that. */
7994
7995 static void
7996 fix_new_arm (fragS * frag,
7997 int where,
7998 short int size,
7999 expressionS * exp,
8000 int pc_rel,
8001 int reloc)
8002 {
8003 fixS * new_fix;
8004
8005 switch (exp->X_op)
8006 {
8007 case O_constant:
8008 case O_symbol:
8009 case O_add:
8010 case O_subtract:
8011 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
8012 break;
8013
8014 default:
8015 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
8016 pc_rel, reloc);
8017 break;
8018 }
8019
8020 /* Mark whether the fix is to a THUMB instruction, or an ARM
8021 instruction. */
8022 new_fix->tc_fix_data = thumb_mode;
8023 }
8024
8025 /* Create a frg for an instruction requiring relaxation. */
8026 static void
8027 output_relax_insn (void)
8028 {
8029 char * to;
8030 symbolS *sym;
8031 int offset;
8032
8033 #ifdef OBJ_ELF
8034 /* The size of the instruction is unknown, so tie the debug info to the
8035 start of the instruction. */
8036 dwarf2_emit_insn (0);
8037 #endif
8038
8039 switch (inst.reloc.exp.X_op)
8040 {
8041 case O_symbol:
8042 sym = inst.reloc.exp.X_add_symbol;
8043 offset = inst.reloc.exp.X_add_number;
8044 break;
8045 case O_constant:
8046 sym = NULL;
8047 offset = inst.reloc.exp.X_add_number;
8048 break;
8049 default:
8050 sym = make_expr_symbol (&inst.reloc.exp);
8051 offset = 0;
8052 break;
8053 }
8054 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
8055 inst.relax, sym, offset, NULL/*offset, opcode*/);
8056 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
8057 }
8058
8059 /* Write a 32-bit thumb instruction to buf. */
8060 static void
8061 put_thumb32_insn (char * buf, unsigned long insn)
8062 {
8063 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
8064 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
8065 }
8066
8067 static void
8068 output_inst (const char * str)
8069 {
8070 char * to = NULL;
8071
8072 if (inst.error)
8073 {
8074 as_bad ("%s -- `%s'", inst.error, str);
8075 return;
8076 }
8077 if (inst.relax) {
8078 output_relax_insn();
8079 return;
8080 }
8081 if (inst.size == 0)
8082 return;
8083
8084 to = frag_more (inst.size);
8085
8086 if (thumb_mode && (inst.size > THUMB_SIZE))
8087 {
8088 assert (inst.size == (2 * THUMB_SIZE));
8089 put_thumb32_insn (to, inst.instruction);
8090 }
8091 else if (inst.size > INSN_SIZE)
8092 {
8093 assert (inst.size == (2 * INSN_SIZE));
8094 md_number_to_chars (to, inst.instruction, INSN_SIZE);
8095 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
8096 }
8097 else
8098 md_number_to_chars (to, inst.instruction, inst.size);
8099
8100 if (inst.reloc.type != BFD_RELOC_UNUSED)
8101 fix_new_arm (frag_now, to - frag_now->fr_literal,
8102 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
8103 inst.reloc.type);
8104
8105 #ifdef OBJ_ELF
8106 dwarf2_emit_insn (inst.size);
8107 #endif
8108 }
8109
8110 /* Tag values used in struct asm_opcode's tag field. */
8111 enum opcode_tag
8112 {
8113 OT_unconditional, /* Instruction cannot be conditionalized.
8114 The ARM condition field is still 0xE. */
8115 OT_unconditionalF, /* Instruction cannot be conditionalized
8116 and carries 0xF in its ARM condition field. */
8117 OT_csuffix, /* Instruction takes a conditional suffix. */
8118 OT_cinfix3, /* Instruction takes a conditional infix,
8119 beginning at character index 3. (In
8120 unified mode, it becomes a suffix.) */
8121 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
8122 character index 3, even in unified mode. Used for
8123 legacy instructions where suffix and infix forms
8124 may be ambiguous. */
8125 OT_csuf_or_in3, /* Instruction takes either a conditional
8126 suffix or an infix at character index 3. */
8127 OT_odd_infix_unc, /* This is the unconditional variant of an
8128 instruction that takes a conditional infix
8129 at an unusual position. In unified mode,
8130 this variant will accept a suffix. */
8131 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
8132 are the conditional variants of instructions that
8133 take conditional infixes in unusual positions.
8134 The infix appears at character index
8135 (tag - OT_odd_infix_0). These are not accepted
8136 in unified mode. */
8137 };
8138
8139 /* Subroutine of md_assemble, responsible for looking up the primary
8140 opcode from the mnemonic the user wrote. STR points to the
8141 beginning of the mnemonic.
8142
8143 This is not simply a hash table lookup, because of conditional
8144 variants. Most instructions have conditional variants, which are
8145 expressed with a _conditional affix_ to the mnemonic. If we were
8146 to encode each conditional variant as a literal string in the opcode
8147 table, it would have approximately 20,000 entries.
8148
8149 Most mnemonics take this affix as a suffix, and in unified syntax,
8150 'most' is upgraded to 'all'. However, in the divided syntax, some
8151 instructions take the affix as an infix, notably the s-variants of
8152 the arithmetic instructions. Of those instructions, all but six
8153 have the infix appear after the third character of the mnemonic.
8154
8155 Accordingly, the algorithm for looking up primary opcodes given
8156 an identifier is:
8157
8158 1. Look up the identifier in the opcode table.
8159 If we find a match, go to step U.
8160
8161 2. Look up the last two characters of the identifier in the
8162 conditions table. If we find a match, look up the first N-2
8163 characters of the identifier in the opcode table. If we
8164 find a match, go to step CE.
8165
8166 3. Look up the fourth and fifth characters of the identifier in
8167 the conditions table. If we find a match, extract those
8168 characters from the identifier, and look up the remaining
8169 characters in the opcode table. If we find a match, go
8170 to step CM.
8171
8172 4. Fail.
8173
8174 U. Examine the tag field of the opcode structure, in case this is
8175 one of the six instructions with its conditional infix in an
8176 unusual place. If it is, the tag tells us where to find the
8177 infix; look it up in the conditions table and set inst.cond
8178 accordingly. Otherwise, this is an unconditional instruction.
8179 Again set inst.cond accordingly. Return the opcode structure.
8180
8181 CE. Examine the tag field to make sure this is an instruction that
8182 should receive a conditional suffix. If it is not, fail.
8183 Otherwise, set inst.cond from the suffix we already looked up,
8184 and return the opcode structure.
8185
8186 CM. Examine the tag field to make sure this is an instruction that
8187 should receive a conditional infix after the third character.
8188 If it is not, fail. Otherwise, undo the edits to the current
8189 line of input and proceed as for case CE. */
8190
8191 static const struct asm_opcode *
8192 opcode_lookup (char **str)
8193 {
8194 char *end, *base;
8195 char *affix;
8196 const struct asm_opcode *opcode;
8197 const struct asm_cond *cond;
8198 char save[2];
8199
8200 /* Scan up to the end of the mnemonic, which must end in white space,
8201 '.' (in unified mode only), or end of string. */
8202 for (base = end = *str; *end != '\0'; end++)
8203 if (*end == ' ' || (unified_syntax && *end == '.'))
8204 break;
8205
8206 if (end == base)
8207 return 0;
8208
8209 /* Handle a possible width suffix. */
8210 if (end[0] == '.')
8211 {
8212 if (end[1] == 'w' && (end[2] == ' ' || end[2] == '\0'))
8213 inst.size_req = 4;
8214 else if (end[1] == 'n' && (end[2] == ' ' || end[2] == '\0'))
8215 inst.size_req = 2;
8216 else
8217 return 0;
8218
8219 *str = end + 2;
8220 }
8221 else
8222 *str = end;
8223
8224 /* Look for unaffixed or special-case affixed mnemonic. */
8225 opcode = hash_find_n (arm_ops_hsh, base, end - base);
8226 if (opcode)
8227 {
8228 /* step U */
8229 if (opcode->tag < OT_odd_infix_0)
8230 {
8231 inst.cond = COND_ALWAYS;
8232 return opcode;
8233 }
8234
8235 if (unified_syntax)
8236 as_warn (_("conditional infixes are deprecated in unified syntax"));
8237 affix = base + (opcode->tag - OT_odd_infix_0);
8238 cond = hash_find_n (arm_cond_hsh, affix, 2);
8239 assert (cond);
8240
8241 inst.cond = cond->value;
8242 return opcode;
8243 }
8244
8245 /* Cannot have a conditional suffix on a mnemonic of less than two
8246 characters. */
8247 if (end - base < 3)
8248 return 0;
8249
8250 /* Look for suffixed mnemonic. */
8251 affix = end - 2;
8252 cond = hash_find_n (arm_cond_hsh, affix, 2);
8253 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
8254 if (opcode && cond)
8255 {
8256 /* step CE */
8257 switch (opcode->tag)
8258 {
8259 case OT_cinfix3_legacy:
8260 /* Ignore conditional suffixes matched on infix only mnemonics. */
8261 break;
8262
8263 case OT_cinfix3:
8264 case OT_odd_infix_unc:
8265 if (!unified_syntax)
8266 return 0;
8267 /* else fall through */
8268
8269 case OT_csuffix:
8270 case OT_csuf_or_in3:
8271 inst.cond = cond->value;
8272 return opcode;
8273
8274 case OT_unconditional:
8275 case OT_unconditionalF:
8276 if (thumb_mode)
8277 {
8278 inst.cond = cond->value;
8279 }
8280 else
8281 {
8282 /* delayed diagnostic */
8283 inst.error = BAD_COND;
8284 inst.cond = COND_ALWAYS;
8285 }
8286 return opcode;
8287
8288 default:
8289 return 0;
8290 }
8291 }
8292
8293 /* Cannot have a usual-position infix on a mnemonic of less than
8294 six characters (five would be a suffix). */
8295 if (end - base < 6)
8296 return 0;
8297
8298 /* Look for infixed mnemonic in the usual position. */
8299 affix = base + 3;
8300 cond = hash_find_n (arm_cond_hsh, affix, 2);
8301 if (!cond)
8302 return 0;
8303
8304 memcpy (save, affix, 2);
8305 memmove (affix, affix + 2, (end - affix) - 2);
8306 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
8307 memmove (affix + 2, affix, (end - affix) - 2);
8308 memcpy (affix, save, 2);
8309
8310 if (opcode && (opcode->tag == OT_cinfix3 || opcode->tag == OT_csuf_or_in3
8311 || opcode->tag == OT_cinfix3_legacy))
8312 {
8313 /* step CM */
8314 if (unified_syntax && opcode->tag == OT_cinfix3)
8315 as_warn (_("conditional infixes are deprecated in unified syntax"));
8316
8317 inst.cond = cond->value;
8318 return opcode;
8319 }
8320
8321 return 0;
8322 }
8323
8324 void
8325 md_assemble (char *str)
8326 {
8327 char *p = str;
8328 const struct asm_opcode * opcode;
8329
8330 /* Align the previous label if needed. */
8331 if (last_label_seen != NULL)
8332 {
8333 symbol_set_frag (last_label_seen, frag_now);
8334 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
8335 S_SET_SEGMENT (last_label_seen, now_seg);
8336 }
8337
8338 memset (&inst, '\0', sizeof (inst));
8339 inst.reloc.type = BFD_RELOC_UNUSED;
8340
8341 opcode = opcode_lookup (&p);
8342 if (!opcode)
8343 {
8344 /* It wasn't an instruction, but it might be a register alias of
8345 the form alias .req reg. */
8346 if (!create_register_alias (str, p))
8347 as_bad (_("bad instruction `%s'"), str);
8348
8349 return;
8350 }
8351
8352 if (thumb_mode)
8353 {
8354 arm_feature_set variant;
8355
8356 variant = cpu_variant;
8357 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
8358 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
8359 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
8360 /* Check that this instruction is supported for this CPU. */
8361 if (!opcode->tvariant
8362 || (thumb_mode == 1
8363 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
8364 {
8365 as_bad (_("selected processor does not support `%s'"), str);
8366 return;
8367 }
8368 if (inst.cond != COND_ALWAYS && !unified_syntax
8369 && opcode->tencode != do_t_branch)
8370 {
8371 as_bad (_("Thumb does not support conditional execution"));
8372 return;
8373 }
8374
8375 /* Check conditional suffixes. */
8376 if (current_it_mask)
8377 {
8378 int cond;
8379 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
8380 current_it_mask <<= 1;
8381 current_it_mask &= 0x1f;
8382 /* The BKPT instruction is unconditional even in an IT block. */
8383 if (!inst.error
8384 && cond != inst.cond && opcode->tencode != do_t_bkpt)
8385 {
8386 as_bad (_("incorrect condition in IT block"));
8387 return;
8388 }
8389 }
8390 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
8391 {
8392 as_bad (_("thumb conditional instrunction not in IT block"));
8393 return;
8394 }
8395
8396 mapping_state (MAP_THUMB);
8397 inst.instruction = opcode->tvalue;
8398
8399 if (!parse_operands (p, opcode->operands))
8400 opcode->tencode ();
8401
8402 /* Clear current_it_mask at the end of an IT block. */
8403 if (current_it_mask == 0x10)
8404 current_it_mask = 0;
8405
8406 if (!(inst.error || inst.relax))
8407 {
8408 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
8409 inst.size = (inst.instruction > 0xffff ? 4 : 2);
8410 if (inst.size_req && inst.size_req != inst.size)
8411 {
8412 as_bad (_("cannot honor width suffix -- `%s'"), str);
8413 return;
8414 }
8415 }
8416 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8417 *opcode->tvariant);
8418 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
8419 set those bits when Thumb-2 32-bit instuctions are seen. ie.
8420 anything other than bl/blx.
8421 This is overly pessimistic for relaxable instructions. */
8422 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
8423 || inst.relax)
8424 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8425 arm_ext_v6t2);
8426 }
8427 else
8428 {
8429 /* Check that this instruction is supported for this CPU. */
8430 if (!opcode->avariant ||
8431 !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
8432 {
8433 as_bad (_("selected processor does not support `%s'"), str);
8434 return;
8435 }
8436 if (inst.size_req)
8437 {
8438 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
8439 return;
8440 }
8441
8442 mapping_state (MAP_ARM);
8443 inst.instruction = opcode->avalue;
8444 if (opcode->tag == OT_unconditionalF)
8445 inst.instruction |= 0xF << 28;
8446 else
8447 inst.instruction |= inst.cond << 28;
8448 inst.size = INSN_SIZE;
8449 if (!parse_operands (p, opcode->operands))
8450 opcode->aencode ();
8451 /* Arm mode bx is marked as both v4T and v5 because it's still required
8452 on a hypothetical non-thumb v5 core. */
8453 if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
8454 || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
8455 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
8456 else
8457 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8458 *opcode->avariant);
8459 }
8460 output_inst (str);
8461 }
8462
8463 /* Various frobbings of labels and their addresses. */
8464
8465 void
8466 arm_start_line_hook (void)
8467 {
8468 last_label_seen = NULL;
8469 }
8470
8471 void
8472 arm_frob_label (symbolS * sym)
8473 {
8474 last_label_seen = sym;
8475
8476 ARM_SET_THUMB (sym, thumb_mode);
8477
8478 #if defined OBJ_COFF || defined OBJ_ELF
8479 ARM_SET_INTERWORK (sym, support_interwork);
8480 #endif
8481
8482 /* Note - do not allow local symbols (.Lxxx) to be labeled
8483 as Thumb functions. This is because these labels, whilst
8484 they exist inside Thumb code, are not the entry points for
8485 possible ARM->Thumb calls. Also, these labels can be used
8486 as part of a computed goto or switch statement. eg gcc
8487 can generate code that looks like this:
8488
8489 ldr r2, [pc, .Laaa]
8490 lsl r3, r3, #2
8491 ldr r2, [r3, r2]
8492 mov pc, r2
8493
8494 .Lbbb: .word .Lxxx
8495 .Lccc: .word .Lyyy
8496 ..etc...
8497 .Laaa: .word Lbbb
8498
8499 The first instruction loads the address of the jump table.
8500 The second instruction converts a table index into a byte offset.
8501 The third instruction gets the jump address out of the table.
8502 The fourth instruction performs the jump.
8503
8504 If the address stored at .Laaa is that of a symbol which has the
8505 Thumb_Func bit set, then the linker will arrange for this address
8506 to have the bottom bit set, which in turn would mean that the
8507 address computation performed by the third instruction would end
8508 up with the bottom bit set. Since the ARM is capable of unaligned
8509 word loads, the instruction would then load the incorrect address
8510 out of the jump table, and chaos would ensue. */
8511 if (label_is_thumb_function_name
8512 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
8513 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
8514 {
8515 /* When the address of a Thumb function is taken the bottom
8516 bit of that address should be set. This will allow
8517 interworking between Arm and Thumb functions to work
8518 correctly. */
8519
8520 THUMB_SET_FUNC (sym, 1);
8521
8522 label_is_thumb_function_name = FALSE;
8523 }
8524
8525 #ifdef OBJ_ELF
8526 dwarf2_emit_label (sym);
8527 #endif
8528 }
8529
8530 int
8531 arm_data_in_code (void)
8532 {
8533 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
8534 {
8535 *input_line_pointer = '/';
8536 input_line_pointer += 5;
8537 *input_line_pointer = 0;
8538 return 1;
8539 }
8540
8541 return 0;
8542 }
8543
8544 char *
8545 arm_canonicalize_symbol_name (char * name)
8546 {
8547 int len;
8548
8549 if (thumb_mode && (len = strlen (name)) > 5
8550 && streq (name + len - 5, "/data"))
8551 *(name + len - 5) = 0;
8552
8553 return name;
8554 }
8555 \f
8556 /* Table of all register names defined by default. The user can
8557 define additional names with .req. Note that all register names
8558 should appear in both upper and lowercase variants. Some registers
8559 also have mixed-case names. */
8560
8561 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
8562 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
8563 #define REGSET(p,t) \
8564 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
8565 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
8566 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
8567 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
8568
8569 static const struct reg_entry reg_names[] =
8570 {
8571 /* ARM integer registers. */
8572 REGSET(r, RN), REGSET(R, RN),
8573
8574 /* ATPCS synonyms. */
8575 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
8576 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
8577 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
8578
8579 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
8580 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
8581 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
8582
8583 /* Well-known aliases. */
8584 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
8585 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
8586
8587 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
8588 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
8589
8590 /* Coprocessor numbers. */
8591 REGSET(p, CP), REGSET(P, CP),
8592
8593 /* Coprocessor register numbers. The "cr" variants are for backward
8594 compatibility. */
8595 REGSET(c, CN), REGSET(C, CN),
8596 REGSET(cr, CN), REGSET(CR, CN),
8597
8598 /* FPA registers. */
8599 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
8600 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
8601
8602 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
8603 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
8604
8605 /* VFP SP registers. */
8606 REGSET(s,VFS),
8607 REGNUM(s,16,VFS), REGNUM(s,17,VFS), REGNUM(s,18,VFS), REGNUM(s,19,VFS),
8608 REGNUM(s,20,VFS), REGNUM(s,21,VFS), REGNUM(s,22,VFS), REGNUM(s,23,VFS),
8609 REGNUM(s,24,VFS), REGNUM(s,25,VFS), REGNUM(s,26,VFS), REGNUM(s,27,VFS),
8610 REGNUM(s,28,VFS), REGNUM(s,29,VFS), REGNUM(s,30,VFS), REGNUM(s,31,VFS),
8611
8612 REGSET(S,VFS),
8613 REGNUM(S,16,VFS), REGNUM(S,17,VFS), REGNUM(S,18,VFS), REGNUM(S,19,VFS),
8614 REGNUM(S,20,VFS), REGNUM(S,21,VFS), REGNUM(S,22,VFS), REGNUM(S,23,VFS),
8615 REGNUM(S,24,VFS), REGNUM(S,25,VFS), REGNUM(S,26,VFS), REGNUM(S,27,VFS),
8616 REGNUM(S,28,VFS), REGNUM(S,29,VFS), REGNUM(S,30,VFS), REGNUM(S,31,VFS),
8617
8618 /* VFP DP Registers. */
8619 REGSET(d,VFD), REGSET(D,VFS),
8620
8621 /* VFP control registers. */
8622 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
8623 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
8624
8625 /* Maverick DSP coprocessor registers. */
8626 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
8627 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
8628
8629 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
8630 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
8631 REGDEF(dspsc,0,DSPSC),
8632
8633 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
8634 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
8635 REGDEF(DSPSC,0,DSPSC),
8636
8637 /* iWMMXt data registers - p0, c0-15. */
8638 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
8639
8640 /* iWMMXt control registers - p1, c0-3. */
8641 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
8642 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
8643 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
8644 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
8645
8646 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
8647 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
8648 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
8649 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
8650 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
8651
8652 /* XScale accumulator registers. */
8653 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
8654 };
8655 #undef REGDEF
8656 #undef REGNUM
8657 #undef REGSET
8658
8659 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
8660 within psr_required_here. */
8661 static const struct asm_psr psrs[] =
8662 {
8663 /* Backward compatibility notation. Note that "all" is no longer
8664 truly all possible PSR bits. */
8665 {"all", PSR_c | PSR_f},
8666 {"flg", PSR_f},
8667 {"ctl", PSR_c},
8668
8669 /* Individual flags. */
8670 {"f", PSR_f},
8671 {"c", PSR_c},
8672 {"x", PSR_x},
8673 {"s", PSR_s},
8674 /* Combinations of flags. */
8675 {"fs", PSR_f | PSR_s},
8676 {"fx", PSR_f | PSR_x},
8677 {"fc", PSR_f | PSR_c},
8678 {"sf", PSR_s | PSR_f},
8679 {"sx", PSR_s | PSR_x},
8680 {"sc", PSR_s | PSR_c},
8681 {"xf", PSR_x | PSR_f},
8682 {"xs", PSR_x | PSR_s},
8683 {"xc", PSR_x | PSR_c},
8684 {"cf", PSR_c | PSR_f},
8685 {"cs", PSR_c | PSR_s},
8686 {"cx", PSR_c | PSR_x},
8687 {"fsx", PSR_f | PSR_s | PSR_x},
8688 {"fsc", PSR_f | PSR_s | PSR_c},
8689 {"fxs", PSR_f | PSR_x | PSR_s},
8690 {"fxc", PSR_f | PSR_x | PSR_c},
8691 {"fcs", PSR_f | PSR_c | PSR_s},
8692 {"fcx", PSR_f | PSR_c | PSR_x},
8693 {"sfx", PSR_s | PSR_f | PSR_x},
8694 {"sfc", PSR_s | PSR_f | PSR_c},
8695 {"sxf", PSR_s | PSR_x | PSR_f},
8696 {"sxc", PSR_s | PSR_x | PSR_c},
8697 {"scf", PSR_s | PSR_c | PSR_f},
8698 {"scx", PSR_s | PSR_c | PSR_x},
8699 {"xfs", PSR_x | PSR_f | PSR_s},
8700 {"xfc", PSR_x | PSR_f | PSR_c},
8701 {"xsf", PSR_x | PSR_s | PSR_f},
8702 {"xsc", PSR_x | PSR_s | PSR_c},
8703 {"xcf", PSR_x | PSR_c | PSR_f},
8704 {"xcs", PSR_x | PSR_c | PSR_s},
8705 {"cfs", PSR_c | PSR_f | PSR_s},
8706 {"cfx", PSR_c | PSR_f | PSR_x},
8707 {"csf", PSR_c | PSR_s | PSR_f},
8708 {"csx", PSR_c | PSR_s | PSR_x},
8709 {"cxf", PSR_c | PSR_x | PSR_f},
8710 {"cxs", PSR_c | PSR_x | PSR_s},
8711 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
8712 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
8713 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
8714 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
8715 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
8716 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
8717 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
8718 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
8719 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
8720 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
8721 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
8722 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
8723 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
8724 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
8725 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
8726 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
8727 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
8728 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
8729 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
8730 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
8731 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
8732 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
8733 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
8734 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
8735 };
8736
8737 /* Table of V7M psr names. */
8738 static const struct asm_psr v7m_psrs[] =
8739 {
8740 {"apsr", 0 },
8741 {"iapsr", 1 },
8742 {"eapsr", 2 },
8743 {"psr", 3 },
8744 {"ipsr", 5 },
8745 {"epsr", 6 },
8746 {"iepsr", 7 },
8747 {"msp", 8 },
8748 {"psp", 9 },
8749 {"primask", 16},
8750 {"basepri", 17},
8751 {"basepri_max", 18},
8752 {"faultmask", 19},
8753 {"control", 20}
8754 };
8755
8756 /* Table of all shift-in-operand names. */
8757 static const struct asm_shift_name shift_names [] =
8758 {
8759 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
8760 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
8761 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
8762 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
8763 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
8764 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
8765 };
8766
8767 /* Table of all explicit relocation names. */
8768 #ifdef OBJ_ELF
8769 static struct reloc_entry reloc_names[] =
8770 {
8771 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
8772 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
8773 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
8774 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
8775 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
8776 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
8777 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
8778 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
8779 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
8780 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
8781 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
8782 };
8783 #endif
8784
8785 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
8786 static const struct asm_cond conds[] =
8787 {
8788 {"eq", 0x0},
8789 {"ne", 0x1},
8790 {"cs", 0x2}, {"hs", 0x2},
8791 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
8792 {"mi", 0x4},
8793 {"pl", 0x5},
8794 {"vs", 0x6},
8795 {"vc", 0x7},
8796 {"hi", 0x8},
8797 {"ls", 0x9},
8798 {"ge", 0xa},
8799 {"lt", 0xb},
8800 {"gt", 0xc},
8801 {"le", 0xd},
8802 {"al", 0xe}
8803 };
8804
8805 static struct asm_barrier_opt barrier_opt_names[] =
8806 {
8807 { "sy", 0xf },
8808 { "un", 0x7 },
8809 { "st", 0xe },
8810 { "unst", 0x6 }
8811 };
8812
8813 /* Table of ARM-format instructions. */
8814
8815 /* Macros for gluing together operand strings. N.B. In all cases
8816 other than OPS0, the trailing OP_stop comes from default
8817 zero-initialization of the unspecified elements of the array. */
8818 #define OPS0() { OP_stop, }
8819 #define OPS1(a) { OP_##a, }
8820 #define OPS2(a,b) { OP_##a,OP_##b, }
8821 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
8822 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
8823 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
8824 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
8825
8826 /* These macros abstract out the exact format of the mnemonic table and
8827 save some repeated characters. */
8828
8829 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
8830 #define TxCE(mnem, op, top, nops, ops, ae, te) \
8831 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
8832 THUMB_VARIANT, do_##ae, do_##te }
8833
8834 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
8835 a T_MNEM_xyz enumerator. */
8836 #define TCE(mnem, aop, top, nops, ops, ae, te) \
8837 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
8838 #define tCE(mnem, aop, top, nops, ops, ae, te) \
8839 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
8840
8841 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
8842 infix after the third character. */
8843 #define TxC3(mnem, op, top, nops, ops, ae, te) \
8844 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
8845 THUMB_VARIANT, do_##ae, do_##te }
8846 #define TC3(mnem, aop, top, nops, ops, ae, te) \
8847 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
8848 #define tC3(mnem, aop, top, nops, ops, ae, te) \
8849 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
8850
8851 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
8852 appear in the condition table. */
8853 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
8854 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
8855 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
8856
8857 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
8858 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
8859 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
8860 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
8861 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
8862 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
8863 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
8864 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
8865 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
8866 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
8867 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
8868 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
8869 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
8870 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
8871 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
8872 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
8873 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
8874 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
8875 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
8876 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
8877
8878 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
8879 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
8880 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
8881 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
8882
8883 /* Mnemonic that cannot be conditionalized. The ARM condition-code
8884 field is still 0xE. Many of the Thumb variants can be executed
8885 conditionally, so this is checked separately. */
8886 #define TUE(mnem, op, top, nops, ops, ae, te) \
8887 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
8888 THUMB_VARIANT, do_##ae, do_##te }
8889
8890 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
8891 condition code field. */
8892 #define TUF(mnem, op, top, nops, ops, ae, te) \
8893 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
8894 THUMB_VARIANT, do_##ae, do_##te }
8895
8896 /* ARM-only variants of all the above. */
8897 #define CE(mnem, op, nops, ops, ae) \
8898 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
8899
8900 #define C3(mnem, op, nops, ops, ae) \
8901 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
8902
8903 /* Legacy mnemonics that always have conditional infix after the third
8904 character. */
8905 #define CL(mnem, op, nops, ops, ae) \
8906 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
8907 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
8908
8909 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
8910 #define cCE(mnem, op, nops, ops, ae) \
8911 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8912
8913 /* Legacy coprocessor instructions where conditional infix and conditional
8914 suffix are ambiguous. For consistency this includes all FPA instructions,
8915 not just the potentially ambiguous ones. */
8916 #define cCL(mnem, op, nops, ops, ae) \
8917 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
8918 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8919
8920 /* Coprocessor, takes either a suffix or a position-3 infix
8921 (for an FPA corner case). */
8922 #define C3E(mnem, op, nops, ops, ae) \
8923 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
8924 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8925
8926 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
8927 { #m1 #m2 #m3, OPS##nops ops, \
8928 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
8929 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
8930
8931 #define CM(m1, m2, op, nops, ops, ae) \
8932 xCM_(m1, , m2, op, nops, ops, ae), \
8933 xCM_(m1, eq, m2, op, nops, ops, ae), \
8934 xCM_(m1, ne, m2, op, nops, ops, ae), \
8935 xCM_(m1, cs, m2, op, nops, ops, ae), \
8936 xCM_(m1, hs, m2, op, nops, ops, ae), \
8937 xCM_(m1, cc, m2, op, nops, ops, ae), \
8938 xCM_(m1, ul, m2, op, nops, ops, ae), \
8939 xCM_(m1, lo, m2, op, nops, ops, ae), \
8940 xCM_(m1, mi, m2, op, nops, ops, ae), \
8941 xCM_(m1, pl, m2, op, nops, ops, ae), \
8942 xCM_(m1, vs, m2, op, nops, ops, ae), \
8943 xCM_(m1, vc, m2, op, nops, ops, ae), \
8944 xCM_(m1, hi, m2, op, nops, ops, ae), \
8945 xCM_(m1, ls, m2, op, nops, ops, ae), \
8946 xCM_(m1, ge, m2, op, nops, ops, ae), \
8947 xCM_(m1, lt, m2, op, nops, ops, ae), \
8948 xCM_(m1, gt, m2, op, nops, ops, ae), \
8949 xCM_(m1, le, m2, op, nops, ops, ae), \
8950 xCM_(m1, al, m2, op, nops, ops, ae)
8951
8952 #define UE(mnem, op, nops, ops, ae) \
8953 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
8954
8955 #define UF(mnem, op, nops, ops, ae) \
8956 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
8957
8958 #define do_0 0
8959
8960 /* Thumb-only, unconditional. */
8961 #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
8962
8963 static const struct asm_opcode insns[] =
8964 {
8965 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
8966 #define THUMB_VARIANT &arm_ext_v4t
8967 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
8968 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
8969 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
8970 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
8971 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
8972 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
8973 tCE(add, 0800000, add, 3, (RR, oRR, SH), arit, t_add_sub),
8974 tC3(adds, 0900000, adds, 3, (RR, oRR, SH), arit, t_add_sub),
8975 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
8976 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
8977 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
8978 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
8979 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
8980 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
8981 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
8982 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
8983
8984 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
8985 for setting PSR flag bits. They are obsolete in V6 and do not
8986 have Thumb equivalents. */
8987 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
8988 tC3(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
8989 CL(tstp, 110f000, 2, (RR, SH), cmp),
8990 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
8991 tC3(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
8992 CL(cmpp, 150f000, 2, (RR, SH), cmp),
8993 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
8994 tC3(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
8995 CL(cmnp, 170f000, 2, (RR, SH), cmp),
8996
8997 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
8998 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
8999 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
9000 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
9001
9002 tCE(ldr, 4100000, ldr, 2, (RR, ADDR), ldst, t_ldst),
9003 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDR), ldst, t_ldst),
9004 tCE(str, 4000000, str, 2, (RR, ADDR), ldst, t_ldst),
9005 tC3(strb, 4400000, strb, 2, (RR, ADDR), ldst, t_ldst),
9006
9007 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
9008 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
9009 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
9010 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
9011 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
9012 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
9013
9014 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
9015 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
9016 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
9017 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
9018
9019 /* Pseudo ops. */
9020 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
9021 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
9022 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
9023
9024 /* Thumb-compatibility pseudo ops. */
9025 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
9026 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
9027 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
9028 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
9029 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
9030 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
9031 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
9032 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
9033 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
9034 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
9035 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
9036 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
9037
9038 #undef THUMB_VARIANT
9039 #define THUMB_VARIANT &arm_ext_v6
9040 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
9041
9042 /* V1 instructions with no Thumb analogue prior to V6T2. */
9043 #undef THUMB_VARIANT
9044 #define THUMB_VARIANT &arm_ext_v6t2
9045 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
9046 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
9047 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
9048 TC3(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
9049 CL(teqp, 130f000, 2, (RR, SH), cmp),
9050
9051 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
9052 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
9053 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
9054 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
9055
9056 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
9057 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
9058
9059 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
9060 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
9061
9062 /* V1 instructions with no Thumb analogue at all. */
9063 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
9064 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
9065
9066 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
9067 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
9068 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
9069 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
9070 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
9071 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
9072 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
9073 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
9074
9075 #undef ARM_VARIANT
9076 #define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
9077 #undef THUMB_VARIANT
9078 #define THUMB_VARIANT &arm_ext_v4t
9079 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
9080 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
9081
9082 #undef THUMB_VARIANT
9083 #define THUMB_VARIANT &arm_ext_v6t2
9084 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
9085 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
9086
9087 /* Generic coprocessor instructions. */
9088 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
9089 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDR), lstc, lstc),
9090 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDR), lstc, lstc),
9091 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDR), lstc, lstc),
9092 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDR), lstc, lstc),
9093 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
9094 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
9095
9096 #undef ARM_VARIANT
9097 #define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
9098 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
9099 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
9100
9101 #undef ARM_VARIANT
9102 #define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
9103 TCE(mrs, 10f0000, f3ef8000, 2, (RR, PSR), mrs, t_mrs),
9104 TCE(msr, 120f000, f3808000, 2, (PSR, RR_EXi), msr, t_msr),
9105
9106 #undef ARM_VARIANT
9107 #define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
9108 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
9109 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
9110 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
9111 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
9112 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
9113 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
9114 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
9115 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
9116
9117 #undef ARM_VARIANT
9118 #define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
9119 #undef THUMB_VARIANT
9120 #define THUMB_VARIANT &arm_ext_v4t
9121 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDR), ldstv4, t_ldst),
9122 tC3(strh, 00000b0, strh, 2, (RR, ADDR), ldstv4, t_ldst),
9123 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDR), ldstv4, t_ldst),
9124 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDR), ldstv4, t_ldst),
9125 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDR), ldstv4, t_ldst),
9126 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDR), ldstv4, t_ldst),
9127
9128 #undef ARM_VARIANT
9129 #define ARM_VARIANT &arm_ext_v4t_5
9130 /* ARM Architecture 4T. */
9131 /* Note: bx (and blx) are required on V5, even if the processor does
9132 not support Thumb. */
9133 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
9134
9135 #undef ARM_VARIANT
9136 #define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
9137 #undef THUMB_VARIANT
9138 #define THUMB_VARIANT &arm_ext_v5t
9139 /* Note: blx has 2 variants; the .value coded here is for
9140 BLX(2). Only this variant has conditional execution. */
9141 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
9142 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
9143
9144 #undef THUMB_VARIANT
9145 #define THUMB_VARIANT &arm_ext_v6t2
9146 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
9147 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDR), lstc, lstc),
9148 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDR), lstc, lstc),
9149 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDR), lstc, lstc),
9150 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDR), lstc, lstc),
9151 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
9152 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
9153 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
9154
9155 #undef ARM_VARIANT
9156 #define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
9157 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
9158 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
9159 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
9160 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
9161
9162 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
9163 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
9164
9165 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
9166 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
9167 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
9168 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
9169
9170 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
9171 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
9172 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
9173 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
9174
9175 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
9176 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
9177
9178 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
9179 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
9180 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
9181 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
9182
9183 #undef ARM_VARIANT
9184 #define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
9185 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
9186 TC3(ldrd, 00000d0, e9500000, 3, (RRnpc, oRRnpc, ADDR), ldrd, t_ldstd),
9187 TC3(strd, 00000f0, e9400000, 3, (RRnpc, oRRnpc, ADDR), ldrd, t_ldstd),
9188
9189 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
9190 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
9191
9192 #undef ARM_VARIANT
9193 #define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
9194 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
9195
9196 #undef ARM_VARIANT
9197 #define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
9198 #undef THUMB_VARIANT
9199 #define THUMB_VARIANT &arm_ext_v6
9200 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
9201 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
9202 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
9203 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
9204 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
9205 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
9206 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
9207 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
9208 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
9209 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
9210
9211 #undef THUMB_VARIANT
9212 #define THUMB_VARIANT &arm_ext_v6t2
9213 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
9214 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
9215 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
9216
9217 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
9218 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
9219
9220 /* ARM V6 not included in V7M (eg. integer SIMD). */
9221 #undef THUMB_VARIANT
9222 #define THUMB_VARIANT &arm_ext_v6_notm
9223 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
9224 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
9225 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
9226 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9227 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9228 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9229 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9230 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9231 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9232 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9233 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9234 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9235 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9236 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9237 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9238 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9239 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9240 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9241 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9242 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9243 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9244 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9245 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9246 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9247 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9248 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9249 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9250 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9251 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9252 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9253 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9254 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9255 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9256 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9257 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9258 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9259 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9260 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9261 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9262 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
9263 UF(rfeib, 9900a00, 1, (RRw), rfe),
9264 UF(rfeda, 8100a00, 1, (RRw), rfe),
9265 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
9266 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
9267 UF(rfefa, 9900a00, 1, (RRw), rfe),
9268 UF(rfeea, 8100a00, 1, (RRw), rfe),
9269 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
9270 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
9271 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
9272 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
9273 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
9274 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
9275 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
9276 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
9277 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
9278 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
9279 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
9280 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
9281 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
9282 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
9283 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
9284 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
9285 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
9286 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
9287 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
9288 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
9289 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
9290 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
9291 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
9292 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
9293 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
9294 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
9295 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
9296 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
9297 TUF(srsia, 8cd0500, e980c000, 1, (I31w), srs, srs),
9298 UF(srsib, 9cd0500, 1, (I31w), srs),
9299 UF(srsda, 84d0500, 1, (I31w), srs),
9300 TUF(srsdb, 94d0500, e800c000, 1, (I31w), srs, srs),
9301 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
9302 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
9303 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
9304 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
9305 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
9306 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
9307
9308 #undef ARM_VARIANT
9309 #define ARM_VARIANT &arm_ext_v6k
9310 #undef THUMB_VARIANT
9311 #define THUMB_VARIANT &arm_ext_v6k
9312 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
9313 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
9314 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
9315 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
9316
9317 #undef THUMB_VARIANT
9318 #define THUMB_VARIANT &arm_ext_v6_notm
9319 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
9320 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
9321
9322 #undef THUMB_VARIANT
9323 #define THUMB_VARIANT &arm_ext_v6t2
9324 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
9325 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
9326 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
9327 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
9328 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
9329
9330 #undef ARM_VARIANT
9331 #define ARM_VARIANT &arm_ext_v6z
9332 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
9333
9334 #undef ARM_VARIANT
9335 #define ARM_VARIANT &arm_ext_v6t2
9336 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
9337 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
9338 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
9339 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
9340
9341 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
9342 TCE(movw, 3000000, f2400000, 2, (RRnpc, Iffff), mov16, t_mov16),
9343 TCE(movt, 3400000, f2c00000, 2, (RRnpc, Iffff), mov16, t_mov16),
9344 TCE(rbit, 3ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
9345
9346 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
9347 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
9348 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
9349 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
9350
9351 UT(cbnz, b900, 2, (RR, EXP), t_czb),
9352 UT(cbz, b100, 2, (RR, EXP), t_czb),
9353 /* ARM does not really have an IT instruction. */
9354 TUE(it, 0, bf08, 1, (COND), it, t_it),
9355 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
9356 TUE(ite, 0, bf04, 1, (COND), it, t_it),
9357 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
9358 TUE(itet, 0, bf06, 1, (COND), it, t_it),
9359 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
9360 TUE(itee, 0, bf02, 1, (COND), it, t_it),
9361 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
9362 TUE(itett, 0, bf07, 1, (COND), it, t_it),
9363 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
9364 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
9365 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
9366 TUE(itete, 0, bf05, 1, (COND), it, t_it),
9367 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
9368 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
9369
9370 /* Thumb2 only instructions. */
9371 #undef ARM_VARIANT
9372 #define ARM_VARIANT NULL
9373
9374 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
9375 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
9376 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
9377 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
9378
9379 /* Thumb-2 hardware division instructions (R and M profiles only). */
9380 #undef THUMB_VARIANT
9381 #define THUMB_VARIANT &arm_ext_div
9382 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
9383 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
9384
9385 /* ARM V7 instructions. */
9386 #undef ARM_VARIANT
9387 #define ARM_VARIANT &arm_ext_v7
9388 #undef THUMB_VARIANT
9389 #define THUMB_VARIANT &arm_ext_v7
9390 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
9391 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
9392 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
9393 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
9394 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
9395
9396 #undef ARM_VARIANT
9397 #define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
9398 cCE(wfs, e200110, 1, (RR), rd),
9399 cCE(rfs, e300110, 1, (RR), rd),
9400 cCE(wfc, e400110, 1, (RR), rd),
9401 cCE(rfc, e500110, 1, (RR), rd),
9402
9403 cCL(ldfs, c100100, 2, (RF, ADDR), rd_cpaddr),
9404 cCL(ldfd, c108100, 2, (RF, ADDR), rd_cpaddr),
9405 cCL(ldfe, c500100, 2, (RF, ADDR), rd_cpaddr),
9406 cCL(ldfp, c508100, 2, (RF, ADDR), rd_cpaddr),
9407
9408 cCL(stfs, c000100, 2, (RF, ADDR), rd_cpaddr),
9409 cCL(stfd, c008100, 2, (RF, ADDR), rd_cpaddr),
9410 cCL(stfe, c400100, 2, (RF, ADDR), rd_cpaddr),
9411 cCL(stfp, c408100, 2, (RF, ADDR), rd_cpaddr),
9412
9413 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
9414 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
9415 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
9416 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
9417 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
9418 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
9419 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
9420 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
9421 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
9422 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
9423 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
9424 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
9425
9426 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
9427 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
9428 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
9429 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
9430 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
9431 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
9432 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
9433 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
9434 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
9435 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
9436 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
9437 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
9438
9439 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
9440 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
9441 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
9442 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
9443 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
9444 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
9445 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
9446 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
9447 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
9448 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
9449 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
9450 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
9451
9452 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
9453 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
9454 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
9455 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
9456 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
9457 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
9458 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
9459 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
9460 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
9461 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
9462 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
9463 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
9464
9465 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
9466 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
9467 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
9468 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
9469 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
9470 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
9471 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
9472 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
9473 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
9474 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
9475 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
9476 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
9477
9478 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
9479 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
9480 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
9481 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
9482 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
9483 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
9484 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
9485 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
9486 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
9487 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
9488 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
9489 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
9490
9491 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
9492 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
9493 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
9494 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
9495 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
9496 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
9497 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
9498 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
9499 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
9500 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
9501 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
9502 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
9503
9504 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
9505 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
9506 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
9507 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
9508 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
9509 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
9510 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
9511 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
9512 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
9513 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
9514 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
9515 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
9516
9517 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
9518 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
9519 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
9520 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
9521 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
9522 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
9523 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
9524 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
9525 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
9526 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
9527 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
9528 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
9529
9530 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
9531 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
9532 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
9533 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
9534 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
9535 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
9536 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
9537 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
9538 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
9539 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
9540 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
9541 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
9542
9543 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
9544 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
9545 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
9546 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
9547 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
9548 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
9549 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
9550 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
9551 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
9552 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
9553 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
9554 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
9555
9556 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
9557 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
9558 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
9559 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
9560 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
9561 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
9562 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
9563 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
9564 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
9565 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
9566 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
9567 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
9568
9569 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
9570 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
9571 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
9572 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
9573 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
9574 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
9575 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
9576 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
9577 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
9578 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
9579 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
9580 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
9581
9582 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
9583 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
9584 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
9585 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
9586 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
9587 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
9588 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
9589 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
9590 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
9591 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
9592 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
9593 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
9594
9595 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
9596 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
9597 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
9598 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
9599 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
9600 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
9601 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
9602 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
9603 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
9604 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
9605 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
9606 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
9607
9608 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
9609 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
9610 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
9611 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
9612 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
9613 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
9614 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
9615 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
9616 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
9617 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
9618 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
9619 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
9620
9621 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
9622 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
9623 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
9624 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
9625 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
9626 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9627 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9628 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9629 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
9630 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
9631 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
9632 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
9633
9634 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
9635 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
9636 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
9637 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
9638 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
9639 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9640 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9641 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9642 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
9643 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
9644 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
9645 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
9646
9647 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
9648 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
9649 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
9650 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
9651 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
9652 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9653 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9654 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9655 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
9656 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
9657 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
9658 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
9659
9660 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
9661 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
9662 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
9663 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
9664 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
9665 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9666 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9667 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9668 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
9669 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
9670 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
9671 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
9672
9673 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
9674 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
9675 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
9676 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
9677 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
9678 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9679 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9680 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9681 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
9682 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
9683 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
9684 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
9685
9686 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
9687 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
9688 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
9689 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
9690 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
9691 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9692 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9693 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9694 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
9695 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
9696 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
9697 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
9698
9699 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
9700 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
9701 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
9702 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
9703 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
9704 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9705 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9706 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9707 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
9708 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
9709 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
9710 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
9711
9712 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
9713 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
9714 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
9715 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
9716 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
9717 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9718 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9719 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9720 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
9721 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
9722 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
9723 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
9724
9725 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
9726 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
9727 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
9728 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
9729 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
9730 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9731 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9732 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9733 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
9734 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
9735 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
9736 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
9737
9738 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
9739 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
9740 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
9741 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
9742 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
9743 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9744 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9745 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9746 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
9747 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
9748 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
9749 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
9750
9751 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
9752 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
9753 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
9754 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
9755 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
9756 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9757 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9758 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9759 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
9760 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
9761 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
9762 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
9763
9764 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
9765 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
9766 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
9767 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
9768 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
9769 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9770 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9771 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9772 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
9773 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
9774 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
9775 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
9776
9777 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
9778 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
9779 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
9780 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
9781 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
9782 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
9783 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
9784 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
9785 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
9786 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
9787 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
9788 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
9789
9790 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
9791 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
9792 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
9793 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
9794
9795 cCL(flts, e000110, 2, (RF, RR), rn_rd),
9796 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
9797 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
9798 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
9799 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
9800 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
9801 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
9802 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
9803 cCL(flte, e080110, 2, (RF, RR), rn_rd),
9804 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
9805 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
9806 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
9807
9808 /* The implementation of the FIX instruction is broken on some
9809 assemblers, in that it accepts a precision specifier as well as a
9810 rounding specifier, despite the fact that this is meaningless.
9811 To be more compatible, we accept it as well, though of course it
9812 does not set any bits. */
9813 cCE(fix, e100110, 2, (RR, RF), rd_rm),
9814 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
9815 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
9816 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
9817 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
9818 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
9819 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
9820 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
9821 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
9822 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
9823 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
9824 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
9825 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
9826
9827 /* Instructions that were new with the real FPA, call them V2. */
9828 #undef ARM_VARIANT
9829 #define ARM_VARIANT &fpu_fpa_ext_v2
9830 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9831 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9832 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9833 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9834 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9835 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
9836
9837 #undef ARM_VARIANT
9838 #define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
9839 /* Moves and type conversions. */
9840 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
9841 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
9842 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
9843 cCE(fmstat, ef1fa10, 0, (), noargs),
9844 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
9845 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
9846 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
9847 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
9848 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
9849 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
9850 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
9851 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
9852
9853 /* Memory operations. */
9854 cCE(flds, d100a00, 2, (RVS, ADDR), vfp_sp_ldst),
9855 cCE(fsts, d000a00, 2, (RVS, ADDR), vfp_sp_ldst),
9856 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
9857 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
9858 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
9859 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
9860 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
9861 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
9862 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
9863 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
9864 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
9865 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
9866 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
9867 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
9868 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
9869 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
9870 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
9871 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
9872
9873 /* Monadic operations. */
9874 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
9875 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
9876 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
9877
9878 /* Dyadic operations. */
9879 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9880 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9881 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9882 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9883 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9884 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9885 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9886 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9887 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
9888
9889 /* Comparisons. */
9890 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
9891 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
9892 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
9893 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
9894
9895 #undef ARM_VARIANT
9896 #define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
9897 /* Moves and type conversions. */
9898 cCE(fcpyd, eb00b40, 2, (RVD, RVD), rd_rm),
9899 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
9900 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
9901 cCE(fmdhr, e200b10, 2, (RVD, RR), rn_rd),
9902 cCE(fmdlr, e000b10, 2, (RVD, RR), rn_rd),
9903 cCE(fmrdh, e300b10, 2, (RR, RVD), rd_rn),
9904 cCE(fmrdl, e100b10, 2, (RR, RVD), rd_rn),
9905 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
9906 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
9907 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
9908 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
9909 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
9910 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
9911
9912 /* Memory operations. */
9913 cCE(fldd, d100b00, 2, (RVD, ADDR), vfp_dp_ldst),
9914 cCE(fstd, d000b00, 2, (RVD, ADDR), vfp_dp_ldst),
9915 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
9916 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
9917 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
9918 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
9919 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
9920 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
9921 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
9922 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
9923
9924 /* Monadic operations. */
9925 cCE(fabsd, eb00bc0, 2, (RVD, RVD), rd_rm),
9926 cCE(fnegd, eb10b40, 2, (RVD, RVD), rd_rm),
9927 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), rd_rm),
9928
9929 /* Dyadic operations. */
9930 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9931 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), rd_rn_rm),
9932 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9933 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9934 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9935 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), rd_rn_rm),
9936 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), rd_rn_rm),
9937 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), rd_rn_rm),
9938 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), rd_rn_rm),
9939
9940 /* Comparisons. */
9941 cCE(fcmpd, eb40b40, 2, (RVD, RVD), rd_rm),
9942 cCE(fcmpzd, eb50b40, 1, (RVD), rd),
9943 cCE(fcmped, eb40bc0, 2, (RVD, RVD), rd_rm),
9944 cCE(fcmpezd, eb50bc0, 1, (RVD), rd),
9945
9946 #undef ARM_VARIANT
9947 #define ARM_VARIANT &fpu_vfp_ext_v2
9948 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
9949 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
9950 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), rm_rd_rn),
9951 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), rd_rn_rm),
9952
9953 #undef ARM_VARIANT
9954 #define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
9955 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9956 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9957 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9958 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9959 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9960 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
9961 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
9962 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
9963
9964 #undef ARM_VARIANT
9965 #define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
9966 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
9967 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
9968 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
9969 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
9970 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
9971 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
9972 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
9973 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
9974 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
9975 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
9976 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
9977 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
9978 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
9979 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
9980 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
9981 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
9982 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
9983 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
9984 cCE(tmcr, e000110, 2, (RIWC, RR), rn_rd),
9985 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
9986 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9987 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9988 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9989 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9990 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9991 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
9992 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
9993 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
9994 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
9995 cCE(tmrc, e100110, 2, (RR, RIWC), rd_rn),
9996 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
9997 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
9998 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
9999 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
10000 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
10001 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
10002 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
10003 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10004 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10005 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10006 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10007 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10008 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10009 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10010 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10011 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10012 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
10013 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10014 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10015 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10016 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10017 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10018 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10019 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10020 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10021 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10022 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10023 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10024 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10025 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10026 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10027 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10028 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10029 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10030 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10031 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10032 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
10033 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
10034 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
10035 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
10036 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10037 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10038 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10039 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10040 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10041 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10042 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10043 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10044 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10045 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10046 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10047 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10048 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10049 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10050 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10051 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10052 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10053 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10054 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
10055 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10056 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10057 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10058 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10059 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10060 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10061 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10062 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10063 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10064 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10065 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10066 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10067 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
10068 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10069 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
10070 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10071 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
10072 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10073 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10074 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10075 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10076 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
10077 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10078 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
10079 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10080 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
10081 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10082 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
10083 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10084 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
10085 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10086 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
10087 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10088 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
10089 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10090 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
10091 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10092 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
10093 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10094 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
10095 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
10096 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
10097 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
10098 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
10099 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10100 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10101 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10102 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10103 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10104 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10105 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10106 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10107 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10108 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
10109 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
10110 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
10111 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
10112 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
10113 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
10114 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10115 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10116 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10117 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
10118 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
10119 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
10120 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
10121 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
10122 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
10123 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10124 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10125 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10126 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
10127 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
10128
10129 #undef ARM_VARIANT
10130 #define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
10131 cCE(cfldrs, c100400, 2, (RMF, ADDR), rd_cpaddr),
10132 cCE(cfldrd, c500400, 2, (RMD, ADDR), rd_cpaddr),
10133 cCE(cfldr32, c100500, 2, (RMFX, ADDR), rd_cpaddr),
10134 cCE(cfldr64, c500500, 2, (RMDX, ADDR), rd_cpaddr),
10135 cCE(cfstrs, c000400, 2, (RMF, ADDR), rd_cpaddr),
10136 cCE(cfstrd, c400400, 2, (RMD, ADDR), rd_cpaddr),
10137 cCE(cfstr32, c000500, 2, (RMFX, ADDR), rd_cpaddr),
10138 cCE(cfstr64, c400500, 2, (RMDX, ADDR), rd_cpaddr),
10139 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
10140 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
10141 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
10142 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
10143 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
10144 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
10145 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
10146 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
10147 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
10148 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
10149 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
10150 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
10151 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
10152 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
10153 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
10154 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
10155 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
10156 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
10157 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
10158 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
10159 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
10160 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
10161 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
10162 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
10163 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
10164 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
10165 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
10166 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
10167 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
10168 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
10169 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
10170 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
10171 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
10172 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
10173 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
10174 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
10175 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
10176 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
10177 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
10178 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
10179 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
10180 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
10181 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
10182 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
10183 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
10184 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
10185 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
10186 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
10187 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
10188 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
10189 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
10190 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
10191 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
10192 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
10193 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
10194 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
10195 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
10196 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
10197 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
10198 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
10199 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
10200 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
10201 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
10202 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
10203 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
10204 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
10205 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
10206 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
10207 };
10208 #undef ARM_VARIANT
10209 #undef THUMB_VARIANT
10210 #undef TCE
10211 #undef TCM
10212 #undef TUE
10213 #undef TUF
10214 #undef TCC
10215 #undef cCE
10216 #undef cCL
10217 #undef C3E
10218 #undef CE
10219 #undef CM
10220 #undef UE
10221 #undef UF
10222 #undef UT
10223 #undef OPS0
10224 #undef OPS1
10225 #undef OPS2
10226 #undef OPS3
10227 #undef OPS4
10228 #undef OPS5
10229 #undef OPS6
10230 #undef do_0
10231 \f
10232 /* MD interface: bits in the object file. */
10233
10234 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
10235 for use in the a.out file, and stores them in the array pointed to by buf.
10236 This knows about the endian-ness of the target machine and does
10237 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
10238 2 (short) and 4 (long) Floating numbers are put out as a series of
10239 LITTLENUMS (shorts, here at least). */
10240
10241 void
10242 md_number_to_chars (char * buf, valueT val, int n)
10243 {
10244 if (target_big_endian)
10245 number_to_chars_bigendian (buf, val, n);
10246 else
10247 number_to_chars_littleendian (buf, val, n);
10248 }
10249
10250 static valueT
10251 md_chars_to_number (char * buf, int n)
10252 {
10253 valueT result = 0;
10254 unsigned char * where = (unsigned char *) buf;
10255
10256 if (target_big_endian)
10257 {
10258 while (n--)
10259 {
10260 result <<= 8;
10261 result |= (*where++ & 255);
10262 }
10263 }
10264 else
10265 {
10266 while (n--)
10267 {
10268 result <<= 8;
10269 result |= (where[n] & 255);
10270 }
10271 }
10272
10273 return result;
10274 }
10275
10276 /* MD interface: Sections. */
10277
10278 /* Estimate the size of a frag before relaxing. Assume everything fits in
10279 2 bytes. */
10280
10281 int
10282 md_estimate_size_before_relax (fragS * fragp,
10283 segT segtype ATTRIBUTE_UNUSED)
10284 {
10285 fragp->fr_var = 2;
10286 return 2;
10287 }
10288
10289 /* Convert a machine dependent frag. */
10290
10291 void
10292 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
10293 {
10294 unsigned long insn;
10295 unsigned long old_op;
10296 char *buf;
10297 expressionS exp;
10298 fixS *fixp;
10299 int reloc_type;
10300 int pc_rel;
10301 int opcode;
10302
10303 buf = fragp->fr_literal + fragp->fr_fix;
10304
10305 old_op = bfd_get_16(abfd, buf);
10306 if (fragp->fr_symbol) {
10307 exp.X_op = O_symbol;
10308 exp.X_add_symbol = fragp->fr_symbol;
10309 } else {
10310 exp.X_op = O_constant;
10311 }
10312 exp.X_add_number = fragp->fr_offset;
10313 opcode = fragp->fr_subtype;
10314 switch (opcode)
10315 {
10316 case T_MNEM_ldr_pc:
10317 case T_MNEM_ldr_pc2:
10318 case T_MNEM_ldr_sp:
10319 case T_MNEM_str_sp:
10320 case T_MNEM_ldr:
10321 case T_MNEM_ldrb:
10322 case T_MNEM_ldrh:
10323 case T_MNEM_str:
10324 case T_MNEM_strb:
10325 case T_MNEM_strh:
10326 if (fragp->fr_var == 4)
10327 {
10328 insn = THUMB_OP32(opcode);
10329 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
10330 {
10331 insn |= (old_op & 0x700) << 4;
10332 }
10333 else
10334 {
10335 insn |= (old_op & 7) << 12;
10336 insn |= (old_op & 0x38) << 13;
10337 }
10338 insn |= 0x00000c00;
10339 put_thumb32_insn (buf, insn);
10340 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
10341 }
10342 else
10343 {
10344 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
10345 }
10346 pc_rel = (opcode == T_MNEM_ldr_pc2);
10347 break;
10348 case T_MNEM_adr:
10349 if (fragp->fr_var == 4)
10350 {
10351 insn = THUMB_OP32 (opcode);
10352 insn |= (old_op & 0xf0) << 4;
10353 put_thumb32_insn (buf, insn);
10354 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
10355 }
10356 else
10357 {
10358 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
10359 exp.X_add_number -= 4;
10360 }
10361 pc_rel = 1;
10362 break;
10363 case T_MNEM_mov:
10364 case T_MNEM_movs:
10365 case T_MNEM_cmp:
10366 case T_MNEM_cmn:
10367 if (fragp->fr_var == 4)
10368 {
10369 int r0off = (opcode == T_MNEM_mov
10370 || opcode == T_MNEM_movs) ? 0 : 8;
10371 insn = THUMB_OP32 (opcode);
10372 insn = (insn & 0xe1ffffff) | 0x10000000;
10373 insn |= (old_op & 0x700) << r0off;
10374 put_thumb32_insn (buf, insn);
10375 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
10376 }
10377 else
10378 {
10379 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
10380 }
10381 pc_rel = 0;
10382 break;
10383 case T_MNEM_b:
10384 if (fragp->fr_var == 4)
10385 {
10386 insn = THUMB_OP32(opcode);
10387 put_thumb32_insn (buf, insn);
10388 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
10389 }
10390 else
10391 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
10392 pc_rel = 1;
10393 break;
10394 case T_MNEM_bcond:
10395 if (fragp->fr_var == 4)
10396 {
10397 insn = THUMB_OP32(opcode);
10398 insn |= (old_op & 0xf00) << 14;
10399 put_thumb32_insn (buf, insn);
10400 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
10401 }
10402 else
10403 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
10404 pc_rel = 1;
10405 break;
10406 case T_MNEM_add_sp:
10407 case T_MNEM_add_pc:
10408 case T_MNEM_inc_sp:
10409 case T_MNEM_dec_sp:
10410 if (fragp->fr_var == 4)
10411 {
10412 /* ??? Choose between add and addw. */
10413 insn = THUMB_OP32 (opcode);
10414 insn |= (old_op & 0xf0) << 4;
10415 put_thumb32_insn (buf, insn);
10416 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
10417 }
10418 else
10419 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
10420 pc_rel = 0;
10421 break;
10422
10423 case T_MNEM_addi:
10424 case T_MNEM_addis:
10425 case T_MNEM_subi:
10426 case T_MNEM_subis:
10427 if (fragp->fr_var == 4)
10428 {
10429 insn = THUMB_OP32 (opcode);
10430 insn |= (old_op & 0xf0) << 4;
10431 insn |= (old_op & 0xf) << 16;
10432 put_thumb32_insn (buf, insn);
10433 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
10434 }
10435 else
10436 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
10437 pc_rel = 0;
10438 break;
10439 default:
10440 abort();
10441 }
10442 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
10443 reloc_type);
10444 fixp->fx_file = fragp->fr_file;
10445 fixp->fx_line = fragp->fr_line;
10446 fragp->fr_fix += fragp->fr_var;
10447 }
10448
10449 /* Return the size of a relaxable immediate operand instruction.
10450 SHIFT and SIZE specify the form of the allowable immediate. */
10451 static int
10452 relax_immediate (fragS *fragp, int size, int shift)
10453 {
10454 offsetT offset;
10455 offsetT mask;
10456 offsetT low;
10457
10458 /* ??? Should be able to do better than this. */
10459 if (fragp->fr_symbol)
10460 return 4;
10461
10462 low = (1 << shift) - 1;
10463 mask = (1 << (shift + size)) - (1 << shift);
10464 offset = fragp->fr_offset;
10465 /* Force misaligned offsets to 32-bit variant. */
10466 if (offset & low)
10467 return -4;
10468 if (offset & ~mask)
10469 return 4;
10470 return 2;
10471 }
10472
10473 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
10474 load. */
10475 static int
10476 relax_adr (fragS *fragp, asection *sec)
10477 {
10478 addressT addr;
10479 offsetT val;
10480
10481 /* Assume worst case for symbols not known to be in the same section. */
10482 if (!S_IS_DEFINED(fragp->fr_symbol)
10483 || sec != S_GET_SEGMENT (fragp->fr_symbol))
10484 return 4;
10485
10486 val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
10487 addr = fragp->fr_address + fragp->fr_fix;
10488 addr = (addr + 4) & ~3;
10489 /* Fix the insn as the 4-byte version if the target address is not
10490 sufficiently aligned. This is prevents an infinite loop when two
10491 instructions have contradictory range/alignment requirements. */
10492 if (val & 3)
10493 return -4;
10494 val -= addr;
10495 if (val < 0 || val > 1020)
10496 return 4;
10497 return 2;
10498 }
10499
10500 /* Return the size of a relaxable add/sub immediate instruction. */
10501 static int
10502 relax_addsub (fragS *fragp, asection *sec)
10503 {
10504 char *buf;
10505 int op;
10506
10507 buf = fragp->fr_literal + fragp->fr_fix;
10508 op = bfd_get_16(sec->owner, buf);
10509 if ((op & 0xf) == ((op >> 4) & 0xf))
10510 return relax_immediate (fragp, 8, 0);
10511 else
10512 return relax_immediate (fragp, 3, 0);
10513 }
10514
10515
10516 /* Return the size of a relaxable branch instruction. BITS is the
10517 size of the offset field in the narrow instruction. */
10518
10519 static int
10520 relax_branch (fragS *fragp, asection *sec, int bits)
10521 {
10522 addressT addr;
10523 offsetT val;
10524 offsetT limit;
10525
10526 /* Assume worst case for symbols not known to be in the same section. */
10527 if (!S_IS_DEFINED(fragp->fr_symbol)
10528 || sec != S_GET_SEGMENT (fragp->fr_symbol))
10529 return 4;
10530
10531 val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
10532 addr = fragp->fr_address + fragp->fr_fix + 4;
10533 val -= addr;
10534
10535 /* Offset is a signed value *2 */
10536 limit = 1 << bits;
10537 if (val >= limit || val < -limit)
10538 return 4;
10539 return 2;
10540 }
10541
10542
10543 /* Relax a machine dependent frag. This returns the amount by which
10544 the current size of the frag should change. */
10545
10546 int
10547 arm_relax_frag (asection *sec, fragS *fragp, long stretch ATTRIBUTE_UNUSED)
10548 {
10549 int oldsize;
10550 int newsize;
10551
10552 oldsize = fragp->fr_var;
10553 switch (fragp->fr_subtype)
10554 {
10555 case T_MNEM_ldr_pc2:
10556 newsize = relax_adr(fragp, sec);
10557 break;
10558 case T_MNEM_ldr_pc:
10559 case T_MNEM_ldr_sp:
10560 case T_MNEM_str_sp:
10561 newsize = relax_immediate(fragp, 8, 2);
10562 break;
10563 case T_MNEM_ldr:
10564 case T_MNEM_str:
10565 newsize = relax_immediate(fragp, 5, 2);
10566 break;
10567 case T_MNEM_ldrh:
10568 case T_MNEM_strh:
10569 newsize = relax_immediate(fragp, 5, 1);
10570 break;
10571 case T_MNEM_ldrb:
10572 case T_MNEM_strb:
10573 newsize = relax_immediate(fragp, 5, 0);
10574 break;
10575 case T_MNEM_adr:
10576 newsize = relax_adr(fragp, sec);
10577 break;
10578 case T_MNEM_mov:
10579 case T_MNEM_movs:
10580 case T_MNEM_cmp:
10581 case T_MNEM_cmn:
10582 newsize = relax_immediate(fragp, 8, 0);
10583 break;
10584 case T_MNEM_b:
10585 newsize = relax_branch(fragp, sec, 11);
10586 break;
10587 case T_MNEM_bcond:
10588 newsize = relax_branch(fragp, sec, 8);
10589 break;
10590 case T_MNEM_add_sp:
10591 case T_MNEM_add_pc:
10592 newsize = relax_immediate (fragp, 8, 2);
10593 break;
10594 case T_MNEM_inc_sp:
10595 case T_MNEM_dec_sp:
10596 newsize = relax_immediate (fragp, 7, 2);
10597 break;
10598 case T_MNEM_addi:
10599 case T_MNEM_addis:
10600 case T_MNEM_subi:
10601 case T_MNEM_subis:
10602 newsize = relax_addsub (fragp, sec);
10603 break;
10604 default:
10605 abort();
10606 }
10607 if (newsize < 0)
10608 {
10609 fragp->fr_var = -newsize;
10610 md_convert_frag (sec->owner, sec, fragp);
10611 frag_wane(fragp);
10612 return -(newsize + oldsize);
10613 }
10614 fragp->fr_var = newsize;
10615 return newsize - oldsize;
10616 }
10617
10618 /* Round up a section size to the appropriate boundary. */
10619
10620 valueT
10621 md_section_align (segT segment ATTRIBUTE_UNUSED,
10622 valueT size)
10623 {
10624 #ifdef OBJ_ELF
10625 return size;
10626 #else
10627 /* Round all sects to multiple of 4. */
10628 return (size + 3) & ~3;
10629 #endif
10630 }
10631
10632 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
10633 of an rs_align_code fragment. */
10634
10635 void
10636 arm_handle_align (fragS * fragP)
10637 {
10638 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
10639 static char const thumb_noop[2] = { 0xc0, 0x46 };
10640 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
10641 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
10642
10643 int bytes, fix, noop_size;
10644 char * p;
10645 const char * noop;
10646
10647 if (fragP->fr_type != rs_align_code)
10648 return;
10649
10650 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
10651 p = fragP->fr_literal + fragP->fr_fix;
10652 fix = 0;
10653
10654 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
10655 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
10656
10657 if (fragP->tc_frag_data)
10658 {
10659 if (target_big_endian)
10660 noop = thumb_bigend_noop;
10661 else
10662 noop = thumb_noop;
10663 noop_size = sizeof (thumb_noop);
10664 }
10665 else
10666 {
10667 if (target_big_endian)
10668 noop = arm_bigend_noop;
10669 else
10670 noop = arm_noop;
10671 noop_size = sizeof (arm_noop);
10672 }
10673
10674 if (bytes & (noop_size - 1))
10675 {
10676 fix = bytes & (noop_size - 1);
10677 memset (p, 0, fix);
10678 p += fix;
10679 bytes -= fix;
10680 }
10681
10682 while (bytes >= noop_size)
10683 {
10684 memcpy (p, noop, noop_size);
10685 p += noop_size;
10686 bytes -= noop_size;
10687 fix += noop_size;
10688 }
10689
10690 fragP->fr_fix += fix;
10691 fragP->fr_var = noop_size;
10692 }
10693
10694 /* Called from md_do_align. Used to create an alignment
10695 frag in a code section. */
10696
10697 void
10698 arm_frag_align_code (int n, int max)
10699 {
10700 char * p;
10701
10702 /* We assume that there will never be a requirement
10703 to support alignments greater than 32 bytes. */
10704 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
10705 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
10706
10707 p = frag_var (rs_align_code,
10708 MAX_MEM_FOR_RS_ALIGN_CODE,
10709 1,
10710 (relax_substateT) max,
10711 (symbolS *) NULL,
10712 (offsetT) n,
10713 (char *) NULL);
10714 *p = 0;
10715 }
10716
10717 /* Perform target specific initialisation of a frag. */
10718
10719 void
10720 arm_init_frag (fragS * fragP)
10721 {
10722 /* Record whether this frag is in an ARM or a THUMB area. */
10723 fragP->tc_frag_data = thumb_mode;
10724 }
10725
10726 #ifdef OBJ_ELF
10727 /* When we change sections we need to issue a new mapping symbol. */
10728
10729 void
10730 arm_elf_change_section (void)
10731 {
10732 flagword flags;
10733 segment_info_type *seginfo;
10734
10735 /* Link an unlinked unwind index table section to the .text section. */
10736 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
10737 && elf_linked_to_section (now_seg) == NULL)
10738 elf_linked_to_section (now_seg) = text_section;
10739
10740 if (!SEG_NORMAL (now_seg))
10741 return;
10742
10743 flags = bfd_get_section_flags (stdoutput, now_seg);
10744
10745 /* We can ignore sections that only contain debug info. */
10746 if ((flags & SEC_ALLOC) == 0)
10747 return;
10748
10749 seginfo = seg_info (now_seg);
10750 mapstate = seginfo->tc_segment_info_data.mapstate;
10751 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
10752 }
10753
10754 int
10755 arm_elf_section_type (const char * str, size_t len)
10756 {
10757 if (len == 5 && strncmp (str, "exidx", 5) == 0)
10758 return SHT_ARM_EXIDX;
10759
10760 return -1;
10761 }
10762 \f
10763 /* Code to deal with unwinding tables. */
10764
10765 static void add_unwind_adjustsp (offsetT);
10766
10767 /* Cenerate and deferred unwind frame offset. */
10768
10769 static void
10770 flush_pending_unwind (void)
10771 {
10772 offsetT offset;
10773
10774 offset = unwind.pending_offset;
10775 unwind.pending_offset = 0;
10776 if (offset != 0)
10777 add_unwind_adjustsp (offset);
10778 }
10779
10780 /* Add an opcode to this list for this function. Two-byte opcodes should
10781 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
10782 order. */
10783
10784 static void
10785 add_unwind_opcode (valueT op, int length)
10786 {
10787 /* Add any deferred stack adjustment. */
10788 if (unwind.pending_offset)
10789 flush_pending_unwind ();
10790
10791 unwind.sp_restored = 0;
10792
10793 if (unwind.opcode_count + length > unwind.opcode_alloc)
10794 {
10795 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
10796 if (unwind.opcodes)
10797 unwind.opcodes = xrealloc (unwind.opcodes,
10798 unwind.opcode_alloc);
10799 else
10800 unwind.opcodes = xmalloc (unwind.opcode_alloc);
10801 }
10802 while (length > 0)
10803 {
10804 length--;
10805 unwind.opcodes[unwind.opcode_count] = op & 0xff;
10806 op >>= 8;
10807 unwind.opcode_count++;
10808 }
10809 }
10810
10811 /* Add unwind opcodes to adjust the stack pointer. */
10812
10813 static void
10814 add_unwind_adjustsp (offsetT offset)
10815 {
10816 valueT op;
10817
10818 if (offset > 0x200)
10819 {
10820 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
10821 char bytes[5];
10822 int n;
10823 valueT o;
10824
10825 /* Long form: 0xb2, uleb128. */
10826 /* This might not fit in a word so add the individual bytes,
10827 remembering the list is built in reverse order. */
10828 o = (valueT) ((offset - 0x204) >> 2);
10829 if (o == 0)
10830 add_unwind_opcode (0, 1);
10831
10832 /* Calculate the uleb128 encoding of the offset. */
10833 n = 0;
10834 while (o)
10835 {
10836 bytes[n] = o & 0x7f;
10837 o >>= 7;
10838 if (o)
10839 bytes[n] |= 0x80;
10840 n++;
10841 }
10842 /* Add the insn. */
10843 for (; n; n--)
10844 add_unwind_opcode (bytes[n - 1], 1);
10845 add_unwind_opcode (0xb2, 1);
10846 }
10847 else if (offset > 0x100)
10848 {
10849 /* Two short opcodes. */
10850 add_unwind_opcode (0x3f, 1);
10851 op = (offset - 0x104) >> 2;
10852 add_unwind_opcode (op, 1);
10853 }
10854 else if (offset > 0)
10855 {
10856 /* Short opcode. */
10857 op = (offset - 4) >> 2;
10858 add_unwind_opcode (op, 1);
10859 }
10860 else if (offset < 0)
10861 {
10862 offset = -offset;
10863 while (offset > 0x100)
10864 {
10865 add_unwind_opcode (0x7f, 1);
10866 offset -= 0x100;
10867 }
10868 op = ((offset - 4) >> 2) | 0x40;
10869 add_unwind_opcode (op, 1);
10870 }
10871 }
10872
10873 /* Finish the list of unwind opcodes for this function. */
10874 static void
10875 finish_unwind_opcodes (void)
10876 {
10877 valueT op;
10878
10879 if (unwind.fp_used)
10880 {
10881 /* Adjust sp as neccessary. */
10882 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
10883 flush_pending_unwind ();
10884
10885 /* After restoring sp from the frame pointer. */
10886 op = 0x90 | unwind.fp_reg;
10887 add_unwind_opcode (op, 1);
10888 }
10889 else
10890 flush_pending_unwind ();
10891 }
10892
10893
10894 /* Start an exception table entry. If idx is nonzero this is an index table
10895 entry. */
10896
10897 static void
10898 start_unwind_section (const segT text_seg, int idx)
10899 {
10900 const char * text_name;
10901 const char * prefix;
10902 const char * prefix_once;
10903 const char * group_name;
10904 size_t prefix_len;
10905 size_t text_len;
10906 char * sec_name;
10907 size_t sec_name_len;
10908 int type;
10909 int flags;
10910 int linkonce;
10911
10912 if (idx)
10913 {
10914 prefix = ELF_STRING_ARM_unwind;
10915 prefix_once = ELF_STRING_ARM_unwind_once;
10916 type = SHT_ARM_EXIDX;
10917 }
10918 else
10919 {
10920 prefix = ELF_STRING_ARM_unwind_info;
10921 prefix_once = ELF_STRING_ARM_unwind_info_once;
10922 type = SHT_PROGBITS;
10923 }
10924
10925 text_name = segment_name (text_seg);
10926 if (streq (text_name, ".text"))
10927 text_name = "";
10928
10929 if (strncmp (text_name, ".gnu.linkonce.t.",
10930 strlen (".gnu.linkonce.t.")) == 0)
10931 {
10932 prefix = prefix_once;
10933 text_name += strlen (".gnu.linkonce.t.");
10934 }
10935
10936 prefix_len = strlen (prefix);
10937 text_len = strlen (text_name);
10938 sec_name_len = prefix_len + text_len;
10939 sec_name = xmalloc (sec_name_len + 1);
10940 memcpy (sec_name, prefix, prefix_len);
10941 memcpy (sec_name + prefix_len, text_name, text_len);
10942 sec_name[prefix_len + text_len] = '\0';
10943
10944 flags = SHF_ALLOC;
10945 linkonce = 0;
10946 group_name = 0;
10947
10948 /* Handle COMDAT group. */
10949 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
10950 {
10951 group_name = elf_group_name (text_seg);
10952 if (group_name == NULL)
10953 {
10954 as_bad ("Group section `%s' has no group signature",
10955 segment_name (text_seg));
10956 ignore_rest_of_line ();
10957 return;
10958 }
10959 flags |= SHF_GROUP;
10960 linkonce = 1;
10961 }
10962
10963 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
10964
10965 /* Set the setion link for index tables. */
10966 if (idx)
10967 elf_linked_to_section (now_seg) = text_seg;
10968 }
10969
10970
10971 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
10972 personality routine data. Returns zero, or the index table value for
10973 and inline entry. */
10974
10975 static valueT
10976 create_unwind_entry (int have_data)
10977 {
10978 int size;
10979 addressT where;
10980 char *ptr;
10981 /* The current word of data. */
10982 valueT data;
10983 /* The number of bytes left in this word. */
10984 int n;
10985
10986 finish_unwind_opcodes ();
10987
10988 /* Remember the current text section. */
10989 unwind.saved_seg = now_seg;
10990 unwind.saved_subseg = now_subseg;
10991
10992 start_unwind_section (now_seg, 0);
10993
10994 if (unwind.personality_routine == NULL)
10995 {
10996 if (unwind.personality_index == -2)
10997 {
10998 if (have_data)
10999 as_bad (_("handerdata in cantunwind frame"));
11000 return 1; /* EXIDX_CANTUNWIND. */
11001 }
11002
11003 /* Use a default personality routine if none is specified. */
11004 if (unwind.personality_index == -1)
11005 {
11006 if (unwind.opcode_count > 3)
11007 unwind.personality_index = 1;
11008 else
11009 unwind.personality_index = 0;
11010 }
11011
11012 /* Space for the personality routine entry. */
11013 if (unwind.personality_index == 0)
11014 {
11015 if (unwind.opcode_count > 3)
11016 as_bad (_("too many unwind opcodes for personality routine 0"));
11017
11018 if (!have_data)
11019 {
11020 /* All the data is inline in the index table. */
11021 data = 0x80;
11022 n = 3;
11023 while (unwind.opcode_count > 0)
11024 {
11025 unwind.opcode_count--;
11026 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
11027 n--;
11028 }
11029
11030 /* Pad with "finish" opcodes. */
11031 while (n--)
11032 data = (data << 8) | 0xb0;
11033
11034 return data;
11035 }
11036 size = 0;
11037 }
11038 else
11039 /* We get two opcodes "free" in the first word. */
11040 size = unwind.opcode_count - 2;
11041 }
11042 else
11043 /* An extra byte is required for the opcode count. */
11044 size = unwind.opcode_count + 1;
11045
11046 size = (size + 3) >> 2;
11047 if (size > 0xff)
11048 as_bad (_("too many unwind opcodes"));
11049
11050 frag_align (2, 0, 0);
11051 record_alignment (now_seg, 2);
11052 unwind.table_entry = expr_build_dot ();
11053
11054 /* Allocate the table entry. */
11055 ptr = frag_more ((size << 2) + 4);
11056 where = frag_now_fix () - ((size << 2) + 4);
11057
11058 switch (unwind.personality_index)
11059 {
11060 case -1:
11061 /* ??? Should this be a PLT generating relocation? */
11062 /* Custom personality routine. */
11063 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
11064 BFD_RELOC_ARM_PREL31);
11065
11066 where += 4;
11067 ptr += 4;
11068
11069 /* Set the first byte to the number of additional words. */
11070 data = size - 1;
11071 n = 3;
11072 break;
11073
11074 /* ABI defined personality routines. */
11075 case 0:
11076 /* Three opcodes bytes are packed into the first word. */
11077 data = 0x80;
11078 n = 3;
11079 break;
11080
11081 case 1:
11082 case 2:
11083 /* The size and first two opcode bytes go in the first word. */
11084 data = ((0x80 + unwind.personality_index) << 8) | size;
11085 n = 2;
11086 break;
11087
11088 default:
11089 /* Should never happen. */
11090 abort ();
11091 }
11092
11093 /* Pack the opcodes into words (MSB first), reversing the list at the same
11094 time. */
11095 while (unwind.opcode_count > 0)
11096 {
11097 if (n == 0)
11098 {
11099 md_number_to_chars (ptr, data, 4);
11100 ptr += 4;
11101 n = 4;
11102 data = 0;
11103 }
11104 unwind.opcode_count--;
11105 n--;
11106 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
11107 }
11108
11109 /* Finish off the last word. */
11110 if (n < 4)
11111 {
11112 /* Pad with "finish" opcodes. */
11113 while (n--)
11114 data = (data << 8) | 0xb0;
11115
11116 md_number_to_chars (ptr, data, 4);
11117 }
11118
11119 if (!have_data)
11120 {
11121 /* Add an empty descriptor if there is no user-specified data. */
11122 ptr = frag_more (4);
11123 md_number_to_chars (ptr, 0, 4);
11124 }
11125
11126 return 0;
11127 }
11128
11129 /* Convert REGNAME to a DWARF-2 register number. */
11130
11131 int
11132 tc_arm_regname_to_dw2regnum (const char *regname)
11133 {
11134 int reg = arm_reg_parse ((char **) &regname, REG_TYPE_RN);
11135
11136 if (reg == FAIL)
11137 return -1;
11138
11139 return reg;
11140 }
11141
11142 /* Initialize the DWARF-2 unwind information for this procedure. */
11143
11144 void
11145 tc_arm_frame_initial_instructions (void)
11146 {
11147 cfi_add_CFA_def_cfa (REG_SP, 0);
11148 }
11149 #endif /* OBJ_ELF */
11150
11151
11152 /* MD interface: Symbol and relocation handling. */
11153
11154 /* Return the address within the segment that a PC-relative fixup is
11155 relative to. For ARM, PC-relative fixups applied to instructions
11156 are generally relative to the location of the fixup plus 8 bytes.
11157 Thumb branches are offset by 4, and Thumb loads relative to PC
11158 require special handling. */
11159
11160 long
11161 md_pcrel_from_section (fixS * fixP, segT seg)
11162 {
11163 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
11164
11165 /* If this is pc-relative and we are going to emit a relocation
11166 then we just want to put out any pipeline compensation that the linker
11167 will need. Otherwise we want to use the calculated base. */
11168 if (fixP->fx_pcrel
11169 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
11170 || arm_force_relocation (fixP)))
11171 base = 0;
11172
11173 switch (fixP->fx_r_type)
11174 {
11175 /* PC relative addressing on the Thumb is slightly odd as the
11176 bottom two bits of the PC are forced to zero for the
11177 calculation. This happens *after* application of the
11178 pipeline offset. However, Thumb adrl already adjusts for
11179 this, so we need not do it again. */
11180 case BFD_RELOC_ARM_THUMB_ADD:
11181 return base & ~3;
11182
11183 case BFD_RELOC_ARM_THUMB_OFFSET:
11184 case BFD_RELOC_ARM_T32_OFFSET_IMM:
11185 case BFD_RELOC_ARM_T32_ADD_PC12:
11186 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
11187 return (base + 4) & ~3;
11188
11189 /* Thumb branches are simply offset by +4. */
11190 case BFD_RELOC_THUMB_PCREL_BRANCH7:
11191 case BFD_RELOC_THUMB_PCREL_BRANCH9:
11192 case BFD_RELOC_THUMB_PCREL_BRANCH12:
11193 case BFD_RELOC_THUMB_PCREL_BRANCH20:
11194 case BFD_RELOC_THUMB_PCREL_BRANCH23:
11195 case BFD_RELOC_THUMB_PCREL_BRANCH25:
11196 case BFD_RELOC_THUMB_PCREL_BLX:
11197 return base + 4;
11198
11199 /* ARM mode branches are offset by +8. However, the Windows CE
11200 loader expects the relocation not to take this into account. */
11201 case BFD_RELOC_ARM_PCREL_BRANCH:
11202 case BFD_RELOC_ARM_PCREL_CALL:
11203 case BFD_RELOC_ARM_PCREL_JUMP:
11204 case BFD_RELOC_ARM_PCREL_BLX:
11205 case BFD_RELOC_ARM_PLT32:
11206 #ifdef TE_WINCE
11207 return base;
11208 #else
11209 return base + 8;
11210 #endif
11211
11212 /* ARM mode loads relative to PC are also offset by +8. Unlike
11213 branches, the Windows CE loader *does* expect the relocation
11214 to take this into account. */
11215 case BFD_RELOC_ARM_OFFSET_IMM:
11216 case BFD_RELOC_ARM_OFFSET_IMM8:
11217 case BFD_RELOC_ARM_HWLITERAL:
11218 case BFD_RELOC_ARM_LITERAL:
11219 case BFD_RELOC_ARM_CP_OFF_IMM:
11220 return base + 8;
11221
11222
11223 /* Other PC-relative relocations are un-offset. */
11224 default:
11225 return base;
11226 }
11227 }
11228
11229 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
11230 Otherwise we have no need to default values of symbols. */
11231
11232 symbolS *
11233 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
11234 {
11235 #ifdef OBJ_ELF
11236 if (name[0] == '_' && name[1] == 'G'
11237 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
11238 {
11239 if (!GOT_symbol)
11240 {
11241 if (symbol_find (name))
11242 as_bad ("GOT already in the symbol table");
11243
11244 GOT_symbol = symbol_new (name, undefined_section,
11245 (valueT) 0, & zero_address_frag);
11246 }
11247
11248 return GOT_symbol;
11249 }
11250 #endif
11251
11252 return 0;
11253 }
11254
11255 /* Subroutine of md_apply_fix. Check to see if an immediate can be
11256 computed as two separate immediate values, added together. We
11257 already know that this value cannot be computed by just one ARM
11258 instruction. */
11259
11260 static unsigned int
11261 validate_immediate_twopart (unsigned int val,
11262 unsigned int * highpart)
11263 {
11264 unsigned int a;
11265 unsigned int i;
11266
11267 for (i = 0; i < 32; i += 2)
11268 if (((a = rotate_left (val, i)) & 0xff) != 0)
11269 {
11270 if (a & 0xff00)
11271 {
11272 if (a & ~ 0xffff)
11273 continue;
11274 * highpart = (a >> 8) | ((i + 24) << 7);
11275 }
11276 else if (a & 0xff0000)
11277 {
11278 if (a & 0xff000000)
11279 continue;
11280 * highpart = (a >> 16) | ((i + 16) << 7);
11281 }
11282 else
11283 {
11284 assert (a & 0xff000000);
11285 * highpart = (a >> 24) | ((i + 8) << 7);
11286 }
11287
11288 return (a & 0xff) | (i << 7);
11289 }
11290
11291 return FAIL;
11292 }
11293
11294 static int
11295 validate_offset_imm (unsigned int val, int hwse)
11296 {
11297 if ((hwse && val > 255) || val > 4095)
11298 return FAIL;
11299 return val;
11300 }
11301
11302 /* Subroutine of md_apply_fix. Do those data_ops which can take a
11303 negative immediate constant by altering the instruction. A bit of
11304 a hack really.
11305 MOV <-> MVN
11306 AND <-> BIC
11307 ADC <-> SBC
11308 by inverting the second operand, and
11309 ADD <-> SUB
11310 CMP <-> CMN
11311 by negating the second operand. */
11312
11313 static int
11314 negate_data_op (unsigned long * instruction,
11315 unsigned long value)
11316 {
11317 int op, new_inst;
11318 unsigned long negated, inverted;
11319
11320 negated = encode_arm_immediate (-value);
11321 inverted = encode_arm_immediate (~value);
11322
11323 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
11324 switch (op)
11325 {
11326 /* First negates. */
11327 case OPCODE_SUB: /* ADD <-> SUB */
11328 new_inst = OPCODE_ADD;
11329 value = negated;
11330 break;
11331
11332 case OPCODE_ADD:
11333 new_inst = OPCODE_SUB;
11334 value = negated;
11335 break;
11336
11337 case OPCODE_CMP: /* CMP <-> CMN */
11338 new_inst = OPCODE_CMN;
11339 value = negated;
11340 break;
11341
11342 case OPCODE_CMN:
11343 new_inst = OPCODE_CMP;
11344 value = negated;
11345 break;
11346
11347 /* Now Inverted ops. */
11348 case OPCODE_MOV: /* MOV <-> MVN */
11349 new_inst = OPCODE_MVN;
11350 value = inverted;
11351 break;
11352
11353 case OPCODE_MVN:
11354 new_inst = OPCODE_MOV;
11355 value = inverted;
11356 break;
11357
11358 case OPCODE_AND: /* AND <-> BIC */
11359 new_inst = OPCODE_BIC;
11360 value = inverted;
11361 break;
11362
11363 case OPCODE_BIC:
11364 new_inst = OPCODE_AND;
11365 value = inverted;
11366 break;
11367
11368 case OPCODE_ADC: /* ADC <-> SBC */
11369 new_inst = OPCODE_SBC;
11370 value = inverted;
11371 break;
11372
11373 case OPCODE_SBC:
11374 new_inst = OPCODE_ADC;
11375 value = inverted;
11376 break;
11377
11378 /* We cannot do anything. */
11379 default:
11380 return FAIL;
11381 }
11382
11383 if (value == (unsigned) FAIL)
11384 return FAIL;
11385
11386 *instruction &= OPCODE_MASK;
11387 *instruction |= new_inst << DATA_OP_SHIFT;
11388 return value;
11389 }
11390
11391 /* Like negate_data_op, but for Thumb-2. */
11392
11393 static unsigned int
11394 thumb32_negate_data_op (offsetT *instruction, offsetT value)
11395 {
11396 int op, new_inst;
11397 int rd;
11398 offsetT negated, inverted;
11399
11400 negated = encode_thumb32_immediate (-value);
11401 inverted = encode_thumb32_immediate (~value);
11402
11403 rd = (*instruction >> 8) & 0xf;
11404 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
11405 switch (op)
11406 {
11407 /* ADD <-> SUB. Includes CMP <-> CMN. */
11408 case T2_OPCODE_SUB:
11409 new_inst = T2_OPCODE_ADD;
11410 value = negated;
11411 break;
11412
11413 case T2_OPCODE_ADD:
11414 new_inst = T2_OPCODE_SUB;
11415 value = negated;
11416 break;
11417
11418 /* ORR <-> ORN. Includes MOV <-> MVN. */
11419 case T2_OPCODE_ORR:
11420 new_inst = T2_OPCODE_ORN;
11421 value = inverted;
11422 break;
11423
11424 case T2_OPCODE_ORN:
11425 new_inst = T2_OPCODE_ORR;
11426 value = inverted;
11427 break;
11428
11429 /* AND <-> BIC. TST has no inverted equivalent. */
11430 case T2_OPCODE_AND:
11431 new_inst = T2_OPCODE_BIC;
11432 if (rd == 15)
11433 value = FAIL;
11434 else
11435 value = inverted;
11436 break;
11437
11438 case T2_OPCODE_BIC:
11439 new_inst = T2_OPCODE_AND;
11440 value = inverted;
11441 break;
11442
11443 /* ADC <-> SBC */
11444 case T2_OPCODE_ADC:
11445 new_inst = T2_OPCODE_SBC;
11446 value = inverted;
11447 break;
11448
11449 case T2_OPCODE_SBC:
11450 new_inst = T2_OPCODE_ADC;
11451 value = inverted;
11452 break;
11453
11454 /* We cannot do anything. */
11455 default:
11456 return FAIL;
11457 }
11458
11459 if (value == FAIL)
11460 return FAIL;
11461
11462 *instruction &= T2_OPCODE_MASK;
11463 *instruction |= new_inst << T2_DATA_OP_SHIFT;
11464 return value;
11465 }
11466
11467 /* Read a 32-bit thumb instruction from buf. */
11468 static unsigned long
11469 get_thumb32_insn (char * buf)
11470 {
11471 unsigned long insn;
11472 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
11473 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
11474
11475 return insn;
11476 }
11477
11478 void
11479 md_apply_fix (fixS * fixP,
11480 valueT * valP,
11481 segT seg)
11482 {
11483 offsetT value = * valP;
11484 offsetT newval;
11485 unsigned int newimm;
11486 unsigned long temp;
11487 int sign;
11488 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
11489
11490 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
11491
11492 /* Note whether this will delete the relocation. */
11493 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
11494 fixP->fx_done = 1;
11495
11496 /* On a 64-bit host, silently truncate 'value' to 32 bits for
11497 consistency with the behavior on 32-bit hosts. Remember value
11498 for emit_reloc. */
11499 value &= 0xffffffff;
11500 value ^= 0x80000000;
11501 value -= 0x80000000;
11502
11503 *valP = value;
11504 fixP->fx_addnumber = value;
11505
11506 /* Same treatment for fixP->fx_offset. */
11507 fixP->fx_offset &= 0xffffffff;
11508 fixP->fx_offset ^= 0x80000000;
11509 fixP->fx_offset -= 0x80000000;
11510
11511 switch (fixP->fx_r_type)
11512 {
11513 case BFD_RELOC_NONE:
11514 /* This will need to go in the object file. */
11515 fixP->fx_done = 0;
11516 break;
11517
11518 case BFD_RELOC_ARM_IMMEDIATE:
11519 /* We claim that this fixup has been processed here,
11520 even if in fact we generate an error because we do
11521 not have a reloc for it, so tc_gen_reloc will reject it. */
11522 fixP->fx_done = 1;
11523
11524 if (fixP->fx_addsy
11525 && ! S_IS_DEFINED (fixP->fx_addsy))
11526 {
11527 as_bad_where (fixP->fx_file, fixP->fx_line,
11528 _("undefined symbol %s used as an immediate value"),
11529 S_GET_NAME (fixP->fx_addsy));
11530 break;
11531 }
11532
11533 newimm = encode_arm_immediate (value);
11534 temp = md_chars_to_number (buf, INSN_SIZE);
11535
11536 /* If the instruction will fail, see if we can fix things up by
11537 changing the opcode. */
11538 if (newimm == (unsigned int) FAIL
11539 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
11540 {
11541 as_bad_where (fixP->fx_file, fixP->fx_line,
11542 _("invalid constant (%lx) after fixup"),
11543 (unsigned long) value);
11544 break;
11545 }
11546
11547 newimm |= (temp & 0xfffff000);
11548 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
11549 break;
11550
11551 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
11552 {
11553 unsigned int highpart = 0;
11554 unsigned int newinsn = 0xe1a00000; /* nop. */
11555
11556 newimm = encode_arm_immediate (value);
11557 temp = md_chars_to_number (buf, INSN_SIZE);
11558
11559 /* If the instruction will fail, see if we can fix things up by
11560 changing the opcode. */
11561 if (newimm == (unsigned int) FAIL
11562 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
11563 {
11564 /* No ? OK - try using two ADD instructions to generate
11565 the value. */
11566 newimm = validate_immediate_twopart (value, & highpart);
11567
11568 /* Yes - then make sure that the second instruction is
11569 also an add. */
11570 if (newimm != (unsigned int) FAIL)
11571 newinsn = temp;
11572 /* Still No ? Try using a negated value. */
11573 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
11574 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
11575 /* Otherwise - give up. */
11576 else
11577 {
11578 as_bad_where (fixP->fx_file, fixP->fx_line,
11579 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
11580 (long) value);
11581 break;
11582 }
11583
11584 /* Replace the first operand in the 2nd instruction (which
11585 is the PC) with the destination register. We have
11586 already added in the PC in the first instruction and we
11587 do not want to do it again. */
11588 newinsn &= ~ 0xf0000;
11589 newinsn |= ((newinsn & 0x0f000) << 4);
11590 }
11591
11592 newimm |= (temp & 0xfffff000);
11593 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
11594
11595 highpart |= (newinsn & 0xfffff000);
11596 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
11597 }
11598 break;
11599
11600 case BFD_RELOC_ARM_OFFSET_IMM:
11601 if (!fixP->fx_done && seg->use_rela_p)
11602 value = 0;
11603
11604 case BFD_RELOC_ARM_LITERAL:
11605 sign = value >= 0;
11606
11607 if (value < 0)
11608 value = - value;
11609
11610 if (validate_offset_imm (value, 0) == FAIL)
11611 {
11612 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
11613 as_bad_where (fixP->fx_file, fixP->fx_line,
11614 _("invalid literal constant: pool needs to be closer"));
11615 else
11616 as_bad_where (fixP->fx_file, fixP->fx_line,
11617 _("bad immediate value for offset (%ld)"),
11618 (long) value);
11619 break;
11620 }
11621
11622 newval = md_chars_to_number (buf, INSN_SIZE);
11623 newval &= 0xff7ff000;
11624 newval |= value | (sign ? INDEX_UP : 0);
11625 md_number_to_chars (buf, newval, INSN_SIZE);
11626 break;
11627
11628 case BFD_RELOC_ARM_OFFSET_IMM8:
11629 case BFD_RELOC_ARM_HWLITERAL:
11630 sign = value >= 0;
11631
11632 if (value < 0)
11633 value = - value;
11634
11635 if (validate_offset_imm (value, 1) == FAIL)
11636 {
11637 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
11638 as_bad_where (fixP->fx_file, fixP->fx_line,
11639 _("invalid literal constant: pool needs to be closer"));
11640 else
11641 as_bad (_("bad immediate value for half-word offset (%ld)"),
11642 (long) value);
11643 break;
11644 }
11645
11646 newval = md_chars_to_number (buf, INSN_SIZE);
11647 newval &= 0xff7ff0f0;
11648 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
11649 md_number_to_chars (buf, newval, INSN_SIZE);
11650 break;
11651
11652 case BFD_RELOC_ARM_T32_OFFSET_U8:
11653 if (value < 0 || value > 1020 || value % 4 != 0)
11654 as_bad_where (fixP->fx_file, fixP->fx_line,
11655 _("bad immediate value for offset (%ld)"), (long) value);
11656 value /= 4;
11657
11658 newval = md_chars_to_number (buf+2, THUMB_SIZE);
11659 newval |= value;
11660 md_number_to_chars (buf+2, newval, THUMB_SIZE);
11661 break;
11662
11663 case BFD_RELOC_ARM_T32_OFFSET_IMM:
11664 /* This is a complicated relocation used for all varieties of Thumb32
11665 load/store instruction with immediate offset:
11666
11667 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
11668 *4, optional writeback(W)
11669 (doubleword load/store)
11670
11671 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
11672 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
11673 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
11674 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
11675 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
11676
11677 Uppercase letters indicate bits that are already encoded at
11678 this point. Lowercase letters are our problem. For the
11679 second block of instructions, the secondary opcode nybble
11680 (bits 8..11) is present, and bit 23 is zero, even if this is
11681 a PC-relative operation. */
11682 newval = md_chars_to_number (buf, THUMB_SIZE);
11683 newval <<= 16;
11684 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
11685
11686 if ((newval & 0xf0000000) == 0xe0000000)
11687 {
11688 /* Doubleword load/store: 8-bit offset, scaled by 4. */
11689 if (value >= 0)
11690 newval |= (1 << 23);
11691 else
11692 value = -value;
11693 if (value % 4 != 0)
11694 {
11695 as_bad_where (fixP->fx_file, fixP->fx_line,
11696 _("offset not a multiple of 4"));
11697 break;
11698 }
11699 value /= 4;
11700 if (value > 0xff)
11701 {
11702 as_bad_where (fixP->fx_file, fixP->fx_line,
11703 _("offset out of range"));
11704 break;
11705 }
11706 newval &= ~0xff;
11707 }
11708 else if ((newval & 0x000f0000) == 0x000f0000)
11709 {
11710 /* PC-relative, 12-bit offset. */
11711 if (value >= 0)
11712 newval |= (1 << 23);
11713 else
11714 value = -value;
11715 if (value > 0xfff)
11716 {
11717 as_bad_where (fixP->fx_file, fixP->fx_line,
11718 _("offset out of range"));
11719 break;
11720 }
11721 newval &= ~0xfff;
11722 }
11723 else if ((newval & 0x00000100) == 0x00000100)
11724 {
11725 /* Writeback: 8-bit, +/- offset. */
11726 if (value >= 0)
11727 newval |= (1 << 9);
11728 else
11729 value = -value;
11730 if (value > 0xff)
11731 {
11732 as_bad_where (fixP->fx_file, fixP->fx_line,
11733 _("offset out of range"));
11734 break;
11735 }
11736 newval &= ~0xff;
11737 }
11738 else if ((newval & 0x00000f00) == 0x00000e00)
11739 {
11740 /* T-instruction: positive 8-bit offset. */
11741 if (value < 0 || value > 0xff)
11742 {
11743 as_bad_where (fixP->fx_file, fixP->fx_line,
11744 _("offset out of range"));
11745 break;
11746 }
11747 newval &= ~0xff;
11748 newval |= value;
11749 }
11750 else
11751 {
11752 /* Positive 12-bit or negative 8-bit offset. */
11753 int limit;
11754 if (value >= 0)
11755 {
11756 newval |= (1 << 23);
11757 limit = 0xfff;
11758 }
11759 else
11760 {
11761 value = -value;
11762 limit = 0xff;
11763 }
11764 if (value > limit)
11765 {
11766 as_bad_where (fixP->fx_file, fixP->fx_line,
11767 _("offset out of range"));
11768 break;
11769 }
11770 newval &= ~limit;
11771 }
11772
11773 newval |= value;
11774 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
11775 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
11776 break;
11777
11778 case BFD_RELOC_ARM_SHIFT_IMM:
11779 newval = md_chars_to_number (buf, INSN_SIZE);
11780 if (((unsigned long) value) > 32
11781 || (value == 32
11782 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
11783 {
11784 as_bad_where (fixP->fx_file, fixP->fx_line,
11785 _("shift expression is too large"));
11786 break;
11787 }
11788
11789 if (value == 0)
11790 /* Shifts of zero must be done as lsl. */
11791 newval &= ~0x60;
11792 else if (value == 32)
11793 value = 0;
11794 newval &= 0xfffff07f;
11795 newval |= (value & 0x1f) << 7;
11796 md_number_to_chars (buf, newval, INSN_SIZE);
11797 break;
11798
11799 case BFD_RELOC_ARM_T32_IMMEDIATE:
11800 case BFD_RELOC_ARM_T32_IMM12:
11801 case BFD_RELOC_ARM_T32_ADD_PC12:
11802 /* We claim that this fixup has been processed here,
11803 even if in fact we generate an error because we do
11804 not have a reloc for it, so tc_gen_reloc will reject it. */
11805 fixP->fx_done = 1;
11806
11807 if (fixP->fx_addsy
11808 && ! S_IS_DEFINED (fixP->fx_addsy))
11809 {
11810 as_bad_where (fixP->fx_file, fixP->fx_line,
11811 _("undefined symbol %s used as an immediate value"),
11812 S_GET_NAME (fixP->fx_addsy));
11813 break;
11814 }
11815
11816 newval = md_chars_to_number (buf, THUMB_SIZE);
11817 newval <<= 16;
11818 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
11819
11820 /* FUTURE: Implement analogue of negate_data_op for T32. */
11821 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE)
11822 {
11823 newimm = encode_thumb32_immediate (value);
11824 if (newimm == (unsigned int) FAIL)
11825 newimm = thumb32_negate_data_op (&newval, value);
11826 }
11827 else
11828 {
11829 /* 12 bit immediate for addw/subw. */
11830 if (value < 0)
11831 {
11832 value = -value;
11833 newval ^= 0x00a00000;
11834 }
11835 if (value > 0xfff)
11836 newimm = (unsigned int) FAIL;
11837 else
11838 newimm = value;
11839 }
11840
11841 if (newimm == (unsigned int)FAIL)
11842 {
11843 as_bad_where (fixP->fx_file, fixP->fx_line,
11844 _("invalid constant (%lx) after fixup"),
11845 (unsigned long) value);
11846 break;
11847 }
11848
11849 newval |= (newimm & 0x800) << 15;
11850 newval |= (newimm & 0x700) << 4;
11851 newval |= (newimm & 0x0ff);
11852
11853 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
11854 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
11855 break;
11856
11857 case BFD_RELOC_ARM_SMC:
11858 if (((unsigned long) value) > 0xffff)
11859 as_bad_where (fixP->fx_file, fixP->fx_line,
11860 _("invalid smc expression"));
11861 newval = md_chars_to_number (buf, INSN_SIZE);
11862 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
11863 md_number_to_chars (buf, newval, INSN_SIZE);
11864 break;
11865
11866 case BFD_RELOC_ARM_SWI:
11867 if (fixP->tc_fix_data != 0)
11868 {
11869 if (((unsigned long) value) > 0xff)
11870 as_bad_where (fixP->fx_file, fixP->fx_line,
11871 _("invalid swi expression"));
11872 newval = md_chars_to_number (buf, THUMB_SIZE);
11873 newval |= value;
11874 md_number_to_chars (buf, newval, THUMB_SIZE);
11875 }
11876 else
11877 {
11878 if (((unsigned long) value) > 0x00ffffff)
11879 as_bad_where (fixP->fx_file, fixP->fx_line,
11880 _("invalid swi expression"));
11881 newval = md_chars_to_number (buf, INSN_SIZE);
11882 newval |= value;
11883 md_number_to_chars (buf, newval, INSN_SIZE);
11884 }
11885 break;
11886
11887 case BFD_RELOC_ARM_MULTI:
11888 if (((unsigned long) value) > 0xffff)
11889 as_bad_where (fixP->fx_file, fixP->fx_line,
11890 _("invalid expression in load/store multiple"));
11891 newval = value | md_chars_to_number (buf, INSN_SIZE);
11892 md_number_to_chars (buf, newval, INSN_SIZE);
11893 break;
11894
11895 #ifdef OBJ_ELF
11896 case BFD_RELOC_ARM_PCREL_CALL:
11897 newval = md_chars_to_number (buf, INSN_SIZE);
11898 if ((newval & 0xf0000000) == 0xf0000000)
11899 temp = 1;
11900 else
11901 temp = 3;
11902 goto arm_branch_common;
11903
11904 case BFD_RELOC_ARM_PCREL_JUMP:
11905 case BFD_RELOC_ARM_PLT32:
11906 #endif
11907 case BFD_RELOC_ARM_PCREL_BRANCH:
11908 temp = 3;
11909 goto arm_branch_common;
11910
11911 case BFD_RELOC_ARM_PCREL_BLX:
11912 temp = 1;
11913 arm_branch_common:
11914 /* We are going to store value (shifted right by two) in the
11915 instruction, in a 24 bit, signed field. Bits 26 through 32 either
11916 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
11917 also be be clear. */
11918 if (value & temp)
11919 as_bad_where (fixP->fx_file, fixP->fx_line,
11920 _("misaligned branch destination"));
11921 if ((value & (offsetT)0xfe000000) != (offsetT)0
11922 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
11923 as_bad_where (fixP->fx_file, fixP->fx_line,
11924 _("branch out of range"));
11925
11926 if (fixP->fx_done || !seg->use_rela_p)
11927 {
11928 newval = md_chars_to_number (buf, INSN_SIZE);
11929 newval |= (value >> 2) & 0x00ffffff;
11930 md_number_to_chars (buf, newval, INSN_SIZE);
11931 }
11932 break;
11933
11934 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CZB */
11935 /* CZB can only branch forward. */
11936 if (value & ~0x7e)
11937 as_bad_where (fixP->fx_file, fixP->fx_line,
11938 _("branch out of range"));
11939
11940 if (fixP->fx_done || !seg->use_rela_p)
11941 {
11942 newval = md_chars_to_number (buf, THUMB_SIZE);
11943 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
11944 md_number_to_chars (buf, newval, THUMB_SIZE);
11945 }
11946 break;
11947
11948 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
11949 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
11950 as_bad_where (fixP->fx_file, fixP->fx_line,
11951 _("branch out of range"));
11952
11953 if (fixP->fx_done || !seg->use_rela_p)
11954 {
11955 newval = md_chars_to_number (buf, THUMB_SIZE);
11956 newval |= (value & 0x1ff) >> 1;
11957 md_number_to_chars (buf, newval, THUMB_SIZE);
11958 }
11959 break;
11960
11961 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
11962 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
11963 as_bad_where (fixP->fx_file, fixP->fx_line,
11964 _("branch out of range"));
11965
11966 if (fixP->fx_done || !seg->use_rela_p)
11967 {
11968 newval = md_chars_to_number (buf, THUMB_SIZE);
11969 newval |= (value & 0xfff) >> 1;
11970 md_number_to_chars (buf, newval, THUMB_SIZE);
11971 }
11972 break;
11973
11974 case BFD_RELOC_THUMB_PCREL_BRANCH20:
11975 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
11976 as_bad_where (fixP->fx_file, fixP->fx_line,
11977 _("conditional branch out of range"));
11978
11979 if (fixP->fx_done || !seg->use_rela_p)
11980 {
11981 offsetT newval2;
11982 addressT S, J1, J2, lo, hi;
11983
11984 S = (value & 0x00100000) >> 20;
11985 J2 = (value & 0x00080000) >> 19;
11986 J1 = (value & 0x00040000) >> 18;
11987 hi = (value & 0x0003f000) >> 12;
11988 lo = (value & 0x00000ffe) >> 1;
11989
11990 newval = md_chars_to_number (buf, THUMB_SIZE);
11991 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
11992 newval |= (S << 10) | hi;
11993 newval2 |= (J1 << 13) | (J2 << 11) | lo;
11994 md_number_to_chars (buf, newval, THUMB_SIZE);
11995 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
11996 }
11997 break;
11998
11999 case BFD_RELOC_THUMB_PCREL_BLX:
12000 case BFD_RELOC_THUMB_PCREL_BRANCH23:
12001 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
12002 as_bad_where (fixP->fx_file, fixP->fx_line,
12003 _("branch out of range"));
12004
12005 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
12006 /* For a BLX instruction, make sure that the relocation is rounded up
12007 to a word boundary. This follows the semantics of the instruction
12008 which specifies that bit 1 of the target address will come from bit
12009 1 of the base address. */
12010 value = (value + 1) & ~ 1;
12011
12012 if (fixP->fx_done || !seg->use_rela_p)
12013 {
12014 offsetT newval2;
12015
12016 newval = md_chars_to_number (buf, THUMB_SIZE);
12017 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
12018 newval |= (value & 0x7fffff) >> 12;
12019 newval2 |= (value & 0xfff) >> 1;
12020 md_number_to_chars (buf, newval, THUMB_SIZE);
12021 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
12022 }
12023 break;
12024
12025 case BFD_RELOC_THUMB_PCREL_BRANCH25:
12026 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
12027 as_bad_where (fixP->fx_file, fixP->fx_line,
12028 _("branch out of range"));
12029
12030 if (fixP->fx_done || !seg->use_rela_p)
12031 {
12032 offsetT newval2;
12033 addressT S, I1, I2, lo, hi;
12034
12035 S = (value & 0x01000000) >> 24;
12036 I1 = (value & 0x00800000) >> 23;
12037 I2 = (value & 0x00400000) >> 22;
12038 hi = (value & 0x003ff000) >> 12;
12039 lo = (value & 0x00000ffe) >> 1;
12040
12041 I1 = !(I1 ^ S);
12042 I2 = !(I2 ^ S);
12043
12044 newval = md_chars_to_number (buf, THUMB_SIZE);
12045 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
12046 newval |= (S << 10) | hi;
12047 newval2 |= (I1 << 13) | (I2 << 11) | lo;
12048 md_number_to_chars (buf, newval, THUMB_SIZE);
12049 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
12050 }
12051 break;
12052
12053 case BFD_RELOC_8:
12054 if (fixP->fx_done || !seg->use_rela_p)
12055 md_number_to_chars (buf, value, 1);
12056 break;
12057
12058 case BFD_RELOC_16:
12059 if (fixP->fx_done || !seg->use_rela_p)
12060 md_number_to_chars (buf, value, 2);
12061 break;
12062
12063 #ifdef OBJ_ELF
12064 case BFD_RELOC_ARM_TLS_GD32:
12065 case BFD_RELOC_ARM_TLS_LE32:
12066 case BFD_RELOC_ARM_TLS_IE32:
12067 case BFD_RELOC_ARM_TLS_LDM32:
12068 case BFD_RELOC_ARM_TLS_LDO32:
12069 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12070 /* fall through */
12071
12072 case BFD_RELOC_ARM_GOT32:
12073 case BFD_RELOC_ARM_GOTOFF:
12074 case BFD_RELOC_ARM_TARGET2:
12075 if (fixP->fx_done || !seg->use_rela_p)
12076 md_number_to_chars (buf, 0, 4);
12077 break;
12078 #endif
12079
12080 case BFD_RELOC_RVA:
12081 case BFD_RELOC_32:
12082 case BFD_RELOC_ARM_TARGET1:
12083 case BFD_RELOC_ARM_ROSEGREL32:
12084 case BFD_RELOC_ARM_SBREL32:
12085 case BFD_RELOC_32_PCREL:
12086 if (fixP->fx_done || !seg->use_rela_p)
12087 md_number_to_chars (buf, value, 4);
12088 break;
12089
12090 #ifdef OBJ_ELF
12091 case BFD_RELOC_ARM_PREL31:
12092 if (fixP->fx_done || !seg->use_rela_p)
12093 {
12094 newval = md_chars_to_number (buf, 4) & 0x80000000;
12095 if ((value ^ (value >> 1)) & 0x40000000)
12096 {
12097 as_bad_where (fixP->fx_file, fixP->fx_line,
12098 _("rel31 relocation overflow"));
12099 }
12100 newval |= value & 0x7fffffff;
12101 md_number_to_chars (buf, newval, 4);
12102 }
12103 break;
12104 #endif
12105
12106 case BFD_RELOC_ARM_CP_OFF_IMM:
12107 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
12108 if (value < -1023 || value > 1023 || (value & 3))
12109 as_bad_where (fixP->fx_file, fixP->fx_line,
12110 _("co-processor offset out of range"));
12111 cp_off_common:
12112 sign = value >= 0;
12113 if (value < 0)
12114 value = -value;
12115 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
12116 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
12117 newval = md_chars_to_number (buf, INSN_SIZE);
12118 else
12119 newval = get_thumb32_insn (buf);
12120 newval &= 0xff7fff00;
12121 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
12122 if (value == 0)
12123 newval &= ~WRITE_BACK;
12124 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
12125 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
12126 md_number_to_chars (buf, newval, INSN_SIZE);
12127 else
12128 put_thumb32_insn (buf, newval);
12129 break;
12130
12131 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
12132 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
12133 if (value < -255 || value > 255)
12134 as_bad_where (fixP->fx_file, fixP->fx_line,
12135 _("co-processor offset out of range"));
12136 goto cp_off_common;
12137
12138 case BFD_RELOC_ARM_THUMB_OFFSET:
12139 newval = md_chars_to_number (buf, THUMB_SIZE);
12140 /* Exactly what ranges, and where the offset is inserted depends
12141 on the type of instruction, we can establish this from the
12142 top 4 bits. */
12143 switch (newval >> 12)
12144 {
12145 case 4: /* PC load. */
12146 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
12147 forced to zero for these loads; md_pcrel_from has already
12148 compensated for this. */
12149 if (value & 3)
12150 as_bad_where (fixP->fx_file, fixP->fx_line,
12151 _("invalid offset, target not word aligned (0x%08lX)"),
12152 (((unsigned long) fixP->fx_frag->fr_address
12153 + (unsigned long) fixP->fx_where) & ~3)
12154 + (unsigned long) value);
12155
12156 if (value & ~0x3fc)
12157 as_bad_where (fixP->fx_file, fixP->fx_line,
12158 _("invalid offset, value too big (0x%08lX)"),
12159 (long) value);
12160
12161 newval |= value >> 2;
12162 break;
12163
12164 case 9: /* SP load/store. */
12165 if (value & ~0x3fc)
12166 as_bad_where (fixP->fx_file, fixP->fx_line,
12167 _("invalid offset, value too big (0x%08lX)"),
12168 (long) value);
12169 newval |= value >> 2;
12170 break;
12171
12172 case 6: /* Word load/store. */
12173 if (value & ~0x7c)
12174 as_bad_where (fixP->fx_file, fixP->fx_line,
12175 _("invalid offset, value too big (0x%08lX)"),
12176 (long) value);
12177 newval |= value << 4; /* 6 - 2. */
12178 break;
12179
12180 case 7: /* Byte load/store. */
12181 if (value & ~0x1f)
12182 as_bad_where (fixP->fx_file, fixP->fx_line,
12183 _("invalid offset, value too big (0x%08lX)"),
12184 (long) value);
12185 newval |= value << 6;
12186 break;
12187
12188 case 8: /* Halfword load/store. */
12189 if (value & ~0x3e)
12190 as_bad_where (fixP->fx_file, fixP->fx_line,
12191 _("invalid offset, value too big (0x%08lX)"),
12192 (long) value);
12193 newval |= value << 5; /* 6 - 1. */
12194 break;
12195
12196 default:
12197 as_bad_where (fixP->fx_file, fixP->fx_line,
12198 "Unable to process relocation for thumb opcode: %lx",
12199 (unsigned long) newval);
12200 break;
12201 }
12202 md_number_to_chars (buf, newval, THUMB_SIZE);
12203 break;
12204
12205 case BFD_RELOC_ARM_THUMB_ADD:
12206 /* This is a complicated relocation, since we use it for all of
12207 the following immediate relocations:
12208
12209 3bit ADD/SUB
12210 8bit ADD/SUB
12211 9bit ADD/SUB SP word-aligned
12212 10bit ADD PC/SP word-aligned
12213
12214 The type of instruction being processed is encoded in the
12215 instruction field:
12216
12217 0x8000 SUB
12218 0x00F0 Rd
12219 0x000F Rs
12220 */
12221 newval = md_chars_to_number (buf, THUMB_SIZE);
12222 {
12223 int rd = (newval >> 4) & 0xf;
12224 int rs = newval & 0xf;
12225 int subtract = !!(newval & 0x8000);
12226
12227 /* Check for HI regs, only very restricted cases allowed:
12228 Adjusting SP, and using PC or SP to get an address. */
12229 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
12230 || (rs > 7 && rs != REG_SP && rs != REG_PC))
12231 as_bad_where (fixP->fx_file, fixP->fx_line,
12232 _("invalid Hi register with immediate"));
12233
12234 /* If value is negative, choose the opposite instruction. */
12235 if (value < 0)
12236 {
12237 value = -value;
12238 subtract = !subtract;
12239 if (value < 0)
12240 as_bad_where (fixP->fx_file, fixP->fx_line,
12241 _("immediate value out of range"));
12242 }
12243
12244 if (rd == REG_SP)
12245 {
12246 if (value & ~0x1fc)
12247 as_bad_where (fixP->fx_file, fixP->fx_line,
12248 _("invalid immediate for stack address calculation"));
12249 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
12250 newval |= value >> 2;
12251 }
12252 else if (rs == REG_PC || rs == REG_SP)
12253 {
12254 if (subtract || value & ~0x3fc)
12255 as_bad_where (fixP->fx_file, fixP->fx_line,
12256 _("invalid immediate for address calculation (value = 0x%08lX)"),
12257 (unsigned long) value);
12258 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
12259 newval |= rd << 8;
12260 newval |= value >> 2;
12261 }
12262 else if (rs == rd)
12263 {
12264 if (value & ~0xff)
12265 as_bad_where (fixP->fx_file, fixP->fx_line,
12266 _("immediate value out of range"));
12267 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
12268 newval |= (rd << 8) | value;
12269 }
12270 else
12271 {
12272 if (value & ~0x7)
12273 as_bad_where (fixP->fx_file, fixP->fx_line,
12274 _("immediate value out of range"));
12275 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
12276 newval |= rd | (rs << 3) | (value << 6);
12277 }
12278 }
12279 md_number_to_chars (buf, newval, THUMB_SIZE);
12280 break;
12281
12282 case BFD_RELOC_ARM_THUMB_IMM:
12283 newval = md_chars_to_number (buf, THUMB_SIZE);
12284 if (value < 0 || value > 255)
12285 as_bad_where (fixP->fx_file, fixP->fx_line,
12286 _("invalid immediate: %ld is too large"),
12287 (long) value);
12288 newval |= value;
12289 md_number_to_chars (buf, newval, THUMB_SIZE);
12290 break;
12291
12292 case BFD_RELOC_ARM_THUMB_SHIFT:
12293 /* 5bit shift value (0..32). LSL cannot take 32. */
12294 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
12295 temp = newval & 0xf800;
12296 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
12297 as_bad_where (fixP->fx_file, fixP->fx_line,
12298 _("invalid shift value: %ld"), (long) value);
12299 /* Shifts of zero must be encoded as LSL. */
12300 if (value == 0)
12301 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
12302 /* Shifts of 32 are encoded as zero. */
12303 else if (value == 32)
12304 value = 0;
12305 newval |= value << 6;
12306 md_number_to_chars (buf, newval, THUMB_SIZE);
12307 break;
12308
12309 case BFD_RELOC_VTABLE_INHERIT:
12310 case BFD_RELOC_VTABLE_ENTRY:
12311 fixP->fx_done = 0;
12312 return;
12313
12314 case BFD_RELOC_UNUSED:
12315 default:
12316 as_bad_where (fixP->fx_file, fixP->fx_line,
12317 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
12318 }
12319 }
12320
12321 /* Translate internal representation of relocation info to BFD target
12322 format. */
12323
12324 arelent *
12325 tc_gen_reloc (asection *section, fixS *fixp)
12326 {
12327 arelent * reloc;
12328 bfd_reloc_code_real_type code;
12329
12330 reloc = xmalloc (sizeof (arelent));
12331
12332 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
12333 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12334 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
12335
12336 if (fixp->fx_pcrel)
12337 {
12338 if (section->use_rela_p)
12339 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
12340 else
12341 fixp->fx_offset = reloc->address;
12342 }
12343 reloc->addend = fixp->fx_offset;
12344
12345 switch (fixp->fx_r_type)
12346 {
12347 case BFD_RELOC_8:
12348 if (fixp->fx_pcrel)
12349 {
12350 code = BFD_RELOC_8_PCREL;
12351 break;
12352 }
12353
12354 case BFD_RELOC_16:
12355 if (fixp->fx_pcrel)
12356 {
12357 code = BFD_RELOC_16_PCREL;
12358 break;
12359 }
12360
12361 case BFD_RELOC_32:
12362 if (fixp->fx_pcrel)
12363 {
12364 code = BFD_RELOC_32_PCREL;
12365 break;
12366 }
12367
12368 case BFD_RELOC_NONE:
12369 case BFD_RELOC_ARM_PCREL_BRANCH:
12370 case BFD_RELOC_ARM_PCREL_BLX:
12371 case BFD_RELOC_RVA:
12372 case BFD_RELOC_THUMB_PCREL_BRANCH7:
12373 case BFD_RELOC_THUMB_PCREL_BRANCH9:
12374 case BFD_RELOC_THUMB_PCREL_BRANCH12:
12375 case BFD_RELOC_THUMB_PCREL_BRANCH20:
12376 case BFD_RELOC_THUMB_PCREL_BRANCH23:
12377 case BFD_RELOC_THUMB_PCREL_BRANCH25:
12378 case BFD_RELOC_THUMB_PCREL_BLX:
12379 case BFD_RELOC_VTABLE_ENTRY:
12380 case BFD_RELOC_VTABLE_INHERIT:
12381 code = fixp->fx_r_type;
12382 break;
12383
12384 case BFD_RELOC_ARM_LITERAL:
12385 case BFD_RELOC_ARM_HWLITERAL:
12386 /* If this is called then the a literal has
12387 been referenced across a section boundary. */
12388 as_bad_where (fixp->fx_file, fixp->fx_line,
12389 _("literal referenced across section boundary"));
12390 return NULL;
12391
12392 #ifdef OBJ_ELF
12393 case BFD_RELOC_ARM_GOT32:
12394 case BFD_RELOC_ARM_GOTOFF:
12395 case BFD_RELOC_ARM_PLT32:
12396 case BFD_RELOC_ARM_TARGET1:
12397 case BFD_RELOC_ARM_ROSEGREL32:
12398 case BFD_RELOC_ARM_SBREL32:
12399 case BFD_RELOC_ARM_PREL31:
12400 case BFD_RELOC_ARM_TARGET2:
12401 case BFD_RELOC_ARM_TLS_LE32:
12402 case BFD_RELOC_ARM_TLS_LDO32:
12403 case BFD_RELOC_ARM_PCREL_CALL:
12404 case BFD_RELOC_ARM_PCREL_JUMP:
12405 code = fixp->fx_r_type;
12406 break;
12407
12408 case BFD_RELOC_ARM_TLS_GD32:
12409 case BFD_RELOC_ARM_TLS_IE32:
12410 case BFD_RELOC_ARM_TLS_LDM32:
12411 /* BFD will include the symbol's address in the addend.
12412 But we don't want that, so subtract it out again here. */
12413 if (!S_IS_COMMON (fixp->fx_addsy))
12414 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
12415 code = fixp->fx_r_type;
12416 break;
12417 #endif
12418
12419 case BFD_RELOC_ARM_IMMEDIATE:
12420 as_bad_where (fixp->fx_file, fixp->fx_line,
12421 _("internal relocation (type: IMMEDIATE) not fixed up"));
12422 return NULL;
12423
12424 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
12425 as_bad_where (fixp->fx_file, fixp->fx_line,
12426 _("ADRL used for a symbol not defined in the same file"));
12427 return NULL;
12428
12429 case BFD_RELOC_ARM_OFFSET_IMM:
12430 if (section->use_rela_p)
12431 {
12432 code = fixp->fx_r_type;
12433 break;
12434 }
12435
12436 if (fixp->fx_addsy != NULL
12437 && !S_IS_DEFINED (fixp->fx_addsy)
12438 && S_IS_LOCAL (fixp->fx_addsy))
12439 {
12440 as_bad_where (fixp->fx_file, fixp->fx_line,
12441 _("undefined local label `%s'"),
12442 S_GET_NAME (fixp->fx_addsy));
12443 return NULL;
12444 }
12445
12446 as_bad_where (fixp->fx_file, fixp->fx_line,
12447 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
12448 return NULL;
12449
12450 default:
12451 {
12452 char * type;
12453
12454 switch (fixp->fx_r_type)
12455 {
12456 case BFD_RELOC_NONE: type = "NONE"; break;
12457 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
12458 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
12459 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
12460 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
12461 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
12462 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
12463 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
12464 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
12465 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
12466 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
12467 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
12468 default: type = _("<unknown>"); break;
12469 }
12470 as_bad_where (fixp->fx_file, fixp->fx_line,
12471 _("cannot represent %s relocation in this object file format"),
12472 type);
12473 return NULL;
12474 }
12475 }
12476
12477 #ifdef OBJ_ELF
12478 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
12479 && GOT_symbol
12480 && fixp->fx_addsy == GOT_symbol)
12481 {
12482 code = BFD_RELOC_ARM_GOTPC;
12483 reloc->addend = fixp->fx_offset = reloc->address;
12484 }
12485 #endif
12486
12487 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
12488
12489 if (reloc->howto == NULL)
12490 {
12491 as_bad_where (fixp->fx_file, fixp->fx_line,
12492 _("cannot represent %s relocation in this object file format"),
12493 bfd_get_reloc_code_name (code));
12494 return NULL;
12495 }
12496
12497 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
12498 vtable entry to be used in the relocation's section offset. */
12499 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12500 reloc->address = fixp->fx_offset;
12501
12502 return reloc;
12503 }
12504
12505 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
12506
12507 void
12508 cons_fix_new_arm (fragS * frag,
12509 int where,
12510 int size,
12511 expressionS * exp)
12512 {
12513 bfd_reloc_code_real_type type;
12514 int pcrel = 0;
12515
12516 /* Pick a reloc.
12517 FIXME: @@ Should look at CPU word size. */
12518 switch (size)
12519 {
12520 case 1:
12521 type = BFD_RELOC_8;
12522 break;
12523 case 2:
12524 type = BFD_RELOC_16;
12525 break;
12526 case 4:
12527 default:
12528 type = BFD_RELOC_32;
12529 break;
12530 case 8:
12531 type = BFD_RELOC_64;
12532 break;
12533 }
12534
12535 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
12536 }
12537
12538 #if defined OBJ_COFF || defined OBJ_ELF
12539 void
12540 arm_validate_fix (fixS * fixP)
12541 {
12542 /* If the destination of the branch is a defined symbol which does not have
12543 the THUMB_FUNC attribute, then we must be calling a function which has
12544 the (interfacearm) attribute. We look for the Thumb entry point to that
12545 function and change the branch to refer to that function instead. */
12546 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
12547 && fixP->fx_addsy != NULL
12548 && S_IS_DEFINED (fixP->fx_addsy)
12549 && ! THUMB_IS_FUNC (fixP->fx_addsy))
12550 {
12551 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
12552 }
12553 }
12554 #endif
12555
12556 int
12557 arm_force_relocation (struct fix * fixp)
12558 {
12559 #if defined (OBJ_COFF) && defined (TE_PE)
12560 if (fixp->fx_r_type == BFD_RELOC_RVA)
12561 return 1;
12562 #endif
12563
12564 /* Resolve these relocations even if the symbol is extern or weak. */
12565 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
12566 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
12567 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
12568 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
12569 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
12570 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
12571 return 0;
12572
12573 return generic_force_reloc (fixp);
12574 }
12575
12576 #ifdef OBJ_COFF
12577 /* This is a little hack to help the gas/arm/adrl.s test. It prevents
12578 local labels from being added to the output symbol table when they
12579 are used with the ADRL pseudo op. The ADRL relocation should always
12580 be resolved before the binbary is emitted, so it is safe to say that
12581 it is adjustable. */
12582
12583 bfd_boolean
12584 arm_fix_adjustable (fixS * fixP)
12585 {
12586 if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
12587 return 1;
12588 return 0;
12589 }
12590 #endif
12591
12592 #ifdef OBJ_ELF
12593 /* Relocations against Thumb function names must be left unadjusted,
12594 so that the linker can use this information to correctly set the
12595 bottom bit of their addresses. The MIPS version of this function
12596 also prevents relocations that are mips-16 specific, but I do not
12597 know why it does this.
12598
12599 FIXME:
12600 There is one other problem that ought to be addressed here, but
12601 which currently is not: Taking the address of a label (rather
12602 than a function) and then later jumping to that address. Such
12603 addresses also ought to have their bottom bit set (assuming that
12604 they reside in Thumb code), but at the moment they will not. */
12605
12606 bfd_boolean
12607 arm_fix_adjustable (fixS * fixP)
12608 {
12609 if (fixP->fx_addsy == NULL)
12610 return 1;
12611
12612 if (THUMB_IS_FUNC (fixP->fx_addsy)
12613 && fixP->fx_subsy == NULL)
12614 return 0;
12615
12616 /* We need the symbol name for the VTABLE entries. */
12617 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12618 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12619 return 0;
12620
12621 /* Don't allow symbols to be discarded on GOT related relocs. */
12622 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
12623 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
12624 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
12625 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
12626 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
12627 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
12628 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
12629 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
12630 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
12631 return 0;
12632
12633 return 1;
12634 }
12635
12636 const char *
12637 elf32_arm_target_format (void)
12638 {
12639 #ifdef TE_SYMBIAN
12640 return (target_big_endian
12641 ? "elf32-bigarm-symbian"
12642 : "elf32-littlearm-symbian");
12643 #elif defined (TE_VXWORKS)
12644 return (target_big_endian
12645 ? "elf32-bigarm-vxworks"
12646 : "elf32-littlearm-vxworks");
12647 #else
12648 if (target_big_endian)
12649 return "elf32-bigarm";
12650 else
12651 return "elf32-littlearm";
12652 #endif
12653 }
12654
12655 void
12656 armelf_frob_symbol (symbolS * symp,
12657 int * puntp)
12658 {
12659 elf_frob_symbol (symp, puntp);
12660 }
12661 #endif
12662
12663 /* MD interface: Finalization. */
12664
12665 /* A good place to do this, although this was probably not intended
12666 for this kind of use. We need to dump the literal pool before
12667 references are made to a null symbol pointer. */
12668
12669 void
12670 arm_cleanup (void)
12671 {
12672 literal_pool * pool;
12673
12674 for (pool = list_of_pools; pool; pool = pool->next)
12675 {
12676 /* Put it at the end of the relevent section. */
12677 subseg_set (pool->section, pool->sub_section);
12678 #ifdef OBJ_ELF
12679 arm_elf_change_section ();
12680 #endif
12681 s_ltorg (0);
12682 }
12683 }
12684
12685 /* Adjust the symbol table. This marks Thumb symbols as distinct from
12686 ARM ones. */
12687
12688 void
12689 arm_adjust_symtab (void)
12690 {
12691 #ifdef OBJ_COFF
12692 symbolS * sym;
12693
12694 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
12695 {
12696 if (ARM_IS_THUMB (sym))
12697 {
12698 if (THUMB_IS_FUNC (sym))
12699 {
12700 /* Mark the symbol as a Thumb function. */
12701 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
12702 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
12703 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
12704
12705 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
12706 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
12707 else
12708 as_bad (_("%s: unexpected function type: %d"),
12709 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
12710 }
12711 else switch (S_GET_STORAGE_CLASS (sym))
12712 {
12713 case C_EXT:
12714 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
12715 break;
12716 case C_STAT:
12717 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
12718 break;
12719 case C_LABEL:
12720 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
12721 break;
12722 default:
12723 /* Do nothing. */
12724 break;
12725 }
12726 }
12727
12728 if (ARM_IS_INTERWORK (sym))
12729 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
12730 }
12731 #endif
12732 #ifdef OBJ_ELF
12733 symbolS * sym;
12734 char bind;
12735
12736 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
12737 {
12738 if (ARM_IS_THUMB (sym))
12739 {
12740 elf_symbol_type * elf_sym;
12741
12742 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
12743 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
12744
12745 if (! bfd_is_arm_mapping_symbol_name (elf_sym->symbol.name))
12746 {
12747 /* If it's a .thumb_func, declare it as so,
12748 otherwise tag label as .code 16. */
12749 if (THUMB_IS_FUNC (sym))
12750 elf_sym->internal_elf_sym.st_info =
12751 ELF_ST_INFO (bind, STT_ARM_TFUNC);
12752 else
12753 elf_sym->internal_elf_sym.st_info =
12754 ELF_ST_INFO (bind, STT_ARM_16BIT);
12755 }
12756 }
12757 }
12758 #endif
12759 }
12760
12761 /* MD interface: Initialization. */
12762
12763 static void
12764 set_constant_flonums (void)
12765 {
12766 int i;
12767
12768 for (i = 0; i < NUM_FLOAT_VALS; i++)
12769 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
12770 abort ();
12771 }
12772
12773 void
12774 md_begin (void)
12775 {
12776 unsigned mach;
12777 unsigned int i;
12778
12779 if ( (arm_ops_hsh = hash_new ()) == NULL
12780 || (arm_cond_hsh = hash_new ()) == NULL
12781 || (arm_shift_hsh = hash_new ()) == NULL
12782 || (arm_psr_hsh = hash_new ()) == NULL
12783 || (arm_v7m_psr_hsh = hash_new ()) == NULL
12784 || (arm_reg_hsh = hash_new ()) == NULL
12785 || (arm_reloc_hsh = hash_new ()) == NULL
12786 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
12787 as_fatal (_("virtual memory exhausted"));
12788
12789 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
12790 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
12791 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
12792 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
12793 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
12794 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
12795 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
12796 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
12797 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
12798 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
12799 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
12800 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
12801 for (i = 0;
12802 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
12803 i++)
12804 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
12805 (PTR) (barrier_opt_names + i));
12806 #ifdef OBJ_ELF
12807 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
12808 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
12809 #endif
12810
12811 set_constant_flonums ();
12812
12813 /* Set the cpu variant based on the command-line options. We prefer
12814 -mcpu= over -march= if both are set (as for GCC); and we prefer
12815 -mfpu= over any other way of setting the floating point unit.
12816 Use of legacy options with new options are faulted. */
12817 if (legacy_cpu)
12818 {
12819 if (mcpu_cpu_opt || march_cpu_opt)
12820 as_bad (_("use of old and new-style options to set CPU type"));
12821
12822 mcpu_cpu_opt = legacy_cpu;
12823 }
12824 else if (!mcpu_cpu_opt)
12825 mcpu_cpu_opt = march_cpu_opt;
12826
12827 if (legacy_fpu)
12828 {
12829 if (mfpu_opt)
12830 as_bad (_("use of old and new-style options to set FPU type"));
12831
12832 mfpu_opt = legacy_fpu;
12833 }
12834 else if (!mfpu_opt)
12835 {
12836 #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
12837 /* Some environments specify a default FPU. If they don't, infer it
12838 from the processor. */
12839 if (mcpu_fpu_opt)
12840 mfpu_opt = mcpu_fpu_opt;
12841 else
12842 mfpu_opt = march_fpu_opt;
12843 #else
12844 mfpu_opt = &fpu_default;
12845 #endif
12846 }
12847
12848 if (!mfpu_opt)
12849 {
12850 if (!mcpu_cpu_opt)
12851 mfpu_opt = &fpu_default;
12852 else if (ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
12853 mfpu_opt = &fpu_arch_vfp_v2;
12854 else
12855 mfpu_opt = &fpu_arch_fpa;
12856 }
12857
12858 #ifdef CPU_DEFAULT
12859 if (!mcpu_cpu_opt)
12860 {
12861 mcpu_cpu_opt = &cpu_default;
12862 selected_cpu = cpu_default;
12863 }
12864 #else
12865 if (mcpu_cpu_opt)
12866 selected_cpu = *mcpu_cpu_opt;
12867 else
12868 mcpu_cpu_opt = &arm_arch_any;
12869 #endif
12870
12871 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
12872
12873 arm_arch_used = thumb_arch_used = arm_arch_none;
12874
12875 #if defined OBJ_COFF || defined OBJ_ELF
12876 {
12877 unsigned int flags = 0;
12878
12879 #if defined OBJ_ELF
12880 flags = meabi_flags;
12881
12882 switch (meabi_flags)
12883 {
12884 case EF_ARM_EABI_UNKNOWN:
12885 #endif
12886 /* Set the flags in the private structure. */
12887 if (uses_apcs_26) flags |= F_APCS26;
12888 if (support_interwork) flags |= F_INTERWORK;
12889 if (uses_apcs_float) flags |= F_APCS_FLOAT;
12890 if (pic_code) flags |= F_PIC;
12891 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
12892 flags |= F_SOFT_FLOAT;
12893
12894 switch (mfloat_abi_opt)
12895 {
12896 case ARM_FLOAT_ABI_SOFT:
12897 case ARM_FLOAT_ABI_SOFTFP:
12898 flags |= F_SOFT_FLOAT;
12899 break;
12900
12901 case ARM_FLOAT_ABI_HARD:
12902 if (flags & F_SOFT_FLOAT)
12903 as_bad (_("hard-float conflicts with specified fpu"));
12904 break;
12905 }
12906
12907 /* Using pure-endian doubles (even if soft-float). */
12908 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
12909 flags |= F_VFP_FLOAT;
12910
12911 #if defined OBJ_ELF
12912 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
12913 flags |= EF_ARM_MAVERICK_FLOAT;
12914 break;
12915
12916 case EF_ARM_EABI_VER4:
12917 case EF_ARM_EABI_VER5:
12918 /* No additional flags to set. */
12919 break;
12920
12921 default:
12922 abort ();
12923 }
12924 #endif
12925 bfd_set_private_flags (stdoutput, flags);
12926
12927 /* We have run out flags in the COFF header to encode the
12928 status of ATPCS support, so instead we create a dummy,
12929 empty, debug section called .arm.atpcs. */
12930 if (atpcs)
12931 {
12932 asection * sec;
12933
12934 sec = bfd_make_section (stdoutput, ".arm.atpcs");
12935
12936 if (sec != NULL)
12937 {
12938 bfd_set_section_flags
12939 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
12940 bfd_set_section_size (stdoutput, sec, 0);
12941 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
12942 }
12943 }
12944 }
12945 #endif
12946
12947 /* Record the CPU type as well. */
12948 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
12949 mach = bfd_mach_arm_iWMMXt;
12950 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
12951 mach = bfd_mach_arm_XScale;
12952 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
12953 mach = bfd_mach_arm_ep9312;
12954 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
12955 mach = bfd_mach_arm_5TE;
12956 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
12957 {
12958 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
12959 mach = bfd_mach_arm_5T;
12960 else
12961 mach = bfd_mach_arm_5;
12962 }
12963 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
12964 {
12965 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
12966 mach = bfd_mach_arm_4T;
12967 else
12968 mach = bfd_mach_arm_4;
12969 }
12970 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
12971 mach = bfd_mach_arm_3M;
12972 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
12973 mach = bfd_mach_arm_3;
12974 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
12975 mach = bfd_mach_arm_2a;
12976 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
12977 mach = bfd_mach_arm_2;
12978 else
12979 mach = bfd_mach_arm_unknown;
12980
12981 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
12982 }
12983
12984 /* Command line processing. */
12985
12986 /* md_parse_option
12987 Invocation line includes a switch not recognized by the base assembler.
12988 See if it's a processor-specific option.
12989
12990 This routine is somewhat complicated by the need for backwards
12991 compatibility (since older releases of gcc can't be changed).
12992 The new options try to make the interface as compatible as
12993 possible with GCC.
12994
12995 New options (supported) are:
12996
12997 -mcpu=<cpu name> Assemble for selected processor
12998 -march=<architecture name> Assemble for selected architecture
12999 -mfpu=<fpu architecture> Assemble for selected FPU.
13000 -EB/-mbig-endian Big-endian
13001 -EL/-mlittle-endian Little-endian
13002 -k Generate PIC code
13003 -mthumb Start in Thumb mode
13004 -mthumb-interwork Code supports ARM/Thumb interworking
13005
13006 For now we will also provide support for:
13007
13008 -mapcs-32 32-bit Program counter
13009 -mapcs-26 26-bit Program counter
13010 -macps-float Floats passed in FP registers
13011 -mapcs-reentrant Reentrant code
13012 -matpcs
13013 (sometime these will probably be replaced with -mapcs=<list of options>
13014 and -matpcs=<list of options>)
13015
13016 The remaining options are only supported for back-wards compatibility.
13017 Cpu variants, the arm part is optional:
13018 -m[arm]1 Currently not supported.
13019 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
13020 -m[arm]3 Arm 3 processor
13021 -m[arm]6[xx], Arm 6 processors
13022 -m[arm]7[xx][t][[d]m] Arm 7 processors
13023 -m[arm]8[10] Arm 8 processors
13024 -m[arm]9[20][tdmi] Arm 9 processors
13025 -mstrongarm[110[0]] StrongARM processors
13026 -mxscale XScale processors
13027 -m[arm]v[2345[t[e]]] Arm architectures
13028 -mall All (except the ARM1)
13029 FP variants:
13030 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
13031 -mfpe-old (No float load/store multiples)
13032 -mvfpxd VFP Single precision
13033 -mvfp All VFP
13034 -mno-fpu Disable all floating point instructions
13035
13036 The following CPU names are recognized:
13037 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
13038 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
13039 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
13040 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
13041 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
13042 arm10t arm10e, arm1020t, arm1020e, arm10200e,
13043 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
13044
13045 */
13046
13047 const char * md_shortopts = "m:k";
13048
13049 #ifdef ARM_BI_ENDIAN
13050 #define OPTION_EB (OPTION_MD_BASE + 0)
13051 #define OPTION_EL (OPTION_MD_BASE + 1)
13052 #else
13053 #if TARGET_BYTES_BIG_ENDIAN
13054 #define OPTION_EB (OPTION_MD_BASE + 0)
13055 #else
13056 #define OPTION_EL (OPTION_MD_BASE + 1)
13057 #endif
13058 #endif
13059
13060 struct option md_longopts[] =
13061 {
13062 #ifdef OPTION_EB
13063 {"EB", no_argument, NULL, OPTION_EB},
13064 #endif
13065 #ifdef OPTION_EL
13066 {"EL", no_argument, NULL, OPTION_EL},
13067 #endif
13068 {NULL, no_argument, NULL, 0}
13069 };
13070
13071 size_t md_longopts_size = sizeof (md_longopts);
13072
13073 struct arm_option_table
13074 {
13075 char *option; /* Option name to match. */
13076 char *help; /* Help information. */
13077 int *var; /* Variable to change. */
13078 int value; /* What to change it to. */
13079 char *deprecated; /* If non-null, print this message. */
13080 };
13081
13082 struct arm_option_table arm_opts[] =
13083 {
13084 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
13085 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
13086 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
13087 &support_interwork, 1, NULL},
13088 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
13089 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
13090 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
13091 1, NULL},
13092 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
13093 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
13094 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
13095 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
13096 NULL},
13097
13098 /* These are recognized by the assembler, but have no affect on code. */
13099 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
13100 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
13101 {NULL, NULL, NULL, 0, NULL}
13102 };
13103
13104 struct arm_legacy_option_table
13105 {
13106 char *option; /* Option name to match. */
13107 const arm_feature_set **var; /* Variable to change. */
13108 const arm_feature_set value; /* What to change it to. */
13109 char *deprecated; /* If non-null, print this message. */
13110 };
13111
13112 const struct arm_legacy_option_table arm_legacy_opts[] =
13113 {
13114 /* DON'T add any new processors to this list -- we want the whole list
13115 to go away... Add them to the processors table instead. */
13116 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
13117 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
13118 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
13119 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
13120 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
13121 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
13122 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
13123 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
13124 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
13125 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
13126 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
13127 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
13128 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
13129 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
13130 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
13131 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
13132 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
13133 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
13134 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
13135 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
13136 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
13137 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
13138 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
13139 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
13140 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
13141 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
13142 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
13143 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
13144 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
13145 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
13146 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
13147 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
13148 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
13149 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
13150 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
13151 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
13152 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
13153 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
13154 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
13155 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
13156 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
13157 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
13158 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
13159 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
13160 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
13161 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
13162 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
13163 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
13164 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
13165 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
13166 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
13167 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
13168 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
13169 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
13170 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
13171 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
13172 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
13173 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
13174 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
13175 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
13176 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
13177 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
13178 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
13179 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
13180 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
13181 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
13182 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
13183 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
13184 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
13185 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
13186 N_("use -mcpu=strongarm110")},
13187 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
13188 N_("use -mcpu=strongarm1100")},
13189 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
13190 N_("use -mcpu=strongarm1110")},
13191 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
13192 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
13193 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
13194
13195 /* Architecture variants -- don't add any more to this list either. */
13196 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
13197 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
13198 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
13199 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
13200 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
13201 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
13202 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
13203 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
13204 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
13205 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
13206 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
13207 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
13208 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
13209 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
13210 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
13211 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
13212 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
13213 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
13214
13215 /* Floating point variants -- don't add any more to this list either. */
13216 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
13217 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
13218 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
13219 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
13220 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
13221
13222 {NULL, NULL, ARM_ARCH_NONE, NULL}
13223 };
13224
13225 struct arm_cpu_option_table
13226 {
13227 char *name;
13228 const arm_feature_set value;
13229 /* For some CPUs we assume an FPU unless the user explicitly sets
13230 -mfpu=... */
13231 const arm_feature_set default_fpu;
13232 /* The canonical name of the CPU, or NULL to use NAME converted to upper
13233 case. */
13234 const char *canonical_name;
13235 };
13236
13237 /* This list should, at a minimum, contain all the cpu names
13238 recognized by GCC. */
13239 static const struct arm_cpu_option_table arm_cpus[] =
13240 {
13241 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
13242 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
13243 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
13244 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
13245 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
13246 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13247 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13248 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13249 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13250 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13251 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13252 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
13253 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13254 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
13255 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13256 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
13257 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13258 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13259 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13260 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13261 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
13262 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13263 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
13264 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
13265 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13266 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13267 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13268 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
13269 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
13270 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
13271 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
13272 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
13273 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
13274 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
13275 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
13276 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
13277 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
13278 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
13279 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
13280 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
13281 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
13282 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
13283 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
13284 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
13285 /* For V5 or later processors we default to using VFP; but the user
13286 should really set the FPU type explicitly. */
13287 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
13288 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
13289 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
13290 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
13291 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
13292 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
13293 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
13294 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
13295 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
13296 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
13297 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
13298 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
13299 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
13300 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
13301 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
13302 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
13303 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
13304 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
13305 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
13306 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
13307 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
13308 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
13309 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
13310 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
13311 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
13312 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
13313 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
13314 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
13315 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
13316 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
13317 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
13318 {"cortex-a8", ARM_ARCH_V7A, FPU_ARCH_VFP_V2, NULL},
13319 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
13320 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
13321 /* ??? XSCALE is really an architecture. */
13322 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
13323 /* ??? iwmmxt is not a processor. */
13324 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
13325 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
13326 /* Maverick */
13327 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
13328 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
13329 };
13330
13331 struct arm_arch_option_table
13332 {
13333 char *name;
13334 const arm_feature_set value;
13335 const arm_feature_set default_fpu;
13336 };
13337
13338 /* This list should, at a minimum, contain all the architecture names
13339 recognized by GCC. */
13340 static const struct arm_arch_option_table arm_archs[] =
13341 {
13342 {"all", ARM_ANY, FPU_ARCH_FPA},
13343 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
13344 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
13345 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
13346 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
13347 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
13348 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
13349 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
13350 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
13351 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
13352 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
13353 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
13354 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
13355 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
13356 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
13357 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
13358 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
13359 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
13360 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
13361 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
13362 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
13363 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
13364 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
13365 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
13366 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
13367 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
13368 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
13369 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
13370 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
13371 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
13372 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
13373 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
13374 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
13375 };
13376
13377 /* ISA extensions in the co-processor space. */
13378 struct arm_option_cpu_value_table
13379 {
13380 char *name;
13381 const arm_feature_set value;
13382 };
13383
13384 static const struct arm_option_cpu_value_table arm_extensions[] =
13385 {
13386 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
13387 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
13388 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
13389 {NULL, ARM_ARCH_NONE}
13390 };
13391
13392 /* This list should, at a minimum, contain all the fpu names
13393 recognized by GCC. */
13394 static const struct arm_option_cpu_value_table arm_fpus[] =
13395 {
13396 {"softfpa", FPU_NONE},
13397 {"fpe", FPU_ARCH_FPE},
13398 {"fpe2", FPU_ARCH_FPE},
13399 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
13400 {"fpa", FPU_ARCH_FPA},
13401 {"fpa10", FPU_ARCH_FPA},
13402 {"fpa11", FPU_ARCH_FPA},
13403 {"arm7500fe", FPU_ARCH_FPA},
13404 {"softvfp", FPU_ARCH_VFP},
13405 {"softvfp+vfp", FPU_ARCH_VFP_V2},
13406 {"vfp", FPU_ARCH_VFP_V2},
13407 {"vfp9", FPU_ARCH_VFP_V2},
13408 {"vfp10", FPU_ARCH_VFP_V2},
13409 {"vfp10-r0", FPU_ARCH_VFP_V1},
13410 {"vfpxd", FPU_ARCH_VFP_V1xD},
13411 {"arm1020t", FPU_ARCH_VFP_V1},
13412 {"arm1020e", FPU_ARCH_VFP_V2},
13413 {"arm1136jfs", FPU_ARCH_VFP_V2},
13414 {"arm1136jf-s", FPU_ARCH_VFP_V2},
13415 {"maverick", FPU_ARCH_MAVERICK},
13416 {NULL, ARM_ARCH_NONE}
13417 };
13418
13419 struct arm_option_value_table
13420 {
13421 char *name;
13422 long value;
13423 };
13424
13425 static const struct arm_option_value_table arm_float_abis[] =
13426 {
13427 {"hard", ARM_FLOAT_ABI_HARD},
13428 {"softfp", ARM_FLOAT_ABI_SOFTFP},
13429 {"soft", ARM_FLOAT_ABI_SOFT},
13430 {NULL, 0}
13431 };
13432
13433 #ifdef OBJ_ELF
13434 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
13435 static const struct arm_option_value_table arm_eabis[] =
13436 {
13437 {"gnu", EF_ARM_EABI_UNKNOWN},
13438 {"4", EF_ARM_EABI_VER4},
13439 {"5", EF_ARM_EABI_VER5},
13440 {NULL, 0}
13441 };
13442 #endif
13443
13444 struct arm_long_option_table
13445 {
13446 char * option; /* Substring to match. */
13447 char * help; /* Help information. */
13448 int (* func) (char * subopt); /* Function to decode sub-option. */
13449 char * deprecated; /* If non-null, print this message. */
13450 };
13451
13452 static int
13453 arm_parse_extension (char * str, const arm_feature_set **opt_p)
13454 {
13455 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
13456
13457 /* Copy the feature set, so that we can modify it. */
13458 *ext_set = **opt_p;
13459 *opt_p = ext_set;
13460
13461 while (str != NULL && *str != 0)
13462 {
13463 const struct arm_option_cpu_value_table * opt;
13464 char * ext;
13465 int optlen;
13466
13467 if (*str != '+')
13468 {
13469 as_bad (_("invalid architectural extension"));
13470 return 0;
13471 }
13472
13473 str++;
13474 ext = strchr (str, '+');
13475
13476 if (ext != NULL)
13477 optlen = ext - str;
13478 else
13479 optlen = strlen (str);
13480
13481 if (optlen == 0)
13482 {
13483 as_bad (_("missing architectural extension"));
13484 return 0;
13485 }
13486
13487 for (opt = arm_extensions; opt->name != NULL; opt++)
13488 if (strncmp (opt->name, str, optlen) == 0)
13489 {
13490 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
13491 break;
13492 }
13493
13494 if (opt->name == NULL)
13495 {
13496 as_bad (_("unknown architectural extnsion `%s'"), str);
13497 return 0;
13498 }
13499
13500 str = ext;
13501 };
13502
13503 return 1;
13504 }
13505
13506 static int
13507 arm_parse_cpu (char * str)
13508 {
13509 const struct arm_cpu_option_table * opt;
13510 char * ext = strchr (str, '+');
13511 int optlen;
13512
13513 if (ext != NULL)
13514 optlen = ext - str;
13515 else
13516 optlen = strlen (str);
13517
13518 if (optlen == 0)
13519 {
13520 as_bad (_("missing cpu name `%s'"), str);
13521 return 0;
13522 }
13523
13524 for (opt = arm_cpus; opt->name != NULL; opt++)
13525 if (strncmp (opt->name, str, optlen) == 0)
13526 {
13527 mcpu_cpu_opt = &opt->value;
13528 mcpu_fpu_opt = &opt->default_fpu;
13529 if (opt->canonical_name)
13530 strcpy(selected_cpu_name, opt->canonical_name);
13531 else
13532 {
13533 int i;
13534 for (i = 0; i < optlen; i++)
13535 selected_cpu_name[i] = TOUPPER (opt->name[i]);
13536 selected_cpu_name[i] = 0;
13537 }
13538
13539 if (ext != NULL)
13540 return arm_parse_extension (ext, &mcpu_cpu_opt);
13541
13542 return 1;
13543 }
13544
13545 as_bad (_("unknown cpu `%s'"), str);
13546 return 0;
13547 }
13548
13549 static int
13550 arm_parse_arch (char * str)
13551 {
13552 const struct arm_arch_option_table *opt;
13553 char *ext = strchr (str, '+');
13554 int optlen;
13555
13556 if (ext != NULL)
13557 optlen = ext - str;
13558 else
13559 optlen = strlen (str);
13560
13561 if (optlen == 0)
13562 {
13563 as_bad (_("missing architecture name `%s'"), str);
13564 return 0;
13565 }
13566
13567 for (opt = arm_archs; opt->name != NULL; opt++)
13568 if (streq (opt->name, str))
13569 {
13570 march_cpu_opt = &opt->value;
13571 march_fpu_opt = &opt->default_fpu;
13572 strcpy(selected_cpu_name, opt->name);
13573
13574 if (ext != NULL)
13575 return arm_parse_extension (ext, &march_cpu_opt);
13576
13577 return 1;
13578 }
13579
13580 as_bad (_("unknown architecture `%s'\n"), str);
13581 return 0;
13582 }
13583
13584 static int
13585 arm_parse_fpu (char * str)
13586 {
13587 const struct arm_option_cpu_value_table * opt;
13588
13589 for (opt = arm_fpus; opt->name != NULL; opt++)
13590 if (streq (opt->name, str))
13591 {
13592 mfpu_opt = &opt->value;
13593 return 1;
13594 }
13595
13596 as_bad (_("unknown floating point format `%s'\n"), str);
13597 return 0;
13598 }
13599
13600 static int
13601 arm_parse_float_abi (char * str)
13602 {
13603 const struct arm_option_value_table * opt;
13604
13605 for (opt = arm_float_abis; opt->name != NULL; opt++)
13606 if (streq (opt->name, str))
13607 {
13608 mfloat_abi_opt = opt->value;
13609 return 1;
13610 }
13611
13612 as_bad (_("unknown floating point abi `%s'\n"), str);
13613 return 0;
13614 }
13615
13616 #ifdef OBJ_ELF
13617 static int
13618 arm_parse_eabi (char * str)
13619 {
13620 const struct arm_option_value_table *opt;
13621
13622 for (opt = arm_eabis; opt->name != NULL; opt++)
13623 if (streq (opt->name, str))
13624 {
13625 meabi_flags = opt->value;
13626 return 1;
13627 }
13628 as_bad (_("unknown EABI `%s'\n"), str);
13629 return 0;
13630 }
13631 #endif
13632
13633 struct arm_long_option_table arm_long_opts[] =
13634 {
13635 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
13636 arm_parse_cpu, NULL},
13637 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
13638 arm_parse_arch, NULL},
13639 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
13640 arm_parse_fpu, NULL},
13641 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
13642 arm_parse_float_abi, NULL},
13643 #ifdef OBJ_ELF
13644 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
13645 arm_parse_eabi, NULL},
13646 #endif
13647 {NULL, NULL, 0, NULL}
13648 };
13649
13650 int
13651 md_parse_option (int c, char * arg)
13652 {
13653 struct arm_option_table *opt;
13654 const struct arm_legacy_option_table *fopt;
13655 struct arm_long_option_table *lopt;
13656
13657 switch (c)
13658 {
13659 #ifdef OPTION_EB
13660 case OPTION_EB:
13661 target_big_endian = 1;
13662 break;
13663 #endif
13664
13665 #ifdef OPTION_EL
13666 case OPTION_EL:
13667 target_big_endian = 0;
13668 break;
13669 #endif
13670
13671 case 'a':
13672 /* Listing option. Just ignore these, we don't support additional
13673 ones. */
13674 return 0;
13675
13676 default:
13677 for (opt = arm_opts; opt->option != NULL; opt++)
13678 {
13679 if (c == opt->option[0]
13680 && ((arg == NULL && opt->option[1] == 0)
13681 || streq (arg, opt->option + 1)))
13682 {
13683 #if WARN_DEPRECATED
13684 /* If the option is deprecated, tell the user. */
13685 if (opt->deprecated != NULL)
13686 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
13687 arg ? arg : "", _(opt->deprecated));
13688 #endif
13689
13690 if (opt->var != NULL)
13691 *opt->var = opt->value;
13692
13693 return 1;
13694 }
13695 }
13696
13697 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
13698 {
13699 if (c == fopt->option[0]
13700 && ((arg == NULL && fopt->option[1] == 0)
13701 || streq (arg, fopt->option + 1)))
13702 {
13703 #if WARN_DEPRECATED
13704 /* If the option is deprecated, tell the user. */
13705 if (fopt->deprecated != NULL)
13706 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
13707 arg ? arg : "", _(fopt->deprecated));
13708 #endif
13709
13710 if (fopt->var != NULL)
13711 *fopt->var = &fopt->value;
13712
13713 return 1;
13714 }
13715 }
13716
13717 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
13718 {
13719 /* These options are expected to have an argument. */
13720 if (c == lopt->option[0]
13721 && arg != NULL
13722 && strncmp (arg, lopt->option + 1,
13723 strlen (lopt->option + 1)) == 0)
13724 {
13725 #if WARN_DEPRECATED
13726 /* If the option is deprecated, tell the user. */
13727 if (lopt->deprecated != NULL)
13728 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
13729 _(lopt->deprecated));
13730 #endif
13731
13732 /* Call the sup-option parser. */
13733 return lopt->func (arg + strlen (lopt->option) - 1);
13734 }
13735 }
13736
13737 return 0;
13738 }
13739
13740 return 1;
13741 }
13742
13743 void
13744 md_show_usage (FILE * fp)
13745 {
13746 struct arm_option_table *opt;
13747 struct arm_long_option_table *lopt;
13748
13749 fprintf (fp, _(" ARM-specific assembler options:\n"));
13750
13751 for (opt = arm_opts; opt->option != NULL; opt++)
13752 if (opt->help != NULL)
13753 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
13754
13755 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
13756 if (lopt->help != NULL)
13757 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
13758
13759 #ifdef OPTION_EB
13760 fprintf (fp, _("\
13761 -EB assemble code for a big-endian cpu\n"));
13762 #endif
13763
13764 #ifdef OPTION_EL
13765 fprintf (fp, _("\
13766 -EL assemble code for a little-endian cpu\n"));
13767 #endif
13768 }
13769
13770
13771 #ifdef OBJ_ELF
13772 typedef struct
13773 {
13774 int val;
13775 arm_feature_set flags;
13776 } cpu_arch_ver_table;
13777
13778 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
13779 least features first. */
13780 static const cpu_arch_ver_table cpu_arch_ver[] =
13781 {
13782 {1, ARM_ARCH_V4},
13783 {2, ARM_ARCH_V4T},
13784 {3, ARM_ARCH_V5},
13785 {4, ARM_ARCH_V5TE},
13786 {5, ARM_ARCH_V5TEJ},
13787 {6, ARM_ARCH_V6},
13788 {7, ARM_ARCH_V6Z},
13789 {8, ARM_ARCH_V6K},
13790 {9, ARM_ARCH_V6T2},
13791 {10, ARM_ARCH_V7A},
13792 {10, ARM_ARCH_V7R},
13793 {10, ARM_ARCH_V7M},
13794 {0, ARM_ARCH_NONE}
13795 };
13796
13797 /* Set the public EABI object attributes. */
13798 static void
13799 aeabi_set_public_attributes (void)
13800 {
13801 int arch;
13802 arm_feature_set flags;
13803 arm_feature_set tmp;
13804 const cpu_arch_ver_table *p;
13805
13806 /* Choose the architecture based on the capabilities of the requested cpu
13807 (if any) and/or the instructions actually used. */
13808 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
13809 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
13810 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
13811
13812 tmp = flags;
13813 arch = 0;
13814 for (p = cpu_arch_ver; p->val; p++)
13815 {
13816 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
13817 {
13818 arch = p->val;
13819 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
13820 }
13821 }
13822
13823 /* Tag_CPU_name. */
13824 if (selected_cpu_name[0])
13825 {
13826 char *p;
13827
13828 p = selected_cpu_name;
13829 if (strncmp(p, "armv", 4) == 0)
13830 {
13831 int i;
13832
13833 p += 4;
13834 for (i = 0; p[i]; i++)
13835 p[i] = TOUPPER (p[i]);
13836 }
13837 elf32_arm_add_eabi_attr_string (stdoutput, 5, p);
13838 }
13839 /* Tag_CPU_arch. */
13840 elf32_arm_add_eabi_attr_int (stdoutput, 6, arch);
13841 /* Tag_CPU_arch_profile. */
13842 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
13843 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'A');
13844 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
13845 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'R');
13846 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
13847 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'M');
13848 /* Tag_ARM_ISA_use. */
13849 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
13850 elf32_arm_add_eabi_attr_int (stdoutput, 8, 1);
13851 /* Tag_THUMB_ISA_use. */
13852 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
13853 elf32_arm_add_eabi_attr_int (stdoutput, 9,
13854 ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
13855 /* Tag_VFP_arch. */
13856 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_arch_vfp_v2)
13857 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_arch_vfp_v2))
13858 elf32_arm_add_eabi_attr_int (stdoutput, 10, 2);
13859 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_arch_vfp_v1)
13860 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_arch_vfp_v1))
13861 elf32_arm_add_eabi_attr_int (stdoutput, 10, 1);
13862 /* Tag_WMMX_arch. */
13863 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
13864 || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
13865 elf32_arm_add_eabi_attr_int (stdoutput, 11, 1);
13866 }
13867
13868 /* Add the .ARM.attributes section. */
13869 void
13870 arm_md_end (void)
13871 {
13872 segT s;
13873 char *p;
13874 addressT addr;
13875 offsetT size;
13876
13877 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
13878 return;
13879
13880 aeabi_set_public_attributes ();
13881 size = elf32_arm_eabi_attr_size (stdoutput);
13882 s = subseg_new (".ARM.attributes", 0);
13883 bfd_set_section_flags (stdoutput, s, SEC_READONLY | SEC_DATA);
13884 addr = frag_now_fix ();
13885 p = frag_more (size);
13886 elf32_arm_set_eabi_attr_contents (stdoutput, (bfd_byte *)p, size);
13887 }
13888
13889
13890 /* Parse a .cpu directive. */
13891
13892 static void
13893 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
13894 {
13895 const struct arm_cpu_option_table *opt;
13896 char *name;
13897 char saved_char;
13898
13899 name = input_line_pointer;
13900 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
13901 input_line_pointer++;
13902 saved_char = *input_line_pointer;
13903 *input_line_pointer = 0;
13904
13905 /* Skip the first "all" entry. */
13906 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
13907 if (streq (opt->name, name))
13908 {
13909 mcpu_cpu_opt = &opt->value;
13910 selected_cpu = opt->value;
13911 if (opt->canonical_name)
13912 strcpy(selected_cpu_name, opt->canonical_name);
13913 else
13914 {
13915 int i;
13916 for (i = 0; opt->name[i]; i++)
13917 selected_cpu_name[i] = TOUPPER (opt->name[i]);
13918 selected_cpu_name[i] = 0;
13919 }
13920 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
13921 *input_line_pointer = saved_char;
13922 demand_empty_rest_of_line ();
13923 return;
13924 }
13925 as_bad (_("unknown cpu `%s'"), name);
13926 *input_line_pointer = saved_char;
13927 ignore_rest_of_line ();
13928 }
13929
13930
13931 /* Parse a .arch directive. */
13932
13933 static void
13934 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
13935 {
13936 const struct arm_arch_option_table *opt;
13937 char saved_char;
13938 char *name;
13939
13940 name = input_line_pointer;
13941 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
13942 input_line_pointer++;
13943 saved_char = *input_line_pointer;
13944 *input_line_pointer = 0;
13945
13946 /* Skip the first "all" entry. */
13947 for (opt = arm_archs + 1; opt->name != NULL; opt++)
13948 if (streq (opt->name, name))
13949 {
13950 mcpu_cpu_opt = &opt->value;
13951 selected_cpu = opt->value;
13952 strcpy(selected_cpu_name, opt->name);
13953 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
13954 *input_line_pointer = saved_char;
13955 demand_empty_rest_of_line ();
13956 return;
13957 }
13958
13959 as_bad (_("unknown architecture `%s'\n"), name);
13960 *input_line_pointer = saved_char;
13961 ignore_rest_of_line ();
13962 }
13963
13964
13965 /* Parse a .fpu directive. */
13966
13967 static void
13968 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
13969 {
13970 const struct arm_option_cpu_value_table *opt;
13971 char saved_char;
13972 char *name;
13973
13974 name = input_line_pointer;
13975 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
13976 input_line_pointer++;
13977 saved_char = *input_line_pointer;
13978 *input_line_pointer = 0;
13979
13980 for (opt = arm_fpus; opt->name != NULL; opt++)
13981 if (streq (opt->name, name))
13982 {
13983 mfpu_opt = &opt->value;
13984 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
13985 *input_line_pointer = saved_char;
13986 demand_empty_rest_of_line ();
13987 return;
13988 }
13989
13990 as_bad (_("unknown floating point format `%s'\n"), name);
13991 *input_line_pointer = saved_char;
13992 ignore_rest_of_line ();
13993 }
13994 #endif /* OBJ_ELF */
13995
This page took 0.335809 seconds and 5 git commands to generate.